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Simulations of Critical Currents in Polycrystalline
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Ginzburg–Landau Theory
Alexander Ian Blair

Abstract

In this thesis, we investigate the in-field critical current density Jc(B) of

polycrystalline superconducting systems with grain boundaries modelled as

Josephson-type planar defects, both analytically and through computational

time-dependent Ginzburg–Landau (TDGL) simulations in 2D and 3D. For

very narrow SNS Josephson junctions (JJs), with widths smaller than the

superconducting coherence length, we derive what to our knowledge are

the first analytic expressions for Jc(B) across a JJ over the entire applied

magnetic field range. We extend the validity of our analytic expressions to

describe wider junctions and confirm them using TDGL simulations. We

model superconducting systems containing grain boundaries as a network of

JJs by using large-scale 3D TDGL simulations applying state-of-the-art solvers

implemented on GPU architectures. These simulations of Jc(B) have similar

magnitudes and dependencies on applied magnetic field to those observed

experimentally in optimised commercial superconductors. They provide an

explanation for the B−0.6 dependence found for Jc(B) in high temperature

superconductors and are the first to correctly provide the inverse power-law

grain size behaviour as well as the Kramer field dependence, widely found in

many low temperature superconductors.

Supervisors: Prof. Damian Hampshire and Prof. Ray Sharples

iii





Acknowledgements

I first wish to thank my supervisor, Prof. Damian Hampshire, for all the guidance
and support he has given me over my time at Durham, with regards to both
my research and my broader professional development. I also wish to thank
all of the other members of Durham University Superconductivity Group that I
have had the pleasure of working alongside over the course of my Ph.D. studies;
Mark Raine, Yeekin Tsui, Guanmei (Mona) Wang, Paul Branch, Francis Ridgeon,
Jack Greenwood, Andrew Smith, Simon Chislett-McDonald, Adel Nader, Charles
Gurnham, and Brad Din, for all the lively office conversations we have shared about
superconductivity, life, and current affairs. Whilst every one of them has been an
irreplaceable part of my Ph.D. journey, I wish to extend particular thanks to Mark
Raine, for his level-headed outlook and for all I have learned from our many diverse
discussions; and to Paul Branch, for being an enthusiastic teammate at outreach
events, and for his friendship and support over the years.

In addition, I wish to thank all those involved with the Fusion Centre for Doctoral
Training (CDT). The opportunities and courses provided within the CDT were a
highlight of my Ph.D. programme, and it has been a privilege to be part of a cohort
of such remarkable individuals from different research fields. I cannot hope to list
here every individual in the CDT with whom I have shared invaluable conversations
about research frontiers in fusion, for the list is too long. However, I do wish to
extend a special thanks to Sam Ward, for his enlightening discussions about CUDA
programming for GPU simulation that laid the foundations for the implementation
of the large-scale 3D vortex dynamics solver used in this work. I also wish to thank
Dr. Chengtian Lin and all other members of the Crystal Growth Group and Thin
Film Laboratory at the Max Plank Institute for Solid State Research in Stuttgart,
Germany, for their kind hospitality and tutelage during my CDT collaboratory
project that took place there.

v



On a personal level, I would like to offer thanks to the Graduate Common
Room of Ustinov College, and to all the friends I have made during my time
involved with it. The peer support of its postgraduate community has been the
emotional bedrock on which this work has been completed, and conversations
shared there have broadened my horizons immeasurably. I am particularly grateful
to Samantha Franks, for her boundless optimism, enthusiasm, and care over the
last few years, and for all the adventures we have shared together over that time!
Finally, I would like to thank my parents, Ian and Teresa Blair, for their love
and support throughout my studies. I am sincerely grateful for all their positivity
and encouragement during all the highs and lows of this project, and for all their
reminders to see the light at the end of the tunnel!

This work is funded by EPSRC grant EP/L01663X/1 that supports the EPSRC
Centre for Doctoral Training in the Science and Technology of Fusion Energy.
This work has also been carried out within the framework of the EUROfusion
Consortium and has received funding from the Euratom research and training
programme. Computational work in this thesis made use of the facilities of
the Hamilton HPC Service and the NVIDIA CUDA Centre (NCC) of Durham
University.

vi



Contents

Declaration xi

Courses xiii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Fundamentals of Superconductivity 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 BCS Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 BCS Pairing Mechanism and Hamiltonian . . . . . . . . . . . 9

2.2.3 BCS Energy Gap and Density of States . . . . . . . . . . . . 10

2.2.4 BCS Gap Equation and Transition Temperature . . . . . . . 12

2.3 Ginzburg–Landau Theory . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Ginzburg—Landau Free Energy . . . . . . . . . . . . . . . . . 15

2.3.3 Ginzburg—Landau Equations . . . . . . . . . . . . . . . . . . 17

2.3.4 Superconducting Length Scales, The Meissner State and

Type I Superconductors . . . . . . . . . . . . . . . . . . . . . 19

vii



2.3.5 Type II Superconductors, Vortices, and the Abrikosov Vortex

Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.6 Surfaces, Coatings and Thin Film Superconductors . . . . . . 29

2.3.7 Anisotropic and Inhomogeneous Superconductors . . . . . . . 32

2.3.8 Time-Dependent Ginzburg—Landau Theory . . . . . . . . . 34

2.3.9 Normalised Ginzburg–Landau Equations . . . . . . . . . . . . 36

2.4 Vortex Dynamics, Critical Currents, and Microstructures . . . . . . 38

2.4.1 Critical and Depairing Current Densities . . . . . . . . . . . . 38

2.4.2 Flux Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.3 Macroscopic Superconductors . . . . . . . . . . . . . . . . . . 43

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Numerical Methods for Solving the Time-Dependent Ginzburg–

Landau Equations 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Numerical Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.1 The Explicit Method of Gropp et al. . . . . . . . . . . . . . . 47

3.2.2 TDGL-ZEP – The Semi-Implicit Crank–Nicolson Method in

the Zero Electric Potential Gauge . . . . . . . . . . . . . . . . 51

3.2.2.1 Spatial Discretisation . . . . . . . . . . . . . . . . . 52

3.2.2.2 Temporal Discretisation . . . . . . . . . . . . . . . . 55

3.2.2.3 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.3 TDGL-HIK – The High-κ Large Scale Solver of Sadovskyy

et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 Steady States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Critical Current Determination . . . . . . . . . . . . . . . . . . . . . 64

3.4.1 Continuous Current Ramp . . . . . . . . . . . . . . . . . . . . 65

3.4.2 Ramp-and-Hold . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4.3 Adaptive Current Ramp . . . . . . . . . . . . . . . . . . . . . 72

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

viii



4 Simulations of the Critical Current of SNS Josephson Junctions

in Arbitrary Magnetic Fields 77

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Weakly Coupled SNS Junctions In Low Magnetic Fields . . . . . . . 80

4.2.1 Very Narrow Junctions ws � ξs . . . . . . . . . . . . . . . . . 81

4.2.1.1 Thin Junctions d� ξs . . . . . . . . . . . . . . . . . 82

4.2.1.2 Thick Junctions d� ξs . . . . . . . . . . . . . . . . 83

4.2.2 Narrow Junctions, λs � ws � ξs . . . . . . . . . . . . . . . . 84

4.2.3 Wide Junctions, ws � λs, ξs . . . . . . . . . . . . . . . . . . . 92

4.3 Josephson Junctions in Arbitrary Magnetic Field . . . . . . . . . . . 95

4.3.1 Very Narrow Junctions in High Fields . . . . . . . . . . . . . 96

4.3.1.1 Thin Junctions in High Fields . . . . . . . . . . . . 97

4.3.1.2 Thick Junctions in High Field d� ξs . . . . . . . . 99

4.3.1.3 Comments and Comparisons . . . . . . . . . . . . . 101

4.3.2 Narrow Junctions . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5 Simulations of the Critical Current of Polycrystalline Supercon-

ductors in Magnetic Fields 107

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2 Grain Morphology Generation using Voronoi Tessellations . . . . . . 109

5.3 Critical Current Simulations of 2D Polycrystals . . . . . . . . . . . . 111

5.4 Critical Current Simulations of 3D Polycrystals . . . . . . . . . . . . 118

5.4.1 Flux Pinning Expressions for Polycrystalline Materials . . . . 122

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6 Future Work 129

Appendix A Jacobi Elliptic Functions 133

Bibliography 135

ix





Declaration

The work in this thesis is based on research carried out at Durham University
Superconductivity Group, Department of Physics, University of Durham, England.
No part of this thesis has been submitted elsewhere for any other degree or
qualification, and it is the sole work of the author unless referenced to the contrary
in the text.

Some of the work presented in this thesis has been previously published in journals
and presented at conferences - the relevant publications and conferences are listed
below.

Publications

Modeling the Critical Current of Polycrystalline Superconducting Films in High
Magnetic Fields, Blair, A. I. and Hampshire, D. P.; IEEE Trans. Appl. Supercond.
29(5): 1 (2019)

Time-Dependent Ginzburg–Landau Simulations of the Critical Current in Super-
conducting Films and Junctions in Magnetic Fields, Blair, A. I. and Hampshire,
D. P.; IEEE Trans. Appl. Supercond. 28(4): 1 (2018)

xi



Conference Presentations

Ginzburg–Landau Critical Currents in High Fields for Polycrystalline Supercon-
ductors (Oral), Blair, A. I. and Hampshire, D. P.; EUCAS 2019, Glasgow, UK
(2019)

Modelling the Critical Current of Surfaces and Grain Boundaries in Superconduct-
ing Films at High Magnetic Fields (Poster), Blair, A. I. and Hampshire, D. P.; ASC
2018, Seattle, WA, USA (2018)

Modelling Superconductors for Fusion Applications using Ginzburg–Landau The-
ory (Poster), Blair, A. I. and Hampshire, D. P.; KSTAR Conference, Muju, KR
(2018)

Measuring and Modelling High Magnetic Field Superconductors for Fusion Applic-
ations (Oral), Blair, A. I. et al.; NFRI, Daejeon, KR (2018)

Time-Dependent Ginzburg–Landau Simulations of the Critical Current in Super-
conducting Films and Junctions in Magnetic Fields (Poster), Blair, A. I. and
Hampshire, D. P.; EuCAS 2017, Geneva, CH (2017)

Modelling Superconductors for Fusion Applications (Poster), Blair, A. I., Green-
wood, J. R., Smith, A. and Hampshire, D. P.; Joint Nuclear CDT Conference,
York, UK (2017)

Calculating the Supercurrent Across Grain Boundaries using Ginzburg–Landau
Theory (Poster), Blair, A. I. and Hampshire, D. P.; Applied Superconductivity
Conference, Denver, CO, USA (2016)

Modelling the Critical Current of Technological Superconductors in High Magnetic
Fields (Poster), Blair, A. I. and Hampshire, D. P.; Fusion Frontiers and Interfaces
Conference, York, UK (2016)

4th May 2021

Alexander Ian Blair

Copyright © 2021 by Alexander Ian Blair.

“The copyright of this thesis rests with the author. No quotation from it should be
published without the author’s prior written consent and information derived from
it should be acknowledged”.

xii



Courses

As part of the funding conditions for this Ph.D. project, the author is a student on

the “Materials Strand” of the EPSRC Centre for Doctoral Training in the Science

and Technology of Fusion Energy, hereafter referred to as the “Fusion CDT”. The

Fusion CDT comprises of a collaboration of five UK universities; the University

of York, the University of Oxford, the University of Manchester, the University of

Liverpool and the University of Durham, along with a number of industrial partners

and research institutes such as Culham Centre for Fusion Energy (CCFE), ITER,

and Fusion for Energy. Its primary purpose is to provide training in fusion energy

for Ph.D. candidates in related disciplines through a series of modules located at

member universities. The course of Fusion CDT modules is designed to be full-time

for the first academic year of study, comprising of around 9 months of full-time work

concluding in mid-June. To accommodate the extra time required to complete the

first year modules, Ph.D. projects within the Fusion CDT are funded for 4 years.

An outline of the first year courses in the Fusion CDT is provided in Table 1.

In the second year, students plan and take part in a funded collaboratory research

project for up to ten weeks at an institution of their choice, which may be outside

the UK. For this, the author completed an eight week collaboratory project under

the supervision of Dr. Chengtian Lin in the Crystal Growth Group of the Max

Planck Institute for Solid State Research in Stuttgart, Germany, investigating

xiii



surface effects on the upper critical fields of single crystal samples of YBCO,

measuring the magnetic hysteresis of samples using a Quantum Design Magnetic

Property Measurement System (MPMS).

Course Name Location
Introduction to Plasma Physics York
Introduction to Materials York
Computational Techniques York
High Performance Computing York (Remote)
Materials Applications in Fusion Oxford
Radiation Damage Oxford
Fusion Technology York
Plasma Surface Interactions Liverpool
Analytical and Characterisation Techniques Oxford and Manchester
Finite Element Method and Design Codes Manchester
Integrated Systems and Project Management Durham

Table 1: First year courses attended as part of the Fusion CDT.

xiv



Chapter 1

Introduction

1.1 Background

We live in an electric world. Today, modern society relies on the ability to

manipulate and control the flow of electric currents to transmit power to our homes

and make our everyday electronic devices function. However, the conventional

conductors through which we carry these currents, like copper, generate heat

when an electric current passes through them, due to their electrical resistance.

Sometimes, resistance is desirable – for example, in the heating element of a kettle

when boiling water. Usually, however, it is not, and the energy lost to heat is an

undesirable waste of energy that could otherwise be used for useful work. The

resistance of conventional conductors makes this heating inevitable, and limits the

efficiency in practical applications.

However, in 1911, Kamerlingh Onnes made the remarkable observation that the

resistance of metallic mercury dropped abruptly to immeasurably low values when

cooled below a critical temperature of 4.2 K [1]. It would later be understood

that this was the first observation of the superconducting state, and mercury

would become the first of a long series of ‘superconductors’ discovered which

hold the ability to carry electric currents without measurable resistance or the

dissipation of energy as heat. In the periodic table, superconductors are not

1



1.1. Background

even particularly rare; the majority of stable elements display superconductivity

at some temperature or pressure [2]. Over the years following Onnes’ discovery

of superconductivity in mercury, superconductivity was observed at progressively

higher temperatures in a range of compounds and alloys, spurring the hunt for

room temperature superconductivity. Notably, in 1986, superconductivity in

the cuprate system Ba2LaCu3O7–δ at record high critical temperatures above

30 K was observed [3], followed by the first observation of ‘high-temperature’

superconductivity at temperatures above the boiling point of liquid nitrogen at

atmospheric pressure (77 K) in YBa2Cu3O7–δ near 92 K the following year [4]. At

the time of writing, superconductivity in the carbonaceous sulfur hydride system

at ‘room’ temperatures close to 288 K (15 ◦C) has recently been reported, but only

under extreme pressures near 270 GPa [5].

However, just because a material is superconducting at a given temperature and

pressure does not mean it will be useful in practice under those conditions. A finite

superconductor cannot carry an unlimited amount of current without the onset of

observable resistances. Instead, a superconductor can only carry electrical currents

with negligible resistance provided the current per unit area flowing within the

superconductor is below a maximum, ‘critical’ current density. Indeed, just below

the critical temperature of the superconductor, this critical current density is zero,

and the superconductor will not be able to carry any electric currents without

the appearance of an electrical resistance! For a superconductor to be useful,

therefore, the critical current density of the material under practical conditions

must be sufficiently large for a given application. Technological scalability of

the superconductor is also necessary, in order for high critical current densities

observed in small samples of a superconductor to translate to practically useful

large-scale conductors and components. As a result, whilst a large number of

materials have now been found to become superconducting under sufficiently low

temperatures and high pressures, only a handful are commonly used in large-scale

conductors for technological applications. These include the niobium alloys NbTi

2



1.1. Background

and Nb3Sn; the inexpensive intermetallic MgB2; the cuprate bismuth strontium

calcium copper oxide (BSCCO) high-temperature superconductors; and the high-

temperature superconducting rare-earth barium copper oxide (RE)BCO materials

commonly used in the form of thin films (typically ∼ 1 µm thick) deposited on

metallic tapes.

Nevertheless, these technological materials carry exceptionally large electric current

densities before significant resistances begin to appear, with typical engineering

critical current densities of the order of kA mm−2 at 4.2 K in the absence of strong

magnetic fields or strains. Such current densities enable applications that would

be excessively expensive if only conventional conductors were available. Because of

their unparalleled ability to carry large current densities without prohibitive power

requirements, superconducting coils are used in the world’s strongest continuous

field electromagnets, capable of generate enormous continuous magnetic fields of

up to 45.5 T [6] and routinely over 10 T. Superconducting magnets have found

widespread use in the medical sector in Magnetic Resonance Imaging (MRI), which

uses the relaxation of the alignment of the nuclear spins of 1H nuclei (protons) in

strong magnetic fields to non-invasively image soft tissues and fluids in the body

that have high densities of 1H [7]. Over 40,000 superconducting magnets have now

been installed in hospitals worldwide [8]. The parent technique to MRI, Nuclear

Magnetic Resonance (NMR), has revolutionised analytical chemistry by providing

a highly effective tool for the identification of the structure and connectivity of

complex molecules, and superconducting magnets are used routinely to provide

the high magnetic field strengths, uniformity, and stability necessary to obtain the

high resolution in NMR spectra that is required to distinguish between different

chemical environments [9].

One particularly important application for driving the scale and performance of

technological superconductors is their use in Magnetic Confinement Fusion (MCF)

devices. Fusion – which releases energy via nuclear reactions that can occur between

energetic light nuclei – is a highly attractive option for meeting the long-term

3
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energy demands of our planet. It provides the prospect of producing vast amounts

of electrical energy from abundant fuel sources, without the direct production

of greenhouse gases nor long-lived high activity radioactive waste. Our Sun is

primarily powered by fusion reactions between protons, at temperatures around

15 million ◦C and extreme gravitational pressures in excess of 150 billion bar; on

earth, where such pressures are unachievable, the most promising reaction for the

commercial production of electrical energy is based on fusion between deuterium

and tritium nuclei at temperatures over 150 million ◦C and a few bar of pressure [10].

To attain such high temperatures, strong magnetic fields are used to confine the

charged particles that make up the plasma fuel and prevent the fuel from rapidly

cooling down via collisions with the reactor walls. Strong magnetic fields are also

used to shape and control the plasma for stability, and in tokamak designs, are used

to drive large electric currents through the plasma for further stability and initial

heating. Magnetic confinement fusion devices operate routinely around the world

every day, but have not yet achieved the milestone of releasing more energy from the

fusion reaction than put in to heat and stabilise the plasma and operate the magnet

system. Superconductivity is therefore an enabling technology for commercially

viable fusion energy, as it provides a mechanism by which these large magnetic

fields can be generated without the prohibitive power demands required by coils

constructed from conventional conductors [11]. A number of tokamaks using

superconducting magnets are currently in operation around the world, including

EAST, WEST, and KSTAR, and many more are under construction. Notably, the

world’s largest fusion reactor ITER, currently under construction in the south of

France, that is planned to be the first device to produce net fusion power, will

utilise Nb3Sn in its eighteen toroidal field magnets and central solenoid, and will

use six NbTi poloidal field magnets for plasma shaping [12]. Advances in the large-

scale production of High Temperature Superconducting (HTS) tapes, which can

operate under higher current densities at higher magnetic fields and temperatures

than Nb3Sn and NbTi, have recently spurred intense interest in the design of
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small magnetic confinement fusion reactors that take advantage of the effects of

stronger magnetic fields on the fusion plasma, such as the SPARC tokamak under

development between MIT and Commonwealth Fusion Systems [13]. For example,

for a fixed ratio of the plasma pressure to the magnetic pressure – which is limited

by plasma stability requirements – the fusion power density inside a tokamak scales

as the fourth power of the toroidal magnetic field [14].

For these applications, understanding what limits the critical current densities in

practical materials is therefore essential. Higher critical current densities allow

smaller devices and magnets to be built whilst maintaining performance, which

can significantly reduce their cost of use. As all technological superconductors

are polycrystalline, understanding the role of grain boundaries in limiting critical

current densities in these materials is particularly important for understanding

possible methods by which these materials may be optimised in future.

In this thesis, we shall study the role of grain boundaries and grain boundary

networks in limiting the critical current density of polycrystalline superconductors

through the lens of Time-Dependent Ginzburg–Landau (TDGL) theory, both

analytically, and with numerical simulations. In Chapter 2, we shall review

the fundamental results of applied superconductivity, with focus on Ginzburg–

Landau (GL) theory and its time-dependent extensions. In Chapter 3, we shall

discuss the key numerical techniques used to solve the TDGL equations for

studying vortex dynamics and critical currents from the literature, and outline

the numerical algorithms implemented and used in simulations presented in the

rest of the thesis. In Chapter 4, we tackle the problem of current flow across grain

boundary structures in superconductors – modelled here as Josephson junctions

– and find novel analytic expressions for how granular structures affect critical

current densities in 2D systems. Finally, in Chapter 5, we present results of

vortex dynamics simulations of 3D polycrystalline systems containing networks

of grain boundaries, which are the first of their kind that show both the increase in

critical current density with decreasing grain size and dependencies of the critical

5
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current on applied magnetic field that are widely observed in many commercial low

temperature superconductors.
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Chapter 2

Fundamentals of

Superconductivity

2.1 Introduction

When a superconducting material is cooled below its critical temperature Tc, there

are two characteristic properties associated with its entry into the superconducting

state: the exhibition of zero electrical resistivity when subject to a DC current;

and the expulsion of all magnetic flux from the superconducting bulk, known as

the Meissner state [15]. Most of the practical applications of superconductors

rely on the first of these properties – the ability to carry significant DC electric

current density whilst displaying negligible electrical resistance. However, for real

materials, the maximum current that can flow through a finite cross-sectional area

of superconductor, the critical current, is not infinite, but depends sensitively on

the local temperature, magnetic field, strain, and microstructure of the material.

Furthermore, when cooled below Tc, all large-scale technological superconducting

materials will display diamagnetism, but not all magnetic flux will be expelled

from their bulk in high magnetic fields. Practical materials, therefore, are poorly

described by these classic signatures of ‘ideal’ superconductors. What theories are

available, then, to describe the phenomenology of the superconducting state in real

7
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systems?

In this chapter, we shall address this question by reviewing the key results in the

literature that are used to predict and characterise the behaviour of supercon-

ductors for practical applications. In Section 2.2, we present an outline of the

microscopic Bardeen–Cooper–Schrieffer (BCS) theory, which has proved successful

in providing a mechanism for superconductivity in conventional low-temperature

superconductors. Next, we present an overview of the phenomenological GL theory

for superconductors in Section 2.3, including the role of vortices, and present

derivations of the key parameters used in applied superconductivity. Finally, we

discuss how the microstructure and the movement of vortices determines the critical

current density of superconducting materials in Section 2.4.

2.2 BCS Theory

2.2.1 Introduction

The development of a microscopic theory describing the origin of the superconduct-

ing state remained elusive for over 45 years since its first observation by Kamerlingh

Onnes in 1911 [1]. In 1950, Frohlich first suggested that the effective phonon

interaction between electrons as a possible mechanism for superconductivity [16].

Such a proposal provided a potential explanation for the observation that good

normal-state conductors do not become superconductors, since significant phonon-

electron coupling in a material is associated with high resistances in such materials.

Following this, in 1956, Cooper showed that the ground state of the electron gas is

unstable with respect to the formation of at least one bound pair of electrons if there

exists an attractive net electron-electron interaction, such as that originating from

the effective phonon interaction, regardless of its magnitude [17]. This surprising

result was extended to find the variational ground state of a system containing

many bound pairs of electrons by Bardeen, Cooper and Schrieffer in 1957, that later

8
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won them the 1972 Nobel Prize in Physics [18]. Since its proposal, BCS theory

has successfully predicted the quantitative properties of many low-temperature

superconductors, with experimental support from measurements of the dependence

of transition temperature on ion mass (the isotope effect), density of states, heat

capacity, and the Knight shift in superconductors [19]. However, it now seems

unlikely that BCS theory and its extensions can be used to describe the behaviour

of many high-temperature superconducting compounds such as the copper-oxide

superconductors, if a simple phonon-mediated mechanism is applied [20, 21].

Nevertheless, as the only comprehensive microscopic theory widely available, in

this section we provide an overview of BCS theory and its key results.

2.2.2 BCS Pairing Mechanism and Hamiltonian

The exchange of phonons between electrons in the Fermi sea gives rise to an

effective interaction potential between electrons, which may be either attractive or

repulsive depending on the magnitude of the difference between the single-particle

energies εk. Notably, the direct interaction arising from single-phonon exchange

is strongest between two electrons of opposite momentum [22, 23]. However, the

full expression for the effective electron-electron interaction potential is difficult

to manipulate analytically as it also contains contributions from the Coulomb

repulsion between electrons. Therefore, in order to render the problem analytically

tractable, BCS considered a simplified electron-electron interaction, proposing a

model pair-interaction Hamiltonian of the form

H =
∑
k,σ

εkc
†
k,σck,σ +

∑
k,k′

Vk,k′c†k,↑c
†
−k,↓c−k′,↓ck′,↑. (2.2.1)

Here the creation and annihilation operators c†k,σ and ck,σ represent the creation

and annihilation respectively of a fermion in a state with wave vector k and

spin σ ∈ {↑, ↓} [15]. By construction, in Eq. (2.2.1), only the electron-electron

interaction terms corresponding to the scattering of an electron pair in states

(k′, ↑) and (−k′, ↓) into states (k, ↑) and (k, ↓) have been considered, motivated

9



2.2.3. BCS Energy Gap and Density of States

by the earlier discussion of the phonon-phonon interaction. In order to maintain

conservation of particle number when minimising the ground state energy of a

many-body system, the zero of the single-particle energies εk is taken as the Fermi

energy of the system. Of course, for Eq. (2.2.1) to be used to provide quantitative

results, the form of the interaction potential Vk,k′ must, in principle, be known.

For simplicity, BCS assumed an isotropic, square-well type interaction of the form

Vk,k′ =

−V if |εk|, |εk′ | < h̄ωD

0 otherwise
, (2.2.2)

where the Debye energy h̄ωD is used as an approximation to the average phonon

energy and V is a constant parameterising the strength of the interaction [22]. It

should be noted, however, that many of the key results of BCS theory depend only

on the requirement that the effective electron-electron potential Vk,k′ is attractive

and not on the specific form of the interaction potential. Whilst the treatment of

BCS theory is usually restricted for simplicity to the behaviour of the homogeneous

electron gas described by the pair interaction Hamiltonian given in Eq. (2.2.1), the

analysis can be generalised to include the effect of arbitrary external potentials,

such as those imposed by impurities and/or magnetic fields. Such a method is

based on a generalisation of the Hartree—Fock method to the superconducting

state that was formalised by Bogoliubov and de Gennes, but a full discussion of

this approach is outside the scope of the current presentation [23].

2.2.3 BCS Energy Gap and Density of States

Direct investigation of the BCS ground state directly is challenging, due to the

two-body interaction in the pair-interaction Hamiltonian of Eq. (2.2.1). Therefore,

to simplify the BCS pair-interaction Hamiltonian, mean field theory is employed.

As the order parameter for the mean-field approach, BCS took the thermal average

bk = 〈c−k,↓ck,↑〉 , (2.2.3)

10



2.2.3. BCS Energy Gap and Density of States

which is expected to be zero in the normal state [15]. The pair potential ∆k can

then be similarly defined in terms of the BCS order parameter as

∆k = −
∑
k′
Vk,k′

〈
c−k′,↓ck′,↑

〉
(2.2.4)

for convenience. The symmetries of ∆k are determined by the symmetries broken

in the transition from the normal to the superconducting state. In a ‘conventional’

superconductor, only the global U(1) phase rotation symmetry of the system

is broken, and ∆k is isotropic. In an ‘unconventional’ superconductor, other

symmetries are also broken, and the translational symmetry of the superconducting

phase may differ from that of the normal state [24]. Such cases are likely

important in modelling the behaviour of many high-temperature superconductors

such as YBCO [15]. We shall predominantly restrict our discussion to conventional

superconductors here, noting that the extension to the unconventional case is

possible, if algebraically tedious. By substituting bk and ∆k into Eq. (2.2.1) and

assuming that terms bilinear in the fluctuation (c−k,↓ck,↑ − bk) can be neglected,

the effective Hamiltonian is obtained in the form

Heff =
∑
k,σ

εkc
†
k,σck,σ +

∑
k

(
∆kc

†
k,↑c
†
−k,↓ + ∆∗kc−k,↓ck,↑ −∆kb

∗
k,
)

(2.2.5)

which is bilinear in the fermionic creation and annihilation operators. As a

result, the effective Hamiltonian can be diagonalised via an arbitrary unitary

transformation proposed by Bogoliubov and Valatin,

ck,σ = ukγk,σ + σvkγ
†
−k,−σ, (2.2.6)

where the new quasiparticle operators γ†k,σ and γk,σ respectively represent the

creation and annihilation of so-called Bogoliubov quasiparticles in the system [22].

Importantly, from Eq. (2.2.6), one can also show that γ†k,σ and γk,σ satisfy fermionic

anticommutation relations. Then, for an appropriate choice of the constants uk and

vk, the effective Hamiltonian of Eq. (2.2.5) can be diagonalised in the basis of the

new quasiparticle operators [15], and can be finally expressed in the form

Heff =
∑

k

(εk − Ek −∆kb
∗
k) +

∑
k,σ

Ekγ
†
k,σγk,σ, (2.2.7)
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2.2.4. BCS Gap Equation and Transition Temperature

with Ek satisfying

E2
k = ε2

k + |∆k|2 . (2.2.8)

The first sum in Eq. (2.2.7) is independent of the state of the system, and

acts as only a constant shift to the ground-state energy. In the second sum,

the term γ†k,σγk,σ can be identified as the number operator for the Bogoliubov

quasiparticles, which implies that the quantity Ek represents the energy of an

elementary excitation (quasiparticle) in the system. Furthermore, from Eq. (2.2.8),

one can infer that |∆k| represents the energy gap for elementary excitations with

wave vector k in the system, since |Ek| ≥ |∆k| for all k. For conventional

superconductors, the pair potential is isotropic, so ∆k = ∆. In this case, in the

thermodynamic limit, the quasiparticle energy levels Ek can be approximated by

the continuous variable E and used to calculate the BCS density of states N(E)

from the quasiparticle energy relation using Eq. (2.2.8)

N(E) =


0 |E| < |∆|

N(0)E√
E2−|∆|2

|E| > |∆|
, (2.2.9)

where N(0) is the density of states of the free electron model. The density of

states has been well-studied experimentally via electron tunnelling measurements,

and found to be in good agreement with the predictions of Eq. (2.2.9) for many

superconductors, except close to the energy gap edge [19].

2.2.4 BCS Gap Equation and Transition Temperature

We next review the properties of the pair potential ∆k in BCS theory. In order to

ensure self-consistency between the definition of the pair potential, Eq. (2.2.4),

and the Bogoliubov transformation Eq. (2.2.6) which diagonalises the effective

Hamiltonian Eq. (2.2.5), the condition

∆k = −
∑
k′
Vk,k′

∆k′

2Ek′

〈
1− γ†

k′,↓γk′,↓ − γ
†
k′,↑γk′,↑

〉
(2.2.10)

must be satisfied. By defining the quasiparticle occupation number fk as

fk =
〈
γ†k,σγk,σ

〉
(2.2.11)
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2.2.4. BCS Gap Equation and Transition Temperature

and minimising over the free energy of the system, after application of the fermionic

anticommutation relations for the quasiparticle operators, fk is found to be the

Fermi-Dirac distribution function [23]. This leads directly from Eq. (2.2.10) to the

BCS Gap equation

∆k = −
∑
k′
Vk,k′

∆k′

2Ek′
tanh

(
Ek′

2kBT

)
. (2.2.12)

Once again, this may be considerably simplified by taking the BCS interaction

potential of Eq. (2.2.2) and taking the thermodynamic limit, to obtain

1
N(0)V =

∫ h̄ωD

0

1√
ε2 + |∆|2

tanh


√
ε2 + |∆|2

2kBT

 dε. (2.2.13)

The integral in Eq. (2.2.13) cannot generally be evaluated analytically except in

particular limiting cases. In the weak coupling limitN(0)V � 1, the gap parameter

at zero temperature |∆|T=0 is

|∆|T=0 = h̄ωD exp
(
− 1
N(0)V

)
. (2.2.14)

It can be seen from Eq. (2.2.14) that |∆|T=0 is not analytic in the coupling

constant N(0)V , due to the presence of an essential singularity at the point where

N(0)V = 0. This implies that the energy gap at zero temperature possesses no

perturbative expansion in the coupling constant N(0)V , providing an explanation

for the failure of previous attempts to formulate a theory of the superconducting

state based on perturbation theory [22]. Similarly, by taking the limit of

Eq. (2.2.13) close to Tc, when |∆| → 0, one obtains in the weak coupling limit

2 |∆|T=0 = 3.52kBTc, (2.2.15)

which provides a prediction for the transition temperature in terms of gap

parameter at zero temperature. From Eqs. (2.2.14) and (2.2.15), and noting the

ion mass M ∝ ω−2
D , one can also obtain a prediction for the isotope effect with

Tc ∝ M−1/2. Whilst this expression for the isotope effect and Eq. (2.2.15) are

approximately consistent with the observed behaviour for many non-transition
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metal superconductors, many other superconductors deviate strongly from these

predictions [19]. Whilst in some of these cases, this is expected to be an

artefact of the assumptions imposed on the form of the electron-phonon interaction

approximated by Eq. (2.2.2), in others these deviations suggest a different

mechanism is responsible for the onset of superconductivity.

2.3 Ginzburg–Landau Theory

2.3.1 Introduction

The microscopic framework provided by BCS theory represented a significant step

forward in the description of the superconducting state, but in cases where the

pair potential varies spatially or when an external magnetic field is applied to

the superconductor, a fully microscopic treatment remains excessively complex.

In such regimes, the phenomenological GL theory is much more widely utilised.

The theory was originally proposed by Ginzburg and Landau in 1950, prior to the

development of BCS theory, on general considerations on properties of second order

phase transitions [25]. However, the theory attracted little attention in western

literature until 1959, when Gor’kov showed that GL theory arose as a rigorous

limiting case of the microscopic BCS theory close to the critical temperature, under

the assumption of local electrodynamics and slow variation in the pair potential and

magnetic vector potential [26]. GL theory was subsequently generalised for ‘dirty’

superconductors containing high concentrations of impurities at all temperatures

close to the critical magnetic field by Maki and DeGennes [27, 28, 29], and to

the time-dependent case for systems dominated by paramagnetic impurities by a

number of authors including Schmid, Gor’kov and Eliashberg [30, 31]. GL theory

is now widely used as a starting point for modelling the macroscopic behaviour

of superconductors in magnetic fields due to the relative simplicity with which

it describes the spatial variation of the density of Cooper pairs and the physical

insight it provides. In this chapter, we shall discuss the basis of GL theory and
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2.3.2. Ginzburg—Landau Free Energy

the key results for macroscopic superconductors, including critical fields and the

properties of the Meissner and mixed states, along with a brief introduction to its

extension to the time-dependent case.

2.3.2 Ginzburg—Landau Free Energy

GL theory arose from the general theory of second order phase transitions proposed

by Landau. In his framework, across a second order phase transition, the

symmetry group of the ground state of a system changes discontinuously as one

or more of symmetries present in the more symmetric phase are spontaneously

broken [32]. By definition, in a general transition into the superconducting state,

at least one of the broken symmetries must be the global U(1) phase rotation

symmetry [33]. On group-theoretic grounds, the reduction in symmetry at a second

order phase transition implies that the free energy of the system close to the

transition temperature Tc may be expanded as a Taylor series in terms of a set

of one or more functions {ψi}, which change continuously from zero in the more

symmetric phase to non-zero in the less symmetric phase. The set of {ψi} are

referred to as order parameters for the transition and may be transformed into

one another via transformations that are members of the symmetry group of the

more symmetric phase [32]. As the free energy of a system must be invariant under

any coordinate transformation, this symmetry condition on the order parameter(s)

severely restricts which terms in the Taylor expansion of the free energy are non-

zero, minimising the number of phenomenological parameters required to describe

the state of the system close to the transition. Applying the Landau theory of

second order phase transitions to a transition between a non-magnetic normal state

and a superconductor, assuming a scalar order parameter for simplicity, Ginzburg

and Landau proposed a free energy for a cubic crystal near Tc of the form

F = F0 +
∫ (

αGL |ψ|2 + 1
2βGL |ψ|4 + 1

2mGL
|Πψ|2 + B2

2µ0

)
d3r, (2.3.1)
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2.3.2. Ginzburg—Landau Free Energy

where Π = −ıh̄∇ − 2eA is the gauge invariant (kinetic) momentum operator; ı

is the imaginary unit defined by ı2 = −1; A is the magnetic vector potential;

∇ × A = B is the magnetic flux density and −e is the charge of an electron

[25, 34, 35, 36]. The quantity F0 represents the free energy of the normal state

in the absence of an applied magnetic field. The integral is over all space, and

represents the combined free energy of the superconductor and any source of an

externally applied magnetic field [37, 38]. For the order parameter corresponding

to the minimum free energy to be zero at temperatures above Tc but non-zero

below Tc, αGL (T ) must be positive for T > Tc and negative for T < Tc, and

so close to Tc where the form of the GL free energy is valid, αGL ∝ T − Tc.

Similarly, for the order parameter corresponding to the minimum free energy to be

finite in magnitude, βGL must be positive either side of the transition temperature,

and it is thus taken as independent of temperature close to Tc. The equations

of motion for the equilibrium order parameter and magnetic vector potential can

then be obtained up to a gauge transformation from Eq. (2.3.1) via variational

minimisation of the free energy with respect to ψ and A. Below Tc, the free energy

F has a local minimum for a nonzero |ψ| in the system, and the superconducting

phase is thermodynamically stable; above Tc, no such minimum exists for |ψ| 6= 0,

and superconductivity is unstable relative to the normal state. A depiction of the

free energy variation as a function of |ψ| for a bulk superconductor in the absence

of magnetic fields is shown in Fig. 2.1.

It should be noted that the phenomenological parameters αGL, βGL and mGL

are only (collectively) specified up to a constant of proportionality, that sets the

normalisation of |ψ|2 [23, 22] and thus the microscopic interpretation of the order

parameter. In Gor’kov’s derivation of the GL free energy as a limit of BCS theory

close to Tc using thermodynamic Green’s functions, the GL order parameter ψ is

found to be proportional to the pair potential ∆ of BCS theory [39].
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2.3.3. Ginzburg—Landau Equations

Figure 2.1: GL free energy of a uniform superconducting state in zero field, as a
function of the order parameter magnitude |ψ|. Free energy F is determined from
Eq. (2.3.1) with F0 = 0. µ0 is the permeability of free space; φ0 is the magnetic flux
quantum; κ is the Ginzburg–Landau constant; ξs is the superconducting coherence
length for the T � Tc curve; and α0, β0 are the GL parameters for the T � Tc
curve.

2.3.3 Ginzburg—Landau Equations

The ground state of the macroscopic system from the GL free energy presented

in Eq. (2.3.1), can now be determined up to a gauge transformation. To do so,

the GL free energy is variationally minimised with respect to fluctuations in the

order parameter and the magnetic vector potential, to obtain a set of coupled

differential equations that are satisfied for ψ and A in the ground state. By setting

the functional derivative of the free energy with respect to the complex conjugate

of the order parameter equal to zero,

δF

δψ∗
= 0, (2.3.2)
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2.3.3. Ginzburg—Landau Equations

and assuming that the fluctuation δψ∗ may take arbitrary values at the surface of

the superconductor, one obtains the first GL equation

1
2mGL

Π2ψ + αGLψ + βGL |ψ|2 ψ = 0, (2.3.3)

along with the boundary condition

n ·Πψ = 0 (2.3.4)

at the surface of the superconductor with outward normal unit vector n [15, 36, 37].

Similarly, the complex conjugate of Eqs. (2.3.3) and (2.3.4) may be obtained by

setting δF/δψ = 0. It should be noted that the boundary condition of Eq. (2.3.4)

is only valid for an interface with a material that does not influence electrons in

the superconductor, such as an insulator, as otherwise δψ∗ may not necessarily

take arbitrary values at the interface; a generalisation of this boundary condition

at an interface through which no net current passes was derived from microscopic

theory by De Gennes [23, 37]. The first GL equation, Eq. (2.3.3), has a similar

form to the Schrödinger equation for a particle with charge −2e and mass mGL in

a magnetic field, but with the addition of the nonlinear βGL |ψ|2 ψ term [15]. This

motivates the physical interpretation of ψ as proportional to the wavefunction

of the centre-of-mass motion of the Cooper pairs in the superconductor [15]. The

existence of this nonlinear term in Eq. (2.3.3) adds considerable complexity relative

to the linearised equation where βGL |ψ|2 ψ is neglected, but crucially determines

the normalisation of ψ. Considering fluctuations of the magnetic vector potential

on general thermodynamic grounds, for the chosen form of the GL free energy in

Eq. (2.3.1), one has the general relation

δF

δA
= µ0Japp, (2.3.5)

where Japp is any externally applied current passing through the system, which

is zero inside the superconductor in the absence of transport currents [37, 38].

Substituting Eq. (2.3.1) into Eq. (2.3.5), the second GL equation is obtained,

∇×B = µ0 (J s + Japp) , (2.3.6)
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where

J s = 2e
mGL

={ψ∗ (h̄∇− 2ıeA)ψ} = 2e
mGL

<{ψ∗Πψ} (2.3.7)

is the supercurrent in the system [15, 25, 36], where < and = represent the real and

imaginary component operators respectively. Eq. (2.3.6) can be seen to be identical

in form to one of Maxwell’s equations in the absence of a time-varying electric field

in the system, which directly implies continuity of current in the system, with

∇ · (J s + Japp) = 0 [34]. Finally, in order to determine the state of the system,

the two GL equations, Eqs. (2.3.3) and (2.3.6), must be self-consistently solved to

obtain the order parameter ψ and the magnetic vector potential A up to a choice

of gauge, and thus describe the macroscopic state of the system.

2.3.4 Superconducting Length Scales, The Meissner State and

Type I Superconductors

We will now review some of the properties of the superconducting state that can be

described by considering solutions to the GL equations. Firstly, we shall identify

the characteristic length scales over which the order parameter magnitude |ψ| and

magnetic field B vary, and then present how Eqs. (2.3.3) and (2.3.6) suggest the

existence of the Meissner state and a thermodynamic critical magnetic field in

superconductors.

The approximate length scale over which the magnitude of the order parameter

varies, the superconducting coherence length ξ, can be identified by considering

the case of the superconductor in the absence of magnetic and electric fields, where

A = 0. In this case, the first GL equation of Eq. (2.3.3) reduces to

− h̄2

2mGL
∇2ψ + αGLψ + βGL |ψ|2 ψ = 0. (2.3.8)

When the superconductor is in contact with a conductive metal occupying

the region x < 0, the order parameter at the interface is suppressed and

ψ ≈ 0 [23]. Deep inside the superconductor, ψ is expected to be constant, so
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limx→∞ {∇ψ} = 0. Assuming that the order parameter is a one-dimensional

function of the distance from the interface, ψ = ψ(x), Eq. (2.3.8) can be solved to

give

ψ = ψ∞ tanh
(

x√
2ξ

)
, (2.3.9)

where the order parameter deep inside the superconductor ψ∞ is given by

|ψ∞|2 = −αGL
βGL

= |αGL|
βGL

, (2.3.10)

and the coherence length ξ is found to be [22]

ξ =
√

h̄2

2mGL |αGL|
. (2.3.11)

This coherence length ξ is temperature dependent, and notably diverges as T

approaches Tc when |αGL| → 0.

The approximate length scale over which the local magnetic field (and therefore

current densities) vary in a superconductor, known as the penetration depth λ,

can also be identified by considering solutions to the GL equations close to an

interface with a conductive metal. Assuming that the order parameter ψ is analytic

throughout the entire superconducting domain, ∇ × ∇ψ = 0 throughout the

superconductor. Then, the curl of the second GL equation, Eq. (2.3.6), becomes

∇×∇×B = −4e2µ0
mGL

[
|ψ|2 (∇×A)−A×∇

(
|ψ|2

)]
. (2.3.12)

In weak fields, the final term here is small, and the curvature of the local magnetic

field can be written as

∇2B = − |ψ|2

λ2 |ψ∞|2
B, (2.3.13)

where the penetration depth λ, can be identified as

λ2 = mGLβGL
4e2µ0 |αGL|

. (2.3.14)

At the edge of the superconductor at the interface with a conductive metal,

the boundary conditions ψ = 0 and B = Bappk̂ are imposed, and deep in the
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superconductor, B must remain finite. Assuming B = B(x), Eq. (2.3.13) admits

the solution for x� ξ

B = Bapp exp
(
−x
λ

)
, (2.3.15)

which implies the local magnetic field decays exponentially deep inside the

superconductor. The state described by Eq. (2.3.15), where an externally applied

magnetic field is perfectly excluded from the bulk of the superconductor and the

order parameter is homogeneous throughout the bulk, is the Meissner state. The

Meissner state of perfect diamagnetism represents one of the two fundamental

properties of an ideal superconductor discussed in the introduction; here, it has

arisen as a property of the superconducting state in sufficiently weak fields as a

consequence of describing the free energy of the superconductor in the form of

Eq. (2.3.1) [15].

However, the Meissner state is not stable at all applied magnetic fields. The largest

magnetic field B for which the Meissner state is thermodynamically stable relative

to the normal state, referred to as the thermodynamic critical field Bc, can be

obtained by considering Eq. (2.3.1). For the Meissner state, from Eqs. (2.3.9)

and (2.3.15), |ψ|2 = |αGL| /βGL with B = 0, whereas in the normal state subject

to a magnetic field Bapp, ψ = 0 and B = Bapp. From general thermodynamic

considerations based on the form of the Ginzburg—Landau free energy used in

Eq. (2.3.1),

δF = 1
µ0

∫
Bapp · δBd3r, (2.3.16)

where∇×Bapp = µ0Japp [38]. Therefore, taking the thermodynamic path integral

of Eq. (2.3.16) at constant temperature from just above Bc to just below Bc, the

free energy difference upon the transition is given by

FS − FN = − 1
µ0

∫
B2
cd3r, (2.3.17)

where FS is the free energy of the Meissner state in the bulk of a superconductor;

and FN is the free energy of the normal state including contributions from the local
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magnetic field, defined to be

FS = F0 −
∫

α2
GL

2βGL
d3r, (2.3.18)

FN = F0 +
∫

B2
c

2µ0
d3r. (2.3.19)

Substituting Eqs. (2.3.18) and (2.3.19) into Eq. (2.3.17) gives the result for Bc

as [22]

B2
c = µ0α2

GL
βGL

. (2.3.20)

From the treatment of the superconducting state thus far, it may appear that

Bc represents the largest magnetic field for which the superconducting state is

stable. However, it should be noted that the derivation presented here only shows

that the Meissner state is thermodynamically unstable with respect to the normal

state above Bc, and does not preclude the possibility of a state existing with

an order parameter that is inhomogeneous in the bulk being stable at higher

applied magnetic fields. Whilst in some superconductors, referred to as Type I, the

Meissner state is indeed the most stable superconducting state at all magnetic fields

below Bc, in so-called Type II superconductors, there exists a range of magnetic

fields at which a spatially inhomogeneous ‘mixed state’ is more thermodynamically

stable. Type II superconductors, and the properties of the mixed state, are the

topic of the next section.

2.3.5 Type II Superconductors, Vortices, and the Abrikosov

Vortex Lattice

In the last section, we reviewed the solution (Eq. (2.3.9)) for the order parameter

close to an interface with a conductive metal in zero field. In their original paper

in which they proposed the free energy of Eq. (2.3.1), Ginzburg and Landau

also provided an approximate solution for the order parameter at an insulating

boundary in an externally applied magnetic field [25]. Crucially, in their derivation,

they showed that the surface free energy of the system at the interface is positive
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when the Ginzburg—Landau parameter κ = λ/ξ < 1/
√

2 and negative when κ > 1/
√

2.

The significant physical consequences of the change in sign of the surface free

energy were not fully appreciated until 1957, when Abrikosov showed that a

thermodynamically stable ‘mixed state’ existed for superconductors with κ > 1/
√

2

at high fields that was multiply connected, with a lattice of local zeros of the

order parameter present in the bulk, as a result of the energetic favourability of

such superconductors to form interfaces [40]. The criterion κ > 1/
√

2 defines Type II

superconductors; similarly, Type I superconductors necessarily satisfy κ ≤ 1/
√

2. As

an introduction to the properties of the mixed state, we first review the phenomenon

of fluxoid quantisation in superconductors. By taking the integral of the second

GL equation Eq. (2.3.6) about a closed contour in the superconductor, requiring

the order parameter to be single valued throughout the superconducting domain,

∮ (
µ0mGL

4e2
J s

|ψ|2
+ A

)
· dl = nφ0, (2.3.21)

where n is an integer and the magnetic flux quantum φ0 = h/2e [15]. The integer n

can be interpreted as the number of zeros of |ψ|2 enclosed within the contour, or

‘vortices’. Importantly, if J s and A are finite and |ψ|2 6= 0 at all points within the

contour, then the contour may be continuously deformed to a point, and the system

must be in the Meissner state with n = 0. If instead, for example, |ψ|2 = 0 at points

inside the contour, which may occur in the mixed state when the superconductor

is multiply connected, then the contour cannot be continuously deformed and n

can take nonzero values, implying that magnetic flux can partially penetrate the

superconductor in the mixed state. Based on the observation from Eq. (2.3.21) that

the number of vortices may be non-zero in the bulk in the mixed state, one may now

calculate a lower bound for the magnetic field at which the mixed state of a Type

II superconductor is stable. This may be carried out in a similar manner to the

analysis for field at the end of the last section, by defining the lower critical field Bc1

as the lowest magnetic field for which the thermodynamic stability of the Meissner

state is equal to that of a superconducting state with a single vortices present in
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the bulk. The lower critical field Bc1 has the simple form when κ� 1 [41]:

Bc1 = µ0φ0
4πλ2 (ln κ+ 0.497) = Bc√

2κ
(ln κ+ 0.497) . (2.3.22)

For most Type II superconductors, κ is large, and thus Bc1 is very small. As a

result, the mixed state will be more stable than the Meissner state over most of

the range of possible field values, and therefore dominates the physical properties

of Type II superconductors.

Solutions for the mixed state of bulk Type II superconductors in high magnetic

fields from the GL equations were first found by Abrikosov [40]. In this

case, Abrikosov argued that the average value of the order parameter in the

superconductor is small, and so the nonlinear term in Eq. (2.3.3) is unlikely to

contribute significantly to leading order [40]. Therefore, a first approximation to

the order parameter that satisfies the general nonlinear GL equation, Eq. (2.3.3),

was obtained from the linearised GL equation

1
2mGL

Π2ψL = |αGL|ψL. (2.3.23)

Furthermore, since |ψL|2 is small in large fields, the induced current and mag-

netisation of the superconductor must also be small, and thus B ≈ Bapp. For

definiteness, the Coulomb gauge ∇ ·A = 0 can be imposed by setting

A = (0, xBapp, 0) . (2.3.24)

In this case, the linearised GL equation is equivalent to that of the Schrödinger

equation of a charged particle in an external magnetic field, and may be solved by

expressing the order parameter as its Fourier transform over the y and z directions;

ψL (r) =
∫∫

f (x, xn, kz) eıkyyeıkzzdkydkz, (2.3.25)

where, defining xn = φ0ky/2πBapp, Eq. (2.3.23) becomes

− h̄2

2mGL

[
d2

dx2 −
(2πBapp

φ0

)2
(x− xn)2

]
f (x, xn, kz) =

(
|αGL| −

h̄2k2
z

2mGL

)
f (x, xn, kz) ,

(2.3.26)
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and one may identify the equation as that of the quantum harmonic oscillator [22].

Bounded solutions for f (x, xn, kz) as x → ∞ only exist for a discrete set of fields

Bapp, determined by

Bapp = φ0
2π (2n+ 1)

( 1
ξ2 − k

2
z

)
, (2.3.27)

where n is a positive integer. Clearly, the maximum applied field for which there

exists a bounded solutions for f (x, xn, kz) is obtained when n = 0 and kz = 0. By

definition, this field is the upper critical field Bc2 and is given by

Bc2 = φ0
2πξ2 =

√
2κBc, (2.3.28)

implying that for Type II superconductors, with κ > 1/
√

2, Bc2 > Bc. The upper

critical field Bc2 represents the maximum magnetic field for which the mixed state

is stable in the bulk.

The eigenfunctions corresponding to Bapp = Bc2 in Eq. (2.3.26) are Gaussian in

form, satisfying

f (x, xn, kz) ∝ exp
[
−(x− xn)2

2ξ2

]
, (2.3.29)

allowing a general solution to Eq. (2.3.26) at Bc2 to be expressed using Eq. (2.3.25).

Next, Abrikosov applied periodic boundary conditions in the x and y directions.

Imposing periodicity in the y direction implies only a discrete set of ky = nk are

permissible, reducing the integral of Eq. (2.3.25) to a discrete sum of the form

ψL (r) =
∑
n

Cne
ınky exp

[
−(x− xn)2

2ξ2

]
. (2.3.30)

Additionally, periodicity in the x direction, demands

Cn = Cn+N (2.3.31)

for some finite integer N . Then, from the GL equation for the current, Eq. (2.3.7),

and the general form of the solution to the linearised equation, the magnitude

of the B-field induced by circulating supercurrents in the superconductor can be

calculated to be

|Bapp −B| ≈ BL = 2µ0eh̄

mGL
|ψL|2 , (2.3.32)
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such that lines of constant |ψL|2 coincide with lines of constant BL and streamlines

of the induced current. Contours for the square magnitude of the order parameter

|ψ|2 based on Eq. (2.3.30) and streamlines of the current density from Eq. (2.3.32)

for a triangular vortex lattice are displayed in Fig. 2.2.

However, without knowledge of the exact lattice structure, one cannot make any

further statements from the linearised equation alone; in order to determine the

normalisation of ψL, the non-linear terms in the GL equation must be considered.

To do this, the Abrikosov parameter βA is introduced,

βA =
∫
|ψL|4 d3r(∫
|ψL|2 d3r

)2 , (2.3.33)

which is independent of the normalisation of ψL and depends on the detailed

properties of the lattice [40]. Then, the normalisation of ψL is determined in terms

of βA by expanding the exact solution of the first GL equation, Eq. (2.3.3), in

terms of the solution obtained at Bc2 and small corrections ψ1 and A1 to the order

parameter and magnetic vector potential [22]. The order parameter is expanded

as

ψ = ψL + ψ1, (2.3.34)

with the additional condition that

∫
ψ∗Lψ1d3r = 0 (2.3.35)

required to ensure and share the same normalisation. Similarly, the magnetic vector

potential is expanded as

A = Ac2 + A1, (2.3.36)

where the first order correction to the field is given by

∇×A1 = B −Bc2 ≈ Bapp −BL −Bc2 (2.3.37)

and ∇ × Ac2 = Bc2. Then, substituting in to the GL equation and neglecting

second order terms in ψ1, A1 and βGL |ψL|2 ψL, the condition for the normalisation
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Figure 2.2: Square of the order parameter magnitude |ψ|2 (color) and current
density streamlines (arrows) in the Abrikosov vortex lattice, normalised such that
max{|ψ|2} = 1, for a superconductor with Ginzburg–Landau parameter κ = 1/

√
2.

λ is the superconducting penetration depth [42].
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of the order parameter in terms of βA is found as

〈|ψL|2〉 = mGL
2µ0eh̄

Bc2 −Bapp
(2κ2 − 1)βA

, (2.3.38)

implying that close to Bc2 the normalisation of the order parameter increases

linearly as the applied field increases. Furthermore, from Eqs. (2.3.32) and (2.3.38),

the average induction 〈B〉 in the superconductor can also be determined to be

〈B〉 = Bapp −
Bc2 −Bapp
(2κ2 − 1)βA

, (2.3.39)

which is, in general, nonzero, explicitly showing that a Type II superconductor in

the mixed state described by Abrikosov does not act as a perfect diamagnet. The

reversible magnetisation of the vortex lattice across the entire field range for Type

II superconductors with varying values of κ is presented in Fig. 2.3, based on the

method in [42]. close to Bc2, the magnetisation varies approximately linearly with

field, as implied by Eq. (2.3.39).

It also can be shown that the free energy of the lattice decreases as the lattice

parameter βA decreases, and thus, the most stable lattice corresponds to the one

for which the lattice parameter βA is minimised. Abrikosov initially predicted

the square lattice to be the most stable, but his result was later corrected by

Kleiner et al. who showed that the triangular lattice minimised the free energy

with βA = 1.16 [40, 43]. The triangular vortex lattice has since been observed

experimentally in a wide range of superconducting materials.

As the applied magnetic fields is decreased below Bc2, the vortex-vortex spacing of

the ideal vortex lattice increases. By applying Eq. (2.3.21) to a contour around a

unit cell in the ideal lattice containing one vortex, the vortex-vortex spacing a0 can

be seen to increase with decreasing field as a0 ≈
√
φ0/B. At lower fields, vortices

are spread farther apart, and the order parameter recovers over the length scale

of a coherence length ξ towards the Meissner state value in the regions between

them. The local magnetic field at lower fields is strongly attenuated away from

vortex cores, and decreases on the length scale of the penetration depth λ from its
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Figure 2.3: Reversible magnetisation M of the ideal vortex lattice as a function of
applied field Bapp in Type II superconductors. Bc2 is the upper critical magnetic
field of the superconductor.

peaks at the centre of vortices. Distributions of the square magnitude of the order

parameter and the local magnetic field are provided in Fig. 2.4 for a superconductor

with κ = 1.5, based on [42].

2.3.6 Surfaces, Coatings and Thin Film Superconductors

The upper critical field Bc2 as given in Eq. (2.3.28) sets the limit for the magnetic

field in the bulk of the superconductor for which the superconducting state is stable.

However, superconductivity can still persist above this field close to insulating

surfaces whose geometry restricts the symmetry of the order parameter, up to a

higher, effective upper critical magnetic field B∗c2.

The simplest case, when a plane insulating boundary parallel to the applied field

is introduced to the system, was solved by Saint James and De Gennes [44].
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(a) |ψ(r)|2

(b) B(r)

Figure 2.4: Spatial variation of (a) the square magnitude of the order parameter
|ψ(r)|2 and (b) the local magnetic field B(r) for a superconductor with κ = 1.5
along the x and y axes, where the x axis is along the shortest distance between a
vortex and one of its nearest neighbours, as in Fig. 2.2. Bc2 is the upper critical
magnetic field and a0 is the vortex lattice spacing.
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Introducing an insulating material in the region x < 0, and using Eq. (2.3.24) to

define the gauge of the magnetic vector potential as before, the boundary condition

Eq. (2.3.4) at the interface between the superconductor and insulator becomes

simply ∂xψ|x=0 = 0. The linearised GL equation, Eq. (2.3.23) can then be solved

for using the method of images, by considering the related problem defined by

− h̄2

2mGL

[
d2

dx2 −
(2πBapp

φ0

)2
(|x| − xn)2

]
f (x, xn, kz)

=
(
|αGL| −

h̄2k2
z

2mGL

)
f (x, xn, kz)

(2.3.40)

and requiring continuity of the order parameter at x = 0. By construction, for

x ≥ 0, Eq. (2.3.40) is equal to Eq. (2.3.26) from the bulk case, and as Eq. (2.3.40)

is symmetric about x = 0, its solutions will automatically satisfy the insulating

boundary condition ∂xψ|x=0 = 0. In this case, the minimum eigenvalue, with

kz = 0, is given by

|αGL| = 0.592πB∗c2
φ0

h̄2

2mGL
, (2.3.41)

which can be rearranged to give the effective upper critical field B∗c2 for the

superconducting state close to a plane insulating boundary, which is commonly

referred to as the surface critical field Bc3

Bc3 = 1.695 φ0
2πξ2 = 1.695Bc2. (2.3.42)

Between Bc2 and Bc3 therefore, superconductivity is destroyed in the bulk of the

superconductor, but can persist in a sheath region close to insulating surfaces of

the superconductor. This sheath region is not present if the surface is highly

conductive [22].

Superconductivity can also persist at applied magnetic fields above Bc2 in thin film

systems, when the magnetic field is applied parallel to the large, flat surfaces of

the film, provided the surfaces are also insulating. When the film is sufficiently

thin – of the order of the superconducting coherence length – the magnitude of the

order parameter can be taken to be constant over the film thickness w, and the GL
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equation Eq. (2.3.3) can be averaged over the short axis of the film [45]. In this

case, the upper critical field of the film Bc‖ diverges as the film thickness decreases,

and is given by

Bc‖ ≈
√

12ξ
w

Bc2. (2.3.43)

Provided w < 1.8ξ, the approximation given in Eq. (2.3.43) is within 3% of

the parallel critical field Bc‖ calculated including higher order corrections; for

thicker films, with w > 1.8ξ, vortices can enter the film and the assumption that

the magnitude of the order parameter is constant over the film width no longer

holds [45].

2.3.7 Anisotropic and Inhomogeneous Superconductors

Many superconductors, such as the high-temperature superconducting REBCO

materials, are highly anisotropic. Such anisotropy can arise from the symmetry of

the order parameter when anisotropic variations of material properties on length

scales smaller than the coherence length are present. To describe such anisotropic

systems, GL theory is often extended by replacing the effective Cooper pair mass

mGL with the components of the (anisotropic) effective mass tensor of Cooper pairs

in the system mGL;i,j where i, j ∈ {x, y, z} are indices labelling the coordinate axes.

The free energy for an anisotropic 3D superconductor close to Tc is given by [46]

F0 +
∫
V

αGL(T ) |ψ|2 + 1
2βGL |ψ|4 + 1

2
∑
i,j

[
Π∗iψ∗m−1

GL;i,jΠjψ
]

+ B2

2µ0

d3r,

(2.3.44)

which has also been derived from Gor’kov as a limiting case of BCS theory when

the pair potential is anisotropic [47]. If the coordinate axes {x, y, z} are aligned

along the crystal axes {a, b, c} of the superconductor, the effective mass tensor is

diagonal. For many layered superconductors like YBCO, effective masses along the

a and b axes are similar, allowing the effective mass tensor in such materials to be

described by only the two free parameters: the effective mass along the a and b
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axes mab; and the effective mass along the c axis mc. The anisotropy parameter

γ = mc/mab is typically around 5-8 for YBCO.

When variations of material properties occur on length scales comparable to or

larger than the superconducting coherence length ξ, the validity of assuming αGL,

βGL and the components of the effective mass tensor mGL;i,j can be taken to be

uniform in the superconductor breaks down. Boundary conditions for the GL

equations at interfaces between superconducting materials close to their critical

temperatures have been derived by Zaitsev [48] from BCS theory. The first of

these conditions enforce continuity of the component of the supercurrent normal

to the interface. The second depends on the nature of the interface. When the

transmission coefficient of the interface is much larger than lmfp/ξ, the pair potential

∆ is continuous when electron reflections at the interface are specular [48, 49]; and

the product pF∆ is continuous instead when reflections are diffuse, where pF is the

momentum of an electron at the Fermi surface [48, 50]. For interfaces between

dirty superconductors and conductive metals, de Gennes showed that ∆/N(0)V is

continuous when the thickness of the metal is much larger than the electronic mean

free path lmfp [27].

For the GL equations to be valid over all space for systems containing inhomo-

geneous materials, care must be employed when obtaining the equations of motion

from Eq. (2.3.44) that only functional derivatives of the free energy with respect

to continuous variables are taken. Fortunately, provided a continuous gauge for

A and continuous order parameter ψ are chosen, a consistent set of GL equations

for the inhomogeneous system can be obtained from Eq. (2.3.44) with spatially

dependent αGL(r), βGL(r) andm−1
GL;i,j(r) using Eqs. (2.3.2) and (2.3.5). Continuity

of the supercurrent J s throughout the inhomogeneous system is then automatically

satisfied via the first GL equation Eq. (2.3.3) when the order of derivatives around

m−1
GL;i,j(r) is as written in Eq. (2.3.44) [34].
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2.3.8 Time-Dependent Ginzburg—Landau Theory

The success of conventional Ginzburg—Landau theory to describe the macroscopic

equilibrium state in superconductors has motivated many authors to attempt

to construct a time-dependent Ginzburg—Landau (TDGL) theory to model

dynamical behaviour [51]. Understanding how macroscopic superconductors

behave in such regimes is necessary to determine their response to time-varying

electric and magnetic fields and ultimately the critical current density they may

carry without dissipation.

The simplest complete set of TDGL equations were derived by Gor’kov and

Eliashberg from BCS theory in the gapless regime for superconductor dominated

by paramagnetic impurities [15, 31]. An additional phenomenological parameter Γ

is introduced, which parametrises how rapidly the order parameter relaxes into the

equilibrium state from small perturbations from it. The TDGL equations are then

given by [30, 52]

Γ
(
∂t + 2ıe

h̄
µe

)
ψ =

−αGL − βGL |ψ|2 −
1
2
∑
i,j

Πim
−1
GL;i,jΠj

ψ, (2.3.45)

J = Japp + J s + Jn, (2.3.46)

ρ = ε0
µe − ϕ
λ2
TF

, (2.3.47)

with the current density terms given by

Japp = µ−1
0 ∇×Bapp, (2.3.48)

J s =
∑
i,j

2em−1
GL;i,j<{ψ

∗Πjψ} êi, (2.3.49)

Jn =
∑
i,j

σN;i,j (−∂jµe − ∂tAj) êi, (2.3.50)

where Japp is the externally applied current density; J s is the supercurrent density;

Jn is the normal current density; êi is the unit vector in the i direction; µe is

the electrochemical potential divided by the magnitude of the electron charge e;

ϕ is the electrostatic potential; ρ is the charge density per unit volume; σN;i,j
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are the elements of the normal state conductivity tensor; ε0 is the permittivity

of free space; and λTF, is the Thomas-Fermi static-charge screening length [31].

Equations (2.3.45) to (2.3.47) are solved alongside the Maxwell equations for the

electric field E = −∇ϕ− ∂tA and magnetic field B =∇×A;

∇ ·E = ρ

ε0
, (2.3.51)

∇ ·B = 0, (2.3.52)

∇×E = −∂tB, (2.3.53)

∇×B = µ0J + µ0ε0∂tE. (2.3.54)

Equations (2.3.45) to (2.3.47) and (2.3.51) to (2.3.54) uniquely define the state of

the system in terms of ψ, A, µe, and ϕ up to a gauge transformation.

For conventional superconductors, the Thomas-Fermi screening length is very small

compared to all other length scales in the system. In the bulk of the system

therefore, the superconductor may be considered ‘quasineutral’, and the local

electrostatic potential is very close to the local electrochemical potential, allowing

deviations of the electron density ρ from its average value to be neglected [53].

Furthermore, for systems in which the electric field is varying slowly with respect

to time, the second term in Eq. (2.3.54) can be neglected, allowing the total current

density to be written as J = µ−1
0 ∇ × ∇ × A. Therefore, under magnetostatic

and quasineutral conditions, Eqs. (2.3.45) and (2.3.46) can be decoupled from

Eq. (2.3.47) and, along with a suitable gauge constraint, can be used to describe the

dynamics of the superconducting state without the added complexity of considering

local variations in the charge distribution ρ.

As noted above, the TDGL equations are only strictly valid in the gapless

limit, when the lifetime of a Cooper pair τint is sufficiently small such that

τint |∆| � h̄ [39]. Nevertheless, despite the relatively narrow regime in which the

TDGL equations may be rigorously derived, a wide range of authors have used

the TDGL equations to investigate vortex dynamics in the flux-flow regime of
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the mixed state, in which current flow in the superconductor is resistive and the

superconductor is unsuitable for many technological applications [51].

2.3.9 Normalised Ginzburg–Landau Equations

We have now reviewed the key length and time scales that occur in superconducting

systems within Ginzburg–Landau theory, the magnetic flux quantum, and the

maximum applied magnetic field for which superconductivity is stable in the bulk.

For the remainder of this thesis, we shall find it convenient to express the Ginzburg–

Landau free energy and equations of motion in a dimensionless form based on these

length, time, and electromagnetic field scales. Hence, the Ginzburg–Landau free

energy for gapless s-wave superconductors in the dirty limit [39], (Eq. (2.3.1)) is

written as

F − F0 =
∫ [
−α(r) |ψ|2 + 1

2β(r) |ψ|4 +
∑
i

m−1
i (r) |(∂i − ıAi)ψ|2 + κ2B2

]
d3r,

(2.3.55)

where a summary of the normalisations used for all variables is provided in

Table 2.1. In Eq. (2.3.55), we note that the material parameters α, β and m−1
i

are the GL parameters αGL, βGL and m−1
GL normalised relative to the values

of the GL parameters of a reference superconductor αs, βs and m−1
x;s, and may

be spatially variant. For a single component superconducting system therefore,

α(r) = β(r) = m−1
x (r) = 1, and for a material that is non-superconducting in the

bulk, α(r) < 0. We summarise the normalised material parameters in Table 2.2.

The resultant TDGL equations from Eq. (2.3.55) become in dimensionless variables:

η (∂t + ıϕ)ψ =
[∑

i

(∂i − ıAi)m−1
i (r) (∂i − ıAi) + α (r)− β(r) |ψ|2

]
ψ, , (2.3.56)

∂tAi + ∂iϕ =− κ2mi(r) (∇×∇×A)i + Im [ψ∗(∂i − ıAi)ψ] , (2.3.57)

with the associated boundary conditions

(∇×A−Bapp)×n̂ = 0, (2.3.58)

(∇− ıA)ψ·n̂ = −γψ. (2.3.59)
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Symbol Units Interpretation
r ξs = h̄/

√
−2msαs Position vector

t τ = µ0σN;sλ
2
s Time

ψ |ψ0| =
√
−αs/βs Order parameter

A A0 = φ0/2πξs Magnetic vector potential
ϕ ϕ0 = φ0/2πτ Electrostatic potential
B Bc2 = φ0/2πξ2

s Magnetic induction
E E0 = φ0/2πτξs Electric field
J J0 = φ0/2πµ0κ2ξ3

s Current density
F φ2

0/8π2µ0κ2ξs Free energy

Table 2.1: Definition of units used in the normalised TDGL equations.

Symbol Definition Interpretation
α (r) αGL (r) /αs Relative condensation parameter
β (r) βGL (r) /βs Relative nonlinearity parameter
m−1
i (r) m−1

GL;i (r) /m−1
x;s Relative inverse effective mass tensor

κ λs/ξs Ginzburg–Landau parameter
η Γ/µ0σN;sλ

2
s Time scale ratio (friction coefficient)

Table 2.2: Definition of phenomenological parameters used in the normalised TDGL
equations.

The dimensionless parameters κ and η characterize the superconductive material.

κ is the well-known Ginzburg—Landau parameter that represents the ratio of the

characteristic length scales for variations in the electromagnetic field and variations

in the order parameter. Similarly, the friction coefficient η represents the ratio

between the characteristic timescales for the evolution of the electromagnetic field

and evolution of the order parameter field. The friction coefficient η = Γ/µ0σN;sλ
2
s

was shown by Schmid to have the limiting value of η = 5.79 in the dirty limit

[30, 39]. The surface parameter γ is the reciprocal of the De Gennes extrapolation

length (in normalized units) and has limiting values of |γ| = 0 for surfaces in contact

with an insulator (or vacuum) and |γ| =∞ for highly conductive surfaces [23]. We

note that Eqs. (2.3.56) and (2.3.57) imply continuity of the supercurrent J s =∑
im
−1
i (r)Im [ψ∗(∂i − ıAi)ψ] êi.

In cases where the (effective) penetration depth λ is much larger than all other

length scales in the system, the TDGL equations Eq. (2.3.57) can be significantly

further simplified, as the self-field induced by currents circulating around vortices
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in the system can be neglected compared to the applied field and transport

current [54]. In this high-κ approximation, for an applied magnetic field Bapp

in the z direction, the normalised magnetic vector potential in the Coulomb gauge

(∇ ·A = 0) is expressed as A = −Bapp (y − w/2) î −K, where K = K(t)̂i is a

spatially invariant parameter required to enforce the Coulomb gauge constraint,

and w is the width of the system in the y direction. The governing equations in

the high-κ approximation, from Eq. (2.3.57) and the current continuity equation,

are

η (∂t + ıϕ)ψ =
[
(∇− ıA)2 + α (r)− |ψ|2

]
ψ, (2.3.60)

∇2ϕ =∇ · Im [ψ∗(∇− ıA)ψ] , (2.3.61)

∂tK = Japp − 〈Im [ψ∗(∂x − ıAx)ψ]〉 , (2.3.62)

where the averaging in Eq. (2.3.62) is across the whole domain and at a constant

applied magnetic field Bapp, and we have assumed α(r) is the only spatially

varying material parameter. The gauge constraint K can be used to determine the

average electric field 〈E〉 across the domain, since ∂tK = 〈E〉. This formulation is

particularly useful for 3D simulations of superconducting systems, which we shall

discuss in the next chapter, as the time dependence of the electromagnetic fields

is coupled only through the spatially invariant gauge parameter K, reducing the

computational cost of evolving the superconducting state in time [54].

2.4 Vortex Dynamics, Critical Currents, and

Microstructures

2.4.1 Critical and Depairing Current Densities

At this juncture, it would be reasonable to query why, and how, the study of vortex

dynamics in superconducting materials is of practical interest for the properties

of technological superconductors. The answer to this can be inferred from the
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2.4.1. Critical and Depairing Current Densities

Maxwell equation Eq. (2.3.53) along with the observation that the magnetic

field distribution inside the superconductor is determined by the distribution

(and shape) of vortices in the system. Vortex motion is therefore accompanied

by variation of the local magnetic fields in the superconductor with respect to

time, which, via Eq. (2.3.53), is associated with an electric field distribution.

Furthermore, the vortex distribution experiences a net Lorentz force per unit

volume F L = J × B when a transport current flows through the system, which

will cause vortices to start moving when the applied transport current is sufficiently

large that F L is no longer balanced by other forces acting on them. The transport

current density at which the motion of significant numbers of vortices first occurs

therefore is associated with the onset of dissipation in the superconductor, and can

be interpreted as the critical current density Jc.

An upper bound to the critical current density Jc can be found in zero field from

Eqs. (2.3.56) and (2.3.57). In a dissipationless state, the electric field E must

be zero; and as any vortices in the system must be static in the steady state,

the magnitude of the order parameter |ψ| cannot evolve with time. Under these

assumptions, the time independent limit of Eqs. (2.3.56) and (2.3.57) can be taken,

to give


∑

i=x,y,z
∂i
[
m−1
i (r) ∂i

]
+ α (r)− β (r) |ψ|2 −

 ∑
i=x,y,z

Js;i

m−1
i (r) |ψ|2

2
 |ψ| = 0.

(2.4.1)

In order for a nonzero |ψ| that solves Eq. (2.4.1) to exist, the magnitude of the local

current density J s cannot be made arbitrarily large. This can be determined by

considering a narrow wire, homogeneous and infinite in extent in the x direction and

with insulating boundary conditions applied at the edges of the superconducting

domain in the transverse directions. Provided the wire is much narrower than a

coherence length in the transverse directions, the current density may be assumed

to flow only along the long axis of the wire in Eq. (2.4.1), and the current density
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2.4.2. Flux Pinning

can be written in terms of the magnitude of the order parameter in the wire as

J2
s = |ψ|4

(
1− |ψ|2

)
. (2.4.2)

Maximising Js with respect to |ψ|2 gives the maximum current for which a

constant, non-zero, time invariant |ψ|2 can be found. At this point |ψ|2 = 2/3,

and the maximum supercurrent density that can be carried by a homogeneous

superconducting system – the depairing current density, JD – can be found to be

[15]

JD = max
|ψ|
{J s} = 2

3
√

3
J0. (2.4.3)

However, experimental values of the critical current density Jc of technological

superconductors is commonly between 0.1 - 10% of the depairing current density JD

[55]. Practical superconductors are usually much larger than the superconducting

coherence length, and |ψ|2 can no longer be assumed to be constant in the

superconductor carrying large transport currents and in magnetic fields, due to the

presence of vortices in the superconductor. To model the critical current density in

practical superconductors therefore, the role of the superconductor microstructure

in pinning magnetic flux and restricting vortex movement must be considered.

2.4.2 Flux Pinning

The role of microstructure in pinning vortices and preventing dissipation can be

illustrated by considering the Abrikosov vortex lattice in an infinite, homogeneous

superconductor as pictured in Fig. 2.2. As the superconductor is infinite and

homogeneous, every point in the superconductor is equivalent to every other, and

thus by symmetry, an Abrikosov vortex lattice can be translated in any direction

without changing the total free energy of the superconductor. The net force on

the Abrikosov vortex lattice is therefore zero, and is independent of the origin

of the coordinate system. However, as discussed in Section 2.4.1, if a non-zero

net transport current flows is now applied to the system, vortices will experience

a Lorentz force F L acting to accelerate them. This Lorentz force is the only
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2.4.2. Flux Pinning

net force acting on the vortex lattice, and thus vortices will begin move, and an

electric field will be generated, regardless of how large the transport current is. The

critical current density for an infinite, homogeneous superconductor, lacking any

microstructure, is therefore zero, and therefore cannot be used to carry dissipation-

free currents for practical applications.

Of course, practical superconductors are able to carry large current densities

without the onset of dissipation. Such systems are not homogeneous; α, β, and

m−1 depend on position; and the free energy of the vortex lattice depends on the

location and shape of vortices inside the system. Variations of the free energy of the

vortex lattice with respect to the configuration of vortices in the system give rise

to a net flux pinning force per unit volume Fp, which acts to oppose the Lorentz

force F L and resists vortex motion. In particular, non-superconducting (or weakly

superconducting) inclusions in the superconductor act as favourable pinning sites

for vortices to occupy, as the vortex core intersecting a pinning site has a lower

total free energy than configurations in which the pinning site and vortex core

are well separated. In Section 2.4.1, the depairing current density JD is found to

be non-zero due to the flux pinning force provided by the interfaces between the

superconductor and the surrounding insulator/vacuum.

Consequently, the critical current density Jc as a function of applied magnetic

field is often expressed in terms of the maximum net flux pinning force per unit

volume Fp, which acts to balance the Lorentz forces acting on the vortex lattice.

Experimentally, this flux pinning force per unit volume is often characterised using

the empirical expression [56]

Fp ∝
Bn
c2
κ2 b

p (1− b)q , (2.4.4)

where b = B/Bc2 is the reduced field, and n, p and q are empirical flux pinning

parameters independent of the applied magnetic field that characterise the pinning

mechanism in the superconductor [57]. For NbTi, p ≈ 1, q ≈ 1 and n ≈ 5/2

[58]; whereas for Nb3Sn, Kramer found p ≈ 1/2, q ≈ 2 and n ≈ 5/2 in high
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2.4.2. Flux Pinning

fields, based on a flux shear mechanism [59]. However, exactly how the statistical

summation of elementary pinning forces fp that arise from individual pinning sites

should be performed to find the net macroscopic Fp that can be used to characterise

the macroscopic critical current density Jc is a long-standing problem in applied

superconductivity, known as the summation problem [60, 61, 62].

Some solutions for Fp based on a random pinning potential have been found in

limiting cases [63]. For weak random point-like pinning structures in a dislocation-

free elastic vortex lattice, Larkin and Ovchinnikov developed the theory of collective

pinning [64]. The flux pinning force in this case given by [64, 63]

Fp ≈


√

3
32
√

2π2
n2
p〈f2

p 〉2

r3
pc

2
66c44

(3D)

1√
8π

np〈f2
p 〉

rpdc66
(2D)

, (2.4.5)

where np is the number of pins per unit volume; rp ≈ ξ is the range of the

pinning forces; and c44 and c66 are the tilt and shear modulus of the vortex lattice

respectively, given by

c44 = B
∂F

∂B
, (2.4.6)

c66 ≈
Bφ0

16πµ0λ2

(
1− 1

2κ2

)
(1− b)2

(
1− 0.58b+ 0.29b2

)
. (2.4.7)

When pinning is much stronger than vortex-vortex interactions in the vortex lattice,

Fp is sometimes taken to be a direct sum of the elementary flux pinning forces over

the number of active pins that are holding vortices. The flux pinning force per unit

volume for strong random pins in an elastic vortex lattice are therefore given by

Fp =


npfp for n1/3

p � a0(
n

1/3
p B/φ0

)
fp for n1/3

p � a0

, (2.4.8)

where a0 =
√
φ0/B is the vortex-vortex spacing.

Many other pinning structures, such as columnar pins, surfaces, and grain

boundaries, can pin vortices effectively, and a wide range of functional forms for Fp

have been proposed based on which microstructural features dominate the effective
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pinning mechanism at Jc. Nevertheless, the grand summation problem remains an

open issue in how Fp should be obtained from the elementary flux pinning forces

from these structures in general. For brevity, we refer the reader to a number of

useful reviews available in the literature for further information on flux pinning

models derived for other pinning structures [57, 63].

2.4.3 Macroscopic Superconductors

For macroscopic superconducting systems, understanding the critical current

density Jc is important in predicting the large scale performance and field

distributions in and around superconducting systems. The electric field of a

superconducting system on length scales much larger than the vortex-vortex

spacing and variations of material properties is commonly modelled using a power

law dependence of the electric field on the current density passed through the

material,

E = Ec

(
J

Jc(B, T, ε, θ)

)n(B,T,ε)
, (2.4.9)

where n is a nonlinearity parameter and Ec is a reference critical electric

field, commonly taken to be between 10 µV m−1 and 100 µV m−1 for transport

measurements of technological superconductors [56]. The nonlinearity parameter

n parametrises the rate of vortex creep in the superconductor, with high rates of

vortex creep associated with large electric fields even at low currents, and thus

with small values of n. However, in many technological superconductors, this

electric field dependence is highly nonlinear, with n varying from 5 - 50 for practical

materials.

2.5 Conclusions

BCS and GL theory are now well established frameworks for providing descriptions

of the phenomenology of the superconducting state. However, with the rapid ex-

pansion in computing power over the last 50 years, numerical simulations have now
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become viable tools for investigating the behaviour of complex superconducting

systems on physically relevant system scales, and have opened up opportunities

for new insight into problems previously considered analytically intractable. This

thesis follows such an approach, solving the time-dependent Ginzburg–Landau

equations numerically using high performance computing resources to investigate

critical currents and vortex dynamics in polycrystalline superconducting systems.

In the next section, we outline the main algorithms and tools used in this work to

solve the TDGL equations, along with their respective benefits and drawbacks.
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Chapter 3

Numerical Methods for Solving

the Time-Dependent

Ginzburg–Landau Equations

3.1 Introduction

The TDGL equations provide a useful mathematical framework for the phe-

nomenological study of vortex dynamics and critical currents in superconducting

materials. However, for most practical systems of interest, which may contain

a wide range of pinning structures and pin morphologies, the TDGL equations

cannot be solved analytically. Instead, numerical techniques and discretisation

schemes must be employed to study vortex dynamics in these regimes. The choice

of discretisation scheme is limited by the requirement of gauge invariance [65].

Without gauge invariance, numerical artifacts can arise that lead to the violation

of conservation laws satisfied by the exact TDGL equations, and unphysical

dissipation mechanisms [66].

In this thesis, we use two main simulation codes based on gauge invariant finite

difference approximations of the TDGL equations on regular, structured grids in 2D

and 3D. Finite difference approximations have been the most widely used and well
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3.1. Introduction

studied basis for solvers of the TDGL equations to date due to the relative simplicity

in enforcing gauge invariance in the discrete equations obtained from them [67].

Finite element and finite volume approximations have also been constructed and

applied to solve the TDGL equations, and offer particular advantages when studies

of the effect of sample geometry and topology are of interest, as they allow the usage

of unstructured meshes for the discretisation of the simulation domain that can

reduce the number of degrees of freedom solved for at each timestep. Indeed, the

commercial finite element software package COMSOL Multiphysics [68] has been

widely used to study vortex dynamics using the TDGL equations for small systems

[69, 70]. However, commercial finite element solvers offer limited scalability on high

performance computing architectures, restricting the sizes of simulation domains

that can be modelled, which particularly limits the ability to study vortex dynamics

in large 3D superconducting domains. Licenses for such solvers can also be

expensive, particularly for simulations on parallelised computer architectures, and

as commercial solvers are generally closed-source, identifying algorithmic sources

of error can be difficult. Scalable open source finite element software packages may

be an option for the development of future TDGL solvers [71, 72], but existing

general purpose solvers in such software packages are usually not easily optimised

for the solution of the TDGL equations and require further development. Finite

volume approximations to the TDGL equations [73] can preserve gauge invariance

in the spatial discretisation, but to date implementations of such methods for

unstructured meshes have been infrequently used in the literature. It is for these

reasons we have chosen to implement algorithms based on existing finite difference

approximations for our studies of vortex dynamics and critical current densities in

this work. Further discussion of alternative numerical approximation methods for

the TDGL equations can be found in [67].

For small system sizes in 2D, in this work we solve the general TDGL equations

Eqs. (2.3.56) and (2.3.57) using our TDGL-ZEP code, based on the algorithm

developed by [74] generalised to include a spatially dependent effective mass as
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in [75]. For larger systems, and in 3D, we solve the simplified TDGL equations in

the high κ limit, Eqs. (2.3.60) to (2.3.62), on a GPU using our TDGL-HIK code,

an implementation of the 3D TDGL solver developed by [54].

In the following sections, we describe these codes in more detail. We begin by

describing the explicit method of [65], which introduces the usage of ‘link variables’

to enforce gauge invariance of the spatial discretisation schemes that are used in

both simulation codes. We then summarise the algorithm implemented in TDGL-

ZEP, and identify limitations in the previous solvers used by [74, 76] that can lead to

unreliable convergence and loss of accuracy when studying systems where the local

magnetic field varies significantly across the system and/or when large persistent

electric fields are present in periodic systems. We also discuss the implementation of

the solver developed by [54] in the TDGL-HIK code, for use on GPU architectures

and present example results for vortex distributions in fixed applied magnetic fields.

Finally, we present techniques developed to extract values of the critical current

density Jc as a function of applied magnetic field from vortex dynamics simulations

obtained from these codes. We have previously published the initial results using

TDGL-ZEP presented in Figs. 3.2 and 3.5 to 3.7 and their associated sections

in [77].

3.2 Numerical Algorithms

3.2.1 The Explicit Method of Gropp et al.

In this section, we review the explicit algorithm developed to solve the TDGL

equations developed by Gropp et al. [65]. This method illustrates the use of link

variables for the gauge invariant spatial discretisation of derivative terms in the

TDGL equations, that the two main TDGL solvers implemented in this thesis,

TDGL-ZEP and TDGL-HIK, will utilise.

Importantly, in [65], the spatial discretisation of the derivative terms is carried out
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3.2.1. The Explicit Method of Gropp et al.

in a gauge invariant manner, through the introduction of the link variable vector

U ,

U(r) = exp
(
−ı
∫ x

x0
Ax(x′, y, z)dx′

)
êx

+ exp
(
−ı
∫ y

y0
Ay(x, y′, z)dy′

)
êy

+ exp
(
−ı
∫ z

z0
Az(x, y, z′)dz′

)
êz, (3.2.1)

where the components Uµ(r) = Uµ(r) · êµ are referred to as the link variables

along the coordinate axes µ ∈ {x, y, z}, and x0 y0 and z0 are the coordinates of a

reference point in the system. In terms of the link variables Eq. (3.2.1), the first

order gauge invariant derivatives of the order parameter field are expressed via

(∇− ıA)ψ(r) =
∑

µ=x,y,z
U∗µ

∂

∂µ
(Uµψ) êµ, (3.2.2)

and second order gauge invariant derivatives are expressed using

(∇− ıA)2 ψ(r) =
∑

µ=x,y,z
U∗µ

∂2

∂µ2 (Uµψ) . (3.2.3)

For the application of a finite difference method to approximate the spatial

derivatives in the TDGL equations, the simulation space is discretised into a

structured regular grid of nodes at points ri∈[1,nx],j∈[1,ny ],k∈[1,nz ] that are separated

by step sizes hµ in the µ ∈ {x, y, z} directions. The order parameter ψ is calculated

on each node and the ‘link variables’ Uµ are defined on links between nodes, such

that

ψi,j,k =ψ (ri,j,k) , (3.2.4)

Uµ;i,j,k =U∗µ(ri,j,k)Uµ(ri,j,k + hµêµ). (3.2.5)

The TDGL equations Eqs. (3.2.2) and (3.2.3) in the zero electric potential

gauge (ϕ = 0 ∀ t) are then discretised by approximating the gauge invariant

spatial derivatives in Eqs. (3.2.2) and (3.2.3) through a second order central

difference approximation, and time is evolved through the first order forward Euler
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method with timestep δt. The resulting equations in the bulk of a homogeneous

superconductor are then expressed by

ψi,j,k(t+ δt) = ψi,j,k(t) + η−1 (Fψ [ψ(t),U(t)])i,j,k δt, (3.2.6)

Uµ;i,j,k(t+ δt) = Uµ;i,j,k(t) exp
{
−ı
(
FUµ [ψ(t),U(t)]

)
i,j,k

δt
}
, (3.2.7)

where

(Fψ [ψ(t),U(t)])i,j,k =
(
1− |ψi,j,k|2

)
ψi,j,k

+
∑
cyclic

U∗x;i−1,j,kψi−1,j,k − 2ψi,j,k + Ux;i,j,kψi+1,j,k

h2
x

, (3.2.8)

in which the cyclic sum is over a cyclic permutation of {x, y, z} and {i, j, k}, and

(FUx [ψ(t),U(t)])i,j,k = κ2=
(
Wz;i,j,k −Wz;i,j−1,k

h2
y

− Wy;i,j,k −Wy;i,j,k−1
h2
z

+Ux;i,j,kψ
∗
i,j,kψi+1,j,k

)
, (3.2.9)

in which

Wx;i,j,k = exp
(
−ı
∮

A · dr

)
= U∗y;i,j,k+1U

∗
z;i,j,kUy;i,j,kUz;i,j,k, (3.2.10)

and the remaining terms FUy , FUz , Wy;i,j,k and Wz;i,j,k are defined similarly from

cyclic permutation of Eqs. (3.2.9) and (3.2.10). The local discretised magnetic field

Bµ;i,j,k = Bµ

ri,j,k + 0.5
∑
µ′ 6=µ

hµ′ êµ′

 (3.2.11)

can be subsequently calculated as

Bµ;i,j,k = hµ
1−Wµ;i,j,k
ı
∏
µ′ hµ′

. (3.2.12)

Boundary conditions Eqs. (2.3.58) and (2.3.59) at the edges of the domain can

similarly be implemented using a ghost point method [78] on the discretised forms

of Eqs. (3.2.2) and (3.2.3).

This discretisation scheme introduced by Gropp et al. remains gauge invariant

throughout. The state variables are also both bounded in magnitude, as Eq. (3.2.7)
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ensures the magnitude of link variables remains the same at all timesteps.

Furthermore, as an explicit time-stepping scheme, the time evolution of the order

parameter (or link variables) at mesh nodes (or links) is readily amenable to parallel

solution strategies at each time step, as state variables at the next timestep only

depend on the state at the current timestep, and crucially do not depend on the

state of the system at any adjacent nodes at the next timestep.

However, as an explicit time-stepping scheme, the maximum timestep δt is

restricted by the requirement that the algorithm must be stable with respect to time

evolution. This restriction is often parametrised in terms of the Courant-Friedrichs-

Lewy (CFL) condition, which depends on the discretisation scheme employed [78].

Assessing the stability of a nonlinear scheme such as Eqs. (3.2.6) and (3.2.7) is,

in general, difficult, but estimates can be made by comparison to the stability of

various terms within it. For example, stability of the diffusive terms in the time

evolution of the link variable phase in Eq. (3.2.7) can be estimated via the CFL

condition for the 3D diffusion equation,

∂tu = k∇2u, (3.2.13)

which, for central differenced spatial derivatives and a forward Euler timestepping

method, is only stable provided

CCFL = 2δt
∑
µ

k

h2
µ

< 1. (3.2.14)

Comparison with Eqs. (2.3.57) and (3.2.7) implies k = κ2, and δt < 1/2κ2∑
µ h
−2
µ

[74]. The timestep δt is therefore significantly limited when simulations of high-

κ superconductors are of interest, particularly as hµ < 1 is required in order

to resolve physics on the scale of the coherence length. Common technological

superconductors such as Nb3Sn (with typical values for κ ≈ 30 − 50) and YBCO

(with an anisotropic κ ranging upwards from 100 − 1000 depending on direction)

unfortunately fit this category [55].

Due to this limitation in the timestep size of the explicit method, different

formulations are therefore needed to study vortex dynamics in such materials over
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long timescales. We shall next discuss two strategies for doing so. Firstly, we shall

discuss a 2D solver, TDGL-ZEP, based on the work of [74], which utilises a semi-

implicit Crank–Nicolson timestepping method to evolve the phase of U . Such a

method is unconditionally stable for linear problems with respect to the timestep

size δt, and thus allows significantly larger timesteps to be used. The second

method, TDGL-HIK, reformulates the problem and solves the TDGL equations in

the high-κ limit following [54], which permits an efficient, stable and parallelisable

solver of Eqs. (2.3.60) to (2.3.62) for large 3D superconducting systems that can

be implemented on GPUs.

3.2.2 TDGL-ZEP – The Semi-Implicit Crank–Nicolson Method

in the Zero Electric Potential Gauge

In this subsection, we describe the algorithm used in our TDGL-ZEP code, used to

solve the TDGL equations Eqs. (2.3.56) and (2.3.57) in the zero electric potential

gauge in this thesis for 2D thin film and junction systems, based on the work of

[74] and [76]. TDGL-ZEP is written in Fortran 2003, making use of the Intel MKL

PARDISO sparse matrix solver [79], and simulations using TDGL-ZEP in this work

were performed on the Hamilton high performance computing service at Durham

University.

We discuss a limitation arising from the method adopted by [74, 76] when

considering systems in which the local magnetic field varies significantly across

the domain, that can lead to unreliable convergence and loss of accuracy. To

address this, in TDGL-ZEP we solve for all components of the discretised magnetic

vector potential in one solution step, leading to better convergence behaviour in

the general case at the expense of scalability of the algorithm with system size.

We also discuss a limitation arising due to an increase in numerical noise occurring

when simulating persistent resistive states in periodic systems, that informs optimal

methods used to calculate the critical current density using TDGL-ZEP.
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The algorithm presented here may easily be generalised to 3D systems, although

we have only applied it in the 2D case in this work [74]. As the inclusion of a

spatially varying effective mass is uncommon in these sorts of simulations, we shall

present the discretisation scheme here explicitly; spatial variation of the effective

mass has previously been included in simulations considered by [75].

3.2.2.1 Spatial Discretisation

The 2D simulation space is first discretised into a regular grid of nodes at points

ri∈[1,nx],j∈[1,ny ] that are separated by a step size hx and hy in the x and y directions,

as in the case of the explicit solver described in the previous section. The order

parameter ψ is calculated on each node and a new set of ‘link variables’ ax and ay

that discretise the magnetic vector potential A are defined on links between nodes,

ψi,j = ψ (ri,j) , axi,j =
∫ ri,j+̂ihx

ri,j

Ax dx, ayi,j =
∫ ri,j+ĵhy

ri,j

Ay dy. (3.2.15)

This spatial discretisation is shown schematically in the exploded view in Fig. 3.1,

alongside a graphical depiction of the relevant dimensions used to describe a typical

junction system that we shall study in the next chapter. For thin film simulations

using TDGL-ZEP, the normal region N is not present. The discretisation grid is

aligned such that all material boundaries lie between nodes, and thus every node

can be identified with a single set of material properties α, β and η. This not the

case for the effective mass, which is defined on links between nodes,

αi,j = α (ri,j) ,

m−1
x;i,j = h−1

x

∫ ri,j+̂ihx

ri,j

m−1
xx dx, m−1

y;i,j = h−1
y

∫ ri,j+ĵhy

ri,j

m−1
yy dy,

(3.2.16)

on the same grid pattern as the link variables ax and ay. The observable electric

and magnetic fields can be calculated from the link variables,

Eµi,j = −h−1
µ ∂ta

µ
i,j , (3.2.17)

Bz
i,j = h−1

x h−1
y

(
axi,j − axi,j+1 − a

y
i,j + ayi+1,j

)
, (3.2.18)
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Figure 3.1: Schematic of a 2D computational domain of width w and periodic
length l used to model a junction system. The domain is subdivided into three
sections; the main superconducting region, S, in which the normalised Ginzburg–
Landau temperature parameter α = 1 and normalised effective mass m = 1,
a normal region N described by the normalised Ginzburg–Landau temperature
parameter and effective mass αn and mn respectively, and a coating region, marked
in light grey, in which α = −10.0 and m = 108 when modelling junctions with
insulating coatings. The applied field Bapp and current I are controlled through
fixing the local magnetic field at the edges of the computational domain in the
y direction. The junction thickness in the direction of current flow is denoted d
and the junction width is denoted ws Exploded view: schematic of the location at
which the discretised order parameter ψi,j and modified link variables axi,j and a

y
i,j

relative to the underlying computational grid. Unless otherwise stated, the grid
step size is typically taken to be hx = hy = 0.5ξs in these simulations.

as required.

With these definitions, the spatial discretisation of Eqs. (2.3.56) and (2.3.57) in the

zero electric potential gauge (ϕ = 0) accurate to second order is

η∂tψi,j = h−2
x

[
m−1
x;i−1,je

iaxi−1,jψi−1,j −
(
m−1
x;i−1,j +m−1

x;i,j

)
ψi,j +m−1

x;i,je
−iaxi,jψi+1,j

]
+ h−2

y

[
m−1
y;i,j−1e

iayi,j−1ψi,j−1 −
(
m−1
y;i,j−1 +m−1

y;i,j

)
ψi,j +m−1

y;i,je
−iayi,jψi,j+1

]
+
(
αi,j − |ψi,j |2

)
ψi,j , (3.2.19)

∂ta
x
i,j =κ2mx;i,jh

−2
y

(
axi,j+1 − 2axi,j + axi,j−1 − a

y
i+1,j + ayi,j + ayi+1,j−1 − a

y
i,j−1

)
+ Im

[
ψ∗i,je

−iaxi,jψi+1,j
]
, (3.2.20)
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∂ta
y
i,j =κ2my;i,jh

−2
x

(
ayi+1,j − 2ayi,j + ayi−1,j − a

x
i,j+1 + axi,j + axi−1,j+1 − axi−1,j

)
+ Im

[
ψ∗i,je

−iayi,jψi,j+1
]
, (3.2.21)

where mx
i,j = 1/

(
m−1)x

i,j and my
i,j = 1/

(
m−1)y

i,j . We note that these spatially

discretised equations remain gauge invariant [74].

Imposing periodic boundary conditions in the x direction requires ψ0,j ≡ ψnx,j ,

ψnx+1,j ≡ ψ1,j , ax0,j ≡ axnx,j , a
x
nx+1,j ≡ ax1,j , a

y
0,j ≡ aynx,j , a

y
nx+1,j ≡ ay1,j . In the

y direction, the boundary conditions Eqs. (2.3.58) and (2.3.59) are implemented

using a ghost point method [78]:

η∂tψi,1 =h−2
x

[
m−1
x;i−1,1e

iaxi−1,1ψi−1,1 −
(
m−1
x;i−1,1 +m−1

x;i,1

)
ψi,1 +m−1

x;i,1e
−iaxi,1ψi+1,1

]
+ h−2

y

[(
hyγ −m−1

y;i,1

)
ψi,1 +m−1

y;i,1e
−iayi,1ψi,2

]
+
(
αi,1 − |ψi,1|2

)
ψi,1, (3.2.22)

η∂tψi,ny =h−2
x

[
m−1
x;i−1,nye

iaxi−1,nyψi−1,ny −
(
m−1
x;i−1,ny +m−1

x;i,ny

)
ψi,ny

+ m−1
x;i,nye

−iaxi,nyψi+1,ny
]

+ h−2
y

[
m−1
y;i,ny−1e

iayi,ny−1ψi,ny−1 +
(
hyγ −m−1

y;i,ny−1

)
ψi,ny

]
+
(
αi,ny −

∣∣ψi,ny ∣∣2)ψi,ny , (3.2.23)

∂ta
x
i,ny =κ2mx;i,nyh

−2
y

(
−axi,ny + axi,ny−1 + ayi,ny−1 − a

y
i+1,ny−1

)
− κ2mx;i,nyhxh

−1
y (Bapp + w

2 µ0Japp) + Im
[
ψ∗i,nye

−iaxi,nyψi+1,ny
]
,

(3.2.24)

∂ta
x
i,1 =κ2mx;i,1h

−2
y

(
−axi,1 + axi,2 + ayi,1 − a

y
i+1,1

)
+ κ2mx;i,1hxh

−1
y

(
Bapp −

w

2 µ0Japp

)
+ Im

[
ψ∗i,1e

−iaxi,1ψi+1,1
]
. (3.2.25)

For convenience, we will define the multi-indices µ and ν that specify the link

variable aµ = aui,j and ψν = ψi,j respectively as

µ(i, j, u) =

 j + (i− 1)ny for u = x,

nxny + i+ (j − 1)nx for u = y,
ν(i, j) = i+ (j − 1)nx.

(3.2.26)
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The above equations can be simplified into (where we have adopted the Einstein

summation convention for notational simplicity):

∂ta
µ = Jµµ′a

µ′ + S({a, ψ})µ, (3.2.27)

∂tψ
ν = Lνν′({a})ψν

′ +N({ψ})ν , (3.2.28)

where the nonlinear terms

N({ψ})ν =
(
η−1

)ν (
αν − |ψν |2

)
ψν , (3.2.29)

and

S({a, ψ})µ =

Im
[
ψ∗i,je

−iaµψi+1,j
]

for u(µ) = x,

Im
[
ψ∗i,je

−iaµψi,j+1
]

for u(µ) = y.
(3.2.30)

3.2.2.2 Temporal Discretisation

For developing {a, ψ} in time, we employ an adapted version of the Crank–Nicolson

algorithm [74]. Such a method is known to be unconditionally stable for purely

linear sets of equations [78], although stability is not guaranteed in the nonlinear

case. Unlike the explicit scheme of Gropp et al. [65], that uses the computational

variables {U} = {exp (−ıa)} instead of {a} directly, numerical errors of schemes

based on [74] will increase for long simulations of periodic systems in resistive

states, as the magnitude of {a} can grow large over time as a result of Eq. (3.2.17),

and the resultant increase in rounding error can slow or even prevent convergence.

However, as we are predominantly interested in the critical current density Jc and

the onset of persistent resistive states in the system, this does not significantly

limit critical current simulations that are the primary focus of this work, provided

the system is initialised in the superconducting state. This limitation compared

to [65] is outweighed by the reduction in simulation time possible using the longer

timesteps that the Crank–Nicolson approach permits when κ is not small, as a

result of its greater stability properties.
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3.2.2.2. Temporal Discretisation

Applying a Crank–Nicolson approach on all terms in Eqs. (3.2.19) and (3.2.20), we

can relate the computational variables at timestep n+ 1 and n by:

aµn+1 − aµn
δt

= 1
2
[
Jµµ′,na

µ′
n + Jµµ′,n+1a

µ′

n+1 + S({an, ψn})µ + S({an+1, ψn+1})µ
]
,

(3.2.31)
ψνn+1 − ψνn

δt
= 1

2
[
Lνν′({an})ψν

′
n + Lνν′({an+1})ψν

′
n+1 +N({ψn})ν +N({ψn+1})ν

]
.

(3.2.32)

Rearranging, we arrive at a pair of coupled, nonlinear equations to be solved for

our unknown variables {an+1, ψn+1} at each timestep,

J µ,−µ′,n+1a
µ
n+1 = J µ,+µ′,na

µ′
n + δt

2 [S({an, ψn})µ + S({an+1, ψn+1})µ] , (3.2.33)

Lν,−ν′ ({an+1})ψνn+1 = Lν,+ν′ ({an})ψν
′
n + δt

2 [N({ψn})ν +N({ψn+1})ν ] , (3.2.34)

where we have defined

J µ,±µ′,n = δµµ′ ±
δt

2 J
µ
µ′,n, Lν,±ν′ ({an}) = δνν′ ±

δt

2 L
ν
ν′({an}). (3.2.35)

However, as these equations are nonlinear, an iterative method must be employed

at each timestep. Fortunately, since the timescale for the evolution of {a} is much

shorter than {ψ} since usually κ2 � η−1, we have applied a block Gauss-Seidel

approach to the fully coupled system [78]. Denoting the mth iteration of our set of

unknowns by {a(m)
n+1, ψ

(m)
n+1} we have

Lν,−ν′ ({a(m)
n+1})ψνn+1 = Lν,+ν′ ({an})ψν

′
n + δt

2
[
N({ψn})ν +N({ψ(m)

n+1})ν
]
, (3.2.36)

J µ,−µ′,n+1a
µ,(m+1)
n+1 = J µ,+µ′,na

µ′
n + δt

2
[
S({an, ψn})µ + S({a(m)

n+1, ψ
(m+1)
n+1 })µ

]
, (3.2.37)

where we set {a(0)
n+1, ψ

(0)
n+1} = {an, ψn}. However, unlike [74], we do not separate

Eq. (3.2.37) into two iteration steps, as the timescale for the evolution of {ax} and

{ay} are similar magnitudes, which can lead to oscillatory behaviour of the iteration

scheme with a block Gauss-Seidel approach and unreliability of convergence [78].

Equation (3.2.36) is solved directly and more quickly in two steps using the method

of fractional steps to decompose the linear operator Lν,−ν′ ({a(m)
n+1}) into the product
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3.2.2.2. Temporal Discretisation

Lν,−X,ν′({a
(m)
n+1})L

ν,−
Y,ν′({a

(m)
n+1}) of two simpler operators containing difference terms in

one dimension only [74]. In this geometry, Lν,−X,ν′ is a cyclic tridiagonal matrix and

Lν,−Y,ν′ is a banded tridiagonal matrix, for which fast solution methods are available.

Cyclic tridiagonal systems are solved using a Sherman-Morrisson algorithm [80]

with the tridiagonal solver provided by the LAPACK package. Equation (3.2.37)

is solved in one solution step using the Intel MKL PARDISO direct parallel sparse

solver. Factorisation and analysis of the operator J µ,−µ′,n+1 need only be performed

once as the values are time-independent, with the exception of boundary terms

that can be grouped with nonlinear terms in Eq. (3.2.37).

Convergence was achieved by solving Eqs. (3.2.36) and (3.2.37) alternately until

the maximum residual ε, defined by

ε = max
{∣∣∣a(m+1)

n+1 − a(m)
n+1

∣∣∣ , ∣∣∣Re [ψ(m+1)
n+1 − ψ(m)

n+1

]∣∣∣ , ∣∣∣Im [ψ(m+1)
n+1 − ψ(m)

n+1

]∣∣∣} ,
(3.2.38)

satisfied ε < 10−7 at each time step.

The most common use case of the TDGL-ZEP code in this work is to generate

the characteristic behaviour of the critical current Jc as a function of the applied

magnetic field Bapp. As we will explore in later sections, the critical current density

Jc at a given Bapp can strongly depend on the magnetic history of the system, and

so each Jc value in the Jc(B) characteristic was determined from a different vortex

dynamics simulation and history. Therefore, to reduce the time taken to generate

an entire Jc(B) characteristic, simulations at different applied magnetic fields were

applied in parallel on separate compute cores. Within a core, when available,

OpenMP was used to allow the Intel MKL PARDISO solver to run in parallel on

multiple threads to accelerate the direct solve of the link variables at each solution

step.
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3.2.2.3 Scaling

As mentioned above, in the original semi-implicit algorithm proposed in [74],

Eq. (3.2.37) is separated into two iteration steps for {ax} and {ay} which are

solved using the method of fractional steps, allowing the use of fast tridiagonal

matrix solving schemes that take O(n) steps to solve for the unknown link variables,

where n is the number of link variables being solved for. However, as discussed,

since {ax} and {ay} evolve on similar timescales and are, in general, tightly coupled,

such a method can (and has been observed to) lead to unreliable convergence of

the iteration scheme under the block Gauss-Seidel approach applied [78]. This

limitation is unlikely to affect results significantly when the vortex-vortex spacing

in the system is much smaller than the penetration depth λs, or when the system

is in the high κ limit, since in these cases the link variables {ax} and {ay} are

determined to leading order by the applied magnetic field, which does not vary

significantly across the system in these limits, and any oscillatory convergence can

become negligible relative to the tolerance of the simulation. Furthermore, as the

original algorithm presented in [74] solves for {axn, ayn, ψn} in three iterations at

every timestep rather than iterating until convergence, any oscillatory convergence

behaviour manifests as a loss of simulation accuracy.

To address this unreliable convergence arising from decoupling {ax} and {ay} at

a given timestep, in TGDL-ZEP we instead solve the coupled system for {ax}

and {ay} in one step. However, the direct sparse solver used to do so scales

worse with the number of nodes (and therefore link variables) than the efficient

tridiagonal approaches. In the worst case, direct matrix solvers take O(n2) steps

to solve [78]. This poor scaling with system size for a given solution step for

the link variables limits the maximum size of system that can be simulated

using TDGL-ZEP. In particular, this makes any generalisation to 3D systems too

computationally intensive to usefully study large 3D superconducting domains of

interest for technological superconductors. This is significant, as the scalability of
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[74] – despite the concerns regarding convergence raised above – has previously

enabled idealised 3D granular systems to be studied [81]. For this reason, we

have also implemented a large-scale TDGL solver for systems in the high κ limit,

TDGL-HIK, based on the work of [54] that has previously been found to solve the

superconducting state at each timestep in O(n) operations and is appropriate for

3D simulations. This solver will be the topic of the next section.

3.2.3 TDGL-HIK – The High-κ Large Scale Solver of Sadovskyy

et al.

For large grid sizes, solution of Eq. (3.2.37) with the link variables {ax,y}

being updated in a single step becomes prohibitively expensive, and thus the

algorithm described in Section 3.2.2 scales poorly for 3D systems. In the high-

κ limit, Sadovskyy et al. have developed a scalable GPU accelerated algorithm

to solve Eqs. (2.3.60) to (2.3.62) to investigate the effect of pinning structures

in 3D superconducting systems [54]. For 3D simulations, we have written and

implemented a TDGL solver (TDGL-HIK) using the algorithm described in [54] to

investigate Jc in large scale polycrystalline systems.

The order parameter ψ, the electrostatic potential ϕ, and the gauge parameter K

are updated successively at each timestep, with ψ and ϕ solved for iteratively as de-

scribed in [54] until |ψn+1 − ψn|2 < 10−5 and
∣∣∇2ϕ−∇ · Im [ψ∗(∇− ıA)ψ]

∣∣2 < 10−5

at every mesh point. K is integrated forward in time using a second order Runge-

Kutta algorithm [80]. Local order parameter fluctuations may also be included

for investigations of vortex creep by adding a temperature dependent noise term

ζ = ζ1 + ıζ2 to the right hand side of Eq. (2.3.60) [54]. ζ1 and ζ2 are independent

random variables at each timestep, taken from the uniform distribution in the

interval between ζmax =
(
3ηTfδthxhyhz/ξ3

s τ
)1/2 In this work however, we set

Tf = 10−6, which is sufficiently small so as to minimise creep effects that may

complicate the determination of Jc and corresponds to nearly zero thermal noise for
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vortex flow [82], but sufficiently large to speed up relaxation of the order parameter

when the system is out of equilibrium, such as immediately after initialisation.

Insulating or (quasi)periodic boundary conditions can be applied at the edges of

the simulation domain in any (or all) spatial dimensions [54]. For a periodic domain

of size Lx, Ly, Lz in the x, y and z dimensions respectively with a magnetic field

applied along the z axis, periodic boundary conditions can be applied to ψ at

the edges of the domain in the x and z dimensions, and quasiperiodic boundary

conditions (QBC) on ψ in the y dimension, as described in [54]. We found

quasiperiodic boundary conditions to be particularly useful to eliminate surface

effects in 3D simulations that can otherwise dominate over bulk critical current

contributions in computationally accessible system sizes.

TDGL-HIK was written using CUDA and C++ for simulation on NVIDIA

GPUs. GPU devices can contain hundreds of processing units, and can drastically

improve the performance of highly parallelisable algorithms and solution steps [83].

However, copying data to the global memory of a GPU device from a host CPU

(and vice versa) is a slow process, limited by the PCIe bus that connects the two,

and so GPU simulation is most beneficial when only small amounts of data are

needed to be transferred to and from the GPU during simulation. Due to the

formulation of the TDGL solver in the high-κ limit described in [54], the only data

needed to be transferred to the CPU from the GPU during a given simulation

is information needed to calculate the average value of the electric field 〈Ex〉 to

update the global gauge constraint parameter K, along with some boolean flags

to indicate convergence. Otherwise, other large arrays, such as those that store

the order parameter and electrostatic potential at every node, are stored in global

memory of the GPU, and are updated via kernels that operate using one GPU

thread per node. The maximum size of the computational system that can be

studied is limited by the available GPU memory; a typical simulation on a cubic

domain containing 3003 = 2.7× 107 nodes (for a (150ξs)3 simulation volume) took

2850 MB of GPU memory, implying a maximum 4803 ≈ 1.1 × 108 nodes that
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can be simulated on a NVIDIA GPU with 12 GB of memory, corresponding to a

(240ξs)3 simulation volume. Simulations using TDGL-HIK were carried out using

the resources of the NVIDIA CUDA centre at Durham University.

3.3 Steady States

The simplest simulations that can be performed using TDGL-ZEP and TGDL-

HIK are those of vortex distributions at fixed applied magnetic fields, without the

application of transport currents through the system. In the bulk of homogeneous

superconductors, regular triangular vortex lattices are expected (see Fig. 2.4),

with each vortex aligned along the applied magnetic field axis and surrounded

by six nearest neighbours in the lowest energy configuration. However, for systems

containing flux pinning sites and surface barriers, the number and distribution of

vortices present in the steady state is hysteretic, and depends on the magnetic

history of the sample, as several different vortex states in the superconductor can

be stable at the same applied field.

The particular distribution of vortices in the equilibrated vortex state at a given

applied field found in these TDGL simulations is sensitive to numerical noise and

the rate of increase of the applied magnetic field. This is because variations in initial

vortex penetration locations can introduce defects into the vortex lattice. Any

defects in the vortex lattice from the initial magnetic field ramp can then become

‘frozen in’, as low levels of numerical noise in the simulation can inhibit further

vortex nucleation and entry into the superconductor and decreases the probability

of a transition from one metastable vortex arrangement to another, more stable

one. This effect is particularly important when strong surface barriers are present,

such as those that exist at interfaces with insulating regions. Furthermore, the

number of such lattice defects increases in high magnetic fields since the density of

vortices is higher, and equilibration times for high field states are longer as a result.

Such a crossover to a defect-dominated vortex lattice at high magnetic fields has
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previously been observed in both experiment and simulation in [84].

Therefore, for reproducibility of simulations carried out using TDGL-ZEP, the

system is first initialised in the Meissner state throughout the computational

domain (ψ = 1, B = 0). The external magnetic field is then increased rapidly

at a rate of 5 × 10−2Bc2τ−1 up to the desired value Bapp, during which time

vortices penetrate the superconductor. Finally, the system is left to equilibrate for

a duration thold to allow the vortex distribution to relax into a stable configuration.

This rate, along with the tolerance used in the convergence criterion Eq. (3.2.38)

was chosen to be slow enough (and small enough) to minimise the number of

defects in the vortex state, whilst remaining large enough to allow simulations to

equilibrate and relax in reasonable timescales. An example of such a configuration

for a TDGL-ZEP simulation on a superconducting thin film system subject to a

parallel magnetic field is provided in Fig. 3.2. An approximately triangular vortex

lattice is observed in the centre of the film. However, close to the insulating surfaces,

rows of vortices are observed due to the strong surface barriers at the interfaces

with the surrounding insulator. This results are consistent with arrangements of

vortices found in previous simulations carried out by [85].

For simulations carried out using TDGL-HIK, the order parameter is similarly

initialised to the Meissner state value of ψ = 1.0 within the entire domain, and

the magnetic field throughout the system is set to its applied value Bapp directly

through the link variables as described in [54]. As noted in [54], the rate at which

vortices nucleate and relax is controlled by the fluctuation parameter ζmax and the

associated effective temperature Tf. As discussed in Section 3.2.3, in this work we

follow [82] and set Tf = 10−6, to minimise effects of vortex creep in critical current

density simulations, but still allow sufficient equilibration for initial vortex states.

A snapshot of a simulation using TDGL-HIK after initial vortex nucleation but

prior to full relaxation of the vortex state is presented in Fig. 3.3. Whilst most

vortices are indeed locally surrounded by six other nearest neighbours and are

aligned along the axis of the applied field, defects in the vortex lattice are clearly
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Figure 3.2: Normalised Cooper pair density |ψ|2 (top) and local magnetic field B
(bottom) in a superconducting film with w = 20ξ, l = 60ξ, η = 1 and κ = 10 in an
applied external magnetic field Bapp = 0.5Bc2, equilibrated for 104τ . The system
is periodic in the x-direction and insulating boundary conditions were applied in
the y-direction.

visible, as well as curvature of individual vortex lines.

Understanding the reasons for differences in the initial vortex state will be

important for understanding sources of noise in the determination of the critical

current density from these simulations when a transport current is applied.

Different distributions and numbers of vortices and vortex lattice defects in the

initial state can lead to different values of the critical current density. We shall

discuss these effects, and methods of extracting critical current densities from these

simulations reproducibly despite this limitation, in the next section.
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Figure 3.3: Normalised Cooper pair density |ψ|2 in a 2D slice of a 3D cubic
superconducting domain of side length 100ξs with η = 5.79 in an applied external
magnetic field Bapp = 0.1Bc2 in the z direction, with timestep 0.1τ equilibrated for
103τ . The system is periodic in all three dimensions. Vortices above and below the
midplane are represented by contours of the order parameter at which |ψ| = 0.25.

3.4 Critical Current Determination

In order for us to study how the critical current density of a superconducting system

is affected by changes in the pinning landscape and applied field, a procedure is

needed to extract representative values of the critical current density of the system

from vortex dynamics simulations performed using TDGL-ZEP and TDGL-HIK.

In this section, we describe the methods used to extract values for Jc, and discuss

possible artifacts that may arise from each method.
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3.4.1 Continuous Current Ramp

For initial simulations of critical currents in thin film and junction systems using

TDGL-ZEP, we adopted a method similar to that used previously used in [86] and

in experiment, of continuously increasing the applied transport current through

the system and monitoring the average electric field along the x-direction 〈Ex〉

in the system. We have previously described this method and presented results

on small systems using this method in [77]; we include the key results obtained

here. The average applied transport current density Japp, applied through the

boundary conditions of the magnetic field (Fig. 3.1), was increased at a constant

rate of 3 × 10−4JDτ
−1 whilst the average electric field along the x-direction 〈Ex〉

in the system was computed at each time step using Eq. (3.2.17). In this way, a

simulated E(J) characteristic for the superconducting system can be generated. To

extract a critical current density Jc from this characteristic, Ekin’s offset criterion

method [56] was applied. When the average electric field in the system 〈Ex〉 first

exceeded a critical average electric field Ec = 0.01φ0/2πξτ in the system, the local

tangent to the E(J) characteristic was found and extrapolated to zero electric field;

Jc was taken to be the corresponding current density at this point. This process

was repeated at different applied magnetic fields Bapp to investigate the Jc(B)

dependence of a given system, in analogy to similar experimental methods.

E(J) characteristics of the thin film system shown in Fig. 3.2 subject to insulating

boundary conditions at the upper and lower surfaces are shown in Fig. 3.4. For low

currents, almost dissipationless behavior is observed. For intermediate currents at

low applied magnetic fields, temporal oscillations in the average electric field in

the film are observed due to the entry/exit of entire rows of vortices across the

upper/lower surface barriers of the film. The vortex rows travel across the film

with a current-dependent velocity, and thus these electric field oscillations have

a corresponding current-dependent period. At higher fields, the defect density in

the vortex lattice increases and these electric field oscillations become less clearly
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Figure 3.4: Average electric field 〈Ex〉 against external applied current Japp for
a superconducting film with w = 20ξ, l = 60ξ, η = 1 and κ = 10 subject to
various external magnetic fields. Periodic boundary conditions were applied in
the x-direction and insulating boundary conditions were applied in the y-direction.
Systems were first initialised in the bulk Meissner state and the external magnetic
field Bapp was raised to the desired value. The external current density Japp was
then slowly swept up to above the depairing current JD.

defined, as defect motion and the entry/exit of individual vortices dominates over

the coherent motion of vortex rows. Eventually, as the applied average current

density in the film is increased further, the superconducting film transitions into

the (resistive) normal state. This transition becomes less abrupt as the applied

magnetic field is increased.

Figure 3.5 displays the critical current density as a function of applied magnetic

field for superconducting films of varying widths of the superconductor, subject

to both highly metallic (|γ| → ∞) and insulating surface conditions (|γ| → 0).

At applied magnetic fields much lower than the initial vortex penetration field of

the film, the critical current density of films with insulating surface conditions is
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Figure 3.5: Critical current density Jc against mean external magnetic field Bapp for
a superconducting system with κ = 10, η = 1 and l = 60ξ for varying width w and
surface parameter γ, where γ = ∞ represents highly conductive boundaries and
γ = 0 represents insulating boundary conditions. Jc and Bapp are expressed in units
of the depairing current JD and the upper critical field Bc2 for each superconductor
respectively. The critical current was determined using Ekin’s offset method using
a critical electric field Ec = 0.01φ0/2πξτ and extrapolating to 〈Ex〉 = 0.

large, and close to the depairing current density JD. For films with highly metallic

boundary conditions, the critical current density in this regime tends to zero as

the film width decreases, as a result of the suppression of Cooper pair density

close to the highly metallic surfaces. The effect of the surface parameter γ on the

magnetisation of superconducting films in the same geometry has been previously

considered in [87].

In low magnetic fields, of the order of the initial vortex penetration field in the

film, the critical current density of wide films exhibits a (distorted) Fraunhöfer-like

dependence with applied magnetic field. For these films, the critical current density

of the film decreases to zero as the applied field is raised above Bc2 for films subject
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3.4.1. Continuous Current Ramp

to highly metallic surface conditions, or above Bc3 = 1.69Bc2 for films subject to

insulating surface conditions. The critical current density can remain non-zero up

to extremely high applied magnetic fields in very thin films with insulating surfaces,

depending on their width. High resolution simulations with a grid spacing of 0.1ξ

suggest that the field at which the critical current density does vanish for thin films

is close to the parallel critical field of the film Bc|| = 2
√

3Bc2ξ/w, consistent with

Tinkham’s predictions [88].

Next, the effect of including a junction region in the thin film on the E(J) char-

acteristic obtained using this continuous current ramp method was investigated.

Figure 3.6 shows that the E(J) characteristics of the thin film system are modified

when a junction consisting of a weaker superconductor than the bulk with αn = 0.8

is added to the film. At large applied current densities, in zero magnetic fields

electric field oscillations are introduced, as a result of vortex-antivortex motion

along the junction. Furthermore, in all magnetic fields, the transition to the normal

state at high current densities is broadened. This occurs because a non-zero Cooper

pair density persists just outside the junction region that carries an associated

supercurrent, although most of the superconducting film itself is in the normal

state.

Finally, the effects of varying the junction properties on the zero field E(J)

characteristic of the film containing a junction are displayed in Fig. 3.7. When

αn is reduced, the critical current density decreases and in the high E-field regime,

the transition to the normal state broadens and the current density required to drive

the whole system into the normal state increases. This behaviour has previously

been observed in simulations by Berdiyorov et al. for the specific case of αn = −1

[89]; our results in Fig. 3.7 show that this broadening is strongly dependent on the

junction Tc.

Defects in the initial vortex lattice introduce noise in the simulated E(J)

characteristics of the film at low applied currents, but provided they are sufficiently

few in number, they do not significantly affect the determination of the critical
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Figure 3.6: Average electric field 〈Ex〉 against external applied current Japp for
a superconducting film containing a 2ξ wide ‘junction’ region in its centre, in
which the local Tc term αn = 0.80. The surrounding superconducting domain
was parameterised with η = 1, κ = 10 and dimensions w = 20ξ and l = 60ξ, with
periodic boundary conditions applied in the x-direction and insulating boundary
conditions applied in the y-direction. At each external magnetic field, the system
was first initialised in the bulk Meissner state and the external magnetic field Bapp
was raised to the desired value. The external current density Japp was then slowly
swept up to above the depairing current JD.

current density of the system provided the offset criterion Ec is large enough. In

high magnetic fields, when the number of defects in the vortex lattice is larger, the

resultant E(J) characteristics are unavoidably noisier than in the low field case.

This can affect the E(J) characteristics since relaxation of the vortex lattice under

small applied currents can generate significant transient electric fields as the vortex

lattice relaxes from an initial metastable state (c.f. Fig. 3.4).

As we have seen, a notable advantage of the continuous current ramping method

is that the E(J) characteristics obtained can be easily interpreted, with steps and

oscillations in the E(J) characteristic easily compared to the movements of vortices
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Figure 3.7: Average electric field 〈Ex〉 against external applied current Japp for a
superconducting film containing a 2ξ wide ‘junction’ region in its centre, in which
the local Tc term αn is variable. The surrounding superconducting domain was
parameterised with η = 1, κ = 10 and dimensions w = 20ξ and l = 60ξ, with
periodic boundary conditions applied in the x-direction and insulating boundary
conditions applied in the y-direction. At each external magnetic field, the system
was first initialised in the bulk Meissner state and the external magnetic field Bapp
was raised to the desired value. The external current density Japp was then slowly
swept up to above the depairing current JD.

observed in snapshots of the order parameter and field distributions. Furthermore,

it has the additional advantage that critical current densities corresponding to

lower electric field criteria with all other simulation parameters held constant can

easily be obtained by postprocessing the same E(J) characteristic, saving time that

would otherwise need to be spent rerunning the simulation. However, oscillations

and noise in the E(J) characteristic close to the electric field criterion Ec can lead

to significant uncertainty in critical current densities obtained using Ekin’s offset

method, and cause large amounts of scatter in the inferred Jc(B) characteristics

unless the onset of vortex flow in the system as a function of applied current is
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3.4.2. Ramp-and-Hold

sufficiently sharp. Furthermore, the finite continuous current ramp rate provides

an inductive contribution to the average electric field in the system that limits the

minimum value of Ec that can be used; slower ramp rates permit smaller values of

Ec, but lead to longer simulation timescales.

At this juncture, it is useful to compare the characteristic timescale τ and the

characteristic electric field E0 = φ0/2πξτ to a typical superconductor. For a

superconductor with κ = 30, Bc2(T ) = 10 T and normal state resistivity ρN;s =

1 µΩ m, we have ξ ≈ 6 nm, τ ≈ 4× 10−2 ps, and thus E0 ≈ 2 MV m−1. Therefore,

the electric field criterion used in this approach, Ec = 0.01E0 is around ten orders

of magnitude larger than a typical Ec = 100 µV m−1 criterion used in experimental

superconductor characterisation [56]! Unfortunately, using such a small electric

field criterion for Jc is not feasible on achievable timescales for the reasons given

above, not least because it would require an extremely slow current ramp rate for

the inductive contribution to remain below Ec = 100 µV m−1. Nevertheless, we are

motivated to investigate alternative procedures for critical current determination

that can accommodate lower electric field criteria, to facilitate faster generation of

Jc(B) characteristics with reduced computational cost and scatter in extracted Jc

values.

3.4.2 Ramp-and-Hold

A common method used in the literature to address the problem of oscillations in

the E(J) characteristic when determining critical currents is to average the electric

field at a given current over a time period larger than the period of oscillations [90].

In doing so, the E(J) characteristic is smoothed, and methods to extract Jc from

the E(J) characteristic are stabilised. We adopt such a method for our TDGL-HIK

simulations, following [90].

In this approach, the system is initialised in a resistive state by driving a large

average applied current density Japp � Jc through the domain. The applied
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average current density Japp was then decreased in a series of logarithmically

spaced steps; typically, the ratio between the transport current applied at successive

current steps rJ ≈ 0.975, representing a 2.5% decrease in the applied current at each

current step. After each current step, the current is held constant for a duration of

thold and the spatially averaged electric field in the superconductor Ex is averaged

over the second half of the hold step, after transient effects from stepping the current

have decayed away. Typically thold = 10.0 τ . The critical current density Jc is then

taken to be the highest current at which the time-averaged and spatially-averaged

Ex is less than the electric field criterion Ec = 10−5ρJ0.

It should be noted that critical current densities obtained from such a method may

underestimate the critical current density of the system at the specified electric

field criterion, as vortices will not immediately stop moving once Jc is reached, and

so the current ramp may overshoot and set the current to a lower value than Jc

if rJ or thold are too small. Nevertheless, we find that such a method is highly

efficient for generating representative Jc behaviour, and requires relatively little

computational time compared to other approaches.

3.4.3 Adaptive Current Ramp

However, as we have noted in Section 3.2.2, simulations of TDGL-ZEP can become

unstable for when simulations spend extended periods of time in resistive states,

and so the ramp-and-hold method cannot be directly used. For TDGL-ZEP

simulations therefore, it is necessary to ramp the applied current up from the

superconducting state to the onset of a net electric field in the system, rather than

down from the resistive state. However, using an averaging approach on the E(J)

characteristic at each applied current with an increasing current ramp can take

long periods of simulation time in stable regions, where vortices are not moving.

To minimise computational expense, it is therefore preferable to adopt an adaptive

current ramping method, that spends most of this averaging time under conditions

in which vortices are moving in the system, that could correspond to the onset of
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persistent vortex motion and Jc. To this end, in this subsection we shall describe the

adaptive current ramping method we have developed that we shall use throughout

the remainder of this thesis for determination of Jc from TDGL-ZEP.

We once again follow the experimental approach [91] and use an arbitrary electric

field criterion Ec. To accommodate any variations in the local resistivity (or

effective mass) in the system without needing rescaling of the electric field criterion,

we express this electric field criterion in terms of a characteristic electric field

ED, which corresponds to the average electric field in the system when the

superconductor is normal and carrying the zero-field Ginzburg–Landau depairing

current density JD, such that

ED = κ2ρxavJD, (3.4.1)

where

ρxav = w

ws

1
nx

nx∑
i=1

ny∑ny
j=1

[
(m−1)xi,j

] , JD = 2
3
√

3
J0, (3.4.2)

and ρxav represents the average resistivity of the system in the x-direction,

normalised to the resistivity of a system in the x-direction containing only the

superconductor in its normal state.

The vortex state at fixed magnetic field is first found as described in Section 3.3.

Following this, for our TDGL-ZEP simulations the applied average current density

Japp was increased in a series of logarithmically spaced steps, starting from 10−6JD.

Typically, the ratio between the transport current applied at successive timesteps

rJ ≈ 1.01, representing a 1% increase in the applied current at each step. If the

average electric field in the system exceeded the electric field criterion, typically

Ec = 10−5ED, the applied current was instead held constant. When the average

electric field continued to persist above Ec for longer than the hold time thold,

typically taken as 5×104τ , the system was determined to have entered a persistent

resistive state and Japp at this point is taken to be the critical current density Jc.

An example of the time evolution of the applied current density and average electric

field used to extract Jc from the simulation is displayed in Fig. 3.8. The rapid
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jumps in the average electric field in the system 〈Ex〉 below the critical current(
t < 1.1× 104) are associated with the imposed current steps and the associated

steps in the rate of change of the magnetic field in the system. To make the

generation of a full Jc(Bapp) characteristic more efficient, we also simulate Jc at

different applied fields in parallel, since the simulations for the critical current at

given applied fields are independent of one another.

Figure 3.8: Typical simulation data used to extract Jc at the applied field
Bapp = 0.3Bc2. Bottom: distribution of the normalised Cooper pair density |ψ̃|2
at the critical current Jc, for a simulated junction with periodic length l = 100ξs,
thickness d = 0.5ξs, junction width ws = 16.0ξs and Ginzburg–Landau temperature
parameter in the normal region αn = −20. Top left: The applied current density
Japp normalised by the depairing current density JD versus time t normalised in
units of the characteristic timescale τ . Top centre: The average electric field in
the x direction 〈Ex〉 normalised by the characteristic electric field ED as a function
of time t. Top right: The normalised average electric field in the x direction
as a function of the applied current density. The applied current density when
E < Ec = 10−5ED, and Jc is determined as the lowest current at which E > Ec
for a duration exceeding thold = 5× 103τ .
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3.5 Conclusions

In this chapter, we have outlined the numerical algorithms and methods used

within this thesis to solve the TDGL equations in a 2D or 3D superconducting

domain, and to evolve the vortex state of a material in time. In particular, we

have identified limitations present in the convergence behaviour of the existing

scalable TDGL solver of [74] when magnetic field variations are significant within

the material. We found significantly improved convergence in these cases by solving

for all components of the magnetic vector potential simultaneously at each iteration

at the expense of scalability of the solver with system size, and have implemented

this in our TDGL-ZEP code. To enable large-scale simulation for high-κ systems,

we have also implemented a version of the algorithm developed by [54] for GPU

simulation, in TDGL-HIK. We have also described the methods used to extract

model E(J) characteristics and representative values for the critical current density

Jc from vortex dynamics simulations performed using these codes, and the benefits

and limitations of the different approaches chosen.

We have also presented results obtained using TDGL-ZEP for simple thin film and

junction systems, and found that the critical current density of thin films with

insulating surface conditions approaches the depairing current density at applied

magnetic fields below the initial vortex penetration field. In contrast, the critical

current density of thin films with highly metallic surface conditions decreases to zero

as the film width decreases, due to the suppression of the local Cooper pair density

close to the metallic surfaces. Furthermore, we have found that the critical current

density in very thin films with insulating surfaces subject to applied magnetic fields

is limited by the parallel critical field Bc|| = 2
√

3Bc2ξ/w, consistent with Tinkham’s

analytic results. Finally, when narrow junction regions of reduced Tc are added to

the thin film perpendicular to the direction of current flow, we observe a suppression

of the critical current of the system in zero applied magnetic field and a broadening

of the transition to the normal state at all applied magnetic fields.
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In the next chapter, we shall apply the two main TDGL algorithms implemented

here – TDGL-ZEP and TDGL-HIK – to the problem of current flow across a

Josephson junction, and validate the critical current densities obtained as a function

of field against analytic results. We shall also use TDGL-ZEP to verify new analytic

results derived to describe the decrease in critical current density as a function of

applied magnetic field for narrow Josephson junctions.

76



Chapter 4

Simulations of the Critical Current

of SNS Josephson Junctions in

Arbitrary Magnetic Fields

4.1 Introduction

All large scale superconducting materials are polycrystalline, and contain a range

of non-superconducting inclusions and crystal defects such as grain boundaries that

may impede current flow. Nevertheless, as predicted by Josephson [92], an electric

current may still flow across the system without the onset of dissipation since

Cooper pairs are able to tunnel through these ‘normal’ regions. Planar defects

in superconducting systems therefore limit the maximum average current density

that can flow without the onset of resistance, Jc. This can significantly reduce

the attainable critical current densities in real materials; indeed, as shown by De

Gennes, the critical current density in zero magnetic field that can flow across a

thin normal metal sandwiched between two superconducting electrodes decreases

exponentially with the thickness of the normal metal layer [27].

In low applied magnetic fields Bapp, the Jc(Bapp) behaviour of superconductor-

normal-superconductor (SNS) junctions in tunnel-like geometries is well known.
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In very narrow systems, and in other geometries in which the current density is

constrained to flow in one direction only, the critical current density is independent

of applied field to leading order, and depends exponentially on the thickness

of the normal barrier in the junction [27, 93, 50]. The local current density

in this case is a sinusoidal function of the phase difference between the two

superconducting electrodes [93, 50]. When the dimensions of the superconductors

become comparable to the (Ginzburg–Landau) penetration depth λs, the phase

difference across the junction varies along the junction, and the (average) critical

current density of the junction becomes highly dependent on the system geometry,

with Jc(Bapp) ∼ B
−1/2
app for well separated junctions in the thin film limit [94, 95].

For systems larger than λs but smaller than the Josephson penetration depth λJ, in

which self-field effects in the junction region can be neglected, the topological phase

difference across the junction varies approximately linearly with position along the

junction (except near the junction edges), leading to the well-known Fraunhöfer-like

dependence of Jc on applied magnetic field with Jc(Bapp) ∼ B−1
app [96, 97]. For very

wide systems, in which the self field associated with the transport current through

the junction is comparable to the applied magnetic field, the current-phase relation

is multivalued depending on the number of vortices on the junction, and the critical

current density depends on the magnetic history of the system [98]. Larger scale

networks of SNS junctions have also been used in analytic models for the critical

current of polycrystalline superconductors [99, 100], motivating our study of them

within this work.

However, these canonical descriptions of SNS Josephson junctions above are all

limited to low fields, far below the upper critical field of the superconducting

regions, and as such are qualitatively incorrect when the superconductors are in

the mixed state or when the order parameter is heavily suppressed by inductive

currents. The presence of vortices in the surrounding superconductor strongly

affects the critical current density that the junction can carry [101] when vortices

are within the penetration depth λs of the junction. Such models fail entirely as
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the applied field approaches the upper critical field of the superconductors, as they

cannot describe the decrease of Jc to zero when superconductivity is destroyed in

the electrodes; no analytic solutions exist for the critical current of junction systems

in this high field regime. In the high field regime therefore, numerical studies of

the critical current density as a function of field have been employed instead [102].

In particular, time-dependent Ginzburg–Landau (TDGL) theory has been used

model the critical current density as a function of applied field for superconducting

systems containing normal inclusions [103, 104, 81]. TDGL simulations for the

critical current as a function of field of a superconductor containing a periodic series

of ‘weak link’ junctions in which the local temperature T = Tc inside the junctions

have been previously carried out [89], but have focussed on the vortex structure

and dynamics through the junction rather than how the junction properties affect

Jc(Bapp).

In this chapter we find the first known solutions (to our knowledge) for the

critical current density of narrow SNS junctions in arbitrary applied magnetic

fields, developing the methodology of [105, 106] to account for the suppression

of superconductivity in the superconducting electrodes at applied magnetic fields

close to the upper critical field of the system. We verify these solutions against our

simulations based on time-dependent Ginzburg–Landau theory. We extend these

results to larger systems, up to the scale of λs, to find critical current densities as

a function of field and find both qualitative agreement with existing surface flux

pinning theory for model systems and more importantly, results consistent with

widely observed experimental data for superconductors such as Nb3Sn, Nb3Al,

and PbMo6S8.

We shall first validate our computational codes against the canonical low-field

expressions for the critical current density of junctions, and find good agreement

between our simulation and existing theory. We then present our new solutions

for the critical current density of narrow junctions in all fields when the junction

and superconductors are vortex-free and compare them to simulation. Finally, we
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propose an extension of these narrow junction results to physically relevant system

sizes, and compare them to our simulations and relevant experimental data.

4.2 Weakly Coupled SNS Junctions In Low Magnetic

Fields

We shall first review analytic expressions for the critical current density across

weakly coupled Josephson junction systems in low fields from the literature, in

which the superconducting electrodes either side of the junction do not contain

vortices. For simplicity, we shall restrict this analytic discussion to solving the GL

equations in the time-independent limit for critical currents in 2D junction systems,

valid for thin superconducting films, or volumes of superconducting system in which

all vortices are parallel to one another and the junction plane. The system geometry

is shown in Fig. 3.1; material parametersmi(r), α(r), and β(r) are only functions of

the x coordinate normal to the junction plane. For these systems, it is convenient to

express Eqs. (2.3.56) and (2.3.57) in terms of gauge-invariant variables to facilitate

physical interpretation of the results. Expressing the order parameter in terms of

its magnitude |ψ| and phase θ through the definition ψ = |ψ|eıθ, a gauge invariant

phase γ can be introduced with gradient ∇γ = ∇θ − A defined where |ψ| 6= 0.

The GL equations expressed in terms of the gauge-invariant variables |ψ|, J s, and

γ for these junction systems then take the form [105][∑
i

(
∂i
[
m−1
i (x) ∂i

]
−m−1

i (x) (∂iγ)2
)

+ α (r)− β(r) |ψ|2
]
|ψ| = 0, (4.2.1)

J s = m−1
i (x) |ψ|2∇γ, (4.2.2)

subject to the constraint ∇ · J s = 0. The boundary conditions Eqs. (2.3.58)

and (2.3.59) at an insulating surface become n̂ · J s = n̂ ·∇|ψ| = 0 [93].

For clarity of presentation, we shall categorise junctions by their width ws

transverse to the direction of current flow relative to length scales of the

superconductor, into ‘very narrow’ junctions, with ws � ξs, λs; ‘narrow’ junctions,
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with ξs � ws � λs, and ‘wide’ junctions, with ws � ξs, λs. In addition, it shall be

useful to further subcategorize these systems as ‘thin’ or ‘thick’ junctions between

weakly coupled (−αnd � 1) superconductors depending on whether its thickness

d in the direction of current flow that is much smaller or much larger than the

superconducting coherence length ξs respectively. Here we consider these different

types of junctions in turn.

4.2.1 Very Narrow Junctions ws � ξs

For very narrow junctions with insulating boundary conditions, w = ws � ξs, such

that the boundary condition n̂ ·∇|ψ| = 0 implies [∂y|ψ|]ws/2
−ws/2 = 0. In this very

narrow junction case, no vortices are stable inside the structure and the magnitude

of the order parameter |ψ| is approximately constant along the y direction [106,

107]. Hence the mean value theorem can be applied, as Eq. (4.2.1) can be integrated

over the junction width in the y direction. |ψ| can then be replaced by its average

in the y direction f = 1
ws

∫ ws/2
−ws/2 |ψ| dy and the components of J s by their equivalent

average 〈Js;i〉y = 1
ws

∫ ws/2
−ws/2 (Js;i) dy. In the limit where the applied magnetic field

is much less than the self field, Js;y = 0 from the insulating boundary conditions,

and Js;x is independent of y. Eq. (4.2.1) is then reduced to an equation in only one

variable x. Using Eq. (4.2.2) gives

∂x
(
m−1 (x) ∂xf

)
+
[
α (x)− β(x)f2 −

m (x) 〈Js;x〉2y
f4

]
f = 0. (4.2.3)

This is the same geometry used in Section 2.4.1 to derive the depairing current

density JD for the maximum current density that a very narrow homogenous system

can carry. As a result, we shall denote to the maximum current density that a

very narrow inhomogeneous system containing a junction can carry by JDJ. JDJ

is equivalent to the (zero-field) Ginzburg–Landau depairing current density for a

junction system; the maximum lossless current density that can flow across the

junction, above which superconductivity is destroyed.
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4.2.1.1 Thin Junctions d� ξs

The critical current in the thin junction limit, where d � ξs, has been solved in

weakly coupled limit by [108] and investigated numerically in the strongly coupled

case by [109]. To keep things simple here, β(x) and m−1 (x) are taken as constant

across the system. Equation (4.2.3) is written as

∂2
xf +

[
1− (1− α(x))− f2 −

〈Js;x〉2y
f4

]
f = 0. (4.2.4)

Since f and 〈Js;x〉y are continuous across the S/N interface in this case, a constraint

between ∂xf and f at the interface in the limit where d� ξs can easily be found,

by integrating Eq. (4.2.4) in the x direction across the normal region. Assuming f

is symmetric across the junction and 1 − αn ∼ O(d−1) or larger, then to leading

order in d/ξs

2f ′d/2 = d (1− αn) fd/2, (4.2.5)

where fd/2 = f (x = d/2) and f ′d/2 = ∂xf (x = d/2).

As shown by [108], in the weak coupling case, when the critical current density of the

junction is much less than the critical current density of the bulk superconductors,

limx→∞{f} = 1 and limx→∞{f ′} = 0, so that integrating Eq. (4.2.4) from the S/N

interface to a point far from the junction yields

f ′2d/2 + f2
d/2 −

f4
d/2
2 +

〈Js;x〉2y
f2
d/2

= 1
2 . (4.2.6)

Substituting f ′d/2 from Eq. (4.2.5) into Eq. (4.2.6) and neglecting the highest order

terms in the small parameter V −1
0 = 1/d (1− αn) gives

f2
d/2 = V −2

0 + V −1
0

√
V −2

0 − 4〈Js;x〉2y. (4.2.7)

From the discriminant, in order for f to remain positive and real at the S/N

interface, 〈Js;x〉y ≤ V0/2. This gives the condition for the maximum critical

current that can flow through the junction JDJ as

lim
d�ξs
{JDJ(Bapp = 0)} = J0

ξs
2d (1− αn) . (4.2.8)
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4.2.1.2 Thick Junctions d� ξs

For thick junctions, the critical current density for thick junctions has been solved

by [50] from Eq. (4.2.3). In the superconductor regions, with fs = f , jx = 〈Js;x〉y,

Eq. (4.2.3) can be written

∂2
xfs +

[
1− f2

s −
j2
x

f4
s

]
fs = 0, (4.2.9)

whereas inside the normal region, Eq. (4.2.3) can be rescaled with the substitutions

u = x
√
−αnmn/ms, fn = −f

√
βn/αn and ju = 〈Js;x〉yβn

√
mn/ms(−αn)−3/2 to

give

−∂2
ufn +

[
1− f2

n + j2
u

f4
n

]
fn = 0. (4.2.10)

Equations (4.2.9) and (4.2.10) can be solved analytically for the magnitude of the

order parameter in terms of Jacobi elliptic functions (Appendix A). From [50],

Eq. (4.2.9) has the exact solution for x > 0

f2
s = f2

s;l/2 −
ζ2
s,+ζ

2
s,−

ζ2
s,+ + ζ2

s,−
sd2

( l
2 − x

)√
ζ2
s,+ + ζ2

s,−
2 ,

√√√√ ζ2
s,−

ζ2
s,+ + ζ2

s,−

 ,
ζ2
s,± = ±

(
1−

3f2
s;l/2
2

)
+

√√√√√(1−
f2
s;l/2
2

)2

− 2j2
x

f2
s;l/2

,

(4.2.11)

where fs;l/2 = fs(x = ±l/2) is the magnitude of the order parameter at the deepest

point inside the electrodes where dfs/dx = 0, and Eq. (4.2.10) has the exact

solution

f2
n = f2

n;0 +
ζ2
n,+ζ

2
n,−

ζ2
n,+ + ζ2

n,−
sd2

u
√
ζ2
n,+ + ζ2

n,−
2 ,

√√√√ ζ2
n,+

ζ2
n,+ + ζ2

n,−
,


ζ2
n,± = ±

(
1−

3f2
n;0
2

)
+

√√√√(1−
f2
n;0
2

)2

+ 2j2
u

f2
n;0
,

(4.2.12)

where fn;0 = fn(x = 0) is the value of the scaled order parameter magnitude fn at

the centre of the junction. Equations (4.2.11) and (4.2.12) are solutions of the exact

1D time independent Ginzburg–Landau equations for the junction system; applying

boundary conditions at the interface between the normal region and junction gives
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4.2.2. Narrow Junctions, λs � ws � ξs

a relation between the current through the junction and the magnitude of the order

parameter at the centre of the normal region, which can be optimised to find the

critical current density Jc. For thick junctions, where the order parameter at the

centre of the junction is much smaller than that at the S/N boundary, the critical

current density for this system of equations can be obtained in the form [50]:

lim
d�ξs
{JDJ(Bapp = 0)} = 4J0

1−
√

1− sf2
d/2

sv
exp

(
− d

ξn

)
,

f2
d/2 = v2 + 1−

√
v2(2− s) + 1

v2 + s
,

(4.2.13)

where

v = mnξn
msξs

, s = − βn
|αn|

, ξn =
√
ms
mn

1
|αn|

ξs. (4.2.14)

In this work, we have included the nonlinearity parameter inside the junction

β = βn in the normalisation for generality and taken βn = 1 which implies from

Eq. (4.2.14) that s < 0, in contrast to the numerical solutions studied by [50]. We

note that in the linearised limit (s→ 0) this zero-field critical current reduces to the

limit found by [75]. Furthermore, in the limit v2 → −s, then f2
d/2 → 1/2 (1− αn)

and for the specific case f2
d/2 → 0 we find Eq. (4.2.13) reduces to the well-known

form

JDJ = J0
ξn
ξs

exp
(
− d

ξn

)
, (4.2.15)

first found by De Gennes for SNS junctions [27] to first order and by Jacobson [93]

through a similar approach.

4.2.2 Narrow Junctions, λs � ws � ξs

For narrow junctions, vortices penetrate the junction even in low fields. Considera-

tion of low field solutions to the Ginzburg–Landau equations of the form ψ = |ψ| eiθ

led Josephson to propose his relation:

J = JDJ sin(∆γ), (4.2.16)

where J is the average current density along a contour between two points across

the junction, JDJ is a constant and ∆γ is the difference in the gauge invariant phase
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between the points. The general solutions for the critical current density derived

from the Ginzburg Landau equations have been compared to those generated using

the Josephson relation in low magnetic fields [109]. The critical current density

from Eq. (4.2.8) approximates the general solution well in the weak coupling limit

V0 > 8, but breaks down when V0 → 0 and JDJ → JD [109].

Low field solutions for the gauge invariant phase difference ∆γ(y) in junctions

between weakly coupled thin films have been found by Clem [94]. Whilst the

original formalism was developed for thin films, it remains applicable the narrow

2D systems considered here since in both cases, ψ is independent of z and the local

magnetic field can be taken to be equal to the applied field as ws < λs. In Clem’s

approach, the spatial variation of the local intragranular current density within

the superconducting electrodes is first found for a system with no current density

flowing across the junction. From this, the variation of the the (topological) phase

within the film in the Meissner state can be calculated along the junction, and used

to calculate the Josephson current across the junction using Eq. (4.2.16).

The low field solutions for the gauge invariant phase difference ∆γ(y) and average

critical current density across a narrow junction [94] are given by

∆γ(y) = ∆γ(0) + 2πBappydeff
φ0

+ 16πBapp
φ0ws

∞∑
n=0

(−1)n
k3
n

tanh (knls/2) sin (kny) ,

(4.2.17)

kn = (2n+ 1)π/ws, (4.2.18)

Jc = max
∆γ(0)

{
1
ws

∣∣∣∣∣
∫ ws/2

ws/2
dy [JDJ(0) sin (∆γ(y))]

∣∣∣∣∣
}
, (4.2.19)

where JDJ(0) is the current density in zero field. In this case, γ(0) = ±π/2 when

the current through the junction is maximised for all ratios of ls/ws [94]. In order

to improve agreement between our computation and Eq. (4.2.17), we have included

a term for the effective junction thickness deff. In the limit of thin, weakly coupled

junction systems considered by [94], we find good agreement when deff ≈ 2ξs. This

term accounts for the finite size of the junction and the reduction in the order

parameter on a length scale of order ξs close to the junction. With the inclusion of

85



4.2.2. Narrow Junctions, λs � ws � ξs

an effective junction thickness, the effective length of the S regions in the direction

of current flow ls is now smaller than the periodic system length l, with ls = l−deff.

It is this effective length of the S region ls that appears in the second term of

Eq. (4.2.17), as current flow within the superconducting electrodes is independent

of the effective junction thickness deff in the weakly coupled limit considered by

[94]. The geometry of the system, including the effective junction thickness deff, is

shown in Fig. 4.1.

N SS

l

ls/2 ls/2deff

wsx

y

Figure 4.1: Schematic of the geometry used for junction systems considered in
Eq. (4.2.17). System is periodic in the x direction with periodic length l, and
insulating boundary conditions are applied at the boundaries in the y direction.
With periodicity accounted for, the superconducting regions S each have length ls
and width ws. Full field penetration in a normal region N of length deff is assumed
in Eq. (4.2.17). We note that the effective junction thickness deff may differ from
the thickness of the junction material d from Fig. 3.1 by an additive term of order
of the coherence length, due to the proximity effect.

The 2D supercurrent density J s(x, y) within the superconducting electrodes in this

limit is described succinctly by the curl of a stream function S = Sẑ, that satisfies

J(x, y) = ∇ × S. In the superconducting electrodes, where (x mod l) < ls, a
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suitable stream function is given by [94]

S = Bappw2
s

2µ0λ2
s

{
y2

w2
s

+ 8
w3
s

∞∑
n=0

(−1)n cosh [kn ({x mod l} − ls/2)] cos(kny)
k3
n cosh (knls/2)

}
.

(4.2.20)

Contours of the stream function Eq. (4.2.20), which coincide with streamlines of

the current density, are illustrated in Fig. 4.2 for various aspect ratios ls/ws of the

junction.

Figure 4.2: Contours of the stream function 2µ0λ2S/Bappw2
s that coincide with

current streamlines in rectangular thin film superconductors for various aspect
ratios ls/ws using Eq. (4.2.20). Location of junction region of thickness deff � ls, ws
represented by dashed line at x = 0 in all plots. For low aspect ratios ls � ws,
current density flows parallel to the junction along most of the junction width,
implying a linear variation of the topological phase along the junction width. For
high aspect ratios ls � ws, current density streamlines are significantly curved close
to the junction, implying the topological phase difference across the junction varies
more slowly along the y direction at the junction edges, and vortices at the edges
inside the junction are spaced further apart.

Equation (4.2.17) and Fig. 4.2 demonstrate that the screening currents close to

the edges of the junction depend sensitively on the aspect ratio of the S regions,
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4.2.2. Narrow Junctions, λs � ws � ξs

and ultimately determine the magnetic field dependence of Jc. For electrodes that

are short relative to the junction width, when ls � ws, current flow close to the N

region is mostly parallel to the junction across the whole length, Josephson vortices

in the junction are spaced approximately equally along the junction width, and the

critical current density has a Fraunhöfer-like functional form:

Jc = JDJ(0) φ0
πφls�ws

∣∣∣∣sin(πφls�ws

φ0

)∣∣∣∣ , φls�ws = wslsBapp, (4.2.21)

where JDJ(0) is the current density in zero field. In contrast, for electrodes that

are long relative to the junction width, with ls � ws, and deff → 0, screening

currents flowing in the superconductors curve away from the junction across most

of the junction width. As a result, Josephson vortices close to the edges are spaced

further apart at the edges than at the centre, and larger current densities can

be carried in the edge regions. In this case, the critical current density can be

approximated as

Jc = JDJ(0)
∣∣∣∣J0

(
πφls�ws

φ0

)∣∣∣∣ , φls�ws = 14ζ(3)Bappw
2
s /π

3, (4.2.22)

where J0 is the Bessel function of the first kind of order 0, and ζ(3) = 1.202. To

identify the fraction of the width contributing to the net critical current, we note

that the maxima of Eq. (4.2.19), Jpeak
c , can be approximated when ws ≈ ls using:

Jpeak
c ≈ c0

(
φ0

Bappw2
s

)c1

JDJ(0). (4.2.23)

In Fig. 4.3 we find empirically that over a large range of aspect ratios with

ws < ls, the field dependence of Jpeak
c most closely follows the Bessel function

field dependence; when ws ≈ ls, c0 ≈ 0.58 and c1 ≈ 0.58 ∗. As noted by [95, 101],

the reduction of the critical current with applied field when many vortices are

present in the junction is slower when ws � ls compared to when ls � ws, since

the asymptotic behaviour of Eq. (4.2.22) has Jc ∼ B
−1/2
app compared to Jc ∼ B−1

app

from the Fraunhöfer-like relation of Eq. (4.2.21). A comparison between the critical
∗We note that for ws ≈ ls, the empirical parameters c0 ≈ c1 approach values close to the

Euler-Mascheroni constant γE-M = limn→∞
[
− lnn+

∑n

k=0
1
k

]
≈ 0.577; [110] although we do not

offer proof of this and accept this may be mathematical coincidence.
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4.2.2. Narrow Junctions, λs � ws � ξs

Figure 4.3: Top: Variation of the critical current density Jc as a function of the
reduced vortex-vortex spacing parameter a0/ws using Eq. (4.2.19) with ws/ls = 30.
Critical current density at local maxima Jpeak

c have been marked, and the dashed
line represents the line of best fit over the first 20 maxima to Eq. (4.2.23), with c0
and c1 fit parameters. Middle: Jpeak

c values as a function of a0/ws for junctions
of various aspect ratios ls/ws. Bottom: Variation of fit parameters c0 and c1 as a
function of junction aspect ratio ls/ws.

current density determined from Eqs. (4.2.17) and (4.2.19) and the critical current

density obtained from our 2D TDGL simulations is shown in Fig. 4.4 for a system

with ws � ls (upper panel) and ws � ls (lower panel). In both cases, we take

deff ≈ 2ξs. The 2D TDGL simulations Jc from both TDGL-ZEP and TDGL-HIK

show excellent agreement with each other and the analytic expressions derived from

89



4.2.2. Narrow Junctions, λs � ws � ξs

Eqs. (4.2.17) and (4.2.19) in low fields. At these applied fields, no vortices exist

in the S regions, and current flow is laminar within them. In the lower panel of

Fig. 4.4, simulations of Jc obtained from TDGL-ZEP for larger system widths at

B = 0.2Bc2 still follow the prediction of Eqs. (4.2.17) and (4.2.19), but with larger

scatter as a consequence of vortices in the S regions that distort the interference

pattern of the computed system from the analytic prediction [101].
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(a)

(b)

Figure 4.4: Simulations of Jc(B) of narrow, very thin, weakly coupled junctions
with different widths ws. The system size in the x-direction l = 6.0 ξs (Upper)
and 100.0 ξs (Lower). The junction thickness d was taken to be dmin = 0.5 ξs,
αn = −20.0 and κ = 40.0. Top: Jc(B) as calculated using the TDGL-ZEP code
(circles) and TDGL-HIK code (triangles), with the hold time and time step for
the TDGL-ZEP simulations set to thold = 5 × 103τ and δt = 0.5τ , and for the
TDGL-HIK simulations set to thold = 10τ and δt = 0.1τ respectively. Bottom:
Jc(B) as calculated using the TDGL-ZEP code with hold time thold = 103τ and
time step 0.1τ . Dashed lines in both panels are given by Eqs. (4.2.17) and (4.2.19)
with deff = 2ξs.
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4.2.3 Wide Junctions, ws � λs, ξs

For completeness, we shall briefly review wide junctions also. In wide junctions

between weakly coupled superconductors in low fields, with widths that are

comparable to or larger than the penetration depth λs but still smaller than the

Josephson penetration depth λJ, the screening currents that flow around the S

regions screen most of the applied magnetic field and flow parallel to the junction

across all but the edge regions within λs of the junction edges. On a junction length

scale much greater than λs therefore, away from the junction edges, the gradient

of the phase difference ∆γ along the junction is proportional to the applied field

at the edges of the junction,

∂∆γ
∂y

= 2πdeff
φ0

B = 2
λJ

B

BcJ
, BcJ = φ0

πdeffλJ
= 2ξ2

s
λJdeff

Bc2, (4.2.24)

where BcJ is a characteristic field for vortices in the junction. Equation (4.2.16)

can be combined with Eq. (4.2.24) to give the well-known stationary Sine-Gordon

equation given by
∂2ϕ

∂y2 = 1
λ2
J

sinϕ, (4.2.25)

which fixes the Josephson penetration depth as the length scale for variations in

the phase difference along the junction [111]

λ2
J = φ0

2πµ0JDJdeff
. (4.2.26)

The effective junction thickness deff ≈ d+ 2λs tanh
[

(l−d)
2λs

]
up to a term of order

ξs when corrected to accommodate a finite electrode size of superconductor either

side of the junction [111]. Equation (4.2.26) has solutions

k
B(y)
BcJ

= dn
(
z0 + y

kλJ
, k

)
, (4.2.27)

where k, z0 are constants of integration that must be found from the applied

magnetic field at the edges of the junction and the condition that the current

I flowing through the junction is maximised [98]. Specifically, these conditions
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take the form

2kBapp
BcJ

= dn
(
z0 + weff

2kλJ
, k

)
+ dn

(
z0 −

weff
2kλJ

, k

)
, (4.2.28)

k
µ0I

BcJ
= dn

(
z0 + weff

2kλJ
, k

)
− dn

(
z0 −

weff
2kλJ

, k

)
, (4.2.29)

where weff ≈ w, up to an additive constant of order ξs � λs. Equations (4.2.28)

and (4.2.29) constrain k to a discrete set of values at a given applied field, ordered

by the number of whole vortices in the junction; small values of k represent a

rapidly oscillating magnetic field along the junction, and are associated with states

containing large numbers of vortices per unit length along the junction. The critical

current Ic = Jcweff of the junction is then found at each k by maximisation of |I|

as a function of z0 [98]. In general, the field dependence of the critical current

is multivalued and requires the solution of trancendental equations [112], with

solution branches depending on the number of whole vortices in the junction.

Physically, this arises because states with different numbers of vortices and different

critical current density can be stable at the same applied field due to the presence

of a surface barrier in the system, and, in general, these states have different critical

currents.

The net critical current density of the junction is once again given by a Fraunhöfer

pattern similar to Eq. (4.2.21) for wide junctions when many vortices are present in

the junction [111]. In this case, the applied magnetic field is much larger than any

screening currents flowing across the junction itself that reduce the local magnetic

field at the centre of the junction, and k → 0. Following [112], using the expansion

dn (z, k) ≈ 1− k2

2 sin2 z +O(k4) [110], Eqs. (4.2.28) and (4.2.29) simplify to

2kBapp
BcJ

= 2− k2

2

[
1− cos

(
weff
kλJ

)
cos (2z0)

]
, (4.2.30)

k
µ0I

BcJ
= −k

2

2 sin
(
weff
kλJ

)
sin (2z0) , (4.2.31)

After some rearrangement, Eq. (4.2.31) takes the form

µ2
0I

2

B2
cJ

= k2

4 sin2
(
weff
kλJ

)1−

k2 + 4kBapp
BcJ
− 4

k2 cos
(
weff
kλJ

)
2
 . (4.2.32)
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Finding the junction critical current Ic = Jcweff is now an optimisation problem,

with Ic(Bapp) =
√

maxk{I2(Bapp, k)}. In the limit of interest, k → 0 with kλJ

finite, the term in the curly braces in Eq. (4.2.32) is large and negative unless

k = BcJ/Bapp. In this case, this term tends to unity and the well known Fraunhöfer

dependence is recovered

lim
k→0

Jc = JDJ
2ξ2Bc2

weffdeffBapp

∣∣∣∣sin(weffdeffBapp
2ξ2Bc2

)∣∣∣∣ where Bapp
BcJ

= BappλJdeff
2Bc2ξ2 � 1.

(4.2.33)

Note that the condition for the Fraunhöfer relation to arise is a condition on

the applied field, and is a valid limit of the Eq. (4.2.26) equation for a junction

containing many vortices for all widths satisfying w � λ. The crossover from

Eq. (4.2.21) to Eq. (4.2.33) has been investigated analytically by [97].

An example set of simulations using TDGL-ZEP in this limit is presented in Fig. 4.5

and compared to the analytic results of [112] derived from Eqs. (4.2.28) and (4.2.29)

for junctions of varying widths with λJ = 9.5ξs and λs = 5.0ξs. It can be seen that

the critical current density determined from simulations can be the Jc of a branch

that is not the maximum Jc of all possible branches at a given field. The proportion

of simulations that lie below the maximal envelope could be reduced by the hold

time thold at a candidate Jc to allow the number of vortices in the junction to adjust

to maximise Jc; here, thold = 5000τ . However, when the applied field is sufficiently

large such that there are many vortices in the junction (Bapp � BcJ), the solutions

tend towards the sinc-like pattern of Eq. (4.2.33) and the envelope of the critical

current density decreases inversely proportionately to the applied field (Jc ∼ B−1
app)

[112].
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Figure 4.5: 2D simulations of the critical current of a wide, thin, weakly coupled
Josephson junction (markers) as described in Section 4.2.2 using TDGL-ZEP.
The periodic system size in the x-direction l = 6.0ξs, the superconductor width
ws = 64.0ξs and the Ginzburg–Landau parameter and friction coefficient in the
superconductor are κ = 5.0 and η = 5.79 respectively throughout. The junction is
of thickness d = hx = 0.5ξs with αn = −20, and JD is calculated using Eq. (4.2.8).
Remaining computational parameters are as described in the text. Dashed lines
are comparisons to the analytic expressions for the low field Jc using Eqs. (4.2.28)
and (4.2.29) from [112], with deff = 5.8ξs and weff = ws − ξs.

4.3 Josephson Junctions in Arbitrary Magnetic Field

In this section, we derive new analytic expressions for the critical current density

of very narrow Josephson junctions (ws < ξs), that are valid across the entire

range of applied magnetic fields, up to the upper critical field of the system. We

shall then use these expressions to form approximations for the dependence of the

critical current density on applied magnetic fields for very narrow (ws � ξs) and

narrow junction systems (ξs � ws � λs). First we consider current flow within

the junction from screening currents and from the injected currents. Integrating

around a thin closed rectangular loop inside the system using Eq. (4.2.2) with the
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lower path along the x-axis and the upper path at y gives∮
∇γ · dl =

∮
∇θ · dl−

∮
B · dS, (4.3.1)

after applying Stoke’s theorem on the magnetic vector potential term. For any

choice of gauge, the first closed integral on the RHS in θ is 2πn where n is the

number of vortex cores inside the closed contour, from the requirement that the

order parameter magnitude be a single valued function. We assume that the

order parameter magnitude is symmetric about both the y-axis and x-axis, that

the screening currents and hence ∂yγ are both antisymmetric about these axes,

and to first order the transport current is uniform along the y-axis, such that

〈Js;x〉y = m−1
x (x) f2∂xγ(y = 0) from Eq. (4.2.2). Assuming no vortices exist in the

very narrow system (n = 0), and taking the sections of the contour in Eq. (4.3.1)

that are parallel to the x axis to be sufficiently short relative to the coherence

length ξ leads to the gauge invariant result

∂xγ(y)− 〈Js;x〉y
f2m−1

x (x)
= Bappy

Bc2ξs
. (4.3.2)

We also assume that for very narrow junctions, given the boundary conditions at

the insulating surfaces and the requirement for current continuity across the S-N

internal interface, Js;y(x) can be taken to be zero. Equation (4.3.2) describes the

transport current density and the screening currents that flow within the junction

itself. We have not included the small self field corrections to the net field, that

describe the currents associated with a vortex-antivortex pair at the edges, since

we assume the self-field is much smaller than the applied field.

4.3.1 Very Narrow Junctions in High Fields

We can now extend the low field results for very narrow junction to fields up to

the critical magnetic field of the junction. Substituting in our new expression for

∂xγ(y) into Eq. (4.2.1)and averaging over the y-direction as before gives

∂x
(
m−1
x (x) ∂xf

)
+
[
α (x)−m−1

x q2 − β(x)f2 −
〈Js;x〉2y

f4m−1
x (x)

]
f = 0, (4.3.3)
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with q2 =
(

Bappws√
12Bc2ξs

)2
. Equation (4.3.3) represents a generalisation of Eq. (4.2.3)

valid for very narrow junctions in all applied fields Bapp. We can now solve for the

critical current of the junction system using Eq. (4.3.3) in the two cases considered

in Section 4.2.1: when the N region is thin, when d � ξs; and when the N region

is thick, when d� ξs. For all these very narrow junctions, we assume there are no

vortices in the barrier.

4.3.1.1 Thin Junctions in High Fields

Consider first the thin junction limit, where d� ξs. Assuming β(x) andm−1
x (x) are

constant across the system for simplicity, we rescale Eq. (4.3.3) by x̃ = x
√

1− q2,

f̃ = f/
√

1− q2 and j̃x = 〈Js;x〉y(1− q2)−3/2 to give

∂2
x̃f̃ +

[
1− 1− α(x)

1− q2 − f̃
2 − j̃2

x

f̃4

]
f̃ = 0. (4.3.4)

Since f̃ and j̃x are continuous across the S/N interface, we find a constraint between

∂x̃f̃ and f̃ at the interface in the limit where d � ξs, by integrating Eq. (4.3.4)

across the normal region, where |x̃| < d
√

1− q2/2, and assuming f̃ is symmetric

across the junction:

2f̃ ′d/2 = d
1− αn√

1− q2 f̃d/2, (4.3.5)

where f̃d/2 = f̃ (x = d/2) and f̃ ′d/2 = ∂x̃f̃ (x = d/2). The remainder of the

derivation now follows the same approach as in Section 4.2.1 for low fields [108];

by substituting Eq. (4.3.5) into Eq. (4.3.4) and neglecting the highest order terms

in the new small parameter V −1
0 =

√
1− q2/d (1− αn), we find the necessary

condition for a solution to exist as j̃x < 1/2V0. In usual units, this corresponds to

the critical current density JDJ,

lim
d�ξs
{JDJ(Bapp)} = J0

ξs
2d (1− αn)

(
1− q2

)2
, (4.3.6)

where q2 =
(
Bappws/

√
12Bc2ξs

)2
and J0 = Bc2/κ2µ0ξs as before. The applied field

at which the critical current density of the system is zero is given by q2 = 1. This
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is equivalent to an applied field equal to the parallel critical field

Bapp
(
q2 = 1

)
=
√

12ξs
ws

Bc2. (4.3.7)

This expression has previously been found by Tinkham to be the upper critical

field of a thin film superconductor of thickness ws when the applied magnetic field

is parallel to the film surface, provided the film is thinner than approximately 1.8 ξs

[88]. Equation (4.3.6) is compared to simulation data from TDGL-ZEP in Fig. 4.6,

showing excellent agreement across the whole field range.

Figure 4.6: Simulations of Jc(B) of very narrow, thin, weakly coupled junctions as
a function of αn where −250 ≤ αn ≤ −50. The width ws = 0.5ξs and the junction
thickness d = dmin = 0.1ξs. The periodic system length in the x direction l = 12.0ξs
and κ = 5. The effective mass in the normal region was taken to be mn = ms. The
grid spacing was chosen to be hx = hy = 0.1ξs, the time step δt = 0.5τ , and the
hold time thold = 5× 103τ . Dashed lines are given by Eq. (4.2.8).

We note that the junctionless case, where V0 = 0 can trivially be considered also,

as the rescaling used in Eq. (4.3.4) is equivalent to rescaling the Ginzburg–Landau

equations in terms of a field dependent coherence length in the superconductor

ξ̃s = ξs/
√

1− q2. In this case, the critical current of the thin film system becomes

JD
(
1− q2)3/2 as found by previous authors [88].
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4.3.1.2 Thick Junctions in High Field d� ξs

For thick junctions, we rescale Eq. (4.3.3) into a similar form to that studied in [50]

as in Section 4.2.1. In the superconducting regions, we rescale by x̃ = x
√

1− q2,

f̃s = f/
√

1− q2 and j̃x = 〈Js;x〉y(1−q2)−3/2 to give a form equivalent to Eq. (4.2.9),

∂2
x̃f̃s +

[
1− f̃2

s −
j̃2
x

f̃4
s

]
f̃s = 0. (4.3.8)

Inside the normal region, we rescale Eq. (4.3.3) by ũ = x

√
mn
ms

(
−αn + ms

mn
q2
)
,

f̃n = −f
√
βn/

(
αn − ms

mn
q2
)
and j̃u = 〈Js;x〉yβn

√
mn/ms(−αn + ms

mn
q2)−3/2 to give

a form similar to Eq. (4.2.10),

−∂2
ũf̃n +

[
1− f̃2

n + j̃2
u

f̃4
n

]
f̃n = 0. (4.3.9)

The critical current in field can now be obtained following the procedure used by

[50] for zero field, as in Section 4.2.1, but for our new, field-dependent rescaled

variables. In usual units, the critical current of this narrow junction system in

applied fields is given by:

lim
d�ξs>ws

{JDJ(Bapp)} = 4J0(1− q2)
3
2

1−
√

1− s̃f̃2
d/2

s̃ṽ
exp

(
− d

ξ̃n

)
, (4.3.10)

where

f̃2
d/2 = ṽ2 + 1−

√
ṽ2(2− s̃) + 1

ṽ2 + s̃
, ṽ = mnξ̃n

msξs

√
1− q2,

q2 =
B2
appw

2
s

12 , s̃ = βn(1− q2)
(αn − ms

mn
q2) , ξ̃n =

√√√√ms
mn

1(
−αn + ms

mn
q2
)ξs, (4.3.11)

and J0 = Bc2/κ2µ0ξs as in Table 2.1. Once again, we take βn = 1 and so when the

effective mass of the N region is the same as that of the superconductors, ṽ2 → −s̃,

and f̃2
d/2 →

(
1− q2) /2 (1− αn). Equation (4.3.10) is compared to the critical

current densities obtained from TDGL-ZEP in Fig. 4.7. Excellent agreement

between Eq. (4.3.10) and TDGL-ZEP is observed across the entire field range,

and across the parameter space for d > ξs, αn < −1.0, and 0.1 ms < mn < 6.0 ms.
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(a)

(b)

(c)

Figure 4.7: Simulations of Jc(B) for very narrow, thick, weakly coupled junctions.
The width ws = 0.5ξs, the periodic system length in the x direction l = 12.0ξs and
κ = 5. The grid spacing was hx = hy = 0.1ξs, the time step δt = 0.5τ , and the hold
time thold = 5× 103τ . (Upper) The effective mass in the normal region was taken
to be mn = ms, αn = −1.0, and the junction thickness d was varied. (Middle)
mn = ms, αn was varied and d = 2.0ξs. (Lower) mn was varied, αn = −1.0 and
d = 2.0ξs. Dashed lines in all panels are given by Eq. (4.3.10).
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In the limit where f̃2
d/2 → 0, and when mn = ms Eq. (4.3.10) reduces to the simpler

form

lim
d�ξs>ws

{JDJ(Bapp)} = J0

(
1− q2)2
√

1− αn
exp

(
−d
√

1− αn
ξs

)
, (4.3.12)

which provides the general field-dependent form for Eq. (4.2.15) famously found by

De Gennes for SNS junctions in zero field [27]. In general, weakly coupled junctions

with f̃2
d/2 → 0 for any thickness of junction with mn = ms can be described by the

single expression

lim
ξs>ws

{JDJ(Bapp)} = J0

(
1− q2)2

2
√

1− αn sinh
(
d
√

1− αn/ξs
) , (4.3.13)

where Eq. (4.3.6) is recovered in the limit d
√

1− αn/ξs → 0 and Eq. (4.3.12) is

recovered in the limit d
√

1− αn/ξs � 1.

4.3.1.3 Comments and Comparisons

The new solutions derived in this work for very narrow junctions, Eqs. (4.3.6)

and (4.3.10), are formally restricted to systems with weakly coupled junctions

with width of order of the coherence length, bounded by insulating surfaces. In

this regime, an increase in magnetic field induces large screening currents in the

superconductor close to the junction, which are restricted to flow parallel to the film

surfaces due to the insulating boundary conditions and weaken superconductivity

in the film. In effect, the applied magnetic field acts to increase the energy of

the superconducting state, making it less stable, and increasing the local coherence

length in the superconductor (and decreasing it in the normal metal). This reduces

the magnitude of the order parameter far from the junction and increases the length

scale over which the order parameter recovers from the boundary with the normal

metal. At the parallel critical field, this length diverges, and superconductivity is

destroyed throughout the system.

The full-field approximation for Jc given in Eq. (4.3.10) has the same leading order

monotonically decreasing behaviour in low field as predicted by the authors of [107,
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105, 106] using a model of an SNS Josephson junction from the linearised Usadel

equations, including the applied magnetic field as an effective spin-flip scattering

rate. Indeed, our result, Eq. (4.3.10) can be viewed as an extension to this result

that describes fields approaching the parallel critical field of the superconductor.

Experimental measurements of SNS junctions between superconducting nanowires

in this monotonically decaying regime that have been carried out in [113, 114] show

good agreement with Eq. (4.3.10), as shown in Fig. 4.8 with reasonable estimates

for the coherence length in the superconducting nanowires.

Figure 4.8: Comparison of Eq. (4.3.10) to experimental data on Al-Au-Al nanowire
junctions measured by [114]. The junction thickness d varied between 900 and
1300 nm, and all junctions were ws = 125 nm wide. The coherence length ξn in the
Au region was taken to be 10 µm as suggested by weak localization experiments
below 50 mK. The critical current at zero field I(0) was fixed at the maximum
measured current, and the coherence length of the Al superconductor ξs along with
the ratio of the effective mass of a Cooper pair in Au and in Al mn/ms were left
as free parameters for the fit.

4.3.2 Narrow Junctions

We now extend our new solutions for Jc(Bapp) in very narrow junctions to describe

the qualitative behaviour of larger 2D systems with narrow junctions, with widths
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4.3.2. Narrow Junctions

up to the length scale of the superconductor penetration depth λs, in arbitrary

applied magnetic fields. In low fields, Eq. (4.2.23) accounts for the decrease in Jc

from the decreasing spacing between vortices inside the junction region, but does

not include the effect of vortices in the electrodes on the net critical current density

or the reduction of the average Cooper pair density in the electrodes with field,

and as such, cannot describe the decrease of the net critical current density of the

junction to zero as the applied field approaches the effective upper critical field of

the system. We therefore wish to consider the case where the vortex-vortex spacing

a0 inside the electrodes is smaller than the superconductor width ws, but vortices

do not move within the electrodes at Jc.

In low fields, Eq. (4.2.23) accounts for the fraction of the total width of the

junction over which current density flows, as a result of screening currents in

the superconductor set up by the distribution of vortices inside the junction. We

therefore expect any approximation to Jc to reduce to this expression when the

applied field is far below the critical magnetic field of the junction. However, in

high fields, the order parameter inside the electrodes is no longer constant across

the width of the system, but varies on the length scale of the vortex-vortex spacing

a0 in the electrodes. Similarly, the local current density also varies on a length scale

of order a0 in narrow junctions, instead of the junction width ws, and Eq. (4.3.2)

no longer holds. We are therefore motivated to replace the zero field JDJ term in

Eq. (4.2.23) with the field dependent JDJ expressions from Eqs. (4.2.8) and (4.3.10)

but with the width ws replaced by a term comparable to the vortex spacing in the

superconductor ∼ a0. This yields our approximation for Jc over the full field range

as

Jc(Bapp) = c0

(
φ0

Bappw2
s

)c1

JDJ (Bapp, ws → a0) , (4.3.14)

where q2 = Bapp/B∗c2 and JDJ is taken from Eq. (4.3.6) and Eq. (4.3.10) in the thin

limit and in the thick limit respectively. We have replaced Bc2 by B∗c2 to include

junctions such as that considered above, where there is a insulating surface barrier

along the edge of both the superconductor and the junction. Indeed, in the uniform
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4.3.2. Narrow Junctions

case, representing current flow along a thin film between two insulators in which a

junction is not present where Jc ≈ JD
(
1− q2)3/2, the substitution q2 = Bapp/B∗c2

reproduces the result Jc ≈ JD (1−Bapp/B∗c2)3/2 previously found by Abrikosov

[115] close to the upper critical field of the system. Explicitly, in the weak coupling

limit, Eq. (4.3.14) for thin junctions takes the form,

Jc(Bapp) = J0
c0ξs

2d (1− αn)

(
φ0

Bappw2
s

)c1 (
1− Bapp

B∗c2

)2
, (4.3.15)

whereas for thick junctions,

Jc(Bapp) = J0
c0√

1− αn
exp

(
−d
√

1− αn
ξs

)(
φ0

Bappw2
s

)c1 (
1− Bapp

B∗c2

)2
. (4.3.16)

2D simulations for two narrow junctions in high field are plotted in Fig. 4.9 and

compared to Eq. (4.3.15) with c0 = c1 = 0.58 from Eq. (4.2.23) and B∗c2 set to

1.8Bc2. Excellent agreement is seen between the functional form and the simulated

data, with only B∗c2 taken as a free parameter. We note that the power law

dependence of Eq. (4.2.23) with c1 ≈ 0.6 has also been widely observed in many high

temperature superconductors at high temperatures and magnetic fields that are still

well below B∗c2 [116]; as shown in Fig. 4.3, the low field result with c0 ≈ c1 ≈ 0.6 is

robust to a wide range of aspect ratios.
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Figure 4.9: Simulations of the critical current of a narrow, thin junction in the weak
coupling limit (markers) as described in Section 4.3.2 with the Ginzburg–Landau
temperature parameter in the normal region αn = −40.0, a junction thickness
d = 0.25ξs smaller than the superconducting coherence length ξs, and a width ws
much smaller than the Josephson penetration depth λJ but much larger than ξs.
The periodic system size in the x-direction l = 100.0ξs, and the Ginzburg–Landau
parameter and friction coefficient in the superconductor are κ = 40.0 and η = 5.79
respectively throughout. The grid spacing was chosen to be hx = hy = 0.25ξs
and the time step δt = 0.5τ . Dashed lines represent Eq. (4.3.15) for the example
parameters B∗c2 = 1.8Bc2, c0 = 0.58 and c1 = 0.58. Remaining computational
parameters are as described in the text. Inset: Kramer plot of data shown in main
plot.

4.4 Conclusions

In this chapter, we have obtained new expressions for the critical current density of

narrow, tunnel-like SNS Josephson junctions on the scale of the superconducting

coherence length across the entire magnetic field range, up to the effective upper

critical field of the superconducting system. To the best of our knowledge,

these expressions for Jc are the first for any Josephson junction system to be

valid up to the effective upper critical magnetic field. We have confirmed these

expressions against simulations based on time-dependent Ginzburg–Landau theory,

and validated existing expressions from the literature for the critical current of
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Josephson junctions in low applied magnetic fields. We have also found these

expressions to be consistent with experimental data for nanowire junctions in

which monotonically decreasing critical currents with field have been observed

[113, 114]. By applying these new expressions for the critical current density

of narrow junctions to the edge regions of Josephson junctions with dimensions

much larger than the superconducting coherence length but smaller than the

superconductor penetration depth, we obtain expressions for the critical current

density as a function of field from a junction-based model that qualitatively agrees

with experimental data for polycrystalline superconductors such as Nb3Sn and

existing models based on flux shear through grain boundaries [117]. In the next

chapter, we compare these expressions to Ginzburg–Landau simulations of 2D and

3D polycrystalline superconducting systems.
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Chapter 5

Simulations of the Critical Current

of Polycrystalline Superconductors

in Magnetic Fields

5.1 Introduction

In the last chapter, we studied current flow in 2D across an idealised model

of a grain boundary, and found excellent agreement between critical current

densities obtained from our TDGL simulations and analytic predictions derived

for Josephson junction systems. However, in real technological superconductors,

the morphology of the grain boundary network that spans the material is far more

complex. In such polycrystalline materials, crystal grains are a range of sizes

and shapes, and planes of grain boundaries lie at a range of angles with respect

to the applied magnetic field. Grain boundaries can also intersect along lines

and at points, introducing new pinning structures into 3D polycrystalline systems

that have no equivalent in the idealised 2D Josephson junction models previously

considered. Understanding the mechanism(s) limiting critical currents in these

materials is therefore significantly more challenging, as understanding how the

distribution of grain boundaries in a polycrystal contributes to vortex pinning and
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flow along the grain boundary network becomes extremely difficult to tackle using

analytic tools alone. As mentioned in Chapter 2, this summation problem of how

local flux pinning forces determine macroscopic critical currents is a long-standing

problem in the literature [60, 61, 62].

Nevertheless, large-scale TDGL simulations provide a useful possible tool for the

study of how changes in grain structure and the grain boundary network in

polycrystalline materials affect the critical current density that the material can

carry, and for visualising the manner in which vortices flow in such materials

close to the critical current. The effect of varying parameters such as grain

size, which can be difficult (or impossible) to systematically vary experimentally,

can be investigated in much shorter time frames via simulation. As a result,

we present TDGL simulations of vortex dynamics and critical currents in large-

scale polycrystalline systems, and compare them to experimental results for critical

currents in polycrystalline superconductors such as Nb3Sn.

In this chapter, we first describe the computational method we used to gen-

erate representative grain morphologies for the simulation of polycrystalline

materials. Then, we describe the preliminary simulations carried out on small

2D polycrystalline systems using TDGL-ZEP, and limitations that arose from

the presence of surface barriers in the system. These results were previously

published in [118]. Finally, we report results obtained for simulations on equiaxed

polycrystalline systems in 3D, obtained using TDGL-HIK. In particular, when

simulation parameters appropriate for Nb3Sn are used, we find simulated critical

current densities of similar magnitude and dependence with decreasing grain

size and applied magnetic field as that observed experimentally in commercial

polycrystalline Nb3Sn samples. To our knowledge, these are the first large-scale

TDGL simulations carried out for polycrystalline systems that display an increasing

critical currents and flux pinning force with decreasing grain size, in agreement with

the behaviour widely observed in experiment.
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5.2 Grain Morphology Generation using Voronoi

Tessellations

In order to simulate vortex flow in polycrystalline systems, it is necessary to first

decide on a method to divide the superconducting region of our computational

domain into a set of crystal grains, that we wish to be representative of the

polycrystalline superconductor under study. That is, given a superconductor

containing known distributions of grain sizes, sphericities, and anisotropies, we

wish to be able to subdivide our computational domain into a set of grains

that share the same size, sphericity, and anisotropy distributions. To address

this problem, we adopt a method widely used in the mechanical modelling of

mesoscale polycrystalline systems of using (weighted) Voronoi tessellations of the

superconducting domain to generate a representative grain morphology [119].

The unweighted Voronoi tessellation of a D-dimensional domain containing a set

of n seed points is the set of n D-dimensional convex polyhedra whose surfaces

consist of the set of points equidistant from two (or more) seed points. Physically,

these polyhedra can be viewed as the grains expected to form if all crystal grains

nucleated at all seed points simultaneously and grew isotropically at equal rates

[120]. The average grain size can be controlled by the number of seed points used to

generate the tessellation. For a (uniform) random distribution of seed points within

the domain, the Voronoi tessellation of the material generates polycrystals that

possess distributions of the number of nearest neighbours between grains that are

representative of those found in many isotropic polycrystalline systems to first order

[120]. Unweighted Voronoi tessellations – including for periodic domains – can be

generated using a number of open source computational tools. For the preliminary

studies, unweighted 2D Voronoi tessellations generated from n randomly selected

set of node points in the computational mesh were generated using the pyvoro

Python wrapper [121] to the Voro++ software library [122].
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However, unweighted Voronoi tessellations generate grain morphologies that

typically possess a smaller range of grain sizes and less spherical grains than those

observed in equiaxed polycrystalline materials [123]. Weighted Voronoi tessellations

– sometimes referred to as Laguerre tessellations – can be introduced to help address

these shortcomings. A weighted Voronoi tessellation of the domain is defined

similarly to the unweighted case, but with distances from seed points calculated

using a non-Euclidean metric to apply weightings to the distances obtained,

allowing further control over the grain size distribution. Use of an anisotropic

metric will generate anisotropy in the resultant grain morphology. To control the

distribution of the sphericity of grains in the material, the distribution of the initial

set of seed points can be modified, either by choosing a different initial distribution

of seed points, or by perturbation of the seed locations. To generate polycrystalline

systems from representative grain size and sphericity distributions in this work, we

use the Neper software package v3.5.0 [120, 123]. In this package, distributions of

the grain size D – representing the effective diameter D of a spherical cell with an

equivalent volume to the grain – and of the grain sphericity s – representing the

ratio between the surface area of a spherical cell with equivalent volume to that

of the grain and the grain surface area – are controllable. An iterative is method

used to find a set of seed points and metric that generate a Laguerre tessellation

with sufficiently similar grain size and sphericity distributions to those provided.

In this work, we restrict our attention to equiaxed polycrystalline systems, with

particular attention to 3D systems representative of grain distributions in Nb3Sn.

Nevertheless, we emphasise that the general approach could be used to generate

other grain morphologies of interest, such as to model vortex flow in systems with

elongated grains such as NbTi, or even for systems containing spatial variations

in grain sizes [123]. To create our model polycrystalline material for critical

current and flux pinning simulations, we first generate a 3D tessellation of equiaxed

grains, periodic in all three dimensions, with grain sizes corresponding to a typical

lognormal grain size distribution for a grain growth system, using Neper. The
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probability density function P (x) for the lognormal distribution of a random

variable X with mean µX and variance σ2
X is given by

P (x) = 1√
2πxσ

exp
(
−(ln x− µ)2

2σ2

)
, (5.2.1)

where the dimensionless parameters µ and σ2 are

σ2 = ln
(

1 + σ2
X

µ2
X

)
, µ = ln(µX)− σ2

2 . (5.2.2)

For a typical grain-growth polycrystal, whose grain boundaries have migrated

during formation from capillarity effects, the grain size distribution D/〈D〉 has

been observed to follow a lognormal distribution with average µX = 〈D〉 = 1

and standard deviation σ = 0.35, and 1 − s follows a lognormal distribution of

average 0.145 and standard deviation 0.030 [123]. Indeed, there is evidence that

polycrystalline Nb3Sn in coatings exhibits grain size distributions that can be well-

described by such a grain-growth model, with standard deviations of D/〈D〉 of

between 0.25 and 0.45 depending on growth conditions [124].

Finally, once we have generated a grain structure for the polycrystalline super-

conducting domain, we must decide on a mapping to the spatially dependent

phenomenological parameters α, β and m of the TDGL theory. In this work,

we are focussed on studying the role of vortex flow along grain boundaries in the

polycrystalline system. Therefore, in analogy to the junction regions defined in the

last chapter, we define grain boundary regions as those within a distance of d/2

of any face of crystal grains, and assign α = αGB. In this manner, a rasterised

approximation to an equiaxed polycrystal is constructed, with grain boundaries

given degraded superconducting properties with αGB < 1.

5.3 Critical Current Simulations of 2D Polycrystals

We now present initial studies on small scale polycrystal systems carried out

using TDGL-ZEP. We have previously published the work in this section in [118];
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Figure 5.1: (Top) Voronoi mesh with 16 grains (top) and a grid step hx = hy = 0.5ξ
of a superconducting film with ws = 25ξ, l = 60ξ, η = 5.79 and κ = 5. The effective
mass is constant throughout the system. Regions of reduced Tc where α = αGB are
denoted in red, and coating regions where α = −10.0 are colored black. The edges
of each Voronoi cell are 0.5ξ thick. (Bottom) Normalized superparticle density |ψ|2
for this mesh at the critical current density Jc with αGB = −1.0 in an applied
magnetic field Bapp = 0.35Bc2. The system is periodic in the x-direction and
insulating boundary conditions were applied at the edges of the computational
domain in the y-direction

we include the key results here to inform the discussion of 3D polycrystalline

simulations that will follow. In this preliminary work, the subdivision of the domain

into polycrystalline cells was carried out using the unweighted Voronoi tessellation

method described in the last section, using pyvoro and Voro++ [121, 122].

A representative polycrystal structure used for these initial small-scale studies,

along with the corresponding order parameter distribution at Jc, is presented in

Fig. 5.1. Both inter and intragrain fluxons are present, with a clear preference for

fluxons to enter the structure along the grain boundaries and to occupy the grain

boundary regions [125].

The evolution of the average electric field in the x-direction 〈Ex〉 and Japp with

time is similar to those observed in the previous chapter for junction systems,

as illustrated in Fig. 5.2. Determination of the critical current density of the
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Figure 5.2: Spatially average (normalized) electric field in the x-direction 〈Ex〉 and
applied current density Japp as a function of simulation time t, denoted by the solid
and dashed lines respectively. Japp is increased at a rate of 5 × 10−6JDτ

−1. The
system was initialised in the Meissner state throughout and evolved in timesteps of
ht = 0.5τ . The order parameter and magnetic vector potential were converged to
one part in 107 at each timestep. The critical current density Jc valued stored was
taken to be the lowest current at which 〈Ex〉 > 10−5ED for longer than 2 × 104τ ;
i.e. persistent vortex motion was observed. Inset: linear plot showing difference in
magnitude of 〈Ex〉 at Jc at zero field and at 0.35 Bc2. Simulations at high magnetic
fields take longer to equilibrate, and generate smaller electric fields.

polycrystal system was determined as described in the ’adaptive current ramp’

method in Chapter 3, but with a linear increase in critical current density of

5× 10−6JDτ
−1 at each current step and a hold time thold = 2× 104τ .

As noted in the last section, the finite grid step size hx = hy = 0.5ξs used in these

simulations results in rasterisation of the representation of the Voronoi tessellation

and of the grain boundary regions. However Fig. 5.3 demonstrates that the critical

current behaviour as a function of field is not strongly affected by this grid step

size. As in TDGL-ZEP simulations in the last chapter, the standard grid step

size of 0.5ξs was chosen since it gave the optimal trade- off between accuracy and

computation time.

The critical current density as a function of field Jc(B) for the 2D polycrystal
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Figure 5.3: Critical current density Jc as a function of applied magnetic field B app
for the Voronoi polycrystalline system shown in Fig. 5.1 for different mesh sizes.
We have used ws = 25ξ, l = 60ξ, η = 5.79 and κ = 5. The width of the boundary
region in which Tc is reduced is unchanged. Mesh size does not strongly affect the
form of Jc(B) obtained. Dashed line represents predicted Jc(B) from Eq. (5.3.2)
with αJunc = αGB = −1

system of Fig. 5.1 is presented in Fig. 5.4, and can be compared to equivalent

curves obtained for a system containing a single Josephson junction (similar to

those considered in the previous chapter) in Fig. 5.5. When αGB = 1.0, there are

no grain boundaries or barriers in the superconductor, and so Jc values represent

those for a homogeneous thin film subject to a parallel magnetic field, and are

identical in these two figures. Jc can be attributed to surface pinning from the

two superconducting surfaces in contact with the coating region in this case, with

a surface area per unit volume of surface pins S = 2/ws, and a critical current

density dependence given by [57]

Jα=1.0
c = ξs

2ws
b−0.5(1− b)2JD (5.3.1)

where b = Bapp/Bc2. In contrast, critical currents for systems with αGB and

αJunc ≤ −1.0 in Figs. 5.4 and 5.5 are limited by current flow through grain boundary

regions. We have used the semi-empirical low field critical current dependence for

Josephson junction systems, with the factor (1−b)2 added to extend the agreement
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Figure 5.4: Critical current density Jc as a function of applied magnetic field Bapp
for the Voronoi polycrystalline system shown in Fig. 5.1 for different Tc (i.e. αGB)
values in the junction regions. We have used hx = hy = 0.5ξ , ws = 25ξ, l = 60ξ,
η = 5.79 and κ = 5. When the junction region is strongly normal, finite-size effects
associated with flux quantisation become important and cusps become visible in
the Jc(B) characteristic. Dashed lines represented predicted Jc(B) from Eq. (5.3.1)
for αJunc = αGB = 1, and from Eq. (5.3.2) for αJunc = αGB ≤ −1

of the functional form to high-fields [75]:

Jc = JDJξ
2
s√

2ws(d+ 2ξs)
b−1(1− b)2, (5.3.2)

JDJ = 2JDu
(
u2 − u

√
u2 + 2 + 1

)
e−du/ξs (5.3.3)

where u = √αJunc. In Eqs. (5.3.2) and (5.3.3), we find Jc ∝ 1/ws which indicates

Jc is determined predominantly by surface pinning in these small-scale simulations.

We also note that Jc in all polycrystalline simulations is less than the corresponding

single-junction case at all fields. Indeed, critical current densities are of similar

orders of magnitude as those found in technological materials [55]. In Fig. 5.6,

we present data that show Jc is independent of grain size at large grain sizes,

suggesting that bulk pinning is negligible in these simulations, as the contribution

from bulk pinning is expected to increase as grain size decreases. Only when the

average grain diameter D is sufficiently small that the average Cooper pair density

in the system is limited by the proximity effect of the grain boundary regions does
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5.3. Critical Current Simulations of 2D Polycrystals

Figure 5.5: Critical current density Jc of a simple junction system as a function of
applied magnetic field Bapp for different Tc in the junction region. We have used
hx = hy = 0.5ξ , ws = 25ξ, l = 60ξ, η = 5.79 and κ = 5. αJunc = 1.0 corresponds
to a homogenous superconductive sysetm, with no reduction of Tc in the grain
boundary regions. Dashed lines represented predicted Jc(B) from Eq. (5.3.1) for
αJunc = 1, and from Eq. (5.3.2) for αJunc ≤ −1

the critical current density become sensitive to changes in the system grain size.

Furthermore, the independence of Jc when D is large for a range of different meshes

is consistent with the conclusions from this work not being sensitive to variations

in the specific locations of the initial seed points used to generate any particular

large grain Voronoi mesh (e.g. Fig. 5.1).

In this section, we have seen that Voronoi tessellations can be used to generate

polycrystal structures to investigate percolation of vortices through grain boundary

networks in 2D superconducting systems, and that critical current densities

obtained through such methods are similar in magnitude to those observed

experimentally in optimised technological superconductors [55]. Results do not

appear to depend strongly on mesh size nor details of the configuration of grains,

provided a statistically significant number of grains is present in the computational

domain. However, pinning by surfaces in the systems considered is generally much

stronger than any bulk pinning contributions from the grain boundary network. As
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5.3. Critical Current Simulations of 2D Polycrystals

Figure 5.6: Critical current density Jc as a function of applied magnetic field Bapp
for the Voronoi polycrystalline system shown in Fig. 5.1 for different average grain
diameters D. We have used hx = hy = 0.5ξ , ws = 25ξ, l = 60ξ, η = 5.79 and
κ = 5. In the large grain size regime, grain size does not have a significant effect
on Jc(B). For small grain sizes, Jc is reduced by the proximity effect. Dashed line
represents predicted Jc(B) from Eq. (5.3.2) for αJunc = αGB = −1

a result, the primary effect of grain boundaries in these small-scale simulations is

to provide preferred channels for flux entry into and exit from the superconductor,

and to reduce the surface barrier at all fields. Consequently, grain size does not

appear to have a significant effect on the observed critical currents measured, except

when sufficiently small (D ∼ ξs) such that the superconducting volume fraction is

small and the Cooper pair density in the system is significantly limited by the

proximity effect. This lack of grain size dependence has been previously observed

in similar simulations [75] but is in contrast to experimental data for large-grained

polycrystalline superconductors with hundreds of grains across the width of the

material such as Nb3Sn, in which decreasing grain size increases critical current

density [126]. In the next section, we shall investigate whether the use of large-

scale solvers and periodic systems, without significant surface barriers, display this

grain size dependence of critical current densities that has been widely observed in

technological materials.
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5.4 Critical Current Simulations of 3D Polycrystals

Following on from our preliminary 2D polycrystal simulations, we now consider

vortex dynamics and critical currents in 3D polycrystalline systems, in which

vortices may flow along the grain boundary network in the material. In particular,

we show that the TDGL simulations describe the behaviour of the critical current

density in equiaxed polycrystalline technological materials such as Nb3Sn, subject

to changes in grain size and grain boundary properties. Furthermore, we suggest

how grain boundaries can be described using Josephson junction-like structures

and how this description can help provide analytic expressions for critical current

densities, using the mathematical results of the previous chapter.

Informed by our preliminary 2D polycrystal simulations, in order to have a sufficient

number of grains in the system such that the resultant critical current behaviour

is determined by the statistical properties of the grain distribution and not by any

individual grain configuration, we require a large system size, and necessarily need

to use the large-scale TDGL-HIK solver for these simulations. Furthermore, as

indicated by our small scale 2D simulations, surface pinning effects can strongly

mask the bulk flux pinning contributions from the grain boundary network, and

so we restrict our attention to systems periodic in all three dimensions. We choose

base parameters for our model polycrystalline system, presented in Table 5.1, to be

representative of Nb3Sn at T = 4.2 K, with a critical temperature of Tcs = 17.8 K

and a coherence length ξs(4.2 K) ≈ 3.12 nm [55]. The superconducting volume of

our base system corresponds to physical dimensions of 468 nm× 468 nm× 468 nm

with a mean grain size D = 70 nm. An example distribution of grain boundaries for

this set of parameters, along with distributions of |ψ| over the simulation domain

and close to a representative grain are presented in Fig. 5.7. Indeed, vortices can

be seen to preferentially occupy grain boundary regions, as observed in 2D, and

bend to stay within them where possible.

The flux pinning force per unit volume Fp = JcBapp as a function of reduced
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5.4. Critical Current Simulations of 3D Polycrystals

Parameter Value
h{x,y,z}/ξs(T ) 0.5
Lx/ξs(T ) 150.0
Ly/ξs(T ) 150.0
Lz/ξs(T ) 150.0
D/ξs(T ) 22.4
dGB/ξs(T ) 0.5
αGB −2.0

Table 5.1: Material parameters for the reference 3D polycrystalline system for 3D
Jc investigations. Jc is decreased by 2.5% at each current step.

field, for TDGL-HIK simulations of polycrystalline materials with different grain

boundary parameters αGB, are shown in Fig. 5.8. The optimum flux pinning forces

occur when the grain boundary thickness dGB is close to the effective (normal metal)

coherence length in the grain boundary ξGB =
√
−αGB ξs (defined when αGB < 0).

For more degraded boundaries, Jc decays approximately exponentially at a rate

proportional to dGB/ξGB for dGB/ξGB > 1, and for αGB < −4.0 the maximum in

the flux pinning force Fp ∝ JcBapp is found at higher reduced field values. For more

weakly degraded grain boundaries (αGB > −4.0), we find a Kramer dependence

of the flux pinning force with applied magnetic field, such that the maximum flux

pinning force per unit volume is close to 0.2 Bc2. Both the magnitude of Jc with

a grain size of 70 nm at 10−3JD, and the Kramer field dependence, are similar to

those observed experimentally in optimised polycrystalline Nb3Sn [55] suggesting

these simulations capture the important physical processes in these systems. In

the time dependent simulations when J > Jc (i.e. showing continuous vortex

movement), we see significant differences in the curvature of moving vortices, above

and below the optimum. In strongly degraded boundaries when αGB < −4.0,

vortices are significantly curved and follow grain boundaries, being preferentially

held at points where two or more grain boundaries meet, whereas for αGB > −2.0,

vortices remain mostly straight, aligned along the applied field in the z axis.

Experimental and simulation flux pinning curves for different mean grain sizes are

presented and compared in Fig. 5.10. The maximum flux pinning force per unit

volume as a function of grain size is seen to be similar to the experimental values.
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5.4. Critical Current Simulations of 3D Polycrystals

Figure 5.8: Normalised flux pinning force per unit volume Fp/10−3JDBc2 for the
polycrystalline 3D system described in Table 5.1 with varying αGB at various
applied magnetic fields. The maximum in the flux pinning force is found close to
Bapp = 0.2Bc2 for αGB > −4.0 but moves to higher fields as the grain boundaries
become more strongly normal (as αGB decreases). Solid lines are fits to Eq. (5.4.1)
with r = 1.1. Crosses are typical experimental data for optimised bronze route
Nb3Sn, taken from [55]. Inset: Fitting parameters for Eq. (5.4.1) as a function of
αGB.

For very small grain sizes with D < 100 nm, our simulations predict Fmax
p values

that are larger than observed in experiment, but this could be accounted for by

a shorter coherence length in the superconducting grains ξs for these fine grained

systems or degraded grain boundaries in such small grain material. We have also

confirmed that in homogeneous systems with no flux pinning structures present,

no significant critical current densities are found in these simulations. To our

knowledge, these TDGL simulations of 3D polycrystalline systems are the first to

display this increase of Fmax
p with decreasing grain size D in qualitative agreement

with experiment.

121



5.4.1. Flux Pinning Expressions for Polycrystalline Materials

Figure 5.9: Normalised flux pinning force per unit volume Fp/10−3JDBc2 for a
polycrystalline 3D system with varying mean grain size D. All other system
parameters are set to the values given in Table 5.1. Solid lines are fits to Eq. (5.4.1)
with r = 1.1. Crosses represent comparison to typical experimental data for bronze
route Nb3Sn, taken from [55]. Inset: Critical current density Jc as a function of
applied field for varying grain size; colours correspond to main plot.

5.4.1 Flux Pinning Expressions for Polycrystalline Materials

In 3D polycrystals, there are multiple types of pinning structures formed by the

network of grain boundaries in the system; faces (grain boundaries) at the loci at

which two grains meet, intersection lines along which two grain boundaries meet,

and triple points at which three (or more) grain boundaries meet. The number

of all of these structures in a given volume scales inversely proportional to the

grain size D, albeit with different constants of proportionality. In principle, triple

points can pin vortices more strongly than intersection lines, which will pin vortices

stronger than grain boundary faces [99]. The intragrain magnetisation currents

close to these structures will also be successively weaker: close to grain boundary

faces, significant magnetisation currents can flow in the two orthogonal directions

parallel to the face; close to line intersections, a significant magnetisation current

can only flow in the direction parallel to the intersection line; and close to triple
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5.4.1. Flux Pinning Expressions for Polycrystalline Materials

Figure 5.10: Maximum flux pinning force per unit volume Fmax
p for the

polycrystalline 3D system described in Table 5.1 with varying average grain
diameter D compared to experimental data for the maximum flux pinning force
measured in experimental Nb3Sn samples taken from [126]. Dashed line represents
fit to Eq. (5.4.1) with p = 0.5 and q = 2, with remaining free parameters found to
be A = 0.09 and r = 0.6.

points, no significant magnetisation currents can flow, as currents are inhibited in

three (non-collinear) directions.

How large these intragrain magnetisation currents are in the high-κ limit depends

strongly on how degraded the grain boundary regions are, i.e. the value of αGB. For

very weakly degraded grain boundaries, with αGB ≈ 1, intragrain magnetisation

currents along boundary surfaces are small, and vortices are only very weakly

pinned to grain boundaries; this case corresponds to the current flow across grain

boundary faces in the system limiting the critical (transport) current in the system,

and therefore vortices depinning from grain boundary faces at the critical current.

Such a case was referred to in [99] as weak intragranular pinning. As αGB

decreases, intragrain magnetisation currents are increased, and the contribution

to the transport critical current from boundary intersection lines becomes largest;

in this case, vortices remain mostly aligned to the axis of the applied magnetic
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5.4.1. Flux Pinning Expressions for Polycrystalline Materials

field, but at the critical current, sections of them slide along grain boundaries

preferentially. This case is the one considered within a flux pinning framework by

[100]. In the extreme limit, when αGB � −1, vortices curve to remain entirely

within boundary regions, and the critical current is determined by the onset of

vortex motion about triple points. Here Fig. 5.8 suggests Jc ∼ (1− b)2, which can

be obtained from Eq. (4.3.12) with q2 = Bapp/Bc2.

With such complexity, an analytic derivation of the average flux pinning force

per unit volume arising from a grain boundary network is extremely difficult. As

such, we adopt an empirical approach here to propose a suitable functional form to

parameterise Fp for these polycrystalline systems. We note that some properties of

the critical current expressions obtained in the previous chapter for weakly coupled

Josephson junction systems in 2D (Eq. (4.3.14)), bear similarities to the observed

behaviour of critical currents in polycrystalline technological superconductors. The

Kramer-like field dependence implied by Eq. (4.3.15) has been widely observed

in low temperature polycrystalline superconductors such as Nb3Sn [127] up to

Bc2, and the w−1.2 factor in Eq. (4.3.14) is reminiscent of the inverse grain size

dependence observed for Jc experimentally [117] and in our simulations (Fig. 5.10).

Motivated by this, we propose an expression for the flux pinning force per unit

volume for a polycrystalline system with weakly coupled grains (with highly

degraded grain boundaries) based on Eq. (4.3.14) using

Fp(Bapp) ≈ J0Bc2A

(
φ0

B∗c2D
2

)r
(b∗)p(1− b∗)qf(αGB), (5.4.1)

where we have replaced ws by the grain size D; defined the pinning parameters

p ≈ 1 − c1 and q ≈ 2; introduced the new empirical parameters A and r; and

made the weak coupling approximations that f(αGB) = ξs/2d (1− αn) in the thin

limit and f(αGB) = exp
(
−d
√

1− αn/ξs
)
/
√

1− αGB in the thick junction limit.

Fmax
p is found as usual at the field b∗ = p/(p + q). The empirical parameters A

and r account for the fraction of the total vortex length that is held within grain

boundaries.
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5.4.1. Flux Pinning Expressions for Polycrystalline Materials

Comparisons of Eq. (5.4.1) in the thick junction limit to our TDGL results are

presented in Figs. 5.8 and 5.9. A, p and q were taken to be free parameters

for each flux pinning curve, and r = 1.1 was obtained as a global fit parameter

from the combined set of simulations. The maximum in the flux pinning force

per unit volume, Fmax
p , has been compared to a constrained form of Eq. (5.4.1)

in Figs. 5.10 and 5.11, in which the pinning parameters are restricted to their

Kramer-like values p = 0.5, q = 2. The decrease in critical current density as the

grain boundary properties degrade (as
√

1− αGB increases) in the weak coupling

limit of grains appears to be well represented by Eq. (5.4.1) and f(αGB) taken

from Eq. (4.3.12). In this case, the parameters A and r are closely related to their

2D equivalents in Eq. (4.3.16), with r ≈ c1 ≈ 0.6 and in the limit of strongly

degraded grain boundaries, A ≈ c0/3, as shown by Fig. 5.11. The observation that

the prefactor c0 in the 2D junction simulations is approximately three times larger

than the prefactor A in the 3D simulations here may partly be due to the stronger

surface barrier existing in the junction system at the junction-insulator interface.

The surface barrier at the grain-grain boundary interface in the 3D simulations is

generally weaker as a result of the proximity effect limiting supercurrents at the

interface, similar to the effect observed at metallic interfaces in Fig. 3.5.

For the polycrystal system in Table 5.1, which lies close to the peak Fp,max in

Fig. 5.9, Jc ∼ b−0.4(1 − b)2.7 (p = 0.6, q = 2.7), close to the Kramer-like

field dependence of the critical current density Jc ∼ b−0.5(1 − b)2 (p = 0.5,

q = 2). Deviations of p and q from predictions can occur due to multiple pinning

mechanisms contributing to Jc concurrently; indeed, videos of the simulated vortex

state show vortex depinning from grain boundaries, line intersections, and triple

points across the range of αGB in Fig. 5.8.

It is important to note that all the polycrystalline simulations carried out in this

work are in the high-κ limit, when the local magnetic field is equal to the applied

magnetic field in the system at every point. Nevertheless, we expect the results

to be qualitatively accurate for real systems of materials such as Nb3Sn, since the
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Figure 5.11: Maximum flux pinning force per unit volume Fmax
p /JDBc2 as a

function of
√

1− αGB. Line fits are comparisons to Eq. (5.4.1) with A = 0.25,
r = 0.6, p = 0.5 and q = 2, and to Eq. (4.3.14).

penetration depth in such materials λs ≈ 100 nm is still of the order of the grain

size [55], and so in high fields, magnetisation of grains will still be small relative to

the applied magnetic field. The same is not necessarily true in very weak applied

fields though, and thus care should be taken interpreting results in this regime as

a result.

5.5 Conclusions

In this chapter, we have performed 3D simulations of equiaxed polycrystalline

systems in the high κ limit, which we believe to be the first for a complex

polycrystalline system to display an increase in the critical current density of the

system with decreasing grain size in qualitative agreement with experiment [128].

We find that these TDGL simulations display maximum critical currents when the

grain boundary thickness is similar to the effective coherence length in the grain

boundary regions, at which point the field dependence of the critical current density
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Jc ≈ b1/2(1 − b)2, as widely observed experimentally for commercial equiaxed

polycrystalline Nb3Sn. In this case, vortices display preferential motion along grain

boundaries. These simulations also predict values for Jc in these systems within

the same order of magnitude as those observed in experiment.

We have also suggested a new empirical flux pinning expression to parametrise these

data based on current flow across Josephson junctions, and found this expression

well describes decreases in critical current densities as grain boundaries degrade

in the limit of weakly coupled grains over the range of simulations studied thus

far. As a consequence of these simulations, we conclude that critical currents in

these materials are primarily determined by the onset of vortex flow along grain

boundaries.
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Chapter 6

Future Work

In this thesis, we have presented a framework in which critical current densities in

polycrystalline materials can be modelled and studied. Using TDGL simulations

and analytic expressions, we have derived a foundation for future studies of current

flow across grain boundary networks in technological materials.

Most directly, the critical current simulations of Chapter 5 can be repeated for

different grain morphologies and materials. Of particular technological interest is

whether systems of elongated grains along the direction of transport current with

few continuous grain boundary channels in the direction of the Lorentz force give

rise to Fp ∼ b(1−b), as observed in commercial NbTi samples which share this grain

morphology [117]. Such flux pinning behaviour has previously been attributed to

vortices depinning from grain boundaries and crossing grains in such materials, in

contrast to the flux-shear behaviour along grain boundaries in Nb3Sn. If these

explanations are correct, one could investigate how the flux-pinning behaviour

crosses over to the Fp ∼ b1/2(1 − b)2 behaviour in the equiaxed system by tuning

the grain anisotropies between the elongated and equiaxed cases.

None of the simulations presented in this thesis have included pinning structures

within grains, such as inclusions, precipitates, or disordered regions that may form

during growth of the polycrystal or be introduced by damage after formation. These

structures will contribute to pinning of vortices in addition to the grain boundary
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effects that have been the focus here. Such pinning structures can easily be added

to these simulations in the form of regions in which αn < 1 [129]. Of special

interest for fusion applications is the role of pinning structures and crystal defects

introduced by radiation damage, such as collision cascades. Such pinning structures

can significantly contribute to achievable critical currents in such materials, but

the role of defect migration to grain boundaries on their properties in operational

conditions remains poorly understood.

The approach used to generate grain morphologies in Chapter 5 using Neper can

also track orientations of grains, and restrict the distribution of grain orientations

in the system. This could be useful for studies of the role of grain boundaries

limiting critical currents in HTS tapes, in which the critical current density across

a boundary decreases exponentially with the misorientation angle θgg between

grains [130]. Considering Eq. (4.3.12), this behaviour could be modelled within

the existing framework with an ansatz that θgg ∝
√

1− αGB, and could help

elucidate the crossover between critical currents limited by current flow across grain

boundaries in these systems, and those limited by intragranular pinning structures.

Electronic structure modelling of this exponential decrease of critical currents

with misorientation angle at grain boundaries in d-wave superconductors like

YBCO, such as that presented in [131], may help further guide future simulations,

particularly those regarding the role of charge inhomogeneities at grain boundary

interfaces in limiting critical currents.

A necessary limitation of using TDGL theory for these studies is that the input

parameters α, β and m are phenomenological parameters, whose absolute values

are unknown for a given material. Advances in density functional theory and

electronic structure analysis, such as those presented in [132], may help constrain

these phenomenological parameters for simple superconducting systems using

first-principles methods. Direct experimental comparisons such will also help

constrain these parameters further, developing towards the goal of quantitatively

predictive critical current simulations in common technological materials. One
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particularly exciting extension of this work would be to take grain morphologies

and microstructures directly measured in experiment for a given superconducting

sample and compare them to the critical current densities predicted by TDGL-HIK.

A similar approach has been applied in [90] to provide quantitative predictions for

Jc in YBCO samples doped with Dy nanoparticles.

Analytic models of the critical current density of these large-scale polycrystalline

materials remain difficult to obtain for the reasons given in Chapter 5. Future

work should consider if the approach from [94] for 2D Josephson junction systems

can be extended to predict critical currents across 3D convex polyhedral grains,

in the similar weak coupling, high κ limit in low fields. This may help develop

our understanding of the grain size dependencies observed in Chapter 5 and in

experiment. Furthermore, more work is needed on the crossover between the weak

coupling and strong coupling limit between grains; the results in Chapter 5 suggest

that the flux pinning behaviour most commonly observed in experimental samples

of Nb3Sn occurs close to this crossover point. Necessarily, such analytic models

will need to accommodate the crossover between vortex depinning from grain

boundaries and vortex shear along them, as grains become more weakly coupled.

Finally, it would be desirable to extend the large-scale polycrystalline simulations

presented here to accommodate systems with finite κ, and thus with finite

penetration depth λ. This would be necessary for the study of effects arising

from shielding of the external magnetic field in the interior of grains; particularly

important for simulations of large-grained systems in low fields. A stable, large-

scale solver for the TDGL equations for finite λ is therefore desirable to this

end. For low κ simulations, the explicit solver of [65] is suitable, but is limited

to extremely short time steps for large κ as discussed in Chapter 3. Similarly,

extending TDGL-HIK to accommodate arbitrary finite penetration depths is also

not easily possible without significant detrimental effects on performance, due to

the extra complexity in requiring the solution of the magnetic field distribution

at every time step. Further work is needed to determine how, or if, a solver such
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as this can be developed with the required accuracy and performance required for

critical current simulations.
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Appendix A

Jacobi Elliptic Functions

The results in Chapter 4 make use of the Jacobi elliptic functions as solutions

to the Ginzburg–Landau equations in junction systems. We shall include their

basic definitions and properties here for convenience. The Jacobi elliptic functions

sn(z, k), cn(z, k), and dn(z, k) of argument z and modulus k satisfy the relations

[110]

sn2 (z, k) + cn2 (z, k) ≡ k2sn2 (z, k) + dn2 (z, k) ≡ 1. (A.0.1)

For 0 ≤ k ≤ 1 they can be related to the usual trigonometric functions via the

Jacobi amplitude function am (z, k) via

sn (z, k) = sin (am (z, k)) ,

cn (z, k) = cos (am (z, k)) ,

dn (z, k) =
√

1− k2 sin2 (am (z, k)).

(A.0.2)

A shorthand notation is often used for ratios of Jacobi elliptic functions, where

pq (z, k) = pr (z, k)
qr (z, k) , (A.0.3)

with p, q, r ∈ {s,d, c,n} and np (z, k) = 1/pn (z, k). Finally, it is also useful to also

to define the (related) complete elliptical of the first kind K(k) and the incomplete

elliptical of the second kind E(z, k), [110]

E(z, k) =
∫ z

0

√
1− k2 sin2 θ dθ, (A.0.4)
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K(k) =
∫ π/2

0

dθ√
1− k2 sin2 θ

, (A.0.5)

that are used in [50, 112].
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