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CONNECTIVITY RESTORATION FOR FISHES IN 

POST-INDUSTRIAL RIVERS OF NORTH EAST ENGLAND 

Jingrui Sun 

Abstract 

Many rivers in developed regions experienced a strong decline in ecological function 

during the Industrial Revolution, due to poor water quality, degraded habitat and 

diminished hydrological connectivity. Post-industrially, water quality has dramatically 

improved in many rivers, and clean-water indicator species have returned, yet such rivers 

often remain very fragmented by river engineering, with locally degraded habitat and 

resultant effects on ecological communities, especially of fishes. River restoration 

activities are widespread, but their effectiveness in restoring biodiversity and ecological 

function remain poorly known. This study explores the causes of decline of fish 

populations in rivers of industrial North East England, their partial recovery, and the role of 

river restoration, especially through removal and mitigation of anthropogenic river barriers. 

In a historical review of the decline and partial recovery of the rivers Tyne, Wear and 

Tees, and their fish stocks, it was found that before the 19th Century Atlantic salmon 

(Salmo salar) and sea trout (Salmo trutta) were abundant in all three rivers. These 

catchments were subject to heavy industry and urbanization, instream barrier 

construction, and industrial pollution from the 19th Century to the mid-20th Century, during 

which time their fish stocks dramatically declined. Following decreased heavy industry, 

closure of mines and improvements in wastewater treatment, salmon and sea trout started 

to recover in the Tyne and Wear from the 1960s onwards and stabilized in recent years; 

these rivers are now the first and second best salmon rivers in England, in terms of angler 

catches. By comparison, anadromous salmonid numbers in the Tees increased much 

more slowly, potentially and partly due to impacts from the Tees Barrage. In general, the 

potential for recovery of anadromous salmonid stocks in post-industrial Pennine rivers 

appears driven by both accessibility and survival in the river, through effects of barriers, 

pollution and predators.  

Since river reconnection programmes require barrier inventories for restoration planning, 
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the adequacy of the current national barrier inventory was assessed by field surveying two 

medium-sized catchments, the Wear and the Tees. The national river barrier inventory 

was found to be highly incomplete. From surveyed reaches across both catchments, 

77.3% of barriers were found to be missing from the national database, including 68.6% of 

artificial barriers and 82.6% of natural barriers. Only 21.5% of artificial barriers had been 

removed or mitigated in both catchments, suggesting that river restoration in Northeast 

England, and perhaps in England more generally, still has a long way to go. 

 

The effectiveness of barrier removal on habitat change and responses of fish and 

invertebrate communities was studied in a small stream joining the Tees estuary. 

Removal of a small tidal barrier increased habitat diversity immediately upstream, while 

changes in the invertebrate community up- and downstream were minor and transitory. A 

dramatic and sustained increase in fish density occurred in the previously impounded 

zone. The upstream recolonization of European eel (Anguilla anguilla) was greatly 

increased within two years. The eel density in the previously impounded zone increased 

from 0.5 per 100 m2 before barrier removal to 32.5 per 100 m2 five months after removal. 

In contrast, the population of brown/sea trout (S. trutta) has not yet benefitted from barrier 

removal, suggesting wider catchment management such as habitat and water quality 

improvements are required to complement connectivity restoration. 

 

In rivers or tributaries with multiple barriers, catchment-scale connectivity restoration may 

be needed to help restore the density and distribution of diadromous and river-resident 

fish species. Extensive within-tributary fish sampling was used to determine local and sub-

catchment responses to partial connectivity restoration. It was found that benefits of 

connectivity restoration in streams with many barriers may take several years to develop 

and that stochastic events on fish populations can obscure restoration responses. 

Compared with fish pass installation, barrier removal was found to be more effective in 

restoring lotic habitat and fish species, and facilitating movement of poorly dispersing 

species such as bullhead (Cottus perifretum). Findings of this thesis underline the 

importance of managing in-stream barriers sensitively, and have contributed to our 

understanding of the effects of connectivity restoration on post-industrial rivers.  
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1.1 Global overview 

Worldwide, many river systems have been impacted by environmental degradation due to 

agriculture, industry, urbanization and related impacts (Jackson et al., 2001; Naiman et al., 

2002; Nilsson et al., 2005; Jansson et al., 2007). Intensive human development in many 

river systems has caused a strong decline in ecological function, resulting from poor water 

quality, degraded habitat and diminished hydrological connectivity (Dudgeon et al., 2006). 

Fish are one of the most important components of aquatic ecosystems. However, their 

abundance and diversity have been impacted by a series of problems such as habitat 

degradation, fragmentation, and destruction; environmental pollution; invasive species; 

overfishing; and climate change (Figure 1.1; Larinier, 2001; Naiman et al., 2002; Nilsson 

et al., 2005; Agostinho et al., 2008). Rivers in the UK have a long history of anthropogenic 

modification (Figure 1.2; Lewin, 2013; Addy et al., 2016). Over a thousand years ago in 

Europe (and longer ago in some civilizations) people farmed and built towns alongside 

rivers, altered river courses and diverted water to water wheels to power mills. The 

Industrial Revolution in Britain and many other countries speeded up the modification of 

river systems (Deane, 1980; Mawle and Milner, 2003). More recently, due to the fast-

growing human population and the increasing demand for water, more and more human 

activities have impacted on rivers. Hydraulic structures such as dams have increased 

dramatically in the past 50 years, it is estimated there were nearly 5,000 large dams (>15 

m height) all over the world by 1950, and the numbers increased to 45,000 by the year 

2000 (Khagram, 2004; Nilsson et al., 2005).  

 

Before the 1980s, efforts to quantify human impacts on rivers, and to rehabilitate these, 

were dominated by water quality (especially chemical water quality), but increasing 

recognition of the multiplicity of factors degrading good ecological functionality has 

progressively resulted in a more integrated ecosystem approach (e.g. Water Framework 

Directive [WFD], 2003) (Reyjol et al., 2014; Vlachopoulou et al., 2014).  
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Figure 1.1 Illustration of some components of river degradation. Source from River 

Restoration Centre (2016). Note that some key elements such as dams and weirs are not 

included. 

 

 
Figure 1.2 Timeline of key human actions that have altered rivers in England and Wales 

(Lewin, 2013; Addy et al., 2016). The figure is missing some notable factors, such as 

diffuse pollution. The main impact periods for each are graded by line weightings. Solid 

line: proven evidence of human intervention. Dotted line: possible human intervention. 



29 
 

 

According to data obtained by River Habitat Surveys under the WFD, more than 50% of 

river length in England and Wales has been physically modified (Maltby et al., 2011; Addy 

et al., 2016). In Scotland, 17% of water bodies suffered from channel and bank 

modifications, and 16% of river length was impacted by barriers to fish migration (Maltby 

et al., 2011). Rivers in urban areas are mainly impacted by bank reinforcement and re-

sectioning (Boitsidis et al., 2006), such as using concrete, gabions, boulders, soils or 

retaining walls to prevent river bank erosion or failure and to reduce channel movement. 

The impacts of bank reinforcement include stream channel narrowing, water velocity 

increases and uniformity, habitat alteration and reductions in fish populations 

(Schmetterling et al., 2001).  

 

Dam construction for water supply and hydroelectricity has been another important feature 

in the anthropogenic modification of rivers. The expansion of human populations and 

increased water usage has led to extensive damming of rivers and streams all over the 

world (Khagram, 2004). Dams interrupt water flow, cause hydrological changes and break 

river ecosystem continuity. During the 19th Century, large dam construction increased 

sharply from less than 10 to 175 in the UK and the construction rate grew from 1.7 to 5.4 

dams per year after 1950 (European Environment Agency, 2008). There are now 486 

large dams (> 15 m head) in the UK (European Environment Agency, 2008), but this 

number is dwarfed by there being more than 20,000 anthropogenic river obstacles in 

England and Wales alone (Entec, 2010; Jones et al., 2019). Dams and other obstacles 

can prevent or delay fish migrations for reproduction or feeding (Lucas and Baras, 2001). 

Dams can cause changes in water temperatures, oxygen levels and sediment, redirect 

river channels, and disrupt river continuity. They can also have indirect effects, for 

example building a dam may increase predation on migratory fish delayed in passing the 

dam (Larinier, 2001). These problems can lead to the decline of fish populations or may 

promote the colonisation and persistence of non-native species (Jansson et al., 2007).  

 

Globally, 48% of the total volume of large rivers is either moderately or severely impacted 

by artificial flow regulation and/or fragmentation (Grill et al., 2015). These impacts strongly 
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affect the migratory patterns of fish and have caused damage to river habitats. A river that 

flows unaffected from its source to its mouth without encountering any dams, or other 

anthropogenic physical barriers is defined as a free-flowing river by the WWF (WWF, 

2006). These rivers are crucial to migratory fish by providing a variety of habitats, flows 

and food sources (Brink et al., 2018). However, the numbers of free-flowing rivers have 

progressively reduced in recent years and have become few and far between (Brink et al., 

2018). A study on river fragmentation has shown less than 40% of large rivers (> 1000 km) 

globally are still free-flowing, and most of these rivers are actually tributaries of major river 

systems in the world (WWF, 2006).  

 

In order to restore the natural state and functioning of river systems, an increasing number 

of river restoration projects have been carried out, though usually only on small sections 

of river or stream (Palmer et al., 2005; Jansson et al., 2007; Nilsson et al., 2015). 

European legislation (European Water Framework Directive, Habitats and Species 

Directive, Floods Directive) in the UK provides the main driver for river restoration, and 

this policy is expected to continue even after the UK has left the EU. It is estimated that 

more than 2600 river restoration projects have been undertaken in the UK since the 1980s 

(Addy et al., 2016; River Restoration Centre, 2016). The aim of these projects is to 

recover the river habitat and restore river biodiversity, or at least reduce the rate of 

biodiversity loss. Although the number of river rehabilitation (restoration: aims for full 

recovery of natural processes, rehabilitation: recognizes that partial recovery is the 

maximum likely to be achievable, although these terms are often used interchangeably in 

the literature) schemes is increasing and widespread in the UK, the effects of these 

projects on river biota are usually poorly understood (Pretty et al., 2003). There have been 

few holistic assessments to evaluate the effectiveness of the measures on ecological 

characteristics in these projects (Pretty et al., 2003; Paillex et al., 2017).  

 

1.2 Development of the water industry and environmental protection in England and 

Wales 

Today, people in England and Wales benefit from a relatively efficient and effective water 

and sewerage industry, and the development of the water industry can be traced back to 
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the beginnings of the 19th Century (Hassan, 1985; Foster, 2003; Ofwat, 2006). It was 

influenced by the Industrial Revolution, expansion of urbanisation and increasing demand 

due to economic development and population increase (Foster, 2003; Ofwat, 2006). The 

water industry in England and Wales was originally fragmented, with a variety of bodies 

responsible for different parts of the water cycle (Black and Morrison, 1979; Sheail, 2000; 

Skelton, 2017).  

 

The United Kingdom has a long history of legislation designed to regulate rivers and their 

associated fisheries, with earliest records found in the Magna Carta in 1215, for the 

removal of weirs from the Thames and Medway to benefit both fisheries and navigation 

(Ayton, 1998). As a result of the Industrial Revolution, fish stocks in many rivers appear to 

have been in decline (Chapter 2). However, no parliamentary action was taken until a 

Royal Commission was established in 1860, with a remit to enquire into the Salmon 

Fisheries of England and Wales (Ayton, 1998). Followed by substantial national 

investigation into the salmon fisheries condition in many rivers, the Royal Commission 

Report on Salmon contributed to the passing of the Salmon Fisheries Act 1861 (Ayton, 

1998; Skelton, 2017). The Act repealed 33 previous Acts of Parliament, and sought to 

bring all the legislation together in one Act. It addressed some of the issues such as river 

obstructions, pollution, illegal fishing and the defective regulation of close seasons (Ayton, 

1998).  

 

Some deficiencies in the 1861 Act were remedied with the passing of the Salmon Fishery 

Act 1865. It allowed Boards of Conservators to be set up, with powers to manage rivers or 

river systems as defined by the Secretary of State. By 1894, 53 Boards had been set up, 

covering three quarters of England and Wales. In 1900, Boards of Conservators had been 

alternatively reconstituted as Fishery Boards (Ayton, 1998). In 1923, the Salmon and 

Freshwater Fisheries Act 1923 again repealed all previous fishery legislation, and sought 

to gather it all together in one Act (Meek, 1923). Due to amalgamations and lack of funds 

to continue to operate in some Boards, only 45 Boards remained by 1948 (Ayton, 1998). 

 

In the early 20th Century there were nearly 200 water providers with a statutory duty to 
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provide piped water to domestic and other consumers. These water providers were either 

statutory companies, local authorities or joint boards of local authorities (Black and 

Morrison, 1979). In 1945, there were more than 1,000 local authorities or organizations 

responsible for water supply and more than 1,300 authorities responsible for sewerage 

and sewage disposal (Black and Morrison, 1979; Ofwat, 2006). This resulted in poorly 

integrated and managed water infrastructure with wide variability in drinking water delivery 

and sewage removal and management (Sheail, 2000; Ofwat, 2006). River Boards were 

established by the River Boards Act 1948 (Ayton, 1998). The responsibility of 45 Fishery 

Boards were transferred to 32 River Boards and two conservancies, the Thames and Lee 

(Howarth, 1987; Ayton, 1998), covering the whole of England and Wales, with 

responsibilities for land drainage, fisheries and river pollution control previously provided 

by the local authorities. The act give River Boards powers to administer pollution control 

across an area defined by watersheds or catchment boundaries (Ofwat, 2006), although 

the degree to which this was achieved was limited by the need not to severely impinge 

upon economic activity. 

 

Following growth in the national economy in the 1950s, the demand for water by industry, 

electricity generation, irrigation and domestic consumption increased substantially. In 

order to protect water resources and enhance the coordination of different departments, 

the Water Resources Act 1963 was passed (Ofwat, 2006). The act aims to provide 

adequate water resources management and to ensure conservation of future water 

resources (Ofwat, 2006). Two new types of authorities, River Authorities and the Water 

Resources Board were established to facilitate the aims above (Black and Morrison, 

1979).  

 

Under the 1963 Act, the previous 32 river boards were replaced by 27 River Authorities 

(Ayton, 1998; Ofwat, 2006). Each River Authority took over the powers of the existing river 

boards, and was responsible for monitoring water quality and protecting water resources 

in a river basin or a series of river basins (Ofwat, 2006). The Water Resources Board was 

a national agency, whose aims were to provide advice to government and to the River 

Authorities on water resources conservation on a national scale (Ofwat, 2006). Despite 
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the role of the River Authorities, they had limited capability to prohibit water pollution. 

Although they progressively instituted more widespread treatment of sewage, over wider 

networks, the extent of investment remained limited by the degree of national investment. 

 

In the early 1970s, the government proposed a plan to manage water resources on an 

integrated river basin basis. A total of ten regional water authorities based on the ten 

major river basins in England and Wales was established under the Water Act 1973  

(Figure 1.3; Ofwat, 2006). The 27 river authorities were abolished and their powers and 

duties passing to 10 regional water authorities. The regional water authorities were 

directly responsible for all kinds of water resource management, fisheries, water quality 

management, pollution prevention, aquatic ecology management, sewerage and sewage 

disposal (Black and Morrison, 1979; Johnson, 1988; Ofwat, 2006). The regional water 

authorities were also responsible for water supply in large areas, although a series of local 

water supply companies remained. For example, the South Essex Waterworks Company 

(formed 1861) and Southend Waterworks Company (formed 1865) merged to form the 

Essex Water Company in 1970, which remained independent until it combined with the 

Suffolk Water Company to form Essex and Suffolk Water Company in 1994. Similarly, a 

series of local, independent drainage boards also remained, particularly in parts of eastern 

England.  

 

The regional water authorities continued to make progress in water environment 

improvement through public investment in sewage treatment, managing industrial and 

commercial water treatment, and managing water abstraction (Black and Morrison, 1979; 

Johnson, 1988). Increased regulation of discharge consenting occurred and prosecution 

of those polluting watercourses became increasingly common. The ability to manage and 

reduce environmental stressors (especially pollution) acting across whole catchments, 

from the upper reaches to the estuary and coastal environment, enabled significant 

recovery for some of the most polluted (especially from industrial and urban sources) 

rivers such as the Thames, Trent, Mersey and Tyne (Black and Morrison, 1979; Johnson, 

1988). However, the combination of environmental regulator and sewage treatment 

responsibilities within the same organisation also caused a conflict of interest, since some 
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of the most frequent and severe pollution incidents were caused by the water authorities’ 

sewage treatment works (Black and Morrison, 1979). Increasingly this, as well as the 

limits on investment in water supply and treatment infrastructure through competition for 

state funds, drove the need for further change in the national water industry and water 

environment protection. 

 

 
Figure 1.3 The controlled area of 10 regional water authorities, in England and Wales, 

1973-1989. Source from Ofwat (2006). 

 

The regional water authorities lasted until 1989, when the Water Act 1989 provided the 

mechanism for privatisation of the water supply and sewerage industry (Cowan, 1993). 

This facilitated large scale private investment to update the ageing infrastructure much of 

which, in large urban areas, dated from the Victorian period. The water supply, sewerage 
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and sewage disposal parts of the ten English and Welsh regional water authorities 

became privatised companies (Ofwat, 2006). The regulatory and environmental protection 

duties remained with the newly created authority, the National Rivers Authority (NRA). The 

functions of the NRA included monitoring inland and coastal water quality, water pollution 

control, water resources control and management, salmon and freshwater fisheries, flood 

defence, recreation, navigation, conservation and harbour authority activities (Ofwat, 

2006).  

 

The Environment Act 1995 integrated the functions of the NRA, Her Majesty's 

Inspectorate of Pollution (HMIP), the Waste Regulation Authorities and certain elements of 

the Department of the Environment to a new body, the Environment Agency (Slater and 

Jones, 1999; Ofwat, 2006). The Environment Agency (EA) provides an integrated 

approach in protecting the environment by combining the regulation of activities affecting 

land, air and water. For water, the EA is responsible for (i) conservation and pollution 

prevention in rivers, estuaries and coastal waters, (ii) conserving, redistributing, 

augmenting and securing proper use of water resources, (iii) flood defence supervision, 

(iv) maintaining and improving fisheries and (v) promoting the conservation of freshwater 

and coastal waters, as well as their recreational usage (Slater and Jones, 1999; Ofwat, 

2006).  

 

Since 1989, many of the smaller private water companies have merged with the regional 

water companies. For example, the Essex and Suffolk Water Company referred to above 

became part of Northumbrian Water in 2000, despite the geographical separation. 

Although quite strictly regulated, over 70% of England’s water industry, including 

Northumbrian Water, is now owned by overseas interests. The EA continues to regulate 

English water company activities in concert with the Water Services Regulation Authority 

(Ofwat) which controls pricing and investment in the water companies. Increasingly, over 

recent decades, the EA has taken a more holistic approach to environmental protection of 

catchments by managing diffuse pollution and climate change impacts, through activities 

such as land management advice and groundwater monitoring (Ellis and Mitchell, 2006; 

Wilby and Harris, 2006; Owen et al., 2012). This reflects the historical transition from the 
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greatest impacts on watercourses in the early 20th Century being point source pollution, 

especially in urban environments, to one where these now include diffuse pollution, 

climate change impacts, hydrological connectivity, and increasing consumer demand for 

water (Ellis and Mitchell, 2006; Wilby and Harris, 2006; Owen et al., 2012). Most recently, 

as part of the devolution process in Wales, EA Wales was merged with the Countryside 

Council for Wales and the Forestry Commission Wales in 2013 to form Natural Resources 

Wales, responsible to the Welsh government. 

 

1.3 Water Framework Directive 

The Water Framework Directive (WFD), a European Union legal instrument, which 

became effective on 22 December 2000, aimed to achieve good water status in EU 

member states for inland surface waters, transitional waters, coastal waters and 

groundwater by 2015 (European Commission, 2003, 2007a). The Directive’s key purposes 

include: a) protection and enhancement of the status of water resources; b) promotion of 

sustainable water use based on long-term protection of water resources; c) ensuring the 

progressive reduction of pollution of groundwater and preventing its further pollution; d) 

contributing to mitigating the effects of floods and droughts; e) enhancement, protection 

and improvement of the aquatic environment (European Commission, 2003).  

 

Unlike earlier freshwater condition improvement schemes, WFD emphasized ‘good 

ecological status (GES) or potential’, rather than physical or chemical criteria, as the legal 

basis by which grading would be determined. Like other EU states, the UK did not meet 

the deadline of achieving good water status by 2015 (UK Technical Advisory Group, 

2008a) and the schedule for meeting GES has been extended to 2027. The EA predicted 

34% of UK surface water bodies would meet/exceed GES by 2015 (Environment Agency, 

2009a). Ultimately, however, just 17% of surface water bodies in England were in the 

good/high ecological status in 2015 (Table 1.1) (Environment Agency, 2015).The main 

reasons for not achieving GES include physical modifications to rivers, diffuse source 

pollution from agriculture and point source pollution from waste water treatment 

(Environment Agency, 2009a). The Environment Agency believes it is not possible to 

achieve GES in all UK water bodies by 2027 under current technologies, so it aims to 
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achieve good status in at least 60% of waters by 2021 and in as many waters as possible 

by 2027 (Environment Agency, 2009a). 

 

Table 1.1 Ecological and chemical 2015 classification for surface waters in England 

(Environment Agency, 2015). Note the disparity between the proportions of waterbodies 

meeting good chemical vs good ecological status. 

 Ecological status or potential Chemical status 

No. of water bodies  Bad Poor Mod Good High Fail Good 

4,679  136  765  2,966  805  7  137  4,542  

 

For WFD, surface water quality status is measured as metrics of ecological, 

hydromorphological and chemical quality in defined localities known as ‘water bodies’ 

(which, for rivers, are georeferenced sections of stream or river [usually ~5-30 km in 

length] defined for WFD use). The overall ecological grading is determined by the lowest 

component of these (European Commission, 2003; UK Technical Advisory Group, 2008a); 

thus waters of good chemical status but less than good ecological or hydromorphological 

status cannot reach a ‘good’ class overall. The WFD requires standardised methods to 

quantify the ecological status of water bodies across five classes of ecological status from 

bad to high (European Commission, 2003, 2007a; UK Technical Advisory Group, 2008a). 

These classes reflect different degrees of impact on aquatic species. By using biological 

indicators, ecological status can be determined and expressed (European Commission, 

2007b). After biological quality elements monitoring, the observed parameter values are 

expressed as an Ecological Quality Ratio (EQR, 0-1, low-high), compared to reference 

values (European Commission, 2007b).  

 

The biological elements for ecological status classification are composed of 

phytoplankton, aquatic flora, benthic invertebrate fauna and fish fauna (Birk et al., 2012). 

In the UK, for fish, the 23 most prevalent native species are used as indicators for 

assessment (UK Technical Advisory Group, 2008b). These listed fish are classified as of 

low, moderate and high tolerance to environmental disturbance. After sampling by electro-

fishing (normal on streams/rivers) or seine netting methods, fish species counts in running 
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waters are obtained in a single removal for a known area (UK Technical Advisory Group, 

2008b). For calculating the EQR, these observed values are compared to reference 

values, which are determined by modelling and expert judgement (UK Technical Advisory 

Group, 2008b). In the UK, although these fish community data are not fully quantitative, 

they provide standardised temporal comparisons for fixed sites at WFD water bodies and 

can be compared to predictions by models incorporating factors such as distance from 

source, altitude, channel width and alkalinity. One problem with this approach in England, 

and throughout much of Europe is that ‘reference’ conditions are difficult to obtain as most 

rivers and their biota, especially fish, have been modified by human activities in recent 

centuries. 

 

1.4 Anthropogenic impacts on fish 

Fish populations are threatened by increased anthropogenic activities all over the world. 

Instream barriers disrupting river connectivity, habitat deterioration and degradation 

damaging fish production, overfishing and impacts of climate change all pose threats to 

fish populations (Duncan and Lockwood, 2001; Fenkes et al., 2016; Belliard et al., 2018; 

Brink et al., 2018). Urbanisation and industrialisation impacts fish communities, especially 

migratory fish, from many aspects including hydrosystem infrastructure construction, 

removal of riparian vegetation, flow diversion, irrigation, chemical pollution and 

sedimentation issues (De Groot, 1992; Fenkes et al., 2016; Brink et al., 2018).  

 

1.4.1 Impacts of pollution 

Chemical pollution covers a wide range of impacts and effects on aquatic habitats and 

biota, including fish. This includes the impact on individual fish and fish populations as 

they respond to chemical changes to which they are not adapted (e.g. induced 

ecotoxicological responses) (Saunders and Sprague, 1967; Scott, 2001; Jüergens, 2015; 

Brink et al., 2018). Historically in urbanised and industrialised areas of Europe, point 

source pollution was the dominant type of water pollution; it is also the type of water 

pollution that has been most effectively dealt with across Europe (De Groot, 1992; van 

Dijk et al., 1994), including in the post-industrial rivers of NE England, such as the Rivers 

Wear and Tyne (Neal et al., 2000; Kelly, 2002; Baker et al., 2003; Shepherd et al., 2009). 
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The greatest component of point source urban pollution is organic pollution, mostly 

resulting from sewage waste. When unoxidized sewage waste enters the environment 

(typically to rivers/estuaries), it causes dramatic oxygen depletion, proportional to its 

biochemical oxygen demand (BOD) for decomposition (Kumar and Reddy, 2009). Such 

waste may also contain high levels of unoxidized nitrogen as ammonia, which has a high 

toxicity to aquatic organisms and, inevitably, high levels of nutrients including phosphorus, 

since it is largely the product of human urine and faeces (Jarvie et al., 1998; Neal et al., 

2005). Furthermore, sewers also collect organic and inorganic material (e.g. tyre rubber, 

heavy metals) from land and road runoff and permitted chemical outputs from 

manufacturing and light industry (Neal et al., 2005). Therefore, sewage waste and 

combined sewer overflow (CSO) outputs contain a wide variety of biological pollutants and 

contaminants.  

 

Sewage treatment processes reduce the levels of pollutant and contaminant materials 

reaching the environment, such that the sewage outfall water must fall within permitted 

amounts, so that diluting effects of the river, estuary or marine environment adequately 

mitigate the remaining pollutant impacts. The extent of such treatment (primary, 

secondary, tertiary) depends on relative costs, population equivalent (PE) and the degree 

of environmental standards (i.e. tertiary treatment is required in sensitive areas, for 

example phosphate stripping in nutrient-sensitive areas) applied (Defra, 2002, 2012). In 

the UK, there are around 9,000 waste water treatment plants linked to the largest 

collection systems, and approximately 1,900 of these plants serve agglomerations of 

greater than 2,000 PE to freshwaters and estuaries, and greater than 10,000 PE made to 

coastal waters (Defra, 2002, 2012).  

 

Increasingly, agricultural pollution, especially through diffuse sources, is replacing 

industrial and domestic pollution as the greatest cause of poor water quality in many 

rivers. Agriculture is one of the most important components in the global economy and it is 

also the largest freshwater user, involving 70% of surface water supplies on the global 

scale (Ongley, 1996). Today, largely as a result of the intensification of agricultural 

practices, diffuse water pollution from agriculture is one of the major contributors to 
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surface and ground water pollution in the UK. Agriculture uses 70% of the UK’s land area 

(Defra, 2017). It is estimated that agricultural pollution has contributed approximately 70% 

of the nitrates, 28% of the phosphates and 76% of fine sediments to UK rivers (Edwards 

and Withers, 2008; Collins et al., 2009). This has led to the situation where in England, 

although some previously industrially polluted rivers such as the Tyne and Mersey have 

seen dramatic improvements in water quality, many rural rivers previously of high quality, 

for example the River Wensum (Norfolk) and River Axe (Dorset, Somerset, Devon), have 

deteriorated due largely to diffuse pollution (Natural England, 2015; Cooper et al., 2020). 

 

Pollutants from agriculture are commonly classified into four types: fertilisers, pesticides, 

sediments and faecal bacteria (Ongley, 1996). There are high levels of nitrogen, 

potassium and phosphorus in agricultural fertilisers (Environment Agency, 2007a), 

whether these are from mineral sources (granular fertiliser) or livestock waste (slurry 

spreading). Excess nutrients, especially soluble phosphorus, entering a river system can 

lead to increased, sometimes explosive, growth of plants and algae, known as 

eutrophication (Wortmann et al., 2005; Environment Agency, 2007a). Excessive growth of 

macrophytes and algae can result in poor water quality, including low dissolved oxygen at 

night, resulting in fish deaths (Defra, 2019), but also has a more pervasive, chronic effect 

by causing species replacement, community and ecosystem modification. For example, in 

salmonid-dominated rivers, algal growths can cover the stream bed altering its physical 

structure for benthic organisms, but also limiting water flow through and dissolved gas 

exchange with gravel/cobble beds. Decomposing algae increase oxygen demand at the 

stream bed and contribute to hypoxia within the hyporheic zone (Mallin et al., 2006; Cox 

and Whitehead, 2009), contributing to mortality of salmonid eggs and alevins (yolk-sac fry) 

(Kemp et al., 2011). 

 

Increased levels of fine sediments from agricultural runoff can blanket and infiltrate gravel 

beds, smothering salmonid spawning grounds, decreasing hyporheic flow and oxygen 

transport to eggs, and decreasing the productivity of salmonid rearing habitat (Tappel and 

Bjornn, 1983; Reiser and White, 1988; Armstrong et al., 2003). Manure spreading, 

livestock slurry and silage effluent are also pollution sources in agriculture (see above, 
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regarding eutrophication). These activities often result in high levels of contamination of 

receiving waters by pathogens, metals, phosphorus and nitrogen, and potential 

contamination of ground water (Ongley, 1996; Wortmann et al., 2005). 

 

Pesticides can be washed into the river system through rainfall or get into the surface 

water directly due to pesticide spraying. Pesticides can cause a series of negative impacts 

to the aquatic system such as surface water contamination; death of fish and 

invertebrates; tissue damage and cancer; reproductive failure; physical deformities 

(Ongley, 1996; Liess and Schulz, 1999; Geeraerts and Belpaire, 2010). Chemically 

contaminated sediments (e.g. heavy metals, pesticides, industrial organochlorines such 

as polychlorinated biphenyls [PCBs] can accumulate on the bottom of the stream and 

reduce biodiversity in river beds through sublethal or lethal toxic effects (Geeraerts and 

Belpaire, 2010; Rose et al., 2015).  

 

1.4.2 Impacts of habitat modification 

Rivers and their riparian zones play a key role in the maintenance of aquatic biodiversity 

(Dynesius and Nilsson, 1994). UK rivers have suffered negative anthropogenic impacts for 

centuries (Figure 1.2). Physical modifications affect 39% of WFD water bodies in England 

(Environment Agency, 2015). These modifications such as river straightening, gravel 

extraction, dredging of sediment, flood defences, land drainage and irrigation systems, 

dams and weirs alter the shape and size of rivers and their riparian zone, increase river 

degradation and cause habitat fragmentation (Dynesius and Nilsson, 1994; Environment 

Agency, 2015). The main processes impeded, resulting in the modifications described 

above, are loss of hydrological, sediment, nutrient and ecological connectivity. Habitat 

modification and fragmentation have been recognized to be major threats to aquatic 

species abundance and biodiversity (Larinier, 2001; Malmqvist and Rundle, 2002; Nilsson 

et al., 2005; Dudgeon et al., 2006; Noonan et al., 2012). Habitat modification is a 

fundamental reason for losses of many fish species and reductions in fish population size 

along many rivers, especially for fishes with specialist needs, such as rheophilic species 

(i.e. those living in fast-moving waters), and lithophilic species (i.e. those requiring stony 

reproduction habitat). 
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Channelization includes river straightening, diversion, deepening and the creation of 

artificial channels. In England and Wales, river channelization was undertaken 

increasingly from the Middle Ages onwards to mitigate flood issues, improve agricultural 

drainage, improve navigation and prevent bank erosion (Brookes et al., 1983; Millidine et 

al., 2012). These activities reached a peak in the mid-20th Century, when it was estimated 

that a total of 8,504 km of river network were channelized in England and Wales (Brookes 

et al., 1983). Channelized rivers normally have uniform cross-section shapes and bottom 

substrates dominated by fine sediments that lead to less varied in-stream habitats for 

different aquatic biota including invertebrate and fish (Negishi et al., 2002; Harrison et al., 

2004; Millidine et al., 2012). In addition, channelized rivers often require regular dredging 

to control sediment deposition. But this action may lead to unintended bank erosion and 

other negative effects on aquatic ecosystems. 

 

Removal of coarse substrates such as pebbles and gravels can damage the spawning 

grounds of species such as salmon (Salmo salar), brown trout (Salmo trutta), bullhead 

(Cottus gobio species complex, including C. perifretum) and river lamprey (Lampetra 

fluviatilis) (Figure 1.4). Apart from fish, dredging also poses threats to endangered UK 

species such as the freshwater pearl mussel (Margaritifera margaritifera) (Cosgrove and 

Hastie, 2001) and the white-clawed crayfish (Austropotamobius pallipes) (Demers and 

Reynolds, 2003). It was reported that a dredging operation destroyed the entire freshwater 

pearl mussel population in a north-west Wales river (Killeen et al., 1998; Cosgrove and 

Hastie, 2001). Similarly, gravel extraction also causes damage to rivers by altering river 

topography and sediment composition (see Chapter 2 for details).  
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Figure 1.4 Examples of gravel-cobble spawning fishes, (a) Atlantic salmon [parr life cycle 

stage shown], (b) brown trout, (c) bullhead, (d) river lamprey. 

 

Instream wood and vegetation removal is another human activity which has received 

increased attention in recent years (Old et al., 2014). Instream macrophyte vegetation is 

especially important in lowland rivers such as the chalk rivers of southern England (Flynn 

et al., 2002; Cotton et al., 2006), less so in the Pennine rivers of northern England so the 

emphasis that follows is on woody material, originating from the riparian zone. Instream 

wood, also known as large woody debris (LWD) is pieces of dead wood larger than 0.1 m 

in diameter and 1.0 m length, and can refer to entire trees, branches or root plates that 

have fallen into rivers (Linstead and Gurnell, 1998). Instream wood is one of the vital 

elements for functioning river ecosystems and is considered as important as 

riparian/instream vegetation and sediment (Nakamura et al., 2017; Ruiz-Villanueva and 

Stoffel, 2017). However, instream wood has been extensively removed from river systems 

in some countries in order to improve navigation and flood control (Wohl, 2014; Elosegi et 

al., 2017). Instream wood removal increases channel conveyance and reduces flow 

resistance within the channel, resulting in the reduction of secondary channels, floodplain 

area and bank stability (Wohl, 2014). Rivers with less instream wood tend to become 
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wider, straighter with less habitat diversity and reduced lateral connectivity (Wohl, 2014). 

 

1.4.3 Impacts of anthropogenic in-stream structures 

Longitudinal barriers cause issues for both upstream and downstream fish migrations and 

dispersal (Lucas and Baras, 2001). Although some fish species are migratory (Lucas and 

Baras, 2001) all river organisms rely on dispersal for recolonization, metapopulation 

maintenance and gene flow (Radinger and Wolter, 2014; Tummers et al., 2016; Wilkes et 

al., 2019). Barrages, flood-control dams, tidal barrages and sluices, pumping- and 

hydropower stations are all examples of potential barriers to fish movement (Brink et al., 

2018). Structures such as weirs and dams are the main reason for river fragmentation; 

these reduce the availability of key habitats for fish and other aquatic species, and 

obstruct migration and dispersal of aquatic biota including fish. Single, small-scale barriers 

like low-head weirs (0.5 – 4.0 m) usually have lesser impacts on fish populations 

compared to large dams, but because there are many more small obstacles (Jones et al., 

2019), their cumulative impacts may be much greater (Lucas et al., 2009). It has been 

estimated that there are nearly 25,000 weirs and similar structures in the rivers of England 

and Wales (Elbourne et al., 2013), although this is an underestimate (Jones et al. 2019). 

 

Globally, many fish species have been impacted by in-stream barriers and these have 

caused substantial declines in their populations. The species most strongly influenced by 

engineered cross-channel structures are diadromous species (migrating between 

freshwater and the sea e.g. Atlantic salmon) and potamodromous species (migrating 

solely within freshwater e.g. barbel Barbus barbus), because their migrations can be 

prevented, restricted or delayed by cross-stream obstacles. Small artificial barriers like 

weirs with a head of just a few tens of centimetres can also contribute to the decrease of 

some small migratory cyprinid species and non-migratory sculpins such as European 

bullhead (Cottus gobio), because those fish do not display leaping or strong swimming 

abilities (Peter, 1998; Lucas and Baras, 2001). In North-Western Europe, Atlantic salmon 

have been extirpated from at least 300 rivers, and Atlantic sturgeon (Acipenser oxyrinchus 

oxyrinchus) has been extirpated from most European rivers due to the obstruction of their 

migratory paths and degradation and alteration of rivers (De Groot, 1992; Holčik, 1996; 
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Raat, 2001; Brink et al., 2018). In Sweden, stocks of brown trout have declined by two 

thirds in Lake Vänern due to migration obstructions (Brink et al., 2018). 

 

1.5 River restoration 

With the increasing threats to rivers and their biota, there is an increasing need for river 

ecosystem management. The term river restoration, increasingly widely used in the last 

20 years, has become associated mainly with actions to restore physical habitat and 

channel form to nearer natural conditions (Addy et al., 2016). Multiple measures can be 

implemented separately or combined with each other for restoring river habitat and 

biodiversity. The aims of river restoration are to repair and restore the natural physical 

process, river features, physical habitats, then assist the degraded river system to function 

again (Addy et al., 2016). If restoration is successful, the river system should have the 

adaptive ability to maintain its restored condition (Speed et al., 2016).  

 

Yet Figure 1.1 illustrates that deterioration of the ecological function of rivers is associated 

with chemical as well as hydromorphological impacts. Thus, effective restoration of 

ecological function in rivers necessitates water quality improvements, through pollution 

control, as well as by hydromorphological rehabilitation. The return of large populations of 

migratory salmonids (with low tolerance to poor water quality) has been achieved in post-

industrial English rivers only as a result of massive investment to improve the quality of 

waste water releases in these rivers. With the decline of heavy industry, reduced effluent, 

and improvement in water quality, especially in the lower river reaches and estuary, 

Atlantic salmon have recolonized (Perrier et al., 2010; Ikediashi et al., 2012), but 

spawning success and populations remain low in many potential nursery areas due to 

migration barriers, degraded habitat and/or poor water quality. Similar issues affect other 

fish species to a somewhat lesser but nevertheless significant degree (Tummers et al., 

2016). Domestic and industrial effluent water quality improvements are mainly managed 

through the water industry companies in conjunction with environmental regulators, but 

restoration of hydromorphological functionality has been a more recent objective, in the 

EU stimulated especially by WFD targets (Haase et al., 2013; Schmutz et al., 2016; 

Rinaldi et al., 2017). 
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1.5.1 Connectivity restoration in rivers 

Natural ecological functioning of many rivers in the UK has been damaged by multiple 

issues for several centuries. The ecological problems became serious due to the rapid 

development of industry and urban environments. Obstacles like dams and weirs blocked 

the migration paths for different fish species, resulting in increased river fragmentation. 

The development of agriculture also resulted in the loss and alteration of riparian zone 

and floodplain, as well as reducing the refuges for riverine animals and damaging the 

habitats for fish, invertebrates, aquatic mammals and a variety of other species. To restore 

river longitudinal connectivity, one of the common measures is to recreate fish passes or 

biota passes (Silva et al., 2018), although this does not solve the origin of the problem. 

Increasingly solutions are sought that as well as passing fish and other biota, also 

reinstate natural transport processes within the river, and support natural habitats, 

typically through barrier removal (Kemp and O’Hanley, 2010; O’Hanley, 2011; King and 

O’Hanley, 2016). However, lateral connectivity restoration is also needed, especially in 

floodplain regions since ecological processes here are intrinsically linked with lateral 

hydrological connectivity and wetland habitats (Schiemer et al., 1999; Bolland et al., 

2012). The WFD requires the provision of free migration of fish in river systems, 

stimulating increased efforts to provide longitudinal and lateral connectivity for fish 

between habitats.  

 

With regard to longitudinal connectivity, which is the biggest connectivity problem for 

migratory fishes, and in upland rivers with rheophilic fish communities (those typical of and 

adapted to rapid, flowing water), the potential effect of each in-stream obstacle needs to 

be recorded so that problematic sites can be selected for carrying out connectivity 

restoration projects (Ovidio et al., 2007). Based on connectivity restoration research, 

barrier removal may be the most efficient way to increase fish populations compared with 

other methods (Kemp and O’Hanley, 2010; Birnie-Gauvin et al., 2017c), restoring 

longitudinal connectivity and reinstating more natural habitats in terms of depth, flow and 

substrate variation (Elbourne et al., 2013). Barrier removal is considered to be the most 

cost-effective and sustainable method in river habitat restoration, because it can restore 
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river morphology, sediment, organic matter, aquatic biota and provision of upstream and 

downstream movement (Larinier, 2001; Elbourne et al., 2013). From a fish passage 

perspective, the barrier removal allows fish species to recolonize depopulated upper 

reaches of a river and contribute to the broader restoration of riverine processes (Brink et 

al., 2018). Apart from targeted species, barrier removal also benefits other non-target 

species and weaker swimming fish species which may struggle to ascend fish passes and 

other restorative measures (Hitt et al., 2012; Hogg et al., 2015; Kornis et al., 2015; Brink 

et al., 2018). However, if a weir/structure cannot be removed for some reasons (e.g. 

economic, historical, societal or political restrictions), mitigations such as fish passes need 

to be considered.  

 

Fish passes (= fishways) can be installed at river barriers to support upstream and/or 

downstream migration (Noonan et al., 2012), various designs of which are available. The 

working principle of an upstream fish pass is to dissipate the energy of flowing water by 

walls, baffles or vanes (or natural structures such as rocks), so the fish can ascend past 

the structure much more easily (Clay, 1995). The upstream fish pass, designed for certain 

anadromous species (e.g. salmonids), is well developed (Larinier, 2001), but their 

efficiency for other species such as potamodromous (e.g. barbel) or catadromous species 

(e.g. European eel Anguilla anguilla) is poorly understood. Downstream fish passes also 

need to be developed, because for small obstacles it is often assumed that fish will pass 

over them unimpeded but this is often not the case (Gauld et al., 2013). Calles and 

Greenberg (2009) emphasize that longitudinal connectivity for migratory river fish, 

especially diadromous ones, needs to be functionally two-way (upstream and 

downstream), despite the overemphasis on upstream fishways. A successful ecological 

restoration project on a river should not only achieve effective connectivity for one or a few 

species, but also for a wide range of species (Lucas and Baras, 2001; Tummers et al., 

2016). However, it may be necessary to design fish pass or connectivity restoration 

solutions to limit passage and colonisation by non-native invasive species, such as signal 

crayfish (Pacifastacus leniusculus) (McLaughlin et al., 2013; Rosewarne et al., 2013). 

 

Apart from a highly engineered ‘fish pass’, an easement is a pragmatic solution to fish 
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passage which generally falls outside the formal fish pass authorisation process 

(Armstrong et al., 2010). These are usually relatively small structures, on streams rather 

than large rivers. The term “easement” is not widely recognised internationally. It is almost 

exclusively a UK term, developed by the Environment Agency to distinguish formal fish 

passes (that require approval in design and installation by a formal committee – hence 

expensive, and slow to process) from semi-formal modifications (easements), often 

nature-like in form, that do not require formal committee approval, so are much quicker 

and cheaper to complete. In Britain, easements are usually built by non-governmental, 

not-for-profit organisations (e.g. Rivers Trusts) in order to reduce the obstructing effects of 

the many small obstacles occurring in British rivers. 

 

1.5.2 Habitat restoration in rivers 

Habitat degradation is one of the biggest problems in protecting the biodiversity and 

ecosystem functioning of river systems. Some anthropogenic river modifications such as 

channel straightening, relocation and dredging often cause habitat alteration, degradation 

and loss (Speed et al., 2016). In order to mitigate those negative impacts and return the 

river habitat towards a more normal condition for aquatic species, a wide variety of efforts 

in river habitat restoration have been carried out all over the world (Jansson et al., 2007; 

Nilsson et al., 2015, 2016). For achieving successful habitat restoration, both riparian 

zones and in-stream habitat need to be considered. Barrier removal helps to restore 

habitats in rivers, especially low-gradient ones, because it removes artificially pooled 

areas and facilitates natural sediment transport (Birnie-Gauvin et al., 2017a). Beyond this, 

other widely used river habitat restoration methods include re-introduction of large woody 

debris, river bed control structures, revegetation of the riparian zone and 

geomorphological reconstruction (Floyd et al., 2009; Speed et al., 2016; Bašić et al., 

2017). Consideration of several of these categories is given below, as these are the 

cheaper and more frequently adopted river restoration methods, while geomorphological 

construction requires large-scale mechanical actions such as channel reworking and 

regrading. 
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1.5.2.1 Large woody debris management 

Re-introduction of LWD is considered to be a major method in river habitat restoration, 

and it has been increasingly used in recent years, particularly for the benefit of salmonid 

fish species (Cederholm et al., 1997; Solazzi et al., 2000; Elosegi et al., 2017). The LWD 

installation method is both environmentally friendly and inexpensive, it can accelerate river 

habitat rehabilitation and also have various benefits to lotic systems. LWD can stabilise 

the river bank, reduce river bed erosion and trap sediments, gravels and silts, raise bed 

levels, and help create pools, riffles and backwater sequences (Swanson and 

Lienkaemper, 1978; Bisson et al., 1987; Gurnell et al., 2005). For example, log jams can 

increase the biological productivity in rivers and form complex river morphology in the 

form of pools, gravel bars and covers (Bisson et al., 1987; Montgomery and Buffington, 

1997; Elosegi et al., 2017). LWD can also remove fine silt from the river system by 

creating silt ‘benches’ immediately upstream, and this process helps to maintain fast flows 

in the river and can prevent gravels, which provide suitable spawning grounds for fish like 

salmon and trout, being covered by silts. The loss of LWD can result in declines in fish 

abundance, average fish size, and standing biomass of salmonid fish species (Coulston 

and Maughan, 1983; Dolloff, 1986; Fausch and Northcote, 1992).  

 

Large Woody Debris can provide shelters and refuges for salmonids and other fish to hide 

in (Floyd et al., 2009). They can also create feeding, spawning grounds and nursery sites 

such as gravel beds, pools and undercut banks for fish (Coulston and Maughan, 1983; 

Cederholm et al., 1997; Solazzi et al., 2000; Floyd et al., 2009; Elosegi et al., 2017). LWD 

offers a wide range of spaces for algae, microbes and invertebrates to colonise, which 

increases the aquatic biodiversity and supplies plenty of food for other aquatic creatures 

(Cederholm et al., 1997). Based on studies in the Elwha River in Washington State, USA, 

engineered log jams are useful in increasing juvenile salmon densities for restoring 

juvenile salmon habitat (Pess et al., 2012). For streams with less woody debris, 

introduction of LWD was considered to be an effective method in restoring salmonid 

populations (Floyd et al., 2009). 
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1.5.2.2 Gravel management 

For gravel-cobble spawning fishes such as salmonids, lampreys, cottids (Figure 1.4) and 

some cyprinids, a high quality spawning and rearing habitat usually consists of a mixture 

of sand, gravel, cobbles and boulders (the exact mixture varying according to species and 

life stage) and it is fundamental to the productivity of salmonids (Rosenau and Angelo, 

2000; Armstrong et al., 2003). However, human activities such as mining, damming, sand 

and gravel extraction, dredging and dyking have degraded lots of spawning grounds for 

fish in streams (Kondolf, 1995; Rosenau and Angelo, 2000; Larinier, 2001). For example, 

gravel extraction from riverbeds changes the riverbed morphology, depletes instream 

gravel, degrades the aquatic habitat, causes erosion of gravel bars downstream and 

destroys riparian vegetation (Collins and Dunne, 1989; Kondolf, 1997). In order to 

rehabilitate the natural sediments and mitigate the negative impacts on streams, gravel 

management actions such as gravel additions and gravel jetting have been used 

(Wheaton et al., 2004; Twine, 2013; Mueller et al., 2014; Bašić et al., 2017).  

 

Gravel addition is a method to add a particular size of gravel into a stream to replace the 

missing sediments (Mueller et al., 2014). On the Rhine River, 170,000 tonnes of gravel 

are artificially added to the river below the Barrage Iffezheim annually in order to prevent 

incision (Kondolf, 1995). On the Upper Sacramento River below Keswick Dam, artificial 

gravel was added to the river for salmonids to spawn on from 1988 to 2000 (Kondolf, 

1995). These projects can provide short-term habitat for salmon, but the gravels placed 

below the dam have washed out during high flows, so it requires continued addition of 

more imported gravel (Kondolf, 1997). In this regard it treats the symptom, rather than the 

cause and so has limited efficacy (Mueller et al., 2014). 

 

If the spaces between streambed gravel have been clogged by fine sediment, salmonid 

eggs and newly hatched alevins may suffocate due to low oxygen content and juvenile 

salmonids lose a key food source and shelter (Tappel and Bjornn, 1983; Louhi et al., 

2008; Kemp et al., 2011). In order to remove the fine sediment from the gravel beds, high 

pressure water jetting (= gravel jetting) is sometimes used before the spawning season, 

although it is a labour intensive method which must be used annually, and silt ingress can 
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still occur during the period of egg incubation (Twine, 2013; Bašić et al., 2017).  

 

1.5.2.3 Restoring riparian vegetation communities 

Riparian zones are the interface between land and aquatic environments, processing 

nutrients, delivering organic matter to a stream, stabilizing soils and providing habitats for 

both terrestrial and aquatic biota (Roni et al., 2005). However, some human activities like 

agriculture, industry, grazing, fencing, logging and transportation may cause riparian zone 

degradation. In order to restore the degraded riparian habitat, riparian silviculture 

treatments have been widely used to improve the riparian conditions (Roni et al., 2005). 

These treatments include seeding, planting and also removal of invasive plant species. 

Restoring the riparian zone can increase stream shading (and hence help protect against 

climate change impacts of increasing water temperatures), improve water quality, help to 

rehabilitate wooded wildlife corridors, reinforce the river bank and deliver organic matter 

into the stream (Addy et al., 2016). Planting native vegetation can rehabilitate the 

characteristics of riparian vegetation communities, improve self-recovery ability of physical 

habitat and provide food and nutrients for the fish and invertebrate communities (Addy et 

al., 2016).  

 

1.5.3 Effectiveness of restoration 

Despite many attempts at stream and river restoration, especially on small (tens to 

hundreds of metres) and medium (several kilometres) scales, good quality empirical data 

concerning the effectiveness of interventions are sparse relative to the number of 

schemes (Nilsson et al., 2016; Tummers et al., 2016). This is partly because of limited 

budgets, partly because budgets are normally directed at the restoration work rather than 

scientific evaluation, and partly due to the difficulties inherent in measuring the effects of 

restoration projects relative to processes unrelated to the restoration actions. Increasing 

numbers of studies are measuring the effectiveness of fish passage and connectivity 

measures (Noonan et al., 2012; Tummers et al., 2016; Lothian et al., 2020), but the link 

between passage, dispersal at site level and fish population change at the reach or 

catchment scale is poorly known, and most such studies are for just a few species. 

Similarly, evidence concerning the benefits of river habitat improvement measures for fish 
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and other biota are few (van Zyll De Jong et al., 1997; Pretty et al., 2003; Floyd et al., 

2009; Verdonschot et al., 2016). In both cases, well-controlled experiments over 

appropriate timescales (natural recovery may take many years) are difficult to achieve. 

Often, multiple stressors operate and may be changing on different spatial and temporal 

scales, again making measurement of changes difficult. Nevertheless, in post-industrial 

rivers, recording longer term changes in biota (such as fish) is necessarily part of the 

process of determining the response of these to changing conditions, including adaptive 

management measures intended to continue improvements towards good ecological 

conditions (Birnie-Gauvin et al., 2017b).  

 

1.6 Aims and objectives of the study  

The aims of this study were to evaluate the changes in fish populations in post-industrial 

rivers, such as those in NE England, and to determine the roles of river restoration 

projects, particularly through water quality improvement and connectivity restoration, in 

facilitating ecological improvements to the fish communities of these rivers. This thesis 

evaluates historical changes and current trends in fish populations in the Rivers Tyne, 

Wear and Tees and sets them in the context of their decline in water quality and river 

habitat, and their subsequent recovery. The thesis also incorporates empirical studies on 

the distribution and numbers of obstructions in the Rivers Wear and Tees; the effect of a 

barrier removal in a tidal tributary of the Tees; and effects of partial connectivity restoration 

in several tributaries of the River Wear. 

 

In the context of the aims indicated above, the following objectives were generated: 

1) Determine the historical changes in fish communities and fish abundance, 

particularly of anadromous salmonids, in upland Northeast English post-industrial 

rivers (Tyne, Wear, Tees), in relation to environmental quality and other relevant 

factors such as fisheries, in these rivers.  

 

2) Determine the degree to which the barrier inventories of post-industrial rivers are 

incomplete, potentially hindering river restoration actions as a result. The context of 

this objective is that in England, the national river barrier inventory used for management 
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and longitudinal connectivity restoration planning was produced by the Environment 

Agency. However, I predict that, based on Jones et al. (2019) only a small proportion of in-

stream barriers were recorded in the national database. I test this by using walkover 

surveys on stratified sections of the Wear and Tees catchments. 

 

3) Test, using a case study, the degree to which barrier removal may be a powerful 

tool for river restoration in small tidal creeks and streams. I predict that tidal barrier 

removal in small streams linked directly to tidal reaches results in the change of habitat 

from impounded, lentic water to more diverse habitat, with associated rapid changes in 

the fish community in the formally impounded zone and benefits the recolonisation of 

diadromous fishes (e.g. European eel) in tidally-linked streams. 

 

4) Test, using case studies, the degree to which subcatchment-scale connectivity 

restoration (improving stream connectivity and/or fish passage at multiple sites 

within a subcatchment) can restore rheophilic fish communities towards expected 

conditions. I test this on several tributaries of the River Wear where barrier removals and 

fish passage mitigations have been undertaken, by comparison with reference conditions 

and/or over time. 

 

1.7 Chapter outlines 

Following the General Introduction this thesis comprises one literature review and data 

combined chapter (Chapter 2), three data chapters (Chapters 3, 4 and 5) and a General 

Discussion (Chapter 6). Chapter 2 addresses Objective 1. This chapter uses historical 

literature and secondary data to assess the decline and recovery of fish, water quality and 

aquatic habitat in the Tyne, Wear and Tees catchments. Chapter 2 also provides 

background information for remaining chapters.  

 

Chapter 3 addresses Objective 2, assessing the level of completeness of the current 

national barrier inventory. This study was based on a detailed walkover survey on the 

main River Wear and Tees as well as 20 of their tributaries. Both artificial and natural 

barriers were recorded during the survey then compared with the national barrier 
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inventory. Outcomes of this study should be helpful for river management agencies in 

planning future connectivity restoration works in Wear and Tees catchments. 

 

Chapter 4 addresses Objective 3. A before-after study was carried out in a coastal lowland 

stream in the Tees catchment, NE England. It measured the short-term changes of 

aquatic habitat, benthic macroinvertebrates and fishes after tidal barrier removal. 

Outcomes of this study should provide a better understanding of how connectivity and 

habitat restoration may facilitate ecological improvements to the fish community.  

 

Chapter 5 aims to address Objective 4. This study determined the effects of multiple (but 

partial) connectivity restoration works on local fish communities in three degraded streams 

in the Wear catchment, NE England. Outcomes of this study may be helpful for 

understanding the recovery of migratory salmonids and other fish species after sub-

catchment scale connectivity restoration. Finally, Chapter 6 integrates the key findings 

from Chapters 2 to 5, and considers implications for future river restoration management 

and research. 
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Chapter Two 
 
History of the decline and recovery of fishes 
in post-industrial rivers in Northeast England 
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Summary 

In order to contextualize the condition of post-industrial rivers in North East England for 

empirical studies in this thesis (Chapters 3-5), a historical review of the decline and partial 

recovery of the rivers Tyne, Wear and Tees, and their fish stocks, was carried out. The 

review concentrated on the period through the Industrial Revolution to the current day and 

combined historical information from published sources with collation and presentation of 

secondary data sourced from government agencies.  

 

Although heavy metal mining occurred in the upper Tyne catchment for centuries before, 

the lower Tyne, particularly the estuary, was severely polluted from the 1850s to the 1950s 

due to urban development and industry around Newcastle upon Tyne and Gateshead, 

without adequate pollution treatment or control. Both Atlantic salmon (Salmo salar) and 

sea trout (Salmo trutta) became functionally extinct from the river in the early 20th Century. 

The abundance of salmon and sea trout in the Tyne increased progressively since the 

1960s when the pollution was eased through progressive actions to treat waste water, and 

through industrial decline. The building of Kielder Reservoir, completed in 1981, without a 

fishway, obstructed key spawning habitat for migratory salmonids in the North Tyne, 

theoretically mitigated by hatchery releases of offsprings from Tyne broodstocks. The 

annual rod catch of salmon and sea trout dramatically increased from the 1980s to the 

2010s, but the increase has stabilized in recent years, with a peak in 2010 (sea trout) and 

2011 (salmon). Nevertheless, the Tyne is now the most productive salmon river anywhere 

in England. Knowledge of historical changes to the remainder of the river’s fish community 

is very poor until the last few decades. However, 82/123 (66.7%) of Tyne Water 

Framework Directive (WFD) water bodies failed to reach good ecological condition in 

2019, with the greatest pressures coming from hydromorphological modification and 

pollution from abandoned mines. 

 

In the River Wear, salmon and sea trout migration was seriously affected by instream 

barriers in the early 19th Century. The Wear was heavily polluted due to coal and metal-

mining activities in the mid-19th Century. Pollution was exacerbated by release of 

untreated human sewage in many mining towns, often situated close to watercourses. 
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Closure of coal mines around the Wear occurred throughout the 20th Century, with the last 

ones, in the east of the catchment, closing in the 1980s but with minewater pumping and 

treatment of those continuing. Other heavy industry decreased and progressive 

improvements in sewage and wastewater treatment occurred from the 1960s onward. 

Similar to the Tyne, an increase in salmon and sea trout abundance occurred in the Wear, 

resulting in recovery of what had been a functionally extinct salmon population. That 

increase has levelled off in recent years, and there is some evidence of a recent decline, 

but the Wear is the second-most productive salmon fishery in England. Knowledge of 

historical changes to the remainder of the river’s fish community is very poor until the last 

few decades. However, 58/64 (90.6%) of Wear WFD water bodies failed to reach good 

ecological condition in 2019, with the greatest pressures coming from urban, wastewater 

and minewater pollution sources and from hydromorphological modification. 

 

The upper Tees was subject to intense heavy metal mining for centuries before the 

Industrial Revolution, but industrial pollution since the mid-19th Century seems to have 

been responsible for a major decline in salmon and sea trout. Much of the estuary’s 

wetland habitat was reclaimed for heavy industry (especially steel production and the 

chemicals industry). Impoundment of upper Tees tributaries was extensive between the 

late 19th Century and the 1980s. Water treatment in the Tees improved from the 1970s 

and since 1982 salmon and sea trout rod catches have slowly increased but have not 

followed the rapid trajectory of the Tyne and Wear. A tidal barrage, 16 km upstream of the 

river mouth, was opened in 1995. This barrage aimed to limit the upstream movement of 

grossly polluted water in the lower estuary and facilitate urban redevelopment, but it also 

inhibits fish migration. Despite some relatively detailed biological surveys in the 1930s, 

knowledge of historical changes to the remainder of the river’s fish community is also very 

poor until the last few decades. However, 74/87 (85.1%) of Tees WFD water bodies failed 

to reach good ecological condition in the 2019, with the greatest pressures coming from 

hydromorphological modification and diffuse pollution sources. 
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2.1 Introduction 

Globally, many rivers have suffered severely from pollution, habitat change and 

connectivity loss (Chapter 1). This situation has worsened over the last 200 years, and 

especially in many parts of the world within the last few decades, when human 

development pressures have been at their greatest (Maitland, 1995; Dudgeon et al., 

2006). Intense pressures have changed the ecological condition of rivers and led to the 

deterioration of river ecosystem functioning, reflected in declines of native biodiversity 

including fish populations. However, such impacts have not increased progressively in all 

areas of the world. In Western Europe, for example much of the damage to rivers 

occurred during the agricultural and Industrial Revolutions when rivers became highly 

fragmented and large amounts of urban and industrial pollution occurred (Hoffmann, 

1996; Downward and Skinner, 2005; Walter and Merritts, 2008; Nützmann et al., 2011; 

Winiwarter et al., 2016). Examples of some of these declines and, in some cases, 

ecological recovery, are given below, highlighting that much of the damage that needs to 

be repaired is the carryover effect of activities from many decades or even centuries ago. 

 

The River Rhine, one of the major European rivers, stretching from Switzerland to the 

Netherlands, is considered to be one of the most anthropogenically affected river systems 

in Europe (Lelek and Köhler, 1990; Lenders, 2017). The river has been heavily modified 

with channelization for more than 100 years and the majority of floodplain area has 

completely lost its ecological function (Lelek and Köhler, 1990; Raat, 2001). Within the 

Netherlands region, all branches of the River Rhine are canalized and there is no actual 

river delta left any more (Raat, 2001). A total of seven native fish species had been 

extirpated in the Rhine by 1990, including European sturgeon (Acipenser sturio) (Lelek 

and Köhler, 1990). Atlantic salmon (Salmo salar) are functionally extinct in the Rhine 

although attempts are being made to restore them (see below). Salmon showed a 

decreasing abundance trend since the 1500s, exacerbated by the later effects of 

increased industrialization (De Groot, 1992, 2002; Lenders, 2017). Salmon captures in the 

Rhine–Meuse estuary decreased from an average number of 70,000 fish in the 1880s to 

zero in the 1950s (De Groot, 1992; Raat, 2001). There are several reasons for the decline 

of the salmon population: construction of in-stream barriers inhibiting migration, decline of 
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spawning and nursery grounds by gravel extraction, domestic and industrial waste water 

pollution and intensive fisheries (De Groot, 1992; Raat, 2001). Houting (Coregonus 

oxyrhynchus) used to be present in high abundance in this river, but have disappeared 

since 1940. The decline of the houting population is probably due to loss of spawning and 

nursery habitat (Raat, 2001). The allis shad (Alosa alosa), was found in high numbers in 

the lower parts of the Rhine and Meuse in the 1920s, but it became extinct from the rivers 

in the Netherlands region (Raat, 2001). The reason for the extirpation of the shad 

population is similar to that for salmon.  

 

In the 1960s and 1970s, much of the River Rhine was very polluted and river habitat was 

on the edge of total deterioration. In addition, the Sandoz chemical spill at Basel, 

Switzerland in 1986 caused catastrophic effects on the river biota, including fish (Giger, 

2009). The incident eliminated the entire eel (Anguilla anguilla) population in the 400 km 

reach downstream of the chemical plant and caused significant damage to other fish 

populations such as grayling (Thymallus thymallus), brown trout (Salmo trutta), pike (Esox 

lucius) and zander (Sander lucioperca), and to many other organisms (Güttinger and 

Stumm, 1992; Giger, 2009). The pollution incident also facilitated the colonisation of 

invasive species through occupation of vacant ecological niches due to the loss of native 

biota. It has been estimated that more than 90% of biomass in the Rhine is composed of 

invasive species (Giger, 2009). A series of major restoration projects have attempted to 

restore the ecological quality of the Rhine, partly stimulated by the Sandoz incident, but 

also by the Water Framework Directive (WFD). “Salmon 2000”, followed by “Salmon 

Come Back” and “Salmon 2020” are projects that aimed/aim to restore Atlantic salmon to 

the Rhine (Froehlich-Schmitt, 2004). Despite massive river restoration investment along 

the river and large-scale salmon stocking, there is currently no self-sustaining salmon 

population and adults can only reach tiny fragments of spawning habitat within their 

former range (Froehlich-Schmitt, 2004). 

 

The Danube is the largest European river and has the richest fish fauna of all European 

rivers, providing refuges for retreat during glacial episodes, unlike many of Europe’s 

rivers. Like the Rhine it has been dramatically modified by channelization, fragmentation, 
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pollution and overfishing (Jungwirth et al., 2003; Schmutz et al., 2014). In Slovakia, 67 fish 

species were originally found in the Danube and Tisza rivers at the end of the 19th Century 

(Holčik, 1996). However, due to the industrial development and intensive large-scale 

agriculture, in Slovakia six species were extirpated by 1994, including beluga sturgeon 

(Huso huso), Russian sturgeon (Acipenser gueldenstaedtii), Atlantic salmon and the sea 

trout ecomorph of Salmo trutta (Holčik, 1996). Another 36 fish species were considered 

under threat and in need of protection (Holčik, 1996). Across 3000 km of river network, 

more than 650 km had no fish due to barrier construction, river regulation, pollution, arable 

expansion and water extraction for irrigation (Holčik, 1996). In order to restore aquatic and 

riparian habitat, large scale habitat and connectivity rehabilitation works were conducted 

in the Austrian region of the Danube since the 1990s (Schiemer et al., 1999; Schmutz et 

al., 2014). In addition, ten dams were removed in 2019 in the Danube Delta in Ukraine, to 

help restore natural hydrological processes. 

 

Fish totally vanished in parts of many rivers within the industrial and heavily populated 

areas of Great Britain in the second half of the 19th Century and early 20th Century 

(Maitland and Lyle, 1991). In Scotland, before the 18th Century, Atlantic salmon were 

present in all accessible reaches of major rivers in the central lowlands (Doughty and 

Gardiner, 2003). However, in the late 18th Century salmon started to decline in some 

rivers and the declining trend continued through the 19th Century (Doughty and Gardiner, 

2003). By 1900, salmon had become extinct in many rivers where they were formerly 

abundant (Doughty and Gardiner, 2003). For example, the River Clyde in Scotland and 

the Thames in England used to have diverse fish communities with about 20-30 species 

(more in the Thames than Clyde due to its biogeography). Historically, the River Thames 

held a significant amount of Atlantic salmon (Griffiths et al., 2011). However, the Industrial 

Revolution and urbanization of London led to increased levels of pollution in the river and 

salmon was extinct by the 1830s (Griffiths et al., 2011). In the River Clyde, industrial 

chemical discharges eventually led to an almost complete loss of fishes in the lower reach 

until the 1980s (Maitland and Lyle, 1991). Although the Thames fish fauna has recovered 

dramatically since the 1970s (Colclough et al., 2002), due principally to improvements in 

water quality by pollution reduction (Griffiths et al., 2011), attempts to restore Atlantic 
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salmon have failed due to the large numbers of barriers, diffuse pollution and climate 

change (Griffiths et al., 2011). Some once common fish species in the Thames such as 

European river lamprey (Lampetra fluviatilis) have failed to recolonise despite water 

quality now being more than adequate (Lucas et al., 2020). 

 

The River Clyde, used to hold abundant salmon and trout populations before the 18th 

Century, when salmon were widespread in the system as far as Stonebyres Falls 

(Doughty and Gardiner, 2003). By the end of the 18th Century, salmon populations were in 

decline; by the 1840s, there was a strong decrease; by the early 20th Century, salmon had 

been eliminated from most of the catchment except the River Leven and Loch Lomond 

system (Doughty and Gardiner, 2003). The decline was due to a combination of factors 

including dredged estuary habitat, weir obstruction to fish migration and pollution from dye 

works, chemical works, bleach works, paraffin oil works, distilleries and tanneries 

(Doughty and Gardiner, 2003). Sewage was also considered to be a major source of 

pollution in the Clyde and its tributaries. Due to the heavily expanded coal mining industry 

by the 1920s, effluent from coal washeries also became another serious pollution source 

(Doughty and Gardiner, 2003). It was not until the 1950s when water quality improved, 

that fish started to recover in the Clyde (Doughty and Gardiner, 2003). 

 

In England and Wales, most rivers supported a salmon population before the Industrial 

Revolution, excepting the low-gradient rivers of East Anglia (Mawle and Milner, 2003). 

Historically, salmon was once so cheap and plentiful that it was a staple food and folklore 

records that it was not to be served more than three times per week to British servants 

and apprentices (Hill, 1995). However, during the 19th and 20th centuries, the rapid urban 

and industrial development caused considerable pollution in rivers and estuaries. The 

River Thames in southern England was considered to be the first major British river which 

completely lost its salmon stock, the last record was in 1833 (Mawle and Milner, 2003). 

Salmon in the River Mersey in Northwest England also totally vanished in the middle of 

the 19th Century due to pollution (Mawle and Milner, 2003; Ikediashi et al., 2012). In 

addition, by the 1850s, fish were totally absent from the River Irwell, a major tributary of 

the River Mersey (Ikediashi et al., 2012). Following growth of industry around the Mersey 
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estuary and expansion of the urban areas of Liverpool and Manchester, it was suggested 

all fish species were extinct in the main river Mersey by the 1950s (Mawle and Milner, 

2003). The River Taff in south Wales suffered pollution from coal mining, metallurgical 

industries and domestic sewage (Mawle et al., 1985). In 1860, the Commission into 

Salmon Fisheries mentioned pollution was the major reason for decline of salmon stocks 

(Mawle and Milner, 2003). Besides pollution, increasing obstruction to migration, water 

abstraction and overexploitation in fisheries resulted in the loss of fish from many rivers 

across England and Wales (Mawle and Milner, 2003).  

 

In North East England, both salmon and sea trout have suffered a range of anthropogenic 

influences and were threatened with extinction in the Tyne, Wear and Tees catchments by 

the Industrial Revolution. Although emphasis in the literature concerning the impacts of 

historic river degradation on fishes has often been on anadromous salmonids, a wide 

range of other species are also impacted, and WFD requires assessment of ecological 

condition relative to the natural ‘reference’ fish community. To understand the decline and 

recovery of fish populations in post-industrial rivers, such as those in North East England, 

where most heavy industry has been lost, it is necessary to know the history of fisheries, 

mining, industrial development, pollution, water abstraction, and other pressures such as 

farming, as well as environmental protection actions. An understanding of the impacts of 

historical human activities on fish communities is valuable. This could shine a light on the 

factors that have led to biodiversity decline and, loss of ecosystem functioning, and 

provide an insight for future river management works. Therefore, the major aims of this 

chapter are to, (1) identify likely contributory factors that led to the functional extinction of 

the salmon and sea trout in the Tyne, Wear and Tees catchments; (2) summarize the 

historical timeline of the decline and recovery of fishes and associated environmental 

quality indicators in the three catchments; (3) evaluate the recovery status of both aquatic 

habitat and fish biodiversity in the three catchments. This is achieved using evidence from 

the literature and existing secondary data obtained from governmental agencies, 

particularly the Environment Agency and its predecessors. 
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2.2 Materials and methods 

2.2.1 Study area 

2.2.1.1 River Tyne 

The River Tyne is formed by the confluence of two tributaries: the North Tyne and the 

South Tyne (Figure 2.1), both of which rise in the Pennine Hills. The North Tyne rises in 

Kielder Forest, it flows south-eastwards for about 63 km then joins the South Tyne at 

Hexham. In the upper North Tyne valley, the river has been impounded by Kielder 

reservoir, which is one of the largest artificial lakes in Western Europe. The upper North 

Tyne and Rede subcatchments are mostly characterised by Kielder Water (reservoir), 

Catcleugh Reservoir (at the top of the River Rede), commercial forestry and moorland 

(Environment Agency, 2020a). The South Tyne rises in the Pennine Hills and flows 

eastwards for about 60 km until joining the North Tyne, then the Tyne flows eastwards for 

about 58 km until reaching the North Sea at South Shields. The upper catchment of the 

South Tyne is mostly characterised by moorland. This sub-catchment was seriously 

affected by metal mining pollution from the start of the 17th Century (Archer et al., 2003). 

From the confluence of the North and South Tyne to the tidal limit at Wylam, the middle 

catchment is largely a rural area with productive agricultural land. Several important 

market towns are located along the river. The middle catchment has a long gravel 

extraction history since the 19th Century, though gravel extraction from the river corridor 

itself has been minor in recent decades. The Lower Tyne is dominated by adjacent urban 

and industrial land. It flows through Newcastle upon Tyne and Gateshead. This area, 

“Tyneside” was a major shipbuilding and manufacturing centre during the Industrial 

Revolution. The Tyne Catchment covers an area of 2,943 km2 and the total river network 

length is 4399 km. The River Tyne is currently the best salmon river in England 

(Environment Agency, 2019).  
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Figure 2.1 The Tyne catchment including major tributaries.  

 

2.2.1.2 River Wear 

The River Wear rises in the Pennine Hills and flows eastward for about 110 km until 

reaching the North Sea at Sunderland (Figure 2.2). The catchment of the upper Wear is 

mostly characterised by upland moorland (Environment Agency, 2020a). The area is 

mostly rural and used to be the largest lead-zinc mining region in the world (Kelly, 2002). 

The landscape of the middle reaches of the Wear is mainly arable farmland, with 

numerous villages and some larger towns. The middle catchment has a long coal mining, 

sand / aggregate and shale extraction history close to the river (Neal et al., 2000). 

Although these mines are now redundant, the catchment is still affected by the legacy of 

its industrial and mining past in terms of mine water pumping and contaminated water with 

heavy metals. Pumping of groundwater from mines, particularly coal mines, followed by 

treatment to reduce pollutants especially metals, is a necessity to protect aquifers and 

surface water quality (Johnston et al., 2008). In particular, mine water pumping has a 

major effect on the flows in the Wear’s middle reaches (Environment Agency, 2008a). 

Large amounts of minewater pumping and treatment also occur in the east of Durham to 
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protect Magnesian limestone aquifers for public water supply (Johnston et al., 2008). The 

lower Wear catchment area is a mix of urban, industrial and arable land. Historically, 

Sunderland was a major centre for shipbuilding, coal export and glassmaking during the 

19th and early 20th centuries.  

 

 

Figure 2.2 The Wear catchment including major tributaries. 

 

The catchment area of the Wear is 1321 km2 (Environment Agency, 2020a) and the total 

river network length is 752 km (OS Open Rivers 1: 25,000). Major tributaries of the Wear 

include the River Gaunless, River Browney, Bedburn Beck, Lumley Park Burn, Rookhope 

Burn and Bollihope Burn. The tidal limit is at Lamb Bridge between Chester-le-Street and 

Washington. The Wear is one of the most important Atlantic salmon and sea trout rivers in 

England (Environment Agency, 2019). The lower Wear suffered severe water pollution 

from the Industrial Revolution to the 1970s and salmon almost became extinct in the river. 

From the 1970s onwards pollution sources reduced through the decline of heavy industry 

and due to better water treatment, the salmon population began to recover, and in recent 

years the river has had the second highest annual salmon rod catch in England 

(Environment Agency, 2019).  
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2.2.1.3 River Tees 

The River Tees’ source is about 10 km south of the Wear’s. The Tees flows eastwards for 

160 km and joins the North Sea after passing Middlesbrough (Figure 2.3). The catchment 

area of the Tees is 1930 km2 (Environment Agency, 2020a) and the total river network 

length is 1389 km (OS Open Rivers 1: 25 000). Most of the upper Tees catchment is 

characterised by upland moorland (Environment Agency, 2020a). Two major waterfalls are 

located on the main river in the upper reach at High Force and Cauldron Snout. Both 

waterfalls are complete barriers to fish passage and no migratory salmonids can pass 

upstream of High Force. Land cover of the middle reaches is mostly categorized as 

intensive agriculture land. The lower Tees and estuary is largely urbanized as well as 

having industrialized areas. Industrial activities have been dominated by chemicals and 

steel making, both of which produce comparatively large quantities of industrial waste 

(Environment Agency, 2009b). These developed during the 19th Century and at the peak 

of steel-building there were over 90 blast furnaces within a 10 mile radius of Teesmouth, 

but the last closed in 2015.  

 

 
Figure 2.3 The Tees catchment including major tributaries. 

 

The Tees was also a major salmon river until pollution and river barriers caused their 

decline in the late 19th and early 20th centuries. Major tributaries of the Tees include the 

Rivers Lune, Balder, Greta, Skerne and Leven. The Rivers Lune and Balder are both 
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isolated from the main river by water storage multiple dams. The Rivers Skerne and 

Leven were heavily modified for flood defence purposes. A tidal barrage, built 16 km 

upstream of the river mouth, opened in 1995, in order to limit the tidal movement of 

polluted water and to facilitate urban redevelopment. Although the Tees Barrage included 

a salmonid fish ladder in its design, and the water quality of the lower Tees and estuary 

has improved dramatically in the last 30 years, salmon and sea trout have remained at 

low abundance by comparison to the Rivers Wear and Tyne to the north (Environment 

Agency, 2019). The inter-tidal mud-flats of the Tees Estuary are the only substantial areas 

remaining on the northeast English coast between the Humber 140 km to the south and 

Fenham Flats 130 km to the north (Smurthwaite, 2006). Despite its industrial 

development, Teesmouth forms part of the Teesmouth and Cleveland Coast (EU) Special 

Protection Area and is an international Ramsar site, primarily as it supports 20,000 

migrating waterbirds and waders. 

 

2.2.1.4 UK Biodiversity Action Plan species 

The UK Biodiversity Action Plan (UK BAP) was published in 1994, and was the UK 

Government's response to the Convention on Biological Diversity (CBD) (Laycock et al., 

2009). It described the biological resources of the UK and provided detailed plans for 

conservation of these resources. Action plans for the most threatened species and 

habitats were set out to aid recovery. Fish species including salmon, sea/brown trout and 

European eel were listed in the UK BAP, and can be found in all three catchments. In 

addition, the Tyne catchment supports UK BAP species including the white-clawed 

crayfish (Austropotamobius pallipes), pearl mussel (Margaritifera margaritifera), otter 

(Lutra lutra) and water vole (Arvicola amphibius). The Wear supports UK BAP species 

including river lamprey, sea lamprey (Petromyzon marinus), otter and water vole. The 

Tees catchment supports UK BAP species including the white-clawed crayfish, otter, water 

vole and harbour seal (Phoca vitulina).  

 

2.2.2 Methods 

In this study, historical literature was used to reconstruct, as best as possible, the long-

term changes of salmon and sea trout relative abundance in the three catchments and to 
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gather information on the distribution of other fish species as far as is possible. An 

extensive search of historical literature was carried out for records of salmon and sea trout 

abundance and captures in North East catchments using a number of different sources 

including books, newspapers, Environment Agency (and its forerunner organisations) 

magazines and reports, reports from commissioners and journal articles. Online sources 

of historical information were mainly gathered from the British History Online digital library, 

British Library Newspapers Archive, Google Books and UK Government Web Archive. For 

fish species, search strings including “salmon”, “trout”, “smelt”, “herring”, “shad”, “eel”, 

“lamprey” etc… were used. For human actions, search strings including “fish”, “fishing”, 

“net”, “netting”, “catch”, ”dam”, ”weir”, ”lock”, “sell”, ”sold”, ”mine”, ”mining”, ”pollution” 

etc… were used. For study area, the name of each catchment “Tyne”, “Wear”, “Tees”, and 

major tributaries “Derwent”, “Rede”, “Kielder”, “Browney”, “Greatham”,”Skerne” etc… were 

searched. With dates as far back as possible, the information from these sources was 

cross-validated, to try and ensure accurate information was used. 

 

The long-term annual river rod catches of salmon and sea trout of the Tyne, Wear and 

Tees catchments, and the long-term trend of Northumbrian coastal net catch data 

between 1951 and 1990 were gathered from Salmon and migratory trout statistics for 

England and Wales reports (Russell et al., 1995). Annual rod catch data between 1989 

and 1994 were extracted from National Rivers Authority’s Salmonid and freshwater fishery 

statistics for England and Wales reports (Russell and Buckley, 1991; Russell, 1992; 

National Rivers Authority, 1993a, 1994a, 1994b, 1995a). Annual rod catch data between 

1995 and 2019 were extracted from Environment Agency’s Salmonid and freshwater 

fishery statistics for England and Wales reports (Environment Agency, 1995, 1996, 1997a, 

1997b, 1999, 2000, 2001, 2002, 2003, 2005, 2007, 2008b, 2009b, 2009c, 2013a, 2013b, 

2013c, 2014, 2017a, 2017b, 2019, 2020b, 2020c). The catch per rod licence day of 

salmon and trout data in 1994 was extracted from NRA’s Salmonid and freshwater fishery 

statistics for England and Wales report. Data between 1995 and 2019 were extracted from 

EA’s Salmonid and freshwater fishery statistics for England and Wales reports. Besides 

fish capture data, yearly fish counts for salmon and sea trout data (Tyne: Riding Mill; 

Wear: Framwellgate Weir; Tees: Tees Barrage) were gathered from the UK Gov website 
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(Environment Agency, 2020b).  

 

Information concerning the status of salmon and migratory trout populations was 

contextualised by extracting evidence from books, reports and journal articles concerning 

the nature of environmental degradation and recovery of the Tyne, Wear and Tees. This 

was supported by collection of secondary data concerning chemical water quality at tidal 

and non-tidal locations of each of these rivers and in several tributaries. Archived data (by 

Environment Agency and predecessors) for these rivers is variable in its timescale and 

frequency but, in some cases, goes back to the early 1970s for some variables and sites. 

Therefore, although such secondary data were not available for the main period of decline 

in water quality of these rivers, some was available for part or most of the period of their 

recovery. In some aspects, such as diffuse pollution, the catchments may be in a poorer 

state now than in 1970 (Environment Agency, 2017c). The choice of locations from which 

to request data, and the range of determinands was therefore influenced by the likelihood 

of these being the most useful indicators of pollution impact on fishes and of being most 

likely to be recorded for the highest proportion of samples. From these, a more limited 

range of sites were chosen for presentation in this thesis, including where possible, 

tributaries examined in Chapters 3-5 of this thesis. The primary aim of this chapter was to 

provide a descriptive (often using textual evidence) rather than statistical investigation of 

historical patterns. Such approaches are common within the social sciences, less so in the 

natural sciences, and reflect the limited quality assurance of some information sources, 

particularly from pre-1960 sources. The most reliable data sources, on which some 

statistical analysis could be applied, were considered to be water quality data archived by 

the Environment Agency, in some cases dating back to 1973. Although it is known (based 

on reports from historic documents) that basic key water quality data (e.g. dissolved 

oxygen) for various key sites (e.g. Tyne estuary) were recorded weekly or monthly in the 

1970s and 1980s, some of these raw data could not be obtained from the Environment 

Agency’s digital database, despite repeated attempts and requests. Some of these data 

might be archived paper records, but repeated attempts to access such data were 

unsuccessful. Linear regression was used to analyse the long-term key water quality 

parameters (DO, BOD, ammonia, nitrate, orthophosphate/ phosphorus, zinc and lead) at 
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key sites. Before analysis, data were checked for normality test, and log (x+1) 

transformations were applied when needed. 

 

In addition, the EA Freshwater fish surveys (National Fish Populations Dataset) dataset 

was used to assess the long-term fish community changes at major tributaries in the Wear 

and Tees catchments from the 1990s onwards (Environment Agency, 2020c), these being 

the catchments in which empirical work was undertaken in Chapters 3-5. These data are 

presented for descriptive interpretation and not subjected to statistical interpretation, due 

to inconsistent samping periodicities and changes in recording methodologies over the 

timescale of interest. For the Wear catchment, the Cong Burn, River Browney (including 

River Deerness) and Bedburn Beck sub-catchments were chosen. The first two of these 

are degraded streams in which multiple connectivity restoration works have been carried 

out in recent years, while Bedburn Beck is a relatively natural stream with fewer artificial 

impacts (see Chapter 5 for details). For the Tees catchment, the Low Moor site in the main 

river, Claxton Beck (upper part of Greatham Creek), River Skerne, Clow Beck and River 

Lune were chosen. All sites have the longest fish survey histories in the Tees catchment. 

The River Skerne represents a degraded stream joining the river’s middle reach, which 

was historically heavily modified and polluted. Clow Beck represents a cleanish stream 

joining the river’s middle reaches, but for which in the last 50 years neighbouring land has 

become increasingly intensively farmed. The lower reach of the Lune represents a high 

water quality upper reach stream (albeit impounded upstream), two sites located in the 

lower River Lune were selected for data analysis. Fish data for these sites in the Wear 

and Tees were available only as far back as the early to mid-1990s – although regular 

electric fishing surveying in these rivers occurred at least a decade earlier (M. Lucas, 

pers. comm) it appears that these data have not been archived effectively and may no 

longer exist, despite unsuccessful efforts to locate any remaining. 

 

2.3 Results 

2.3.1 River Tyne 

2.3.1.1 History of Tyne salmon 

Atlantic salmon used to be very abundant in the Tyne. During the Middle Ages, fishermen 
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used a succession of weirs for capturing salmon and other fishes, including in North East 

English rivers such as the Tyne; seine nets were used to catching fish below the weirs 

(Champion, 2003). In the tidal area, groynes were installed in such a way as to deflect 

migrating salmon into fixed nets or traps or into shallow water where fish could be netted 

or gaffed (Champion, 2003). Around the 1760s, a condition was inserted in all indentures 

in Newcastle that the apprentice was not obliged to eat salmon above twice per week 

(Bewick, 1862). Records have shown that salmon netting and trapping in the Tyne was 

the major local fishing industry until the end of the 19th Century when marine fisheries (e.g. 

herring Clupea harengus, cod Gadus morhua) became increasingly important. It was 

reported on 12th June, 1755, that over 2400 salmon were taken in the Tyne; on 20th June 

1758 more than 2000 salmon were taken in the river and on 6th August 1761, 260 salmon 

were caught in one draught (one net haul) at Newburn (Mackenzie, 1827). Also a few 

records gave evidence that people fished for salmon as a sport. Thomas Bewick 

mentioned his grandfather (around 1700) was an expert salmon angler on the Tyne and 

other local rivers, in his memoir (Bewick, 1862). However, there are no records for sea 

trout fishery captures until the 19th Century (Champion, 2003). This is partly because sea 

trout were not always distinguished from salmon in early records, or were not deemed 

worthy of records. From the 19th Century, the coastal net fishery for salmon developed 

greatly, and large numbers of fish (salmon and sea trout) were taken each year 

(Champion, 2003). However, these coastal fisheries intercept salmon and sea trout 

moving along the coast to a range of rivers and so do not necessarily reflect catches allied 

to a particular nearby river or even a group of nearby rivers. 

 

2.3.1.2 Pollution of the Tyne 

The first environmental challenge for the Tyne fish populations was probably the impacts 

of water pollution. The lead mining history in the North Pennines can be traced back to the 

Middle Ages (McParlin, 2011). Large scale mining started in the early 17th Century in the 

Tyne catchment (Archer et al., 2003). Following the development of mining, ore separation 

and smelting technologies, the northern Pennines region (including south Tyne, upper 

Wear and upper Tees catchment) became Britain's most important lead and zinc mining 

areas by the 18th Century. All three rivers were seriously polluted due to the mining 
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activity. The production of lead from this area peaked around the 1850s and zinc 

production peaked around 1900 (Archer et al., 2003). In the Tyne catchment, the majority 

of lead and zinc mines were located in the South Tyne and River Derwent area. In the 

River Derwent, the headwaters suffered serious pollution from the lead mines. The middle 

reaches of the Derwent were also affected by coal mine drainage at Blackhall Mill and the 

Derwent-Tyne confluence was polluted by the discharge from Consett steel works (Archer 

et al., 2003). 

 

During the mineral processing activities, large amounts of lead, zinc, and related elements 

such as cadmium and copper were released into the river system. A mining method called 

“hushing” was developed in the Northern Pennines and Yorkshire Dales region, it was 

carried out by damming a stream near suspected metal ore veins, then releasing the 

water suddenly to wash the surface soils away to reveal the bedrock and expose the 

underlying metal ores (Hudson-Edwards et al., 2008). During the “hushing” exploration, 

large amounts of soil would be washed into the river. The discharges from the developed 

mine could carry metal-rich sediments, and these sediments would be transported 

downstream and deposited on banks and floodplains and reworked during successive 

flood episodes (Archer et al., 2003; Hudson-Edwards et al., 2008). The degree to which 

heavy metals are dissolved in water and therefore bioavailable and toxic depends on 

water pH, and so on the natural buffering capacity of the surrounding area (Kelly, 1988). In 

particular water arising from mine adits is often rich in iron, zinc or copper sulphide which 

is oxidized, due to air contact, to sulphates of these metals, with associated H+ ion 

production. Although large parts of the North Pennines have limestone outcrops, limiting 

the tendency for acidification and dissolving of heavy metals, some areas such as the 

South Tyne have lower buffering capacity and were more susceptible. In 1870, salmon in 

the South Tyne nearly vanished due to pollution from lead mines around Alston (Marshall, 

1992). In 1891, the Clerk of the Fishery Board gave a supposition that gravel abstraction 

from the river would expose and spread the toxic sediment out, and result in the death of 

breeding salmon (Champion, 1991). Dissolved lead is highly toxic to eggs and larvae of 

salmonids and other fish (Jezierska et al., 2009; Lee et al., 2019); it has no natural 

biological activity and is bioaccumulated, causing neurotoxic effects in vertebrates (Lee et 
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al., 2019). 

 

Apart from metal mining, the coal mining and trading also caused pollution issues to the 

Tyne catchment. The major problem of coal mining was the waste water from coal 

washeries and mine dewatering, as well as the presence near many coal mines of coking 

plants. Coal washing caused covering of the bed with large amounts of inorganic 

particulates, sufficient to fill gravel interstices and smother the benthic ecosystem, 

reducing hyporheic flow and causing substrate deoxygenation. Suspended solids 

(particularly flocculated ferric oxide material, if water pH is near neutral or weakly acidic) 

from coal mine drainage were deposited in the river channel, covering the riverbed and 

destroying the natural benthic community. Such pollution is usually referred to as “ochre” 

and is a common outcome of heavy metal and iron mining. Sub-surface mining often 

progresses below the water table, so during normal mine activity, the water needs to be 

pumped out to keep the water level below the working area. After the mine is closed, if the 

pumping ceases, then water fills the shaft tunnel and is then discharged to the river again. 

As stated above, the resulting ‘acid mine drainage’ can have major effects, particularly 

where there is little buffering capacity in the receiving water, but even where buffering is 

sufficient, ochre pollution causes immense damage until the release of oxidized metals is 

exhausted or treated. During floods, significant amounts of sediment-borne heavy metals 

are washed along rivers and can be temporarily stored in the gaps between gravels 

(Macklin and Lewin, 1989). The toxic sediment deposition can pose a potential threat to 

both fish and water quality. The phytotoxic effect of contaminant metals on riparian 

vegetation is also considered to be a major factor of causing bank instability and the slow 

recovery of many mining-affected river systems (Hudson-Edwards et al., 2008). 

 

Because coal (and metals) was available in localized seams, ‘pit villages’ sprang up in the 

region of these to exploit the production of coal, resulting in numerous sources of mine 

pollution. During the 19th Century many pit villages also developed coke works at which 

coal was processed to coke, used in the steel making process, such as at Consett. Coke 

production generates large amounts of polluting material including polycyclic aromatic 

hydrocarbons (PAHs), benzenes, phenols, quinolines and ammonia (Liu et al., 2017), 
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significant amounts of which were leached or washed into waterways and were toxic to 

fishes and other biota (Baumann and Harshbarger, 1995; Liu et al., 2017). Waste ‘slag’ 

heaps from this process continued to act as a pollution source for leachate into nearby 

freshwaters. The pit villages also produced their own sewage, released untreated into 

streams, or leaching from middens of ‘night soil’. 

 

From the beginning of the 19th Century, followed by the rapidly increased industrialisation, 

the salmonid fisheries in the Tyne faced another challenge. The Tyne estuary was 

developed with coke, iron, chemical works, tanneries and a wide range of other heavy 

industry and transportation (Linsley, 2003), by the mid-19th Century creating a large, 

concentrated area of intense pollution. These industrial works caused significant pollution 

in the river. In addition, metal mining activity also seriously degraded the water quality and 

increased the quantity of fine sediments getting into the river channels. The population of 

Newcastle increased from 27,500 to 128,500 from 1811 to 1871 (Archer et al., 2003). 

Along with the population increase, the disposal of domestic waste water became another 

issue for the Tyne estuary in the 19th Century. Slowly, more homes were connected to the 

sewerage system and, because no treatment of this sewage occurred, the level of 

oxygen-demanding input to the estuary increased progressively (Archer et al., 2003). 

Crucially also, rather than the waste being diluted and dispersed out to sea as presumed 

by the engineers, oxygen demanding waste was retained for long periods in the estuary 

due to the tidal nature of the river (combined with salinity stratification), with a net 

downstream movement of just 400 m per tidal cycle (Archer et al., 2003). This resulted in 

severe oxygen depletion and ammonia elevation and coating of the estuary bed with toxic 

sediments. In 1891, the Clerk of the Fishery Board mentioned salmon smolts getting killed 

by pollution in the estuary in evidence given to a Royal Commission (Champion, 1991). In 

1895, the dry spring reduced the flow in the estuary, and pollution resulted in thousands of 

salmon smolts dying when negotiating the brackish waters (Marshall, 1992). Furthermore, 

the salmon population was functionally extirpated in the South Tyne due to the pollution 

from lead mining (Champion, 1991). From the late 1800s the rod fisheries in the upstream 

reaches of the Tyne started to decline, although it seems likely that some of the Tyne 

weirs had impacted salmon populations to some degree before this (see section 2.3.1.3 
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below). The total rod catch of salmon in the Tyne reduced from 3201 in 1885 to 125 in 

1898 (Champion, 1991). In the 1930s, salmon sold in the Newcastle market were found to 

have a tainted tarry flavour, and complaints were received from London fish merchants 

due to the engine oil taste from Tyne salmon (Champion, 2003; McParlin, 2011). This was 

probably caused by the phenols discharges from Derwenthaugh and Norwood coke works 

(Champion, 2003).  

 

In 1959, the Board of Conservators for the Fishery District of the River Tyne reported that 

large numbers of smolts were killed when entering the tidal reach during the downstream 

migration (Champion, 1991; Marshall, 1992). And 1959 was the first year that there was 

no reported rod catch of salmon (Champion, 1991). Although this could imply a lack of 

recording, more likely it reflects minimal fishing due to negligible numbers of salmon 

making rod fishing not worthwhile and with none caught. In 1960, there were nearly 275 

major discharges of untreated waste water drains to the estuary (Archer et al., 2003). 

Although The Rivers Pollution Act of 1976 made it an offence to discharge untreated 

pollution into an inland watercourse this was neither well applied, nor applicable to 

estuaries. There was no effective legislation on control of the discharge to the estuary until 

the Rivers (Prevention of Pollution) Act of 1961 and Control of Pollution Act in 1974. 

However, by that time, the Tyne salmon population was already functionally eliminated by 

the pollution (Champion, 2003). The degree to which salmon recolonized from residual 

Tyne genetic stock, by strays from adjacent rivers or by Kielder stockings is considered 

briefly later (section 2.3.1.5). In the early assessment, it was estimated that an overall 

hatchery (1980 – 1986) contribution of up to 20% to the cumulative adult run, would have 

played an important role in accelerating and stabilising stock recovery in the Tyne in the 

early recovery stage (Milner et al., 2004). 

 

2.3.1.3 Connectivity and habitat alteration in the Tyne 

Following the increased demand for concrete in construction in the 1930s, gravel and 

sand extraction across the UK rapidly increased. The commercial production of gravel 

increased from 2.2 to 106 million tonnes between 1922 and 1968 in the UK (Archer, 

2003a). In the Tyne catchment, at least 15 historical gravel extraction sites directly linked 
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to the river channel (rather than on the alluvial plain outside normal flood reach of the 

river) have been identified. Ten gravel extraction sites were located on the main river and 

the remaining five works were located on the south Tyne (Archer, 2003a). These 

extraction works covered nearly 20 km total river distance, and it is estimated that 4.6 

million tonnes gravel were removed from the river channel between 1891 and 1972. 

Gravel extraction has had several negative impacts on both in-stream habitat and aquatic 

species. It can deepen the river depth at the working site, increase upstream erosion and 

channel widening and lead to the reduction in spawning grounds for lithophilous (gravel-

cobble preferring) fishes such as salmon, trout, lampreys and minnows (Phoxinus 

phoxinus).  

 

Besides gravel extraction, in-stream barriers such as dams and weirs also posed 

significant impacts on the river. Historically, numerous weirs have been constructed in the 

Tyne catchment. These weirs served different purposes from providing water for mill 

operation to fish trapping. There are two weirs considered to be a main reason for the 

decline in Tyne salmon catches before 1800. One weir located at Bywell on the main 

Tyne, and a second weir (Derwenthaugh Dam) located at Winlaton Mill on the River 

Derwent, prevented fish from passing up the river to breed, particularly during low flows 

(Mackenzie 1827; Champion, 2003). The construction of the weirs also benefitted 

poachers; it was recorded that more than 200 salmon were taken on one occasion in the 

pool below Bywell weir during the closed season (Marshall, 1992). Apart from these two 

weirs mentioned above, the Warden weir on the South Tyne, and Woodburn weir on the 

River Rede also posed significant impacts on fish migration (Marshall, 1992). In 1862, 

Bywell weir was removed due to the complexity of building a fish pass on it. In 1870, 

Woodburn weir was removed, and sea trout were observed upstream in the River Rede 

for the first time since its construction (Marshall, 1992). In 2012, a Larinier super active 

baffle fish pass and an eel pass were installed on the Derwenthaugh Dam in the River 

Derwent. In the main River Tyne, below Hexham Bridge, gravel extraction seriously 

impacted the river bed. To protect the bridge foundations from riverbed erosion, a series of 

weirs were constructed underneath the bridge in the 1950s (Champion, 1991). Since then, 

the weirs at Hexham have become a major obstruction for the migratory salmon and sea 
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trout heading upstream to spawn. Only recently (2015) has a large upstream fish pass, 

suitable for the size of the structure been added at Hexham Bridge for migratory 

salmonids, although this is unsuitable for other migratory species such as lampreys and 

eels. 

 

Multiple impoundments in the Tyne catchment have altered hydrology and prevented 

access to spawning and nursery streams in the upper reaches. Whittle Dene, Hallington, 

Colt Crag and Catcleugh Reservoirs were all built in the 1800s for water storage and 

treatment for the Newcastle-Gateshead conurbation (Figure 2.4). Further demand for 

water supply by the mid-20th Century led to a new phase of impoundment in the Tyne 

(Archer, 2003b). After 1950, most pollution sources in the upper River Derwent had 

disappeared. Then, in 1957 the construction of Derwent Reservoir was proposed in order 

to provide sufficient water supply for Gateshead. Work started on building the reservoir in 

1960 and it opened in July 1967. After the completion of the Derwent Reservoir dam 

(Figure 2.4), without any fishway, the upstream river reach became totally inaccessible to 

all migratory fish species. Since the large numbers of weirs downstream precluded access 

near the bottom of the river anyway, access past Derwent dam was not considered an 

issue. After the construction of Derwent Reservoir, in the late 1960s plans were developed 

for another reservoir to meet the predicted further demand of both industry and domestic 

water usage (Archer, 2003b). The Kielder scheme began in 1975 and was completed in 

1981 (Figure 2.4). Kielder reservoir impounded 11 km of salmon and trout spawning 

grounds and prohibits upstream access to these. Gravel in these tributaries had been 

extracted already, so they might not be considered as high-quality spawning habitat, but 

the construction of Kielder dam still had a significant impact on the potential for salmon 

recovery. As part of the legislation, since Kielder was built with no fishway, annual stocking 

of juvenile salmon/eggs was required as a mitigation (see section 2.3.1.5 below). 
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Figure 2.4 The Kielder Water Scheme and regulated river reaches. Also shown are 

Derwent Reservoir and several Wear/Tees reservoirs, as well as the Tyne-Wear-Tees 

water transfer pipeline. Source: Environment Agency (2006).  

 

Kielder reservoir was constructed in order to regulate the rivers Tyne, Wear and Tees 

(Figure 2.4; Environment Agency, 2006), in order to facilitate abstraction for water supply 

on these rivers, and to augment river flow during dry periods due to abstractions. The 

heavy industry at Teesmouth, in particular, was expected to require large amounts of 

water, potentially beyond the levels of supply that the Tees could provide. At Riding Mill, 

56 km downstream of Kielder dam, a pumping station and associated weir was built at the 

mill in 1982 (Cave, 1985). A 38 km long pipeline (Figure 2.4) was built between Riding 

Mill, Rogerley (River Wear) and Eggleston (River Tees) to facilitate the inter-river transfers 

(Cave, 1985). The scheme has maintained water supplies to the region, during drought 

years it delivers water to downstream reaches for abstraction, domestic and industrial use. 

In addition, rivers such as the Tyne, Wear and Tees can be kept at minimum levels to 
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meet ecological needs even when rainfall has been low. This has enabled Northeast 

England to avoid water use restrictions that were experienced in many other parts of the 

country (Environment Agency, 2006). In addition, regulated water can be used to mitigate 

serious pollution events in the Rivers Tyne, Wear and Tees (Environment Agency, 2006). 

However, none of the major impoundments in the Tyne catchment have fishways and the 

impoundments also alter the chemical conditions and hydrology of the constituent rivers 

as well as the receiving rivers. 

 

An upstream fish pass was constructed on the left side of the weir at Riding Mill in 1982. It 

has three chambers which are connected by submerged orifices. A temporary timber 

baulk pass was built on the middle of the weir in November 1982, in an attempt to pass 

fish upstream over the structure during high flows. However, the timber fish pass was 

unsuccessful and was removed in May 1983. An adult salmonid fish counter was installed 

at Riding Mill in 1996. In the late 20th Century, a salmonid fish pass was installed on the 

weir at Chollerford on the North Tyne. Chollerford is also the second of two adult salmonid 

fish counters on the Tyne, 16 km upstream of Riding Mill. It does not provide a whole river 

estimate of run size. In the early 21th Century, a salmonid fish pass was built on 

Haltwhistle Alston Arches on the South Tyne and another salmonid fish pass was installed 

on Dilston Weir on the Devil's Water (Environment Agency, 1999b). Fishways were built 

on several weirs in the lower Derwent in the 2010s, these having more nature-like 

characteristics and suited to a wider range of fish species (Tyne Rivers Trust, 2020). 

 

2.3.1.4 Recovery of the Tyne water quality 

Lead mines in the North Pennines region began to close in the early 20th Century. 

Followed by the reduction of mining, the water quality in the upper reaches of the rivers 

had a notable improvement (McParlin, 2011). Metal mines were finally closed in the early 

1930s, and the coke works (and a large amount of related heavy industry, particularly on 

Tyneside) in the Tyne area declined and finally closed in the early 1980s. There have 

been two main periods of improvement of water quality improvement in England, including 

for rivers such as the Tyne. The first main period was during the 1960s and 1970s (Mawle 

and Milner, 2003). In 1958, 20 local authorities formed a working party to investigate 
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measures to reduce the pollution of the Tyne estuary and adjoining beaches (Ord, 1988). 

The Tyneside Joint Sewerage Board was constituted in 1966 to promote the Tyne Sewage 

Treatment scheme which was inherited by Northumbrian Water Authority in 1974 who 

further developed the scheme (Ord, 1988). The Howdon treatment work scheme was first 

recommended in 1964, comprising a sewer network to be constructed along both bank of 

the Tyne to catch more than 200 outfalls, with waste water transported to a new sewage 

treatment plant at Howdon (Foster, 2003). Construction of the Howdon Treatment Works 

started in 1973. The sewers were constructed along both banks of the Tyne for more than 

35 km, between Ovingham and Tynemouth. The overall interceptor sewer was 

commissioned in late 1983. Visual pollution, oxygen demanding waste and smell in the 

Tyne estuary significantly reduced after the work was completed, but waste water, 

following secondary (activated sludge) treatment, is still returned to the estuary, rather 

than to the open sea (Foster, 2003). Historically this has still meant a tendency for 

oxygen-demanding waste (albeit at a much lower level) to be retained within the estuary, 

due to tidal action, especially during periods of low river flow, particularly during summer. 

 

Followed by the reduction of pollution in the estuary, the numbers of returning 

anadromous salmonids showed an increasing trend, reflected in increased rod catches in 

the 1980s (see section 2.3.1.5 below). Surveys of demersal fish in the Tyne, Tees and 

Wear estuaries began in 1981, in order to assess the effects of pollution and its reduction 

by various control measures (Pomfret et al., 1988). From 1982 to 1988, increased 

numbers of fish species were found during beam trawling in the Tyne estuary (Pomfret et 

al., 1988). A significant increase in flounder (Platichthys flesus) catches was recorded at 

three stations in the upper Tyne estuary (Pomfret et al., 1988). Between April 1981 and 

March 1982, the annual average DO was 7.1 mg/L and the lower 95%ile was 0.6 mg/L 

from the tidal Tyne upstream of Derwent confluence (Blaydon area) (Hugman et al., 

1984). A study of catch data from the Tyne estuary (provided by the Northumbrian Water 

Authority) showed that salmon passed upstream when the DO was between 4.5 and 6.8 

mg/L (Hugman et al., 1984), although salmon also migrate at higher DO’s when these are 

available during their migration periods. However, during the summer periods, the low 

dissolved oxygen levels in the estuary reach still caused fish kills and the problem was 
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persistent through the 1990s. In 1990, water quality in 30% of the Tyne estuary was 

classified as ‘poor’ (Mawle and Milner, 2003). Salmon that remained in the cool estuary, 

particularly during lower summer flows with warm river water, often became stressed and 

susceptible to pathogenic infections (National Rivers Authority, 1994c, 1995b). Apart from 

salmon, flounder was found to be less abundant or even absent during beam trawling at 

upper Tyne estuary stations during the summer season (Pomfret et al., 1988). 

 

The second period of water quality improvement followed the privatization of the water 

industry in 1989, since when there has been stronger regulation of water quality, by the 

National Rivers Authority and subsequently the Environment Agency (Mawle and Milner, 

2003). However, in the lower Tyne estuary, water quality was still affected by sewage 

discharges. In the Howdon and Hebburn area, decline of fish abundance and the number 

of species was observed during beam trawling survey between 1982 and 1996 (Gill et al., 

2001). This suggested a general decline in water quality in the lower estuary, due to 

increased discharges from the Howdon STW (Gill et al., 2001). In the summer of 1994, it 

was estimated 500 fish died in the Tyne estuary mostly larger salmon and some smaller 

sea trout (National Rivers Authority, 1994c). In the summer 1995, it was estimated 2000 

fish including more than 900 salmon and sea trout died in the estuary due to low dissolved 

oxygen concentrations and related stressors (National Rivers Authority, 1995b, 1995c; 

Environment Agency, 1996b).  

 

To monitor water quality under the Water Resources Act 1991, the National Rivers 

Authority (NRA), introduced a method to examine separate stretches of estuary and 

freshwater in terms of their chemical, biological, nutrient and aesthetic qualities 

(Environment Agency, 1996c). This method was called the General Quality Assessment 

(GQA) scheme. Rivers were first assessed using this scheme in 1995 and it ran until 

2009. The scheme consisted of four main parameters of measurement which were: 

chemical quality, biological quality, nutrient status and aesthetic quality. After 2009, the 

GQA was replaced by metrics underpinning the Water Framework Directive (see Chapter 

1). However, these metrics are not cross-convertible and so of limited use for indicating 

long-term changes. 
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In the Tyne catchment, nine sites were chosen to examine the long-term chemical trends 

(Figure 2.5). Two sites were located in lower catchment tributaries and remaining sites 

were located in the main river including North Tyne and South Tyne. One site located in 

the Ouse Burn, which is a small tributary running from the north through Newcastle and 

this river was historically polluted (Archer et al., 2003). The River Team is a small tributary 

that meets the Tyne estuary on the right bank and passes through an urban area which 

was subject to heavy industry in the past and historically this river was badly polluted. 

Both tributaries reflect the trend of water quality in tributaries running through built up or 

industrial areas in the Tyne catchment. 

 

 

 

Figure 2.5 Tyne catchment and sites with long-term chemical trends for which data are 

presented in this thesis. 

 

The Tyne estuary water quality data series is crucial in understanding water quality 

improvement, the earliest recoverable data (at Hebburn and Jarrow sites) were since 
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1969 (Ratasuk, 1972), and the earliest recoverable data at the tidal limit (Wylam Bridge) 

were since 1974. In the Tyne at Hebburn, low DO values of ~3.7 mg/L were recorded in 

1970 (Ratasuk, 1972), and low DO values of ~4 mg/L were recorded between 1994 and 

1997. These are at levels which are very stressful to juvenile and adult salmonids and can 

cause mortality if exposed for to these levels for several days, particularly in warm 

weather (Alabaster & Lloyd, 1982). Oxygen levels in the tidal Tyne increased and became 

relatively stable after 1997 with summer minima not reducing below ~6 mg/L, although 

there was a significant increase between 1991 and 2020 (Figure 2.6; Table 2.1). Peak 

values of ammoniacal nitrogen, orthophosphate, zinc and cadmium appeared in the early 

1990s, then reduced and became more stable after that, with ammonia and 

orthophosphate both exhibiting significant declines for available periods of data (Table 

2.1). Other chemical components did not show any clear trends. 

 

In the Ouse Burn, data were available from 1973, but halted in 2006. The pH varied 

markedly during the late 1980s, then became stable around 8 after that (Figure 2.7). 

Dissolved oxygen, BOD, ammonia, zinc and lead all decreased significantly, and 

orthophosphate increased significantly, over the periods for which data were available 

(Table 2.1). Biochemical oxygen demand (BOD) showed large variations prior to 1982 but 

has become more stable and generally lower since then (Figure 2.7). Ammoniacal 

nitrogen concentration dramatically reduced after 1992 (Figure 2.7). Both lead and zinc 

concentration were at high levels in the 1980s, then significantly reduced after that and 

became relatively stable (Figure 2.7).  

 

In the River Team, with data spanning 1973-2019 (but differing across determinands) clear 

decreasing trends of BOD, ammonia, lead, zinc, mercury and cadmium levels were 

observed (Figure 2.8). For the subset of determinands statistically analysed, BOD, 

ammonia, lead, zinc and phosphorus decreased, while oxygen increased significantly 

(Table 2.1). The BOD showed a decreasing trend since the early 1990s then became 

relatively stable after that (Figure 2.8). Nitrate concentration peaked several times in the 

late 1980s, no extreme value was detected after that. Ammoniacal nitrogen dramatically 

reduced after 1993, from when the value has been maintained below 10 mg/L (Figure 
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2.8). Both mercury and cadmium concentration dramatically declined in the late 1980s 

and early 1990s and have remained at low levels since (Figure 2.8). Other chemical 

components did not show any clear trends during the sampling periods. 

 

In the Tyne at Wylam Bridge (data, 1974-2020 but dates varying across determinands) 

BOD, ammonia, nitrate, phosphate, zinc and lead all decreased significantly and oxygen 

increased significantly (Table 2.1). Ammoniacal nitrogen concentrations varied greatly 

between 1974 and 1992, but became relatively stable and low after that (Figure 2.9). The 

BOD concentrations varied widely between 1974 and 1995, then declined and became 

more stable after that (Figure 2.9). Phosphate also showed a gradual decline over the 

timescale, but was never particularly high. Peak values of lead, zinc, iron, mercury and 

cadmium appeared in the late 1970s and early 1980s, then reduced and became more 

stable after that (Figure. 2.9). Other chemical components did not show any clear trends 

during the sampling periods. 

 

In the Tyne at the Bywell (data, 1973-2019 but dates varying across determinands), BOD, 

ammoniacal nitrogen, orthophosphate, lead and zinc all showed a decreasing trend (Table 

2.2). For BOD, ammonia and orthophosphate this was especially apparent after 1990; 

BOD and ammoniacal nitrogen concentration were maintained below 10 mg/L after that 

(Figure 2.10). The decrease in lead at about the same time appears to reflect a sudden 

transition in detectability in analyses, although this is unconfirmed. Other chemical 

concentrations did not show any clear trends during the sampling periods. 

 

In the North Tyne at Wark (1974-2006, date range varying across determinands), zinc and 

lead levels decreased significantly (Table 2.2). The zinc concentration decreased since 

the early 1990s, although this looks suspiciously like being due to an increase in 

detectability at low concentrations, as the baseline suddenly decreases (Figure 2.11). For 

pH, BOD, ammoniacal nitrogen and nitrate concentrations, a few peak values were 

observed in the late 1980s, but the overall trends were relatively stable. Other chemical 

concentrations did not show any clear trends during the sampling periods. 
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In the South Tyne at Warden Bridge (1973-2020, date range varying across 

determinands), ammonia, total phosphorus and lead levels decreased significantly (Table 

2.2). For pH, BOD, ammoniacal nitrogen and nitrate concentrations, a few high values 

were observed in the late 1990s, but the overall trends were relatively stable (Figure 

2.12). Total phosphorus concentration varied between 1974 and 2007, then declined and 

became relatively stable after that (Figure 2.12). Zinc, though variable, tended to be at 

quite high concentrations of about 100 ug L-1 over the entire period of records. For lead 

concentration, a few high peaks were observed between 1977 and 2007, then it became 

relatively stable (Figure 2.12). Mercury and cadmium concentrations were varied greatly 

between 1975 and 1991, then largely declined and became relatively stable after that. 

 

In the South Tyne at Haltwhistle (1979-2020, date range varying across determinands), 

ammonia, nitrate, orthophosphate, zinc and lead levels all decreased significantly (Table 

2.2). A few high values were observed in BOD, ammoniacal nitrogen and nitrate 

concentrations in the late 1990s, similar to the Warden Bridge site (Figure 2.13). Lead, 

zinc and iron concentrations were variable between 1979 and 1994, then became 

relatively stable after that, although two high vales were observed in both lead and iron 

concentrations in the early 2000s (Figure 2.13). Mercury concentration varied between 

1980 and 1993, then declined and became relatively stable (Figure 2.13). Orthophosphate 

concentration varied between 1979 and 1982, then declined and became relatively stable 

after that (Figure 2.13). 
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Table 2.1 Linear model summaries of changes in key water quality parameters in the Tyne 

catchment (S1-S4). Site numbers increase from downstream to upstream, with lowest site 

numbers are nearest to the sea.  

Site Parameter Periods df t P 
1 DO  1991-2020 1,122 2.49  0.014  
Tidal reach Ammonia 1989-2002 1,128 -2.48  0.014  
 Orthophosphate 1991-2013 1,21 -2.37  0.027  
 Zinc 1989-2002 1,72 -1.84  0.070  
 Lead 1989-2002 1,70 -0.08  0.934 
2 DO  1973-2006 1,347 -2.38  0.018  
Ouse Burn BOD 1973-2006 1,380 -2.50  0.013  
 Ammonia 1973-2006 1,370 -2.65  0.008  
 Nitrate 1973-2006 1,359 -1.96  0.051  
 Orthophosphate 1978-2006 1,259 2.25  0.025  
 Zinc 1974-2006 1,347 -4.42  <0.001 
 Lead 1976-2002 1,123 -5.24  <0.001 
3 DO  1973-2019 1,494 4.03  <0.001 
River Team BOD 1973-2013 1,488 -10.59  <0.001 
 Ammonia 1973-2019 1,536 -13.61  <0.001 
 Nitrate 1973-2019 1,527 -0.47  0.639  
 Phosphorus 1994-2019 1,276 -11.60  <0.001 
 Zinc 1973-2019 1,517 -36.08  <0.001 
 Lead 1973-2019 1,503 -21.89  <0.001 
4 DO  1974-2020 1,564 2.18  0.030  
Wylam Bridge BOD 1974-2014 1,547 -5.16  <0.001 
 Ammonia 1974-2020 1,582 -12.02  <0.001 
 Nitrate 1974-2020 1,556 -2.94  0.003  
 Phosphorus 1974-2020 1,441 -6.43  <0.001 
 Zinc 1974-2020 1,480 -4.19  <0.001 
 Lead 1974-2020 1,474 -11.11  <0.001 
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Table 2.2 Linear model summaries of changes in key water quality parameters in the Tyne 

catchment (S5-S8). Site numbers increase from downstream to upstream. 

Site Parameter Periods df t P 
5 DO  1973-2019 1,457 0.41  0.684  
Bywell BOD 1973-2007 1,412 -3.58  0.000  
 Ammonia 1973-2019 1,563 -4.68  <0.001 
 Nitrate 1973-2019 1,455 0.91  0.362  
 Orthophosphate 1974-2019 1,451 -3.87  0.000  
 Zinc 1974-2019 1,454 -2.43  0.016  
 Lead 1973-2019 1,203 -6.02  <0.001 
6 DO  1974-2006 1,280 1.23  0.221  
Wark BOD 1974-2006 1,353 -0.86  0.391  
 Ammonia 1974-2006 1,354 -1.01  0.312  
 Nitrate 1974-2006 1,249 1.72  0.087  
 Orthophosphate 1974-2006 1,231 0.74  0.458  
 Zinc 1974-2006 1,273 -9.40  <0.001 
 Lead 1974-1994 1,118 -13.25  <0.001 
7 DO  1973-2020 1,540 -1.50  0.135  
Warden Bridge BOD 1973-2014 1,482 0.14  0.889  
 Ammonia 1973-2020 1,557 -2.21  0.028  
 Nitrate 1973-2020 1,517 -0.67  0.504  
 Phosphorus 1974-2020 1,441 -5.78  <0.001 
 Zinc 1974-2019 1,415 -1.81  0.070  
 Lead 1974-2019 1,408 -4.88  <0.001 
8 DO  1979-2020 1,415 0.80  0.427  
Haltwhistle BOD 1979-2007 1,338 -1.55  0.123  
 Ammonia 1979-2020 1,436 -2.27  0.024  
 Nitrate 1979-2020 1,339 -2.61  0.009  
 Orthophosphate 1979-2020 1,243 -4.71  <0.001 
 Zinc 1979-2013 1,347 -4.15  <0.001 
 Lead 1979-2002 1,206 -4.79  <0.001 
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Figure 2.6 Key water quality parameters in the Tyne at Hebburn from 1989 to 2020. All 

metal element concentrations presented were 'total' values (samples not filtered). Note the 

different timescales on the panels. The DO data in 1969 and 1970 were extracted from 

Ratasuk (1972). Data between 2014 and 2020 were stitched from the Tyne at the Jarrow 

site. 
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Figure 2.7 Key water quality parameters in the Ouse Burn at Jesmond Dene from 1973 to 

2006. All metal element concentrations presented were 'total' values (samples not 

filtered). Notice: BOD, ammoniacal nitrogen, nitrate, lead, zinc and iron concentrations are 

on log scales. Note the different timescales on the panels. 
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Figure 2.8 Key water quality parameters in the River Team at Third Avenue Bridge from 

1973 to 2019. Notice: BOD, ammoniacal nitrogen, lead, zinc, mercury, cadmium and iron 

concentrations are on log scales. Note the different timescales on the panels. All metal 

element concentrations presented were 'total' values (samples not filtered). Phosphorus 

concentrations presented were total P. 
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Figure 2.9 Key water quality parameters in the River Tyne at Wylam Bridge from 1974 to 

2020. Note the different timescales on the panels. All metal element concentrations 

presented were 'total' values (samples not filtered). Phosphorus concentrations presented 

were total P. 
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Figure 2.10 Key water quality parameters in the Tyne at Bywell from 1973 to 2019. Notice: 

BOD, ammoniacal nitrogen, nitrate, lead, zinc, and iron concentrations are on log scales. 

Note the different timescales on the panels. All metal element concentrations presented 

were 'total' values (samples not filtered). 
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Figure 2.11 Key water quality parameters in the North Tyne at Wark from 1974 to 2006. 

Notice: nitrate, zinc, and iron concentrations are on log scales. Note the different 

timescales on the panels. All metal element concentrations presented were 'total' values 

(samples not filtered). 
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Figure 2.12 Key water quality parameters in the South Tyne at Warden Bridge from 1973 

to 2020. All metal element concentrations presented were 'total' values (samples not 

filtered). Notice: iron, zinc and cadmium concentrations are on log scales. Phosphorus 

concentrations presented were total P. 
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Figure 2.13 Key water quality parameters in the South Tyne at Haltwhistle from 1979 to 

2020. All metal element concentrations presented were 'total' values (samples not 

filtered).  

 

 

 

 

 

 



96 
 

In 2015 and 2016, the majority of Tyne WFD water bodies were classified as ‘good’ for 

chemical status (Table 2.3). However, since 2016, new substances (e.g. perfluorooctane 

sulfonate) have been added to the assessment list and stricter standards have been 

developed for contaminants, which reflect the extent of these chemicals in the 

environment more accurately (Environment Agency, 2020d). The introduction of these has 

meant that no surface water bodies in England have met the criteria for achieving good 

chemical status in 2019 (Environment Agency, 2020d), and all water bodies in the Tyne 

catchment failed to achieve good chemical status in 2019.  

 

The ecological condition in the Tyne slightly improved between 2015 and 2019, more 

water bodies shifted from poor to moderate status. However, more than half of water 

bodies [82/123 (66.7%)] still failed to reach good ecological condition in 2019, with the 

greatest pressures coming from hydromorphological modification and pollution from 

abandoned mines (Table 2.4). In addition, pollution from rural and urban areas, also 

contributed to pressures on water bodies.  

 

Table 2.3 Ecological and chemical classification for surface waters in the Tyne catchment 

in 2015, 2016 and 2019 (cycle 2 of WFD). 

 Tyne catchment Ecological status or potential Chemical 
status 

Year Number of 
water bodies 

Bad Poor Moderate Good High Fail Good 

2015 123 0 26 59 38 0 10 113 

2016 123 0 24 63 36 0 14 109 

2019 123 1 14 67 41 0 123 0 
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Table 2.4 Issues in the Tyne catchment preventing waters reaching good ecological status by cycle 2 (2015-2021) of the Water Framework Directive and 

the sectors identified as contributing to them (the numbers in the table are counts of the reasons for not achieving good status in water bodies). 

 
Agriculture 

and rural land 
management 

Domestic 
General 
Public 

Industry 
Local and 

Central 
Government 

Mining 
and 

quarrying 
Urban and 
transport 

Water 
Industry Other Sector under 

investigation Total 

Changes to 
the natural 

flow and levels 
of water 

- - - - - - 2 - - 2 

Pollution from 
rural areas 28 - - - - - - - - 28 

Pollution from 
abandoned 

mines 
- - - - 52 - - - - 52 

Pollution from 
waste water - - - - - - 9 - - 9 

Physical 
modifications 1 1 2 4 - 14 29 2 6 59 

Pollution from 
towns, cities 
and transport 

- - 1 - - 6 11 - - 18 

Non-native 
invasive 
species 

- - - - - - - - - 0 

 
 
 



98 
 

2.3.1.5 Recovery of the Tyne fishes 
With regard to the Tyne, only changes in the catches and other indicators of abundance of 

salmon and sea trout are considered here. Although recording of freshwater fish 

abundance in surveys across the catchment has been carried out by the EA and their 

predecessors these are not considered here, as no empirical work was carried out in this 

catchment for this thesis. By contrast, data on Tyne adult salmon and sea trout give a 

valuable indicator of post-industrial river recovery at a level of detail not available for the 

Wear or Tees. Along the northeast English coast to the north and south of the Tyne most 

fishing was by drift nets (gill nets at the surface) set offshore in coastal waters, and by T 

nets (which trap fish in an enclosure) set from the shore, the latter intercepting salmon 

and sea trout swimming in shallow water, often as they approach river mouths. The 

average annual drift net catch of salmon per licence on the Northumberland Coast 

showed a decreasing trend from the 1870s to the 1940s (Champion, 2003). Between 

1951 and 1959, the annual combined net catch on the ‘southern coast’ (between Whitburn 

and Saltburn) was 3.6 for salmon and 779.6 for sea trout (annual data in Figure 2.14). 

During the same period, the annual combined net catch on the ‘northern coast’ (between 

Tweedmouth and Whitburn) was 5894.7 for salmon and 8060.8 for sea trout (annual data 

in Figure 2.14). 

 

 
Figure 2.14 North East Northumbria Area, salmon and sea trout fishery annual net catch 

(all net types combined), from 1951 to 2019. Reasons for recent decline of catches on 

southern coast since 2003 was due to the closure of drift net fisheries. Figure generated 

using commercial catches reported to government using data sources described in 

Section 2.2.2. 

 

The northern coast fishery started to recover in the 1950s and salmon capture per licence 

reached the pre-1870s level by the end of the 1960s when more effective nylon twine nets 

were largely used (Champion, 2003). Catches of sea trout on the southern coast started 

to recover in the early 1960s and salmon started to recover in the late 1960s. By 1970, 
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monofilament nets were introduced and used by all licenced fisheries. This contributed to 

a dramatic increase in catch per net effort and the effort nearly doubled when compared 

with the previous netting method (Champion, 2003).  

 

Because salmon and sea trout migrate along the Northumbrian coast before entering their 

home rivers (Potter and Swain, 1982), the Northumbrian and wider North East English net 

fishery, especially the drift nets, has been a ‘mixed stock’ fishery, exploiting multiple stocks 

from natal rivers. This has made effective management and conservation of salmon and, 

to a lesser degree, sea trout stocks, difficult and contentious. Stock is here defined as the 

proportion of a population considered to be a unit for fisheries management (Begg et al., 

1999). Since Atlantic salmon and sea trout exhibit strong homing to natal rivers of origin, 

each major river is typically regarded as having its own stock(s). In order to reduce the 

mixed stock problem and thereby secure better salmon fishery management the 

Environment Agency has powers to make Net Limitation Orders under the Salmon and 

Freshwater Fisheries Act 1975. Net Limitation Orders are used to regulate salmon and 

sea trout net fisheries in England. Each order limits the number of licences for fishing with 

nets that may be issued in any specific fishery for up to 10 years. Net Limitation Orders 

were introduced in 1992 and 2002, and a permanent buyout of most drift net licences was 

achieved in 2003 (Environment Agency, 2008a). Since 2003, no licences were issued to 

the Southern Northumbrian coast drift net fishery, both salmon and sea trout catches from 

that source were reduced to zero. In December 2018, national byelaws closed the drift net 

fishery completely (Environment Agency, 2020e). The beach net fishery, comprising T nets 

and J nets (J nets, similar to T nets, are used from Yorkshire shores) was closed for 

salmon as a conservation measure, but on the NE coast fishermen were allowed to 

continue to fish for sea trout only and allocated larger sea trout quotas as a compensatory 

measure (Environment Agency, 2020e). Experiments are ongoing to minimize salmon 

capture in modified T-nets (Environment Agency, 2020d) 

 

In 1934, the Tyne river net fishery (seine nets and some T nets) was banned by byelaw to 

help restore the rod fishery (McParlin, 2011). Following the improvement of water quality, 

the salmon population in the Tyne started to recover during the 1960s, and the total rod 

catch showed a dramatic increase from the late 1980s (Figure 2.15). The total rod catch 

per year increased from three in 1960 to 5115 in 2010 (Figure 2.15). The sea trout 

population showed a similar trend in recovery compared with salmon, the rod catch per 

year increased from 15 in 1960 to 2687 in 2010 (Figure 2.15).  

 

The rod catch per unit effort (catch per licence day) of salmon in the Tyne steadily 

increased between 1993 and 2004, and then fluctuated between 2004 and 2017, with a 
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peak in 2011 (Figure 2.16). The rod catch per unit effort of sea trout showed an increasing 

trend between 1993 and 1998, and fluctuated between 1999 and 2017. 

 

 

 
Figure 2.15 Annual declared rod catch of salmon and sea trout in the Tyne, Wear and 

Tees from 1867 to 2019. Note that before 1950 rod catch data suffer from gaps in historic 

and river specific recording and can serve only as a crude indication of temporal patterns 

of catch. 

 

 
Figure 2.16 Catch per licence day of salmon and sea trout in the Tyne, Wear and Tees 

from 1993 to 2017. CPUE for 2018 and 2019 are not given as effort was not available in 

the respective Environment Agency reports. 

 

At the time of the Kielder Dam plan, in order to help recover the salmon population in the 
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North Tyne, Northumbrian River Authority proposed a plan of building a fish pass on the 

Kielder dam to provide upstream access. However, subsequent habitat surveys showed 

that the upstream major tributary could not provide sufficient spawning habitat to salmon 

due to previous intensive gravel extraction. After the fish pass construction plan was 

discarded, an alternative plan was proposed (and stipulated by legislation in parliament): 

build a hatchery and restock the river with salmon parr/eggs to compensate for the loss of 

salmon production caused by the construction of the reservoir (Cave, 1985). The Kielder 

hatchery stocking programme began in 1979 and continues today. During the spawning 

season, electro-netting is conducted below the main dam, eggs and milt are stripped from 

the mature salmon, then sent back to the hatchery for hatching. After stripping, the adult 

salmon are released back to the river. The legal mitigation agreement is to stock a total of 

160,000 0+ and/or 1+ juvenile salmon in the Tyne catchment annually (Milner et al., 

2004).  

 

Before the construction of Kielder hatchery, between 1954 and 1978, limited stocking of 

salmon into the Tyne system occurred, comprising salmon eggs, parr and smolts, derived 

from unspecified Scottish sources. Between 1965 and 1977, eggs were planted at rates of 

25,000 to 150,000 annually (Milner et al., 2004). Between 1989 and 2017, an average of 

379,898 (range, 46,000 to 638,898) comprised fry (range, 0 to 400,000), parr (0+ range, 0 

to 572,799; 1+ range, 0 to 140,214) and smolts (range, 0 to 5,319) were stocked in the 

Tyne catchment (Figure 2.17). Between 1983 and 2000, batches of 1+ salmon parr reared 

at Kielder hatchery were marked with coded wire microtags (CWTs) (Jowitt and Russell, 

1994). Tag returns were recorded from both the Tyne rod fishery and net fishery that 

operates along the North East coast and around the Tyne mouth. Estimates of the long 

term (1980-2000) weighted mean contributions to the North East Coast Fishery and the 

Tyne rod catch were 1.5% (range 1.2-2.0%) and 6% (range 3-14%) (Milner et al., 2004). 

The stocking in the Tyne continues to the present day, and from 1989 to 2017, a total of 

10.9 million salmon were released in the Tyne catchment (Figure 2.17).  

 

In 1996, a resistivity fish counter started operation at Riding Mill. The counter relies on the 

principle that fish have a lower electrical resistance than the water, so when fish (and 

other animals, or even some other types of object) pass the fish counter, the counter 

detects an increase in conductivity between them, indicating passage of a fish/animal 

(Van Der Waal, 2014). Most resistivity fish counters are of sufficient sensitivity to be suited 

to recording anadromous salmonids (>~40 cm) but cannot distinguish between species 

and only since 2003 was video capture added to the Riding Mill counter to help distinguish 

between salmon and trout records. These data have been subject to intensive analyses 

(Van Der Waal, 2014) to which the reader is directed for more information. Total recorded 
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fish counts (salmon plus large trout, primarily sea trout) since 1996 have ranged from 

15,219 (2000) to 48,668 (2004) (Figure 2.18).  

 

 
Figure 2.17 Annual variation of salmon stocking in the Tyne, Wear and Tees from 1987 to 

2017. Notice: the 1988 stock data is currently not available and the 2018 and 2019 reports 

do not provide stocking data. 

 

 
Figure 2.18 Annual upstream counts of migratory adult salmonids (salmon plus sea trout) 

from 1995 to 2020 on the Tyne (Riding Mill), Wear (from February 2015 onwards these 

represent a combined count from both Framwellgate and Freemans counters, Durham) 

and Tees (Tees Barrage). Note: the Wear fish counter did not operate during the salmonid 

upstream migration periods in 2004 and 2006. The Tyne fish count data from April to July 

2020 were unavailable so 2020 data are a minimum.  
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Not all salmon and sea trout are recorded by the Riding Mill counter, as fish can ascend 

the weir directly at high flows; the EA assumes 10% bypass the counter (P. Rippon pers. 

comm.). River Tyne adult salmonids mainly migrate between June and November, 

monthly counts peak in October, though they differ between the species. Daily peaks in 

counts closely correlate to the occurrence of river flow peaks (Environment Agency, 

2008c). 

 
2.3.2 River Wear 
2.3.2.1 History of Wear salmon 
From mediaeval times to the Industrial Revolution, the River Wear afforded an abundant 

supply of Atlantic salmon. Between 1348 and 1437, monks of Finchale Monastery, derived 

a considerable revenue by selling salmon and trout (Commissioners for the British 

fisheries, 1861). The Convent of Durham bought hundreds of salt salmon each year 

between 1530 and 1536 (Commissioners for the British fisheries, 1861). For a long period, 

it was a condition inserted in all indentures of apprenticeship that the apprentice was not 

to be compelled to eat salmon more than three days a week (Anonymous, 1861). The 

main spawning areas for salmon in the Wear are located between Bishop Auckland and 

Wearhead (Environment Agency, 2008a); whether this was the case hundreds of years 

ago is unclear. 

 

2.3.2.2 Connectivity and habitat deterioration in the Wear 
Although the River Wear supports a migratory salmonid fishery, the access to many of the 

Wear tributaries is restricted due to the presence of impassable natural and man-made 

obstructions (e.g. waterfalls, weirs) (Environment Agency, 2008a). The most famous 

historic barrier to upstream fish migration in the Wear is suggested to be Lumley Lock. In 

the beginning of the 19th Century, a dam (Lumley Lock) was constructed at the tidal limit 

across the Wear, near Lumley Castle, following the order of predecessors of Lord 

Scarborough. Before then, no barrier existed to the passage of salmonids upstream 

towards the main spawning grounds in Weardale. Successful migration and spawning by 

anadromous salmonids in the Wear was prevented by Lumley Lock (Anonymous, 1861). 

Although most of Lumley Lock was washed away by a flood in winter 1820, salmon 

remained absent from the upper part of the river (Commissioners for the British fisheries, 

1861). For several years no salmon were observed upstream of Lumley Lock and only a 

few were observed below it. Lumley Lock was destroyed by floods in January 1854, and 

immediately after it was removed, sea trout (often referred as white trout or bull trout in 

early angling literature) ascended and their population increased in the upstream reach 

(Anonymous, 1863). However, salmon was still absent from the upstream reach until an 

individual was caught in the Durham reach in 1866 (Anonymous, 1866).  
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Apart from Lumley Lock, several more weirs were recorded to obstruct fish migration in 

the River Wear. A weir in the main Wear located about one mile (1.6 km) upstream of 

Wolsingham was observed to block upstream fish migration in 1860 (Commissioners for 

the British fisheries, 1861). A dam near Bishop Auckland was observed to block upstream 

salmon migration (Anonymous, 1877). In the River Browney, two dams constructed four 

miles (6.4 km) downstream of its source completely blocked fish from ascending upstream 

to spawning habitat (Commissioners for the British fisheries, 1861).  

 

Besides instream barriers, the Wear also suffered from other anthropogenic influences. 

Like the Tyne, commercial gravel extraction occurred in the middle Wear catchment 

between 1945 and 1968 (Wishart et al., 2008). The impacts of gravel extraction on river 

habitat at two previous working sites was studied by Wishart et al (2008). At Wolsingham, 

extraction work included unsystematic pit excavation in the riverbed, with regular rerouting 

of flow to expose new areas of the riverbed to be worked and pre-extracted pits refilled 

with sediment (Wishart et al., 2008). An average of 36,000 tonnes gravel was extracted 

each year at the central portion of the site. At Harperley Park, dragline excavation 

occurred between 1960 and 1968, and an average of 100,000 tonnes gravel was 

extracted per year (Wishart et al., 2008). Commercial river channel gravel extraction in 

Weardale ended in 1968, and following a brief period of floodplain extraction along the 

lower section of the Harperley Park reach, gravel extraction ceased entirely in the early 

1970s. Gravel extraction involved the removal of a large volume of sediment from channel 

bars and the riverbed in the River Wear and significantly reconstructed the river channel 

from braided to single thread planform (Wishart et al., 2008). Channel modification and 

agricultural practices, as well as disused mine pumping practices in the Wear catchment, 

has led to the reduction in summer flow and increase in winter spates over recent 

decades, which has the potential to influence salmon migration and survival following 

hatching (Environment Agency, 2008a). 

 
2.3.2.3 Pollution of the Wear  
Apart from barriers, pollution was also considered to be another major problem for fish in 

the Wear and its tributaries. Like the south Tyne catchment, coal mining in the Wear 

catchment began in the Late Middle Ages. Coal production reached a peak in 1913 and in 

1923 there were 170,000 miners working in County Durham. The middle and lower 

reaches of the Wear were heavily affected by the coal mining history. It was reported by 

the Ministry of Agriculture and Fisheries Standing Committee that the middle reach of the 

river carried high levels of coal tar acids in September 1928 (Longwell and Roberts, 

1929). By the mid-20th Century, nearly 20-30 million tons of coal was extracted from the 

Durham coal mines on a yearly basis (McParlin, 2011), and the river still suffered 
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significant pollution from coal mining, coke works and other effluents in the 1950s (Whitton 

et al., 1998). Coal mining required substantial pumping, to maintain the water level in the 

working area and protect mines from flooding, this action discharged large volumes of 

polluted water into the river system. The status of the River Wear was classified as “ruined 

by mines” in the late19th Century and fish preservation in County Durham had been given 

up entirely (House of Commons, 1876). 

 

Metal mining in the North Pennines started during Roman times, increased rapidly during 

the 19th Century, and it was estimated there were more than 100 mines in operation in the 

early 20th Century (Wishart et al., 2008). In the upper Wear catchment within the North 

Pennine Orefield, mineral veins were rich with hydrothermal Pb-Zn-F-Ba mineralisation 

and were exploited by hydraulic, surface and underground mining methods (Lord and 

Morgan, 2003). Besides mining, associated mineral processing and smelting activity also 

existed in this area. Some tributaries of the Wear (e.g. Bollihope Burn and River Browney) 

were used as conduits for taking off the foul water which is pumped out of mines 

(Commissioners for the British fisheries, 1861; Anonymous, 1867). The former signs of 

“hushing” can still be found in the landscape nowadays. Followed by the decline of 

industry after the Second World War, many pits closed in the 1950s and 1960s in County 

Durham. The last colliery in the Durham coalfield closed in 1994. Limestone was, and still 

is, extensively quarried for construction aggregate and cement manufacture usage (Lord 

and Morgan, 2003). 

 

In the upper Wear catchment, metal mining had a long lasting effect on river sediment. A 

study in 1999 indicated that severe contamination with lead exists throughout the entire 

upper catchment river network including both main river and tributaries, and persists in 

sediments of the main river (Lord and Morgan, 2003). Severe zinc contamination was 

mainly concentrated in the main River Wear and concentrations declined downstream 

towards Wolsingham (Lord and Morgan, 2003). Arsenic contamination was mostly 

concentrated through the Rookhope Burn and from Rookhope Burn-Wear confluence to 

beyond Stanhope as well as in the lower Bollihope Burn. Arsenic contamination appeared 

to decrease in the downstream reach of the upper catchment (Lord and Morgan, 2003). 

Other metal contaminants such as barium and iron were present in lower concentrations 

in both main River Wear and its tributaries in the upper catchment (Lord and Morgan, 

2003).  

 
In the lower Wear catchment, urban and industrial pollution were the main forms of 

pollution in the freshwater reach. In the late 1800s and early 1900s, as in the Tyne, hardly 

any houses or factories controlled their pollution discharges and most of these went direct 
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to the river, or were able to leach to the river from midden heaps. The increased 

population density associated with mining and heavy industry caused intensive pollution, 

parallelling the pattern on the Tyne, but including much greater pollution on tributaries 

from the numerous pit villages. Even from the 1950s until recent decades, the river in the 

middle and lower reaches was significantly affacted by sewage treatment works 

discharges (Environment Agency, 2008a). The Wear catchment had a human population 

of almost 500,000 in 2008, and major population was concentrated in the eastern half of 

the area including the two cities of Durham and Sunderland (Environment Agency, 

2008a).  

 

In the lower Wear catchment, a large paper mill was constructed in the River Browney 

near the Browney-Wear confluence and some paper works were located two or three 

miles (~4 km) further upstream. Discharges from these works flowed into the river and 

caused significant pollution (Commissioners for the British fisheries, 1861). Large 

cokeworks were also present on the lower Browney in the area of Langley Park. The 

sewage water of Durham and Bishop Auckland entered the river directly; the gasworks 

emptied their waste into the river in Durham and Bishop Auckland and dye works in 

Durham also discharged into the river (Commissioners for the British fisheries, 1861). The 

pollution of the Wear, caused by the hushing from the metal mines in the higher reaches 

of the Wear and the wastewater from the collieries and ironworks near Durham are 

recorded to have rapidly diminished the breeding of fish in the river and almost put an end 

to the sport of angling (Anonymous, 1873). Within the estuary area, the city of Sunderland 

had a massive industrial expansion since the 18th Century. By the mid-1700s, Sunderland 

became one of the largest ship builders in England (Short and Tetlow, 2012). During the 

19th Century, ship making greatly developed due to the need for ships to carry coal to 

London (McLean, 1995). From then until the late 19th Century, Sunderland was the largest 

shipbuilding centre in the world, making approximately one-third of the UK’s ships (Short 

and Tetlow, 2012). Other important industries in Sunderland included glass, pottery, rope 

making, and coal exportation. The shipbuilding works led to a heavily modified estuary 

environment, including bank reinforcement and river deepening. Along with the rising 

population in Sunderland, the disposal of untreated domestic and industrial waste water 

became another pollution issue for the Wear estuary. 

 

2.3.2.4 Recovery of the Wear habitat 
In June 1854, a meeting was held in Durham to consider the best methods of increasing 

the stock of salmonids in the River Wear. The meeting resolved to cooperate to propagate 

salmon by artificial means for stocking (Anonymous, 1854). A meeting was held in 

October 1864 in Bishop Auckland, to agree how to increase fish spawning in the Wear 



107 
 

and its tributaries, as well as protect the fish from coal mining pollution (Anonymous, 

1864). In 1873, meetings were held to try to solve industrial pollution in the Wear, plan a 

fish pass on a dam near Bishop Auckland and to try to establish a Fishery Board for the 

Wear (Anonymous, 1873, 1877). 

 
Since 1980, following the closure of coal and metal mines, and associated activities, 

particularly coke making, the freshwater quality in the River Wear improved significantly 

(Milner et al., 2004). Historically, abandoned coal mines near the Wear have been 

dewatered and the discharges drained into the middle and lower reaches directly which 

has potential negative impacts on salmon. More than £140K cost was invested by the 

NRA to investigate mine waters and reduce deep coal mine pumping in 1995 (National 

Rivers Authority, 1995d). By the late 2000s, most of these discharges had been relocated 

to the coast and no longer affected flow and water quality in the main river (Environment 

Agency, 2008a).  

 

By 1995, there were approximately 143 Sewage Treatment Works (STW) operating in the 

Wear catchment. Northumbrian Water Ltd (NWL) own 83 of these works, of which 50 

serve populations in excess of 250 (National Rivers Authority, 1995d). The remaining 

STWs serve small private developments and were operated by the owners. A number of 

STWs were causing deleterious impacts on the receiving watercourses (National Rivers 

Authority, 1995d), including Sedgeletch STW (Herrington Burn), Crookhall STW 

(Stockerley Burn) and Hustledown STW (Twizell Bum) (Environment Agency, 1997c). 

Because some of the water quality problems were due to the effects of discharges from 

NWL STWs or combined sewerage overflows (CSOs) to the watercourse, NWL was 

requested to upgrade some of their STWs and CSOs (Environment Agency, 1997c). In 

order to protect and improve the water quality of the Wear estuary, NWL was requested to 

intercept the crude sewage discharges to the Wear Estuary and divert to Hendon 

Sewerage Treatment Works (Environment Agency, 1997c). In addition, NWL was 

requested to install secondary sewage treatment at Hendon STW (Wear estuary) by 2001 

(Environment Agency, 1997c).  

 

The EA and Natural England also sought to reduce diffuse pollution (e.g. from agriculture, 

urban areas and roads) and take action on the discharges and abstractions made by 

companies (e.g. Northumbrian Water) (Environment Agency, 2008a). The EA proposed 

nutrient removal from STW effluent in the Northumbria Area to improve 68 km of river 

(Environment Agency, 2008a). The overall improvements to sewage treatment have led to 

significant improvements in water quality of the Wear (Milner et al., 2004). Under the old 

General Quality Assessment scheme, by 2008, the main river Wear and majority 
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tributaries achieved good water quality (Environment Agency, 2008a). However, GQA was 

an unrealistically generous classification system, failing to take account of many factors 

impacting the ecological health of river systems since for example Figure 2.19 shows 

good water quality for the River Deerness, but subsequently this repeatedly failed WFD 

quality tests. 

  

 
Figure. 2.19 Water quality of major tributaries and obstructions to fish passage in the 

Wear catchment by 2008. Source: Environment Agency (2008a). 

 

In the Wear catchment, 12 sites were chosen to examine the long-term chemical trends 

(Figure 2.20). In order to obtain a more continuous data run from the 1980s to 2020 within 

the tidal reach, data from three adjacent sites were stitched. With regard to other sites 

chosen, the Lambton Bridge site, located at the tidal limit, reflects the change of chemical 

trends in the lower main river. The Wear at Stanhope is located in the upper main river, 

and reflects the chemical change caused by intensive metal mining works in the upper 

reaches. One site located in Old Durham Beck, represents a tributary which was 

historically badly polluted. Two sites were located in the Cong Burn sub-catchment, one 

site located in the River Deerness, one site located in the Brancepeth Beck, and one site 

located in the Bedburn Beck. These four sub-catchments are study streams in which 

empirical work was undertaken in Chapter 5. Coal mining activities of urban development 

occurred along the former three streams. One further site was located in the Rookhope 

Burn, which was historically polluted, and this would be indicative of the metal mine rich 

areas of the Wear.  
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Figure 2.20 Wear catchment and sites with long-term chemical trends for which data are 

presented in this thesis. ‘Conf’ refers to confluence and ‘u/s’ refers to upstream. 

 

Regrettably, data for the Wear estuary only ran from 1988 to 2020, and no metal elements 

were measured after 2002. The pH value varied considerably between 1989 and 1998, 

then slightly declined and fluctuated less (Figure 2.21). Of the determinands analysed 

statistically, DO increased and ammonia and orthophosphate decreased significantly 

(Table 2.5). The DO concentration varied considerably from ~6 mg/L to ~12 mg/L between 

1988 and 2010, then slightly increased and fluctuated less after that (Figure 2.21). 

Ammoniacal nitrogen largely declined between 1988 and 1990, then became stable 

around 0.5 mg/L (Figure 2.21). For iron, lead, zinc and mercury concentrations, a few 

peaks were recorded in 1989 and the early 1990s, then both declined and fluctuated less, 

although two peaks of mercury were detected in 2001. These trends are indicative of an 

improvement in water quality associated with reduced oxygen-demanding and industrial 

waste in the estuary.  

 

At Lambton Bridge, the tidal limit, (1973-2018), BOD, ammoniacal nitrogen, phosphorus, 

lead, zinc, decreased significantly and DO and nitrate increase significantly (Table 2.5; 

Figure 2.22). For nitrate, multiple high values around 30 mg/L occurred in 1990, then it 
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dramatically reduced to around 4 mg/L and became stable. Total phosphorus 

concentration varied between 0 and 2 mg/L before 2006, then reduced to around 0.1 mg/L 

by 2019 (Figure 2.22). Other chemical components did not show any clear trends. 

Periodic elevated values of substances such as cyanide were evident in the 1990s (Figure 

2.22). 

 

At the Twizell Burn site (1979-2019) DO, and nitrate increased significantly while BOD, 

ammonia, orthophosphate and zinc decreased significantly (Table 2.5). Orthophosphate 

strongly declined between 1995 and 2006, then it became stable between 2006 and 2019 

(Figure 2.23), reflecting improved sewage treatment upstream (Hustledown STW). 

Ammonia decreased slightly and DO increased slightly over the same period (Figure 

2.23). At the Cong Burn site BOD, ammonia, nitrate and orthophosphate decreased over 

the analysis periods (Table 2.5). Ammonia and BOD were reduced after 1993, with fewer 

and smaller peaks, probably reflecting improved water treatment (Figure 2.24). Other 

chemical components did not change markedly during sampling periods.  

 

In Old Durham Beck (1973-2019), BOD, ammonia, zinc and lead decreased significantly 

and nitrate increased significantly (Table 2.5). Ammonia and BOD declined slightly since 

1990, although quite frequent peaks remained after 2000 (Figure 2.25). Although peaks in 

nitrate reduced after 1990, baseline nitrate levels have increased since the mid-1990s 

(Figure 2.25), probably reflecting the intensive arable farming within the catchment. This is 

also reflected in the continued high but variable phosphate levels. Periodic high iron levels 

were recorded, potentially linked to the coal mining history of the area. No clear trends 

were observed in other chemical components during sampling periods.  

 

At the Deerness site (1973-2019), BOD, ammonia, zinc and lead decreased significantly 

and nitrate increased significantly over the data timescales (Table 2.6). The concentration 

of ammoniacal nitrogen declined markedly since 1992, and it became stable between 

1992 and 2019 (Figure 2.26). At the Brancepeth site (1991-2004), the concentration of 

ammoniacal nitrogen declined significantly, other chemical parameters were relatively 

stable between 1984 and 2014 (Figure 2.27; Table 2.6). 

 

At the Bedburn Beck site (1991-2019), pH values varied considerably between 1991 and 

2007, then slightly increased and became more stable after 2007, possibly linked to 

changes in forestry practices, since commercial coniferous forestry tends to promote acid 

flushes (Figure 2.28). Of those determinands analysed statistically over the periods of 

data availability, ammonia, nitrate, orthophosphate and zinc all decreased significantly 

(Table 2.6). Ammoniacal nitrogen concentrations were slightly varied between 1991 and 
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1993, then reduced and became relatively stable after that (Figure 2.28). It is notable that 

nitrate levels were lower than sites further downstream and probably reflects the 

dominance of forestry and lack of intensive farming locally. Zinc concentrations in 

Bedburn Beck were similar with the Twizell Burn, which were slightly higher compared 

with Cong Burn, Deerness and Brancepeth Beck. 

 

At the Stanhope site (1973-2019), ammonia, nitrate, zinc and lead levels decreased 

significantly over the periods for which data were available (Table 2.6). Ammoniacal 

nitrogen, nitrate, and zinc concentrations varied during the 1980s, then became relatively 

stable and lower after that (Figure 2.29). Cadmium concentrations reduced from 20 ug/L 

in 1978 to 0.2 ug/L in 1987, and became stable. Peaks in lead and zinc probably relate to 

resuspension due to high flows; the incomplete time series makes it difficult to tell the true 

degree to which these metal levels have reduced and stabilized, but wherever channel 

and riparian sediments are reworked during spates it is likely these peaks will be 

generated. No clear trends were observed in other chemical components.  

 

In Rookhope Burn (1976-2019), oxygen increased significantly and ammonia, nitrate, 

orthophosphate, zinc and lead all decreased over time (Table 2.6). Ammonia varied 

substantially between 1979 and 1994, then slightly declined and became relatively stable 

(Figure 2.30). High concentrations of lead, iron and zinc were recorded between 1978 and 

1991, but then declined (Figure 2.30). Although another high peak of zinc concentration 

(linked to an adit outflow event) was detected in early 2000, this steadily decreased to the 

previous level by 2002. Cadmium concentrations reduced from 10 μg/L in 1981 to less 

than 1 μg/L after 1991, and became stable. 
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Table 2.5 Linear model summaries of changes in key water quality parameters in the 

Wear catchment (S1-S5). Site numbers increase from downstream to upstream, with 

lowest site numbers are nearest to the sea.  

Site Parameter Periods df t P 
1 DO  1989-2020 1,62 2.64  0.011  
Tidal reach Ammonia 1988-2002 1,115 -3.54  <0.001 
 Orthophosphate 1989-2020 1,27 -3.09  0.005  
 Zinc 1989-2002 1,45 -1.71  0.094  
 Lead 1989-2002 1,43 0.03  0.974  
2 DO  1973-2019 1,515 3.13  0.002  
Lambton Bridge BOD 1973-2014 1,539 -8.35  <0.001 
 Ammonia 1973-2019 1,591 -11.81  <0.001 
 Nitrate 1973-2019 1,537 2.00  0.046  
 Phosphorus 1974-2019 1,389 -11.85  <0.001 
 Zinc 1974-2019 1,427 -5.84  <0.001 
 Lead 1974-2019 1,426 -5.62  <0.001 
3 DO  1979-2019 1,270 4.15  <0.001 
Twizell Burn BOD 1979-2006 1,81 -1.98  0.050  
 Ammonia 1979-2019 1,287 -4.12  <0.001 
 Nitrate 1979-2019 1,283 2.98  0.003  
 Orthophosphate 1995-2019 1,232 -19.49  <0.001 
 Zinc 1989-2011 1,108 -2.21  0.029  
4 DO  1979-2019 1,205 1.13  0.262  
Cong Burn BOD 1979-2006 1,178 -3.46  <0.001 
 Ammonia 1979-2019 1,221 -3.32  <0.001 
 Nitrate 1979-2019 1,200 -2.01  0.046  
 Orthophosphate 1995-2019 1,167 -2.64  0.009  
 Zinc 1995-2004 1,101 -1.73  0.087  
5 DO  1973-2019 1,448 -0.30  0.763  
Old Durham BOD 1973-2015 1,393 -2.41  0.016  
Beck Ammonia 1973-2019 1,496 -4.64  <0.001 
 Nitrate 1973-2019 1,484 6.73  <0.001 
 Orthophosphate 1977-2019 1,401 4.03  <0.001 
 Zinc 1974-2006 1,158 -5.43  <0.001 
 Lead 1979-2002 1,106 -3.71  <0.001 
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Table 2.6 Linear model summaries of changes in key water quality parameters in the 

Wear catchment (S6-S10). Site numbers increase from downstream to upstream. 

Site Parameter Periods df t P 
6 DO  1973-2019 1,494 -0.36  0.721  
Deerness BOD 1973-2007 1,408 -2.62  0.009  
 Ammonia 1973-2019 1,510 -6.30  <0.001 
 Nitrate 1973-2019 1,460 5.28  <0.001 
 Zinc 1974-2013 1,260 -4.67  <0.001 
 Lead 1994-2002 1,103 -3.50  <0.001 
7 DO  1991-2004 1,123 1.40  0.164  
Brancepeth Beck BOD 1991-2004 1,146 1.76  0.080  
 Ammonia 1991-2004 1,145 -2.78  0.006  
 Nitrate 1991-2004 1,110 0.23  0.822  
 Orthophosphate 1995-2004 1,95 -0.23  0.820  
 Zinc 1995-2004 1,100 -1.18  0.243  
8 DO  1991-2019 1,248 1.73  0.085  
Bedburn Beck BOD 1991-2016 1,226 -0.82  0.413  
 Ammonia 1991-2019 1,283 -7.23  <0.001 
 Nitrate 1991-2019 1,207 -4.96  <0.001 
 Orthophosphate 1992-2019 1,259 -5.66  <0.001 
 Zinc 1992-2019 1,252 -2.39  0.018  
9 DO  1973-2012 1,422 -0.28  0.780  
Stanhope BOD 1973-2007 1,382 -1.34  0.183  
 Ammonia 1973-2012 1,446 -2.98  0.003  
 Nitrate 1973-2012 1,392 -1.99  0.048  
 Orthophosphate 1974-2012 1,329 -1.39  0.166  
 Zinc 1974-2011 1,384 -7.35  <0.001 
 Lead 1974-2011 1,295 -3.05  0.003  
10 DO  1976-2019 1,262 2.10  0.037  
Rookhope Burn BOD 1976-2007 1,262 0.74  0.459  
 Ammonia 1976-2019 1,307 -2.84  0.005  
 Nitrate 1976-2019 1,232 -2.24  0.026  
 Orthophosphate 1978-2019 1,175 -2.90  0.004  
 Zinc 1978-2019 1,263 -12.34  <0.001 
 Lead 1978-2019 1,184 -4.36  <0.001 

 
 



114 
 

 
Figure 2.21 Key water quality parameters in the Wear estuary sites from 1988 to 2020 

(Wear at South Hylton: 1988 to 2007, 2012, 2013; Wear at Sandy Point: 2008 to 2010; 

Wear at Copperas Gill: 2011, 2020). Note: Iron and cadmium concentrations are on log 

scales. Note the different timescales on the panels. All metal element concentrations 

presented were 'total' values (samples not filtered). 
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Figure 2.22 Key water quality parameters in the Wear at Lambton Bridge (Chester New 

Bridge) from 1973 to 2019. Note: BOD, ammoniacal nitrogen, lead, zinc, iron and mercury 

concentrations are on log scales. Note the different timescales on the panels. All metal 

element concentrations presented were 'total' values (samples not filtered). Phosphorus 

concentrations presented were total P. 
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Figure 2.23 Key water quality parameters in the Twizell Burn u/s Cong Burn confluence 

from 1979 to 2019. Note the different timescales on the panels. All metal element 

concentrations presented were 'total' values (samples not filtered). Conf refers to 

confluence. 
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Figure 2.24 Key water quality parameters in the Cong Burn u/s Twizell Burn confluence 

from 1979 to 2019. Note the different timescales on the panels. All metal element 

concentrations presented were 'total' values (samples not filtered). Conf refers to 

confluence. 
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Figure 2.25 Key water quality parameters in the Old Durham Beck above River Wear 

confluence from 1973 to 2019. Notice: BOD and ammoniacal nitrogen concentrations are 

on log scales. Note the different timescales on the panels. All metal element 

concentrations presented were 'total' values (samples not filtered). Conf refers to 

confluence. 
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Figure 2.26 Key water quality parameters in the Deerness at A690 from 1973 to 2019. 

Notice: iron concentrations are on log scales. Note the different timescales on the panels. 

All metal element concentrations presented were 'total' values (samples not filtered).  
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Figure 2.27 Key water quality parameters in the Brancepeth Beck at Brancepeth Castle 

from 1991 to 2004. Note the different timescales on the panels. All metal element 

concentrations presented were 'total' values (samples not filtered).  
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Figure 2.28 Key water quality parameters in the Bedburn Beck at Howlea Bridge from 

1991 to 2019. Note the different timescales on the panels. All metal element 

concentrations presented were 'total' values (samples not filtered).  
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Figure 2.29 Key water quality parameters in the Wear at Stanhope from 1973 to 2019. 

Note the different timescales on the panels. All metal element concentrations presented 

were 'total' values (samples not filtered).  
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Figure 2.30 Key water quality parameters in the Rookhope Burn at Eastgate from 1976 to 

2019. Notice: lead, iron and zinc concentrations are on log scales. Note the different 

timescales on the panels. All metal element concentrations presented were 'total' values 

(samples not filtered). 
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Based on the analysis above it is apparent that chemical water quality has improved 

across much of the Wear since the 1970s, both for organic pollution indicators and for 

heavy metals. Similar to the Tyne catchment, the majority of sites for chemical status were 

‘good’ in the Wear in 2015 and 2016 (Table 2.7). However, after new substances were 

added to the assessment list and stricter standards were developed by the EA, all water 

bodies in the Wear catchment failed to achieve good chemical status in 2019 (Table 2.7).  

 

No clear changes in the ecological status were found from 2015 to 2019, 58/64 (90.6%) of 

water bodies still failed to reach good ecological condition in 2019, with the greatest 

pressures coming from wastewater, urban and minewater pollution sources and from 

hydromorphological modification (Table 2.8). Evidently, there is still a long way to go in the 

recovery of the Wear, even if dramatic improvements have been made in recent decades.  

 

Table 2.7 Ecological and chemical classification for surface waters in the Wear catchment 

in 2015, 2016 and 2019. 

 Wear catchment Ecological status or potential Chemical 
status 

Year Number of 
water bodies 

Bad Poor Moderate Good High Fail Good 

2015 64 2 10 44 8 0 11 53 

2016 64 0 14 44 6 0 8 56 

2019 64 1 15 42 6 0 64 0 
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Table 2.8 Issues in the Wear catchment preventing waters reaching good ecological status under WFD by cycle 2 (2015-2021) and the sectors identified as 

contributing to them (the numbers in the table are counts of the reasons for not achieving good status in water bodies). 

 

Agriculture 
and rural 

land 
management 

Domestic 
General 
Public 

Industry 

Local 
and 

Central 
Gov 

Mining 
and 

quarrying 

Recrea
tion 

Urban 
and 

transport 

Water 
Industry 

Other 
No sector 

responsible 

Sector 
under 

investi-
gation 

Total 

Changes to the 
natural flow and 
levels of water 

- - - - - - - 2 - - - 2 

Pollution from 
rural areas 

22 - - - - - - - - - - 22 

Pollution from 
abandoned 

mines 
- - - - 34 - - - - - - 34 

Pollution from 
waste water 

- - 1 - - - - 55 2 - - 58 

Physical 
modifications 

8 - - 9 - 2 17 8 1 - 3 48 

Pollution from 
towns, cities 
and transport 

- 1 1 - - - 2 30 - - - 34 

Non-native 
invasive 
species 

- - - - - - - - - 8 - 8 
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2.3.2.5 Recovery of the Wear fishes 
Following the water quality improvement, fish in the Wear catchment started to recover. 

During beam trawling surveys in the 1980s, 24 fish species were caught (69 1-km trawls) 

in the Wear estuary, compared to 45 species in the Tyne estuary (880 1-km trawls) and 

25 species in the Tees estuary (225 1-km trawls) (Pomfret et al., 1988). Salmon in the 

Wear have made a clear recovery from the pollution, similar to the Tyne salmon. Salmon 

rod catches increased on the Wear from the 1970s to the 2010s (Figure 2.15). Very low 

catches of salmon were recorded between 1965 and 1980, with a number of years 

recording zero catch. In 1981 there was a peak at 499 before catches decreased and then 

fluctuated at around 200 until the late 1990s (Environment Agency, 2008a). From the 

1990s salmon catch began to increase and reached a maximum of 1,731 in 2013. Sea 

trout catches on the River Wear followed a similar pattern to salmon. Very low catches of 

sea trout were recorded in the 1950s. The annual rod catch fluctuated between 88 and 

673 from 1960 to 1989. From the early 1990s, total catches of sea trout steadily 

increased, peaking in 2002 (rather earlier than for salmon), when 2374 were caught. 

Since 2010, both the salmon and sea trout rod catch have shown a decreasing trend, and 

the catches in 2017 reduced to nearly half compared with 2010. The rod catch per unit 

effort (catch per licence day) of salmon in the Wear catchment steadily increased between 

1993 and 2008, and then fluctuated between 2009 and 2017 (Figure 2.16). The rod catch 

per unit effort of sea trout continuously increased between 1993 and 1998, then fluctuated 

between 1999 and 2017. Some excess salmon from the Kielder programme were stocked 

in the Wear (Figure 2.17), but numbers were very few, and indicate that the Wear salmon 

and sea trout recovery was based on natural recolonization, probably facilitated by strays 

from other river stocks in the region.  

 

In 1992, the National Rivers Authority carried out an electro-fishing survey at 21 sites on 

the river from Fatfield (near tidal limit) to North Carr Woods (upstream of Bedburn Beck - 

Wear confluence). These surveys showed the higher reaches of Wear were dominated by 

salmonid species, especially brown trout, and lower reaches held a mixed stock of coarse 

fish including a high abundance of dace (Leuciscus leuciscus) (National Rivers Authority, 

1994d). Subsequent electrofishing, angler and hydroacoustic surveys, overseen by the 

Environment Agency has shown that the abundance of cyprinid fish, especially dace, in 

the lower river has decreased in the last decade, possibly as a result of increased 

numbers of avian fish predators in winter (M. Lucas, pers. comm.).  

 

To monitor and assess the stocks of migratory salmonids in the River Wear, a resistivity 

fish counter was installed at the salmonid pass at Framwellgate Weir, Durham, located 22 
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km upstream of the tidal limit. The counter commenced operation in November 1994 

(Environment Agency, 2008a). A second counter on a new fish pass at Freemans on the 

same set of weirs at Framwellgate started operating in February 2015. Total fish counts 

(salmon and sea trout) fluctuated between 1994 and 2020 (Figure 2.18). The highest total 

recorded on the Framwellgate Counter was in 1999, with 27,658 fish. From 2017 to 2020, 

the total count reduced dramatically. This trend, together with rod catch data suggests that 

adult salmonid numbers may have declined somewhat in the Wear in recent years, 

although fish counts at Durham are incomplete as fish can ascend the weirs directly in 

high flows, and prolonged low flow periods in some years can result in reduced river entry 

and upstream migration.  

 

Since 1991, an annual juvenile salmonid survey has operated across the Wear catchment 

(Environment Agency, 2008a). Electrofishing surveys were carried out before this by the 

NRA’s predecessors, but these data were not accessible and may no longer exist. Both 

semi-quantitative surveys (i.e. by which estimates of minimum population abundance are 

obtained from a fixed area) and timed surveys (by which estimates relative to the fishing 

method, time or area are obtained) have been undertaken (Environment Agency, 2008a). 

Further, some conventional quantitative ‘depletion’ electric fishing surveys have been 

carried out for a subset of sites and dates. These surveys provide information on the 

temporal and spatial distribution of the juvenile salmon and trout in the main river and 

some major tributaries in the Wear catchment. The density both at individual sites and 

across the catchment can also be classified through the National Fisheries Classification 

Scheme (Environment Agency, 2008a).  

 

Between 1989 and 1996, the Wear was stocked with juvenile salmon from the Kielder 

hatchery. A total of 177 thousand juvenile salmon were release into the catchment. 

However, the numbers are much lower comparing with the fish stocked in the Tyne and 

Tees. Apart from salmon and trout, the EA also stocked the Wear and some tributaries 

with chub (Squalius cephalus), dace, barbel (Barbus barbus) and grayling in the 1990s 

and 21st century (McParlin, 2011; EA unpublished information). Debate has occurred over 

the degree to which several of these species are natural to the Wear and should be 

stocked, even though there is a demand from anglers. In particular, there seems to be 

good evidence that barbel are non-native to the Wear (Wheeler, 1969; Britton and Pegg, 

2011; McParlin, 2011). 

 

2.3.2.6 Changes of fish communities in the Wear tributaries 
Three sub-catchments were chosen for assessing long-term fish community change in the 

Wear catchment (Figure 2.31), concentrating on those studied in Chapter 5. Unfortunately, 
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the data series timescale of these is poor in the Environment Agency’s database. In the 

Cong Burn sub-catchment, three sites were surveyed by the EA by electric fishing (single 

pass on some occasions, multipass on others – for comparability data are therefore 

presented as the number captured in first fishing divided by the area [minimum density], 

supported by capture efficiency estimates where available), the earliest survey dating 

back to 2003. In the Chester-le-street site, species mainly consisted of brown trout 

(minimum density range, 0.3 to 38.6 per 100 m2), stone loach (Barbatula barbatula) 

(minimum density range, 0 to 4.9 per 100 m2) and European eel (minimum density range, 

0 to 5.5 per 100 m2) (Figure 2.32). Species richness has increased from just two species 

in 2003 to seven species in 2017 (four in 2019), indicating slow recolonization and 

diversification of the community by several species. Bullhead (Cottus perifretum) and 

Atlantic salmon were caught in the 2011 and 2017 surveys. In 2017, low abundance of 

three-spined stickleback (Gasterosteus aculeatus) and Lampetra sp. were recorded at this 

site. In 2019, a low abundance of minnow was recorded at this site. Total fish abundance 

(all species combined) has shown an increasing trend since 2003, although was low in 

2019. 

 

In the Browney sub-catchment (excluding the Deerness sub-catchment), 11 sites were 

surveyed by the EA, using electric fishing (single pass on some occasions, multipass on 

other occasions) and the earliest surveys date back to 1995 at Malton. As in Cong Burn, 

there has been a tendency for an increase in species richness in the Browney sites over 

time with four species at Malton and three at Wall Nook, recorded by 2003, but eight 

species at the former over 2017-2019 and seven species at the latter over 2012-2016. In 

1995, the Malton site was dominated by stone loach (666.7 per 100 m2), with less 

abundant brown trout, bullhead and minnow (Figure 2.33). Since 2003, trout (minimum 

density range, 5.3 to 126.3 per 100 m2) has become the dominant species, and shifted to 

minnow in 2019. In the Wall Nook site, between 2003 and 2009, the dominant species 

was trout (minimum density range, 49.2 to 88.9 per 100 m2), while bullhead, stone loach, 

minnow, salmon and three-spined stickleback were present in low densities. From 2010 to 

2014, both bullhead (minimum density range, 45.5 to 54.9 per 100 m2) and minnow 

(minimum density range, 0.7 to 606.1 per 100 m2) increased and became co-dominant 

species. Salmon now seem to be a consistent element of the fauna at Wall Nook 

(minimum density 2009-2016, 18.7 to 88.3 per 100 m2). The minnow abundance largely 

decreased in 2016, no clear changes were found in other species. According to the EA 

records European river lamprey was occasionally caught in the river, but those records 

are untrustworthy since the captures are normally larvae or transformers which cannot 

readily be distinguished between L. fluviatilis and brook lamprey (L. planeri) (M. Lucas, 

pers. comm.). By contrast, adult river lamprey have not been recorded or observed 
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upstream of Durham since 1992 (M. Lucas, pers. obs.). 

 

In the Deerness sub-catchment, four sites were surveyed by the EA since 2001 by single-

pass electric fishing. The fish community at Langley Moor in 2003 and 2011 mainly 

consisted of brown trout (minimum density, 7.8 to 50.2 per 100 m2) and European 

bullhead (minimum density, 5.6 to 27.8 per 100 m2), along with lower abundance of stone 

loach, minnow, and three-spined stickleback (Figure 2.34). In 2017, the abundance of 

stone loach, minnow, and three-spined stickleback largely increased. At the Ushaw Moor 

site, the dominant species was brown trout (minimum density, 11.7 to 52.2 per 100 m2) 

between 2001 and 2006. Bullhead, minnow and stone loach were present in lower 

abundance (minimum density, 0 to 11.1 per 100 m2). European eel, brook lamprey and 

Atlantic salmon were occasionally caught in the river. 

 

In the Bedburn Beck sub-catchment, six sites were surveyed by the NRA/EA by electric 

fishing (single pass on some occasions, multipass on others) since 1991. The Newhall 

Farm site was dominated by salmon (minimum density, 30.4 to 117.3 per 100 m2) and 

trout (minimum density, 23.4 to 98 per 100 m2) between 1991 and 2016 (Figure 2.35). 

Bullhead were rare at Newhall Farm until 2008 but have been quite abundant since 

(minimum density, 5.0 to 21.1 per 100 m2). Lamprey, minnow, stone loach and eel were 

both present in very low densities and occasionally caught during the surveys. In 2019, 

minnow abundance slightly increased and it became the dominant species, while 

salmonid abundance was at its lowest for the whole time series. 

 

Beyond those surveys, some more general comments can be made about the fish 

communities of the River Wear. River lamprey are moderately abundant downstream of 

Durham and regularly spawn below Framwellgate weir where samples have been 

collected in the 2000s for genetic analysis (Bracken et al., 2015) and where hundreds of 

post-spawned lamprey were collected in the early 1980s for zoological dissections at 

Durham University (M. Lucas, pers. comm.). Sea lamprey have regularly been observed 

spawning downstream of Chester-le-Street weir, and upstream to Framwellgate in the 

2000s (M. Lucas, pers. comm.). Most of the Wear tributaries with good water quality and 

some fine sediment as well as gravel, including Bollihope Beck, Waskerley Beck, 

Shittlehope Beck, Bedburn Beck and the River Browney contain adult breeding brook 

lamprey (M. Lucas, pers. comm.; Bracken et al., 2015). Dace, chub, roach (Rutilus 

rutilus), gudgeon (Gobio gobio) and barbel are most abundant in the main river 

downstream of Croxdale, although small numbers of barbel, chub and dace are known to 

occur as far upstream as Bishop Auckland (McParlin, 2011, M. Lucas pers. comm). 

Grayling are most abundant from Durham to Wolsingham (M. Lucas, pers. comm.). 



130 
 

Flounder are found throughout the tidal river. 

 

 
Figure 2.31 Location of EA fish sampling sites in selected Wear tributaries for which data 

is presented below. Sites without names represent EA sites with much shorter time 

records, which were not included in this study.  
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Figure 2.32 Long-term variation of estimated minimum fish density (2003-2017: single 

pass electric fishing; 2019: first run data from three pass electric fishing; estimated three 

pass capture efficiency: trout 63.6%, bullhead 84.6%, minnow 100%) at Cong Burn. BT: 

brown trout, BH: bullhead, MN: minnow SL: stone loach, SA: Atlantic salmon, EE: eel, SB: 

three-spined stickleback, LA: Lampetra sp.. Note the log scale. 
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Figure 2.33 Long-term variation of estimated minimum fish density (1995-2017: single 

pass electric fishing; 2019: first run data from three pass electric fishing; estimated three 

pass capture efficiency: trout 84.5%, bullhead 87.0%, minnow 76.6%) at River Browney. 

BT: brown trout, SA: Atlantic salmon, BH: bullhead, SB: three-spined stickleback, LA: 

Lampetra sp., MN: minnow, SL: stone loach, EE: eel. Blank panel means the site was not 

surveyed. Note the log scale. 
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Figure 2.34 Long-term variation of estimated minimum fish density (single pass electric 

fishing) at River Deerness. BT: brown trout, SA: Atlantic salmon, BH: bullhead, SB: three-

spined stickleback, LA: Lampetra sp., MN: minnow, SL: stone loach, EE: eel. Blank panel 

means the site was not surveyed. Note the log scale. 
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Figure 2.35 Long-term variation of estimated minimum fish density (1991-1997, 2007-

2016: single pass electric fishing; 2001-2006, 2019: first run data from three pass electric 

fishing; estimated three pass capture efficiency: trout 93.7%, salmon 84.2%, bullhead 

60.6%, minnow 77.0%) at Bedburn Beck Newhall Farm site. BT: brown trout, SA: Atlantic 

salmon, BH: bullhead, LA: Lampetra sp., MN: minnow, SL: stone loach, EE: eel. Notice: 

the 1991 survey only counted trout and salmon. Note the log scale. 

 



135 
 

2.3.3 River Tees 
2.3.3.1 History of Tees fishes 
The River Tees, used to be a major salmon river like the Tyne and Wear. Some of the 

earliest fish records there go back to the early 15th Century, where numerous fisheries and 

fishgarths (fish weirs) were for lease in the Tees (Anonymous, 1928). Fisheries were an 

important activity in the Tees region, and the majority of fish taken from the river were 

salmon. Apart from salmon, smelt (Osmerus eperlanus) used to be abundant in the Tees, 

and they were commercially exploited in the Tees estuary during the 16th Century 

(Maitland, 2003). In 1530, regulations were made to deal with disagreements between 

fishermen using draw nets (seines) and haling-nets (framed nets on poles). An order was 

made in that year that fishing with 'kydyll' nets for smelt and herring (possibly referring to 

shad Alosa sp.) was prohibited, that the fishing season for smelt would be 25 April to 1 

August, and smelt could only be taken from upstream of the Saltholme (Brewster, 1796; 

Anonymous, 1928). 

 

In the 18th Century, the salmon fishery was the principal fishery in the Tees catchment. 

Large amounts of salmon were caught in Stockton, and after the town’s needs were 

catered for, the remainder were sold to York, Leeds and other cities (Anonymous, 1928). 

Salmon was allowed to be taken from the 22nd of November to the 12th of August 

according to the act of parliament issued by George I (Brewster, 1796). A large drag net 

was used by fishermen for catching salmon between the estuary and Dinsdale-lock. The 

weir at Dinsdale was about 2.4 m high with two locks (not for navigation), one on each 

bank, and fish could only ascend it during the flood period (Figure 2.36; Commissioners 

for the British fisheries, 1861). In the shallow downstream reach, fishermen would also 

use spears to catch salmon from boats. During the spawning season, both salmon and 

sea trout were protected so they could reach the Barnard Castle reach and further 

upstream to spawn (Brewster, 1796). Harbour seals (Phoca vitulina) at one time were 

numerous in the Tees, and the population was estimated at about 1,000 in the Tees 

Estuary in the early 19th Century (Anonymous, 1928; Wilson, 2001). Because they preyed 

on the salmon, it was the custom for local fishermen to devote a day or two occasionally 

to hunting the seals to protect the fishery (Anonymous, 1928). Apart from salmon, the 

Tees also produced great numbers of flounder, eel and smelt in the estuary reach 

(Parson, 1827). However, due to the large supply of sea fish, these were rarely to be 

found in the market (Parson, 1827). From Middleton-One-Row to further upstream, the 

river also produced a good abundance of brown trout in the shallow reach (Brewster, 

1796). 
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Figure 2.36 A view of the fish locks and weir on the river Tees at Dinsdale in the early 19th 

Century, drawn by J.M. Sparks. 

 

2.3.3.2 The decline of Tees fish and other fauna 
In the 19th Century, the River Tees was still an important salmon river with around 10,000 

fish being netted from the river in 1867 (Netboy, 1968). Subsequently the salmon run was 

ruined by the combination of industrial pollution and in-stream barriers. In Teesside, 

following the opening of railways in 1825, the coal trade in Stockton increased greatly. 

The dramatic industrial development led to a population explosion in Middlesbrough 

between 1830 and 1840 (Warren, 2018). Teesside become one of the major industrial 

centres in Britain, with the pollution that came with it.  

 

Like the South Tyne and the upper Wear, the upper Tees catchment was badly polluted 

by heavy metals due to the increased hushing and lead ore washing (Commissioners for 

the British fisheries, 1861). The upper Tees was suggested to be one of the most affected 

rivers by historical metal mining (Hudson-Edwards et al., 2008). In the middle reaches, the 

major tributary, the Skerne, was heavily modified as a result of industrialization, 

urbanization and land drainage. The middle reach of the Skerne was straightened and 

channelized between 1850 and 1945, and the river corridor was markedly narrowed, then 

channel widening and deepening was undertaken in the 1950s and the 1970s to protect 

the housing and infrastructure from flooding (Vivash et al., 1998). In addition, the river was 

polluted by sewage from Darlington (the main town along the freshwater course of the 
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Tees) and chemical works discharges in the mid-19th Century, and fish mortalities due to 

pollution were observed (Commissioners for the British fisheries, 1861). In-stream barriers 

also caused significant impacts to the fish community, Dinsdale weir was considered to be 

the major man-made obstruction to fish in the Tees, which blocked the upstream salmonid 

migration most of the time. Additionally, there were numerous mill weirs constructed 

further upstream above Dinsdale weir (e.g. Whorlton lock) and the majority of them were 

installed with fish traps (Commissioners for the British fisheries, 1861).  

 

Pollution problems were partly resolved by the end of the 19th Century, enabling net 

catches of 5,000 to 9,000 salmon between 1905 and 1916 (Environment Agency, 2009b). 

Then, a major decline began in the early 20th Century and by the middle of the century the 

stock of salmon had decreased almost to the point of extinction (Watson and Davis, 

1995). From the source to Middleton-in-Teesdale, no significant organic pollution 

occurred, and there was little variation in chemical composition (Anonymous, 1938a), 

though heavy metal contamination must have been evident. Between Middleton-in-

Teesdale and Croft (where the Skerne tributary joins) the effluents from several small 

sewage works were discharged into the river (Anonymous, 1938a), but the quantity of 

sewage effluent was relatively small and it was considered that it did not cause harmful 

effects to the river (Anonymous, 1938b, 1938a). From the river’s middle reaches 

downstream, the River Tees suffered major pollution due to urbanization and 

industrialization. At Croft, the entry of the River Skerne caused a marked change in the 

chemical and biological characteristics of the Tees (Anonymous, 1938b, 1938a). The 

Skerne was heavily polluted with sewage effluent from the town of Darlington, its water 

was frequently devoid of dissolved oxygen and led to a complete loss of fishes 

(Anonymous, 1938a). Although pollution occurred, the non-tidal reaches of the lowerTees 

still held substantial numbers of brown trout and other species such as grayling, dace, 

chub, gudgeon and roach (Anonymous, 1938a).  

 

The lower catchment and estuary reach was particularly affected by pollution as a result of 

industrialization and urbanization (Watson and Davis, 1995). During and after the Great 

War, there had been a considerable increase in the number of coke-ovens (Sheail, 2000). 

Pollution discharges mainly consisted of untreated sewage discharges from 

Middlesbrough and Stockton, coke-oven effluents and pickle liquors (a strong acidic 

solution) from steel works (Southgate et al., 1932). Approximately 4400 lb of tar acids and 

1800 lb of cyanide were discharged into the estuary on a daily basis (Alexander et al., 

1936). Substantial numbers of dying smolts in the estuary were reported by the Tees 

Fishery Board in 1920 (Brady et al., 1982; Rushall, 1996). Considerable numbers of adult 

salmon and sea trout were recorded dead while attempting to pass through the estuary 
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during both upstream and downstream migrations (Southgate et al., 1932; Alexander et 

al., 1936; Anonymous, 1938a), and led to a great decline in the value of the salmon and 

sea trout fishery (Anonymous, 1938a). In 1930, about 600 salmon and sea trout smolts 

were killed or poisoned in the estuary during downstream migration (Southgate et al., 

1932). It was suggested that cyanide was the main factor responsible for the death of 

smolt in the estuary (Southgate et al., 1932). In the spring of 1931, 66 dying salmon and 

131 dying sea trout smolts were picked up from the estuary, and their gill colours were 

compared with the colours generated from those exposed to varying concentrations of 

cyanide (Bassindale et al., 1933). The gill colour of dying Tees smolts in the estuary was 

brighter than for normal fish, indicating a characteristic symptom of cyanide poisoning 

(Bassindale et al., 1933; Alexander et al., 1936). Apart from salmon and sea trout, dead 

whiting (Merlangius merlangus) and other fish were found on almost every tide in the Tees 

estuary in late 1926 (Sheail, 2000). By 1935, salmon was virtually extinct in the Tees, and 

the invertebrate fauna distribution in the Tees estuary was greatly influenced by pollution 

(Shillabeer and Tapp, 1989; Tapp et al., 1993). It was suggested that the middle reach of 

the estuary was totally deoxygenated and high concentrations of phenol and cyanides 

from coke-oven effluents to the estuary were directly toxic to fish (Shillabeer and Tapp, 

1989).  

 

The severe estuarine pollution along with the construction of numerous weirs and other in-

stream barriers on the river, eventually resulted in the complete loss of both salmon and 

sea trout from the catchment between the 1930s and the early 1980s (Moore and Potter, 

2014). Like salmon and sea trout, the smelt population also decreased dramatically during 

the same period and became extinct in the Tees (Maitland, 2003). In 1926, Imperial 

Chemical Industries (ICI) was formed and produced large-scale investment in the 

chemical complex at Billingham (Nelson, 2003), and expanded to the Wilton and North 

Tees sites in the late 1940s (Ord, 1988). Their production included fertilizers, heavy 

organic chemicals and chlorine (Nelson, 2003). In 1970, the total BOD load to the estuary 

was estimated at 500 tonnes per day (Ord, 1988). In the late 1980s, the chemical industry 

overtook the steel industry on Teesside and became the dominant industry in the area 

(Shillabeer and Tapp, 1989). These chemical works have contributed large volumes of 

waste water to the estuary. Apart from industrial pollution, the river was also affected by 

disposal of domestic sewage (Nelson, 2003). Untreated sewage of 400,000 people was 

discharged to the Tees estuary directly until the Portrack sewage works were completed 

in 1985 (Brady et al., 1982).  

 

Apart from fixed pollution sources, multiple pollution incidents were recorded in the Tees 

catchment since the 1980s, indicative of periodic damage. In particular, the frequent 
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occurrence of these in the 1980s to early 2000s in rivers such as the Skerne inhibited 

ecological recovery. In the upper Tees, a pollution incident occurred approximately 1 km 

upstream of High Force on the 24 October 1983, when nearly 3000 gallons of flux oil 

leaked into the river from Hargreaves Quarriers (Owen et al., 1993). It was estimated 

3000 dead fish were removed from the polluted reach and the total number of fish was 

many times higher (Owen et al., 1993). In September 1997, an unidentified pollution 

incident killed approximately 90 dace in the River Skerne at Barmpton (Jenkins, 1998). On 

24 February 2000, an unidentified substance entered the Skerne at Aycliffe reach, this 

incident led to a massive fish kill from the entry point all the way to the Skerne-Tees 

confluence (Jenkins, 2000). More than 1180 dace, 800 chub, 35 trout and small numbers 

of roach, pike, perch (Perca fluviatilis), gudgeon and grayling were killed during the 

incident (Jenkins, 2000). 

 

Apart from salmon and sea trout, the previously abundant mammal, the harbour seal, 

completely vanished from the Tees estuary during the Industrial Revolution in the mid-19th 

Century (Wilson, 2001). The seal population started to decline following land reclamation 

in the early 19th Century and the increase of iron trade in Cleveland and shipping 

industries in Middlesbrough (Wilson, 2001). The Tees estuary shore has been heavily 

modified for petrochemical and other heavy industrial use, and the upper reaches of the 

estuary have been canalized (Shillabeer and Tapp, 1989). In addition, the development of 

Teesport and increased dredging activities in the estuary in the 1960s led to further losses 

of large intertidal areas (Shillabeer and Tapp, 1989). The area of intertidal mudflats has 

been reduced by more than 90% (Wilson, 2001; Smurthwaite, 2006). By the 1960s and 

early 1970s, seals were rarely recorded in the Tees catchment due to habitat loss 

(Environment Agency, 1999c). In addition, sediments in the Tees estuary were heavily 

polluted by metal and organochlorine contaminants, including highly elevated 

concentrations of zinc, copper, lead, cadmium, chromium and mercury compared to less 

industrialized rivers such as the River Bure and Yare in Great Yarmouth (Smurthwaite, 

2006). 

 
In the upper Tees catchment, the headwaters of the Tees and two tributaries (River 

Balder and River Lune) have been dammed to create reservoirs. Cow Green Reservoir is 

the only reservoir on the main River Tees. Construction of Cow Green dam began in 1967 

and the dam was closed on 1 June 1970 (Crisp, 1977). The River Lune has two 

reservoirs, the upstream one is Selset reservoir which flows into Grassholme reservoir. 

The River Balder has three reservoirs, with the largest being Balderhead reservoir, it flows 

into Blackton reservoir then into Hury reservoir before reaching the River Tees (Nelson, 

2003). These reservoirs are operated by NWL to provide drinking water and industrial 
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water for Darlington and Teesside, and regulate and augment river flow to support 

extraction and release compensation flow during dry seasons (Nelson, 2003). As 

explained in Section 2.3.1.3 the steel and chemicals industry at Teesside used very large 

amounts of water and its development and predicted increase in water need was a 

primary reason for development of Kielder Reservoir in the Tyne valley and the Tyne-

Wear-Tees interbasin water pipeline, as well as Cow Green Reservoir. Fish population 

surveys provided evidence that below Cow Green Reservoir, trout and bullhead densities 

increased after the dam construction (Crisp et al., 1983). Benthic invertebrate surveys 

immediately below the Cow Green dam in 2004 indicated that nineteen of the thirty-one 

common taxa in the regulated Tees reach declined in numbers, including Hydra sp., 

Ancylus fluviatilis, Naididae, Heptageniidae, Leuctra fusca, Leuctra inermis and 

Brachycentrus subnubilus (Armitage, 2006). However, some taxa including Lymnaea 

peregra, Ephemerella ignita, Hydroptila sp. increased in numbers (Armitage, 2006). In 

addition, the reservoirs along the River Lune and Balder not only eliminated upstream 

spawning habitat, but also prevented the downstream transport of coarse substrate, which 

reduced the salmonid spawning habitat downstream (Environment Agency, 2010). 

 

2.3.3.3 The Tees barrage 

In 1990, the Teesside Development Corporation proposed a barrage across the Tees 

which was enabled through an act of Parliament. The purpose of the barrage was to 

control the flow of the river, preventing flooding and the effects of tidal transport of 

pollutants upstream. It was closely linked to planned business and leisure regeneration 

along the banks of the Tees in Stockton and Thornaby, popularized in Prime Minister 

Margaret Thatcher’s “Walk in the Wilderness” on Teesside in 1987. Construction work 

started in November 1991, the barrage was completed in 1994 and opened in April 1995. 

The Tees barrage represents the most recent of a large series of human impacts on the 

estuary (Tapp et al., 1993). After construction was completed, the length of estuary was 

reduced to 18km and the upstream section of the barrage was turned into a freshwater 

reach (Environment Agency, 1999c). The barrage determines the upstream limit of the 

estuary and saline intrusion (Environment Agency, 1999c). The barrage has four 

hydraulically operated gates that can be lowered to allow flow over, and was designed to 

incorporate a whitewater kayak facility on the left bank (Figure 2.37). The barrage also 

has a navigation lock on the right bank.  

 

To allow adult salmon and sea trout to pass upstream of the barrage, a Denil fish pass 

was installed next to the north bank pavilion and an elver pass was also installed to 

facilitate the upstream passage of juvenile eels (Watson and Davis, 1995). The flow 

through the pass was relatively small but the attractiveness of its entrance was intended 
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to be supported by the whitewater course outflow. The River Tees Barrage and Crossing 

Act 1990 did not stipulate a required fish passage efficacy but the operators must 

demonstrate its adequacy to the satisfaction of the EA (not yet attained in 2020). A degree 

of conflict has existed during the period of barrage operation in the allocation of river flow 

for fish passage (M. Lucas, pers. comm.). One or more barrage gates (typically the left-

most gate) have been used to support passage of jumping adult salmonids by lowering 

the gate, especially around high tide. But historically, water flow for operating the 

whitewater course has been prioritized. In 2010 four Archimedes Screws were added to 

the kayak course for pumping water upstream and generating power, during which time a 

further upstream fishway was added between the Archimedes Screws. 

 

 
Figure 2.37 The Tees Barrage viewed from downstream (Photo credit: PremiumP UAV). 

 

Between 1995 and 2011, a conventional upstream adult salmonid trap and a resistivity 

counter was operated at the top of the Denil fish pass at the barrage (Moore and Potter, 

2014). In addition, a CCTV camera was installed to try and monitor fish ascending the 

barrage gates (Rushall, 1996). In 1995, 256 adult salmonids were recorded passing the 

barrage through the fish pass (Lucas, 1995). In addition, more than 4600 eel, 500 dace, 

150 river lamprey and a few flounder were also recorded in the fish pass between 25 May 

1995 and 31 October 1995 (Lucas, 1995; Rushall, 1996). Some salmonids were observed 

to pass the barrage by jumping over the left-hand gate when the tide was high enough, 

during elevated freshwater flows, and some salmon and sea trout have been found using 
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the navigation lock to pass the barrage (Lucas, 1995; Rushall, 1996).  

 

In 2002, a fish tagging and tracking experiment was carried out by Cefas. A total of 156 

fish (103 salmon and 53 sea trout) were caught from the lock, then acoustic tagged and 

released back downstream. Only three salmon and two sea trout managed to pass the 

barrage, one passed through the canoe slalom and the other four passed by the barrage 

gates (Environment Agency, 2009b). In 2008, 2009 and 2013, another fish tracking 

experiment was conducted by Cefas. A total of 237 fish (199 salmon and 38 sea trout) 

were captured in T-nets at the estuary mouth, tagged with acoustic transmitters and 

released at the capture site. A total of 80 fish (33.7%) approached the barrage after 

release and 11 fish managed to pass the barrage, 10 by the barrage gates and one by the 

fish pass (Moore and Potter, 2014). Over 30% of tagged fish are known to have died and 

at least 14.7% were predated by seals (Moore and Potter, 2014). In recent years resident 

seals, especially grey seal (Halichoerus grypus) have become an increasing cause of 

adult salmonid mortality at the barrage, highly conspicuous to onlookers as those seals 

eat salmon close to the barrage. Long passage delays and repeated passage attempts 

due to the barrage’s obstructing effect put the salmonids at high predation risk.  

 

The number of sea trout caught in the trap at the fish pass increased rapidly from 1995 to 

2001 then declined until 2011 (Environment Agency, 2009b; Moore and Potter, 2014). The 

number of salmon caught each year by anglers in the Tees was relatively stable between 

1995 and 2003, peaked in 2004 (439 fish), and was variable until 2011. After the previous 

tracking studies and video showed that the fish trap was causing fish to move back 

downstream, the trap was removed and replaced with an updated resistivity fish counter 

(Moore and Potter, 2014), operated by the EA since July 2011. 

 

Apart from salmon and sea trout, a monitoring program of the eel elver run was 

undertaken on 11 occasions in 1996. A total of 1455 elvers were caught in the elver pass 

between May and August, suggesting the elver pass facilitated upstream migration of 

elvers (Environment Agency, 1999c), though this number is a fraction of one percent of 

the expected run size. Also, sub-adult ‘yellow’ eels have occasionally been recorded 

during the beam trawl surveys throughout the estuary and the cooling water intake at 

Hartlepool power station in the lower Tees (Environment Agency, 1999c).  

 

2.3.3.4 Recovery of the Tees habitat 
Since the 1970s, the metal industries in the Tees Estuary have shown a decline 

(Smurthwaite, 2006), including the loss of most of the steel industry, with the massive SSI 

Redcar steelworks finally closing in 2015 (Evenhuis, 2018). The chemicals industry on 
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Teesside, concentrated on Billingham, Wilton and Seal Sands, has also slowly declined in 

recent decades (Evenhuis, 2018). In 1972, Stockton Borough Council drafted a proposal 

to control domestic sewage pollution (Nelson, 2003). Large interceptor sewers were built 

to channel discharges from Stockton, Norton and Billingham in the north and from Acklam, 

Linthorpe and Thornaby in the south, to a newly constructed treatment works at Portrack 

(Nelson, 2003). From 1973, numerous changes were conducted to improve the water 

quality of discharges to the Tees estuary (Tapp et al., 1993). Primary sewage treatment 

was introduced to the major sewers on both sides of the river, many industrial plants have 

closed and treatment was introduced at some sites (Tapp et al., 1993). By 1996, it was 

expected that pollution levels in the estuary has reduced 90% compare with 1970 (Watson 

and Davis, 1995).  

 

Due to the development of North Sea oil and the pipeline link between Teesside and the 

Ekofisk field, along with the increase of new chemical products, discharges to the estuary 

increased slightly in the mid-1980s (Warwick et al., 2002). Following strengthened 

controls on discharges and the introduction of improved treatment measures, both BOD 

and ammonia concentrations in the Tees estuary decreased (Warwick et al., 2002). The 

BOD monitoring data showed a major reduction during the 1970s, then the lower BOD 

levels were continued during 1980s and 1990s (Tapp et al., 1993; Warwick et al., 2002). 

Following water quality improvement, the benthic fauna inhabiting the area between the 

estuary mouth and Middlesbrough Dock became more diverse between 1979 and 1990 

(Tapp et al., 1993). Significant decreases of Zn, Cu and Cr were recorded in the estuary 

(Davies et al., 1991), and decreased Pb and Zn levels in the surface sediments were 

recorded since the 1970s (Jones and Turki, 1997). By 1996, there were 41 sewage 

treatment works in the Tees catchment, including 15 in the Tees upstream of the Skerne 

confluence, eight in the Skerne sub-catchment and seven in the Leven sub-catchment 

(Nelson, 2003).  

 

Harbour seal returned to the Tees estuary in the 1980s, the only known case of 

recolonization of harbour seal in an estuary from which it had been extirpated (Wilson, 

2001). Four counts of 9-17 seals were recorded in June-July 1984 and six counts of 12-22 

seals recorded between June and October 1986 (Wilson, 2001). Between 1989 and 1997 

harbour seal numbers in the Tees increased from about 24 to 50 individuals (Wilson, 

2001). However, this species has suffered from organochlorines (especially 

polychlorinated biphenyl compounds - PCBs) and heavy metal contamination from 

industrial chemicals which resulted in a high death rate of pups in the 1980s and 1990s 

(Wilson, 2001). In 2018, the highest maximum count of harbour seals was of 112 

individuals in July, and for grey seals was 45 individuals in August (Bond, 2018). 
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In the Tees catchment, eight sites were chosen to study the long-term chemical water 

quality trends (Figure 2.38), employing sites with the longest time series available. Five 

sites were located in the main river Tees and three sites were located in tributaries. The 

Tees at The Gares site was located in the river mouth, and reflects the change of chemical 

trends in the estuary area. The Tees at Newport Bridge and Tees Barrage sites located 

within the tidal reach, reflects the change of chemical trends in the lower main river. Data 

from these two adjacent sites were stitched, in order to get a more continuous data run. 

Tees at Low Hail Bridge site represents the middle reach of the main river. The Tees at the 

Egglestone Abbey represents the upper main river. For tributary sites, one was located in 

Greatham Creek, a small tributary running from the north through mudflats and joining the 

Tees estuary. This river was potentially polluted due to intensive farming and wastewater 

treatment outflows. This sub-catchment incorporated a study site in which empirical work 

was undertaken in Chapter 4. One site was located in the River Skerne, which has been 

heavily modified as a result of urbanisation. One site was located in Clow Beck, which 

was characteristic of a rural middle reaches lowland stream, but where in the last 50 years 

neighbouring land has become increasingly intensively farmed.  

 

 
Figure 2.38 Tees catchment and sites with long-term chemical trends for which data is 

presented in the thesis. 

 

At the estuary site (1989-2019, period varying across determinands), DO, ammonia, 

nitrate, orthophosphate, zinc and lead all declined significantly over the periods for which 

data were available (Table 2.9). The decrease in DO is surprising; both pH and DO 
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fluctuated widely before 1999, then became more stable between 1999 and 2019 (Figure 

2.39). Ammoniacal nitrogen concentration showed a clear decreasing trend since 1995, 

with a mean concentration of 1.7 mg/L before 1995 to 0.3 mg/L after 1995 (Figure 2.39). 

Lead and cadmium concentrations varied considerably between 1989 and 1992, then 

largely reduced and became relatively stable after that. Mercury concentration declined 

and became relatively stable (Figure 2.39). Zinc concentration varied considerably 

between 1989 and 2007, but has fluctuated less and remained around a baseline since 

2007 (Figure 2.39).  

 

At the Greatham Creek site (1984-2002), BOD, ammonia, nitrate, zinc and lead all 

decreased significantly (Table 2.9). pH value varied considerably from two to eight 

between 1984 and 1997, then became relatively stable after that (Figure 2.40). BOD, 

ammoniacal nitrogen and nitrate concentrations were varied widely between 1984 and 

1997, then dramatically reduced after that (Figure 2.40). Concentrations of all metal 

showed a strong decline between 1984 and 1997 (Figure 2.40). 

 

At the Newport Bridge/Tees Barrage (downstream of barrage) sites (1980-2020), DO 

increased significantly and ammonia decreased significantly over the period of records 

(Table 2.9). pH values stayed stable during most periods, but two peak values were 

observed between late 1989 and early 1993 (Figure 2.41). DO concentration varied 

considerably between 1983 and 1996, with frequent hypoxia events, then increased and 

fluctuated less since 1997 (Figure 2.41). Ammoniacal nitrogen concentration varied 

considerably between 1980 and 1994, then declined greatly and became relatively stable 

after that (Figure 2.41). A few peaks of cyanide concentrations were observed between 

1989 and 1990, and the measurement increased to 0.5 mg/L between 2015 and 2016. 

 

At the Low Hail Bridge site (1973-2019), BOD, ammonia, nitrate, orthophosphate, zinc 

and lead all decreased significantly over the periods of data availability (Table 2.9). High 

concentrations of BOD and ammoniacal nitrogen were observed from the late 1970s to 

early 1990s, then dramatically reduced after that (Figure 2.42). Nitrate concentration were 

relatively low between 1973 and 1987, then a few peak values were observed between 

late 1987 and 1990, then reduced back to previous levels after that. Lead and cadmium 

concentrations declined greatly since the late 1970s (Figure 2.42). Mercury concentration 

declined since the late 1980s. Zinc showed a small progressive trend of decline (Figure 

2.42). No clear trends were observed in other chemical components.  

 

At the River Skerne site (1973-2019), DO increased and BOD, ammonia, nitrate, 

orthophosphate, zinc and lead decreased significantly (Table 2.10). pH values were stable 
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most of the time, but extreme values were observed between late 1987 and early 1988 

(Figure 2.43). The lowest value of 1.6 appeared in December 1987 and highest value of 

11.6 appeared in March 1988. A steady decline in BOD concentration occurred between 

1973 and 2007, with an associated increase in oxygen levels over that period also (Figure 

2.43). A dramatic decline was observed in ammoniacal nitrogen concentration, which 

started since 1990. Orthophosphate concentration was variable before 2006, then 

decreased and became relatively stable after that (Figure 2.43). Iron and cadmium 

concentration were variable before 1990, then decreased and became relatively stable 

after that. Mercury concentrations also decreased (Figure 2.43).  

 

At the Clow Beck site (1976-2019), BOD, ammonia, nitrate, orthophosphate, zinc and lead 

all decreased significantly over the respective data periods (Table 2.10). pH values varied 

markedly before 1990, then became relatively stable after that (Figure 2.44). BOD, 

ammoniacal nitrogen and nitrate concentrations were very variable before 1991, then 

declined markedly and became relatively stable after that (particularly for BOD and NH3) 

(Figure 2.44). No clear patterns were apparent for DO and metal elements. 

 

In the Tees at Egglestone Abbey Bridge (1984-2019), BOD, ammonia, nitrate, 

orthophosphate, zinc and lead all decreased singnificantly over the data timescales (Table 

2.10). Peak values of ammoniacal nitrogen and nitrate were observed between 1989 and 

1992, then decreased to stable low levels between 1992 and 2019 (Figure 2.45). Other 

water quality parameters showed no clear trends.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



147 
 

Table 2.9 Linear model summaries of changes in key water quality parameters in the Tees 

catchment (S1-S4). Site numbers increase from downstream to upstream, with lowest site 

numbers are nearest to the sea. 

Site Parameter Periods df t P 
1 DO  1993-2019 1,203 -2.42  0.016  
Estuary Ammonia 1990-2012 1,269 -9.46  <0.001 
 Nitrate 1992-2019 1,216 -2.38  0.018  
 Orthophosphate 1992-2019 1,330 -3.40  <0.001 
 Zinc 1989-2013 1,181 -5.46  <0.001 
 Lead 1989-2011 1,173 -2.77  0.006  
2 DO  1997-2002 1,59 1.31  0.194  
Greatham Creek BOD 1984-2002 1,78 -3.01  0.004  
 Ammonia 1984-2002 1,79 -4.37  <0.001 
 Nitrate 1984-2002 1,65 -4.80  <0.001 
 Orthophosphate 1997-2002 1,89 -1.27  0.206  
 Zinc 1984-2002 1,68 -4.03  <0.001 
 Lead 1984-2002 1,68 -9.32  <0.001 
3 DO  1983-2020 1,252 6.93  <0.001 
Newport Bridge Ammonia 1983-2012 1,361 -14.46  <0.001 
 Nitrate 1983-2020 1,322 -1.52  0.130  
4 DO  1973-2013 1,410 -1.36  0.175  
Low Hail BOD 1973-2008 1,391 -5.52  <0.001 
 Ammonia 1973-2013 1,446 -7.56  <0.001 
 Nitrate 1973-2012 1,421 -4.15  <0.001 
 Orthophosphate 1978-2012 1,267 -3.47  <0.001 
 Zinc 1974-2013 1,252 -7.41  <0.001 
 Lead 1978-2003 1,101 -3.31  0.001  
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Table 2.10 Linear model summaries of changes in key water quality parameters in the 

Tees catchment (S5-S7). Site numbers increase from downstream to upstream.  

Site Parameter Periods df t P 
5 DO  1973-2019 1,438 8.48  <0.001 
River Skerne BOD 1973-2008 1,400 -14.71  <0.001 
 Ammonia 1973-2019 1,452 -21.07  <0.001 
 Nitrate 1973-2019 1,448 -3.77  <0.001 
 Orthophosphate 1978-2019 1,311 -7.85  <0.001 
 Zinc 1974-2004 1,179 -6.74  <0.001 
 Lead 1989-2003 1,145 -2.42  0.017  
6 DO  1976-2017 1,306 -0.62  0.539  
Clow Beck BOD 1976-2013 1,338 -8.36  <0.001 
 Ammonia 1976-2017 1,377 -8.96  <0.001 
 Nitrate 1976-2017 1,377 -4.10  <0.001 
 Orthophosphate 1978-2017 1,276 -7.64  <0.001 
 Zinc 1989-2013 1,247 -2.39  0.017  
 Lead 1989-2003 1,102 -0.82  0.417  
7 DO  1984-2019 1,242 1.44  0.152  
Egglestone Abbey BOD 1984-2006 1,225 -2.04  0.043  
 Ammonia 1984-2019 1,308 -5.71  <0.001 
 Nitrate 1984-2019 1,236 -3.38  <0.001 
 Orthophosphate 1995-2019 1,244 -4.62  <0.001 
 Zinc 1992-2019 1,231 -4.23  <0.001 
 Lead 1992-2019 1,185 -3.54  <0.001 
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Figure 2.39 Key water quality parameters in the Tees at The Gares from 1989 to 2019. 

Note: zinc concentrations are on a log scale. All metal element concentrations presented 

are 'total' values (samples not filtered). Note the different timescales on the panels. 
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Figure 2.40 Key water quality parameters in the Greatham Creek d/s Wds @ Railway 

Bridge from 1984 to 2002. Note: lead concentrations are on a log scale. All metal element 

concentrations presented are 'total' values (samples not filtered). Note the different 

timescales on the panels. 
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Figure 2.41 Key water quality parameters in the tidal reach (Tees at Newport Bridge from 

1980 to 1994, Tees immediately downstream of the Barrage from 1995 to 2020). Note: 

ammonical nitrogen concentrations are on a log scale. Note the different timescales on 

the panels. The 1980 data were extracted from Ord (1988). 
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Figure 2.42 Key water quality parameters in the Tees at Low Hail Bridge from 1973 to 

2019. Note: BOD and zinc concentrations are on log scales. All metal element 

concentrations presented are 'total' values (samples not filtered). Note the different 

timescales on the panels. 
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Figure 2.43 Key water quality parameters in the Skerne at John Street Darlington from 

1973 to 2019. Note: BOD, ammoniacal nitrogen and iron concentrations are on log scales. 

All metal element concentrations presented are 'total' values (samples not filtered). Note 

the different timescales on the panels. 
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Figure 2.44 Key water quality parameters in the Clow Beck at Monk End Farm from 1976 

to 2019. Note: BOD, ammoniacal nitrogen and iron concentrations are on log scales. All 

metal element concentrations presented are 'total' values (samples not filtered). Note the 

different timescales on the panels. 
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Figure 2.45 Key water quality parameters in the Tees at Egglestone Abbey Bridge from 

1984 to 2019. All metal element concentrations presented are 'total' values (samples not 

filtered). Note the different timescales on the panels. 
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As shown in the analyses above, and similar to the Tyne and Wear, improvements in 

water quality have occurred in the Tees over the period 1973 to 2020, with decreases in 

determinands such as BOD and ammonia, characteristic or organic pollution, and 

decreases in heavy metals. Similar to the Tyne and Wear catchments, most sites were 

graded ‘good’ for chemical status in the Tees in both 2015 and 2016 in the EA’s second 

WFD cycle (Table 2.11). However, after new rules and standards applied by the EA 

(Environment Agency, 2020d), all water bodies in the Tees catchment failed to achieve 

good chemical status in 2019 (Table 2.11).  

 

No clear changes in the ecological status were found between 2015 and 2019 in the Tees, 

and the majority water bodies 74/87 (85.1%) failed to reach good ecological condition in 

2019, with the greatest pressures coming from hydromorphological modification, pollution 

from wastewater, rural and urban pollution sources (Table 2.12).  

 

Table 2.11 Ecological and chemical classification for surface waters in the Tees catchment 

in 2015, 2016 and 2019. 

 Tees catchment Ecological status or potential Chemical 
status 

Year Number of 
water bodies 

Bad Poor Moderate Good High Fail Good 

2015 87 11 17 49 10 0 6 81 

2016 87 7 19 50 10 1 7 80 

2019 87 9 18 47 13 0 87 0 
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Table 2.12 Issues in the Tees catchment currently preventing waters reaching good status (second WFD cycle, 2015-2021) and the sectors identified as 

contributing to them (the numbers in the table are counts of the reasons for not achieving good status in water bodies).  

  

Agriculture 
and rural 

land 
manage-

ment 

Domestic 
General 
Public 

Local 
and 

Central 
Gov 

Mining 
and 

quarrying 

Navi-
gation 

Urban 
and 

transport 

Water 
Industry Other 

No sector 
respon-

sible 

Sector 
under 

investi-
gation 

Total 

Changes to the 
natural flow and 
levels of water 

1 - - - - - 7 - - 1 9 

Pollution from 
rural areas 

73 - - - - - - - - - 73 

Pollution from 
abandoned 

mines 
- - - 11 - - - - - - 11 

Pollution from 
waste water 

- 2 - - - - 55 3 - - 60 

Physical 
modifications 

18 1 24 - 15 17 8 3 - 3 89 

Pollution from 
towns, cities 
and transport 

- 6 1 - - 6 34 - - - 47 

Non-native 
invasive species 

- - - - - - - - 1 - 1 
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Several major river restoration projects have taken place in the Tees catchment since the 

1990s, one of which was the River Skerne Restoration Project, which aimed to 

demonstrate rehabilitation of channel hydromorphology. The project was supported by 

European Commission LIFE funding with financial support from the Environment Agency 

(NRA), Darlington Borough Council, Northumbrian Water, English Nature and the 

Countryside Commission (Holmes and Nielsen, 1998). The project was managed by the 

River Restoration Project (the precursor to the River Restoration Centre) with significant 

additional partner management input from Darlington Borough Council and Northumbrian 

Water (Holmes and Nielsen, 1998). Restoration work started in July 1995 and was 

completed in September 1995. The restored section was a 2 km straightened reach on 

the outskirts of north-eastern Darlington (Vivash et al., 1998). The project’s aims were to 

install a coarse sediment riffle with some deflectors at the upstream end of the restoration 

reach, and to enhance flow variability and habitat diversity. In the downstream reach, four 

new meanders were created to cut across the old channel. Two backwaters were created, 

one located at the middle reach of the meander section, the other one located at the 

downstream end of the meanders. After restoration, the section has had an improved 

landscape with more natural habitat features. The channel length on the restoration reach 

increased 13% after the work was completed (River Restoration Centre, 1999). One year 

after restoration, the plant richness within the restored reach rapidly recovered, the 

species richness increased by 43% (including nine intentionally reintroduced plants) 

(River Restoration Centre, 1999). Before restoration, the river reach was dominated by 

resilient invertebrate species including water hoglouse (Asellus aquaticus), leeches and 

various water snail species. However, the invertebrate fauna had not improved two years 

after the restoration (River Restoration Centre, 1999). The fish species richness slightly 

increased at the restored reach two years after restoration, but this was suggested to be 

due to the newly installed fish pass further downstream at South Park in autumn 1996 

(see section 2.3.3.6). 

 

2.3.3.5 Recovery of the Tees fishes 
From the 1930s until the 1980s, when the Tees began to recover, there was no salmon 

rod fishery there due to the severe pollution problems and resultant lack of anadromous 

salmonids. Reduction in industrial discharges to the estuary resulted in increases in 

dissolved oxygen levels (section 2.3.3.4), making the passage of anadromous salmonids 

possible (Environment Agency, 1999c). Between 1985 and 1996, the Tees was stocked 

with juvenile salmon from the Kielder hatchery. A total of 1.29 million fish were stocked at 

annual rates of up to 108,000 and at ages 0+ (72%) and 1+ (22%) (Environment Agency, 

2009b). Salmon rod catches have increased on the Tees since 1982 (Figure 2.15). The 
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10-year average rod catch between 1982 and 1991 was 13.7 and it increased to 96.2 

between 2008 and 2017. The annual catches reached a peak in 2008, when 267 salmon 

were caught. The declared sea trout rod catch has followed a pattern similar to salmon, 

starting to increase in 1995 and reached a peak of 143 in 2004. There has been a fishing 

pressure about 2,000 (salmon/sea trout) angler days per year since 1994 on the Tees 

(Environment Agency, 2009b), markedly less than on the Tyne and Wear. The catch per 

unit effort for salmon slowly increased between 1993 and 2008, then fluctuated between 

2009 and 2017. For sea trout, the CPUE has been fairly stable since 1998. However, the 

Tees still has a much lower CPUE for both salmon and sea trout than for the Tyne and 

Wear (Figure 2.16). The difference of rod catches between the Tyne, Wear and Tees can 

be partly explained by variation in their specific fishery circumstances (e.g. regulations, 

locations, effort) as well as habitat quality and quantity (Environment Agency, 2008c), but 

the difference in CPUE is also reflective of the lower relative abundance of adult salmon 

and sea trout in the Tees and is reflected by electronic fish counts (Figure 2.18) one to two 

orders of magnitude lower in the Tees, even though these are partial counts of each river’s 

population. 

 

The recovery of anadromous salmonids in the Tees started late compared with the Wear 

and Tyne. It has been substantial since 1982, but with considerable fluctuations until the 

late 1990s (Environment Agency, 2009b), since when the improvement has halted, or 

even declined (Figures 2.15, 2.16, 2.18). The fluctuation during the early period appears 

to be common in the early years of salmon stock recovery in polluted rivers and probably 

reflects the initially inconsistent year to year water quality improvements along with the 

random variation when river stocks of salmon were low (Environment Agency, 2009b). 

However, since rod catch peaks in 2008 and 2012, the latter associated with an upstream 

Denil fish pass count of 1661, Tees fish counts have numbered only several hundred, 

although undoubtedly many fish are passing by other routes including the kayak slalom 

and the barrage gates.  

 

In 1992, a fisheries survey (seine netting, electric fishing, including by boat) was 

undertaken in the middle to upper reaches of the main Tees between Croft and Middleton-

in-Teesdale. In addition, surveys were also conducted on several tributaries. Dace was the 

dominant species in the lower sampling reach; dace, chub and brown trout were the 

dominant species in the middle reach between Croft and Winston; further upstream was 

dominated by trout, salmon and grayling (Owen et al., 1993). No YoY salmon were caught 

during the survey and it was suggested that a large proportion of brown trout in the main 

River Tees were stocked by angling clubs (Owen et al., 1993). The same study showed 

that Clow Beck, River Greta and Langley Beck held a good brown trout population. In 
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contrast, no fish were caught in Billingham Beck and Lustrum Beck (Owen et al., 1993). In 

1993, a juvenile salmonid electro-fishing survey was conducted at 31 sites on the main 

river and 18 tributaries within the upper and middle Tees catchment from upstream 

Skerne-Tees confluence (National Rivers Authority, 1993b). Wild salmon were only 

recorded in Eggleston Burn and hatchery salmon were recorded at two main river sites 

and another six sites on tributaries (National Rivers Authority, 1993b). Comparing with 

salmon, trout were recorded at 29 surveyed sites, and 0+ trout were recorded at 24 sites 

(National Rivers Authority, 1993b). 

 

To study the effects of stocking on Tees salmon recovery, 48% of the 1+ salmon were 

tagged before releasing to the Tees catchment (Jowitt and Russell, 1994). Among 102,794 

tagged salmon, six were captured by Tees rod fisheries by 1994, a total of 411 recaptures 

were reported by other rod and net fisheries by 1995 (Shelley, 1994). The study 

suggested that Tees salmon stocking had insignificant benefits, and due to scarcity of 

recapture data, the contribution of restocking to the Tees salmon recovery cannot be 

reliably quantified (Shelley, 1994). 

 

Besides salmon and sea trout, approximately 5,200 dace and 2,500 barbel were stocked 

in the Tees between October 1991 and May 1992 (Owen et al., 1993). In 1992 and 1993, 

approximately 24,000 brown trout and 1,000 dace were stocked in the River Skerne 

(Jenkins, 1994). Stocking with cyprinid and salmonid (brown trout and grayling) fishes has 

been continued since then, with an aim of supporting the rehabilitation of the Tees fish 

population, concentrating on sites where pollution incidents had occurred but where water 

quality had recovered and habitat was suitable. In recent years EA bylaws across England 

have prevented angling clubs stocking non-sterile brown trout unless they are from local 

broodstock and approved by the EA. The result of this on the Tees (as well as Tyne and 

Wear) is that stocking of brown trout has almost stopped, benefitting wild Tees trout stock 

integrity, but reducing the size of non-anadromous brown trout caught. There has also 

been some interest from local landowners for a Tees salmon hatchery, but this has 

effectively been resisted by the EA (M. Lucas, pers. comm.) based upon contemporary 

evidence of the effects of salmon stocking (Hansen, 2002; Miller et al., 2004). 

 

The recovery of other fish species also been recorded in the Tees catchment. River 

lamprey were recorded in 1995 during routine fish population surveys of the middle 

reaches of the Tees (Environment Agency, 1999c). Adult sea lamprey were recorded 

below the Tees barrage in 1996, 1997 and 1998 at the Denil fish pass (Environment 

Agency, 1999c), but free passage past the barrage has not been demonstrated for this 

species. After the construction of the Tees Barrage, roach, bream (Abramis brama) and 
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chub fry numbers increased in the impounded section (Welton et al., 1999b). Older dace, 

chub and roach densities also significantly increased in the impounded reach post-

barrage (Welton et al., 1999b), reflected in persistent increases in anglers’ catches (M. 

Lucas, pers. comm.). 

 

2.3.3.6 Changes of fish communities in the River Tees 
Eight sites were chosen for study of long-term fish community change in the Tees 

catchment. One site was located in the main river and rest sites located in tributaries 

(Figure 2.46). 

 
Figure 2.46 Tees catchment and location of long-term fish monitoring sites for which data 

is presented below. 

 
The Newton Hanzard site of Claxton Beck (= ‘North Burn’), is located 16 km upstream of 

the Tees estuary-Greatham Creek confluence. It used to be an NRA trout stocking site, at 

which approximately 10,000 trout fry were released in March 1997. Trout were present in 

low densities between 1998 and 2004 (0.6 to 2.8 per 100 m2), but were not caught in 

2011, suggesting they died out. In 1995, very few bullhead were caught (0.2 per 100 m2) 

at the site, but abundance steadily increased to 26.5 per 100 m2 in 2011 (Figure 2.47). 

Abundance of stone loach and three-spined stickleback both steadily increased between 

1998 and 2011. 

 
In the main river Tees, the Low Moor site (located 42.2 km upstream of Tees mouth) was 

chosen as a major coarse fish spawning site, unaffected by the Tees barrage 

impoundment (Welton et al., 1999b). It was surveyed by seine netting of fry/small 

juveniles between 1993 and 2006. Pre-barrage, cyprinid fry were dominated by dace, 

chub and roach and this has not changed post-barrage (Welton et al., 1999b). Eight fish 
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species were caught during the netting surveys; minnow, dace and chub were present in 

high abundance during most sampling periods (Figure 2.48). In 2000, the roach fry 

abundance increased more than ten times compared with previous year. No salmonid fish 

were caught during the netting surveys. Since 2002, the EA also applied single-pass 

electrofishing on this site, with a total of 21 species caught up to 2019 (Figure 2.49). 

Tench (Tinca tinca), bream, rudd (Scardinius erythrophthalmus) and river lamprey were 

excluded from Figure 2.49 due to their low abundance (less than 0.01% of total captured 

numbers). Between 2002 and 2006, the community was mostly dominated by common 

minnow (0.8 to 12.8 per 100 m2). Since 2009, the dominant species has shifted to 

bullhead (0.8 to 12.8 per 100 m2). Stone loach (0 to 12.8 per 100 m2), dace (0.1 to 3.5 per 

100 m2) and roach (0 to 3.4 per 100 m2) were present at a slightly higher abundance 

compared with remaining species. Brown trout and Atlantic salmon were very rare (0 to 

0.1 per 100 m2). The overall fish community remained stable between 2002 and 2019. 

In the River Skerne, three sites were studied. A total of 17 species were caught in three 

sites between 1991 and 2016 (Jenkins, 1992, 1994, 1998, 2000). Tench and mirror carp 

(Cyprinus carpio carpio) were excluded from Figure 2.50 because it was suspected that 

these two species were illegally introduced to the river from nearby fishing ponds 

(Jenkins, 1998). The Croft Bridge site is approximately 200 m upstream of the Skerne-

Tees confluence. The fish community mainly consisted of minnow (minimum density, 1.7 

to 171.2 per 100 m2), dace (1.9 to 76.2 per 100 m2), roach (0.1 to 10.8 per 100 m2) and 

chub (0.2 to 8.8 per 100 m2) between 1991 and 2004, other medium-large species were 

present in low abundance (Figure 2.50). Moderate abundance of eel was noticed at this 

site (0 to 17.1 per 100 m2). The South Park weir site is located just downstream of 

Darlington, and is located immediately downstream of a stepped weir, where a pool and 

traverse type fish pass was constructed in 1996 (Jenkins, 1998). High abundance of eel 

(83.3 to 781.3 per 100 m2) was recorded at this site in 1997 and 2000 (Jenkins, 1998). 

Since 2004, the dominant species has been minnow (5.2 to 8.3 per 100 m2 – not 

quantified prior to 1997). Since 2004 at South Park site, the fish community had become 

less diverse and most fish species had declined in abundance. Similar trend was also 

observed at the Croft Bridge site since 2010. The Haughton Road site is located at the 

upstream end of the River Skerne restoration project reach (Jenkins, 1998). In 1991, no 

fish were caught at this site apart from three-spined stickleback (not displayed on the 

figure). In 1994 and 1997, a few brown trout, probably of stocked origin, were caught at 

this site (Jenkins, 1994, 1998). Dace, chub and roach were first recorded at this site in 

1997. It was suggested that these species recolonized this site by using the South Park 

fish pass. However, these newly recolonized species may have been eliminated during a 

pollution incident on 14 November 1997 (River Restoration Centre, 1999). The species 
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diversity at this site has increased a lot since 1997, but the overall fish abundance was still 

low during most sampling periods, except for high abundance of minnow (64.9 per 100 

m2) recorded in 2010 (abundance of ‘minor’ species not recorded before 1997). Overall, 

the fish community in the River Skerne recovered markedly in the 1990s, but has stalled 

since 2000. 

 

Clow Beck is located in the middle Tees catchment. The Monk End Farm site, located 

immediately upstream of Clow Beck-Tees confluence, was electric-fished by the NRA in 

May 1992, then by the EA since 1995 (single pass on some occasions, multipass on other 

occasions). In the 1992 survey, abundant stone loach, bullhead and minnow were found, 

but numbers of these three species were not recorded during the survey (Owen et al., 

1993). A density of 18.4 per 100 m2 of brown trout and 16.6 per 100 m2 of eel were 

recorded (1992 data not shown in Figure 2.51), while other species were present in very 

low abundance (Owen et al., 1993). From 1995, a total of 16 species were caught (Figure 

2.51). The dominant species varied between minnow and bullhead between 1995 and 

2002, then temporally shifted to brown trout in 2003 and 2004. From 2007 to 2014, 

minnow and bullhead (both species ranged from 22.7 to 328.9 per 100 m2) were co-

dominant species. Cyprinids, especially dace, roach and chub are common at the site. 

Salmon were present in most years, at low densities. Since 2014, minnow and bullhead 

abundance decreased, and brown trout became the co-dominant species with them. 

 

The River Lune, located in the upper Tees catchment, is characteristic of a cobble and 

boulder dominated upland tributary, once important as a salmon spawning tributary, prior 

to impoundment. Four sites were surveyed by the EA since 1995 (single pass on some 

occasions, multipass on other occasions), and fish community data from the two most 

downstream sites (0.6 km and 1.4 km upstream of the Lune-Tees confluence) are 

considered. Eight species were caught during the electro-fishing surveys including a non-

native species rainbow trout (Oncorhynchus mykiss). In the 1980s and 1990s this species 

successfully reproduced at this site (T. Crisp & M. Lucas, pers. obs.), probably supported 

by escapee rainbow trout from the reservoirs upstream, where sport fishing occurs. The 

use of sterile stock rainbow trout in the reservoirs upstream, and the resultant loss of 

mature adults, seems to have led to the demise of the feral spawning rainbow trout 

population (Figure 2.52). The dominant species at the Caravan Park site varied between 

brown trout (1.0 to 9.5 per 100 m2), bullhead (0.1 to 79.1 per 100 m2), Atlantic salmon (0.7 

to 11.0 per 100 m2) and minnow (0.1 to 11.5 per 100 m2) (Figure 2.52). The fish 

community was relatively stable between 1998 and 2019, although abundance has varied 

somewhat over time. The Viaduct site has been surveyed inconsistently. It was mostly 

dominated by brown trout between 1995 and 2019, present in low abundance (1.0 to 14.2 
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per 100 m2). Bullhead abundance slightly increased at this site between 2006 and 2019 

(3.6 to 35.7 per 100 m2). 

 

 
Figure 2.47 Long-term variation of estimated minimum fish density (single pass electric 

fishing) at Claxton Beck Newton Hanzard site between 1995 and 2011. BT: brown trout, 

BH: bullhead, SL: stone loach, SB: three-spined stickleback. 
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Figure 2.48 Long-term variation of minimum density of fish fry and small juveniles at River 

Tees Low Moor site between 1993 and 2006. Fish density was calculated by single catch 

seine netting method.  



166 
 

 
Figure 2.49 Long-term variation of estimated minimum fish density at River Tees Low 

Moor site between 2002 and 2019. Fish density was calculated by single pass electro-

fishing method. Notice: abundance values are on log scales. 
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Figure 2.50 Long-term variation of estimated minimum fish density at River Skerne sites between 1991 and 2016. Fish density was calculated by single 

pass electro-fishing method. Note: abundance is on log scale. No fish were caught in 1991 at Haughton Road site. Minnow, stone loach, bullhead and 

stickleback may have been present but were not recorded or counted in 1991 and 1994 surveys for all sites. 
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Figure 2.51 Long-term variation of estimated minimum fish density (1995, 2000, 2007-

2016: single pass electric fishing; 2001-2006: first run data from three pass electric fishing 

at Clow Beck Monk End Farm site between 1995 and 2016 (log scale). 
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Figure 2.52 Long-term variation of estimated minimum fish density (1995, 1999, 2007-

2019: single pass electric fishing; 1998: first run data from two pass electric fishing; 2001-

2006: first run data from three pass electric fishing; estimated three pass capture 

efficiency: trout 88.6%, salmon 96.8%) at River Lune sites between 1995 and 2019 (log 

scale).  

 

2.4 Discussion 

The study’s key aims were met. Historical evidence concerning the nature of 

environmental impacts on the Tyne, Wear and Tees showed the timeline of decline and 

recovery of fish across the three catchments. Factors that led to the near extirpation of 

salmon and sea trout in these rivers have been identified (see below for further 

discussion). Information on changes in other fish species is mostly lacking until recent 

decades. Nevertheless, understanding the effects of these factors is a precondition for 



170 
 

effective future restoration works. Mitigating these factors can help with the recovery of 

the threatened species, and this approach can be applied on other deteriorated river 

systems which have been affected by historic human activities (Langford et al., 2012). 

 

Based on the historical evidence presented in Chapter 2 the main reasons for the decline 

and near extirpation of Atlantic salmon and the anadromous sea trout phenotype of Salmo 

trutta from North East post-industrial rivers can be strongly suggested to be due primarily 

to severe pollution, especially in the lower reaches, and river barriers. These impacts were 

probably exacerbated by fisheries and localized physical habitat modification. These 

conclusions support those elsewhere (Sheail, 2000; Archer et al., 2003; Champion 2003) 

but are based on associative evidence sources from historical records. One possible 

future approach for examining temporal trends of pollutant impacts from the Tyne, Wear 

and Tees might come from microchemical analysis of archived salmon and trout scales if 

these exist (Morán et al., 2018). Certainly some scale collections from these rivers are 

available going back several decades, but whether any are available from much longer 

again (e.g. early 20th Century) is unknown. 

 

In the Tyne catchment, the salmon and sea trout rod catch increased almost continuously 

from the 1960s to ~2010, but has declined somewhat since, reflected also in counter 

records. This may suggest that overall production capacity has reached its current limit 

and this is a natural expectation in a recovering river (Environment Agency, 2008c; Cefas 

et al., 2019). Salmon and sea trout rod catch in the Wear catchment has shown a similar 

trend, paralleled by counter records. For salmon, there is concern that nationally, and 

more widely that salmon survival at sea has declined markedly in recent years (ICES, 

2019). Thus the declines in salmon and sea trout abundance, although perhaps part of a 

natural cycle, need to be viewed with concern in light of the broader international 

evidence. Sensitive integrated management can still achieve rapid recovery of depleted 

salmon populations (Koed et al., 2020). Although water quality, habitat quality and overall 

availability of spawning and juvenile habitat are greater in the Tyne than the Wear, 

substantial room for improvement in these, and access to good habitat remains in both 

rivers (sections 2.3.1.4, 2.3.2.4). For example, salmon exhibit rather little use of the River 
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Browney and Deerness (Wear catchment) after decades of recovery, despite the relatively 

good water quality, good physical habitat and accessibility of the Browney/Deerness. Is 

this a sign of stalled recovery (perhaps exaggerated by strong within-catchment 

philopatry) or a reflection that the Browney and Deerness are still suboptimal habitat for 

salmon?  

 

Although banning intentional salmon netting along the Northumbrian and Yorkshire coasts 

now reduces pressure on NE England salmon, the increased quotas for sea trout 

(Environment Agency, 2020e) are a concern, especially since rod catches of Tyne and 

Wear sea trout, and Wear fish counts have decreased in the last decade. Enforced return 

of spring salmon by anglers and encouragement of catch and release for all other salmon 

by anglers (59% for Tyne and 51% for Wear in 2018; Environment Agency, 2018; Cefas et 

al., 2019) measures can also aid the recovery of salmon stocks, so long as post-release 

survival to spawning is high. Currently there are no bag limits or method (fly, spinner, bait) 

restrictions on these rivers. The Tyne and Wear are among only 14 of 64 English and 

Welsh principal salmon rivers where spawning escapement is exceeding the calculated 

conservation limit (Environment Agency, 2018). Evidently, resurrection of the Tyne and 

Wear from open sewers without salmon runs, to the first and second best salmon rivers in 

England and Wales is a restoration achievement to be appreciated, but not 

underestimated.   

  

For the River Tees, the recovery started about 30 years later compared with the Tyne and 

Wear catchments and the data suggest the river is still not achieving its current 

conservation limit for salmon egg deposition (Environment Agency, 2009a; Cefas et al., 

2019). The Tees Barrage, with currently inadequate passage, remains a major impediment 

to the recovery of anadromous salmonids in the Tees. The slower recovery of anadromous 

salmonids in the Tees and the relative impact of the barrage provides an interesting 

comparison of outcomes with the Tyne and Wear. There are many opinions among 

stakeholder groups on the causes of continued low Tees salmon numbers. Indeed some 

anglers are of the opinion that stocks are much higher than assumed and deliberately do 

not report their catches (which is illegal) in order to minimize ‘competing’ angler attention 
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on the river (M. Lucas, pers. comm.). 

 

A similar recovery for salmon, but not yet to the same degree as for the Tyne and Wear 

has occurred in the Clyde catchment in Scotland, where salmon and sea trout reappeared 

in the 1970s and started to recover in the late 1980s (Doughty and Gardiner, 2003). Apart 

from salmonids, river lamprey, sea lamprey and brook lamprey have been recorded in the 

Clyde in recent years (Hume, 2017). The main reason for fish recolonizing the Clyde was 

also (as for Tyne, Wear and Tees) the water quality improvement since the 1950s. Over 

the past 100 years, several sewage treatment works were built within the catchment 

(Doughty and Gardiner, 2003). Improved water quality in the major tributaries has 

subsequently allowed salmon return to the Clyde and re-established their population. In 

addition, limited stocking programme was also conducted in the catchment. Besides, in 

1995 a fish pass was installed at the Blantyre Weir in the Clyde, which is a major barrier to 

fish migration (Doughty and Gardiner, 2003) and numerous other obstacles have been 

removed or fitted with fish passes. In recent years, barrier surveys conducted by the Clyde 

River Foundation have identified a number of barriers, providing valuable information for 

future connectivity restoration works (McColl et al., 2009).  

 

In the Mersey catchment, after water quality legislation referred to in Chapter 1 was 

introduced, water quality began to improve in the 1970s (Ikediashi et al., 2012). More than 

£1 billion had been spent on controlling and cleaning the effluents to the river by the start 

of the 21st Century (Mawle and Milner, 2003). As a result of the improving water quality, 

salmon began entering the river Mersey in the early 1990s (Ikediashi et al., 2012). 

Between 2001 and 2011, 158 untagged adult salmon were caught at Woolston weir by the 

Environment Agency (Ikediashi et al., 2012). A tracking and genetics study has shown 

both stray and native salmon returned to the Mersey system, and successfully arrived 

upstream to potential spawning areas (Billington, 2012; Ikediashi et al., 2012). Similar to 

the Tees catchment, the river is currently in the early stage of an on-going process of 

natural recolonization, following the substantial improvement in the overall river 

environment (Billington, 2012; Ikediashi et al., 2012). 
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However, not every river has had a successful recovery of its salmon stocks after the 

restoration. The failure, to date, to restore wild salmon to the Rhine was described 

extensively in the Introduction to this chapter. In the River Thames, since the 1970s, water 

quality improved dramatically and salmon reappeared since 1974 (Griffiths et al., 2011). In 

1979, the Salmon Rehabilitation Scheme was established, in which Thames Salmon Trust 

released stocked salmon (mostly from Scottish hatcheries) into a variety of Thames 

tributaries (Mawle and Milner, 2003; Griffiths et al., 2011). From 1979 to 2010, a total of 

4.4 million juvenile salmon were released in the catchment (Griffiths et al., 2011). Since 

then, the adult salmon numbers recorded in the river gradually increased, and reached a 

peak of 338 in 1993 (Griffiths et al., 2011). Meanwhile, a fish pass construction 

programme was carried out, in which 36 weirs were installed with fish passes between the 

tidal limit and spawning habitat on the tributary River Kennet (Griffiths et al., 2011). 

However, since 1997 the numbers of adult salmon recorded in the Thames significantly 

decreased, and no salmon were captured in 2005 (Griffiths et al., 2011). Between 1998 

and 2017, barely any salmon and sea trout were caught by rod in the Thames 

(Environment Agency, 2013a, 2019). Although lots of effort was spent improving river 

habitat and connectivity in the River Kennet, the Thames catchment still cannot hold a 

self-sustaining population of salmon. Conditions in the Thames in recent years are 

considered to be the reason that prevented fish from ascending the Thames (Griffiths et 

al., 2011). Between 1989 and 2006, the number of storm sewage releases significantly 

increased, large volumes of high BOD effluents were released into the tidal reach of 

Thames (Griffiths et al., 2011). All these factors potentially reduced the dissolved oxygen 

level and created a barrier to fish migration. Furthermore the Thames is in south east 

England in an area suffering the twin impacts of climate change and increasing human 

population density through pressures on water abstraction and water warming. By 

contrast, the northeast English rivers are currently much better buffered from these 

effects. 

 

Although the recovery of salmon and sea trout was observed in the Tyne and Wear 

catchments, these catchments still face great challenges of river management for much 

fuller restoration. The WFD has been a strong driver of this in recent decades and in the 
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short term the UK will adopt a path of environmental improvement paralleling WFD 

following Brexit. Only a small proportion of tributaries in these catchments have achieved 

good ecological status and all waterbodies failed the chemical status in 2019, after new 

substances were added to the chemical quality assessment and new standards were 

introduced, many persistent organic pollutants in English rivers were found at levels 

exceeding the WFD environmental standards (Environment Agency, 2020d). The long-

term impacts of many of these are as yet not fully understood (Johnson et al., 2013; 

Alharbi et al., 2018). These pollutants continue to be dispersed in the environment, 

polluting rivers and hindering the recovery of freshwater ecosystems. 

 

Evidence from the fish community survey records across the Wear and Tees shows that 

some tributaries have been increasingly recolonized by a range of fish species as they 

have become cleaner and habitat has improved, for example in the Cong Burn and 

Browney of the Wear and the River Skerne of the Tees. However, in several cases the 

recoveries appear to have stalled somewhat, for example in the Skerne in Darlington. This 

may reflect continued poor habitat over large areas, and periodically variable water quality 

causing poor recruitment. Although since the early 1990s there has been a trend in 

recovery of the fish communities in formerly nearly fishless streams of the Wear and Tees, 

the lack of data prior to 1991, and inconsistent sampling since then makes this difficult to 

quantify.  

 

In the Tyne catchment, physical modifications such as instream barriers and 

channelization are the main reasons for not achieving good ecological status, followed by 

pollution from abandoned mines, and diffuse pollution from rural areas (Environment 

Agency, 2020a). In the Wear catchment, the most recent investigation by the EA has 

shown point and diffuse source pollution from metal mines within the upper catchment are 

the main reason for environmental status not achieving good status in some tributaries 

(Environment Agency, 2017c). Ironically this may not be particularly hindering the 

restoration of natural fish communities in the Wear catchment (at least at current 

background metal concentrations); instead river barriers, fine sediment and nutrient 

enrichment are likely to be more problematic. The water industry is most responsible for 
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pollution from waste water, mainly from point source discharges from sewage treatment 

works and intermittent discharges from combined sewer overflows and diffuse pollution 

from wrong connections (Environment Agency, 2017c, 2020a). In rural areas, diffuse 

pollution from poor land management is contributing to silt entering watercourses and 

contributing to phosphorus and ammonia levels (Environment Agency, 2017c, 2020a).  

 

Besides pollution, physical modifications are another reason for not achieving good status 

(Environment Agency, 2020a). River channel modifications such as urbanisation, mining 

infrastructure and flood defences formed the majority of physical modifications, mainly 

concentrated around Chester-le-Street and Durham (Environment Agency, 2017c). The 

impacts of impoundment reservoirs also need to be addressed across all three 

catchments. In the Tees catchment, physical modifications like instream barriers and 

channelization are also the main reasons for not achieving good ecological status, 

followed by pollution from rural areas, pollution from waste water and pollution from towns, 

cities and transport. The Tees Barrage is still considered to be one of the major 

obstructions to fish passage on the Tees, and it is unlikely to be removed in the near 

future. In addition, predation of fish by seals at the barrage has become another issue that 

has arisen in recent years. So, it is suggested that upgrades on fish passage could be 

done, to improve the attraction rate and facilitate more fish to pass quickly through the 

barrage during migration periods. Crucially fish passage at the Tees Barrage needs to 

accommodate all migratory species and in upstream and downstream directions (Silva et 

al., 2018), whereas currently upstream passage of salmonids is only being emphasized. 

 

Future works should be mainly focused on easing both point source and diffuse pollution, 

and restoring both physical habitat and connectivity on the Tyne, Wear and Tees 

catchments. These works are important components of catchment management. 

Improving the sewerage system to enable improvements in water quality, mitigating the 

impacts of metal and coal mine pollution, and reducing the impacts of urban diffuse 

pollution (Environment Agency, 2017c) continue to be key. When good habitat condition is 

guaranteed for expected native fish communities (and other biota), the next key stage will 

be to identify undiscovered in-stream barriers in tributaries and create free passage for 
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fish to access the previously inaccessible habitat. Apart from salmon and sea trout, 

improved conservation of other aquatic species such as European eel, river lamprey and 

white-clawed crayfish is also needed. And when habitat becomes suitable, reintroduction 

of extirpated species such as smelt may be considered. 

 

In the meantime, it is apparent how crucial reliable quantitative recording and safe 

archiving of fish community data is at a network of sites, and this needs to be a priority for 

the future. The lack of stream fish community data that could be recovered for before 

1991 is evidence of the extent of this problem. The same is also true for environmental 

data such as water quality parameters. It is evident that many data series available from 

the Environment Agency and its predecessors for the Tyne, Wear and Tees were of short 

duration and suffered problems of changes in location and method that made assessment 

of change difficult. For most fish species, accessible quantitative data are available only 

since 1990. Even then, many fish species – loach, bullhead, minnow, eel, lampreys, 

sticklebacks were not properly recorded until 2004 onwards, a direct result of WFD 

monitoring. The success of fish community restoration can only be evaluated if the data 

exist to do so. 

 

2.5 Conclusions 

This study reconstructed the timeline of the decline and partial recovery of the rivers Tyne, 

Wear and Tees, and their fish stocks through the Industrial Revolution to the current day 

by using historical information. Before the 19th Century, Atlantic salmon and sea trout were 

widely distributed through all three catchments. The decline of fish stocks started by the 

early and middle 19th Century, and appeats to have been caused by multiple factors 

including coal and metal mining, industrial pollution, domestic pollution, construction of in-

stream barriers, gravel mining, etc. From the 1960s, following decreased heavy industry, 

closure of mines and progressive improvements in sewage and wastewater treatment, 

salmon and sea trout started to recover in both Tyne and Wear catchment and stabilized 

in recent years. In the Tees catchment, salmon and sea trout numbers have slowly 

increased from the 1980s until today, rather than following the rapid trajectory of the Tyne 

and Wear. Knowledge of the decline and recovery of other fish species in the catchments 
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is much more fragmentary. This study has revealed that the potential for recovery of 

anadromous salmonid stocks in post-industrial Pennine rivers with abundant salmonid 

spawning and nursery habitat, is driven by both accessibility and survival in the lower 

river, through barriers, pollution and predators (e.g. humans, seals). In addition, this study 

provides baseline water quality and fish community background information of multiple 

study sites including all those in both Chapters 4 and 5.  
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Chapter Three 
 
Are national barrier inventories fit for stream 
connectivity restoration needs? A test of two 
catchments 
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Summary 

Catchment-scale river reconnection programmes require barrier inventories for restoration 

planning, yet barrier inventories are variable in extent and quality internationally. To test 

the degree to which barrier databases, in this case for England, are fit for purpose, a 

comparison was made of the national database (mostly originating from desk-study) for 

two catchments, the Wear and the Tees, against detailed walkover surveys. A total of 701 

km (32.8%) of stream length were surveyed, stratified by stream order, altitude and 

subcatchment and recorded natural and artificial barriers. Only 22.7% of barriers identified 

in the walkover survey were present in the national database, including low-head (<5 m) 

artificial structures (32.3% representation), artificial barriers ≥5 m (14.3% representation) 

and culverts (0% representation). 18.9% of artificial barriers in the national database were 

found, during field survey, to have been breached naturally. Mean densities of artificial 

barriers were 0.68 barriers km–1 and 0.45 barriers km–1 in the Wear and Tees respectively, 

significantly higher than in the national database. Stream connectivity restoration in 

England may be hampered by the incomplete national barrier inventory. It is 

recommended that careful checks of barrier inventories are made as they are developed 

internationally and that these are regularly updated. 
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3.1 Introduction  

Habitat fragmentation and loss of connectivity due to anthropogenic river barriers is one of 

the major impacts of humans on rivers (Chapter 1) and was one of the primary causes of 

the declines of migratory fish species in industrialized Northeast English rivers (Chapter 

2). Artificial obstacles such as dams, weirs and sluices along rivers have been constructed 

to control floods, provide water for human consumption, irrigation and power supply 

(Jackson and Marmulla, 2001; Birnie-Gauvin et al., 2017c; Galib et al., 2018). Culverts 

and fords have been built to provide transport crossings or to route water through urban 

environments (Warren and Pardew, 1998; Price et al., 2010). In-stream barriers, whether 

artificial or natural (e.g. waterfalls, glacial sediment plugs) can interrupt longitudinal and 

lateral connectivity, and so alter hydrology, sediment transport, nutrient flow and the 

movement of biota (Mueller et al., 2011; Grill et al., 2015). Natural barriers such as 

waterfalls can affect the biogeography, genetic structuring and diversity of organisms by 

limiting their dispersal, and partially or completely isolating populations, facilitating local 

adaptation (Whiteley et al., 2010; Torrente-Vilara et al., 2011). It is the density, distribution 

and nature of artificial obstacles that causes concern for damaging impacts to natural river 

processes and the ecosystems that are inherently linked to these (Lehner et al., 2011; 

Jones et al., 2019; Belletti et al., 2020). 

 

Removal or mitigation of anthropogenic barrier effects along rivers is a major aspect of 

river restoration programmes (Kemp and O’Hanley, 2010), including in Europe where 

large amounts of river infrastructure were installed during the Agricultural and Industrial 

Revolutions, some of which is now redundant (Birnie-Gauvin et al., 2017c). 

Hydromorphology, comprising a stream section’s hydrological regime, continuity and 

morphological condition, is an element of quality assessment under the Water Framework 

Directive (WFD) in European Union member states. In multiple EU states many rivers are 

failing, or at risk of failing, to reach good ecological condition due to impaired 

hydromorphological quality (Atkinson et al., 2018; Jones et al., 2019). River obstacles can 

alter habitats, disrupt dispersal between habitat patches, restrict or prevent migration and 

eventually lead to a decline in the abundance of sensitive species and biological diversity 

(Favaro et al., 2014; Louca et al., 2014; Birnie-Gauvin et al., 2017a). Populations of 
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diadromous fishes such as European eel (Anguilla anguilla) and Atlantic salmon (Salmo 

salar) have reduced significantly at least in part due to the impacts of artificial barriers 

(Parrish et al., 1998; Piper et al., 2013). 

 

Globally, most large dams are recorded in databases (Lehner et al., 2011; Grill et al., 

2015), and their impacts on river systems are well studied (Van Looy et al., 2014). There 

are fewer such databases for small-scale barriers (but see Sheer and Steel, 2006; 

Januchowski-Hartley et al., 2013; Atkinson et al., 2018; Jones et al., 2019; Belletti et al., 

2020) and they are mostly incomplete. Jones et al. (2019) found that the current barrier 

databases for Great Britain underestimated man-made barrier numbers by 68%, mostly 

due to under-recording of small barriers. Although small-scale barriers such as weirs, 

ramps and fords may have lesser impacts on biota per location than large dams, low-head 

barriers are much more abundant (Januchowski-Hartley et al., 2013), and their cumulative 

effects on biota may be significant (Lucas et al., 2009; Kemp and O’Hanley, 2010). 

 

Globally there are 16.7 million reservoir impoundments, and 99.5% are small structures 

(reservoir surface area < 0.1 km2) (Lehner et al., 2011). According to a geographic 

information system (GIS) based desk study of maps (Entec, 2010), there are nearly 

25,000 weirs and similar structures in rivers of England and Wales, of which 3000 of the 

barriers need connectivity restoration to meet EU WFD targets (Elbourne et al., 2013). 

However, in order to mitigate the negative impacts of in-stream barriers, an effective 

strategy for river reconnection is needed as part of the restoration process (Kemp and 

O’Hanley, 2010; Tummers et al., 2016). To do this barriers need to be mapped, measured, 

categorised and a barrier inventory generated (Januchowski-Hartley et al., 2013; Atkinson 

et al., 2018). The inventory can be used to prioritise which obstacles to remove or 

mitigate, depending on modelled benefits, restoration costs and objectives (King et al., 

2017). For river management, an inadequate restoration plan may lead to inefficiencies or 

waste of effort (Kemp and O’Hanley, 2010), and the accuracy of barrier inventories can 

directly affect connectivity restoration planning. So it is necessary to understand the true 

numbers, distribution and types of in-stream barriers of whole catchments for effective 

river connectivity restoration.  
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Across Europe there is much variability in the extent to which river barriers have been 

mapped and recorded (Garcia de Leaniz et al., 2018). England is regarded as having one 

of the more complete and up-to-date barrier databases, originating from a desk-based 

study to map hydropower opportunities (Entec, 2010; Jones et al., 2019). Ground-truth 

comparison of the Great Britain barrier database surveyed under 0.2% of stream length at 

1:250,000 resolution, stratified across Great Britain (Jones et al., 2019), with the 

possibility that more intensive validation surveys at the individual catchment level might 

generate different outcomes. To test the degree to which current national river barrier 

databases, in this case for England, may be fit for river-connectivity restoration purposes, 

intensive, stratified walkover surveys of two medium-sized catchments was carried out 

and compared them with the national river barrier database. Since one aim of this study 

was to measure stream connectivity for biota, especially fish, the occurrence and 

characteristics of in-river obstacles of natural and anthropogenic origin was recorded, as 

well as the existence and typology of fish passage devices and barrier removals. 

 

3.2 Methods 

3.2.1 Study area 

The Rivers Wear and Tees were chosen for study because they are medium-sized 

catchments, somewhat typical of the variable topography and land uses occurring across 

large parts of Great Britain (Figure 3.1). They are also recovering post-industrial rivers, 

central to the thesis objectives of examining processes in the decline and recovery of 

native fish communities in post-industrial rivers of Northeast England (Chapter 1). The 

Wear and Tees are 110-km long and 160-km long respectively, both rising in the Pennine 

Hills and flowing eastwards to the North Sea. The lower reaches of both rivers pass 

through agricultural, industrial and urban areas, and the upper parts of the catchments 

were heavily exploited for metal mining in the 17th-19th centuries (Chapter 2). Coal mining 

and processing occurred widely through the lower and middle Wear catchment in the 18th-

20th centuries. Water storage reservoirs occur in the catchments of both rivers (Wear: 

Burnhope Reservoir, Waskerley Reservoir and Tunstall Reservoir; Tees: Cow Green 

Reservoir, Selset Reservoir, Balderhead Reservoir, Blackton Reservoir, Hury Reservoir, 
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Hurworth Burn Reservoir and Crookfoot Reservoir), especially the Tees, where they were 

built, in part, for maintaining industrial water supply to downstream reaches (see section 

2.3.3.2). Large parts of the catchments are agricultural but they also have an extensive 

road and rail network, including river crossings, a proportion of which are disused 

transport routes originating during the Industrial Revolution. There is also a legacy of 

agricultural and industrial mills and weirs, almost all of which no longer serve their original 

purpose, but many are now linked to or near residential dwellings. This river infrastructure 

is similar in diversity and origins to much of that which developed in Britain and across 

Europe in the Agricultural and Industrial Revolutions (Downward and Skinner, 2005). Both 

rivers have recovering Atlantic salmon populations, following dramatic reductions in 

industrial and urban pollutant loadings in recent decades, although the Tees’ recovery has 

been slow, probably due to a tidal barrage opened in 1995 (see sections 2.3.2.5 and 

2.3.3.5).  

 

 
Figure 3.1 The location of the Wear and Tees catchments including their sub-catchments 

in England, as well as the location of field surveyed rivers (blue). The main River Wear 

and River Tees in each sub-catchment was also surveyed. 



185 
 

 

3.2.2 National river barrier database 

In England, the national river barrier inventory used for management and longitudinal 

connectivity restoration planning was produced, and is held and managed, by the 

Environment Agency (EA) of England (Jones et al., 2019). The EA barrier database was 

originally created from a desk-based study to map hydropower opportunities at river 

channel barriers across England and Wales (Entec, 2010), generally at sites having an in-

channel drop greater than 1 m. The dataset of barrier locations was derived from an 

Ordnance Survey (OS) Master Map (Entec, 2010). Any structure on the map, passing 

across the river channel and listed as a dam, weir or waterfall was identified and mapped 

in the database. Therefore the database includes natural and anthropogenic barriers. 

Barrier height information was extracted from LiDAR (Light Detection and Ranging) and 

SAR (Synthetic Aperture Radar) datasets. Subsequently the EA has added sites to this 

database as they have been identified, particularly tidal water management sluices, and 

additional artificial barriers identified by local EA teams. The EA barrier inventory dataset 

used in this study was the same as that in Jones et al. (2019), generated in January 2018. 

 

3.2.3 Independent barrier validation – stratified walkover surveys 

In order to provide a quality assessment of the national barrier inventory, walkover 

surveys, stratified by stream order, altitude and position within the catchment (Jones et al., 

2019) were carried out in order to record natural and anthropogenic barriers. Only 

permanently-flowing streams were surveyed. Since the context of this study was from a 

longitudinal connectivity restoration viewpoint, particularly as regards fish passage, 

obstacles that had the potential to limit upstream movement of fish at normal to low flows 

(~Q50-Q90) were recorded, while acknowledging that maintaining free downstream-

migration passage is also important (Silva et al., 2018). Obstacles to free movement of 

fishes depend on obstacle characteristics (especially height and gradient), fish species 

and environmental conditions (Kemp and O’Hanley, 2010; Barry et al., 2018). During the 

survey, any artificial structure having a vertical or steeply-sloping (> 45 degrees) step, 

exceeding 0.2 m in height, was regarded as a potential obstacle to weakly-swimming taxa 

(Utzinger et al., 2008; Tummers et al., 2016). More gently sloping structures (e.g. culverts) 
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without an obvious step were regarded as potential obstacles if they had a fall in height 

along their length exceeding 0.5 m and/or were very constrained (e.g. pipe culverts), 

and/or very shallow (< 3 cm at ~Q90, e.g. many artificially-lined culverts; Tummers et al., 

2016). This is a simpler framework than the SNIFFER and ICE rapid barrier assessment 

methods (Barry et al., 2018) but deliberately so as even small obstacles may impact 

dispersal and recolonization of non-jumping fish species (Tummers et al., 2016). Any 

natural waterfall or cascade exceeding 0.5 m high was regarded as a potential obstacle, 

as well as extensive bedrock sills with water depth < 3 cm. Although passability of natural 

barriers will vary between fish taxa, it was felt that this enabled a reasonable compromise 

to be applied practicably for this study. River restoration projects rarely seek to alter 

natural connectivity barriers, such as waterfalls, and so barrier inventories tend only to 

record obstacles of anthropogenic origin. This study recorded natural obstacles in order to 

provide a context to the distribution of anthropogenic barriers, and to enable comparison 

to the national inventory of such barriers. Further, understanding the distribution of both 

natural and anthropogenic barriers in a catchment can play a role in better catchment 

planning for restoration of migratory species populations (Silva et al., 2018) and/or for 

limiting the spread of invasive species by managed habitat fragmentation (Rahel and 

McLaughlin, 2018). 

 

Walkover surveys of almost all but the smallest catchments rely upon subsampling (Jones 

et al., 2019), or progressive development of a database over a period of many years 

(Sheer and Steel, 2006). In this study the OS Open Rivers (1: 25,000) GIS was used for 

river mapping and subsampling the Wear and Tees for walkover surveys. On this system 

and scale, first-order streams (Strahler, 1957) normally had a field-observed wetted 

channel width of less than 3 m (J. Sun, pers. obs.). Typically, stream reaches in the lower 

resolution (1: 250,000) European Catchments and Rivers Network System (ECRINS: 

European Environment Agency, 2012) database are recorded as a Strahler stream order 

lower than in this study, reflecting the lower spatial resolution of the ECRINS database. 

Thus, most first order streams recorded in this study do not exist in ECRINS, and first 

order streams listed for the Wear and Tees in Jones et al. (2019) which employed 

ECRINS, were typically recorded as second order streams in this, finer resolution, study.  
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In order to stratify walkover surveys across a range of stream orders, altitudes and 

sections within the Wear and Tees catchments, each of these watersheds was split into 

upper, middle and lower subcatchments (Figure 3.1) based upon EA operational 

catchment areas. Three or four tributaries were quasi-randomly selected from each 

operational catchment for conducting the walkover survey. Each of these provided 

multiple sections of Strahler first- to fourth-order streams to survey. Besides these 

tributaries, the main channels of the Rivers Wear, Tees, and sections of the Browney 

(Wear), Skerne (Tees) and Leven (Tees) were included in the walkover survey, in order to 

sample extensive lengths of stream orders 4 and 5. This is because longitudinal 

connectivity obstacles on main river channels are particularly important to identify, 

especially for diadromous migratory fish (Silva et al., 2018), even if they tend to be well 

recorded in existing barrier inventories (Jones et al., 2019). Although the Browney 

(containing River Deerness), Skerne and Leven were defined as operational catchments 

by the EA, the Browney was categorized in the Lower Wear, the Skerne in the Middle 

Tees Catchment and the Leven in the Lower Tees subcatchments based on their 

geographic locations (Figure 3.1).  

 

Additionally any online, large artificial water bodies (> 10 ha) evident on 1:25,000 maps, 

and with an obvious dam, were visited and obstacle characteristics recorded by visual 

inspection, reference to maps and any information available on their construction. 

Field surveys were carried out by an experienced team. For each tributary selected, the 

survey normally covered the whole stream length (and for all adjoining streams) from the 

main river confluence upstream towards the source, to the limit of the channel evident on 

OS Open Rivers 1: 25,000. The location (British national grid reference) and altitude (m 

above sea level) of physical obstacles, both natural and artificial, were recorded as they 

were encountered. The barrier type, height, gradient, pool depth (immediately below 

obstacle) and length (for culverts and concrete channels) were measured and a brief 

description made. Photographs for each barrier, with a scale bar alongside, were taken. 

 

At any artificial obstacles where modification had occurred with the apparent aim of 
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improving river connectivity for fishes (fishways and other passage easements) 

information on that was gathered from field measurements, as well as from EA and Rivers 

Trust records. Sites where barriers had existed in the recent past (national database) but 

had collapsed, breached or been removed deliberately within the areas surveyed was also 

recorded. Appendix 1 within this thesis describes the development of, and provides an 

electronic link to a Master database of up to date barrier and fishway locations, 

characteristics and photographs in the Wear and Tees catchments, resulting from 

integration of all available information, for the benefit of catchment restoration 

management by EA and key stakeholders such as Rivers Trusts. 

 

3.2.4 Data analysis 

Barrier data from the field were entered into a spreadsheet inventory. Each barrier was 

given a unique code and associated with a barrier photograph. The Strahler stream orders 

of all channel segments in the two catchments were identified using OS Open Rivers 

(1:25,000). The cumulative distances field surveyed and the proportion of field-surveyed 

river length in each stream order were calculated by QGIS (version 2.18.4) using river 

segment lengths from OS Open Rivers.  

 

Barriers from the EA national database identified as occurring in non-qualifying habitat 

(not on OS 1: 25,000 Open Rivers network or found to be dry, so not representing 

permanent aquatic habitat) were excluded from analysis. Artificial barrier density was 

calculated for each river section for a given stream order, using the total number of 

artificial barriers divided by total river length (km) in that section.  

 

Artificial and natural barrier densities in the national database was compared with field 

surveyed barrier densities for the same river sections. Artificial barrier heights measured in 

the field survey were compared across the two catchments and also with the distribution 

of barrier heights from the national database. Where data were not normally distributed 

they were transformed log (x+1) before statistical comparison. ANOVA was used to 

compare barrier densities between stream orders, and between upper, middle and lower 

catchment areas. t-tests were used to compare mean barrier height between the 
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catchments. Paired t-tests were used to compare barrier heights and densities between 

the walkover survey data and national database. All tests were run in SPSS (Version 22). 

 

The overall barrier abundance of the whole catchment was estimated by two methods. In 

Method one (simple uprating), barrier density was calculated for each stream section 

having a particular Strahler stream order, then mean barrier density across all surveyed 

stream sections (Wear n = 83, total length 280 km; Tees n = 62, total length 421 km) was 

multiplied by the total stream length in the catchment. In Method two (uprating by stream 

order proportions) the same calculation was applied to estimate total numbers of barriers 

for total length of each Strahler stream order in a catchment and these subtotals for 

Strahler stream orders were summed to generate a value for the entire catchment. 

 

3.3 Results 

3.3.1 River Wear catchment 

In the Wear, 752 km (to nearest km) of stream channel length were mapped from OS 

Open Rivers 1: 25,000 (1st order, 330 km; 2nd order 202 km, 3rd order, 75 km, 4th order 44 

km, 5th order 100 km) and a total of 280 km (37.3%) of the Wear catchment stream length 

was field surveyed. Across field-surveyed reaches of the Wear, 364 barriers were 

recorded, 41.2% (n = 150) of which were artificial barriers (Figure 3.2) and 58.8% (n = 

214) were natural barriers (waterfalls and cascades) (Figure 3.2, 3.3). Mean artificial 

barrier height was 1.40 m (95% CI Bootstrap: 0.64 - 2.38 m), and mean natural barrier 

height was 1.31 m (95% CI Bootstrap: 1.02 - 1.58 m). Most barriers were located in first 

and second order streams, comprising 78% (n = 117) of artificial barriers and 79% (n = 

169) of natural barriers. Artificial barriers were most frequent at low altitudes, while the 

opposite occurred for natural barriers (Figure 3.3). Among artificial barriers within the field 

survey area, 19.2% (n = 29) had a fishway or other passage mitigation, seven further 

barriers had been deliberately removed for connectivity restoration and another 11 

washed away (Figure 3.4). 
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Figure 3.2 Different types of river barrier identified during the walkover survey. (a) culvert 

in Houselop Beck; (b) pipe culvert and concrete weir in Hudeshope Beck; (c) stepped weir 

in the River Leven; (d) metal pipe in Stanhope Burn (e) Balderhead Reservoir dam and its 

spillway in the River Balder (f) waterfall in Middlehope Burn. Red markers on the 

measuring pole are 0.5-m intervals. 
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Figure 3.3 Natural and artificial barrier height, stream order, barrier elevation and slope on 

(a) the Wear and (b) the Tees catchment.  
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Figure 3.4 Numbers of artificial barriers deliberately removed for connectivity restoration, 

washed out, or fitted with fish passess in the Wear and Tees. Elver / eel pass refers to 

bristle and /or studded substrate. ‘Other easement’ refers mainly to pre-impoundments 

built downstream of the main obstacle to raise the water levels and facilitate passage by 

jumping species. 

 

The mean artificial barrier density of the Wear catchment was 0.68 barriers/km (95% CI 

Bootstrap: 0.47 - 0.91 barriers/km). Barrier density did not differ across stream orders 1-3 

(ANOVA, F2,74= 2.600, p = 0.081), for which sufficient samples sizes were available for 

analysis. Lower barrier densities occurred at stream orders 4 and 5 (Table 3.1, not 

statistically tested due to small sample size). The density of artificial barriers did not differ 

between the upper, middle and lower Wear subcatchments (ANOVA, F2,80 = 1.657, p = 

0.197). The total number of artificial barriers in the Wear, estimated by simple uprating, 

using an average artificial barrier density of 0.68 across the entire field surveyed area was 

512 (Table 3.2). The total number of artificial barriers estimated by Method 2, summing the 

estimated numbers for all Strahler stream orders was 479 (Table 3.2). 
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Table 3.1 Summary of fieldwork surveyed river length (km) under each stream order in the 

Wear catchment, and the mean artificial barrier density at each stream order.  

Catchment 

Stream 

order 

River 

length 

(km) 

River 

section 

(n) 

Artificial 

barrier 

number 

(n) 

Artificial 

barrier density per 

section (n/km) 

Mean SD 

Wear upper 

1 14.5 22 4 0.24 0.64 

2 12.3 7 14 1.54 0.98 

3 8.5 2 2 0.15 NA 

4 10.5 1 5 0.47 NA 

5 17.9 1 3 0.17 NA 

Wear middle 

1 10.2 13 14 1.04 1.54 

2 20.9 7 19 0.37 0.66 

3 9.4 2 1 0.10 NA 

4 8.1 1 2 0.25 NA 

5 16.9 1 4 0.24 NA 

Wear lower 

1 28.7 15 24 0.80 1.04 

2 42.9 7 40 1.19 0.74 

3 7.8 2 10 1.18 NA 

4 6.2 1 1 0.16 NA 

5 65.3 1 7 0.11 NA 

Wear overall 

1 53.5 50 42 0.62 1.11 

2 76.1 21 73 1.03 0.94 

3 25.7 6 13 0.48 0.72 

4 24.9 3 8 0.29 0.13 

5 100 3 14 0.17 0.05 

Combined  280.2 83 150 0.68 1.03 
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Table 3.2 Estimated numbers of artificial barrier numbers in the Wear and Tees using 

Method 1 (average density across all stream segments in field survey zone multiplied by 

total catchment stream length) and Method 2 (sum of estimated barrier numbers for 

combined length of each Strahler stream order). Totals are shown in bold. 

Catch-

ment 

Method Stream 

order 

Length Density 95% CI Estimated 

number 

95% CI 

 

 

 

Wear 

 

1 total 752.323 0.68 0.47 0.91 512 354 685 

 

 

2 

1 330.602 0.62 0.33 0.96 205 109 317 

2 202.32 1.02 0.63 1.44 206 127 291 

3 74.898 0.44 0.08 1.02 36 6 84 

4 44.418 0.29 0.16 0.47 13 10 18 

5 100.085 0.13 0.1 0.16 17 15 19 

combined     479 267 729 

 

 

 

Tees 

 

1 total 1388.727 0.45 0.29 0.62 625 403 861 

 

 

 

2 

1 667.429 0.58 0.3 0.89 387 200 594 

2 321.13 0.23 0.1 0.43 74 32 138 

3 182.513 0.46 0.15 0.87 84 27 159 

4 97.136 0.28 0.05 0.51 27 5 50 

5 120.519 0.03 0 0.05 4 0 6 

combined     576 264 947 

 

The EA’s national barrier database contained 254 barriers for the Wear, 69 (artificial and 

natural) of which were within this study’s field-surveyed areas (Figure 3.5). The national 

database included one of four barriers larger than 10 m in height (Figure 3.6), none of 

which incorporated fishways. Since 15 of the artificial barriers in the national database for 

the Wear had been washed away or removed already, only 54 barriers (33 artificial and 21 

natural barriers) were valid in the national database for the field-surveyed area (Figure 

3.6). The artificial barrier density calculated from the national database (0.04 barriers/km) 

was significantly lower compared with the walkover-surveyed barrier density (paired t-test 

on transformed data, t82 = 6.630, p < 0.001). Overall, 78.0% (n = 117) of artificial barriers 
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and 90.2% (n = 193) of natural barriers were missed in the national database for 

walkover-surveyed areas of the Wear (Figure 3.3). Artificial barriers in the national 

database for the Wear were exclusively weirs, but approximately equal numbers of weirs, 

culverts and bridge aprons occurred in the walkover survey (Figure 3.5). None of the small 

cascades and waterfalls (< 2 m high, n = 192) identified in field walkovers were recorded 

in the national database. A significant difference occurred between walkover survey 

barrier (natural and artificial combined) heights (mean ± SD, 1.33 ± 3.79 m) and national 

database barrier heights (4.10 ± 3.89 m) (independent t-test on transformed data, t422 = 

9.237, p < 0.001), showing the national dataset concentrates on larger obstacles. 

 

 

Figure 3.5 Different barrier types recorded in the walkover survey database and EA 

database on (a) the Wear and (b) the Tees catchment. “Other” refers to: collapsed bridge 

(n = 1), spillway (n = 4), concrete channel (n = 1) and tidal barrage (n = 1). 



196 
 

 

 

Figure 3.6 Locations of different types of barrier recorded in (a) walkover survey database, 

(b) National database under same walkover survey range and (c) National database for 

the entire Wear and Tees catchments. Purple circles: barriers classified as unknown in the 

national database. 

 

3.3.2 River Tees catchment 

In the Tees, 1389 km of stream channel length were recorded in 1: 25,000 OS Open Maps 

(1st order, 667 km; 2nd order 321 km, 3rd order, 183 km, 4th order 97 km, 5th order 120 km) 

were recorded. A total of 421 km river length were walkover-surveyed, covering 30.3%of 

stream length in the whole Tees catchment. Across the field-surveyed area, 322 barriers 

were recorded, of which 65.1% (n = 211) were natural and 34.9% (n = 111) were artificial 

barriers (Figure 3.3). Artificial barriers were most frequent at low altitudes, while the 

opposite occurred for natural barriers (Figure 3.3). Mean artificial barrier height was 2.95 

m (95% CI Bootstrap: 1.73 - 4.45 m), and mean natural barrier height was 2.28 m (95% CI 

Bootstrap: 1.78 – 2.96 m). Heights of natural (Independent t-test on transformed data, t435 

= 4.109, p < 0.001) and artificial barriers (Independent t-test on transformed data, t260 = 

2.848, p < 0.001) were significantly higher in the Tees than Wear catchment. Most (82.9%) 
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natural barriers in the Tees were located in first and second order streams. In field-

surveyed reaches of the Tees, 67.6% (n = 75) of artificial obstacles were weirs and dams. 

Overall, 16.2% (n = 18) of artificial barriers surveyed had a fishway or other passage 

mitigation (Figure 3.4). Two further barriers had been deliberately removed for connectivity 

restoration and another 10 had collapsed (Figure 3.4).   

 

The mean artificial barrier density of the Tees catchment was 0.45 barriers/km (95% CI 

Bootstrap: 0.29 - 0.62 barriers/km). Barrier density did not differ across stream orders 1-3 

(ANOVA, F2,53 = 0.745, p = 0.479). High order streams tended to have lower densities of 

barriers (Table 3.3). There was no difference in the density of artificial barriers between 

the upper, middle and lower Tees subcatchments (ANOVA, F2,59 = 8.38, p = 0.410). Using 

the global average artificial barrier density of 0.45 barriers km-1 uprated by total stream 

length, the total number of artificial barriers in the Tees was estimated as 625 (Table 3.2), 

while summation of the subtotals per Strahler stream order gave an estimated total of 576 

(Table 3.2). 

 

In the national database, a total of 113 barriers were recorded within this study’s field 

survey area of the Tees. The national database did not record eight dams higher than 10 

m (none of which have fishways) that exist within the Tees catchment. As 11 of the 

artificial barriers in the national database had been removed for river restoration purposes 

or washed away (Figure 3.4), 102 barriers (49 artificial and 53 natural barriers) were valid 

in the national database (Figure 3.6). The artificial barrier density in the Tees catchment 

from the national database (0.09 barriers km-1) was significantly lower than for the same 

stream segments in the walkover survey (paired t-test on transformed data, t61 = 5.317, p 

< 0.001). 55.9% (62) of artificial barriers and 74.9% (158) of natural barriers were missed 

in the EA database compared with the walkover survey (Figure 3.6). None of the culverts 

(n = 14) or aprons (n = 9) identified in the field survey were recorded in the national 

database. Mean barrier height (4.80 ± 4.49 m) from the national database was 

significantly higher compared to the walkover survey database (2.49 ± 6.05 m) within the 

same surveyed areas (independent t-test on transformed data, t429 = 7.482, p = 0.01). 
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Table 3.3 Summary of fieldwork surveyed river length (km) under each stream order in the 

Tees catchment, and the mean artificial barrier density at each stream order.  

Catchment 

Stream 

order 

River 

length 

(km) 

River 

section 

(n) 

Artificial 

barrier 

number 

(n) 

Artificial 

barrier density per 

section (n/km) 

Mean SD 

Tees upper 

1 15.0 17 3 0.50 1.10 

2 23.6 7 4 0.27 0.52 

3 23.4 2 8 0.32 NA 

4 20.5 1 1 0.05 NA 

5 14.0 1 0 0 NA 

Tees middle 

1 41.6 9 32 0.86 0.78 

2 22.7 5 5 0.19 0.11 

3 49.0 2 11 0.37 NA 

4 0.0 0 NA NA NA 

5 37.5 1 2 0.05 NA 

Tees lower 

1 22.7 9 10 0.47 0.69 

2 32.7 4 9 0.23 0.36 

3 6.2 2 1 0.69 NA 

4 42.9 1 22 0.51 NA 

5 69.0 1 3 0.04  NA 

Tees overall 

1 79.3 35 45 0.58 0.94 

2 79.0 16 18 0.23 0.36 

3 78.6 6 20 0.46 0.44 

4 63.4 2 23 0.28 NA 

5 120.5 3 5 0.03 0.02 

Combined  420.8 62 111 0.45 0.77 
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3.4 Discussion 

This study provides a test of the adequacy of the English national barrier database for two 

typical medium-sized catchments, albeit neighbouring catchments within the same 

geographic region. Large-scale under recording of obstacles, including most large water 

storage dams was found. The study has generated the first intensive but, as yet still 

incomplete, inventory of artificial and natural barriers in the Wear and Tees catchments 

and provides a valuable resource for river restoration work in the future. Although artificial 

barrier density was greater at lower altitudes, generally in the middle and lower 

catchments, barriers were widespread throughout the catchments, reflecting the diversity 

of their origins. This study indicates that 77.3% of the in-stream barriers in both 

catchments were absent in the national database, including 68.6% of artificial barriers and 

82.6% of natural barriers. The field-validated barrier densities are significantly higher by 

comparison with the EA national database barrier densities. The EA barrier inventory is 

likely to be one of the more complete inventories in Europe (Belletti et al., 2020; 

http://www.amber.international). So it also seems likely that in other countries where 

barrier inventories have been mapped by desk study there may be similar levels of error. 

It is estimated that 76%–98% of in-stream barriers in the Balkans were missing from the 

existing barrier inventory, also in Estonia (91%), Greece (97%), and especially in Sweden 

where 100% low-head structures were absent in the existing database (Belletti et al., 

2020). 

 

A total of 13 artificial barriers taller than 10 m (nine in the Tees, four in the Wear) were 

recorded during the survey, but only two of these were in the EA national barrier inventory, 

even though almost all are water supply reservoirs, none of which have fish passage 

facilities. Three of these dams were present in the Global Reservoir and Dam (GRanD) 

database (Grill et al., 2015) and hence in the database generated by Jones et al. (2019), 

which also contains one additional non-duplicated barrier from the EA national database. 

In the UK, the Inventory of Reservoirs Database contains 273 individual reservoirs, which 

account for 90% of UK reservoir storage (Durant and Counsell, 2018) but evidently, within 

the Wear and Tees catchments, most of these are not integrated into the EA’s national 

barrier database. The UK’s Inventory of Reservoirs Database was missing four dams with 
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a height greater than 10 m compared to our database for the Wear and Tees. Thus, not 

only does the EA national obstacle inventory contain a small fraction of all artificial 

barriers, it also excludes some of the largest and most significant river barriers. Most of 

these large dams in the Tees and Wear are located in headwater valleys, where the 

majority of natural barriers also occur.  

 

None of the large Tees/Wear dams have fishways. Although several fishways were 

incorporated into their dam designs when built over a century ago, they are now defunct 

(J.Sun, pers. obs.). It could be argued that fishways would be of little use at these 

headwater dams due to elimination, by the dams, of fluvial nursery habitat necessary for 

migratory salmonids (Silva et al., 2018). These dams have also led to starvation of gravel 

transport to the river reaches immediately downstream, impacting habitat quality for 

salmonid spawning and other native rhithral biota (B. Lamb, pers. comm.). Efforts to 

reintroduce gravel downstream of Hury Dam on the River Balder, in recent decades, to 

enhance the Balder’s ecology and salmonid spawning potential, have not appreciably 

increased juvenile salmonid densities there (Environment Agency, 2010, EA, unpublished 

data; Appendix I, Figure S3.1). On the Tees, the largest of these impoundments, Cow 

Green Reservoir, is also upstream of several large natural barriers that are impassable in 

an upstream direction by fish (Crisp, 1977; Crisp et al., 1983; Armitage, 2006). 

Nevertheless, national barrier inventories must include all large obstacles, and most 

smaller ones, in order to be fit for purpose for river-basin planning activities. Although local 

EA officers are generally aware of these large dams, their absence on the national 

database probably reduces national and regional strategic consideration as to how to 

mitigate their ecological and environmental impact on the associated river systems. For 

example, historically the River Lune was once one of the River Tees’ most important 

salmon spawning tributaries but now only a few percent of the Lune is accessible due to 

water storage dams (P. Frear, pers. comm.).  

 

Fishways and other passage easements are the most common engineering mitigation for 

loss of river connectivity (Silva et al., 2018). However, in order to restore river processes 

in fragmented rivers, removal of redundant barriers is increasingly used and 
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recommended (Bednarek, 2001; Poff and Hart, 2002; Tummers et al., 2016) because 

hydromorphic as well as ecological processes are reinstituted (Roni et al., 2008; Birnie-

Gauvin et al., 2017a). In the field survey area only 21.5% (56/261, Wear and Tees 

combined) of artificial barriers had been mitigated with fishways / easements or removed. 

Only nine of the 261 structures (3.5%) in the survey areas across the two catchments had 

been deliberately removed. However, 21 weirs recorded on the EA’s desk-study generated 

national database and within this study’s walkover area were recorded as washed out by 

floods, or perhaps by other informal mechanisms (e.g. non-reported dismantling by 

humans). This represents 8.1% (21/261) of all artificial structures recorded. Many of these 

structures were old mill weirs, some centuries old and often of blockstone design, the 

remains of which were evident. The high energy of upland rivers such as the Wear and 

Tees during spate can breach such structures when not kept in good repair. Evidently a 

significant proportion of the artificial barriers listed in the English national barrier database 

are unlikely to be barriers any more, particularly within upland high-energy river systems.  

Atkinson et al. (2018) showed that river barrier inventories generated from mapping 

methods, as is mainly the case for the English river barrier inventory, must be validated by 

visiting all potential barriers identified by desk study.  

 

Maintaining accurate and up-to-date river barrier inventories must be a priority for river 

reconnection restoration, for example to optimize the efficacy of barrier mitigation/removal 

actions at the catchment scale (King et al., 2017; Barry et al., 2018). Most ongoing stream 

reconnection actions in English catchments, including the Tees and Wear, are currently 

planned by regard to the potential for converting ‘failing’ WFD stream segments to ‘good 

ecological condition’ (see section 1.3) without fully considering the basin-wide distribution 

and characteristics of natural and artificial barriers. Because many river barriers in 

England are privately, rather than state-owned, and ownership is, in many cases, 

unknown or contested, barrier mitigations or removals frequently occur at sites where 

there is greatest facilitation by stakeholders and owners, not necessarily at the highest 

priority sites in restoration terms. This is certainly the case in the Wear and Tees, where 

much of the river restoration is carried out by ‘third sector’ rivers trusts (Wear Rivers Trust, 

Tees Rivers Trust – see section 1.5.1), often part-financed by state aid but where access 
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and opportunity are major constraints in what can be achieved, and where (M. Lucas, 

pers. comm.). 

 

In Great Britain, a recent study indicated that 68% of artificial barriers recorded in the field 

are missing from the existing database and a large proportion of the missing barriers are 

structures less than 1-m high (Jones et al., 2019). That study adopted the coarser 1: 

250,000 scale ECRINS GIS (European Environment Agency, 2012) for determining field 

surveys and missed most of the smaller stream channels which recorded as Strahler first 

order at 1: 25,000 mesh in this study. At 1: 250,000 Jones et al. (2019) validated 0.2% of 

river network, whereas at 1: 25,000 this study validated 37% and 30% by stream length of 

the Wear and Tees catchments respectively. The percentages of artificial barriers 

estimated to have been missed in the national barrier inventory for the Wear and Tees 

were 78% and 55.9% respectively. Despite the difference in spatial resolution and 

intensity of survey between these studies, under-reporting of artificial barriers for the Wear 

and Tees are not greatly different to the overall 68% under-reporting value estimated by 

Jones et al. (2019) for the whole of Great Britain and gives confidence in the validity of 

that estimate. The importance of spatial resolution for barrier inventories is highlighted by 

the fact that in this study over 70% of river networks for the Wear and Tees comprised first 

and second order streams, while for Ireland the value is 77% (McGarrigle, 2014). In an 

audit of the accessibility of juvenile Atlantic salmon habitat in the River Nore, Ireland, 

Gargan et al., (2011) excluded first order streams and those with a gradient exceeding 

4%, on the basis that those streams are used little by salmon. By contrast, first and 

second order coastal streams are widely used by sea trout Salmo trutta for spawning and 

nursery areas in Denmark (Aarestrup et al., 2003). In the Wear and Tees catchments, first 

and second order streams provide important spawning and/or rearing habitat for fish 

species such as bullhead, stone loach, brown trout, and eel (Chapter 2). Clearly, the 

spatial resolution for barrier audits needs to take careful consideration of the 

environmental restoration objectives. 

 

Although desk-study generation of barrier inventories using historic maps, overhead 

imagery and transport infrastructure routes is a useful tool (Januchowski-Hartley et al., 
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2013; Atkinson et al., 2018), there is a growing consensus that these must be validated by 

field-surveying (Atkinson et al., 2018; Jones et al., 2019). The easiest way of removing 

false-positives is to visit potential obstacles identified but this does not avoid missing 

artificial barriers not apparent from maps and overhead imagery, especially in urban or 

heavily tree-lined areas (Atkinson et al., 2018). Despite catchment-scale walkover survey 

methods being time consuming, the method provides high-quality data to generate a 

reliable barrier for catchment-scale connectivity restoration. It was recommend that 

walkover surveys are undertaken, subcatchment by subcatchment, to develop 

comprehensive barrier inventories, which are regularly updated as barriers are added, 

removed or mitigated in order out to enable effective river-connectivity restoration 

planning and actions. Even when catchment barrier inventories are complete, periodic 

walkover audits, possibly supplemented by drones or other technology where topography 

allows, will need to be undertaken in order to take account of natural breaches and 

intentional removal of redundant obstacles. 

 

3.5 Conclusions 

This study provides evidence that the current national barrier inventory is highly 

incomplete by field validating two medium-sized catchments in NE England. This study 

showed that many artificial and natural barriers were missing from the national barrier 

inventory, resulting in lower barrier densities in the EA national database compared with 

field-validated barrier densities. Partial or complete failure in restoring stream connectivity 

may be expected if an incomplete barrier inventory is used. In addition, this study showed 

that only small amounts of artificial barriers had been removed or mitigated (by addition of 

a fish pass or easement) in both catchments. In order to achieve good ecological status 

(sensu WFD), intensive connectivity restoration is needed. Furthermore, this study 

showed that a large proportion of the missing barriers were located in first and second 

order streams (at 1: 25,000 mesh). Since these streams provide important spawning and 

rearing habitat for a number of fish species, they should not be missed out from river 

barrier surveys. 
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Rapid response of fish and aquatic habitat to 
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Summary 

River barrier removal is used increasingly as a conservation tool to restore lotic habitat 

and river connectivity, but evidence of its efficacy is incomplete. This study used a before-

after methodology to determine the effects of removing a tidal-limit barrier on the fishes, 

macroinvertebrates and habitats of an English coastal stream. Following barrier removal, 

habitat diversity increased immediately upstream and remained similar downstream. 

Mobilised silt altered the substrate composition immediately downstream, but this was 

temporary, as silt was flushed out the following winter. Changes to macroinvertebrate 

communities occurred upstream and downstream of the former barrier but these were 

transient. A dramatic and sustained increase in fish density occurred immediately 

upstream of the barrier after its removal, but effects downstream were minor.  

 

The fish community upstream changed, largely due to rapid recolonization by endangered 

European eel (Anguilla anguilla), especially of elver-stage ‘recruits’ from the estuary. Eel 

density in the pre-impounded zone increased from 0.5 per 100 m2 before barrier removal 

to 32.5 per 100 m2 five months after removal. By 17 months after barrier removal there 

was no difference in eel density across the six sections sampled. Although resident 

stream fishes such as bullhead (Cottus gobio species complex, protected under EU 

Habitats and Species Directive) were abundant in middle and upper-stream sections, 

brown trout (Salmo trutta, a listed species for biodiversity conservation in England/Wales) 

density remained low during the study and recruitment was poor. This suggests that 

although colonisation access for anadromous trout was available, habitat upstream may 

have been unsuitable for reproduction, indicating wider catchment management is 

required to complement connectivity restoration. Slower recolonization by trout might also 

not be reflected in a short study such as this one. Findings of this study suggest that tidal 

barrier removal is an effective method of restoring lotic habitats and connectivity, and can 

be beneficial for resident and migratory fishes including those of conservation importance 

(e.g. European eel) in coastal streams. 
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4.1 Introduction 

In-stream obstacles such as dams, weirs and culverts fragment rivers by interrupting 

longitudinal connectivity and altering habitat (Nilsson et al., 2005; Sun et al., 2020, also 

see Chapter 3), having major effects on the biodiversity and functioning of river 

ecosystems (Bunn and Arthington, 2002; Pringle, 2003; Galib et al., 2018, also see 

Chapter 1). These obstacles frequently impact the dispersal and migration of fish species, 

and can result in population decline and biodiversity reduction (Lucas and Baras, 2001; 

Gehrke et al., 2002; Katano et al., 2006; Mueller et al., 2011, also see Chapter 2). The 

flow-impounding effects of river barriers result in alteration to slower, deeper, fine-

sediment dominated habitat immediately upstream, especially in low-gradient reaches, 

with resultant effects on the biota (Boon, 1988; Mueller et al., 2011; Birnie-Gauvin et al., 

2017a). Barriers close to the sea can have disproportionate effects on diadromous fish 

species distribution in rivers by limiting access to suitable habitat upstream (Kemp and 

O’Hanley, 2010; Nunn and Cowx, 2012; Harris, 2016).  

 

One such species is the European eel (Anguilla anguilla), the abundance of which has 

decreased greatly since the early 1980s (Dekker, 2003; Henderson et al., 2012; Jacoby et 

al., 2015). Recruitment of glass eel (the transparent juvenile stage) has reduced by more 

than 90% and the population of silver eel (migrating to sea) has reduced by more than 

50% (Piper et al., 2013; Jacoby and Gollock, 2014). In this case, the term "recruitment" as 

used in this chapter, means the arrival of the early-life stage glass eel to estuaries (Cresci 

et al., 2019), rather than changes in local abundance due to in situ reproduction and 

subsequent transition through life stages, relative to mortality. Due to its rate of decline, 

this species has been classified as ‘Critically Endangered’ in the International Union for 

Conservation of Nature (IUCN) global Red List (Jacoby and Gollock, 2014). Under the 

Water Framework Directive (WFD), EU countries are required to provide free migration of 

fishes (European Commission, 2003, also see Chapter 1), which is a particularly relevant 

policy tool for supporting the recovery of European eel, as well as for other migratory fish 

species such as brown trout (Salmo trutta). The European Commission also initiated an 

Eel Recovery Plan (Council Regulation No 1100/2007) to ensure sustainable levels of 

adult eel abundance and glass eel recruitment across the European Union (European 
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Commission, 2007a). Through this, EU states are required to develop Eel Management 

Plans across River Basin Districts. Also in 2007 (ratified 2009), European eel was listed in 

Appendix II of the Convention on International Trade in Endangered Species of Wild 

Fauna and Flora (CITES), allowing export only without detriment to the species survival. 

As a result, since December 2010, all commercial trade of European eel to and from the 

EU has been banned (Musing et al., 2018). 

 

The reasons for the decline in recruitment of European eel are still not fully understood, 

with various threats ranging from overexploitation to climate change, but are mirrored by 

several other Anguilla species (Jacoby et al., 2015). However, the occurrence of in-stream 

barriers restricting access to juvenile habitat is considered to be one of the major threats 

to the European eel population (Dekker, 2003; Piper et al., 2013). It is also a threat that 

can be responded to, through river restoration. In England and Wales, eels are widely 

distributed throughout the river system. However, catches of eel in England and Wales 

have largely declined since the late 1970s (Defra, 2010a). For example, eel abundance in 

Bridgwater Bay, Somerset, England reduced 99% between 1980 and 2009 (Henderson et 

al., 2012). However, there had not been a concerted effort to record changes in eel 

abundance until recently, with most good English datasets being on the Rivers Severn 

and Thames. There is no fishery-independent monitoring of glass eel recruitment in the 

Northumbria River Basin and surveys of yellow eel distribution have been poorly 

standardised (Defra, 2010b). Results of electro-fishing surveys revealed that sites with eel 

presence steadily declined in the Rivers Aln, Coquet, Tyne and Wear between 1999 and 

2005 (Defra, 2010b).   

 

The upstream migration of juvenile European eel can last several years during which time 

they may migrate hundreds of kilometres and grow to ~40 cm, although a proportion never 

enter fresh water (Lucas and Baras, 2001). Barriers such as weirs, dams and sluices limit 

their upstream migration, restricting access to suitable nursery habitat upstream (Mouton 

et al., 2011; Tamario et al., 2019). Although juvenile eel, especially those smaller than 10 

cm, can climb and crawl on wet and rough surfaces (Porcher, 2002; Watz et al., 2019), 

only a small proportion of them may manage to pass barriers (White and Knights, 1997; 
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Tamario et al., 2019). In-stream barriers and associated engineering infrastructure can 

reduce survival and delay the downstream migration of the maturing silver eel stage 

(Behrmann-Godel and Eckmann, 2003; Calles et al., 2010; Piper et al., 2013) before 

migration to oceanic spawning grounds. For all diadromous species, enabling their 

bidirectional migration in rivers is crucial (Calles and Greenberg, 2009). 

 

Although a variety of fishway designs exist to facilitate upstream and/or downstream 

migration (Silva et al., 2018), their efficacy for many species can be low (Bunt et al., 

2012). Eel-specific fishways pass a proportion of juvenile eel (Environment Agency, 2011; 

Watz et al., 2019) but are unsuitable for most other species. Tide flaps and management 

of sluices can also be used to support the passage of eels in tidal reaches (Environment 

Agency, 2011; Wright et al., 2015; Guiot et al., 2020). Unlike these mitigative measures, 

barrier removal reinstates hydrologic connectivity, more natural habitat, sediment 

transport, and free movement of aquatic biota (Roni et al., 2008; Kemp and O’Hanley, 

2010; O’Hanley, 2011, also see Chapter 1). Removal of redundant barriers is increasingly 

used as a river management and conservation tool in many countries (Birnie-Gauvin et 

al., 2017c; Silva et al., 2018). Several studies have measured the effects of barrier 

removal on geomorphological and ecological responses in rivers (Pizzuto, 2002; Doyle et 

al., 2005; Chang et al., 2017; Clark et al., 2020). However, for barriers that occur in tidal 

reaches, the recovery of fish communities in response to barrier removal is still poorly 

known (but see Souder et al., 2018). The tidal sections of rivers are characterised by large 

fluxes of nutrients, sediment and organisms, between marine and freshwater 

environments (Levin et al., 2001) and barriers that interrupt tidal reaches can dramatically 

alter these. Free-flowing rivers provide a range of physical habitats which are important for 

supporting the fish populations (Brink et al., 2018). Therefore, removal of tidal / tidal-limit 

barriers may be hypothesised to have a rapid effect on changes in local habitat and fish 

community through reinstating sediment transport, bidirectional flow and facilitating fish 

dispersal and migration. In particular, removal of such barriers is predicted to benefit the 

migration and production of species such as European eel. Moreover, aquatic 

invertebrates are important food sources for many fish species (e.g. European eel, brown 

trout and bullhead Cottus gobio species complex) and changes in aquatic habitats due to 
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impounding effects may alter invertebrate assemblages (Vinson, 2001), which could affect 

the diversity and abundance of fishes. 

 

In this study, the changes in aquatic habitat, fish abundance, and fish and benthic 

invertebrate communities were measured in response to the removal of a tidal weir in a 

small stream of the River Tees, northeast England. A before-after methodology was used, 

and particularly focused on the recolonisation of European eel in the stream. Although the 

primary action was removal of a tidal-limit weir, the study operated over multiple sites 

along the entire stream catchment to determine wider-scale as well as local effects. It was 

hypothesised that the tidal barrier removal would result in the change of habitat from 

impounded, lentic water to more diverse habitat, with associated rapid change in the fish 

community in the formally impounded zone and benefit the recruitment of diadromous 

fishes in the stream.  

 

4.2  Methods 

4.2.1 Study site 

Claxton Beck, northeast England, is a low-gradient stream which joins Greatham Creek 

within the intertidal zone of the River Tees (Figure 4.1) downstream of the Tees Barrage. 

Claxton Beck is a small watercourse (1 – 4 m wide at the natural tidal limit, after barrier 

removal) that rises at an altitude of 126 m. Claxton Beck and its upstream reach, North 

Burn, drain an area of 41 km2 before joining Greatham Creek. The latter is located in an 

area surrounded by wet pasture and mudflats. Cloff Bridge weir, a barrier located at the 

head of tide, (54°37'39.2"N 1°15'14.5"W) was built around 1910 to prevent tidal intrusion 

and so enable abstraction of fresh water, from above the weir, to a nearby brickworks 

(now defunct). The weir was a 2.4-m high concrete structure (Figure 4.2) that was 

impassable to most fish species under most conditions, and a major obstruction to eel. 

Throughout much of the 20th Century the Tees estuary was heavily polluted by industrial 

and urban waste, with an impoverished fish community, but the estuary became cleaner 

from the 1980s onwards, enabling progressive recovery of the fish community and 

recolonisation of suitable habitat (see Chapter 2 for a fuller discussion of the decline and 

recovery of the Tees).  
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Figure 4.1 Claxton Beck catchment and the midpoint of each fish sampling section. 

Sampling only occurred on Claxton Beck / North Burn.  

 

 

Figure 4.2 Cloff Bridge weir on Claxton Beck before removal (a), immediately after 

removal on 30 April 2018 (b), five months after the weir removal (c) and 17 months after 

the weir removal (d). Photographs were taken under base flow conditions. 
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Prior to the agricultural and Industrial Revolutions, small streams entering northern 

English estuaries, such as Claxton Beck entering the Tees estuary, would likely have been 

populated by a fish community comprising diadromous migratory fishes, especially brown 

trout, European eel, European flounder (Platichthys flesus), other euryhaline species 

(those tolerant to salinity fluctuations such as several goby and stickleback species) and 

small, resident species such as stone loach (Barbatula barbatula) (Wheeler, 1969). In 

small, lowland Danish coastal streams, similar in climate and natural hydromorphology to 

Claxton Beck, anadromous brown trout are often the dominant species (Birnie-Gauvin et 

al., 2018). However, agricultural intensification, land drainage, stream straightening and 

pollution degraded the habitat of many lowland streams across England, including Claxton 

Beck, so although Claxton Beck probably once contained a substantial brown trout 

population, it was almost extirpated. The Environment Agency (EA) stocked North Burn 

with brown trout fry in 1997 but they did not perpetuate at the sites stocked (R. Jenkins, 

EA, pers. comm. see also Figure 2.47). In recent years small numbers of adult sea trout 

(S. trutta) have been observed in the reach downstream of Cloff Bridge weir during the 

autumn breeding season (B. Lamb, Tees Rivers Trust, pers. comm.).  

 

Due to Cloff Bridge weir’s impounding effects, the upstream reach was dominated by a 

480-m long, uniformly deep (~ 1 m), slow glide, with fine sediment on the bed. A small 

scour pool with industrial rubble and gravel had developed immediately downstream of the 

weir. The weir formed an artificial tidal limit, and within a few hundred metres downstream 

of the weir, the channel became progressively more characteristic of a tidal creek, 

dominated by tidally transported soft sediment, with exposed mud banks and marginal 

reeds (Phragmites australis). From WFD monitoring, in the upstream freshwater reach, 

the ecological status of the fish community at Claxton Beck was classified as “bad” 

between 2013 and 2016 by the EA (Environment Agency, 2020a). Cloff Bridge weir was 

considered to be the main reason of WFD failure for fish. Another 1-m high weir is located 

1.5 km upstream of Cloff Bridge weir and 0.2 km downstream of a major road bridge that 

crosses Claxton Beck.  
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In order to provide free passage for fish and help restore the upstream river habitat, by 

reinstating flow and sediment connectivity, Cloff Bridge weir was removed by the Tees 

Rivers Trust on 30 April 2018 (Figure 4.2). Funding for this action was provided by EDF 

Energy as a mitigation, by agreement with the Environment Agency, for the impact of eel 

impingement at the nearby Hartlepool Nuclear Power station that abstracts cooling water 

from the Tees estuary. The unnamed weir 1.5 km upstream of Cloff Bridge could not be 

removed due to concerns over potential stream bed erosion actions on the road bridge 

upstream. Therefore, a wooden pool fish pass was installed by Tees Rivers Trust on the 

middle of the second weir in June 2018. The slope of the fish pass is 30 degrees, it has 

nine 0.1-m high pools and a width of 0.5 m. In addition, a bristle elver pass was installed 

on the left side of the pool fish pass in September 2018. 

 

4.2.2 Experimental approach 

Because environmental conditions, especially flow, vary seasonally and could be 

expected to alter habitats, especially after weir removal, sampling of habitat (especially 

around Cloff Bridge weir) and biota was carried out twice a year, in autumn and spring. 

Samples were taken on five occasions; in autumn 2017 and spring 2018, prior to removal 

of Cloff Bridge weir, and in autumn 2018, spring 2019 and autumn 2019 after barrier 

removal. Spring samples were carried out in April and autumn samples in late September 

and early October.  

 

4.2.3 Habitat measurements 

In order to assess river habitat close to Cloff Bridge weir before and after barrier removal, 

a habitat survey was performed during seasonal base flow conditions. 

Hydromorphological characteristics comprising wetted width, depth (at 25%, 50% and 

75% of wetted width) and flow velocity (at 50% depth and 25%, 50% and 75% of wetted 

width) were measured every 12 m in the upstream impounded section (length, 480 m) and 

downstream tidal section (length, 204 m). This 12-m distance repeat reflected the typical 

field of view of photographs made looking up the channel, that were made before and 

after barrier removal, through these upstream and downstream zones. These 

measurements were made 7 months before (Sep 2017) and 5 months (Sep 2018), 12 
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months (Apr 2019) and 17 months (Sep 2019) after weir removal. Sampling could not be 

carried out in April 2018 due to prioritisation of biotic sampling during the only period of 

low flows that month. Sampling in the tidal section was carried out close to low tide. 

Dominant habitat types (riffle, glide, pool) and substrate types (sand, silt, gravel etc.) in 

each 12-m section were recorded. The river bed substrate composition in each 12-m 

section was visually and manually assessed, using an approximation to the Wentworth 

scale: boulder (>256 mm), cobble (64–256 mm), gravel (2–64 mm), sand (0.06–2 mm) 

and silt (<0.06 mm) (Wentworth, 1922; Environment Agency, 2003). An additional 

substrate category “earth” was used to describe compacted soil (inorganic and organic 

materials) that formed submerged banks and, in some areas part of the stream bed, 

particularly within the inundated impounded reach. 

 

A more detailed survey grid of water depth and flow velocity was carried out in zones 

stretching 20 m upstream and 40 m downstream of the weir’s midpoint. These data were 

used for generating 2D graphs, to visualize habitat changes post-weir removal. Both 

characteristics were measured on a 1-m mesh. If the wetted width was less than 3 m, 

then measurements were taken at 25%, 50% and 75% width positions. An 

electromagnetic flow meter (Valeport 801) was used to take flow velocity measurements 

except for in a 10-m long section affected by electromagnetic interference from high 

voltage electricity transmission pylons, where an analogue Hydro-prop Impeller flow 

meter was employed. 

 

4.2.4 Sample sections for biota surveys 

Six sampling sections, each 300-m long, were chosen in which to sample biota (Figure 

4.1). It was feasible to sample only one section downstream of Cloff Bridge weir due to the 

deep, soft mud further downstream. In Section 1, located immediately downstream of the 

weir (Figure 4.1), the tide mark was approximately 1 m high on the banks. The riparian 

zone of Section 1 is mostly semi-improved grassland. Land use adjacent to Section 1 is 

pasture and arable land on the left bank and semi-natural parkland on the right bank. 

Downstream of Section 1, the riparian zone is dominated by common reed. Section 2 was 

located immediately upstream of the weir, within the impounded zone and Section 3 was 
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located nearly 700 m upstream of Section 2, downstream of the second weir. Sections 4–

6 were located upstream of the second weir (Figure 4.1). The riparian zone of Sections 2–

6 mostly consists of broadleaf trees such as sycamore (Acer pseudoplatanus) and 

common alder (Alnus glutinosa) along with some tall herbs such as nettle (Urtica dioica) 

and butterbur (Petasites hybridus). The predominant land use adjacent to Sections 2–5 is 

mixed agricultural land. For Section 6, the land use is semi-improved grassland on the left 

side and broadleaf woodland on the right side. Apart from Section 2 which, prior to weir 

removal was an impounded area, the remaining sampling sections contained multiple 

habitat types (riffle, glide and pool). Because the second weir has not been removed, the 

removal of Cloff Bridge weir is unlikely to have had any impacts on river habitat upstream 

of the second weir. Initially, Section 3 was positioned 700 m upstream of Section 2, but 

due to difficulties with land access permission there after summer 2018, the sampling 

section was moved 500 m further upstream until the end of the study. The new Section 3 

had similar river habitat compared with the original location, and the post-weir removal fish 

population surveys were all conducted in the new Section 3. 

 

4.2.5 Fish community sampling 

Fish were sampled by electrofishing using wading with a single anode, operated with a 

bankside generator and control box (Honda EU10i, Electracatch WFC1, ~200 V). For 

Section 1 in the tidal reach (Figure 4.1), sampling was carried out close to low tide, when 

depth and conductivity were lowest (always <1 ppt salinity). Although single-funnel, 5-mm 

mesh, baited traps were trialled as another method of sampling fish, these were 

ineffective and their use was discontinued. Six 20-m long, full channel-width sample 

replicates, targeting a mixture of habitat types, approximately proportionally to their 

availability were spread along each 300-m sample section.  

 

The three-pass electrofishing ‘depletion’ method (Reynolds and Kolz, 2013) was carried 

out for each 20-m sample length, using 4-mm mesh stopnets to delimit the fished section. 

After the first and second rounds of electro-fishing, approximately 30 minutes was given to 

let the sediment settle down and allow fish to return to their activities, to generate 

relatively equal catchability between rounds (based upon experience and catchability 
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measurements at local stream sites). Fish removed from each pass were kept in separate 

aerated containers, after which the catches were processed separately. Fish were 

identified and measured for total length. If more than 50 fish of a species were caught at a 

site, then 50 per species were randomly selected and measured, and the remainder 

counted. Processed fish were released back to the capture location. All fish sampling was 

carried out under permit, issued by the Environment Agency. 

 

4.2.6 Invertebrate sampling 

Four sections, were chosen for conducting benthic macroinvertebrate sampling: Sections 

1–4. Sections 5 and 6 were not sampled because it was expected that no rapid changes 

in invertebrate communities would occurred in the sections located furthest upstream, 

since none of the Tees brackish-water invertebrates are capable of colonising freshwater. 

Three sampling sites were sampled in each section, and each site was surveyed twice per 

year, once in spring and once in autumn. All in-stream habitats were kick sampled in 

proportion to their occurrence, for a total of three minutes using a handnet with 1-mm 

mesh, plus one minute hand searching. At sites with little flow, material suspended by kick 

sampling was washed into the net by generating flow with a hand or foot. After sampling, 

all invertebrates were stored in 70% ethanol and identified to family level in the laboratory 

using a binocular microscope and standard literature (e.g. Pawley, 2011). In two cases the 

level of taxonomic resolution was not to family level: Oligochaeta and Mysidacea.  

 

4.2.7 Data analysis 

Before analysis, data were checked for normality using conventional tests, and necessary 

transformations were applied when needed. For habitat metrics, pairwise Permutational 

multivariate analysis of variance (PERMANOVA) from the ‘RVAideMemoire’ package 

(Hervé, 2020) was applied to analyse whether the habitat types, substrate types and 

hydromorphology (water depth, flow velocity and wetted width) differed between the 

downstream section (Section 1) and upstream impounded section (Section 2) (Chang et 

al., 2017). All habitat data were log(x+1) transformed before conducting analyses. Before 

and after changes in water depth and flow velocity immediately upstream and downstream 

of the weir were visualised using Iric (version. 2.3) (Nelson et al., 2016).  
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Fish densities per site and species were calculated according to Carle and Strub’s K-pass 

removal method, by using the R (version 3.6.1) package ‘FSA’ (Ogle, 2020). Total fish 

densities were calculated by summing densities of individual species per site (from Carl 

and Strub estimates), taking account of differing species cathabilities in doing so. Fish 

densities and invertebrate relative abundance data were fourth-root transformed, to meet 

assumptions of normality before conducting the following analysis (Boys et al., 2012). 

PERMANOVA was used to determine changes in the fish and invertebrate communities 

after weir removal, using the R ‘Vegan’ package (Oksanen et al., 2019). In order to create 

a balanced design to perform PERMANOVA, the surveys were split into three periods, 

each comprising a spring survey and an autumn survey (Period 1: autumn 2017, spring 

2018; Period 2: autumn 2018, spring 2019; Period 3: spring 2019, autumn 2019). 

Similarity percentage (SIMPER) analysis, based on the decomposition of Bray-Curtis 

dissimilarity index (Clarke, 1993), was used to identify the contribution of individual 

species to the overall fish community at each section. Linear Mixed-Effects Models 

(LMMs) were performed to analyse the changes in fish abundance using the ‘lme4’ and 

‘lmerTest’ package (Kuznetsova et al., 2017). Tukey's multiple comparison test was 

performed to analyse the differences in total fish abundance (all fish species combined) 

and eel abundance between study sections, using the 'multcomp' package (Hothor et al., 

2020). Sites (nested within sections) and seasons (nested within sampling years) were 

used as random factors when performing both analyses. To visualize the spatial and 

temporal differences in fish communities, a Non-metric multidimensional scaling (NMDS) 

(Kruskal and Wish, 1978) ordination plot was generated using the ‘metaMDS’ function of 

the ‘vegan’ package. Examples of R-scripts are presented in Appendix II. 

 

Invertebrate communities are good indicators of watercourse pressures (e.g. pollution), 

and they are frequently used in assessing the level of general degradation (UK Technical 

Advisory Group, 2014). The WHPT ASPT (Whalley, Hawkes, Paisley & Trigg – Average 

Score Per Taxon) was applied as an abundance weighted metric (UKTAG, 2014) for 

assessing responses of the invertebrate community across stream sections before and 

after barrier removal. The ASPT at each section was also analysed by using LMM. 
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4.3  Results 

4.3.1 Aquatic habitat pre- and post-barrier removal 

Photographs of example sections of habitat upstream along the 480-m upstream section 

ad 204-m downstream section before and after barrier removal are presented in Appendix 

II (Downstream: Figure S4.1, S4.2; Upstream: Figure S4.3, S4.4). Before barrier removal, 

Section 2 was impounded and dominated by a deep, very slow glide (Table 4.1). 

Substrate in the impounded section was mostly composed of sand (mean ± SD, 68.7 ± 

33.7 %), along with some exposed earth (mean ± SD, 12.6 ± 28.2 %) close to the water’s 

edge, and silt (11.4 ± 23.3 %) accumulated on the upstream side of the weir (Table 4.1). 

Downstream, and before the weir’s removal, the stream was shallower (mean ± SD, 28.2 

± 9.0 cm) and narrower (mean ± SD, 4.22 ± 1.62 m). The tidal stream section exhibited a 

more natural form with faster flow (0.08 ± 0.04 m s-1) and glide, riffle and pool habitats at 

low tide (Table 4.1). Mud (mean ± SD, 46.7 ± 25.3 %) and sand (mean ± SD, 23.6 ± 

13.5 %) formed the majority of the bottom substrates, but gravel and boulder occurred 

intermittently (Table 4.1).  

 

Although the whole weir was removed, a steep riffle remained at its former position 

(Figure 4.2) and the tidal limit remained in the vicinity of the former weir’s position for the 

duration of the study. The riparian vegetation and river bank canopy in the former 

impounded zone and downstream tidal zone were not affected by barrier removal. Bed 

substrates, habitat types and hydromorphology exhibited dramatic changes in Section 2 

within the first 5 months after barrier removal (PERMANOVA, P < 0.05 in all cases; Table 

4.2). Section 2 became shallower and narrower, with faster flow (Figure 4.3). Large 

volumes of fine sediment were washed to the downstream section; the proportion of bed 

in Section 2, covered by sand decreased from 68.7 to 20.4% five months after barrier 

removal, then slightly increased to 31.4%, after 12 months (Table 4.1). After the sand was 

washed away, it exposed underlying compacted earth of the channel bed, and this 

became the dominant substrate in Section 2, increasing to 60.7% coverage five months 

after barrier removal, then slightly decreasing to 44.5%, 17 months after barrier removal 

(Table 4.1). 
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The overall upstream substrate composition appeared stable at 17 months after the 

barrier removal (Table 4.3; PERMANOVA pairwise post hoc, P = 0.078). A few riffles and 

pools were formed in the previously impounded section (Table 4.1) and caused significant 

changes in habitat type occurrence at 5 months post-removal (PERMANOVA pairwise 

post hoc, P = 0.002) with no further changes at 12 and 17 months post-removal 

(PERMANOVA pairwise post hoc, P > 0.05 in both cases). Similar to the habitat factors, 

water depth, wet width and flow velocity all changed within 5 months post-removal 

(PERMANOVA pairwise post hoc, P = 0.002), then these factors became stable and 

showed no further significant changes (Table 4.3).  
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Table 4.1 Percentage occurrence of habitat types (mean and SD), hydromorphology and 

substrate composition (percentage of bed) in the upstream (u/s; length, 480 m) and 

downstream (d/s; length, 204 m) study reaches after different periods, 7 months before 

weir removal (Sept 2017); 5 months post removal (Sept 2018); 12 months post removal 

(Apr 2019); 17 months post removal (Sept 2019). “Earth” refers to compacted bank soil in 

inundated areas. 

Habitat 
factors 

  7 months 
before 

5 months 
after 

12 months 
after 

17 months 
after 

Habitat 
types 

Riffle %) u/s 0.0±0.0 13.2±30.4 17.3±31.5 11.4±22.9 
 d/s 16.7±26.3 28.1±38.7 31.7±40.3 16.7±28.0 

 Glide (%) u/s 100.0±0.0 58.0±41.4 68.9±39.0 76.2±31.8 
  d/s 59.2±39.1 60.0±42.8 60.0±40.6 67.2±34.0 
 Pool (%) u/s 0.0±0.0 28.8±38.3 13.8±27.5 12.4±23.9 
  d/s 24.2±38.2 11.9±29.6 8.33±21.15 16.1±30.0 
Hydro-
morphology 

Depth (cm) u/s 104.5±23.1 46.5±27.3 40.1±22.6 41.4±23.0 
 d/s 28.2±9.0 22.9±17.2 23.5±13.4 26.6±16.2 

 Wet width (m) u/s 5.98±1.66 3.25±1.18 3.28±1.12 3.35±1.13 
  d/s 4.22±1.62 3.66±1.43 3.83±0.88 3.71±0.62 
 Velocity (m s-1) u/s 0.01±0.01 0.04±0.06 0.04±0.04 0.03±0.05 
  d/s 0.08±0.04 0.07±0.09 0.10±0.11 0.06±0.08 
Substrate 
composit-
eon 

Silt (%) u/s 11.4±23.3 12.6±23.2 11.6±22.3 6.5±16.8 
 d/s 46.7±25.3 72.3±31.4 27.2±20.9 32.5±32.2 
Sand (%) u/s 68.7±33.9 20.4±29.0 31.4±26.2 38.8±31.8 

  d/s 23.6±13.5 5.8±15.1 34.7±26.1 36.7±28.1 
 Gravel (%) u/s 0.7±4.1 3.0±10.4 4.9±11.1 0.8±2.7 
  d/s 15.8±14.1 8.9±13.5 16.9±24.0 12.8±22.3 
 Cobble / 

Boulder (%) 
u/s 6.8±15.2 3.4±7.2 3.8±7.1 9.5±19.7 

 d/s 13.9±22.8 13.8±17.2 13.9±21.6 14.2±19.9 
 Earth (%) u/s 12.6±28.2 60.7±38.6 48.4±31.8 44.5±34.3 
  d/s 0.0±0.0 0.0±0.0 7.8±18.7 3.9±12.1 
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Table 4.2 Pairwise PERMANOVA comparing river habitat factors before (7 months before 

removal) and after (5, 12, 17 months post removal) the weir removal. Significant values in 

bold. 

 Habitat factors Mean 
square 

df F P 

Downstream  Substrates 7.007 1,70 3.55 0.008 
 Habitat types 0.617 1,70 0.33 0.782 
 Hydromorphology 0.075 1,70 0.78 0.406 
Upstream  Substrates 17.555 1,146 7.94 0.001 
 Habitat types 6.211 1,146 4.60 0.008 
 Hydromorphology 4.734 1,146 44.27 0.001 

 

Table 4.3 Post hoc tests following pairwise PERMANOVA showing the temporal variation 

in river habitat during sampling periods. Sep 2017: 7 months before weir removal; Sep 

2018: 5 months after weir removal; Apr 2019: 12 months after weir removal; Apr 2019: 17 

months after weir removal. Pillai post-hoc test applied. Significant values in bold. 

 Habitat factors Periods P   
Downstream Substrates  Sep 2017 Sep 2018 Apr 2019 
  Sep 2018 0.003 - - 
  Apr 2019 0.016 0.003 - 
  Sep 2019 0.003 0.004 0.697 
 Habitat types  Sep 2017 Sep 2018 Apr 2019 
  Sep 2018 0.78 - - 
  Apr 2019 0.78 0.91 - 
  Sep 2019 0.91 0.78 0.78 
 Hydromorphology  Sep 2017 Sep 2018 Apr 2019 
 Sep 2018 0.18 - - 
  Apr 2019 0.40 0.58 - 
  Sep 2019 0.13 0.92 0.53 
Upstream Substrates  Sep 2017 Sep 2018 Apr 2019 
  Sep 2018 0.002 - - 
  Apr 2019 0.002 0.042 - 
  Sep 2019 0.002 0.033 0.078 
 Habitat types  Sep 2017 Sep 2018 Apr 2019 
  Sep 2018 0.002 - - 
  Apr 2019 0.002 0.337 - 
  Sep 2019 0.002 0.223 0.693 
 Hydromorphology  Sep 2017 Sep 2018 Apr 2019 
 Sep 2018 0.002 - - 
  Apr 2019 0.002 0.897 - 
  Sep 2019 0.002 0.792 0.897 
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Figure 4.3 Flow velocity and water depth before and after the weir removal (upper panel: Velocity; lower panel: Depth).
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In the downstream reach, Section 1, the bed substrate composition changed after weir 

removal (PERMANOVA pairwise post hoc, P = 0.002), with much of the bed covered by 

10-cm thick silt. The proportion of substrate classed as silt increased from 46.7 to 72.3% 

at 5 months post-removal (Table 4.1). Most surface silt was washed further downstream 

after several winter high-flow events by 12 months post-removal, and the silt proportion in 

Section 1 reduced to 27.2% (Table 4.1). Meanwhile, the proportion of sand increased from 

5.8 to 34.7%. The overall bottom substrates showed no further change by 17 months 

post-removal (PERMANOVA pairwise post hoc, P = 0.697). The habitat factors were not 

affected by the barrier removal in the downstream reach through the study periods 

(PERMANOVA pairwise post hoc, P > 0.05 in both cases).  

 

4.3.2 Fish abundance and fish community pre- and post-barrier removal 

Before barrier removal, eight fish species were captured during the electrofishing surveys 

(Figure 4.4). European flounder, nine-spined stickleback (Pungitius pungitius) and 

common goby (Pomatoschistus microps) were only captured in Section 1. Section 1 was 

dominated by flounder in spring and by European eel in autumn. The predominant species 

in Section 2 was three-spined stickleback (Gasterosteus aculeatus), and sites further 

upstream (Section 3–6) were dominated by bullhead (Cottus perifretum, part of the C. 

gobio species complex sensu (Freyhof et al., 2005)). Before barrier removal, among all 

sampled sections, total fish density in Section 1 was significantly higher than in all 

upstream sections in autumn (Figure 4.5; Table 4.4; LMM pairwise post hoc, P < 0.05 in all 

cases) and fish density in Section 2 was significantly lower than in all other sections in 

spring (Figure 4.5; Table 4.4; LMM pairwise post hoc, P < 0.05 in all cases).  
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Figure 4.4 Mean fish densities (per 100 m2) of each species in each section before and after the barrier removal. Error bar: 95% confidence interval. FL: 

European flounder, EE: European eel, TSB: three-spined stickleback, BH: European bullhead, GO: common goby, BT: brown trout, SL: stone loach, NSB: 

nine-spined stickleback. The arrow signifies when the barrier was removed. Section numbers are ordered from downstream to upstream, with Section 1 

being downstream of the barrier location and Section 2 the impounded zone prior to barrier removal. 
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Figure 4.5 Box plots showing median (with quartiles, ranges and outliers) total fish 

densities (per 100 m2) at each section before and after the weir removal (removed after 

spring 2018 sampling). Section 1 is the furthest downstream site, in the tidal zone, 

Sections 2-6 are non-tidal, with Section 6 the furthest upstream. 
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Table 4.4 Pairwise comparisons of total fish density in each section during the survey 

periods. Sections 1 and 2 are immediately downstream and upstream of the barrier 

position; section numbers increase from downstream to upstream. Tukey's multiple 

comparison test applied. Significant values are shown in bold. 

Periods Before After 

Season autumn  
2017 

spring  
2018 

autumn  
2018 

spring  
2019 

autumn  
2019 

Section Z P Z P Z P Z P Z P 

2 - 1 -6.87  <0.001 -4.81  <0.001 1.55 0.632 -1.95 0.371 1.29 0.789 

3 - 1 -4.50  <0.001 -0.23  1.000  1.36 0.750 -2.30 0.192 0.34 0.999 

4 - 1 -5.89  <0.001 0.67  0.986  0.77 0.972 -3.49 0.006 -0.52 0.995 

5 - 1 -4.78  <0.001 -0.63  0.989  1.02 0.910 -3.91 0.001 -0.21 1.000 

6 - 1 -4.27  <0.001 0.01  1 3.91 0.001 -1.68 0.544 2.83 0.052 

3 - 2 2.37  0.167  4.57  <0.001 -0.19 1.000 -0.35 0.999 -0.95 0.934 

4 - 2 0.98  0.926  5.47  <0.001 -0.78 0.972 -1.54 0.640 -1.81 0.457 

5 - 2 2.09  0.291  4.18  <0.001 -0.53 0.995 -1.96 0.366 -1.50 0.666 

6 - 2 2.60  0.097  4.81  <0.001 2.37 0.169 0.27 1.000 1.54 0.638 

4 - 3 -1.40  0.730  0.90  0.947  -0.59 0.992 -1.19 0.844 -0.86 0.955 

5 - 3 -0.28  1.000  -0.39  0.999  -0.34 0.999 -1.61 0.594 -0.55 0.994 

6 - 3 0.23  1.000  0.24  1.000  2.55 0.109 0.62 0.989 2.49 0.127 

5 - 4 1.12  0.875  -1.29  0.789  0.25 1.000 -0.42 0.998 0.32 1.000 

6 - 4 1.63  0.580  -0.66  0.986  3.14 0.021 1.81 0.461 3.36 0.010 

6 - 5 0.51  0.996  0.63  0.989  2.89 0.044 2.23 0.224 3.04 0.029 

 

After barrier removal, the predominant species of Sections 1–6 remained similar, but eel 

became relatively more abundant further upstream than previously (Figure 4.4). The 

overall fish densities across all sections exhibited a significant increase in density after 

barrier removal (Figure 4.5, Table 4.5; LMM, F1,143 = 14.154, P < 0.001). Five months after 

barrier removal, the fish abundance in Section 2 had dramatically increased, and there 

was no significant difference in total fish density between Section 2 and all other sections 

(LMM, P > 0.05 in all cases).  
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Table 4.5 Linear mixed-effects model (LMM) results showing changes in total fish 

abundance in each section before, compared to after, barrier removal (Before: autumn 

2017 and spring 2018; After: autumn 2018, spring 2019 and autumn 2019). Season and 

site were used as random factors in the analysis. Significant values in bold. 

Section Fish Species Mean square df F P Trend 

All combined Overall fish 14.154 1,143 21.584 <0.001 ↑ 

1 Overall fish 0.697 1,23 0.620 0.439 - 

2 Overall fish 17.966 1,23 30.487 <0.001 ↑ 

3 Overall fish 1.879 1,23 6.281 0.020 ↑ 

4 Overall fish 0.650 1,23 2.127 0.158 - 

5 Overall fish 0.432 1,22 1.330 0.261 - 

6 Overall fish 10.476 1,27 19.904 <0.001 ↑ 

 

The fish communities differed significantly between Sections 1, 2 and 3 before the barrier 

removal (PERMANOVA, P < 0.05 in all cases; Table 4.6). The fish communities in 

Sections 1, 2 and 3 changed after barrier removal (Figure 4.6, Table 4.7; PERMANOVA, P 

< 0.05 in all cases) and remained different from each other after barrier removal in both 

P2 (autumn 2018 – spring 2019) and P3 (spring 2019 – autumn 2019) (PERMANOVA, P < 

0.05 in all cases). For Section 1, SIMPER showed eel and flounder contributed over 80% 

of the change in fish assemblages after barrier removal, in both P2 and P3. For Section 2, 

both three-spined stickleback and eel abundance increased significantly after barrier 

removal (LMM, stickleback: F1,28 = 21.599, P < 0.001; eel: F1,23 = 16.782, P < 0.001), and 

these two species contributed over 80% of the dissimilarity in fish assemblages after the 

barrier removal. There was little change further upstream. Eel contributed less to fish 

communities change at S3 – S6.  
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Figure 4.6 NMDS ordination plot (centroids and 95% confidence elipses) of fish 

communities in Sections 1–4 before (autumn 2017 and spring 2018) and after (spring 

2019 and autumn 2019) tidal weir removal. Data for Sections 5 and 6 are not shown 

because they overlapped greatly with Section 4 and obscured the pattern. 

 

Table 4.6 Pairwise comparisons of fish community based on Bray-Curtis dissimilarity 

matrix between Sections 1, 2 and 3 during the survey periods, P1 (autumn 2017 and 

spring 2018), P2 (autumn 2018 and spring 2019) and P3 (spring 2019 and autumn 2019). 

Significant values in bold. 

Period Sections Mean 
square 

df F P 

P1 S1 vs S2 0.968 1,22 13.06 0.001 

 S1 vs S3 1.204 1,22 19.6 0.001 

 S2 vs S3 0.383 1,22 4.16 0.024 

P2 S1 vs S2 0.807 1,22 17.45 0.001 

 S1 vs S3 1.355 1,22 32.39 0.001 

 S2 vs S3 0.168 1,22 3.99 0.024 

P3 S1 vs S2 0.692 1,22 8.72 0.001 

 S1 vs S3 1.061 1,22 15.53 0.001 

 S2 vs S3 0.114 1,22 3.58 0.037 
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Table 4.7 PERMANOVA comparisons of fish and invertebrate communities in each section 

between periods P1 (autumn 2017 and spring 2018, before barrier removal), P2 (autumn 

2018 and spring 2019) and P3 (spring 2019 and autumn 2019). Significant values are in 

bold. 

Community Section Periods Mean 

square 

df F P 

Fish 1 P1 vs P2 0.190 1,22 4.259 0.020 

  P1 vs P3 0.212 1,22 2.656 0.032 

 2 P1 vs P2 0.460 1,22 6.077 0.004 

  P1 vs P3 0.420 1,22 5.683 0.003 

 3 P1 vs P2 0.195 1,22 3.337 0.030 

  P1 vs P3 0.255 1,22 5.098 0.012 

 4 P1 vs P2 0.040 1,22 1.186 0.400 

  P1 vs P3 0.061 1,22 1.434 0.264 

 5 P1 vs P2 -0.002 1,22 -0.119 1.000 

  P1 vs P3 0.239 1,22 5.401 0.050 

 6 P1 vs P2 0.003 1,22 0.109 0.903 

  P1 vs P3 0.059 1,22 1.794 0.253 

Invertebrate 1 P1 vs P2 0.537 1,10 2.180 0.027 

  P1 vs P3 0.424 1,10 1.850 0.101 

 2 P1 vs P2 0.177 1,10 0.821 0.611 

  P1 vs P3 0.167 1,10 0.819 0.564 

 3 P1 vs P2 0.249 1,10 2.182 0.028 

  P1 vs P3 0.168 1,10 1.647 0.107 

 4 P1 vs P2 0.102 1,10 0.672 0.737 

  P1 vs P3 0.219 1,10 1.631 0.122 
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4.3.3 Upstream recolonisation by eel and flounder 

Although eel were present upstream of the barrier before its removal, they occurred at 

very low densities (Figure 4.7). Eel densities before barrier removal differed significantly 

among sampling sections (LMM, F5,60 = 29.54, P < 0.001); eel abundance was higher in 

Section 1 than upstream sections in both seasons (Figure 4.7, Table 4.8; LMM pairwise 

post hoc, P < 0.001 in all cases). Prior to barrier removal, there was no significant 

difference in eel density between upstream sampling sections (Section 2–6; LMM pairwise 

post hoc, P > 0.05 in all cases).  

 

 
Figure 4.7 Box plots showing median (with quartiles, ranges and outliers) European eel 

densities (per 100 m2) in each section before and after tidal barrier removal (removed, 

after spring 2018 sampling). Section 1 is in the tidal zone, downstream of the barrier, 

Section 2 is the impounded zone, while Section 6 is the furthest site upstream. 
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Table 4.8 Pairwise comparisons of eel density between survey sections at different times 

relative to weir removal. Tukey's multiple comparison test applied. Significant values in 

bold. 

Periods Before After 

Season autumn  

2017 

spring  

2018 

autumn  

2018 

spring  

2019 

autumn  

2019 

Section Z P Z P Z P Z P Z P 

2 - 1 -7.06  <0.001 -6.11  <0.001 -0.44 0.998 -4.62 <0.001 0.52 0.995 

3 - 1 -6.72  <0.001 -6.77  <0.001 -3.42 0.008 -5.43 <0.001 -1.37 0.747 

4 - 1 -5.95  <0.001 -5.12  <0.001 -3.34 0.011 -5.93 <0.001 -1.54 0.640 

5 - 1 -6.86  <0.001 -7.36  <0.001 -6.63 <0.001 -8.27 <0.001 -1.15 0.863 

6 - 1 -7.35  <0.001 -5.90  <0.001 -6.04 <0.001 -7.70 <0.001 -1.61 0.593 

3 - 2 0.33  0.999 -0.65  0.987 -2.98 0.034 -0.81 0.965 -1.89 0.408 

4 - 2 1.11  0.878 0.99  0.920 -2.89 0.044 -1.31 0.780 -2.06 0.307 

5 - 2 0.20  1.000 -1.25  0.813 -6.19 <0.001 -3.65 0.004 -1.67 0.552 

6 - 2 -0.30  1.000 0.22  1.000 -5.60 <0.001 -3.09 0.025 -2.13 0.270 

4 - 3 0.78  0.972 1.65  0.568 0.09 1.000 -0.50 0.996 -0.17 1.000 

5 - 3 -0.13  1.000 -0.59  0.991 -3.21 0.017 -2.84 0.052 0.22 1.000 

6 - 3 -0.63  0.989 0.87  0.954 -2.62 0.092 -2.27 0.205 -0.24 1.000 

5 - 4 -0.91  0.945 -2.24  0.219 -3.29 0.013 -2.34 0.177 0.39 0.999 

6 - 4 -1.41  0.724 -0.78  0.971 -2.71 0.074 -1.78 0.480 -0.07 1.000 

6 - 5 -0.50  0.996 1.46  0.689 0.59 0.992 0.56 0.993 -0.46 0.997 

 

Eel were divided into three length classes: class 1 (40–109 mm; recently recruited glass 

eel and elvers), class 2 (110–219 mm; those that had spent less than 2 years in 

freshwater) and class 3 (≥ 220 mm; those that had spent more than 2 years in freshwater) 

(Domingos et al., 2006). Before weir removal, 47.2% of eel in Section 1 were glass eel / 

elver, but in the remaining upstream sections only 10.3% of those caught were glass eel / 

elver (Figure 4.8). Five months after weir removal, mean eel density in Section 2 

increased from 0.5 to 32.5 per 100-m2, significantly higher than sections further upstream 
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(LMM pairwise post hoc, P < 0.005 in all cases, Table 4.8), and 79.2% were glass eel / 

elver. In Section 2, eel contributed 15.6% of the dissimilarity in fish assemblages in P2 

and it increased to 22.6% in P3 (SIMPER). However, eel density in Section 1 remained 

unchanged following removal of the weir (Table 4.9; LMM, F1,23 = 0.008, P = 0.917). 

 

 

Figure 4.8 Length frequency distribution of European eel in each section before and after 

weir removal (removed after spring 2018 sampling). Section 1 is the furthest downstream 

site in the tidal zone, Sections 2–6 are non-tidal, with Section 6 the furthest upstream. 

Samples in Sections 4-6 have been combined. 
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Table 4.9 Linear mixed-effects model (LMM) output showing changes in European eel 

abundance in each stream section before, compared to after, barrier removal (Before: 

autumn 2017 and spring 2018; After: autumn 2018, spring 2019 and autumn 2019). 

Season and site were used as random factors in the analysis. Significant values are in 

bold. 

Section Mean 

square 

df F P Trend 

All combined 11.874 1,143 24.992 <0.001 ↑↑↑ 

1 0.008 1,23 0.011 0.917 - 

2 16.782 1,23 48.895 <0.001 ↑↑↑ 

3 4.90 1,23 14.591 <0.001 ↑↑↑ 

4 0.999 1,23 4.673 0.041 ↑↑ 

5 0.393 1,22 0.920 0.348 ↑ 

6 0.317 1,23 0.996 0.329 ↑ 

 

For Sections 4–6, eel abundance did not change markedly until autumn 2019, 17 months 

after weir removal. In spring 2019, strong eel recruitment was recorded in the tidal zone 

and 77.9% of the total eel catch comprised the class 1 group. By autumn 2019, it was 

evident that this year class had colonised the whole stream (Figure 4.8). Even in Section 

6, 68.8% of captured eels were class 1. For all upstream sections combined (Sections 2–

6), mean eel length in autumn 2019 (114 ± 82 mm) was shorter than in autumn 2017 (247 

± 121 mm; independent t-test, t226 = –7.176, P < 0.001). No difference in eel density was 

found among stream sections in autumn 2019 (LMM, F5,25 = 6.10, P = 0.195). Overall, eel 

density across all sections increased significantly after barrier removal (Table 4.9; LMM, 

F1,143 = 11.874, P < 0.001). The fact that eel density did not increase in section1 after 

barrier removal, reflects that the increase upstream was a result of increased access and 

redistribution. 

 

Flounder were divided into two length-age classes: 10–80 mm, Age 0-group; 81–140 mm, 

Age 1-group (Summers, 1979, 1980). Before weir removal, flounder occurred only in the 

downstream tidal section (Section 1, Figure 4.4), of which 95.7% were 0-group (Figure 
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4.9). After barrier removal, flounder started colonizing upstream (Figure 4.4, Figure 4.9); 

mean flounder density at Section 2 increased from zero to 14.9 per 100 m2 (P1 vs P3). 

Over the same time period, mean flounder density in Section 1 decreased from 119.9 to 

37.6 per 100 m2 (LMM, F1,27 = 4.62, P = 0.04). Flounder were not recorded upstream of 

Section 2. 

 

 

Figure 4.9 Length frequency distribution of flounder in Section 1 (tidal) and Section 2 

(impounded) before and after the tidal weir removal (weir was removed after spring 2018 

sampling). No flounder were recorded upstream of the weir in autumn 2017 and spring 

2018. 

 

4.3.4 Invertebrate community changes post-barrier removal 

The benthic invertebrate communities in Sections 1 and 3 differed in P2 compared to the 
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pre-removal period (P1) (Figure 4.10, PERMANOVA, P < 0.05 in both cases; Table 4.7), 

but no differences were evident for any sections between P1 and P3. For Section 1, 

SIMPER outputs showed that the contribution of three invertebrate taxa (Oligochaeta, 

Asellidae and Dixidae) changed significantly after weir removal (SIMPER, all P < 0.05; 

Table 4.10). For Section 3, SIMPER revealed that the contribution of three invertebrate 

families (Baetidae, Hydropsychidae and Heptageniidae) changed significantly post weir 

removal (SIMPER, all P < 0.05, Table 4.10). For the ASPT, no difference was found in 

each section before and after the weir removal (LMM, P > 0.05 in all cases).  

 

 

Figure 4.10 NMDS ordination plot (centroids and 95% confidence elipses) of benthic 

invertebrate communities in Sections 1–4 before (autumn 2017 and spring 2018) and after 

(autumn 2018 and spring 2019) tidal weir removal. 
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Table 4.10 Results of SIMPER analyses based on Bray-Curtis dissimilarity index, showing 

contribution to change of taxa in Sections 1 and 3 between P1 (autumn 2017, spring 

2018) and P2 (autumn 2018, spring 2019). Significant values in bold. 

Section 1 
P1 vs P2 

Contribution 
(%) P 

Section 3 
P1 vs P2 

Contribution 
(%) P 

Oligochaeta 11.90  0.003 Baetidae 7.25  0.005 
Gammaridae 8.40  0.21 Simuliidae 6.15  0.068 
Baetidae 7.75  0.064 Hydropsychidae 5.89  0.039 
Crangonidae 6.45  0.874 Lymnaeidae 5.45  0.729 
Chironomidae 6.27  0.299 Chironomidae 4.47  0.092 
Lymnaeidae 5.89  0.138 Gammaridae 4.46  0.762 
Asellidae 5.80  0.03 Oligochaeta 4.15  0.288 
Elmidae 5.76  0.751 Tipulidae 4.11  0.992 
Glossiphoniidae 3.34  0.064 Heptageniidae 3.86  0.05 
Arenicolidae 3.28  0.936 Elmidae 3.81  0.721 
Tipulidae 3.22  0.231 Glossiphoniidae 3.77  0.687 
Mysidacea 2.97  0.976 Planorbidae 3.75  0.691 
Hydropsychidae 2.73  0.078 Leptoceridae 3.47  0.676 
Gyrinidae 2.32  0.559 Beraeidae 3.29  0.103 
Perlodidae 2.16  0.067 Perlodidae 3.23  0.168 
Heptageniidae 1.89  0.078 Asellidae 3.19  0.371 
Simuliidae 1.89  0.078 Goeridae 3.10  0.068 
Planorbidae 1.81  0.47 Muscidae 3.06  0.073 
Dixidae 1.80  0.011 Sphaeriidae 3.00  0.401 
Limnephilidae 1.74  0.078 Dytiscidae 2.89  0.9 
Empididae 1.73  0.078 Physidae 2.72  0.168 
Glossosomatidae 1.45  0.081 Limnephilidae 2.63  0.274 
Goeridae 1.32  0.923 Ancylidae 2.12  0.429 
Sphaeriidae 1.32  0.082 Ephemeridae 2.00  0.474 
Corophiidae 1.19  0.965 Glossosomatidae 1.74  0.141 
Dytiscidae 1.08  0.981 Sialidae 1.53  0.894 
Sphaeromatidae 0.99  0.965 Lepidostomatidae 1.01  0.403 
Ancylidae. 0.91  0.981 Sericostomatidae 0.86  0.184 
Muscidae 0.91  0.981 Gyrinidae 0.82  0.263 
Leptoceridae 0.89  0.081 Valvatidae 0.81  0.745 
Phryganeidae 0.84  0.082 Phryganeidae 0.80  0.403 
   Ephemerellidae 0.65  0.941 
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4.4  Discussion 

This is the first study to report on the effects of removal of a small tidal-limit barrier on 

adjacent aquatic habitat, and on the fish and invertebrate communities. Results of this 

study show that although the small tidal barrier did not fully prevent eel passage, it 

dramatically reduced upstream European eel abundance and altered eel size structure 

within the upstream reach. The study provides evidence that removal of the barrier 

reinstated longitudinal connectivity effectively, and without unforeseen consequences. 

Increased habitat diversity was created immediately upstream and, although large 

amounts of silt were mobilised, most was transported through the system within a year. 

Effects on the benthic invertebrate community appear to have been minor and transient. 

Despite the short study period and the lack of a nearby dammed control stream (no similar 

study system existed which could have provided a comparator; tidal weir vs no tidal weir), 

strong benefits of the barrier removal were evident for the fish community, in terms of their 

ability to redistribute and colonise suitable habitat, potentially in areas with low 

competition. The density of European eel, particularly new recruits (glass eel and eel 

elver), increased in all five upstream sections, and the total fish density in the previously 

impounded zone also increased after barrier removal. Pre- barrier removal, three-spined 

stickleback dominated the impounded zone. This species is typical of slow-moving water 

and is often dominant in degraded, ponded habitat (Wootton et al., 1978). Following the 

weir removal, resident fishes such as bullhead and stone loach benefitted from the lotic 

habitat (Tomlinson and Perrow, 2003; Freyhof, 2013), and their abundance increased. 

Bullhead (Cottus gobio species complex) is protected under the European Species and 

Habitats Directive Annex II and is a Biodiversity Action Plan species in the UK, so the 

return of lotic conditions by barrier removal can provide a tool to support this species’ 

recovery in degraded lowland streams, especially since it has poor dispersal abilities 

(Tummers et al., 2016). 

 

This study suggests that (1) the removal of the tidal-limit barrier restored more suitable 

habitat for migratory and resident fishes, (2) free passage to upstream nursery habitat was 

restored, and (3) post-weir removal, the upstream recolonization and recruitment of eel 

was greatly increased within two years. Evidence is growing rapidly that stream barrier 
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removal can be very effective for aquatic conservation (Catalano et al., 2007; Burroughs 

et al., 2010; Birnie-Gauvin et al., 2018; Ding et al., 2018). Where possible, barrier removal 

should be one of the first tools in the conservationist’s ‘toolbox’ to be used for stream 

connectivity restoration (Garcia De Leaniz, 2008; Tummers et al., 2016; Birnie-Gauvin et 

al., 2017c). Earlier debate over the tradeoff of risks and benefits of barrier removal 

concentrated particularly upon medium- and large-sized dams, where the removal costs 

are relatively high and especially centred upon the risks of contaminated and 

uncontaminated fine sediment release from the impoundment (Bednarek, 2001; Poff and 

Hart, 2002). That risk applies much less to small barriers, which do not retain large 

amounts of fine-sediment deposits behind them. Yet the vast majority of artificial river 

barriers are small (Januchowski-Hartley et al., 2013; Jones et al., 2019; Sun et al., 2020). 

Nevertheless, although removal of redundant barriers is a preferred restoration tool, in 

many cases barriers cannot be removed due to societal needs or because of constraints 

such as erosion risks on nearby infrastructure (Birnie-Gauvin et al., 2017c). On the River 

Tees, only two out of twenty barriers where connectivity restoration has occurred have 

been removed, the remainder were installed with fish passes (Sun et al., 2020). Yet such 

a proportion is probably typical of European and North American rivers. As evidence of the 

benefit to cost ratio of stream barrier removal increases and confidence grows, hopefully 

efforts will increasingly be concentrated on achieving barrier removal. 

 

4.4.1 Response of the fish and invertebrate communities 

The single-most important indicator of the success of tidal barrier removal in this study 

was the rapid recolonisation of most of the stream by juvenile eel, suggesting it can have 

similar benefits elsewhere. Tamario et al. (2019) provided evidence that fishway types, 

other than nature-like bypasses, have no better effect on eel distribution upstream of 

dams than dams with no fishways. Their study was unable to evaluate the benefits of 

barrier removal due to small sample size. We recommend that eel conservation measures 

are likely to benefit disproportionately from investment in removal of redundant barriers 

and provision of nature-like bypasses in the lower reaches of rivers. The importance of 

unimpeded passage of diadromous fishes, especially in the lower reaches of catchments, 

is widely acknowledged (Kemp and O’Hanley, 2010; Nunn and Cowx, 2012). 
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Tidal-limit barrier removal allowed for rapid upstream immigration of juvenile eel from the 

tidal reach. Although a 1-m barrier, approximately 1.5 km upstream, remained, it is evident 

that its size, form and possibly the addition of a pool fishway and bristle-type eel pass, did 

not impede passage of eel smaller than 110 mm past it. After the previously impounded 

reach was restored to shallower lotic habitat, it may also have become more suitable for 

eel to colonise. Recent research has shown that European eel in lotic waters prefer to use 

shallow and rocky habitat such as riffle and run rather than deep pool habitat (Acou et al., 

2011). Use of shallow habitat can also potentially reduce the chance of small eel being 

predated (Degerman et al., 2019). Mean eel length in autumn 2019 was shorter than in 

autumn 2017, suggesting that young recruits (glass eel and elver) were primarily 

responsible for the increase in the upstream eel population. In Section 6, the furthest 

upstream site, more than 60% of captured eel were under 110 mm in length in autumn 

2019. A dam removal study in America found that dam removal significantly increased 

American eel (Anguilla rostrata) abundance in headwater streams, and immigration of 

small individuals (< 300 mm) was primarily responsible for the observed increases in eel 

numbers (Hitt et al., 2012).  

 

The study stream, Claxton Beck, flows into the Tees estuary downstream of the Tees 

Barrage, which opened in 1995, and was built as part of an urban economic 

redevelopment plan. That tidal barrage has a salmon ladder, navigation lock and a bristle 

pass for eels but represents a major barrier for upstream eel migration to most of the Tees 

catchment. The rapid increase in eel density and distribution through Claxton Beck shows 

how such restorative actions can contribute towards eel management plans for individual 

catchments such as the Tees, part of the Northumbria RBD. 

 

In autumn 2018, after the weir removal, although there was no significant difference in 

total fish density in Section 1, downstream of the barrier’s former position, compared to 

before removal, a decrease in flounder abundance occurred. This is likely because a large 

amount of silt was released to the downstream section after barrier removal and covered 

the previously suitable sandy habitat. Juvenile flounder have been observed prefer to use 
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sandy and gravelly substrate (Le Pichon et al., 2014), so it is likely that after weir removal 

some flounder in Section 1, especially in those patches most affected, moved upstream or 

further downstream to more suitable habitat. Indeed, flounder rapidly colonized the 

formerly impounded reach soon after barrier removal. On the other hand, the downstream 

invertebrate community only showed differences in the first period, and the invertebrate 

community changes in Section 3 may have been caused by moving the sampling location 

post-weir removal. Any change in invertebrate communities seems to have been transient, 

perhaps due to initial sediment mobilisation soon after weir removal. This suggests that 

downstream river habitat recovered within 17 months. Also there was no significant 

change in the ASPT, suggesting weir removal did not degrade the downstream water 

quality. In contrast to flounder, the eel population in the tidal reach was not affected by the 

temporary increase in fine sediment. This is likely because eel is more tolerant to muddy 

substrate and elver often use soft substrates as shelter in which to hide (J. Sun, pers. 

obs.). In addition, eels may hibernate in soft muddy substrate when the water 

temperatures drops to less than 8-9 °C (Degerman et al., 2019).  

 

In contrast to eel, and to the study of Birnie-Gauvin et al. (2018), the population of brown 

trout in Claxton Beck has not yet benefitted from barrier removal. Brown trout is a species 

of 'principal importance' for biodiversity conservation in England and Wales under Section 

41 of the Natural Environment and Communities Act 2006. In 1997, the Environment 

Agency stocked approximately 10,000 brown trout fry upstream of Section 6, but fish 

surveys close to the release site in 1998, 2000 and 2004, caught only small numbers of 

trout (R. Jenkins, unpublished data). Apart from trout, low abundance of bullhead, three-

spined stickleback and stone loach were caught at Section 6 during previous fish surveys 

(see section 2.3.3.6). During this study, a few juvenile and adult brown trout were caught 

before weir removal. No significant changes were found in the trout population in the post-

weir-removal surveys, and no Age 0 trout were caught in 2019. Although adult sea trout 

can easily immigrate from the Tees estuary it is possible that few were doing so during the 

study. The philopatric nature of sea trout (Lucas and Baras, 2001) would also tend to 

result in slow recolonisation if the existing population is small. It is also the case that 

although the previously impounded reach became shallower and more diverse in habitat 
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types, the bed was mostly of sand and compacted earth, which is unsuitable spawning 

and suboptimal juvenile habitat for trout (Louhi et al., 2008). In the upper reach (Section 

6), although riffles with gravel occurred and lotic specialists such as bullhead were 

common, it is possible that interstitial fine sediment might be too abundant, and interstitial 

oxygen supply too poor, to enable trout egg survival and development (Kemp et al., 2011). 

Indeed, three-spined stickleback, a species typically associated with degraded water 

quality and habitat were also abundant at this site. Enhanced connectivity, without 

sufficient improvement in habitat quality and water quality cannot achieve desired 

restoration outcomes (Roni et al., 2008; Tummers et al., 2016) and needs to be a focus in 

this intensively farmed subcatchment in the future. However, it is also possible that unlike 

the observations of Birnie-Gauvin et al. (2018), recovery of trout populations in Claxton 

Beck will take much longer than the short duration of this study. This reflects the 

importance of standardised long-term monitoring for charting recovery of fish populations 

(see Chapter 2), particularly due to inherent stochasticity in such processes. It is 

anticipated, or hoped, that the Environment Agency or Tees Rivers Trust will continue 

longer-term standardised quantitative sampling of the fish communities in order to take 

advantage of the robust but short-term dataset provided here. 

 

4.5 Conclusions 

This study suggests that, for small tidal and tidal-limit barriers in temperate climates, 

barrier removal is an appropriate method by which to restore aquatic habitat and increase 

the abundance of both resident and migratory fish species, especially benefitting eels. 

Findings of this study support the recent emphasis on barrier removal as a very powerful 

tool for river restoration, and have important implications for environmental agencies 

engaged in river and estuary management. In addition, this study also showed that barrier 

removal can be an effective method in the management of priority conservation species 

like globally threatened European eel. The apparent success of barrier removal for 

reconnecting habitats for European eel, albeit at the small scale of this study, and for 

American eel (Hitt et al., 2012), suggests that it should be trialled for other eel species.  
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Chapter Five 
 

Does connectivity restoration restore natural 
fish communities in degraded subcatchments 
of post-industrial rivers? 
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This chapter contains a modified and extended version of a manuscript planned for 

submission to Science of the Total Environment: Sun, J., Tummers, J., Galib, S.M. & 

Lucas, M.C. Does connectivity restoration restore natural fish communities in degraded 

subcatchments of post-industrial rivers? 
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244 
 

Summary 

River barrier removal and fish pass construction have been increasingly used as 

management tools to restore river connectivity, but few studies have documented changes 

in fish abundance following catchment/subcatchment scale connectivity restoration, and 

the efficacy of connectivity restoration on fish communities is not fully understood. In this 

study, several types of before-after experimental design methodology (e.g. before-after-

downstream-upstream), were used to determine the effects of multiple barrier removal 

and fish pass installation on fish communities in three heavily degraded streams in the 

River Wear, Northeast England. Multiple sites on streams were sampled by electric fishing 

once a year, in summer, from 2013 to 2019 (River Deerness) and over shorter periods for 

Brancepeth Beck, Cong Burn and Bedburn Beck. 

 

Different outcomes were observed between the three streams undergoing restoration. In 

the River Deerness, at sites where connectivity was restored (especially where barrier 

removal occurred) the fish community benefitted. Total fish abundance significantly 

increased three years after the restoration and remained elevated to the end of the study 

in 2019. Both brown trout (Salmo trutta) and bullhead (Cottus perifretum) benefitted from 

the restoration, mean brown trout density increased from 20.9 ± 6.3 per 100m2 to 33.8 ± 

16.8 per 100m2 from 2013 to 2019, largely due to increased Young-of-Year (YoY) trout 

density, which increased from 10.6 ± 4.6 per 100m2 to 19.8 ± 11.8 per 100m2. Density of 

bullhead, a poorly-dispersing species, increased from 4.6 ± 2.7 per 100m2 to 32.6 ± 17.9 

per 100m2 from 2013 to 2019. However, no Atlantic salmon (Salmo salar) were recorded 

over the study timescale. These changes were found to be linked to increases in 

reproductive success, itself linked to changes in habitat, as well as increased dispersal 

and migratory capacity. 

 

In Brancepeth Beck, significant differences in the fish community were found after the 

connectivity restoration, where a portion of barriers in the lower part of the beck were 

modified or removed. Brown trout, bullhead and stone loach (Barbatula barbatula) 

benefitted from the restoration. Fish density in the restored reach was significantly higher 

compared with an unrestored reach further upstream (mean trout density in the restored 
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reach in 2019: 93.7 ± 74.5 per 100m2; in the unrestored reach: 3.7 ± 4.9 per 100m2). 

Within the unrestored reach, the trout density gradually decreased during the study 

period, from 22.4 ± 10.3 per 100m2 in 2014 to 3.7 ± 4.9 per 100m2 in 2019. 

 

In Cong Burn, brown trout density increased in the first few years after the connectivity 

restoration, then significantly reduced during the study period. Apart from the most 

downstream sites, fish species richness was extremely low in this stream. This suggests 

that colonisation access and/or suitable habitat conditions may be available for trout and 

eel (Anguilla anguilla), but not for other resident species, and habitat conditions may not 

always be suitable for trout migration and reproduction, indicating further habitat and 

connectivity management is needed. 

 

In Bedburn Beck, a reference stream for this study, both Atlantic salmon and brown trout 

abundance showed a decreasing trend over recent years. Autumn flows in the middle and 

lower Wear streams were all relatively low in 2016, 2017 and 2018, potentially impacting 

access of adult salmonids to the study streams to spawn. Trout recruitment in Cong Burn 

and, to a lesser degree, Brancepeth Beck, was impacted, while the Deerness remained 

relatively unaffected, possibly reflecting the early stage of trout population recovery in 

Cong Burn especially. In Bedburn Beck, in the middle reaches of the Wear, autumn flows 

were also low in this stream beween 2016 and 2018, potentially impacting access of adult 

salmonids. Atlantic salmon were found in this stream (second or third most abundant fish 

at most sites) but were rare or absent in the connectivity-restored streams, possibly 

reflecting habitat limitations for recovery or a much slower timescale of recovery for 

salmon, potentially including hysteresis effects. 

 

The results suggest that, in rivers with good aquatic habitat, including good water quality, 

restoring river connectivity, can be beneficial for both resident and migratory fishes. 

Compared with fish pass installation, barrier removal is more effective in restoring fish 

communities in the immediately upstream reach. In some cases, wider catchment 

management is required along with connectivity restoration to gain a better outcome for 

fish species sensitive to degraded habitat and/or water quality such as Atlantic salmon 
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and brown trout. The benefits of partial connectivity restoration (i.e. complete removal of a 

proportion of barriers, provision of fish passage at some or all barriers, or a combination of 

these) in some streams, especially in those with many barriers, may take many years to 

develop, especially for species present only in the lower stream and with low dispersal 

ability to recolonize upstream, such as bullhead. 
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5.1 Introduction 

Globally, rivers are affected by a wide range of pressures including pollution, water 

abstraction, invasive species and physical modification (Gregory, 2006). In a degraded 

river system, many types of problems may exist (e.g. water quality, habitat, fine sediment, 

barriers), and their cumulative effects will increase the degree of habitat degradation (Karr 

et al., 1985; Casatti et al., 2006; Hermoso et al., 2011). River restoration is defined as the 

process to return a river section to a near-natural status (Woolsey et al., 2007). This 

approach has become a priority for river management in many countries such as: 

Switzerland (Woolsey et al., 2007), Japan (Nakamura et al., 2006), the US (Bernhardt et 

al., 2005) and the UK (Smith et al., 2014). Identifying the types and impacts of threats in a 

river is important for developing an effective restoration strategy (Chapter 1). Strategies 

should be adopted that assess and solve the range of pressures in the river system to 

enable a full recovery. For example, even after habitat heterogeneity has been increased 

in a structurally degraded river, some pressures including water pollution and inadequate 

sediment quality may persist and limit the development of the aquatic community towards 

its natural state (Lake et al., 2007; Sundermann et al., 2011). In such cases, degraded 

water quality and sediment issues need to be controlled together with physical restoration 

to ensure recovery.  

 

In the UK, rivers and streams have been subject to multiple threats over the past two 

centuries and often longer (Chapter 2). In recent years, water pollution in many UK rivers, 

especially from point sources, has been reduced due to a variety of regulations (see 

Chapter 2 for more details). Following improved water quality, a key next step to improve 

natural fish biodiversity in industrially degraded rivers, is to restore longitudinal 

connectivity, helping to reinstate migration routes for threatened fish species and restore 

natural hydromorphic and ecological processes (Addy et al., 2016). In many cases, 

restoration of key habitat types such as gravel riffles for spawning, or deep pools with 

natural cover (e.g. boulders, tree roots and canopy, large woody debris) for refuge may 

also be required to enable recovery of fish populations (Harper et al., 1998; Solazzi et al., 

2000; Speed et al., 2016). 
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In-stream barriers have several negative impacts on fish communities (see Chapters 3 

and 4 for more details). They can prevent or delay fish migration and dispersal; alter 

upstream habitat, causing it to become more lentic; inhibit sediment transport; and 

indirectly alter biotic elements of habitat upon which fish depend (Mueller et al., 2011). In 

low-gradient streams, such as in Denmark, habitat altering effects may be important 

(Birnie-Gauvin et al., 2017a), but in upland streams such as those of the Pennine rivers in 

this thesis, barrier effects may be more important. The height of a barrier is not the only 

factor that will affect fish from ascending to upstream habitat, the water depth immediately 

below the structure and the water depth on the barrier surface also play an important role 

in fish passage. In some cases, adult salmonids were unable to pass a 45 cm high 

structure due to the insufficient water depth below the obstacle and on the obstacle itself 

(Ovidio and Philippart, 2002). For example, brown trout require the water depth 

immediately below the barrier to be at least twice the maximum body depth of the fish, to 

enable the fish to gain momentum and leap (Ovidio and Philippart, 2002; Baudoin et al., 

2014). More generally, minimum water depth for barrier passage has been set at 100-

150% of fish body depth, dependent on barrier type (Ovidio and Philippart, 2002; Baudoin 

et al., 2014).  

 

A single barrier may cause some delay or prevent the upstream movement of migratory 

fish. If there are multiple barriers present in a single river, the accumulative effects on fish 

movement could be even stronger. A study on river lamprey (Lampetra fluviatilis) in North 

East England found that only 1.8% of spawners managed to ascend five successive low-

head barriers to reach the zone where 98% of spawning habitat occurred (Lucas et al., 

2009). Another study, on sockeye salmon (Oncorhynchus nerka), has also shown the 

cumulative effects of fish passage at multiple barriers could significantly reduce migration 

speed (Naughton et al., 2005). Even if 90% of fish ascend each of a series of barriers, the 

proportion above the most upstream is just 59% of the starting cohort, yet if most of a 

critical habitat is upstream of that, the population will be compromised. The ability to pass 

multiple barriers also has major consequences for fish dispersal, including the 

recolonization of rivers and streams from which native fish populations have been 

extirpated, especially when recolonization occurs in an upstream direction by population 
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fragments (Radinger and Wolter, 2014; Tummers et al., 2016; Wilkes et al., 2019). 

 

When fish attempt to ascend a barrier, the increased locomotory effort results in increased 

energy expenditure (Newton et al., 2018). The energy lost in fish associated with obstacle 

passage may lead to a subsequent cost on gonad production as well as the spawning 

activity and eventually reduce the evolutionary fitness of the fish (Newton et al., 2018). For 

species such as Atlantic salmon and river lamprey, adult fish stop feeding at river entry, so 

they would not be able to recover any lost energy during the migration period (Lucas and 

Baras, 2001). Normally, the migration and spawning process would lead to an 

approximate 40% loss in body weight of Atlantic salmon (Hendry and Cragg-Hine, 2003). 

If the process was delayed due to obstruction, then adult fish may spend more energy and 

lose more body weight before they reach the spawning ground, causing increased 

mortality prior to spawning. Obstacles to movement often also cause aggregation of fish 

approaching the barrier and this can result in locally high predator densities, difficult in 

avoiding predators, and high rates of predation, further impacting on fish populations 

(Newton et al., 2019). 

 

Considerable efforts have been made to restore river connectivity globally, and several 

methods have been developed to improve fish passage (see Chapter 1 for full 

discussion). Among all the methods, barrier removal has become an increasingly 

important approach in the river restoration. Total removal of a barrier (see Chapter 4 for 

fuller discussion) is considered to be the only feasible method in restoring both fish 

passage and river habitat (Birnie-Gauvin et al., 2017a; Dodd et al., 2017). Barrier removal 

returns the flow conditions in a previously impounded reach from lentic to lotic and 

restores sediment transport to the formerly impounded reach, recreating riffle/pool habitat 

(if the gradient is sufficient), exposing larger substrates such as pebbles and cobbles, and 

increases biodiversity (Bednarek, 2001, see also Chapter 4). Several recent studies have 

shown the benefits of barrier removal on restoring stream fish populations (Burroughs et 

al., 2010; Fjeldstad et al., 2012; Birnie-Gauvin et al., 2017b, 2018).  

 

When multiple barriers are present in a single river, understanding how passage 
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improvements at different obstacles, interact to affect river connectivity is important to 

sustainable river management and conservation of migratory fish species (Fullerton et al., 

2010; King and O’Hanley, 2016). However, very few studies have been published on 

multiple barrier removals over the whole catchment / subcatchment. Birnie-Gauvin et al. 

(2018) found that removing six weirs in a Danish river (seven weirs present in total, the 

upstream most remained) increased numbers of adult brown trout spawners and smolt 

abundance in the downstream reaches, along with a decreased average fish length 

(indicative of increased production of young and/or emigration of larger, older fish) and 

indications of an earlier peak downstream migration of smolts. However, they did not 

report any changes of fish abundance in the unrestored upstream reach during the study 

period. Tummers et al. (2016) found slight increases in age 0+trout and total bullhead 

densities, and slight decrease in stone loach densities immediately upstream of 

connectivity-restored structures; and fish assemblage remained similar at five of six 

connectivity-restored sites in the River Deerness, NE England (nine barriers present in 

total, seven barriers were removed/modified) in a short-term (2–3 years) study. A dam 

removal study in the Sedgeunkedunk Stream in the US (three dams, one removed, one 

replaced with rockramp fish pass, one remained) showed significant decreases in fish 

species richness and abundance downstream of the former dam site and a corresponding 

increase in fish abundance upstream of the former dam site (Gardner et al., 2013). In 

addition, fish density and biomass at the unrestored site remained low.  

  

Although barrier removal is the desired approach in restoring longitudinal connectivity, it is 

not always feasible due to reasons such as financial costs, flood control, hydropower, 

water supply, irrigation, and recreation (Kuby et al., 2005). An alternative plan to improve 

river connectivity and reduce the negative effects of a barrier on fish migration is fish pass 

or easement installation. These are mitigations rather than full solutions. In recent years, 

lots of effort has been made in developing and constructing fish passes to mitigate the 

effects of these barriers to fish movement (Silva et al., 2018). In the northern hemisphere, 

the majority of fish pass design is still focused on facilitating the migration of anadromous 

salmonid fishes and clupeids (Dodd et al., 2017; Silva et al., 2018). But according to 

recent studies, the efficiency of some fish passes in facilitating fish migration remains low 
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(Bunt et al., 2012; Noonan et al., 2012), even for salmonids in some cases (Lothian et al., 

2020). Also many of the studies focus on the passage efficiency for particular fish species 

rather than the changes in fish communities after fish pass installation. In recent years it 

has been argued that, to be properly effective in ecological restoration, fish passes (and 

easements) need to facilitate dispersal of weakly swimming fish species in the community, 

as well as more strongly swimming migratory species such as salmonids (Tummers et al., 

2016; Silva et al., 2018). Such fish passes include nature-like bypasses, with their wide 

variety of hydraulic conditions and natural habitat features (Bunt et al., 2012; Katopodis 

and Williams, 2012; Bretón et al., 2013; Baki et al., 2016). 

 

When assessing the success of connectivity restoration, many studies have focused on 

the restoration effects on migratory species only but ignored resident fish species (Birnie-

Gauvin et al., 2017b, 2020; Dodd et al., 2017). Another issue is that most stream 

restoration projects are small-scale, limited to localised interventions in stream channels 

and rarely involve extensive interventions at the catchment scale (Lake et al., 2007). The 

same is often true of quantitative monitoring and experimental evaluation of the efficacy of 

river reach or catchment restoration. For example, some of these studies only focused on 

the change near the restored area (Birnie-Gauvin et al., 2017b; Ding et al., 2018) rather 

than the whole catchment or subcatchment. This reflects that large-scale catchment-scale 

restoration projects are still mostly lacking (Lake et al., 2007); due to the budget costs 

they are normally carried out on a piecemeal basis. Catchment-scale connectivity 

restoration treatment and control comparisons (including Before After Control Intervention 

‘BACI’ comparisons) are very rare (Lake et al., 2007). Normally river restoration needs to 

have its effect across whole subcatchments, or even catchments, to achieve the full 

hydromorphic, water quality and ecological benefits.  

 

Because responses to catchment or subcatchment restoration (even for small streams) 

can take many years, this does not lend itself to the timescale of operation of most 

research projects (including PhD studies) that are normally for 1-4 years. Also, when 

assessing the restoration success in a river system, a critical concern is that fish 

populations are subject to stochastic events. For example, if post-restoration monitoring is 
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conducted in a couple of “good years” (e.g. high flows during spawning migration, 

facilitating access to spawning sites, but normal flows during critical early life stages of 

river fish), the positive result can say “restoration worked”, but if monitoring was in a 

couple of bad years then the outcome could appear to be “restoration failed”. So, 

evaluation timescale ideally needs to integrate over an extended timescale, allowing for 

stochasticity. This is problematic, as most studies do not have the capacity to do this over 

long periods. So too is the ability to properly control for restoration interventions at the 

catchment scale, by comparison to degraded catchments without restoration, and 

unimpacted natural reference catchments. Catchments, or even reaches, differ inherently 

from one another so equal comparisons are difficult, while replication is also problematic, 

particularly in small-budget studies such as this doctoral project. 

 

In this chapter, the overall aim is to evaluate the effects of subcatchment-scale 

connectivity restoration on native fish communities in degraded post-industrial rivers. The 

constituent aims were to determine: (1) in small post-industrial rivers and streams, to what 

degree does restoration require concerted changes over the whole subcatchment; (2) to 

what extent can single-site mitigations have beneficial effects on native fish diversity and 

abundance; (3) how well, in terms of diversity and abundance, and how quickly can the 

fish community respond to connectivity restoration; and (4) to what degree may barrier 

removal give better fish community restoration outcomes than fish pass / easement 

installation, in the reach immediately upstream of the barrier location. 

 

The River Wear catchment was selected for this study. The Wear is one of the most 

important Atlantic salmon and sea trout rivers in England (see Chapter 2), but many 

tributaries remain degraded due to pollution (Chapter 2), barriers (Chapter 3) and habitat 

modification, resulting from industrial, urban and agricultural development, especially 

within the middle and lower reaches of the river. A significant issue concerning ecological 

restoration of the catchment is the number of barriers to fish migration and dispersal, 

particularly within tributaries, which are important nursery areas for salmonids. It is 

estimated that there are nearly 500 instream artificial barriers still present in the catchment 

(Chapter 3). These barriers degrade river habitat and cause significant negative impacts 
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on the local fish communities (Chapter 2). Four low-altitude sub-catchments (Cong Burn, 

River Deerness, Brancepeth Beck and Bedburn Beck) were chosen from the Wear 

Catchment (Figure 5.1). The first three streams were badly affected by artificial barriers 

and multiple connectivity restoration projects were conducted in these rivers in an attempt 

to restore the aquatic connectivity and fish populations. These streams also vary in terms 

of their historic and current water quality, the Cong Burn in particular having suffered poor 

water quality in the recent past. By contrast, Bedburn Beck was selected as a relatively 

natural reference river (‘control’). Although it does have a few barriers, it is less affected by 

artificial barriers than the others, it has had relatively light development and has a long 

history of good water quality. Although further upstream than the other subcatchments, 

Bedburn Beck is also relatively low-altitude. It has relatively natural instream habitat and 

its river substrates provide high quality spawning and rearing habitat for fish like Atlantic 

salmon and sea trout.  

 

 

Figure 5.1 Wear catchment and the location of study reaches. For clarity and simplicity the 

figure deliberately omits other tributaries along this part of the Wear, but these can be 

seen in Figure 3.1, section 3.2.1. 
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5.2 Study sites 

5.2.1 River Deerness 

The River Deerness, located in northeast England, has a source 285 m above sea level, 

and a mean gradient of 12 m per km, over the 18.74 km that it flows eastwards before 

joining the lower River Browney at Langley Moor (Figure 5.2). The Deerness 

subcatchment covers an area of 52.89 km2, with land use mostly consisting of semi-

natural woodland, improved grassland and agricultural land. The stream is characterized 

by pool-riffle sequences with large areas of gravel, cobble and some boulders, providing 

good salmonid spawning and nursery habitat, although many areas contain industrial 

rubble material, including broken tiles and bricks. There are several villages along its 

course, which originated as coal-mining “pit” villages. The river suffered severe pollution 

due to coal mining, coal washing and cokeworks, as well as human sewage, from the 

middle of the 19th Century. Several mines opened in the Deerness area in the mid-19th 

Century. Cornsay Colliery mine, adjacent to Hedleyhope Beck, a Deerness tributary, 

opened in 1868. Esh Winning mine, adjacent to Priest Burn, a Deerness tributary, opened 

in 1866. Waterhouses Colliery opened in 1859, Ushaw Moor mine opened in 1865 and 

New Brancepeth Colliery opened in 1858, also in the Deerness catchment (Durham 

Mining Museum, 2020). At the end of the 19th Century, Esh Winning and Waterhouses 

colliery were producing 100,000 -120,000 tons of coke annually (Emery, 1984). Cornsay 

Colliery and New Brancepeth Colliery closed in 1953, Ushaw Moor colliery closed in 1960, 

Waterhouses colliery closed in 1966 and Esh Winning colliery closed in 1968 (Emery, 

1984; Durham Mining Museum, 2020). After these collieries closed, polluting material from 

spoil heaps still leached into the Deerness, causing continued pollution (Brown, 1974).  

 

The water quality in the Deerness did not improve markedly until these coal mines closed 

and remediation actions started in the early 1970s. Changes in Deerness water quality 

and fish community are presented in sections 2.3.2.4 and 2.3.2.5, based on historical 

data. The overall ecological status of the River Deerness was classified as “Poor” by the 

Environment Agency between 2013 and 2016 (Environment Agency, 2020a). This was 

partly due to the poor status of the fish community, deficient in salmonid numbers, and 

largely attributed to poor fish passage in the upper catchment. It was also associated with 
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poor status of macrophytes and phytobenthos in the lower catchment and high phosphate 

in the sewage discharge downstream of Ushaw Moor bridge (Environment Agency, 

2020a).  

 

 
Figure 5.2 Deerness sub-catchment, location of each in-stream barrier (black) and electro-

fishing sampling sites (red). Sample sites were in pairs, immediately below and above 

each barrier. Urban areas close to the stream are shaded grey. The bifurcating tributaries 

upstream of Waterhouses extend several km further upstream. 

 

In order to improve river connectivity in the Deerness and improve passage for fish, 

connectivity restoration works totalling £0.5 million (including design and planning) were 

conducted by the Wear Rivers Trust between 2012 and 2014 in the River Deerness as 

part of the DEFRA Catchment Restoration Fund (Defra, 2013). Between 2012 and 2013, 

eight in-stream structures were identified as major barriers to fish movement in the 

Deerness sub-catchment. Initially B1 (shallow water at a bridge apron) was not identified 

as a substantive barrier and was not included in the original barrier list, but was added 

later in 2015. Apart from B1 (Figure 5.2), details of the remaining barriers have been 

described in detail in previous studies (Figure 5.3; Tummers, 2016; Tummers et al., 2016) 

but are summarized below. 

 

The most downstream barrier B1 is a 0.2 m high, channel wide bridge apron with ~5cm 
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shallow water depth above it. Two baffles were installed at the upstream end of the bridge 

apron in 2015, in order to lift the water level on the apron surface to aid fish passage. In 

addition, a part-channel-width wooden baffle easement was installed on the left bank 

under the bridge, to provide another passage route for fish to ascend. B2 is a 1.6 m high 

bridge apron with five steps. It has a 30 degree gradient, and a rock ramp fish pass was 

installed on the right side of the apron in October 2013 (Figure 5.3). B3 is a 1.4 m high 

weir with an overall 35 degree gradient (though part is vertical). It was originally intended 

to remove this weir but, due to the presence of a gas mains pipe running across the 

stream channel a few tens of metres upstream, this was not possible, due to the risk of 

damage from bed incision. Instead, a 1.6 degree slope nature-like bypass, taking all of the 

flow at ~Q50, was installed on the left bank in October 2013 (Figure 5.3). B4 is a road 

crossing formed from seven pipe culverts (also termed a pipe bridge, Figure 5.3). It has a 

0.2 m head drop at the outlet, and the pipes have a three degree gradient. Each culvert 

has a 0.5m diameter, and length of 4 m. A 0.9 m depth pool has formed below the 

structure. B4 remained unaltered throughout the study period. B5 and B6 were both series 

of pipe culverts, 4 m long x 0.9 m diameter, two degrees gradient, and 0.1 m head drop at 

the outlet. Both culverts were replaced with single span bridges in April 2014.  

 

B7 was a series of pipe culverts, 3.4 m long and 0.6 m in diameter, two degrees gradient, 

and 0.1 m head drop at the outlet. This barrier was replaced with single span bridge in 

August 2014. B8 (location, Figure 5.2) is a two-hole pipe culvert, each 0.8 m in diameter 

and 12 m long, with a gradient of four degrees and a 0.3 m head drop at the outlet. No 

restoration was conducted on this barrier as it provided a sole farm access route, without 

an alternative temporary access. B9 was a 28 m long single corrugated culvert, with 0.3 m 

vertical head drop at the outlet and a one degree gradient along the pipe (Figure 5.3). A 

rock pool easement with four pools was installed at the downstream end of the culvert in 

October 2012 to raise the downstream water level so that it flooded into the lower part of 

the culvert and submerged the step (Figure 5.3).  
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Figure 5.3 Examples of connectivity-restored barriers in the River Deerness. Left panel: 

before restoration; right panel: after restoration. Modified from Tummers (2016).  

 

B0, is located on the lower river Browney (Figure 5.2), into which the Deerness runs, 

before joining the Wear. It was built in 1954 to gauge river flow and is still used for that 

purpose. It is an 18-m wide compound, 0.7m high broad-crested weir, with a 3 m long, 1.7 

degree apron and a vertical truncation at the downstream end. In 1996 the weir was 

modified to produce a central low-flow weir crest, and two ~0.25 m high pre-

impoundments were installed 29 and 16 m downstream, to raise the tailwater level and 

facilitate upstream passage by leaping salmonids. Tummers et al. (2016) provided 

evidence that the weir was a substantial passage impediment at low flows. A 7.1 degree 

Larinier bottom baffle fish pass was installed in 2017, and an elver pass in 2006 (Lothian 
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et al., 2020). The Environment Agency stocked the River Deerness and Browney with 

several thousand young grayling (Thymallus thymallus) in 2014 and 2017 to help the 

process of natural recovery. Otherwise there is no evidence that the Deerness has been 

stocked with fish in recent decades. 

 

5.2.2 Brancepeth Beck 

Brancepeth Beck is a small lowland second order (Strahler stream order) tributary of the 

River Wear, joining in the middle reaches (Figure 5.4). The length of the stream is 9.7 km, 

elevation of the source 228 m above sea level, mean gradient 19 m per km, and the 

catchment covers 16.9 km2. The surrounding land use is mainly agricultural, and large 

parts of the riparian zone comprise a mixture of broad-leaved and coniferous trees 

(Tummers, 2016). The land in the upper reach is managed as Middles Plantation, 

Stockley Gill Plantation and Stockley Fell Plantation, with coniferous trees grown since the 

1850s. The village of Brancepeth developed along the stream’s middle reach since the 

1850s. The Page Bank Colliery (also known as South Brancepeth Colliery) was located 

about 500 m west of lower Brancepeth beck, the colliery was opened in 1855 and closed 

in July 1931 (Durham Mining Museum, 2020). Two railways crossed the stream, the first 

one constructed in the 1850s and the second constructed in the 1930s, both now disused. 

The stream runs through a golf course in its middle reaches which was designed in 1924. 

Between the 1930s and 1960s, several weirs were constructed in the golf course 

controlled reach. The lower reach of the stream is surrounded by intensively farmed land.  

 

The dominant substrate of the upper and middle parts of the beck is gravel/cobble and in-

stream habitat has been considered to be generally of high quality for upland stream 

fishes (S. Hudson, pers. comm.), although like many County Durham streams it can be 

susceptible to low summer flows (M. Lucas, pers. comm.). The chemical status of the 

beck was classified as good by the EA between 2013 and 2016, but the ecological status 

of the beck was classified as moderate or poor under WFD, due to the poor status of the 

fish (Environment Agency, 2020a). The EA have a historical fish survey site at the bottom 

of the beck (S1), surveys were carried out with single pass electro-fishing in 2007 and 

2013. The dominant species of S1 were stone loach (minimum density, 3333 per 100m2 in 
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2013) and common minnow (Phoxinus phoxinus) (minimum density, 2000 per 100m2 in 

2013). Brown trout were present at a low density (minimum density, 10.7 per 100m2 in 

2013). Eel, perch (Perca fluviatilis) and brook lamprey (Lampetra planeri) were 

occasionally caught during EA electro-fishing surveys. 

 
Figure 5.4 Brancepeth sub-catchment, location of each in-stream barrier (black) and 

electro-fishing sampling sites (red). S1-S4 and S21 are single sites. The rest of the sites 

(S5-S20, S22-S25) are all paired sites, one located immediately upstream and one 

immediately downstream of each barrier. S1 is the historical Environment Agency 

sampling site. Urban areas close to the stream are shaded grey. 

 

Additionally, electrofishing fish surveys on Brancepth Beck have been carried out by the 

Wear Rivers Trust (WRT) and Durham University since 2014 and these have found quite 

low fish densities (an average of 40.9 per 100m2 in 2014, all species combined) in the 

middle and upper parts of the stream (Tummers, 2016). It has been suggested that the 

reason for low fish densities in the stream was probably caused by the cumulative effect 

of multiple barriers which prevent both salmonid and non-salmonid species from moving 

upstream to spawn or to recolonize areas (Tummers, 2016). 

 

Ten in-stream barriers were identified by the WRT and Durham University along 

Brancepeth Beck in the previous research (Tummers, 2016); the majority of these barriers 

were located in the middle reach of the beck on Brancepeth golf course (Figure 5.4). 
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These obstacles are believed to have caused significant blockage of fish to the upper 

catchment. In order to mitigate obstacle effects, to date six barriers have been modified by 

WRT with fish passage easements (B1, B2, B3, B4, B7 and B8). None have been 

removed and the budget for the restoration referred to has been relatively small (£65,775). 

Currently, there is no restoration plan for B5 and B6 due to the difficulties specific to those 

barriers, and the associated high costs that would be entailed. A box culvert located 

between B2 and B3 was mentioned in a previous study (Tummers, 2016), but it was 

excluded from this study, because the culvert is full-stream width and regarded as 

passable at most flows by all fish species (J. Sun, pers. obs.). 

 

Barrier B1 is a 3-m long, 2.5 m diameter culvert, which had a vertical step of 0.2 m at the 

downstream end (Figure 5.4). In March 2016, a 3-m wide, 3.5-m long rock ramp was built 

immediately downstream of the culvert in order to raise the water level to provide 

upstream passage access through the culvert. Boulders with an approximate diameter of 

1000 mm diameter were used to build the ramp revetment, prevent substrate movement 

and also provide sufficient water depth for fish to access. B2 consists of two bridge 

aprons, of which the downstream one is 0.21 m high and the upstream one is 0.41 m high 

(Figure 5.5). In order to remediate connectivity at the site, the downstream apron was 

notched in March 2016, providing an entrance for fish (primarily designed for salmonids) 

to access. A 5-m long rock ramp was built between the two aprons, using 1000 mm 

boulders as revetment to stabilise the substrate and protect the bank. B3 (“10th hole weir”) 

is a stepped weir which consists of 10 steps, each step with an average height of 0.27 m. 

The weir was effectively impassable for all fish species (Figure 5.5). For restoring river 

connectivity at this point, the whole weir and its scour zone was filled with crushed rock 

and then 600 mm diameter boulders were embedded in this matrix in March 2016. A 16% 

gradient snaking channel over a 6.7-m horizontal section was built through the centre of 

the rock ramp to provide passage for fish to ascend. B4 is a 0.7-m high stone weir 

constructed on a 0.7-m high cascade. Removal was deemed not to be feasible so plastic 

baffles were installed immediately downstream of the weir in October 2016, in order to 

elevate depth downstream and make the weir more passable to salmonids.  
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Figure 5.5 Examples of connectivity-restored barriers in Brancepeth Beck. B2 before 

restoration (a) and after restoration (b); B3 before restoration (c) and after restoration (d); 

B8 before restoration (e) and after restoration (f). 

 

Barrier B5 is a 1.5-m high concrete weir with a 24 degree slope and has not yet been 

mitigated. B6 is a 1.4-m high vertical weir under a road bridge, again unmitigated. B7 

(owl’s eyes bridge) is a 110-m long two-hole road culvert, with a two degree gradient and 

two aprons immediately downstream of the culvert. The height of the first apron is 0.5 m, 

and the second has a step height of 0.1 m. The culvert also has a 0.1-m head drop. The 

vertical steps to the aprons and the shallow flow through the culverts themselves made 

this structure impassable to fish. Plastic baulks were installed at the edge of each apron in 

October 2016, to improve water depth over the apron for fish attempting to pass. A notch 

was cut in the middle of the apron baulk, to create a water flow over the weir for jumping 

(salmonid) fish to access. However, the pre-barrages at B4 and B7 are only intended for 
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jumping (salmonid) fish to pass [for which these are likely to have generated a small 

improvement in passage, M. Lucas, pers. comm.] and unlikely to facilitate passage for 

other fish species. B8 (Goodwell Ford, Figure 5.4) is a series of pipe culverts, each 0.4 m 

in diameter, underneath the ford, 4-m long, with a one degree gradient and with three 0.2 

m vertical steps at the downstream end. Similar to B3, downstream of the ford its scour 

zone was filled with crushed rock and then 800-1200 mm diameter boulders were 

embedded in this matrix in October 2017. A pool was created immediately downstream of 

the pipe culverts, and all three steps were submerged underwater, in order to create 

passage for fish through the pipe culverts. B9 is a 10-m long, two degree gradient pipe 

culvert. The downstream end of the culvert is partly submerged under water which is 0.4 

m deep. The upstream end of the culvert has a 1.2 m high metal trash grid which 

obstructs fish from ascending. B10 (see Figure 5.4 for location) was a concrete ford with a 

5-cm gap underneath. The landowner replaced the ford with two pipe culverts in 2019, the 

downstream end of the culvert is just submerged under water for ~2 cm at normal flow 

level.  

 

5.2.3 Cong Burn 

The Cong Burn is a third order (Strahler stream order) stream, one of the major tributaries 

entering the lower Wear (Figure 5.6). The length of the stream is 17 km, the source is 180 

m above sea level, and the mean gradient is 10 m per km. The whole catchment covers 

39.4 km2 and Twizell Burn is the main tributary of the Cong Burn. The length of Twizell 

Burn is 9.7 km, its source is 211 m above sea level, it has a mean gradient of 19 m per km 

and the sub-catchment covers 18.96 km2. Much of the immediate riparian habitat is 

broadleaved woodland and the instream habitat for fish is generally good and varied. The 

dominant substrates of the burn are gravel and cobble, making it potentially a useful 

lowland spawning tributary for migratory salmonids, and potentially also for brook lamprey 

(though few have been recorded in recent times). Cong Burn is heavily modified by 

human activity (Environment Agency, 2020a). During the past one hundred years, the river 

was modified for industrial and flood defence purposes, which have led to river 

channelization and heavy engineering. However, industrial and urban impacts go back 

much further, due to the impacts of coal mining and related activities in the 19th Century, 
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and the development of mills before that. Due to the mining history in the region, the 

geomorphology of Twizell Burn has changed a lot compared to its original status. The 

stream is also identified as a heavily modified water body by EA (Environment Agency, 

2020a). 

 

The Cong Burn is categorised under WFD as being poor for fish (e.g. in S2 trout density 

ranged from 1.0 - 38.6 per 100 m2; eel density ranged from 0.0 – 3.1 per 100 m2; stone 

loach density ranged from 0.4 – 5.6 per 100 m2 between 2003 and 2013), based on EA 

fish community assessments by single pass electro-fishing. It is currently classified as 

having an overall moderate ecological status. Historical data on fish populations in Cong 

Burn are given in section 2.3.2.5. Historically the Cong Burn was badly polluted due to 

intensive coal mining and heavy industry in Twizell Burn (Grange Villa, Stanley etc) until 

the late-20th Century, with frequent high ammonia episodes and high phosphorus (see 

section 2.3.2.4 for available records of water quality). Two collieries (Newfield Colliery and 

Pelton Fell Colliery) were located within the Twizell Burn sub-catchment, and opened in 

1835. Pelton Fell Colliery produced about 215,000 tons of coal in 1940. Newfield Colliery 

closed in 1936 and Pelton Fell Colliery closed in 1965. Major improvements in water 

quality at the Hustledown STW, Stanley, and at Combined Sewer Overflows seem to have 

resulted in much increased incidence of upstream migrating sea trout, spawning, and 

wider distribution of young trout since ~2012 (P. Frear, unpubl. data). Several obstacles 

(B4, B5, B6, B7 and B9) caused by weirs and culverts made the upstream reaches of the 

Cong Burn largely blocked to fish species such as trout (with a local emphasis on the ‘sea’ 

trout form). Poor connectivity was perceived by the EA as being one likely cause of WFD 

failure of the Cong Burn for fish.  
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Figure 5.6 Cong Burn sub-catchment, location of each in-stream barrier (black) and 

electro-fishing sampling sites (red). S2, S5 and S11 were EA fish sampling sites. Urban 

areas close to the stream are shaded grey. 

 

From WRT’s management and restoration perspective, the Twizell Burn has been divided 

into three sections: the lower section is from the Cong Burn confluence to Grange Villa 

(B9), the middle section from Grange Villa to the Memorial Park Culvert exit and the top 

section from Memorial Park entrance to the source (S. Hudson, pers. comm.). The current 

restoration plan is to restore the longitudinal connectivity and improve the habitat of the 

lower section, largely because barrier B9 at Grange Villa is a large, complex barrier (see 

below).  

 

In 2011, the EA, Chester-Le-Street and District Angling Club (CLSDAC) and WRT 

identified a number of obstructions which could have negative impacts to fish migration in 

the Cong Burn (Figure 5.6, 5.7). Several of these barriers could potentially be removed or 

altered to assist fish movement between the main river and spawning grounds (in the 

case of salmonids) and to facilitate recolonization by several species (e.g. bullhead, brook 

lamprey) lost from large parts of the subcatchment due to past pollution and poor habitat. 

Several of these have been carried out before and during the timescale of this thesis.  

 

B1 is a weir located 50 m upstream from the confluence with the main river (Figure 5.6, 
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Figure 5.7). It belongs to Northumbrian Water Limited (NWL) and the purpose of the weir 

when constructed, was to carry the main sewer inlet to Chester-le-Street Sewage 

Treatment Works. The weir was approximately 1 m high at base flow, and of full channel 

width. The structure caused significant obstruction to all fish species. This interpretation 

was also based upon observation of fish below the obstacle and on EA fish survey data 

further upstream which showed low fish densities and low species richness (few fish 

species; see section 2.3.2.5). Because the weir could not be removed due to its proximity 

to the NWL sewer pipe, a fish pass was designed to mitigate the problem and assist 

bidirectional fish passage of the weir. A rock ramp design was chosen as being most 

suited to the site and for a range of species. Installation was carried out in June 2011. 

Free-standing large stone blocks of approximately 1000 x 500 mm x 500 mm were used 

to form pre-barrage check weirs, and boulders and cobbles were used to create graded 

banks. The rock ramp was created from four pools (length, 4 m) and small cascades 

(drop, 0.2 m) downstream of the weir (Figure 5.7). The rock ramp created a 1:20 

slope, raising the water level to drown out the existing weir.  
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Figure 5.7 Examples of connectivity-restored barriers in the Cong Burn. B1 before 

restoration (a) and after restoration (b); B6 before restoration (c) and after restoration (d); 

B7 before restoration (e) and after restoration (f); B8 before removal (g) and after removal 

(h). 

 

B2 is a 500 m long concrete urban culvert which was built in 1932 and begins about 200 
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m upstream of B1 (Figure 5.6). Most of the stream between B1 and B2 is a 200 m long 

concrete channel with poor habitat and high velocity during high discharge (Figure 5.8). 

The slope of the culvert is ~0.5 degrees and slope of the concrete channel is 0.3 degrees. 

The Cong Burn runs through the culvert underneath Chester-le-Street town centre and 

exits upstream as a heavily modified channel and remains so for several hundred metres. 

The concrete channel and culvert represent heavily engineered and poor aquatic habitat 

and they restrict the upstream movement of many fish species, partly due to a lack of 

habitat diversity and partly due to shallow, fast flow velocities. Due to the darkness along 

its length, the culvert may also act as a behavioural impediment for fish entry and passage 

in both upstream and downstream directions (Lucas and Baras, 2001). Durham County 

Council, with partners (EA and WRT) is currently working on a flood prevention scheme, 

and the second phase of the scheme is to open a 90 m stretch of culvert and modify the 

section to a more natural river reach. Part of the plan is also to restore 100 m of concrete 

channel to a more natural stream reach with meander and natural river bed. Neither of 

these were commenced during the timescale of this PhD. 

 

 
Figure 5.8 Examples of unrestored barriers in the Cong Burn: (a) B2; (b) and (c) a series 

of weirs formed B9. 

 

B3 was located in the Cong Burn, 300 m upstream of the Twizell Burn - Cong Burn 

confluence (Figure 5.6). The function of the former concrete weir and its date of 

construction are unknown. It posed a significant obstruction to all fish species, even at 

high flows, and woody debris often caused blockages upon the weir. In 2010, a weir 

removal project was implemented at this site. The weir was removed by CLSDAC, in 

partnership with the EA, in October 2010. After weir removal, the faster flows caused re-
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grading of the river bed in the locality and generated an area of salmonid spawning 

habitat, though this has not been measured or evaluated for spawning use to our 

knowledge (S. Hudson, pers. comm.). No pre- or post-restoration habitat records in the 

immediate vicinity are available. 

 

B4 is an 85-m long culvert at Waldridge Fell (Figure 5.6), which is an abandoned railway 

culvert with a two degree gradient. It is located 5 km upstream of the Cong Burn’s 

confluence with the Wear. Its downstream exit has a 0.7m high cascade and it had a 

uniform concrete base with shallow water depth which made it difficult for salmonid fish to 

ascend. B5 is a 40-m long road culvert at Edmondsley, located 7 km upstream of the river 

mouth, also on Cong Burn and ~ 2 km upstream of B4 (Figure 5.6). Although there is a 

vertical step at the downstream end of the culvert, it was submerged during normal flow 

conditions. The gradient of the culvert is two degrees, with shallow water depth (~3 cm) on 

the culvert surface, which made it difficult for fish to pass through it. In order to mitigate 

these problems, 1800 x 210 mm concrete baffles were installed on the bed of both B4 and 

B5, 52 baffles were installed in the first culvert and 36 baffles were installed in the second 

culvert. These baffles were positioned throughout the entire length of each of the culverts 

in October 2010 by CLSDAC. In addition, the downstream end of cascade at B4 had 

baffles installed in 2019, to provide increased depth for salmonid fish to ascend (Figure 

5.7). After installation, water is supposed to be held by the baffles at a depth of at least 

200 mm, which should allow fish salmonids to enter and ascend the culvert even during 

low flows. However, at low flows the author observed no such retention of water (Figure 

5.7), although they may function better at elevated flows during which most salmonid 

migration occurs. The baffles may also provide resting areas for fish during high flows. It 

seems that to date no pre-post evaluation of the efficacy of these interventions have been 

done by EA, CLSDAC or WRT. 

 

B6 is a 14-m long culvert, with a gradient of two degrees (Figure 5.6). Four steps (overall 

height 1 m) are located immediately downstream of the culvert. It was identified by the 

CLSDAC as a likely obstacle to salmonid passage, due to the culvert characteristics and 

steps on the downstream exit of the culvert. Concrete baffles (1800 x 210 mm) were 
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installed inside the culvert and on the exit steps by CLSDAC in August 2012, which then 

formed a pool with elevated water levels below the culvert, facilitating access for migratory 

fish (designed for salmonids). However, the baffles suffered serious damage during the 

spates of late autumn 2015. In summer 2019, baffles on the steps were replaced with 

plastic sleepers by the WRT.  

 

B7 is Pelton Fell Bridge apron, Twizell Burn, is located 70 m upstream of the Cong Burn - 

Twizell Burn confluence (Figure 5.6, Figure 5.7). The apron on the downstream end of the 

bridge consists of three steps with a combined height of 0.6 m and a concrete base which 

created a barrier to fish attempting to move upstream. The channel (7 m wide x 14 m 

long) under the bridge, on the bridge footings, created a shallow fast flow which was also 

difficult for fish to pass. For the bridge apron, 2500 mm long x 230 tall mm baffles were 

installed on the bedrock/concrete footings of the bridge at approximately 45° angle to the 

bulk flow with a 2 m interval and on alternate sides of the channel (Figure 5.7), angled so 

as to generate a sinuous flow of water at low water levels. This was installed in May 2016 

by WRT. The series of baffles is intended to provide sufficient depth and reduced flow 

velocities to facilitate upstream passage by several species of fish (S. Hudson, WRT pers. 

comm.), but the design was aimed principally at upstream passage of adult salmonids. 

After construction was completed, the water level immediately upstream had increased by 

approximately 300 mm and resulted in a small amount of impoundment.  

 

A small rock ramp was constructed by WRT at the downstream step of Pelton Fell Bridge 

apron to assist upstream access for small fish species and young life stages access onto 

the bridge apron (Figure 5.7). The rock ramp construction was finished in 2018 spring. In 

addition several more baffles were placed at the downstream end of the bridge apron, to 

reduce the flow velocity and increase water depth on the apron. As part of this PhD study, 

habitat measurements and hydraulic measures were taken up to 20 m upstream and 

downstream of the bridge apron before and after the rock ramp construction.  

 

B8 was Pelton Fell Weir (Figure 5.6, Figure 5.7), on Twizell Burn, located 500 m upstream 

of the Cong Burn confluence. The purpose of the weir was to support a foul water pipeline 
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which crossed the beck and is now unused and abandoned. The structure was built on top 

of bedrock, was about 2-m high and was considered to be completely impassable to all 

upstream-moving fish under most flows. The most feasible restoration option was to 

remove the structure. The removal of the structure was felt to be low risk with regard to 

flooding risk locally, and there would be little adjustment in the height and gradient of the 

channel following removal. The weir was removed by WRT in March 2016 (Figure 5.7) to 

provide passage of all fish species and to reinstate natural sediment transport processes. 

In addition, WRT also identified a heavily modified river reach at Newfield Bridge, Twizell 

Burn, a few hundred meters upstream of B8. The connectivity of this river section was 

affected by some damaged gabion mattresses. In order to create free passage to fish, a 

full width channel rock ramp with four pools was built by WRT in this reach in 2018 spring. 

 

B9 is a complex barrier, comprising a series of concrete step weirs (Grange Villa Dam) 

across several sites within a few hundred meters of stream length, (Figure 5.6, Figure 

5.8). The total height of the structure is about 19 m, consisting of two weirs at the 

downstream end, a staircase in the middle, a culvert and a five stepped weir in the 

upstream end. The main ‘staircase’ includes 12 steps, each 1 m high, has vertical 

concrete edges with reinforced steel piling. The date of origin of this structure is unknown 

but it was built on a site with former coal mine spoil and a very unstable valley edge, and 

incorporates a road, under which Twizell Burn runs. Based upon the concrete structure 

and the timescale of redevelopment and planting trees on former pit spoil heaps, the 

structure likely dates from the 1960s. At the bottom of it some iron oxide (‘ochre’) leaches 

into the stream. This barrier is totally impassable to all fish species. For now it seems 

there are no plans to remove the obstructing effects of the barrier, because of its large 

size, and due to the complexity and expense of doing so for limited benefit in likely 

restorative outcomes. From Grange Villa upstream on the Twizell Burn there are several 

further obstacles in the form of weirs and culverts that limit fish migration and dispersal.  

 

In the upstream reach of Twizell Burn (S14), a first order tributary called Stanley Burn, 

which flows through South Moor Memorial Park, was diverted into a culvert to make way 

for a communal paddling pool in the 1950s. Since then, the stream channel was dry with 
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no sustained flow. The pool was used for around 15 years and then buried. In October 

2017, a habitat restoration project was conducted at this site by the WRT, the paddling 

pool was removed and the river was diverted back to its original channel to create new 

habitat for fish and invertebrates. 

 

5.2.4 Bedburn Beck 

Bedburn Beck is a fourth order stream located in the middle River Wear catchment in a 

rural area near to the villages of Hamsterley (Figure 5.9). The source is 378 m above sea 

level, the length of the main stream (from Euden Beck confluence to Wear) is 8.2 km, 

mean gradient 9.5 m per km and the catchment covers 10.5 km2 (Environment Agency, 

2020a). The water body has no “artificial” or “heavily modified” designation, although there 

is an EA flow-gauging station, with no fish pass, located 1.3 km from Bedburn Beck - 

Wear confluence. The gauging weir is one m high, and it has a 17 degree slope. A 1.2-m 

deep scour-pool has been formed immediately below the weir. Several further mill weirs 

and other obstacles occur further upstream (Chapter 3, Barriers Database Appendix I), 

but Bedburn Beck has relatively few obstacles compared to the streams mentioned 

above, and has relatively little human development and urban habitat along it, compared 

to the previously mentioned streams. The stream seems to have avoided the worst of 

industrial and urban development activities and intensive farming. Small-scale metal 

mining did occur in the upper catchment, mostly before 1900. Coal mining was absent in 

the Bedburn catchment; the nearest coal veins mined commercially (Copley, 

Butterknowle) were in the upper reaches of the River Gaunless, just 2 km to the south. 

Water-powered fulling mills (for processing sheep wool) are recorded in 1380, and several 

larger mills developed on Bedburn Beck and its lower tributary, Harthope Beck by the 

1800s. 

 

Low-intensity farming (mostly livestock) is mostly in the lower catchment, while much of 

the middle and upper reaches are afforested. In 1927 the recently formed Forestry 

Commission purchased 4000 acres of land, forming what is now Hamsterley Forest, to 

increase national stocks of scarce timber production. In recent years Hamsterley Forest 

has increasingly been managed as a public amenity site, and with consideration for 
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natural biodiversity. The river runs through forestry plantation areas, largely coniferous, 

but with some broad-leaved tree and pasture riparian habitat in the lower reaches. The 

upper catchment transitions to moorland. The river (from Euden Beck confluence to Wear) 

failed the WFD for its chemical status (due to elevated cadmium and lead) in 2013 due to 

the pollution from abandoned metal mines, which are widespread throughout the North 

Pennine rivers, including the Wear. However, the chemical status of the main stream 

achieved ‘good’ status in 2015, and the ecological status in 2016 was classified as 

moderate. Water quality data as far back as national records are available were presented 

in section 2.3.2.4. The predominant substrate of river is cobbles and pebbles, also with 

significant amounts of boulders, and large amounts of riparian cover, which provide high 

quality nursery habitat for salmonid fish. The river was chosen as a reference site in this 

study due to its relatively high quality habitat and low human impact, in terms of urban and 

industrial development and associated infrastructure and impacts. The fish density 

changes in Bedburn Beck (see section 2.3.2.5 for historic changes from EA electrofishing 

data) might be expected to reflect year-to-year trends in fish communities, particularly of 

anadromous salmonid populations, in Wear nursery streams, affected by factors such as 

marine survival, and river flow affecting upstream migration past barriers in the main 

Wear.  

 

Figure 5.9 Bedburn Beck and location of the flow-gauging station (black) and electro-

fishing sampling sites (red). S1 and S2 are EA fish sampling sites. 
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5.3 Methods 

In this study, multiple fish sampling sites were selected from each stream. The length of 

each site varied from 50 to 80 m. Each site contained varieties of mesohabitat, including 

riffle, glide and pool, to increase the possibility of sampling all species of fish with different 

mesohabitat preferences. Fish were sampled in summer (typically July and August, when 

young-of-year [YoY] salmonid fry are large enough to be sampled and readily identified to 

species) 2017, 2018 and 2019 at the same site for each stream during base-level water 

flows. Fish survey data for all, or a subset of the sites, using the same methods were also 

available from Durham University surveys, in the Deerness (autumn 2012-summer 2016) 

and Brancepeth Beck (2014), as well as periodic EA and WRT sampling data at various 

sites on the four study streams. 

 

The three-pass electrofishing ‘depletion’ method (Reynolds and Kolz, 2013) was carried 

out in the River Deerness and Brancepeth Beck. Single pass electrofishing was carried 

out in the Cong Burn and Bedburn Beck. This was because, for these streams, most 

historical EA and WRT electrofishing survey data were obtained by single-pass fishing, 

therefore to give comparable, standardized data for these streams, we also applied single-

pass fishing method in both stream. Stopnets (4-mm mesh) were placed at the boundaries 

of the sampling site to delimit the fished section. Fish were sampled by electrofishing 

using wading with a single anode, operated with a bankside generator and control box 

(Honda EU10i, Electracatch WFC1, ~200 V). For triple-pass fishing, after the first and 

second rounds of electro-fishing, a minimum of 30 minutes were given to let the sediment 

settled down and allow fish to recover, and generate a relatively equal catchability 

between rounds, based on prior experience in these streams. Fish removed from each 

pass were kept in separate aerated containers, after which the catches were processed 

separately. Fish were identified and measured for total length. If more than 50 fish of a 

species were caught at a site, then 50 per species were measured at random. Fish were 

released back to the capture location after being processed. Capture efficiency data were 

calculated from raw multi-pass fishing data for each site and common species, at each 

stream in each year for which raw data were available and tabulated, for Durham 
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University data and EA data. For Bedburn Beck, capture efficiencies of salmon and trout 

at S2 between 2001 and 2019 were calculated based on the EA three-pass electro-fishing 

data. Then mean capture efficiency (2001 – 2006, 2019) was applied on the EA single 

pass electro-fishing year (2007-2016), to calculate the estimated fish density. The 

estimated absolute EA salmonid densities were only used for the salmonid density grading 

system in the Discussion. The Durham University (single pass) data were not used to 

estimate absolute fish density at Bedburn Beck sites. 

 

5.3.1 River Deerness 

A total of 16 sites were selected in the River Deerness. Paired sites were located 

immediately upstream and downstream reach of each barrier except B1 (Figure 5.2) 

which, in the Catchment Restoration Fund Deerness project (2012-2014), was not 

identified as a likely barrier until 2015 and so was left out of the surveying by Tummers 

(2016). The survey sites in this thesis remained the same as those employed by Tummers 

(2016), for which raw data (autumn 2012 [two sites only in autumn 2012] – summer 2015) 

were available. Fish population surveys carried out for this PhD were conducted in July 

2017-2019 under base flow conditions, continuing earlier data series (2012-2016) by the 

Aquatic Animal Ecology group, Durham University, and giving a 7-year standardized data 

set for all sites (2013-2019). The length of each fish-sampling site varied from 60 to 80 m, 

depending on the spatial distribution of mesohabitats. All fish sampling was carried out 

under permit, issued by the Environment Agency. A BA (before-after) design was 

performed in this study, the status of each barrier represents ‘before-after’ (before: before 

restoration; after: after restoration). The sites located immediately upstream and 

downstream of B4 and B8 were considered as control sites, because there was no 

restoration work conducted on the associated barriers. Barrier B9 was mitigated in 

October 2012, and bullhead, minnow and stone loach were not recorded upstream prior to 

mitigation but colonized upstream by 2013 (Tummers, 2016; Tummers et al., 2016). 

Therefore, the upstream extent of distribution of bullhead, minnow and stone loach in 

contiguous 50-m sections was recorded by electrofishing in summer 2016-2019 to record 

the continued recolonization.  

 



275 
 

Although the study site distribution, across B1-B9 (S1-S16), enables BACI outcomes to be 

considered at the site level, it has already been argued in this chapter (section 5.1) that 

restoration of fish communities in obstructed rivers, may require reconnection at many 

barriers (due to cumulative barrier impacts). Therefore, the connectivity restoration 

treatment level may be argued to be at the extended reach, or whole stream level, rather 

than locally at barriers. In that regard, the only evidence of treatment effect at the 

subcatchment level that can be evaluated is the before: after response, and comparison 

along the same timescale as one or more reference catchments (e.g. Bedburn Beck). 

 

5.3.2 Brancepeth Beck 

A total of 25 sites were selected in Brancepeth Beck. S1-S4 were downstream reference 

sites, in the lower part of the stream which is not affected by any artificial barriers. S21 

was used as an upstream reference site, in a locality without close proximity to barriers, 

which had been surveyed previously in 2014 (Tummers, 2016). The remaining sites were 

all paired, one located immediately upstream and one immediately downstream of each 

in-stream barrier. The length of each fish sampling site varied from 50 to 80 m, depending 

on the distances between barriers as well as the spatial distribution of mesohabitats. 

Three pass electro-fishing surveys were conducted at each site between July and 

September under base flow conditions. All sites were surveyed in 2017, 2018 and 2019. 

Pre-intervention electrofishing raw data for S4-S24 in 2014 were available from Tummers 

(2016). In addition, redd (salmonid spawning nest) counting surveys were conducted 

through the river (between S1 and S25) in 2017 and 2018 in late November, to check the 

upstream penetration distance of adult sea trout (no salmon recorded in this stream) and 

the level of their spawning activity. These were performed by slowly walking the bank in an 

upstream direction, when water was sufficiently clear, looking for newly generated 

spawning redds and large adult trout. Trout spawning begins in early November, and ends 

in December in this and nearby streams, so the timing optimized observation of newly 

generated redds before they could be modified by gravel movement during spates. 

 

5.3.3 Cong Burn 

A total of 14 sites were surveyed for fish in Cong Burn. S1-S11 were located within the 
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connectivity restored area. S12 and S13 were located immediately upstream and 

downstream of a Northumbrian Water Sewage Treatment Works (SWT) outflow. S14 was 

located within the Twizell Burn restoration reach. S1, S2 and S5 were previous EA fish 

sampling sites for which historic data are available, and the remaining sites were previous 

WRT fish sampling sites. The WRT conducted yearly (summer) single pass electro-fishing 

surveys (L = 30 m) for S3 and S4 from 2011 to 2016; as well as for S6, S7 and S10 from 

2013 to 2016. However, the rest of the sites have not been surveyed across successive 

years. EA surveyed S2 with single pass electro-fishing in 2003, 2007, 2009 and 2013; S2 

with three pass electro-fishing in 2009, 2011, 2013 and 2015; S5 with single pass electro-

fishing in 2003, 2007, 2011, 2012 and S11 with single pass electro-fishing in 2013 (see 

section 2.3.2.5). No surveys were conducted at many of the Cong Burn / Twizell Burn 

sites before 2010, which means there is no baseline fish population data for most of those 

connectivity restoration sites on the Cong Burn catchment. 

 

The length of each fish sampling site surveyed as part of this PhD varied between 50 and 

80 m, depending on the spatial distribution of mesohabitats. Single pass electro-fishing 

surveys were conducted at each site between July and August under base flow 

conditions. All sites were surveyed in 2017, 2018 and 2019.  

 

Apart from electro-fishing, a detailed habitat survey was performed at Pelton Fell Bridge 

(B7) and Newfield Bridge, to assess the changes in river habitat before and after the rock 

ramp installation. Wetted width, depth (25%, 50% and 75% quartiles) and flow velocity 

(25%, 50% and 75% quartiles; 50% water depth) were measured every 1 m in both 

upstream and downstream section (L= 20 m) before and after construction. These data 

were used for drawing the 2D graph, to visualize the habitat changes post the restoration. 

The survey was carried out in February 2018 before the restoration and June 2018 after 

restoration under base flow conditions. 

 

5.3.4 Bedburn Beck 

A total of three sites were selected in Bedburn Beck. S1 is located 0.6 km downstream of 

the flow-gauging station. S2 is located 1.2 km upstream of the flow-gauging station and 
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S3 located 1 km further upstream of S2 (Figure 5.9). The length of each fish sampling site 

varied between 50 and 60 m, depending on the spatial distribution of mesohabitats. Single 

pass electro-fishing surveys were conducted at each site between July and August under 

base flow conditions. All sites were surveyed in 2017, 2018 and 2019. 

 

In addition, S2 is an EA fish ‘index site’ and has been surveyed between 1995 and 2014 

across most years, with salmonid only surveys in 1991 (section 2.3.2.5). The site was 

surveyed by the EA with single-pass electro-fishing method in 1995, 1997, 2007-2012 and 

2014; and the three-pass method in 1991 and from 2001 to 2006, 2019. The first run fish 

abundance data from the three-pass survey (2001 - 2006) was used to calculate the 

minimum fish density, then EA minimum fish density was used in combination with the 

minimum fish density data from this study, to monitor the long term fish density changes in 

a standardised manner. 

 

5.3.5 Data analysis 

Before analysis, data were checked for normality test using conventional tests, and 

necessary transformations were applied when needed. For the River Deerness and 

Brancepeth Beck (multi-pass depletion fishing), fish densities per site were calculated 

based on Carle and Strub’s K-pass removal method, with the R (version 3.6.1) package 

‘FSA’ (Ogle, 2020). Total fish densities were calculated by summing the densities per 

species (from Carle and Strub) thereby accounting for differing catchability byetween 

species. Fish densities data were fourth-root transformed (Boys et al., 2012), and fish 

length data were log 10 transformed to meet assumptions of normality before conducting 

analysis. Permutational multivariate analysis of variance (PERMANOVA) was used to 

determine changes in the fish communities through the time course of and following the 

restoration work, and the differences between paired upstream and downstream sites, 

using the R ‘Vegan’ package (Oksanen et al., 2019). If significant differences in fish 

communities were found, a similarity percentage (SIMPER) analyse based on the 

decomposition of Bray-Curtis dissimilarity index (Clarke, 1993) was followed to identify 

which species contribute more dissimilarity in fish abundance among study sites. Linear 

Mixed Modelling (LMM) was performed to analyse the changes in fish density using the 
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‘lme4’ and ‘lmerTest’ package (Kuznetsova et al., 2017), with fish densities as fixed 

factors and sites as random factors. The post-hoc Tukey's multiple comparison test was 

performed to analyse the differences in abundance of each species and total fish density 

between each study site, using 'multcomp' package (Hothor et al., 2020).  

 

5.3.5.1 Data analysis - River Deerness 

The River Deerness female trout spawning population is dominated by sea trout, with a 

mixed contribution of male spawners from sea trout, freshwater-resident brown trout and 

precocious parr [= sexually mature trout in the ‘juvenile’ parr form] (Tummers, 2016; 

Winter et al., 2016; Lothian et al., 2020). Many of the freshwater-resident adult trout in the 

Deerness migrate upstream from the rivers Wear and Browney to spawn (Lothian et al. 

2020). This results in a trout population age structure in the Deerness dominated by 

young juvenile trout; most emigrate as smolts to become sea trout, and some emigrate to 

the main river to grow as freshwater-resident trout. Based on frequency distributions of 

lengths it becomes relatively easy to distinguish YoY (‘fry’) from older parr and small 

adults. Therefore in the River Deerness, trout sampled were split into Young-of-the-Year 

(YoY) trout (age 0+) and older trout (age 1+ and older) based on the length frequency 

distribution (YoY: Year 2013-17, length < 90 mm; Year 2018-19, length < 80 mm; Older: 

Year 2013-17, length ≥ 90 mm; Year 2018-19, length ≥ 80 mm). The different size cut-offs 

between years, reflect different growth rates between years. This enabled year-to-year 

fluctuations in recruitment to be analysed. Kruskal-Wallis H Tests were used to compare 

the difference in median trout length (irrespective of age) through the study periods. 

Mann-Whitney U Tests were used to compare the trout densities in each age group 

between the paired study sites in each year.  

 

Spearman's Rank Correlation Coefficient was used to determine whether there was any 

correlation between YoY trout density and the mean flow (m3s-1) in the previous autumn / 

winter (1 September to 15 December) as well as the high flow event days (number of days 

with flows exceeding Q5 [upper 5%-ile of flows] or Q10 or Q20). Because autumn flows 

affect the ability of salmonid spawners to access streams (Svendsen et al., 2004), it was 

hypothesized that high flows would bring more adults into spawning streams, resulting in 
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greater egg deposition and more YoY in the next summer. 

 

In addition, the correlation between YoY trout density and the frequency of high flow event 

days (number of days with flows exceeding Q1 or Q5) in winter / spring between the end 

of spawning and estimated fry swim-up from the gravel (estimated as 16 December and 

15 May) in the same sampling year was examined. This was because after the spawning 

season, very high flow events (flow exceeding Q1 or Q5) could wash gravels out (and 

eggs / alevins with them), and lead to a reduction of YoY survival rate (Jensen and 

Johnsen, 1999; Hendry and Cragg-Hine, 2003). So high flow events in spring may 

negatively relate to summer YoY density in the same year. The daily mean flow data 

between 2012 and 2019 were gathered from the Environment Agency flow gauge station 

at B0, which is the closest to the study site, highly correlated with Deerness flow (Lothian, 

2021).  

 

5.3.5.2 Data analysis - Brancepeth Beck 

In order to assess the changes in fish community before and after the period of 

connectivity restoration, fish density data from several previous surveys were used. These 

comprised S4-S24 three pass electro-fishing data, from surveys by Durham University in 

2014 (Tummers, 2016); S1, S7, S14, S17, S19 and S20 single pass electro-fishing data, 

from surveys carried out by the WRT in 2015. S5-S14 and S17-S20 single pass electro-

fishing data, survey carried out by the WRT in 2016. Because the WRT never conducted 

double or triple pass electro-fishing in this stream, it was not possible to calculate the 

capture efficiency data from WRT fishing data. Minimum fish density was calculated from 

the WRT single pass electro-fishing data. To combine with the WRT single pass fish 

density data, the first run data of three-pass surveys from Durham University were 

extracted to calculate the minimum fish density then analysis was conducted. Notice, the 

2014 fish densities data in this thesis differed from those in Tummers (2016), because 

Tummers (2016) wrongly calculated the Brancepeth Beck 2014 fish densities in his thesis 

(Tummers’ Deerness data were unaffected). Although he states Carle and Strub’s K-pass 

removal method was applied, for Brancepeth Beck, fish numbers from the three passes 

were added together, then divided by the surveyed area. Therefore I have re-calculated 
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the 2014 Brancepeth Beck fish densities, based on raw electro-fishing data, with Carle 

and Strub’s K-pass removal method.  

 

A BACI (before-after-treatment-control) design was performed in this study, the status of 

each barrier represents ‘before-after’ (before: Year 2014, 2015, 2016; after: Year 2017, 

2018 and 2019). Sites below all obstacles (S1-S4) were regarded as reference sites 

without intervention (controls), those within the golf course restored zone (S5-S12) were 

considered as impact sites at which connectivity restoration occurred, and sites located 

upstream of B4 (S13-S25) were considered as control sites at which no restoration 

intervention occurred, even though minor inteventions were made at B7, B8 and B10. It is 

recognised that there is a natural environmental cline along Brancepeth Beck, as distance 

from confluence (main source of colonist fish species) increases, and stream width 

decreases, with increasing distance from the confluence. However, stream mesohabitat 

conditions (riparian cover, dominant substrate, depth, flow types) remained relatively 

similar along the stream’s course until the upstream-most sites, which were generally 

shallower and slower than those downstream. This was the most viable reach-level 

analytical design considered possible in this stream. 

 

As for Brancepeth Beck, in order to interpret the restoration efforts on trout population 

recruitment patterns specifically, the sampled trout were spilt into two groups by length, 

YoY trout (age 0+) and older trout (age 1+ and older) based on the length frequency 

distribution (YoY: Year 2017, length < 90 mm; Year 2018-19, length <80 mm; Older: Year 

2017, length ≥ 90 mm; Year 2018-19, length ≥ 80 mm). Because fish length was not 

measured in the 2014 survey (Tummers, 2016), it was not possible to compare the 0+ and 

older trout density changes between 2014 and other years. The fish length data from the 

WRT survey (2015) were extracted and used to compare with the post-restoration fish 

length data. Fish length data across years and sections were analysed with Kruskal-Wallis 

H Tests.  

 

PERMANOVA was used to compare the fish communities change following the 

restoration work. In order to create a balanced design for PERMANOVA analysis, fish 
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communities from S5-S12 (impact) were used against fish communities from S13-S20 

(control). The remaining statistical methods followed those for the River Deerness study. 

 

5.3.5.3 Data analysis - Cong Burn 

The estimated minimum density of each species was calculated by dividing fish 

abundance in the single fishings carried out, by the surveyed area. Lack of good baseline 

data (EA data for a few sites and years, and WRT data for a few sites and years) and 

variability in methods (see section 5.3.3) limits the robustness of interpretation. Therefore 

the analysis is mostly focused on the spatial and temporal variation in fish density, and 

species occurrence, before and after connectivity restoration at specific obstacles and 

more generally over the period in which progressive connectivity restoration has occurred 

(2010 onwards). To interpret the restoration efforts on the trout population specifically, the 

trout were split into two groups, YoY trout (0+) and older trout (1+ and older) based on the 

length frequency distribution (YoY: length < 80 mm; older: length ≥ 80 mm). The 

remaining statistical methods followed those described earlier for the River Deerness. 

 

5.3.5.4 Data analysis - Bedburn Beck 

To interpret changes in recruitment of brown trout and salmon populations over the study 

timescale, both species were split into two groups, YoY fish (0+) and older fish (1+ and 

older) based on the length frequency distribution (YoY: length < 80 mm; older: length ≥ 80 

mm). Spearman's rank-order correlation was used to determine the relationship between 

pairs of brown trout, Atlantic salmon and bullhead abundance over the study period. 

Linear regression was used to determine the long-term trend of YoY / older brown trout 

and salmon density across years at S2. Older trout and salmon densities were log 

transformed to meet the assumption of normality. In addition, Spearman's correlation was 

used to determine whether correlations existed between YoY/parr trout/salmon density 

and the mean flow (m3/s) in the previous autumn / winter (from 1 September to 15 

December) as well as the number of high flow event days (number of days with flows 

exceeding Q5 or Q10 or Q20). The correlation between YoY/parr trout/salmon density and 

the number of high flow event days (number of days with flows exceeding Q1 or Q5) in 

winter / spring (from 16 December to 15 May) in the same sampling year was also 
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examined. The rationale for this is explained in section 5.3.5.1. The daily mean flow data 

at Bedburn Beck between 1991 and 2019 were gathered from the EA’s Bedburn Beck 

gauging station for this (Figure 5.9). 

 

Furthermore, the correlation between annual Framwellgate fish counter data and mean 

daily flow (m3/s, 1 June-30 November), as well as the number of high flow event days 

(exceeding Q5 or Q10 or Q20) from 1 June to 30 November (representing the main period 

of salmon and sea trout upstream migration in the Wear, upstream of Durham based on 

fish counter data) was examined. The daily mean flow data between 1995 and 2019 were 

gathered from the Environment Agency gauging station on the Wear at Chester le Street 

(Durham has no discharge gauging station records). The purpose of this was to establish 

whether increased river flows led to increased upriver migration of adult anadromous 

salmonids, potentially facilitating access back to spawning tributaries such as Bedburn 

Beck and the River Deerness. 

 

5.4 Results 

5.4.1 River Deerness 

Eight species were caught during the survey period, and the predominant species before 

the restoration (i.e. fish surveys in summer 2013) was brown trout (Figure 5.10, 5.11). 

Atlantic salmon was not recorded at any site in the Deerness in any year, despite the 

connectivity restoration. European bullhead and common minnow were present at most 

sites, typically at similar or slightly lower abundance than brown trout (Figure 5.10, Figure 

5.11). Stone loach were present at most sites, but usually at lower abundance than trout, 

bullhead and minnow. European eel and grayling were both present at a very low density, 

with the occurrence and abundance of eel increasingly slightly during the study, 

particularly at downstream-most survey sites (Figure 5.10, 5.11). Grayling were excluded 

from the following analysis due to the low abundance (<0.01% of total fish caught). Since 

2016, three-spined stickleback (Gasterosteus aculeatus) appeared in the study sites, 

particularly in downstream sites. A non-native Koi carp (Cyprinus carpio), an ornamental 

form of common carp, was caught at S2 in summer 2017. Because it is the only record of 

this species in the catchment, it was also excluded from analysis. S14 (barrier control site 



283 
 

at the top of the catchment) was inhabited by brown trout only over the full duration of 

study, even though up to five species were recorded 100 m downstream at S13 (Figure 

5.10). It should be noted that the number of species at S13 declined to just two species, 

brown trout and bullhead in 2017, 2018 and 2019. Indeed a general decline in the 

abundance of stone loach at sites upstream of S6 and minor at sites upstream of S11 

appears evident since 2016 (Figures 5.10, 5.11). 

 

Capture efficiencies were calculated for three types of fish species: solitary midwater 

(trout), solitary benthic cryptic (bullhead) and schooling midwater (minnow). The mean 

estimated efficiency (all sites combined) of three-pass fishing ranged from 87.4% to 

92.8% for YoY trout; 91.9% to 96.9% for older trout; 78.6% to 89.8% for bullhead and 

82.0% to 94.9% for minnow in the Deerness between 2016 and 2019 (Table s5.1). 

 

The greatest species richness tended to occur at the downstream-most survey sites in the 

system over the study period (2013-2019), and reduced further upstream (Figure 5.10, 

Figure 5.11). Over the same timescale the number of species recorded tended to remain 

stable at those downstream sites, but reduced markedly in upstream sites from 2017 

onwards, particularly upstream of S6. From 2016 to 2019, the densities of brown trout and 

bullhead became similar suggesting the river was dominated by both species.  
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Figure 5.10 Fish density of each species (note log scale) between S9 and S16 during the sampling periods. BT: brown trout, BH: bullhead, 

MN: minnow, SL: stone loach, SB: three-spined stickleback, EE: eel. Pre-restoration data for S15 and S16 data are available for 2012, but 

are not presented for space reasons (see Tummers, 2016; Tummers et al., 2016). The arrows indicate the year of restoration, relative to 

timing of summer surveys. 
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Figure 5.11 Fish density of each species (note log scale) between S1 and S8 during the sampling periods. BT: brown trout, BH: bullhead, 

MN: minnow, SL: stone loach, SB: three-spined stickleback, EE: eel. The arrows indicate year of connectivity restoration at barriers relative 

to timing of summer surveys. 
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During the study period, no significant differences were found in the fish community at 

sites across the catchment between the pre-intervention year (2013) and the remaining 

years (PERMANOVA, P > 0.05 in all cases). For all restored sites, no significant 

differences in fish community were found between upstream and downstream reaches 

post restoration (PERMANOVA, P > 0.05 in all cases) as well as between control sites S6 

and S5 at unmodified Barrier 4 (PERMANOVA, F1,12 = 4.5, P = 0.21). Significant 

differences in fish community were only observed between control sites S13 and S14 at 

unmodified Barrier 8 (PERMANOVA, F1,12 = 36.44, P = 0.001). SIMPER test output 

showed bullhead, minnow and stone loach contributed 90.6% dissimilarity in the fish 

communities between S13 and S14, these being absent from S14 over the entire study 

period. 

 

Although the restoration has, apparently, had negligible benefit to the overall fish 

community, at the subcatchment level, the total fish (all species combined) abundance 

varied significantly between the sampling years (LMM, F6,90 = 13.26, P < 0.001). The 

lowest total fish density across all sites (mean and SD, 32.4 ± 8.5 per 100 m2) occurred in 

2015; and the highest density (mean ± SD: 93.0 ± 70.1 per 100m2) occurred in 2018 

(Figure 5.12 which presents box plots of medians). The overall fish densities in 2013, 

2014 and 2015 were significantly lower compared with fish densities in 2017, 2018 and 

2019 (paired post hoc, P < 0.001 in all cases); and total fish density in 2016 was 

significantly lower compared with fish densities in 2018 and 2019 (paired post hoc, P = 

0.02 in both cases). Furthermore, brown trout, bullhead, stone loach, three-spined 

stickleback and European eel abundance changed significantly during the sampling 

periods (Figure 5.13, Table 5.1; LMM, P < 0.05 in all cases). Details of these patterns are 

presented below. All were increases, except for stone loach, which decreased in 

abundance since 2016. 
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Table 5.1 LMM output showing the change of fish density in the River Deerness across 

years. BT: brown trout, BH: bullhead, MN: minnow, SL: stone loach, SB: three-spined 

stickleback, EE: eel. Site was used as a random factor in the analysis. 

Species Mean square df F P 
Total 1.146 6,90 13.26 <0.001 
BT 0.561 6,90 6.05 <0.001 
BH 1.692 6,90 18.61 <0.001 
MN 0.166 6,90 0.66  0.68 
SL 1.268 6,90 6.65 <0.001 
SB 0.193 6,90 2.64  0.02 
EE 0.523 6,90 8.17 <0.001 
BT YoY 0.351 6,90 2.22  0.04 
BT Older  0.306 6,90 5.06 <0.001 

 

 

Figure 5.12 Box plots showing range, outliers, lower quartile, median, upper quartile of 

total fish density (per 100 m2) in the River Deerness over the study duration.  
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Figure 5.13 Box plots of total fish density (per 100 m2) of each species across years for 

the River Deerness. BT: brown trout, BH: bullhead, MN: minnow, SL: stone loach, SB: 

three-spined stickleback, EE: eel. Note the log scale. 

 

Similar to the overall fish density, the lowest brown trout density (19.7 ± 6.5 per 100m2) 

occurred in 2015; and the highest brown trout density (53.3 ± 47.8 per 100m2) occurred in 

2018 (Table 5.2). The brown trout densities in 2013, 2014, 2015 and 2016 were 

significantly lower compared with the densities in 2017 and 2018 (Table 5.3). The 0+ trout 

density showed an increasing trend during the study period, from 10.6 ± 4.6 per 100 m2 in 

2013 to 19.8 ± 11.8 per 100 m2 in 2019 (Figure 5.14), indicating increased reproductive 

success since the outset of connectivity restoration. On the other hand, the older trout 

density firstly showed a decreasing trend, from 10.3 ± 2.1 per 100 m2 in 2013 to 7.5 ± 3.0 

per 100 m2 in 2016 but increased to 14.1 ± 11.3 per 100 m2 in 2019. Overall, both 0+ trout 

densities and older trout densities significantly increased during the study period (LMM, 

YoY, P = 0.04; older, P < 0.001; Table 5.1).  

 

Table 5.2 Mean and SD brown trout density (per 100 m2) and average fish length (mm) 

across study years in the River Deerness. 

 2013 2014 2015 2016 2017 2018 2019 
Total  20.9±6.3 21.3±6.7 19.7±6.5 20.3±6.5 43.8±28.3 53.3±47.8 33.8±16.8 
YOY  10.6±4.6 10.6±5.3 11.1±5.2 12.9±4.3 28.5±26.7 32.9±37.0 19.8±11.8 
Older  10.3±2.1 10.6±2.3 8.6±5.0 7.5±3.0 15.3±10.9 20.4±13.8 14.1±11.3 
Length 113.5±54.4 108.1±50.3 97.6±47.0 99.3±37.9 95.4±44.0 92.5±44.0 86.1±40.5 
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Table 5.3 Paired post hoc test of LMM (Tukey's multiple comparison) showing significant 

differences in different fish species densities in the Deerness during the study period 

(2013-2019). 

Species Year Z P 
Brown trout 2013 - 2017 3.18 0.025 
 2013 - 2018 3.72 0.004 
 2014 - 2017 3.11 0.031 
 2014 - 2018 3.65 0.005 
 2015 - 2017 3.53 0.008 
 2015 - 2018 4.07 < 0.001 
 2016 - 2017 3.36 0.014 
 2016 - 2018 3.90 0.002 
Bullhead 2013 - 2018 5.62 <0.001 
 2013 - 2019 8.00 <0.001 
 2014 - 2018 5.09 <0.001 
 2014 - 2019 7.47 <0.001 
 2015 - 2018 5.01 <0.001 
 2015 - 2019 7.39 <0.001 
Stone loach 2016 - 2017 -4.16 <0.001 
 2016 - 2018 -4.32 <0.001 
 2016 - 2019 -3.69 0.004 
Eel 2013 - 2016 5.29 <0.001 
 2014 - 2016 5.29 <0.001 
 2015 - 2016 5.29 <0.001 

 

 

Figure 5.14 Box plots of brown trout density (per 100 m2) in the Deerness during the study 

period; blue: YoY trout, green: trout of one or more years old.  
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Associated with the trout density, significant differences were also found in median trout 

length across the sampling periods (Figure 5.15; Kruskal-Wallis H Test, Χ2(6) = 332.72, P 

< 0.001). A decreasing trend in trout length was observed. From the trout length data 

combined across sites, for the full study duration, a change in length frequency distribution 

was apparent: in 2013-2015 four clear length modes were apparent (likely equating to 

Ages 0+ to 3+), but from 2016-2019 only two length modes were evident, with an 

extended ‘tail’ of relatively few larger trout (Figure 5.15). This indicates that over the period 

2013 to 2017 the Deerness trout population became increasingly dominated by Age 0+ 

and 1+ trout and with relatively fewer larger (older) trout. Within the paired upstream and 

downstream sites, a significant difference in 0+ trout density was found between S3 and 

S4 after restoration (Table s5.2; Mann-Whitney U Test, U = 4, P = 0.025); the 0+ trout 

density in the reach downstream of the nature-like bypass was significantly higher 

compared with the upstream impounded reach (Figure 5.16). No significant differences in 

0+ trout density were found at the remaining restoration sites, including the upstream and 

downstream of the two unmodified structures (Table s5.2; Mann-Whitney U Test, P > 0.05 

in both cases). In addition, no significant differences were found in both older trout and 

total trout density across all paired sites (Table s5.2; Mann-Whitney U Test, P > 0.05 in 

both cases). Again Figure 5.16 makes clear the increase in densities of YoY and older 

trout over the study period, being more evident at some sites than others. 
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Figure 5.15 Length-frequency distribution of brown trout from the Deerness (all study sites 

combined) during the study period. 
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Figure 5.16 Brown trout density (per 100 m2) in the River Deerness across the study 

period; blue: YoY trout, green: trout of one or more years old.  
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Within all connectivity-restoration sites, the 0+ trout population showed an increasing 

trend in the upstream sites where barriers had been removed (S8, S10 and S12). In 

contrast, 0+ trout in several of the upstream fish pass impounded sites (S2 and S4) were 

at a low abundance (except in 2018 at S2). In S4, only one YoY trout was caught in 2018 

and no YoY trout were caught in 2019 (Figure 5.17). In S16 (upstream of a culvert fitted 

with a rock-weir fish pass), 0+ trout density did not show an increasing trend between 

2012 and 2018, but the density approximately doubled in 2019 (Figure 5.17).  

 

 
Figure 5.17 YoY trout density (per 100 m2) changes in connectivity-restored sites of the 

Deerness. Circle: sites where a fish pass was installed but which retained ponding 

upstream of the barrier (weir, bridge footings); Square: sites immediately upstream of 

barrier, where the barrier was fully removed. Triangle: site at which a fish pass was 

installed but where there was no ponding immediately upstream of former barrier (culvert).  

 

Mean daily flow at B0 between 2012 and 2019 is presented in Figure s5.1. A strong 

negative correlation was found between mean YoY trout density and high flow event days 

(number of days with flows exceeding Q10 between 1 September to 15 December) in the 

previous autumn (Figure s5.2; Spearman's Rank Correlation, r = -0.80, P = 0.031). No 

correlations were found between the mean YoY trout density and the mean daily autumn 

flow in the previous year, as well as between mean YoY trout density and number of high 

flow event days exceeding Q5 or Q20 in autumn (Figure s5.2; Spearman's Rank 

Correlation, P > 0.05 in all cases). No correlation was found between YoY trout density 

and the number of high flow days between 16 December - 15 May (Figure s5.2; 
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Spearman's Rank Correlation, P > 0.05 in all cases).  

 

Bullhead was one of the most abundant species throughout the study period, their 

abundance increased dramatically across the majority of sampling sites since 2016 

(Figure 5.11, Figure 5.13). Overall, the bullhead densities in 2013, 2014 and 2015 were 

significantly lower compared with those in 2018 and 2019 (Table 5.3; paired post hoc, P < 

0.001 in all cases). Bullhead was totally absent from S16, upstream of B9, before the 

connectivity-restoration in Oct 2012. Following the installation of the rock-pool easement, 

bullhead started to recolonize the upstream reach and they managed to disperse 

upstream more than 100 m every year. Six years post restoration, they had successfully 

dispersed to 798 m upstream of the culvert by summer 2018.  

 

For stone loach, the mean densities across the catchment did not vary markedly between 

sites but significantly declined in S7-S16 from 2017 onwards, with stone loach not being 

recorded at most of these sites and years (2017-2019), or at negligible densities (Table 

5.3; paired post hoc, P < 0.05 in all cases). No change in the common minnow population 

across catchment occurred during the study period (LMM, F6,90 = 0.66 P = 0.68). Between 

2013 and 2015, no three-spined stickleback were caught during the electrofishing 

surveys. Since 2016, three-spined stickleback started colonizing the catchment. The 

majority of stickleback were caught at S1, within the patch of backwater below the bridge 

apron, and they are still absent from most upstream sites. Eel were mostly caught in 

downstream sites (S1-S3) between 2013 and 2015, however the population had a 

significant increase in 2016 at S1-S5, S7-S9, S11-S13 (Table 5.3; paired post hoc, P < 

0.001 in all cases); and they managed to disperse as far as S12. By 2017-2019 eel 

remained at low densities but were much more widespread than over the period 2013-

2015. 

 

5.4.3 Brancepeth Beck 

Ten species were caught from Brancepeth Beck during the survey period (note, WRT data 

from 2015 and 2016 are used in trout demography analyses later in this section; data not 

shown, available from author or WRT upon request). The predominant species was brown 
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trout (Figure 5.18), which was recorded at majority sites through the catchment. Atlantic 

salmon was not caught at any site during the study. Bullhead and stone loach were 

present at a slightly lower abundance than trout. Bullhead were also present through the 

whole catchment, and occurred at a higher density than trout in the most upstream 

unrestored sites (Figure 5.19). Stone loach was found widely dispersed through the river 

in 2014, but was totally absent from all sites located upstream of B4 since 2017 (Figure 

5.20, 5.21). Similar to stone loach, common minnow was caught in the majority of sites in 

2014. However, this species had totally disappeared between S3 and S25 in 2017, and 

seemed to be slowly recolonizing upstream in 2019 (Figure 5.20, Figure 5.21). Three-

spined stickleback, European eel, brook lamprey and chub (Squalius cephalus) were 

present in very low densities (Figure 5.20-5.21). Most three-spined stickleback were 

caught in the top and bottom reach of the catchment, this species was totally absent from 

the mid-catchment. The top of the catchment was characterised by relatively shallow, 

slower flowing habitat. Brook lamprey were only captured in the most downstream 

reference sites (S1) and chub were only caught between S1 and S3. One roach (Rutilus 

rutilus) was caught in S1 in 2018 and one perch was caught in S5 in 2018. Both species 

were excluded from the following analyses due to the low abundance (<0.01% of total fish 

caught).  

 

Capture efficiencies were calculated for three fish species with differing habits: solitary 

midwater (trout), solitary benthic cryptic (bullhead) and schooling midwater (minnow). The 

mean estimated efficiency (all sites combined) of three-pass fishing ranged from 89.2% to 

93.93% for YoY trout; 97.4% to 99.7% for older trout; 82.6% to 95.1% for bullhead and 

79.1% to 95.7% for minnow in Brancepeth Beck between 2017 and 2019 (Table s5.3). 
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Figure 5.18 Fish density (note log scale) of each species through the sampling periods at 

Brancepeth Beck (from three pass electro-fishing). BT: brown trout, BH: bullhead, MN: 

minnow, SL: stone loach, SB: three-spined stickleback, EE: eel, LA: brook lamprey, CH: 

chub. Notice: S1-S3 and S25 were not surveyed in 2014.
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Figure 5.19 Boxplots showing the variation in fish species density (note log scale) between different stream reaches before and after 

connectivity restoration (shown by arrow, 2016) in Brancepeth Beck. Sampling by three pass electric fishing; S1, S2, S3 and S25 were not 

surveyed in 2014. BT: brown trout, BH: bullhead, MN: minnow, SL: stone loach, SB: three-spined stickleback, EE: eel, LA: brook lamprey, 

CH: chub. 
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Figure 5.20 Density of fish species in Brancepeth Beck between S13 and S25 across 

years, sampled by three pass electric fishing. S25 was not surveyed in 2014. BT: brown 

trout, BH: bullhead, MN: minnow, SL: stone loach, SB: three-spined stickleback, EE: eel, 

LA: brook lamprey, CH: chub. 
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Figure 5.21 Density of fish species in Brancepeth Beck between S1 and S12 across 

years, sampled by three pass electric fishing. S1, S2, S3 and S25 were not surveyed in 

2014. BT: brown trout, BH: bullhead, MN: minnow, SL: stone loach, SB: three-spined 

stickleback, EE: eel, LA: brook lamprey, CH: chub. 

 

Post restoration, significant differences in the fish community were found across the 

catchment (S5-S12, impact with connectivity mitigation of successive barriers; S13-S20, 
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‘control’ without barrier interventions) between the pre-intervention year (2014) and the 

post restoration year (2017) (PERMANOVA, F1,28 = 4.50, P = 0.023; Table 5.4). No 

significant differences in fish community were found between the post-intervention years 

(2017-2019, PERMANOVA, P > 0.05 in both cases; Table 5.4). In addition, no significant 

differences were found in the fish community between 2016 and 2017 (WRT single pass 

survey in 2016 vs first fishing in 2017; PERMANOVA, F1,26 = 2.73, P = 0.095). Minnow, 

bullhead, brown trout and stone loach contributed 96.1% dissimilarity in the fish 

communities in the overall catchment between 2014 and 2017, minnow and brown trout 

varied significantly post restoration (SIMPER, P < 0.05 in both cases; Table 5.5). A similar 

situation was observed in the connectivity-restored sites (S4-S12), and the same four 

species contributed 97.6% dissimilarity in the fish communities between 2014 and 2017. 

Minnow and brown trout abundance changed significantly post restoration, compared to 

before (SIMPER, P < 0.05 in both cases; Table 5.5), brown trout contributed 23.7% 

dissimilarity within the restored reach. Within the unrestored reach (S13-S20), minnow 

and stone loach changed significantly between 2014 and 2017 (SIMPER, P < 0.05 in both 

cases). Brown trout contributed 14% dissimilarity within the unrestored reach. 

 

Table 5.4 Upper panel: BACI comparisons of fish communities in the Brancepeth Beck 

before and after connectivity restoration (2014 vs 2017), Impact: S5-S12; Control: S13-

S20. Lower panel: fish communities change during post-intervention years (2017-2019). 

Year  df F P 
2014 vs 2017 BA  11.57 0.001 
 CI  2.47 0.097 
 BA x CI 1,28 4.50 0.023 
2017 vs 2018  1,30 -0.13 0.952 
2018 vs 2019  1,30 1.58 0.213 
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Table 5.5 Results of the SIMPER analysis (Before vs After [2017 only]), based on Bray-

Curtis dissimilarity index, showing status of six fish species (full names given in Figure 

5.21 legend, above) response to the connectivity restoration in Brancepeth Beck. 

2014 vs 2017 Species Contribution (%) P 
All site combined  

(S5-S20) 
mn 32.42 0.001 
bh 23.15 0.510 
bt 20.52 0.020 
sl 19.97 0.266 
ee 2.36 0.626 
sb 1.58 0.120 

Restored section 
(S5-S12) 

mn 30.19 0.007 
bt 23.7 0.001 
sl 23.57 0.552 
bh 20.18 0.087 
ee 2.36 0.603 

Unrestored section 
(S13-S20) 

mn 34.93 0.002 
bh 26.6 0.488 
sl 19.06 0.018 
bt 13.99 0.268 
sb 3.04 0.066 
ee 2.38 0.974 

 

Total fish density was significantly greater in the reconnected reach (in which fish passage 

provisions were made) than the unrestored reach upstream (Table 5.6; LMM, F1,58 = 4.57, 

P = 0.04). The connectivity restoration time period also had a significant effect on total fish 

density (LMM, F1,23 = 13.03, P = 0.02), with mean total fish density across all connectivity-

restored sites nearly doubling after the restoration. A significant interaction effect between 

site location and restoration status (LMM, F1,58 = 20.84, P < 0.01) indicated that fish 

density changed in response to restoration status. During the study period, the lowest 

average total fish density (40.9 ± 15.5 per 100 m2) occurred in 2014; and the highest total 

density (99.8 ± 86.6 per 100m2) occurred in 2018. The fact that fish densities in the 

connectivity-restored reach remained lower than those in the reference reach in 2018 and 

2019 suggests that connectivity restoration effects have been partial (incomplete), but 

positive, in returning the fish community towards reference conditions (Figure 5.22). 
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Figure 5.22 The variation in total fish density between reference sites without barriers (S1-

S4), the connectivity-restored reach (S5-S12) and the unrestored reach (S13-S25) of 

Brancepeth Beck across years. Sampling was by three pass electric fishing; S1, S2, S3 

and S25 were not surveyed in 2014. The arrow indicates the timing of connectivity 

restoration. 

 

Significant differences were found in brown trout and stone loach densities between the 

control (unrestored) and impact (restored) reach (Table 5.6; LMM, brown trout, F1,23 = 

25.02, P < 0.001; stone loach, F1,27 = 13.45, P = 0.001). Mean stone loach density (all 

years combined pre and post restoration) in the restored reach (15.2 ± 27.2 per 100m2) 

was significantly higher compared with the density in the unrestored reach (0.6 ± 1.9 per 

100m2, Figure 5.19). Brown trout also increased in the restored zone (see further 

information below). Minnow density (2017 - 2019 combined) reduced significantly post 

restoration by comparison with the density in 2014 (Table 5.6; LMM, F1,58 = 201.52, P < 

0.001). The mean density was 8.6 ± 4.9 per 100m2 in 2014, and reduced to zero in 2017 

(Figure 5.19). However, no minnow were caught during the WRT fish surveys in both 2015 

and 2016 (data not shown, available from author or WRT upon request) within the 

restored and unrestored reaches, suggesting minnow had already vanished in these 

reaches of the stream between summer 2014 and summer 2015. Brown trout, bullhead 
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and stone loach exhibited a significant interaction effect between site location and 

restoration status during the sampling periods (Table 5.6; LMM, P < 0.001 in all cases). 

Across all sites combined mean bullhead density increased from 5.8 ± 4.2 per 100m2 in 

2014 to 12.5 ± 11.0 per 100m2 in 2017, then remained stable (Figure 5.19). No differences 

were found in three-spined stickleback and eel density between restored and unrestored 

reaches, as well as between before and after restoration during the study periods (Table 

5.6; LMM, P > 0.05 in all cases). 

 

Table 5.6 Comparison of changes in fish densities over before and after connectivity 

restoration (2014 vs 2017, 2018, 2019) between restored section (S5 - S12) and 

unrestored section (S13 – S25). BA: before after, CI: control impact, BA:CI: interaction 

effect. 

Species Comparison df F P 
Total BA 1,58  4.57  0.037  
 CI 1,23  13.03  0.002  
 BA:CI 1,58  20.84  <0.001  
Brown trout BA 1,58  0.01  0.928  
 CI 1,23  25.02  <0.001 
 BA:CI 1,58  41.98  <0.001 
Bullhead BA 1,58  1.91  0.172  
 CI 1,21  0.05  0.827  
 BA:CI 1,58  8.31  0.006  
Stone loach BA 1,58  0.00  0.976  
 CI 1,27  13.45  0.001  
 BA:CI 1,58  17.67  <0.001 
Eel BA 1,76  2.24  0.139  
 CI 1,76  0.12  0.729  
 BA:CI 1,76  0.12  0.729  
Stickleback BA 1,58  0.09  0.768  
 CI 1,28  0.89  0.354  
 BA:CI 1,58  0.09  0.761  
Minnow BA 1,58  201.52  <0.001 
 CI 1,58  0.84  0.366  
 BA:CI 1,58  3.36  0.072 

 

Within the connectivity-restored reach, mean brown trout density increased dramatically 

from 24.7 ± 5.9 per 100m2 in 2014 to 111.1 ± 28.5 per 100m2 in 2017, then remained 

steady (Figure 5.23). In contrast, within the unrestored reach, the trout density gradually 
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decreased from 22.4 ± 10.3 per 100m2 in 2014 to 3.7 ± 4.9 per 100m2 in 2019. The 

minimum 0+ trout density in the restored reach increased significantly one year after 

connectivity restoration, from 11.5 ± 10.1 per 100m2 to 56.6 ± 12.2 per 100m2 (Table 5.7; 

2016 vs 2017; LMM, F1,7 = 22, P < 0.005). In contrast, no significant change was found in 

0+ trout density within the unrestored reach (2016 vs 2017; LMM, F1,10 = 1.24, P = 0.29). 

In 2017, the 0+ trout density (from autumn 2016 spawning) in the restored reach was 

significantly higher compared with the unrestored reach (Table 5.7; Figure 5.23; LMM, 

F1,10 = 210, P < 0.001). However, there was no significant difference in the older trout 

density between the two reaches (Table 5.7; LMM, F1,19 = 0.41, P = 0.531). In 2018 and 

2019, both 0+ and older trout density were significantly higher in the restored reach 

comparing with the unrestored reach (Table 5.7; LMM, P ≤ 0.001 in all cases). Trout 

densities in the restored reach were as high or higher than those in the reference reach 

(Figure 5.23).  

 

Table 5.7 Upper part: comparison of changes in minimum fish densities from single pass 

(or first fishing of multi pass surveys) electro-fishing surveys before and after connectivity 

restoration (2016 vs 2017) between restored section (S5 - S12) and unrestored section 

(S13 – S20). Lower part : comparison of changes in trout fish densities from three pass 

electro-fishing survey over restored section (S5 - S12) and unrestored section (S13 – 

S25) after the connectivity restoration. 

Year Reach Species  df F P 
 
 
 
2016 vs 2017 

restored YoY trout  1,7  22.00  0.002  
unrestored YoY trout  1,10  1.24  0.292  
restored Total trout  1,7  16.92  0.004  
unrestored Total trout  1,5  0.01  0.914  
restored Bullhead  1,7  6.36  0.040  
unrestored Bullhead  1,5  9.01  0.030  
restored Stone loach  1,7  9.39  0.018  

2017  
Restored  

vs  
Unrestored 

YoY trout  1,10  210.00  <0.001  
 Older trout  1,19  0.41  0.531  
2018 YoY trout  1,17  30.11  <0.001  
 Older trout  1,19  58.72  <0.001  
2019 YoY trout  1,19  14.70  0.001  
 Older trout  1,12  16.40  0.001  
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Figure 5.23 Boxplots of 0+ and older brown trout density (from three pass electric fishing 

surveys, note log scale of abundance) between different stream reaches of Brancepeth 

Beck after connectivity restoration. 

 

The length of brown trout also differed significantly across the sampling periods from 2016 

to 2019 (Figure 5.24; Kruskal-Wallis H Test, Χ2(3) = 473.92, P < 0.001) being significantly 

longer in 2016 compared with post restoration sampling years (Post hoc, P < 0.001 in all 

cases). In 2016, before the effects of restoration, trout length in the upstream unrestored 

reach was markedly longer compared with the restoration reach (Mann-Whitney U Test, U 

= 36288, P < 0.001). After connectivity restoration, in 2017, 2018 and 2019, trout length in 

the upstream unrestored reach remained significantly longer (likely indicative of older fish) 

compared with the restoration reach and the downstream reference reach (Kruskal-Wallis 

H Test, Χ2(2) = 136.76, P < 0.001).  

 

During anadromous salmonid redd surveys covering the whole stream length in autumn 

2017 (13th and 26th November; 4th December), four redds were identified between S1 and 

S2, and seven redds were recorded between B1 and B5 (Figure 5.25). No redds were 
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found upstream of B5. In addition, an adult sea trout was observed in the reach 

immediately upstream of B3. During the 2018 redd survey (26th November), one redd was 

recorded downstream of S1, 15 redds were recorded between S1 and S2, ~six adult sea 

trout were observed between S1 and S2, seven redds were recorded between S4 and S5, 

four redds were recorded between B1 and B5. No redds were found further upstream. 

 

 

Figure 5.24 The length frequency distribution of brown trout during the study period. The 

2016 fish data were extracted from the WRT single-fishing data set (available from the 

author or WRT). Note: S1-S4, S15, S16, S21-S25 were not surveyed in 2016. The 2015 

data were not included here because fish length data were only available at five sites. 

Trout lengths were not measured in the surveys in 2014 by Tummers (2016). 
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Figure 5.25 Top and Bottom left: Sea trout redds recorded during surveys of Brancepeth 

Beck (Photo Credit: Jingrui Sun). Bottom right: dead sea trout found in the beck (Photo 

Credit: Wear Rivers Trust). 

 

5.4.4 Cong Burn 

Seven fish species were captured from the Cong Burn system during the Durham 

University single pass electro-fishing survey period of 2017-2019 (Figure 5.26, 5.27). The 

dominant species was brown trout, found at all sites except S14. Other species were all 

present in lower densities. Common minnow and Atlantic salmon were only caught at S1, 

bullhead and stone loach were only caught in S1 and S2. These four species were totally 

absent from sites further upstream.  
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Figure 5.26 Minimum density of fish species (note log scale) between S8 and S14 during 

the sampling period at Cong Burn. BT: brown trout, BH: bullhead, MN: minnow, SL: stone 

loach, SB: three-spined stickleback, EE: eel, SA: Atlantic salmon.  
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Figure 5.27 Minimum density (single pass electric fishing) of fish species (note log scale) 

between S1 and S7 during the sampling period at Cong Burn. BT: brown trout, BH: 

bullhead, MN: minnow, SL: stone loach, SB: three-spined stickleback, EE: eel, SA: Atlantic 

salmon. 

 

No significant differences in the fish community were found between 2017, 2018 and 2019 

(PERMANOVA, P > 0.05 in both cases). Among all fish species, no significant differences 
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in stickleback and eel density were found during the study period (Table 5.8; LMM, P > 

0.05 in both cases). No LMM analyses were performed for minnow, salmon, bullhead and 

stone loach because they were absent from the majority of sites and unequally distributed.  

 

Table 5.8 LMM results (table sections show separate model outputs) showing the change 

of minimum fish density in the Cong Burn catchment across the study years. BT: brown 

trout; SB: stickleback; EE: eel. Site was used as a random factor in the analysis. 

Species df F P 
Total 2,26 5.12 0.01 
BT 2,26 11.98 <0.001 
SB 2,26 1.02 0.37 
EE 2,26 1.32 0.28 
BT 0+ 2,26 21.42 <0.001 
BT older  2,26 20.51 <0.001 

 

The brown trout density significantly reduced during the study period (Figure 5.28; LMM, 

F2,26 = 11.98, P < 0.001). In addition, the 0+ trout density also exhibited a significant 

decrease through the period (LMM, F2,26 = 21.42, P < 0.001). In 2018, 0+ trout were 

absent from most sites, the density was significantly lower compared with the previous 

year (Post hoc, P < 0.001). The older trout density showed a significant increase and then 

reduction through the period (LMM, F2,26 = 20.51, P < 0.001). Among all sampling sites, 

S3 had the highest trout density in all three years. The long term monitoring data from the 

EA (Figure 2.32, 2003-2019) and WRT (Figure 5.29) indicate the minimum trout density in 

the lower Cong Burn, including S3 and S4, showed an increasing trend since 2011, 

peaked in 2014 and steadily decreased until 2019 (Figure 5.29). A similar pattern was 

evident at S6, S7 and S10, the minimum trout density from WRT surveys showed an 

increasing trend between 2013 and 2015, then it decreased steadily until 2019.  
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Figure 5.28 Boxplots showing the variation between 0+ and older brown trout minimum 

density during the sampling periods in Cong Burn.  

 

 

Figure 5.29 The variation of minimum trout density at sites between 2011 and 2019 in the 

Cong Burn. Data from 2011 to 2016 were extracted from WRT single pass electro-fishing. 

Data from 2017 to 2019 were extracted from Durham University single pass electro-

fishing. S3 and S4 were restored in 2010, S6 and S7 were restored in 2012, and S10 was 

restored in 2016. 

 

5.4.5 Bedburn Beck 

Six species were caught during the study period 2017-2019 (Figure 5.30). Brown trout and 
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bullhead were the predominant species in the river. Atlantic salmon were present at a 

slightly lower abundance but were recorded at all sites. Stone loach, minnow and eel were 

only captured at S1 and were absent in both S2 and S3 during the study period. In 

addition, brook lamprey was captured at S2 during the EA electro-fishing survey periods. 

The only site sampled by both the EA and Durham Uni was S2 in 2019. The EA fish 

density (minimum trout 5.3 per 100m2; salmon 4.3 per 100m2) is higher than Durham fish 

density (minimum trout 1.9 per 100m2; salmon 2.9 per 100m2).  

 

The first round capture efficiency of EA’s three pass electrofishing (2001-2006, 2019) at 

S2 were calculated for two types of fish species: solitary midwater (trout and salmon). The 

mean estimated first round efficiency of three-pass fishing is 60.5% for trout and 49.8% for 

salmon. The capture efficiency of three pass electrofishing can be found at Figure 2.35. 

 

 
Figure 5.30 Minimum density of fish species (from single pass electric fishing) between S1 

and S3 during the sampling periods at Bedburn Beck. BT: brown trout, BH: bullhead, MN: 

minnow, SL: stone loach, EE: eel, SA: Atlantic salmon. 

 

For trout, both 0+ and older trout minimum density showed a steadily decreasing trend 

between 2017 and 2019 within the three study sites (Figure 5.31). For salmon, both 0+ 

and older salmon minimum density slightly increased in 2018, then sharply reduced in 
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2019. Combining with EA data, the long-term YoY trout minimum densities in S2 were 

stable between 14.9 and 61.0 per 100 m2 between 1991 and 2006, then largely decreased 

below 20 per 100 m2 in most samplings since 2007 (Figure 5.32). A linear regression 

established that YoY trout density statistically significantly declined across years (F1, 18 = 

13.15, R2 = 0.422, P = 0.002). The long-term YoY salmon minimum densities varied 

between 2.3 and 35.0 per 100 m2 from 1991 to 2014, then largely reduced below five per 

100 m2 since 2016. A linear regression established that YoY salmon density statistically 

significantly declined across years (F1, 18 = 13.1, R2 = 0.421, P = 0.002). No statistically 

significant trend was found between older salmon / trout densities and years (Trout: F1, 17 

= 0.455, R2 = 0.026, P = 0.509; salmon: F1, 18 = 1.187, R2 = 0.062, P = 0.29). In S2, the 

overall salmon and trout minimum density varied considerably between 1991 and 2010 

(Figure 5.33). Since 2011, both salmon and trout density steadily decreased and reached 

their lowest value in 2019. By contrast, the bullhead was absent or present in a very low 

density in S2 between 1995 and 2010, then increased dramatically since 2011 and 

became steady until 2019 (Figure 5.32). A moderate negative correlation was found 

between bullhead and trout density from 1995 to 2019 (Spearman's Rank Correlation, r = 

-0.49, P = 0.03). A moderate negative correlation was found between bullhead and 

salmon density from 1995 to 2019 (Spearman's Rank Correlation, r = -0.52, P = 0.02). A 

strong positive correlation was found between trout and salmon density from 1991 to 2019 

(Spearman's Rank Correlation, r = 0.77, P < 0.001). 
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Figure 5.31 Boxplots showing the variation between 0+ and older brown trout and Atlantic 

salmon (single fishing, minimum density) during the sampling periods. 

 

 

Figure 5.32 Long-term variation of minimum trout and salmon density in S2 at Bedburn 

Beck. Data between 1991 and 2019 were extracted from EA fishing database. BT: brown 

trout, SA: Atlantic salmon. Note: blank means no survey was conducted in that year. 
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Figure 5.33 Long-term variation of minimum fish density in S2 at Bedburn Beck. Data 

between 1995 and 2014 were extracted from EA fishing database. BT: brown trout, SA: 

Atlantic salmon, BH: bullhead, BL: brook lamprey, MN: minnow, SL: stone loach, EE: eel. 
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A moderate positive correlation was found between minimum YoY trout density and 

autumn high flow event days (number of days with flows exceeding Q10 and Q5, from 1 

September to 15 December) in the previous autumn from 1991 to 2019 (Figure 5.34; 

Spearman's Rank Correlation, r = 0.46, P = 0.04 in both cases). No correlation was found 

between the minimum YoY trout density and autumn high flow event days (exceeding 

Q20) as well as the mean autumn flow (mean daily flow from 1 September to 15 

December) in the previous year (Spearman's Rank Correlation, P > 0.05 in both cases). 

No correlation was found between minimum YoY trout density and the number of days 

with flows exceeding Q1 or Q5 between 16 December - 15 May (Figure s5.5; Spearman's 

Rank Correlation, P > 0.05 in both cases). 

 

 

Figure 5.34 Relationship of YoY trout minimum density and high flow event days 

(exceeding Q5 and Q10) in Bedburn Beck between 1991 and 2019. 



317 
 

 

No correlation was found between minimum YoY salmon density and mean autumn flow 

(from 1 September to 15 December in previous year) from 1991 to 2019 as well as 

autumn/winter high flow days (exceeding Q5 or Q10 or Q20) (Figure s5.6; P > 0.05 in all 

cases). In addition, no correlations were found between minimum YoY salmon density and 

winter/spring high flow days from 1991 to 2019 (exceeding Q1 or Q5) (P > 0.05 in both 

cases). 

 

Furthermore, no correlation was found between Framwellgate annual fish counter data 

and mean flow at Chester-Le-Street gauge station from 1 June to 30 November, as well 

as number of high flow event days (exceeding Q5 or Q10 or Q20) during the same 

periods (Figure s5.7; P > 0.05 in all cases). 

 

5.5 Discussion 

The study’s key aims, regarding subcatchment-scale connectivity restoration on native 

fish communities were met. Firstly, the study supports the view that, to achieve a relatively 

full recovery of the fish community over a whole subcatchment, a strategy must be 

adopted to solve all sources of pressure. Not only must good connectivity be achieved 

throughout the subcatchment, but pollution sources need to be removed, and instream 

and riparian habitat need to be appropriate. Incomplete recovery of water quality, 

combined with extensive, poor-quality urban habitat, and very incomplete connectivity 

restoration, seems to have precluded substantive recovery of the natural fish community 

through most of the Cong Burn, by comparison to the other two studied ‘restored’ 

subcatchments. Secondly, the study showed that restoring connectivity at a single site 

within a highly fragmented river system may have very limited beneficial effects on fish 

diversity and abundance. In Brancepeth Beck, two barriers located in the middle reach 

had fish passage easements applied, but the fish abundance and diversity did not improve 

during the study period because the further downstream reach was still fragmented by 

other barriers. Thirdly, catchment-scale connectivity restoration can greatly benefit the 

density and distribution of both migratory and river resident fish species. However, such 

improvements may take several years to develop. In the River Deerness, both brown trout 



318 
 

and bullhead significantly increased in abundance three years after the connectivity 

restoration and remained elevated until 2019, although less changes were found in fish 

species diversity. Fourthly, compared with fish pass / easement installation, barrier 

removal is more effective in restoring rheophilic fish abundance immediately upstream 

through increasing fluvial habitat, and facilitating the movement of poorly dispersing 

species such as bullhead. In the River Deerness, YoY trout were present in low 

abundance at sites where a fish pass was installed but which retained ponding upstream 

of the barrier. In contrast, YoY trout were abundant at sites where the barrier was fully 

removed. 

 

In order to obtain a better perspective of the degree to which barrier removals and 

passage mitigations, alongside longer-term water quality improvements, have enabled the 

restoration of more natural fish communities and species abundance in River Wear 

subcatchments, it is appropriate to gauge these relative to reference conditions (Palmer et 

al., 2005). For the streams in question, the reference condition should refer to the 

undisturbed state before large-scale industrial disturbances (see Chapter 2). However, 

when pristine conditions no longer exist, reference communities might broadly be 

indicated by the species in the lowest section close to the confluence or from a nearby 

free-flowing stream (Woolsey et al., 2007; Mims and Olden, 2013), while recognising that 

habitat conditions, not least stream width and correlated habitat and biotic factors change 

with distance from source (Palmer, 2009). In this study, the communities of all four 

streams were most diverse furthest downstream. Although Bedburn Beck was intended as 

a reference good-condition stream, it appears that the fish community changed in 

composition over time (though based only on one long-term study site). The clearest 

difference in community composition between the reference stream and the restored 

streams was the consistent presence of Atlantic salmon in the former, but the near 

absence in the latter. However, eel were much more abundant in Cong Burn than in 

Bedburn Beck, probably reflecting an upstream-reducing gradient of eel dispersal, given 

that Cong Burn is downstream in the catchment and the Bedburn Beck is upstream. With 

regard to assessing responses in abundance of fishes, a better perspective might be 

obtained from considering these against reference conditions from a much larger sample 
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size of sites, particularly for key indicator species such as brown trout and Atlantic salmon. 

Such reference assessments of expected abundance of salmonid indicator species in 

good habitat conditions have been developed across Western Europe, often by classifying 

into percentiles of abundance, sometimes referenced against correlated habitat criteria 

(Karr, 1981; Romakkaniemi et al., 2003; Aprahamian et al., 2006; Forseth et al., 2013). 

 

The Environment Agency Fisheries Classification Scheme (EA-FCS) can be applied in the 

River Deerness, Brancepeth Beck and Bedburn Beck to gauge the degree to which 

salmonid abundance approximates to expected reference conditions. The EA-FCS was 

developed by the National Rivers Authority in 1990, to allow comparison of YoY and older 

salmonid monitoring data with a database derived from percentile categorization of 

densities from around 1000 survey sites in England and Wales (Mainstone et al., 1994; 

Taylor, 2017). The classification of salmonid populations is based on a grading scale (A–

F) and provides an indication of the status of salmonid populations in study rivers. The 

EA-FCS grading scheme is translated as follows: Grade A (excellent), Grade B (good), 

Grade C (fair or average), Grade D (fair/poor), Grade E (poor) and Grade F (fishless). The 

population density grades for the EA-FCS are detailed in Table 5.9 This grading system 

allows for comparison to national trends and puts densities into a context of how good or 

bad they are, and is included in discussion of the recovery of streams below. 

 

Table 5.9 Brown trout and salmon abundance (number per 100 m2) classifications from 

Environment Agency Fisheries Classification Scheme (EA-FCS). 1++ refers to fish of one 

year and older, while 0+ are young of the year. 

Species 
group  

A B C D E F 

0+ bt ≥38.00  17.00-37.99  8.00-16.99  3.00-7.99  0.00-2.99  0.00  
1++ bt ≥21.00  12.00-20.99  5.00-11.99  2.00-4.99  0.00-1.99  0.00 
0+ sa ≥86.00 45.00-85.99 23.00-45.00 9.00-23.00 0.00-9.00 0.00 
1++ sa ≥19.00 10.00-19.00 5.00-10.00 3.00-5.00 0.00-3.00 0.00 

 

5.5.1 River Deerness 

The river connectivity restoration between 2012 and 2014 in the River Deerness 

significantly increased the overall fish abundance in 2017, 2018 and 2019. Both brown 
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trout and bullhead populations were benefitted from the restoration. Unlike the quick 

recovery of brown trout after a small dam removal in a Danish river (Birnie-Gauvin et al., 

2017b), the trout population in the Deerness took three years to exhibit a marked 

increase. This may because the generation time of brown trout is a minimum of ~2 years, 

and none of the first four downstream barriers was fully removed, so the presence of 

these barriers may still affect the penetration of spawners and resultant egg deposition to 

some degree.  

 

Between 2013 and 2016, according to the EA-FCS grading system the majority of 

sampling sites in the River Deerness were classified as Grade C or D for both YoY and 

older trout, with few sites classified as Grade B (Table 5.10). Since 2017, following the 

increased abundance of both YoY and older trout, nearly half of the sampling sites were 

classified as Grade A and B annually. In the barrier removed reach, S7-S12 were 

classified as Grade C and D for YoY trout between 2013 and 2015. In 2016, two of those 

sites improved to Grade B. No sites between S7 and S12 were classified as Grade D 

since then. From 2017 to 2019, most of the sites where barriers were removed have 

improved to Grade A or B.  

 

Table 5.10 Brown trout classifications of River Deerness sampling sites under the EA-FCS 

abundance grading scheme 

Year Species group A B C D E F 
2013  YoY  2 8 6   
 Older  3 13    
2014  YoY  2 9 5   
 Older  4 12    
2015  YoY  2 6 8   
 Older  5 5 6   
2016  YoY  5 10 1   
 Older  1 10 5   
2017  YoY 4 6 2 2 2  
 Older 5 3 5 3   
2018  YoY 5 3 4 3 1  
 Older 7 3 5 1   
2019  YoY 1 8 4 2  1 
 Older 2 5 7 1 1  
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Strongly increased YoY trout abundance across the barrier-removed reach suggests 

barrier removal successfully restored the river connectivity and improved access to and 

availability of high quality rearing habitat for trout fry and parr. In addition, the length-

frequency distribution of trout shifted from four clear length modes (putatively Age 0+, 1+, 

2+ and 3+) in 2013 to two length modes (Age 0+ and 1+) in 2016, and the median fish 

length progressively reduced through the study period after the restoration, reflecting an 

increasing proportion of Age 0+ trout. It is very likely this reflects an increase in the 

proportion of the Deerness trout population (principally at Age 2) emigrating to the main 

river or to sea. A substantial proportion of Deerness trout spawners are sea trout 

(Tummers et al., 2016). A similar pattern in trout length response to connectivity 

restoration was observed in River Villestrup, Denmark. After six weirs were removed from 

the river, they observed a decrease of the average smolt size through the years (Birnie-

Gauvin et al., 2018). The changes in length structure suggest the connectivity restoration 

decreased the population of resident trout in the River Deerness. The migratory behaviour 

of salmonids is under partial genetic control and has a high heritability (Ferguson, 2006). 

However, in brown trout there is a strong environmental component influencing migration 

tendency (Ferguson et al., 2019). This type of strong genetic control is well developed in 

resident salmonid populations living in habitats where emigration could be 

disadvantageous (i.e. prohibited by barriers) (Northcote, 1992; Ferguson, 2006). Followed 

by connectivity restoration, migration of trout became less restricted, the upstream 

migration of adult sea trout and downstream emigration of trout smolts became easier 

without getting blocked by barriers, which has led to the genetic control to be less 

pronounced (Ferguson et al., 2019).  

 

In addition, the large increase in juvenile trout abundance since 2017 may potentially have 

increased the intraspecific competition for food and habitat (Jonsson and Jonsson, 2006). 

The availability of food strongly influences the growth of brown trout (Elliott, 1976, 1982), 

as well as the tendency for trout parr to smolt or remain resident in the river (Morgan and 

Paveley, 1993; Olsson et al., 2006; Ferguson et al., 2019). Increasing the quantity of food 

available to the progeny of sea trout has been shown to lead to increased freshwater 
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growth rates and reduce the tendency for juvenile sea trout to smolt, effectively producing 

brown trout from a sea trout stock (Morgan and Paveley, 1993; Jonsson and Jonsson, 

2006). On the contrary, when food levels were low, trout became migrants (Jonsson and 

Jonsson, 2006; Olsson et al., 2006), migration to sea could increase the feeding 

opportunities, then lead to increased fecundity (Ferguson, 2006; Thornton, 2008). So it is 

suggested that these combined factors have led to the progressive reduction of resident 

brown trout abundance but increased the migratory sea trout abundance in the Deerness.  

 

In 2016, 2017 and 2018, the study area suffered relatively dry weather conditions during 

the trout prespawning and spawning seasons (between September and December) 

compared with 2013-2015. It was expected that low autumn flows could result in low 

spawner access and egg deposition and resultant low fry densities the following year. 

However, both YoY and older trout abundance still largely increased in 2017-2019. 

Although data were limited there was no correlation between the total / YoY trout density 

and mean daily flow in the previous autumn (and an apparent negative correlation 

between high flow events exceeding Q10 and trout density the following summer). This 

suggests, for the range of flows observed and limited data adult sea trout could still 

access upstream spawning habitat during relatively dry autumns and that spawnings were 

successful.  

 

For sites with fish pass construction, although this has restored fish passage, it does not 

restore habitat immediately upstream. So there is no benefit for the YoY trout in the reach 

immediately upstream (e.g. S2, S4 and S16). The sites S4 and S16 were degraded to 

Grade E due to low YoY trout density in 2017, and this situation continued in both 2018 

and 2019. In 2019, no YoY was caught at S4, which was the first time that YoY trout 

absent from a sampling site. S2 was classified as Grade C and D for YoY trout during the 

whole study period except in 2018 it was classified as Grade B when the overall trout 

abundance in Deerness was high.  

 

These results indicate that barrier removal is a more effective way in restoring juvenile 

trout abundance in the upstream section compared with fish pass construction. Building 
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the fish pass only mitigates the disconnection of fish passage but it is unable to restore 

the habitat immediately upstream of the barrier back to its natural status. However, the 

spatial extent of impounded habitat impact on the Deerness and other moderate gradient 

streams is relatively less than low-gradient streams such as Southern English and Danish 

trout streams (Birnie-Gauvin et al., 2017a). Adult brown trout prefer to spawn in the gravel 

and pebble area within the riffle and glide transition zone which contains sufficient flow 

and well oxygenated water rather than in the impounded slow flowing deep glide (J. Sun, 

pers. obs.) (Reiser and Wesche, 1977; Shirvell and Dungey, 1983; Armstrong et al., 

2003). After emergence, trout fry inhabit shallow riffles within a few hundred meters 

downstream of their hatched area (Armstrong et al., 2003). Brown trout juveniles < 7 cm, 

often occupy shallow and slow-flowing areas (< 20-30 cm depth) in the stream, and they 

will move to deeper areas as they grow (Armstrong et al., 2003). 

 

In the impounded reaches, movement of fine sediments (< 2 mm in size) was blocked by 

the barriers and infiltrated into the gaps of larger substrates such as gravel, reducing the 

permeability and reducing the oxygen supply to developing ova (Soulsby et al., 2001; 

Louhi et al., 2008). High concentrations of fine sediments would result in lower survival 

rates of the eggs and inhibit the emergence of trout fry. In S2 and S4, the river habitat are 

both dominant by slow flowing deep glides (> 1 m deep), and the barriers trapped large 

amounts of fine sand immediately upstream, suitably only for large parr and resident adult 

trout. So YoY trout were still present in low abundance six years after the restoration, 

albeit these were local effects. In contrast, the river habitat in S8, S10 and S12 was of a 

natural status with multiple flow features after the barrier removal. The habitat in these 

three sites provided high-quality spawning grounds for adult trout and rearing habitat for 

both 0+ and older trout.  

 

By contrast to brown trout, salmon have still not populated the Deerness to any significant 

extent, although very low densities occur near the confluence with the Browney and in the 

Browney itself (Chapter 2, Figure 2.33). This is potentially due to philopatric effects, since 

salmon and trout would return to their natal rivers, and often tributaries, to breed (Jonsson 

and Jonsson, 2011). If the stream itself does not hold any salmon population (or has lost 
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its salmon population) and no salmon parr have been restored in it before, it is unlikely 

that adult salmon will select that stream to breed. In addition, salmon often prefer to 

spawn in the main river and larger tributaries, while trout often prefer to spawn in smaller 

headwater streams (Crisp, 2000; Louhi et al., 2008; Jonsson and Jonsson, 2011), so the 

Deerness may be unfavourable for salmon to spawn. Equally, there are many instances in 

which salmon spawn in streams the size of the Deerness, within the Wear (Bollihope 

Burn, Waskerly Beck) and more widely. The loss of salmon from the Deerness and the 

slow tendency for its recolonization through philopatry could form part of a hysteresis 

effect (effects that persist after the initial causes giving rise to the effects are removed – 

here these main effects are water quality, barriers and physical habitat quality). Equally 

since the (assumed) pre-industrial era salmon population in the Deerness was likely 

extirpated due to pollution and urbanisation, the ecological recovery may have followed a 

different path, such that a different fish community may be present and/or habitat 

conditions are different to those prior to the Industrial Revolution. In ecology, hysteresis is 

often used to refer to switches in communities or ecosystems between alternative stable 

states (Beisner et al., 2003), though that may not be the most relevant context here. 

Because there is no fish community data on the Deerness prior to the Industrial 

Revolution (indeed we cannot be 100% sure salmon populated the Deerness) so it is not 

possible to verify the theory.  

 

The bullhead density increased steadily during the study period. Like trout, bullhead rely 

on fast flowing streams with little sand or silt, but they utilise larger substrate and spawn 

under cobbles and boulders (Knaepkens et al., 2002). Removal of barriers and 

reinstatement of high-quality fluvial habitat is expected to benefit spawning, growth and 

survival of bullhead (Utzinger et al., 2008). However, several studies have shown no 

relationship between water depth and bullhead density (Tomlinson and Perrow, 2003; 

Utzinger et al., 2008) and large substrate (cobble, boulder) still persisted in areas 

upstream of barriers. So, even in S2 and S4, their population still increased during the 

study periods. Due to their poor swimming and lack of jumping ability, bullhead are unable 

to pass any in-stream barriers higher than 18-20 cm (Utzinger et al., 2008), so none of the 

bullhead managed to reach S14 during the study periods. In order to restore the 
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population of this kind of poor swimming ability fish, any barriers with a height of 20 cm or 

above are suggested to be removed.  

 

Opposite to brown trout and bullhead, the stone loach population strongly decreased in 

S7-S16 since 2017. Stone loach are known to be more tolerant of sand-silt habitat than 

salmonids and bullhead (Roussel and Bardonnet, 1997), so probably from ponded areas 

upstream of barriers. Stone loach may also have suffered from interspecific competition 

between trout, bullhead and stone loach in the restored stream. A recent study in France 

found stone loach exhibited narrow trophic niches and high overlaps (> 70% in June) with 

0+ salmon parr in a large European river (Floury et al., 2019). In addition, an examination 

of feeding niche overlap between bullhead and stone loach showed a substantial overlap 

in the range of prey items utilised by both fish (Mcleish, 2017). Considering the Deerness 

is a small scale tributary, the prey resources and spatial or temporal habitat would be 

limited, and interspecific competition might be more intensive between these species. 

Three-spined stickleback has been found in the study sites since 2016. It is suggested 

that the stickleback population could originate from small ponds and ditches during high 

flow events.  

 

This case study demonstrates the extent to which catchment-scale connectivity 

restoration can affect the density and distribution of both migratory and river resident fish 

species. In this case, the overall fish population did not respond to the connectivity 

restoration immediately. It tooks four years to develop, before the rapid increase in the 

overall fish population happened and it is unclear as to whether a new equilibrium has 

been reached yet. Certainly eel densities remain low, salmon are absent and brook 

lamprey are absent, suggesting that full recovery is still some way off. Furthermore, 

results of this study revealed that barrier removal is more effective in restoring fish 

abundance in the immediately upstream reach, and facilitating movement of poorly 

dispersing species, compared with fish pass construction. Findings of this study suggest 

that any low-head barriers including smaller weirs and bridge aprons should be 

considered in catchment-scale restoration plans, and aim for barrier removal as the first 

approach rather than attempt to install an artificial fish pass on the barrier. Crucially, the 



326 
 

findings support the idea that effective stream connectivity restoration for fluvial fishes 

requires connectivity across most barriers within a subcatchment to generate substantive 

benefit. These findings have important implications for the in-stream barrier management 

and river restoration works across the world. 

 

Future restoration work in the River Deerness needs to focus on: (1) Restoring the 

connectivity in the lower part of the Priest Burn tributary. A 1.1 m high culvert apron with 

three steps and a 0.9 m high wooden weir were identified within a few hundred meters 

upstream of the Priest Burn / Deerness confluence during the barrier survey (see Chapter 

3). (2) Restore the connectivity at Red Burn tributary (see Chapter 3, Figure 3.6). A total of 

five in-stream barriers were recorded during the barrier survey on Red Burn, including 

pipe culverts, woody debris within a culvert, a stepped weir and a spillway (see Chapter 

3). These barriers were not been recorded in the original restoration scheme (2012-2014), 

which could prevent / delay the upstream / downstream migration of all species. (3) 

Mitigate / remediate point source and diffuse pollution in the sub-catchment. Point source 

pollution from Esh Winning STW is recorded in the Waterbody Action Plan as is the 

sewage discharge at downstream of Ushaw Moor Bridge. Both locations failed to meet 

phosphate limits during the EA assessments between 2013 and 2016, and under WFD 

this is expected to be improved by 2027. To date, physical and riparian habitat in the 

Deerness is relatively good and diverse and is one of the reasons why connectivity 

restoration seems to have been effective in improving fluvial fish densities and facilitating 

more natural fish community structure. 

 

5.5.2 Brancepeth Beck 

The connectivity restoration in the Brancepeth Beck significantly increased the overall fish 

density in 2017, 2018 and 2019 relative to 2014. Brown trout, bullhead and stone loach 

populations benefitted from the restoration, yet the data suggest a significant ‘event’ 

occurred in 2014-2015 that caused the loss of all minnow and most stone loach from the 

upper and middle part of the stream, with recovery only starting in 2018-19. No salmon 

were caught – the reasons for this might be as expounded in section 5.5.1. The spawning 

redds found during the walkover survey provided evidence that adult sea trout managed 
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to reach upstream of the large stepped barrier at B3 for the first time, after the 

construction of the rock ramp. In addition, the density of both YoY and older trout in the 

restored reach were markedly higher comparing with the unrestored upstream reach 

providing evidence that the habitat was improved for young trout in this section, and 

suggesting the river connectivity and passage, for trout at least, has been successfully 

restored in the middle reach. Unfortunately, the fish length was not measured in the 2014 

pre-restoration survey, so it is not possible to know the increase in 0+ trout density across 

the large number of survey sites.  

 

In 2017, all sampling sites in the restored reach were classified as Grade A for YoY trout 

(Table 5.11). In 2018 and 2019, six sites within the restored reach were classified as 

Grade A for YoY trout, two sites were classified between Grade B and D. In addition, all 

restored sites were classified as Grade A for older trout in 2018. Comparing with the un-

restored reach, most sites were classified as Grade E or F between 2017 and 2019 for 

YoY trout. YoY trout was totally absent from more than half unrestored sites during the 

study period. Dry autumns in 2016-2018 may have caused the apparent deterioration in 

trout density grades over time in the unrestored upstream section (Table 5.11). Status of 

older trout were classified as Grade D, E and F at most un-restored sites between 2017 

and 2019. Although a wide range of trout density grades (including grades D-F) was found 

for the unimpacted reference zone, this may be attributed to more heterogeneous flow 

types and low gradient stream channel. 

 

The steadily decreased trout density in the upstream unrestored reach suggests that  

leaving the sites fragmented and impacted under the anthropogenic barriers would create 

a negative effects on the fish community and decrease the recruitment of young fish 

(Birnie-Gauvin et al., 2020). Within the upstream reach, although B7 and B8 were 

“restored” by the WRT, fish were still present in a low numbers. This is mainly due to no 

action being taken to restore passage and reduce ponding at B5 and B6, and both 

barriers can still prevent fish from ascent further upstream. During the walkover survey, no 

spawning redd or adult sea trout were observed in upstream of B5 in both 2017 and 2018. 

This further proves that remaining barriers still pose significant negative effects on 
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upstream migration. In addition, during the 2019 electro-fishing survey, it was noticed that 

plastic baffles on B4 were not firmly attached on the weir surface anymore and a big gap 

was formed between the baffle and weir. This means the easement may not be able to 

serve its original purpose in elevate enough water depth for salmonids to jump over the 

weir. It is suggested that fish pass / easement should be regularly maintained to keep its 

efficacy. This represents another problem with fish passes and easements; that capital 

spend may be provided to install them, but it is rarely provided for the careful maintenance 

of such structures. 

 

Table 5.11 Brown trout classifications of Brancepeth Beck sampling sites under the EA-

FCS grading scheme. 

Section Year 
Species 
group 

A B C D E F 

Reference 2017 YoY 3     1     
1-4   Older   1 2     1 
 2018 YoY 2   1   1   
   Older 2   1   1   
 2019 YoY 1 2     1   
   Older     1 1 2   
Restored 2017 YoY 8           
5-12   Older   2 3 3     
 2018 YoY 6 1   1     
   Older 8           
 2019 YoY 6   1 1     
   Older 2 2 2 1 1   
Unrestored 2017 YoY 1 1     4 7 
13-25   Older 1   3 6 1 2 
 2018 YoY   2     3 8 
   Older   1 2 5 2 3 
 2019 YoY     1 1 2 9 
   Older     3 3 1 6 

 

The common minnow is the only species that vanished in both restored and upstream 

unrestored reaches during the study period. However, this species was not caught since 

2015, which is one year before the connectivity restoration. This suggests that 

disappearance of minnow was not related to the catchment restoration. More likely it was 

the result of a stochastic event such as a dry summer or poor water quality event in the 
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upper and middle reaches. Poor water quality seems unlikely since other oxyphilic species 

such as trout and bullhead did not suffer in the same way. It is more likely that, since 

minnow are the only midwater schoolers in the stream, and rely on slack water refuges 

(Frost, 1943) , they were swept away during a high-flow event(s) in 2014-15 (Garner, 

1997). In the downstream reference reach, minnow has been observed recolonizing the 

restored reach. This species managed to disperse nearly 500 m upstream in the past 

three years. If habitat in the restored reach keeps constant, the minnow population will be 

recover shortly, but may take much longer to recolonize the upper unrestored section. 

Stone loach also disappeared from most of the upper section at the same time, but less 

so from the middle section and have recovered more quickly because of that; the timing 

suggests they were impacted by the same event(s) but less so than minnow. 

 

In the Brancepeth Beck, the initial connectivity restoration plan by the WRT was to 

mitigate these barriers from downstream to upstream. However, after they restored the 

first four barriers (B1-B4), they skipped two barriers (B5 and B6) in the mid-catchment and 

chose to mitigate barriers (B7 and B8) further upstream. In this case, both B5 and B6 are 

major barriers to fish passage, but both could not be removed due to different reasons. 

One of the problems at B5 and B6 is the existence of structures that landowners are 

unwilling to remove (B5) or allow to be removed (B6), even where there is no risk of flood 

damage to property. Another problem is cost which can be large, for example where the 

stream is culverted under a road. When developing barrier removal project, approaches 

should take into account the catchment scale to identify and prioritize the most relevant 

stressors affecting river connectivity (Haase et al., 2013). Barrier removal through 

prioritization could gain a better overall connectivity increase than randomly remove 

barriers at the catchment scale (Branco et al., 2014). In NE England, one major challenge 

often faced in river connectivity management is lack of funding to remove or mitigate all 

barriers within a catchment. Under this circumstance, mitigate barriers according to a strict 

model predictive basis of which should work best could be considered (Branco et al., 

2014), to avoid misuse of funding and ensure limited funds spend on the priorities.  

 

In order to improve the connectivity of the upstream reach, the first and most vital step is 
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to find an appropriate method to restore the connectivity of both B5 and B6, since both 

barriers are unable to be removed. The low fish density in upstream B6 suggests it is 

pointless to install fish passes on the further upstream barriers unless the poor passage 

further downstream is eased. In July 2020, a stepped stonework bypass structure was 

installed at B5 by the landowner. It may potentially benefit the passage of salmonids 

during high flows but may have less utility for poor-leaping-ability species such as stone 

loach, bullhead and minnow, since it is not a carefully designed fish pass. It is suggested 

that some modification could be done at this bypass structure, to facilitate passage for 

more species. Furthermore, to achieve a successful catchment scale restoration for 

Brancepeth Beck, the fish passes and easements need to be regularly checked and 

maintained, to avoid partly / completely loss of function. Although the fish abundance and 

community structure has benefitted from the fish pass, the river habitat was still heavily 

affected by the remaining weirs. If these weirs can be fully removed in the future, more 

suitable spawning and rearing habitat could be provided to fish, and fish such as trout and 

bullhead would be benefit from the restoration.   

 

5.5.3 Cong Burn 

Wide variations in trout recruitment between years and sites have been observed in the 

Cong Burn catchment since 2011. From a short term perspective, there is little clear 

signature of any positive effect from the restoration actions. It seems likely that suboptimal 

habitat or water quality in the lower part of the Cong Burn may be holding back the 

restoration of the fish community there. There is little evidence of upstream dispersal and 

colonisation of small benthic fish species (bullhead, loach) up the Cong Burn at this point 

in time. The low species diversity in S2 and further upstream sites suggesting the 

presence of B2 (500 m long culvert) holds back the majority of species found at S1 from 

colonizing upstream and caused significant negative impacts on fish communities at Cong 

Burn catchment. This is potentially through a fish density effect of there being sufficient 

dispersers to help continued upstream colonization (Radinger and Wolter, 2014). There 

was greater evidence of eel penetration up the catchment, but these still did not reach 

high densities. To achieve a successful restoration of the expected natural fish community 

(approximating that at S1) further upstream, the current vital step is to improve 
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connectivity at B2. This could be achieved by replacing the culvert with a natural channel 

or installing nature-like fish pass elements to facilitate upstream passage. This is being 

progressed, slowly, but the budgeted costs are high (hundreds of thousands of pounds) 

and the engineering is complex, as the structures are set within an urban environment 

where flood risk is a primary concern and there is little space to ‘soften’ the existing hard 

engineering. From longer term examination in certain sites (see section 2.3.2.6), the 

variations in trout population indicates trout have not yet fully recolonized the river and 

developed dense populations that would be expected if the stream had good connectivity 

and good trout habitat. Furthermore, a lack of good baseline data and variability in the 

pre-restoration survey methods, increased the difficulty in the interpretation.  

 

No 0+ trout (≤ 80mm) were caught at sites 9 and 10, immediately upstream of Pelton 

Bridge in 2016, this reflecting the output of spawning immediately upstream from autumn 

2015, before the easement installation. However, it should be noted that relatively small 

numbers of 0+ trout were recorded in the Cong Burn in 2016 compared to the same sites 

in the two previous years, so the lack of trout fry in the Twizell Burn at S9 and S10 may 

simply reflect a poor 2015 year class in terms of recruitment. The decrease in 0+ trout 

density between 2014 and 2019 might be the result of worsened water quality in the 

Twizell Burn associated with lack of food sources, but the low autumn flows in 2016-2018, 

combined with the large number of obstacles, many of which have easements rather than 

full passage solutions, may also have contributed to the decline. In 2013, the chemical 

status of Twizell Burn was classified as “Fail” due to the fail in both nickel and tributyltin 

compounds (Environment Agency, 2020a). In 2014, the Twizell Burn failed in 

benzo(a)pyrene and tributyltin compounds. In addition, the status of invertebrates was 

classified as “Poor” in both Twizell Burn and Lower Cong Burn in 2014; then it was 

classified as “Moderate” in 2015 and 2016 (Environment Agency, 2020a). This is mainly 

caused by the organic pollution from the sewage discharge from waste water treatment.  

 

Examining the combined data available from EA and WRT salmon have remained almost 

entirely absent in the Cong Burn since 2003, with the exception of a few records at S1 

(see Chapter 2, Figure 2.32). This is similar to in the Deerness where salmon continue to 
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be near-absent despite connectivity restoration actions (see Chapter 2, Figure 2.34). 

Salmon rarely attain high densities in small lowland streams (Environment Agency, 2002c) 

and, in particular, with the Wear salmon population being in a recovering state it seems 

unlikely that salmon will rapidly colonise such streams within the next decade. These 

streams may remain unfavourable for salmon (which often prefer larger tributaries and 

main stem habitat in which to spawn (Louhi et al., 2008; Jonsson and Jonsson, 2011). 

 

The majority stickleback population was found in the upper section of the Twizell Burn 

where the habitat is impacted by urbanization, where water quality is poor (waste water 

input from Stanley and South Moor) and where diadromous fish access is impossible due 

to the large barriers at Grange Villa (B9).  

 

5.5.4 Bedburn Beck 

In Bedburn Beck, both Atlantic salmon and brown trout abundance showed a decreasing 

trend during both short-term and long-term monitoring programmes. YoY trout density was 

classified as Good (Grade A and B) between 1991 and 2010 under the EA-FCS grading 

system, but degraded to Poor (Grade D or E) since 2011 (Table 5.12). The older trout 

densities were classified as Good (Grade A and B) during most years, except in 2011 and 

2019 when they were classified as Fair (Grade C). 

 

YoY salmon density varied between Grade A and D during most years, except in 2009 and 

2019 when they were classified as Poor (Grade E). On the contrary, the older salmon 

densities were classified as Good in all years between 2001 and 2016. Until 2019, both 

salmon and trout abundance largely decreased, when both YoY densities were classified 

as Poor (Grade E), this may suggest progressively poorer recruitment. This is important, 

because Bedburn Beck was regarded as a ‘reference’ stream, with clean water, good 

physical habitat and relatively few barriers, yet juvenile salmonid densities appear to be 

declining. In the medium term, this reinforces the improvements in trout densities in the 

Deerness and Brancepeth Beck as genuine; they have improved and are recovering at a 

time when salmonids in one of the Wear’s ‘high-quality’ tributaries are declining. In other 

words this is further evidence of genuine (but incomplete) restoration success in the 
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Deerness and Brancepeth Beck. 

 

Table 5.12 Brown trout and salmon classifications of the Bedburn Beck S2 under the EA-

FCS grading scheme. Fish densities from 2001 to 2006, 2019 were calculated based on 

three-pass electro-fishing data. Fish densities from 1991 to 1997, 2007 to 2016 were 

calculated based on single-pass fish densities divided by mean capture efficiency from 

three-pass electro-fishing.  

 Trout YoY Trout Older Salmon YoY Salmon Older 
Year Density Grade Density Grade Density Grade Density Grade 
1991 100.9  A 19.8  B 70.3  B 14.1  B 
1995 47.3  A 16.9  B 15.8  D 22.1  A 
1997 54.5  A 11.0  B 67.0  B 5.5  C 
2001 50.8  A 14.8  B 29.3  C 19.7  A 
2002 70.9  A 78.1  A 19.6  D 57.2  A 
2003 100.2  A 138.4  A 100.3  A 214.5  A 
2004 25.1  B 26.1  A 29.8  C 29.8  A 
2005 65.2  A 52.9  A 37.5  C 44.4  A 
2006 95.2  A 126.2  A 29.9  C 146.1  A 
2007 27.3  B 19.9  B 21.6  D 72.2  A 
2008 26.5  B 13.2  B 34.1  C 31.5  A 
2009 30.2  B 34.0  A 4.7  E 42.4  A 
2010 93.2  A 93.2  A 35.4  C 86.7  A 
2011 5.7  D 6.1  C 14.4  D 20.7  A 
2012 7.6  D 24.1  A 26.8  C 26.8  A 
2014 30.3  B 34.4  A 43.8  C 43.8  A 
2016 47.4  A 28.6  A 10.2  D 33.9  A 
2019 2.3  E 7.4 C 3.2 E 4.4 D 

 

A positive correlation between trout parr density and previous year autumn flow 

suggesting that trout abundance in the Bedburn Beck was highly related to the ability of 

spawners to access the stream, yet the lack of any such relationship for salmon is a 

surprise. High flow events in autumn would be expected to bring more adults into 

spawning streams, whereas persistent low flows in autumn could reduce the numbers of 

spawner in the Bedburn Beck, although low numbers of barriers would also limit such 

impacts.  

 

The negative correlation between salmonids (both salmon and trout) and bullhead may 
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suggest that competitive coexistence between these species. This is mainly due to the 

similar dietary niches and feeding strategy causing the competition in food resources 

access (Gabler and Amundsen, 1999; Floury et al., 2019). The competitive coexistence of 

YoY Atlantic salmon parr and alpine bullhead (Cottus poecilopus) has been well 

documented in sub-arctic rivers (Gabler and Amundsen, 1999, 2010).  

 

The fish density changes in the Bedburn Beck probably reflect long-term natural trends in 

fish communities, particularly of migratory sea trout populations in Wear tributaries, 

affected by factors such as marine survival, and river flow affecting upstream migration 

past barriers in the main Wear. Certainly adult salmonid counts at Durham have declined 

markedly in the last 6 years (Figure 2.18) and it is possible that the decline of juvenile 

salmonids in Bedburn Beck is an outcome of this. 

 

5.6 Conclusions 

This study assessed the effects of multiple barrier restoration works on fish communities, 

and findings of the study suggests that, in rivers with good aquatic habitat, including good 

water quality, restoring river connectivity, can be beneficial for both resident and migratory 

fishes. But it emphasizes the need to resolve the majority of artificial barriers in a 

subcatchment, rather than just a few, and that all key stressors to natural ecosystem 

function need to be removed in order to achieve near-complete ecological restoration 

outcomes. Findings of this study also support the recent emphasis of barrier removal 

being more effective in restoring fish communities in the immediately upstream reach 

compared with fish pass installation. In addition, this study showed that after connectivity 

restoration, the recovery periods of migratory salmonids such as sea trout could take 

more than three years in small moderate-gradient NE English tributaries, in contrast to the 

rapid recovery of migratory salmonids in low-gradient Danish streams. This study has 

important implications for in-stream barrier management and freshwater fisheries. 
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6.1 Summary of thesis outcomes 

One of this thesis’ aims was to determine the likely factors responsible for the decline and 

recovery of fish (especially anadromous salmonids) stocks in three post-industrial rivers in 

Northeast England (Chapter 2). Although not statistically tested, due to the nature of the 

evidence available, severe decline in water quality, barriers to fish movement and habitat 

modification all seem to have been major factors in the decline of natural fish communities 

in the Tyne, Wear and Tees. Removal of the most severe pollution sources has been 

crucial for their partial recovery, particularly for anadromous salmonids on the Tyne and 

Wear whose passage was inhibited by pollution conditions known to be lethal or very 

stressful to migrating salmonids (Bassindale et al., 1933; Alabaster & Lloyd, 1982). 

However, considerable work remains to be done in restoring water quality, habitat diversity 

and native fish biodiversity and abundance in all three catchments, against a background 

of newer impacts from intensive agriculture and invasive species.  

 

Because anthropogenic river barriers are a key cause of river modification and impact to 

fish communities, including migratory species, the thesis aimed to assess the level of 

completeness of the current national barrier inventory using the Rivers Wear and Tees as 

case studies (Chapter 3). Chapter 3 revealed that 77.3% of in-stream barriers in both 

catchments combined were absent in the national barrier inventory, supporting the 

contention that the national barrier inventory is highly incomplete (Jones et al., 2019). 

Failure in restoring stream connectivity could be expected when using this incomplete 

national barrier inventory. The effects of removal of a single tidal barrier on aquatic habitat, 

fish and invertebrate communities in a lowland stream of the Tees were tested (Chapter 4) 

as were the outcomes of multiple connectivity restoration works on fish communities in 

three tributaries of moderate gradient, located in the River Wear (Chapter 5). Chapter 4 

revealed that European eel (Anguilla anguilla) density largely increased across the 

catchment 1.5 years (as a result of the ability to disperse into formerly poorly accessible 

upstream habitat) after removal of the tidal barrier. On the contrary, brown trout density 

(Salmo trutta) remained low during the study and recruitment was poor during the short 

study timeframe. The outcomes of Chapter 4 support the recent emphasis of barrier 

removal as an effective tool to restore river connectivity and lotic fish communities. 
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Chapter 5 revealed that in a stream with relatively good physical habitat quality (River 

Deerness), both brown trout and bullhead (Cottus perifretum) abundance increased within 

the restored reach three to four years after the restoration and remained elevated until the 

end of the study (2019). Nevertheless, Atlantic salmon (Salmo salar) remain nearly 

absent, even though abundant in the main river. However, in a stream with degraded 

habitat and recovering water quality (Cong Burn), partial connectivity restoration has had 

limited benefits on the fish population. The results of Chapter 5 agree with the findings in 

Chapter 4 that wider catchment management (e.g. habitat restoration or pollution control) 

is required to complement connectivity restoration.  

 

This thesis has important implications for environmental and river restoration 

organisations engaged in river and estuary management on the specific catchments and 

for elements of river restoration programmes aimed at fish stocks. It also has broader 

relevance to rehabilitation of fish stocks in river catchments degraded by urban and 

industrial development across much of Northwest Europe and parts of North America. In 

this chapter, a discussion of the main findings is presented along with some limitations 

and implications of the study, as well as recommendations for future research. 

 

6.2 Anthropogenic impacts on fish decline in post-industrial rivers 

Worldwide, many running water species are threatened with extinction and the 

ecosystems of many streams and rivers have become badly damaged due to 

anthropogenic impacts (Vörösmarty et al., 2010). Although river rehabilitation schemes 

have been increasingly used in recent years, only a few studies assess the effectiveness 

of the measures on ecological characteristics from a holistic perspective (Paillex et al., 

2017). 

 

Restoration ecology requires an understanding of past events and impacts in order to 

understand what needs to be done to restore functional elements of the ecosystem. A 

substantial part of this thesis was devoted to a historical review of the decline and partial 

recovery of the Tyne, Wear and Tees ecosystems (see Chapter 2), involving collation, 

integration, analysis and interpretation of fragmented evidence and data. The term 
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‘‘Historical Ecology’’ has been used since the middle of the 20th Century for a wide range 

of studies of past human-nature relationships (Haidvogl et al., 2015). It has been adopted 

as a specific method to study past ecosystems, their variations and interactions between 

human and environment (Hall et al., 2011; Haidvogl et al., 2015). Recognition of the 

“shifting baseline syndrome” (Pauly, 1995) in restoration ecology has resulted in an 

increased application of using historical data to reconstruct pre-exploitation conditions 

(Limburg and Waldman, 2009; Hall et al., 2012; Mallen-Cooper and Zampatti, 2018). 

Species composition, abundance or biomass and its surrounding habitat in past 

ecosystems are reconstructed based on the available historical sources, and this 

information provides baseline reference data for restoration works (Hall et al., 2011; 

Langford et al., 2012; Mattocks et al., 2017). Furthermore, study of the historical 

interactions between human activities and fish communities helps reveal past trends in 

fish community and population development, and increases the understanding of potential 

future trends (Langford et al., 2012; Haidvogl et al., 2014). However, historical studies of 

river and freshwater fish ecology, as attempted within this thesis, are still rare. 

 

One reason for this is due to the difficulties in gathering historical biodiversity data 

(Haidvogl et al., 2015). Studies of historical fish communities or populations often have 

incomplete data such as abundance, biomass and even species presence (Limburg and 

Waldman, 2009; Haidvogl et al., 2015). Beyond the last century (and even more recently 

in many cases, as in Chapter 2), freshwater fish surveys often relied on interviews with 

fishermen (Haidvogl et al., 2015). Statistical data on wild fish catches were rarely recorded 

in the medieval period (Hoffmann, 2015) and even much later as in this thesis (Chapter 2), 

and most fish community and population data were produced in relation to commercial or 

traditional fisheries, fish trading and fish consumption before the 1950s (Limburg and 

Waldman, 2009; Hall et al., 2012; Haidvogl et al., 2014, 2015). However, these data were 

mostly focused only on species of commercial interest and data were often not well 

preserved or even lost (Haidvogl et al., 2015). It was not until the second half of the 20th 

Century, when standardized and systematic fish sampling approaches were largely 

employed in monitoring programmes (Haidvogl et al., 2015). Again, these patterns are 

reflected in Chapter 2, as the only readily accessible fish abundance data or proxies of 
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abundance (fish catch) in the Tyne, Wear and Tees pre-1990, were primarily for Atlantic 

salmon and sea trout (S. trutta), representing well under 10% of native fish species in 

these rivers. 

 

In recent years, rather few case studies on historic changes in fish species or 

communities of European rivers have been published (Worthington, 2010; Haidvogl et al., 

2015; Hoffmann, 2015; Torkar and Zwitter, 2015; Wolter, 2015). In the second half of the 

19th Century, the Industrial Revolution led to large-scale and frequent exchange of 

species (Haidvogl et al., 2015). For Northeast English rivers, such changes mainly 

resulted in temporary or permanent loss of species such as Atlantic salmon and smelt 

(Osmerus eperlanus). Although some fish species were recorded in historical literature, 

the detailed records are too poor to be clear as to what the original natural fish faunas 

were. The Northeast English rivers exist in a biogeographical transition zone between the 

Humber system to the south (tributaries of the Swale in the Humber system lie just a few 

hundred metres from those of the Tees) and the salmonid dominated rivers of eastern 

Scotland (Davies et al., 2004). At the end of the last Ice Age the Humber was linked to the 

Rhine system and shared a range of cyprinid, gadid (burbot Lota lota), percid and esocid 

species generally not found in rivers further north in Britain. It is likely that many of the 

cyprinids, as well as pike (Esox lucius) and perch (Perca fluviatilis) found in the Tees were 

introduced from the Humber system many centuries ago. Barbel (Barbus barbus) in the 

Wear are a recent introduction in the last few decades (Britton and Pegg, 2011; McParlin, 

2011). Grayling (Thymallus thymallus), roach (Rutilus rutilus) and dace (Leuciscus 

leuciscus) are all known successful introductions to the Tweed whose headwaters border 

those of the North Tyne (Mills, 1989; Dawnay et al., 2011). It is likely, but less clear cut, 

that these and several other fish species are non-native to the Tyne and Wear.  

 

In river systems, fish are one of the major biota that were affected strongly during the 

Industrial Revolution, partly because of their sensitivity to altered ecological conditions, 

but partly also because at least some of them were readily exploited by humans. 

Understanding the key factors that led to the decline of fishes in industrial rivers and their 

subsequent recovery, or not (e.g. Atlantic salmon, Wear vs. Tees) can help guide 
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management plans for future conservation, and provide some insights before conducting 

river rehabilitation works. For example, historical literature was used to characterize the 

historical decline, distribution, and environmental requirements of burbot in England as an 

indicator of the utility for planning conservation actions such as burbot reintroduction 

(Worthington, 2010; Worthington et al., 2010). In order to do that, the former distribution of 

burbot populations have been reconstructed in 42 rivers in eastern England (Worthington, 

2010). However, there had been no systematic historical study on the decline and 

recovery of fishes in post-industrial rivers in NE England, though this thesis has attempted 

to remedy that.  

 

Due to the limitation in gathering historical fish data before the 19th Century, Chapter 2 

briefly described the status of fishes in the Tyne, Wear and Tees before the 19th Century 

and mainly focused on the changes from the 19th Century to the present day. Chapter 2 

described the deterioration of water quality caused by intensive mining in the North 

Pennines, industrial pollution and domestic waste since the 19th Century, then it described 

the connectivity and habitat deterioration caused by damming actions (e.g. many old mill 

weirs as well as more recent barriers such as Kielder reservoir and the Tees Barrage) and 

intensive gravel extraction. Later it showed the massive decline in anadromous fish 

populations (primarily salmonids) in the three catchments. Before the 19th Century, Atlantic 

salmon and sea trout were widely distributed through the Tyne, Wear and Tees 

catchments. However, multiple pressures from human activities led to the functional 

extinction of salmon and sea trout from all three rivers in the early 20th Century. The near 

absence of salmon and sea trout lasted until the 1970s, then their numbers steadily 

increased in all three catchments as water quality improved. In the Tyne and Wear 

catchments, the increase of salmon and sea trout has slowed down and stabilized in 

recent years. There is even some evidence of a recent decline in the Wear. In the Tees, 

salmon and sea trout numbers have slowly increased until today, rather than following the 

rapid trajectory of the Tyne and Wear. This is potentially caused by the Tees Barrage, 

constructed in the estuary in 1994, and which prohibits free upstream and downstream 

migration of fishes.  
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Chapter 2 has revealed that the potential for recovery of anadromous salmonid stocks in 

post-industrial Pennine rivers with abundant salmonid spawning and nursery habitat, is 

driven by both accessibility and survival in the lower river, through the effects of barriers, 

pollution and predators (e.g. human). The Tyne and Wear are now England’s most 

productive salmon rivers. By contrast, salmon populations in the River Frome and other 

chalk rivers in the south of England have continuously declined since the 1970s (Welton 

et al., 1999a; Ikediashi, 2015; Cefas et al., 2019). Furthermore, although lots of effort was 

made to restore river habitat and connectivity, salmon failed to recolonize in the River 

Thames in the south of England (Chapter 2). Salmon populations in the south of England 

are at risk, or unable to recover, due to climate change, water abstraction, intensive 

farming impacts and urbanization (O’Neill and Hughes, 2014; Cefas et al., 2019). By 

contrast those in the north of England are less susceptible, currently, to climate change 

and hydrological pressures. 

 

Chapter 2 was mostly focused on the anthropogenic impacts on the river systems and 

salmonid populations since the 19th Century. However, the knowledge of past fish 

communities, populations and habitat conditions in Northeast England rivers prior to the 

19th Century are still poorly understood. Although some potential useful archived 

documents were noticed (including several documented within Skelton, 2017), there was 

no access to these archives due to the lockdown during the global coronavirus pandemic. 

Future research on this topic might better exploit analysis of archaeological finds, fishery 

board reports, estate management records (e.g. accounts, rentals, court books, etc.) and 

commercial / recreational fishing records (e.g. fish trading or angling club logbooks) 

(Hoffmann, 2015). For example, in-stream habitat and aquatic faunal community could be 

reconstruct by using the sub-fossil remains of aquatic invertebrates (Greenwood et al., 

2003; Seddon et al., 2012). However, these types of research may require interdisciplinary 

cooperation between ecologists, archaeologists, hydrologists and historians (Haidvogl et 

al., 2015). 

 

Although the most severe pollution sources in the Tyne, Wear and Tees have largely been 

reduced (especially those linked with heavy industry and sewage), and a clearly 
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increasing trend of salmonid and estuarine fish abundance has been observed in the 

three catchments, these rivers are still facing great challenges in some aspects of their 

management. Only a small proportion of the Tyne (33.3%), Wear (9.4%) and Tees (14.9%) 

Water Framework Directive (WFD) waterbodies had achieved good ecological status by 

2019. All three catchments are still affected by multiple anthropogenic impacts such as 

physical modifications (e.g. instream barriers, channelization), point source pollution from 

abundant mines, sewage treatment works, and diffuse pollution from rural areas and 

towns, cities and transport. All these issues need to be assessed by river management 

agencies in the near future and the prioritization of what types of restoration work should 

be done, and where, need to be carefully evaluated.  

 

The results of Chapter 2 provided baseline water quality and fish community background 

information of multiple study sites including all those in Chapters 4 and 5. Providing 

accessible and transparent data and information is crucial to long-term ecological study 

such as river restoration (Lindenmayer et al., 2012; Powers and Hampton, 2019) and is 

something it is hoped this thesis will help with in regards to future restoration actions on 

the study catchments. One of the frustrations of this study has been that although it was 

known that fish community / abundance and estuary water quality sampling were carried 

out within the three catchments in an orderly sampling programme from the 1970s 

onwards, accessing those data was extremely difficult. In many cases it seems that the 

organizations responsible (Northumbrian Water Authority) and their successors were poor 

at archiving and making data available. Even for the National Rivers Authority and its 

successor Environment Agency, some of their early stage electro-fishing data were only 

preserved with hard copies and have not been digitised. So, getting data from the early 

1990s was reliant on individual contacts, rather than accessible long-term databases of 

records. This problem is not new (Langford et al., 2012), but environmental managers 

need to better value, archive and make accessible long-term monitoring data sets, rather 

than to allow them to be ‘lost’ when regulatory or monitoring bodies are reorganized. 

 

Another issue of the Environment Agency and third sector bodies such as the Rivers 

Trusts is their long-term electro-fishing monitoring plans are often badly organized or 
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appear ad hoc. When analysing the electro-fishing data, it was noticed that within a 

catchment, sites were often sampled in a disordered way with bad temporal continuity 

(Defra, 2010b). The same sites were not surveyed in each year (yet fish recruitment can 

vary widely between years), some sites were only surveyed once or twice and then were 

abandoned for the remaining period. The electro-fishing method varied between years 

and survey sites: some were surveyed quantitatively with several passes and stop nets 

used, others were single passes with or without stop nets (Defra, 2010b). This is 

potentially due to limited funding or staff. However, badly organized sampling spatially and 

temporally, increased the difficulty in data analysis and limited the data utility in statistical 

analysis. It is suggested that when developing future electro-fishing surveys, the locations 

and numbers of sampling sites within the catchment need to be carefully planned to avoid 

mis-spending large sums of money, and sites should be surveyed repeatedly (e.g. on a 

yearly basis) to facilitate detailed statistical analysis. Consistent, annual quantitative 

sampling of fewer sites is probably of greater value in tracking the condition of rivers being 

restored than multi-year interval sampling of a greater number of sites. In future, 

environmental DNA sampling may also prove increasingly valuable (see section 6.4 for a 

discussion of its utility), but again any transition of sampling method needs to be done 

carefully and rigorously. 

 

6.3 Instream barrier management  

Chapter 2 revealed that the presence of instream barriers is still one of the major reasons 

for not achieving good ecological status in the three study catchments (Tyne, Wear, Tees). 

Instream barriers can alter habitats, ecosystem processes and restrict or prevent fish 

migration and dispersal, and eventually lead to a decline in the abundance of sensitive 

species and a decline in biological diversity (Chapters 4 and 5). Results of Chapter 4 

revealed that although a small tidal barrier did not fully prevent upstream eel passage, it 

dramatically reduced eel abundance and altered eel size structure within the upstream 

reach. In addition, fish density in the impounded reach was significantly lower compared 

with other sections prior to barrier removal. Numerous similar observations have been 

made elsewhere, although the exact patterns of effects varies with barrier location within a 

catchment, proximity and density of other barriers, river gradient and topography and 
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native fish community (Gehrke et al., 2002; Katano et al., 2006; Ding et al., 2018; Galib et 

al., 2018). 

 

In order to achieve good ecological status for as many constituent lotic waterbodies as is 

feasible in all three study catchments by 2027 (the WFD deadline which the UK, although 

having left the EU will follow), one of the major catchment management tasks is to reduce 

the ecological impacts of all artificial instream barriers, and restore river connectivity. 

Anthropogenic barrier management, such as barrier removal and fish pass construction, 

has been increasingly used in river connectivity restoration programs. However, it is 

difficult to quantify the degree of habitat fragmentation in a catchment due to incomplete 

barrier records, duplicate databases, out of date information and other issues. To 

understand the degree of river fragmentation, it is necessary to have a complete barrier 

inventory including barrier distribution, type, height, slope and other parameters across all 

stream orders. Creating a complete river barrier inventory is a priority step in developing 

the barrier management processes such as barrier removal or modification (Atkinson et 

al., 2018; Belletti et al., 2020). In order to do that with minimal error, the whole river 

channel needs to be assessed in the field, location of all potential barriers need to be 

recorded, features of each barrier need to be measured, then the information need to be 

categorised and integrated into a comprehensive barrier inventory. 

 

Although having a complete instream barrier inventory is necessary before conducting 

catchment-scale restoration works, many countries do not have such barrier inventories 

and for most countries that have a barrier inventory it is very incomplete (Belletti et al., 

2020). For example, in Denmark, low-head weirs and culverts were missing from the 

Danish national barrier inventory (Birnie-Gauvin et al., 2017a), and the United States 

National Inventory of Dams only records dams higher than 10 m and ignored all low-head 

dams (US Army Corps of Engineers, 2020). In England and Wales, a national river barrier 

inventory was produced as a byproduct of a hydropower potential survey (Entec, 2010), 

and is held, updated and managed by the Environment Agency of England and Natural 

Resources Wales respectively. The study described in Chapter 3 (Wear and Tees 

catchments) revealed that 77.3% of in-stream barriers in both catchments combined were 
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absent in this national barrier inventory, including 68.6% of artificial barriers and 82.6% of 

natural barriers. It is estimated that there are nearly 500 instream artificial barriers still 

present in the Wear catchment and 600 artificial barriers in the Tees catchment. All 

varieties of artificial barriers were found to be absent from the database. If environmental 

agencies (in this case, the EA) use national barrier inventories for connectivity restoration 

without field verification, it may lead to inefficiencies in restoration, or waste of effort. 

 

One example is that during the barrier survey (Chapter 3), several unidentified barriers 

were recorded for the first time in the Priest Burn, a tributary of the River Deerness, one of 

the major study streams in Chapter 5. This revealed that the River Deerness sub-

catchment had not been fully surveyed by the Wear Rivers Trust or Environment Agency, 

before conducting connectivity restoration works, despite it being the subject of a half 

million pound connectivity restoration project (funded by the DEFRA “Catchment 

Restoration Fund”) between 2012 and 2015. The presence of these barriers may lead to 

inefficient restoration in the Priest Burn, and may also explain the reason why trout density 

at sites in the upper parts of Priest Burn (“Cornsay Colliery restoration sites”) did not 

increase during the study period, even though initial upstream recolonization by several 

fish species occurred soon after a road culvert easement at Cornsay Colliery (Tummers et 

al. 2016).  

 

In some cases, using low-resolution maps during the data collection stage may lead to an 

incomplete database, because barriers located in small headwater streams, or side 

channels may be ignored. For example, the European Environment Agency catchments 

and rivers network system (ECRINS) dam database records barriers using the 1:250,000 

resolution map. Strahler first-order streams on a high-resolution map (e.g. 1:25,000) 

would not appear on the ECRINS map and if an artificial barrier is located in such low-

order headwater stream, it may not be able to be mapped in the ECRINS database. A 

previous barrier assessment study conducted by Jones et al. (2019) surveyed 19 rivers 

across the UK, but used the coarser resolution of the ECRINS river network which means 

the first-order streams recorded in their study were actually of a size considered as 

second-order streams in my study (Chapter 3). Despite this, the extent of under-
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representation of small anthropogenic barriers across river catchments by Jones et al. 

(2019) and in Chapter 3 were broadly comparable. In Australia, a desktop GIS analysis 

study identified 5,536 potential barriers in the wet tropics region (Kroon and Phillips, 

2016). However, first-order streams were excluded from their study and analysis was 

conducted on a 1:100,000 scale map, which potentially makes the barrier inventory less 

useful in river management (Atkinson et al., 2018). Overall, 78% and 57% of artificial 

instream barriers were located in first- and second-order streams combined in the Wear 

and Tees catchments (Chapter 3). Because many anthropogenic barriers exist in small-

sized channels, whether urban or rural, it is important to map these at as large a scale as 

is possible; given that easily accessible GIS databases exist at 1:25,000, this would be the 

minimum resolution that seems appropriate, at least for well mapped regions such as 

Europe. 

 

Results of Chapter 3 have revealed that first-order streams comprised about 40-50% of 

total river network length in the Wear and Tees catchment at 1:25,000 scale. Headwater 

streams (including both first- and second-order channels) are a fundamental part of any 

river catchment (Richardson, 2020). In recent years, headwater streams have received 

increasing attention due to the critical roles they play in contributing to productivity and the 

integrity of downstream ecosystems (Richardson, 2020). Headwater streams contribute to 

the characteristics of the downstream network with regard to water quality, sediment 

transport, and organic matter supply (Wipfli et al., 2007; Church, 2015; Richardson, 2020). 

Besides, these streams can provide breeding and rearing habitat for fish species or 

ecotypes (e.g. sea trout) that eventually form part of downstream biological communities 

(Aarestrup et al., 2003; Richardson, 2020). So, these head water streams should not be 

excluded from barrier surveys, and the spatial resolution for barrier audits needs to take 

careful consideration of the environmental restoration objectives.  

 

The outcomes of Chapter 3 should help directly in managing future connectivity 

restoration in the Wear and Tees. The barrier data collected during the walkover surveys 

were integrated with several other databases including the national barrier inventory, the 

Environment Agency North East obstructions database, Obstructions All NEA database 
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and Wear and Tees Rivers Trusts databases to provide single up-to-date inventories for 

each river. This has generated the first intensive but, as yet still incomplete, inventory of 

artificial and natural barriers in the Wear and Tees catchments. This barrier inventory and 

associated barrier photographs (links available in Appendix I) were shared with the Wear 

Rivers Trust, Tees Rivers Trust and Environment Agency, providing a valuable resource 

for river restoration work in the future. Of course it is crucial that this is kept up to date, 

that new barriers are added as they are discovered, that barrier removal and fish passage 

information is added also. There is no current agreement as to who should maintain 

catchment barrier databases in the UK; where rivers trusts exist, they are well placed to 

do this, but do not currently receive funding for this purpose.  

 

In recent years, some projects were developed across the EU for developing standardized 

methods to record and manage river barriers. For example, within the UK, the River 

Obstacles project was developed by the Scottish Environment Protection Agency (SEPA), 

the Rivers and Fisheries Trust for Scotland (RAFTS), the EA and the Nature Locator team. 

A mobile ‘app’ was developed for citizen scientists to enter information on barriers found, 

and guidance provided to enable the collection and use of information on the location and 

type of artificial and natural barriers in rivers across the UK. Similarly, the AMBER 

(Adaptive Management of Barriers in European Rivers) project collaboration with 20 

partners from 11 European countries, compiled a river barrier database, ‘The Pan-

European Atlas of In-Stream Barriers’ for hundreds of rivers within each of the European 

countries, in order to apply adaptive management to the operation of barriers in European 

rivers so as to achieve more effective and efficient restoration of stream connectivity 

(Belletti et al., 2020). 

 

Due to the intensive, time-consuming field survey process and difficulties in getting land 

access permission, it was impossible to survey every single tributary of the Wear and Tees 

catchments during this PhD study. The barrier survey project was limited by surveying 

32.8% of total stream length of the two study catchments combined, but done in a way 

that stratified surveying across stream orders, altitudes, land use types and locations 

within the catchments. In order to develop a comprehensive national barrier inventory, it is 
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recommended that future barrier surveys are undertaken in all subcatchments and 

covering all stream orders. However, due to logistical reasons and the amount of effort 

needed, it is not possible to conduct walkover surveys for each single river by only river 

management practitioners. Other survey methods including recruiting trained volunteers, 

using low-cost aircraft such as drones (Ortega-Terol et al., 2014) and encouraging citizen 

scientist records with phone apps (e.g. AMBER Barrier Tracker app and River Obstacles 

app) should be considered (Atkinson et al., 2018; Jones et al., 2019). 

 

Another big challenge in barrier management in the UK is due to the nature of land 

ownership. Theoretically, when developing barrier removal projects, approaches should 

take into account the catchment scale to identify and prioritize the most relevant artificial 

barriers affecting river connectivity (Haase et al., 2013), but this is often not the case in 

real life. Scientists may aim to apply theoretical principles to river restoration, but river 

managers are forced to work in practicalities (Dufour and Piégay, 2009). In England, many 

instream barriers or river sections are privately owned rather than state-owned, and in 

many cases, the ownership of barriers is unknown or contested. So barrier mitigations or 

removals frequently occur at sites where there is greatest facilitation by stakeholders and 

owners, not necessarily at the highest priority sites in restoration terms. For example, the 

Wear Rivers Trust chose to improve stream connectivity at a pipe culvert ford located in 

the middle reach of Brancepeth Beck. However, two other major barriers, located ~1km 

further downstream cannot yet be removed due to objection from the landowner and 

because of technical difficulties; these barriers still pose significant problems for upstream 

fish movement (Chapter 5).  

 

6.4 Effects of connectivity restoration  

Under the river restoration context, it is often accepted that return of a river to some 

condition present prior to human alteration is commonly impossible (Dufour and Piégay, 

2009; Wohl et al., 2015). Firstly, the past environmental context that resulted in former 

river processes and forms no longer exists (Wohl et al., 2015). Secondly, knowledge of 

past river conditions is insufficient to support restoration. Finally, river systems follow 

complex trajectories that commonly make it impossible to return to a previous state 
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(Dufour and Piégay, 2009; Wohl et al., 2015).  

 

All over the world, legal mandates often require that a degraded aquatic system be 

restored to some degree, measured by either the status of aquatic and riparian habitat 

and/or the condition of biota (e.g. the EU Water Framework Directive) (Beechie et al., 

2009). Under this river management context, one question often raised by the restoration 

practitioners is: “How do we know we have restored enough?” (Beechie et al., 2009). In 

order to answer that question, a comprehensive monitoring scheme would be needed, to 

assess if the restoration work has met the intended objectives, and to draw generalized 

conclusions about the project effectiveness (Palmer et al., 2005; Beechie et al., 2009).  

 

To restore lotic habitat and river connectivity, river barrier removal has been increasingly 

used as a conservation tool, but evidence of its efficacy is incomplete. Two studies 

described in Chapters 4 and 5, used fish communities as an indicator to assess the 

effectiveness of connectivity restoration. Results of these two studies revealed that barrier 

removal was effective in restoring longitudinal connectivity, and beneficial for both resident 

and migratory fishes when the habitat condition is good. In Chapter 4, the rapid recovery 

of the eel numbers (by way of relatively unimpeded dispersal from the Tees estuary) was 

observed at all upstream sampling sites in the second autumn after the weir removal. 

However, for European eel, which spawn in the Sargasso Sea, but use freshwaters (and 

coastal waters) across Europe to grow, any recovery in population abundance can only 

truly be measured when integrated across the whole distributional range. Nevertheless, 

this does not diminish the evidence of benefit to eel dispersal to habitat made available by 

removal of the barrier described in Chapter 4. On the contrary, the brown trout population 

response of Claxton Beck can be measured at that spatial scale due to their philopatric 

tendency, but trout did not increase during the short study period. Because of lag times in 

natural recolonization, the prolonged generation time of fishes (several years) and due to 

natural stochasticity in reproductive success in fishes, high-quality studies of the 

effectiveness of restoration need to last decades, be on a sufficient spatial scale (likely the 

extended reach, subcatchment or catchment scale) and incorporate a control 

subcatchment. Published studies of this type are currently non-existant, but are something 
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we need to aim for. 

 

Because monitoring a single metric can be insufficient to determine whether restoration 

action has achieved its objectives (Beechie et al., 2009), in order to conduct a holistic 

assessment, the Claxton Beck tidal barrier removal study (Chapter 4 monitored the 

changes of aquatic habitat and invertebrate communities in addition to fish community 

changes in response to the connectivity restoration. Results of the study showed that river 

habitat diversity increased immediately upstream and remained similar downstream 

following barrier removal. In addition, changes to macroinvertebrate communities occurred 

upstream and downstream of the former barrier but these were minor and transient. 

Therefore this can be regarded as having been a successful restoration, even though 

additional management actions are needed further upstream in the intensively farmed 

upper and middle reaches, to improve conditions for diverse stream and riparian habitat 

and to support recolonization by sensitive indicator biota such as brown trout. 

 

Chapter 4 studied the effects of single barrier removal on the fish community, habitat and 

invertebrates. However, in most cases, one river system or tributary is often fragmented 

by multiple barriers (Chapter 3), and very few studies have been published on evaluating 

the effects of multiple barrier removal on remediating aquatic communities over the whole 

catchment / subcatchment. In some highly fragmented river system such as the Cong 

Burn in the River Wear catchment, more than 30 instream barriers need to be removed, in 

order to achieve complete connectivity restoration. In Chapter 5, multiple connectivity 

restoration projects were conducted in three tributaries in the Wear catchment with an 

attempt to restore the aquatic connectivity and fish populations. Different outcomes were 

observed between these three streams. In the River Deerness, and within the 

connectivity-restored reach of Brancepeth Beck, both brown trout and bullhead benefitted 

from the restoration and their abundance increased. Trout abundance at the majority of 

connectivity-restored sites achieved excellent or good status under the EA-Fisheries 

Classification Scheme grading system. In contrast, in the connectivity-unrestored reach of 

Brancepeth Beck, trout density even gradually decreased during the study period. Results 

of Chapter 5 have also revealed that migratory fish may not immediately respond to 
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restoration works, delays may be expected when the existing fish population in the river is 

small and/or the generation time is long. So understanding the time lags in recovery 

processes and incorporating knowledge of these time lags into river monitoring programs 

is important. However, in these tributaries no adequate fish abundance data prior to the 

construction of these in-stream barriers existed, so we will never know to what extent 

does the fish recovered from the restoration. Use of reference conditions (in this case 

non-degraded streams with good water quality, diverse habitat and no artificial barriers) 

are the benchmark against which full restoration might be assessed (Palmer et al., 2005) 

but the reality is that in the Northeast English rivers under study almost no such streams 

exist. Findings for Chapters 4 and 5 suggest that when developing future fish community 

surveys, standardised long-term monitoring is needed in order to assess the recovery of 

fish community under longer periods.  

 

One of the frustrations in the Chapter 4 study was that land access to the very upper 

section of the Claxton Beck catchment was prohibited due to road construction and 

residential development works through the study period. The electro-fishing surveys could 

only be conducted in the remainder of the catchment. Another frustration is that during the 

pre-restoration monitoring program in the Brancepeth Beck, none of the fish lengths were 

measured (Tummers, 2016). So it was not possible to know the changes in YoY trout 

abundance (a direct indicator of year-to-year spawning success) in response to the 

connectivity restoration. Similar issues were observed in the EA electro-fishing dataset, 

where no coarse fish lengths were measured during electro-fishing surveys, which makes 

their data have less utility. It is suggested that, when developing a fish monitoring 

programme, at least 50 fish per species should be measured (and/or aged) randomly at 

each sampling site to generate demographic information.  

 

Electro-fishing is, in much of the world, the conventional quantitative method for sampling 

fish in streams (Reynolds and Kolz, 2013). Despite its effectiveness for the collection and 

enumeration of many fish species it is labour intensive, ineffective in high flows or turbid 

water and samples relatively short stream sections (Reynolds and Kolz, 2013). In five 

years of post-restoration sampling at over 20 sites in the River Deerness no salmon were 
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recorded in samples. Does this mean salmon were absent from the connectivity-restored 

section of the Deerness? Possibly, but in handling thousands of trout, including 50 mm 

long fry, it is quite possible that some salmon were missed, or even misidentified as trout 

due to trout being vastly more abundant. Environment Agency electro-fishing data 

recorded very low densities of salmon, once only, in 2011, in the Deerness close to the 

confluence (Figure 2.34).  

 

Could other methods be more effective than electro-fishing in measuring the fish 

community locally, quantitatively and more efficiently? In recent years, the method of using 

environmental DNA to monitor certain fish or other aquatic animal species in streams has 

been increasingly developed (Atkinson et al., 2019; Bracken et al., 2019; Antognazza et 

al., 2020). This method detects species through analysis of eDNA (shed from cells, from 

mucus etc) in water samples, requires less sampling effort but considerable laboratory 

skill and processing, and is currently more expensive compared with three-pass 

electrofishing (Bracken et al., 2019), but costs are decreasing and analysis throughput is 

increasing rapidly. In some cases, this approach has also been applied to assess the 

response of fish species following instream barrier removal (Duda et al., 2021; Muha et 

al., 2021). Compared with traditional fish sampling methods, the eDNA approach is more 

efficient in targeting species that exist at low densities or difficult to catch using 

conventional methods (e.g. eel, lamprey and crayfish), or in turbid water conditions 

(Atkinson et al., 2019; Bracken et al., 2019). For example, in Brancepeth Beck no 

minnows were found at the most upstream sites during the 2017 survey, and with the 

traditional electro-fishing method < 10% of stream length could be sampled, but using the 

eDNA sampling approach could give greater sensitivity to detect this species even where 

rare, potentially integrating DNA from a significant length upstream. However, the eDNA 

method still has some limitations, because it can only give measures of relative fish 

abundance rather than actual fish density, and the method cannot provide information 

regarding age or size structure (Bracken et al., 2019). Nevertheless, it is suggested that 

under certain circumstances traditional electro-fishing methods could be combined with 

eDNA sampling approach, to obtain a more robust result. In the future river restoration 

evaluation will undoubtedly make greater use of the method. 
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6.5 Concluding remarks 

This PhD study has contributed information relevant to freshwater restoration ecology. 

Firstly, it identified likely drivers that led to the decline and recovery of fishes in post-

industrial rivers in Northeast England. This study attempted to combine all sources of 

information with regard to the impacts of anthropogenic activities on aquatic habitat and 

fishes in post-industrial rivers. Findings of the study could support management plans for 

future river conservation and restoration works. Secondly, this study identified key defects 

in the current national river barrier inventory, and suggests that partial or complete failure 

in restoring stream connectivity may be expected if an incomplete barrier inventory is 

used. Finally, this study assessed the effects of small in-stream barrier mitigation and/or 

removal on fish communities in streams. These findings suggests that barrier removal, 

when carried to ‘best practice’ guidelines should be considered as an effective method in 

restoring river connectivity. Results of this study may be of help in mitigating river 

fragmentation, developing effective river barrier management plans and protecting 

endangered fish species. 
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Appendix I: Supporting information for Chapter Three 

 

This dataset is an inventory of artificial and natural instream barriers in the Wear and Tees 

catchments. It provides detailed information, including barrier location, types, height etc… 

Any in-stream structure having a vertical or steeply sloping (>45°) step, exceeding 0.2 m 

in height (0.5 m for natural obstacles), was recorded as a potential barrier. Additional 

shallow-depth barriers (e.g. culverts) were also recorded. Potential barriers are recorded 

as natural or artificial. Note that in watercourses in the upper catchment that have been 

subject to mining, some barriers recorded as 'natural' (waterfalls, cascades), although 

appearing of relatively natural form, are likely to have been generated as a result of 

human activities such as 'hushing'. We also recorded sites where barriers had existed in 

the recent past (EA database) but had collapsed, breached or been removed deliberately 

within the areas surveyed. Sections of river subject to walkover (RS/SG) and GoogleEarth 

view are detailed in the paper below. Photographs are available by fileshare for Durham 

walkover sites according to the ID codes given in database; photographs are also 

available separately for a proportion of EA database barriers within their in-house regional 

database (contact them directly). Dataset and photographs are available 

at: https://www.dropbox.com/sh/h9j8u98jctarn8d/AADwZur5YkKxwHeJguIO3hIta?dl=0 

 

 
Figure S3.1 Juvenile salmonid densities (n/100m2) below the Hury Reservoir in the River 

Balder, before and after the gravel reintroduction.  

 

https://www.dropbox.com/sh/h9j8u98jctarn8d/AADwZur5YkKxwHeJguIO3hIta?dl=0
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Appendix II: Supporting information for Chapter Four 

 

Examples of R-scripts:  

## LMM analysing the changes in fish density before and after the barrier removal. 

Env<-read.csv('Fish.csv') 

attach(Env) 

library(lme4) 

library(lmerTest) 

Env$section<- factor(Env$section) 

Env$site<- factor(Env$site) 

Env$season<- factor(Env$season) 

str(Env) 

LLM<-lmer(fish~period+(1|season)+(1|section/site), data=Env) 

anova(LLM) 

 

##PERMANOVA analysing the changes in fish community between Period 1 and 3. 

Fish<-read.csv('FSP1P3.csv') 

Env<-read.csv('ESP1P3.csv') 

attach(Fish) 

attach(Env) 

library(vegan) 

range(Fish^.25) 

betad <- betadiver(Fish, "z") 

Env$Year<- factor(Env$Year) 

Env$Section<- factor(Env$Section) 

Env$Site<- factor(Env$Site) 

str(Env) 

adonis2(betad~Period, data=Env, strata="Site", perm=999) 
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##NMDS - fish communities at Period 1 and 3. 

Fish<-read.csv('FS123p1p3.csv') 

Env<-read.csv('ES123p1p3.csv') 

attach(Env) 

Year<- factor(Env$Year) 

Section<- factor(Env$Section) 

site<- factor(Env$site) 

range(Fish^.25) 

Sp_dist <- vegdist(Fish^.25, method="bray", trymax=999)  

nmds <- metaMDS(wisconsin(sqrt(Sp_dist))) 

nmds 

plot(nmds, type='t') 

op<-ordiplot(nmds, type = 'n', cex.axis=1.25, cex.lab=1.5) 

pch_site = c(1, 5, 6) 

col_loc = c('red', 'cornflowerblue', 'chartreuse4') 

col_ellipse = c('pink', 'pink','cyan', 'cyan','green','green') 

ordiellipse(nmds, draw = "polygon", groups <- factor(SY), col = col_ellipse, lty = 'dotted') 

ordispider(nmds, groups = SY, col=c ('blue','red', 'blue','red','blue','red'), lwd=2) 

points(nmds, lwd = 2, cex = 1.25, pch = pch_site [Env$Section], col = 

col_loc[Env$Section]) 
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Figure S4.1 Photo montages of habitat surveyed sites downstream of the weir before and 

after the removal. 
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Figure S4.2 Continued photo montages of habitat surveyed sites downstream of the weir 

before and after the removal. 
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Figure S4.3 Photo montages of habitat surveyed sites upstream of the weir before and 

after the removal. 
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Figure S4.4 Continued photo montages of habitat surveyed sites upstream of the weir 

before and after the removal. 
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Appendix III: Supporting information for Chapter Five 
 

 
Figure s5.1 Mean daily flow (m/s3) at Chester-le-street guage station in River Wear; Burn 

Hall flow guage station in River Browney and Bedburn Beck guage station in Bedburn 

Beck between 1995 and 2019. 
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Figure s5.2 Relationship of YoY trout density and mean daily flow / high flow event days in 

the River Deerness between 2013 and 2019. 
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After the baffles re-construction and rock ramp installation at B7, flow velocity at the 

entrance of the bridge apron significantly reduced and water depth under the bridge 

culvert increased more than 10 cm (Figure s5.3). At Newfield Bridge site, the gabion 

mattress was now buried under the boulders. A slow flowing deep glide has been shifted 

to a shallow and fast flowing riffle habitat (Figure s5.4).  

 

 

Figure s5.3 Water depth and flow velocity (measured at half depth) before and after the 

baffles re-construction and rock ramp installation at Pelton Fell Bridge (top: depth; bottom: 

velocity).  

 

 

 



365 
 

 

Figure s5.4 Water depth and flow velocity (measured at half depth) before and after the 

rock ramp installation at Newfield Bridge (top: depth; bottom: velocity). 
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Figure s5.5 Relationship of YoY trout minimum density and mean daily flow / high flow 

event days in the Bedburn Beck between 1991 and 2019. 

 



367 
 

 

Figure s5.6 Relationship of YoY salmon density and mean daily flow / high flow event 

days in the Bedburn Beck between 1991 and 2019. 
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Figure s5.7 Relationship between Framwellgate annual fish counter data and mean flow 

at Chester-Le-Street gauge station from 1 June to 30 November, as well as numbers of 

high flow event days (exceeding Q5 or Q10 or Q20).  
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Table s5.1 Capture efficiency (%) of YoY trout, Older trout, bullhead and minnow by three-

pass electro-fishing and single-pass method in River Deerness. Data calcluated using the 

proporation of the estimated fish population (Carle and Strub, 1978) that captured. Single-

pass data was the first run data extracted from three-pass method. 

Method Year Species Mean SE Range 
Three-pass 2016 YoY 89.03 1.96 77.27-100 
  Older 96.88 1.24 84.62-100 
  BH 89.78 1.47 79.31-100 
  MN 94.53 1.58 81.25-100 
 2017 YoY 92.76 1.96 79.07-100 
  Older 91.86 2.67 61.21-100 
  BH 89.82 2.54 69.23-100 
  MN 94.94 2.42 72.73-100 
 2018 YoY 88.65 3.27 56.06-100 
  Older 96.38 1.41 81.48-100 
  BH 81.14 4.21 39.02-100 
  MN 82.04 6.17 56.06-100 
 2019 YoY 87.43 3.96 42.67-100 
  Older 95.21 2.55 68.42-100 
  BH 78.64 2.85 61.68-97.06 
  MN 86.1 3.14 57.14-100 
Single-pass 2016 YoY 49.66 3.39 29.63-72.73 
  Older 64.55 4.03 38.46-87.5 
  BH 49.03 1.87 37.5-64.71 
  MN 57.9 4.15 31.25-100 
 2017 YoY 56.37 5.13 0-84.21 
  Older 58.13 4.49 22.42-88.24 
  BH 50.9 4.43 28.85-100 
  MN 67.44 7.06 18.18-100 
 2018 YoY 50.14 4.73 21.21-80 
  Older 67.72 4.25 37.04-100 
  BH 44.68 5.67 4.88-100 
  MN 34.07 7.66 0-72.73 
 2019 YoY 52.36 4.36 12-75 
  Older 66.85 4.93 26.32-100 
  BH 41.06 3.24 25.23-64.71 
  MN 33.18 5.34 0-54.9 
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Table s5.2 Mann-Whitney U Test showing the differences in trout density between the 

paired sites after the connectivity restoration in the River Deerness. 

Sites Barrier Restoration 
time 

Method Total YoY Older 

S1 - S2 B2 Oct 2013 Rock ramp U = 12 
P = 0.337 

U = 8 
P = 0.109 

U = 16.5 
P = 0.810 

S3 - S4 B3 Oct 2013 Natural 
bypass 

U = 10 
P = 0.2 

U = 4 
P = 0.025 

U = 11.5 
P = 0.297 

S5 - S6 B4 N/A N/A U = 23  
P = 0.848 

U = 24 
P = 0.949 

U = 13  
P = 0.141 

S7 - S8 B5 Apr 2014 Removed U = 17 
P = 0.873 

U = 14 
P = 0.522 

U = 15 
P = 0.631 

S9 - S10 B6 Apr 2014 Removed  U = 12 
P = 0.337 

U = 13 
P = 0.423 

U = 17 
P = 0.873 

S11 - S12 B7 Aug 2014 Removed  U = 8 
P = 0.347 

U = 7 
P = 0.251 

U = 10 
P = 0.602 

S13 - S14 B8 N/A N/A U = 24 
P = 0.949 

U = 20.5 
P = 0.609 

U = 23 
P = 0.848 

S15 - S16 B9 Oct 2012 Rock 
easement 

U = 17 
P = 0.338 

U = 18 
P = 0.406 

U = 19 
P = 0.482 
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Table s5.3 Capture efficiency (%) of YoY trout, Older trout, bullhead and minnow by three-

pass electro-fishing and single-pass method in Brancepth Beck. Data calcluated using the 

proporation of the estimated fish population (Carle and Strub, 1978) that captured. Single-

pass data was the first run data extracted from three-pass method. 

Method Year Species Mean SE Range 
Three-pass 2017 YoY 93.24 1.25 85.84-100 
  Older 99.66 0.34 92.86-100 
  BH 89.42 2.19 68.18-100 
  MN 79.12 6.6 72.52-85.71 
 2018 YoY 89.23 2.63 61.17-100 
  Older 97.44 1.06 80.56-100 
  BH 82.6 3.99 46.15-100 
  MN 95.74 4.26 82.95-100 
 2019 YoY 93.93 2.16 72.76-100 
  Older 99.09 0.65 88.89-100 
  BH 95.06 1.96 66.67-100 
  MN 85.97 2.38 78.26-91.23 
Single-pass 2017 YoY 52.34 3.39 0-68.25 
  Older 74.46 4.79 33.33-100 
  BH 46.59 3.32 20.45-75 
  MN 37.89 7.35 30.53-45.24 
 2018 YoY 52.1 4.85 24.74-100 
  Older 59.44 6.94 0-100 
  BH 42.18 6.28 0-100 
  MN 68.4 7.65 50.39-85.71 
 2019 YoY 58.32 4.27 33.33-100 
  Older 74.79 6.32 20-100 
  BH 59.55 5.82 0-100 
  MN 44.11 3.48 32.61-54.39 
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