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Abstract

This thesis presents a new Flexible Universal Branch Model (FubM) formulation for

solving Power Flows, Optimal Power Flow (OPF) and Security Constrained Optimal

Power Flow (SCOPF) for hybrid AC/DC grids. The prowess of the new formulation

is that it (i) provides a direct link between AC and DC parts of the grid allowing

for solving the entire network within a unified frame of reference (not sequentially)

and (ii) can realistically model any element within the AC/DC power grid, rang-

ing from conventional AC transmission lines to multiple types of AC/DC interface

devices such as Voltage Source Converter (VSC) by introducing additional control

variables. The model is formulated in such a way that it does not make a distinc-

tion, from a mathematical perspective, between AC and DC elements. Therefore,

traditional AC power balance equations can be used to solve a complete AC/DC

grid. Moreover, the physical attributes and optional independent variables of the

FubM encapsulate the characteristics and controls of other complex elements in

the electrical power grid allowing a flexible analysis of a fully controllable AC/DC

grid allowing the formulation to achieve operating points which will be infeasible

otherwise. Detailed description of the FubM is presented and compared to the

traditional approaches. In comparison, traditional approaches require several model

libraries and specific power balance equations per element as well as the type of

grid to achieve the same results as the ones presented with the FubM. Power flow

formulation using FubM also allows for the introduction of extra levels of control

that may be available in a hybrid AC/DC grid. Similarly, the flexible OPF formu-

lation takes advantage of the FubM multiple control options to properly simulate

flexibility of operation in these grids. Finally, the FubM is implemented for the

SCOPF to allow for corrective actions following contingencies for even more flexibil-

ity of operation. Post-contingency corrective actions include fast controls available

to the VSCs that are used to adjust the system operating point to withstand even

the most severe contingencies. Throughout the thesis, the model was tested against

several test systems and solvers. The results clearly show that the FubM is not

only on a par with existing models for steady state analysis but surpasses them in

solution accuracy, computational efficiency and scalability for larger system sizes.
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Chapter 1

Introduction

1.1 Problem Statement

Throughout the last fifteen years, Power Systems have been undergoing significant

and unprecedented transformations which have brought about new challenges for

their secure and efficient operation [1]. In 2015, parties to the United Nations Frame-

work Convention on Climate Change (UNFCCC) reached a landmark agreement to

combat climate change [2, 3, 4]. However, the electrical network in its current state is

not prepared to deal with a fully decarbonised and sustainable electricity system by

2050. Therefore, the Ten-Year Network Development Plan (TYNDP) 2020, by the

European Network of Transmission System Operators for Electricity (ENTSO-E),

includes approximately 80% of grid development projects related to the integration

of Renewable Energy Sources (RESs) as well as the modernisation of the trans-

mission network [5]. Similarly in the UK, the Future Energy Scenarios report by

National Grid includes the integration of at least 40GW of renewable generation to

the grid as well as a huge emphasis on improving the flexibility of the power grid at

all voltage levels [6]. With these projects, ENTSO-E aims to alleviate the existing

problem of power flow congestion and improve the levels of operational security, as

well as maximising the operational flexibility and reliability of the Pan-European

Transmission Grid. [7, 8, 9].

The modernisation projects aim to create a completely controllable hybrid AC/DC

power grid where Transmission System Operators (TSOs) can adjust the settings
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of one or multiple control devices to redirect the power flow through less congested

transmission lines, whilst maintaining the transmission voltage within secure op-

erational limits. This is achieved by overlaying a multi-terminal Voltage Source

Converter (VSC)-based HVDC network on top of an existing AC Electrical Power

System (EPS) in coordination with multiple control elements, for example, PSTs,

and CTTs within the meshed AC grid itself [5, 9, 10]. Such hybrid networks are

inherently more flexible largely due to the additional control features of the VSCs

[10, 11, 12].

Notwithstanding the operational benefits of hybrid AC/DC grids, these networks

are more complex and therefore there is a need for proper operational planning

procedures in place to ensure a continuous, safe and reliable operation of the network

at all times and under all operating conditions [13, 14]. It goes without saying that

any power system operational planning framework should be contingent on not only

obtaining the secure operating states but also the operating states that are most

economical [15]. Consequently, TSOs carry out numerous steady state studies such

as Unit Commitment (UC), Economic Dispatch (ED), Optimal Power Flow OPF

and the Security Constrained Optimal Power Flow (SCOPF) analysis as part of

the operational planning of the network [16, 17, 18, 19, 20]. The Power System

operational planning time-line, seen in Fig. 1.1, illustrates the planning time-scale

for which each planning study is typically relevant.

Figure 1.1: Power System Planning Time-line

Since the majority of the consumed energy is generated in real time, and the
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energy consumption changes throughout the day, UC must be planned in advance

to ensure that enough generation is always available to satisfy the demands of the

system. To “Commit a generating unit” is to start, synchronise, and connect a

generator to the system in order to successfully deliver the power. The UC problem

is an optimisation problem that essentially aims to minimise generation costs, while

satisfying the system generation constraints (e.g. minimum up- and downtime, unit

capability limits, generation, and reserve constraints), by finding the best realistic

combination of generation units to satisfy a demand estimate for a certain period

of time. On the other hand, ED problem uses the already selected generation units

specified by the solution of the UC problem. The aim of ED is to minimise the

generation operating cost of the whole system by determining the power output of

each generating unit under the constrained condition of the system load demands.

In other words, ED, finds the lowest-cost generation dispatch for a set of generators

that equals the total load plus losses. However, it ignores the effect that the se-

lected generation dispatch has on the transmission lines thermal limits or the effect

of delivered reactive power to the grid. The OPF as the name implies, couples the

ED calculation with a power flow calculation so that the ED and the power flow

are solved simultaneously [15, 21]. Mathematically, in the OPF problem a chosen

objective function (normally the total generation cost) is solved towards its opti-

mum operating point subject to realistic techno-economic and security constraints

of the power system [14, 15, 22]. More generally, the OPF problem is basically a

constrained, non-linear, non-convex, optimisation problem which for an actual EPS

can contain a large number of non-linear constraints representing the physical lim-

itations of the actual system as well as the economic boundaries within which the

system needs to operate [14]. TSOs have relied on an evolution of the OPF tool, the

SCOPF, for the adequate planning and operational planning of the power grid since

1987 [23]. In contrast to OPF, it takes into account system operational constraints

under a set of postulated contingencies (i.e. disturbance events which could lead

to a deviation of the nominal steady-state operating point in the system), and thus

it is an effective way to determine the best operating conditions when subjected

to credible operations restrictions, such as thermal or stability limits. As a conse-
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quence, the SCOPF, when compared to the base-case OPF, is a considerably more

complicated optimisation problem, since each contingency requires the same num-

ber of constraints and variables as one OPF scenario, thus the problem is expanded

drastically since each element in the EPS can be a possible critical contingency.

Moreover, the complexity and the growth of the number of constraints and con-

tingencies is only increasing in the context of a hybrid AC/DC EPS such as the

Pan-European Transmission Grid.

From an analysis perspective, Power Flow, OPF and the SCOPF should be

computationally tractable and at the same time scalable (i.e. provide solutions to

larger systems without significantly sacrificing computational time). In practice,

the existing analysis tools that are able to solve them are mostly limited to solving

AC systems with minimal capabilities to accommodate realistic network element

representation and/or model libraries required for fast and accurate solutions of

hybrid AC/DC networks [24, 25, 26, 27, 28]. Moreover, many of these tools simplify

the problem by using approximations of the actual system, and in real power systems

operational planning any solution for a hybrid network should be able to properly

reflect the intricacies of the converters’ interactions and capture enough detail to

be a realistic representation of the actual system. Existing solution methods for

hybrid AC/DC grids normally employ a sequential method for solving the AC and

DC parts of the network in sequence [29, 30, 31]. As a result, the equations per

model and grid vary accordingly. Meanwhile, there are two open source non linear

AC/DC OPF formulations presented in [32] and [33] to solve the AC and DC grids

simultaneously. The first one is an extension of the ‘PowerModels.jl’ package, and

the second one is a Python-based framework. However, both approaches still have

to model each electrical element individually. Thus, regardless of the approach

taken, an extensive model library to selectively be able to incorporate various EPS

elements and accommodate different network types (AC or DC) is normally needed.

Furthermore, the power and voltage control of these tools are limited to the VSC

variables without considering other control elements in the grid. Such limitations

make it even harder to build flexibility and adaptability into the typical commercial

power systems analysis tools that Transmission System Analysts (TSAs) use on a
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daily basis.

Thus far, the closest approach to a compact model has been done by linking

the traditional π branch model in series with an ideal transformer such as the one

presented in [24]. This is very effective for the analysis of AC-only grids, however

for hybrid AC/DC grids, the model is rather limited. This thesis therefore presents

a new Flexible Universal Branch Model (FubM) for the Steady State Operational

Analysis and Optimisation of Hybrid AC/DC grids. The proposed model is capa-

ble of seamlessly modeling an array of network elements ranging from conventional

AC and DC branches, CTT, PST, Static Compensators (STATCOMs) and VSCs.

Meanwhile, additional combined elements (e.g. Universal Power Flow Controller

[UPFC]) can also be modelled using these fundamental network elements. Addi-

tionally, distinction between the AC and DC grid is not required thanks to the flex-

ibility and high versatility of the model. Therefore, conventional AC Power Flow,

OPF and SCOPF equations are used to solve hybrid AC/DC grids. In other words,

using the FubM the entire network can be solved on one single frame of reference

thereby eliminating the need for solving the DC and AC parts of the network in

sequence. One of the main advantages of the FubM formulation is that it is highly

adaptable to any network topology with any degree of complexity and hosting a

variety of control elements. To this end, the model may accommodate any control

variables associated with any control elements that are active over the course of the

solution by extending the vector of state variables accordingly. Similarly, the vector

of constraints may be extended to accommodate any specific controls on power (e.g.

scheduled power output of converters in a multi-terminal VSC-HVDC link) or on

voltage (e.g. voltage control set points for an STATCOM) if deemed appropriate.

As a result, the operation of a flexible and fully controllable AC/DC grid can be

simulated without adding extra burden to the optimization problem or any compu-

tational effort. Thus, the FubM for AC/DC OPF will maintain all the advantages

and characteristics of the individual traditional models in a simpler, more compact,

and flexible form.

Even though the FubM is designed to seamlessly model several elements of the

Electrical Power System, it is not currently designed to model the Current Source
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Converter (CSC). The reasons for selection the VSC over the CSC for this first stage

of the model are the following:

• Theoretically, FACTS controllers, HVDC links and Multi Terminal DC Grids

(MTDC) can be realized by either a VSC or a CSC [14].

• Even though the VSC and the CSC are designed to perform similar tasks, the

CSC is more complex than a VSC in both power and control circuits. Filter

capacitors are used at the ac terminals of a CSC to improve the quality of the

output ac current waveforms. This adds to the overall cost of the converter.

Furthermore, filter capacitors resonate with the ac-side inductances. As a

result, some of the harmonic components present in the output current might

be amplified, causing high harmonic distortion in the ac-side current. Besides,

conventional bi-level switching scheme cannot be used in CSC.

• Due to the elevated cost of the CSC, in Europe all the power system projects

from entso-e in the TYNDP include only VSCs as their main linker for FACTS

and DC grids for the next 10 years [5].

• Unless a switch of sufficient reverse voltage withstanding capability such as

Gate-Turn-Off Thyristor (GTO) is used, a diode has to be placed in series

with each of the switches in CSC. This almost doubles the conduction losses

compared with the case of VSC.

• The dc-side energy-storage element in CSC topology is an inductor, whereas

that in VSC topology is a capacitor. The power loss of an inductor is expected

to be larger than that of a capacitor. Thus, the efficiency of a CSC is expected

to be lower than that of a VSC.

As a result the implementation of the CSC for the FubM is not considered for

this research. However, since the CSC are a mature and well-established technology

used to convert electric power from AC to DC or vice versa, their inclusion for the

FubM has been considered for future work.
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1.2 State of the Art

In order to research the development of a compact model for steady state operational

analysis and optimisation of Hybrid AC/DC Grids, acknowledgement of the SCOPF

challenges and knowledge over the existing AC/DC power system analysis tools

needs to be included. Thus, the state of the art of this thesis is divided in three

sections, the SCOPF state of the art, the existing AC/DC Software State of the art,

and the Compact Hybrid models state of the art. Notice that the state of the art of

the SCOPF implicitly involves the Power flow and OPF state of the art since they

could be considered as sub problems of the SCOPF.

1.2.1 SCOPF state of the art

The efficient and optimum economic operation and planning of the electric power

generation systems has always occupied an important position in the electric power

industry. Due to high energy costs, knowing the optimum operation point in the

power grid is desirable [15]. The first introduction to OPF was in 1962 by Carpentier

[34]. Since then, a series of advancements has been made to this original idea.

Challenges to OPF formulation are presented in [35, 36]. The first approach to

SCOPF was made by Monticelli, which illustrated the solution of the economic

dispatch problem with security constraints whilst taking into account the system

corrective capabilities following contingencies [23]. Meanwhile, in [22], there is no

distinction in the terminology between OPF and SCOPF further signifying the fact

that SCOPF is basically an extension to the OPF. Unlike the OPF, the SCOPF

takes into consideration not only any constraints that are binding during the normal

operation (i.e. the base or pre-contingency state) but also those that become binding

following a contingency. As per the definition by the North American Electric

Reliability Corporation (NERC), a contingency is defined as the unexpected failure

or outage of a system component, such as a generator, transmission line, circuit

breaker, switch or other electrical element [37]. In practice, all optimisation problems

consider security constraints and at least n−1 contingencies. The n−1 contingency

criterion therefore refers to the condition in which the system should be able to
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withstand the outage in any one single element. This contingency criterion is a

standard condition for practical security-constrained operational planning carried

out by TSOs.

The reason for including such reliability criteria for planning the short-term

operation of the system is that the system operator knows in advance of the con-

ditions that are led following a contingency and ensure system operational security

is maintained at all times even following any outage of any number of elements.

Nevertheless operational security in the system cannot be guaranteed 100 % of time

due to the unpredictability nature of contingencies and the inherent complexity of

the power system. Following the occurrence of a contingency, only a limited number

of control actions may be available to the TSO. Typically corrective actions are

previously analysed and listed to be taken if necessary (Human operators reactions

to contingencies is still unsolved [36, 38]). Unfortunately, uncertainty (wind, load,

generation, system, Timescale )is presented in the actual power system and it is

increasing day by day. The way to tackle this is by running stochastic scenarios and

using robust optimisation TSOs have to create several different scenarios in order

to tackle this and create a list of possible effective corrective actions to deal with a

certain contingency (based on the analysis of the results). This technique has a lot

of disadvantages. Not only is time consuming but also may lead to a sub-optimal

results that will end up in a higher cost [39].

There are several challenges to SCOPF computation and formulation [39]. One

main challenge is the selection of the corrective actions to be used for each contin-

gency [38]. Some papers have been written in this area. An experimental method,

in which a linear penalty function on each control variable is imposed, is described

in [40]. Algorithms are proposed to identify the most effective subset of control

actions and minimising controller movements for real-time voltage/reactive power

control in [41]. Since in OPF, each control variable participates in minimising the

objective function as well as in enforcing constraints, based on fuzzy theory, OPF

problem is converted to a crisp optimisation problem in [42]. A reformulation of

OPF as a mathematical program with equilibrium constraints, in which no more

than a pre-specified number of controls are allowed to move, is presented in [43]. A
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way to limit the number of corrective actions used in post-contingency states has

been reported in [39].

Reduction of the contingencies for SCOPF problem is a major issue. In practice,

it is well known that certain contingencies do not constrain the optimal solution.

Those contingencies should not be included in the list of contingencies to be tested

when solving SCOPF. Full and simplified post-contingency models to reduce the

size of SCOPF are presented in [44].

The full model for post contingency states is an iterative approach divided in

four stages. It aims to obtain the smallest set of contingencies that provides the

optimal objective value. The four iterative stages considering a full post-contingency

states model include: a SCOPF considering only potentially binding contingencies,

a Steady-State Classical Power Flow Security Analysis (SSSA), a Contingency Filter

(CF), and a post-contingency OPF to identify which contingencies can be secured by

corrective actions [45, 46, 47]. So far, most CF techniques rank contingencies using

a Severity Index (SI), rely on Lagrange multipliers of a relaxed preventive SCOPF

solution or or use the Non-Dominated Contingency (NDC) technique [47, 48]. Papers

[47] and [46] show that NDC approach has better results than SI techniques and

Benders approach. However, this approach cannot be applied if computer memory

sources are limited [39].

Handling of discrete variables in OPF has been a widely revised challenging

problem [22, 36]. Small step variables are typically handled by using the round-

off strategy in combination with an approach that guarantee the feasibility of the

solution. Several approaches have been proposed. These ones include either the

use of penalty functions within Non Linear Programming (NLP) or Linear Pro-

gramming (LP) solvers [49], ordinal optimisation [50], interior point cutting plane

[51], consideration of the sensitivities of the objective function and inequality con-

straints with respect to discrete variables change [52], global optimisation methods

[53, 54, 55].

Most techniques to handle discrete variables have been tested for OPF formula-

tion. Therefore they can be applied to solve SCOPF where the number of discrete

variables is significantly larger. Nevertheless their performance needs to be tested.
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An extension to the conventional SCOPF that involves Power Router technology

(or Energy Router Device) to increase flexibility and control over the transmission

grid is addressed in [56]. They present what they called Flexible Security constrained

Optimal Power Flow (FSCOPF). It utilises fast power router control in the post

contingency time frame. In the paper an increase in flexibility is achieved by mod-

ifying the constraints used for optimisation. An expansion of this idea to include

all the elements that conform to the future Flexible AC/DC network, such as PST,

CTT, Controlled Tap Phase Shifter Transformer (CTPST), Power Router (PR),

Flexible AC Transmission Systems (FACTSs), and HVDC lines is necessary. It is

therefore appropriate to focus on developing formulations for solving SCOPF and

OPF for such hybrid flexible AC/DC networks which is one of the main pillars of

this thesis.

1.2.2 AC/DC Software and Analysis Tools

Since a new generation of Flexible AC/DC analysis tools is needed, in recent years,

commercial power system software companies like PSS®E, DIgSILENT© - Power

Factory and PowerWorld© have started to add the ability to simulate hybrid AC/DC

networks to their existent AC tools [26, 27, 57]. However, their functionality is

still very limited, and fully flexible controls over each one of the their elements

is not available. Moreover, a main issue is that these commercial packages have

a considerable high cost and since the models are closed, little modifications can

be done to achieve a fully flexible functionality. As an alternative to commercial

programs, open-source power system tools have been reported in the literature such

as PowerModels.jl©, GridCal, and the wolrd famous Matpower© [58, 59, 60].

The three of them are open source software packages for the analysis of EPSs. Even

though they have proven to be powerful EPSs analysis software packages, their

formulation is still an AC based tool, therefore using traditional approaches, major

modifications to the software need to be done to implement a fully controllable

AC/DC Hybrid Grid.

The main core of the Power Flow analysis, OPF and SCOPF of AC/DC Power

Flow is the formulation of the non-linear power balance equations and power flow
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equations. Two different strategies have been suggested for their solution, namely

the Sequential and the Unified approach [61, 62]. Sequential methods rely on build-

ing blocks to solve the dc network as well as the ac network iteratively. Once the

DC grid is solved iteratively and the converter losses are calculated, the AC power

flow solution of the initial loop changes. Consequently, apart from these internal

loop iterations for the DC and AC grid, an external iteration loop is also required

to ensure the overall convergence of the algorithm [63]. As an advantage, sequential

methods can be implemented into an existing AC power flow program. However, se-

quential methods have only first order convergence rate, resulting in computational

inefficiency. Moreover, such complexities make sequential methods rather unreliable

mainly due to the fact that the convergence of external loop would be affected if any

internal loop failed to converge [64]. On the other hand, unified methods employ a

better approach by solving the entire VSC, AC grid, and DC grid equations simul-

taneously. Unified approaches have quadratic convergence thereby achieving faster

and more accurate solutions [62, 65]. The main disadvantage of unified approaches is

that they cannot be added to existing AC-only computational tools without making

major modifications to the original code [66].

Implementation of both approaches have been done for commercial and open

source analysis tools. Modifications to the mentioned open source software tools

have been reported in the literature. The first modification was done by Jef Beerten

and Ronnie Belmans to Matpower allowing to study the steady-state interactions

between multiple non-synchronised AC grids and DC systems based on VSC HVDC

technology, it is an open source code named MATACDC [25]. By being a sequential

approach, MATACDC does not modify Matpower’s original code. However, the

approach is very limited since no controls have been added and it is therefore only

available for simple power flow analysis. Moreover, this approach is now out of

date and is no longer compatible with the newest version of Matpower. On the

other hand a recent unified approach to modify PowerModels.jl was presented in

[32], where the formulation, convex relaxation and linear approximation of OPFs

for AC/DC Grids was presented. A similar approach is done by the software Hynet

presented in [33] which is a Python-based framework.
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All reported approaches still have to model each electrical element individually.

Thus, regardless of the approach taken, an extensive model library to selectively

be able to incorporate various EPSs elements and accommodate different network

types (AC or DC) is normally needed. Moreover, the VSC model used for their

implementation requires a full reformulation of the existing AC tools to achieve an

accurate unified solution. Furthermore, the power and voltage control of these tools

are still limited to the VSC variables without considering other control elements.

1.2.3 Flexible AC/DC Universal Models

To the author’s knowledge no hybrid AC/DC models have been reported in the

literature, and as mentioned above, so far the closest approach to a compact model

is the one presented in Matpower for AC grids, where the traditional π model of

the branch is merged with an ideal fixed transformer. This model only includes two

elements and no compatibility with DC grids [24].

1.3 Research Aims and Objectives

Even though nowadays there are analysis tools to solve AC/DC grids, they require

an extensive model library in which additional controls from network elements may

not necessarily be facilitated. Moreover, the majority of these tools are developed as

commercial products. Therefore, as expected, the details of their models and solvers

are not available for the wider research community who may not be able to procure

the commercial licences. Thus, modifications to the models and software are very

limited. As a result, modifications that could be used to analyse system flexibility

for hybrid AC/DC networks are not at least widely available through commercial

licensed software packages. These modifications include but are not limited to:

adding extra control variables to the power system elements, combining existing

models to create a new model, optimising current and extra control variables inside

the models, create model related power and voltage control constraints, or consider

fast action corrective actions of VSCs for post contingency cases.

Moreover, as stated previously, with the ever increasing penetration of converter-
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connected renewable resources, as well as integration of flexible demand technologies

(e.g. Electric Vehicles), the electric power system of the future will be a hybrid

AC/DC network in almost all voltage level. It is therefore necessary to be able to

properly analyse the operation of the system properly and make use of the extra

levels of control and flexibility available in these systems.

Therefore, one of the objectives in this project has been to develop a Flexible

Universal Branch Model (FubM) formulation for steady state operational analy-

sis and optimisation of fully controllable hybrid AC/DC grids through which, the

global impact of the control actions of the system elements (hence its flexibility)

can be thoroughly investigated. This work therefore entails the development and

implementation of a new model formulation to represent realistically, several power

system elements both for AC and DC sides of a hybrid grid and their associated

couplings. Meanwhile, the FubM aims to provide a physical link between the AC

and DC grids allowing for solving the entire hybrid EPS within a unified frame of

reference. Furthermore, the model aims to realistically model almost any element

within the AC/DC power grid, ranging from conventional AC transmission lines to

multiple and controllable AC/DC interface devices such as the VSC. To achieve

this, the model includes extra optional control variables and control constraints

which represent the extra degrees of flexibility that may exist in a hybrid AC/DC

grid. For example, for a voltage source control representation, the extra control

variables/constraints would represent the converter’s AC voltage control and inde-

pendent active and reactive power flow controls in the converter. To this end, the

FubM is therefore a universal model with which one can represent an entire system

simply by including a set of variables and constraints associated with the operation

of each element within the system.

From a purely mathematical perspective, the FubM is a universal model formu-

lation in that it combines several element representations within one model. In this

way, model representation within the Power Flows, OPF and SCOPF analysis of

hybrid AC/DC grids becomes more streamlined as the problems are formulated as

mathematical programmes and there is virtually no distinction between AC and DC

sides of the network. This means, that the whole system can be solved in its entirety
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with one set of equations pertaining to both AC and DC sides whilst at the same

time respecting the coupling constraints (i.e. power balances) between AC and DC

sides. As a result, existing AC analysis tools which require an upgrade to simulate

fully controllable AC/DC hybrid grids will not require major modifications in their

formulations. Moreover, the extra control will allow to find an operating point which

may be infeasible otherwise. Meanwhile, the structure of the formulation of FubM

allows for the ensuing steady-state analysis problems (e.g. OPF, and SCOPF) to

be formulated and solved using general-purpose model-based solvers such as Aimms

which has been used extensively in this work. The Aimms implementation of FubM

for both OPF and SCOPF has been used with a variety of non-linear gradient-based

solvers for both small-scale and large-scale systems. This capability and universality

of the model further allows a more streamlined and better integration and customi-

sation of models for steady-state analysis problems that are often featured in power

systems short-term operational planning studies.

Furthermore, any new model formulations should not sacrifice computational

tractability for accuracy of representation. It is therefore appropriate that the uni-

versal model formulation presented in this thesis stays computationally tractable for

medium to large-scale systems.

Moreover, the FubM should also be integrated within existing open-source power

system specialist software. For this thesis, the software of choice has been Mat-

power. Since Matpower is an internationally acknowledged and proved tool for

AC power system analysis, the new FubM and the formulation for power flows and

OPF of hybrid AC/DC grids has been implemented as an upgraded version of the

existing software.

In summary, the main objectives of this research can be identified as distinct

research challenges outlined in the next section.
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1.4 Research Challenges

This work attempts to address four main Research Challenges (RCs):

RC1. Development of the FubM: To develop a novel flexible universal AC/DC model

formulation to represent and realistically simulate a wide variety of power

system elements and their controls for purposes of steady-state analysis - The

FubM model formulation is presented in Chapter 3.

RC2. Flexible Steady State Formulation using FubM: To develop a flexible formu-

lation for Power Flows, OPF and SCOPF using the FubM for simulating the

operation of fully controllable, flexible AC/DC power systems thereby allow-

ing for evaluating the impact of operational flexibility and security for these

networks. - The formulation of a fully flexible Power Flow problem is featured

in 4, whereas formulations for OPF and SCOPF are addressed in Chapters 5

and 6.

RC3. Implementation of the FubM: To integrate the FubM and the ensuing flexible

formulation in both an existing AC steady state analysis tool (Matpower),

and a general-purpose mathematical optimisation software tool (Aimms) for

developing next generation analysis tools for solving hybrid AC/DC grids. To

this end, the model should be adaptable to a diverse pool of solvers, and stays

tractable for medium and larger size systems - the integration of FubM in

Matpower and Aimms has been illustrated in Chapters 4, 5 and 6. The

computational efficiency of the model is illustrated through comparisons to

already prominently used power system analysis packages in Chapter 5.

RC4. Flexibility of the System: To use the implementation of the FubM in Mat-

power and Aimms, to evaluate the system flexibility, and operational security

for future hybrid AC/DC networks - this challenge has been addressed through

system simulations in chapters 4 - 6, with chapter 6 solely focusing on SCOPF

solutions.
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1.5 Publications

Table 1.1 is used to summarise the research publications throughout the study period

and beyond. It includes published papers, software releases and future publications.

Parts of this thesis (in particular, Chapters 3, 4, and 5) are based on the below

papers that have already been published, and parts of the thesis are currently being

planned to be developed into further publications (Chapter 6).

Table 1.1: List of Publications

Publication Status

“Flexible General Branch Model Unified Power Flow Algo-

rithm for Future Flexible AC/DC Published Networks”, (2018),

IEEE International Conference of Electrical Engineering 2018

for Energy systems in Europe (EEEIC/I&CPS Europe). DOI:

10.1109/EEEIC.2018.8493705

Published

“Universal Branch Model for the Solution of Optimal Power

Flows in Hybrid AC/DC Grids”, (2020), International Jour-

nal of Electrical Power Energy Systems - ElSevier, DOI:

10.1016/j.ijepes.2020.106543.

Published

“Matpower-FubM: Flexible Universal Branch Model, Steady-

State Operations, Power Control, Optimal Power Flows and Anal-

ysis Tools for Hybrid AC/DC Power Systems Research”, (2020),

Software Release, Technical Note and Quick Guide, Open Source

Code, Platform: Matlab, at Matpower Development, Available

at: https://github.com/AbrahamAlvarezB/matpower-fubm

Published

“Matpower-FubM: Steady-State Analysis, Control and Oper-

ational Planning Tools for Hybrid AC/DC Power Systems Re-

search” at IEEE Transactions on Power Systems.

Under Development

“Fast Acting Corrective Actions on the SCOPF for Post-

contingency Stages using the FubM in Hybrid AC/DC Grids”

at IEEE Transactions on Power Systems.

Under Development
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1.6 Future Research Collaborations

Due to the interest garnered from the publications from the power systems research

community, the author and supervisors of this thesis have been contacted to collab-

orate in the development of the next generation universal analysis tools. Table 1.2

summarises the projects that are currently planned to be spun out of this thesis.

Table 1.2: Future Research Collaborations

Project: Matpower MP Element-FubM

Lead Researcher: Ray Zimmerman

Development of the next generation of the worldwide known tool Matpower. This

project combines the ideas developed in the FubM with the MPelement to create a

unique and fully controllable class element to simulate all the elements of the power

system for generation, transmission and distribution systems for hybrid AC/DC

grids and Smart Grids. This MPelement-FubM will require a novel formulation to

solve the transmission positive sequence equations and the unbalanced distribution

three phase equations will be developed in a unified approach.

Project: GridCal-FubM

Lead Developer: Santiago Peñate Vera

GridCal is an open source power systems calculation software with a well developed

graphical user interface (GUI). The project aims to include the FubM and its for-

mulation to Gridcal. This project will be mainly developed in Python. At the end

of the project a new version of the software (GridCal-FubM) will be released.

Project: Aimms-FubM

Lead Developer: Aimms Optimisation Software Company

Writing a Book and designing video tutorials for the power/energy research commu-

nity of advanced optimisation of AC/DC hybrid grids in Aimms e-learning platform.
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Chapter 2

Literature Review

The main aim of this thesis is the develop a fully controllable, and flexible universal

model formulation for operational planning optimisation of hybrid AC/DC power

systems. To this end, this chapter begins with the introduction of general concepts

as well as the formulation of mathematical problems that are commonly used to

evaluate the steady-state operation of power systems; namely, Power Flows, Op-

timal Power Flows and Security-constrained Optimal Power Flows. Furthermore,

this chapter also includes a comprehensive review of the methods to formulate and

solve mathematical optimisation problems both for unconstrained and constrained

problems, including linear and/or nonlinear constraints, followed by a review of

some of the most widely-used solution algorithms and computational tools, which

are employed to solve OPF and SCOPF problems. The concepts, mathematical for-

mulation and the optimisation algorithms will be referenced and used throughout

this thesis.

2.1 Power Flow Analysis

Over the last fifty years, Newton’s method has proven to be a superior algorithm for

solving power flow problem [67]. The basic problem involves the iterative solution

of a system of non-linear equations as in (2.1.1), where F represents a set of n

non-linear equations, and x is the vector of n unknown state variables [68].
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2.1. Power Flow Analysis

F(x) = 0 or



f1(x1, x2, . . . , xn) = 0,

f2(x1, x2, . . . , xn) = 0,

...

fn(x1, x2, . . . , xn) = 0,

(2.1.1)

According to Newton’s Method, the vector of state variables x will be determined

by performing a Taylor series expansion of F(x) about an initial estimate x0:

F(x) = F(x0) + J(x0)(x− x0) + higher-order terms (2.1.2)

where J(x0) is a matrix of first order partial derivatives of F(x) with respect to x,

termed the Jacobian, and it is evaluated at x = x0.

This expansion lends itself to a suitable formulation for calculating the vector

of state variables x by assuming that x = x1, where x1 is the value computed by

the algorithm at the iteration 1 and that this value is sufficiently close to the initial

estimate x = x0. Based on this premise, all high-order derivative terms in (2.1.2)

may be neglected [69].

Hence the iterative solution,

∆x = −F/J (2.1.3)
x1i − x1(i−1)
x2i − x2(i−1)

...

x3i − x3(i−1)

 = −


f1(x(i−1))

f2(x(i−1))
...

fn(x(i−1))

 ∗


∂f1(x(i−1))

∂x1

∂f1(x(i−1))

∂x2
· · · ∂f1(x(i−1))

∂xn
∂f2(X(i−1))

∂x1

∂f2(x(i−1))

∂x2
· · · ∂f2(x(i−1))

∂xn
...

...
. . .

...
∂fn(X(i−1))

∂x1

∂fn(x(i−1))

∂x2
· · · ∂fn(x(i−1))

∂xn



−1

(2.1.4)

In order to get accurate results the evaluated functions F(xi) must meet a spec-

ified tolerance until convergence. A typical value for this tolerance is shown in

(2.1.5).
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2.1. Power Flow Analysis

ε = 1e−8 (2.1.5)

2.1.1 Network Modelling and Power Flow Equations

In Power Flow Analysis, the nodal bus injections are matched to the injections

from loads and generators to form the AC nodal power balance equations. Thus,

Kirchoff’s laws are satisfied at each node. These equations are expressed in (2.1.6)

as a function of the complex bus voltages and generator injections in complex matrix

form [24]. Graphically the power balance equations are shown in Fig. 2.1. Newton’s

Method is used to solve these non-linear equations.

gSb
(V,Sg) = Sbus(V) + Sd − Sg = 0 (2.1.6)

Where,

Sbus(V) = [V]Ibus
∗ = [V]Ybus

∗V∗ (2.1.7)

Figure 2.1: Nodal Power Balance Equations

In the traditional Power Flow analysis, the mismatch equations given by (2.1.6)

are separated in active power balance equations and reactive power balance equa-

tions as presented in (2.1.8), where the voltage angle Va and the magnitude, Vm are

the state variables [68]. Furthermore, in power flows, all the buses in the power

system are divided in three categories. The slack bus is required to provide the

mismatch between scheduled generation, the total system load (including losses)

and total generation. The slack bus is commonly considered as the reference bus

because both voltage magnitude and angle are specified; therefore, it is also called
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2.1. Power Flow Analysis

the swing bus. The rest of generator buses are called regulated or PV buses because

the net real power is known and voltage magnitude is regulated. Most of the buses

in practical power systems are load buses. Load buses are called PQ buses because

both net real and reactive power loads are specified.

For PQ buses, both voltage magnitudes and angles are unknown, whereas for

PV buses, only the voltage angle is unknown. As both voltage magnitude and angle

are specified for the slack bus, there are no variables that must be solved for. As

such, in a system with nb buses and ng generators, there are 2(nb − 1) + (ng − 1)

unknowns. To solve these unknowns, the real and reactive power balance equations

in (2.1.6) and (2.1.7) are used.

∆Va

∆Vm

 = −

Real(gSb
(Va,Vm))

Imag(gSb
(Va,Vm))



∗

Real(∂gSb

∂Va
) Real(

∂gSb

∂Vm
)

Imag(
∂gSb

∂Va
) Imag(

∂gSb

∂Vm
)

−1 (2.1.8)

Firstly, in order to calculate the complex power injections, and solving the power

balance equations using Newton’s Methods as presented in (2.1.8), obtaining the

admittance matrix Ybus is necessary. There are several approaches for the calculation

of Ybus. However, in this thesis Matpower’s basic formulation will be used.

Matpower uses a general transmission line model; transformers and phase

shifters are modelled with a common branch model, consisting of a standard π

transmission line model, with series impedance [24]. In order to simulate the Phase

Shifter as well as the Tap changer, the transformer in the π model is modelled with

a complex tap N as seen in (2.1.9). Thus, the complete branch admittance matrix

is presented in (2.1.10) and the model is shown in Fig. 2.2.

N = τejθshift (2.1.9)

Ybr =

(ys + j bc
2

) 1
τ2
−ys 1

τe−jθshift

−ys 1
τejθshift

ys + j bc
2

 (2.1.10)

The four elements of this matrix for branch i are labelled as follows:
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2.1. Power Flow Analysis

Figure 2.2: Matpower Branch Model[24]

Ybr
i =

yff i yft
i

ytf
i ytt

i

 (2.1.11)

For a network with nl branches, the nl× nb system branch admittance matrices

Yf and Yt relate the bus voltages to the nl × 1 vectors If and It of branch currents

at the from and to ends of all branches, respectively.

If = YfV (2.1.12)

It = YtV (2.1.13)

The system admittance matrices can be formed as follows [24]:

Yf = [Yff ]Cf + [Yft]Ct (2.1.14)

Yt = [Ytf ]Cf + [Ytt]Ct (2.1.15)

Ybus = Cf
>Yf + Ct

>Yt + [Ysh] (2.1.16)

Connection matrices Cf and Ct, used in building the system admittance matri-

ces, contain identifiers to relate between which nodes a branch is connected. Each

connection matrix has a size of [nl×nb], and contains an indicator with the value of

1 where the branch element “from” or “to” side connects with the bus. All the non

nodal incidences of Cf and Ct are zero. [24]. Up to this point, it can be appreciated
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2.2. OPF & SCOPF

that the only variables during the Newton iterative process are the Va and the Vm.

Therefore, Ybus and N = τejθshift remain constant.

The classic formulation of Power Flow problem presented above is useful for

solving most conventional AC-only power systems. However, in order to model and

solve a fully flexible and controllable AC/DC power system, the AC and DC sides of

the network should be coupled using an appropriate coupling equation that respects

the balance of power between AC and DC. Moreover, additional control variables

may be introduced into the problem formulation to represent extra controls that

may exist in an AC/DC power system (e.g. power flow control exerted by a Voltage

Source Converter). It is therefore necessary to modify the classic formulation of the

Power Flow problem to accommodate these additional capabilities in order to be

able to solve a fully flexible and controllable AC/DC power system. Meanwhile, a

modified (so called flexible) power flow problem formulation is required to initialise

the Optimal Power Flow problem for hybrid AC/DC power systems.

2.2 OPF & SCOPF

The formulation of the Optimal Power Flow and the Security Constrained Opti-

mal Power Flow are very similar to each other. In fact the SCOPF problem could

be considered as a generalisation of the OPF problem that considers not only the

system pre-contingency (i.e. normal operation) binding constraints but also post-

contingency (i.e. post disturbance) constraints that become binding following a

contingency (i.e. disturbance in the system). Both problems can be formulated as

non-linear mathematical optimisation (mathematical programming) problems. The

goal of the OPF problem is essentially to determine the state variables for the system

with which a certain objective (e.g. cost of active power dispatch by the genera-

tors) is at its minimum when subject to the system realistic operational boundaries

defined in form of equality and inequality constraints. The SCOPF generalises this

definition by including any additional constraints that may be binding for post-

contingency (i.e. following a disturbance) states. Equations (2.2.17), (2.2.18) and

(2.2.19) correspond to the classical OPF formulation corresponding to its objective
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2.2. OPF & SCOPF

function as well as the equality and inequality constraints respectively. Equations

(2.2.17) to (2.2.25) correspond to the formulation of the SCOPF.

min f0(x0,u0)

x0, . . . ,xc

u0, . . . ,uc

(2.2.17)

subject to:

g0(x0,u0) = 0 (2.2.18)

h0(x0,u0) ≤ Ll (2.2.19)

gk
s(xk

s,u0) = 0 k = 1, . . . , c (2.2.20)

hk
s(xk

s,u0) ≤ Ls k = 1, . . . , c (2.2.21)

gk(xk,uk) = 0 k = 1, . . . , c (2.2.22)

hk(xk,uk) ≤ Lm k = 1, . . . , c (2.2.23)

|uk − u0| ≤ ∆uk k = 1, . . . , c (2.2.24)

∆uk = Tk
duk
dt

(2.2.25)

The objective function in (2.2.17) depends on the aims of the study. Tradition-

ally, the total generation cost is the summation of the polynomial cost functions

(typically quadratic, but can be of other forms, e.g. piece-wise linear) for each

generator. Equality and inequality constraints introduced in (2.2.18) and (2.2.19)

correspond to constraints for the pre-contingency state respectively. Similarly, vec-

tors x0 and u0 pertain to the state and control variables for the pre-contingency

state. Post-contingency constraints given in equations (2.2.20) to (2.2.23), are de-

fined for the kth contingency with k ranging from 1 to the number of contingencies

c, pertaining to each post-contingency state. Likewise, vectors xk and uk corre-

spond to the state and control variables for post-contingency states. For classical

AC only formulation, state variables correspond to the nodal voltages phase angles

and magnitudes. Post-contingency control variables may include actions pertaining

to generators active power dispatch, tap ratios of on-load tap-changing transform-

ers, variable reactance for shunt elements, phase shifter transformer angles and etc.
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2.2. OPF & SCOPF

The post-contingency state can either be preventive secure or corrective secure. If

no control actions are allowed (or available) following a contingency, the ensuing

post-contingency states determined by the SCOPF are said to be of a preventive

secure type, whereas if control actions are allowed the ensuing post-contingency

states are of the corrective secure type. It follows that preventive secure states are

more conservative than corrective secure states. However, with the additional fast

action control elements present in a hybrid AC/DC power system, it is highly likely

that any SCOPF formulation for such systems include post-contingency corrective

actions. Superscript s in (2.2.20) and (2.2.21) indicates “short term time” relating

to the time in which TSO cannot modify any control variable following a contin-

gency. For corrective actions, equation (2.2.24) represents the maximum amount of

adjustments to the control variables between the base case (i.e. k = 0) and the kth

post-contingency state. Tk is the interval of time available for corrective actions to

ensure the feasibility of the post-contingency state and duk/dt is the rate of change

of the control variables in response to a contingency. Finally Ls, Lm, and, Ll denote

respectively the short-term (emergency), medium-term, and the long-term (normal)

operating limits [39, 70].

Power balance equations are the equality constraints shown in (2.2.18), (2.2.20)

and (2.2.22). On the other hand, inequality constraints, shown in (2.2.19), (2.2.21),

and (2.2.23), refer to actual operational limits in the system (e.g. transmission lines

thermal limits, limits on the ratios of on-load tap-changing transformers, as well as

operational limits on the branch currents and voltage magnitudes). In order to meet

the constraints with “realistic” values, (2.2.24) will be limiting the adjustments over

the control variables.

Meanwhile, a set of constraints limiting the number of corrective actions allowed

in each post-contingency state (i.e. for post contingency state variables) can be

included [39]. The formulation is the following:

−sk∆uk ≤ uk − u0 ≤ sk∆uk k = 1, . . . , c (2.2.26)

1T sk ≤ Nk k = 1, . . . , c (2.2.27)

sk ∈ {0, 1} k = 1, . . . , c (2.2.28)
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If the status of the corrective action ukj of the jth element is equal to 1, it means

that this action is allowed. Alternatively, as seen in (2.2.29), constraint in (2.2.27)

can be expressed in terms of time needed for controls implementation, where tk is

the vector of times needed to implement the control actions.

sk
T tk ≤ Tk k = 1, . . . , c (2.2.29)

EPS have fast response actions and slow response actions. While transformer

tap changers and angles of phase shifter transformers are some examples of a faster

response variables, network switching, connection of non-dispatched generators, and

connection or disconnection of shunt compensation, are some examples of slower

response variables. For this thesis only fast response actions will be considered.

It is also worth mentioning that the formulation presented above is the general

formulation for snapshot solutions of OPF and SCOPF problems. In the context

of short-term optimum planning of network operation there may be a need for run-

ning multiple instances of the relevant optimisation problems for a specific planning

horizon. The so-called multi-period formulation of OPF and SCOPF will involve

successive runs of these problems for each time-period within the planning horizon.

There may also be the need for temporal coupling constraints between each time

period in this case (for example, when one of the decision variables is the level of en-

ergy available in energy storage devices). Whilst the focus of this thesis has been the

single-period formulations these can be easily expanded to encompass multi-periods

without any changes to the core formulations of the OPF and SCOPF problems.

2.2.1 Lagrangian Function and Slack Variables

Both OPF and SCOPF, at their cores, are formulated as non-linear constrained

optimisation problems. In general, in an optimisation problem, the goal is to find

an x vector of choice (or decision) variables x which minimises (or extermises) f(x)

subject to, g = 0, equality and, h ≤ L, inequality constraints [71]. Normally,

for solving a constrained non-linear optimisation problem such as the OPF or the

SCOPF, all inequality constraints should first be converted to equality constraints.

In order to do so, an appropriate, yet unknown, non-negative slack variable, zi
2,
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per inequality constraint is added [71]. In the context of the OPF and SCOPF

formulation given in (2.2.17) to (2.2.25), once transferring Ls, Lm and Ll to the

left-hand side, the inequality constraints from (2.2.19), (2.2.21), and (2.2.23) can be

transformed to (2.2.30), in which k = 0 will be the pre-contingency state.

hik(xk,uk, zk) = hik(xk,uk)− Llik + zi
2
k = 0 ∀ k ∈ {0, 1, . . . , c} (2.2.30)

Which can be written in a vector form as seen in (2.2.31):

hk(xk,uk, z) = hk(xk,uk) + zk = 0 ∀ k ∈ {0, 1, . . . , c} (2.2.31)

Where z is an ni vector associated with ni inequalities given by:

z =


z1

2

z2
2

...

zni
2

 (2.2.32)

To solve either the OPF, in (2.2.17) to (2.2.19), or the SCOPF problem shown in

(2.2.17) to (2.2.25), the Lagrangian function, seen in (2.2.33), must be minimised.

L(xk,uk, zk, λk, µk) = f(x0,u0)+

ne∑
i=0

λkigki(xk,uk) +
ni∑
j=0

µkjhkj(xk,uk, zk) ∀ k ∈ {0, 1, . . . , c} (2.2.33)

Where λ and µ vectors are the Lagrange multipliers for the ne and ni equality

and inequality constraints respectively (including contingencies) [72].

Necessary conditions, seen in (2.2.34) to (2.2.37), need to be satisfied for min-

imising L(xk,uk, zk, λk, µk) in (2.2.33).

∂L(xk,uk, zk, λk, µk)

∂xjk
=
∂f(xk,uk)

∂xjk
+

ne∑
i=1

λki
∂gki(xk,uk)

∂xjk
+

ni∑
j=1

µki
∂hki(xk,uk, zk)

∂xjk
= 0,

∀j = 1, 2, · · · , nx (nx optimisation variables) (2.2.34)
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∂L(xk,uk, zk, λk, µk)

∂λjk
=
∂f(xk,uk)

∂λjk
+

ne∑
i=1

gki(xk,uk) = 0

∀j = 1, 2, · · · , ne (ne equations) (2.2.35)

∂L(xk,uk, zk, λk, µk)

∂µjk
=
∂f(xk,uk)

∂µjk
+

ni∑
i=1

hki(xk,uk, zk) = 0

∀j = 1, 2, · · · , ni (ni equations) (2.2.36)

∂L(xk,uk, zk, λk, µk)

∂zjk
= 2zjkµjk = 0

∀j = 1, 2, · · · , ni (ni equations) (2.2.37)

Equation (2.2.37) is satisfied when either zjk is zero, or if µjk is zero. These

relations are called transversality conditions. If µik is zero, it means that zjk is

non-zero, and hence the value of hkj is less than Llkj; in (2.2.19). Consequently

the constraint is said to be non-binding or inactive. On the other hand, if zjk = 0,

the constraint is active and binding. Of the ni inequality constraints of (2.2.19), let

a represent the number of active constraints. Since zjk = 0 when constraints are

active, we ignore them in binding constraints.

Therefore:

−∇fk(xk,uk) =

aλ∑
i=1

λik∇gik(xk,uk) +

aµ∑
i=1

µik∇hik(xk,uk) (2.2.38)

Equation (2.2.38) indicates that the negative gradient of the objective function can

be expressed as a linear combination of the gradients of active constraints.
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2.2.2 Karush-Kuhn-Tucker conditions

Since active or binding constraints are not known from the beginning, a general

way of writing the above conditions, called the Karush-Kuhn-Tucker (KKT), is as

follows: If all ni inequalities are transformed to equalities and included with ne

equalities of the problem, the KKT conditions are:

∇f(xk,uk) +
ane∑
i=1

λik∇gik(xk,uk) +

ani∑
i=1

µik∇hik(xk,uk) = 0 (2.2.39)

gik = 0, i = 1, 2, · · · , ane (2.2.40)

λik 6= 0, i = 1, 2, · · · , ane (2.2.41)

hki ≤ 0, i = 1, 2, · · · , ani (2.2.42)

µikhki = 0, i = 1, 2, · · · , ani (2.2.43)

µik ≥ 0, i = 1, 2, · · · , ani (2.2.44)

Kuhn-Tucker conditions are necessary conditions to ensure a relative minimum

(or maximum) for convex programming problems [15, 21, 38, 71, 72].

It is observed from the KKT Complementary Slackness Condition, seen in (2.2.43)

and (2.2.44), that: If µik equals zero, hki is non zero. Therefore, the constraint, as

said before, is not binding (The solution is within the feasible region). On the other

hand, if µik is non zero, the constraint is binding (The solution point is on the con-

straint). Then, the value of hki is zero. The Lagrangian Multiplier also indicates the

sensitivity of the Lagrangian function (and hence the objective function) to changes

in the respectively constraint [15, 71].

In order to minimise the Lagrangian function in (2.2.33) whilst satisfying KKT

conditions, optimisation methods need to be applied.

2.3 Optimisation Methods for Power Systems

Optimisation problems can be divided in a variety of distinct categories based on

their formulations and the types of the objective functions, state variables, and

constraints. Deterministic optimisation problems are categorised by their type of
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variables: (i) Continuous (ii) Discrete (iii) Mixed integer variables [73]. The OPF

problem generally contains only continuous variables but can also contain mixed

integer variables (e.g. if the objective function is a piece-wise cost function or in

case of transformer tap changer ratios). However, these integer variables and their

ensuing discrete functions can be approximated as continuous during the solution

process [74]. Thus, the ensuing optimisation problem can be solved considering only

continuous functions and variables. Note that once the optimal point has been found,

discrete variables must be adjusted to their closest step that meet the constraints.

In general, optimisation methods for power systems are classified in two basic

groups [21, 75, 76, 77]:

1. Conventional optimisation methods

(a) Unconstrained optimisation approaches

(b) Linear programming (LP)

(c) Network flow programming (NFP)

(d) Nonlinear programming (NLP)

(e) Quadratic programming (QP)

(f) Newton’s Method - Hessian

(g) Mixed integer programming (MIP)

(h) Interior point (IP) methods.

2. Intelligence search methods

(a) Neural network (NN)

(b) Evolutionary algorithms (EAs)

(c) Tabu search (TS)

(d) Particle swarm optimisation (PSO).

This section aims to show the wide variety of powerful methods for solving OPF

and SCOPF. However, it is worth to highlight that choosing a solution method

depends on the type of the problem. Since the OPF and SCOPF in general and
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specifically for Hybrid AC/DC grids correspond to a non-convex, non-linear opti-

misation problem, not all the methods from the list above are equally applicable

without any approximation and simplifications. One of the goals of this thesis is to

solve the OPF and SCOPF problems in their general form and therefore, subsec-

tions 2.3.1 and 2.3.2 are only a general description of the methods in the list above

for the sake of completeness, whereas subsections 2.4.1, 2.4.2 and 2.4.3 describe in

more detail the specific computational resources and solvers employed in this thesis

to solve the nonlinear OPF (and SCOPF) problem with continuous variables.

2.3.1 Conventional Methods

Unconstrained optimisation Approaches

Unconstrained optimisation approaches are the ones whose aim is to minimise or

maximise an objective function, but they are not subject to any equality or inequal-

ity constraints. These types of problems are the basis of the constrained optimisation

algorithms. In particular, most of the constrained optimisation problems in power

system operation can be converted into unconstrained optimisation problems. The

major unconstrained optimisation approaches that are used in power system oper-

ation are the gradient method, line search, Lagrange multiplier method, Newton-

Raphson optimisation, trust-region optimisation, quasi-Newton method, double dog-

leg optimisation and conjugate gradient optimisation [15, 21, 71].

Linear Programming

Non-linear power system optimisation problems use Linear programming (LP)-

based techniques to linearise their objective functions and constraints. The simplex

method is known to be quite effective for solving LP problems. Several advantages

have been seen when LP approach is used. Firstly, it is reliable, especially in regard

to the convergence properties. Secondly, it can quickly identify infeasibility. Thirdly,

it accommodates a large variety of power system operating limits, including the very

important contingency constraints. On the other hand, some disadvantages of LP

techniques are: An inaccurate evaluation of system losses and insufficient ability to
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find an exact solution compared with an accurate non-linear power system model.

However, a large number of practical applications have shown that LP-based solu-

tions generally meet the requirements of engineering precision [21, 71]. Thus, LP is

widely used to solve power system operation problems such as security-constrained

economic dispatch, optimal power flow and steady-state security Regions [15].

Network Flow Programming

Network flow programming (NFP) is a special form of LP. NFP was first applied to

solve optimisation problems in power systems in the 1980s. The early applications of

NFP were mainly on a linear model. Recently, nonlinear convex NFP has been used

in power system optimisation problems. NFP-based algorithms have the features of

fast speed and simple calculation. These methods are efficient for solving simplified

OPF problems such as security-constrained economic dispatch, multiarea systems

economic dispatch, and optimal reconfiguration of an electric distribution network.

However, by being an LP algorithm they still suffer from the same disadvantages as

traditional LP techniques [15, 21, 75, 76, 77].

Nonlinear Programming

Nonlinear programming (NLP)-based techniques can easily handle power system

operation problems such as the OPF problem with their non-linear objective and

constraint functions. Firstly, the direction of the iterative search towards the solu-

tion is obtained by getting the first partial derivatives of the equations. Therefore,

these methods are referred to as first-order methods, an example being the gener-

alised reduced gradient (GRG) method. Higher accuracy, regardless of the initial

search point, is a characteristic of NLP methods compared to LP-based approach.

Nevertheless, a slow convergent rate may occur because of zigzagging in the search

direction.[15, 21, 71, 77]

Quadratic Programming

NLP include Quadratic programming (QP) methods. The main difference between

LP and QP optimisation problems is made by the definition of the objective function
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formulation: LP can handle only linear objective functions, while in QP the objective

function is quadratic and the constraints are in linear form. The LP objective

function can be seen as a simplification of the QP objective function. Therefore,

any QP formulation can easily be transformed into an LP formulation. However,

the actual solution processes for both LP and QP are distinctly different. Just

like NLP, one main advantage of QP over LP approaches is a higher accuracy.

Since the most-used objective function in power system optimisation is the generator

cost function, which generally is a quadratic, QP has a special mention in this

classification. Thus, there is no simplification for such an objective function for

power system optimisation problem solved by QP [21, 77].

Newton’s Method - Hessian

The Newton–Raphson optimisation is also called Hessian matrix method. Using the

second order Taylor series expansion, the objective function can be approximated.

Therefore, it requires the computation of the second-order partial derivatives of

the power-flow equations and other constraints (i.e. the Hessian matrix). For this

method, KKT conditions are the necessary to achieve optimality. As one conver-

gence advantage, the Hessian matrix H(x) will be constant if the original non-linear

objective function and their constraints are quadratic functions (e.g. Typical cost

function). The disadvantage is that it needs to compute the inverse of the Hes-

sian matrix, which leads to expensive memory and calculation burden. If suitable

approximations to the Hessian can be found, quadratic and linear methods can be

quite powerful [21, 77].

The (dual) quasi-Newton method uses the gradient, and does not need to com-

pute second-order derivatives because they are approximated. Newton-type methods

(as opposed to quasi-Newton methods) calculate the Hessian directly and proceed

in a direction of descent to locate the minimum after a number of iterations. Cal-

culating H(x) numerically involves a large amount of computations. It works well

for medium to moderately large optimisation problems where the objective function

and the gradient are much faster to compute than the Hessian [78].
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Mixed Integer Programming

The OPF and SCOPF can also be formulated as a mixed-integer programming

(MIP) optimisation problem with integer variables such as shunt reactors or capac-

itors, step transformer tap ratios, and generation units on or off status. MIP is

extremely demanding of computer resources and the number of discrete variables is

an important indicator of how difficult an MIP will be to solve. MIP methods that

are used to solve OPF and SCOPF problems include the recursive MIP technique

using an approximation method and the branch-and-bound (B&B) method, which is

a typical method for integer programming. A decomposition technique is generally

adopted to decompose the MIP problem into a continuous problem and an integer

problem. Decomposition methods such as Benders decomposition method (BDM)

can greatly improve the efficiency in solving a large-scale network by reducing the

dimensions of the individual subproblems. The results show a significant reduction

in the number of iterations, required computation time, and memory space. In ad-

dition, decomposition allows the application of a separate method for the solution

of each subproblem, which makes the approach very attractive. MIP can be used

to solve the unit commitment, OPF, as well as optimal reconfiguration of the elec-

tric distribution network. One mayor drawback of MIP is the convergence, if the

problem is highly non linear and there are too many integer variables, the solution

may not converge. Therefore, the MIP is mostly used for Unit Commitment and

DC OPF [15, 21, 75, 76, 77].

Interior Point Methods

The interior point (IP) method was originally used to solve LP problems. It is faster

and is perhaps better than the conventional simplex algorithm in LP. However,

basic IP methods, in general, suffer from bad initial conditions, termination, and

optimality criteria and, in most cases, are unable to solve non-linear and quadratic

objective functions. The extended quadratic interior point (EQIP) method can

handle quadratic objective functions subject to linear and non-linear constraints.

The improved quadratic interior point (IQIP) method features a general starting

point (rather than a good point as in the former EQIP as well as general IP methods)
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that is even faster than the EQIP optimisation scheme. Currently IP methods

have improved drastically and are one of the most widely used methods for solving

OPF and SCOPF. Some of their improvements offer great speed, accuracy, and

convergence in solving multi-objective and multi-constraint optimisation problems.

Depending on the size and non-linearity of the problem, new methods are also

capable of finding a global solution of an interconnected system and a partitioned

system for local optimisation [21, 77].

2.3.2 Intelligent Search Methods

Neural Network

The optimisation neural network (ONN) was first used to solve LP problems in 1986.

Recently, ONN was extended to solve NLP problems. ONN is completely different

from traditional optimisation methods. It changes the solution of an optimisation

problem into an equilibrium point (or equilibrium state) of a nonlinear dynamic

system, and changes the optimal criterion into energy functions for dynamic systems.

This method is well known for working with a parallel computational structure

[15, 21, 75, 76, 77].

Evolutionary Algorithms

Natural evolution is a population-based optimisation process. The evolutionary

algorithms (EAs) are different from the conventional optimisation methods, and they

do not need to differentiate cost function and constraints. Theoretically, similarly to

simulated annealing, EAs converge to the global optimum solution. EAs, including

evolutionary programming (EP), evolutionary strategy (ES), and GA, are artificial

intelligence methods for optimisation based on the mechanics of natural selection,

such as mutation, recombination, reproduction, crossover, selection, and so on. Since

EAs require all information to be included in the fitness function, it is very difficult

to consider all OPF constraints. Thus, EAs are generally used to solve the classic

economic dispatch and simplified versions of the OPF and SCOPF problem, as well

as optimal reconfiguration of an electric distribution network[15, 21, 75, 76, 77].
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Tabu Search

The Tabu search (TS) algorithm is mainly used for solving combinatorial optimi-

sation problems. It is an iterative search algorithm, characterised by the use of a

flexible memory. It is able to eliminate local minima and to search areas beyond

a local minimum. The TS method is also mainly used to solve simplified OPF

problems such as the unit commitment and reactive optimisation problems [79].

Particle Swarm optimisation

Particle swarm optimisation (PSO) is a swarm intelligence algorithm, inspired by the

social dynamics and an emergent behaviour that arises in socially organised colonies.

The PSO algorithm exploits a population of individuals to probe promising regions

of the search space. In recent years, various PSO algorithms have been successfully

applied in many power-engineering problems including OPF, however it is a very

uncommon algorithm to be used in for electrical power systems [21, 77].

2.4 Computational Tools and Solvers for Power

Systems Optimisation

Currently there are many software options for power system optimisation which

contain one or more of the described Optimisation Methods from section 2.3. In this

thesis the FubM will be implemented in Matpower, a software tool specifically

designed for Power Systems Steady State Analysis and Optimisation, and to Aimms,

a mathematical modelling tool for optimisation in general. Both software tools are

widely known by researchers and the industry. Subsections 2.4.1 and 2.4.2 will

briefly describe the software tools and then subsections 2.4.3, 2.4.4, 2.4.5 and 2.4.6

will describe their optimisation algorithms in detail.

2.4.1 Matpower and MIPS Method

Matpower is a software tool built in Matlab language for solving Power Flow and

Optimal Power Flow problems. It is intended as a simulation tool for researchers,
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educators and the industry. By being an open source code software tool, modifica-

tions to the algorithms and models can be done. Currently Matpower’s director,

lead developer and researcher is Professor Ray D. Zimmerman. The most updated

version of the software can be found in [60] or at https://matpower.org [24].

Table 2.1 contains the optimisation algorithms that Matpower is able to use

for the solution of AC OPF. Solvers marked with an asterisk presented their best

performance in Matpower,and therefore the FubM will be implemented for them.

Table 2.1: Matpower’s Optimisation Solvers for AC OPF

Name Description

MIPS* Matpower’s Interior Point Solver (Primal/Dual)

FMINCON* Matlab’s Optimisation Toolbox

IPOPT* 3.11 Interior Point Method

KNITRO* 12.0 Artelys Knitro Optimisation Package

MINOPF MINOS-based solver

PDIPM Primal/Dual Interior Point Method

SDPOPF Solver based on Semi-definite relaxation

TRALM Trust Region Based Augmented Lagrangian Method

*Best performance solvers in Matpower

2.4.2 Aimms Optimisation Software

Aimms is a general-purpose modelling tool with an Integrated Development Envi-

ronment (IDE) for formulating and solving optimisation problems as mathematical

programming problems. It integrates a state of the art modelling language with a

series of world class numerical solvers for linear, mixed-integer, and nonlinear pro-

gramming such as baron, cplex, conopt, gurobi, knitro, path, snopt and xa. One

of the most useful features of Aimms is the capability of specifying and solving

linear and nonlinear constraint-based optimization models. In addition, Aimms is

able to manage stochastic programming and robust optimization to include data

uncertainty [80].

Aimms environment allows to define the full optimisation problem using a com-
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pact and rich notation available for procedural statements and symbolic constraints.

Aimms transforms the model to match with the selected solver structure. Further-

more, Aimms also builds the Hessian and the Jacobian of the problem [81].

Table 2.2 contains the optimisation algorithms that Aimms is able to use for the

solution of NLP optimisation problems. Solvers marked with an asterisk presented

their best performance in Aimms, and therefore the FubM will be implemented for

them.

Table 2.2: Aimms’s NLP Optimisation Solvers

Name Description

CONOPT* 4.0 Reduced Gradient Optimisation

IPOPT* 3.11 Interior Point Method

KNITRO* 12.0 Artelys Knitro Optimisation Package

MINOPF MINOS-based solver

SNOPT Sparse Nonlinear OPTimizer

*Best performance solvers in Aimms

2.4.3 Matpower’s MIPS Method

Matpower’s Power System Analysis tool includes its own primal-dual interior point

method implemented in pure-Matlab code called MIPS (Matpower Interior Point

Solver). MIPS has proven to be suitable for large scale systems with a high level of

non-linearity. Currently it is used as Matpower’s default solver for AC and DC

OPF problems [24]. Before getting into details of MIPS formulation, it is worth

to highlight that Matpower uses a specific notation for the calculation of partial

derivatives of functions. For simplicity this notation is specified below and will be

used later for the description of MIPS Algorithm.

Matpower’s Notation

The following section covers Matpower’s notation which is used as the main math-

ematical notation for formulating models and relevant optimisation problems in this

thesis.
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The First derivatives for a scalar function f : Rn → R of a real vector x =

[x1 x2 . . . xn]> are expressed as (2.4.45).

fx =
∂f

∂x
=

[
∂f

∂x1

∂f

∂x2
. . .

∂f

∂xn

]
(2.4.45)

And similarly for the second partial derivatives the Hessian of f , is shown in

(2.4.49).

fxx =
∂2f

∂x2
=

∂

∂x

(
∂f

∂x

)>
=


∂2f
∂x21

. . . ∂2f
∂x1xn

... . . .
...

∂2f
∂xnx1

. . . ∂2f
∂x2n

 (2.4.46)

For a vector function f : Rn → Rm of a vector x, where

f(x) = [f1(x) f2(x) . . . fm(x)]> (2.4.47)

the first derivatives form the Jacobian matrix, where row i is the transpose of

the gradient of fi are:

fx =
∂f

∂x
=


∂f1
∂x1

. . . ∂f1
∂xn

... . . .
...

∂fn
∂x1

. . . ∂fn
∂xn

 (2.4.48)

In these derivations, the 3-dimensional set of second partial derivatives of the set

of functions f will not be computed. Instead a matrix of partial derivatives will be

formed by multiplying transposed of the Jacobian Matrix of the vector function by

a vector of Lagrange multipliers λ. Thus the Hessian notation will be as shown in

(2.4.49)

fxx(λ) =
∂

∂x

(
fx
>λ
)

(2.4.49)

Since the entire formulation will be presented in matrix form, please note that

[A] is used to denote a diagonal matrix with vector A on the diagonal and e is a

vector of all ones.
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MIPS Method

The deterministic solution of the OPF using MIPS can be achieved by following

the optimisation theory presented in this chapter. For this approach, all the ni

inequality constraints are transformed into equality constraints using the barrier

method from appendix A. In the method, all the boundaries from the inequality

constraints are represented by a set of logarithmic functions times a perturbation

parameter ζ, and a positive vector of slack variables z. After this transformation

the optimisation problem can be expressed as in (2.4.50) to (2.4.53)

min f(x)− ζ
ni∑
m=1

ln(zm)

x

(2.4.50)

subject to:

g(x) = 0 (2.4.51)

h(x) + z = 0 (2.4.52)

z > 0 (2.4.53)

As the parameter of perturbation ζ approaches zero, the solution to this problem

approaches that of the original problem.

Thus, for a given value of ζ, the Lagrangian of the problem in equations (2.4.50)

to (2.4.53) is expressed as in (2.4.54).

Lζ (x,λ,µ, z) = f (x) + λ>g (x) + µ>h (x + z)− ζ
ni∑
m=1

ln(zm) (2.4.54)

The partial derivatives of the Lagrangian with respect to each one of the variables

are presented in (2.4.55) to (2.4.58).

Lζx (x,λ,µ, z) = fx + λ>gx + µ>hx (2.4.55)

Lζz (x,λ,µ, z) = µ> − ζ1z
> [Z]−1 (2.4.56)

Lζλ (x,λ,µ, z) = g>(x) (2.4.57)

Lζµ (x,λ,µ, z) = h>(x) + z> (2.4.58)
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And the Hessian of the Lagrangian with respect to x in (2.4.59).

Lζxx (x,λ,µ, z) = fxx + gxx(λ) + hxx(µ) (2.4.59)

MIPS First Order Optimality Conditions

As seen in subsection 2.2.2, in order to reach an optimum the Karush-Kuhn-Tucker

optimality conditions need to be satisfied. The first order condition is satisfied by

setting the first partial derivatives of the Lagrangian above to zero as shown in

(2.4.60).

F (x,λ,µ, z) = 0 (2.4.60)

z > 0 (2.4.61)

µ > 0 (2.4.62)

where:

F (x,λ,µ, z) =


Lζx
>

[µ]z− ζ1z

g(x)

h(x) + z

 =


fx
> + gx

>λ+ hx
>µ

[µ]z− ζ1z

g(x)

h(x) + z

 (2.4.63)

MIPS Newton Step

The MIPS method solves the Karush-Khun-Tucker first order optimality conditions

using Newton’s method. Where the changes in x, z, λ and µ are calculated as

presented in equations (2.4.64) and expanded in (2.4.65).

[
Fx Fz Fλ Fµ

]


∆x

∆z

∆λ

∆µ

 = −F (x,λ,µ, z) (2.4.64)
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
Lζxx 0 gx

> hx
>

0 [µ] 0 [z]

gx 0 0 0

hx I 0 0




∆x

∆z

∆λ

∆µ

 = −


Lζx
>

[µ]z− ζ1z

g(x)

h(x) + z

 (2.4.65)

The set of equations in (2.4.65) can be simplified and reduced to a smaller set

of equations by solving explicitly for ∆µ in terms of ∆z and for ∆z in terms of ∆x.

Equations (2.4.66) to (2.4.68) take the 2nd row of (2.4.65) and solve for ∆µ.

[µ]∆z + [z]∆µ = −[µ]z + ζ1z (2.4.66)

[z]∆µ = −[z]µ+ ζ1z − [µ]∆z (2.4.67)

∆µ = −µ+ [z]−1 (ζ1z − [µ]∆z) (2.4.68)

Similarly, solving the 4th row of (2.4.65) for ∆z yields

hx∆x + ∆z = −h(x)− z (2.4.69)

∆z = −h(x)− z− hx∆x (2.4.70)

Then, substituting (2.4.68) and (2.4.70) into the 1st row of (2.4.65) results in:

Lζxx∆x + gx
>∆λ+ hx

>∆µ = −Lζx
>

(2.4.71)

Lζxx∆x + gx
>∆λ+ hx

> (−µ+ [z]−1 (ζ1z − [µ]∆z)
)

= −Lζx
>

(2.4.72)

Lζxx∆x + gx
>∆λ+

hx
> (−µ+ [z]−1 (ζ1z − [µ] (−h(x)− z− hx∆x))

)
= −Lζx

>
(2.4.73)

Lζxx∆x + gx
>∆λ− hx

>µ+ hx
>[z]−1ζ1z+

hx
>[z]−1[µ]h(x) + hx

>[z]−1[z]µ+ hx
>z−1[µ]hx∆x = −Lζx

>
(2.4.74)

(
Lζxx + hx

>[z]−1[µ]hx

)
∆x + gx

>∆λ+

hx
>[z]−1 (ζ1z + [µ]h(x)) = −Lζx

>
(2.4.75)

Mm∆x + gx
>∆λ = −Nn (2.4.76)
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Where:

Mm ≡ Lζxx + hx
>[z]−1[µ]hx (2.4.77)

and

Nn ≡ Lζx
>

+ hx
>z−1 (ζ1z + [µ]h(x)) (2.4.78)

Combining (2.4.76) and the 3rd row of (2.4.65) results in a system of equations of

reduced size as shown in (2.4.79).

Mm gx
>

gx 0

∆x

∆λ

 =

 −Nn

−g(x)

 (2.4.79)

The following steps are used by MIPS to complete the Newton update.

• Compute ∆X and ∆λ from (2.4.79).

• Compute ∆z from (2.4.70).

• Compute ∆µ from (2.4.68).

Strict feasibility is maintained during the newton calculation by scaling the pri-

mal and dual variables by αp and αd respectively. Where these scale factors are

computed as follows:

αp = min

(
ξ min
∆zm < 0

(
− zm

∆zm

)
, 1

)
(2.4.80)

αd = min

(
ξ min
∆µm < 0

(
− µm

∆µm

)
, 1

)
(2.4.81)

Thus, the updated variables are as follows:

x← x + αp∆x (2.4.82)

z← z + αp∆z (2.4.83)

λ← λ+ αp∆λ (2.4.84)

µ← µ+ αp∆µ (2.4.85)

The parameter ξ is a constant scalar with a value slightly less than one. In MIPS,

ξ is set to 0.99995. During the Newton iterations, the perturbation parameter ζ
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must converge to zero in order to satisfy the first order optimality conditions of the

original problem. After updating z and µ, MIPS updates ζ at each iteration as

shown in (2.4.86). Where σ has a value between 0 to 1 and in MIPS it is set to 0.1.

ζ ← σ
z>µ

ni
(2.4.86)

2.4.4 Conopt v4.0

CONOPT is a solver for large-scale nonlinear optimisation (NLP) developed and

maintained by ARKI Consulting and Development A/S in Bagsvaerd, Denmark.

The solver uses a widely extended version of the already well known Generalised

Reduced Gradient (GRG) method to achieve greater reliability and speed for models

that present a large degree of non-linearity.

Within CONOPT’s extensions to the GRG method, pre-processing phases, linear

mode iterations, sequential linear programming and a sequential quadratic program-

ming component makes CONOPT also efficient on simpler and mildly nonlinear

models as well. CONOPT has a built-in logic to dynamically select the most ap-

propriate method depending on the characteristics of the problem.

CONOPT formulation assumes that all variables are continuous and all con-

straints are smooth with smooth first derivatives. In addition, the solver considers

a sparse Jacobian matrix. The Local optimum is obtained once CONOPT finds a

local optimum which satisfies the traditional Karush-Kuhn-Tucker optimality con-

ditions. The Hessian Matrix is needed for models with many degrees of freedom for

an efficient solution since they can only be solved efficiently if second-order partial

derivatives are available.

CONOPT strategy relies on finding a first feasible solution (particularly well

suited for models with fewer degrees of freedom) and then find the local optimal

operating point.

Algorithm Overview

CONOPT is designed to solve an optimisation problem of the form below (2.4.87).
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min f(x)

x
(2.4.87)

subject to:

g(x) = L (2.4.88)

xmin < x < xmax (2.4.89)

where x is the vector of optimisation variables and L is a vector containing the

equality and inequality right sides. Equation (2.4.88) contains the equality and

inequality constraints. In Aimms, the inequalities are converted into equalities, and

therefore properly bounded slack variables z are added to the optimisation vector

x. In this case g represents the non-constant terms of the equality and inequality

constraints. It follows that constant terms on the left hand side are moved to the

right forming L.

CONOPT modifications to the GRG algorithm are very extensive, therefore

only a brief description of CONOPT’s general algorithm is presented below. A

much more dense description of it can be found in [82] and [83]. The key steps in

CONOPT-GRG algorithm are:

1. Initialise and Find a feasible solution.

2. Compute the Jacobian of the constraints, J.

3. Select a set of n basic variables xb, such that B, the sub-matrix of basic column

from the Jacobian J, is non-singular. Factorize B, and the remaining variables

xn, are the nonbasic variables.

4. Solve B>λ = ∂f/∂xb for the λ multipliers.

5. Compute the reduced gradient, r = ∂f/∂x−J>λ. By definition, r will be zero

for the basic variables.

6. If r projected on the bounds is small, then stop. The current point is close to

optimal.
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7. Select the set of super basic variables xs , as a subset of the nonbasic variables

that profitably can be changed, and find a search direction, ds, for the super

basic variables based on rs and possibly on some second order information.

8. Perform a line search along the direction d. For each step, xs is changed in

the direction ds and xb is subsequently adjusted to satisfy g(xb,xs) = L in a

pseudo-Newton process using the factored B from step 3.

9. Repeat from step 2 until the optimal is achieved.

2.4.5 Knitro v12.0

Knitro is a C-package for solving nonlinear large scale optimisation problems. Knitro

implements four state-of-the-art interior-point and active-set methods. Each algo-

rithm possesses strong convergence properties and is coded for maximum efficiency

and robustness. A general outline of the algorithms implemented in Knitro is shown

below. Full description of them is described in [84].

Interior/Direct algorithm

The interior-point method replaces the nonlinear programming problem by a series

of barrier subproblems controlled by a barrier parameter. Interior-point methods

perform one or more minimisation steps on each barrier subproblem, then decrease

the barrier parameter and repeat the process until the original problem has been

solved to the desired accuracy. The Interior/Direct method computes iterations

by solving the primal-dual KKT matrix using direct linear algebra. In order to

obtain global convergence in the presence of non-convexity and Hessian or Jaco-

bian singularities, the primary step may be replaced, under certain circumstances,

by a safeguarding trust region step. If the method encounters difficulties, it may

temporarily switch to the Interior/CG algorithm, described below.

Interior/CG algorithm

This method is related to the Interior/Direct algorithm. Contrary to the traditional

interior-point approaches proposed in the literature, the primal-dual KKT system of
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this algorithm is solved using a projected conjugate gradient iteration. A projection

matrix is factorized and the conjugate gradient method is applied to approximately

minimize a quadratic model of the barrier problem. The use of conjugate gradients

on large-scale problems allows Knitro to utilise exact second derivatives without

explicitly forming or storing the Hessian matrix. An incomplete Cholesky precon-

ditioning matrix factorisation can be computed and applied during the conjugate

gradient iterations for problems with equality and inequality constraints. This gen-

erally results in improved performances in terms of number of conjugate gradient

iterations and CPU time [85, 86] .

Active Set algorithm

Active set methods take a quadratic model of the original problem and separate it in

a sequence of subproblems to be solved. In contrast with interior-point methods, the

algorithm seeks active inequalities and follows a more exterior path to the solution.

A sequential linear-quadratic programming (SLQP) algorithm is implemented by

Knitro, similar in nature to a sequential quadratic programming method but using

linear programming subproblems to estimate the active set. This method may be

preferable to interior-point algorithms when a cinitial point close to the solution can

be provided; for example, when solving a sequence of related problems. Knitro can

also “crossover” from an interior-point method and apply this method to provide

highly accurate active set and sensitivity information[85].

Sequential Quadratic Programming (SQP) algorithm

The SQP method in Knitro is an active-set method that solves a sequence of

quadratic programming (QP) subproblems to solve the problem. This method is

primarily designed for small to medium scale problems with expensive function

evaluations – for example, problems where the function evaluations involve per-

forming expensive black-box simulations and/or derivatives are computed via finite-

differencing. The SQP iteration is expensive since it involves solving a QP sub-

problem. However, it often converges in the fewest number of function/gradient

evaluations, which is why this method is often preferable for situations where the
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evaluations are the dominant cost of solving the model[85].

2.4.6 IPOPT v3.11

Interior Point Optimiser (IPOPT) is an open source software package for large-

scale nonlinear optimisation. It can be used to solve general nonlinear programming

problems as expressed as in equations (2.4.90) to (2.4.92).

min f(x)

x
(2.4.90)

subject to:

gL(x) ≤ g(x) ≤ gU(x) (2.4.91)

xmin ≤ x ≤ xmax (2.4.92)

where x are the optimisation variables, f is the objective function, and g are

the general nonlinear constraints with their respective upper and lower boundaries

gL and gU respectively. Note that equality constraints of the form g(x) = L can be

specified by setting gL = L and gU = L.

The IPOPT algorithm is based on the primal-dual barrier method, solving a

sequence of barrier problems. Thus, using the general barrier method from appendix

A it transforms the inequality constraints of the problem presented in equations

(2.4.90) to (2.4.92), into a set of equality constraints with their respective slack

variables as shown in equations (2.4.93) to (2.4.96).

min f(x)− ζ
ni∑
m=1

ln(zm)

x

(2.4.93)

subject to:

g(x) = 0 (2.4.94)

h(x) + z = 0 (2.4.95)

z > 0 (2.4.96)

With a parameter of perturbation ζ > 0, a local solution x∗ζ of this approximated

problem can be found. As ζ → 0 the approximated solution may converge to the
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optimal local solution x∗ of the original problem. Thus, IPOPT solves a sequence

of sub-optimisation problems where the tolerance εi is relaxed for an ith iteration.

Then, the sub-optimal solution x
∗{i}
ζ is used as a starting point for the next i + 1

sub-problem. As the iterations continue, the sub-problem tolerance εi → ε, and thus

the original problem is solved.

For the primal dual approach in IPOPT, the KKT conditions are as shown in

(2.4.97) to (2.4.98).

∆f(x) + ∆g(x)λ− dl = 0 (2.4.97)

g(x) = 0 (2.4.98)

xdl − ζ = 0 (2.4.99)

Where each dual variable dl is defined as in (2.4.100).

dl :=
ζ

x
(2.4.100)

These KKT conditions will be the same conditions of the original problem when:

ζ = 0, x ≥ 0 and
ζ

x
≥ 0 (2.4.101)

Then, the dual variables correspond to the multipliers for the bound constraints.

The method is solved using Newton’s approach. For ζ > 0, x and dl must satisfy

the inequalities from (2.4.102)

x > 0 and dl > 0 (2.4.102)

Thus, they can only approach to zero as ζ → 0.

The IPOPT algorithm then can be described in the following general steps. The

detailed IPOPT algorithm can be found in [87].

1. Choose a starting point for (x0,dl
0,λ0) and ζ0

2. Initialise the outer iteration counter i← 0.
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3. Determine the error tolerance εi

4. Obtain the approximate solution (x
∗{i}
ζ ,dl

∗{i}
ζ ,λ

∗{i}
ζ ).

5. Set the approximate solution as the new starting point.

6. Update the barrier parameter ζ and increase the counter i = i+ 1.

7. Repeat from Step 3 until εi = ε and ζ ≈ 0.

2.5 Reliability Contingency Ranking

From subsection 1.2.1 it is clear that the SCOPF shows a strong dependence of a

reliable Contingency Filter (CF). As seen from [48] and [47] most CF techniques

rank the EPS contingencies using a Severity Index (SI), or they rely on Lagrange

multipliers for a relaxed preventive SCOPF solution. Even though the severity of

the contingency is one of the main considerations for a reliable Contingency Filter,

the probability of occurrence (of contingencies) is another important factor to con-

sider. Thereby a contingency filter which ranks the contingency both by the order of

their severity and by their respective probabilities of occurrence will be more reliable

than a filter which only relies on severity indices. In [88], a Contingency Ranking

method which considers both Reliability rates and the Severity Indices of the con-

tingencies for the system is presented. This method preserves all the advantages of

the traditional contingency ranking via SI whilst considering the probability of the

contingency occurrence using the transmission lines reliability rates. The method is

described in this section.

In [88], to rank the contingencies the Reliability Performance Index (RPI) is de-

fined as a product of the Severity Index (or Performance Index) and the Probability

of occurrence of a contingency. It is essentially the severity index weighted by the

probability of occurrence of each contingency. The contingencies can be ranked for

Thermal Limits violations which correspond to the loadability of the transmission

lines, and for voltage violations. In this thesis, this specific contingency filter is used

for SCOPF problems and therefore it is appropriate to describe the methodology for
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calculating the RPIs in the subsequent sections by first defining the severity indices

for thermal limit and voltage violations.

2.5.1 Performance Index: Loadability Limits

The performance index for branch loadability limits will indicate the severity of a

k contingency based on the distributed power of the branch k over all the remain-

ing nl − 1 branches of the system during the post-contingency state [89, 90, 91].

Mathematically this index is expressed as in (2.5.103).

PILk(Pf1 , Pf2 , . . . , Pfnl) =
∑
i∈lines

wi

(
Pfi
Li

)α
(2.5.103)

where

• i is the line or branch number

• k is the line with contingency

• wi ∈ [0, 1] is the weight factor for the i line

• Pfi is the active power flowing through the line i (post-contingency)

• Li is the practical operational limit of the branch

• α > 1.

For each k contingency scenario, equation (2.5.103) is calculated. Thus, for a system

with nl number of lines there will be nl contingency scenarios, and each k line will

have their corresponding PILk Loadability Performance Index. The weight factor is

selected according to the operational requirements of the grid. The use of α helps

to avoid the so called masking effect in contingency ranking. This effect consists of

wrongly ranking contingencies above ones that should be in the top of the rank [92].

2.5.2 Performance Index: Bus Voltage violations

The performance index for voltage violations yields a measure on the severity of a

k contingency over the bus voltages limits (the voltage is out of bounds) [93]. For a

51



2.5. Reliability Contingency Ranking

system with nb buses, this index is calculated as in (2.5.104):

PIvk =
∑
b∈nb

wvb

(
|V k
b | − |V 0

b |
Vbmax − Vbmin

)α
(2.5.104)

where

• b is the bus number,

• wvb ∈ [0, 1] weight factor for each bus,

• V k
b voltage magnitude of bus b in post-contingency state,

• V 0
b voltage magnitude of bus b in the pre-contingency state,

• Vbmax & Vbmin voltage upper and lower limits

Similarly there will be a PIvk for each contingency scenario.

2.5.3 Branch Probability States

Each branch in the power system has a probability to be connected (state up or 1)

and a probability to be out of service (state down or 0), the transition between these

states is known as the failure rate FR and the Repair Rate RR. Where a change from

an up state to a down state is represented by FR and the transition from a down

state to an up state is represented by RR [94]. According to [88], the probability

state for a branch k to be on service is defined as in (2.5.105) and the probability

of a branch to be out of service is defined as in (2.5.106). These steady state

probabilities expressions are applicable irrespective of whether the system starts in

the pre-contingency state (up) or the post-contingency state (down).

P1k =
RR

RR + FR
(2.5.105)

P0k =
FR

FR +RR

(2.5.106)

The branch probability state for a k contingency is defined as in (2.5.107)

PSk = P0k

nl∏
i=1
i 6=k

P1i (2.5.107)
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2.5.4 Reliability Performance Index

Considering the calculated state probabilities and performance indices for the nl-1

states, the reliability performance indices are calculated as in (2.5.108) for thermal

Violations, and in (2.5.109) for voltage violations. Thus both indices are encircling

the severity of a contingency, whilst considering the reliability of the elements in the

EPS.

RPILi = PSi × PILi ∀i ∈ lines (2.5.108)

RPIvi = PSi × PIvi ∀i ∈ lines (2.5.109)

Chapter Summary

This Chapter has introduced general concepts and theory of modelling electrical

power systems for purposes of steady state analysis, and operational optimisation.

First the Power Flow Problem was presented in section 2.1 which was shown it can

be solved using Newton’s Method for solving a system of non-linear equations iter-

atively. Meanwhile, traditional modelling of power balance equations, and branch

power flows which are used to model the network is covered in detail. Modelling of

Matpower’s compact branch model is also described. Moreover, in section 2.2 the

classic OPF and SCOPF problem formulations are as constrained non-linear opti-

misation problems. It is shown that the OPF problem formulation can be solved

by converting the constrained problem into an equivalent non-constrained formula-

tion by way of slack variables and constructing a Lagrangian function. This section

is then followed by a comprehensive overview of optimisation methods applied to

power systems covering both conventional as well as intelligent based approaches.

Moreover, the specific power systems computational tools and solvers applied in this

thesis are covered in the latter part of this chapter.

While Matpower’s compact branch model is used later to explain the devel-

oped FubM in Chapter 3, section 2.1 is used as a starting point to develop the

Flexible Power Flow Algorithm in Chapter 4. Results from Chapters 3 and 4 in

combination with sections 2.2, 2.2.1, and 2.3 are used as a benchmark to develop
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the Flexible OPF for AC/DC Hybrid Grids, which is later presented in Chapter 5,

where detailed description of the formulation as well as a comparison against the

traditional approaches of OPF is shown. Similarly, in Chapter 6 the results from

chapter 5 in combination with sections 2.2 and 2.5 are combined to develop the

Flexible SCOPF for hybrid AC/DC grids. Thus it can be appreciated that all the

theory covered in this chapter is addressed and referenced throughout this thesis.
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Chapter 3

The Flexible Universal Branch

Model

As discussed in subsection 1.2.3, there are two approaches for the solution of AC/DC

grids, (i) the sequential approach, which normally relies on separating the AC and

the DC grids and employ a sequential method for solving the AC and DC parts in

a non simultaneous form (solving one after the other using internal loops), and (ii)

the unified approach, which solves all equations simultaneously for fast and accu-

rate results. Even though sequential methods can be easily integrated into existing

AC analysis tools, their loops and linear convergence formulation reduces the calcu-

lation accuracy and computational efficiency. On the other hand, unified methods

consider a quadratic convergence presenting better and faster results, however major

modifications to existing AC analysis tools are required for their implementation for

purposes of solving AC/DC grids. Additionally, regardless of the selected approach,

if the traditional VSC model is used to represent the interface between the AC and

the DC grids, both approaches separate the grid physically and additional coupling

equations (i.e. to satisfy power balance between AC and DC sides of the interface)

are needed. Moreover, all the different elements in the EPS have different features

and there is a different model for each one of them for AC and DC grids. As a

result, the equations per model and per grid (AC or DC) scale up according to the

complexity of the system and the number of elements presented. Thus, for exam-

ple, any power system analysis tool normally includes an extensive model library to
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selectively be able to incorporate various EPS elements and accommodate different

network types (AC or DC).

This Chapter presents a new Flexible Universal Branch Model (FubM) formu-

lation for solving steady state analysis of hybrid AC/DC grids1. The prowess of the

new formulation is that it (i) provides a direct link between AC and DC parts of the

grid allowing for solving the entire network within a unified frame of reference (not

sequentially) and (ii) can realistically model any element within the AC/DC power

grid, ranging from conventional AC and DC branches, Controlled Tap Transformers

(CTT), Phase Shifter Transformers (PST), Static Compensators (STATCOM) and

the Voltage Source Converter (VSC) by introducing additional control variables.

Additionally, distinction between the AC and DC grid is not required thanks to the

flexibility and high versatility of the model. Therefore, conventional AC-only Power

Flow and OPF (and SCOPF) equations are used to solve hybrid AC/DC grids mod-

elled based on FubM. In other words, the ensuing problem formulation solves the

entire network on one single frame of reference using the unified approach, thereby

eliminating the need for solving the DC and AC parts of the network in sequence

and without requiring major modifications for its implementation in existing AC

analysis tools. One of the main advantages of the FubM formulation is that it is

highly adaptable to any network topology with any degree of complexity and hosting

a variety of control elements. To this end, the model may accommodate any control

variables associated with any control elements that are active over the course of the

solution by extending the vector of state variables accordingly. Otherwise they will

remain as fixed parameters. Thus, the new FubM will maintain all the advantages

and characteristics of the individual traditional models in a simpler, more compact,

yet more flexible form.

The remainder of this Chapter is structured as follows: Section 3.1 introduces the

FubM model in detail. Subsection 3.1.1 illustrates how the model is able to simulate

a wide variety of power system elements and additionally it shows the theoretical

1The FubM model presented in this chapter have been published in the International Journal

of Electrical Power and Energy Systems - ElSevier by the author of this thesis and his supervisors

[28].
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comparison between the VSC traditional model and FubM approach when used to

interface AC and DC nodes in an AC/DC hybrid grid. Furthermore, subsection 3.1.2

presents the detailed mathematical model for FubM and modelling of hybrid EPS

when using the FubM approach is discussed in section 3.2. It particularly describes

in detail the link between the AC and the DC grid. Additionally, subsection 3.2.1

introduces various modes of control for the FubM and VSCs asserting a high degree

of flexibility in the model.

3.1 The Flexible Universal Branch Model

The FubM takes the classic π branch model in series with an ideal transformer,

and merges it with the VSC model developed in [69]. The proposed FubM model

is shown in Fig. 3.1. With this arrangement, a wide variety of elements can be

simulated to represent the versatile and flexible EPS of the future, not only in AC

but also in DC networks. This results in a simple but powerful universal model

that interacts seamlessly with all network elements and is also capable of simulating

AC/DC networks in one single frame of reference. As stated above, the benefit

of this particular seamless way of modelling would be both in versatility of the

ensuing formulation in accommodating a variety of network elements both for AC

and DC parts of the hybrid grid and as shall be seen later in scalability of the model.

The FubM formulation is capable of solving large-scale hybrid networks in any

complexity and with a variety of different control elements to properly simulate the

operation of such grids for purposes of operational planning and when an accurate

estimation of network operational security is needed.

The FubM thus provides a formidable tool for both power system analysts aim-

ing for simulating the operation of hybrid AC/DC networks as well as developers

of power system analysis software packages, and the wider power systems research

community, for its relative simplicity as the FubM formulation is based on AC net-

work equations and does not require developing separate model libraries for several

network elements.
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Figure 3.1: Flexible Hybrid AC/DC Universal Branch Model, adapted from[24]

3.1.1 Elements and In-Modelling

The FubM contains one internal model (in-model) per transmission element of the

EPS (one element at a time). These in-models share the internal components of

the FubM with each other, and therefore have distinct purposes depending on the

desired element to be modeled. As such, the FubM is capable of modelling a series

of elements ranging from standard AC transmission lines to more complex control

elements such as the CTT, PST, or VSC-based elements such as the STATCOM all

within one single model.

AC and DC Branch in-model

At the most basic level and with no control elements present, the AC π Branch

in-model uses three internal components namely, the series resistance rs, and xs

representing the series reactance and bc representing the standard capacitive charg-

ing of the AC transmission lines. On the other hand, if a DC Branch in-model is

required, the reactive elements of the Branch in-model will simply be set to a value

of “zero” and the rs will be the resistance of the DC line.
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Figure 3.2: AC Branch in-model

Figure 3.3: DC Branch in-model

Transformer in-model

For the Transformer in-model, the fixed parameters rs and xs represent its resistance

and inductance respectively. The transformer’s tap is defined by a complex tap

ratio, N , which can be used to model CTT and PST as appropriate. The complex

tap ratio is shown in (3.1.1), and in (3.1.2) KVL is applied to the in-model. For

both elements, the variable m′a will represent the magnitude of the complex tap

ratio which is meant to represent the tap changer ratio of the CTTs. Similarly, if

the Transformer in-model is meant to model a PSTs, θs represents the phase shifter

angle of the PSTs. For a conventional AC EPS with no active control elements other

than the synchronous generators (i.e. no CTTs or PSTs) only the Branch in-model

is sufficient to model the entire EPS. However, if the AC EPS otherwise contains any

control elements such as the PST and CTTs, they can be incorporated by activating

the m′a and θsh as optional control variables as deemed appropriate. Using these

optional control variables within the OPF formulation would also provide the means

to enforce realistic operational boundaries for the PST and CTT elements in form

of limits on the variables and any constraints should a power flow control be needed.
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N = m′ae
jθsh = k2mae

jθsh (3.1.1)

− vt + (rs + jxs) it +
vf
N

= 0 (3.1.2)

Figure 3.4: Transformer in-model

VSC in-model

The FubM is designed to be as simple and universal as possible. Hence, it is desired

that all the in-models share some characteristics with each other (either parameters

or variables). For this reason, the usage of the traditional VSC model is not en-

tirely suitable for this specific case. Instead, the VSC in-model within the FubM

is designed to be an advanced version of the VSC model presented and validated in

[69], where the VSC was represented by a complex tap-changing transformer and

a variable shunt susceptance. In the same vein, in the FubM VSC in-model the

variables of the complex tap, m′a and θsh are meant to model the amplitude mod-

ulation index and the phase shifter action of the PWM control of the actual VSC,

thereby modelling the independent active and reactive power control capabilities of

the actual VSC. The main difference between the VSC in-model and the model

developed in [69], is that the FubM approach calculates the losses of the VSC in-

model according to the detailed model (as stated in the IEC 62751-2 standard), and

the model of the VSC presented in [69] makes an approximation of them. As a re-

sult, the VSC in-model of the FubM maintains all the advantages of the traditional

VSC model, while encompassing almost all of the variables and parameters that are

shared between the other in-models.
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Figure 3.5: (a) FubM VSC in-model, (b) Traditional VSC model

Figure 3.5 illustrates the comparison between the traditional VSC approach and

the VSC in-model in terms of the model structure. It is noticeable that for both mod-

els, the inductive reactance jxs and the series resistance rs represent the magnetic

interface and ohmic losses of the converter respectively. Moreover, table 3.1 sum-

marises the control variables (and functions) that are used to model VSC operation

for each model formulation. It is seen from Table 3.1 that both models essentially

represent the VSC operation in equal detail albeit they are different in implemen-

tation, most noticeably, the link between AC and DC sides of the converter in the

VSC in-model is an actual physical link whereas this link is represented through a

power balance coupling equation in the Traditional model.
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Table 3.1: FubM VSC in-model and Traditional VSC model comparison

Function FubM VSC Traditional VSC

Active Power Control θsh Idc

AC side Reactive Control ma Mc

DC side Voltage Control∗b Beq vdc

Compensate AC Reactive Power∗a Beq Qci

VSC Switching losses Gsw Ploss

Interaction between Physical Coupling

AC and DC side link equation

*a: Only Converters Type I [20, 62]

*b: Only Converters Type II and III [20, 62]

Moreover, as seen it Table 3.1, control over the active power flow is a shared

feature between the VSC in-model and the traditional VSC model. The latter

defines a current source Idc as a variable to control the active power flow. The VSC

in-model, on the other hand, uses the variable θsh for this action (just like it is done

by the “PST in-model”).

VSCs are also well known for their AC side reactive power control capabilities.

For both approaches, this is done by modifying the modulation coefficient amplitude

ma. For the VSC in-model, just as in the transformers in-model, if reactive power

control is required, the VSC in-model has the option to set either the AC side

voltage (i.e. direct voltage control) or an AC side reactive power (i.e. direct reactive

power control) to be controlled to a pre-specified value. In the latter case for direct

reactive power control, this is done by introducing an additional constraint in the

Power Flow (or OPF) formulation.

One of the most important applications of VSCs, especially in the context of

modern power systems, is to provide a connection of two (or more) asynchronously

operating and otherwise autonomous AC grids via a common DC link (or a multi-

terminal DC link). The traditional VSC model represents this by separating the

grids and using controlled power sources and coupling equations to simulate an
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active power exchange between the AC grids through the common DC link. As seen

in Fig. 3.5 (b), the compensation of the reactive power of the AC side “to” bus

is realised by adding a small power balance constraint in the ci node, and Qci will

adjust to meet the requirements of the system. In a similar way, the FubM VSC

in-model compensates the reactive power by using the shunt suceptance Beq. In this

case, instead of adding a power balance constraint in the ci node, the reactive power

flow is monitored, and Beq will be automatically adjusted within the OPF solution

process to maintain zero reactive power injection to the DC link. In this thesis, this

reactive power compensation at the DC node will be called the “Zero Constraint”.

Thus, just like in the traditional approach, the FubM simulates the isolation of the

AC and DC grids while maintaining the active power exchange.

In relation to calculating the converter’s switching losses, the IEC 62751-2 stan-

dard recommends modelling the switching losses as a quadratic polynomial function

of the VSC AC current [95]. Both the traditional and the FubM model follow this

recommendation. For the traditional model, the losses are calculated as shown in

(3.1.3). On the other hand, the VSC in-model models the switching losses by in-

troducing a variable in the model namely, Gsw which correspond to the switching

losses of the VSC for a specified DC voltage (i.e. vdc). This is shown in equation

(3.1.4).

Knowing that in essence both models should calculate the same amount of switch-

ing losses, the loss model for the VSC in-model can be expressed by equation (3.1.3)

and (3.1.4) to give (3.1.5).

−Ploss + γi2t + βit + α = 0 (3.1.3)

Ploss = vdcisw = v2dcGsw (3.1.4)

−v2dcGsw + γi2t + βit + α = 0 (3.1.5)

As can be seen from both, the power loss equations above, and the Fig 3.5,

the interface between the AC side and the DC side is modelled by either adding

a coupling equation for the traditional model, or through a physical link for the

VSC in-model in the FubM. From the perspective of the FubM, the balance

between AC and DC sides of the converter is maintained automatically since the
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nodal active power injection at node “from” (in this case representing the DC side

of the converter) in Fig 3.5(a) will simply be the the active power from the AC

network minus the converter losses, which matches the coupling equation used by

the traditional model seen in (3.1.6). This is why mathematically there is virtually

no distinction between AC and DC sides of the converter when modelled using

FubM as the reactive power exchange is maintained at zero at the DC side by

satisfying the Zero constraint and as seen above the active power exchange is also

satisfied automatically.

Pdc = Pci − Ploss (3.1.6)

There are mainly three operational limits for any VSC as seen in Figure 3.6,

which represent the constraints that both the Traditional VSC and the VSC in-

model in FubM should satisfy.

Figure 3.6: VSC Operational Limits, Modified from [96]

The first constraint is the maximum current through the switching devices (i.e.

IGBTs). It can be appreciated in Fig 3.6 as an MVA circle in the power plane where

maximum current and actual AC voltage are multiplied. If the AC voltage decreases

so will the MVA capability [96]. The constraint is expressed mathematically in

(3.1.7).
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P 2
t +Q2

t ≤ (vti
max
t )2 (3.1.7)

The second constraint is the reactive power compensation limit Qci which is

mainly dependent on the voltage difference between the AC and the DC voltage.

From Figure 3.6, it is noticeable that the maximum reactive power is not a fixed

value, therefore its limit is expressed as a constraint in (3.1.8) for the traditional

model, and in (3.1.9) for the VSC in-model [96][97]. In (3.1.9), Bmax
eq is calculated

as shown in (3.1.10). Since, xs is essentially a constant parameter, both equations

(3.1.8) and (3.1.10) essentially show that Qmax
ci and Bmax

eq represent the same max-

imum reactive power operational limit in their respective models. Additionally in

Fig. 3.6, it is clear that lower limit for the reactive power is automatically con-

strained by (3.1.7).

Qmax
ci =

vci|vt| − |vt|2

xs
Where: vci =

vdc
k2Mc

(3.1.8)

Qmax
Beq = v2ciB

max
eq =

vci|vt| − |vt|2

xs
(3.1.9)

Bmax
eq =

vci|vt| − |vt|2

v2cixs
Where: vci =

vdc
k2ma

(3.1.10)

The third constraint is the maximum DC current through the DC cable. If the

rate of the cable is smaller than the rate of the VSC it may limit the maximum

active power transfer to the DC grid. This constraint is automatically added to the

optimisation problem by adding the thermal limits of the DC lines.

After the theoretical comparison between the VSC Traditional model and the

VSC in-model in the FubM it is clear that both approaches keep the same amount of

variables and constraints and as a result, the latter does not introduce any additional

computational burden when simulating VSCs. It is also clear that in the FubM

approach, there is the advantage of modelling the VSC through a unified frame of

reference as there is not need for introducing the additional power balance coupling

constraints to model the balance between AC and DC sides of the converter.
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STATCOM in-model

The FubM is also capable of modelling STATCOMs explicitly. Unlike other simpler

approaches which model the STATCOM as a controllable voltage source, the STAT-

COMs in-model is a more accurate representation of the device. This is achieved

by making use of the VSC in-model with a fixed DC voltage as shown in Fig. 3.7.

This STATCOM model was presented separately in an earlier publication [98] and

is now brought together within the FubM for the sake of completeness.

Figure 3.7: STATCOM in-model schematic representation using VSC

In this section, the theoretical underpinnings of all the in-models within the

FubM have been described. The selection of a specific in-model, and whether any

of them are used to exert any control actions within the EPS, is done automati-

cally by activating the appropriate state and control variables (i.e. the in-model

settings) pertaining to the specific in-models as shown in table 3.2. Notice that the

k2 parameter will depend on the type of the VSC to model - this variable can be

used to accommodate any VSC type from normal two-level converters to modular

multi-level converters if needs be. For a two-level VSC, the k2 value will be
√

3/2.

Combined in-models

Additional various elements in the EPS may also be modelled using different com-

binations of the described in-models above. In this section, as representative ex-

amples, two distinct controller elements are modelled using the FubM in-models.

It goes without saying that other components may also be modelled by combining

the appropriate in-models. The first component to be modelled as a combination

of in-models is the UPFC from [99], which can be easily modelled by setting two
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Table 3.2: Settings for the desired in-Model

Parameter Branch CTT PST VSC STATCOM

or Variable DC AC

Gsw 0 0 0 0 ∗b ∗b

Beq 0 0 0 0 ∗b ∗b

θsh 0 0 0 ∗b ∗b ∗b

k2 1 1 1 1 ∗a ∗a

ma 1 1 ∗b 1 ∗b ∗b

bc 0 ∗a 0 0 0 0

rs ∗a ∗a ∗a ∗a ∗a ∗a

xs 0 ∗a ∗a ∗a ∗a ∗a

vf free free free free free fixed

∗a : in-model parameter ∗b : in-model active optimization variable

VSC in-models in a back to back configuration with a branch in parallel as shown

in figure 3.8. Controls in each one of the in-models can be individually adjusted

to accurately simulate the controllable reactive and active power of the UPFC as

needed [100]. This approach will also simulate the switching losses of theVSCs in

the UPFC taking advantage of the explicit VSC loss model, which was presented

previously. Table 3.3 presents the settings each one of the in-models to accurately

simulate the UPFC.

Figure 3.8: UPFC schematic representation using in-models

Meanwhile, since the FubM does not create a distinction between the AC and

the DC grid, combinations inside the DC grid could also be created. For example,

the Bidirectional DC Converter from [101], could be represented as shown in Fig.
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3.9. Where two VSC in-models are set in a back to back configuration, and each one

is connected to a Low and High Voltage DC circuit. The controls over the Beq and

θsh are deactivated as shown in Table 3.3. Only both ma are used for voltage control

in both sides. This configuration allows to accurately represent the switching losses

inside the Bidirectional DC converter using Gsw for both VSCs.

Figure 3.9: Bidirectional DC Converter schematic representation using in-models

Table 3.3: Combined in-Models Settings

Parameter UPFC Bidirectional DC Conv

or Variable AC branch VSC 1 VSC 2 PST VSC 1 VSC2

Gsw 0 ∗b ∗b 0 ∗b ∗b

Beq 0 ∗b ∗b 0 0 0

θsh 0 ∗b ∗b ∗b 0 0

k2 1 ∗a ∗a ∗a ∗a ∗a

ma 1 ∗b ∗b ∗b ∗b ∗b

bc 0 0 0 0 0 0

rs ∗a ∗a ∗a ∗a ∗a ∗a

xs ∗a ∗a ∗a ∗a ∗a ∗a

vf free free free free free free

∗a: in-model parameter, ∗b: in-model optimization variable

3.1.2 FubM Nodal Power Equation

In this section, the power balance equations and nodal power injections for the

FubM model are expressed explicitly following Matpower’s convention which can

be found in [24]. However it is worth highlighting that the equations presented
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in this section are explicitly defined for the FubM as a new model following this

convention.

By applying Kirchhoff’s Law to the FubM model in Fig. 3.1, the [2× 2] model’s

admittance matrix Ybr can be obtained. This is shown in (3.1.11), (3.1.12) and

(3.1.13). Notice that the sub index f and t in (3.1.12), represent the connection bus

“from” and “to” respectively; e.g. yff will contain the sum of all the admittance

elements connected to “from” bus. Also observe that for the VSC in-model, the vf

represents the DC voltage side vdc and hence, the vt represents the AC voltage side

vac.

[Ibr] = [Ybr]× [Vbr] (3.1.11)if
it

 =

yff yft

ytf ytt


vf
vt

 =
[
Ybr

]vf
vt

 (3.1.12)

Ybr =

Gsw + (ys + j bc
2

+ jBeq)
1

m′a
2

−ys
m′ae

−jθsh

−ys
m′ae

jθsh
ys + j bc

2

 (3.1.13)

Complex power flow though the FubM can be calculated as in (3.1.14) in com-

pact matrix form, which in turn would prodcue the nodal complex power injections

in either sides of the FubM shown in (3.1.15) and (3.1.16).

[Sbr] = [Vbr]× [I∗br] (3.1.14)

Sf = [vf ][i
∗
f ] = [vf ][yffvf + yftvt]

∗ (3.1.15)

St = [vt][i
∗
t ] = [vt][yftvf + yttvt]

∗ (3.1.16)

From (3.1.15) and (3.1.16) the nodal active and reactive power injections are

given for the FubM in Fig. 3.1.

Pf = Real (Sf ) = Real ([vf ][yffvf + yftvt]
∗)

Pt = Real (St) = Real ([vt][yftvf + yttvt]
∗)

Qf = Imag (Sf ) = Imag ([vf ][yffvf + yftvt]
∗)

Qt = Imag (St) = Imag ([vt][yftvf + yttvt]
∗)

(3.1.17)
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3.2 Modelling Hybrid AC/DC EPS using FubM

The most fundamental AC/DC grid is the point-to-point VSC -HVDC Transmis-

sion Link, shown schematically in Fig. 3.10(a). When incorporating this widely used

configuration in conventional power flow formulations (as well as optimal power flow

formulations) using the Traditional VSC model, the AC and an DC sides of the net-

work inevitably would be separate as illustrated in Fig. 3.10(b). As a result, three

sets of system equations have to be solved individually in order to find a solution

for the whole AC/DC Grid, one for the AC side, one for the DC side and one for

the interface between them (as the set of coupling equations representing the active

power exchange between the AC and the DC grid for the two VSCs). Steady State

analyses of AC grids are solved using vectors since the voltages are expressed as

complex numbers. Furthermore, AC voltage angles are calculated with regards to

one reference bus angle per isolated grid. DC grids on the other hand are anal-

ysed using scalars since only the voltage magnitude is relevant for their calculations.

It follows that from a purely mathematical perspective, when modelling a hybrid

AC/DC EPS using the traditional approach, the AC and DC counterparts are es-

sentially modelled distinctly and also interfaced using the set of coupling equations

to be able to simulate the power exchange in the HVDC link.

Figure 3.10: (a) Classic VSC-HVDC link, (b) Old-fashioned Link Searated grids

generator representation, (c) New Unified Hybrid Grids Link with FubM
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Alternatively, as shown in Fig. 3.10(c), the whole hybrid AC/DC grid can be

solved on one single frame of reference when modelled using the FubM approach.

As explained in Section 3.1.1, the VSC in-model compensates the reactive power

of the AC side while seamlessly keeping the physical link between the AC and DC

side. Thus, by taking advantage of the reactive power compensation from the Zero

Constraint, only active power is exchanged though the DC link. For this reason,

there is no need for any additional coupling equations to maintain power balance

in the DC link, thereby removing the need for making any distinction between AC

and DC counterparts nor for solving the AC and DC parts sequentially.

It follows from above that since FubM models all elements in one single frame

of reference both AC and DC variables are mathematically represented as complex

phasors. Thus, essentially the scalar DC voltage magnitude can be represented as a

complex phasor with “zero” imaginary part, or in other words with a voltage phase

angle of “Zero” as shown in Fig. 3.11 (b). In this unified approach, just as in an

any AC system, one reference bus phase angle is needed per isolated grid relative to

which all the other nodal phase angles are calculated. Since the voltages in the AC

side do have an imaginary part, and do not in the DC side, it is recommended to use

a DC node as reference, as in Fig. 3.11 (c). Nevertheless, it should be noted that

the reference angle, as the name implies, is only a reference. What really matters

is the angular difference between the AC nodes that are interconnected with each

other, because this angular difference will have an impact over the AC power flow.

If the interconnected nodes have the same voltage angle or a voltage angle of zero,

like in the DC side, it means that the DC power flow is purely dictated by the nodal

voltage magnitude different in the DC side of the network. Consequently, if the

reference angle is chosen in the AC side, it is possible that the DC voltage angles

do have a non zero constant angle, as seen in 3.11 (d), which is maintained trough

the entire DC grid (hence preserving the DC side characteristics).
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Figure 3.11: (a) AC Phasors, (b) DC Phasors, (c) AC/DC Phasors (Vdc as angle

reference), (d) AC/DC Phasors (Vact as angle reference)

To show mathematically a fully voltage dependence for power transfer in the

FubM for DC grids, first let the power flow “from” side and “to” side of the FubM

be developed as shown in the Appendix B.1, where the power can be expressed as:

Sf = Pf + jQf

St = Pt + jQt

(3.2.18)

And after substituting (B.1.13), (B.1.14), (B.1.15) and (B.1.16) from the Ap-

pendix B.1 in (3.2.18), the power flow “from” side and “to” side can be expressed

in rectangular form as such:

Sf =Ryffv
2
mf

+ jIyffv
2
mf

+

Ryftvmfvmt cos
(
vaf − vat

)
+ Iyftvmfvmt sin

(
vaf − vat

)
+

− jIyftvmfvmt cos
(
vaf − vat

)
+ jRyftvmfvmt sin

(
vaf − vat

) (3.2.19)
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St =Ryttv
2
mt − jIyttv

2
mt+

Rytfvmtvmf cos
(
vat − vaf

)
+ Iytfvmtvmf sin

(
vat − vaf

)
− jIytfvmtvmf cos

(
vat − vaf

)
+ jRytfvmtvmf sin

(
vat − vaf

) (3.2.20)

Since in a DC grid, the DC voltage angles are the same and the DC branch

admittance does not have any imaginary part, then the DC grid equations are

simplified to:

Sf = Ryffv
2
mf

+Ryftvmfvmt (3.2.21)

St = Ryttv
2
mt +Rytfvmtvmf (3.2.22)

As it can be appreciated from (3.2.21) and (3.2.22), when an DC element is

modelled with the FubM, the power transfer automatically becomes fully dependant

on the voltage magnitude. Therefore, mathematically, the FubM can be treated as

a normal AC element, and accordingly AC power flow and AC OPF equations can

be used to solve the hybrid AC/DC power grid.

3.2.1 VSC Control Modes in FubM

Depending on the operational and control requirements of the hybrid EPS, the

VSCs can be set to control the voltage, active and reactive power or all or a com-

bination of both power and voltage control. This section presents different control

settings/modes for the VSC that are commonly used in the industry and how the

these control actions are mathematically incorporated in the FubM.

In practice,VSCs have seven different control modes depending on their role in

the hybrid EPS, they can be seen in Table 3.4 [62, 63].
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Table 3.4: VSC Control Modes

Control Mode Constraint 1 Constraint 2 VSC Control Type

1 θsh vac

2 Pf Qac I

3 Pf vac

4 vdc Qac
II

5 vdc vac

6 vdc droop Qac
III

7 vdc droop vac

TheVSCs are divided to three types and each one has a specific set of control

modes. Moreover, there are two active control constraints per VSC control mode.

Each constraint combination maintains either a constant power, a constant voltage,

voltage droop characteristic or a combination of them. Each individual control

constraint has a direct impact over the system feasible region. Consequently, a set of

rules have to be followed to avoid any numerical ill-conditioning when implementing

Multi-Terminal DC (MTDC) grids or HVDC-Links. In the interest of keeping the

voltage of the DC grid within certain limits, there must be at least one VSC type

#II or type #III for voltage regulation. If the VSC type #II is selected, there should

not be more than one of them in each DC network, and all remaining converters in

it must be type #I. Similarly, in an MTDC grid where nVSCs type #III are set,

the remaining mVSCs must be type #I. Additionally, all VSC type #III require the

addition of the voltage droop characteristic to the formulation of the VSC in-model.

Figure 3.12 shows a couple of examples where a linear Power-Voltage control, a non-

linear Power-Voltage control, and a linear Current-Voltage control are presented.

Finally, when connecting wind farms, photovoltaic power plants, energy storage

devices or passive networks via VSC , type #I converter must be used [62, 102].

Regardless of what type of VSC model is being used (either the traditional or the

FubM approach), both must follow the described rules.
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Figure 3.12: (a) vdc − Pf droop. (b) Adaptive droop. (c) vdc − if droop

As it was described in Section 3.1.1, Both VSC approaches (traditional and

FubM) should compensate the AC side reactive power of the grid. For an MTDC

link with h VSC terminals, using the traditional modelling approach, all VSC models

must do this compensation for all VSC terminals. On the other hand, using FubM

VSC in-model the zero constraint should only be met for h − 1 VSC terminals. It

follows that there will be no reactive power in the DC side of the remaining VSC

terminal without the need for activating the zero constraint for that terminal. This

mathematical advantage over the traditional VSC modelling approach is possible

thanks to the unique physical link that the FubM provides between the AC and

the DC sides of the EPS.

The FubM uses the converter types as identifiers to easily use this advantage.

Thus, for MTDC links where one converter type #II has been selected for voltage

regulation, only the remaining converters type #I will use the suceptance Beq to

compensate the reactive power and thus meet the zero constraint. Similarly, for

MTDC links with n VSC type #III and m type #I, all m VSC type #I have to meet

the zero constraint, but only n−1 VSC type #III have to meet this constraint. Again

the last one will be automatically compensated without the need of any activation.

Table 3.5 summarises the voltage regulation structure.
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Table 3.5: VSCs structure on a MTDC Grid

MTDC Voltage Max Number of VSC Min number of VSC Max number of VSC

Regulation Type for Voltage Regulation for Zero Contraint in the MTDC Grid

Constant Voltage 1 VSC type #II m VSC type #I m+1

Voltage Droop n VSC type #III m VSC type #I and m+n

Control n-1 VSC type #III

Relating to the control modes, the FubM is designed to incorporate each one

of the aforementioned VSC control constraints individually as it is described in

Section 3.1.1. As a result, the VSC in-model is not restricted by the pair of control

constraints of each VSC control mode of Table 3.4. Therefore, it has the option to

activate or deactivate the desired control over the modelled element depending on

the operational requirements of the EPS and the specific requirements of the study.

Chapter Summary

In this Chapter, a the new FubM for the steady state solution of hybrid AC/DC

EPS has been presented. As seen in subsection 3.1.1, the proposed FubM model is

capable of seamlessly model a wide variety of network elements as in-models. Thanks

to this unique ability, there is no need to analyse the system equations model by

model and thereby avoiding the inclusion of separate model libraries for each ele-

ments for the AC and DC grids. All in-models share variables and parameters that,

depending on the model type and desired behaviour, may or may not be activated.

Meanwhile, as shown in section 3.2 when modelling AC/DC grids using the FubM,

there is no need for introducing additional coupling constraints to maintain power

balance between the AC and DC side of the grid. From a purely mathematical

perspective, there is no distinction between AC and DC counterparts. Thus, when

using the FubM same AC Power Flow equations can be used to solve the entire

hybrid EPS while adding extra control and flexibility to it. In the next chapter, the

FubM is used to solve controlled Power Flows for AC/DC grids.
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Controlled Power Flow Analysis

using FubM

As discussed in Chapters 1 and 2, the core component of any steady state analysis

problem formulation such as the OPF or the SCOPF for EPS is the formulation of

the Power Flow problem. In Chapter 2 the two suggested strategies for the solution

of the non-linear equations of hybrid AC/DC EPS, namely the Sequential and the

Unified Power Flow, were presented in detail. While the unified approach solves the

the AC and DC equations at the same time, in the sequential approach, the AC and

DC systems are solved in a successive fashion.

Sequential methods are normally solved in three loop stages. The first internal

loop solves the DC grid, with the second internal loop solving the AC grid, and

then an external coupling loop matches the results. The full process is repeated

until convergence is achieved. Even though sequential methods can be added as

an extension of existing power flow software, they normally suffer from convergence

problems simply because lack of convergence in one loop could lead to a knock-on

effect on all the other loops. Meanwhile, they normally need a large number of

loops to solve the problem due to their linear convergence, which is computationally

inherently slow. Moreover their first order convergence feature reduces accuracy

in their calculations. Unlike, sequential algorithms, unified power flow algorithms

are considerably faster as they maintain a quadratic convergence and avoid having

to solve internal iterative loops [62, 65]. The main disadvantage of the unified
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algorithms in their current form comes from their implementation. Most existing

power flow solvers used for solving the network in steady-state are based on solving

AC-only EPS. It is therefore necessary to modify existing software to include power

balance equations for the DC network as well as any models explicitly defined for

AC/DC interface elements (e.g. converters such as VSC), and DC network elements

to be able to solve AC/DC grids using a unified algorithm.

This chapter therefore uses the new FubM developed in Chapter 3 for solving

steady-state power flow problem for a hybrid AC/DC grid1. As seen in the previous

chapter, since at its core, the FubM, mathematically is inherently seen as an AC

model, the same AC power balance equations can be used to formulate and solve the

power flow problem for any hybrid AC/DC EPS. Moreover, using FubM, the unified

power flow algorithm can be used without the need to modifying existing AC-only

simulation software to define explicitly DC-only and AC/DC interface elements since

FubM is capable of modelling these elements through implementation of its unique

in-model formulation. Formulating and solving a hybrid AC/DC EPS using the

FubM will therefore allows for simple implementation of unified algorithms without

major modifications of the core components of an AC-only simulation software, and

at the same time preserves the superior quadratic convergence characteristics of

unified methods.

Additionally, this Chapter introduces a new Flexible AC/DC Power Flow Algo-

rithm (FPFA). It is based on the unified approach and is solved using Newton’s

Method. It is worth noticing that, even with the traditional uncontrolled power flow

algorithm, hybrid AC/DC grids can still be solved if the FubM is implemented, and

the parameters of Beq to meet the zero constraint are known. However, traditional

Power Flow Analysis normally does not include any extra variables for either voltage

or power control.

Normally in the conventional uncontrolled AC Power Flow problem, the phase

shifter angle, θsh, of a Phase Shifter Transformer (PST), for instance, is treated as

1The Power Flow formulation using FubM as well as the some of the test cases presented in

this chapter have been published in the IEEE Industrial and Commercial Power Systems Europe

(EEEIC / I&CPS Europe) by the author of this thesis and his supervisors [103].
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simply a constant parameter (and not an additional state variable for the problem).

Similarly, the tap changer ratio, ma or N , of a Controlled Tap-Changing Transform-

ers (CTT) may be treated as a fixed parameter. There are provisions for changing

these parameters as initial conditions of the problem, which will undoubtedly pro-

duce different results for the same system, however since these are not treated as

decision variables in the problem, there are no provisions for exerting active power

regulation nor direct nodal voltage control through either element in a conventional

uncontrolled AC power flow problem formulation. This limitation remains true even

if these elements are modelled through FubM but in the associated in-models for

the PST and CTT the corresponding phase shfiter angle and tap changer ratios

are still treated as fixed parameters - see table 3.2. Provisions of control requires

additional state variables with which certain controls can be exerted as additional

constraints.

Consequently, the new FPFA is designed to take advantage of the full control

capabilities (in voltage and power) of the FubM which were illustrated in detail in

Chapter 3. Therefore, the proposed FPFA described in this chapter includes a flex-

ible control where all the control variables of the FubM introduced in the previous

chapter, are added to the power flow formulation with which additional control on

both power and voltage may be exerted in the system through power flow control

elements such as the PSTs and CTTs as well as VSCs. It follows that in the FPFA

formulation, the Jacobian matrix containing the first partial derivatives of the nodal

power balance equations with respect to the state variables is extended to accommo-

date the additional control variables and the partial derivatives of their associated

nodal mismatch equations when solving the system using Newton’s method. In

summary, the FPFA has a combination of fixed and variable controls to provide

maximum flexibility for the solution.

The remainder of this Chapter is structured as follows: Section 4.1 describes the

new FPFA in detail. Subsection 4.1.4 describes the implementation of the control

features of the FubM in the FPFA. Then Subsection 4.1.6 presents the extended

Jacobian Matrix for Newton’s method. A flowchart shows each step inside the

FPFA, including the power losses correction of the VSC when they are used. Section
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4.2 presents the test cases and their respective power flow simulations. Finally

simulation results are discussed at the end of this chapter.

4.1 Flexible Power Flow Algorithm

4.1.1 Traditional AC Power Flow

From Section 2.1, in the traditional AC Power Flow Analysis, for each node, the

sum of all nodal bus power injections Sbinj should be equal to the algebraic sum of

the nodal loads Sd and generators power injections Sg. This is expressed in form

of the nodal power balance equation gSb which is expressed as a function of the

complex bus voltages V as shown in (4.1.1). Where the voltage angle Va and the

Vm are the state variables. In an EPS of nb buses, there are as many power balance

equations , forming a system of complex non-linear equations as shown in (4.1.4).

Where gSb represents a set of nb complex non-linear equations, and V is the vector

of nb unknown complex state variables.

gSb(V ) = Sbinj(V ) + Sd − Sg = 0 (4.1.1)

Where, V = Vme
Va (4.1.2)

(4.1.3)

gSb(V) = 0 or



gSb1(Va1 , Vm1 , . . . , Vanb , Vmnb) = 0,

gSb2(Va1 , Vm1 , . . . , Vanb , Vmnb) = 0,

...

gSbnb(Va1 , Vm1 , . . . , Vanb , Vmnb) = 0,

(4.1.4)

The basic power flow problem involves the iterative solution of the system of

non-linear equations shown in (4.1.4). As discussed in 2.1, Newton’s Method is a

highly used powerful method to solve these non-linear power balance equations.
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4.1.2 FPFA Bus Categories

As seen in Section 2.1, for ease of formulating the power flow problem, it is typically

the case that nodes (buses) are divided into different categories, depending on what

initial conditions are known for each node. Such categorisation of nodes will then

inform how the system of non-linear power balance equations, shown in (4.1.4) are

constructed for the system. Similarly, for the FPFA the buses are divided into

three distinct categories, however in this case, the PV nodes are for those nodes in

which nodal voltage regulation (control) is available by the action of generators as

well as any power controller elements modelled through FubM that have voltage

control capability, ie. the VSCs and the transformers with automatic taps (CTTs).

Therefore, the bus categories in the FPFA can be divided as follows:

• PQ: These correspond to the conventional load (demand) buses. They do not

have voltage regulation. For these nodes at the initiation of the power flow

problem the nodal active and reactive power injections are known and as such

their associated state variables are the are the nodal voltage magnitude, Vm,

and the phase angle, Va.

• PV: The nodal voltage magnitude, Vm is regulated to a pre-defined set-point

by either a generator or a FubM control element. For these types of nodes,

the nodal active power is typically known and the nodal voltage magnitude is a

known parameter rather than a state variable. The unknown variables are the

voltage phase angle, Va and the nodal reactive power injection (compensation),

which is balanced by either a generator, or a FubM element connected to the

node).

• Slack: One bus in each electrical island is chosen as the island slack bus. This

bus has a fixed voltage magnitude Vm and a set voltage phase angle, Va, which

will be used as a reference for all the nodal voltage phase angles in the island,

hereby is also known as the reference bus. The unknown variables at this bus

are then the nodal real and reactive power injections, which are then used to

assign the real and reactive power at the slack generator.
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The different bus types by their corresponding known and unknown variables

are shown in table 4.1.

Table 4.1: FPFA Bus Categories

P Q Vm Va

PQ Known Known Unkown Unkown

PV Known Unkown Known Unkown

Slack Unkown Unkown Known Known

4.1.3 Extended State Variables

As previously mentioned, the FPFA formulation is extended by FubM in-model

control variables as optional state variables, in order to model those categories of

devices that can exert control over the system operation. In general, a non-linear

equation system with fewer equations than unknowns is called underdetermined as

it has infinitely many solutions, but it may also have no solution. In a balanced

system of equations, each additional unknown variable provides an available degree

of freedom, and each additional equation in the system restricts one degree of free-

dom. The critical case occurs when the number of equations and the number of

state variables are equal. Therefore, in the FPFA for every optional control variable

giving a degree of freedom, there exists a corresponding constraint removing a de-

gree of freedom. Thus the expanded set of state variables, denoted by x, and their

corresponding non-linear mismatch constraints are showed in (4.1.5).
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g(x) =



g
{i}
Pb

(x) = 0

g
{i}
Qb

(x) = 0

g
{i}
Pf

(x) = 0

g
{i}
Qz

(x) = 0

g
{i}
Vf

(x) = 0

g
{i}
Qt

(x) = 0

g
{i}
Vt

(x) = 0

g
{i}
Pdp

(x) = 0



, x =



Va
{i}

Vm
{i}

θsh
{i}

Beq
{i}

Beq
{i}

ma
{i}

ma
{i}

θsh
{i}



∀i ∈ Ipv ∪ Ipq

∀i ∈ Ipq

∀i ∈ Ish

∀i ∈ IQz

∀i ∈ IvscII

∀i ∈ IVt

∀i ∈ IQt

∀i ∈ IvscIII

(4.1.5)

Where g represents the full set of mismatch constraints - these are essentially

used to extend the vector of nodal balance equations shown in (4.1.4. Additionally,

the sets of bus indices Iref , Ipv, Ipq denote the reference, PV and PQ buses,

respectively. The sets of element indices Ish, IQz , IvscII , IvscIII , IVt , IQt , indicate

the FubM elements for active power control, zero constraint control, FubM VSCs

type #II for Vdc fixed control, FubM VSC type #III for Vdc − Pf droop control,

FubM elements for Vt nodal control and FubM elements for Qt power control.

4.1.4 Extended Mismatch Equations

This subsection describes in detail each one of the non-linear mismatch equations

from (4.1.5) for the FPFA extended formulation. Mismatch equations gPb , and gPb

are basically the conventional nodal power balance equations which are required

to solve any AC system - these equations are core to the traditional uncontrolled

power flow problem. In addition to these, the FPFA contains additional constraints.

The Zero Constraint Mismatch equation gQz allows the algorithm to solve AC/DC

systems. Finally, mismatch equations gPf , gVf , gQt , gVt , and gPdp , allow the system

to be fully controllable in terms of power and voltage. Apart from the nodal power

balance mismatch equations all the other constraints are optional and their activa-

tion will depend on the type of the EPS (i.e. whether it is purely AC, or AC/DC

hybrid) and the types of elements included. In the sections following, all additional
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constraints in form of mismatch equations are formulated for the FubM in-models

which were described in detail in the previous chapter.

Power Balance Mismatch Equation

The power balance equation system from (4.1.4) has been separated into its real

and imaginary parts, as shown in (4.1.6) and (4.1.7), to have one real power balance

equation for each unknown voltage phase angle Va, and one imaginary power balance

equation for each unknown nodal voltage magnitude Vm.

g
{i}
Pb

= Real
(
g
{i}
Sb

)
∀i ∈ Ipv ∪ Ipq (4.1.6)

g
{i}
Qb

= Imag
(
g
{i}
Sb

)
∀i ∈ Ipq (4.1.7)

In equations (4.1.6) and (4.1.7), the complex nodal power balance equations of

(4.1.4) can be defined as the function of the vector of state variables x, which can

be written in matrix form as shown in (4.1.8):

gSb(x) = Sbus(x) + Sd − Sg = 0 (4.1.8)

The complex power injections are represented by Sbus for all the buses in the

entire EPS, and it is also calculated in matrix form as in (4.1.9). In which [ ] is

used to denote an operator that takes an n×1 vector and creates the corresponding

n× n diagonal matrix with the vector elements on the diagonal.

Sbus(x) = [V]Ibus
∗ = [V]Ybus

∗V∗ (4.1.9)

The nodal admittance matrix Ybus has a size of nb× nb. And, the Yii elements

in its diagonal contain the short circuit admittances, and are obtained as the sum

of admittances for all the branch elements connected to the bus i, including the

shunt elements. The Yij off-diagonal elements represent the mutual admittances in

between nodes i and j, and are the negative of the admittances connecting them.

Furthermore, for a network of nl branches, the nl × nb sparse connection matrices

Cf and Ct that are used in building the system admittance matrices can be defined
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as follows. The (i, j)th element of Cf and the (i, k)th element of Ct are equal to

1 for each branch i, where equal to 1 for each branch i, where branch i connects

from bus j to bus k. All other elements of Cf and Ct are zero. Thus, by using

the connection matrices, the nodal admittance matrix can be easily calculated as in

(4.1.10).

Ybus = Cf
>Yf + Ct

>Yt + [Yshunt] (4.1.10)

Where the nl × nb system branch admittance matrices Yf and Yt are also con-

structed by using the described connection matrices and the branch admittance

components from (3.1.13). for all the nl branch elements of the EPS in vector form

as shown in (4.1.11) and (4.1.12) respectively.

Yf = [Yff ]Cf + [Yft]Ct (4.1.11)

Yt = [Ytf ]Cf + [Ytt]Ct (4.1.12)

Real Power Control Mismatch Equation

Active power control regulation to a set-point can be provided by PST and VSC

in-models. The gsh constraint ensures that the active power flow though the FubM

element meets a specified set-point value of P set
f . Power regulation is provided at the

“from” side of the branch, and the steady state control variable that is associated

with this constraint is θsh. Thus, the full active power control constraint is shown

in matrix form in (4.1.13).

g
{i}
Pf

(x) = Real
(
S
{i}
f (x)

)
−P set{i}

f ∀i ∈ Ish (4.1.13)

Where, with the reference to the FubM model, the complex power injection

“from” side Sf is given by (4.1.14), and similarly obtained for the “to” side St in

(4.1.15):

S
{i}
f = [CfV]

(
Y
{i}
f V

)∗
(4.1.14)

S
{i}
t = [CtV]

(
Y
{i}
t V

)∗
(4.1.15)
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Reactive Power Control Mismatch Equation

Regarding the reactive power control of the “to” side of the CTT in-models and AC

side for the VSC in-models, control constraint in (4.1.16) is set to meet the reactive

power reference value Qset
t by comparing it with the imaginary part of the apparent

power from (4.1.15). The steady state variable associated with this constraint is the

ma, which as explained in Subsection 3.1.1, it represents the tap changer for the

automatic CTTs and the modulation amplitude index for the selected VSCs.

g
{i}
Qt

(x) = Imag
(
S
{i}
t (x)

)
−Q set{i}

t ∀i ∈ IQt (4.1.16)

Zero Constraint Mismatch Equation

As explained in Subsection 3.1.1, the reactive power compensation inside the VSC

in-model is represented by the “Zero constraint”. This specific control constraint

balances the reactive power of the “from” side of the FubM and thus, it ensures that

there is zero reactive power flow into the DC network. Similar to the reactive power

control, the zero constraint mismatch constraint also tries to balance the reactive

power - this time with the “from” side of the FubM, and it adjusts the value of

Beq until the constraint is met. Thus, Beq is the associated state variable of this

equation. This mismatch is shown in (4.1.17).

g
{i}
Qz

(x) = Imag
(
Sf
{i}(x)

)
− zero ∀i ∈ IQz (4.1.17)

AC Voltage Control Mismatch Equation

AC voltage can be controlled at the “to” side bus of the FubM elements. In the

traditional Power Flow problem, only the buses that are directly connected to a

generator are considered as PV nodes. This is because in the traditional power

flow only generators can compensate the reactive power at their terminals and thus

maintaining a set voltage.

On the other hand, when using the FPFA in combination with the FubM model,

not only the generators can compensate the reactive power, but transformers with

controllable taps and VSCs can also exert voltage regulation. This is achieved by
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varying the ma and thus varying the reactive power until the actual voltage in

terminals meets a set-point. Mathematically, the voltage magnitude Vm is thus

considered a constant value (i.e. a pre-set parameter) equal to a specified setting

Vset
t . Therefore when voltage regulation is implemented the bus type of the node

changes from traditionally being a PQ node to a PV node just as it was described

in Subsection 4.1.2. This means that the reactive power balance equation that was

used for the calculation of the voltage magnitude is not needed anymore for those

buses with nodal voltage regulation active. Instead, that same equation is now used

for the calculation of the required ma, where now the voltage magnitude Vm is the

constant set-point and the ma is the new associated state variable to this nodal

equation. As a result, the AC Voltage control mismatch equation can be expressed

as in (4.1.18). It follows that, the state variable ma when used to model voltage

regulation in the VSC in-model corresponds to the amplitude modulation index

that exists as a result of PWM control of the converter. For the CTT in-model, this

variable simply corresponds to the controllable tap ratio of the CTT.

g
{i}
Vt

= Imag
(
g
{i}
Sb

)
∀i ∈ IVt (4.1.18)

DC Voltage Control Mismatch Equation

One of the most commonly used features of the VSCs is the DC voltage regulation.

As explained in Section 3.2, MTDC grids can either maintain a fixed DC voltage or a

droop control voltage. Mismatch equation gVf in (4.1.5) focuses on the fixed voltage

regulation and it is provided by the selected VSCs type # II. In a similar way as the

AC voltage control is achieved, the fixed DC voltage regulation considers the voltage

magnitude Vm as a constant, and thus the “from” side bus is now considered a PV

node. As a result, the power balance equation that was used for the calculation of

the voltage magnitude in the node is now used for the calculation of the Beq inside

the VSCs type # II. Thus, the mismatch equation is defined as (4.1.19).

g
{i}
Vf

= Imag
(
g
{i}
Sb

)
∀i ∈ IVvscII (4.1.19)

It is worth to highlight that the Beq of the VSCs type # I and type # II play

87



4.1. Flexible Power Flow Algorithm

a different role. As mentioned in Section 3.2, in a MTDC grid with fixed voltage

regulation, all the Beq of the VSCs type #I are set to meet the Zero Constraint,

which means that the remaining Beq of the VSC type # II remains unused, and

thus, this variable is free to regulate the voltage in the DC side of the grid.

Droop Control Mismatch Equation

When Voltage droop control is implemented by the VSCs type #III, the power

injected to the DC grid is the function of the nodal DC voltage at the “from” side

terminal of the FubM. This means that the amount of power Pf flowing though the

VSCs is determined by the voltage magnitude at its“from” side Vmf . Consequently,

the Voltage magnitude at the DC side is still a variable, and thus, it needs to be

calculated using the nodal power balance equation. Therefore when using Voltage

droop control, the “from” side bus is set as a PQ node. Furthermore, the droop

equation will vary depending on the control type as it was shown in Subsection

3.2.1. Equation (4.1.20) presents the traditional voltage-power vdc − Pf standard

droop control equation from Fig. 3.12, where the parameter kdp represents the slope

for the vdc−Pf control. Additionally, P
{i} set
f , and Q

{i} set
t are the desired active and

reactive power control reference settings. It is a common practice to choose the V set
mf

as the expected average DC voltage, and the P set
f will be the corresponding power

injection. This equation is used as the Droop Control mismatch equation, and the

associated variable with this control constraint will be θsh.

g
{i}
Pdp

(x) = −Real
(
S
{i}
f (x)

)
+ P set{i}

f − kdp
(
V{i}mf −V set{i}

mf

)
∀i ∈ IvscIII (4.1.20)

4.1.5 VSC Losses Correction

A typical loss model takes every component of a VSC HVDC station into account.

The loss model determines the converter station losses as a function of the active

and reactive power exchanged between converter and AC network. The IEC 62751-2

standard [95] recommends using a quadratic fitting curve based on the electromag-

netic transient simulation results to correct and obtain the exact converter losses.
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Accordingly, for the FubM, the converter loss model is formulated as a second or-

der polynomial function of the converter AC-side current It as shown in (4.1.21), in

which, depending on the values of α, β, and γ the losses can be broken down into:

no-load losses, constant losses, linearly dependant losses and quadratic losses.

g
{i}
Gsw

(x) = −V{i}mf
2
G{i}sw + γ

∣∣∣i{i}t ∣∣∣2 + β
∣∣∣i{i}t ∣∣∣+ α ∀i ∈ Ivsc (4.1.21)

4.1.6 NR Method and Extended Jacobian

The main task of all Power Flow Algorithms is to find a solution for the system of

non-linear equations of the EPS. For the FPFA this system of mismatch equations is

represented by g(x) = 0 in (4.1.5) and it is solved for all x state variables. According

to Newton’s Method, the vector of state variables x that satisfies the mismatch

equations of the system can be approximated by performing a Taylor series expansion

of g(x) as in (4.1.22).

g(x) ∼= g(x(0)) + J(x(0))(x− x(0)) + higher-order terms (4.1.22)

Where the vector x(0) is an initial estimate of the solution, and J is the Jacobian

matrix containing the first order partial derivatives of g(x) with respect to x. From

Section 2.1, we know that the linear approximation of Taylor series is sufficiently

accurate to the functions if the initial condition x(0) is close enough to the solution

values of x, in which case, the higher order terms can be neglected. In numerical

analysis, the Newton-Raphson method produces successively better approximations

to the roots (or zeroes) of a real-valued function. Thus, at a start point in x0, the

iterative corrections to find the solution of the system of mismatch equations in 4.1.5

are calculated as in (4.1.23), or in its compact form in (4.1.24). Consequently, xi+1

is a better approximation for the solution than xi at iteration i.

xi+1 − xi = −g(xi) ·
(
J(xi)

)−1
(4.1.23)

∆x = −g(x) · J−1 (4.1.24)
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In the Traditional Power Flow algorithm, the Jacobian matrix is generated by

calculating only the partial derivatives of the power balance equations with respect

to the voltage variables (nodal magnitude and phase angles). Since for the FubM

model, the number of equations and state variables have been extended to include

all the extra available controls in the model, the Jacobian matrix J is also expanded

accordingly. Thus, the iterative corrections for the state variables with an expanded

Jacobian structure is shown in (4.1.25).



∆Va

∆Vm

∆θsh

∆Beq

∆Beq

∆ma

∆ma

∆θsh



= −



gPb(x)

gQb(x)

gPf (x)

gQz(x)

gVf (x)

gQt(x)

gVt(x)

gPdp(x)



/



∂gPb
∂Va

∂gPb
∂Vm

∂gPb
∂θsh

∂gPb
∂Beq

∂gPb
∂Beq

∂gPb
∂ma

∂gPb
∂ma

∂gPb
∂θsh

∂gQb
∂Va

∂gQb
∂Vm

∂gQb
∂θsh

∂gQb
∂Beq

∂gQb
∂Beq

∂gQb
∂ma

∂gQb
∂ma

∂gQb
∂θsh

∂gPf
∂Va

∂gPf
∂Vm

∂gPf
∂θsh

∂gPf
∂Beq

∂gPf
∂Beq

∂gPf
∂ma

∂gPf
∂ma

∂gPf
∂θsh

∂gQz
∂Va

∂gQz
∂Vm

∂gQz
∂θsh

∂gQz
∂Beq

∂gQz
∂Beq

∂gQz
∂ma

∂gQz
∂ma

∂gQz
∂θsh

∂gVf
∂Va

∂gVf
∂Vm

∂gVf
∂θsh

∂gVf
∂Beq

∂gVf
∂Beq

∂gVf
∂ma

∂gVf
∂ma

∂gVf
∂θsh

∂gQt
∂Va

∂gQt
∂Vm

∂gQt
∂θsh

∂gQt
∂Beq

∂gQt
∂Beq

∂gQt
∂ma

∂gQt
∂ma

∂gQt
∂θsh

∂gVt
∂Va

∂gVt
∂Vm

∂gVt
∂θsh

∂gVt
∂Beq

∂gVt
∂Beq

∂gVt
∂ma

∂gVt
∂ma

∂gVt
∂θsh

∂gPdp
∂Va

∂gPdp
∂Vm

∂gPdp
∂θsh

∂gPdp
∂Beq

∂gPdp
∂Beq

∂gPdp
∂ma

∂gPdp
∂ma

∂gPdp
∂θsh


(4.1.25)

Each partial derivative inside the Jacobian is a matrix that contains the partial

derivatives of the stated equation with respect to each individual variable. For

example, the matrix
∂gPb
∂Va

contains the partial derivatives of each individual active

power balance equation in gPb with respect to the voltage angle Va for each PV

and PQ node in the EPS. Thus, the size of the matrix
∂gPb
∂Va

is [nb− 1, nb− 1]. The

detailed development and final equations for each matrix of partial derivatives inside

the extended Jacobian can be found in the Appendix C.

It is also worth to highlight that the extended Jacobian in (4.1.25) is re-sizable,

which means that depending on the case and the active controls, it will contain only

the necessary partial derivatives of the extended mismatch equations presented in

Subsection 4.1.4 and their associated state variables. Thus, the Jacobian could be

as simple as the traditional power flow Jacobian of Section 2.1, or as complex as the

one shown in (4.1.25).
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4.1.7 FPFA Flowchart

This subsection presents a Flowchart of the FPFA and a detailed explanation for

each one of the steps contained in the flowchart. The flowchart is shown in Fig.

4.1(a).

Figure 4.1: (a) FPFA Flowchart (b) AC Power Flow Flowchart

By comparing the flowcharts of the AC Power Flow algorithm and the FPFA

using FubM of Fig. 4.1(b) and Fig. 4.1(a) respectively, it is clear the main structure
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4.1. Flexible Power Flow Algorithm

of the FPFA using the FubM is very similar to the general unified approach for the

power flow solution of AC power grids. From an implementation perspective, it can

therefore be appreciated that by using the FubM and with only minor modifications

to the core formulation of the unified approach, it is possible to simulate a fully

controllable AC/DC power EPS with all available controls.

The implementation of FPFA using FubM is quite simple, after loading the case

(here case refers to the system to be solved and can be either AC-only or a hybrid

AC/DC EPS), identification of the in-models and control elements is carried out

by analysing the input parameters (just as explained in Subsection 3.1.1). Here is

where identifiers I for the in-models, controls, and nodes are created. Then, with the

initialised state variables, the admittance matrices Ybus, Yf and Yt are calculated,

and they are used to calculate the initial complex nodal power injections and branch

power flows. Moreover, depending if the case is an hybrid power grid (AC/DC) or

just an AC grid, the losses of the VSCs have to be corrected as explained in Section

4.1.5. Then, the mismatch equations in 4.1.5 are evaluated using the initial condition

of the state variables x. To verify if the mismatch equations are satisfied, the largest

mismatch is compared against a set tolerance ε. This is achieved by calculating the

infinity norm of the vector of mismatch equations g by using the p-norm, where p

tends to ∞, and is calculated as shown in (4.1.26).

||g||∞ =

[
nx∑
k=1

|gk|∞
] 1
∞

= maxk(|gk|) (4.1.26)

If the mismatch equations have not met the tolerance, then the Jacobian of

(4.1.25) is built, and the corrections of the state variables for the next iteration xi+1

are calculated. The process is repeated iteratively until the mismatch equations

reach the set tolerance ε (convergence), or the maximum number of iterations imax

surpassed (divergence).

If convergence is achieved, the reactive power compensation from the Generators

Qg and the Active Power compensation of the generator(s) connected to the slack

bus is calculated. Finally the results are printed.
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4.2. Matpower-FubM Power Flow Solution

4.2 Matpower-FubM Power Flow Solution

As it was mentioned in the introduction of this Chapter, unified algorithms are a

superior approach for solving the AC Power Flow problem. Nevertheless solving

the power flow problem in this way for an AC/DC networks requires major modi-

fications to the core AC-only power flow solvers. Moreover, ideally, any power flow

solver should also be able to model the controls available in a hybrid AC/DC sys-

tem (e.g. VSC voltage and power control) to be able to accurately estimate the

operational flexibility of such systems. This feat is absent from most standard AC-

only power flow solvers. However, as seen in Section 4.1, by using the FubM in

combination with the FPFA, hybrid AC/DC networks can be modelled and solved

efficiently and with minor modifications to AC-only power flow solvers, and at the

same time, impacts of operational flexibility promised by these additional controls

can be estimated.

Matpower Software is a package of free, open-source Matlab-language M-files

for solving steady-state power system simulation and optimisation problems. It is

very effective for the analysis of AC grids and is widely used worldwide by researchers

and the industry alike. Regardless of its success, for new hybrid AC/DC grids, the

software is rather limited. To showcase the multiple benefits of the FubM and the

simplicity of its implementation, this section presents the results of the implemen-

tation of the FPFA using FubM to the existing software tool Matpower. The

original software of Matpower can be downloaded in [60] and the modified version

of it which can solve hybrid AC/DC grids using the FubM can be downloaded in

[104].

The remainder of this section presents three main case studies and their simula-

tion results. All simulations were carried out using an extension to the Matpower

AC-only power flow solver which includes the FubM to model all network elements

and the FPFA to solve the ensuing power flow problem. This implementation is

called Matpower-FubM power flow solver in this thesis. The first test case is

used to validate the FubM model. The second one presents a test case with multi-

ple control features to showcase the flexibility of the FubM in modelling a variety

of controls. Finally, the last case study is used as a demonstration of the effec-
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4.2. Matpower-FubM Power Flow Solution

tiveness of the FubM model implementation in conjunction with FPFA for solving

large-scale systems without sacrificing computational efficiency. All cases have been

solved using a PC with CPU Intel Core i7, 2.2GHz and 16GB RAM memory. The

FPFA algorithm is set within the tolerance shown in (4.2.27).

ε = 1e10−12 (4.2.27)

4.2.1 Case Study IEEE 57 - IEEE 14

In order to verify the accuracy of the FubM and the proposed algorithm for power

flows, the simulation is performed for the same test system reported in [62]. The

test system consists of two asynchronous AC grids interconnected trough two MTDC

grids. The first AC grid is the IEEE 57 bus system consisting of 7 generators, 80

transmission lines and 42 loads. The second AC grid corresponds to the IEEE 14

bus system, supplying 11 loads through 20 lines with 5 generators. Regarding the

MTDC grids, the first DC grid consists of 3 DC buses which are connected using a

ring topology. On the other hand, the second DC grid consists on 7 bipolar buses,

five of which are connected to a VSC and the remaining two are pure DC buses.

Additionally, Bus 9 has a constant photovoltaic injection of 30 MVA and a pure DC

load of 10 MW. Figure 4.2, shows the diagram of the described test system.

Parameters for all VSCs and AC-side transformers are given in Table 4.2. The

coefficients for the VSCs polynomial loss model are set to get the converter power

loss equal to approximately 1% of its rated power. Table 4.3 summarises the branch

parameters for each DC grid.

Table 4.2: IEEE 57-14 VSC Parameters

VSC Rate Transformer Filter Reactor Loss Coefficients

No. [MVA] ZTR [pu] Bf [pu] Zs [pu] γ β α

1 200 0.0010+j0.0033 0 0.05 0.001 0.004 0.008

2,3 100 0.0015+j0.0500 0 0.075 0.002 0.004 0.004

4 200 0.0010+j0.0033 0 0.05 0.001 0.004 0.008

5,6,7,8 100 0.0015+j0.0500 0 0.075 0.002 0.004 0.004
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4.2. Matpower-FubM Power Flow Solution

Figure 4.2: IEEE 57 - IEEE 14 MTDC Link

Voltage regulation is provided for both DC grid by employing one VSC type #

II per DC grid. The remaining VSCs are set as type # I to control the active power.

Furthermore reactive power control and voltage regulation in the AC side is also

implemented. Details in the control settings are presented in Table 4.4, where the

same control modes presented in Subsection 3.2.1 is used. Notice that for active

power control, in each DC area at least one VSC remains free to account for the

active power loss though the DC lines.

Simulation Results and Discussion

The proposed Matpower-FubM power flow solver has been used to solve this sys-

tem. The ensuing power flow problem converged in 0.27 seconds after 11 iterations.

All the results match with the ones presented in [62]. Even though the Matpower-
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Table 4.3: IEEE 57-14 DC Grid Parameters

MTDC Grid 1 MTDC Grid 2

From Bus To Bus rs [p.u.] From Bus To Bus rs [p.u.]

1 2 0.010 4 9 0.010 0

2 3 0.010 4 10 0.005 0

3 1 0.020 5 6 0.015 0

5 7 0.015 0

6 10 0.010 0

7 10 0.015 0

8 9 0.015 0

Table 4.4: IEEE 57-14 VSCs Control Settings

DC VSC Control Zero Vdc Pf Vt Qt

Grid No. Mode Constraint [pu] [MW] [pu] [MVAr]

1

1 5 Free 1 *** 1.06 ***

2 3 Active *** -50 0.99 ***

3 3 Active *** -50 1.03 ***

2

4 4 Free 0.995 *** *** 0

5 2 Active *** -50 *** 0

6 2 Active *** -50 *** 10

7 3 Active *** 90 1.001 ***

8 3 Active *** -60 1 ***
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FubM solver is capable of solving the entire network with a single reference bus, this

case was simulated using two of them only for comparison purposes. Both reference

angles are set in the first bus of each AC grid. Table 4.6 summarises the results for

VSC control and Table 4.5 presents the power flows and voltages of each DC grid.

Table 4.5: IEEE57-14 DC Power Flow

MTDC Grid 1 MTDC Grid 2

From to Pf Pt From to Pf Pt

1 2 62.93 -62.53 4 9 40.73 -40.56

2 3 12.53 -12.52 4 10 10.86 -10.85

3 1 -37.48 37.77 5 6 6.16 -6.16

5 7 -56.16 56.65

6 10 -43.84 44.04

7 10 33.35 -33.19

8 9 -60 60.56

Table 4.6: IEEE 57-14 VSCs Control Results

VSC Control Beq Vdc Pf Vt Qt θsh ma

No. Mode [pu] [pu] [MW] [pu] [MVAr] [deg] [pu]

1 5 0.9463 1.000 -100.70 1.060 -95.74 0.0000 0.7859

2 3 -0.4026 0.994 -50.00 0.990 42.75 -43.4876 0.8067

3 3 -0.1045 0.992 -50.00 1.030 12.89 -41.7281 0.7647

4 4 0.0086 0.995 -51.58 1.040 0.00 0.0000 0.8014

5 2 0.0090 0.991 -50.00 1.045 0.00 3.4812 0.7490

6 2 -0.0834 0.990 -50.00 0.996 10.00 9.0110 0.7865

7 3 1.1885 0.999 90.00 1.001 -102.55 14.9765 0.8343

8 3 -0.3612 0.982 -60.00 1.000 40.25 -1.9949 0.7827

Control results from the VSC in-model match with the Traditional VSC model

presented in [62]. All VSC type # I present zero reactive power injection to the

DC grid, which shows that the zero constraint has been achieved. From Table

4.6, it is noticeable that active power has been fully controlled by both MTDC.
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Furthermore, the value of θsh has been obtained for all active power controlled

elements. The algorithm has calculated successfully the modulation coefficient and

the required value of Beq for both converters types #I and #II. Therefore, both

reactive power and voltage control have met the set values within the tolerance. DC

grids 1 and 2 present a voltage angle of Va = −46.226◦ and Va = −0.966◦ for all their

buses respectively. It should be noticed that even though the voltage angle in the

DC grid has a value, it remains constant throughout the DC network. Thus, as it

was demonstrated mathematically in Section 3.2, and in Appendix B.1, there is no

reactive power through the DC link, hence the DC power flow is purely dependent

on the DC nodal voltages. The fact that the algorithm is obtaining Va in the DC

areas is a solid proof that the algorithm is not creating any distinction between AC

and DC elements. It is clear that the FubM does create a connection between grids

and therefore the effects of this interaction result in a more realistic and flexible way

of simulating hybrid AC/DC power grids.

4.2.2 Case Study Modified IEEE 30 Bus System

In this case study, the proposed Matpower-FubM solver is used to solve a modified

version of the IEEE 30-bus system that was presented in [105]. This widely modified

test case combines fixed, and automatic controls to represent diversity of control

elements in a typical EPS. All branch and control elements are modelled using the

FubM to show all the described in-models working seamlessly all at once. Fig 4.3

shows the test system diagram.

Within the modifications to the case, a MTDC grid with three VSCs in ring

topology is included. To integrate two offshore wind farms, a second MTDC grid is

also added. For reactive power control, a well-located STATCOM in node B124 has

been connected with a fixed DC voltage of 1.1 V. Furthermore a VSC-HVDC link

between the node B123 and B108 is added. Additionally, the lines between buses

B110-B120 and B112-B114 have been changed to be PSTs for active power control.

Similarly for the lines between buses B106-B110 and B116-B117 also are changed

to be CTTs for reactive power control and voltage control respectively.

Tables 4.7 summarise the parameters of the VSCs and their respective transform-
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4.2. Matpower-FubM Power Flow Solution

Figure 4.3: Modified IEEE 30 - 2 MTDC grids

ers. The value of the series resistance rs for all DC lines is 0.05 [pu]. AC system

data can be found in Matpower’s free database [24].

While MTDC Grid 1 regulates the voltage using Voltage Droop Control, voltage

regulation is provided to MTDC Grid 2 by employing one VSC type # II. The volt-

age over the HVDC link is regulated though the VSC 10 that is set up with voltage

droop control strategy. Details in the control settings are presented in Table 4.8,

again the same control code presented in Subsection 3.2.1 is used. The control

settings for the PSTs and CTTs can be found in Table 4.9.
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Table 4.7: Modified IEEE 30 VSC Parameters

Rate Transformer Filter Reactor Loss Coefficients

MVA ZTR [pu] Bf [pu] Zs [pu] γ β α

200 0.0015+j0.1121 0.0887 0.0001+j0.1643 0.0001 0.015 0.2

Table 4.8: Modified IEEE 30 VSCs Control Settings

DC VSC VSC Control Zero V set
dc P set

f V set
t Qset

t kdp

Grid No. Type Mode Constraint [pu] [MW] [pu] [MVAr] [pu]

1

1 III 7 Free 1.1 -3.5 *** *** -0.1

2 I 2 Active *** *** *** -25.0 ***

3 III 6 Active 1.1 -2.35 *** *** -0.05

2

4 I 1 Active *** *** *** *** ***

5 I 3 Active *** *** 1.05 *** ***

6 II 5 Free 1.07 -15 *** *** ***

STATCOM 9 II 4 Active 1.1 *** *** *** ***

HVDC
10 III 7 Free 1.0 2.0 *** *** -0.05

11 I 2 Active *** *** *** *** ***

Table 4.9: Modified IEEE 30 PSTs and CTTs Control Settings

Transformer Element P set
f V set

t Qset
t

Type No. [MW] [pu] [MVAr]

PST
1 3.5 *** ***

2 7.5 *** ***

CTT
1 *** *** 3.0

2 *** 1.01 ***
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Simulation Results and Discussion

The presented FPFA formulation for the FubM has been successfully solved in 11

iterations and 0.52 seconds. The system was initialised with flat start. Figure 4.4

shows the convergence in each iteration of the FPFA for all the mismatch equations

of the EPS. It is noticeable that from iteration number 3 the mismatch equations

have practically converged. The rest of the iterations are just to match with the

minimum tolerance ε.

Figure 4.4: Modified IEEE 30 Convergence for all State Variables

Tables 4.10 and 4.11 present the DC grid voltages and the solution of the VSCs

controls respectively. It can be appreciated that all the controls meet their target.

Also, VSCs 1,3 and 10 have follow the Pf−Vdc Droop Control. The control values for

the state variables Beq, θsh and ma were obtained. Furthermore, the Zero Constraint

was meet in all the VSC that have the setting as active, but also it can be appreciated

that the remaining ones meet this constraint naturally. Even though all DC nodes

present voltage angles, they remain the same through-out each isolated DC grid.
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Figure 4.5: Modified IEEE 30 Convergence for all State Variables (Zoom)

Thus, the power flow though the DC Grid is solely dictated by the Voltage magnitude

as explained in Section 3.2. Finally in Table 4.12 the results from the PSTs and

CTTs are presented.

From Fig. 4.6 and Fig. 4.7 it can be appreciated that from iteration 3 the

modulation amplitude has almost reach convergence for Voltage control and Reactive

power control in the AC side.

Overall, with this simulation it is clear that the FubM is capable to model several

elements of the power system without sacrificing computational effort. Moreover the

entire grid was calculated using just one reference angle in bus B101. All the controls

worked as expected. The FPFA has a fast convergence regardless of the amount of

controls applied.
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Table 4.10: Modified IEEE 30 DC Grids Voltages Results

Bus Vm Va Bus Vm Va Bus Vm Va

ID [pu] [deg] ID [pu] [deg] ID [pu] [deg]

B001 1.041 -2.277 B005 1.070 -0.467 B009 1.100 -0.100

B002 1.039 -2.277 B006 1.070 -0.467 B0010 1.000 -2.820

B003 1.040 -2.277 B007 1.077 -0.467 B0011 1.001 -2.820

B004 1.070 -0.467 B008 1.075 -0.467

Table 4.11: Modified IEEE 30 VSC Control Results

VSC Pf Qf Qt θsh Beq ma

ID [MW] [MVAr] [MVAr] [deg] [pu] [tap]

1 -2.91 0 0.01 -2.1581 0 1

2 4.95 0 -25.00 0 0.2298 0.9770

3 -2.05 0 -12.46 2.9197 0.1174 1

4 0.26 0 -26.03 0 0.2366 1

5 9.59 0 -26.07 0 0.2284 0.9811

6 15.00 0 -26.88 -0.4213 0.2469 1

9 0.00 0 -37.65 0 0.3290 1

10 2.00 0 0.01 -1.8995 0 1

11 -2.00 0 -5.32 0 0.0536 1

Table 4.12: Modified IEEE 30 PSTs and CTTs Control Results

Transformer Element Pf θsh Vt Qt ma

Type No. [MW] [deg] [pu] [MVAr] [tap]

PST
1 3.5 -0.0402 0.983 1.93 1

2 7.5 0.2427 0.984 -3.52 1

CTT
1 2.63 0 0.999 3.0 1.0155

2 11.43 0 1.01 -19.23 0.8717
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Figure 4.6: Modified IEEE 30 Modulation amplitude for Qt control

Figure 4.7: Modified IEEE 30 Modulation amplitude for Vt control
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4.2.3 Case Study Modified PEGASE System

This case accurately represents the size and complexity of part of the European

high voltage transmission network. It contains 1,354 buses, 260 generators, 1,991

branches and it operates at 380kV and 220kV. The data comes from the Pan Eu-

ropean Grid Advanced Simulation and State Estimation (PEGASE) project [106]

[107]. The original case has been modified to incorporate an HVDC Link and a

MTDC grid as shown in Fig. 4.8. Both DC grids operate with a nominal voltage

of 345kV and 500MVA rating. The HVDC link is set to operate as Voltage Droop

Control strategy, and the MTDC grid is set for fixed Voltage regulation using a VSC

type #II. Table 4.13 summarise the parameters of the DC grids, coupling transform-

ers and VSCs . Additionally, the PST and the CTT between buses B7466-B3649

and B6153-B6807 have been changed from fixed control to automatic active power

control and automatic tap changer for reactive power control respectively.

Figure 4.8: Modified PEGASE Project
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Table 4.13: Converter and DC grid parameters

Parameter Value

Rating VSC / DC Voltage 1000MVA 345kV

Max / Min DC Voltage 1.1 p.u. 0.9 p.u.

Max / Min ma 1.22 0.75

Coup. Transformer rs / xs 0.0001 p.u. 0.0105 p.u.

VSC (1,2) rs / xs 0.0002 p.u. 0.0250 p.u.

VSC (3,4,5) rs / xs 0.00015 p.u. 0.00305 p.u.

VSC (1,2) Loss Coefficient α = 0.01, β = γ = 1x10−4

VSC (3,4,5) Loss Coefficient α = 0.001, β = γ = 1x10−5

DC line rs (HVDC Link) 0.0005 p.u.

DC line rs (MTDC Grid) 0.0007 p.u.

VSC 2 Droop Kdp 5

VSC 2 Droop P set
f 1 [MW]

VSC 2 Droop V set
f 1.01 [pu]

The AC node B4231 has been selected to be the voltage angle reference at zero

degrees. All the AC and DC transmission elements of the case have been modelled

using FubM. Furthermore, all VSCs type #I have been set for reactive power com-

pensation (Zero constraint). Table 4.14 contains the control settings for all VSCs,

PSTs and CTTs. Notice even though all VSCs are operating in one of the explained

control modes from Section 3.2.1, the control constraints are set individually within

the FubM. Therefore, the model is not restricted to them. As proof of this, the

control constraint 2 of the VSC 5 has been left as a free variable.

Simulation Results and Discussion

The presented FPFA formulation for the FubM has been successfully solved in 15

iterations and 45.03 seconds. The system voltages are initialised as 1 [pu] and zero

degrees phase angles. Figure 4.9 shows the convergence in each iteration of the FPFA

for all the mismatch equations of the EPS. Even though this case system is much

larger than the modified IEEE30 bus system from Subsection 4.2.2, the mismatch
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Table 4.14: Control Settings for VSC and Transformers

Converter Type Mode Const. 1 Const. 2

VSC 1 I 1 Theta = 0 Vac=1.05

VSC 2 III 7 Vdc Droop Vac=1.07

VSC 3 II 5 Vdc=1.00 Vac=1.06

VSC 4 I 3 Pf=-500 Vac=1.075

VSC 5 I 3 Pf=-450 Vac= free

Transformer From To Control Constraint

PST B7466 B3649 Pf = -290

CTT B6153 B6807 Qt =1.95

* Power is expressed in MW and Voltage in p.u.

equations have almost met the target from iteration number 5. This means that

the FubM formulation is scalable and it also maintains a relatively fast convergence

rate as well. Similar to the test case from subsection 4.2.2. the rest of the iterations

are just to match with the minimum tolerance ε.

Tables 4.15 and 4.16 present the DC grid voltages and the solution of the VSCs

controls respectively. All the set controls have met their targets. It can be appre-

ciated that the VSC 2 has delivered the appropriate active power according to the

Voltage Droop Strategy. The control values for the state variables Beq, θsh and ma

were obtained. The Zero Constraint compensated the reactive power in all VSC and

thus there is only active power flowing though the DC grids. As it can be observed

in this case the DC voltage angles are also maintained constant per DC grid. The

results from the PST and the CTT are presented in Table 4.17.

Table 4.15: Modified PEGASE DC Grids Voltages Results

Bus Vm Va Bus Vm Va

ID [pu] [deg] ID [pu] [deg]

B001 1.0102 -17.3998 B003 1.0000 -7.4014

B002 1.0100 -17.3998 B004 1.0034 -7.4014

B004 1.0033 -7.4014
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Figure 4.9: Modified Pegase Convergence for all State Variables

Figure 4.10: Modified Pegase Convergence for all State Variables (Zoom)
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Table 4.16: Modified PEGASE VSC Control Results

VSC Pf Qf Qt θsh Beq ma

ID [MW] [MVAr] [MVAr] [deg] [pu] [tap]

1 -50.0123 0 298.9929 0 -2.9907 1.0646

2 50.0000 0 -581.4818 0.3595 0.0200 0.7996

3 946.8592 0 -245.9472 0 3.9235 0.8263

4 -500.000 0 -123.5432 11.3586 1.8885 0.9113

5 -450.000 0 172.1516 7.9647 -0.8343 1.0000

Table 4.17: Modified PEGASE PSTs and CTTs Control Results

Transformer Element Pf θsh Qt ma

Type No. [MW] [deg] [MVAr] [tap]

PST 1 -290.0 0.0011 *** ***

CTT 1 *** *** 1.950 0.9822

From Fig. 4.11 it can be appreciated that from iteration 4 the modulation

amplitude has almost reached convergence for voltage control and reactive power

control in the AC side. Overall, with this simulation it is clear that the FubM is

capable to model several elements of the power system regardless of the size of the

system and without sacrificing computational effort. Moreover the entire grid was

calculated using just one reference angle in bus B4231. All the controls worked as

expected. The FPFA has a fast convergence regardless of the amount of controls

applied.
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Figure 4.11: Modified PEGASE Modulation amplitude for Vt control

Chapter Summary

In this Chapter, the Power Flow Algorithm for the steady state solution of AC/DC

EPS using FubM has been presented. As seen in subsection 4.1.3, the proposed

Power Flow Formulation takes advantage of all the extra variables that the FubM

model includes. Thus a fully flexible AC/DC grid could be accurately modelled

and simulated. Accordingly, the extended mismatch equations for each one of the

additional controls and constraints were presented in detail. Detailed formulation

of the equations and the Jacobian partial derivative elements were also included.

Additionally a Flowchart containing the step by step process of the FPFA has been

presented. The FPFA using FubM has been implemented in Matpower to create

a fully flexible Matpower-FubM power flow solver and showing the simplicity of

its implementation. Three test cases were presented to show the capabilities of the

FubM in modelling a vast array of power system elements both for AC and DC

networks and the FPFA for solving such systems seamlessly. The first test case was

included to validate the FubM model and FPFA algorithm. The second test case

shows a highly modified test case to include as many control elements and MTDC
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links as possible, and thus, show the performance of all the in-models working at

the same time. Finally the last case tested the scalability of this new formulation

by simulating a modified version of the PEGASE EPS. This test shows that there

is no extra computational effort as the size of the problem gets increased. More-

over, the the amount of iterations to reach convergence between each test case was

quite similar. The simulations results showed that there is no need to analyse the

system equations grid by grid and thereby avoiding the inclusion of separate model

libraries for each elements in the AC and DC grid. There is no need for introducing

additional coupling constraints to maintain power balance between the AC and DC

side of the grid. From a purely mathematical perspective, there is no distinction

between AC and DC counterparts when the grid is modelled using FubM. Thus,

the same AC Power Flow equations can be used to solve the entire hybrid EPS

whilst at the same time incorporating the extra levels of control and flexibility con-

tained in such grids. In the proposed FPFA algorithm, voltage and power control

are addressed per variable for all the elements. Simulation results demonstrate high

speed quadratic convergence with full control over the grid solving AC/DC grids

using AC-only equations. Such high flexibility of use as well as convergence charac-

teristics, makes the FPFA algorithm alongside the FubM model perfect candidates

for solving Optimal Power Flows for hybrid AC/DC networks. This is shown in the

next Chapter.
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Chapter 5

Flexible AC/DC OPF using FubM

Power Flow analysis tools are widely used on a daily basis by all TSOs around the

world. In Chapter 4 the FubM from Chapter 3 was used to propose a solution

for conventional power flow analysis of hybrid AC/DC grids (the so-called FPFA).

The FPFA is formulated such that it incorporates additional control variables and

their associated constraints (in form of an expanded vector of state variables and

accompanying mismatch constraints) for power system elements modelled through

FubM in-models for modelling and solving hybrid AC/DC networks that have extra

degrees of control capabilities, and flexibility of operation. To this end, the FPFA

coupled with FubM modelling can be used to ascertain the state of a fully flexible

system at each point in time. This can in principle therefore be used by the TSOs

for planning network operation in advance of real-time for those systems where there

are extra levels of flexibility promised by control devices such as PST/CTTs and

VSCs.

Notwithstanding this, solving a conventional power flow problem - even with

added level of control elements - for actual operational planning purposes may have

drawbacks. More specifically there are two major disadvantages to using power flows

for planning system operation namely, i) They do not consider any transmission or

voltage limits for any of the elements in the EPS and ii) The power dispatch of

all generation units has to be known beforehand. Typically in order to determine

the power dispatch for all the committed generators in a system, an Economic

Dispatch (ED) problem is solved. The premise of ED is to determine an optimum
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schedule for power dispatch for all committed generators that would meet the system

load profile for a specific planning timescale. The ED however does not take into

account transmission losses in the network.

It may seem natural that by combining the power flow problem with the ED,

an optimum power dispatch considering transmission losses can be determined, but

unfortunately this is not the case. Even though both analyses are crucial for all

TSOs in helping them determining the state of their system, neither the ED nor the

power flow analysis consider the physical limitations of the elements in the EPS.

Furthermore, by not including the transmission losses directly into the ED, it is

highly likely the power dispatch will already be a sub-optimal solution. Thus, the

results may not be realistic, or even feasible, especially for networks that does indeed

exert extra levels of flexibility and control. Therefore, in order to address these

shortcomings, the Optimal Power Flow (OPF) problem is the type of analysis that

needs to be carried out. The OPF problem combines the ED with the power flow

problem while considering all the physical limits of the EPS as well. The existence

of the OPF analysis tools do not mean that the power flow or the ED analyses are

not used in daily operational planning in power systems. They are practical tools

that are widely used aimed at different planning timescales and/or applications. In

fact, it is a common practice to use the power flow solution as the initial conditions

for the OPF problem.

This chapter presents a formulation for solving OPFs problem for hybrid AC/DC

grids using the FubM from chapter 3 1. Just like the power flow formulation pre-

sented in chapter 4, the OPF-FubM formulation also provides a direct link between

the AC and DC parts of the grid. Thus, the entire network can be solved within a

unified frame of reference. Therefore, conventional AC OPF equations are used to

solve hybrid AC/DC grids. This formulation maintains the advantages of the FubM

formulation, such as its adaptability to simulate any network topology and diverse

control elements. To this end, the OPF formulation accommodates extended opti-

1The flexible OPF formulation using FubM as well as the some of the test cases and simulation

results presented in this chapter have been published in the International Journal of Electrical

Power and Energy Systems - ElSevier by the author of this thesis and his supervisors [28].
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misation variables associated with all the control elements that are active over the

course of the solution. Furthermore, the vector of constraints may be extended to

accommodate any specific controls on power (e.g. scheduled power output of VSCs

in a multi-terminal VSC-HVDC link) or on voltage (e.g. voltage control set points

for a STATCOM) if deemed appropriate. As a result, the operation of a flexible and

fully controllable AC/DC grid can be simulated without adding extra burden to the

optimisation problem or any computational effort.

The remainder of this chapter is structured as follows: Section 5.1 describes the

OPF formulation in detail. In this section, the extended optimisation variables,

constraints and the full optimisation problem using FubM are presented. Section

5.2 presents the creation of the Lagrangian function and its derivatives for all the

traditional OPF variables and the extra FubM optional variables. Similarly, deriva-

tives for Objective function, Power balance equations and Branch Flow equations

are also shown. Implementation of the FubM-OPF for Matpower and AIMMS is

presented in section 5.3. Test cases, Simulation results and analysis are presented

in Section 5.4 for both implementations. Finally, a chapter summary is added.

5.1 Flexible OPF Formulation using FubM

5.1.1 Introduction

Mathematically, in the OPF problem a chosen objective function is solved towards

its optimum operating point subject to realistic technical and economical equality

and inequality constraints of the power system [14, 15, 22]. More generally, the

OPF problem is basically a constrained, non-linear, non-convex, optimisation prob-

lem, which for an actual EPS, contains a large number of non-linear constraints

representing the equations required to accurately analyse the power transfer across

the entire EPS (i.e. the power balance equations), the physical limitations of the

actual system as well as the economic boundaries within which the system needs

to operate [14]. The complexity and the growth of the number of constraints in-

creases for a hybrid AC/DC EPS, and it grows even more if controls to improve the

flexibility of operation of the network are included in the optimisation problem.
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The formulation of the OPF using FubM presented in this chapter ensures a

computationally tractable and at the same time scalable solution for fully flexible

and controllable hybrid AC/DC EPSs (i.e. it provides solutions to larger systems

without significantly sacrificing computational time). Moreover, the OPF-FubM

solution properly reflects the intricacies of all the interactions of the control elements

and capture enough detail to be a realistic representation of the actual hybrid system

using a single frame of reference.

5.1.2 OPF-FubM Formulation

This section presents the OPF formulation for solving hybrid AC/DC EPS when

modelled using the FubM. The presented formulation is the most complete since

it includes the optional variables as well as the optional power and voltage controls

that were described in Chapters 3 and 4. Just like in the FPFA-FubM formulation

of the preceding chapters, these optional controls can be activated or deactivated as

needed. Therefore the formulation using FubM can be used to solve OPF for AC,

DC or hybrid AC/DC networks.

Extended Optimisation Variables

With the aim of optimising a fully controllable AC/DC grid, the traditional OPF

equations and optimisation variables from section 2.2 are extended to include all

the extra control variables that the FubM can accommodate within its various in-

models. Unlike the extended state variables for the FPFA formulation (presented

in subsection 4.1.3), the extended optimisation variables do not need to be set as a

balanced system where a one to one ratio between variables and constraints must

be maintained. Therefore, in the optimisation problem, the formulation can have

more variables than constraints. As a consequence, the extended optimisation vari-

ables does not have to be identified by their relationship with a specific constraint.

Instead, they are identified by the element that posses the specific control to be

modelled. For example, the variable θsh is active for the selected VSCs and PSTs

because in these devices there can be provisions for active power control. For all the

remaining elements present in the system that have no active power control, instead
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of considering θsh as a variable, it is represented as a fixed parameter. Therefore, the

extended state variables are now expressed as optimisation variables with different

indices as presented in (5.1.1). It is worth to highlight that in contrast to the tradi-

tional formulation of the OPF presented in section 2.2, which identifies all the state

and control variables of the full system as x0 and u0 respectively, for simplicity the

OPF-FubM formulation includes both vectors of variables in a single optimisation

vector x as presented in (5.1.1).

x =

Power Flow

State Variables

Va
{i}

Vm
{i}

θsh
{i}

Beq
{i}

Beq
{i}

ma
{i}

ma
{i}

θsh
{i}



∀i ∈ Ipv ∪ Ipq

∀i ∈ Ipq

∀i ∈ Ish

∀i ∈ IQz

∀i ∈ IvscII

∀i ∈ IVt

∀i ∈ IQt

∀i ∈ IvscIII

−→ x =

Optimisation

Variables

Va
{i}

Vm
{i}

Pg
{i}

Qg
{i}

θsh
{i}

Beq
{i}

ma
{i}



∀i ∈ Ibus

∀i ∈ Ibus

∀i ∈ Igen

∀i ∈ Igen

∀i ∈ Ish

∀i ∈ Ivsc

∀i ∈ Ima

(5.1.1)

Notice that for the OPF formulation, there is no need to have PV nodes or PQ

nodes as it was done for Power Flows. The index Ibus identifies all the buses in the

system, and the index Iref will be used for the node for which the voltage angle will

be set as reference angle. Additionally, the active Pg and reactive Qg generation

now are optimisation variables, and they will be active for all the Igen generators in

the EPS. Furthermore, the index Ish identifies the PSTs and VSCs that have θsh

as an active variable. Similarly, the index Ima identifies the CTTs and VSCs with

the tap/modulation amplitude as a variable. And finally the index Ivsc identify all

the VSCs in general.

Even though each element has the possibility to add their related optimisa-

tion variable, it does not mean that all the elements should have an active control

variable. Thus, the selected elements within the index will have their respective
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variables as active while the remaining ones will be just parameters. For example,

the formulation can have some VSCs with a variable θsh and the remaining ones as

a parameter. The only exception is the Ivsc index, since the variable Beq is active

for all the VSCs for either Zero Constraint or Voltage regulation.

Each one of the optimisation variables in x can be limited using an upper and

lower boundary to restrict its variation within certain limits. The upper and lower

limits for each variable are set in the vectors xmax and xmin respectively. This limits

are crucial since they represent realistic operational limits for all the elements in the

power grid. For example, in the UK, the Grid Code of 2020 the CC.6.1.4 connection

conditions states that the nodal voltage variation for 400kV should not be more

than ±5% of their nominal operation value, thus the upper and lower boundaries

for the voltage magnitude must be set as stated [108]. If a variable must be set to a

specific value, the upper and lower boundaries will be set the same. Therefore, for

a controlled voltage using the selected generators, VSCs, or CTTs, the maximum

and minimum values for x are set as presented in (5.1.2)

x
{i}
min = x

{i}
max = vset

gen
{i} ∀i gen nodes ∈ Ivgen

x
{i}
min = x

{i}
max = vset

t
{i} ∀i “to” nodes ∈ Ivt

x
{i}
min = x

{i}
max = vset

dc
{i} ∀i DC nodes ∈ Ivdc

(5.1.2)

where the index Ivgen identifies the AC voltage controlled nodes using generators.

Similarly, the index Ivt identifies the CTTs and VSCs for voltage “to” control, and

finally, the index Ivdc , identifies the DC nodes for voltage regulation using VSCs.

The optimisation variables boundaries are not only to limit voltage variations,

they are also used to restrict tap/ma changes, generation limits, maximum reactive

regulation from the VSCs and limits for θsh for PSTs and VSCs. Notice that the

Bmax
eq limit for reactive power regulation of the VSCs should be set as described in

chapter 3 by equation (3.1.10).

Extended OPF Constraints

A general optimisation problem is typically subject to a set of g(x) equality and h(x)

inequality constraints. As described in Chapter 2, the traditional OPF formulation
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from section 2.2 only considers the real and reactive power balance equations as the

equality constraints of the system. The FubM-OPF formulation expands this set of

equality constraints to include all the controls for all the in-models of the FubM as

shown in (5.1.3). The constraints are mainly focused on power exchange since fixed

voltage regulation is limited by the optimisation variables as mentioned before.

g(x) =

Traditional OPF

Eq. Constraintsg
{i}
Pb

(x) = 0

g
{i}
Qb

(x) = 0

 ∀i ∈ Ibus

∀i ∈ Ibus

−→ g(x) =

Extended

FubM-OPF

Eq. Constraints

g
{i}
Pb

(x) = 0

g
{i}
Qb

(x) = 0

g
{i}
Pf

(x) = 0

g
{i}
Qz

(x) = 0

g
{i}
Qt

(x) = 0

g
{i}
Pdp

(x) = 0

g
{i}
Gsw

(x) = 0



∀i ∈ Ibus

∀i ∈ Ibus

∀i ∈ Ish

∀i ∈ IQz

∀i ∈ IQt

∀i ∈ IvscIII

∀i ∈ Ivsc

(5.1.3)

As it can be appreciated from (5.1.3), the extended equality constraints match

perfectly with the extended mismatch equations from subsection 4.1.3. Thus, equa-

tions (4.1.8), (4.1.13), (4.1.16), (4.1.17), (4.1.20) and (4.1.21) from chapter 4 are

also set as the equality constraints for the OPF formulation. Unlike the power flow

(and the FPFA) mismatch constraints, for the OPF formulation, the power balance

equations are calculated for all nodes instead of only for the PV and PQ nodes.

Thus, the transmission losses, controls and interactions between all elements are

considered during the optimisation process.

Additionally, just like in the FPFA, all the control constraints are optional.

However, for the OPF-FubM formulation, there is no need to have a one to one

constraint-variable ratio. As a result, control variables can be optimised without

the need to have a corresponding constraint. A clear example could be the θsh

of a PST that could be optimised without specifying a specific power flow though

the transformer. With that being said, the control constraints serve the purpose to

accurately represent the settings for each element under specific operation strategies,
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such as security reasons, control coordination, or as a result of contracts within the

electricity market. Thus the constraints could be used to maintain a fixed power

exchange between two areas (for example through an interconnector), represent

the reactive power support from STATCOMs or control the reactive power using

automatic tap changers.

The set of inequality constraints, h(x), represent the limits for the transmission

lines (branch limits) for all in-models of the FubM. The constraints are shown in

(5.1.4) as one set of matrix equations and expanded in (5.1.5). They consist of two

sets of nl branch flow limits as nonlinear functions of the bus voltage angles and

magnitudes, one for the from end and one for the to end of each branch. Notice that

these equations also include the PQ-capability limit for all VSCs as seen in equation

(3.1.7) in chapter 3. Finally, these equations will also use real and imaginary parts

of the power injection equations (4.1.14) and (4.1.15) for their calculation.

hS2
f
(x) ≤ 0 → |S2

f | − LS2
L
≤ 0

hS2
t
(x) ≤ 0 → |S2

t | − LS2
L
≤ 0

(5.1.4)

(
Pf
{i}(x)

)2
+
(
Qf
{i}(x)

)2
−
(
L
{i}
SL

)2
≤ 0 ∀i ∈ IFubM(

Pt
{i}(x)

)2
+
(
Qt
{i}(x)

)2
−
(
L
{i}
SL

)2
≤ 0 ∀i ∈ IFubM

(5.1.5)

Objective Function

The OPF objective function f can vary depending on the aim of the study. The

OPF described in this Chapter, aims to minimise the total generation cost as it is a

common practice in the industry. The cost function for each generator is typically

quadratic. Therefore, f is defined as the summation of the individual polynomial

cost functions for each generator as shown in (5.1.6).

f(x) =

ng∑
i=1

f
{i}
P (P {i}g ) + f

{i}
Q (Q{i}g ) (5.1.6)

Complete AC/DC FubM-OPF Formulation

Considering the objective function, extended variables, and extended equality and

inequality constraints from equations (5.1.1), (5.1.3), (5.1.5) and (5.1.6), the Hybrid
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AC/DC OPF problem using FubM can be compactly formulated as presented in

equations (5.1.7) to (5.1.17). It is important to notice that the presented optimi-

sation problem does not consider any discrete variables. Even though the trans-

formers taps are not continuous, for this specific case, it has been proven that is

good enough to consider them as continuous variables and once the optimal solu-

tion has been found they can be adjusted to their closest step/tap [74]. Not having

any discrete variables, if it is not needed, will also help with convergence of the

OPF as the problem need not have mixed integers which are mostly harder to solve

computationally.

min f(x)

x
(5.1.7)

subject to:

gSb(x) = 0 (5.1.8)

gPf (x) = 0 (5.1.9)

gQz(x) = 0 (5.1.10)

gQt(x) = 0 (5.1.11)

gPvdp(x) = 0 (5.1.12)

gGsw(x) = 0 (5.1.13)

hS2
f
(x) ≤ 0 (5.1.14)

hS2
t
(x) ≤ 0 (5.1.15)

where:

x = [Pg,Qg,Va,Vm,Beq, θsh,ma,Gsw]ᵀ (5.1.16)

xmin ≤ x ≤ xmax (5.1.17)

After the construction of the full optimisation problem, it must be solved using

an algorithm which is compatible with the characteristics of the problem. As seen in

section 2.3, there are many algorithms for the solution of OPFs with different strate-

gies to choose from. One of the most popular ones among deterministic algorithms

relies on the construction and minimisation of the Lagrangian function.
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5.2 FubM-OPF Lagrangian and Derivatives

For convenience during the development of the Lagrangian and its derivatives, the

full OPF-FubM optimisation problem in (5.1.7) to (5.1.17) is expressed in a more

general form as shown in (5.2.18) to (5.2.20).

min f(x)

x
(5.2.18)

subject to:

g(x) = 0 (5.2.19)

h(x) ≤ 0 (5.2.20)

Where, all the equality constraints from equations (5.1.8) to (5.1.13) are repre-

sented by a single vector of equations g(x). Similarly, the loadability constraints

(or thermal limits) from equations 5.1.14 and 5.1.15 for all FubM elements are

expressed by an inequality constraint vector h(x).

5.2.1 The Lagrangian function

As described in Section 2.2.1 the Lagrangian strategy aims to transform the con-

strained optimisation problem into an unconstrained problem to then find the critical

points of the ensuing Lagrangian function and determine if it is a maximum or a

minimum. The Lagrange theorem states that at any critical point of the function

evaluated under the equality constraints, the gradient of the function (at that point)

can be expressed as a linear combination of the gradients of the constraints (at that

point), where the coefficients for the linear combination are the“Lagrange multipli-

ers”. Thus following the theory presented in chapter 2, the Lagrangian function for

the FubM-OPF formulation in (5.2.18) to (5.2.20), is presented as in (5.2.21).

L(x,λ,µ) = f(x) +
ne∑
i=1

λigi(x) +

ni∑
j=1

µjhj(x) (5.2.21)

L(x,λ,µ) = f(x) + λ>g(x) + µ>h(x) (5.2.22)
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The Lagrangian function can be expressed in matrix form as in (5.2.22). The

vector variables λ and µ are the Lagrange multipliers for the of ne and ni equality

and inequality constraints respectively.

5.2.2 Lagrangian Derivatives

Lagrangian First Order Partial Derivatives

Following the notation presented in subsection 2.4.3, the first order partial deriva-

tives of the Lagrangian in (5.2.22) with respect to the vectors x, λ and µ are

presented in equations (5.2.23), (5.2.24), (5.2.25).

Lx (x, λ, µ) = fx + λ>gx + µ>hx (5.2.23)

Lλ (x, λ, µ) = g(x)> (5.2.24)

Lµ (x, λ, µ) = h(x)> (5.2.25)

Where the partial derivatives for the equality and inequality constraints are

presented in (5.2.26), and (5.2.27) respectively.

gx =
[
<
{
gSbx

}
=
{
gSbx

}
gPfx gQzx gQtx gPvdpx gGswx

]>
(5.2.26)

hx =
[
hS2

fx
hS2

t x

]>
(5.2.27)

Details of the first order partial derivatives of the objective function, the equality

and inequality constraints inside gx and hx are described later in this subsection.

Lagrangian Second Order Partial Derivatives

The second order partial derivatives with respect to λ and µ are zero. In the case

of the optimisation vector, the Hessian of the Lagrangian with respect to x is given

by (5.2.28).

Lxx (x,λ,µ) = fxx + gxx(λ) + hxx(µ) (5.2.28)
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Where the hessian for the equality and inequality constraints are presented in

(5.2.29), and (5.2.30) respectively.

gxx =
[
gSbxx + gPfxx + gQzxx + gQtxx + gPvdpxx + gGswxx

]
(5.2.29)

hx =
[
hS2

fx
+ hS2

t x

]
(5.2.30)

Details of the second order partial derivatives of the objective function, the

equality and inequality constraints inside gxx and hxx are described later in this

subsection.

Objective Function derivatives

Details of the first and second order partial derivatives of the objective function from

equations (5.2.23) and (5.2.28) are presented here. Considering equation (5.1.6), Let

the vectors fP and fQ be the polynomial cost functions for the real and reactive power

for generator i. The first partial derivatives with respect to x are shown in (5.2.31).

fx =
∂f

∂x
=
[
fVa fVm fPg fQg fBeq fθsh fma fGsw

]
(5.2.31)

fx =
[
0 0 fPg fQg 0 0 0 0

]
(5.2.32)

As noticed from equation (5.2.32) only the generator variables have non-zero

partial derivatives, therefore, the second order partial derivatives of the objective

function are expressed as:

fxx =
∂

∂x

(
f>x
)

=



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 fPgPg 0 0 0 0 0

0 0 0 fQgQg 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



(5.2.33)
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Power Balance Derivatives

Details of the first and second order partial derivatives of the power balance equa-

tions from equations (5.2.23) and (5.2.28) are presented here. Considering equation

(5.1.8) the first partial derivatives are shown in (5.2.35).

gSbx =
∂gSb
∂x

(5.2.34)

=
[
gSbVa

gSbVm
gSbPg gSbQg

gSbBeq
gSbθsh gSbma

gSbGsw

]
(5.2.35)

gSbx =
[
gSbVa

gSbVm
0 0 gSbBeq

gSbθsh gSbma
gSbGsw

]
(5.2.36)

Contrary to the second derivatives of the objective function in (5.2.32), the

second derivatives for the power balance equations do not have derivatives for the

generation variables, but have for the voltage and FubM variables. This can be

appreciated in equation (5.2.37) where the hessian of the power balance equations

is presented.

gSbxx =
∂

∂x

(
gSb
>
x

)
=

gSbVaVa
gSbVaVm

0 0 gSbVaBeq
gSbVaθsh

gSbVama
gSbVaGsw

gSbVmVa
gSbVmVm

0 0 gSbVmBeq
gSbVmθsh

gSbVmma
gSbVmGsw

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

gSbBeqVa
gSbBeqVm

0 0 gSbBeqBeq
gSbBeqθsh

gSbBeqma
gSbBeqGsw

gSbθshVa
gSbθshVm

0 0 gSbθshBeq
gSbθshθsh gSbθshma

gSbθshGsw

gSbmaVa
gSbmaVm

0 0 gSbmaBeq
gSbmaθsh

gSbmama
gSbmaGsw

gSbGswVa
gSbGswVm

0 0 gSbGswBeq
gSbGswθsh

gSbGswma
gSbgswGsw


(5.2.37)

Branch Flows Injections derivatives

From subsection 4.1.4 in chapter 4 it is clear that the branch power control con-

straints of the FubM are based from the general Branch Flow Injection equa-

tions (4.1.14) and (4.1.15). Therefore equality constraints (5.1.9), (5.1.10), (5.1.11),
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(5.1.12), (5.1.13) and inequality constraints in (5.1.14) and (5.1.15) share the same

structure. Thus, the derivatives of the control constraints are the derivatives of Sf

and St with some small variations. Therefore the first partial derivatives of Sf and

St are shown in (5.2.38), and the specific derivatives for each constraint are exten-

sively described in Appendix C. Also, notice that in (5.2.38) the derivatives with

respect to the generator variables are Zero.

gSbrx =
∂gSbr
∂x

=

=
[
gSbrVa

gSbrVm
0 0 gSbrBeq

gSbrθsh gSbrma
gSbrGsw

]
(5.2.38)

Similarly to the second derivatives of the bus injections in (5.2.37), the second

derivatives for the branch power injections do not have derivatives for the generation

variables. Thus, the second derivatives are presented as in (5.2.39).

gSbrxx =
∂

∂x

(
gSbr

>
x

)
=

gSbrVaVa
gSbrVaVm

0 0 gSbrVaBeq
gSbrVaθsh

gSbrVama
gSbrVaGsw

gSbrVmVa
gSbrVmVm

0 0 gSbrVmBeq
gSbrVmθsh

gSbrVmma
gSbrVmGsw

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

gSbrBeqVa
gSbrBeqVm

0 0 gSbrBeqBeq
gSbBeqθsh

gSbrBeqma
gSbrBeqGsw

gSbrθshVa
gSbrθshVm

0 0 gSbrθshBeq
gSbrθshθsh gSbrθshma

gSbrθshGsw

gSbrmaVa
gSbrmaVm

0 0 gSbrmaBeq
gSbrmaθsh

gSbrmama
gSbrmaGsw

gSbrGswVa
gSbrGswVm

0 0 gSbrGswBeq
gSbrGswθsh

gSbrGswma
gSbrgswGsw


(5.2.39)

Appendix C presents the full and detailed development of the FubM Lagrangian

in (5.2.22) and its derivatives, presented in equations (5.2.23) to (5.2.28). It also

includes the extensively detailed derivatives for each constraint based on the deriva-

tives presented in (5.2.31) to (5.2.39).

The Lagrangian function, its first and second order partial derivatives presented

in this section can be used for the implementation of the FubM if a deterministic

algorithm is selected to solve OPF for the hybrid AC/DC system.
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5.3 FubM OPF Implementation

As mentioned in chapter 2, most commercial and open source software environment

tailored for solving optimisation problems, like AIMMS, AMPL or MATLAB, sup-

port a variety of optimisation solvers and algorithms for solving both linear and

non-linear optimisation problems. On the other hand, there are specialist modelling

software like Matpower, which are tailored specifically for power systems, and

they are designed to build the optimisation problem and call an internal or external

solver. The OPF-FubM formulation can be implemented in either an existing power

system analysis tool (just like it was done for Power Flows in chapter 4), or into

a general-purpose modelling software for optimisation. Each approach present ad-

vantages and disadvantages. If the FubM is appropriately implemented, the model

and formulation could be fully compatible with all the existing features that the

power system analysis tool already possesses. However, such appropriate implemen-

tation of OPF-FubM formulation into an existing power system specialist software

such as . Matpower requires some additional modifications (in terms of coding)

to the core components of the analysis tool. On the other hand, a more general

approach would be to use a general-purpose modelling software (e.g. AIMMS) to

implement and solve the FubM-OPF formulation as a general mathematical optimi-

sation (mathematical programming) problem. The latter approach obviously does

not require modifications to any core components of the general-purpose modelling

software. In AIMMS integrated development environment (IDE) the OPF-FubM

problem can be integrated as a mathematical programming model with all the data

pertaining to the system being solved as well as all associated constraints included

and presented. In this chapter, implementation of the OPF-FubM formulation for

solving fully controllable hybrid AC/DC grids is presented for both aforementioned

approaches namely, implementing OPF-FubM within an existing specialised power

system analytical software, Matpower in this case, and as a mathematical pro-

gramming problem in a general-purpose modelling software, which in this case is

chosen to be AIMMS. For both approaches, fully controllable hybrid AC/DC grids

are solved using a variety of optimisation algorithms, all of which were explained

already in Chapter 2.
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5.3.1 Matpower-FubM OPF Implementation

Similar to the approach presented in Chapter 4 for formulating and solving the power

flows using FubM (FPFA-FubM), in this section FubM is implemented into the

power systems simulation software Matpower for solving OPF problems. As it

was mentioned, the core Matpower is not capable of modelling a fully controllable

AC/DC grid. In fact, it can only solve AC grids. By adding the FubM and build-

ing the optimisation model as presented in (5.1.7) to (5.1.17) with their respective

Lagrangian derivatives , the OPF can be solved for a fully controllable AC/DC grid.

This section will showcase the implementation of the FubM into an existing power

system analysis tool (i.e. Matpower).

It is worth noting that the FubM implementation to Matpower for Power

Flows (FPFA) and Optimal Power Flow (OPF) resulted in the publication of an al-

ternative free open source software called “Matpower-FubM”. The Matpower-

FubM Software was released in collaboration with Dr Ray Zimmerman (Creator

and principal developer of Matpower). The FubM does not create any conflicts

with the traditional usage of Matpower. Even though the Matpower-FubM

tool is designed to be fully compatible with Matpower, it has only been fully

tested for Power Flow and OPF. The Matpower-FubM tool uses Matlab as

the main platform, and currently modifications are being carried out for it to be

compatible with Octave’s platform as well. The original software of Matpower

can be downloaded in [60] and the improved Matpower-FubM for the solution of

AC/DC grids using FubM can be downloaded in [104]. This software implementa-

tion of the FubM includes a technical note of the implementation and a user guide

which are both downloaded with the software.

Figure 5.1 presents the general flow chart of the Matpower-FubM OPF ap-

plication. As it is observed, the FPFA from Chapter 4, can be used to initialise the

OPF problem. Once the Optimisation model is constructed, the entire problem is

solved by a specific solver. Matpower-FubM has been coded to be compatible

with each one of the following algorithms inlcuded below. They were described in

detail in chapter 2.

127



5.3. FubM OPF Implementation

Figure 5.1: Matpower-FubM General OPF Flux Diagram

• MIPS, Matpower Interior Point Solver, primal/dual interior point method.

• KNITRO, optimisation algorithm from Artelys

• IPOPT, Interior Point OPTimiser

• FMINCON, Matlab optimisation Toolbox

5.3.2 Aimms-FubM OPF Implementation

Aimms is a general-purpose modelling software consisting of an integrated develop-

ment environment (IDE), which integrates a state of the art modelling language to

build the mathematical model for the problem with a suite of world class numerical

solvers for linear, mixed-integer, and nonlinear programming such as baron, cplex,

conopt, gurobi, knitro, path, snopt and xa. One of the most useful features of Aimms

is the capability of specifying and solving linear and nonlinear constraint-based op-
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timisation models. In addition, Aimms is able to manage stochastic programming

and robust optimisation to include data uncertainty [80].

Aimms environment allows for defining the full optimisation problem using a

compact notation available for procedural statements and symbolic constraints. The

OPF-FubM formulation presented in equations (5.1.7) to (5.1.17) is directly imple-

mented in Aimms. Depending on which solver is selected, Aimms transforms the

optimisation model to match with the selected solver structure. Furthermore, the

software also builds the Hessian and the Jacobian of the problem [81].

The following solvers are used for the implementation of the OPF-FubM in

Aimms. Description of each one of the algorithms is presented in chapter 2.

• CONOPT 4.03, optimisation algorithm developed by ARKI Consulting.

• KNITRO 12.0, optimisation algorithm from Artelys

• IPOPT 3.11, Interior Point OPTimiser

5.4 Test Cases and OPF Simulations

To showcase the effectiveness of the FubM for solving OPF for hybrid AC/DC

EPS, this section presents a series of test cases which are solved using both the

Matpower-FubM and the Aimms-FubM implementation. All FubM simulations

have been solved using a PC with CPU Intel Core i7, 2.2GHz and 16GB RAM

memory.

This section is structured as follows: Firstly validation of the FubM formulation

and both implementations is presented. Secondly, both implementations are used

to run a two medium scale fully flexible hybrid AC/DC test cases using a variety of

solvers as a confirmation of the versatility of the model. Thirdly a large scale system

will be solved as a demonstration of its effectiveness against large scale systems when

a series of diverse controls are active. The case also presents the convergence pattern

with different solvers. Finally a series of AC and AC/DC cases are solved to compare

the FubM formulation against existent analysis tools to showcase the versatility and

scalability of the FubM without sacrificing computational efficiency.
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5.4.1 Validation of the FubM

The validation of the FubM is carried out by simulating the test case of Fig.

5.2. The results are compared against the traditional approach for solving OPF

in AC/DC grids, which are presented in [109] and [110]. The AC network data

can be found in [111], and the DC network data along with VSCs parameters are

presented in Table 5.1.

Figure 5.2: MTDC Stagg Test Case

The objective function of the OPF problem will be the total transmission losses

of the test system 2. They are calculated as shown in (5.4.40), where nl is the

number of lines.

f(x) =
nl∑
i=1

|P {i}f + P
{i}
t | (5.4.40)

The case constraints are specified in Table 5.2. VSC 1 and 3 are selected as type

I and VSC 2 will be regulating the DC voltage magnitude as type II. For all VSCs,

the optional control variables of θsh and ma are optimised.

2The default objective function of the downloadable version of the Matpower-FubM imple-

mentation (available in [104]) is the total generation cost of the system, however only for this case

the objective function is set to minimise the total transmission losses instead. This option is not

currently available for the downloadable version, but it will be added in a future release.
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Table 5.1: Converters and DC grid parameters

Parameter Value

VSCs (1,2,3) rs / xs 0.0016 p.u. 0.2764 p.u.

VSCs Loss Coefficient α = β = 0, γ = 0.01

DC line rs (1-2 and 2-3) 0.0260 p.u.

DC line rs (3-1) 0.0365 p.u.

Max Reactive Power 100 MVAr

Table 5.2: MTDC Stagg Constraints

Bus ID Vmin Vmax Element Value [MVA]

AC 1,2 1 1.02 PG1 Min/Max 10 250

AC 3,4,5 0.9 1.1 QG1 Min/Max -100 100

DC 2 1.01 1.01 PG2 Min/Max -40 40

DC 1,3 0.9 1.1 QG2 Min/Max -40 40

AC Bus 1 Va = 0◦ (Reference) Element Value [p.u.]

Lines Rate 1 MVA (AC & DC) ma Min/Max 0.75 1.22

All transmission elements of the test case were simulated using the FubM

for both implementations (Matpower-FubM and Aimms-FubM). Convergence

times, iterations, and minimised objective function are presented in table 5.3, where

it can be appreciated that both implementations converged to the same objective

function value of 4.14[MW] reported in [109].

Table 5.3: FubM Implementation Convergence

Implementation Aimms-FubM Matpower-FubM

OPF Solver KNITRO 12.0 KNITRO 12.0

Iterations 13 11

Conv. Time [s] 0.06 1.05

Trans. Loss [MW] 4.14 4.14

Total Cost [$/hr] 365.4925 365.4925

Tables 5.4, 5.5 and 5.6 show a comparison of the simulation results between the

Traditional and both FubM implementations for nodal voltages, Generation output
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and VSC controls.

Table 5.4: Validation Voltage Comparison

Vm [p.u.] Va [°]

Bus Traditional Aimms Matpower Traditional Aimms Matpower

ID Approach FubM FubM Approach FubM FubM

AC 1 1.02 1.02 1.02 0 0 0

AC 2 1.006 1.006 1.006 -3.15 -3.15 -3.15

AC 3 0.992 0.992 0.992 -4.92 -4.92 -4.92

AC 4 0.991 0.991 0.991 -5.28 -5.28 -5.28

AC 5 0.991 0.991 0.991 -5.48 -5.48 -5.48

DC 1 1.015 1.015 1.015 *** -26.11 -26.11

DC 2 1.01 1.01 1.01 *** -26.11 -26.11

DC 3 1.008 1.008 1.008 *** -26.11 -26.11

Table 5.5: Validation Generation Comparison

Pg [MW] Qg[MVAr]

Gen Traditional Aimms Matpower Traditional Aimms Matpower

ID Approach FubM FubM Approach FubM FubM

G1 129.14 129.14 129.14 -8.37 -8.37 -8.37

G2 40 40 40 15.04 15.04 15.04

After the comparison presented in Tables 5.4 and 5.5, it is noticeable that all the

voltage magnitudes, phase angles and generators’ power outputs were optimised to

the same value for both approaches. As expected, for the FubM, the DC grid has

an angle which is different from zero since the voltage angle reference is in the AC

grid. Nevertheless, this angle remains constant through the entire DC grid. Thus,

the flow of active power in the DC links is solely dictated by the DC nodal voltage

magnitude difference (exactly as what it would be in a real DC link). Similarly, the

obtained values for the DC grid and VSCs power comparison between the traditional

and the FubM approaches from Table 5.6 are practically the same. Moreover, the

maximum error presented between the Matpower-FubM and the Aimms-FubM
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Table 5.6: VSC and DC Grid Comparison

Traditional Matpower & Aimms

Approach FubM Implementations

VSC1 VSC2 VSC3 VSC1 VSC2 VSC3

Pf [MW] -37.58 12.54 24.86 -37.55 12.47 24.86

Pt [MW] 37.90 -12.54 -24.86 37.79 -12.44 -24.79

Qt [MVAr] 0 -9.07 -6.16 0 -9.04 -6.16

ma 0.995 1.009 1.003 0.995 1.0087 1.0028

θsh [°] *** *** *** -17.0771 -23.1389 -24.5510

Beq [p.u.] *** *** *** 0.03811 0.09360 0.07827

DC Line

from/to DC 1-2 DC 2-3 DC 3-1 DC 1-2 DC 2-3 DC 3-1

Pf [MW] 19.17 6.61 -18.24 19.171 6.608 -18.266

Pt [MW] -19.08 -6.6 18.36 -19.078 -6.597 18.386

implementations is 2.6× 10−4%. Additionally for both FubM implementations, the

values of θsh and Beq are also obtained.

After analyzing the results obtained by both implementations of the FubM

and its comparison with the traditional approach, the formulation of the FubM is

considered as validated.

5.4.2 Medium Scale Fully Flexible hybrid AC/DC Grids

This subsection presents the solution of a medium scale fully flexible hybrid AC/DC

test case to showcase the flexibility and versatility of the OPF-FubM formulation.

The test case is solved using two types of initialisation, (i) Initialised by the FPFA

developed in chapter 4 and (ii) Initialised using an average point between the up-

per and lower boundaries for all variables. Once initialised the test case is solved

using both OPF-FubM implementations (the Matpower-FubM and the Aimms-

FubM).
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Modified IEEE 30 bus system

The description of this test case as well as its solution for Power Flows has been

presented in 4.2.2 in chapter 4. In this chapter, the obtained results are used to

initialise the OPF implementations of the FubM for Aimms and Matpower. De-

tails in the control settings for all PSTs, CTTs, VSCs and STATCOM remain the

same as the ones presented in Tables 4.8 and 4.9 in chapter 4. Full detailed data of

the test case is available with the downloadable version of the Matpower-FubM

implementation in [104].

Simulation Results

The full hybrid AC/DC test case consist of 129 variables and 247 non-linear con-

straints. Convergence for both implementations is achieved using a variety of solvers.

Table 5.7 presents the convergence times, iterations and optimised objective func-

tion. Figures 5.3 and 5.4 show graphically the minimisation of the total cost as well

as the infeasibility3 for all the mentioned solvers.

Table 5.7: Modified Case 30 OPF Convergence Results

Optimisation Total Total Gen Cost Convergence

Solver Iterations [$/hr] Time [s]

KNITRO 12.0*a 7 525.03 23.38

MIPS*a 13 525.03 34.12

FMINCON*a 6 525.03 25.15

IPOPT 3.0*a 12 525.03 35.39

CONOPT 4.0*b 7 525.03 1.13

KNITRO 12.0*b 7 525.03 1.09

IPOPT 3.0*b 12 525.03 1.43

*a: Matpower-FubM Implementation

*b: Aimms-FubM Implementation

3Infeasibility: a measure that indicates how feasible the problem is. A problem is said to be

infeasible if there is no solution that satisfies all the constraints. The smaller the infeasibility, the

greater the likelihood that the solution (at that point) satisfies all the constraints.
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Figure 5.3: Modified Case 30 Convergence and Optimal Cost minimisation

Figure 5.4: Modified Case 30 Infeasibility during OPF iterations
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It can be appreciated from table 5.7 that all solvers minimised the total gen-

eration cost to the same point. The solvers KNITRO, FMINCON and CONOPT

converged in almost half the number of iterations in comparison to the remaining

solvers. However, the difference in the convergence times between the solvers within

the same implementation is minimum.

It is also noticeable that the Aimms-FubM implementation converges faster than

the Matpower-FubM implementation. This is due to the way that Matpower

is coded, when implementing the FubM a recalculation of the Ybus has to be done

per node, and per iteration. This considerably impacts the computational time but

not the number of iterations. This is clearly shown in figures 5.3 and 5.4 where both

solutions follow practically the same pattern for the solvers that both implemen-

tations share (KNITRO and IPOPT). Therefore it is safe to conclude that when

using the same solver, both implementations follow the same convergence pattern

since both implementations have the same formulation. Thus, the results obtained

with Matpower-FubM are the same as the ones obtained with Aimms-FubM

just slower. As proof of this, Tables 5.8, 5.9 and 5.10 present the optimised results

of the simulation, to which all solvers converged with a maximum error of 1× 10−6.

After analysing the simulation results, it is clear that both implementations

are able to solve medium scale fully controllable Hybrid AC/DC grids. Moreover,

the formulation is compatible with a variety of optimisation solvers. Even though

the Matpower-FubM implementation is slower than the Aimms-FubM, both

implementations follow the same convergence pattern and converge in the same

number of iterations. Furthermore regardless of which the implementation is used

the optimised results with either approach match.

Since Aimms requires creating a complete new project for each case that is

created or modified (in this case a different initialisation strategy), and since the

Matpower-FubM implementation is a more versatile tool (No modifications are

needed to simulate a variety of test cases), the comparison for different initialisation

options will be carried out using only the Matpower-FubM implementation. It

is expected that the Aimms-FubM implementation would have obtained the same

results as the Matpower-FubM implementation.
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Table 5.8: Modified IEEE 30 DC Grids Voltages OPF Results

Bus Vm Va Bus Vm Va Bus Vm Va

ID [pu] [deg] ID [pu] [deg] ID [pu] [deg]

B001 1.069 -4.411 B005 1.071 -0.562 B009 1.100 -3.540

B002 1.067 -4.411 B006 1.070 -0.562 B0010 1.043 -3.409

B003 1.068 -4.411 B007 1.077 -0.562 B0011 1.044 -3.409

B004 1.070 -0.562 B008 1.075 -0.562

Table 5.9: Modified IEEE 30 VSCs Control OPF Results

VSC Pf Qf Qt θsh Beq ma

ID [MW] [MVAr] [MVAr] [deg] [pu] [tap]

1 -2.59 0 0.01 -0.7211 0 1

2 4.48 0 -25.00 0 0.2103 0.9616

3 -1.89 0 -6.87 0.8875 0.0608 1

4 1.17 0 -10.00 0 0.0886 1

5 8.69 0 -6.59 0 0.0602 0.9904

6 15.00 0 -14.49 0.03173 0.1319 1

9 0.00 0 -20.45 0 0.1740 1

10 1.79 0 0.00 -0.1039 0 1

11 -1.79 0 -8.10 0 0.0753 1

Table 5.10: Modified IEEE 30 PSTs and CTTs Control OPF Results

Transformer Element Pf θsh Vt Qt ma

Type No. [MW] [deg] [pu] [MVAr] [tap]

PST
1 3.5 0.3008 1.036 0.07 1

2 7.5 -0.0434 1.013 1.51 1

CTT
1 5.36 0 1.017 3.0 1.0303

2 0.72 0 1.010 -0.03 1.0222

For this comparison, the test case will be initialised using (i) the FPFA developed

in chapter 4, and (ii) an average point in between the upper and lower boundaries for

all variables. Table 5.11 presents the convergence times, objective function iteration
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and infeasibility.

Table 5.11: OPF Convergence with Different Initial Points

Type of Number of Total Gen Infeasibility Total

Initialisation Iterations Cost [$/hr] Index Time [s]

Power Flow 7 525.03 4.56E-08 22.38

Average Point 6 525.04 8.01E-07 21.74

Figure 5.5 shows the convergence of both approaches when different initial points

are used, and Fig. 5.6 shows the infeasibility of the solution during the iterations.

Figure 5.5: Modified Case 30 Convergence Two Different Initial Points

As it can be appreciated from 5.11, both OPF solutions converged to almost

the same objective function with a maximum error of 9.63×−3 where the power

flow initialisation converged to a slightly better result. Even though the Average

Point initialisation converged faster by one iteration, faster convergence results are

expected when initialising the OPF using Power Flow if an ED is used to initialise

the Power Flow generators, and then, the results of the Power Flow analysis are used
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Figure 5.6: Modified Case 30 Infeasibility Two Different Initial Points

as a start point for the OPF. The ED analysis was out of the scope of this thesis,

and therefore the improvements in the convergence speed when using Power Flow

initialisation are not evident, however from Fig. 5.6 it is clear that the infeasibility

index is improved.

5.4.3 Large Scale Fully Flexible hybrid AC/DC Grids

This subsection presents the solution of a Large scale fully flexible hybrid AC/DC

test case to showcase the scalability of the OPF-FubM formulation. The test case

is solved using both OPF-FubM implementations (the Matpower-FubM and the

Aimms-FubM). Then, analysis on the convergence for KNITRO, CONOPT and

IPOPT is presented.

Modified Case PEGASE Project

This test case was introduced in subsection 4.2.3 in chapter 4, where the data and

controls for the test case where specified. The control settings for all VSCs, PSTs
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and CTTs presented in tables 4.13 and 4.14 will remain the same for the OPF. The

full case data is available with the downloadable version of the Matpower-FubM

implementation in [104].

Simulation Results

The full Hybrid AC/DC test case optimisation problem consist of 44, 728 Con-

straints and 41, 250 Variables. An average between upper and lower boundaries has

been used as initial conditions for all optimisation variables to show an objective

convergence of both implementations and not a possible improved convergence due

to a Power Flow initialisation. The OPF formulation using FubM has successfully

converged for both the Matpower-FubM and the Aimms-FubM implementation.

The case was simulated for MIPS and KNITRO 12.0 for the Matpower-FubM

implementation, and for KNITRO 12.0, CONOPT 4.03 and IPOPT 3.11, for the

Aimms-FubM implementation. Tables 5.12 and 5.13 present the convergence times,

iterations and the optimised value of the cost function.

Table 5.12: Matpower-FubM Convergence Results

OPF Solver KNITRO 12.0 MIPS

Infeasibility/minimisation Infe. & Min. Infe. & Min.

Iterations 55 37

Total Time [hr] 34.02 46.13

Total Gen. Cost [$/hr] 74038.3781 74038.3781

Table 5.13: Aimms-FubM Convergence Results

OPF Solver CONOPT 4.03 KNITRO 12.0 IPOPT 3.11

Infeasibility/minimisation Infe. Min. Infe. & Min. Infe. & Min.

Iterations 116 27 56 134

Time [s] 19.01 7.23 25.69 271.36

Total Time [s] 26.24 25.69 271.36

Total Gen. Cost [$/hr] 74038.3781 74038.3781 74038.3781

From tables 5.12 and 5.13 it is observed that both implementations converged to

the same optimal operating point. While MIPS converged in less iterations than all

140



5.4. Test Cases and OPF Simulations

the other solvers, the computational time was the highest in comparison to all the

other solvers for both implementations. It is also noticeable that as expected KNI-

TRO converges in almost the same amount of iterations for both implementations.

The solver CONOPT preforms the optimisation in two steps to find the solution.

First it ensures that the infeasibility index is small enough. If the problem is feasi-

ble, then it minimises the objective function while the infeasibility index continues

decreasing. On the other hand, the solvers MIPS, KNITRO and IPOPT reduce

infeasibility index while the objective function is minimised. The solvers KNITRO

(Aimms-FubM) and CONOPT are faster solvers in comparison with the IPOPT,

KNITRO (Matpower-FubM) and MIPS methods. Nevertheless, the final results

from the five solvers match for all the variables of the system with a maximum error

of 2.48×−4 in between solvers. It is also observed that the Aimms-FubM imple-

mentation is considerably faster than the Matpower-FubM implementation. As

mentioned, this is due to the way Matpower is coded, as the number of nodes

increase, when implementing the FubM, the computational time is increased too,

therefore the Matpower-FubM implementation is recommended to be used for

small and medium size test cases (no more than 500 buses). The results presented

by the Aimms-FubM implementation suggest that the Matpower-FubM imple-

mentation can be improved to match the speed of the Aimms-FubM implementation

since they both share the same formulation.

Table 5.14: AC and DC Voltages

Bus Vm Bus Vm

ID [pu] ID [pu]

VSC DC B1 1.00002 VSC AC B2072 1.08000

VSC DC B2 1.00000 VSC AC B8195 1.07500

VSC DC B3 1.01000 VSC AC B6246 1.06000

VSC DC B4 1.01334 VSC AC B7282 1.07000

VSC DC B5 1.01322 CCT AC B6807 1.10000

The optimisation results for the relevant AC and DC voltages are shown in Table

5.14. Furthermore, the active and reactive power flows through the control elements
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and DC lines, as well as their optimised control variables are presented in Table 5.15.

From both tables, it is shown that the results match with the control constraints

from Table 4.14 in chapter 4. Additionally, all VSC have satisfactory meet the Zero

Constraint for reactive power compensation. Furthermore, the optimal value of Beq

has been obtained. Finally, the variable θsh has been optimised for all active power

controlled elements. It is clearly noticeable that a full power control has resulted in

both DC grids.

Table 5.15: Optimised Variables and Power Control

Element Pf Theta Beq ma

ID [MW] [deg] [pu] [tap]

VSC 1 -4.00007 0 -0.17288657 1.07337

VSC 2 3.99999 0 0.02220943 1.07585

VSC 3 946.92069 -52.0451219 0.49999995 1.00112

VSC 4 -500 -33.3258129 0.49999943 1.05951

VSC 5 -450 -36.465037 0.49999931 1.01408

PST -173 -0.09532315 *** ***

CTT 7.28653 *** *** 1.04626

DC Line 1-2 4.00007 *** *** ***

DC Line 3-4 -481.75773 *** *** ***

DC Line 4-5 16.64963 *** *** ***

DC Line 5-3 466.64775 *** *** ***

Figure 5.7 presents the minimisation of the Cost for the five solvers. Notice that

even though all of them are initialized in the same point, the start point varies.

This is because the solver KNITRO runs a presolve before starting the optimisation

(this presolve is more evident in this graph than it is in Fig. 5.5 for the Modified

30 bus system, where the presolve results were very similar to the starting point).

Similarly, the solver CONOPT first solves for the infeasibility and then uses that

final state as a starting point for the minimisation. Although the KNITRO solver

selected a starting point quite far from the solution, the method is so effective that

it manages to converge in less iterations than IPOPT and even CONOPT. It is
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worth to highlight that even though it looks like CONOPT converged with the least

amount of iterations, the iterations for the solution of the infeasibility have to be

considered. Thus MIPS is the solver that converged in the least amount of iterations,

and KNITRO(Aimms-FubM) remains the fastest as it was shown in Table 5.13.

Figure 5.7: Convergence and Optimal Cost minimisation

Figure 5.8 shows the infeasibility value during the optimisation. For the IPOPT

solver, the Primal infeasibility, indicates the maximum non-linear constraint viola-

tion, and the Dual infeasibility, is measured as the maximum deviation from com-

plementary condition. The start infeasibility index for MIPS, KNITRO and IPOPT

(Primal) was quite high in comparison with CONOPT. Nevertheless it can be seen

that their values are dramatically reduced by iteration 6, 20 and 40 respectively.
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Figure 5.8: Infeasibility during OPF iterations

5.4.4 AC and AC/DC Cases for Scalability and Comparison

In this subsection, AC and AC/DC OPF studies are presented to further showcase

the capabilities and versatility of applications of the FubM. AC cases serve as con-

firmation that the FubM optional variables do not create any extra computational

effort for the AC OPF solution. The results compare both implementations against

the original unmodified version of Matpower [24]. AC/DC cases compare the

FubM OPF results with the results obtained in [32], where a Bus Incidence Model

(BIM) for ACDC OPF is implemented as an extension of the ‘PowerModels.jl’ pack-

age [112], which is built on top of Julia/JuMP [113]. Both AC and AC/DC cases

showcase the scalability and computational performance of the FubM formulation.

AC test Cases

For the AC OPF scalability and comparison, the IEEE 57 bus test case, and both

the 89 and 1354 bus PEGASE cases are solved using both FubM implementations

and compared against the results from Matpower (v7.0). All the data from the

cases are taken from Matpower’s library. Original Matpower software and test
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cases data are available in [114].

Table 5.16 presents the AC OPF results of Matpower and AIMMS-FubM, and

Table 5.17 presents the AC OPF results of Matpower and Matpower-FubM. In

order to make a fair comparison, the cases are solved using the shared solvers KNI-

TRO and IPOPT for both Matpower, Matpower-FubM and AIMMS-FubM.

Additionally, CONOPT is also used for the Aimms-FubM implementation.

Table 5.16: AC OPF Results Comparison Aimms-FubM
Matpower Aimms-FubM

AC KNITRO 12.0 IPOPT 3.11 CONOPT 4.03 KNITRO 12.0 IPOPT 3.11

Cases Total Cost Time Total Cost Time Total Cost Time Total Cost Time Total Cost Time

[$/h] [s] [$/h] [s] [$/h] [s] [$/h] [s] [$/h] [s]

Case 57 41737.77 0.87 41737.79 0.36 41737.79 0.05 41737.79 0.03 41737.79 0.09

Case 89 5819.81 0.39 5819.81 1.12 5814.86 0.19 5814.86 0.16 5814.86 0.41

Case 1354 74069.35 2.51 74069.35 2.96 74069.35 3.56 74069.35 4.28 74069.35 3.5

Table 5.17: AC OPF Results Comparison Matpower-FubM

Matpower Matpower-FubM

AC KNITRO 12.0 IPOPT 3.11 KNITRO 12.0 IPOPT 3.11

Cases Total Cost Time Total Cost Time Total Cost Time Total Cost Time

[$/h] [s] [$/h] [s] [$/h] [s] [$/h] [s]

Case 57 41737.77 0.87 41737.79 0.36 41737.78 0.73 41737.78 0.42

Case 89 5819.81 0.39 5819.81 1.12 5814.86 0.51 5814.85 0.98

Case 1354 74069.35 2.51 74069.35 2.96 74069.35 3.02 74069.35 2.81

From Tables 5.16 and 5.17 it is observed that for all test cases the results of

both implementations match with the expected solutions. Furthermore, the com-

putational times are approximately the same for all solvers. While for the small

and medium test cases the AIMMS-FubM formulation is faster, in the large scale

system there is a maximum time difference of 1.77[s] in the solution time. This is to

be expected since the solution time in AIMMS includes the creation of the Jacobian

and Hessian Matrices of partial derivatives, while for the Matpower approach and

for the Matpower-FubM implementation, the derivatives and their structure is

predefined in the formulation. Nevertheless the time difference is too small to be

considered.
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Notice that regardless of the number of buses, the convergence time for the

Matpower-FubM implementation is as fast as the original Matpower, this is

explained by the way the FubM was implemented in Matpower. When simulating

AC cases without any controls, the variables inside the FubM remain constant (as

explained in chapter 3), and thus no recalculation of the Ybus is needed during the

optimisation process. As a result, there is no impact in the computational time. If

a single control, or an AC/DC grid is active, the variables inside the FubM change

during the optimisation process and a recalculation of the Ybus is preformed. At

this point, it is not significant if more controls or AC/DC grids are added since the

recalculation will be preformed anyway. For this reason, the implementation of the

Matpower-FubM is only limited by the number of buses and not by the number

of active controls.

AC/DC Test Cases

A small, a medium, and a large scale AC/DC test system are used to illustrate the

scalability and performance of the FubM formulation. Case-5-ACDC is a modified

version of the IEEE 5 bus test system where a three node dc grid has been integrated

using VSCs, the data can be found in [115]. Case 24-3 Zones is based on the

two area IEEE 24 bus reliability test system which is extended to include a third

asynchronous zone. The three areas are connected with two VSC MTDC grids with

3 and 4 DC nodes each one, data is reported in [25]. Finally the AC/DC 3120 bus

case represents the Polish system with an interconnected 5 node MTDC grid. This

modified large scale system has a total of 3125 buses, 3703 lines and 505 generators,

full AC data can be found in [114] and the DC data in [116]. Case 5 and case

24-3 zones are solved using both FubM implementations (Matpower-FubM and

Aimms-FubM), and the large scale case 3120 is only solved uding the Aimms-FubM

implementation since the Matpower-FubM is recommended for test cases with

500 buses or less. Table 5.18 presents a comparison of the simulation results reported

in [32] for the BIM-JuMP approach, and the Aimms-FubM approach. Similarly,

table 5.19 presents the comparison for the Matpower-FubM implementation.

It is noticed from tables 5.18 and 5.19 that the OPF-FubM formulation imple-
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Table 5.18: AC/DC OPF Results Comparison Aimms-FubM
BIM-JuMP Aimms-FubM

AC/DC IPOPT CONOPT 4.03 KNITRO 12.0 IPOPT 3.11

Cases Total Cost Time Total Cost Time Iter. Total Cost Time Iter. Total Cost Time Iter.

[$/h] [s] [$/h] [s] [$/h] [s] [$/h] [s]

Case5 194.14 0.20 194.14 0.07 17 194.14 0.08 43 194.14 0.17 46

Case24-3z 150228.00 0.17 150227.09 0.14 42 150227.09 0.18 25 150227.09 0.23 26

Case 3120sp 2142635.0 122.7 2142635.0 50.01 157 2142635.0 118.23 60 2142634.9 298.7 479

Table 5.19: AC/DC OPF Results Comparison Matpower-FubM

BIM-JuMP Matpower-FubM

AC/DC IPOPT KNITRO 12.0 IPOPT 3.11

Cases Total Cost Time Total Cost Time Iter. Total Cost Time Iter.

[$/h] [s] [$/h] [s] [$/h] [s]

Case5 194.14 0.20 194.14 1.02 41 194.14 1.31 46

Case24-3z 150228.00 0.17 150227.09 37.03 24 150227.09 42.15 26

mented in Aimms and Matpower has been able to solve and converge to the same

results from BIM-JuMP for all test cases. Even though the Matpower-FubM

implementation is slower than BIM-JuMP it managed to converge to the same op-

timal operating point while maintaining almost the same amount of iterations as

the Aimms-FubM implementation. Regarding to the convergence time, it is clearly

seen that the Aimms-FubM implementation using CONOPT as the solver has been

the fastest for small, medium and large scale systems. For the large scale system

(Case 3120sp), CONOPT is 72.69[s] faster than BIM-IPOPT. The computational

times between KNITRO (Aimms-FubM) and BIM-IPOPT are objectively similar

for the three cases, with KNITRO (Aimms-FubM) slightly outperforming BIM-

IPOPT for the largest scale system. The results for the small and medium cases

using IPOPT(Aimms-FubM) are also objectively similar to BIM-IPOPT. On the

other hand, for the 3120 case, even though the Aimms-FubM converged to a slightly

better total cost, the BIM-IPOPT was faster, however it is worth noting that in both

instances the convergence time is within the same order of magnitude.
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Chapter Summary

In this Chapter, a steady-state FubM model formulation for solving OPF for hybrid

AC/DC EPS has been presented. With this formulation there is no need for intro-

ducing additional coupling constraints to maintain power balance between AC and

DC parts of an hybrid EPS as the FubM structure is configured in such a way that

from a purely mathematical perspective, there is no distinction between AC and DC

counterparts. Thus, the entire EPS is solved within a unified frame of reference. As

a result, same AC OPF equations were be used to solve hybrid AC/DC EPS. The

OPF-FubM formulation maintained all the advantages of the FubM, such as its

adaptability to simulate a wide variety of elements with diverse controls. To this

end the optional variables of the FubM were also added as optional variables to the

OPF formulation. The entire hybrid EPS is fully controllable thanks to the optional

control constraints that were added to the formulation when needed depending on

the network operational requirements. Meanwhile, realistic operational limits for all

the elements in the EPS were included in the formulation. The Lagrangian function

and its derivatives for the OPF-FubM formulation were presented and described

in detail. Two implementations for the OPF-FubM formulation were presented,

one in Matpower, and one in Aimms. Both implementations were validated and

compared against several test cases. Simulation results over the modified large scale

Pegase system demonstrate full power and voltage control over several elements of

the hybrid AC/DC grid whilst maintaining a good degree of convergence and accu-

racy of the solution. Finally, the FubM has been successfully tested and compared

with the traditional approaches for small, medium and large-scale AC and AC/DC

systems, where the FubM has proved to be working with a variety of optimisation

solvers without sacrificing any computational effort, even presenting faster results

in some cases. While the Matpower-FubM implementation was limited to 500

buses, the results for small and medium scale test cases presents a good convergence

rate and accurate results. Simulation results indicate that the FubM model is flexi-

ble enough to be solved with a variety of solvers using general purpose model-based

languages such as Aimms. Considering that (i) All the components of the FubM

are either the same or an equivalent component for the Traditional models, and (ii)
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The FubM formulation solves OPF hybrid transmission AC/DC grids using tradi-

tional AC OPF equations, then, any convexification, linear approximation or robust

optimisation applied to the AC OPF could be also applied as future research of the

FubM approach. The versatility and prowess of the FubM plus its adaptability

in modelling a variety of network elements both AC and DC makes it a suitable

candidate and a formidable tool at the hands of the TSOs and network analysts

for large-scale steady-state EPS studies without sacrificing computational efficiency

and accuracy of the solution. Based on the results presented in this chapter the

FubM is a suitable candidate for SCOPF implementations.
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Chapter 6

Flexible SCOPF for AC/DC grids

using FubM

In this chapter the developed FubM that was implemented for Power Flows in

chapter 4 and subsequently for OPF in chapter 5 is now implemented for solving

Security Constrained Optimal Power Flow (SCOPF) for hybrid AC/DC networks.

As presented from the developed OPF-FubM implementation, the main aim of the

OPF-FubM problem is to obtain the optimal state variables for the system (e.g.

Voltages, FubM Controls and Generation output) for which a desired objective (e.g.

total generation cost) is at its minimum when subject to realistic operational lim-

itations (operational constraints) and control settings (control constraints) of each

one of the elements involved. The SCOPF-FubM adds another layer of analysis by

considering not only the operation of the system under normal conditions but also

its operation following the occurrence of disturbance (i.e. contingency scenarios)

such as loss of generation or transmission line. It does this by considering contin-

gency scenarios with a high severity index and/or a high probability of occurrence.

These binding contingency scenarios are added to the formulation in the form of

additional constraints. Thus, the SCOPF will obtain a pre-contingency optimal

operating point of the system which will remain secure even under the occurrence

of a contingency (post-contingency scenario). In keeping with the existing practice

adopted by most TSOs, in this thesis, and for purposes of contingency analysis, an

N − 1 reliability criterion is chosen. The N − 1 criterion is a condition which states
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the system has to withstand the outage in any one single component.

As seen in section 2.2 in the SCOPF literature review, the post-contingency

states can be either preventive secure or corrective secure depending on whether or

not the control actions are allowed (or available) after a contingency. If no control

actions take place following a contingency, the ensuing post-contingency states deter-

mined by the SCOPF are said to be preventive secure, whereas if there is any control

action taken in response to a contingency (ensuring that all constraints are within

bounds) the resulting post-contingency states are considered corrective secure. A

more conservative approach is taken when preventive secure states are preferred,

however the cost of operating in a preventive secure state is highly likely to be con-

siderably higher than operating in an optimal point which allows corrective actions.

Moreover, preventive secure post-contingency scenarios may not even be feasible if

the constraints are too tight. On the other hand, corrective secure scenarios may

allow the system to operate at an even more optimal operating point (e.g. a cheaper

cost) whilst maintaining the security of the system. Traditional post-contingency

corrective control actions may include slow response actions like network switching,

connection of non-dispatched generators, and connection or disconnection of shunt

compensation. The SCOPF-FubM formulation uses the flexibility and extra vari-

ables of the FubM to include the fast action control elements present in a hybrid

AC/DC power system to take part in the preventive and corrective scenarios of the

SCOPF (e.g. taps ratios of CTT, angles of PST and VSC controls) . Even though

both fast and slow control actions are included as part of the SCOPF-FubM for-

mulation, in this thesis only the fast action control elements are included for the

simulations since it is expected that most hybrid AC/DC networks contain elements

capable of exerting fast action control responses (i.e. VSCs), as such simulations

of slow action control actions are out of the scope of this thesis. However they are

considered for future work.

Since the SCOPF-FubM formulation could be considered as a generalisation of

the OPF formulation presented in chapter 5, the SCOPF-FubM formulation also

provides a direct link between the AC and DC parts of the grid. Thus, the unified

frame of reference which has been characteristic of the FubM formulations is main-
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tained. As a clear consequence, conventional AC SCOPF equations are used to solve

fully controllable hybrid AC/DC grids. Just like the OPF-FubM formulation, this

formulation maintains the advantages of the FubM, such as its adaptability to simu-

late any network topology and diverse control elements. The SCOPF-FubM formu-

lation accommodates optional optimisation variables associated with all the control

elements that are active over the course of the solution for the pre-contingency sce-

nario and all the post-contingency scenarios for all the c selected contingencies of

the system.

The remainder of this chapter is structured as follows: Section 6.1 describes

the SCOPF formulation in detail, in which the extended optimisation variables and

constraints are presented for the pre- and post-contingency scenarios. Furthermore,

the corrective actions using the fast action corrective controls from the VSCs, PSTs,

CTTs and STATCOMs are included in the in the formulation. Additionally, a quick

review of the contingency filter used for the SCOPF in this thesis is presented.

The contingency filter takes into account both severity of the contingency and its

probability of occurrence. The implementation of the Aimms-FubM for the SCOPF

is described afterwards followed by Test Cases and Simulation Results. Finally a

chapter summary containing the highlights of the chapter is presented.

6.1 Flexible SCOPF Formulation using FubM

Following the OPF-FubM formulation presented in equations (5.1.7) to (5.1.17)

in chapter 5, the presented SCOPF-FubM formulation can be presented as an ex-

tended optimisation problem in which both pre-contingency (normal operation) and

c post-contingency (following a disturbance) binding constraints are included in the

problem formulation to ensure a secure optimum operation for both pre- and post-

contingency scenarios. The full hybrid AC/DC SCOPF-FubM is thus formulated

as a non-linear mathematical optimisation (mathematical programming) problem as

presented in (6.1.1) to (6.1.9). Notice that in this case, contrary to the OPF-FubM

the optimisation variables are separated into two sets of vectors x and u containing

the state variables and FubM control variables respectively.
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min f0(x0,u0)

x0, . . . ,xc

u0, . . . ,uc

(6.1.1)

subject to:

g0(x0,u0) = 0 (6.1.2)

h0(x0,u0) ≤ Ll (6.1.3)

gk
s(xk

s,u0) = 0 k = 1, . . . , c (6.1.4)

hk
s(xk

s,u0) ≤ Ls k = 1, . . . , c (6.1.5)

gk(xk,uk) = 0 k = 1, . . . , c (6.1.6)

hk(xk,uk) ≤ Lm k = 1, . . . , c (6.1.7)

|uk − u0| ≤ ∆uk k = 1, . . . , c (6.1.8)

∆uk = Tk
duk
dt

(6.1.9)

The objective function in (6.1.1) depends on the aims of the study, and just

like for the OPF-FubM the SCOPF-FubM main objective is to minimise the total

generation cost as in (5.1.6). Equality constraints in (6.1.2), (6.1.4) and (6.1.6) cor-

respond to the power balance constraints and the FubM optional control constraints

that were described in detail in chapter 5, however for the SCOPF-FubM the first

sub index (either 0 or k) will serve as an identifier for the pre- and post-contingency

scenarios (both preventive and corrective) as presented in (6.1.10).

gi(xi,uj) =

giSb (xi,uj) = 0

gPf (xi,uj) = 0

gQz(xi,uj) = 0

gQt(xi,uj) = 0

gPvdp(xi,uj) = 0

gGsw(xi,uj) = 0

hS2
f
(xi,uj) ≤ 0

hS2
t
(xi,uj) ≤ 0

∀


i = 0, j = 0, Pre-contingency,

i = k, j = 0, Preventive Secure,

i = k, j = k, Corrective Secure

(6.1.10)
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Similarly for the inequality constraints in (6.1.3), (6.1.5) and (6.1.7) which cor-

respond to the thermal limit constraints (as described in chapter 5) have the same

identifier as presented in (6.1.11).

hi(xi,uj) =
hi

S2
f

(xi,uj) ≤ 0

hi
S2t

(xi,uj) ≤ 0
∀


i = 0, j = 0, Pre-contingency,

i = k, j = 0, Preventive Secure,

i = k, j = k, Corrective Secure

(6.1.11)

where :

xi = [Pgi,Qgi,Vai,Vmi]
ᵀ

ui = [Beqi,θshi,mai,Gswi]
ᵀ

xmini ≤ xi ≤ xmaxi

umini ≤ ui ≤ umaxi

∀ i = 0, 1, . . . , c (6.1.12)

From equations (6.1.1) to (6.1.12) it is clear that vectors x0 and u0 pertain

to the state and control variables for the pre-contingency state. Post-contingency

constraints given in equations (6.1.4) to (6.1.7), are defined for the kth contingency

with k ranging from 1 to the number of contingencies c, pertaining to each post-

contingency state. Likewise, vectors xk and uk correspond to the state and FubM

control variables for post-contingency states.

Superscript s in (6.1.4) and (6.1.5) indicates “short-term time” relating to the

time period in which TSOs cannot modify any control variable following a contin-

gency. As such, the operational limits Ls are less restrictive, but the system cannot

operate with those limits for long periods of time, after a certain period of time

the equipment may get damaged. For corrective actions, equation (6.1.8) represents

the maximum amount of adjustments to the control variables between the base case

(i.e. k = 0) and the kth post-contingency state in order to meet the constraints

with “realistic” values. Tk is the interval of time available for corrective actions to

ensure the feasibility of the post-contingency state and duk/dt is the rate of change

of the control variables in response to a contingency. Finally Ls, Lm, and, Ll denote

respectively the short-term (emergency), medium-term, and the long-term (normal)

operating limits.
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The SCOPF-FubM formulation presented above considers a set of c critical

contingencies which are selected using the Reliability Contingency Filter described

in detail in section 2.5 in chapter 2. Before describing the implementation of the

SCOPF-FubM in Aimms a quick review of the Contingency Filter formulation is

presented below.

6.2 Reliability Contingency Ranking

The formulation of the SCOPF-FubM is a general formulation which can include as

many contingency scenarios as necessary. In practice a real EPS may contain mil-

lions of contingencies for which the vast majority are not critical and they will not

be binding the solution of the problem. However if a contingency is excluded and

it is binding, the solution may create security problems. Therefore an appropriate

selection procedure for choosing the critical contingencies is crucial for the SCOPF.

Typically, the TSOs select contingencies by first carrying out a thorough contingency

analysis to identify contingencies and then filter the most critical ones, through a

Contingency Filter (CF). The contingency analysis and filtering is normally predi-

cated on a specific reliability criterion, which for most cases is the so-called N − 1,

which states that the system must continue to operate securely even after the outage

in any one single component. However, most practical CFs only filter contingencies

by their severity. The CF used in this thesis, on the other hand, ranks the con-

tingencies in the EPS considering both the order of their severity (Severity Index

[SI]) and by their respective probabilities of occurrence (using Reliability Rates),

whilst adhering to the N −1 criterion. Thus, as shown in [88], the resulting ranking

is more reliable than a filter which only relies on the SIs for their selection. Since

this method has already been described in detail in section 2.5 in chapter 2 only

the relevant equations for the SCOPF-FubM implementation are presented here for

convenience.

The set of critical contingencies CRPI are calculated as shown in (6.2.13) using

the Reliability Performance Index (RPI).
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CRPI = {CRPIL ∪ CRPIv} (6.2.13)

where CRPIL and CRPIv are the set of contingencies which RPI is higher than

a predefined limit κ for both the branch thermal limits and the voltage limits as

shown in (6.2.14) and (6.2.15) respectively.

CRPIL = {RPIL|RPIL > κL} (6.2.14)

CRPIv = {RPIv|RPIv > κv} (6.2.15)

The RPIs is defined as a product of the SI and the probability of occurrence of a

contingency, and for the branch thermal limits and voltage violations is calculated

as presented in (6.2.16) and (6.2.17).

RPILi = PSi × PILi ∀i ∈ lines (6.2.16)

RPIvi = PSi × PIvi ∀i ∈ lines (6.2.17)

Details for both the Branch Probability States PSi and the PIs for branch thermal

limits and voltage limits are also described in 2.5.

With the selected set of critical contingencies, the SCOPF-FubM formulation

for hybrid AC/DC grids can be implemented in Aimms.

6.3 Aimms-FubM SCOPF Implementation

The SCOPF-FubM formulation presented in (6.1.1) to (6.1.12) can be directly im-

plemented into the graphical interface of Aimms as the problem is already con-

structed as a mathematical optimisation problem. For the implementation, there

will be a series of sets of equality and inequality constraints as presented in (6.1.10)

and (6.1.11), one set of constraints for the pre-contingency case, and c sets for each

one of the contingencies (selected using the described CF). Thus, the number of

extra constraints will be the number of constraints for the case base multiplied by

the number of contingencies. A similar case applies for the number of variables of
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the system. It seems that the complexity of the SCOPF problem will be increasing

linearly as the number of contingencies increase, however, this is not the case since

the SCOPF must find an operational point which considers the interaction of all

the constraints and variables, thus the problem complexity is even higher. Just like

for the OPF-FubM implementation from chapter 5, the hybrid AC/DC SCOPF

problem using FubM is solved using a variety of solvers. Since CONOPT 4.0 and

KNITRO 12.0 had better performance out of all the tested solvers, they are selected

as the main solvers for the SCOPF-FubM implementation.

6.4 Test Cases and SCOPF Simulations

This section presents two main test cases which reflect the complexity of the SCOPF

problem as well as their solution using the FubM implementation in Aimms. The

first case aims to showcase the differences between the OPF solution, a solely pre-

ventive SCOPF solution, and a corrective SCOPF solution, all for Hybrid AC/DC

grids. It also shows how the complexity of the optimisation problem escalates when

the contingencies are introduced. The second test case presents a larger test case

for which, the CF ranks and selects the critical contingencies, and then the SCOPF-

FubM implementation in Aimms solves the problem for those contingencies. Fast

action corrective actions for the most severe contingencies are shown. All FubM

simulations have been solved using a PC with CPU Intel Core i7, 2.2GHz and 16GB

RAM memory.

6.4.1 Case 6 Bus - HVDC

This case accurately represents the increased complexity of a SCOPF problem in

comparison to the OPF. This hybrid test case contains 6 buses, 2 generators, 4

transformers, 2 VSCs, 2 AC lines and 2 DC lines. Buses 1 and 6 operate at 138kV

and buses 2, 3, 4 and 5 operate at 220kV. A single line diagram of the test case is

shown in Fig. 6.1.

The VSC 1 in the HVDC link with double DC line is set to be type #II for fixed

Voltage regulation of bus 3 at Vm = 1.0 [p.u.], and VSC 2 is set to be type #I with
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Figure 6.1: Case 6 Bus HVDC

control mode 1 and zero constraint control (see control modes in subsection 3.2.1).

Parameters and operational limits of the test case are detailed in tables 6.1 and 6.2.

Table 6.1: Parameters of Case 6 HVDC

Variable min max Element Value [MVA]

VSC 1 θsh -50° 50° PG1 Min/Max 0 1100

VSC 2 θsh 0° 0° QG1 Min/Max -300 300

VSC 1 ma 0.75 1 PG2 Min/Max 0 1100

VSC 2 ma 0.75 1 QG2 Min/Max -300 300

Bus V min
m /V max

m 0.95 p.u. 1.05 p.u. TR Rate 1100

AC Bus 1 Va 0°(Reference) TR 1-4 rs/xs 5e-3 p.u. 0.05 p.u.

AC lines rs/xs 5e-3 p.u. 1.5e-2 p.u. AC lines bc/Rate 5e-3 p.u. 250 MVA

Simulation Results

The OPF, preventive SCOPF and corrective SCOPF problems are solved for the test

case to obtain three optimal operating points of the grid. For the OPF no contingen-

cies in the grid are considered. On the other hand, the SCOPF is solved considering

the contingencies of lines 1 to 4. All three problems optimise the variables of the

VSCs. In the preventive approach, no corrective actions are allowed, thus, the con-

trol variables are the same for the pre-contingency and the post-contingency scenar-

ios. By contrast, the corrective approach takes advantage of the fast action controls

of the VSCs and it is able to adjust the settings of them for all the post-contingency
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Table 6.2: Converters and DC grid parameters

Parameter Value

VSCs rs / xs 1e-5 p.u. 0.0015 p.u.

VSCs Loss Coefficient α = β = γ = 0.001

DC line rs / Rate 0.001 p.u. 300 MVA

VSCs Rate 650 MVA

scenarios. Therefore, the maximum change allowed ∆uk for the control variables

from the pre-contingency state to the post contingency state in equation (6.1.8) is:

(i) ∆uk = 0, for the preventive approach, and (ii) ∆uk = |umax
0 − umin

0 | × 0.25,

for the corrective approach, or in other words, the maximum change allowed will

be 25% of the total range per variable for the corrective approach. This value was

calculated considering a linear control ramp for all VSCs from equation (6.1.9).

The Aimms-FubM implementation converged for all the three problems using

KNITRO 12.0 and CONOPT 4.0. Table 6.3 presents the size of each problem in

terms of variables and constraints as well as the results of the simulations for OPF,

Preventive SCOPF and Corrective SCOPF. Figures 6.2 and 6.3 show the convergence

of the three problems for KNITRO and CONOPT respectively.
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Table 6.3: OPF, Preventive SCOPF and Corrective SCOPF Comparison

Optimisation Prob. OPF SCOPF-Prev. SCOPF-Corre.

No. Variables 295 1477 1477

No. Contraints 325 1623 1623

Solver KNITRO 12.0

Optimisation Prob. OPF SCOPF-Prev. SCOPF-Corre.

Total Iterations 24 297 85

Total Cost [$/hr] 22631.61 31877.22 28047.74

Conv. Time [s] 0.25 1.46 0.51

Solver CONOPT 4.0

Optimisation Prob. OPF SCOPF-Prev. SCOPF-Corre.

Iterations Infe./Min. 26 5 107 551 76 17

Total Iterations 31 658 93

Total Cost [$/hr] 22631.61 31877.22 28047.74

Conv. Time [s] 0.28 18.92 0.93

Figure 6.2: Case 6 Bus-HVDC Convergence using KNITRO
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Figure 6.3: Case 6 Bus-HVDC Convergence using CONOPT

From Table 6.3 it is clear the three solvers converged to the same optimal op-

erating point for each optimisation problem. It is noticeable that the number of

constraints and variables increase drastically when contingencies are considered.

Thus, even though the test case is considered relatively small from an OPF perspec-

tive, since the SCOPF problem considers contingencies the optimisation problem

becomes 4 to 5 times more complicated than the OPF problem. Additionally, KNI-

TRO appears to be faster than CONOPT since it achieved the optimal operating

point in less time and in fewer iterations for all the optimisation problems. In partic-

ular, for the preventive case, KNITRO converges in half of the iterations and more

than ten times faster than CONOPT.

In figures 6.2 and 6.3 its observed that the Preventive-SCOPF converges to a

higher cost and in many more iterations than the Corrective-SCOPF even though

they share the same amount of variables and constraints. This is because the fast

action controls add flexibility to each post-contingency state and thus the overall
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problem. As a result, the convergence time and even the cost is reduced dramatically.

It can be concluded that the OPF obtains the best operational cost, but without

considering the security of the system, the Preventive-SCOPF does consider the

security of the system but at a much higher cost, and the Corrective-SCOPF adds

flexibility degrees to each post-contingency stage and thus is able to obtain a cheaper

generation cost that satisfies all the security constraints.

Table 6.4: Corrective SCOPF Optimised Variables

Variable Pre-Cont Cont. L1 Cont. L3

PgG1
[MW] 732.7 731.7 733.7

PgG2
[MW] 325.8 324.6 325.9

QgG1
[MW] -22.3 -20.1 -21.4

QgG2
[MW] 181.4 191.4 191.4

θshV SC1
[deg] -1.526 -2.205 -1.276

θshV SC2
[deg] 0 0 0

maV SC1
[p.u.] 0.95 0.862 0.998

maV SC2
[p.u.] 0.966 0.965 0.916

Table 6.4 shows the optimised variables for the Corrective-SCOPF. The Opti-

mised values for contingencies L1 and L2 are the same, and similarly the optimised

values for contingencies L3 and L4 are also the same in between them. Therefore

only contingencies L1 and L3 are presented. It is observed that there is no signifi-

cant change in the power output from the generators from the pre-contingency state

to all the post-contingency states. This is a solid proof that even during a contin-

gency the generation dispatch did not change, and therefore the power and voltage

changes in the system are the result of the corrective actions from the VSCs fast ac-

tion controls. Considering the pre-contingency state, it is clear that if no corrective

actions were taken in the post-contingency states, the transmission lines would have

reached their thermal limits. For example, if no corrective actions were taken and

there was a contingency in Line 1, there will be an overload of Line 2. The power

would not have been redistributed to the DC grid because the VSC controls would

have remained fixed in the post contingency state, and thus the power flow though
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the DC grid would have remained constant. However, since corrective actions are

activated for θsh and ma, their value is adjusted in the post contingency state, and

the power is redistributed to meet the constraints. This can be appreciated in Fig.

6.4, where the redirection of the power is clear for each contingency. As a result, the

optimal point selected by the Corrective SCOPF is operating at a cheaper cost in

comparison with the preventive SCOPF whilst meeting all the security constraints.

Figure 6.4: Redirection of the Power using Corrective Actions

6.4.2 Modified RTS-GMLC Test System

The IEEE reliability test system called RTS-GMLC was designed to serve as a

platform to analyse power system operation strategies and issues, including UC, ED,

Power Flows, and associated techno-economic impacts. This system was extensively

modified by the National Renewable Energy Laboratory (NREL) in [117]. The

modifications include additional sources of generation such as solar Photovoltaic,

Concentrated Solar Power, Natural Gas, wind and storage units. The RTS-GMLC
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layout has 73 buses distributed in three regions, 120 branches with lengths of circuits

being 1128 km for 138 kV and 2125 km for 230 kV. It also consists of 74 conventional

generation units, 20 hydro units, 25 PV farms, 31 RTPV, six winds stations, one

storage unit and 16 transformers with 6400 MVA total rating capacity. Additionally,

in this thesis the RTS-GMLC has been modified even more to simulate a highly

complex and fully flexible AC/DC grid. Among the modifications, the DC line from

bus 113 to 316 has been removed, branches 107 to 108, 207 to 208, and 307 to 308

have been duplicated to avoid Islands in the system. Furthermore a highly complex

series of MTDC grids have been added on top of the AC layer of the system. This

series of DC grids consist of 38 DC buses, 38 VSCs, 38 transformers and 45 DC

Lines. Parameters of the DC grids are presented in 6.5. The AC layer of the system

is shown in Fig. 6.5, and the DC layer of the system is shown in Fig. 6.6. Reliability

indexes and weights for branches and buses is taken from [88].

Table 6.5: MTDC Grids Data for the Modified RTS-GMLC

Parameter Value

VSCs rs / xs 1e-4 p.u. 0.01643 p.u.

VSCs Loss Coefficient α = β = γ = 0.001

DC line rs / Rate 0.005 p.u. 250 MVA

VSCs Rate 250 MVA

Transformers rs / xs 1e-4 p.u. 0.01121 p.u.

Transformers Rate 250 MVA

DC Buses V min
m / V max

m 0.95 p.u. 1.05 p.u.

All modulation amplitudes ma and shift angles θsh for all VSCs are set as free

variables to be optimised. Voltage regulation is provided by VSCs 4, 12, 20, 25, 27,

29, 33 and 35 as they are set as type # II with a V set
m of 1.0 [p.u.]. The remaining

VSCs are set as type #I for Zero Constraint control.
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6.4.3 Contingency Ranking for the Modified RTS-GMLC

The contingency ranking plays an important role for the selection of the critical

contingencies of the SCOPF. Using equations (6.2.13) to (6.2.17) in the Modified

RTS-GMLC test system, the Reliability Performance index for voltages and branch

thermal limits are obtained. Furthermore the combination of them will give a set

of selected critical contingencies for the case. The value of κL is set to 1.5e-4, and

the value for κv is set to 5e-4. The power flow calculations to obtain the RPI are

done using the Matpower-FubM implementation. Figure 6.7 shows the results

obtained with the contingency filter. It can be appreciated that 27 critical branch

contingencies were selected out of 240 transmission elements. Notice that due to the

highly meshed DC grids no element of the DC grid presents critical contingencies.

The selected contingencies will be implemented into Aimms to build the complete

optimisation case.

Figure 6.7: Critical Contingencies for the Modified Reliability Test System
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6.4.4 Simulation Results

Just like it was done for Case 6 HVDC, for the modified RTS-GMLC the OPF, pre-

ventive SCOPF and corrective SCOPF problems are solved. The SCOPF however

now is solved considering the 27 contingencies obtained from previous subsection.

Table 6.6 present the list of these contingencies.

Table 6.6: Critical Contingencies

Line ID From Bus To Bus Line ID From Bus To Bus

L7 103 124 L60 210 212

L10 106 110 L64 212 223

L16 109 111 L74 217 222

L17 109 112 L88 303 324

L18 110 111 L91 306 310

L19 110 112 L96 309 311

L23 112 123 L97 309 312

L34 117 122 L98 310 311

L49 203 224 L99 310 312

L52 206 210 L103 312 323

L57 209 211 L113 317 322

L58 209 212 L121 325 121

L59 210 211 L122 318 223

L123 323 325

Again, for the three optimisation problems the control variables of the VSCs

are optimised. The SCOPF preventive and corrective approach remain with the

same considerations used for Case 6 HVDC. Thus, for the preventive approach, the

control variables are locked to the same value for the pre-contingency and the post-

contingency scenarios. And for the corrective approach the fast action controls of the

VSCs are allowed to be active for all post-contingency states. Also, the maximum

change allowed ∆uk for the control variables from the pre-contingency state to the

post contingency state in equation (6.1.8) are again: (i) ∆uk = 0, for the preventive

approach, and (ii) ∆uk = |umax
0 − umin

0 | × 0.25, for the corrective approach.
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Table 6.7: OPF, Preventive SCOPF and Corrective SCOPF Comparison

Solver KNITRO 12.0

Optimisation Prob. OPF SCOPF-Prev. SCOPF-Corre.

No. Variables 6637 164277 164277

No. Contraints 7385 182790 182790

Total Iterations 2039 1332* 2792

Total Cost [$/hr] 219214.50 251435.60* 219214.50

Conv. Time [hr] 0.57 0.76* 2.35

*: Infeasible Solution, solver stopped

Simulation results for the three optimisation problems are presented in Table

6.7. Again, the number of constraints and variables is drastically increased from the

OPF problem to the SCOPF problem. From 6,637 variables and 7,385 constraints, to

164,277 variables and 182,790 constraints (More than 25 times bigger). The Aimms-

FubM implementation converged in 2,039 iterations for the OPF problem. On the

other hand, once the 27 contingencies are considered for the SCOPF problem, the

solver determined that a Preventive solution of the test case is infeasible. For this,

KNITRO evaluated the case for 1,332 iterations, and after 750 iterations without

a change in either the infeasibility or the Total generation cost, is determined that

there is no operating point that meets all the constraints.

In contrast, the Corrective SCOPF approach not only converges in a similar

amount of iterations (2,792), but the resulting optimal operating point is the same

as the one obtained with the basic OPF. A secure post contingency operating point

is possible thanks to the fast action controls that “correct” the state of the system,

thus meeting all the constraints. This means that the resulting operating point

from the Corrective SCOPF approach is not only as costly effective as the optimal

operating point obtained by OPF with a full grid, but it is also secure for all the

n− 1 contingencies of the system. Convergence for the OPF and both SCOPFs can

be appreciated in detail in figures 6.8 and 6.9, where it is clear that the OPF and

the corrective SCOPF solutions converge to the same operating point. Furthermore,

the infeasibility of the preventive SCOPF for this test case is shown.
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Figure 6.8: RTS-GMLC Convergence using KNITRO

Figure 6.9: RTS-GMLC Infeasibility using KNITRO
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Since the modified RTS-GMLC is widely meshed instead of observing the post-

contingency power flow redistribution (for the corrective SCOPF), the changes in

the control variables for all VSCs are plotted in figures 6.10 and 6.11. Notice that

only the contingencies that required a larger change in the VSCs variables to achieve

a corrective secure post contingency state are plotted. The contingencies that are

not plotted had a smaller variation with respect to the pre-contingency state, thus

their values are fairly similar.

Figure 6.10: VSCs Corrective actions using ma

Contingency of Line L16 will serve as a clear example of the effects that the

corrective actions have in the post-contingency states. From Fig. 6.7, it is observed

that the CF selected line L16 as critical since its contingency creates voltage prob-

lems as well as loadability problems. The voltage problems are clear by analysing

the single line diagram of figure 6.5. Line 16 is a transformer in between buses 109

and 111 that connects the upper part of the system with the lower part of the sys-

tem. When the contingency happens, a drastic undervoltage is present in bus 106,
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Figure 6.11: VSCs Corrective actions using θsh

and an overvoltage is presented in bus 101 due to the shunt reactor connected to bus

106 an the fixed reactive power output of the generator in bus 101. In response to

this contingency, the fast active controls, change the modulation amplitude of VSCs

1 and 6 to reduce and increase their AC side voltage respectively, and thus “correct”

the post-contingency state. This change is noticeable in Fig. 6.10. Also, for the

same contingency, the loads in buses 103, 109 and 110 are mostly supplied with the

generators of buses 101,102 and 107, since their power output cannot change dras-

tically, a redirection of the power is necessary to satisfy the demand, thus, VSC 6

also changes its θsh to redirect the power though the DC grid. This change is shown

in Fig. 6.11. Thus, just like the corrective actions for the contingency L16, all the

27 contingencies have their own corrective actions that counteract the contingency

effects.

After analysing the simulation results for both the Case 6 HVDC, and the

RTS-GMLC, it is clear that the SCOPF-FubM formulation is able to solve hy-

172



6.4. Test Cases and SCOPF Simulations

brid AC/DC grids while considering the security constraints of the systems. The

formulation of the FubM for steady state analysis has proven to be flexible enough

to simulate highly complex EPS using one single model for all the transmission el-

ements. Moreover, the FubM was also used to obtain the critical contingencies as

shown in section 6.4.3. Furthermore, since the variables of the FubM are designed

to be independent, they can be easily be fixed to a specific value (like it was done

for the preventive SCOPF) or set as free variables to be optimised and even per-

form security corrective actions under contingencies (in the case of the corrective

SCOPF).

Chapter summary

In this Chapter, a steady-state FubM model formulation for solving the SCOPF

for hybrid AC/DC EPS has been presented. This formulation maintains the same

advantages that the ones presented in 5 for the OPF-FubM formulation. The main

difference is that this formulation is a more generalised optimisation problem that

not only obtains an optimal operating point of the system, but also it considers the

security constraints of the system. Control constraints were adding for each post con-

tingency state, and a maximum variation in between the Pre-contingency state and

the Post-contingency state for the FubM was included. The reliability Performance

Index formulation was presented and used to select the most critical contingencies

of any test case. Then the SCOPF-FubM formulation was implemented in Aimms

while considering a powerful CF. Test cases and simulations were presented. Two

main test cases were used to showcase the effectiveness of the SCOPF-FubM imple-

mentation in Aimms. Simulation results showed that the FubM is able to be used

for the Preventive SCOPF and the corrective SCOPF thanks to the independent

variables of the FubM. Finally the results from the test systems were discussed.
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Chapter 7

Conclusions and Future Work

This final chapter draws the conclusion to the research as presented throughout the

thesis. It outlines the key findings, highlights and contributions of this research

in accordance with the aims and objectives stated in section 1.3 in Chapter 1. In

addition, it lays out a path forward for ongoing and future work based and on this

research.

7.1 Key Results

Overall, the main aim of this thesis has been to develop a Flexible Universal Branch

Model (FubM) and and its formulation for steady state operational analysis and

optimisation (Power Flow, OPF and SCOPF) of fully controllable hybrid AC/DC

grids through which, the global impact of the control actions of the system elements

(hence its flexibility) can be thoroughly investigated.

As discussed throughout this thesis, existing power systems analysis tools cur-

rently require an extensive model library to be able to simulate and solve EPSs,

particularly when using AC-only formulations for Power Flows and OPF/SCOPF.

Each model has different parameters and features which corresponds to a very spe-

cific element. These features are particularly important because they will have an

impact on how the problem is formulated. For this reason, not all the existing soft-

ware (both commercial and open-source) have particularly diverse customisation and

modification capabilities in terms of including new element models and/or expanding
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formulations for accommodating extra controls. Notwithstanding this, the Electric

Power Systems are undergoing a transformation from passive AC-only vertically

oriented networks to a more active AC/DC hybrid system for maximising integra-

tion of renewable resources and generally a more efficient, and flexible operation of

the power system under a variety of operating conditions. It is therefore necessary

for system operators and analysts as well as the wider research community to be

able to properly analyse the impact of flexibility in future hybrid AC/DC systems.

Meanwhile, the problem formulation is rather more challenging in the case of hybrid

AC/DC EPS. For solving those hybrid grids, the EPS is traditionally partitioned

into their AC and DC grids. When this partition is used, there is a unique element

(and therefore a special model) that will serve as an interface between both grids.

The modelling of the interface between AC and DC sides is particularly important

because it will have an impact on the formulation of the problem. Some approaches

solve AC/DC hybrid girds sequentially, while other approaches take a more unified

method for solving hybrid AC/DC grids. Even if a standard unified approach is

used, the formulation still has to consider a wide variety of models, controls and

coupling equations. This will be a challenge for all steady-state analysis models for

solving Power Flows, OPFs and SCOPFs as they all share the same core equations

(i.e. solving the power balance equations). The TSOs normally counter these in-

herent challenges by resorting to approximate formulations, for example solving a

DC approximation (linear approximation) of the OPF/SCOPF. The DC approxi-

mation, while simpler to solve than the AC formulation of these problems, is not

able to properly capture the impact of flexibility of operation for hybrid AC/DC

networks. It also ignores important system characteristics, for example impact on

voltage regulation and/or realistic physical boundaries on system elements such as

VSCs.

It is therefore more ideal to be able to model all elements (AC and DC) using

a universal approach for solving any system with any topology and complexity and

with any number of elements (AC or DC) using simply AC-only formulations with

minimum approximations.

In this thesis, a novel universal model, FubM, was introduced to be able to
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achieve this very premise of both flexibility in modelling a diverse pool of elements

and simplicity of implementation and solving steady-state analysis problems for

Power Flows, and OPF/SCOPF.

Following this quick overview of the problem statement (presented in detail in

section 1.1), it can be observed there are many intricacies to be considered in the

formulation of the Power Flow, OPF and the SCOPF problems for hybrid AC/DC

EPS using a FubM to simulate all its elements within. In achieving the main

objectives as outlined in Section 1.3, a series of Research Challenge (RC) were

identified and presented in Section 1.4 of this thesis. This section describes how

each RC was addressed as well as the chapter or section of the thesis in which it was

developed.

7.1.1 RC1: Development of the FubM

In Chapter 3 the FubM model for the steady state analysis of fully controllable

hybrid AC/DC EPS has been developed. The proposed FubM model provides

a physical link between AC and DC parts of the grid, thus, there is no need to

separate the EPS into its AC and DC counterparts. The FubM has also been

shown to be capable of modelling a variety of network elements, both AC and DC,

ranging from standard AC transmission lines to more complex control elements

including Phase Shifter Transformers (PSTs), Controlled Tap-Changing Transform-

erss (CTTs), and more importantly Voltage Source Converters (VSCs) and VSC-

interfaced elements including point-to-point and multi-terminal HVDC links used to

create hybrid AC/DC networks, and even STATCOMs. All model elements were re-

alistically represented using internal models (in-model) within the FubM, where all

in-models share variables and parameters that may or may not be activated depend-

ing on the model and its controls. Control elements were represented explicitly by

their associated control variables within the FubM and constraints on the steady

state problem formulation, thus, adding degrees of flexibility to the formulation.

Moreover, the VSCs in-model within the FubM considered a quadratic correction

for the calculation of the switching losses. Meanwhile, realistic operational limits

for each one of the presented in-models were also considered. Finally, thanks to its
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ability of simulating all the aforementioned in-models there is no need to analyse

the system equations model by model thereby from a software perspective reducing

the need for developing separate model libraries for several network elements.

7.1.2 RC2: Flexible Steady State Formulation using FubM

The flexible steady state formulations for Power Flow, OPF and SCOPF using

FubM (namely Power Flow-FubM, OPF-FubM, and SCOPF-FubM) were de-

veloped in detail in Chapters 4, 5, and 6 respectively. These formulations allow

for analysing a fully controllable AC/DC grid and thus the operational impact of

the flexibility and security of those networks can be studied in detail and taking

into account system’s realistic operational boundaries. These three formulations

were designed for the FubM from chapter 3, consequently they were able to take

advantages of the full control capabilities of the FubM, and thus providing maxi-

mum flexibility for the solution. Meanwhile, when modelling AC/DC grids, there

is no need for introducing additional coupling constraints to maintain power bal-

ance between AC and DC parts of the network as the FubM model structure was

configured in such a way that from a purely mathematical perspective, there is no

distinction between AC and DC counterparts. Thus, same AC equations were used

to solve the entire hybrid EPS while capturing any interactions between the inter-

connected grids. Moreover, the three formulations were able to solve entire AC/DC

grids within a unified frame of reference. All the variables of the FubM are added

to the formulation as optional state variables (or optimisation variables for the OPF

and the SCOPF formulation) and similarly their respective controls were added as

optional constraints (or mismatch equations for the Power Flow formulation), thus

their impact over the flexibility of the grid can be analysed . Furthermore, first

and second order partial derivatives of the formulation were also developed in de-

tail. Simulation results validated the formulations and prove their effectiveness and

efficiency in comparison with their traditional counterparts.
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7.1.3 RC3: Implementation of the FubM

In Chapters 4, 5, and 6 the Power Flow-FubM,OPF-FubM, and SCOPF-FubM for-

mulations were implemented in two analytical software packages namely, the open-

source power systems steady-state analytical package, Matpower, which runs in

MATLAB, and in the commercially available general-purpose optimisation software,

Aimms. These implementations showed that the FubM steady state formulations

can be easily implemented in either a mathematical optimisation software or into an

existing power systems software without making major modifications to the original

code and core components of either software. Both the Matpower-FubM and the

Aimms-FubM implementations were validated and compared against the traditional

approaches for several cases. For the Power flow implementation, the simulation re-

sults demonstrated high speed and quadratic convergence with full control over the

grid. Moreover its results were used to initialise the OPF implementations, which

proved to be working with a variety of optimisation solvers without sacrificing any

computational effort, even presenting faster results than traditional approaches in

some cases. Simulation results showed that the FubM implementation is able to be

used for the Preventive SCOPF and the Corrective SCOPF thanks to the indepen-

dent variables of the FubM. Finally, the three implementations have proven to be

scalable and maintain computational tractability for small, medium and large scale

systems.

7.1.4 RC4: Flexibility of the System

Chapters 4, 5, and 6 address the flexibility of the system by analysing the simulation

results from several test cases. It was clear that the implementations allow for

having optional control variables, and optional control constraints which had a direct

impact over the flexibility of the system. It was observed that if more controls were

set as active, the infeasibility index decreases since more degrees of freedom are

added. On the other hand as the number of constraints is increased the feasibility is

decreased. This was particularly clear for the SCOPF simulations, where it shows

that the Preventive SCOPF by having their controls fixed for their post-contingency
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states, was not able to match the minimised total generation cost presented by the

Corrective SCOPF. This is to be expected since the corrective SCOPF does allow

corrective actions in its post-contingency states, therefore its feasible region is larger

than the restricted Preventive SCOPF. This is a clear example of how the flexibility

of the system is increased as the number of control variables increase. This same

idea applies for the three formulations in both implementations.

7.1.5 Contributions

The main contributions of the thesis can be enlisted as follows:

1. The Flexible Universal Branch Model (FubM)

One of the mayor contributions of this thesis was the development of the

FubM. This model combines fundamental traditional models into one single

model for AC and DC grids. Furthermore, the model has shown unique control

features which makes it a particularly flexible for modelling.

(a) The FubM in-models

The model has proven to be capable of seamlessly modelling several of

network elements using its unique in-models ranging from conventional

AC and DC branches, CTTs, PSTs, STATCOMs and VSCs. Further-

more thanks to the individual control variables of the FubM, it can also

model additional combined elements like the Unified Power Flow Con-

troller (UPFC) and the Bidirectional DC Converter.

(b) The FubM Flexible Control

A flexible and individual control of the FubM variables is also in-

cluded in addition to the in-models. The way the variables of the FubM

can be set allow the user to set the desired element to be modelled with

unique controls that may be restricted if other traditional models are

used. (e.g. the FubM allow an individual control of the variables and

thus the VSC in-model is not restricted by the control modes presented

in table 3.4 in Chapter 3)
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2. The steady state FubM formulations

Three steady state formulations for the solution of fully controllable AC/DC

grids were developed, namely the Power Flow, the OPF, and the SCOPF.

These formulations allow the system to be analysed in one single frame of

reference and thus, there is no need to separate hybrid grids into their AC and

DC parts. Furthermore, since the FubM does not make a distinction between

AC and DC elements, the developed formulation can be used to solve AC, DC

and hybrid grids.

(a) The Power Flow - FubM formulation

For this formulation, a special Flexible AC/DC Power Flow Algo-

rithm (FPFA) was developed. This algorithm provides quadratic con-

vergence, and it allows the introduction of control constraints which are

related to each one of the in-models.

(b) The OPF - FubM formulation

This formulation allows to selectively optimise each one of the extra

variables of the FubM to provide extra degrees of freedom to the opti-

misation problem. Also, it has the option to include voltage and power

control to the optimisation problem. The formulation allows the opti-

misation of fully controllable hybrid AC/DC grids, and thus analyse the

flexibility of the systems.

(c) The SCOPF - FubM formulation

This formulation is a generalisation of the OPF-FubM formulation

to consider the security limitations of the system when contingencies are

considered. This formulation not only obtains an optimal operating point,

but it ensures that the system will remain secure even in the event of a

contingency. This formulation took advantage of the control features of

the FubM to individually correct the post contingency states of the sys-

tem and therefore, it allows the system to operate at a cheaper cost while

considering the security of the EPS (in comparison with the preventive

approach).
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3. The Flexible Universal Branch Model (FubM) Implementations

These implementations showed how easily an existent AC software can be

improved for the solution of hybrid AC/DC grids by using the FubM. They

also show that the FubM formulations can be implemented as a mathematical

optimisation problem to be solved by an optimisation software. Matpower

and Aimms were used as the platforms for the implementation of the FubM.

(a) The Matpower-FubM Implementation

This implementation was done for both the Power Flow-FubM for-

mulation and the OPF-FubM formulation. With this implementation

both formulations were validated, and simulation results show reliable

results and a fast convergence rate (for 500 buses or less).

(b) The Aimms-FubM Implementation

This implementation was done for both the OPF-FubM formulation

and the SCOPF-FubM formulation. This implementation was compared

against existent power system software tools for several cases. The simu-

lation results show fast and accurate convergence for small, medium, and

large scale systems. Furthermore, for some cases, this implementation

out-preformed the traditional implementations.

4. Conference Paper

The developed FPFA and first stage of the FubM were published at the

IEEE International Conference of Electrical Engineering 2018 for Energy sys-

tems in Europe (EEEIC/I&CPS Europe) [103].

5. Journal Paper

This paper presents the results of the final stage of the FubM as well

as the OPF-FubM formulation in Aimms. This paper was published at the

International Journal of Electrical Power Energy Systems ElSevier [28].

6. Matpower-FubM Software Release

The results of the implementation of the FubM in Matpower for Power

flows and OPFs resulted in an official extension to the original Matpower
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analytical software with direct collaboration with Matpower’s creator and

lead developer, Dr Ray Zimmerman. This software release came along with

test cases, technical notes and user guide all specially for the FubM imple-

mentation. The software is open source and its available for the public in

[104].

7.2 Future Work

Future Collaborations

As mentioned in section 1.6, due to the interest garnered from the power systems

research community as a result of the publications in this thesis , the author and

supervisors of this thesis have been contacted to collaborate in the development of

the next generation universal analysis tools. Table 1.2 summarises the projects that

are currently planned to be spun out of this thesis. This table has also been added

below for convenience.
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Table 7.1: Future Research Collaborations

Project: Matpower MP Element-FubM

Lead Researcher: Ray Zimmerman

Development of the next generation of the worldwide known tool Matpower. This

project combines the ideas developed in the FubM with the MPelement to create a

unique and fully controllable class element to simulate all the elements of the power

system for generation, transmission and distribution systems for hybrid AC/DC

grids and Smart Grids. This MPelement-FubM will require a novel formulation to

solve the transmission positive sequence equations and the unbalanced distribution

three phase equations will be developed in a unified approach.

Project: GridCal-FubM

Lead Developer: Santiago Peñate Vera

GridCal is an open source power systems calculation software with a well developed

graphical user interface (GUI). The project aims to include the FubM and its for-

mulation to Gridcal. This project will be mainly developed in Python. At the end

of the project a new version of the software (GridCal-FubM) will be released.

Project: Aimms-FubM

Lead Developer: Aimms Optimisation Software Company

Writing a Book and designing video tutorials for the power/energy research commu-

nity of advanced optimisation of AC/DC hybrid grids in Aimms e-learning platform.

Future Research Topics and Improvements

In addition to future collaborations, a list of improvements and possible research

topics is included below.

• Improvement of the Matpower-FubM: The simulation results presented

by the Matpower-FubM and the Aimms-FubM implementations, suggest

that the Matpower implementation can improve its convergence times to

match the results presented by the Aimms implementation. As mentioned,
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this limitation is due to the way Matpower core components are coded.

A possible solution would be to avoid the recalculation of the full Ybus per

node and per iteration, and consider to update only the relevant values. This

approach is going to be explored in form of a follow-up research proposal which

the thesis author and supervisors are currently exploring.

• Implementation of the SCOPF in Matpower: So far Matpower only in-

cludes the basic DC-SCOPF which does not consider any reactive power and

voltage variations for solving the SCOPF. Since the Aimms-FubM implemen-

tation has proven to be able to solve hybrid AC/DC SCOPF problems, im-

plementing it to Matpower would be an important addition to this already

powerful open source software.

• Research the Convexification of the FubM Formulation: So far the FubM

formulation has proven to be very powerful for the optimal solution of Hy-

brid AC/DC grids. Nevertheless, since the convergence time for both the

traditional OPF formulation and the FubM formulation is still slightly con-

siderable, efforts to convexify the traditional approach have been carried out.

Therefore, convexification of the FubM Formulation could be of interest.

• Research Robust Optimisation for the FubM Formulation: In this thesis only

traditional optimisation has been considered for the solution of hybrid AC/DC

grids using FubM. Future works opens a new path to solve the FubM formu-

lation considering robust optimisation. This approach is going to be explored

in form of a follow-up research proposal which the thesis author and supervi-

sors are currently exploring.

• Machine Learning solutions for hybrid AC/DC grids using FubM. Artificial

intelligence has been recently applied for the solution of power systems op-

timisation. The promising results presented by this trend make it a strong

choice for the solution of hybrid AC/DC grids using FubM. This approach is

going to be explored in form of a follow-up research proposal which the thesis

author and supervisors are currently exploring.
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Appendix A

Barrier Method

Before describing the optimisation methods this subsection will describe a widely

used method to transform inequality constraints into equality constraints by using

a log barrier function. Even though not all optimisation methods transform the

inequality constraints into equality constraints, some of they do, and this subsection

is added for the sake of completeness.

Consider the optimisation problem in (A.0.1),

min f(x)

subject to h(x) ≤ 0

Ax = b

(A.0.1)

Where f and h are both twice differentiable convex functions, and it is assumed

that the problem is solvable (an optimal x∗ exists), and also it is strictly feasible

(there is an x that satisfies all the constraints). Then, by re-writing the problem in

(A.0.1) to implicitly include the h inequality constraints into the objective function,

then the problem can be re-written as in (A.0.5).

min f(x) +
ni∑
i=0

D (hi(x)))

subject to Ax = b,

(A.0.2)

Where D is a function to indicate the non-positive reals as in (A.0.3).
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D(w) =

0 w ≤ 0

∞ w ≥ 0

(A.0.3)

The problem in (A.0.5) has no inequality constraints. However, the new objective

function to minimise cannot be differentiable, therefore some optimisation methods

cannot be applied. To solve this problem the “Logarithmic barrier method” is used.

The main idea is to approximate the indicator function D as shown in (A.0.4).

D̂(w) = −(1/ζ)log(−w), domD̂ = −R++, (A.0.4)

The new function D̂(w) is differentiable, and in (A.0.4), the parameter ζ will

set the accuracy of the approximation. Figure A.1 shows the original D function as

well as the approximation function D̂ for different values of ζ.

Figure A.1: Indicator D and approximation D̂ functions for different values of ζ

Substituting D̂ for D in (A.0.5) the approximation to the problem is a convex

problem of the form:

min f(x) +
ni∑
i=0

− (1/ζ) log (−hi(x))

subject to Ax = b,

(A.0.5)
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Therefore the logarithmic barrier function for the problem in (A.0.1) is defined

as in (A.0.6).

φ(x) = −
ni∑
i=0

log (−hi(x))) (A.0.6)

with, domφ = {x ∈ Rn|hi(x) < 0, i = 1, . . . ,ni} (A.0.7)

The function domain is the set of points that satisfy the inequality constraints of

the original problem. The quality of the approximation improves as the parameter

ζ grows. A common practice is to increase the value of ζ at each step [118].
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Appendix B

Detailed Equations

B.1 FUBM Branch Power Flow in Real and Imag-

inary Parts

From the Euler representation of the voltage in (B.1.1),

V = Vme
jVa (B.1.1)

and substituting (B.1.1) in (3.1.14):

Sf = [vmf e
jvaf ][yffvmf e

jvaf + yftvmte
jvat ]∗

St = [vmte
jvat ][yftvmf e

jvaf + yttvmte
jvat ]∗

(B.1.2)

or

Sf = [vmf e
jvaf ][y∗ffvmf e

−jvaf + y∗ftvmte
−jvat ]

St = [vmte
jvat ][y∗ftvmf e

−jvaf + y∗ttvmte
−jvat ]

(B.1.3)

and simplifying:

Sf = y∗ffv
2
mf

+ y∗ftvmfvmte
j(vaf−vat)

St = y∗ttv
2
mt + y∗tfvmtvmf e

j(vat−vaf )
(B.1.4)

Now, using Euler’s identity,
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Sf = y∗ffv
2
mf

+ y∗ftvmfvmt
(
cos
(
vaf − vat

)
+ j sin

(
vaf − vat

))
St = y∗ttv

2
mt + y∗tfvmtvmf

(
cos
(
vat − vaf

)
+ j sin

(
vat − vaf

)) (B.1.5)

and simplifying

Sf = y∗ffv
2
mf

+ y∗ftvmfvmt cos
(
vaf − vat

)
+ jy∗ftvmfvmt sin

(
vaf − vat

)
St = y∗ttv

2
mt + y∗tfvmtvmf cos

(
vat − vaf

)
+ jy∗tfvmtvmf sin

(
vat − vaf

) (B.1.6)

Considering Ryff , Ryft , Rytf , Rytt and Iyff , Iyft , Iytf , Iytt the real and imaginary

part of yff , yft, ytf , ytt respectively, then:

Sf =
(
Ryff − jIyff

)
v2mf+(

Ryft − jIyft
)
vmfvmt cos

(
vaf − vat

)
+

j
(
Ryft − jIyft

)
vmfvmt sin

(
vaf − vat

) (B.1.7)

St = (Rytt − jIytt) v2mt+(
Rytf − jIytf

)
vmtvmf cos

(
vat − vaf

)
+

j
(
Rytf − jIytf

)
vmtvmf sin

(
vat − vaf

) (B.1.8)

then expanding them both,

Sf =
(
Ryffv

2
mf
− jIyffv2mf

)
+(

Ryftvmfvmt cos
(
vaf − vat

)
− jIyftvmfvmt cos

(
vaf − vat

))
+

j
(
Ryftvmfvmt sin

(
vaf − vat

)
− jIyftvmfvmt sin

(
vaf − vat

)) (B.1.9)

St =
(
Ryttv

2
mt − jIyttv

2
mt

)
+(

Rytfvmtvmf cos
(
vat − vaf

)
− jIytfvmtvmf cos

(
vat − vaf

))
+

j
(
Rytfvmtvmf sin

(
vat − vaf

)
− jIytfvmtvmf sin

(
vat − vaf

)) (B.1.10)

and reorganising,
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Sf =Ryffv
2
mf
− jIyffv2mf+

Ryftvmfvmt cos
(
vaf − vat

)
− jIyftvmfvmt cos

(
vaf − vat

)
+

jRyftvmfvmt sin
(
vaf − vat

)
+ Iyftvmfvmt sin

(
vaf − vat

) (B.1.11)

St =Ryttv
2
mt − jIyttv

2
mt+

Rytfvmtvmf cos
(
vat − vaf

)
− jIytfvmtvmf cos

(
vat − vaf

)
+

jRytfvmtvmf sin
(
vat − vaf

)
+ Iytfvmtvmf sin

(
vat − vaf

) (B.1.12)

and finally, since S = P + jQ by grouping the Real and Imaginary parts of

(B.1.11) and (B.1.12), the Pf , Pt, Qf , and Qt are obtained

Pf =Ryffv
2
mf

+

Ryftvmfvmt cos
(
vaf − vat

)
+

Iyftvmfvmt sin
(
vaf − vat

) (B.1.13)

Pt =Ryttv
2
mt+

Rytfvmtvmf cos
(
vat − vaf

)
+

Iytfvmtvmf sin
(
vat − vaf

) (B.1.14)

Qf =Iyffv
2
mf

+

− Iyftvmfvmt cos
(
vaf − vat

)
+

Ryftvmfvmt sin
(
vaf − vat

) (B.1.15)

Qt =− Iyttv2mt+

− Iytfvmtvmf cos
(
vat − vaf

)
+

Rytfvmtvmf sin
(
vat − vaf

) (B.1.16)
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Appendix C

FUBM Equations and Derivatives

C.1 Useful Equations and Derivatives

C.1.1 Optimisation Variables

X =
[
Va Vm Pg Qg Beq θsh ma Gsw

]>
(C.1.1)

C.1.2 Voltage Equations

V = Vme
jVa (C.1.2)

Voltage First Derivatives

∂V

∂Va
= j

[
Vme

jVa

]
= j[V ] (C.1.3)

∂V

∂Vm
=
[
1ejVa

]
(C.1.4)

Voltage Second Derivatives

∂2V

∂2Va
= −

[
Vme

jVa

]
= −[V ] (C.1.5)

∂2V

∂Vm∂Va
=
[
jejVa

]
(C.1.6)

∂2V

∂Va∂Vm
=

∂2V

∂Vm∂Va

>

(C.1.7)

∂V 2

∂2Vm
=
[
0
]

(C.1.8)
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C.1.3 Admittance Equationsif
it

 =

Yff Yft

Ytf Ytt


vf
vt

 =
[
Ybr

]vf
vt

 (C.1.9)

Ybr =

Gsw + (ys + j bc
2

+ jBeq)
1

m′a
2

−ys
m′ae

−jθsh

−ys
m′ae

jθsh
ys + j bc

2

 (C.1.10)

Yf = [Yff ]Cf + [Yft]Ct (C.1.11)

Yt = [Ytf ]Cf + [Ytt]Ct (C.1.12)

Ybus = C>f Yf + C>t Yt + [Ysh] (C.1.13)

Admittance First Derivatives

∂Ybus
∂Beq

= C>f
∂Yf
∂Beq

+ C>t
∂Yt
∂Beq

(C.1.14)

∂Ybus
∂θsh

= C>f
∂Yf
∂θsh

+ C>t
∂Yt
∂θsh

(C.1.15)

∂Ybus
∂ma

= C>f
∂Yf
∂ma

+ C>t
∂Yt
∂ma

(C.1.16)

∂Ybus
∂Gsw

= C>f
∂Yf
∂Gsw

+ C>t
∂Yt
∂Gsw

(C.1.17)

∂Yf
∂Beq

=
[
∂Yff
∂Beq

]
Cf +

[
∂Yft
∂Beq

]
Ct (C.1.18)

∂Yf
∂θsh

=
[
∂Yff
∂θsh

]
Cf +

[
∂Yft
∂θsh

]
Ct (C.1.19)

∂Yf
∂ma

=
[
∂Yff
∂ma

]
Cf +

[
∂Yft
∂ma

]
Ct (C.1.20)

∂Yf
∂Gsw

=
[
∂Yff
∂Gsw

]
Cf +

[
∂Yft
∂Gsw

]
Ct (C.1.21)

∂Yt
∂Beq

=
[
∂Ytf
∂Beq

]
Cf +

[
∂Ytt
∂Beq

]
Ct (C.1.22)
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∂Yt
∂θsh

=
[
∂Ytf
∂θsh

]
Cf +

[
∂Ytt
∂θsh

]
Ct (C.1.23)

∂Yt
∂ma

=
[
∂Ytf
∂ma

]
Cf +

[
∂Ytt
∂ma

]
Ct (C.1.24)

∂Yt
∂Gsw

=
[
∂Ytf
∂Gsw

]
Cf +

[
∂Ytt
∂Gsw

]
Ct (C.1.25)

∂Yff
∂Beq

=
j(

k2ma

)2 (C.1.26)

∂Yft
∂Beq

= 0 (C.1.27)

∂Ytf
∂Beq

= 0 (C.1.28)

∂Ytt
∂Beq

= 0 (C.1.29)

∂Yff
∂θsh

= 0 (C.1.30)

∂Yft
∂θsh

=
−jys

k2mae−jθsh
(C.1.31)

∂Ytf
∂θsh

=
jys

k2maejθsh
(C.1.32)

∂Ytt
∂θsh

= 0 (C.1.33)

∂Yff
∂ma

=
−2
(
ys + j bc

2
+ jBeq

)
k22m

3
a

(C.1.34)

∂Yft
∂ma

=
ys

k2m2
ae
−jθsh

(C.1.35)
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∂Ytf
∂ma

=
ys

k2m2
ae
jθsh

(C.1.36)

∂Ytt
∂ma

= 0 (C.1.37)

∂Yff
∂Gsw

= 1 (C.1.38)

∂Yft
∂Gsw

= 0 (C.1.39)

∂Ytf
∂Gsw

= 0 (C.1.40)

∂Ytt
∂Gsw

= 0 (C.1.41)

Admittance Second Derivatives

∂2Ybus
∂Beq∂θsh

= C>f
∂2Yf

∂Beq∂θsh
+ C>t

∂2Yt
∂Beq∂θsh

(C.1.42)

∂2Ybus
∂Beq∂ma

= C>f
∂2Yf

∂Beq∂ma

+ C>t
∂2Yt

∂Beq∂ma

(C.1.43)

∂2Ybus
∂2Beq

= C>f
∂2Yf
∂2Beq

+ C>t
∂2Yt
∂2Beq

(C.1.44)

∂2Ybus
∂Beq∂ma

= C>f
∂2Yf

∂Beq∂Gsw

+ C>t
∂2Yt
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C.2 Bus Injections
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C.2.3 Bus Injection Detailed Hessian
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+ [V ]

(
Ybus

∂2V
∂Vm∂Va

)∗ )>
λ

(C.2.114)

Gs
PgVa(λ) =

∂

∂Va

(
Gs
Pg
>λ
)

= 0 (C.2.115)

Gs
QgVa(λ) =

∂

∂Va

(
Gs
Qg
>λ
)

= 0 (C.2.116)

Gs
BeqzVa(λ) =

∂

∂Va

(
Gs
Beqz

>λ
)

(C.2.117)
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=
(
∂V
∂Va

(
∂Ybus
∂Beqz

V
)∗

+ [V ]
(
∂Ybus
∂Beqz

∂V
∂Va

)∗)>
λ (C.2.118)

Gs
BeqvVa(λ) =

∂

∂Va

(
Gs
Beqv

>λ
)

(C.2.119)

=
(
∂V
∂Va

(
∂Ybus
∂Beqv

V
)∗

+ [V ]
(
∂Ybus
∂Beqv

∂V
∂Va

)∗)>
λ (C.2.120)

Gs
θshVa

(λ) =
∂

∂Va

(
Gs
θsh
>λ
)

(C.2.121)

=
(
∂V
∂Va

(
∂Ybus
∂θsh

V
)∗

+ [V ]
(
∂Ybus
∂θsh

∂V
∂Va

)∗)>
λ (C.2.122)

Gs
qtmaVa(λ) =

∂

∂Va

(
Gs
qtma

>λ
)

(C.2.123)

=
(
∂V
∂Va

(
∂Ybus
∂qtma

V
)∗

+ [V ]
(
∂Ybus
∂qtma

∂V
∂Va

)∗)>
λ (C.2.124)

Gs
vtmaVa(λ) =

∂

∂Va

(
Gs
vtma

>λ
)

(C.2.125)

=
(
∂V
∂Va

(
∂Ybus
∂vtma

V
)∗

+ [V ]
(
∂Ybus
∂vtma

∂V
∂Va

)∗)>
λ (C.2.126)

Gs
GswVa(λ) =

∂

∂Va

(
Gs
Gsw
>λ
)

(C.2.127)

=
(
∂V
∂Va

(
∂Ybus
∂Gsw

V
)∗

+ [V ]
(
∂Ybus
∂Gsw

∂V
∂Va

)∗)>
λ (C.2.128)

Gs
VaVm(λ) =

∂

∂Vm

(
Gs
Va
>λ
)

(C.2.129)

= Gs
VmVa

>(λ) (C.2.130)

Gs
VmVm(λ) =

∂

∂Vm

(
Gs
Vm
>λ
)

(C.2.131)

=
∂

∂Vm

((
∂V
∂Vm

(
YbusV

)∗
+ [V ]

(
Ybus

∂V
∂Vm

)∗)>
λ

)
(C.2.132)

=
( ∂V
∂Vm

(
Ybus

∂V
∂Vm

)∗
+

∂2V

∂2Vm

(
YbusV

)∗
+[ ∂V

∂Vm

] (
Ybus

∂V
∂Vm

)∗
+ [V ]

(
Ybus

∂2V
∂2Vm

)∗ )>
λ

(C.2.133)
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Gs
PgVm(λ) =

∂

∂Vm

(
Gs
Pg
>λ
)

= 0 (C.2.134)

Gs
QgVm(λ) =

∂

∂Vm

(
Gs
Qg
>λ
)

= 0 (C.2.135)

Gs
BeqzVm(λ) =

∂

∂Vm

(
Gs
Beqz

>λ
)

(C.2.136)

=
( ∂V
∂Vm

(
δYbus
δBeqz

V
)∗

+ [V ]
(
δYbus
δBeqz

∂V
∂Vm

)∗ )>
λ (C.2.137)

Gs
BeqvVm(λ) =

∂

∂Vm

(
Gs
Beqv

>λ
)

(C.2.138)

=
( ∂V
∂Vm

(
δYbus
δBeqv

V
)∗

+ [V ]
(
δYbus
δBeqv

∂V
∂Vm

)∗ )>
λ (C.2.139)

Gs
θshVm

(λ) =
∂

∂Vm

(
Gs
θsh
>λ
)

(C.2.140)

=
( ∂V
∂Vm

(
δYbus
δθsh

V
)∗

+ [V ]
(
δYbus
δθsh

∂V
∂Vm

)∗ )>
λ (C.2.141)

Gs
qtmaVm(λ) =

∂

∂Vm

(
Gs
qtma

>λ
)

(C.2.142)

=
( ∂V
∂Vm

(
δYbus
δqtma

V
)∗

+ [V ]
(
δYbus
δqtma

∂V
∂Vm

)∗ )>
λ (C.2.143)

Gs
vtmaVm(λ) =

∂

∂Vm

(
Gs
vtma

>λ
)

(C.2.144)

=
( ∂V
∂Vm

(
δYbus
δvtma

V
)∗

+ [V ]
(
δYbus
δvtma

∂V
∂Vm

)∗ )>
λ (C.2.145)

Gs
GswVm(λ) =

∂

∂Vm

(
Gs
Gsw
>λ
)

(C.2.146)

=
(
∂V
∂Vm

(
∂Ybus
∂Gsw

V
)∗

+ [V ]
(
∂Ybus
∂Gsw

∂V
∂Vm

)∗)>
λ (C.2.147)

Gs
VaPg(λ) =

∂

∂Pg

(
Gs
Va
>λ
)

= 0 (C.2.148)
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Gs
VmPg(λ) =

∂

∂Pg

(
Gs
Pg
>λ
)

= 0 (C.2.149)

Gs
PgPg(λ) =

∂

∂Pg

(
Gs
Pg
>λ
)

= 0 (C.2.150)

Gs
QgPg(λ) =

∂

∂Pg

(
Gs
Qg
>λ
)

= 0 (C.2.151)

Gs
BeqzPg(λ) =

∂

∂Pg

(
Gs
Beqz

>λ
)

= 0 (C.2.152)

Gs
BeqvPg(λ) =

∂

∂Pg

(
Gs
Beqv

>λ
)

= 0 (C.2.153)

Gs
θshPg

(λ) =
∂

∂Pg

(
Gs
θsh
>λ
)

= 0 (C.2.154)

Gs
qtmaPg(λ) =

∂

∂Pg

(
Gs
qtma

>λ
)

= 0 (C.2.155)

Gs
vtmaPg(λ) =

∂

∂Pg

(
Gs
vtma

>λ
)

= 0 (C.2.156)

Gs
GswPg(λ) =

∂

∂Pg

(
Gs
Gsw
>λ
)

= 0 (C.2.157)

Gs
VaQg(λ) =

∂

∂Qg

(
Gs
Va
>λ
)

= 0 (C.2.158)

Gs
VmQg(λ) =

∂

∂Qg

(
Gs
Qg
>λ
)

= 0 (C.2.159)

Gs
PgQg(λ) =

∂

∂Qg

(
Gs
Pg
>λ
)

= 0 (C.2.160)

Gs
QgQg(λ) =

∂

∂Qg

(
Gs
Qg
>λ
)

= 0 (C.2.161)

Gs
BeqzQg(λ) =

∂

∂Qg

(
Gs
Beqz

>λ
)

= 0 (C.2.162)
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Gs
BeqvQg(λ) =

∂

∂Qg

(
Gs
Beqv

>λ
)

= 0 (C.2.163)

Gs
θshQg

(λ) =
∂

∂Qg

(
Gs
θsh
>λ
)

= 0 (C.2.164)

Gs
qtmaQg(λ) =

∂

∂Qg

(
Gs
qtma

>λ
)

= 0 (C.2.165)

Gs
vtmaQg(λ) =

∂

∂Qg

(
Gs
vtma

>λ
)

= 0 (C.2.166)

Gs
GswQg(λ) =

∂

∂Qg

(
Gs
Gsw
>λ
)

= 0 (C.2.167)

Gs
VaBeqz(λ) =

∂

∂Beqz

(
Gs
Va
>λ
)

(C.2.168)

= Gs
BeqzVa

>(λ) (C.2.169)

Gs
VmBeqz(λ) =

∂

∂Beqz

(
Gs
Vm
>λ
)

(C.2.170)

Gs
VmBeqz(λ) = Gs

BeqzVm
>(λ) (C.2.171)

Gs
PgBeqz(λ) =

∂

∂Beqz

(
Gs
Pg
>λ
)

= 0 (C.2.172)

Gs
QgBeqz(λ) =

∂

∂Beqz

(
Gs
Qg
>λ
)

= 0 (C.2.173)

Gs
BeqzBeqz(λ) =

∂

∂Beqz

(
Gs
Beqz

>λ
)

(C.2.174)

=
(

[V ]
(
∂2Ybus
∂2Beqz

V
)∗ )>

λ (C.2.175)

Gs
BeqvBeqz(λ) =

∂

∂Beqz

(
Gs
Beqv

>λ
)

(C.2.176)

=
(

[V ]
(

∂2Ybus
∂BeqvBeqz

V
)∗ )>

λ (C.2.177)
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Gs
θshBeqz

(λ) =
∂

∂Beqz

(
Gs
θsh
>λ
)

(C.2.178)

=
(

[V ]
(

∂2Ybus
∂θshBeqz

V
)∗ )>

λ (C.2.179)

Gs
qtmaBeqz(λ) =

∂

∂Beqz

(
Gs
qtma

>λ
)

(C.2.180)

=
(

[V ]
(

∂2Ybus
∂qtmaBeqz

V
)∗ )>

λ (C.2.181)

Gs
vtmaBeqz(λ) =

∂

∂Beqz

(
Gs
vtma

>λ
)

(C.2.182)

=
(

[V ]
(

∂2Ybus
∂vtmaBeqz

V
)∗ )>

λ (C.2.183)

Gs
GswBeqz(λ) =

∂

∂Beqz

(
Gs
Gsw
>λ
)

(C.2.184)

=
(

[V ]
(

∂2Ybus
∂GswBeqz

V
)∗ )>

λ (C.2.185)

Gs
VaBeqv(λ) =

∂

∂Beqv

(
Gs
Va
>λ
)

(C.2.186)

= Gs
BeqvVa

>(λ) (C.2.187)

Gs
VmBeqv(λ) =

∂

∂Beqv

(
Gs
Pg
>λ
)

(C.2.188)

= Gs
BeqvVm

>(λ) (C.2.189)

Gs
PgBeqv(λ) =

∂

∂Beqv

(
Gs
Pg
>λ
)

= 0 (C.2.190)

Gs
QgBeqv(λ) =

∂

∂Beqv

(
Gs
Qg
>λ
)

= 0 (C.2.191)

Gs
BeqzBeqv(λ) =

∂

∂Beqv

(
Gs
Beqz

>λ
)

(C.2.192)

= Gs
BeqvBeqz

>(λ) (C.2.193)
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Gs
BeqvBeqv(λ) =

∂

∂Beqv

(
Gs
Beqv

>λ
)

(C.2.194)

=
(

[V ]
(
∂2Ybus
∂2Beqv

V
)∗ )>

λ (C.2.195)

Gs
θshBeqv

(λ) =
∂

∂Beqv

(
Gs
θsh
>λ
)

(C.2.196)

=
(

[V ]
(

∂2Ybus
∂θshBeqv

V
)∗ )>

λ (C.2.197)

Gs
qtmaBeqv(λ) =

∂

∂Beqv

(
Gs
qtma

>λ
)

(C.2.198)

=
(

[V ]
(

∂2Ybus
∂qtmaBeqz

V
)∗ )>

λ (C.2.199)

Gs
vtmaBeqv(λ) =

∂

∂Beqv

(
Gs
vtma

>λ
)

(C.2.200)

=
(

[V ]
(

∂2Ybus
∂vtmaBeqz

V
)∗ )>

λ (C.2.201)

Gs
GswBeqv(λ) =

∂

∂Beqv

(
Gs
Gsw
>λ
)

(C.2.202)

=
(

[V ]
(

∂2Ybus
∂GswBeqz

V
)∗ )>

λ (C.2.203)

Gs
Vaθsh

(λ) =
∂

∂θsh

(
Gs
Va
>λ
)

(C.2.204)

= Gs
θshVa

>(λ) (C.2.205)

Gs
Vmθsh

(λ) =
∂

∂θsh

(
Gs
Pg
>λ
)

(C.2.206)

= Gs
θshVm

(λ)>(λ) (C.2.207)

Gs
Pgθsh

(λ) =
∂

∂θsh

(
Gs
Pg
>λ
)

= 0 (C.2.208)

Gs
Qgθsh

(λ) =
∂

∂θsh

(
Gs
Qg
>λ
)

= 0 (C.2.209)
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Gs
Beqzθsh

(λ) =
∂

∂θsh

(
Gs
Beqz

>λ
)

(C.2.210)

= Gs
θshBeqz

>(λ) (C.2.211)

Gs
Beqvθsh

(λ) =
∂

∂θsh

(
Gs
Beqv

>λ
)

(C.2.212)

= Gs
θshBeqv

>(λ) (C.2.213)

Gs
θshθsh

(λ) =
∂

∂θsh

(
Gs
θsh
>λ
)

(C.2.214)

=
(

[V ]
(
∂2Ybus
∂2θsh

V
)∗ )>

λ (C.2.215)

Gs
qtmaθsh

(λ) =
∂

∂θsh

(
Gs
qtma

>λ
)

(C.2.216)

=
(

[V ]
(

∂2Ybus
∂qtmaθsh

V
)∗ )>

λ (C.2.217)

Gs
vtmaθsh

(λ) =
∂

∂θsh

(
Gs
vtma

>λ
)

(C.2.218)

=
(

[V ]
(

∂2Ybus
∂vtmaθsh

V
)∗ )>

λ (C.2.219)

Gs
Gswθsh

(λ) =
∂

∂θsh

(
Gs
Gsw
>λ
)

(C.2.220)

=
(

[V ]
(

∂2Ybus
∂Gswθsh

V
)∗ )>

λ (C.2.221)

Gs
Vaqtma(λ) =

∂

∂qtma

(
Gs
Va
>λ
)

(C.2.222)

= Gs
qtmaVa

>(λ) (C.2.223)

Gs
Vmqtma(λ) =

∂

∂qtma

(
Gs
Pg
>λ
)

(C.2.224)

= Gs
qtmaVm

>(λ) (C.2.225)

Gs
Pgqtma(λ) =

∂

∂qtma

(
Gs
Pg
>λ
)

= 0 (C.2.226)
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Gs
Qgqtma(λ) =

∂

∂qtma

(
Gs
Qg
>λ
)

(C.2.227)

Gs
Beqzqtma(λ) =

∂

∂qtma

(
Gs
Beqz

>λ
)

(C.2.228)

= Gs
qtmaBeqz

>(λ) (C.2.229)

Gs
Beqvqtma(λ) =

∂

∂qtma

(
Gs
Beqv

>λ
)

(C.2.230)

= Gs
qtmaBeqv

>(λ) (C.2.231)

Gs
θshqtma

(λ) =
∂

∂qtma

(
Gs
θsh
>λ
)

(C.2.232)

= Gs
qtmaθsh

>(λ) (C.2.233)

Gs
qtmaqtma(λ) =

∂

∂qtma

(
Gs
qtma

>λ
)

(C.2.234)

=
(

[V ]
(
∂2Ybus
∂2qtma

V
)∗ )>

λ (C.2.235)

Gs
vtmaqtma(λ) =

∂

∂qtma

(
Gs
vtma

>λ
)

(C.2.236)

=
(

[V ]
(

∂2Ybus
∂vtmaqtma

V
)∗ )>

λ (C.2.237)

Gs
Gswqtma(λ) =

∂

∂qtma

(
Gs
Gsw
>λ
)

(C.2.238)

=
(

[V ]
(

∂2Ybus
∂Gswqtma

V
)∗ )>

λ (C.2.239)

Gs
Vavtma(λ) =

∂

∂vtma

(
Gs
Va
>λ
)

(C.2.240)

= Gs
vtmaVa

>(λ) (C.2.241)

Gs
Vmvtma(λ) =

∂

∂vtma

(
Gs
Pg
>λ
)

(C.2.242)

= Gs
vtmaVm

>(λ) (C.2.243)
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Gs
Pgvtma(λ) =

∂

∂vtma

(
Gs
Pg
>λ
)

= 0 (C.2.244)

Gs
Qgvtma(λ) =

∂

∂vtma

(
Gs
Qg
>λ
)

(C.2.245)

Gs
Beqzvtma(λ) =

∂

∂vtma

(
Gs
Beqz

>λ
)

(C.2.246)

= Gs
vtmaBeqz

>(λ) (C.2.247)

Gs
Beqvvtma(λ) =

∂

∂vtma

(
Gs
Beqv

>λ
)

(C.2.248)

= Gs
vtmaBeqv

>(λ) (C.2.249)

Gs
θshvtma

(λ) =
∂

∂vtma

(
Gs
θsh
>λ
)

(C.2.250)

= Gs
vtmaθsh

>(λ) (C.2.251)

Gs
qtmavtma(λ) =

∂

∂vtma

(
Gs
qtma

>λ
)

(C.2.252)

= Gs
vtmaqtma

>(λ) (C.2.253)

Gs
vtmavtma(λ) =

∂

∂vtma

(
Gs
vtma

>λ
)

(C.2.254)

=
(

[V ]
(
∂2Ybus
∂2vtma

V
)∗ )>

λ (C.2.255)

Gs
Gswvtma(λ) =

∂

∂vtma

(
Gs
Gsw
>λ
)

(C.2.256)

=
(

[V ]
(

∂2Ybus
∂Gsw∂vtma

V
)∗ )>

λ (C.2.257)
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C.3. Branch Flows

C.3 Branch Flows

Consider the branch flow constraints for Loadability, Zero Constraint, Active power

control and Reactive power Control of equations (C.3.258) to (C.3.262).

Branch Loadability

|Ff (X)| − Fmax ≤ 0

|Ft(X)| − Fmax ≤ 0
(C.3.258)

where:

Ff (X) =


Sf apparent power

Pf real power

If current

(C.3.259)

Zero Constraint

=
(
Sf

)
= 0 (C.3.260)

Active Power Control

<
(
Sf

)
− Pset = 0 (C.3.261)

=
(
Sf

)
−Qset = 0 (C.3.262)

Which are in function of Sf and St. Where:

Sf = Cf [V ][YfV ]∗

St = Ct[V ][YtV ]∗
(C.3.263)

C.3.1 First Derivatives

SfX =
∂Sf

∂X
=[

SfVa SfVm SfPg SfQg SfBeq Sfθsh Sfma SfGsw

]
(C.3.264)

StX =
∂St

∂X
=
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C.3. Branch Flows[
StVa StVm StPg StQg StBeq Stθsh Stma StGsw

]
(C.3.265)

SfVa =
∂Sf
∂Va

=[
CfV

] (
Yf

∂V
∂Va

)∗
+
[
Cf

] [
Cf

∂V
∂Va

] (
YfV

)∗
(C.3.266)

StVa =
∂St
∂Va

=[
CtV

] (
Yt

∂V
∂Va

)∗
+
[
Ct

] [
Ct

∂V
∂Va

] (
YtV

)∗
(C.3.267)

SfVm =
∂Sf
∂Vm

=[
CfV

] (
Yf

∂V
∂Vm

)∗
+
[
Cf

] [
Cf

∂V
∂Vm

] (
YfV

)∗
(C.3.268)

StVm =
∂St
∂Vm

=[
CtV

] (
Yt

∂V
∂Vm

)∗
+
[
Ct

] [
Ct

∂V
∂Vm

] (
YtV

)∗
(C.3.269)

SfPg =
∂Sf
∂Pg

= 0 (C.3.270)

StPg =
∂St
∂Pg

= 0 (C.3.271)

SfQg =
∂Sf
∂Qg

= 0 (C.3.272)

StQg =
∂St
∂Qg

= 0 (C.3.273)

SfBeq =
∂Sf
∂Beq

=
[
CfV

] (
∂Yf
∂Beq

V
)∗

(C.3.274)

StBeq =
∂St
∂Beq

=
[
CtV

] (
∂Yt
∂Beq

V
)∗

(C.3.275)
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C.3. Branch Flows

Sfθsh =
∂Sf
∂θsh

=
[
CfV

] (
∂Yf
∂θsh

V
)∗

(C.3.276)

Stθsh =
∂St
∂θsh

=
[
CtV

] (
∂Yt
∂θsh

V
)∗

(C.3.277)

Sfma =
∂Sf
∂ma

=
[
CfV

] (
∂Yf
∂ma

V
)∗

(C.3.278)

Stma =
∂St
∂ma

=
[
CtV

] (
∂Yt
∂ma

V
)∗

(C.3.279)
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f X
X
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V
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(
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>
µ
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=
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CfV

] (
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∂Gsw∂vtma
V
)∗ )>
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(
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>
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>

(µ) (C.3.398)

SfVmGsw(µ) =
∂

∂Gsw

(
SfPg

>
µ
)

(C.3.399)

= SfGswVm
>

(µ) (C.3.400)

SfBeqzGsw(µ) =
∂

∂Gsw

(
SfBeqz

>
µ
)

(C.3.401)

= SfGswBeqz
>
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