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Preliminary

Earthquake prediction has been a long standing goal in seismology. Despite significant effort,

no statistically rigorous application exists involving the use of precursory phenomena to

forecast large earthquakes. As a result, reported cases of precursors can be attributed to

random noise or chance. The ability to robustly identify precursory signals and accurately

attribute them to large moment magnitude (Mw) earthquakes could significantly improve

our hazard preparedness. This report analyses the raw seismic signal prior to 31 Mw ≥ 6

earthquakes in the Japan region using deep neural networks. The neural network successfully

detected short-term changes in the seismic signal correlated to the investigated earthquakes.

This raises interesting questions for future research. The first is whether these ‘precursors’

can assist in reliably forecasting the timing, location and Mw of an impending earthquake.

The second is the origin of the precursors, for example, what process generates them, and

whether they can provide clues on the mechanics of fault slip during the earthquake cycle.





Artificial Intelligence to Detect and Forecast Earthquakes

Veda Ong

Abstract: Precursors to large earthquakes have been widely but not systematically identi-

fied. The ability of deep neural networks to solve complex tasks that involve generalisations

makes them highly suited to earthquake and precursor detection. Large Mw earthquakes

and associated tsunamis can have a huge economic and social impact. Detecting precursors

could significantly improve seismic hazard preparedness, particularly if precursors can as-

sist, within a more general probabilistic forecasting framework, in reducing the uncertainty

interval on expected earthquakes’ timing, location and Mw. Additionally, artificial intelli-

gence has recently been used to improve the detection and location of smaller earthquakes,

assisting in the completion and automation of seismic catalogues.

This paper is the first to present a deep learning-based solution for detecting and iden-

tifying short-term changes in the raw seismic signal, correlated to earthquake occurrence.

Deep neural networks (DNNs) were employed to investigate the background seismic sig-

nal prior to 31 Mw ≥ 6 earthquakes in the Japan region. Instantaneous, precursor-related

features (features correlated to the investigated earthquakes) were detected as opposed to

predicting future values based on previously observed values in the case of time series fore-

casting. The network achieved a 98% train accuracy and a 96% test accuracy classifying

noise unrelated to Mw ≥ 6 earthquakes from signal immediately prior to the investigated

earthquakes. Additionally, the precursor-related features became increasingly systematic

(more frequently detected prior to the investigated earthquakes) with earthquake proximity.

Discriminative features appeared most dominant over a frequency range of ∼ 0.1-0.9 Hz,

coinciding with microseismic noise and recent observations of broadband slow earthquake

signal (Masuda et al. 2020). In particular, frequencies of ∼ 0.16 and ∼ 0.21 Hz provided

significant precursor-related information.

Deep learning successfully detected features of the seismic data correlated to earthquake

occurrence. Developing a better understanding of the origin of the precursor-related features

and their reliability is the next step towards establishing an earthquake forecasting system.
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2.4 Basic structure of a classifier based on a CNN | The CNN is the feature ex-

tractor and the classifier uses the output from the feature extractor to assign

a class label to each input. During a convolution operation, a convolutional

kernel (vector of weights) is convolved with the input to generate a feature

map. Several kernels are normally applied to the input, however, for simplic-

ity of illustration, only a single kernel is applied in this example. The input

is frequently padded with zeros in order to retain information at the board-

ers and preserve the input length. The feature extractor may include several

convolutional layers, each followed by a pooling layer which strategically

downsamples each feature map. Pooling involves selecting a pooling opera-

tion, similar to a kernel or filter, which is applied separately to each feature

map to create a new set of the same number of pooled feature maps. The

length of the pooling operation is smaller than the length of the feature map

(length 2 in this diagram). The stride dictates how much the size of the fea-

ture map is reduced. A stride of 2 in this example indicates that the pooling

layer will reduce the size of each feature map by a factor of 2. When several

kernels are applied in a convolutional layer, the feature maps are stacked to

form a single feature map before being input to the next convolutional layer.

After the final convolution operation, this stacked feature map is input to the

classifier. The classifier usually consists of one or several fully connected

layers. In this diagram, the classifier consists of a single fully connected

layer and an output layer. The number of output neurons in the output layer

depends on the number of classes (2 in this example). Note, this is a one

dimensional CNN, typically used for time series analysis. . . . . . . . . . . 13

2.5 The receptive field of each convolutional layer with a kernel of length 3

| The pink area marks the receptive field of one activation in layer 2 and the
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Chapter 1

Introduction

Earthquake prediction has been a long-standing goal in seismology. Currently, a reliable

method for short-term (minutes-weeks) earthquake prediction does not exist. The ability to

identify systematic earthquake precursors could have a significant effect on hazard prepared-

ness and subsequently reduce the impact of highly destructive earthquakes.

Probabilistic forecasting of earthquakes is extremely limited and pre-earthquake pro-

cesses are poorly understood. The epidemic-type aftershock sequence (ETAS) model is

currently the most popular model to describe seismicity in a region (Ogata 1988). The

model presents the idea that large earthquakes trigger more numerous aftershocks which

are accompanied by background earthquakes. This method does not rely on empirical obser-

vations of precursors but provides a forecast based on a likelihood calculation (Kattamanchi

et al. 2017). Precursory phenomena, such as short term earthquake clustering attributed to

increased foreshock activity (Tamaribuchi et al. 2018) and changes in seismic velocity (Bren-

guier et al. 2008, Chen et al. 2010) have been observed prior to some large earthquakes,

however, these observations frequently lead to false predictions and are therefore considered

unreliable. Diagnostic precursors specific to a small Mw and location range could provide

significant information for earthquake forecasting if identified systematically prior to earth-

quakes occurring within those ranges. Precursors not constrained to a Mw or location range

could be more reliable when used in combination with other information such as typical

earthquake recurrence in the investigated region.

1
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A variety of approaches have been applied to earthquake forecasting. Earlier meth-

ods have involved forecasting earthquakes based on their recurrence intervals and statisti-

cal patterns (Nishenko & Buland 1987). Other, more popular approaches, rely on empiri-

cal observations of precursory changes (Turcotte 1991, Lomnitz 1994, Scholz 2002, Allen

& Kanamori 2003). The empirical approach considers a variety of observations, ranging

from precursory seismic activity (Brenguier et al. 2008) and electromagnetic fluctuations

(Kamiyama et al. 2016) to chemical emissions (Prayogo et al. 2015) and anomalous animal

behaviour (Hayakawa et al. 2016, Yamauchi et al. 2014). Although frequently occurring

prior to some large earthquakes, these methods have not provided reliable, short-term fore-

casts on a consistent basis (Holliday et al. 2005). For example, it is understood that many

large, natural earthquakes are preceded by slow slip and foreshock sequences (Passelègue

et al. 2017). There is, however, difficulty in using slow slip events and earthquake swarms

(foreshocks) to predict natural earthquakes as they do not occur systematically prior to large

earthquakes and therefore cannot be considered for short-term prediction (Dublanchet 2018).

Currently, the majority of reported earthquake precursors are non-seismological.

More recently, laboratory (lab) experiments have shown systematic changes prior to lab

earthquakes. Earthquake precursors are thought to arise when faults reach critical stress

conditions preceding shear failure (Rouet-Leduc et al. 2017). Prior to fault failure, lab earth-

quakes have shown an increase in small shear failures, each of which emit impulsive acoustic

emissions (Rouet-Leduc et al. 2017). Systematic changes in elastic wave speed and acoustic

transmissivity have also been observed prior to lab fault failure (Shreedharan et al. 2020,

Scuderi et al. 2016). More recently, machine learning, a field used to analyse the statistical

characteristics of large quantities of data, has been used to investigate changes in the acoustic

signal emitted from lab fault zones (Rouet-Leduc et al. 2017). This technique enabled highly

accurate prediction of lab earthquakes by identifying a signal emitted from the fault zone that

was previously thought to be low amplitude noise. Although providing concrete evidence of

precursors, results obtained from lab experiments cannot capture the entirety of the complex

physical processes that occur during a natural earthquake.

The same machine learning method was applied to seismic data from the Cascadia sub-
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duction zone (Rouet-Leduc et al. 2019). By posing the problem as a regression between the

statistical characteristics of the continuous seismic data and the surface GPS displacement

rate, the study showed that the Cascadia megathrust continuously emits a tremor-like signal

with statistical characteristics that reflect the displacement rate on the fault. Although pro-

viding real-time access to the physical state of the slowly slipping portion of the megathrust,

this method has not been applied to fast earthquake prediction.

Systematic precursors to fast earthquakes are yet to be identified (Mignan & Broccardo

2019). Difficulty in identifying natural precursors arises partly from the fact that without

knowing the location of an impending earthquake, efforts cannot be focused towards detect-

ing changes in the properties within and surrounding the fault zone prior to failure (Scuderi

et al. 2016). Furthermore, the Mw of precursors is likely to be much smaller than the Mw

of the event and thus precursors will often go unrecorded or unidentified by seismometers

(Rouet-Leduc et al. 2017). Additionally, precursors may often be masked by other earth-

quakes or earthquake swarms which are characterised by entirely different statistical prop-

erties (Ishibashi 1988). There is hope that the significant increase in station density and

sensitivity over the last 15 years will lead to advances in earthquake forecasting and precur-

sor detection (Rouet-Leduc et al. 2017).

Deep learning is a subset of machine learning used to extract high level features from

raw data. Multiple hidden layers of highly interconnected neurons, analogous to neurons in

a biological brain, form deep neural networks (DNNs) which have shown superior perfor-

mance in discovering complex patterns within very large datasets (Noh et al. 2015). A major

advantage of using DNNs, is that, generally, there is no need for feature extraction or any

significant pre-processing. As a result, large quantities of data can be used directly to train

the neural network. A type of artificial neural network (ANN) known as a convolutional

neural network (CNN) has shown excellent performance in various visual recognition prob-

lems such as image classification, object detection and semantic segmentation (Zhao et al.

2019). The task of recognising changes within a waveform time-series is very similar to that

of recognising objects in 2D images. A significant advantage of using a CNN for seismic

precursor detection is that CNNs can detect features of any scale (Zhao et al. 2017). As a
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result, even a very small change in the signal close to an earthquake could be detected.

CNNs have frequently been applied to earthquake detection, generating improved earth-

quake catalogues by efficiently analysing large quantities of seismic data (Nguyen et al.

2017, Perol et al. 2018, Mousavi et al. 2019). However, research into the potential of CNNs

and complex neural network architectures to improve earthquake predictability is extremely

limited. Huang et al. (2018) utilised a simple CNN to investigate the seismic data prior to

earthquakes in Taiwan. Taiwanese seismicity maps were transformed into 2D images by

encoding earthquake Mw as brightness. A classification-based approach was employed to

detect differences within seismicity maps up to 30 days prior to large earthquakes with a

(Mw) > 6 and seismicity maps up to 30 days prior to small earthquakes (Mw < 6). Their

algorithm led to an R-score of 0.303 where an R-score of 0 is the result of an entirely ran-

dom prediction and an R-score of 1 is an entirely successful prediction. An R-score of 0.303

suggests that the CNN captured some precursory seismicity patterns, however, no further in-

vestigation was conducted into the patterns which led to this classification result. In addition,

these results were not considered for probabilistic forecasting of earthquakes.

Encouraged by success in classification problems, researchers have also frequently ap-

plied CNNs to solve structured prediction problems. A commonly used example of this is

semantic segmentation which outputs a prediction for each pixel in an image. The task of

segmenting time series data is similar to image segmentation whereby a prediction is made

for each time sample instead of per pixel. One approach, achieving a high accuracy and

recall rate, involved the use of semantic segmentation for the detection of P and S phases in

seismic data (Zhu & Beroza 2019).

Although CNNs are commonly used on 2D images (Huang et al. 2018), this research will

investigate precursors based solely on features of the raw seismic signal. To our knowledge,

no current research exists involving the use of neural networks to detect precursors in lab and

real earthquake settings through analysis of raw time series data. Instead of using decision

trees to detect changes in the statistical features of the signal as in (Rouet-Leduc et al. 2017),

neural networks can be used to detect systematic, pattern-based changes in raw time series.

As a result, this investigation will determine whether precursors can be detected without
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any substantial data pre-processing. Lab data is obtained in a controlled environment and is

therefore considerably less complex than real earthquake data. Initial analyses will involve

the simplest task of detecting earthquakes in lab data. This will provide a good preliminary

investigation for enabling a greater understanding of the application of CNNs (typically ap-

plied to 2D datasets) on time series. The techniques used here can then be tailored to the

more complex tasks of detecting precursory phenomena in lab and real earthquake data.

Lab studies have shown systematic precursors to earthquake-like, frictional failure, how-

ever, whether such changes can be detected in real earthquake settings and used to forecast

failure remains unanswered (Scuderi et al. 2016). Due to the widespread availability and

abundance of seismic data, by identifying systematic precursors within seismic data as op-

posed to, for example, within electromagnetic emissions, this method could be applied to

investigate precursors in other seismically active regions where seismic data is readily avail-

able. In addition, instead of considering long-term changes such as decreases in seismic

wave speed and increased foreshock activity which do not systematically occur prior to large

earthquakes, this project will focus on short-term fluctuations and attempt to detect patterns

within the seismic data that occur over a smaller time-frame (minutes to hours) prior to large

earthquakes. Focusing on a smaller time-frame and training a complex CNN for classifica-

tion may more robustly enable the detection of previously undiscovered patterns in seismic

signals. Finally, due to the success of semantic segmentation on time series data (Zhu &

Beroza 2019), the technique will be applied to precursor detection. No prior work has used

semantic segmentation to investigate earthquake precursors.

1.1 Thesis Aims

The aims of this thesis work are summarised as follows:

1. To enable the detection and forecasting of laboratory earthquakes (Chapter 3).

2. To detect and potentially identify systematic changes in seismic data that could be

attributed to large (Mw ≥ 6) earthquake precursors and to test the potential of the

algorithm for probabilistic earthquake forecasting (Chapter 4).





Chapter 2

Theory

2.1 Deep Neural Networks

All neural networks consist of an input layer, one or several hidden layers (layers located

between the input and output of the network) and an output layer (Figure 2.1). A deep neural

network (DNN) comprises a collection of neurons organised in a sequence of multiple layers.

An individual neuron is a mathematical function that models the functioning of a conceptual

biological neuron (Figure 2.2).

Within the field of machine learning, there are two main types of tasks: supervised, and

unsupervised. In supervised learning tasks, each input to the neural network is associated

with a label or ground truth which indicates the class of that input. The goal of supervised

learning is to learn a function that, given a sample of data and desired outputs, best approx-

imates the relationship between inputs and outputs (Donalek 2011). Unsupervised learning,

on the other hand, does not have labelled outputs, so its goal is to infer the natural structure

present within a set of data points (Zhao & Liu 2007). This thesis investigates a supervised

learning approach (Figure 2.1).

The input layer of a neural network is responsible for receiving the inputs and transferring

this information to the subsequent layers. It does not apply any operations on the input

values. In a fully connected neural network, each hidden layer comprises several neurons

where each neuron is connected to all neurons in the adjacent layers (Figure 2.1). It should be

7
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Figure 2.1: Simple DNN with 2 fully connected layers | Arrows between neurons repre-
sent their weighted connections. In the feed-forward stage, the input layer passes the inputs
to the neurons in the first hidden layer. Within each neuron, the weighted sum of the inputs
is calculated, a bias is added, and this value is passed through a non-linear activation func-
tion before leaving the neuron (Figure 2.2). Each neuron is connected to all neurons in the
adjacent layers, representing a fully connected network. The output is formed in the output
layer with the number of neurons representing the number of classes (2 in this network). The
network output (prediction) is compared to the label or ground truth associated with the in-
put. The loss (difference between the label and the prediction) is used to update the weights
and biases in the learnable layers of the network.

Figure 2.2: Operations within a single neuron | Each neuron in some layer l receives a
set of activations (xl

N) as input from neurons in the previous (l− 1)th layer. Each input is
associated with a weight (wl

jk) which is the weight from the kth neuron in the (l−1)th layer
to the jth neuron in the lth layer, and a bias (bl

j) which is the bias of the jth neuron in the
lth layer. The weights and biases are updated during the learning process. In each iteration
(forward pass), each neuron calculates a weighted average of the inputs and adds a bias. This
result is passed through a non-linear activation function ( f ).
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noted that individual neurons within a single layer are entirely independent of other neurons

from the same layer and do not share connections with them.

Neurons receive as input the activations or outputs of the neurons from the previous layer.

Each neuron performs a calculation to map its input to its output (Figure 2.2). Each output-

input link between two individual neurons is associated with a weight which represents the

strength of the connection between units. Within each neuron, the weighted sum of the inputs

is calculated and a bias is added to the result. The bias is a constant value or vector whose

function is to shift the result to the positive or negative side (Goodfellow et al. 2016). The

weights and biases are the learnable parameters of the network and are randomised prior to

training.

In a given layer ’l’ (layer index is skipped here for simplicity), the calculation in Figure

2.2 for several ’ j’ neurons and ’N’ inputs can be expressed by matrix multiplication as:

f





w0,0 w0,1 · · · w0,N

w1,0 w1,1 · · · w1,N

...
... . . . ...

w j,0 w j,1 · · · w j,N





x0

x1

...

xN


+



b0

b1

...

b j




(2.1)

The weighted sum plus the bias are fed into an activation function that applies a non-

linearity and normalises the input (Figure 2.2 and Figure 2.3). The activation function is

responsible for transforming the summed, weighted input from the neuron into the activation

of the neuron or output for that input. The neurons of the network jointly implement a

complex nonlinear mapping from the input to the output (Wang et al. 2018). The output

layer produces an output of the desired length. For example, a 2-class classification will

have 2 output neurons.

A commonly used activation function is the rectified linear unit (ReLU) activation (Fig-

ure 2.3), introduced by (Hahnloser et al. 2000) which maps the output of a layer by the

function shown in Equation 2.2
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Figure 2.3: Visual representation of the ReLU activation function.

f (x) =

 0, for x < 0

x, for x≥ 0

 (2.2)

The ReLU activation function is a simple calculation that returns the value provided as

input, or the value 0 if the input is 0 or less. The function is linear for values greater than

zero, yet it is a non-linear function as negative values are always output as zero (Figure 2.3).

The non-linear activations within the neurons allow for complex input-output relations

to be learnt through an optimisation process (Noh et al. 2015). The non-linear mapping is

learned from the data by adapting the weights (w) and biases (b) in the network using error

backpropagation, a concept further discussed below.

Prior to training the network, the data is split into train, test and validation datasets.

Supervised learning is a type of learning where the dataset has been labelled, i.e. the expected

output for each input already exists. The network is trained on the training dataset. The test

dataset is used to validate the learned weights and biases during training to see how well the

network performs on unseen data with each iteration. The validation dataset is used to test

generalisation of the model after training and is commonly used to compare the performance

of different models (networks).

Forward propagation is the process of feeding input values (x) from the training dataset

to the neural network and obtaining an output or prediction (ŷ). The predicted output is
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compared to the actual output or ground truth (y) and a cost function is calculated (Figure

2.1). A loss function computes the error for a single training example while the cost function

is the average of the loss functions for all the training examples. The goal of the algorithm

is to minimise the cost function. An example of a simple cost function (C) is the sum of the

squared differences. With N training examples, this cost function is shown in Equation 2.3.

The squared differences increase the error distance, thus making the poor predictions more

pronounced compared to the successful predictions (Shang et al. 2016). Within Equation

2.3, y is a vector of true labels (y = [target(x), target(x). . . target(xN)]) and ŷ is a vector of

network predictions.

C(y, ŷ) =
1
N

N

∑
i=1

(yi− (ŷi))
2 (2.3)

The learning process is aimed at minimising the cost function. This is implemented by

gradient descent, an iterative algorithm used to find the minimum value of a differentiable

function (Mousavi et al. 2019). As the cost function is continuous and differentiable, it

comprises a continuous landscape of highs and lows or maxima and minima respectively.

Gradient descent computes the gradient of the cost function with respect to the weights and

biases for the entire training dataset (Equation 2.4). To consider the impact of each trainable

parameter on the final prediction, partial derivatives of the cost function with respect to each

weight and bias are calculated and saved in a gradient vector (∇) that has as many dimensions

(n) as weights and biases (Equation 2.4). This gradient is used to calculate new weights and

biases from current weights (w) and biases (b) by indicating the direction to move to update

the parameters (Equation 2.5 and 2.6).

Combining the weights and biases into the learnable parameters of the network (x1, x2,

· · · ,xn), the gradient can be calculated as

−∇C(x1,x2, · · · ,xn) =



∂C
∂x1

∂C
∂x2
...

∂C
∂xn


(2.4)



12 CHAPTER 2. THEORY

This gradient is used to update the weights and biases. Each weight and bias is changed

by a certain amount.

wl
jk = wl

jk−η
∂C

∂wl
jk

(2.5)

bl
j = bl

j−η
∂C
∂bl

j
(2.6)

Parameters are updated in the direction of the gradients with the learning rate (η), deter-

mining how big of an update is performed at each iteration. The lower the learning rate, the

more precise the convergence but the slower the learning (Ross, Meier & Hauksson 2018).

The weights and biases of the network are updated after each forward pass of data through

the network. During backpropagation, gradient descent is used to update the parameters

within each trainable layer of the neural network. The parameters of the network are empir-

ically optimised with large amounts of data, such that a given input leads to an output that is

as close as possible to the desired output or ground truth.

These hierarchically organised, non-linear mapping functions are typically used for tasks

such as classification and regressions. They enable the development of robust, generalised

representations of extremely large datasets (Mousavi et al. 2019). As opposed to using ex-

plicit template matching to search for patterns in time series, these algorithms are able to de-

tect the general characteristics that individual examples of that class share. This non-explicit

nature of neural networks enables them to reliably detect patterns without ever having seen

an exact or even similar example (Ross, Meier, Hauksson & Heaton 2018).

2.2 Convolutional Neural Networks

The convolutional neural network (CNN) is a learnable feature extraction system that works

together with a fully connected network for classification and regression tasks (Figure 2.4).

The CNN can be considered a feature extraction system that distils the relevant information

from the input. This information is commonly passed to one or several fully connected layers

which use the extracted information to produce an output.
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Figure 2.4: Basic structure of a classifier based on a CNN | The CNN is the feature ex-
tractor and the classifier uses the output from the feature extractor to assign a class label to
each input. During a convolution operation, a convolutional kernel (vector of weights) is
convolved with the input to generate a feature map. Several kernels are normally applied
to the input, however, for simplicity of illustration, only a single kernel is applied in this
example. The input is frequently padded with zeros in order to retain information at the
boarders and preserve the input length. The feature extractor may include several convolu-
tional layers, each followed by a pooling layer which strategically downsamples each feature
map. Pooling involves selecting a pooling operation, similar to a kernel or filter, which is
applied separately to each feature map to create a new set of the same number of pooled
feature maps. The length of the pooling operation is smaller than the length of the feature
map (length 2 in this diagram). The stride dictates how much the size of the feature map is
reduced. A stride of 2 in this example indicates that the pooling layer will reduce the size
of each feature map by a factor of 2. When several kernels are applied in a convolutional
layer, the feature maps are stacked to form a single feature map before being input to the
next convolutional layer. After the final convolution operation, this stacked feature map is
input to the classifier. The classifier usually consists of one or several fully connected layers.
In this diagram, the classifier consists of a single fully connected layer and an output layer.
The number of output neurons in the output layer depends on the number of classes (2 in this
example). Note, this is a one dimensional CNN, typically used for time series analysis.
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Each convolutional layer contains several learnable filters (or kernels), each of which

comprise a vector of weights (Figure 2.4). In the first or shallowest convolutional layer of

the network, each filter is convolved with the input, producing an activation map that indi-

cates the responses of that filter at every spatial position (Equation 2.7). The activation maps

store information on the location of features within the input and how well those features

correspond to the filters (Zhu et al. 2019). In simpler terms, they summarise the features

detected in the input. The number of filters applied at any one convolutional layer is equiv-

alent to the number of activation (feature) maps produced at that layer. These output feature

maps along with a bias are passed through an activation function and stacked to form a single

output feature map as input to the next convolutional layer (Figure 2.4).

The general expression of discrete convolution in 1D is:

g(x) = [w∗ f ](x) =
a

∑
dx=−a

w(dx) f (x+dx) (2.7)

Where g(x) is the output of convolution of the filter or kernel (w) with the input ( f ), x and

dx denote the index of the discrete position in the series and −a and a are the first and last

indexes, respectively, of the convolutional kernel. Equation 2.7 refers to the operation in a

convolutional layer. In comparison, Equation 2.1 indicates the operation in a fully connected

layer. The convolution operation is applied to identify patterns of interest anywhere within

the data. The coefficients of the filters are initialised randomly and are optimised, along with

biases, during the training process.

Additional layers which often occur within a convolutional network are pooling and nor-

malisation layers. After convolution, pooling layers are used to down sample the convolution

output so that subsequent layers learn attributes of a rescaled representation of the data (Fig-

ure 2.4). In Figure 2.4, the pooling layer maps two activations on the feature map to a single

activation. This helps to recognise variants of the same features with different sizes. Another

key concept of a pooling layer is to provide translational invariance.

Batch normalisation layers normalise the activations of a convolutional layer during train-

ing. Batch normalisation is applied to speed up the convergence of the network and help

improve generalisation. A typical convolutional block may consist of a convolutional layer
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followed by an activation layer, a pooling layer and a batch normalisation layer. One or sev-

eral of these blocks form a convolutional neural network. As the depth of the convolutional

network increases, convolutional layers extract higher level (finer scale and more complex)

features (Zhu & Beroza 2019).

The receptive field is an important concept to consider when designing a CNN archi-

tecture (Figure 2.5). It is defined as the region in the input space that a particular CNN’s

feature is observing or is affected by (Meier et al. 2019). Unlike FCNNs where the value of

each neuron depends on the entire input to the network, a unit (activation of a feature map)

in a CNN only depends on a region of the input, defined as the receptive field. Since any

region of the input outside the receptive field of an activation does not affect the value of

that activation, it is necessary to carefully control the receptive field to ensure that it covers

the relevant input region (Rojas et al. 2019). The receptive field can be increased by stack-

ing more convolutional layers to make the network deeper or using subsampling/pooling

operations.

Figure 2.5: The receptive field of each convolutional layer with a kernel of length 3 |
The pink area marks the receptive field of one activation in layer 2 and the pink and blue area
marks the receptive field of one activation in layer 3.

CNNs have shown excellent performance in various visual recognition problems such

as image classification, object detection and semantic segmentation. The task of detecting

precursors in a waveform time-series is very similar to that of recognising objects in 2D im-

ages (earthquake seismograms can be viewed as 1-dimensional images with 3 components)

(Meier et al. 2019). CNNs are extremely powerful in performing vision-based tasks, making

them well suited for detecting patterns that may signify an impending earthquake. A major
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advantage of using a CNN for precursor detection is that CNNs can detect features of any

scale or target objects of any scale (Mignan & Broccardo 2020). So, with enough layers in

the network, even if there is a very small change in the signal leading up to an earthquake,

the CNN may be able to detect it. CNNs excel at performing pattern recognition that is in-

variant with respect to translation, scaling and other distortions, a weakness of DNNs and

other machine learning methods (Renna et al. 2019).

2.3 Semantic Segmentation

Semantic segmentation is formulated to produce a prediction for each data point that is input

to the neural network. A popular approach is for the network to follow an encoder/decoder

structure (Figure 2.6). In this scenario, the network consists of two parts: a convolutional

network (encoder) and a deconvolutional network (decoder).

Figure 2.6: Encoder-decoder neural network architecture for semantic segmentation
| The input in this figure is a small section of the lab data containing a single slip event.
The ground truth is a plot of the labels for each time sample in the input (0 = noise, 1 =
earthquake).

The convolutional network corresponds to the feature extractor and transforms the input

to a multidimensional feature representation. The deconvolutional network maps these low

resolution feature maps to full input resolution for point-wise classification (Wang et al.

2018). The final output of the network is a probability map of the same dimensions as the
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input, indicating the probability that each data point belongs to one of the predefined classes.

The probability map is compared to the ground truth, a cost is calculated where the cost is

the average sum of the losses for each prediction and this value is used to update the weights

and biases. The decoder of the network is key to a sample-wise detection as it traces the

input locations with strong activations back to image space (Long et al. 2015). It effectively

reconstructs the detailed structure of the time series in finer resolutions, seeking to localise

properties of the time series into its classes.

In dense prediction tasks such as semantic segmentation, it is critical for each output pixel

to have a large receptive field, such that no important information is left out when making

the prediction (Chen et al. 2018). As earlier discussed, the receptive field can be increased

by increasing network depth and by subsampling the input. Downsampling occurs in the

encoder of the network to develop lower resolution feature maps which are highly efficient

at discriminating between classes. The feature representations are upsampled in the decoder.

Pooling in convolutional networks is designed to filter noisy activations in a lower layer

by abstracting activations in a receptive field with a single representative value (Zhao et al.

2017). This improves classification tasks by retaining only robust activations in upper layers,

however, spatial information is lost during the process which may be critical for precise

localisation required for semantic segmentation. To resolve this issue, unpooling layers in

the decoder perform the reverse operations of the pooling in the encoder. This is achieved

by recording the locations of maximum activations selected during pooling operations and

using this information to return each activation back to its original location (Badrinarayanan

et al. 2017). Deconvolutional or transpose convolutional layers densify the sparse activations

obtained by unpooling by applying convolution-like operations with multiple learned filters.

The output of the deconvolution and unpooling is an enlarged and dense activation map.

During training, the learned filters in deconvolutional layers aim to reconstruct the shape

of objects in an image or patterns within a time series (Chen et al. 2018). Hence, similar

to the convolutional encoder, a hierarchical structure of deconvolutional layers is utilised to

capture different levels of shape information. Filters in lower layers may identify overall

shapes in the time series while class-specific, fine details are encoded in filters in higher
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or deeper layers. In this way, the network considers class-specific shape information when

making a prediction.

If the input in Figure 2.6 was processed by a CNN for classification, the output would

be a single prediction (i.e. the whole input would be classified as earthquake signal or as

noise signal). This prediction gives no indication of where the earthquake occurs. In the case

of segmentation, the network is optimised to fit the ground truth. As a result, segmentation

produces a much more detailed view of what is in the input. Additionally, classification tasks

rely heavily on a significant amount of data in each class. This requirement is not typically

fulfilled when analysing earthquake data.

Semantic segmentation is a key application in image processing and the computer vision

domain. Although infrequently applied to time series, semantic segmentation has shown

recent success in detecting seismic phases within time series data (Zhu & Beroza 2019).



Chapter 3

Laboratory Methods and Results

3.1 Introduction

To our knowledge, precursors in lab data have not been investigated with the use of neural

networks. Unlike other machine learning techniques such as decision trees (Rouet-Leduc

et al. 2017), neural networks enable the analysis of raw time series. As a result, this chapter

investigates the potential of neural networks to detect precursors in raw lab data. A semantic

segmentation algorithm is used to analyse the data with the aim of detecting individual slip

events and their precursors. The simpler task of earthquake detection was carried out prior

to precursor detection and was used as a preliminary investigation to develop a segmenta-

tion network that performed well on time series data (as opposed to the 2D data typically

input to a semantic segmentation algorithm). In this chapter, we analyse strain gauge data

obtained during a triaxial loading experiment performed on a pre-cut granite sample (Figure

3.1). Strain gauge data were investigated as it provided a good measure of the elastic and

anelastic deformation induced by the applied axial stress. Additionally, strain gauge data has

been effective at observing the nucleation process (preparatory phase prior to an earthquake)

(Buijze et al. 2020) which may be significant to the investigation of precursors.

19
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3.2 Experimental Set Up

A triaxial loading cell was used to impose a constant strain rate of 1 µm/s on the pre-cut

sample (Figure 3.1). A triaxial experiment was conducted as it enabled the testing of a

sample under a high confining pressure and axial stress, simulating the conditions that occur

during a natural earthquake. The confining pressure (σ2 = σ3) was fixed at 50 MPa and the

sample was loaded axially (σ1) until stick-slip events started to develop on the pre-cut fault.

Figure 3.1: Experimental setup | Diagram of the triaxial cell. The triaxial cell hosts the
sample and allows a high confinement pressure and vertical load to be applied. The cell
structure (grey shaded areas) are built in high strength stainless steel and can sustain the
maximum confinement pressure with negligible deformation. A neoprene jacket isolates
the sample from the pressure chamber, which contains silicon oil. Four strain gauges were
positioned across a pre-cut fault on the sample, however, only one is shown here for sim-
plicity. The piston applied the axial stress (σ1) used to load the sample. The confining stress
(σ2 = σ3) was applied by pressurising the cell fluid surrounding the sample.
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3.3 Sample Preparation

The sample consisted of a cylinder of Westerly granite with a diameter of 20 mm and a

length of 50 mm. The cylinder was pre-cut diagonally across the sample to create a weak

fault interface. Once assembled, the sample was insulated from the confining oil medium

by a neoprene jacket (Figure 3.1). Four strain gauges were positioned across the fault. The

strain gauge signal, corresponding to a deformation, was continuously recorded at a sampling

rate of 10 MHz. This high frequency sampling enabled any dynamic stress-strain changes to

be monitored and recorded. Strain gauge signals provide good estimates of the sample elas-

tic constants and the dynamic evolution of the differential stress (σ1−σ3) during dynamic

rupture propagation (Passelègue et al. 2017).

3.4 Strain Gauge Dataset

The configuration used in this study was such that when the axial stress was increased, both

the normal (σn) and tangential stress (τ) acting on the fault increased. When the state of stress

reached a critical value corresponding to the peak stress of the fault, τc, instabilities occurred,

leading to a macroscopic friction drop (τc/σn). The sample appeared to deform in a series of

”stick-slip” events (Scholz 2002). The fault remained essentially locked except for sudden

episodes of slip that are thought to be representative of earthquakes (Brace & Byerlee 1966).

Seven of these fast slip events were recorded over the duration of the experiment (Figure

3.2). Some strain gauge sensors recorded the data to a higher signal noise ratio (SNR) than

others.

3.5 Data Pre-processing

The only pre-processing applied to the strain gauge signal was decimation. Initially, decima-

tion by a factor of 512 was applied to significantly reduce the computational power required

to process the data. This was applied to prevent the quantity of data from limiting the com-

plexity of the network architecture. When developing the network, a memory limit was
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Figure 3.2: Recording from a single strain gauge sensor with a high SNR, decimated
by a factor of 512 | (a) Whole dataset where 7 separate events were recorded. The ground
truth is plotted with ’ones’ representing earthquake signal and ’zeros’ representing noise.
(b) Single slip event and corresponding ground truth. A gradual increase in the voltage of
the signal occurred immediately prior to the slip event in (b). This was also labelled as
earthquake signal.

quickly encountered when analysing the data prior to decimation. Decimation by a factor

of 512 was only applied to the task of earthquake detection for slip events in the high SNR

strain gauge dataset. This decimation reduced the effective frequency to ∼ 19 kHz and may

have introduced aliasing as the signal was not low-pass filtered prior to decimation. The

decimation may have induced artefacts in the signal that filtering prior to decimation would

not have, however, analysing the decimated data enabled an understanding of the robustness

of the CNN to aliasing and other artefacts. Strain gauge signals preferentially capture lower

frequency oscillations, therefore, in the case of a simple detection task, this decimation will

unlikely have had a significant impact on the result.

The sample points that represented noise were manually labelled as ‘zeros’ and those

that represented earthquake signal were labelled as ‘ones’ (Figure 3.2). The sample points

representing the earthquake class were defined over a region containing the individual slip

events as well the main recovery period post-slip (Figure 3.2b). Clear changes in the voltage

of the signal immediately prior to the main slip events were also labelled as earthquake signal

(Figure 3.2b). The result is a boxcar function with the same length as the input data (Figure

3.2a).

The ground truth and the whole time series were then split into train (first 75% of the

data including the first 5 slip events), test (following 15% of the data containing the next
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slip event) and validation (final 10% of the data containing the final slip event) datasets.

This prevented any overlap between the datasets and enabled unbiased training and testing

of the network. Although the number of different events was extremely small, this was not

a significant issue due to the simplicity of this task. Additionally, data augmentation was

applied to each dataset to increase the number of windows containing earthquake signal.

This is explained in the following 2 paragraphs.

A sliding window approach was used to generate fixed length windows of the whole time

series as input to the neural network. This method was selected in order to process the data

and perform classification in batches (Liu et al. 2018). To account for the significant class

imbalance (large quantity of noise windows compared to earthquake windows), simple data

augmentation was applied. Data augmentation is a technique used to artificially create new

training data from existing training data. Any applied data augmentation method must be

chosen carefully and within the context of the training dataset and knowledge of the prob-

lem domain (Perez & Wang 2017). For example, data augmentation by horizontal flipping

involves randomly selecting windows from the training dataset and inverting the y axis. This

was not a sensible option in the context of time series as flipping the data horizontally would

entirely change the features of the input and increase the chances of overfitting. Overfitting

occurs when the network learns features of the training data that are different to those in the

test and validation data. As a result of overfitting, the training accuracy increases whilst the

test and validation accuracy decrease.

Instead of augmenting random windows, the amount of overlap between windows was

adapted based on whether the windows contained noise signal only or whether they also

contained earthquake signal. By increasing the amount of overlap from 0% (windows con-

taining only noise) to 80% (windows containing earthquake signal), the class imbalance

(ratio of noise-labelled time samples to earthquake-labelled time samples) was significantly

reduced. Increasing the overlap is equivalent to applying several horizontal shifts to windows

of the training data containing earthquake signal (Brownlee 2019). The method successfully

increased the amount of training data in the earthquake class without making any changes to

the raw data.
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The width of the moving windows was 4096 samples. This length was chosen to enable

the whole duration of each earthquake to be captured in several time windows. This may

have improved the CNN’s performance, enabling it to learn information from both before

and after the event over the same window of data. In addition, 4096 is a power of 2 (212)

therefore the input could be downsampled by a factor of 2, 12 times. This increased the

number of down-sampling operations that could be applied to the input.

The data were prepared for training and testing by standardising each window separately.

Standardisation involved rescaling the distribution of values such that the mean of the ob-

served values was 0 and the standard deviation was 1. Standardising windows separately

instead of standardising the whole time series before splitting it into windows encouraged

the network to learn discriminative patterns within the time series as opposed to amplitude

changes. Additionally, to prevent the network from learning anything trend related, the win-

dows in the training dataset were shuffled before being input to the network.

3.6 Network Architecture

An encoder-decoder neural network such as that in Section 2.3 was designed to scan through

continuous strain gauge data and classify each sample point in the input windows as one of

two classes - ’noise’ or ’earthquake’. The network produced two predictions or probabilities

for each time sample. The probabilities were obtained by using a Softmax function which

mapped the output of the network to a probability distribution over the predicted output

classes. The Softmax function is a function that turns a vector of network outputs into a

vector of probabilities that sum to 1. The Softmax function can be expressed as:

Softmax(x)i =
exp(xi)

∑
K
j=1 exp(x j)

f or i = 1, ...,K (3.1)

where x is the input vector and K is the number of classes. The argmax function (a

function that returns indices of the maximum element of an array in a particular axis) then

returned the maximum value of the two probabilities. This method was used to assign each

time sample a label from one of the two classes.
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The network architecture consisted of the VGG16 classifier (Simonyan & Zisserman

2014) combined with the U-Net encoder-decoder (Ronneberger et al. 2015) (Figure 3.3).

Classical U-Net architectures are very popular for detailed segmentation i.e. medical images

as they enable precise pixel-level localisation and high segmentation accuracy (Hesamian

et al. 2019). Unlike many other segmentation networks, the U-Net has proved very useful

for segmentation problems with limited amounts of data (Hesamian et al. 2019). Capable

of learning from a relatively small training dataset and enabling precise segmentation, the

U-Net was well suited to this task. A U-Net architecture typically consists of a contract-

ing path to capture context (encoder) and a symmetrically expanding path to enable precise

localisation (decoder) (Ronneberger et al. 2015).

Figure 3.3: U-Net with VGG16 encoder | A window of the dataset is input to the network
and the output prediction for each time sample is compared to the ground truth. The average
loss is backpropagated through the network using gradient descent and used to update the
learnable parameters of the network such as the filter coefficients and biases (Section 2.1).
The dark blue layers represent the feature maps produced by convolution operations (Section
2.2). The length of each layer shows the relative feature map size (in time samples) and the
number of feature maps produced by each convolution operation are indicated below each
dark blue layer. Outputs from batch normalisation and fully connected layers are indicated by
yellow and green layers respectively. Light blue layers are the result of applying max pooling
to the convolution and batch normalised output (feature maps). Skip connections concatenate
encoder layer outputs to their corresponding decoder layer. The number of neurons are
shown below each fully connected layer.

The encoder architecture was inspired by VGG16, a network which has achieved great

success in image classification (Simonyan & Zisserman 2014). Incorporating the VGG16

classifier in the U-Net increased network depth and complexity which led to an improve-
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ment in the network’s performance on this dataset. The encoder contained 13 convolutional

layers, each followed by a ReLU activation function and dropout, a layer which improves

generalisation by randomly excluding neurons during the training process. The feature maps

were downsampled using 5 max pooling operations (Figure 3.3). Max pooling is an opera-

tion that calculates the maximum value in each specified patch of a feature map. The results

of max pooling are down-sampled or pooled feature maps that highlight the most dominant

feature in each patch. In VGG16, each max pooling operation halves the feature maps. To

construct an encoder from the VGG classifier, the fully connected layers were removed and

replaced by two convolutional layers that served as a bottleneck central part of the network,

separating the encoder from the decoder (Figure 3.3).

Like the U-Net architecture, the expansive path or decoder of the network was sym-

metrical to the encoder and consisted of transposed convolutions, each of which doubled

the size of the feature maps. In order to localise up-sampled features, the output of the

transpose convolutions were concatenated with high-resolution features from the encoder

via skip-connections (Ronneberger et al. 2015). Skip connections at each depth in the net-

work directly concatenated the encoder layer output to its corresponding decoder layer. A

convolution operation was applied to the output feature maps after each up-sampling opera-

tion to ensure the same number of features were present as in the symmetric encoder layer.

This up-sampling procedure was repeated 5 times to pair up with 5 max pooling operations

in the VGG16 encoder. Additionally, 2 fully connected layers were added to the end of the

network. The U-net is a fully convolutional network (FCN) and does not contain any fully

connected layers. In an FCN, the prediction of each output neuron will depend only on a

subset of the input window. The addition of fully connected layers ensured that each output

neuron utilised information from the whole input window when making a prediction. Whilst

convolution is local, fully connected layers are global and increase the flow of information in

the network. The output of the model was a segmentation map that indicated the prediction

for each input time sample.

This network was adapted for use on 1D time series and trained from scratch using gra-

dient descent with randomly initialised weights. In addition to the current network, batch
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normalisation was added after convolution to increase stability and improve convergence of

the network during training. Additionally, dropout was added to increase generalisation of

the network. Hyperparameters such as the filter lengths and learning rate were optimised to

improve the network’s performance.

3.7 Network Optimisation for Earthquake Detection

The weights were initialised using the kernel initializer ’he normal’ which draws samples

from a truncated normal distribution centred on 0. He normal is suitable for deeper networks

(Badrinarayanan et al. 2017) and produced good convergence of the network during training

and the highest accuracy on the validation data.

The model was trained using the binary cross-entropy loss function and the RMSprop op-

timisation algorithm with a learning rate of 0.001, in batches of 64 windows, with a NVIDIA

GeForce MX250 graphics processing unit (GPU). Cross entropy is a logarithmic loss func-

tion. A loss was generated for each sample point prediction. The loss function took the

negative log of the probabilities for each sample point and computed the mean of the losses

to obtain the final loss for the predicted probability distributions. In binary classification,

cross-entropy for a single prediction can be calculated as:

Loss =−[y log(p)+(1− y) log(1− p)] (3.2)

where log is the natural log, y is a binary indicator (0 or 1) or the true label and p is the

predicted probability or model output. The binary cross-entropy loss function calculates the

total loss by computing the average of the loss for the number of scalar values in the model

output.

The batch size is a hyperparameter of gradient descent that controls the number of data

windows to pass through the network before the model’s internal parameters are updated.

A batch size of 64 conveyed that 64 windows from the training dataset were passed to the

network over a single iteration (one forwards and backwards pass through the network). This

batch size allowed good convergence of the network during training and a learning rate of
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0.001 produced the best performance (highest accuracy and lowest loss) on the validation

dataset. To fine-tune the model weights, the learning rate was decreased by a factor of 10

when the validation loss failed to improve over 5 forward and backward passes of all training

examples through the network (epochs). The minimum learning rate was set at 0.00001 to

prevent the network from training at very low learning rates where updates to weights and

biases become insignificant. The training process was programmed to terminate when the

validation loss had not decreased in more than 15 epochs, preventing overfitting. With these

parameters in place, the network converged quickly (within 10 epochs) and did not overfit

to the training dataset. This was evident from observing that the test and validation loss and

accuracy were similar to the training loss and accuracy. The network was trained to minimise

the training loss, however, the final parameters or weights were stored when the test loss was

at its lowest during training.

The best weights obtained a test accuracy of 99.95% and a test loss of 0.0015. The

validation accuracy for this model was 99.5% and the loss was 0.023. These results indicated

that the network was able to precisely segment the time series into two classes, even though

only 7 individual slip events were used to train, test and validate the network (Figure 3.4 and

Figure 3.5).
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Figure 3.4: Section of a window in the test dataset containing the slip event in the test
data | The corresponding ground truth and the network prediction is indicated.
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Figure 3.5: Section of a window in the validation dataset containing the slip event in the
validation data | The corresponding ground truth and the network prediction is indicated.

3.8 Detection in Noisy Time Series

To determine how robust the network was at detecting earthquakes in much noisier time

series, the same neural network was trained and tested on data from a low SNR strain gauge

recording obtained during the same experiment (Figure 3.6). This sensor’s recordings had a

much lower SNR and, as a result, the individual slip events were significantly obscured by

noise. Due to the increased difficulty of the task, the data were decimated by 256 instead of

512. A smaller decimation factor will have increased the level of detail and encouraged the

network to learn more complex features and patterns specific to each class.

The noisier dataset was relabelled in accordance with the original (high SNR) dataset

also decimated by a factor of 256 (Figure 3.7). The low SNR dataset and its corresponding

ground truth are plotted in Figure 3.6.

In the high SNR dataset, the slip events were denoted by an increase in the signal voltage

(Figure 3.7a). Differences in the orientations or positions of the strain gauges on the rock

sample can alternatively result in a decrease in the signal during a slip event. This was

observed in the low SNR dataset (Figure 3.7b), and could be explained by the fact that some

sensors measured a contraction, whilst others measured an extension. Regardless, the event

in Figure 3.7a is the same as that in Figure 3.7b.
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Figure 3.6: Low SNR time series dataset and corresponding ground truth | The same 7
events as in Figure 3.2a were recorded by this sensor.
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Figure 3.7: Method applied to label the low SNR dataset| (a) Single slip event from the
high SNR dataset and corresponding ground truth. (b) Same slip event as in (a) from the
low SNR dataset and corresponding ground truth. The slip event in (a) was used to label the
event in (b).

The data were split into train, test and validation datasets and windows were generated

with no overlap when they contained only noise signal and with 80% overlap when they

contained earthquake signal. The events selected in each dataset were different to previously

in Section 3.5. The validation dataset was selected to contain the lowest amplitude (most

noise-obscured) slip event to evaluate the ability of the network to recognise more complex

variants of the examples in the training data. Each window was standardised separately, and

the network was re-trained from scratch on this low SNR dataset. The network achieved an
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accuracy of 99.9% and a loss of 0.0019 on the test data and an accuracy of 99.8% and a loss

of 0.006 on the validation data. The results are displayed in Figure 3.8 and Figure 3.9.
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Figure 3.8: Window of the test dataset containing the test earthquake | The ground truth
and the network prediction is plotted.
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Figure 3.9: Window of the validation dataset containing the validation earthquake |
The ground truth and the network prediction is plotted.

The results indicate precise segmentation of the low SNR time series into ’noise’ and

’earthquake’ classes. Even with the most noise-obscured slip event in the validation dataset,

the network was still able to accurately localise the earthquake (Figure 3.9). The test and

validation datasets comprised 15% and 10% of the whole dataset respectively, therefore, a

large proportion of the overlapping windows in the test and validation data contained no
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earthquake signal. The network did not detect earthquake signal in any of these windows,

indicating that no false positive predictions occurred across the test and validation datasets.

These results indicate that the network was able to successfully extract discriminative

features in the encoder of the network and accurately relocate significant activations back

to input space for precise segmentation. The network performed extremely well on the test

and validation datasets, indicating that the features learned are general and can be used to

accurately segment unseen data. A high test and validation accuracy also indicate robustness

of the network to noise as well as robustness to possible degradation of the input signal due

to decimation.

3.9 Visualisation of Segmentation for Earthquake Detec-

tion

The end-to-end learning strategy of CNNs make their representations a black box meaning

that it is difficult to understand the logic of their predictions. CNN representations were

visualised both in intermediate network layers and the output layer using several inversion

and gradient based methods. This included feature map visualisation, feature map inversion,

saliency maps and filter visualisation. These visualisation techniques are typically performed

on 2D convolutions and were adapted for application on time series data. All of the visu-

alisation techniques, other than saliency maps, provided unclear and inconclusive results on

time series data.

With image classification approaches, a natural question is if the model is truly identify-

ing the location of the object in the image, or just using the surrounding context. Visualisa-

tion is important for investigating what features the network uses to make a prediction. The

results should indicate that the network focused on features of the slip events when detecting

an earthquake as opposed to the surrounding noise.

Saliency maps are intended to provide insight into what aspects of the input a CNN is us-

ing to make a prediction. Saliency maps plot the gradient of the predicted outcome from the

model with respect to the input sample points. In other words, they visualise the derivatives
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calculated using backpropagation. The magnitude of the derivatives on the saliency map de-

termine which time samples need to be changed the least to affect the class score the most.

Large values in saliency maps indicate time samples of high importance. The saliency map

in Figure 3.10 indicates that the network learnt to detect the slip event as being different from

the surrounding noise and not vice versa. The saliency at the location of the main slip event

is larger in comparison to the saliencies before and after. The saliencies increased in the 225

time-samples prior to the labelled start of the slip event. This could indicate that time sam-

ples before the earthquake aided in its detection. The saliency map for a window containing

the validation slip event in the low SNR dataset was similar to that in Figure 3.10. This result

is shown in a later section (Section 3.14, Figure 3.16) and therefore was not included here.
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Figure 3.10: Example saliency result | Window of the validation data containing the slip
event in the high SNR dataset (top) and its corresponding saliency map (bottom). The highest
saliencies occurred at the location of the main slip event. The ground truth is plotted to
indicate where the event was labelled.

3.10 Prediction

Precursors were investigated within the strain gauge signal recorded by the low SNR sensor.

This dataset was selected as a high level of background noise is commonly observed in real

seismic data (microseismic noise) and a higher noise level will have encouraged the network
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to learn complex, precursor-related features, preventing any short-term, trend-based obser-

vations from influencing the features learnt. Additionally, the network achieved a higher

validation accuracy on this dataset. It should be noted that during this investigation, the

events selected in the train, test and validation datasets were random.

To adapt the earthquake detection task to be suited for prediction, changes were made to:

1. The raw data:

• The data were decimated by 128 samples, 4 times less than originally. This was

applied to increase the chance of detecting complex, precursor-related features in

the signal.

2. The method of labelling the data:

• The ground truth was generated by assigning each time sample in the data a label

from one of 3 classes; ’precursors’, ’impulsive earthquake signal’ and ’noise’.

’Precursors’ were not visually evident in the data and the signal labelled as a

’precursor’ is justified in Section 3.11. The result was a boxcar function with

’zeros’ where nothing occurred, ’ones’ in the region prior to each earthquake and

’twos’ during the main slip events.

3. The sliding window:

• Moving windows with a length of 4096 time samples were used to scan the

whole length of data. The overlap between windows containing precursors was

increased such that the sliding window only moved by one time-sample in the

region of the time series labelled as a ’precursor’. This significantly increased

the number of windows containing precursor-labelled time samples, reducing the

class imbalance (ratio of noise-labelled time samples to precursor-labelled time

samples.

4. The network:

• Introduced 2 Long Short Term Memory (LSTM) layers (Graves 2012) to the end

of the network. An LSTM is a type of recurrent neural network that is capable

of learning long-term order dependence in time series. The U-net is a fully con-

volutional network (FCN). Convolutional networks do not account for sequential
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dependencies and, therefore, LSTM layers were used to interpret the features

output from the original network across time steps. The addition of LSTM layers

improved the predictive capability of the network.

• Network efficiency was increased by reducing the number of learnable parame-

ters until the point at which the performance of the network decreased.

5. The method for evaluating the success of the network:

• When testing the learned weights on the validation data, a prediction was consid-

ered successful if the network was able to consistently detect signal belonging to

the class ’precursor’ in the moving windows prior to an earthquake (before the

earthquake was in the frame of view). The network was adapted to detect signal

belonging to the class ’precursor’ as early as possible prior to the event in the val-

idation dataset. The network was developed to optimise the predictive capability

on the event in the validation dataset as this provided the best generalisation.

3.11 Dataset Labelling for Prediction

The start of the individual slip events were labelled using the high SNR dataset also deci-

mated by a factor of 128. To gain an understanding of when precursors might have occurred

prior to the slip events, processes that govern rupture initiation on frictional interfaces were

investigated. Several lab experiments and theoretical studies have suggested that earthquake

faulting does not occur abruptly (Latour et al. 2013, McLaskey 2019, Guérin-Marthe et al.

2019, Ostapchuk & Morozova 2020). Instead, accelerating aseismic rupture growth within a

nucleation zone precedes dynamic rupture propagation (McLaskey 2019). Earthquake nucle-

ation has been observed prior to some crustal earthquakes. This precursory phase has been

frequently accompanied by slow slip, identified from acceleration of GPS stations, and fore-

shock activity (Ruiz et al. 2017, Socquet et al. 2017, Tape et al. 2018). Lab experiments and

simulations under a wide range of normal stresses have identified a nucleation phase which

consists of slow propagation followed by a faster acceleration period, both of which are

potentially aseismic (Figure 3.11). The acceleration is proceeded by dynamic rupture prop-

agation. Understanding rupture nucleation is critical for the development of probabilistic
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forecasting as it aids in determining when and under what conditions detectable precursory

signals may be generated. Kaneko et al. (2016) identified three distinct phases of rupture

evolution that are observed regardless of the applied normal stress: quasi-static propagation,

acceleration, and dynamic rupture propagation (Figure 3.11).

Due to difficulty in identifying precursors based on visual characteristics of the signal,

the start of the precursors was labelled in accordance with the transition between the slow

slipping phase and the acceleration phase in Figure 3.11. The start of the slow slipping phase

was hard to infer from previous lab experiments and apply to this dataset, therefore, this

phase was not considered when labelling the data.

Figure 3.11: Examples of the nucleation phase frequently observed to occur prior to lab
induced slip events (Latour et al. 2013) | This phase is indicated for (a) a fully dynamic
simulation and (b) a quasi-static (slow slip) simulation. The acceleration phase (blue) was
used as a guideline for labelling the sections of the strain gauge data thought to contain
precursors.

In lab experiments, the acceleration phase has been identified to start around 1-2 ms prior

to dynamic rupture propagation with the exact timing dependent on the normal stress and the

loading rate (Kaneko et al. 2016). Based on these findings, the start of the region considered

to contain precursors was specified 2 ms prior to the start of the earthquakes to reduce the

chances of precursors being labelled as noise and ensure a maximum amount of data in the

minority (precursor) class. As the data were decimated by a factor of 128, the data were

labelled as a precursor from 156 samples prior to the start until the start of the slip events.

The labelled events are indicated in Figure 3.12a and Figure 3.12b.
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Figure 3.12: Method of labelling the data for earthquake prediction | (a) Slip event from
the high SNR dataset with the corresponding ground truth. The dataset was labelled as a
precursor (ones) 2 ms prior to the labelled start of the earthquake class (twos). (b) Same slip
event as in (a) from the low SNR dataset with the corresponding ground truth. The section of
the dataset containing earthquake signal was labelled using the low SNR data as previously
in Section 3.8. A legend is plotted in (a), referring to both figures.

3.12 Results of Lab Earthquake Prediction

To determine the predictive capability of the network, the sliding window was moved along

the whole validation dataset by a single time sample. This enabled a detailed understanding

of the detections made by the network as the sliding window approached the earthquake. It

also indicated whether the earthquake in the validation data had been predicted and detected

or only detected. The network was considered successful at predicting the earthquake if it

consistently detected signal belonging to class ’1’ or ’precursors’ before any of the signal

related to class ’2’ or ’earthquake’ was in the view of the sliding window (Figure 3.13).

Figure 3.13a is the first window in the validation dataset where signal in the precursor

class was detected by the network. When this window was input, the network classified the

last few tens of samples in the window as precursors, see Figure 3.13b for a more detailed

view. It is evident that the network detected precursor-related signal before earthquake-

labelled signal was in the window input to the network. As a result, the network successfully

predicted the earthquake in the validation dataset. The network was trained for 25 epochs.

The best weights were saved and a validation accuracy of 99.4% was obtained with a loss of

0.04. No false positive predictions occurred. The network only detected signal belonging to

the class ’precursors’ in the windows immediately prior to the validation earthquake.
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Figure 3.13: Network prediction | (a) First validation window where the network detected
signal in the class ’precursors’. The ground truth and predictions are overlain. It is evident
that the network detected signal in ’precursors’ before the validation slip event was in the
frame of view of the network. (b) Final 1024 time samples from the input window in (a),
showing a more detailed view of the network prediction.

3.13 Visualisation by Occlusion

The final decision of the network on any input time sample is influenced only by points inside

the receptive field of that sample (Section 2.2). All other points outside the receptive field do

not contribute to the decision made by the network. As a result, if the receptive field of the

network was not large enough to include the necessary information from the input window to

make a prediction, the earthquake would not have been predicted. The receptive field of the

network was increased by stacking many convolutional layers in the encoder of the network

and by increasing the kernel size from 3 in the original VGG16 network to 7.

As the network was able to predict the event in the validation data, the receptive field

must have been large enough to capture enough precursor-related information from the input.

Various visualisation techniques can be used to gain an understanding of the sample points

in the input that were significant for earthquake prediction. To visualise which sample points

in Figure 3.13a were important for prediction, sample points were occluded (set to zero)

cumulatively from the start of this window until the point at which the network was no

longer able to make its original prediction, see stage 1 (Figure 3.14). Once this point was

identified, the occlusion window was removed and sample points from the opposite end

of the window were cumulatively occluded until the point at which the network could no

longer make the original prediction, see stage 2 (Figure 3.14). The results of this experiment
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Figure 3.14: Result of the occlusion experiment | The section highlighted in red indicates
the region of the input in Figure 3.13a that could be occluded separately for each stage such
that the network produced its original prediction. This indicated that data within the red box
did not contribute to the original prediction.

indicated a localised region which was required in the input for the network to make its

original prediction (Figure 3.14). Figure 3.14 indicates how much of the window in Figure

3.13a could be set to zero (region shaded red), separately for each stage, before the network

longer predicted the earthquake. This indicates that the unhighlighted region in Figure 3.14

was compulsory for prediction. Figures 3.15a and 3.15b show this region of importance in

relation to the start of the earthquake in the validation data.
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Figure 3.15: Results of the occlusion experiment | The section of the data between the
two blue, dashed, vertical lines indicates the region of importance identified in Figure 3.14.
This region is shown in relation to the start of the validation earthquake in (a) the high SNR
dataset and (b) the low SNR dataset. The ground truth for the precursor class is indicated. It
should be noted that the event in (a) is the same as that in (b).
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3.14 Visualisation using Saliency Maps

Figure 3.16 shows the saliency map for a window of the validation data containing the whole

validation earthquake. The dashed, blue lines outline a region prior to the earthquake where

there is an increase in the saliency. The saliency map indicates that the network places

importance on a short section of the data (within the blue lines in Figure 3.16 and 3.17) prior

to the slip event.
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Figure 3.16: Saliency experiment result for prediction | Input window containing the
validation earthquake (top) and corresponding saliency map (bottom) where high saliencies
indicate a high importance for that sample point. Blue, dashed lines indicate a localised
region of increased saliency prior to the main slip event.
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Figure 3.17: Detailed view of a region of increased saliency prior to the validation
earthquake | Small section of the input (top) and of the saliency map (bottom) from Figure
3.16. The blue, dashed lines are at the same location as in Figure 3.16.
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The saliency map highlights a region of the data prior to but not immediately before the

earthquake which had a significant influence on its predictability. This region of importance

coincides with the result from the occlusion experiment shown in Figure 3.15b. The first

blue line in Figure 3.15b coincides with the first blue line in Figure 3.16 and Figure 3.17.

The results of this experiment indicated that for the slip event in the validation data,

precursors occurred up to 514 time samples or 6.6 ms prior to the start of the event. It is

unsure whether this coincided with the acceleration or slow slipping period of the nucleation

phase in Figure 3.11. This is because the experiment was enclosed by a vessel and the

position of the rupture front could not be observed. The result is more in accordance with

observations from Nielsen et al. (2010) and Latour et al. (2013) where the acceleration phase

is observed between 2 and 10 ms prior to the slip events.
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Chapter 4

Investigating Precursors in Real

Earthquake Data

4.1 Introduction

Despite significant effort, no statistically rigorous application exists involving the use of pre-

cursory phenomena to forecast large earthquakes. Real seismic data is analysed in this chap-

ter, as opposed to lab data in Chapter 3, in order to determine whether systematic changes,

attributed to precursors, can be detected and identified in the raw seismic signal prior to large

(Mw≥ 6) earthquakes. Additionally, the algorithm is tested to determine the potential of this

method to probabilistically forecast earthquakes. A binary classification approach is used to

classify windows of seismic data labelled as ’noise’ from windows labelled as ’precursors’.

A classification approach was applied due to a greater availability of data compared with

previously in Chapter 3 and difficulty in accurately labelling the dataset (specifically the

precursor class) for use in semantic segmentation. Instead of predicting the class of every

time sample within each window input to the neural network as in Chapter 3, classifica-

tion involved predicting the class of each window. The train, test and validation accuracy

represented the number of correctly classified windows within the train, test and validation

datasets, respectively. The ’earthquake’ class in Chapter 3 is no longer included in this chap-

ter as it was irrelevant to the investigation of precursors with a classification approach.

43
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4.2 Geological Region Investigated

The Japan subduction zone has been well documented as a highly seismically active region

due to its tectonic setting. It is located at the junction of four tectonic plates: The Pacific and

Philippine oceanic plates and the Eurasian and North American continental plates (Figure

4.1).

As a result of this tectonic junction, Japan experiences around 400 Mw > 0 earthquakes

per day (McGuire et al. 2005). Additionally, earthquakes in Japan account for over 20% of all

Mw 6 or greater earthquakes worldwide (Mogi 1981). Although the majority of earthquakes

that occur do not have a significant impact, many have been highly destructive. The largest

recorded earthquake was the 2011 Mw 9 Tohoku Earthquake, which ruptured the central

section of the Japan Trench to a depth of approximately 50 km (Ozawa et al. 2012).

Figure 4.1: Tectonic plates and their boundaries surrounding Japan | The oceanic plates
converge with the continental plates, generating several subduction zones.

Japan’s National Project for Earthquake Prediction has been active since 1965 without

success. An earthquake prediction should be short-term and based on observable physical

phenomena or precursors (Uyeda 2013). The main reason for lack of success is failure to
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detect reliable precursors (Uyeda 2013). Much of the financial resources and manpower

of the project have been devoted to improving seismograph networks. Although reliable

precursors are yet to be identified, a significant volume of well-recorded, earthquake-related

seismic data exists in this region.

In addition to the dense seismic network and the high recurrence of large (Mw > 6)

earthquakes, aseismic slip with transient timescales of days to months has recently been ob-

served in the Japan subduction zone using continuously monitored GPS arrays (McGuire

et al. 2005). A continuously slipping subduction zone should increase the potential for

precursors, however, it might also result in a significant number of foreshocks that could

substantially overprint precursors in the seismic signal (McGuire et al. 2005).

4.3 Data Collection

4.3.1 Station of interest

The data were obtained from the Incorporated Research Institutions for Seismology (IRIS).

A single station was selected from the Global Seismographic Network (GSN) and the data

recorded by a single seismometer at this station were used to train and test the neural network.

The GSN is a state-of-the-art digital seismic network comprised of 152 globally distributed

stations. GSN instrumentation measures and records with high fidelity all seismic vibrations

from high frequency, strong ground motions near an earthquake to the slowest global earth

oscillations generated by extreme earthquakes (Davis et al. 2005). GSN stations attempt to

obtain the best possible recording capability and provide the most reliable source of seismic

data currently available.

A single GSN station was selected, IU MAJO, located in Matsushiro, central Japan, at a

latitude of 36.546◦ and a longitude of 138.204◦ (Figure 4.2). The elevation of the station is

405 m and the data were obtained from a single instrument – Streckeisen STS-2 high-gain

at a depth of 0 m and 40 Hz sampling frequency. To test generalisation of any discrimi-

native features learnt during the training process to seismic data recorded by an instrument

at a different GSN seismic station, a single event in the unseen (test/validation) dataset was
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Figure 4.2: Region investigated | The location of the station of interest, IU MAJO, is
indicated by a yellow and blue triangle. Station IU MA2 is indicated by a red and yellow
triangle. A radius of 20◦ and 30◦ from the station of interest (IU MAJO) are indicated.

investigated from a different seismometer. The seismometer selected for this event was lo-

cated at GSN station, IU MA2, at a latitude of 59.58◦ and a longitude of 150.77◦ (Figure

4.2). Similar to the seismometer of interest, the data were obtained from a Streckeisen STS-

2 high-gain seismic instrument (40 Hz sampling frequency) at a depth of 2 m. Seismograms

reflect the combined influence of the seismic source, the propagation path, the frequency

response of the instrument and the ambient noise at the recording site (Bormann et al. 2009).

Selecting the training data from a single instrument constrained the frequency response and

surrounding noise, increasing the chances of detecting systematic precursors.

4.3.2 Magnitude range

Mw 6 or larger earthquakes were investigated. Mw 6 was set as the seismic event threshold

because, firstly, it is considered more useful to forecast large earthquakes and, secondly, it

was reasonable to expect that precursors would be insignificant and therefore harder to detect

prior to small (Mw < 6) earthquakes.
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4.3.3 Time period

Instead of investigating precursors to all Mw ≥ 6 earthquakes recorded by the seismometer

of interest, several constraints were applied to the events selected. The first constraint was

the time-period over which earthquakes were selected. Earthquakes were only investigated

if they occurred between March 2012 and February 2020.

The seismic data were originally downloaded for investigation in February 2020, so this

was set as the upper limit. March 2012 was selected as the lower limit to reduce the influence

of significant stress changes and afterslip from the March 2011 Mw 9 earthquake on the

features learnt by the neural network during training and to improve generalisation of the

algorithm to future earthquakes. The stress changes and afterslip following the March 2011

Mw 9 earthquake are described in the remainder of this subsection to justify the selected

lower limit.

After a large earthquake, the resultant relaxation and transfer of stress along the fault

causes aseismic afterslip that rapidly decays with time (Hu et al. 2016). Afterslip results

in a series of smaller tremors which are considered aftershocks if they are associated with

the fault that generated the main shock, or if they are on a different fault but within one

full fault length from the earthquake’s epicenter. Aftershocks generally decrease in Mw and

frequency over time with a decay inversely proportional to the amount of time since the

principal earthquake (Omori’s law) (Utsu et al. 1995). Once the rate at which these tremors

occur has declined to pre-earthquake levels, the sequence of aftershocks is thought to end

(Peng et al. 2006). Stress changes may occur before, during and after an earthquake (Ozawa

et al. 2012). This could result in significant changes to the characteristics of the seismic

signal and any precursor-related features. As a result, stress changes associated with the 2011

Mw 9 Tohoku earthquake and the decay in the frequency of aftershocks were investigated.

The aim was to constrain the selected Mw ≥ 6 earthquakes to a period when there was

a stable stress field and where earthquake frequency had reduced to pre-earthquake levels.

These constraints were implemented to prevent the network from learning features in the

seismic data specific to the earthquakes that occurred immediately after the Mw 9 Tohoku
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earthquake when afterslip was most significant (Utsu et al. 1995). This could otherwise re-

duce generalisation of any detected precursors to earthquakes unassociated with significant

afterslip from the Mw 9 earthquake. For example, investigating precursors to highly recur-

rent aftershocks could encourage the network to detect afterslip from one aftershock as the

precursors to another, a phenomenon less likely to occur when earthquake recurrence has re-

duced to become stable. Aftershock recurrence decays with time according to Omori’s Law

(Utsu et al. 1995), therefore, discarding highly recurrent aftershocks from the investigation

should have improved generalisation of precursors to future earthquakes where background

seismicity is stable.

Finally, changes to the stress state along the fault before and after the Mw 9 earthquake

could have altered characteristics of any precursors in the seismic signal. As a result, there

was reason to limit the investigation to earthquakes that did not occur within the time frame

associated with significant afterslip from the Mw 9 earthquake and to earthquakes that oc-

curred after the Mw 9 earthquake (discarding those that occurred before).

Changes in stress before, during and after the 2011 Mw 9 Tohoku earthquake have previ-

ously been investigated (Becker et al. 2018). The mean horizontal normal stress was inferred

from crustal earthquake moment tensors over time for a small, square region (1◦ by 1◦) lo-

cated above the Mw 9 fault slip area. The modification of crustal stress was not just limited

to regions close to the rupture but was also seen regionally onshore in Honshu. The most

significant modification to the stress field was found to occur at the time of the Mw 9 Tohoku

earthquake. Comparing the stress anomalies, it was clear that the region between northern

Honshu and the Japan trench, strongly compressive in the horizontal stress component, be-

came extensional after the Mw 9 earthquake (Becker et al. 2018). The stress modification

due to the Mw 9 earthquake was as expected from an understanding of the stress changes

that occur during the megathrust cycle (Herman & Govers 2020). Additionally, there was

indication of a short term-transient where a further increase of the horizontal stress occurred

following the Mw 9 earthquake, until a plateau was reached after approximately 1 year.

Although stress release is not homogeneous and will have affected neighbouring regions dif-

ferently to the region investigated in (Becker et al. 2018), it may provide an indication of
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when the stress state had returned to become stable following the Mw 9 earthquake.

The frequency of aftershocks was similarly investigated and a sudden, short-term in-

crease of the seismicity rate was observed immediately after the Mw 9 earthquake (Toda

2019). This was followed by an approximately exponential decrease in the seismicity rate

which is compatible with Omori’s law of aftershock decay (Utsu et al. 1995). Roughly 1 year

following the start of the Mw 9 earthquake, the rate had become stable and lower compared

to the rate prior to the earthquake. A lower recurrence rate could be explained by the huge

stress release that occurred during the Mw 9 Tohoku earthquake.

Changes in the seismicity rate coincided with changes in the stress state where both

variables became stable ∼ 1 year after the Mw 9. To increase the chances of detecting

systematic precursors and ensure generalisability of features learned to future earthquakes,

the investigation was limited to earthquakes occurring after March 2012 (approximately 1

year after the Mw 9 earthquake).

4.3.4 Region

In addition to constraining the selected earthquakes to those occurring within a time interval

and Mw range, only earthquakes relatively close to the station of interest were investigated.

If any precursory changes in the seismicity exist, they would likely concern processes of

small amplitude, quite close to the station of interest. Therefore, the area of investigation

was limited to a region which was not larger than a few thousand km from the station. In-

vestigating the quality of seismometer recordings at different distances from the station of

interest, it became evident that the quality of the seismic data had degraded (amplitude of

the earthquake signal decreased significantly) by ∼ 2500km from the station. As a result,

earthquakes were investigated if their epicentre occurred within a radius of 20◦ (approxi-

mately 2220 km) from the station (Figure 4.2). This radius was an approximation and did

not accurately reflect the distance from the station at which precursors or features related to

precursors were no longer evident or significant enough to be detected in the seismic data.
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4.3.5 Timing relative to other Mw ≥ 6 earthquakes

To reduce the influence of post seismic slip associated with other Mw ≥ 6 earthquakes on

the seismic data investigated for precursors, Mw ≥ 6 earthquakes were only selected when

no other Mw ≥ 6 earthquake located within a radius of 30◦ from the seismometer of interest

occurred over the 48 hour period prior to the selected earthquakes. Due to the high recur-

rence of Mw ≥ 6 earthquakes in the Japan region, selecting a fairly short time period of 48

hours prevented a significant number of earthquakes from being removed from the investi-

gation. 30◦ was selected instead of the original 20◦ to reduce influence from neighbouring

earthquakes that did not occur within 20◦ from the station of interest. Although the duration

of precursors and afterslip is unknown, based on the Omori’s law of aftershock decay, it is

likely that this constraint reduced the influence of other Mw≥ 6 earthquakes on those inves-

tigated. Additionally, it should be stressed that majority of the investigated earthquakes did

not occur within a few days from from another Mw ≥ 6 earthquake but within several days

to weeks. This constraint increased the likelihood that the seismic data associated with each

event contained minimal afterslip from other Mw ≥ 6 earthquakes.

4.3.6 Time period investigated prior to each earthquake

Ten hours of seismic data were investigated prior to each of the selected earthquakes. Ten

hours was selected to focus on and investigate short term changes in the seismic data that

could indicate an impending earthquake. Systematic precursors are yet to be identified in

seismic data, therefore, there was no method of determining when precursors would be most

evident prior to a Mw ≥ 6 earthquake. As a result, it was assumed that precursors would

increase in significance with proximity to the earthquakes, as has previously been observed

systematically prior to lab earthquakes (Johnson et al. 2013, Passelègue et al. 2017, Rouet-

Leduc et al. 2017). Investigating a short time period prior to each earthquake encouraged

the network to learn short-term changes. Additionally, as some of the earthquakes may have

occurred only 48 hours from another Mw ≥ 6 earthquake, investigating a short period will

have reduced the influence of other Mw ≥ 6 earthquakes on features learnt during training.
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The seismic data consisted of 3 broadband channels (BHZ for vertical motion, BH1

aligned more than 5◦ from north and BH2 aligned more than 5◦ from east), each sampled at

a frequency of 40 Hz.

4.3.7 Removal of events

The seismic data prior to each of the selected Mw≥ 6 earthquakes were manually plotted and

analysed. Some of the events were found to contain impulsive earthquake signal arising from

smaller (Mw < 6) earthquakes. Events containing impulsive earthquake signal above the

noise level were discarded to encourage the network to analyse features of the background

signal, removing the influence of earthquake waveforms (Rouet-Leduc et al. 2019).

In an ideal scenario, when investigating very short term (minutes-hours) earthquake pre-

cursors there would be no impulsive, high SNR earthquakes occurring in the time-period

under investigation (in this scenario, over the 10 hours prior). The presence of highly im-

pulsive earthquakes may alter the characteristics of the seismic data and affect the features

learnt by the neural network during training (Ishibashi 1988). This could significantly im-

pact or bias the results by encouraging the network to use earthquake signal as a strategy

for classifying noise from precursors. This issue would be particularly significant when in-

vestigating very short-term precursors where the quantity of data input is very limited and

therefore should be well representative of each class. Impulsive signal could prevent the

network from learning underlying patterns in the seismic data related to precursors. In Japan

there is a high recurrence rate of Mw 4-6 earthquakes. By removing events containing im-

pulsive earthquakes, this issue should not have influenced the patterns learnt by the neural

network, reducing bias in the strategy learnt by the network when forming a decision.

The remaining events contained only the background seismic signal (Figure 4.3a). Figure

4.3b shows an event containing impulsive signal above the noise level. In addition, poorly

recorded events were removed (Figure 4.3c). As 10 hours of 40 Hz time series data were

downloaded for each earthquake, the desired length of each channel was 1440000 time sam-

ples. On reading in each file, files were automatically discarded if any of the 3 channels did

not have a length of 1440000 (Figure 4.3d). Having applied these constraints, 31 Mw ≥ 6
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earthquakes remained to train and test the neural network (Figure 4.4, Table A.1 and Table

A.2).
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Figure 4.3: Examples of the 3 channels of seismic data (blue, orange and green plots)
over the 10-hour period prior to the selected Mw ≥ 6 earthquakes (no standardisation)
| (a) 10-hour period with no impulsive earthquake signal above the noise level. Events such
as this were included in the investigation. (b) Event containing impulsive signal above the
background noise level. This is an example of an event that was removed (c) ’Bad’ data
example – spikes unrelated to earthquakes. This event was removed (d) - Files with channels
of varying lengths were also removed.
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Figure 4.4: Mw ≥ 6 earthquakes investigated in the Japan region | Orange circles indi-
cate the location of the epicentre for each Mw≥ 6 earthquake in the training dataset. Yellow
circles indicate the location of the epicentre for each Mw ≥ 6 earthquake in the unseen (test
and validation) datasets. The red circle corresponds to the epicentre location for the single
earthquake in the validation dataset that was recorded by a seismic instrument at a different
seismic station (IU MA2). The location of station IU MA2 is indicated by a red and yellow
triangle. All of the earthquakes other than the single event recorded by a seismometer at IU
MA2 occurred within 20◦ of the station of interest, IU MAJO, whose location is indicated
by a blue and yellow triangle. A circle with a radius of 20◦ from the station IU MAJO is
included.
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4.4 Data Preparation

The 31 earthquakes were randomly split into 24 earthquakes in the training data, 4 in the

testing and 3 in the validation. The single event from station IU MA2 was investigated in the

validation dataset, therefore, the validation data contained 2 events from IU MAJO.

The last 40000 samples (16.7 minutes) from each 10 hour file were labelled as ’pre-

cursors’ and the first 40000 samples as ’noise’. A sliding window with an overlap of 650

samples was used to scan the labelled regions of the data for each earthquake. A window

length of 16384 (214) samples or 6.83 minutes was found to produce the best result. To en-

sure that the noise and precursor class were entirely separate over the 10 hours investigated,

the region of data assigned to each class was constrained to a small interval over the 10 hour

period (i.e. 40000 samples). Small intervals in addition to a large window length resulted in

very small dataset. An overlap between windows increased the number of windows in each

class without having to increase the number of individual earthquakes. This method of aug-

mentation was found to be very effective at improving generalisation and convergence of the

network when investigating lab earthquake precursors. It should be noted that windows were

generated separately for each event to remove the possibility that windows in the training

data were from the same events as windows in the test and/or validation data.

Each window was standardised separately as opposed to standardising the whole 10 hours

of seismic data. This prevented the network from detecting differences in amplitude and

encourage the network to learn diagnostic patterns within the seismic signal. 1776 windows

were used to train the network, 296 were used to test the network during training and 222 to

validate the learned weights after training.

4.5 Results

4.5.1 Introduction

This section investigates the performance of several state-of-the-art neural networks before

detailing the model that achieved the best performance on this dataset.
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Selecting the same events in the training, testing and validation datasets and fixing other

parameters unrelated to the network i.e. batch size, window length and optimiser ensured

a fair comparison between the performance of different types of network. The validation

dataset provided an unbiased evaluation of the model’s fit to the training dataset and was

used to compare the performance of different models. In addition, to make a fair comparison

between networks, each network was trained 5 times and an average train, test and validation

accuracy were recorded and used to compare models. An average was obtained as it provided

a representative indication of the network’s performance. As the weights and biases were

randomly initialised and the input windows were shuffled prior to training, the networks may

have trained slightly differently each time. A single measure of performance was therefore

unreliable.

When training each of the neural networks, the weights and biases were saved when the

test loss reached a minimum during training. It should be stressed that the network did not

use the test loss to update the weights and biases during training. The network was trained

to minimise the training loss, however, as the learned weights were validated on the test data

after each epoch, the final or best weights were saved when the test loss reached a minimum

during training.

Finally, it should be noted that other, unpublished networks were also investigated, how-

ever, these were not included in the report for simplicity.

4.5.2 Fully Convolutional Network (FCN)

The FCN in Wang et al. (2017), has shown significant success in time series classification,

achieving better performance than other state-of-the-art approaches. This network was ini-

tially selected for this task due to its ability to generalise well and achieve exceptional per-

formance on time series classification. Hyperparameters such as the learning rate, batch size

and optimiser were tuned to obtain the best validation accuracy and loss on this dataset. The

RMSprop optimiser (SN 2003) was selected with an initial learning rate of 0.0001. A batch

size of 32 provided good network convergence and generalisation. The FCN achieved an

average (over 5 training runs) of 54% train accuracy (loss = 0.68), 52% test accuracy (loss
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= 0.69) and 50% validation accuracy (loss = 0.70). Of the windows correctly predicted, the

prediction score or certainty for each window was very low (50-55%). The low train accu-

racy and high train loss indicated that the network was not able to learn many discriminative

features separating noise windows from precursor windows in the training data. This was

likely due to the simplicity of the network for the task it was given. As a result, the net-

work was not able to effectively differentiate between the two classes in the train, test and

validation datasets. It should be noted that the train accuracy did not improve above 60% at

any point during training for any of the training runs. The main issue was likely that the the

network was too simple to detect the complex patterns required to differentiate between the

2 classes. This was demonstrated by the low train accuracy.

4.5.3 Residual Network (ResNet)

The ResNet (He et al. 2016) is a deep residual network which involves the use of residual

connections that skip one or more layers. These connections reduce the impact of the vanish-

ing gradient problem (Glorot & Bengio 2010) by improving the flow of information through

the network (Marquez et al. 2018). The ResNet 34 was applied to this dataset. This network

included 34 convolutional layers (compared with 3 in the FCN), a Global Average Pooling

layer or GAP layer which calculates the average output of each feature map in the previous

layer and a fully connected layer. The result when using this network was an improved aver-

age training accuracy of 80% and a loss of 0.49. The average test and validation accuracies

also increased to 71% (loss = 0.57) and 69% (loss = 0.55) respectively. This indicated that

the network was able to learn some general characteristics. The network overfitted slightly

to the training data and performed quite well on all 3 datasets.

4.5.4 Dilated Residual Network

The slightly overfitting nature of the ResNet was likely a result of the network depth. To

further investigate the use of residual connections which successfully reduce the vanishing

gradient problem, a dilated residual network was implemented (Yu et al. 2017), using the

same skip connections as in the ResNet. In contrast to the ResNet, this model did not have a
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substantial depth or complexity.

Convolutional networks for classification progressively reduce resolution of the input un-

til the data is represented by very small feature maps which have lost a significant amount

of spatial information (due to pooling operations). This loss of spatial acuity can limit clas-

sification accuracy (Wang et al. 2018). Dilation can be applied to alleviate this issue as

it increases the resolution of the output feature maps without reducing the receptive field

of individual neurons (Figure 4.5). By replacing pooling layers in traditional CNNs with

dilated convolution, spatial resolution is preserved with depth in the network (Hamaguchi

et al. 2018). Dilated convolution is convolution applied to the input with defined gaps. For

example, a dilation rate of 1 is standard convolution where the dilation rate is the spacing

between values in a kernel. A kernel of length 3 with a dilation rate of 2 will have the same

field of view as a kernel of length 5 (Figure 4.5).

Figure 4.5: 2D dilated convolution with different rates, adapted from Xia et al. (2020).

The dilated residual network increased the training, testing and validation accuracy com-

pared to the original FCN and the result of the training was similar to the testing and valida-

tion (73% train, 69% test, 65% validation). The only issue was that the accuracy for all three

datasets was quite low. Additionally, the loss remained high with a training loss of 0.54, test

loss of 0.62 and validation loss of 0.65. A high loss indicated that the network was unsure

on its predictions.

4.5.5 LSTM-FCN

Long-short-term-memory (LSTM) recurrent neural networks (Gers et al. 1999) possess the

ability to learn temporal dependencies in sequences. An LSTM-FCN has been proposed for
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time series classification (Karim et al. 2017). In the LSTM-FCN, the fully convolutional

block is augmented by an LSTM block followed by dropout. The fully convolutional block

is the same as the original FCN. Simultaneously, the time series input is passed into the

LSTM block which contains an LSTM layer followed by a dropout layer. The output of

the convolutional block is concatenated to the output from the LSTM block and passed onto

a softmax classification layer. The addition of the LSTM block resulted in a significantly

longer training time and the classification result did not improve on the performance of the

FCN.

4.5.6 LSTM

Using solely LSTM layers, the network took a noticeably longer time to train and performed

worst of the networks tried. This indicated that convolutional layers were necessary for the

classification task.

4.5.7 Additional Methods

In addition to optimising the hyperparameters to reduce overfitting and improve network

performance on all 3 datasets, other techniques were investigated. Some of these included:

1. Each channel being input separately such that features were learnt from each channel

individually before being fed into a multilayer perceptron (MLP) for classification

(Zheng et al. 2014).

2. The filter or kernel length restricts the scale of features that can be learnt in a convo-

lutional layer. This restriction is most significant in the first convolutional layer of the

network where the receptive field is smallest. Using a variable kernel size in the first

convolutional layer of the network meant that several different kernels with varying

sizes were convolved with the input. The output of each convolution with different fil-

ter lengths were concatenated before being transferred through the rest of the network.

This enabled features of different scales to be learnt in the first convolutional layer of

the network (Cui et al. 2016).
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Additional techniques did not improve network performance. The investigated networks

produced quite poor results with average test and validation accuracies ranging from 50-71%.

4.5.8 Final Model

Since none of the investigated state-of-the-art networks performed extremely well, features

from these networks were included in the FCN to try to improve its performance. Gradually

increasing the complexity of a simple network and experimenting with different techniques

proved to be the best method for generating a network that performed well on this task.

Changes Made to the FCN

1. A layer was added to the existing convolutional blocks (Figure 4.6). Originally, each

convolutional block in the FCN consisted of a convolutional layer followed by a batch

normalisation layer and a ReLU activation layer. Max-pooling was added to each block

after the convolution operation. All but one of the convolutional blocks contained max

pooling with a stride of 1. A stride of 1 indicated that the max pooling operation did

not change the dimensions of the feature map. By applying max-pooling with a stride

of 1, the operation concentrated the strong activations from the convolution output

(feature map) and discarded the weak ones whilst maintaining the original dimensions

of the output. This prevented loss of information which occurs when the dimension

of the output is reduced, for example, if a stride > 1 was selected. A stride of 2 was

selected in a single convolutional block as this improved the performance on the test

and validation data (Figure 4.7).

2. The number of convolutional blocks was increased from 3 to 7 and, in doing so, the

number of filters was increased, reaching a maximum of 256 filters in the final 2 con-

volutional blocks of the network (Figure 4.7).

3. Dilation (Figure 4.5) was added to all but the first 2 convolutional blocks and the dila-

tion rate was increased with depth in the network. Dilated convolutions with a dilation

rate greater than 1 produce gridding artifacts which is where adjacent units in the out-

put are computed from separate sets of units in the input and thus have entirely different
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receptive fields (Yu et al. 2017). To overcome this issue, hybrid dilated convolution

was implemented, involving a dilation rate that increases and decreases in a sawtooth

pattern (Wang et al. 2018). This performed slightly worse than the originally selected

dilation rates which increased continuously with depth in the network. The addition of

dilation did not make a significant improvement, possibly because the receptive field

of the network was already large enough to contain the required information from the

input to make its decision.

4. A dropout layer with a dropout rate of 0.2 was added after the fully connected layer to

regularise the network (Hatami et al. 2018). This slightly improved its generalisation

to the test data.

5. The kernel initialiser was changed from the default to ’random normal’ which uses a

normal distribution to initialise the weights.

6. A random layer was applied directly to the input and improved the performance of the

network on the validation data by an average of 10% over 5 training runs (Lee et al.

2019). The random layer is a convolutional layer which was added between the input

and the rest of the neural network (Figure 4.7 and Figure 4.8). This convolutional

layer was randomly initialised each epoch and its weights were normalised such that

it did not significantly change the input. When convolved with the inputs, the random

layer produced several slightly different versions of the inputs with each epoch. This

worked similar to a data augmentation technique as it generated a larger variety of the

training data. The random layer aided in generalising the network as it increased the

number of visually different inputs which helped the model learn more general features

or features that were consistently observed in the randomly augmented inputs. This

prevented overfitting.
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Figure 4.6: Convolution block containing 4 layers | Hyperparameters for each layer in the
convolutional block are indicated.

Figure 4.7: Network architecture | The input shape is indicated for each layer in the net-
work. In the input and augmented input ( Figure 4.8), this is (length of input, number of
channels). In the convolutional blocks this is (length of input, number of feature maps). Fi-
nally, in the fully connected layers, this is (number of neurons). The GAP layer minimised
overfitting by reducing the total number of parameters in the network. For an understanding
of the parameters specified in the convolutional blocks (Figure 4.6).
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Figure 4.8: Visual explanation of how the random layer was used to augment an input
window (length 16384 time samples) for a single channel of data.

Application of the random layer to the input generated an augmented version of the input.

Weights in the random layer, representing the filter coefficients were randomly initialised

from a normal distribution at the start of each epoch. As a result, the weights and biases

in the random layer were not learned or updated during training. Three filters, each with

a length of 3, were specified in the random layer and convolved with each channel in the

input window, generating 3 feature maps per channel (Figure 4.8). The 3 feature maps

were automatically stacked before being added to each channel in the input window. When

comparing the augmented input to the original input, it was evident that the main features in

the signal appeared to be unchanged and differences were most evident when investigating

the finer details (Figure 4.8).

The network was trained using the binary cross-entropy loss function and the RMSprop

optimisation algorithm with a learning rate of 0.0001, in batches of 32 windows with a

NVIDIA GeForce RTX 2080 Ti GPU. The learning rate was reduced by a factor of 0.1 if
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the loss of the test dataset did not improve over 5 consecutive epochs. A minimum learn-

ing rate of 0.00001 was selected such that the learning rate did not reduce to a value less

than 0.00001. This prevented the network from training for significantly longer than was

required. Training was stopped once the test loss no longer improved for 20 consecutive

epochs. The network trained for 70 epochs. The weights and biases in the convolutional

layers were initialised from a random normal distribution at the start of every training run.

Unlike the learnable parameters in the network, the weights and biases in the random layer

were randomly reinitialised every epoch.

The final network achieved an average training accuracy of 97%, an average test accuracy

of 88% and an average validation accuracy of 85%. The high average accuracies indicated

that the network was able to effectively learn the training data and translate the features learnt

to the test and validation data. The training loss was 0.35, the test loss 0.48 and the validation

loss 0.50.

Validation data is commonly used to compare network architectures. To create a test

dataset that contained a larger number of earthquakes, more representative of the training

data, the test and validation datasets were combined to form the test data. Retraining and

testing the network on the new test dataset, the model achieved a 99% average training

accuracy (loss 0.35) and an 87% average test accuracy (loss 0.50). The best weights achieved

a train accuracy of 97% and a test accuracy of 89%. Figure 4.9a and Figure 4.9b indicate

the confusion matrices for the best saved weights. The confusion matrix can be seen as an

indicator of how reliable the algorithm is on the investigated data. It indicates the relative

accuracy of the network in terms of four possible scenarios: 1. accurate prediction of an

event (bottom right), 2. failure to predict an event (bottom left), 3. false prediction of an

event (top right), 4. accurate prediction of no event (top left).

Due to the restrictions applied in Section 4.3 and the small fraction of data analysed over

the 8 year period investigated, the confusion matrix may not provide an accurate indication

of how the algorithm would perform on continuous data from 2012-2020.
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Figure 4.9: Confusion matrices indicating the performance of the classification model
by summarising the prediction results on the train and test datasets | (a) Confusion
matrix obtained when validating the best weights (89% test accuracy) on (a) the training
dataset and (b) the test dataset. The confusion matrix indicates the relative accuracy of the
network in terms of four possible scenarios: 1. accurate prediction of an event (bottom
right), 2. failure to predict an event (bottom left), 3. false prediction of an event (top right),
4. accurate prediction of no event (top left). The numbers in each box indicate the number
of windows classified in each scenario.

4.6 Visualisation

The task of identifying diagnostic features or patterns in the data that were used to discrim-

inate precursors from noise was much more complex than visualising features of the input

for earthquake detection in Section 3.9. Saliency maps no longer proved very useful as there

were no localised regions of the input with high saliencies. Other gradient based methods

such as feature map inversion and filter visualisation where the outputs are generally harder

to interpret were not useful for visualising features of importance. Additionally, there were 3

channels to investigate as opposed to one. Each of the 7 earthquakes in the test dataset were

investigated to determine whether a systematic difference could be identified between noise

and precursor windows. Earthquakes in the test data were investigated to analyse the general

features learnt by the network during training.

The correlation matrix was plotted for the whole 10 hours prior to each earthquake and

for individual windows of data. The results were very consistent for all of the investigated

seismic data. Figure 4.10 shows the correlation matrix for a randomly selected event from

the test dataset.
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The correlation matrix was a 3 by 3 matrix (a result of having 3 channels or variables)

with a variance of 1 for each variable. For the example in Figure 4.10, the correlation be-

tween channel 1 and channel 0 was -0.14. This small correlation indicated a weak relation-

ship between the channels implying that they were poorly related. The correlation was also

negative such that as one increased, the other decreased. Channel 0 and channel 2 had a very

weak, positive correlation of 0.03. Lastly, channel 1 and channel 2 had a very weak, negative

correlation of -0.086. It was evident that for the data investigated, all three channels were

very poorly correlated. A weak correlation between channels indicated that each channel

provided very different information. As a result, all 3 channels had to be investigated.

Figure 4.10: Correlation matrix for a 10-hour example in the test data.

4.7 Visualisation by Frequency Analysis

For each earthquake, 37 overlapping noise and 37 overlapping precursor windows were gen-

erated. To analyse the frequency content, frequency-amplitude spectra were obtained for the

noise and precursor windows in the test data with the highest certainty/prediction score to

their respective classes. The highest certainty noise and precursor windows for each of the
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7 events in the test dataset were plotted (Figure 4.11). The prediction scores for each test

window were obtained by validating the best weights (89% test accuracy) on windows in

the test data. It should be noted that when validating weights, no ground truth exists. The

results indicate the network’s prediction on the input windows. Windows with the highest

certainties were investigated as any discriminative features between precursor-labelled and

noise-labelled windows should have been most evident. Additionally, the events in the test

(unseen) dataset were investigated as opposed to those in the training dataset to visualise

general instead of training-specific features which do not influence the predictive capability

of the network. It should be noted that when visually comparing the noise and precursor

windows from each test event (same colour plots in Figure 4.11) and between events, no

systematic or significant differences were evident. This indicated that the network was re-

quired to differentiate between noise and precursor windows. As well as the certainty for

each window, the R-score for each event is indicated in Figure 4.11 where:

R− score =
T P

T P+FN
− FP

T N +FP
(4.1)

TP is the number of precursor windows classified correctly, FN is the number of precursor

windows classified incorrectly, TN is the number of noise windows classified correctly and

FP is the number of noise windows classified incorrectly.

The R-score indicated the predictive power of the network - an R-score of 0 indicated that

the network was unable to detect any discriminative features in the seismic signal separating

precursors from noise and an R-score of 1 indicated that the network produced an entirely

successful prediction. The R-score was calculated separately for each individual earthquake

in the test data (Figure 4.11). The R-score of the network on the whole test dataset in Section

4.5 was 0.803. Interestingly, the R-score for the only earthquake recorded by the seismome-

ter at station IU MA2 was 0.95 (Event 7 in Figure 4.11). This indicated that the network was

able to effectively translate features learnt from the seismic data in the training dataset (data

obtained by a single seismometer) to the seismic signal recorded by a seismometer at a dif-

ferent seismic station. This demonstrated that the discriminative features detected in Section

4.5 were also present within the seismic signal recorded by a seismometer at a distance of ∼
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Figure 4.11: Precursor and noise windows with the highest prediction scores for each
earthquake in the test data | For each earthquake, 37 overlapping windows of noise and 37
overlapping windows of precursors were generated. Each row of plots shows the precursor
(left) and noise (right) window with the highest prediction score from each event in the
test data. Note that the prediction score relates to the class of the window for example the
certainty of a precursor window is the certainty of that window to the precursor class. The
noise and precursor window from the same event were plotted using the same colour. The
certainty for each window and the R-score for each event are indicated. For clarity, channel
0 (a), channel 1 (b) and channel 2 (c) were plotted separately.
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2713 km from the seismometer of interest and that the learnt features were not specific to the

seismic signal recorded by the seismometer of interest. A single event in the test data had

an R-score of 0, see Event 3 in Figure 4.11. For this event, all noise and precursor windows

were classified with a high certainty as a precursor.

The Fast Fourier Transform was computed for each window in Figure 4.11. The Fast

Fourier Transform was used to quantify the input signal’s frequency and phase content and

each channel was investigated separately. The Fourier transform was applied to try to analyse

differences in the frequency content between the two classes and identify frequency bands

that may have been of importance to the network during classification. For each window, the

constituent frequencies and their amplitudes were plotted.

Analysing the frequency spectra, the majority of the data constituted signal between 0.1

and 1 Hz, the frequency range of microseismic noise (Masuda et al. 2020) (Figure 4.12).

Comparing the frequency spectra for the noise and precursor windows in Figure 4.11 (chan-

nels 1 and 2), no obvious differences were evident between the noise and precursor windows.

The frequency spectra obtained from channel 0 showed a small anomaly between ∼ 2.6 and

∼ 3.0 Hz, commonly observed in the noise windows and absent in the precursor window

(Figure 4.12). This anomaly was observed in 4 out of the 7 noise windows in Figure 4.11

and occurred at the same frequency range in each window (Figure 4.12b). This feature was

the most obvious dissimilarity between the precursor and noise windows. Band-passing the

input noise window between 2.7 and 2.9 Hz accentuated the anomalous waveform (Figure

4.13a).

The frequency range and the localised nature of the anomaly in the input suggested that

the high frequency waveform originated from low amplitude, fast earthquake signal below

the background noise level. Comparing the R-scores for each event (Figure 4.11a) with the

frequency-amplitude spectrum for the selected noise window from each event (Figure 4.12b),

it it became evident that the only event with an R-score of 0 (Event 3, Figure 4.11) did not

contain the frequency anomaly identified in noise windows (Figure 4.12). In addition, it can

also be concluded that the network must also rely on other features in the data to make its

decision. This was demonstrated by the fact that the network achieved a high R-score for
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events 6 and 7 (Figure 4.11) even though the frequency anomaly was absent in their noise

windows (Figure 4.12b).
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Figure 4.12: Frequency amplitude spectra for the (a) precursor and (b) noise windows
from Figure 4.11a | The spectra are not labelled with Event 1-7 but this information can
be obtained from Figure 4.11a. Red, vertical lines are plotted at frequencies of 2.6 Hz and
3.0 Hz and indicate the location of the frequency anomaly observed in 4/7 noise windows
between ∼ 2.6 and ∼ 3.0 Hz.
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Figure 4.13: Investigating the frequency anomaly observed in channel 0 between ∼ 2.6
and ∼ 3.0 Hz (a) precursor window and (b) noise window from ’Event 5’ in Figure 4.11a
band-pass filtered between 2.7 and 2.9 Hz.
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To gain an understanding of the significance of different frequencies in the test data, a

low pass filter with a variable cutoff frequency was applied separately to each window in

the whole test dataset. The best saved weights obtained in Section 4.5 (89% test accuracy)

were validated on the low pass filtered test dataset and the loss and accuracy were recorded.

An 8th order (roll off = -48 dB /octave) low pass filter was applied (Figure 4.14). An 8th

order filter was selected as higher order filters introduced anomalous results at the extremes

of the frequencies investigated. Selecting the highest order filter possible ensured the most

rapid attenuation of frequencies above the cutoff frequency. Starting at a cutoff frequency

of 20 Hz (the maximum frequency in the input data), the cutoff frequency was reduced in

intervals of 0.1 Hz until only frequencies below 0.1 Hz remained in the test data. Each time

the cutoff frequency was reduced, the best weights obtained in Section 4.5 were validated

on the whole frequency filtered test dataset and the loss and accuracy were recorded. The

change in accuracy and loss with cutoff frequency was plotted in Figure 4.15, together with

the frequency-amplitude spectrum in Figure 4.12a. The results provided an indication of the

frequencies in the seismic signal that were significant for discriminating noise from precur-

sors.
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Figure 4.14: Frequency response of the low pass filter with a cutoff frequency of 3.5 Hz.

From Figure 4.15, it was evident that the accuracy on the test data started to descend at a

cut off frequency of 3.5 Hz. From a cutoff of 2.6 Hz to 3.5 Hz, the accuracy of the network

on the test data decreased by 0.024 (2.4%). The decrease in the accuracy of the test data was
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Figure 4.15: Changes in the test accuracy and test loss when applying the low pass
filter in Figure 4.14 to the test dataset with a variable cutoff frequency | The frequency
amplitude spectrum for a noise window containing the frequency anomaly in channel 0, same
as in Figure 4.12, is plotted for comparison. The red, dashed, vertical line indicates the cutoff
frequency at which the test accuracy started to decrease.

insignificant over the frequency range that coincided with the frequency anomaly observed

in Figure 4.12b. This indicated that the frequency anomaly was not a highly discriminative

feature and that the network was not very reliant on this frequency band when classifying

noise from precursors.

From 1.8 Hz to 2.6 Hz cutoff frequency, the decrease in accuracy was more signifi-

cant (0.124 or 12.4%). Over this frequency band, there was no obvious difference in the

frequency-amplitude spectrum between precursor and noise windows.

The accuracy was fairly stable between 0.9 Hz and 1.8 Hz. From 0.1 to 0.9 Hz, the

accuracy decreased by 0.218 (21.8%). This was clearly the sharpest decrease in the test ac-

curacy, indicating that the low frequencies (0.1-0.9 Hz) in the signal were most significant

for discriminating noise from precursors. At a cut off frequency of 0.1 Hz, the accuracy of
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the network on the test data reached 0.5. As a result, frequencies smaller than 0.1 Hz did not

need to be investigated. This was because, once the accuracy on the test data decreased to

0.5, no discriminative features remained in the input - the R-score became zero. An occlu-

sion experiment was used to further the investigation of precursors (Section 4.8). Although

similar, this occlusion experiment was not the same as that in Section 3.13.

4.8 Visualisation by Occlusion

For this occlusion experiment, a series of precursor windows in the test dataset with a high

certainty gradient were investigated (Figure 4.16). A high certainty gradient occurred when

there was a significant change in the classification certainty from one window to the next.
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Figure 4.16: Sequential precursor windows (channel 0 only for simplicity) | The win-
dows overlap by the sample stride of 650 time steps which might be clearer by noticing that
the region not shaded in blue is the same in each plot. The arrows are plotted at the same
location on each window and indicate the direction of the moving window along the length
of the input. The certainty or prediction score of the network when classifying each window
(all 3 channels) as a precursor is indicated. These precursor windows were obtained from
Event 2 in Figure 4.11.
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A large increase in certainty to the precursor class between successive windows will

have coincided with an addition of features specific to the precursor class (precursor-related

features) to the input or the removal of features associated with the noise class (noise-related

features) from the input. As the overlap between windows was 650 samples, smaller than

the window length, a change in the certainty from one window to the next could have been

caused by the removal of 650 data points at the start of the window or the addition of 650

samples to the end of the window.

An occlusion experiment provided useful information regarding regions of significance

in the input. This aided in identifying whether the addition and/or the removal of information

from the input was important to the network when forming a decision and other regions of

the input significant to the precursor class. It should be stressed that the meaning of the term

’precursor-related’ varies dependent on the section in which it is defined. Throughout this

and the following section, the term ’precursor-related features’ refers to features specific to

the labelled ’precursor’ class and not to real earthquake precursors.

Occlusion sensitivity is a simple technique for understanding what features in the input

were most important for classification. During occlusion, the aim was to systematically

quantify the relative importance of different regions of the input to the classification result.

The occlusion mask was a short length of zeros that moved along the input at a fixed stride.

For each position of the occlusion mask along the input, the prediction score to the precursor

class was determined by validating the best weights obtained in Section 4.5 on the occluded

input. The prediction scores were plotted against the start of the occlusion mask along the

input (Figure 4.17). All 3 channels were investigated or occluded at once and therefore all 3

channels contributed to the prediction scores in Figure 4.17.

The window with the greatest increase in certainty relative to the previous window was

investigated (Figure 4.16). This corresponded to the window with a certainty of 81.1% (an

increase of 23.6% from the previous window). The result of the occlusion experiment on

this window is shown in Figure 4.17.

Different occlusion window lengths and sample strides were investigated. To localise the

region or regions of the input significant to the precursor class, the length of the occlusion
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mask was increased until the point at which the prediction score of the occluded window

dropped below 50% in the occlusion output (Figure 4.17). A prediction score below 50%

indicated that the network no longer classified the occluded input as a precursor, thereby

highlighting on regions of the input crucial for precursor classification. The occlusion output

first decreased below 50% when the occlusion mask was 400 samples long. To localise

regions of significance, the mask length was not increased from 400 samples. Increasing

the sample stride decreased the level of detail in the output. Keeping the sample stride

and occlusion window length small enabled investigation of localised regions of the input

significant to the network when classifying windows as precursors.
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Figure 4.17: Occlusion sensitivity output and precursor window investigated |Occlusion
sensitivity output (top) for the precursor window investigated (bottom). A mask length of
400 and a stride of 400 were selected. A horizontal, red line is plotted at an occlusion output
of 0.5. Prediction scores below this line indicate regions of the input containing significant,
precursor-related information. All 3 channels of the input window are plotted and the section
of the input with high importance (region corresponding to an occlusion output < 0.5) is
outlined by dashed, vertical lines marking its start and end and highlighted in yellow. With a
window length of 16384 and a mask length and stride of 400, the last 384 time samples were
not evaluated in this example. These 384 time samples were evaluated in Figure 4.18 when
applying the same mask length with different sample strides.
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A horizontal, red line was plotted in Figure 4.17 at a prediction score of 0.5 (50% cer-

tainty). When the occlusion output dropped below 50%, it indicated that the network pre-

dicted the occluded input as noise. It was evident that when the data points between 15600

and 16000 were removed, the network predicted the input as noise instead of as a precursor

(Figure 4.17). Essentially, removal of these specific data points reduced the certainty of the

window to the precursor class by 40.7%, enough to entirely change the classification of the

input. The length of the occlusion mask (400 samples) was very small in comparison to the

length of the input window (16384 samples), indicating that precursors may have been quite

localised in the input. It is unsure whether this localised region was only significant when

combined with other areas of the input or whether it provided significant precursor-related

information on its own. This experiment demonstrated that the addition of information to

the end of the window as opposed to removal of information from the start increased the

prediction score of the window to the precursor class.

To investigate regions of significance to the precursor class in greater detail, smaller sam-

ple strides were selected. Setting the occlusion mask length at 400, the stride was reduced

by factors of 2 from its original length of 400. The occlusion outputs for different sample

strides are plotted in Figure 4.18.
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Figure 4.18: Occlusion outputs with a mask length of 400 and different sample strides
indicated by different coloured outputs.
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A higher level of detail in the occlusion output indicated that the region of the input from

15600-16000 samples provided the most significant precursor-related information. This was

the only region of the input where the occlusion output fell much below the 50% certainty

mark. This region of interest was highly specific i.e. moving the occluded interval by 25

samples in either direction, the output of the occlusion did not drop below 50% (Figure

4.18).

When increasing the level of detail in the occlusion output, it became evident that another

region of the input decreased the classification certainty below 50%. This occurred from

7775-8175 samples and 7925-8325 samples, however, with much less significance (Figure

4.18).

During the occlusion experiment, all 3 channels were occluded before being input to the

network. To further the investigation, each channel was investigated separately by occluding

a single channel at a time and monitoring the occlusion output. Increasing the sample stride,

it remained evident that the signal between 15600 and 16000 time samples contained the

most significant precursor-related information. As a result, the original sample stride of 400

was selected for ease of comparison with the result in Figure 4.17. The occlusion outputs for

each occluded channel were compared (Figure 4.19).
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Figure 4.19: Occlusion sensitivity output when each channel was occluded separately |
The 50% certainty mark is indicated with a red, horizontal line.
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From Figure 4.19, it was evident that the occlusion output did not drop below 0.5 unless

all 3 channels were occluded. This indicated that the network used patterns between chan-

nels such as similarities or differences as well as channel specific patterns. As a result, all

3 channels contributed to the network predictions. However, when comparing the occlusion

outputs in Figure 4.19 for each channel, it became clear that channel 0 had a greater contri-

bution to the network’s decision. Occluding the interval from 15600-16000 in channel 0 was

enough to reduce the certainty to the precursor class from 81.1% (without any occlusion) to

56.2% certainty, almost surpassing the 50% mark (Figure 4.19). The other 2 channels did not

significantly reduce the prediction score over any occluded interval. Channel 0, therefore,

provided precursor-related information that channels 1 and 2 did not.

Investigating channel 0 and the region of the input where the certainty dropped signif-

icantly below 50% in Figure 4.17, it was evident that there were two spikes, almost 400

samples apart that had to both be occluded for the certainty to drop below 50% (Figure

4.20).
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Figure 4.20: Channel 0 of the precursor-labelled window under investigation | When
the region of the input containing the two spikes of interest was occluded (set to zero) in all
3 channels, the window was predicted as noise instead of precursors.

These visualisation techniques constrained the frequency range over which precursor-

related features were most dominant. From these investigations, it was clear that the dis-

criminative features separating noise windows from precursor windows were largely unre-

lated to high frequency earthquake signal. Instead, discriminative features coincided with the

frequency range of microseismic noise and low frequency earthquakes (Masuda et al. 2020).
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4.9 Precursor Frequency Analysis

The frequency content of the precursor window in Figure 4.20 was investigated to determine

whether the ’spikes of interest’ coincided with a frequency anomaly. The frequency content

of the sequential precursor windows in Figure 4.16 were investigated using the Short Time

Fourier Transform (STFT) (Figure 4.21). As opposed to indicating the frequency and phase

content for a whole window, the STFT can be used as a method of quantifying the change

of a nonstationary signal’s frequency and phase content over time. The STFT of a signal is

calculated by sliding an analysis window over the signal and calculating the discrete Fourier

transform of the windowed data. The window moves over the signal at a fixed stride. A win-

dow length of 1000 was selected with a stride of 500. The STFT of the sequential precursor

windows in Figure 4.16 are shown in Figure 4.21.
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Figure 4.21: Short Time Fourier Transform for the sequential precursor windows
(channel 0 only) in Figure 4.16 | The STFT was calculated by sliding an analysis window
of length 1000, stride 500 over each of the sequential windows and obtaining the discrete
Fourier transform of the windowed data. The certainty or prediction score of the network
when classifying each window (all 3 channels) as a precursor is indicated. The red circles
highlight a localised region of increased amplitude of frequencies 0.16Hz and 0.2Hz.
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Comparing Figure 4.21 with the results obtained in Section 4.8, the sudden increase in

certainty (57.5%-81.1%) between successive precursor windows could be attributed to an

increase in the amplitude of frequencies 0.16 Hz and 0.2 Hz in channel 0. This amplitude

increase appeared to be localised in the input, occurring over only one or two Fourier analysis

windows (a section of the input with a length of 1000-1500 time samples). The location of

the anomaly coincided extremely well with the region of interest identified in Section 4.8,

suggesting that the precursor-related features within this region of interest were associated

with the high amplitude, low frequency anomalies identified in Figure 4.21.

The frequency anomalies at 0.16 Hz and 0.2 Hz in Figure 4.21 can be considered sig-

nificant to the precursor class for a single earthquake in the test dataset. To determine the

importance of these frequency anomalies in distinguishing noise from precursors prior to all

of the investigated earthquakes, the frequency-amplitude spectra for noise and precursor win-

dows were obtained separately for each event in the train and test datasets (all 3 channels).

For each dataset (train and test), the cumulative sum of the frequency responses for all events

and their 3 channels were calculated separately for noise-labelled and precursor-labelled data

and plotted on the same figure for ease of comparison (Figure 4.22).
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Figure 4.22: Logarithmic cumulative frequency spectra for windows labelled as noise
and windows labelled as precursors | The spectra are plotted separately for (a) the train
and (b) the test datasets.

No obvious differences were evident when comparing the cumulative frequency responses

for noise and precursor data in the training and test datasets. Although some small differ-

ences between noise and precursor data occurred in the very low frequencies of the train-
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ing dataset (∼ 0.02 Hz - 0.04 Hz), these did not occur in the test data (Figure 4.22). Any

non-systematic differences (differences not evident in both datasets) would unlikely have

contributed to the classification result.

To further investigate any systematic and significant frequency differences between noise

and precursor data in the train and test datasets, the relative percentage difference between

the cumulative noise and precursor frequency responses were calculated for all 3 channels

in the train and test datasets. The relative percentage difference was obtained by computing

the difference between the cumulative precursor and noise spectra and normalising by the

cumulative noise spectrum. The results for both the train and test datasets are shown in

Figure 4.23 where the dots are the results and the curves are smoothed versions of the results.

The smoothed versions were obtained using Savitzgy-Golay smoothing with a width of

0.062 Hz (Press & Teukolsky 1990). Differences between the cumulative precursor and

noise frequency responses were evident both in the test and train datasets. The frequencies

at which significant and systematic differences occurred are indicated by dashed, vertical

lines (Figure 4.23). These differences were evident at approximately 0.16 Hz and 0.21 Hz,
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Figure 4.23: Relative percentage difference between the cumulative frequency spectra
in Figure 4.22 for precursor-labelled and noise-labelled data | The test and train results
are plotted on the same graph for ease of comparison. The dashed, vertical lines are plotted at
frequencies 0.16 Hz and 0.21 Hz coinciding with significant amplitude differences between
precursor and noise data in both the train and test datasets (peaks in the smoothed plots). A
horizontal, black line is plotted at a 0% difference.
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indicated by peaks in both of the smoothed plots.

The results obtained in Figure 4.21 and 4.23 coincided well, indicating two low frequen-

cies that provided information for discriminating precursor windows from noise windows in

the train and test data. From these investigations, it can be concluded that frequencies of ∼

0.16 Hz and ∼ 0.21 Hz were significant during classification. The huge spike in amplitude

at ∼ 12 Hz in the smoothed test plot in Figure 4.23 was irrelevant to the classification result.

This can be concluded from Figure 4.15 which demonstrates that frequencies above 3.5 Hz

did not significantly affect the prediction score on the test dataset.

4.10 Investigating Changes in the Significance of Precursor-

Related Features with Earthquake Proximity

In Section 4.5, the first 16.7 minutes (40000 samples) of the 10 hour period of seismic data

prior to each of the investigated earthquakes was labelled as noise and the final 16.7 minutes

was labelled as precursors. When analysing this data, the network achieved a training accu-

racy of 97% and a test accuracy of 89%. A high train and test accuracy indicated that the

network learnt general features of the training data, translatable to the test data.

To determine whether the network was able to discriminate noise (interval 1 in Figure

4.24) from other intervals over the 10 hour period, the performance of the network was

investigated when the original noise data (interval 1) was classified from data in intervals 1-

36 which were labelled as precursors (Figure 4.24). Windows of data were generated in each

interval the same as previously in Section 4.5. This investigation enabled an understanding

of the intervals that systematically contained features discriminative of the data in interval 1.

In this context, systematic features refers to features significantly evident in both the train to

the test datasets.

The network was retrained on the original noise data (interval 1) and separately on each

interval from 1-36 which were labelled as precursors. The network was trained 5 times,

separately for each interval, and the average train and test accuracies were calculated. The

average test accuracy and the standard deviation were plotted against the start of the corre-
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Figure 4.24: Example Mw ≥ 6 earthquake from the test dataset | 16.7 minute intervals
over the 10 hours before the start of the earthquake are indicated by black, vertical lines
where the length of time between each line is 16.7 minutes. Each interval is labelled with a
value from 1-36 for ease of reference. The Mw ≥ 6 event occurs immediately after interval
36.

sponding 16.7-minute interval investigated (Figure 4.25). The test accuracy was investigated

because it measured the ability of the network to discriminate noise from precursors on un-

seen data, providing a reliable evaluation of the network’s performance. As the network had

not experienced any generalisation issues on this dataset, changes in the test accuracy indi-

cated how well the training dataset represented the test dataset and therefore how effectively

the network was able to translate features learned during training to the test data. It should

be stressed that during this experiment, data in the noise class remained fixed. As a result,

the average test accuracies in Figure 4.25 reflected overall changes that occurred within the

intervals labelled as precursors.

From Figure 4.25, it was evident that as the interval of the data labelled as a precursor

approached the start of the earthquakes, there was a gradual increase in the test accuracy

starting 3.3 hours prior (interval 25). Over the 3.3 hours prior to the earthquakes, the average

test accuracy increased from 55% to 87%, a significant increase occurring over a short time-

span. Considering that 55% test accuracy indicates an almost random prediction, significant

changes must have occurred within the intervals labelled as a precursor over the 3.3 hours

prior to the start of the investigated earthquakes. As the network was retrained on signal in
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Figure 4.25: Graph showing changes in the average test accuracy when classifying sig-
nal in interval 1 labelled as noise from signal in intervals 1-36 labelled as precursors
(Figure 4.24). | The average test accuracy is plotted against the start of the corresponding
16.7-minute interval investigated (labelled as a precursor). Standard deviation error bars
were plotted on one side of the data points to improve clarity. The red, dashed, vertical line
indicates the start of an increase in the test accuracy.

each interval, the low test accuracies in intervals 1-25 do not indicate that features discrimi-

native of noise data in interval 1 did not exist significantly within these intervals prior to the

earthquakes in the test data. A low test accuracy could have been attributed to the fact that

discriminative features did not occur significantly in these intervals prior to earthquakes in

the training data and therefore were not learnt during training. Intervals close in time to the

noise interval may have been too similar and therefore difficult to discriminate. To conclude,

this figure demonstrates that features discriminative of data in the noise class were more

systematically observed prior to earthquakes in the train and test datasets with earthquake

proximity. The results do not reflect changes that occurred prior to individual earthquakes.

An additional observation is that there was a subtle and gradual decrease in the standard

deviation over the final 3.3 hours (interval 25-36). A small standard deviation indicated that

the network learnt very similar features with each training run.

In Section 4.5, data selected 10 hours prior to the investigated earthquakes (interval 1)

was labelled as noise. As the data in the noise class was associated with each of the Mw

≥ 6 earthquakes, the high test and train accuracy obtained in Section 4.5 (89% test accu-

racy) could be attributed to windows in the noise class containing precursor-related features

(features discriminative of noise unrelated to Mw ≥ 6 earthquakes) more significantly than
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windows labelled as precursors or vice versa. Note the change in the definition of ’precursor-

related’. For example, the results in Section 4.9 provided an indication of two frequencies

that were higher amplitude in the precursor windows. Assuming this feature is correlated

to the investigated Mw ≥ 6 earthquakes, it is uncertain whether this feature is more closely

associated with noise unrelated to Mw ≥ 6 earthquakes or with potential precursors to Mw

≥ 6 earthquakes.

Assuming that the network detected features correlated to the earthquakes, to determine

whether these features were more or less significant with earthquake proximity, noise win-

dows were selected from data unassociated with Mw ≥ 6 earthquakes. The newly selected

noise windows were trained and tested against windows obtained from each interval in Fig-

ure 4.24 which were labelled as precursors.

4.10.1 Utilising Noise Unrelated to Mw ≥ 6 Earthquakes to Investigate

Changes in the Significance of Precursor-Related Features with

Earthquake Proximity

The 10-hour period prior to the Mw ≥ 6 earthquakes was further investigated by selecting

noise data unrelated to any Mw ≥ 6 earthquake occurring within 30◦ from the seismometer

of interest. Using the same window length and overlap as previously, 1147 noise windows

were obtained from 31 randomly selected, 16.7-minute intervals occurring between 2012

and 2020. 31 earthquakes were investigated in Section 4.5, therefore the same number of

noise windows were generated as precursor windows. The noise intervals were selected

during time periods when no Mw≥ 6 earthquakes occurred within 30◦ from the seismometer

of interest and within 48 hours of the 16.7-minute noise intervals selected. In accordance

with the constraints applied in Section 4.3, noise intervals containing impulsive earthquake

signal above the noise level were not selected and 48 hours was assumed enough time to

significantly reduce the influence of Mw ≥ 6 earthquakes on the seismic data. The same

number of noise windows were generated as precursor windows. Precursor windows were

obtained from each interval of seismic data in Figure 4.24. Each interval was investigated
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separately by retraining and testing the network to obtain an average test accuracy over 5

training runs. The data in the noise class remained fixed throughout the experiment. The

result is shown in Figure 4.26.
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Figure 4.26: Graph showing changes in the average test accuracy when classifying sig-
nal unassociated with Mw ≥ 6 earthquakes (labelled as noise) from signal in intervals
1-36 (labelled as precursors) (Figure 4.24). | The average test accuracy is plotted against
the start of the corresponding 16.7-minute interval investigated. Standard deviation error
bars were plotted on one side of the data points to improve clarity. The red, dashed, vertical
line indicated the start of the increase in the test accuracy.

Figure 4.26 indicated that there was a gradual increase in the test classification accuracy

starting 2.5 hours prior to the start of the earthquakes. Similar to the results in Section 4.10,

the highest test accuracy occurred when interval 36 was labelled as a precursor. This indi-

cated that data in interval 36 contained features discriminative of noise unrelated to Mw ≥ 6

earthquakes most significantly. These results confirmed that precursor-related features were

most dominant in the intervals immediately prior to the start of the earthquakes, becoming

more systematically observed with earthquake proximity and, finally, becoming most signif-

icant in the interval immediately prior to the investigated earthquakes.

Overall, the test accuracy in Figure 4.26 was higher than in Figure 4.25. In Figure 4.26,

the average test accuracy when classifying noise from the seismic data in interval 36 was

93%, 5% higher than previously (Figure 4.25). This result indicated that there was more

dissimilarity between noise unrelated to Mw ≥ 6 earthquakes and data in interval 36 com-

pared with data 10 hours prior to the Mw ≥ 6 earthquakes (interval 1) and data in interval

36. Additionally, in Figure 4.26, the test accuracy remained mostly between 65% and 75%,
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whereas, in Figure 4.25, the test accuracy primarily fluctuated between 50% and 60% before

increasing in the 3.3 hours prior to the start of the earthquakes. This indicated there was

some difference between seismic data unrelated to Mw ≥ 6 earthquakes and data 10 hours

before the Mw ≥ 6 earthquakes, suggesting that precursor-related features existed 10 hours

before the earthquakes, however, less systematically than immediately prior.

4.10.2 Understanding the Significance of Precursor-Related Features

Detected in Interval 36 with Earthquake Proximity

The best algorithm achieved a training accuracy of 98% and a test accuracy of 96% (Figure

4.27). These weights were achieved when classifying windows of seismic data unrelated to

Mw ≥ 6 earthquakes from windows of seismic data in interval 36 in Figure 4.24. This result

was interesting because features discriminative of noise were most systematically detected

when interval 36 was investigated (labelled) as a precursor.
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Figure 4.27: Confusion matrices indicating the performance of the classification model
by summarising the prediction results on the train and test datasets | (a) Confusion
matrix when validating the best weights obtained in Section 4.10.1 (96% test accuracy) on
(a) the training dataset and (b) the test dataset. The confusion matrix indicates the relative
accuracy of the network in terms of four possible scenarios: 1. accurate prediction of an
event (bottom right), 2. failure to predict an event (bottom left), 3. false prediction of an
event (top right), 4. accurate prediction of no event (top left). The numbers in each box
indicate the number of windows classified in each scenario.
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To determine whether the precursor-related features detected in interval 36 were trans-

latable to other intervals over the 10-hour period investigated prior to each earthquake, the

best weights (96% test accuracy) were validated on each 16.7-minute interval prior to the 31

investigated earthquakes (Figure 4.28).

When validating weights, no ground truth exists. The results indicate the network’s pre-

diction on windows of data generated over each interval. To evaluate the significance of the

precursor-related features, all windows in each interval were labelled as a precursor and the

noise class was discarded from the investigation. Simply put, windows generated at each

interval in Figure 4.24 for all 31 earthquakes were input separately (for each interval) to the

neural network. The network used the weights obtained from the best algorithm (96% test

accuracy) to predict the class of each window. The result is a fraction of the number of win-

dows predicted as a precursor for each interval over the total number of windows generated

at each interval.

From the results shown in Figure 4.25 and Figure 4.26, it was evident that precursor-

related features were most significant in interval 36. The presence of precursor-related fea-

tures detected in interval 36 were investigated with time prior to the start of the earthquakes
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Figure 4.28: Best saved weights (96% test accuracy) validated on each interval in Fig-
ure 4.24 (except interval 36) labelled as a precursor prior to the investigated earth-
quakes | Each data point indicates the number of windows classed as a precursor in a single
interval as a fraction of the total number of windows generated for each interval. This frac-
tion is plotted against the start of the corresponding 16.7-minute interval investigated.
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(Figure 4.28). The results of this experiment determined the significance of the features

detected in interval 36 to each interval over the 10 hour period prior to the investigated

earthquakes. The best weights were obtained by discriminating noise unrelated to Mw ≥ 6

earthquakes from seismic signal in interval 36. As a result, the fraction of windows classi-

fied as a precursor in each interval in Figure 4.28 indicated the proportion of windows that

contained features more representative of precursor-related signal in interval 36 than of noise

unrelated to Mw ≥ 6 earthquakes.

An increase was observed in the fraction of windows classified as a precursor with earth-

quake proximity. This demonstrated that, overall, precursor-related features in interval 36

were detected more systematically with earthquake proximity. All 31 earthquakes were in-

vestigated as a single dataset, therefore, this result does not indicate that precursor-related

features became more frequent with proximity to each individual event. Interestingly, the

majority of the windows in other intervals were classified as precursors, indicating that the

precursor-related features detected in interval 36 were translatable to other intervals over the

10-hours investigated and were not specific to interval 36.

Another important observation was that 46% of the windows from interval 1 were classed

as a precursor. This indicated that seismic data in interval 1 was not entirely representative of

data in the noise class, otherwise, 0% of the windows would have been classed as a precursor

(100% classed as noise). Comparing the results from Figure 4.28 and Figure 4.25, it can be

concluded that the precursor-related features detected in interval 36 still existed 10 hours

prior to some earthquakes.

4.11 Probabilistic Considerations

The algorithm used to detect these precursor-related features lacks robustness in the context

of probabilistic forecasting. This lack of robustness can be attributed to:

1. The data selected in Section 4.3 to train and test the neural network. Several restric-

tions were applied in Section 4.3 to the data investigated for precursors. The restric-

tions were applied to reduce the variability of the data and encourage analysis of the
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background signal, increasing the potential for the network to detect systematic pre-

cursors. These restrictions increased the likelihood of obtaining a false prediction in

the context of earthquake forecasting as precursors were detected in the absence of

impulsive earthquake signal and interference from other large earthquakes.

2. In Section 4.3, 31 Mw ≥ 6 earthquakes were selected over a continuous 8-year time-

frame from 2012-2020. The total investigated time period was around 8 years, how-

ever, only a fraction of the 8 years was analysed. Investigating a very small time period

increased the difficulty in quantifying the significance of the precursor-related features

detected in Section 4.5 and Section 4.10.1 for earthquake forecasting. For example, it

is poorly understood how frequently the precursor-related features occur unrelated to

a Mw ≥ 6 earthquake. The risk of obtaining a false positive prediction is difficult to

evaluate with the current dataset. This is mainly because the noise dataset in Section

4.10.1 spans a very short and selective time period and is therefore poorly representa-

tive of all data unrelated to Mw ≥ 6 earthquakes. As a result, the confusion matrix in

Figure 4.27b does not provide an accurate indication of the likelihood of obtaining a

false prediction.

Whilst the confusion matrix in Figure 4.27b can indicate the performance of the network,

it cannot be used to determine whether there is a relationship between the detected precursor-

related features and the investigated earthquakes. To evaluate the statistical significance of

the discriminative features detected in the precursor class in Section 4.10.1, the null hypothe-

sis was evaluated. In this context, the null hypothesis (H0) states that the features detected in

interval 36 are unrelated to the Mw ≥ 6 earthquakes investigated. The other interpretation is

the alternative hypothesis (H1) which states that there is a relationship between the detected

features and the investigated earthquakes. When testing the null hypothesis, a probability

called the p-value is calculated which determines the likelihood that the relationship exists if

H0 were true. In null hypothesis testing, if the p-value is less than a criterion (α), the result

is considered statistically significant and H0 is rejected in favour of H1. Generally, a p-value

< 0.05 is statistically significant (Ghasemi & Zahediasl 2012).

The best weights obtained in Section 4.10.1 classified randomly selected 16.7-minute
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periods of noise unrelated to Mw ≥ 6 earthquakes from data in the 16.7-minute interval

immediately prior to the start of the investigated Mw ≥ 6 earthquakes. When applying these

weights in the context of probabilistic forecasting, non-overlapping windows with length

16384 time samples would be input to the neural network in real time and a prediction for

each window would be obtained. Instead of forecasting an earthquake based on the single

occurrence of a window predicted as a precursor, it may be more valuable to consider the

certainty of the network in its prediction and/or the frequency of windows classified as a

precursor over a predefined time interval. This may reduce the possibility of obtaining a

false-positive prediction.

If we consider a scenario in which a threshold is used to determine whether or not an

earthquake will occur based on observations from 5 hours of data, setting the threshold at

70% (i.e. at least 70% of non-overlapping windows over a period of 5 hours has to be

classified as a precursor to forecast an earthquake), 22 out of the 31 investigated earthquakes

would have been forecast when analysing the 5 hours of data prior to the start of interval 36.

As a result, 9 earthquakes did not have more than or equal to 70% of windows classified as

a precursor over the 5 hour period selected and were therefore not forecast. This threshold

was arbitrarily chosen as an example.

For this scenario, let:

Np = Number of earthquakes correctly forecast = 22

Tn = Total time period classified as noise = Length of selected period (5 hours) x

number of earthquakes not forecast (9) = 45 hours

Tp = Total time period classified as a precursor = Length of selected period (5 hours)

x number of earthquakes correctly forecast (22) = 110 hours

The probability of 22 events being forecast by chance equates to the probability that 22

’positive’ forecasts all fell randomly within the time periods belonging to Tp, but only once

in a given 5 hour time span. Such a probability can be computed as:

P =
Np

∏
i=1

Tp−5(i−1)
Tp +Tn

= 4e−11 (4.2)

As P < 0.05, the null hypothesis can be rejected and the relationship between the de-
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tected precursory features and the earthquakes investigated can be concluded as statistically

significant. This indicated that the precursory features detected by the network in interval

36 were correlated to earthquake occurrence. Given that large time intervals between earth-

quakes have not been analysed, it is difficult to evaluate whether similar signals could occur

during aseismic intervals and the frequency of these false positive detections. This prevents

an accurate estimate of the likelihood of obtaining a false positive prediction.

As the precursory features were identified as statistically significant, the term ’precursor’

will be used from here on as a loose term to describe features correlated with the investigated

earthquakes. It should be stressed that this result does not indicate that the precursor-related

features are correlated to all Mw ≥ 6 earthquakes in this region.

4.12 Investigating Precursors in Continuous Seismic Data

Having determined where the detected precursors were most systematically observed prior to

the investigated earthquakes, the neural network was trained and tested on continuous seis-

mic data from 2015 to 2020 to see whether the network was still able to detect the precursors

when no constraints were applied to the data used to train and test the network. Seismic

data were obtained from the seismometer of interest at station IU MAJO and only 5 years of

continuous data was investigated due to network related limitations (Section 5.4.2).

Non-overlapping noise windows were generated throughout the 5 years of continuous

seismic data investigated. This excluded a 72 hour period prior to Mw ≥ 6 earthquakes

occurring within 30◦ from the seismometer of interest. Figure 4.28 suggested that precursors

still occurred up to 10 hours prior to the investigated earthquakes, therefore, preventing the

72 hours of seismic data prior to each Mw ≥ 6 earthquake from being investigated as noise

reduced the likelihood of precursors being included in noise windows. Precursor windows

were generated over the 5-hour period prior to each Mw ≥ 6 earthquake located within a

radius of 20◦ from the station. 5 hours prior to each earthquake was selected as this period

was found to contain precursors most systematically (Figure 4.25 and Figure 4.28).

Due to the substantial amount of noise windows relative to precursor windows, there
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was a huge class imbalance. An issue with such a large class imbalance was that there

were too few examples of the minority (precursor) class for the model to effectively learn

the decision boundary. To overcome this issue, firstly, the noise data were randomly under-

sampled (Prusa et al. 2015). 12000 noise windows with no overlap were randomly selected

over the 5-year period investigated and sorted in order of their occurrence. Data labelled as

a precursor was downloaded separately for each Mw ≥ 6 earthquake which were also sorted

in order of their occurrence.

In addition to randomly under-sampling data in the noise class, a synthetic minority

oversampling technique or SMOTE was implemented to increase the number of precursor

windows in the training data (Arslan et al. 2019). Different to duplicating examples from the

minority class in the training dataset, which would not provide any additional information to

the model, SMOTE synthesised new examples from the precursor (minority) class, augment-

ing the training data. SMOTE augmented the training data by selecting examples that were

close in feature space to the existing precursor windows. In more detail, a random window

from the precursor class was chosen, k of the nearest neighbours (nearest precursor windows

in feature space) were identified where k was typically 5, one of these nearest neighbours

was randomly selected and a synthetic example was created at a random point between the

two examples in feature space (Inoue 2018). New examples of precursor windows were

generated from existing windows using the SMOTE technique. By implementing SMOTE

and random undersampling, the same number of precursor windows were generated as noise

windows in the training dataset.

The network was trained on the first 75% of noise windows which were sorted in order

of occurrence and precursor windows from the first 48 out of the 60 Mw ≥ 6 earthquakes

that occurred over the time period investigated and within 20◦ of the seismometer of interest.

The test dataset contained the following 15% of noise windows and precursors from the next

9 earthquakes. The validation dataset contained the final 10% of the noise windows and pre-

cursors from the last 6 earthquakes. As a result of the train-test-validation split, each dataset

approximately investigated a different time period. A window length of 8192 was selected

due to frequent memory issues when using the original window length (16384 samples),
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even after significantly reducing the batch size. The network was trained on 19200 windows,

tested on 6000 windows and validated on 3600 windows and the ratio of noise to precursors

in the training data was 0.5, a result of applying SMOTE to the training data. SMOTE was

not applied to the test and validation datasets, however, the ratio of noise windows to precur-

sor windows was 0.5 in the test and validation data as a result of using an overlap of 1024

samples (window length/8) when generating test and validation precursor windows.

The network produced an average (over 5 runs) accuracy on the training data of 93.4%,

test accuracy of 72.7% and validation accuracy of 52.9%. The training, testing and validation

losses were 0.56, 0.65 and 0.78, respectively. The high test and validation loss indicated that

the network was not extremely confident in its predictions and/or that it confidently predicted

windows as the incorrect class. A low validation accuracy demonstrated that the network was

unable to effectively translate features learnt during training to the validation dataset. In a

probabilistic sense, 72.7% test accuracy is quite significant. It indicates that the network was

able to generalise features learnt during training to the test data. Improving the validation

accuracy is key towards developing a forecasting system. Techniques investigated to improve

generalisation are described below (see the following subsection).

Since the network had not previously experienced issues with overfitting, a low validation

accuracy could be explained by the fact that the train and validation data investigated a

different time-period and therefore the training data were not entirely representative of the

validation data. Randomising the windows assigned to the train, test and validation datasets

would reduce the possibility of the training data not being representative of the test and

validation however, would prevent an understanding of how well features learnt from one

time period can be translated to data from a different time period.

Alternatively, issues with generalisation could have resulted from precursors frequently

being overprinted by impulsive earthquake signal. As a result, the network was unable to

learn the same features that had been detected in Section 4.5 where precursors were inves-

tigated in the absence of significant impulsive earthquake signal. A method for removing

impulsive earthquake signal could be implemented to investigate the importance of this fac-

tor for generalisation.
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Another potential reason for poor performance on the validation data was the greater

quantity and variety of noise data analysed in this investigation compared with previously in

Section 4.10.1. This may have resulted in the precursory signal detected in Section 4.10.1

occurring more frequently in the data labelled as noise, preventing the same precursors from

contributing to the classification result.

Finally, halving the window length reduced the amount of information stored in each

window. When reducing the window length in Section 4.5 to 8192 time samples, the test and

train accuracies only decreased by a few percent. As a result, this factor is unlikely to have

had a significant impact on the validation accuracy, particularly if the network was detecting

the same features as previously (Section 4.5).

4.12.1 Other methods investigated to improve the performance of the

network

1. Applied transfer learning, a method which involved storing information gained from

one task and applying the stored information to a different but related task. The

best weights (96% test accuracy), obtained in Section 4.10.1, were used as the ini-

tial weights for training the network on the current task. This was as opposed to using

randomly initialised weights prior to training. This method was implemented to en-

courage the network to consider the previously identified precursors in Section 4.10.1

during training.

2. Experimented with different standardisation and normalisation. Current standardisa-

tion involved standardising all 3 channels together instead of separately. Standardising

each channel on its own did not significantly change the result. Additionally, the data

were normalised between different ranges (-1 and 1, 0 and 1).

3. A low validation accuracy could have resulted from generalisation issues on the new

data. To try to improve the generalisation of the network, data were investigated from

two additional GSN stations. The idea was to focus the network towards identifying

discriminative, underlying patterns or features in the data. Noise and precursors were

investigated from 3 separate, neighbouring seismic stations (IU MAJO, II ERM and
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IU YSS). The same seismic data recorded by 3 different instruments at 3 nearby but

separate locations should appear slightly different but potentially contain the same un-

derlying patterns. The aim was to remove the influence of any bias in the network’s

decision and encourage the network to learn the precursor-related features that had

previously been identified. This method was thought to potentially improve generali-

sation by introducing variability in the features within each class and encouraging the

network to learn general characteristics.

4. Experimented with different hyperparameter values and additionally tried using ge-

netic algorithms for optimisation. The purpose of the genetic algorithm was to opti-

mise a set of hyperparameters (the parameters that could not be learned by the network

during training). Genetic algorithms are global search methods, based on principles

such as natural selection, mutation and crossover (Harik et al. 1999). The genetic al-

gorithm worked by firstly creating a population of randomly generated values. The

algorithm scored each value based on some goal and selected and bred the best values

in the population, mutating some values randomly to attempt to discover better values.

The values which scored poorly were discarded during the process (Harik et al. 1999).

Several parameters were tuned using this method including the number of neurons per

layer, the activation function, the dilation rate, the network optimiser, the learning rate,

the kernel initializer and the kernel size.

None of the applied methods improved the network’s performance on the train, test or

validation data. The training accuracy did not improve above 95% with any of the methods

and techniques tried. This indicated that, unlike on the dataset in Section 4.10.1 where the

algorithm reached a training accuracy of 98%, the network was unable to learn some of the

training data. Considering that the same network was used, this may indicate that some

precursor windows contained features indicative of noise and vice versa. This could have

resulted from some of the precursor windows being overprinted by impulsive earthquake

signal or some of the noise windows containing the previously detected precursors.

As we were unable to improve the test and validation accuracy, a system for autonomous

earthquake prediction on live data was not implemented. A 52.9% validation accuracy indi-
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cated a significant number of false predictions. As a result, this system would not provide a

reliable method for forecasting unseen earthquakes.



Chapter 5

Discussion

In this Chapter, the results are summarised and further examined. Several limitations of the

methodology are detailed, and possible solutions provided. Finally, future work is described.

This thesis investigates the research question: Can precursors be detected in the raw

signal prior to lab and crustal earthquakes using deep neural networks and to what extent can

they be used for earthquake forecasting?

5.1 Summary of Results

In Chapter 3, a lab experiment was carried out using a triaxial press machine. A sample of

granite with a pre-cut fault was loaded until stick-slip events started to occur. Four strain

gauges were positioned across the fault and the strain gauge signal, corresponding to a de-

formation, was recorded at a sampling rate of 10 MHz. Each of the strain gauge recordings

had a different SNR. Two of these recordings were investigated: one with a very high SNR

and the other with a very low SNR. As a preliminary experiment, the time samples in each

dataset were labelled either as ’earthquake’ or as ’noise’ and windows of the data were gen-

erated as inputs to the semantic segmentation network. In both the high and low SNR strain

gauge recordings, the network detected the slip events in the test and validation datasets with

a high accuracy and no false positive predictions occurred (Section 3.7 and 3.8).

In Section 3.10 an additional ’precursor’ class was included when labelling the low SNR

strain gauge dataset and a moving window approach utilising semantic segmentation enabled
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precursor-related features in the strain gauge signal to be inferred prior to the main slip event

in the validation data. The algorithm successfully detected the slip event before it was in the

frame of view of the network and the inferred precursors were detected up to 6.6 ms prior to

the start of the lab induced earthquake. The significance of this experiment suffered due to

the lack of available data and, as a result, no conclusion could be made regarding whether

this observation was systematic.

In Section 4.5, short-term changes were detected in the raw, background seismic sig-

nal prior to several Mw ≥ 6 earthquakes in the Japan region. Achieving a test accuracy of

89%, the application of deep neural networks enabled the detection of discriminative fea-

tures separating noise-labelled data (10 hours prior to the investigated earthquakes) from

precursor-labelled data (immediately prior to the investigated earthquakes). In section 4.7,

the discriminative features were found to occur dominantly over a frequency range from 0.1

to 0.9 Hz, corresponding to the frequency range of microseismic noise (Masuda et al. 2020).

Precursor-related features (features specific to the precursor-labelled data) were identified

prior to a single event in the test data (channel 0 only) in Section 4.8 at frequencies of ∼

0.16 and ∼ 0.20 Hz (Section 4.9). The frequencies of the features identified prior to a single

event coincided well with the 2 frequencies that were significantly higher amplitude in the

precursor class compared to the noise class for the events in the train and test datasets (Figure

4.23). This suggested that the precursor-related features identified in Section 4.9 contributed

significantly to the decision process of the network.

In Section 4.10.1, the algorithm achieved a 96% test accuracy classifying randomly se-

lected noise data (seismic data unassociated with Mw≥ 6 earthquakes) and data immediately

prior to the Mw ≥ 6 earthquakes investigated. Precursor-related features (features discrimi-

native of noise unrelated to Mw≥ 6 earthquakes) became increasingly significant with earth-

quake proximity and were found to be correlated with the investigated earthquakes (Section

4.11). The network was not extremely robust when detecting precursors in the form of a

forecasting system where features learnt from one time-period were translated to different

time periods in the testing and validation (Section 4.12). When developing the forecasting

system, features were learnt in the presence of impulsive earthquake signal. This factor may
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have affected the ability of the network to learn the same features that had previously been

identified in Section 4.6 as the network was originally designed to detect precursors in the

absence of impulsive earthquake signal.

5.2 Comparison with Related Work

Precursors in lab data have previously been identified by investigating changes in elastic

properties (elastic wave speed and elastic wave amplitude) and acoustic emissions (AEs)

related to slip rate. By tracking acoustic activity prior to stick-slip instabilities, an expo-

nential acceleration of precursory slip was systematically observed (Johnson et al. 2013),

(Passelègue et al. 2017), (Rouet-Leduc et al. 2017). Precursor AEs, analogous to seismic

events in the earth, were found to begin late in the stick-slip cycle and were frequently asso-

ciated with microshear failures (precursors associated with grain rearrangements within the

shearing layer). Here, the accumulation of microscopic rearrangements in gouge material

led to creep, with the frequency of rearrangements increasing dramatically as the main slip

event approached (Johnson et al. 2013). Preceding the slip there was a rapid acceleration of

AE and microslips (Johnson et al. 2013).

A systematic decrease in the elastic wave amplitude (Shreedharan et al. 2020) and elastic

wave speed (Scuderi et al. 2016) has also been detected prior to fault failure, providing a clear

precursor to lab earthquakes. The Mw of these observations is related to the amount of slip

that occurred prior to each dynamic event (Passelègue et al. 2017). In all lab experiments,

precursory changes were found to evolve continuously until the start of the lab earthquake.

As a result of these observations, one might expect precursor-related patterns identified in

lab and seismic data to increase in amplitude and/or frequency with earthquake proximity.

In contrast to previous lab observations (Johnson et al. 2013), (Passelègue et al. 2017),

(Rouet-Leduc et al. 2017), the saliency map in Figure 3.16 and Figure 3.17 suggested that

precursors detected in the strain gauge lab data did not continuously increase in significance

with proximity to the slip event. Instead, precursors additionally occurred over a localised

period prior to the main slip event. This could suggest that the strain gauge signal contained
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precursor-related information different to that previously identified to occur systematically,

prior to lab earthquakes. The discrepancy between precursors identified in the strain gauge

signal and those observed in lab data could be a result of the type of data investigated or the

methods used to obtain the data. Different to piezometric and seismic data, strain gauge data

preferentially reveals lower frequencies. This is because strain in the vicinity of a rupture

has a larger ratio of static to dynamic components than seismic motion.

Earthquake predictability in seismic data indicated a gradual increase in the frequency of

windows classified as a precursor across the train and test datasets with earthquake proximity

(Section 4.10.2). Earthquakes were investigated as a single dataset, therefore, these results

do not indicate that precursor frequency increased with earthquake proximity prior to each

event. It can be concluded, however, that precursors became increasingly systematic with

earthquake proximity for the earthquakes investigated.

Although some similarities in earthquake predictability may be evident in lab and crustal

settings, this does not indicate a common precursor origin. For example, the microshear

failures observed to increase exponentially with earthquake proximity in (Johnson et al.

2013) would correspond to very small (Mw < 3) earthquakes in seismic data. These tiny

earthquakes would have a corner frequency greater than 10 Hz, well above the diagnostic

frequency range identified in Section 4.7 and Section 4.9 (Sibson 1989). The precursors

detected in Section 4.5 and Section 4.10.1 could be attributed to tremor emitted by low or

very-low-frequency earthquakes that are observed in the >1 Hz and 0.01–0.10 Hz frequency

band respectively. These phenomena are separated by large microseismic noise at 0.1–1.0

Hz (Masuda et al. 2020) which coincides with the dominant frequency range of the detected

precursors (Figure 4.15). Recent observations of the seismic signal emitted from the shallow

part of the Nankai subduction zone, Japan, have suggested that the signal in the microseismic

noise frequency band is accompanied by low and very-low-frequency earthquakes (Masuda

et al. 2020).
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5.3 Significance of Key Results

These results are the first to indicate statistically significant, short-term precursors in the raw

seismic signal prior to several large (Mw ≥ 6) earthquakes. In Section 4.5, a high train, test

and validation accuracy and a low loss demonstrated that the discriminative features learnt

during training were similarly detected prior to the earthquakes in the test and validation

datasets. When training and testing a neural network, a high train, test and validation accu-

racy are only achieved if the network has learnt general, yet discriminative features that are

consistently evident in all 3 (train, test and validation) datasets. As a result, it can be con-

cluded that the short-term precursors were systematic for the earthquakes investigated. In

addition to these features being detected systematically prior to unseen earthquakes recorded

by the seismometer of interest, the discriminative features were also detected in the seis-

mic signal from a different seismometer and seismic station. Testing the learned weights on

seismic data prior to a randomly selected Mw ≥ 6 earthquake recorded by a different seis-

mometer to the original seismometer of interest, the network achieved an R-score of 0.95.

This indicated that the frequency response of the seismometer and surrounding noise did not

influence the detection of precursors and that the network had not learnt features of the seis-

mic signal specific to the seismometer of interest. These results suggest that the seismic data

captured some signature of the fundamental physics of the earthquake preparatory phase for

Mw ≥ 6 earthquakes in the Japan region. A downside of feature generalisation to different

seismometers is that there is a greater level of difficulty in constraining the geographic region

of an impending earthquake in the case of earthquake forecasting.

When visualising the detected precursors in Section 4.6, it became evident that frequen-

cies of ∼ 0.16 and ∼ 0.2 Hz provided precursor-related information. Assuming that the

detected precursors were dominantly associated with some low frequency tremor, there is

difficulty in understanding the reliability of the precursors when applied to earthquake fore-

casting. An inadequate quantity of data were analysed due to memory-related limitations,

therefore, there is little understanding of how frequently the detected tremor would lead

to a false earthquake prediction when applying the best weights (96% test accuracy) to a
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continuous stream of seismic data. Ultimately, the complexity associated with earthquake

forecasting relies in robustly detecting precursors in seismic data. This can only be achieved

if there is enough computational power to process large quantities of data.

5.4 Methodological Limitations

The results were dependent on several limitations and assumptions. These are explored, and

justification of these assumptions are detailed.

5.4.1 Data Related Limitations

Quantity of data

Due to the occurrence of the Mw 9 Tohoku Earthquake in 2011 and the frequent, large Mw

aftershocks, earthquakes were only investigated from March 2012 onwards (Hirose et al.

2011) (Section 4.3). This prevented investigation of the highly recurrent aftershocks. Earth-

quakes prior to the Tohoku earthquake were not investigated as precursor characteristics

could have been quite different (a result of significant fault stress release associated with

the Tohoku earthquake). Therefore, precursors prior to the Mw 9 earthquake may not have

been representative of precursors occurring after. This would have had implications on the

performance of the network.

In addition to constraining the selected earthquakes to those occurring within a time in-

terval from 2012 to 2020, only earthquakes within 20◦ from the station of interest were

investigated. Additionally, earthquakes were only selected if they occurred at least 48 hours

after another Mw ≥ 6 earthquake occurring within a 30◦ radius from the seismometer of

interest. This condition was also applied to the noise intervals selected in Section 4.10.1.

It was assumed that 48 hours was long enough to significantly reduce the influence of af-

terslip from other large Mw ≥ 6 earthquakes. There is no certainty that this condition was

upheld but it is likely that any influence from other large earthquakes was minimal for the

investigated earthquakes and noise intervals.

Final constraints were applied to remove data which was poorly recorded and contained
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impulsive earthquake signal above the noise level. These events were removed both to pre-

vent bias in the classification and to encourage the network to learn features of the back-

ground seismic signal, unrelated to impulsive earthquakes. This reduced the number of

earthquakes investigated but prevented investigation of unreliable precursors such as fore-

shocks. The generalisability of the results is limited by the constraints that were applied

to enable systematic precursor identification. Accurate detection and subsequent removal of

impulsive (Mw < 6) earthquakes could provide an effective method for investigating a larger

quantity of Mw ≥ 6 earthquake data, similar to that selected in Section 4.3.

The reliability of the detected precursors at predicting Mw ≥ 6 earthquakes was reduced

by the lack of data investigated in the noise and precursor class in Section 4.5 and Section

4.10.1. Improving the reliability is key for developing a forecasting system. An earthquake

prediction must define 3 elements: 1) the date and time, 2) the location, and 3) the Mw.

Currently, due to the small sample size, none of these 3 elements can be reliably predicted

from the precursors identified. This raises the question of a) can these precursors still be

detected in the presence of impulsive earthquake signal, b) are they systematic to all future

Mw ≥ 6 earthquakes, c) does the timing at which they occur prior the earthquakes vary

significantly, d) how far from the station of interest can they still be detected and e) are the

precursors specific to the Mw range investigated?

Dataset labelling

During the initial investigation of precursors in Section 4.5, 10 hours of seismic data were

selected prior to each earthquake and the start of each file (first 16.7 minutes of data or 40000

samples) was labelled as noise and the end of each file (last 16.7 minutes of data or 40000

samples) as precursors. Although 10 hours was simply an estimate of where data in the noise

class occurred, investigating a short time-period enabled short-term changes to be identified.

Additionally, due to the high recurrence of Mw ≥ 6 earthquakes in the Japan region, there

was difficulty in investigating long, uninterrupted time periods prior to the earthquakes. No

scientific justification could be made as to where precursors occurred, therefore, it was as-

sumed that they would be most prominent immediately before each earthquake, as is often
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the case when investigating precursors in lab data (Johnson et al. 2013, Passelègue et al.

2017, Rouet-Leduc et al. 2017).

5.4.2 Network Related Limitations

An issue when training the neural network was the amount of data that could be used as input

to the network during a training epoch. A neural network stores both its data and parameters.

As a result, the depth and complexity of the network (associated with the network parame-

ters) restricted the amount of data that could be input before reaching a memory error. This

prevented the network from being trained on large lengths of data. For example, this issue

would have significantly increased difficulty when investigating longer term (days-weeks)

changes in the seismic signal related to precursors. When training a neural network for this

task, it was evident that a high degree of complexity was key for detecting precursors (the

performance of the network on the dataset increased with complexity). Therefore, there was

a trade-off between the network complexity and the amount of input data. Other param-

eters which contributed to the computational cost were the batch size and window length.

When increasing the quantity of the input data, the batch size and/or the window length were

subsequently reduced.

Investigating different window lengths, it was evident that a smaller window length re-

duced the accuracy of the network on the train and test datasets and restricted the network’s

ability to learn features of the data related to precursors. By halving the window length from

16384 to 8192, the average train accuracy in Section 4.5 reduced from 99.5% to 97.0% and

the average test accuracy from 87.5% to 83.6%. Using a much smaller window length of 64

time samples, the average train accuracy decreased to 55.2% and the average test accuracy

to 50.4%.

Due to the significance of the window length on the performance of the neural network,

the batch size was frequently reduced to compensate for a larger window length. Batch

size was an important hyperparameter to tune as it affected generalisation and convergence

of the network. Too large of a batch size led to poor generalisation, however, this could be

somewhat controlled by increasing the learning rate accordingly. Smaller batch sizes resulted
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in faster convergence; however, the downside of a smaller batch size was that the model was

not guaranteed to converge to the global optima (Radiuk 2017). The network generally

performed well when using smaller batch sizes (8,16,32), therefore, initially reducing the

batch size to reduce the computational cost provided the best solution.

A trade off existed between the amount of input data, the complexity of the network, the

window length, and the batch size. This trade off restricted the amount of data that could

be input to the network whilst fixing the optimum parameters. The simplest solution would

be using a GPU with larger memory. Alternatively, online learning could be implemented.

DNNs are typically trained by backpropagation in a batch setting, requiring the entire train-

ing data to be made available prior to the learning task. Online learning represents a class of

algorithms that learn to optimise predictive models from a sequence of data provided over

time (Choy et al. 2006). In online learning, models update continuously as each data point ar-

rives. The model is updated using only the newest data points and, therefore, the system does

not need to store a large amount of data in memory. Compared with batch learning, systems

using online learning can maintain a much smaller amount of data storage. Additionally, on-

line learning may aid in developing a forecasting system as it adapts to better changes in the

data and can gradually discount the importance of past data (Perozzi et al. 2014). This would

overcome any issues associated with the training dataset not being entirely representative of

the test and validation datasets and could subsequently improve performance of the model

on future data.

5.5 Future Work

This work indicates the existence of short term precursors imprinted in the raw seismic signal

prior to several Mw ≥ 6 earthquakes in the Japan region. The practical implication is to

develop a forecasting system that can detect precursors to Mw ≥ 6 earthquakes in real time.

As the implementation in Section 4.12 did not achieve good results on the validation data, it

would be more useful to further the investigation of the precursors identified in Section 4.9

and the result obtained in Section 4.10.1.
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The difficulty in validating the best weights (96% test accuracy) on a constant stream

of seismic data is the lack of robustness. Earthquakes were investigated over an 8-year

period, however, due to memory-related limitations only a small fraction of the 8 years was

selected to train and test the neural network. As a result, it is unknown how often the detected

precursors would occur unrelated to a Mw ≥ 6 earthquake. The probability of obtaining a

false positive prediction is difficult to quantify using this dataset, limiting the suitability of

the algorithm for real-world operational earthquake forecasting. For example, if the detected

precursors were not highly specific to the Mw range of the earthquakes investigated, a Mw

< 6 earthquake may be predicted as a Mw ≥ 6 earthquake. This could result in unnecessary

and costly evacuation or other damage mitigation action.

To enable a better understanding of the reliability of this algorithm, a third class could be

included to investigate the seismic signal prior to smaller (Mw < 6) earthquakes. This may

provide an indication of whether the detected precursors are specific to a Mw range. Addi-

tionally, there is the issue of generalisation as the precursors were detected in the absence of

impulsive seismic signal. Developing a method for accurately detecting and removing im-

pulsive earthquake signal could improve generalisation and would enable the investigation

of a larger selection of Mw ≥ 6 earthquakes. Additionally, as precursors were still detected

10 hours prior to some earthquakes (Figure 4.28), it may be useful to investigate a longer

time period prior to each earthquake.

Overall, to improve the robustness of the algorithm, a much greater quantity of data

is required to train, test and validate the neural network. This was not possible with the

current GPU which did not provide enough computational power for this task. Alternative

to increasing the memory size, the network could be trained and tested on a larger quantity

of data through the application of online learning, previously discussed in Section 5.4.2. It

would be key to understand more precisely the likelihood of obtaining false predictions such

that the practical significance of the algorithm could be evaluated.
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Conclusion

The purpose of this research project was to investigate short term precursors to lab and crustal

earthquakes in raw time series data. By harnessing the success of deep neural networks for

pattern recognition, this study detected precursor-related features in both lab and real seismic

data.

In the preliminary experiment (Section 3.8), the semantic segmentation algorithm de-

tected the slip event in the validation data (most noise-obscured event in the whole strain

gauge dataset) and did not produce any false positive detections. This indicated the robust-

ness of the network to noise and potential aliasing from decimation and demonstrated that

the segmentation algorithm was able to efficiently and accurately process the lab data for

earthquake detection.

In Section 3.10, precursor-related features in lab data were detected up to 6.6 ms (514

time steps) prior to the validation earthquake. The precursor-related features were identi-

fied through a saliency and occlusion experiment which indicated that the network placed

importance on a short section of the data prior to the slip event in the validation dataset (Sec-

tion 3.13 and 3.14). The localised nature of the precursory features identified prior to the

main slip event (Figure 3.16) may suggest that the precursors originated from impulsive and

tremor-like signals, similar to those identified in (Rouet-Leduc et al. 2017). The segmenta-

tion network was only validated on a single lab earthquake due to the lack of slip events in

the strain gauge dataset and, as a result, there is little understanding whether the detected
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precursors are systematic. The significance of these results in the context of lab earthquake

forecasting is uncertain and requires validation on a larger dataset (more slip events).

In the real earthquake setting (Chapter 4), the precursor-related features (features corre-

lated to Mw≥ 6 earthquake occurrence) became increasingly systematic across the train and

test datasets with earthquake proximity. Visualising the seismic data, 2 low frequencies (∼

0.16 and ∼ 0.21 Hz) were found to contain significant precursor-related information. The

results suggest that the underlying seismic signal in this geographic region is imprinted with

information regarding the physical state of the Japan subduction zone. Interestingly, Mw ≥

6 earthquakes were investigated over 2 neighbouring but separate subduction zones (Figure

4.4). This may suggest that the detected precursors are translatable to other subduction zones

settings. It should be stressed that this study analysed seismic data in the vicinity to a major

subduction plate boundary. As previously shown (Bouchon et al. 2016), interplate faulting

reveals substantially higher precursory activity than intraplate faulting. As a result, these

precursors may be poorly transferable to seismic activity away from plate boundaries.

The empirical findings in Chapter 4 provide a new insight into real earthquake precursors.

In addition to detecting and identifying some precursor-related features, this research raises

the question of whether these precursors could be applied to earthquake forecasting and the

reliability of this implementation. The insights gained from this study may be of assistance in

understanding where short-term precursors are most systematically observed in the seismic

signal prior to Mw ≥ 6 earthquakes in the Japan region.

The scope of this study is limited by the inadequate quantity of data used to train and test

the neural networks. In Chapter 4, the quantity of data was restricted by the GPU memory

which increased difficulty in investigating large lengths of data with the current resources.

Additionally, the investigation of earthquake precursors in the absence of impulsive earth-

quake signal limits the generalisability of the network. In spite of its limitations, the study

certainly contributes to an understanding of short-term precursors to Mw ≥ 6 earthquakes in

the Japan region.

To better understand the implications of these results, future studies could further in-

vestigate the origin of the precursors identified as well as their reliability for earthquake
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forecasting. Future investigation of precursors within this geographic region is greatly en-

couraged, particularly through the use of deep neural networks which can provide a complex

understanding of nonlinear dependencies in time series data.
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Appendix A

Earthquake Information

Table A.1: Earthquakes in the training dataset sorted in order of occurrence

Time Latitude (◦) Longitude (◦) Depth (km) Catalog MagType Magnitude Event Location Station Epicentral distance from station (◦)
2019-06-18T13:22:19 38.6370 139.4804 12.0 NEIC PDE Mww 6.4 NEAR WEST COAST OF HONSHU, JAPAN MAJO 2.32
2019-04-11T08:18:21 40.4096 143.2985 18.0 NEIC PDE Mww 6.0 OFF EAST COAST OF HONSHU MAJO 5.55
2019-01-08T12:39:31 30.5926 131.0371 35.0 NEIC PDE Mww 6.3 KYUSHU MAJO 8.43
2018-09-05T18:07:59 42.6861 141.9294 35.0 NEIC PDE Mww 6.6 HOKKAIDO MAJO 6.78
2018-01-24T10:51:19 41.1034 142.4323 31.0 NEIC PDE Mww 6.3 HOKKAIDO MAJO 5.62
2017-11-09T07:42:11 32.5208 141.4380 12.0 NEIC PDE Mww 6.0 SOUTHEAST OF HONSHU MAJO 4.83
2017-10-06T07:59:32 37.5033 144.0201 9.0 NEIC PDE Mww 6.2 OFF EAST COAST OF HONSHU MAJO 4.74
2017-09-20T16:37:16 37.9814 144.6601 11.0 NEIC PDE Mww 6.1 OFF EAST COAST OF HONSHU MAJO 5.33
2017-09-07T17:26:49 27.7829 139.8041 451.0 NEIC PDE Mww 6.1 BONIN ISLANDS MAJO 8.87
2016-04-14T12:26:35 32.7880 130.7042 9.0 NEIC PDE Mww 6.2 KYUSHU MAJO 7.18
2016-01-14T03:25:33 41.9723 142.7810 46.0 NEIC PDE mww 6.7 HOKKAIDO MAJO 6.48
2016-01-11T17:08:03 44.4761 141.0867 238.8 NEIC PDE mww 6.2 HOKKAIDO MAJO 6.93
2015-05-12T21:12:58 38.9005 142.0217 39.3 ISC MW 6.8 NEAR EAST COAST OF HONSHU MAJO 3.83
2015-04-20T01:42:58 24.0574 122.4319 28.1 ISC MW 6.4 TAIWAN REGION MAJO 18.43
2015-02-20T04:25:23 39.8189 143.6157 13.3 ISC MW 6.2 OFF EAST COAST OF HONSHU MAJO 5.37
2014-11-09T14:38:15 46.9300 140.6300 10.0 ISC mb 7.6 PRIMOR’YE MAJO 10.54
2014-08-10T03:43:18 41.1340 142.2790 50.6 ISC MW 6.1 HOKKAIDO MAJO 5.60
2014-03-13T17:06:51 33.6222 131.8077 83.4 ISC MW 6.3 KYUSHU MAJO 5.99
2014-03-02T20:11:22 27.4238 127.3279 118.9 ISC MW 6.5 RYUKYU ISLANDS MAJO 12.96
2013-04-21T03:22:16 29.9644 138.9741 431.3 ISC MW 6.1 SOUTHEAST OF HONSHU MAJO 6.61
2013-04-05T13:00:02 42.7359 131.0640 571.3 ISC MW 6.3 E. RUSSIA-N.E. CHINA BORDER REG. MAJO 8.27
2012-12-07T08:18:23 37.8201 144.1594 35.3 ISC MW 7.2 OFF EAST COAST OF HONSHU MAJO 4.91
2012-07-08T11:33:05 45.4209 151.3906 37.7 ISC MW 6.0 KURIL ISLANDS MAJO 13.31
2012-05-23T15:02:27 41.3569 142.1267 64.1 ISC MW 6.0 HOKKAIDO MAJO 5.70

Table A.2: Earthquakes in the test dataset sorted in order of occurrence

Time Latitude (◦) Longitude (◦) Depth (km) Catalog MagType Magnitude Event Location Station Epicentral distance from station (◦)
2018-11-14T21:21:50 55.6324 162.0008 50.2 NEIC PDE Mww 6.1 NEAR EAST COAST OF KAMCHATKA MA2 7.18
2017-07-26T10:32:57 26.8975 130.1836 12.0 NEIC PDE Mww 6.0 SOUTHEAST OF RYUKYU ISLANDS MAJO 11.81
2016-11-11T21:42:59 38.4973 141.5658 42.4 NEIC PDE mww 6.1 NEAR EAST COAST OF HONSHU MAJO 3.30
2016-10-21T05:07:23 35.3676 133.8148 5.7 NEIC PDE Mww 6.2 WESTERN HONSHU MAJO 3.74
2016-09-20T16:21:16 30.5017 142.0478 9.0 NEIC PDE mww 6.1 SOUTHEAST OF HONSHU MAJO 6.84
2013-12-08T17:24:54 44.4691 149.1330 34.1 ISC MW 6.1 KURIL ISLANDS MAJO 11.46
2013-10-25T17:10:17 37.1457 144.7540 14.7 ISC MW 7.1 OFF EAST COAST OF HONSHU MAJO 5.27
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