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Operational definitions

Active coastal profile: Area extending from the beach berm to closure depth.
Bathymetry: Seafloor topography relative to MHW (m).

Bathymetry (Initial): Seafloor topography (m) observed at the start of a simulation. The initial
bathymetry is the baseline for simulating changes in shoreline morphology.

Bathymetry (Observed): Seafloor topography (m) observed at the end of a simulation. The
observed bathymetry is the baseline for quantifying shoreline evolution prediction accuracy.

Beach berm: Area of the beach mostly above water and actively influenced by waves at some point
in the tide. The beach berm is the inshore extent of the active coastal profile.

Bed friction: Free parameter specifying flow resistance over the model bathymetry. The optimal bed
friction value for modelling shoreline evolution is determined from model calibration, bounded by
physically realistic values of Chow (1959) Manning’s n (m%3/s).

Boundary conditions: Constraints and values of variables required to simulate shoreline evolution
over a defined period. Examples include bathymetry, tides, and waves.

Closure depth: Depth beyond which there is no significant change in bottom elevation and no
significant sediment transport between nearshore and offshore. The closure depth is the offshore
extent of the active coastal profile.

Cross-shore: Perpendicular to the shoreline orientation.

Cross-shore transport: Sediment transport perpendicular to the shoreline orientation.

Discharge coefficient: Ratio between the true and theoretical flow rate.

Edge map: Map dividing the nearshore into strips of shoreface. Each strip is perpendicular to the
shoreline orientation and has one predefined active coastal profile. The edge map assigns each
mesh element to a shoreline edge to facilitate MIKE21 one-line theory morphology update.

Grading coefficient: Dimensionless free parameter describing sediment distribution in the coastal
system. The optimal grading coefficient for modelling shoreline evolution is determined from
model calibration, bounded by physically realistic values defined by Folk and Ward (1957).

Grain size: Free parameter defining the median sand grain size (mm) in the coastal system. The
optimal sand grain size (mm) for modelling shoreline evolution is determined from model
calibration, bounded by physically realistic values defined by Wentworth (1922).

Initial conditions: Information required at the start of a simulation to define all initial model states.
Examples of initial conditions are bathymetry, active coastal profile, and initial shoreline, all of
which form the baseline for simulating shoreline evolution.

Littoral drift: Volume of sand (m3/s) moving past a shoreline edge in the same direction as the
longshore current at any point in a simulation.

Littoral drift (gross): Directionless measure of the total sediment volume (m?3) transported past a
shoreline edge over a defined period.

Littoral drift (net): Difference between the total sediment volume (m3) transported to the right and
left of a shoreline edge over a defined period. Net littoral drift is of primary concern in shoreline
evolution studies because it indicates the predominant direction of sediment transport.

Longshore: Parallel to the shoreline orientation.
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Longshore transport: Sediment transport parallel to the shoreline orientation.

Managed sandy shoreline: A shoreline comprising non-cohesive sediments, stabilised by hard
defences, such as groynes and breakwaters.

MHW: Average of all high-water levels measured over 19 years.

Mean absolute error: Average absolute difference between observed and predicted net shoreline
change.

Mesh: An unstructured grid of triangular elements defining the spatial discretisation for simulating
shoreline evolution.

Mesh independence: A mesh is independent if a change in its discretisation has no significant effect
on net littoral drift and net shoreline change predictions.

Model calibration: Process of adjusting free parameters’ values within known physically realistic
values to obtain the best fit between observed and predicted net shoreline change.

Model optimisation: Identifying the parameter and variable set that produces the best fit between
observed and predicted net shoreline change.

Model performance: A measure of the accuracy of model predictions relative to related observations
(e.g. mean absolute error).

Model sensitivity: Model response to a change in input.

Model verification: A guantitative and objective description of how well a model represents the real
system (e.g. Brier skill score).

Net shoreline change (observed): Difference between initial and observed shoreline position (m).
A negative (positive) net shoreline change indicates erosion (accretion).

Net shoreline change (predicted): Difference between initial and predicted shoreline position (m).
A negative (positive) net shoreline change indicates erosion (accretion).

Nearshore: Area extending from the land boundary to closure depth in the model domain.

Nearshore (Puerto Rico test site): Area extending from the land boundary to seaward boundary of
the coral reef network in the model domain.

Offshore: Area extending from the closure depth to sea boundary in the model domain.

Offshore (Puerto Rico test site): Area extending from the seaward boundary of the coral reef
network to the sea boundary in the model domain.

Parameter: A constant defined before running a simulation (e.g. bed friction and sediment porosity).

Relative sand density: Dimensionless free parameter describing the ratio of the weight of a given
sand volume to the weight of an equal volume of water. Relative sand density is 2.65.

Sea-level rise: Average rise in water level (m) relative to MHW over time.

Sediment porosity: Dimensionless free parameter describing the porosity of sand sediments in the
coastal system. The optimal sediment porosity for modelling shoreline evolution is determined
from model calibration, bounded by physically realistic values defined by Nimmo (2013).

Shields parameter: Dimensionless parameter defining the initiation of sediment motion in the flow.

Shoreface strip: A shoreface strip defines one cross-shore section in the model domain. Each
shoreface strip has a predefined active coastal profile.
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Shoreline: Zero-depth contour in the bathymetry (MHW line).

Shoreline edge: An initial shoreline node that moves shore-normal from a change in littoral drift
gradients.

Shoreline (initial): Zero-depth contour in the initial bathymetry. The initial shoreline is the baseline
for mapping shoreline change.

Shoreline (observed): Zero-depth contour in the observed bathymetry. The observed shoreline is
the baseline for quantifying net shoreline change prediction accuracy.

Shoreline (predicted): Shoreline output (x, y) at the end of a simulation.
Significant wave height: Average height (m) of the highest one-third of waves in a year.
Still water depth: Water depths (m) in the model bathymetry.

Surface elevation: Water levels (m) in the model domain relative to the zero-depth contour in the
model bathymetry at any point in a simulation.

Tide: Water level (m) above or below MHW at any point in time.

Total water depth: Still water depth (m) + surface elevation (m).

Variable: A condition in the model that changes during a simulation, such as tides, waves, and wind.

Wind direction: Air movement direction (deg) at any point in time.

Wind speed: Air movement rate (m/s) at any point in time.

Wave climate: Wave height (m), period (sec), and direction (deg) at any point in time.

Weir coefficient: A function of the gravitational constant and discharge coefficient and geometry of
a hard defence structure. The optimal weir coefficient (m¥?/s) for modelling shoreline evolution is

determined from model calibration, bounded by known physically realistic values defined by
Horton (1906).



01
Introduction and research questions: figures and tables

148



Table 1.1 External forcings associated with each established scale of shoreline evolution (Stive et al., 2002).

Scale Natural forcing Human forcing
= Sediment availability . )
) = Human-induced climate change
= Relative sea-level changes o )
Macro ) ) = Major river regulation
_ , = Differential bottom changes ]
Space dimensions: 2 100 km _ . = Major coastal structures
: . . . . . = Geological setting
Time dimensions: centuries to millennia = Major reclamations and closure
= Long-term climate changes
. ] = Structural coastal (non)management
= Paleomorphology (inherited morphology)
= Relative sea-level changes = River regulation
Meso = Regional climate variations = Coastal structures
Space dimensions: ~ 10 — 100 km = Coastal inlet cycles = Reclamations and closures
Time dimensions: decades to centuries = Sand waves = Coastal (non)management
= Extreme events = Natural resource extraction (subsidence)
Synoptic = Wave climate variations
Space dimensions: ~ 1 -5 km = Surf zone bar cycles
Time dimensions: years to decades = Extreme events = Surf zone structures
Micro = Shore nourishments

Space dimensions: ~10 m — 1 km

Time dimensions: hours to years

U

U

Wave, tide, and surge conditions

Seasonal climate variations
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=== | jdo Beach nourishment Point Lookout nourishment 2014 shoreline (MHW line)

Fig. 2.1 Test site in New York. (a) Location along the United States East Coast. (b) 2012 GeoEye-1 image of the main site features: developed sandy coast, use of groynes
for shoreline stabilisation, shoreline deformations around groynes, concave shoreline in the east and west, and a generally straight shoreline elsewhere. (c) Contour map
illustrating shore-parallel depth contours in the nearshore. Credits: Google Earth (satellite image in a) and LAND INFO Worldwide Mapping (GeoEye-1 image in b).
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Fig. 2.2 Test site in Puerto Rico. (a) Location in the Caribbean region. (b) 2013 orthophoto of the main site features: developed sandy coast, cuspate-cape shoreline, coral
reefs, use of breakwaters and groynes for shoreline stabilisation, and use of seawalls for private property protection. (c) Contour map illustrating a complex planform
morphology in the nearshore, defined by non-parallel depth contours. Credits: DigitalGlobe (satellite image in a) and USGS (orthophoto in b).
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Temporary sand l)‘erm location

2009 shoreline (MHW line)

Fig. 2.3 Test site in Southern California. (a) Location along the United States West Coast. (b) 2013 KOMPSAT-2 image of the main site features: developed sandy coast,
use of groynes and jetties for shoreline management, and a generally straight shoreline, with deformations mainly around groynes. (c) Contour map illustrating shore-parallel
depth contours in the nearshore. Credits: DigitalGlobe (satellite image in a) and LAND INFO Worldwide Mapping (KOMPSAT-2 image in b).
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Fig. 2.4 Each test site’s coastal profile morphology. (a), (b) and (c) show the coastal profile envelope and average coastal profile in the New York (NY), Puerto Rico (PR),
and Southern California (SC) test site, respectively. The coastal profile envelope comprises individual coastal profiles sampled every 15 m longshore. The average coastal
profile is the average of the individual coastal profiles. (d) compares each test site’s average coastal profile morphology.
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Table 2.1 Boundary conditions data for assessing model sensitivity in the New York (NY), Puerto Rico (PR), and Southern California (SC) test site.

Data Time-period Horizontal datum Vertical datum Units Resolution Source

NY: 01-Jan-2014 NY: NCEI (2017a)

. NY; PR:3m
Initial bathymetry PR: 01-Oct-2014 sc: 10 PR: NCEI (2019)

:10m
SC: 01-Jan-2009 SC: NCEI (2017b)
WGS84

NY: 01-Feb-2016 MHW m NY: NOAA (2017b)

NY; PR: 3 m
Observed bathymetry PR: 31-Mar-2016 sc: 1 PR: NOAA (2019)

:1lm
SC: 02-Aug-2011 SC: NOAA (2017a)
Tide NY: NOAA (2017d)
Wind speed m/s NY; PR; SC: 6 min PR: NOAA (2017c)
: N NY: 01-Jan-2014 — 01-Feb-2016 -
Wind direction Not deg SC: NOAA (2017e)
i PR: 01-Oct-2014 — 31-Mar-2016 ] Not
Wave height applicable ] m NY: NDBC (2017a)
_ SC: 01-Jan-2009 — 02-Aug-2011 applicable - NY; PR: 60 min

Wave direction deg ) PR: NDBC (2017b)

- SC: 30 min
Wave period s SC: NDBC (2017c)
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Fig. 2.5 Initial bathymetry data for assessing
model sensitivity in the New York (a), Puerto
Rico (b), and Southern California (c) test site.
(a) and (b) have a spatial resolution of 3 m.
(c) has a spatial resolution of 10 m.
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Fig. 2.6 Tide (a), wind speed (b), wind direction (c), wave height (d), wave direction (e), and wave period (f) time series data for assessing model sensitivity in the New York

test site. The time series data in (a) to (f) are from 01-Jan-2014 to 01-Feb-2016. (a) to (c) are from NOAA (2017d) and have a 6 min resolution. (d) to (f) are from NDBC
(2017a) and have a 60 min resolution.
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Fig. 2.7 Tide (a), wind speed (b), wind direction (c), wave height (d), wave direction (e), and wave period (f) time series data for assessing model sensitivity in the Puerto Rico
test site. The time series data in (a) to (f) are from 01-Oct-2014 to 01-Apr-2016. (a) to (c) are from NOAA (2017c) and have a 6 min resolution. (d) to (f) are from NDBC
(2017b) and have a 60 min resolution.
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Fig. 2.8 Tide (a), wind speed (b), wind direction (c), wave height (d), wave direction (e), and wave period (f) time series data for assessing model sensitivity in the Southern
California test site. The time series data in (a) to (f) are from 01-Jan-2009 to 02-Aug-2011. (a) to (c) are from NOAA (2017e) and have a 6 min resolution. (d) to (f) are from

NDBC (2017c) and have a 30-min resolution.
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Fig. 2.9 Initial bathymetry and tide data for hindcasting meso timescale shoreline evolution (1966 to
2016) in the New York test site. (&) 10 m resolution 1966 coastal relief model of the New York test
site from LAND INFO Worldwide Mapping, the initial bathymetry. (b) 1966 topography map of the
New York test site from the USGS, the source of (a). (c) New York test site 1966 to 2016 tide data
(60 min resolution) and associated relative sea-level rise trend from NOAA (2017d).
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Fig. 2.10 1969 to 2018 tide time series data and associated relative sea-level rise trend for running meso timescale shoreline evolution simulations in the Puerto Rico test

site. The tide data are from NOAA (2017c) and have a 60 min resolution.
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(b)

Mesh with bat‘hymetry Mesh with bat'hymetry

Loop back
Loop back

Fig. 3.1 Computational framework of 2DH (a) and hybrid models (b). The main difference between both model types is the morphology update. (a) shows that 2DH models

update the morphology in the entire domain at each time-step. The change in morphology from one time-step updates the mesh bathymetry for the next time-step to continue
the simulation in 2DH models. (b) shows that hybrid models maintain the same principles but update the morphology within the active coastal profile only.

03 Model selection and approach: Figures and tables 163



Fig. 3.2 Schematic illustration of the one-line theory, modified from Larson et al. (1987). The one-line theory assumes the active coastal profile, defined as the area extending
from beach berm (D,) to closure depth (D,), keeps its shape and moves shore-normal (Ay) from a change in longshore sediment transport gradients (Q).
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Fig. 3.3 Basic premise and the main limitation of the one-line theory equation. (a) shows that shoreline change is a function of the shore-normal movement of the active
coastal profile (D, to D.); sediment gain (loss) from Q shifts the active coastal profile seaward (landward). (b) shows an example of a complicated shoreline configuration: an
undulation with a spit. The shoreline may have three crossings (y;, ¥,, ¥3) in areas with spits for a given x coordinate as in (b). The fixed x, y coordinates in the one-line
theory equation prevent one-line models from simulating longshore growth of spits and shoreline deformations from hard defences. Credits: (b) modified from Kaergaard and
Fredsoe (2013).
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Fig. 3.4 The Bruun Rule model of shoreline retreat, adapted from Bruun (1962). A rise in sea-level (SLR) pushes the active coastal profile (D, to D.) upward and landward.
This translation causes the upper beach to retreat (R), and the eroded material is deposited offshore. The rise in the nearshore bottom from deposition is equivalent to the
increase in sea-level, maintaining a constant water depth offshore.
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Table 3.1 Characteristics and capabilities of shoreline evolution models available. Models that can be applied over meso timescales are highlighted in grey. 1DH is one-
dimensional horizontal, and 2DH is two-dimensional horizontal. Y means capability included, and N means capability not included. C is cohesive, and NC is non-cohesive.

Capability
. -
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& .3 o2 @
— o = o C Q
Q >SS =29 c
= o 9 L = =
Model £ S u2 w O
-+ " g = o EZ @2 s S 2 Reference
o c o = = n O < n
T o s 5 2 T g2 € 2 %
3 @ S o hT == @ (TR
“ S (0] Iy = O = L7 IS ° o
o Q > > S ow LS = o g
£ E S 3 ©v 23 §2 3 8§ o
= & = = F o On O I O
Bruun Rule Macro 2D N N N N Y NC N N Bruun (1962)
CEM Macro 1DH, one-line Y N N N N C; NC Y Y Ashton and Murray (2006a); Pye et al. (2017)
CoastalME Meso 2DH, one-line Y N N N N C; NC Y Y Payo et al. (2017); Pye et al. (2017)
COVE Macro 1DH, two-line Y N N N N C; NC Y Y Hurst et al. (2015); Payo et al. (2017)
CSHORE Micro 1DH, 2DH Y Y N N N NC Y2 N Kobayashi (2016); Pye et al. (2017)
DELFT3D Micro 2DH, 3D Y Y Y Y Y C; NC Y Y Deltares (2016); Pye et al. (2017)
GENESIS Synoptic 1DH, one-line Y N N N N NC Y N Thomas and Frey (2013)
LITPACK Meso 1DH, one-line Y Y Y N N NC Y N Thomas and Frey (2013); DHI (2017a)
MIKE21 Meso 2DH, one-line Y Y Y Y N NC Y Y DHI (2016a); DHI (2016b); DHI (2017b)
TELEMAC2D Micro 2DH Y Y Y Y Y C; NC Y Y Hervouet (2007); Pye et al. (2017)
UnalLinea Meso 1DH, one-line Y N N N N C; NC Y Y Pye et al. (2017); Stripling et al. (2017)
UNIBEST Meso 1DH, one-line Y Y Y N N NC Y Y Roelvink et al. (2012); Thomas and Frey (2013)
XBeach Micro 1DH, 2DH Y Y Y Y Y NC (sand) Y Y Roelvink et al. (2009); Pye et al. (2017)
XBeach-G Micro 1DH Y Y Y Y Y NC (gravel) Y Y McCall et al. (2014); Pye et al. (2017)

1 See Table 1.1 for the definition of each timescale.
2 Low-crested stone structures only.
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Fig. 3.5 MIKE21 framework. MIKE21 SW and MIKE21 HD simulate the wave and flow field on a finite volume mesh, respectively. MIKE21 ST simulates the sediment transport
gradients in response to the wave and flow fields, and MIKE21 SM uses the sediment transport gradients to update the shoreline position at each time-step.
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Fig. 3.6 Finite volume mesh for coastal processes simulations in the New York (a), Puerto Rico (b) and Southern California (c) test site. Each mesh is projected in UTM
coordinates (m) and has two zones: nearshore and offshore. The closure depth separates these zones in the New York and Southern California test sites, whereas the sea
boundary of the reef network separates both zones in the Puerto Rico test site. Each mesh has four boundaries: land, sea, and two connecting boundaries.
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Fig. 3.7 Interpolated nodes in the New York (a), Puerto Rico (b) and Southern California (c) test site’s finite volume mesh. Mesh nodes in (a) to (c) are interpolated with the
relevant initial bathymetry in Fig. 2.5.
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Fig. 3.8 2D planimetric view of the New York (a), Puerto Rico (b), and Southern California (c) test site’s interpolated mesh. The mesh in (a) to (c) are interpolated with the
relevant initial bathymetry in Fig. 2.5. (a) to (c) are raw outputs of MIKE Zero Mesh Generator. Each mesh is projected in UTM coordinates (m).

03 Model selection and approach: Figures and tables 171



Table 3.2 MIKE21 specifications for pre-calibration simulations in each test site. Site-specific
specifications are indicated by the acronyms NY (New York test site), PR (Puerto Rico test site) and

SC (Southern California test site).

Input

Specifications

General

Simulation period (model sensitivity testing only)

Time step interval (output frequency)

01-Jan-2014 to 01-Feb-2016 (NY)
01-Oct-2014 to 31-Mar-2016 (PR)
01-Jan-2009 to 02-Aug-2011 (SC)
86 400 sec (daily)

MIKE21 HD

Coriolis forcing
Courant-Friedrich-Lévy (CFL) number
Density

Manning’s n reciprocal

Maximum time step

Minimum time step

Overtopping discharge?

Smagorinsky coefficient (eddy viscosity)
Wave radiation stresses

Weir coefficient?

Wind forcing

Wind friction (varies based on wind speed)

Varying in domain

0.8

Barotropic

32 m¥3/s

30s

0.01s

0 m3¥/s/m

0.28

Internally transfers from MIKE21 SW
1.838 mY2/s

Wind speed and direction data
0.001255 to 0.002425

MIKE21 ST

Critical Shields parameter
Grading coefficient

Grain diameter

Flow/wave forcing
Maximum bed level change
Porosity

Relative sand density

Time step factor

0.05

11

0.2 mm

Internally transfers from MIKE21 SW
10 m/day

0.4

2.65

1

MIKE21 SW

Current conditions (speed and direction)
Maximum number of iterations
Nikuradse roughness

Reflection coefficient (structures)

Spectral discretisation
Water level conditions

Internally transfers from MIKE21 HD
500
0.04m

0.5 (cross-shore structures in each test site)

1 (longshore structures in PR)
360 degree rose
Internally transfers from MIKE21 HD

MIKE21 SM

Berm height

Closure depth

Maximum number of iterations
Sediment transport gradients

1.14 m (NY); 1.5 m (PR); 2 m (SC)
5.8 m (NY); 5.5 m (PR); 5 m (SC)
500

Internally transfers from MIKE21 ST

1 Used for longshore structures (e.g. seawalls and breakwaters) in the Puerto Rico test site.
2 Used for each test site’s cross-shore structures (e.g. groynes).
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Table 3.3 Calibrated sediment transport table for MIKE21 applications in each test site. The first value,
spacing, and the number of points in each axis define the range of each condition that may appear
during a simulation and influence sediment transport rates in MIKE21 ST. The first value is the
minimum value. The second value in each axis, except grain size, is the “First value + Spacing” and

so forth. The second value for grain size is the “First value x Spacing” and so on.

Sediment table axis First value Spacing  No. of points
New York test site

Current speed (m/s) 0.01 0.8

Wave height (m) 0.19

Wave period (S) 2.35

Wave height to water depth ratio 0.01 10 10
Angle between current and waves (deg) 0 30 12
Median grain size (mm) 0.2 2 8
Sediment grading 1.1 0.15 5
Bed slope (current direction) -0.01 0.7 2
Bed slope (perpendicular to current direction) -0.02 0.7 2
Puerto Rico test site

Current speed (m/s) 0.01 0.8 5
Wave height (m) 0.1

Wave period (s) 3 4

Wave height to water depth ratio 0.01 10 10
Angle between current and waves (deg) 0 30 12
Median grain size (mm) 0.2 2 8
Sediment grading 1.1 0.15 5
Bed slope (current direction) -0.01 0.7 2
Bed slope (perpendicular to current direction) -0.02 0.7 2
Southern California test site

Current speed (m/s) 0.01 1 4
Wave height (m) 0.1

Wave period (s) 3.0 3

Wave height to water depth ratio 0.1 11 10
Angle between current and waves (deg) 0 30 12
Median grain size (mm) 0.2 2 8
Sediment grading 1.1 0.15 3
Bed slope (current direction) -0.01 0.7 2
Bed slope (perpendicular to current direction) -0.02 0.7 2
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Fig. 3.9 MIKE21 representation and definition of hard defences in a simulation. (a), (b) and (c) show
the digitised polylines (with nodes) representing the hard defences in the New York, Puerto Rico,
and Southern California test site, respectively. (a), (b) and (c) also show the spatial distribution of
hard defences in each test site’s finite volume mesh. (d) illustrates how MIKE21 redefines each hard
defence polyline as a selection of mesh element faces in a simulation. MIKE21 considers flow moving
past a hard defence as positive or negative. Positive flow means movement to the left of a hard
defence, whereas negative flow means movement to the right of a hard defence.
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Fig. 3.10 MIKE21 SM domain general setup. MIKE21 SM uses an edge map that divides the shoreface into strips. Each shoreface strip has one active coastal profile and
one shoreline edge. The active coastal profile in each shoreface strip moves with the shoreline edge perpendicular to the baseline, based on the total change in sediment
volume within the strip. The baseline node spacings determine the initial shoreline resolution and each shoreface strip longshore width. The onshore boundary of the edge
map is the baseline, whereas the offshore boundary is the depth contour seaward of the closure depth in the bathymetry.
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Fig. 3.11 General formulation of the Bruun Rule in the New York and Southern California test sites (a), and the Puerto Rico test site (b). D, and L are the same in all transects
in (a) but vary in each transect according to reef substrate distribution in (b). In all cases, | formulate the Bruun Rule in cross-shore transects every 5 m longshore using the
same D, in each transect.
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Table 3.4 Details of all meshes generated in each test site for evaluating MIKE21 sensitivity to nearshore spatial discretisation.

Characteristic Mesh

25 30 35 40 45 50 55 60 65
Nearshore max. element area (m?) 625 900 1225 1600 2025 2500 3025 3 600 4225
Offshore max. element area (m?) 4900 —
Nearshore max. resolution (m) 25 30 35 40 45 50 55 60 65
Offshore max. resolution (m) 70 —
Total nodes
New York test site 21 456 15874 12 035 9684 8 222 7203 6 396 5776 5235
Puerto Rico test site 10 623 7 661 5706 4 425 3648 3089 2717 2430 2191
Southern California test site 6791 5061 3771 3052 2670 2353 2109 1957 1825
Total elements
New York test site 42 154 31085 23 547 18 884 15963 13934 12 323 11116 10 010
Puerto Rico test site 20 878 14 974 11 146 8 625 7071 5953 5209 4635 4 157
Southern California test site 13032 9 646 7172 5755 4994 4 366 3889 3594 3334
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Fig 3.12 The fine, median, and coarse mesh used for evaluating MIKE21 sensitivity to nearshore spatial discretisation in the New York test site. The maximum nearshore
resolution is 25 m in the fine mesh, 45 m in the median mesh, and 65 m in the coarse mesh. Each mesh has a maximum offshore resolution of 70 m and is projected in UTM

coordinates (m).
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Fig. 3.13 The fine, median, and coarse mesh used for evaluating MIKE21 sensitivity to nearshore
spatial discretisation in the Puerto Rico test site. The maximum nearshore resolution is 25 m in the
fine mesh, 45 m in the median mesh, and 65 m in the coarse mesh. Each mesh has a maximum
offshore resolution of 70 m and is projected in UTM coordinates (m).
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Fig. 3.14 The fine, median, and coarse mesh used for evaluating MIKE21 sensitivity to nearshore spatial discretisation in the Southern California test site
nearshore resolution is 25 m in the fine mesh, 45 m in the median mesh, and 65 m in the coarse mesh. Each mesh has a maximum offshore resolution of 70 m and is
projected in UTM coordinates (m).
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Table 3.5 Differences in elevation and slope in the New York test site’s bed surfaces resampled using nearest neighbour (NN) and bilinear interpolation (BI). The p value of
a two-sample Kolmogorov-Smirnov (KS) test indicates whether bed surfaces resampled from NN and Bl are significantly different.

Characteristic Original bathymetry Resampling Resampled bathymetry
Resolution (m) 3 - 9 27 81 90 100 500
. NN -12.46 -12.45 -12.37 -12.19 -12.19 -12.11
Minimum (m) -12.46
BI -12.46 -12.45 -12.36 -12.19 -12.2 -12.12
) NN 8.42 7.89 7.42 5.68 6.25 4.14
Maximum (m) 8.42
BI 8.37 7.89 7.26 5.68 6.27 4.13
) NN -4.28 -4.33 -4.32 -4.11 -4.15 -5.26
Elevation Mean (m) -4.3
Bl -4.29 -4.34 -4.33 -4.11 -4.16 -5.25
o NN 5.2 5.2 5.2 5.17 5.19 5.13
Standard deviation 5.2
Bl 5.2 5.2 5.2 5.17 5.19 5.14
NN
KS test p value - - 1 1 1 1 1 0.997
. NN 0 0 0.01 0.01 0 0.01
Minimum (deg.) 0
BI 0 0 0 0 0 0.01
) NN 15.62 5.21 3.71 5.51 3.89 0.77
Maximum (deg.) 31.48
BI 15.44 5.25 3.73 5.51 3.88 0.77
NN 0.83 0.56 0.44 0.46 0.45 0.32
Slope Mean (deg.) 1.1
BI 0.82 0.55 0.44 0.46 0.45 0.32
o NN 1 0.61 0.52 0.57 0.54 0.21
Standard deviation 1.58
Bl 1 0.61 0.51 0.57 0.54 0.21
NN
KS test p value - - 1 1 1 1 1 0.999
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Table 3.6 Differences in elevation and slope in the Puerto Rico test site’s bed surfaces resampled using nearest neighbour (NN) and bilinear interpolation (Bl). The p value
of a two-sample Kolmogorov-Smirnov (KS) test indicates whether bed surfaces resampled from NN and Bl are significantly different.

Characteristic Original bathymetry Resampling Resampled bathymetry
Resolution (m) 3 - 9 27 81 90 100 500
. NN -50.52 -50.49 -50.67 -49.14 -50.2 -46.7
Minimum (m) -50.52
BI -50.53 -50.49 -50.66 -49.07 -50.2 -46.72
) NN 7.67 7.04 6.93 6.12 5.73 4.83
Maximum (m) 7.87
BI 7.71 7.02 7.02 6.11 5.62 4.77
) NN -12.08 -12.24 -12.66 -12.22 -12.38 -11.13
Elevation Mean (m) -11.98
BI -12.08 -12.24 -12.64 -12.22 -12.38 -11.16
o NN 12.81 12.92 13.21 12.87 13.01 12.06
Standard deviation 12.73
BI 12.8 12.92 13.2 12.87 13.01 12.08
NN
KS test p value - - 1 1 1 1 1 0.314
. NN 0 0.01 0.03 0.03 0.02 0.03
Minimum (deg.) 0
BI 0 0.01 0.02 0.03 0.01 0.03
) NN 25.72 11.06 5.62 5.16 4.72 2.43
Maximum (deg.) 50.59
BI 24.57 10.85 5.59 5.15 4.72 2.44
NN 1.89 1.66 1.35 1.3 1.29 0.96
Slope Mean (deg.) 2.03
BI 1.9 1.66 1.35 1.31 1.29 0.96
o NN 1.76 1.42 111 1.08 1.04 0.77
Standard deviation 2.16
Bl 1.74 1,42 1.11 1.08 1.04 0.77
NN
KS test p value - - 1 1 1 1 1 0.341
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Table 3.7 Differences in elevation and slope in the Southern California test site’s bed surfaces resampled using nearest neighbour (NN) and bilinear interpolation (BI). The p
value of a two-sample Kolmogorov-Smirnov (KS) test indicates whether bed surfaces resampled from NN and Bl are significantly different.

Characteristic Original bathymetry Resampling Resampled bathymetry
Resolution (m) 10 - 27 81 90 100 500
o NN -14.19 -13.78 -14.09 -13.64 -13
Minimum (m) -14.06
BI -14.16 -13.78 -14.12 13.61 -13.01
NN 28.53 28.81 26.26 31.57 21.79
Maximum (m) 31.88
BI 28.6 28 26.19 30.84 21.74
) NN -4.63 -4.16 -5.03 -3.23 -4.08
Elevation Mean (m) -3.98
Bl -4.63 -4.17 -5.02 -3.23 -4.1
o NN 7.92 8.41 7.52 9.37 8.37
Standard deviation 8.57
BI 7.92 8.39 7.53 9.34 8.34
NN
KS test p value - Bl 1 1 1 1 1
o NN 0 0.04 0.02 0.08 0.55
Minimum (deg.) 0
BI 0.03 0.04 0.02 0.08 0.55
) NN 20.21 10.54 9.36 11.32 3.18
Maximum (deg.) 32.8
BI 20.1 10.7 9.35 11.31 3.18
NN 1.88 1.93 1.76 2.1 1.77
Slope Mean (deg.) 2.06
BI 1.88 1.93 1.76 2.1 1.76
o NN 2.25 1.99 1.76 2.1 0.81
Standard deviation 2.8
BI 2.24 1.99 1.76 2.09 0.81
NN
KS test p value - - 0.997 1 1 1 1
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Fig. 3.15 A sample of each tide dataset used for evaluating model sensitivity in the New York (a), Puerto Rico (b), and Southern California (c) test site. All tide datasets
comprise verified tidal levels recorded from site-specific tide gauges, except NOAA tide predictions. NOAA tide predictions are expected tidal levels based on harmonic

constituents (see NOAA (2020) for details).
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Fig. 3.16 A sample of each wind speed dataset used for evaluating MIKE21 sensitivity in the New York (a), Puerto Rico (b), and Southern California (c) test site.
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Fig. 3.17 A sample of each wave height dataset used for evaluating MIKE21 sensitivity in the New York (a), Puerto Rico (b), and Southern California (c) test site.
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Table 3.8 Combinations of tide, wind and wave climate data resolution used for evaluating MIKE21 sensitivity in each test site.

Simulation Tide data resolution (min) Wind data resolution (min) Wave climate data resolution (min)
1 6
2 10
3 20
4 30 1
5 40 6
6 50 !
7 60 )
8 Infrequent (Daily high/low tides) 10
9 06 (NOAA tide predictions) !
10 10
11 20
12 30
13 40
14 1 50
15 6 60
16 ! 20
17 1 30
18 6 40
19 ! 50
20 60
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Table 3.9 Values used for calibrating Manning’s n reciprocal, sand grain diameter, sand porosity, sediment grading coefficient, and the weir coefficient of hard defences.

MIKE21 default values are in bold.

Selected values

Parameter Units Established range Reference
(comments)

n values: 0.02 — 0.035 28, 29, 32, 33, 40, 50

Manning’s n mi3s _ Chow (1959) ) )
n reciprocals: 28 — 50 (Manning’s n reciprocals)
0.0625 — 0.125 (very fine)
0.0125 - 0.25 (fine)

Sand grain diameter mm 0.25 — 0.5 (medium) Wentworth (1922) 0.1,0.2,0.25,0.5,1
0.5 -1 (coarse)
1 -2 (very coarse)

Sand porosity - 0.3-0.7 Nimmo (2013) 0.3,0.4,0.5,0.7
< 1.27 (very well sorted)
1.27 — 1.4 (well sorted)

_ _ o 1.41 — 1.99 (moderately sorted) 1.1,1.3,1.5,and 2

Sediment grading coefficient - Folk and Ward (1957) ) -~
2 —3.99 (poorly sorted) (Maximum range that MIKE21 can facilitate)
4 — 15.99 (very poorly sorted)
= 16 (extremely poorly sorted)
0.11 — 0.27 (Lateral structure)

) o 0.3 - 1.71 (Broad crested structure)
Weir coefficient my2/s Horton (1906) 0.11, 0.55, 0.77, 0.99, 1.21, 1.44, 1.82, 1.838, 2.21

1.77 — 2.26 (Ogee crested structure)
1.71 — 1.82 (Sharp crested structure)
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Fig. 3.18 The New York test site’s 1966, 2014 and 2016 average coastal profile. The average coastal profile is the average of individual cross-shore profiles sampled every
15 m longshore. Negative (positive) values on the x axis are distances landward (seaward) of the shoreline (zero-depth contour).
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(a)

! Tide time

Independent mesh discretisation
+Interpolated with Long Beach Barrier
Island 1966 bathymetry.

series

MIKE21 HD specifications
+Tides forced at sea boundary.
+Connecting boundaries closed because

of no data for the Flather condition.
+Calibrated values of Manning's n
reciprocal, and weir coefficient.
« All other inputs defined in Table 3.2.

Fig. 3.19 Experimental setup of RQ2 hindcast one (a), two (b), three (c), four (d), and five (e). These
are all meso timescale hindcast simulations of shoreline evolution carried out in the New York test
site (01-Jan-1966 to 01-Jan-2016) for establishing a method that incorporates a time-varying closure

Key output

Flather data for RQ2 hindcasts
two to five

*Free surface elevation

«Current velocity in x, y direction

i Wave climate |
time series i

Water levels

Tidal currents

Radiation stresses
—

L—— Current velocity —

MIKE21 SW specifications
*Waves forced at sea boundary.
*Connecting boundaries defined as

lateral wave boundaries.
+ All other inputs defined in Table 3.2.

Wave climate

|

MIKE21 ST specifications
*All boundaries, except land boundary,
defined as zero gradient boundaries.
- Calibrated values of sediment grain size,
porosity, and grading coefficient.
+ All other inputs defined in Tables 3.2 and
3.3.

Sediment transport gradients

MIKE21 SM specifications
*Morphology update in area extending from
beach berm to closure depth in the 1966
bathymetry.
«Berm height: 1.14 m above MHW.
+Closure depth: 4.2 m below MHW.

Loop back (Output frequency: daily)

depth in hybrid models.
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(b)

Flather data from
RQ2 hindcast one

Independent mesh discretisation
*Interpolated with Long Beach Barrier
Island 1966 bathymetry.

| Tide time
i series

é A

MIKE21 HD specifications
*Tides forced at sea boundary.
*Flather (1976) condition applied along
connecting boundaries.
+Calibrated wvalues of Manning's n
reciprocal and weir coefficient.
+All other inputs defined in Table 3.2.

i Wave climate

Water levels

Tidal currents

Radiation stresses

MIKE21 SW specifications
+Waves forced at sea boundary.
+Connecting boundaries defined as

lateral wave boundaries.
+All other inputs defined in Table 3.2.

A 4

Wave climate

r Current velogity  —

3.3

MIKE21 ST specifications
+All boundaries, except land boundary,
defined as zero gradient boundaries.
+Calibrated values of sediment grain size,
porosity, and grading coefficient.
+ All other inputs defined in Tables 3.2 and

Sediment transport
gradients

Predicted 2016 shoreline
(Based on current MIKE21 principles)

*Baseline to determine if a time-varying closure depth
improves mesoscale shoreline evolution predictions.

l Key
output

Fig. 3.19 (continued)
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MIKE21 SM specifications
*Morphology update in area extending from
beach berm to closure depth in the 1966
bathymetry.
+Berm height: 1.14 m above MHW.
+Closure depth: 4.2 m below MHW.

Loop back (Output frequency: daily)
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(c)

Independent mesh discretisation

+Interpolated with a modified bathymetry (x,y from Long Beach
Barrier Island 1966 bathymetry, and z from its 2014 bathymetry). |«
The modified bathymetry shifts the 2014 coastal profiles back to
their 1966 position, according to the one-line theory.

| Tide ime .
Seres i Wave climate |
time series i
r A r
A 4 A
Water levels
MIKE21 HD specifications _
*Tides forced at sea boundary. Tidal currents MIKE21 SW specifications

*Flather (1976) condition applied along

connecting boundaries.
+Calibrated values of Manni
reciprocal and weir coefficient.

+All other inputs defined in Table 3.2.

Radiation stresses
—

Waves forced at sea boundary.
+Connecting boundaries defined as
ng’s n lateral wave boundaries.

+All other inputs defined in Table 3.2.

¥

Wave climate

r Current velocity

MIKE21 ST specifications
*All boundaries, except land boundary,
defined as zero gradient boundaries.
«Calibrated values of sediment grain size,
porosity, and grading coefficient.
*Table 3.2 defines all other inputs.
+« All other inputs defined in Tables 3.2 and
3.3

Sediment transport
gradients

Predicted 2016 shoreline

(Based on one-line theory principles) ‘ Key
*Baseline to determine if a time-varying closure depth
improves mesoscale shoreline evolution predictions.

output

Fig. 3.19 (continued)

MIKE21 SM specifications

+Morphology update in area extending from
beach berm to closure depth in the modified
bathymetry.

+Berm height: 1.14 m above MHW.

+Closure depth: 6 m below MHW.
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(d)

Wind time series

Flather data from
RQ2 hindcast one

Independent mesh discretisation

=Interpolated with the modified bathymetry used
in RQ2 hindcast three.

4

! Tide time
! series i

egm et

r v A

i Wave climate i
i time series

+Tides forced at sea boundary.

connecting boundaries.
+Calibrated
reciprocal and weir coefficient.

MIKE21 HD specifications
*Flather (1976) condition applied along
values of Manning’s n

+All other inputs defined in Table 3.2.

Water levels

Tidal currents

Radiation stresses
B

MIKE21 SW specifications
+\Waves forced at sea boundary.
+Connecting boundaries defined as

lateral wave bhoundaries.
+All other inputs defined in Table 3.2.

Wave climate

h 4

|7 Current velocity

MIKE21 ST specifications
*All boundaries, except land boundary,
defined as zero gradient boundaries.
«Calibrated values of sediment grain size,
porosity, and grading coefficient.
+All other inputs defined in Tables 3.2 and
3.3.

Sediment transport
gradients

(1966 to 2016)

Annual mesh bathymetry outputs

+Computational basis to facilitate RQ2 hindcast five.

' Key output

Fig. 3.19 (continued)

MIKE21 SM specifications

*Morphology update over entire
bathymetry.

mesh
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Wind time series

v

Flather data from

RQ2 hindcast one | Independent mesh discretisation
*Annual hindcast simulation one: Interpolated with the modified
bathymetry used in RQ2 hindcast three.
*Annual hindcast simulations two to 50: Interpolated with the
relevant mesh bathymetry output from RQ2 hindcast four.

connecting boundaries.

reciprocal and weir coefficient.
« All other inputs defined in Table 3.2.

Current
velocity

MIKE21 ST specifications
-All boundaries, except land boundary,
defined as zero gradient boundaries.
+Calibrated values of sediment grain size,
porosity, and grading coefficient.
« All other inputs defined in Tables 3.2 and
3.3.

+Calibrated values of Manning's n Radiation stresses lateral wave boundaries.
M——

Sediment transport gradients

Tide time :
series Wave climate
; ........................ t|rr|e senes H
v v A

¥

MIKE21 HD specifications

*Tides forced at sea boundary. Water levels MIKE21 SW specifications
+Flather (1976) condition applied along Tidal currents *Waves forced at sea boundary.

=Connecting boundaries defined as

* All other inputs defined in Table 3.2.

Key output

v

Nearshore significant wave
heights data
+Obtained from each annual
simulation to define a new
closure depth for the next annual

simulation.

Wave climate

Predicted 2016 shoreline
(Based on a time-varying closure depth)
*For comparison against the predicted 2016
shorelines from RQ2 hindcasts two and three, to
address research question two.

Ke$utpul

Fig. 3.19 (continued)
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MIKE21 SM specifications

*Annual hindcast simulation one: Morphology update in
area extending from beach berm (1.14 m) to closure
depth (6 m) in the maodified bathymetry.

«Annual hindcast simulations two to 50: Morphology
update in area extending from beach berm (1.14 m) to
closure depth estimated using nearshore significant
wave heights from the preceding annual simulation.

Loop back {Output frequency: daily)
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MIKE21 SM
domain one

MIKE21 SM
domain three

MIKE21 SM domain two

MIKE21 SM domain four

| T T
MIKE21 SM
domain five

T T ‘ T
MIKE21 SM
domain six

MIKE21 SM

domain seven

Closure depth (D ) (m)

| | | | | | | |
100 200 300 400 500 600 700
Shoreface strips (5 m longshore width) from west to east

Fig. 3.20 Experimental setup of RQ3 hindcast two. This simulation iteratively hindcasts shoreline evolution in the Puerto Rico test site using a longshore varying closure depth
(D.). The seven MIKE21 SM domains in Fig. 3.20 represent seven (iterative) individual simulations that comprise RQ3 hindcast two. | use the same mesh and specifications
for MIKE21 SW, MIKE21 HD and MIKE21 ST in each iterative simulation but apply MIKE21 SM to a continuous coastal stretch with a common depth contour landward of
reefs.
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Table 3.10 Summary of each MIKE21 simulation carried out for addressing research questions one to four. RQ is research question, NY is the New York test site, PR is the
Puerto Rico test site, SC is the Southern California test site, and intrpl is interpolation. Simulations 1 to 57 are carried out in each test site unless otherwise stated. Simulations
58 to 65 are carried out in the New York test site only. Simulations 66 to 71 are carried out in the Puerto Rico test site only. In each simulation, | force tides and waves at the
sea boundary, keep the connecting boundaries open unless otherwise stated, and use the specifications in Tables 3.2 and 3.3 for all inputs not specified in Table 3.10.

Simulation Test site RQ Defining specification(s) Fixed specification(s) Details
1 Nearshore spatial discretisation: 25 m
2 Nearshore spatial discretisation: 30 m
3 Nearshore spatial discretisation: 35 m )
4 f ! Nearshore spat!al d!scret!sat!on: 40m e Mesh intrpl with relevant bathy. data in Fig. 2.5. Section
5 NY; PR; SC One Nearshore spatial discretisation: 45 m ) T

- S ¢ Relevant coastal processes time series in Figs. 2.6 to 2.8. 3.6.1
6 l ! Nearshore spatial discretisation: 50 m
7 Nearshore spatial discretisation: 55 m !
8 Nearshore spatial discretisation: 60 m
9 Nearshore spatial discretisation: 65 m
10 NY; PR Mesh intrpl with resampled bathy. (9 m)
11 NY; PR; SC Mesh intrpl with resampled bathy. (27 m) 0
12 NY; PR; SC OLe Mesh intrpl with resampled bathy. (81 m) e Independent mesh discretisation. Section
13 NY; PR; SC Mesh intrpl with resampled bathy. (90 m) ¢ Relevant coastal processes time series in Figs. 2.6 to 2.8. 3.6.2
14 NY; PR; SC ! Mesh intrpl with resamp. bathy. (100 m) !
15 NY; PR; SC Mesh intrpl with resamp. bathy. (500 m)
16 Resampled tide time series (10 min)
17 Resampled tide time series (20 min)
18 1 1 Resampled t!de t!me ser!es (30 m?n) e Independent mesh discretisation intrpl with relevant T_
19 NY: PR: SC  One Resampled tide time series (40 min) bathy. data in Fig. 2.5. Section
20 Y Resampled tide time series (50 min) , o 3.6.3
21 ! l Resampled tide time series (60 min) ¢ Relevant coastal processes time series in Figs. 2.6 to 2.8. !
22 Daily high/low tide time series
23 NOAA tide predictions (6 min)
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Simulation Test site RQ Defining specification(s) Fixed specification(s) Details
24 Resampled wind time series (10 min)
25 Resampled wind time series (20 min . L :
T 1 > L . ( . ) Independent mesh discretisation intrpl with relevant T.
26 NY: PR: SC  One Resampled wind time series (30 min) bathv. data in Fig. 2.5 Section
27 ' . ' . Resampled wind time series (40 min) . y: . . Ig h . s o B A 3.6.3
28 S e e SerEs [0 ) elevant coastal processes time series in Figs. 2.6 to 2.8. !
29 Resampled wind time series (60 min)
30 NY; PR; SC Resamp. wave climate time series (10 min)
31 NY; PR; SC Resamp. wave climate time series (20 min) . L , . T
0 ) ) ) ) Independent mesh discretisation intrpl with relevant )
32 NY; PR Resamp. wave climate time series (30 min) - Section
One . . . . bathy. data in Fig. 2.5.
33 NY; PR; SC | Resamp. wave climate time series (40 min) Rel ) tal i e in Figs. 2.6 to 2.8 3.6.3
34 NY; PR; SC Resamp. wave climate time series (50 min) elevant coastal processes time series In Figs. £.610 <.6. l
35 SC Resamp. wave climate time series (60 min)
36 Manning’s n reciprocal: 29 m3/s . N , . i)
) ) o . Independent mesh discretisation intrpl with relevant .
37 T T Manning’s n reciprocal: 33 m3/s bathy. datalin Fig. 2.5 Section
38 ' . ' | Manning’s n reciprocal: 40 m3/s o y: . . ? e . s e D D 3.6.4
39 e ineTe i e 0 s elevant coastal processes time series in Figs. 2.6 to 2.8. |
40 Sand grain diameter: 0.1 mm Independent mesh discretisation intrpl with relevant )
41 NY: PTR' sC OLe Sand grain diameter: 0.25 mm bathy. data in Fig. 2.5. Section
42 ' . ' | Sand grain diameter: 0.5 mm Relevant coastal processes time series in Figs. 2.6 to 2.8. 3.6.4
43 Sand grain diameter: 1 mm Calibrated Manning’s n reciprocal. !
) Independent mesh discretisation intrpl with relevant )
44 1 1 Sand porosity: 0.3 - .
. bathy. data in Fig. 2.5. Section
45 NY; PR; SC One Sand porosity: 0.5 _ L
. Relevant coastal processes time series in Figs. 2.6 to 2.8. 3.6.4
46 l ! Sand porosity: 0.7 ) ) i A
Calibrated Manning’s n recip. and sand grain diameter. !
) ) . Independent mesh discretisation intrpl with relevant 1
a7 1 1 Sediment grading coefficient: 1.3 - .
) ) . bathy. data in Fig. 2.5. Section
48 NY; PR; SC One Sediment grading coefficient: 1.5 . L
. . - Relevant coastal processes time series in Figs. 2.6 to 2.8. 3.64
49 l ! Sediment grading coefficient: 2.0 ) ) i o
Calibrated Manning’s n recip., sand grain dia., and por. !
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Simulation Test site RQ Defining specification(s) Fixed specification(s) Details
50 Weir coefficient: 0.11 m¥2/s
51 Weir coefficient: 0.55 m¥2/s . I ) :
= Weir coefficient: 0.77 mY2/s e Independent mesh discretisation intrpl with relevant N
1 1 . N " bathy. data in Fig. 2.5. _
>3 NY:PR; SC One Vel coefficient 0.99 m™s Relevant coastal pr finesenes o z6mee .
[ ]
54 ’ . ' . Weir coefficient: 1.21 m¥2/s CeI'T) at :Ol\jsa _p cfcesses_ esle es . g_s. d 0% 364
55 Weir coefficient: 1.44 mY2/s e Calibrate ! anning’s n remprocg, san gr.aln iameter, !
56 Weir coefficient: 1.82 m¥2/s sand porosity, and sediment grading coefficient.
57 Weir coefficient: 2.21 m2/s
e Mesh intrpl with 1966 bathy. (Fig. 2.9a).
. 4.2 I h.
58 (RQ2 hindcast one) * me (?sure dept . ]
e Connecting boundaries closed in
MIKE21 HD (no Flather data). Period: 01-Jan-1966 to 01-Feb.2016
. « Mesh intrpl with 1966 bathy. (Fig. 2.9a). o 00 D= -an=29bb 10 La-reb:
59 (RQ2 hindcast two) N N « 2.2 m closure depth ¢ Independent mesh discretisation. 1
' ' ide ti ies in Fig. 2.9c. Section
NY Two e Mesh intrpl with x,y from 1966 bathy., ) \-:\I/?:dt:r]:j S\;veazlveesclﬂr:ﬁezti:; series in Fig. 2.6 3 8I1
b . . . . .
60 (RQ2 hindcast three) ! ! and z from 2014 bathy (modified bathy.). . i i g o
6 m closure depth e Calibrated Manning’s n reciprocal, sand grain diameter, I
[ ] .
Mosh 1 l 'fh Sified bath sand porosity, and sediment grading coefficient.
e Mesh intrpl with modified bathy.
61 (RQ2 hindcast four) e Closure depth: most seaward depth in
mesh bathy.
62 (RQ2 hindcast five) e Annual closure depth variations.
63 (RQ2 forecast one) e Mesh intrpl with 2014 bathy. (Fig. 2.5a). e Period: 01-Jan-2014 to 01-Jan-2064
e 5.8 m closure depth. ¢ Independent mesh discretisation. N
1 0 e Mesh intrpl with 2014 bathy. (Fig. 2.5a). e Tide time series in Fig. 2.9c superimposed with a sea- Section
64 (RQ2 forecast two) NY Two e Closure depth: most seaward depth in level rise of 0.28 m*. 383
Iy ! 2014 bathy. e Wind and wave climate time series in Fig. 2.6. o
e Calibrated Manning’s n reciprocal, sand grain diameter l
65 (RQ2 forecast three) e Annual closure depth variations. . . - . ’
sand porosity, and sediment grading coefficient.
03 Model selection and approach: Figures and tables 198



Simulation Test site RQ Defining specification(s) Fixed specification(s) Details
. e Mesh intrpl with 2014 bathy. (Fig. 2.5b). e Period: 10-Oct-2014 to 31-Mar-2016
66 (RQ3 hindcast one) . — T
1 1 e 5.5 m closure depth. ¢ Independent mesh discretisation. Section
PR Three e Tide, wind, and wave climate time series in Fig. 2.7. 301
67 (RQ3 hindcast two): ! 1 e Space varying closure depth. e Calibrated Manning’s n reciprocal, sand grain diameter, .l.
sand porosity, and sediment grading coefficient.
e Mesh intrpl with 2014 bathy. (Fig. 2.5b).
e 5.5 m closure depth.
68 (RQ4 forecast one) i > , . Period: 10-Oct-2014 to 10-Oct-2064
e Connecting boundaries closed in ind q hdi o
MIKE21 HD. o 1[1'dep(.en ent r.nes. 'lzs.cre;slaotlon. ' i N
PTR F(Iur e Mesh intrpl with 2014 bathy. (Fig. 2.5b). I I el t!me ?3”262 m* '9. 2.10 superimposed with a sea- Section
evel rise of 0.28 m*.
69 (RQ4 forecast two) e Closure depth: most seaward depth in , , , L 3.10
l ! 2014 bathy e Wind and wave climate time series in Fig. 2.7. !
' Calibrated Manning’s n reciprocal, sand grain diameter,
70 (RQ4 forecast three) ¢ Time and space-varying closure depth. . . n 5 . g .
- - sand porosity, and sediment grading coefficient.
e Mesh intrpl with 2014 bathy. (Fig. 2.5b).
71 (RQ4 forecast four)
e 5.5 m closure depth.
*|PCC global median sea-level rise projection for 2046 to 2065 (Church et al., 2013).
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Table 3.11 Summary of each Bruun Rule simulation carried out for addressing research questions one to four. RQ is research question, NY is the New York test site, PR is
the Puerto Rico test site, SC is the Southern California test site, L is the distance between beach berm (D,) and closure depth (D.), and SLR is sea-level rise.

Simulation Test site RQ Defining specification(s) Fixed specification(s) Details
1 NY; PR; SC L estimated from relevant bathy. data in Fig. 2.5
2 NY; PR L estimated from resampled bathy. (9 m) ) i
. Relevant period and D,, in Table 3.2. 1
3 NY; PR; SC 1 L estimated from resampled bathy. (27 m) ) )
_ _ . Relevant D, in Table 3.2 (NY; SC). Section
4 NY; PR; SC One L estimated from resampled bathy. (81 m) D varies in PR based on reef distribution 3.6.2
5 NY; PR; SC ! L estimated from resampled bathy. (90 m) ¢ _ _ ' o
. SLR based on relative sea-level rise rate. l
6 NY; PR; SC L estimated from resampled bathy. (100 m)
7 NY; PR; SC L estimated from resampled bathy. (500 m)
Relevant period and D,, in Table 3.2. N
8 0 1 SLR based on unadjusted tide data. Relevant D, in Table 3.2 (NY; SC). Section
9 NY; PR; SC One SLR based on seasonally adjusted tide data. D, varies in PR based on reef distribution. 3.6.3
10 ! l SLR based on NOAA tide predictions. L based on D, and D, contours in relevant bathy. .l.
data in Fig. 2.5.
1 Period: 01-Jan-1966 to 01-Jan-2016 Section
, ) NY Two L and D, derived from 1966 bathy. (Fig. 2.9a). Dy is 1.14 m above MHW.
(RQ2 hindcast six) ) 3.8.2
SLR based on NY sea-level rise rate (0.004 m yr?).
12 Period: 01-Jan-2014 to 01-Jan-2064 Section
NY Two L and D, derived from 2014 bathy. (Fig. 2.5a). D, is 1.14 m above MHW.
(RQ2 forecast four) ) 3.8.3
SLR is 0.28 m*
13 Period: 10-Oct-2014 to 31-Mar-2016 Section
. PR Three ) f o D, is 1.5 m above MHW.
(RQ3 hindcast three) L and D, varies based on reef distribution in 2014 ) 3.9.2
bathy. (Fig. 2.5b) SLR based on PR sea-level rise rate (0.002 m yr?).
athy. (Fig. 2.5b).
y- e Period: 10-Oct-2014 to 10-Oct-2064 _
14 PR Four ! D, is 1.5 m above MHW Section
(RQ4 forecast five) b= ' 3.10
SLR is 0.28 m*
* [PCC global median sea-level rise projection for 2046 to 2065 (Church et al., 2013).
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Net shoreline change residuals (m)

_40 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
0 25 50 75 100 125 150 175 200 225 250
Distance from groyne (m)

Fig. 4.1 MIKE21 net shoreline change residuals relative to groynes’ distance in the New York test site. Net shoreline change residuals above are the difference between net
shoreline change observed and predicted from 01-Jan-2014 to 01-Feb-2016. The take-home message from this figure is that the largest residuals occur at or near groyne
locations in the New York test site as MIKE21 ignore the bed features over which the active coastal profile migrates.
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(a) Nearshore spatial discretisation (b) Bathymetry data resolution (c) Tide data resolution (d) Tide data

0.5
7]
7]
m Q. ®
0.1
0
25 30 35 40 45 50 55 60 65 9 27 81 90 100 500 6 10 20 30 40 50 60 HL Pred6 unadjusted seasonally adjusted predictions
Nearshore discretisation (m) Bathymetry data resolution (m) Tide data resolution {min) Tide data
(e) Wind data resolution (f) Wave climate data resolution (g) Manning's n reciprocal (h) Sand porosity
0.5 0.5
4 & & 4 L &
]
()]
m Q.
X 0.1
0 0 1]
6 10 20 30 40 50 B0 10 20 30 40 50 B0 29 32 33 40 50 0.3 0.4 0.5 0.7
Wind data resolution (min) Wave climate data resolution (min) Manning's n reciprocal (m "'/s) Sand porosity
(i) Sand grain diameter (i) Sediment grading coefficient (k) Weir coefficient . BSS classification
0.5 0.5 0.5 05 Excellent model performance
Good model performance
0.2
w 1] (7] 7]
7] 7] @ 9] Reasonable model performance
m Q.2 m Q. mQ.2 m
0.1 0.1 0.1
4] 0 0
0.1 0.2 0.25 0.5 1 1.1 13 15 2.0 0.11 0.55 0.77 0.99 1.21 1.44 1.82 1.84 2.21
Sand grain diameter (mm) Sediment grading coefficient Weir coefficient (m''?/s) — @— MIKE21 —@— Bruun Rule

Fig. 4.2 Brier Skill Scores (BSS) estimated from net shoreline change predictions (01-Jan-2014 to 01-Feb-2016) in response to boundary conditions in the New York test site.
In (c), HL is daily high/low tide data, and Pred6 is NOAA tide predictions (6 min intervals). In (d), unadjusted is observed tide levels, seasonally adjusted is observed tide
levels without the regular seasonal fluctuations in meteorological conditions, and predictions are NOAA calculations of expected tide levels. BSS values < 0 in (c), (i), and (j)
are scaled to fall within 0 to -0.1 to better illustrate changes in model accuracy in response to boundary conditions.
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Table 4.1 Summary of net shoreline change (01-Jan-2014 to 01-Feb-2016) observed and predicted in response to boundary conditions in the New York test site. M is MIKE21,
B is the Bruun Rule, MNC is mean net change, MAC is mean absolute change, MAE is mean absolute error, and BSS is Brier Skill Score. All bolded Kruskal-Wallis p values
are less than the 5% significance level, indicating significant differences between net shoreline change predictions. Other bold highlights show samples of net shoreline
change predictions significantly different from other samples, based on a Dunn’s test. Appendix A contains all spatial distribution plots of net shoreline change associated
with statistics in Table 4.1, excluding those incorporated in this chapter.

Input Specification MNC (m) MAC (m) MAE (m) BSS Kruskal-Wallis
Observed net shoreline change - -0.01 1.16 - - -

25 -0.15 0.87 1.17 0.36

30 -0.19 0.87 1.15 0.36

35 -0.18 0.88 1.15 0.39

40 -0.17 0.89 1.2 0.33
Nearshore spatial discretisation (m) 45 -0.17 0.88 1.2 0.38 p =0.863

50 -0.19 0.96 1.24 0.24

55 -0.18 1.01 131 0.15

60 -0.2 1.17 14 -0.02

65 -0.21 1.11 141 0.03

3 -0.17 (M); -0.32 (B)  0.88(M); 0.32(B) 1.2(M); 1.18 (B) 0.38 (M); 0.19 (B)

9 -0.17 (M); -0.32 (B)  0.87 (M); 0.32(B) 1.2(M); 1.18 (B) 0.38 (M); 0.19 (B)

27 -0.16 (M); -0.32 (B)  0.86 (M); 0.32(B) 1.2 (M); 1.18 (B) 0.37 (M); 0.19(B) p=0.631(M)
Bathymetry data resolution (m) 81 -0.18 (M); -0.33(B)  0.87(M); 0.33(B) 1.2 (M); 1.18 (B) 0.36 (M); 0.18 (B) p <0.0001 (B)

920 -0.17 (M); -0.33(B) 0.86 (M); 0.33(B) 1.19 (M); 1.18 (B)  0.37 (M); 0.18 (B)

100 -0.19 (M); -0.33(B) 0.86 (M); 0.33(B) 1.18 (M); 1.18 (B)  0.37 (M); 0.18 (B)

500 -0.2 (M); -0.55 (B) 0.82 (M); 0.55(B) 1.09 (M); 1.24 (B)  0.44 (M); 0.13 (B)

6 -0.17 0.88 1.2 0.38

10 -0.17 0.88 1.2 0.38

20 -0.17 0.88 1.2 0.38

30 -0.17 0.88 1.2 0.38
Tide data resolution (min): MIKE21 40 -0.17 0.88 1.2 0.38 p = 0.008

50 -0.17 0.88 1.2 0.37

60 -0.17 0.87 1.2 0.38

Daily high/low -0.12 0.97 1.29 0.21

NOAA predictions -0.02 1.21 1.51 -0.35
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Input Specification MNC (m) MAC (m) MAE (m) BSS Kruskal-Wallis
Observed net shoreline change - -0.01 1.16 - - -
Unadjusted -0.31 0.31 1.18 0.19
Tide data: Bruun Rule Seasonally adjusted -0.32 0.32 1.18 0.19 p <0.0001
NOAA predictions 0.02 0.02 1.16 0
6 -0.17 0.88 1.2 0.38
10 -0.17 0.88 1.2 0.38
20 -0.18 0.88 1.2 0.38
Wind data resolution (min) 30 -0.17 0.88 1.2 0.38 p=1
40 -0.17 0.88 1.2 0.38
50 -0.17 0.88 1.2 0.38
60 -0.18 0.88 1.2 0.38
10 -0.17 0.88 1.2 0.38
20 -0.17 0.88 1.2 0.38
. . . 30 -0.17 0.88 1.2 0.38
Wave climate data resolution (min) 40 017 0.88 12 038 p=1
50 -0.17 0.88 1.2 0.38
60 -0.17 0.88 1.2 0.38
29 -0.17 0.83 1.16 0.41
32 -0.17 0.88 1.2 0.38
Manning’s n reciprocal (m3/s) 33 -0.17 0.89 1.2 0.38 p=0.573
40 -0.17 1.16 1.47 0.01
50 -0.21 1.26 1.56 -0.05
0.3 -0.17 0.79 1.13 0.44
. 0.4 -0.17 0.83 1.16 0.41
Sand porosity 0.5 0.17 0.89 1.2 0.37 p =007
0.7 -0.16 1.19 1.45 0.1
0.1 0.46 11.85 11.78 -73.66
0.2 -0.17 0.79 1.13 0.44
Sand grain diameter (mm) 0.25 -0.16 0.75 1.1 0.46 p <0.0001
0.5 -0.17 0.66 1.05 0.49
1 -0.19 0.62 1.02 0.51
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Input Specification MNC (m) MAC (m) MAE (m) BSS Kruskal-Wallis
Observed net shoreline change - -0.01 1.16 - - -
1.1 -0.17 0.79 1.13 0.44
. : - 1.3 -0.15 0.97 1.27 0.31
Sediment grading coefficient 15 0.15 141 164 021 p=0.124
2 1.71 43.33 43.32 -1 169.67
0.11 -0.16 0.76 1.49 0.46
0.55 -0.16 0.76 1.48 0.46
0.77 -0.16 0.76 1.48 0.46
0.99 -0.16 0.76 1.48 0.46
Weir coefficient (m?2/s) 1.21 -0.16 0.76 1.49 0.46 p=1
1.44 -0.17 0.77 1.51 0.45
1.82 -0.17 0.79 1.52 0.44
1.838 -0.17 0.79 1.52 0.44
2.21 -0.16 0.82 1.56 0.41
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Fig. 4.3 Net shoreline change (01-Jan-2014 to 01-Feb-2016) observed and predicted in response to coarsening nearshore spatial discretisation in the New York test site.
Vertical dashed lines indicate groyne locations. MNC is mean net change, MAC is mean absolute change, MAE is mean absolute error, and BSS is Brier Skill Score. Note
the difference in y axis in (i) and (j). Net shoreline change observed and predicted in groyne transects are excluded from the above plots and statistics.
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Fig. 4.4 Net shoreline change (01-Jan-2014 to 01-Feb-2016) observed and predicted in response to coarsening bathymetry data in the New York test site. Vertical dashed
lines indicate groyne locations. MNC is mean net change, MAC is mean absolute change, MAE is mean absolute error, and BSS is Brier Skill Score. Note there is a separate
y axis for MIKE21 and the Bruun Rule predictions in (b) to (h). Net shoreline change observed and predicted in groyne transects are excluded from the above plots and
statistics.
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Fig. 4.5 Coarsening bathymetry data effects on the New York
test site’s average coastal profile.
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Fig. 4.6 Net shoreline change (01-Jan-2014 to 01-Feb-2016) observed and predicted from MIKE21 in response to tide data resolution in the New York test site. Vertical
dashed lines indicate groyne locations. MNC is mean net change, MAC is mean absolute change, MAE is mean absolute error, and BSS is Brier Skill Score. Note the
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Fig. 4.7 Net shoreline change (01-Jan-2014 to 01-Feb-2016) observed and predicted from the Bruun Rule in response to SLR estimations from different tide datasets in the
New York test site. Vertical dashed lines indicate groyne locations. MNC is mean net change, MAC is mean absolute change, MAE is mean absolute error, and BSS is Brier
Skill Score. Note the differences in y axis. Net shoreline change observed and predicted in groyne transects are excluded from the above plots and statistics.
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(a) Nearshore spatial discretisation (b) Bathymetry data resolution (c) Tide data resolution (MIKE21) (d) Tide data (Bruun Rule)
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Fig. 4.8 Brier Skill Scores (BSS) estimated from net shoreline change predictions (10-Oct-2014 to 31-Mar-2016) in response to boundary conditions in the Puerto Rico test
site. In (c), HL is daily high/low tide data, and Pred6 is NOAA tide predictions (6 min intervals). In (d), unadjusted is observed tide levels, seasonally adjusted is observed
tide levels without the regular seasonal fluctuations in meteorological conditions, and predictions are NOAA calculations of expected tide levels. BSS values < 0 in (i) and (j)
are scaled to fall within 0 to -0.2 to better illustrate changes in model accuracy in response to boundary conditions.
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Table 4.2 Summary of net shoreline change (10-Oct-2014 to 31-Mar-2016) observed and predicted in response to boundary conditions in the Puerto Rico test site. M is
MIKE21, B is the Bruun Rule, MNC is mean net change, MAC is mean absolute change, MAE is mean absolute error, and BSS is Brier Skill Score. All bolded Kruskal-Wallis
p values are less than the 5% significance level, indicating significant differences between net shoreline change predictions. Other bold highlights show samples of net
shoreline change predictions significantly different from other samples, based on a Dunn’s test. Appendix A contains all spatial distribution plots of net shoreline change
associated with statistics in Table 4.2, excluding those incorporated in this chapter.

Input Specification MNC (m) MAC (m) MAE (m) BSS Kruskal-Wallis
Observed net shoreline change - 3.22 5.03 - - >

25 0.13 1.18 5.17 -0.05

30 0.14 1.23 5.17 -0.06

35 0.13 1.25 5.14 -0.05

40 0.17 1.23 5.14 -0.05
Nearshore spatial discretisation (m) 45 0.13 1.25 5.11 -0.02 p = 0.935

50 0.13 141 5.18 -0.08

55 0.15 1.29 5.15 -0.09

60 0.13 141 5.15 -0.14

65 0.14 141 5.17 -0.12

3 0.13 (M);-0.18 (B) 1.25(M); 0.18 (B) 5.11 (M);5.10 (B)  -0.02 (M); -0.03 (B)

9 0.17 (M); -0.18 (B)  1.21(M); 0.18 (B)  5.10 (M); 5.10 (B)  -0.01 (M); -0.03 (B)

27 0.15(M); -0.19 (B)  1.13(M); 0.19 (B)  5.05(M); 5.11(B) 0.00 (M); -0.03 (B)  p =0.877 (M)
Bathymetry data resolution (m) 81 0.14 (M); -0.21 (B) 1.21 (M); 0.21(B) 5.24(M);5.12(B) -0.07 (M); -0.03 (B) p <0.0001 (B)

920 0.14 (M); -0.22 (B) 1.30(M); 0.22(B) 5.14 (M); 5.12(B) -0.04 (M); -0.03 (B)

100 0.14 (M); -0.22 (B) 1.18 (M); 0.22(B) 5.17 (M); 5.12(B) -0.08 (M); -0.03 (B)

500 0.11 (M); -0.37 (B) 0.96 (M); 0.37 (B) 5.10 (M); 5.22 (B) -0.05 (M); -0.07 (B)

6 0.13 1.25 5.11 -0.02

10 0.15 1.27 511 -0.02

20 0.14 1.27 5.12 -0.02

30 0.14 1.27 5.12 -0.02
Tide data resolution (min): MIKE21 40 0.15 1.27 5.11 -0.02 p=1

50 0.15 1.27 5.11 -0.02

60 0.15 1.27 5.12 -0.02

Daily high/low 0.15 1.26 5.11 -0.02

NOAA predictions 0.13 1.24 5.1 -0.02
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Input Specification MNC (m) MAC (m) MAE (m) BSS Kruskal-Wallis
Observed net shoreline change - 3.22 5.03 - - >
Unadjusted -0.21 0.21 5.11 -0.03
Tide data: Bruun Rule Seasonally adjusted  -0.18 0.18 5.10 -0.03 p < 0.0001
NOAA predictions 0 0 5.03 0
6 0.13 1.25 5.11 -0.02
10 0.14 1.25 511 -0.02
20 0.14 1.25 5.11 -0.02
Wind data resolution (min) 30 0.15 1.25 5.1 -0.02 p=1
40 0.15 1.25 5.1 -0.02
50 0.15 1.26 5.1 -0.02
60 0.15 1.25 5.1 -0.02
10 0.14 1.25 511 -0.02
20 0.14 1.25 5.11 -0.02
. . . 30 0.14 1.25 5.11 -0.02
Wave climate data resolution (min) 40 013 195 511 -0.02 p=1
50 0.15 1.26 5.11 -0.02
60 0.13 1.25 5.11 -0.02
29 0.12 1.13 5.08 0
32 0.13 1.25 5.11 -0.02
Manning’s n reciprocal (m3/s) 33 0.16 1.28 5.11 -0.02 p =0.975
40 0.18 1.54 5.19 -0.06
50 0.19 1.86 5.34 -0.12
0.3 0.14 0.99 5.04 0.01
. 0.4 0.13 1.25 511 0
Sand porosity 0.5 0.14 1.3 5.11 -0.01 p =0.960
0.7 0.19 2.19 5.49 -0.19
0.1 1.13 11.76 12.55 -9.85
0.2 0.14 0.99 5.04 0.01
Sand grain diameter (mm) 0.25 0.11 0.82 5 0.03 p = 0.009
0.5 0.1 0.51 4.99 0.03
1 0.06 0.28 5.02 0.01
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Input Specification MNC (m) MAC (m) MAE (m) BSS Kruskal-Wallis

Observed net shoreline change - 3.22 5.03 - - >

11 0.11 0.82 5 0.03
. . - 13 0.13 1.255 5.12 -0.02

Sediment grading coefficient 15 023 514 544 017 p = 0.066
2 1.84 27.14 26.80 -55.01
0.11 0.11 0.82 5 0.02
0.55 0.11 0.82 5 0.03
0.77 0.11 0.82 5 0.03
0.99 0.11 0.82 5 0.03

Weir coefficient (m?2/s) 1.21 0.11 0.82 5 0.03 p=1
1.44 0.11 0.82 5 0.03
1.82 0.11 0.82 5 0.03
1.838 0.11 0.82 5 0.03
2.21 0.12 0.83 5.01 0.02
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Fig. 4.9 Net shoreline change (10-Oct-2014 to 31-Mar-2016) observed and predicted in response to coarsening nearshore spatial discretisation in the Puerto Rico test site.
Vertical dashed lines indicate groyne locations. MNC is mean net change, MAC is mean absolute change, MAE is mean absolute error, and BSS is Brier Skill Score. Net
shoreline change observed and predicted in groyne transects are excluded from the above plots and statistics.
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- 1 Rico test site’s average upper beach profile.
2 — -
1 .
"é‘- L
= L MHW
= 0Fr————————- R —
T
= |
=R
g 1 I \\"
g7 AN
e \
o B t\
8 ¢
S-21 ) ]
o
W | Bathymetry
I [resolution (m)
B 3 ]
-3 i \
L 27
G —81
L —90 § 4
4+ 100 7
| —500 I 3
100 150 200 250

Distance seaward from land boundary (m)

04 Sensitivity to boundary conditions: Figures and tables 217



(a) Observed (e) Spatual resolutuon of hathymetry data 81 m
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Fig. 4.11 Net shoreline change (10-Oct-2014 to 31-Mar-2016) observed and predicted in response to coarsening bathymetry data in the Puerto Rico test site. Vertical dashed
lines indicate groyne locations. MNC is mean net change, MAC is mean absolute change, MAE is mean absolute error, and BSS is Brier Skill Score. Note there is a separate
y axis for MIKE21 and the Bruun Rule predictions in (b) to (h). Net shoreline change observed and predicted in groyne transects are excluded from the above plots and

statistics.
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Fig. 4.12 Net shoreline change (10-Oct-2014 to 31-Mar-2016) observed and predicted from the Bruun Rule in response to SLR estimations from different tide datasets in the
Puerto Rico test site. Vertical dashed lines indicate groyne locations. MNC is mean net change, MAC is mean absolute change, MAE is mean absolute error, and BSS is
Brier Skill Score. Note the differences in y axis. Net shoreline change observed and predicted in groyne transects are excluded from the above plots and statistics.
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Fig. 4.13 Brier Skill Scores (BSS) estimated from net shoreline change predictions (01-Jan-2009 to 02-Aug-2011) in response to boundary conditions in the Southern California
test site. In (c), HL is daily high/low tide data, and Pred6 is NOAA tide predictions (6 min intervals). In (d), unadjusted is observed tide levels, seasonally adjusted is observed
tide levels without the regular seasonal fluctuations in meteorological conditions, and predictions are NOAA calculations of expected tide levels. BSS values < 0 in (a), (b),
(9), and (h) are scaled to fall within 0 to -0.3 to better illustrate changes in model accuracy in response to boundary conditions.
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Table 4.3 Summary of net shoreline change (01-Jan-2009 to 02-Aug-2011) observed and predicted in response to boundary conditions in the Southern California test site. M
is MIKE21, B is the Bruun Rule, MNC is mean net change, MAC is mean absolute change, MAE is mean absolute error, and BSS is Brier Skill Score. All bolded Kruskal-
Wallis p values are less than the 5% significance level, indicating significant differences between net shoreline change predictions. Other bold highlights show samples of
net shoreline change predictions significantly different from other samples, based on a Dunn’s test. Appendix A contains all spatial distribution plots of net shoreline change
associated with statistics in Table 4.3, excluding those incorporated in this chapter.

Input Specification MNC (m) MAC (m) MAE (m) BSS Kruskal-Wallis
Observed net shoreline change - 15.15 15.98 - - =

25 0.19 8.14 17.55 0.14

30 0.67 8.5 17.02 0.15

35 0.42 9.05 18.06 -0.16

40 0.40 10.17 18.19 -0.17
Nearshore spatial discretisation (m) 45 1.09 10.45 17.51 -0.16 p = 0.057

50 1.35 11.26 18.73 -0.47

55 1.7 12.82 20.13 -3.41

60 0.93 11.12 19.57 -0.64

65 -0.07 10.77 19.74 -0.83

10 0.67 (M); -0.15(B) 8.5 (M); 0.15 (B) 17.02 (M); 16.09 (B) 0.15 (M); 0.01 (B)

27 0.08 (M); -0.15 (B)  7.76 (M); 0.15(B)  17.73 (M); 16.09 (B) -0.02 (M); 0.01 (B)

. 81 -0.24 (M); -0.16 (B) 8.11(M); 0.16 (B)  18.18 (M); 16.1(B)  -0.18 (M); 0.01 (B) p < 0.0001

Bathymetry data resolution (m) 90 -0.22 (M): -0.16 (B) 7.98 (M) 0.16 (B)  18.01 (M): 16.1 (B)  -0.14 (M) 0.01 (B) (M: B)

100 -1.18 (M); -0.16 (B) 8.43 (M); 0.16 (B)  18.56 (M); 16.1 (B)  -0.48 (M); 0.01 (B)

500 -1.93 (M); -0.16 (B) 29.76 (M); 0.16 (B) 32.04 (M); 16.1 (B)  -6.75 (M); 0.01 (B)

6 0.67 8.5 17.02 0.15

10 0.73 8.54 16.97 0.16

20 0.7 8.55 17.01 0.15

30 0.67 8.56 17.04 0.15
Tide data resolution (min): MIKE21 40 0.68 8.5 17.03 0.15 p=1

50 0.68 8.52 17.04 0.15

60 0.69 8.55 16.99 0.16

Daily high/low 0.65 8.58 17.05 0.14

NOAA predictions 0.64 8.54 17.06 0.15
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Input Specification MNC (m) MAC (m) MAE (m) BSS Kruskal-Wallis
Observed net shoreline change - 15.15 15.98 - - -
Unadjusted -0.09 0.09 16.04 0.01
Tide data: Bruun Rule Seasonally adjusted  -0.15 0.15 16.09 0.01 p <0.0001
NOAA predictions 0 0 15.98 -0.01
6 0.67 8.5 17.02 0.15
10 0.64 8.5 17.03 0.15
20 0.67 8.48 17.02 0.16
Wind data resolution (min) 30 0.67 8.51 17.04 0.15 p=1
40 0.72 8.5 16.98 0.16
50 0.7 8.5 16.98 0.16
60 0.7 8.48 17 0.15
10 0.67 8.48 17.04 0.15
20 0.67 8.48 17.04 0.15
_ . . 30 0.67 8.5 17.02 0.15
Wave climate data resolution (min) 40 0.6 868 1714 013 p=1
50 0.75 8.54 16.95 0.17
60 0.67 8.48 17.04 0.15
29 0.67 8.38 16.99 0.15
32 0.67 8.5 17.02 0.15
Manning’s n reciprocal (m3/s) 33 0.89 8.57 16.86 0.16 p <0.0001
40 4.39 15.16 19.96 -2.31
50 2.91 13.08 19.02 -1.08
0.3 0.63 8.25 17.02 0.14
. 0.4 0.89 8.57 16.86 0.16
Sand porosity 0.5 1.29 9.06 16.69 0.21 p=0.003
0.7 3.46 14.52 20.12 -2.07
0.2 1.29 9.06 16.69 0.21
- 0.25 0.59 8.52 17.1 0.14
Sand grain diameter (mm) 05 0.56 6.77 16.66 0.12 p =0.128
1 0.6 6.79 16.7 0.06
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Input Specification MNC (m) MAC (m) MAE (m) BSS Kruskal-Wallis

Observed net shoreline change - 15.15 15.98 - - -

11 1.29 9.06 16.69 0.21
: : - 1.3 0.47 8.55 17.27 0.11

Sediment grading coefficient 15 04 874 17.49 0.05 p =0.031
2 0.25 9.7 18.18 -0.06
0.11 1.39 9.06 16.67 0.21
0.55 1.38 8.96 16.53 0.22
0.77 1.35 9.08 16.63 0.21
0.99 1.37 8.81 16.58 0.22

Weir coefficient (m?/2/s) 1.21 1.25 9.02 16.66 0.21 p=1
1.44 1.37 9.27 16.69 0.19
1.82 1.38 9.23 16.68 0.2
1.838 1.29 9.06 16.69 0.21
2.21 1.26 9.2 16.72 0.2

04 Sensitivity to boundary conditions: Figures and tables 223



: {‘a).qbf‘;ﬁ"’.eﬁ , , ! MNC: 15.15 m; MAC: 15.98 m

100I"'II LI LI T T T
I o (I I I
0 | B
I I I I I
I I I I I
100, g0 Ll [ T S .
(b) Nearshore spatual duscretusatnon 25 m MNC: 0.19 m; MAC: 8.14 m
100 r——rr— (R R A MAE: 17.55 m; BSS: 0.14
I
0 | %WNWWWM
I
I |
g"loo .||.“........||..|.|.‘.|...|...._
2 {c) Nearshore spatual discretisation: 30 m MNC: 0.67 m; MAC: 8.50 m
2 100 i T i | | ‘ il i T T MAE: 17.02 m; BSS: 0.15
@
=
5 I ol | I I
@ UWWWWM
£ I [ (.
@ I [ I I I
% -100 £ [ L. Ll Ly [ \ \
B (d)Nearshore spatial discretisation: 35 m MNC: 0.42 m; MAC: 9.05 m
Zz 100 T T T T T MAE: 18.06 m; BSS: -0.16
I I | I I I
| I [ I I
0 WMMWWWM
I I I |
I o (I I I
-100 [ [ L. L Ly [ \ \ h
(e) Nearshore spatual discretisation: 40 m MNC: 0.40 m; MAC: 10.17 m
100 TT T TT T T T MAE: 18.19 m; BSS: -0.17
I I | | \ I I
I T I I I
0
I I |
I o (I I I
1000, 0 e e e ] L L L |

n n n Pl n PR n PR n
400 600 800 1000 1200 1400 1600 1800

Transects (5 m intervals) from north to south

0 200

m)

Net shoreline change (

100

-100

100

L
o
=]

250

=]

-250
-500

100

-100

100

-100

{f) Nearshore spatlal dlscretlsatlon

45m

MNC: 1.09 m; MAC: 10.45 m

1 MAE: 17.51 m; BSS: -0.16

{g) Nearshore spatual duscretnsatnon 50 m

MNC: 1.35 m; MAC: 11.26 m

1 MAE: 18.73 m; BSS: -0.47

12.82m

|- [ 4 | | T I PR N L L u
(h) Nearshore spatual duscretnsatnon 55 m MNC: 1.70 m; MAC:
- T T T T MAE: 20.13 m; BSS: -3.41
[ [ | | I

(i) Nearshore spatial discretisation:
T T T T

60 m

MNC: 0.93 m; MAC: 11.12m

MAE: 19.57 m; BSS: -0.64

MNC: -0.07 m; MAC: 10.77 m

MAE: 19.74 m; BSS: -0.83

Transects (5 m intervals) from north to south

[
[ [ I I I
I | 4 | i Ll I | I I I 1
(j) Nearshore spatual discretisation: 65 m
T T T TT T T T
| L o I I
[ | I I
| (LI I I
[ [ I I I
. T T Y I O S PO S R N R
0 200 400 600 800 1000 1200 1400 1600 1800

Fig. 4.14 Net shoreline change (01-Jan-2009 to 02-Aug-2011) observed and predicted in response to coarsening nearshore spatial discretisation in the Southern California
test site. Vertical dashed lines indicate groyne locations. MNC is mean net change, MAC is mean absolute change, MAE is mean absolute error, and BSS is Brier Skill Score.
Note the difference in y axis in (h). Net shoreline change observed and predicted in groyne transects are excluded from the above plots and statistics.
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Fig. 4.15 Net shoreline change (01-Jan-2009 to 02-Aug-2011) observed and predicted in response to coarsening bathymetry data in the Southern California test site. Vertical
dashed lines indicate groyne locations. MNC is mean net change, MAC is mean absolute change, MAE is mean absolute error, and BSS is Brier Skill Score. Note there is a
separate y axis for MIKE21 and the Bruun Rule predictions in (b) to (g), and also note there is a difference in MIKE21 y axis in (g). Net shoreline change observed and
predicted in groyne transects are excluded from the above plots and statistics.
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Fig. 4.16 Net shoreline change (01-Jan-2009 to 02-Aug-2011) observed and predicted from the Bruun Rule in response to SLR estimations from different tide datasets in the
Southern California test site. Vertical dashed lines indicate groyne locations. MNC is mean net change, MAC is mean absolute change, MAE is mean absolute error, and
BSS is Brier Skill Score. Note the differences in y axis. Net shoreline change observed and predicted in groyne transects are excluded from the above plots and statistics.
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Fig. 4.17 Summary of MIKE21 performance in response to boundary condition variations in the New York (NY), Puerto Rico (PR), and Southern California (SC) test site. In
(c), HL is daily high/low tide data, and Pred6 is NOAA tide predictions (6 min intervals). BSS values < 0 in (a) to (c) and (f) to (h) are scaled as before to better illustrate
changes in model accuracy in response to boundary conditions. Tables 4.1 to 4.3 list all BSS estimations from evaluating model sensitivity in each test site.
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Table 4.4 Optimal boundary condition specifications for simulating shoreline evolution in each test site. Highlighted cells indicate boundary conditions that have no apparent
optimal specifications. | select and use the original or base values of boundary conditions with no defined optimal specifications in further simulations (where applicable).

Specification

Input (units)

New York test site Puerto Rico test site Southern California test site
Nearshore spatial discretisation (m) 45 45 30
Bathymetry data resolution (m): MIKE21 and Bruun Rule * <100 (selected: 3 m) < 27 (selected: 3 m) <10 (selected: 10 m)
Tide data resolution (min): MIKE21 6 min (original) 6 min (original) 6 min (original)
Tide data: Bruun Rule Seasonally adjusted (original) Seasonally adjusted (original) Seasonally adjusted (original)
Wind data resolution (min) 6 min (original) 6 min (original) 6 min (original)
Wave climate data resolution (min) 60 min (original) 60 min (original) 30 min (original)
Manning’s n reciprocal (m3/s) 29 29 33
Sand porosity 0.3 0.3 0.5
Sand grain diameter (mm) 0.2 0.25; 0.5 (selected: 0.25) ** 0.2
Sediment grading coefficient 1.1 1.1 1.1
Weir coefficient (m¥/2/s) *** 121 0.55 0.99
BSS 0.46 0.03 0.22
* | select the original bathymetry data in each test site for further simulations. This selection guarantees the best model representation of the observed coastal profile

morphology.
** Using a sand grain diameter of 0.25 mm instead of 0.5 mm results in less net shoreline change under-prediction in the Puerto Rico test site (Table 4.2; Fig. A8.3).
*** Weir coefficients in Table 4.4 provide a marginal improvement in MIKE21 performance, which may become more significant over meso timescale simulations.
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Table 4.5 Characteristics of the active coastal profile slope in each test site. Descriptive statistics in Table 4.5 are based on the active coastal profile slope in transects every
5 m longshore, excluding those in groyne areas.

Slope (%) New York test site Puerto Rico test site Southern California test site
Minimum 1.19 1.13 2.08

Maximum 242 2.28 4

Mean 1.82 1.75 2.68

Standard deviation 0.22 0.26 0.42

Table 4.6 Descriptive summary of tide levels observed over the associated sensitivity testing period in each test site.

Tide levels relative to MHW (m)

New York test site

Puerto Rico test site

Southern California test site

Minimum
Maximum
Mean

Standard deviation

-1.49
1.82
0.24
0.55

-0.5

0.42
-0.06
0.15

-2.31

0.92

-0.55
0.5
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Fig. 4.18 Net shoreline change observed and predicted from the New York (01-Jan-2014 to 01-Feb-2016) (a), Puerto Rico (10-Oct-2014 to 31-Mar-2016) (b), and Southern
California (01-Jan-2009 to 02-Aug-2011) (c) test site’s calibrated MIKE21 model. Vertical dashed lines in (a) to (c) indicate groyne locations. MNC is mean net change, MAC
is mean absolute change, MAE is mean absolute error, and BSS is Brier Skill score. Note the differences in axes. Net shoreline change observed and predicted in groyne

transects are excluded from the above plots and statistics.
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Fig. 4.19 Net shoreline change observed and predicted from the New York (01-Jan-2014 to 01-Feb-2016) (a), Puerto Rico (10-Oct-2014 to 31-Mar-2016) (b), and Southern
California (01-Jan-2009 to 02-Aug-2011) (c) test site’s calibrated Bruun Rule model. Vertical dashed lines in (a) to (c) indicate groyne locations. MNC is mean net change,
MAC is mean absolute change, MAE is mean absolute error, and BSS is Brier Skill score. Note there is a separate y axis for net shoreline change observed and predicted
from the calibrated Bruun Rule in (a) to (c). Net shoreline change observed and predicted in groyne transects are excluded from the above plots and statistics.
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Fig. 5.1 The New York test site’s model domain area used to quantify and compare meso timescale shoreline evolution predictions. MIKE21 net shoreline change predictions
outside this area are sensitive to the Flather condition data applied at the west and east boundaries.
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Fig. 5.2 Net shoreline change observed and predicted (01-Jan-1966 to 01-Feb-2016) in the New York test site. Vertical dashed lines indicate groyne locations. MNC is mean
net change, MAC is mean absolute change, MAE is mean absolute error, and BSS is Brier Skill Score. Net shoreline change observed and predicted in groyne transects are
excluded from the above plots and statistics.
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Table 5.1 Closure depth time series estimates used to hindcast meso timescale shoreline evolution
(1966 to 2016) in the New York test site compared against corresponding observations. Closure
depth estimations are derived from Birkemeier (1985) formula using nearshore significant wave
heights calculated by MIKE21. Closure depth observations are from USACE Wave Information Study
(WIS) station 63124 (USACE, 2020). Net difference (m) = estimated closure depth - observed
closure depth. Grey rows indicate non-verifiable closure depth estimations, yellow rows indicate
closure depth overestimation, and non-highlighted rows indicate closure depth underestimation.

Year Estimated (m below MHW) Observed (m below MHW)  Net difference (m)
1966 6

1967 7.93

1968 5.45

1969 7.82

1970 5.8

1971 7.39

ig;g 673f No observed closure depth data
1974 6.24

1975 7.32

1976 6.09

1977 7.18

1978 6.42

1979 7.29

1980 6.55 6.67 -0.12
1981 7.29 6.96 0.34
1982 6.85 6.31 0.54
1983 7.22 7 0.22
1984 6.98 8.21 -1.23
1985 6.95 6.67 0.28
1986 7.15 6.61 0.54
1987 6.78 5.45 1.33
1988 7.24 5.7 1.54
1989 6.19 5.53 0.66
1990 7.66 4.43 3.23
1991 5.23 6.41 -1.18
1992 7.93 8.76 -0.83
1993 5.45 7.99 -2.54
1994 7.74 7.25 0.48
1995 5.89 6.47 -0.58
1996 7.48 7.9 -0.41
1997 6.27 5.2 1.08
1998 7.4 6.41 1
1999 6.23 6.08 0.15
2000 7.4 5.62 1.78
2001 6.09 5.93 0.16
2002 7.28 5.06 2.23
2003 6.43 8.2 -1.76
2004 7.29 5.31 1.99
2005 6.55 6.58 -0.03
2006 7.29 7.17 0.12
2007 6.85 6.56 0.29
2008 7.21 7.17 0.03
2009 7 8.93 -1.93
2010 6.95 8.32 -1.37
2011 7.25 7.74 -0.49
2012 6.78 10.49 -3.71
2013 7.24

2014 6.27 No observed closure depth data
2015 7.75
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Fig. 5.3 Comparing closure depth (m below MHW) observations and estimations (1980 to 2012) in the New York test site. SD is the standard deviation.
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All closure depth

estimations are derived from Birkemeier (1985) formula using nearshore significant wave heights calculated by MIKE21. All closure depth observations are from USACE
WIS station 63124 (USACE, 2020).
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Fig. 5.4 Annual median and mean significant wave height statistics (1980 to 2012) in the New York test site. Annual significant wave height statistics in the above plots are
from USACE WIS station 63124 (USACE, 2020).
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Table 5.2 Summary of all meso timescale shoreline evolution hindcasts (01-Jan-1966 to 01-Feb-2016) in the New York test site. MNC is mean net change, MAC is mean
absolute change, MAE is mean absolute error, and BSS is Brier Skill Score.

Hindcast
. ) Modelling approach MNC (m) MAC (m) MAE (m) BSS
(Relative sea-level rise: +0.2 m)

Observed 1.69 3.29

Model one 4.2 m closure depth in MIKE21 (1966 coastal profiles) 1.08 3.6 4.5 0.24
Model two 6 m closure depth in MIKE21 (shifted 2014 coastal profiles) 1.79 4.86 5.92 0.21
Model three Time-varying closure depth in MIKE21 0.01 571 7.06 0.12
Model four 4.2 m closure depth in Bruun Rule (1966 coastal profiles) -14.56 14.56 16.27 -12.83
Model five 6 m closure depth in Bruun Rule (shifted 2014 coastal profiles) -7.36 7.36 9.18 -4.39
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(a) Forecast one: 5.8 m closure depth in MIKE21 (2014 coastal profiles)
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(c) Forecast three: 5.8 m closure depth in the Bruun Rule (2014 coastal profiles)
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Fig. 5.5 Net shoreline change forecasted (01-Jan-2014 to 01-Jan-2064) in the New York test site. Vertical dashed lines indicate groyne locations. MNC is mean net change,
and MAC is mean absolute change. Net shoreline change predictions in groyne transects are excluded from the above plots and statistics.
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Fig. 5.6 Closure depth estimations used to forecast meso timescale shoreline evolution (2014 to 2064) in the New York test site with a time-varying closure depth in MIKE21.
All closure depth estimations are derived from Birkemeier (1985) formula using nearshore significant wave heights calculated by MIKE21.
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Fig. 6.1 Closure depths observed and applied to hindcast shoreline evolution over irregular spatial intervals in the Puerto Rico test site. Blue vertical dashed lines indicate
the boundaries of each MIKE21 SM domain.
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(a) Model one: 5.5 m closure depth in MIKE21
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Fig. 6.2 Net shoreline change observed and predicted (10-Oct-2014 to 31-Mar-2016) in the Puerto Rico test site. Black vertical dashed lines indicate groyne locations. Red
vertical dashed lines in (b) indicate the boundaries of each MIKE21 SM domain. MNC is mean net change, MAC is mean absolute change, MAE is mean absolute error, and
BSS is Brier Skill Score. Net shoreline change observed and predicted in groyne transects are excluded from the above plots and statistics.
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Table 6.1 Closure depth observations and specifications in each MIKE21 SM domain used for hindcasting shoreline evolution (10-Oct-2014 to 31-Mar-2016) with a space-

varying closure depth in the Puerto Rico test site.

MIKE21 SM Domain Observed closure depth
: N Closure depth specified (m)
(Each defined in Fig. 6.1) Range (m) Mean (m) Standard deviation

One 5.3t0 6.5 (1.2 m range) 5.7 0.4 5

Two 6.5t0 7.7 (1.2 m range) 7.2 0.4 6.5

Three 5.5t0 7 (1.6 m range) 6.1 0.3 55

Four 7 to 8 (1 m range) 7.7 0.2 7
Five 4.5t0 7 (2.5 m range) 5.3 0.7 4.5
Six 3.3t0 5.6 (2.3 mrange) 4.2 0.7 3.5

Seven 5.6t0 7.8 (2.2 m range) 6.8 0.7 55

Table 6.2 Summary of all shoreline evolution hindcasts (10-Oct-2014 to 31-Mar-2016) in the Puerto Rico test site. MNC is mean net change, SD is the standard deviation,

MAC is mean absolute change, MAE is mean absolute error, and BSS is Brier Skill Score.

Hindcast Modelling approach MNC (m) SD MAC (m) MAE (m) BSS
Observed 3.22 5.7 5.03
Model one 5.5 m closure depth in MIKE21 0.11 1.17 0.82 5 0.03
Model two Space-varying closure depth in MIKE21 0.91 3.63 2.71 3.93 0.37
Model three Space-varying closure depth in the Bruun Rule -0.18 0.06 0.18 5.1 -0.03
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Fig. 6.3 Net shoreline change residuals obtained from using a 5.5 m (model one) and space-varying closure depth (model two) in MIKE21 to hindcast shoreline evolution in
the Puerto Rico test site (10-Oct-2014 to 31-Mar-2016). Net shoreline change residuals are the difference between net shoreline change observed and predicted. Blue
vertical dashed lines indicate the boundaries of each MIKE21 SM domain, and black vertical dashed lines indicate groyne locations. SD is the standard deviation. Net
shoreline change residuals in groyne transects are excluded from the above plots and statistics.
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Table 7.1 Closure depth time and space variations used to forecast meso timescale shoreline
evolution in the Puerto Rico test site (2014 to 2064). 2014 closure depths are based on reef substrate
distribution. 2015 to 2063 closure depths are derived from Birkemeier (1985) formula using
nearshore significant wave heights calculated by MIKE21. SD is the standard deviation.

Vear MIKE21 SM Domain (see defined areas in Fig. 6.1) Mean D
One Two Three Four Five Six Seven
2014 5 6.5 5.5 7 4.5 35 55 5.36 1.18
2015 4.95 4.69 4.36 4.2 3.65 5.1 4.17 4.45 0.5
2016 5.37 5.07 4,73 4.45 3.71 5.54 4.36 4.75 0.64
2017 5.06 4.78 4.47 4.2 3.66 5.21 4.19 451 0.54
2018 4.95 4.69 4.36 3.96 3.57 5.12 4.08 4.39 0.56
2019 5.28 5.07 4,73 4.45 3.72 5.54 4.28 4,72 0.63
2020 5.14 4.88 4,57 4.3 3.76 5.31 4.29 4.61 0.54
2021 4.97 4.69 4.38 4.2 3.68 5.21 4.19 4.47 0.52
2022 5.39 5.07 4.84 4.54 3.81 5.64 4.33 4.8 0.63
2023 5.07 4.79 4,57 4.3 3.76 5.31 4.29 4.59 0.52
2024 4.95 4.69 4.36 4.2 3.66 5.12 4.1 4.44 0.51
2025 5.39 5.16 4.84 4.54 3.81 5.64 4.44 4.83 0.63
2026 5.06 4.79 4.48 4.22 3.76 5.29 4.27 4.55 0.53
2027 4.95 4.69 4.36 4.19 3.57 5.1 4.08 4.42 0.53
2028 5.37 5.07 4,73 4.54 3.71 5.62 4.36 4.77 0.65
2029 5.06 4.79 4.48 4.22 3.76 5.31 4.2 4.55 0.54
2030 4.95 4.69 4.36 4.2 3.68 5.21 4.19 4.47 0.52
2031 5.39 5.07 4,75 4.45 3.72 5.54 4.35 4.75 0.64
2032 5.07 4.79 4.57 4.22 3.76 5.31 4.29 4.57 0.53
2033 4.95 4.69 4.36 4.11 3.66 5.1 4.08 4.42 0.52
2034 5.39 5.07 4,75 4.54 3.81 5.62 4.36 4,79 0.62
2035 5.14 4.79 4,57 4.3 3.76 5.31 4.29 4.6 0.54
2036 4.97 4.69 4.38 4.22 3.68 5.21 4.19 4.47 0.52
2037 5.47 5.18 4.84 4.54 3.82 5.73 4.45 4.86 0.65
2038 5.16 4.88 4,57 4.3 3.87 5.31 4.29 4.63 0.52
2039 4.95 4.69 4.38 4.2 3.68 5.21 4.19 4.47 0.52
2040 5.39 5.18 4.84 4.54 3.82 5.64 4.45 4.84 0.62
2041 5.07 4.79 4.57 4.3 3.78 5.31 4.29 4.59 0.52
2042 4,95 4.69 4.36 4.11 3.68 5.1 4.08 4.43 0.51
2043 5.39 5.09 4,75 4.56 3.82 5.64 4.36 4.8 0.62
2044 5.14 4.79 4,57 4.3 3.87 5.31 4.29 4.61 0.51
2045 4.95 4.69 4.36 4.2 3.68 5.12 4.19 4.45 0.5
2046 5.39 5.09 4.84 4.54 3.84 5.64 4.36 4.81 0.62
2047 5.06 4.79 4.55 4.22 3.78 5.29 4.27 4.57 0.52
2048 4.95 4.69 4.38 4.2 3.78 5.21 4.19 4.48 0.49
2049 5.47 5.18 4.84 4.56 3.93 5.73 4.45 4.88 0.63
2050 5.16 49 4,57 4.32 3.88 5.31 4.39 4.65 0.5
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MIKE21 SM Domain (see defined areas in Fig. 6.1)

Year Mean SD
One Two Three Four Five Six Seven

2051 4.97 4.69 4.38 4.2 3.78 5.21 4.19 4.49 0.5
2052 5.39 5.09 4,75 4.54 3.84 5.64 4.36 4.8 0.62
2053 5.06 4.79 4.48 4.22 3.78 5.21 4.19 4.53 0.51
2054 5.06 4.78 4.38 4.2 3.78 5.21 4.19 4.51 0.52
2055 5.49 5.18 4.84 4.56 3.94 5.64 4.45 4.87 0.61
2056 5.16 4.79 4.57 4.22 3.88 5.31 4.29 4.6 0.52
2057 5.06 4.79 4.47 4.22 3.78 5.21 4.29 4.54 0.5
2058 5.49 5.19 4.85 4.57 3.96 5.74 4.48 4.9 0.62
2059 5.16 4.9 4.58 4.32 3.99 5.31 4.39 4.66 0.48
2060 5.06 4.79 4.47 43 3.88 5.29 4.29 4.58 0.49
2061 5.39 5.18 4.84 4.56 3.94 5.64 4.54 4.87 0.58
2062 5.16 4.81 4.57 4.32 3.9 5.31 4.3 4.62 0.5
2063 5.06 4.79 4.38 4.22 3.8 5.21 4.2 4.52 0.51
Min. 4.95 4.69 4.36 3.96 3.57 35 4.08
Max. 5.49 6.5 55 7 4.5 5.74 55
Mean 5.16 4.91 4.59 4.38 3.79 5.33 4.31

SD 0.18 0.29 0.22 0.41 0.14 0.33 0.21
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(a) MIKE21 SM one: closure depth (b) MIKE21 SM two: closure depth (c) MIKE21 SM three: closure depth (d) MIKE21 SM four: closure depth
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Fig. 7.1 Estimated closure depths (2015 to 2063) applied in all MIKE21 SM domains used to forecast meso timescale shoreline evolution (10-Oct-2014 to 10-Oct-2064) in
the Puerto Rico test site with a time and space-varying closure depth. Closure depth estimations in each MIKE21 SM domain are derived from Birkemeier (1985) formula
using significant wave heights calculated by MIKE21 in their respective nearshore area.
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(a) Model one: time and space-varying closure depth in MIKE21
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(c) Model three: space-varying closure depth in the Bruun Rule
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Fig. 7.2 Net shoreline change forecasted in the Puerto Rico test site (10-Oct-2014 to 10-Oct-2064) using a time and space-varying closure depth in MIKE21 (a), a 5.5 m
constant closure depth in MIKE21 (b), and a space-varying closure depth in the Bruun Rule (c). Black vertical dashed lines indicate groyne locations. Red vertical dashed
lines in (a) indicate the boundaries of each MIKE21 SM domain. MNC is mean net change, SD is the standard deviation, and MAC is mean absolute change. Net shoreline
change observed and predicted in groyne transects are excluded from the above plots and statistics.
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Fig. 7.3 Longshore variations in net shoreline change (accretion vs erosion) forecasted in the Puerto Rico test site (10-Oct-2014 to 10-Oct-2064) using a time and space-
varying closure depth in MIKE21. Credits (streetmap): ESRI (2020)
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Fig. 7.4 Coral reefs present in the Puerto Rico test site’s mesh bathymetry.
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Fig. 7.5 Significant wave heights at different timesteps in MIKE21 meso timescale shoreline evolution simulation (10-Oct-2014 to 10-Oct-2064) in the Puerto Rico test site:
10-Oct-2015 00:00:00 (a), 10-Oct-2024 00:00:00 (b), 10-Oct-2034 00:00:00 (c), and 10-Oct-2054 00:00:00 (d). The key take-home message of this figure is that the highest
significant wave heights occur in the coral reefs vicinity (see coral reef areas in Figs. 7.3 and 7.4).
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Fig. 7.6 Longshore variations in net shoreline change (accretion vs erosion) forecasted in the Puerto Rico test site (10-Oct-2014 to 10-Oct-2064) using a 5.5 m constant
closure depth in MIKE21. Credits (streetmap): ESRI (2020)
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Fig. 7.7 Predominant direction of littoral drift in the Puerto Rico test site (indicated by arrows).
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Table 7.2 Summary of MIKE21 and the Bruun Rule performance in their various applications in preceding chapters. All Bruun Rule modelling applications and statistics are

highlighted in grey.

Chapter Test site Model Timescale BSS MAE (m)
Calibrated MIKE21 0.46 11
New York 2014 to 2016
Calibrated Bruun Rule 0.19 1.18
4 Calibrated MIKE21 0.03 5
Puerto Rico 2014 to 2016
Calibrated Bruun Rule -0.03 5.10
Calibrated MIKE21 0.22 16.58
Southern California ] 2009 to 2011
Calibrated Bruun Rule 0.01 16.09
4.2 m constant closure depth in MIKE21 0.24 4.5
6 m constant closure depth in MIKE21 0.21 5.92
5 New York Time-varying closure depth in MIKE21 1966 to 2016 0.12 7.06
4.2 m constant closure depth in Bruun Rule -12.83 16.27
6 m constant closure depth in Bruun Rule -4.39 9.18
5.5 constant closure depth in MIKE21 0.03 5
6 Puerto Rico Space-varying closure depth in MIKE21 2014 to 2016 0.37 3.93
Space-varying closure depth in Bruun Rule -0.03 5.1
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Table 7.3 Summary of all meso timescale shoreline evolution forecasts (10-Oct-2014 to 10-Oct-2064) in the Puerto Rico test site. MNC is mean net change, SD is the standard
deviation, and MAC is mean absolute change.

Forecast

) ] Modelling approach MNC (m) SD MAC (m)
(Relative sea-level rise: +0.28 m)
Model one Time and space-varying closure depth in MIKE21 4.6 21.78 16.92
Model two 5.5 m closure depth in MIKE21 0.93 17.83 13.91
Model three Space-varying closure depth in the Bruun Rule -4.46 15 4.46
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Table. 8.1 Quantitative summary of meso timescale net shoreline change observed and predicted (01-Jan-1966 to 01-Feb-2016) in the New York test site. MNC is mean net
change, MAC is mean absolute change, MAE is mean absolute error, and BSS is Brier Skill Score.

Shoreline change statistics

Longshore trends in shoreline morphology

Model Modelling approach ] ]
MNC MAC MAE BSS Range (m) % % Mean erosion Mean accretion
(m) (m) (m) 9 Erosion Accretion (m) (m)
- Observed 1.69 3.29 - - -18.76 to 30.37 33 67 2.46 3.69
One 4.2 m closure depth in MIKE21 1.08 3.6 4.5 0.24 -11.881t0 14.58 40 60 3.08 3.96
(1966 coastal profiles)
Two 6 m closure depth in MIKE21 1.79 4.86 592 021 -14.441023.06 38 62 4.03 5.38
(shifted 2014 coastal profiles)
Three  1ime-varying closure depth in 0.01 5.71 7.06 012 -22.42t024.5 51 49 5.6 5.83
MIKE21
Four 4.2mclosuredepthinBruunRule 1456 1456  16.27 ~ .1857t0-11.28 100 - 14.56 -
(1966 coastal profiles) 12.83
6 m closure depth in Bruun Rule
Five ] . -7.36 7.36 9.18 -4.39  -10.02 to -6.08 100 - 7.36 -
(shifted 2014 coastal profiles)
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Table. 8.2 Quantitative summary of micro timescale net shoreline change observed and predicted (10-Oct-2014 to 31-Mar-2016) in the Puerto Rico test site. MNC is mean
net change, MAC is mean absolute change, MAE is mean absolute error, and BSS is Brier Skill Score.

Shoreline change statistics Longshore trends in shoreline morphology
Modelling approach ] ]

MNC MAC MAE BSS Range (m) % % Mean erosion Mean accretion
(m) (m) (m) 9 Erosion  Accretion (m) (m)
Observed 3.22 5.03 - - -11.26 to 16.23 31 69 2.96 5.94
Space-varying closure depth in MIKE21 0.91 2.71 3.93 0.37 -8.76 to 13.27 39 61 2.32 2.95
5.5 m closure depth in MIKE21 0.11 0.82 5 0.03 -4t05.74 47 53 0.76 0.88

Bruun Rule -0.18 0.18 5.1 -0.03 -0.3t0 -0.04 100 - 0.18 -
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Table. 8.3 Quantitative summary of meso timescale net shoreline change observed and predicted (10-Oct-2014 to 10-Oct-2064) in the Puerto Rico test site. MNC is mean
net change, MAC is mean absolute change, and SD is the standard deviation.

Shoreline change statistics

Modelling approach

Historical trends

Time and space-varying

(1936 to 2017) closure depth in MIKE21 5.5 m closure depth in MIKE21 Bruun Rule
MNC (m) - 4.6 0.93 -4.46
MAC (m) - 16.92 13.91 4.46
Range (m) - -55.211t0 57.72 -48.88 10 43.9 -7.39 10 -0.97
% Accretion - 59 57 -
Accretion range (m) - 0.03t0 57.72 0.01to 43.9 -
Mean accretion (m) - 18.16 12.92 -
SD (accretion) 14.3 10.65 -
Accretion rate per year (m) 0.3to 0.5 (range) 0.36 (mean) 0.26 (mean) -
% Erosion - 41 43 100
Erosion range (m) - 0.05t0 55.21 0.17 to 48.88 -7.39t0 -0.97
Mean erosion (m) - 15.12 15.23 4.46
SD (erosion) 14.52 11.77 1.5
Erosion rate per year (m) 0.2to 1.21 (range) 0.3 (mean) 0.3 (mean) 0.09
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Fig. 8.1 Longshore trends (accretion versus erosion) in shoreline evolution observed (a) and predicted in the Puerto Rico test site (10-Oct-2014 to 31-Mar-2016) using a
space-varying closure depth in MIKE21 (b), a 5.5 m constant closure depth in MIKE21 (c), and a space-varying closure depth in the Bruun Rule (d).
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Fig. 8.1 (continued)
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Fig. 8.1 (continued)
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(a) 4.2 m closure depth in MIKE21 (1966 profiles) (b) 6 m closure depth in MIKE21 (shifted 2014 profiles) (c) Time-varying closure depth in MIKE21
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Fig. 8.2 Kernel density plots of net shoreline change residuals derived from hindcasting meso timescale shoreline evolution in the New York test site (01-Jan-1966 to 01-Feb-
2016). Net shoreline change residuals are the difference between net shoreline change observed and predicted. BSS is Bier Skill Score, and MAE is mean absolute error.
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A1l MIKEZ21 sensitivity to nearshore spatial discretisation

Al graphically illustrates the sensitivity of MIKE21 net littoral drift and net shoreline change predictions to coarsening nearshore spatial discretisation in each test site.
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Fig. A1.1 Kernel density plots of net littoral drift predictions in response to coarsening nearshore spatial discretisation in the New York (a), Puerto Rico (b), and Southern
California (c) test site. In (a), (b), and (c), MeshX refers to a mesh with a nearshore spatial discretisation of X resolution (m). Net littoral drift predictions in Fig. A1.1 are from
01-Jan-2014 to 01-Feb-2016 in the New York test site, 10-Oct-2014 to 31-Mar-2016 in the Puerto Rico test site, and 01-Jan-2009 to 02-Aug-2011 in the Southern California
test site. The Kruskal-Wallis (KW) test indicates that coarsening nearshore spatial discretisation significantly affects net littoral drift predictions in the Southern California test
site only. A post hoc Dunn'’s test reveals that net littoral drift predictions are consistent from all meshes in the Southern California test site, except Mesh30, Mesh50, and
Mesh65.
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Net shoreline change residuals (m)

Fig. A1.2 Net shoreline change residuals from coarsening nearshore spatial discretisation in the New York test site. Vertical dashed lines indicate groyne locations. SD is the
standard deviation. Net shoreline change residuals in (a) to (i) are the difference between net shoreline change observed and predicted from 01-Jan-2014 to 01-Feb-2016.
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(c) Nearshore spatial discretisation: 35 m

Mean: 0.17 m; SD: 1.54

(f) Nearshore spatial discretisation: 50 m

Mean: 0.18 m; SD: 1.67
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Note the difference in y axis in (h) and (i). Net shoreline change residuals obtained in groyne transects are excluded from the above plots and statistics.
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Fig. A1.3 Net shoreline change residuals from coarsening nearshore spatial discretisation in the Puerto Rico test site. Vertical dashed lines indicate groyne locations. SD is
the standard deviation. Net shoreline change residuals in (a) to (i) are the difference between net shoreline change observed and predicted from 10-Oct-2014 to 31-Mar-
2016. Net shoreline change residuals obtained in groyne transects are removed from the above plots and statistics.
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Fig. A1.4 Net shoreline change residuals from coarsening nearshore spatial discretisation in the Southern California test site. Vertical dashed lines indicate groyne locations.
SD is the standard deviation. Net shoreline change residuals in (a) to (i) are the difference between net shoreline change observed and predicted from 01-Jan-2009 to 02-
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Aug-2011. Note the difference in y axis in (g). Net shoreline change residuals obtained in groyne transects are removed from the above plots and statistics.
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A2 MIKE21 and the Bruun Rule sensitivity to bathymetry data spatial resolution

A2 graphically illustrates the sensitivity of MIKE21 and the Bruun Rule to coarsening bathymetry data in each test site.
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Fig. A2.1 Kernel density plots of net littoral drift predictions in response to coarsening bathymetry data in the New York (a), Puerto Rico (b), and Southern California (c) test
site. In (a) to (c), MeshXBathyY refers to a mesh with a nearshore discretisation of X resolution (m) interpolated with bathymetry data of Y resolution (m). Net littoral drift
predictions in Fig. A2.1 are from 01-Jan-2014 to 01-Feb-2016 in the New York test site, 10-Oct-2014 to 31-Mar-2016 in the Puerto Rico test site, and 01-Jan-2009 to 02-
Aug-2011 in the Southern California test site. The Kruskal-Wallis (KW) test indicates that coarsening bathymetry data significantly affects net littoral drift predictions in the

Puerto Rico and Southern California test sites only. A post hoc Dunn’s test reveals net littoral drift predictions are not significantly different from bathymetry data resolutions
<100 m in the Puerto Rico test site and < 27 m in the Southern California test site.
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Fig. A2.2 Net shoreline change residuals from coarsening bathymetry data in the New York test site. Vertical dashed lines indicate groyne locations. SD is the standard
deviation. Net shoreline change residuals in (a) to (g) are the difference between net shoreline change observed and predicted from 01-Jan-2014 to 01-Feb-2016. Net
shoreline change residuals obtained in groyne transects are removed from the above plots and statistics.
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Fig. A2.3 Net shoreline change residuals from coarsening bathymetry data in the Puerto Rico test site. Vertical dashed lines indicate groyne locations. SD is the standard
deviation. Net shoreline change residuals in (a) to (g) are the difference between net shoreline change observed and predicted from 10-Oct-2014 to 31-Mar-2016. Net
shoreline change residuals obtained in groyne transects are excluded from the above plots and statistics.
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Fig. A2.4 Net shoreline change residuals from coarsening bathymetry data in the Southern California test site. Vertical dashed lines indicate groyne locations. SD is the
standard deviation. Net shoreline change residuals in (a) to (f) are the difference between net shoreline change observed and predicted from 01-Jan-2009 to 02-Aug-2011.
Note the difference in y axis in (f). Net shoreline change residuals obtained in groyne transects are excluded from the above plots and statistics.
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A3 MIKE21 and the Bruun Rule sensitivity to tide data

A3 graphically illustrates the sensitivity of MIKE21 and the Bruun Rule to tide time series data resolution in each test site.
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Fig. A3.1 Kernel density plots of net littoral drift predictions in response to tide data resolution in the New York (a), Puerto Rico (b), and Southern California (c) test site. Pred
is NOAA tide predictions. Net littoral drift predictions in Fig. A3.1 are from 01-Jan-2014 to 01-Feb-2016 in the New York test site, 10-Oct-2014 to 31-Mar-2016 in the Puerto
Rico test site, and 01-Jan-2009 to 02-Aug-2011 in the Southern California test site. The Kruskal-Wallis (KW) test indicates that tide data variations significantly affect net

littoral drift predictions in the New York test site only. A post hoc Dunn’s test reveals that net littoral drift predictions in the New York test site are significantly affected by
NOAA tide predictions only.
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Fig. A3.2 Net shoreline change (10-Oct-2014 to 31-Mar-2016) observed and predicted from MIKE21 in response to tide data resolution in the Puerto Rico test site. Vertical
dashed lines indicate groyne locations. MNC is mean net change, MAC is mean absolute change, MAE is mean absolute error, and BSS is Brier Skill Score. Note (a) has a
different y axis from (b) to (j). Net shoreline change observed and predicted in groyne transects are excluded from the above plots and statistics.
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Fig. A3.3 Net shoreline change (01-Jan-2009 to 02-Aug-2011) observed and predicted from MIKE21 in response to tide data resolution in the Southern California test site.
Vertical dashed lines indicate groyne locations. MNC is mean net change, MAC is mean absolute change, MAE is mean absolute error, and BSS is Brier Skill Score. Net
shoreline change observed and predicted in groyne transects are excluded from the above plots and statistics.
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Fig. A3.4 MIKE21 net shoreline change residuals from variations in tide data resolution in the New York test site. Vertical dashed lines indicate groyne locations. SD is the
standard deviation. Net shoreline change residuals in (a) to (i) are the difference between net shoreline change observed and predicted from 01-Jan-2014 to 01-Feb-2016.
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Note the difference in y axis in (h) and (i). Net shoreline change residuals obtained in groyne transects are excluded from the above plots and statistics.
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Fig. A3.5 MIKE21 net shoreline change residuals from variations in tide data resolution in the Puerto Rico test site. Vertical dashed lines indicate groyne locations. SD is the
standard deviation. Net shoreline change residuals in (a) to (i) are the difference between net shoreline change observed and predicted from 10-Oct-2014 to 31-Mar-2016.
Net shoreline change residuals obtained in groyne transects are excluded from the above plots and statistics.
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Fig. A3.6 MIKE21 net shoreline change residuals from variations in tide data resolution in the Southern California test site. Vertical dashed lines indicate groyne locations.
SD is the standard deviation. Net shoreline change residuals in (a) to (i) are the difference between net shoreline change observed and predicted from 01-Jan-2009 to 02-
Aug-2011. Net shoreline change residuals obtained in groyne transects are removed from the above plots and statistics.
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Fig. A3.7 The Bruun Rule net shoreline change residuals in response to SLR estimations from unadjusted tide data (a), seasonally adjusted tide data (b), and NOAA tide
predictions (c) in the New York test site. Vertical dashed lines indicate groyne locations. SD is the standard deviation. Net shoreline change residuals in (a) to (c) are the
difference between net shoreline change observed and predicted from 01-Jan-2014 to 01-Feb-2016. Net shoreline change residuals obtained in groyne transects are removed

from the above plots and statistics.
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Fig. A3.8 The Bruun Rule net shoreline change residuals in response to SLR estimations from unadjusted tide data (a), seasonally adjusted tide data (b), and NOAA tide
predictions (c) in the Puerto Rico test site. Vertical dashed lines indicate groyne locations. SD is the standard deviation. Net shoreline change residuals in (a) to (c) are the
difference between net shoreline change observed and predicted from 10-Oct-2014 to 31-Mar-2016. Net shoreline change residuals obtained in groyne transects are removed
from the above plots and statistics.
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Fig. A3.9 The Bruun Rule net shoreline change residuals in response to SLR estimations from unadjusted tide data (a), seasonally adjusted tide data (b), and NOAA tide
predictions (c) in the Southern California test site. Vertical dashed lines indicate groyne locations. SD is the standard deviation. Net shoreline change residuals in (a) to (c)
are the difference between net shoreline change observed and predicted from 01-Jan-2009 to 02-Aug-2011. Net shoreline change residuals obtained in groyne transects
are excluded from the above plots and statistics.
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A4 MIKEZ21 sensitivity to wind data temporal resolution

A4 graphically illustrates the sensitivity of MIKE21 net littoral drift and net shoreline change predictions to coarsening wind time series data in each test site.
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Fig. A4.1 Kernel density plots of net littoral drift predictions in response to coarsening wind data resolution in the New York (a), Puerto Rico (b), and Southern California (c)
test site. Net littoral drift predictions in Fig. A4.1 are from 01-Jan-2014 to 01-Feb-2016 in the New York test site, 10-Oct-2014 to 31-Mar-2016 in the Puerto Rico test site,

and 01-Jan-2009 to 02-Aug-2011 in the Southern California test site. The Kruskal-Wallis (KW) test indicates no significant differences in net littoral drift predictions from
coarsening wind data in each test site.
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indicate groyne locations. MNC is mean net change, MAC is mean absolute change, MAE is mean absolute error, and BSS is Brier Skill Score. Net shoreline change

| MNC:

(a) Observed

-0.01 m; MAC: 116 m

(b) Wind data resolution: 6 min

[ mne:

| MAE:

-0.17 m; MAC: 0.88 m
1.20 m; BSS: 0.38

(c) Wind data resolution: 10 min

MNC:

MAE:

-0.17 m; MAC: 088 m
1.20 m; BSS: 0.38

MNC:

(d) Wind data resolution: 20 min

10 b

MAE:

-0.18 m; MAC: 0.88 m
1.20 m; BSS: 0.38

i n n Il 1 n i Il
500 1000 1500

Transects (5 m intervals) from west to east

2000

m)

Net shoreline change (

10

10

o

L
o

—
o

o

-10

10

-10

observed and predicted in groyne transects are excluded from the above plots and statistics.
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Fig. A4.3 Net shoreline change (10-Oct-2014 to 31-Mar-2016) observed and predicted in response to coarsening wind data in the Puerto Rico test site. Vertical dashed lines
indicate groyne locations. MNC is mean net change, MAC is mean absolute change, MAE is mean absolute error, and BSS is Brier Skill Score. Net shoreline change
observed and predicted in groyne transects are excluded from the above plots and statistics.
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Fig. A4.4 Net shoreline change (01-Jan-2009 to 02-Aug-2011) observed and predicted in response to coarsening wind data in the Southern California test site. Vertical
dashed lines indicate groyne locations. MNC is mean net change, MAC is mean absolute change, MAE is mean absolute error, and BSS is Brier Skill Score. Net shoreline
change observed and predicted in groyne transects are excluded from the above plots and statistics.
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Fig. A4.5 Net shoreline change residuals from coarsening wind data in the New York test site. Vertical dashed lines indicate groyne locations. SD is the standard deviation.
Net shoreline change residuals in (a) to (g) are the difference between net shoreline change observed and predicted from 01-Jan-2014 to 01-Feb-2016. Net shoreline change
residuals obtained in groyne transects are excluded from the above plots and statistics.
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Fig. A4.6 Net shoreline change residuals from coarsening wind data in the Puerto Rico test site. Vertical dashed lines indicate groyne locations. SD is the standard deviation.
Net shoreline change residuals in (a) to (g) are the difference between net shoreline change observed and predicted from 10-Oct-2014 to 31-Mar-2016. Net shoreline change
residuals obtained in groyne transects are excluded from the above plots and statistics.
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Fig. A4.7 Net shoreline change residuals from coarsening wind data in the Southern California test site. Vertical dashed lines indicate groyne locations. SD is the standard
deviation. Net shoreline change residuals in (a) to (g) are the difference between net shoreline change observed and predicted from 01-Jan-2009 to 02-Aug-2011. Net
shoreline change residuals obtained in groyne transects are excluded from the above plots and statistics.
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A5 MIKEZ21 sensitivity to wave climate data temporal resolution

A5 graphically illustrates the sensitivity of MIKE21 net littoral drift and net shoreline change predictions to coarsening wave climate data in each test site.
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Fig. A5.1 Kernel density plots of net littoral drift predictions in response to coarsening wave climate data resolution in the New York (a), Puerto Rico (b), and Southern
California (c) test site. In Fig. A5.1, net littoral drift predictions are from 01-Jan-2014 to 01-Feb-2016 in the New York test site, 10-Oct-2014 to 31-Mar-2016 in the Puerto
Rico test site, and 01-Jan-2009 to 02-Aug-2011 in the Southern California test site. The Kruskal-Wallis (KW) test indicates no significant differences in net littoral drift
predictions from coarsening wave climate data in each test site.
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Fig. A5.2 Net shoreline change (01-Jan-2014 to 01-Feb-2016) observed and predicted in response to coarsening wave climate data in the New York test site. Vertical dashed
lines indicate groyne locations. MNC is mean net change, MAC is mean absolute change, MAE is mean absolute error, and BSS is Brier Skill Score. Net shoreline change
observed and predicted in groyne transects are excluded from the above plots and statistics.
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Fig. A5.3 Net shoreline change (10-Oct-2014 to 31-Mar-2016) observed and predicted in response to coarsening wave climate data in the Puerto Rico test site. Vertical
dashed lines indicate groyne locations. MNC is mean net change, MAC is mean absolute change, MAE is mean absolute error, and BSS is Brier Skill Score. Net shoreline
change observed and predicted in groyne transects are excluded from the above plots and statistics.
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Fig. A5.4 Net shoreline change (01-Jan-2009 to 02-Aug-2011) observed and predicted in response to coarsening wave climate data in the Southern California test site.
Vertical dashed lines indicate groyne locations. MNC is mean net change, MAC is mean absolute change, MAE is mean absolute error, and BSS is Brier Skill Score. Net
shoreline change observed and predicted in groyne transects are excluded from the above plots and statistics.
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Fig. A5.5 Net shoreline change residuals from coarsening wave climate data in the New York test site. Vertical dashed lines indicate groyne locations. SD is the standard
deviation. Net shoreline change residuals in (a) to (f) are the difference between net shoreline change observed and predicted from 01-Jan-2014 to 01-Feb-2016. Net
shoreline change residuals obtained in groyne transects are excluded from the above plots and statistics.
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Fig. A5.6 Net shoreline change residuals from coarsening wave climate data in the Puerto Rico test site. Vertical dashed lines indicate groyne locations. SD is the standard
deviation. Net shoreline change residuals in (a) to (f) are the difference between net shoreline change observed and predicted from 10-Oct-2014 to 31-Mar-2016. Net
shoreline change residuals obtained in groyne transects are excluded from the above plots and statistics.
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Fig. A5.7 Net shoreline change residuals from coarsening wave climate data in the Southern California test site. Vertical dashed lines indicate groyne locations. SD is the
standard deviation. Net shoreline change residuals in (a) to (f) are the difference between net shoreline change observed and predicted from 01-Jan-2009 to 02-Aug-2011.
Net shoreline change residuals obtained in groyne transects are excluded from the above plots and statistics.
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A6 MIKE21 sensitivity to Manning’s n reciprocal (m*3/s)

A6 graphically illustrates the sensitivity of MIKE21 net littoral drift and net shoreline change predictions to increasing Manning’s n reciprocals (m¥3/s) in each test site.
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Fig. A6.1 Kernel density plots of net littoral drift predictions in response to increasing Manning’s n reciprocals (m%?3/s) in the New York (a), Puerto Rico (b), and Southern
California (c) test site. In Fig. A6.1, net littoral drift predictions are from 01-Jan-2014 to 01-Feb-2016 in the New York test site, 10-Oct-2014 to 31-Mar-2016 in the Puerto
Rico test site, and 01-Jan-2009 to 02-Aug-2011 in the Southern California test site. The Kruskal-Wallis (KW) test indicates that net littoral drift predictions from increasing
Manning’s n reciprocals (m?3/s) are significantly different in each test site. A post hoc Dunn’s test reveals that net littoral drift predictions are significantly different from
Manning’s n reciprocals > 32 m¥3/s in the New York test site and > 33 m¥3/s in the Puerto Rico and Southern California test sites.
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shoreline change observed and predicted in groyne transects are excluded from the above plots and statistics.
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shoreline change observed and predicted in groyne transects are excluded from the above plots and statistics.
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Fig. A6.4 Net shoreline change (01-Jan-2009 to 02-Aug-2011) observed and predicted in response to increasing Manning’s n reciprocals (m3/s) in the Southern California
test site. Vertical dashed lines indicate groyne locations. MNC is mean net change, MAC is mean absolute change, MAE is mean absolute error, and BSS is Brier Skill Score.
Note the difference in y axis in (e) and (f). Net shoreline change observed and predicted in groyne transects are excluded from the above plots and statistics.
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Fig. A6.5 Net shoreline change residuals from increasing Manning’s n reciprocals (m¥3/s) in the New York test site. Vertical dashed lines indicate groyne locations. SD is the
standard deviation. Net shoreline change residuals in (a) to (e) are the difference between net shoreline change observed and predicted from 01-Jan-2014 to 01-Feb-2016.
Net shoreline change residuals obtained in groyne transects are excluded from the above plots and statistics.
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Fig. A6.6 Net shoreline change residuals from increasing Manning’s n reciprocals (m¥3/s) in the Puerto Rico test site. Vertical dashed lines indicate groyne locations. SD is
the standard deviation. Net shoreline change residuals in (a) to (e) are the difference between net shoreline change observed and predicted from 10-Oct-2014 to 31-Mar-
2016. Net shoreline change residuals obtained in groyne transects are excluded from the above plots and statistics.
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Aug-2011. Note the difference in y axis in (d) and (e). Net shoreline change residuals obtained in groyne transects are excluded from the above plots and statistics.
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A7 MIKE21 sensitivity to sand porosity

A7 graphically illustrates the sensitivity of MIKE21 net littoral drift and net shoreline change predictions to increasing sand porosity in each test site.
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Fig. A7.1 Kernel density plots of net littoral drift predictions in response to increasing sand porosity in the New York (a), Puerto Rico (b), and Southern California (c) test site.
In Fig. A7.1, net littoral drift predictions are from 01-Jan-2014 to 01-Feb-2016 in the New York test site, 10-Oct-2014 to 31-Mar-2016 in the Puerto Rico test site, and 01-Jan-
2009 to 02-Aug-2011 in the Southern California test site. The Kruskal-Wallis (KW) test indicates no significant differences in net littoral drift predictions from increasing sand
porosity in each test site.
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Fig. A7.2 Net shoreline change (01-Jan-2014 to 01-Feb-2016) observed and predicted in response to increasing sand porosity in the New York test site. Vertical dashed lines
indicate groyne locations. MNC is mean net change, MAC is mean absolute change, MAE is mean absolute error, and BSS is Brier Skill Score. Net shoreline change
observed and predicted in groyne transects are excluded from the above plots and statistics.
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Fig. A7.3 Net shoreline change (10-Oct-2014 to 31-Mar-2016) observed and predicted in response to increasing sand porosity in the Puerto Rico test site. Vertical dashed
lines indicate groyne locations. MNC is mean net change, MAC is mean absolute change, MAE is mean absolute error, and BSS is Brier Skill Score. Net shoreline change
observed and predicted in groyne transects are excluded from the above plots and statistics.
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Fig. A7.5 Net shoreline change residuals from increasing sand porosity in the New York test site. Vertical dashed lines indicate groyne locations. SD is the standard deviation.
Net shoreline change residuals in (a) to (d) are the difference between net shoreline change observed and predicted from 01-Jan-2014 to 01-Feb-2016. Net shoreline change
residuals obtained in groyne transects are excluded from the above plots and statistics.
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Fig. A7.6 Net shoreline change residuals from increasing sand porosity in the Puerto Rico test site. Vertical dashed lines indicate groyne locations. SD is the standard
deviation. Net shoreline change residuals in (a) to (d) are the difference between net shoreline change observed and predicted from 10-Oct-2014 to 31-Mar-2016. Net
shoreline change residuals obtained in groyne transects are excluded from the above plots and statistics.
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Fig. A7.7 Net shoreline change residuals from increasing sand porosity in the Southern California test site. Vertical dashed lines indicate groyne locations. SD is the standard
deviation. Net shoreline change residuals in (a) to (d) are the difference between net shoreline change observed and predicted from 01-Jan-2009 to 02-Aug-2011. Note the
difference in y axis in (d). Net shoreline change residuals obtained in groyne transects are excluded from the above plots and statistics.
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A8 MIKE21 sensitivity to sand grain diameter (mm)

A8 graphically illustrates the sensitivity of MIKE21 net littoral drift and net shoreline change predictions to increasing sand grain diameters (mm) in each test site.
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Fig. A8.1 Kernel density plots of net littoral drift predictions in response to increasing sand grain diameters (mm) in the New York (a), Puerto Rico (b) and Southern California
(c) test site. In Fig. A8.1, net littoral drift predictions are from 01-Jan-2014 to 01-Feb-2016 in the New York test site, 10-Oct-2014 to 31-Mar-2016 in the Puerto Rico test site,
and 01-Jan-2009 to 02-Aug-2011 in the Southern California test site. The Kruskal-Wallis (KW) test indicates significant differences in net littoral drift predictions from
increasing sand grain diameters in each test site. A post hoc Dunn’s test reveals that net littoral drift predictions are not significantly different from sand grain diameters
ranging from 0.2 to 0.25 mm and 0.25 to 0.5 mm in the New York test site, 0.2 to 0.25 mm in the Puerto Rico test site, and 0.5 to 1 mm in the Southern California test site.
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Fig. A8.2 Net shoreline change (01-Jan-2014 to 01-Feb-2016) observed and predicted in response to increasing sand grain diameters (mm) in the New York test site. Vertical
dashed lines indicate groyne locations. MNC is mean net change, MAC is mean absolute change, MAE is mean absolute error, and BSS is Brier Skill Score. Note the
difference in y axis in (b). Net shoreline change observed and predicted in groyne transects are excluded from the above plots and statistics.
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Fig. A8.3 Net shoreline change (10-Oct-2014 to 31-Mar-2016) observed and predicted in response to increasing sand grain diameters (mm) in the Puerto Rico test site.
Vertical dashed lines indicate groyne locations. MNC is mean net change, MAC is mean absolute change, MAE is mean absolute error, and BSS is Brier Skill Score. Note
the difference in y axis in (b). Net shoreline change observed and predicted in groyne transects are excluded from the above plots and statistics.
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Fig. A8.4 Net shoreline change (01-Jan-2009 to 02-Aug-2011) observed and predicted in response to increasing sand grain diameters (mm) in the Southern California test
site. Vertical dashed lines indicate groyne locations. MNC is mean net change, MAC is mean absolute change, MAE is mean absolute error, and BSS is Brier Skill Score.
Net shoreline change observed and predicted in groyne transects are excluded from the above plots and statistics.
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Fig. A8.5 Net shoreline change residuals from increasing sand grain diameters (mm) in the New York test site. Vertical dashed lines indicate groyne locations. SD is the
standard deviation. Net shoreline change residuals in (a) to (e) are the difference between net shoreline change observed and predicted from 01-Jan-2014 to 01-Feb-2016.
Note the difference in y axis in (a). Net shoreline change residuals obtained in groyne transects are excluded from the above plots and statistics.
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Fig. A8.6 Net shoreline change residuals from increasing sand grain diameters (mm) in the Puerto Rico test site. Vertical dashed lines indicate groyne locations. SD is the
standard deviation. Net shoreline change residuals in (a) to (e) are the difference between net shoreline change observed and predicted from 10-Oct-2014 to 31-Mar-2016.
Note the difference in y axis in (a). Net shoreline change residuals obtained in groyne transects are excluded from the above plots and statistics.
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Fig. A8.7 Net shoreline change residuals from increasing sand grain diameters (mm) in the Southern California test site. Vertical dashed lines indicate groyne locations. SD
is the standard deviation. Net shoreline change residuals in (a) to (d) are the difference between net shoreline change observed and predicted from 01-Jan-2009 to 02-Aug-
2011. Net shoreline change residuals obtained in groyne transects are excluded from the above plots and statistics.
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A9 MIKEZ21 sensitivity to sediment grading coefficient

A9 graphically illustrates the sensitivity of MIKE21 net littoral drift and net shoreline change predictions in response to an increase in each test site's sediment grading
coefficient.

18 107 (a) ; %107 (b) 8 %10 (c)
KW test: p = 0.006 KW test: p < 0.0001 KW test p<0.0001 | | Grading

16 ] 7 1 |coefficient
- SB & 1.1
E1a E E 6 — 13
=, e °f = e
5 - T 5 .
T 41 T4t ©
o o o
2 2 g4
5 08¢ B3t o]
= = = 3
G 06 5 -
= 227 =
2oaf 2 2?
@ @ @
] 01k o

0.2} AMJ 1

0 vl i\ 0 ; ; , 0 . . )
2 . 0 1 2 10 -8 6 4 2 0 2 2 1 0 1 2 3
Net littoral drift (m®) x10° Net littoral drift (m®) x10% Net littoral drift (m®) x10°

Fig. A9.1 Kernel density plots of net littoral drift predictions in response to an increase in sediment grading coefficient in the New York (a), Puerto Rico (b), and Southern
California (c) test site. In Fig. A9.1, net littoral drift predictions are from 01-Jan-2014 to 01-Feb-2016 in the New York test site, 10-Oct-2014 to 31-Mar-2016 in the Puerto
Rico test site, and 01-Jan-2009 to 02-Aug-2011 in the Southern California test site. The Kruskal-Wallis (KW) test indicates significant differences in net littoral drift predictions

from an increase in each test site's sediment grading coefficient. A post hoc Dunn’s test reveals that net littoral drift predictions from each change in sediment grading
coefficient are significantly different.
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Fig. A9.2 Net shoreline change (01-Jan-2014 to 01-Feb-2016) observed and predicted in response to an increase in sediment grading coefficient in the New York test site.
Vertical dashed lines indicate groyne locations. MNC is mean net change, MAC is mean absolute change, MAE is mean absolute error, and BSS is Brier Skill Score. Note
the difference in y axis in (€). Net shoreline change observed and predicted in groyne transects are excluded from the above plots and statistics.
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Fig. A9.3 Net shoreline change (10-Oct-2014 to 31-Mar-2016) observed and predicted in response to an increase in sediment grading coefficient in the Puerto Rico test site.
Vertical dashed lines indicate groyne locations. MNC is mean net change, MAC is mean absolute change, MAE is mean absolute error, and BSS is Brier Skill Score. Note
the difference in y axis in (€). Net shoreline change observed and predicted in groyne transects are excluded from the above plots and statistics.
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Fig. A9.4 Net shoreline change (01-Jan-2009 to 02-Aug-2011) observed and predicted in response to an increase in sediment grading coefficient in the Southern California
test site. Vertical dashed lines indicate groyne locations. MNC is mean net change, MAC is mean absolute change, MAE is mean absolute error, and BSS is Brier Skill Score.
Net shoreline change observed and predicted in groyne transects are excluded from the above plots and statistics.
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Fig. A9.5 Net shoreline change residuals from an increase in sediment grading coefficient in the New York test site. Vertical dashed lines indicate groyne locations. SD is the
standard deviation. Net shoreline change residuals in (a) to (d) are the difference between net shoreline change observed and predicted from 01-Jan-2014 to 01-Feb-2016.
Note the difference in y axis in (d). Net shoreline change residuals obtained in groyne transects are excluded from the above plots and statistics.
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Fig. A9.6 Net shoreline change residuals from an increase in sediment grading coefficient in the Puerto Rico test site. Vertical dashed lines indicate groyne locations. SD is
the standard deviation. Net shoreline change residuals in (a) to (d) are the difference between net shoreline change observed and predicted from 10-Oct-2014 to 31-Mar-
2016. Note the difference in y axis in (d). Net shoreline change residuals obtained in groyne transects are excluded from the above plots and statistics.
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Fig. A9.7 Net shoreline change residuals from an increase in sediment grading coefficient in the Southern California test site. Vertical dashed lines indicate groyne locations.
SD is the standard deviation. Net shoreline change residuals in (a) to (d) are the difference between net shoreline change observed and predicted from 01-Jan-2009 to 02-
Aug-2011. Net shoreline change residuals obtained in groyne transects are excluded from the above plots and statistics.
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A10 MIKE21 sensitivity to weir coefficient (m*?/s) of hard defences

A10 graphically illustrates the sensitivity of MIKE21 net littoral drift and net shoreline change predictions to increasing weir coefficients (m¥/2/s) in each test site.
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Fig. A10.1 Kernel density plots of net littoral drift predictions in response to increasing weir coefficients (m%/2/s) in the New York (a), Puerto Rico (b), and Southern California
(c) test site. In Fig. A10.1, net littoral drift predictions are from 01-Jan-2014 to 01-Feb-2016 in the New York test site, 10-Oct-2014 to 31-Mar-2016 in the Puerto Rico test
site, and 01-Jan-2009 to 02-Aug-2011 in the Southern California test site. The Kruskal-Wallis (KW) test indicates no significant differences in net littoral drift predictions from

increasing weir coefficients (m¥2/s) in each test site.

Appendix A: Graphical representation of model sensitivity in each test site

327



(a) Observed

m MNC:

T T -0.01 m; MAC: 1.16 m
5
0y ]
.

Il i n n Il 1 1 Il Il Il

. e . 1/2
. (b) Weir (I:oelffuclnenlt. 9-11| m "“Is | MNC: -0.16 m: MAC: 0.76 m
MAE: 1.48 m; BSS: 0.46

5m

”21'5

(c) Weir coefficient: 0.5

MNC:
MAE:

-0.16 m; MAC: 0.76 m
1.48 m; BSS: 0.46

Net shoreline change (m)
(=]

(d) Weir coefficient: 0.7

7m'?s

MNC:
MAE:

-0.16 m; MAC: 0.76 m
1.48 m; BSS: 0.46

(e) Weir coefficient: 0.9

9m

”21'5

MMNC:
MAE:

-0.16 m; MAC: 0.76 m
1.48 m; BSS: 0.46

500 1000

Fig. A10.2 Net shoreline change (01-Jan-2014 to 01-Feb-2016) observed and predicted in response to increasing weir coefficients (m/2/s) in the New York test site. Vertical
dashed lines indicate groyne locations. MNC is mean net change, MAC is mean absolute change, MAE is mean absolute error, and BSS is Brier Skill Score. Net shoreline

1500
Transects (5 m intervals) from west to east

2000

Net shoreline change (m)

(f) Weir coefficient: 1.21

m

11’215

MMNC: -0.16 m; MAC: 0.76 m

MAE: 1.49 m; BSS: 0.46

(g) Weir coefficient: 1.44 m

1.’2',5

MNC: -0.17 m; MAC: 0.77 m

MAE: 1.51 m; B§S: 0.45

1!2',s

MNC: -0.17 m; MAC: 0.79 m

(h) Weir coefficient: 1.82 m

MAE: 1.52 m; BSS: 0.44

(i) Weir coefficient: 1.838 m"'%/s

MNC: -0.17 m; MAC: 0.79 m

MAE: 1.52 m; BSS: 0.44

112

(j) Weir coefficient: 2.21 m “/s

MNC: -0.16 m; MAC: 0.82 m

MAE: 1.56 m; BSS: 0.41

1
500 1000

change observed and predicted in groyne transects are excluded from the above plots and statistics.

Appendix A: Graphical representation of model sensitivity in each test site

1500
Transects (5 m intervals) from west to east

2000



1!215

(a) Observed
T - 1

(f) Weir coefficient: 1.21 m
- - r 1 T

00— —— 1| MNC: 3.22 m; MAC: 5.03 m 20 — 1 — —————— MNC: 0.11 m; MAC: 0.82 m
: : | | MAE: 5.00 m; BSS: 0.03
10 E 10 F | | .
] L | ]
0 0 WMVMWVWWJ\MWWW
] P I I 3
-10 I P O S T S S S R -10 E 0 Y P T A S H S P |
(b) Weir coefficient: 0.11 m"?/s (g) Weir coefficient: 1.44 m"?/s
20 —r— ————Tp 71— 1 MNC:0.11 m; MAC: 0.82 m 20 ————— T 71— MNC: 0.11 m; MAC: 0.82 m
| | MAE: 5.00 m; BSS: 0.02 F | | MAE: 5.00 m; BSS: 0.03
10 b i | . 10 £ | | ]
| ] E | 1
F 1 I 3 E I I E
5_10 T I T SR T R .uz. [ g_10 E | T S T T .uz. [
ué" 20 . I(c) Weurrcclaefﬁcnent: ?.55 m !sl [MNC: 011 m; MAC: 0.82 m GEJ’ 20 . | I(h) Wenrrcc?effucnent: ‘!.82 m .'sl MINC: 011 m: MAC: 0.82 m
@ I | ‘ MAE: 5.00 m; BSS: 0.03 @ 4 | | MAE: 5.00 m; BSS: 0.03
5 10F | | 3 5 10¢ | | 7
@ | ] @ E | ]
L gt I I E L 0ot I I 3
_8 10 T I O S TS R S S E 10 E Y P T N R S TR |
- : S 112, z ) Wei fficient: 1.838 m /2
5 5 . I(d) Weurrccl)efﬁcnent. 9.77 m sI MING: 011 m; MAC: 0.82 m T 5. | !u) eir c:oelz icient: : m sI MINC: 011 m: MAC: 0.82 m
1 | MAE: 5.00 m; BSS: 0.03 [ | | MAE: 5.00 m; BSS: 0.03
10 F I | 3 10 F | | ]
| ] k | 1
a 1 I E £ I I 3
-10 P R O T S R S T B | -10 E v Y P T A R S T |
(e) Weir coefficient: 0.99 m''%/s (i) Weir coefficient: 2.21 m"'?/s
20 — ; — - - ; MNC: 0.11 m; MAC: 0.82 m 20 ¢ : ; — - ; MNC: 0.12 m; MAC: 0.83 m
| | MAE: 5.00 m; BSS: 0.03 E | | MAE: 501 m; BSS: 0.02
10F I | ] 10F | | ;
| ] k | 1
b 1 I E E I I E
-10 P R O T S R S T B | _103 PR I O S T TS S H S
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Transects (5 m intervals) from west to east Transects (5 m intervals) from west to east

Fig. A10.3 Net shoreline change (10-Oct-2014 to 31-Mar-2016) observed and predicted in response to increasing weir coefficients (m/2/s) in the Puerto Rico test site. Vertical
dashed lines indicate groyne locations. MNC is mean net change, MAC is mean absolute change, MAE is mean absolute error, and BSS is Brier Skill Score. Net shoreline
change observed and predicted in groyne transects are excluded from the above plots and statistics.

Appendix A: Graphical representation of model sensitivity in each test site 329



50 (a) Observed | MNC: 15.15 m; MAC: 15.98 m 50 (f) Weir coefficient: 1.21 m'?is MNC: 1.25 m; MAC: 9.02 m
il :. : .: w : : . :. I . ! - :' : ' ' : : ' :' : ' ' MAE: 16.66 m; BSS: 0.21
I | I | [ | v |
0 | I B 0 |
i | - Il | | 1 |
h | I Il | | ]
50 1L L | i L. 1 L | 1 1 1 1 1 50 L i T | 1 Ly L. 1 1
(b) Weir coefficient: 0.11 m"?/s MNC: 1.39 m: MAC: 9.06 m (g) Weir coefficient: 1.44 m"?/s MNC: 1.37 m; MAC: 9.27 m
SO T T T T T T T T T | MAE: 16.67 m; BSS: 0.21 50"':"':" T I T T T MAE 16,60 m BSS: 0419

12
Is MNC: 1.38 m; MAC: 8.96 m
T T | MAE: 16.53 m; BSS: 0.22

50 [ i TR | I I [ I I
(h) Weir coefficient: 1.82 m'%s MNC: 1.38 m; MAC: 9.23 m
L L TTT T T T T T T T MAE: 16.68 m; BSS: 0.20

(c) Weir coefficient: 0.55 m
— T T T T T 1T I

e e e e
‘”2],5

P Y R R
‘”2',5

n
S
A
n
S

[ MNC: 1.35 m; MAC: 9.08 m
| MAE: 16.63 m; BSS: 0.21

MNC: 1.29 m; MAC: 9.06 m
T T 77| MAE: 16.69 m; BSS: 0.21

Net shoreline change (m)
(=]

Net shoreline change (m)
(=]

(d) Weir coefficient: 0.77 m (i) Weir coefficient: 1.838 m
— T T T T T T Ir 1T — T T T T T Ir T

%]
o
%]
o

P T R B 50 L o e ey e e
112 MNC: 1.37 m; MAC: 8.81 m (j) Weir coefficient: 2.21 m
' ' MAE: 16.58 m; BSS: 0.22 U T T

_50...|I...I|..\\\|.|.I...|I..|.I
(e) Weir coefficient: 0.99 m

12
Is MNC: 1.26 m; MAC: 9.20 m
' MAE: 16.72 m; BSS: 0.20

50 TT T T

50 TT T T

| 1 1 1 L i T | 1 Ly | 1 1 1 |
-50
0 200 400 600 800 1000 1200 1400 1600 1800 0 200 400 600 800 1000 1200 1400 1600 1800

Transects (5 m intervals) from north to south Transects (5 m intervals) from north to south

Fig. A10.4 Net shoreline change (01-Jan-2009 to 02-Aug-2011) observed and predicted in response to increasing weir coefficients (m¥/2/s) in the Southern California test site.
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Fig. A10.5 Net shoreline change residuals from increasing weir coefficients (m¥2/s) in the New York test site. Vertical dashed lines indicate groyne locations. SD is the
standard deviation. Net shoreline change residuals in (a) to (i) are the difference between net shoreline change observed and predicted from 01-Jan-2014 to 01-Feb-2016.
Net shoreline change residuals obtained in groyne transects are excluded from the above plots and statistics.

Appendix A: Graphical representation of model sensitivity in each test site 331



(a) Weir coefficient: 0.11 m"%/s (b) Weir coefficient: 0.55 m"?/s (c) Weir coefficient: 0.77 m"?/s
20 } o ' o ' ‘ ' 20 f o ' m ' ' ‘ ] 20 | o ' o ' ' '
| | | | | |
| | | | | |
10+ | : 10} | : 10} | :
1 | 1 | | |
I | |
0 0 0
[ [ [
1 [ 1 [ I [
-10 ¢ 1 I Mean: 3.11 m; SD: 5.77 1 -10 ¢ 1 I Mean: 3.11 m; SD: 5.77 1 -10 ¢ I I Mean: 3.11 m; SD: 5.77
1 | 1 | 1 |
E E E
P (d) Weir coefficient: 0.99 m"?/s P (e) Weir coefficient: 1.21 m"'%/s P (f) Weir coefficient: 1.44 m''%/s
] T T © T T T T T
S 20 ¢ | | S 20t | | S 20 ¢ I |
he) ke ke
‘W 1 [ ‘W 1 [ ‘0 I [
] 1 I s 1 I g l I
o 107 1 | o 107 1 | o 107 I |
2 1 | 2 I | b= I |
c o o
© 1 ® I @© |
5 0 5 0 5 0
© | @ | @ |
£ | I £ | I £ I I
@ -10 ¢ 1 I Mean: 3.11 m; SD: 5.77 T -10¢} 1 I Mean: 3.11 m; SD: 5.77 S -10 | | I Mean: 3.11 m; SD: 5.77
g 1 L . ‘ . g 1 L . . ‘ g 1 L . . .
w w [7:]
® ® ]
= = =
(g) Weir coefficient: 1.82 m''?/s (h) Weir coefficient: 1.838 m''%/s (i) Weir coefficient: 2.21 m"'?/s
20} o ' o ' ‘ ' 20 f o ' o ' ' ‘ ] 20 f o ' o ' ' '
| | | | | |
1 [ 1 [ I [
1 [ 1 [ I [
10 | | | 10 t | | 10 t | |
1 | 1 | | |
o [ 3 [ 0 [
[ [ [
| | | | |
-10 ¢ I Mean: 3.11 m; SD: 5.77 1 -10 ¢ I Mean: 3.11 m; SD: 5.77 1 -10 1 I Mean: 3.10 m; SD: 5.78
1 . L, . ‘ . 1 . L, . . ‘ 1 . L. . . .
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Transects (5 m intervals) from west to east Transects (5 m intervals) from west to east Transects (5 m intervals) from west to east

Fig. A10.6 Net shoreline change residuals from increasing weir coefficients (m¥2/s) in the Puerto Rico test site. Vertical dashed lines indicate groyne locations. SD is the
standard deviation. Net shoreline change residuals in (a) to (i) are the difference between net shoreline change observed and predicted from 10-Oct-2014 to 31-Mar-2016.
Net shoreline change residuals obtained in groyne transects are excluded from the above plots and statistics.
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Fig. A10.7 Net shoreline change residuals from increasing weir coefficients (m'2/s) in the Southern California test site. Vertical dashed lines indicate groyne locations. SD is
the standard deviation. Net shoreline change residuals in (a) to (i) are the difference between net shoreline change observed and predicted from 01-Jan-2009 to 02-Aug-
2011. Net shoreline change residuals obtained in groyne transects are excluded from the above plots and statistics.
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	Fig. 4.7 Net shoreline change (01-Jan-2014 to 01-Feb-2016) observed and predicted from the Bruun Rule in response to 𝑆𝐿𝑅 estimations from different tide datasets in the New York test site. Vertical dashed lines indicate groyne locations. MNC is mea...
	Fig. 4.8 Brier Skill Scores (BSS) estimated from net shoreline change predictions (10-Oct-2014 to 31-Mar-2016) in response to boundary conditions in the Puerto Rico test site. In (c), HL is daily high/low tide data, and Pred6 is NOAA tide predictions ...
	Table 4.2 Summary of net shoreline change (10-Oct-2014 to 31-Mar-2016) observed and predicted in response to boundary conditions in the Puerto Rico test site. M is MIKE21, B is the Bruun Rule, MNC is mean net change, MAC is mean absolute change, MAE i...
	Fig. 4.9 Net shoreline change (10-Oct-2014 to 31-Mar-2016) observed and predicted in response to coarsening nearshore spatial discretisation in the Puerto Rico test site. Vertical dashed lines indicate groyne locations. MNC is mean net change, MAC is ...
	Fig. 4.10 Coarsening bathymetry data effects on the Puerto Rico test site’s average upper beach profile.
	Fig. 4.11 Net shoreline change (10-Oct-2014 to 31-Mar-2016) observed and predicted in response to coarsening bathymetry data in the Puerto Rico test site. Vertical dashed lines indicate groyne locations. MNC is mean net change, MAC is mean absolute ch...
	Fig. 4.12 Net shoreline change (10-Oct-2014 to 31-Mar-2016) observed and predicted from the Bruun Rule in response to 𝑆𝐿𝑅 estimations from different tide datasets in the Puerto Rico test site. Vertical dashed lines indicate groyne locations. MNC is...
	Fig. 4.13 Brier Skill Scores (BSS) estimated from net shoreline change predictions (01-Jan-2009 to 02-Aug-2011) in response to boundary conditions in the Southern California test site. In (c), HL is daily high/low tide data, and Pred6 is NOAA tide pre...
	Table 4.3 Summary of net shoreline change (01-Jan-2009 to 02-Aug-2011) observed and predicted in response to boundary conditions in the Southern California test site. M is MIKE21, B is the Bruun Rule, MNC is mean net change, MAC is mean absolute chang...
	Fig. 4.14 Net shoreline change (01-Jan-2009 to 02-Aug-2011) observed and predicted in response to coarsening nearshore spatial discretisation in the Southern California test site. Vertical dashed lines indicate groyne locations. MNC is mean net change...
	Fig. 4.15 Net shoreline change (01-Jan-2009 to 02-Aug-2011) observed and predicted in response to coarsening bathymetry data in the Southern California test site. Vertical dashed lines indicate groyne locations. MNC is mean net change, MAC is mean abs...
	Fig. 4.16 Net shoreline change (01-Jan-2009 to 02-Aug-2011) observed and predicted from the Bruun Rule in response to 𝑆𝐿𝑅 estimations from different tide datasets in the Southern California test site. Vertical dashed lines indicate groyne locations...
	Fig. 4.17 Summary of MIKE21 performance in response to boundary condition variations in the New York (NY), Puerto Rico (PR), and Southern California (SC) test site. In (c), HL is daily high/low tide data, and Pred6 is NOAA tide predictions (6 min inte...
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	Fig. 4.18 Net shoreline change observed and predicted from the New York (01-Jan-2014 to 01-Feb-2016) (a), Puerto Rico (10-Oct-2014 to 31-Mar-2016) (b), and Southern California (01-Jan-2009 to 02-Aug-2011) (c) test site’s calibrated MIKE21 model. Verti...
	Fig. 4.19 Net shoreline change observed and predicted from the New York (01-Jan-2014 to 01-Feb-2016) (a), Puerto Rico (10-Oct-2014 to 31-Mar-2016) (b), and Southern California (01-Jan-2009 to 02-Aug-2011) (c) test site’s calibrated Bruun Rule model. V...
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	Fig. 5.1 The New York test site’s model domain area used to quantify and compare meso timescale shoreline evolution predictions. MIKE21 net shoreline change predictions outside this area are sensitive to the Flather condition data applied at the west ...
	Fig. 5.2 Net shoreline change observed and predicted (01-Jan-1966 to 01-Feb-2016) in the New York test site. Vertical dashed lines indicate groyne locations. MNC is mean net change, MAC is mean absolute change, MAE is mean absolute error, and BSS is B...
	Table 5.1 Closure depth time series estimates used to hindcast meso timescale shoreline evolution (1966 to 2016) in the New York test site compared against corresponding observations. Closure depth estimations are derived from Birkemeier (1985) formul...
	Fig. 5.3 Comparing closure depth (m below MHW) observations and estimations (1980 to 2012) in the New York test site. SD is the standard deviation. All closure depth estimations are derived from Birkemeier (1985) formula using nearshore significant wa...
	Fig. 5.4 Annual median and mean significant wave height statistics (1980 to 2012) in the New York test site. Annual significant wave height statistics in the above plots are from USACE WIS station 63124 (USACE, 2020).
	Table 5.2 Summary of all meso timescale shoreline evolution hindcasts (01-Jan-1966 to 01-Feb-2016) in the New York test site. MNC is mean net change, MAC is mean absolute change, MAE is mean absolute error, and BSS is Brier Skill Score.
	Fig. 5.5 Net shoreline change forecasted (01-Jan-2014 to 01-Jan-2064) in the New York test site. Vertical dashed lines indicate groyne locations. MNC is mean net change, and MAC is mean absolute change. Net shoreline change predictions in groyne trans...
	Fig. 5.6 Closure depth estimations used to forecast meso timescale shoreline evolution (2014 to 2064) in the New York test site with a time-varying closure depth in MIKE21. All closure depth estimations are derived from Birkemeier (1985) formula using...
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	Fig. 6.1 Closure depths observed and applied to hindcast shoreline evolution over irregular spatial intervals in the Puerto Rico test site. Blue vertical dashed lines indicate the boundaries of each MIKE21 SM domain.
	Fig. 6.2 Net shoreline change observed and predicted (10-Oct-2014 to 31-Mar-2016) in the Puerto Rico test site. Black vertical dashed lines indicate groyne locations. Red vertical dashed lines in (b) indicate the boundaries of each MIKE21 SM domain. M...
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	Table 6.2 Summary of all shoreline evolution hindcasts (10-Oct-2014 to 31-Mar-2016) in the Puerto Rico test site. MNC is mean net change, SD is the standard deviation, MAC is mean absolute change, MAE is mean absolute error, and BSS is Brier Skill Sco...
	Fig. 6.3 Net shoreline change residuals obtained from using a 5.5 m (model one) and space-varying closure depth (model two) in MIKE21 to hindcast shoreline evolution in the Puerto Rico test site (10-Oct-2014 to 31-Mar-2016). Net shoreline change resid...
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	Table 7.1 Closure depth time and space variations used to forecast meso timescale shoreline evolution in the Puerto Rico test site (2014 to 2064). 2014 closure depths are based on reef substrate distribution. 2015 to 2063 closure depths are derived fr...
	Fig. 7.1 Estimated closure depths (2015 to 2063) applied in all MIKE21 SM domains used to forecast meso timescale shoreline evolution (10-Oct-2014 to 10-Oct-2064) in the Puerto Rico test site with a time and space-varying closure depth. Closure depth ...
	Fig. 7.2 Net shoreline change forecasted in the Puerto Rico test site (10-Oct-2014 to 10-Oct-2064) using a time and space-varying closure depth in MIKE21 (a), a 5.5 m constant closure depth in MIKE21 (b), and a space-varying closure depth in the Bruun...
	Fig. 7.3 Longshore variations in net shoreline change (accretion vs erosion) forecasted in the Puerto Rico test site (10-Oct-2014 to 10-Oct-2064) using a time and space-varying closure depth in MIKE21. Credits (streetmap): ESRI (2020)
	Fig. 7.4 Coral reefs present in the Puerto Rico test site’s mesh bathymetry.
	Fig. 7.5 Significant wave heights at different timesteps in MIKE21 meso timescale shoreline evolution simulation (10-Oct-2014 to 10-Oct-2064) in the Puerto Rico test site: 10-Oct-2015 00:00:00 (a), 10-Oct-2024 00:00:00 (b), 10-Oct-2034 00:00:00 (c), a...
	Fig. 7.6 Longshore variations in net shoreline change (accretion vs erosion) forecasted in the Puerto Rico test site (10-Oct-2014 to 10-Oct-2064) using a 5.5 m constant closure depth in MIKE21. Credits (streetmap): ESRI (2020)
	Fig. 7.7 Predominant direction of littoral drift in the Puerto Rico test site (indicated by arrows).
	Table 7.2 Summary of MIKE21 and the Bruun Rule performance in their various applications in preceding chapters. All Bruun Rule modelling applications and statistics are highlighted in grey.
	Table 7.3 Summary of all meso timescale shoreline evolution forecasts (10-Oct-2014 to 10-Oct-2064) in the Puerto Rico test site. MNC is mean net change, SD is the standard deviation, and MAC is mean absolute change.
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	Table. 8.1 Quantitative summary of meso timescale net shoreline change observed and predicted (01-Jan-1966 to 01-Feb-2016) in the New York test site. MNC is mean net change, MAC is mean absolute change, MAE is mean absolute error, and BSS is Brier Ski...
	Table. 8.2 Quantitative summary of micro timescale net shoreline change observed and predicted (10-Oct-2014 to 31-Mar-2016) in the Puerto Rico test site. MNC is mean net change, MAC is mean absolute change, MAE is mean absolute error, and BSS is Brier...
	Table. 8.3 Quantitative summary of meso timescale net shoreline change observed and predicted (10-Oct-2014 to 10-Oct-2064) in the Puerto Rico test site. MNC is mean net change, MAC is mean absolute change, and SD is the standard deviation.
	Fig. 8.1 Longshore trends (accretion versus erosion) in shoreline evolution observed (a) and predicted in the Puerto Rico test site (10-Oct-2014 to 31-Mar-2016) using a space-varying closure depth in MIKE21 (b), a 5.5 m constant closure depth in MIKE2...
	Fig. 8.2 Kernel density plots of net shoreline change residuals derived from hindcasting meso timescale shoreline evolution in the New York test site (01-Jan-1966 to 01-Feb-2016). Net shoreline change residuals are the difference between net shoreline...
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	A1 MIKE21 sensitivity to nearshore spatial discretisation
	Fig. A1.1 Kernel density plots of net littoral drift predictions in response to coarsening nearshore spatial discretisation in the New York (a), Puerto Rico (b), and Southern California (c) test site. In (a), (b), and (c), Mesh𝑋 refers to a mesh with...
	Fig. A1.2 Net shoreline change residuals from coarsening nearshore spatial discretisation in the New York test site. Vertical dashed lines indicate groyne locations. SD is the standard deviation. Net shoreline change residuals in (a) to (i) are the di...
	Fig. A1.3 Net shoreline change residuals from coarsening nearshore spatial discretisation in the Puerto Rico test site. Vertical dashed lines indicate groyne locations. SD is the standard deviation. Net shoreline change residuals in (a) to (i) are the...
	Fig. A1.4 Net shoreline change residuals from coarsening nearshore spatial discretisation in the Southern California test site. Vertical dashed lines indicate groyne locations. SD is the standard deviation. Net shoreline change residuals in (a) to (i)...

	A2 MIKE21 and the Bruun Rule sensitivity to bathymetry data spatial resolution
	Fig. A2.1 Kernel density plots of net littoral drift predictions in response to coarsening bathymetry data in the New York (a), Puerto Rico (b), and Southern California (c) test site. In (a) to (c), Mesh𝑋Bathy𝑌 refers to a mesh with a nearshore disc...
	Fig. A2.2 Net shoreline change residuals from coarsening bathymetry data in the New York test site. Vertical dashed lines indicate groyne locations. SD is the standard deviation. Net shoreline change residuals in (a) to (g) are the difference between ...
	Fig. A2.3 Net shoreline change residuals from coarsening bathymetry data in the Puerto Rico test site. Vertical dashed lines indicate groyne locations. SD is the standard deviation. Net shoreline change residuals in (a) to (g) are the difference betwe...
	Fig. A2.4 Net shoreline change residuals from coarsening bathymetry data in the Southern California test site. Vertical dashed lines indicate groyne locations. SD is the standard deviation. Net shoreline change residuals in (a) to (f) are the differen...

	A3 MIKE21 and the Bruun Rule sensitivity to tide data
	Fig. A3.1 Kernel density plots of net littoral drift predictions in response to tide data resolution in the New York (a), Puerto Rico (b), and Southern California (c) test site. Pred is NOAA tide predictions. Net littoral drift predictions in Fig. A3....
	Fig. A3.2 Net shoreline change (10-Oct-2014 to 31-Mar-2016) observed and predicted from MIKE21 in response to tide data resolution in the Puerto Rico test site. Vertical dashed lines indicate groyne locations. MNC is mean net change, MAC is mean absol...
	Fig. A3.3 Net shoreline change (01-Jan-2009 to 02-Aug-2011) observed and predicted from MIKE21 in response to tide data resolution in the Southern California test site. Vertical dashed lines indicate groyne locations. MNC is mean net change, MAC is me...
	Fig. A3.4 MIKE21 net shoreline change residuals from variations in tide data resolution in the New York test site. Vertical dashed lines indicate groyne locations. SD is the standard deviation. Net shoreline change residuals in (a) to (i) are the diff...
	Fig. A3.5 MIKE21 net shoreline change residuals from variations in tide data resolution in the Puerto Rico test site. Vertical dashed lines indicate groyne locations. SD is the standard deviation. Net shoreline change residuals in (a) to (i) are the d...
	Fig. A3.6 MIKE21 net shoreline change residuals from variations in tide data resolution in the Southern California test site. Vertical dashed lines indicate groyne locations. SD is the standard deviation. Net shoreline change residuals in (a) to (i) a...
	Fig. A3.7 The Bruun Rule net shoreline change residuals in response to 𝑆𝐿𝑅 estimations from unadjusted tide data (a), seasonally adjusted tide data (b), and NOAA tide predictions (c) in the New York test site. Vertical dashed lines indicate groyne ...
	Fig. A3.8 The Bruun Rule net shoreline change residuals in response to 𝑆𝐿𝑅 estimations from unadjusted tide data (a), seasonally adjusted tide data (b), and NOAA tide predictions (c) in the Puerto Rico test site. Vertical dashed lines indicate groy...
	Fig. A3.9 The Bruun Rule net shoreline change residuals in response to 𝑆𝐿𝑅 estimations from unadjusted tide data (a), seasonally adjusted tide data (b), and NOAA tide predictions (c) in the Southern California test site. Vertical dashed lines indic...

	A4 MIKE21 sensitivity to wind data temporal resolution
	Fig. A4.1 Kernel density plots of net littoral drift predictions in response to coarsening wind data resolution in the New York (a), Puerto Rico (b), and Southern California (c) test site. Net littoral drift predictions in Fig. A4.1 are from 01-Jan-20...
	Fig. A4.2 Net shoreline change (01-Jan-2014 to 01-Feb-2016) observed and predicted in response to coarsening wind data in the New York test site. Vertical dashed lines indicate groyne locations. MNC is mean net change, MAC is mean absolute change, MAE...
	Fig. A4.3 Net shoreline change (10-Oct-2014 to 31-Mar-2016) observed and predicted in response to coarsening wind data in the Puerto Rico test site. Vertical dashed lines indicate groyne locations. MNC is mean net change, MAC is mean absolute change, ...
	Fig. A4.4 Net shoreline change (01-Jan-2009 to 02-Aug-2011) observed and predicted in response to coarsening wind data in the Southern California test site. Vertical dashed lines indicate groyne locations. MNC is mean net change, MAC is mean absolute ...
	Fig. A4.5 Net shoreline change residuals from coarsening wind data in the New York test site. Vertical dashed lines indicate groyne locations. SD is the standard deviation. Net shoreline change residuals in (a) to (g) are the difference between net sh...
	Fig. A4.6 Net shoreline change residuals from coarsening wind data in the Puerto Rico test site. Vertical dashed lines indicate groyne locations. SD is the standard deviation. Net shoreline change residuals in (a) to (g) are the difference between net...
	Fig. A4.7 Net shoreline change residuals from coarsening wind data in the Southern California test site. Vertical dashed lines indicate groyne locations. SD is the standard deviation. Net shoreline change residuals in (a) to (g) are the difference bet...

	A5 MIKE21 sensitivity to wave climate data temporal resolution
	Fig. A5.1 Kernel density plots of net littoral drift predictions in response to coarsening wave climate data resolution in the New York (a), Puerto Rico (b), and Southern California (c) test site. In Fig. A5.1, net littoral drift predictions are from ...
	Fig. A5.2 Net shoreline change (01-Jan-2014 to 01-Feb-2016) observed and predicted in response to coarsening wave climate data in the New York test site. Vertical dashed lines indicate groyne locations. MNC is mean net change, MAC is mean absolute cha...
	Fig. A5.3 Net shoreline change (10-Oct-2014 to 31-Mar-2016) observed and predicted in response to coarsening wave climate data in the Puerto Rico test site. Vertical dashed lines indicate groyne locations. MNC is mean net change, MAC is mean absolute ...
	Fig. A5.4 Net shoreline change (01-Jan-2009 to 02-Aug-2011) observed and predicted in response to coarsening wave climate data in the Southern California test site. Vertical dashed lines indicate groyne locations. MNC is mean net change, MAC is mean a...
	Fig. A5.5 Net shoreline change residuals from coarsening wave climate data in the New York test site. Vertical dashed lines indicate groyne locations. SD is the standard deviation. Net shoreline change residuals in (a) to (f) are the difference betwee...
	Fig. A5.6 Net shoreline change residuals from coarsening wave climate data in the Puerto Rico test site. Vertical dashed lines indicate groyne locations. SD is the standard deviation. Net shoreline change residuals in (a) to (f) are the difference bet...
	Fig. A5.7 Net shoreline change residuals from coarsening wave climate data in the Southern California test site. Vertical dashed lines indicate groyne locations. SD is the standard deviation. Net shoreline change residuals in (a) to (f) are the differ...

	A6 MIKE21 sensitivity to Manning’s 𝒏 reciprocal (m1/3/s)
	Fig. A6.1 Kernel density plots of net littoral drift predictions in response to increasing Manning’s 𝑛 reciprocals (m1/3/s) in the New York (a), Puerto Rico (b), and Southern California (c) test site. In Fig. A6.1, net littoral drift predictions are ...
	Fig. A6.2 Net shoreline change (01-Jan-2014 to 01-Feb-2016) observed and predicted in response to increasing Manning’s 𝑛 reciprocals (m1/3/s) in the New York test site. Vertical dashed lines indicate groyne locations. MNC is mean net change, MAC is m...
	Fig. A6.3 Net shoreline change (10-Oct-2014 to 31-Mar-2016) observed and predicted in response to increasing Manning’s 𝑛 reciprocals (m1/3/s) in the Puerto Rico test site. Vertical dashed lines indicate groyne locations. MNC is mean net change, MAC i...
	Fig. A6.4 Net shoreline change (01-Jan-2009 to 02-Aug-2011) observed and predicted in response to increasing Manning’s 𝑛 reciprocals (m1/3/s) in the Southern California test site. Vertical dashed lines indicate groyne locations. MNC is mean net chang...
	Fig. A6.5 Net shoreline change residuals from increasing Manning’s 𝑛 reciprocals (m1/3/s) in the New York test site. Vertical dashed lines indicate groyne locations. SD is the standard deviation. Net shoreline change residuals in (a) to (e) are the d...
	Fig. A6.6 Net shoreline change residuals from increasing Manning’s 𝑛 reciprocals (m1/3/s) in the Puerto Rico test site. Vertical dashed lines indicate groyne locations. SD is the standard deviation. Net shoreline change residuals in (a) to (e) are th...
	Fig. A6.7 Net shoreline change residuals from increasing Manning’s 𝑛 reciprocals (m1/3/s) in the Southern California test site. Vertical dashed lines indicate groyne locations. SD is the standard deviation. Net shoreline change residuals in (a) to (e...

	A7 MIKE21 sensitivity to sand porosity
	Fig. A7.1 Kernel density plots of net littoral drift predictions in response to increasing sand porosity in the New York (a), Puerto Rico (b), and Southern California (c) test site. In Fig. A7.1, net littoral drift predictions are from 01-Jan-2014 to ...
	Fig. A7.2 Net shoreline change (01-Jan-2014 to 01-Feb-2016) observed and predicted in response to increasing sand porosity in the New York test site. Vertical dashed lines indicate groyne locations. MNC is mean net change, MAC is mean absolute change,...
	Fig. A7.3 Net shoreline change (10-Oct-2014 to 31-Mar-2016) observed and predicted in response to increasing sand porosity in the Puerto Rico test site. Vertical dashed lines indicate groyne locations. MNC is mean net change, MAC is mean absolute chan...
	Fig. A7.4 Net shoreline change (01-Jan-2009 to 02-Aug-2011) observed and predicted in response to increasing sand porosity in the Southern California test site. Vertical dashed lines indicate groyne locations. MNC is mean net change, MAC is mean absol...
	Fig. A7.5 Net shoreline change residuals from increasing sand porosity in the New York test site. Vertical dashed lines indicate groyne locations. SD is the standard deviation. Net shoreline change residuals in (a) to (d) are the difference between ne...
	Fig. A7.6 Net shoreline change residuals from increasing sand porosity in the Puerto Rico test site. Vertical dashed lines indicate groyne locations. SD is the standard deviation. Net shoreline change residuals in (a) to (d) are the difference between...
	Fig. A7.7 Net shoreline change residuals from increasing sand porosity in the Southern California test site. Vertical dashed lines indicate groyne locations. SD is the standard deviation. Net shoreline change residuals in (a) to (d) are the difference...

	A8 MIKE21 sensitivity to sand grain diameter (mm)
	Fig. A8.1 Kernel density plots of net littoral drift predictions in response to increasing sand grain diameters (mm) in the New York (a), Puerto Rico (b) and Southern California (c) test site. In Fig. A8.1, net littoral drift predictions are from 01-J...
	Fig. A8.2 Net shoreline change (01-Jan-2014 to 01-Feb-2016) observed and predicted in response to increasing sand grain diameters (mm) in the New York test site. Vertical dashed lines indicate groyne locations. MNC is mean net change, MAC is mean abso...
	Fig. A8.3 Net shoreline change (10-Oct-2014 to 31-Mar-2016) observed and predicted in response to increasing sand grain diameters (mm) in the Puerto Rico test site. Vertical dashed lines indicate groyne locations. MNC is mean net change, MAC is mean a...
	Fig. A8.4 Net shoreline change (01-Jan-2009 to 02-Aug-2011) observed and predicted in response to increasing sand grain diameters (mm) in the Southern California test site. Vertical dashed lines indicate groyne locations. MNC is mean net change, MAC i...
	Fig. A8.5 Net shoreline change residuals from increasing sand grain diameters (mm) in the New York test site. Vertical dashed lines indicate groyne locations. SD is the standard deviation. Net shoreline change residuals in (a) to (e) are the differenc...
	Fig. A8.6 Net shoreline change residuals from increasing sand grain diameters (mm) in the Puerto Rico test site. Vertical dashed lines indicate groyne locations. SD is the standard deviation. Net shoreline change residuals in (a) to (e) are the differ...
	Fig. A8.7 Net shoreline change residuals from increasing sand grain diameters (mm) in the Southern California test site. Vertical dashed lines indicate groyne locations. SD is the standard deviation. Net shoreline change residuals in (a) to (d) are th...

	A9 MIKE21 sensitivity to sediment grading coefficient
	Fig. A9.1 Kernel density plots of net littoral drift predictions in response to an increase in sediment grading coefficient in the New York (a), Puerto Rico (b), and Southern California (c) test site. In Fig. A9.1, net littoral drift predictions are f...
	Fig. A9.2 Net shoreline change (01-Jan-2014 to 01-Feb-2016) observed and predicted in response to an increase in sediment grading coefficient in the New York test site. Vertical dashed lines indicate groyne locations. MNC is mean net change, MAC is me...
	Fig. A9.3 Net shoreline change (10-Oct-2014 to 31-Mar-2016) observed and predicted in response to an increase in sediment grading coefficient in the Puerto Rico test site. Vertical dashed lines indicate groyne locations. MNC is mean net change, MAC is...
	Fig. A9.4 Net shoreline change (01-Jan-2009 to 02-Aug-2011) observed and predicted in response to an increase in sediment grading coefficient in the Southern California test site. Vertical dashed lines indicate groyne locations. MNC is mean net change...
	Fig. A9.5 Net shoreline change residuals from an increase in sediment grading coefficient in the New York test site. Vertical dashed lines indicate groyne locations. SD is the standard deviation. Net shoreline change residuals in (a) to (d) are the di...
	Fig. A9.6 Net shoreline change residuals from an increase in sediment grading coefficient in the Puerto Rico test site. Vertical dashed lines indicate groyne locations. SD is the standard deviation. Net shoreline change residuals in (a) to (d) are the...
	Fig. A9.7 Net shoreline change residuals from an increase in sediment grading coefficient in the Southern California test site. Vertical dashed lines indicate groyne locations. SD is the standard deviation. Net shoreline change residuals in (a) to (d)...

	A10 MIKE21 sensitivity to weir coefficient (m1/2/s) of hard defences
	Fig. A10.1 Kernel density plots of net littoral drift predictions in response to increasing weir coefficients (m1/2/s) in the New York (a), Puerto Rico (b), and Southern California (c) test site. In Fig. A10.1, net littoral drift predictions are from ...
	Fig. A10.2 Net shoreline change (01-Jan-2014 to 01-Feb-2016) observed and predicted in response to increasing weir coefficients (m1/2/s) in the New York test site. Vertical dashed lines indicate groyne locations. MNC is mean net change, MAC is mean ab...
	Fig. A10.3 Net shoreline change (10-Oct-2014 to 31-Mar-2016) observed and predicted in response to increasing weir coefficients (m1/2/s) in the Puerto Rico test site. Vertical dashed lines indicate groyne locations. MNC is mean net change, MAC is mean...
	Fig. A10.4 Net shoreline change (01-Jan-2009 to 02-Aug-2011) observed and predicted in response to increasing weir coefficients (m1/2/s) in the Southern California test site. Vertical dashed lines indicate groyne locations. MNC is mean net change, MAC...
	Fig. A10.5 Net shoreline change residuals from increasing weir coefficients (m1/2/s) in the New York test site. Vertical dashed lines indicate groyne locations. SD is the standard deviation. Net shoreline change residuals in (a) to (i) are the differe...
	Fig. A10.6 Net shoreline change residuals from increasing weir coefficients (m1/2/s) in the Puerto Rico test site. Vertical dashed lines indicate groyne locations. SD is the standard deviation. Net shoreline change residuals in (a) to (i) are the diff...
	Fig. A10.7 Net shoreline change residuals from increasing weir coefficients (m1/2/s) in the Southern California test site. Vertical dashed lines indicate groyne locations. SD is the standard deviation. Net shoreline change residuals in (a) to (i) are ...



