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Lewis Irwin Berman

Program Comprehension Through Sonification

ABSTRACT

Background: Comprehension of computer programs is daunting, thanks in part

to clutter in the software developer’s visual environment and the need for

frequent visual context changes. Non-speech sound has been shown to be useful

in understanding the behavior of a program as it is running.

Aims: This thesis explores whether using sound to help understand the static

structure of programs is viable and advantageous.

Method: A novel concept for program sonification is introduced. Non-speech

sounds indicate characteristics of and relationships among a Java program’s

classes, interfaces, and methods. A sound mapping is incorporated into a

prototype tool consisting of an extension to the Eclipse integrated development

environment communicating with the sound engine Csound. Developers

examining source code can aurally explore entities outside of the visual context.

A rich body of sound techniques provides expanded representational possibilities.

Two studies were conducted. In the first, software professionals participated in

exploratory sessions to informally validate the sound mapping concept. The

second study was a human-subjects experiment to discover whether using the

tool and sound mapping improve performance of software comprehension tasks.

Twenty-four software professionals and students performed maintenance-oriented

tasks on two Java programs with and without sound.

Results: Viability is strong for differentiation and characterization of software

entities, less so for identification. The results show no overall advantage of using

sound in terms of task duration at a 5% level of significance. The results do,

however, suggest that sonification can be advantageous under certain conditions.

Conclusions: The use of sound in program comprehension shows sufficient

promise for continued research. Limitations of the present research include

restriction to particular types of comprehension tasks, a single sound mapping, a

single programming language, and limited training time. Future work includes

experiments and case studies employing a wider set of comprehension tasks,

sound mappings in domains other than software, and adding navigational

capability for use by the visually impaired.
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Chapter 1

Introduction

1.1 Introduction

Program comprehension can be a daunting process which involves many tasks and

decisions and consumes much information. The information is expressed visually,

usually via text. An integrated development environment (IDE) such as Eclipse

[45] tends to become cluttered as increasing numbers of windows are opened and

more information is displayed. Multi-modal representation, including the intro-

duction of sound as an additional information channel, has been shown to alleviate

problems induced by clutter, though a mature methodology for developing multi-

modal interfaces has not yet been achieved [117]. This thesis explores whether

non-speech sound to represent software constructs can be of assistance by supple-

menting visual information for program comprehension.

Figure 1.1 shows the Eclipse IDE in typical use for maintaining a Java [59] pro-

gram. In Figure 1.1, the developer is working on an expense recording program

using a Java view, one of several commonly-used Eclipse layouts. The persistently-

displayed Package Explorer1 on the left provides navigation and a frame of refer-

ence within the Expenses project. It mixes a common folder/file metaphor with

1The Package Explorer is nearly identical to another class browser known as the Project
Explorer. They are equivalent as employed herein.
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Figure 1.1: The Eclipse integrated development environment
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Java constructs such as packages and classes. A file containing the ExpenseDelim-

itedAccess class has been selected by the developer and is displayed in the editor

window to the right. Tabs indicate that files containing other classes, ExpenseAc-

cess and ExpenseFacade, are being edited but are hidden behind the current win-

dow. The editor window competes for screen real estate with the Project Explorer

and a window containing several tabs at the bottom, one tab showing errors in

the project and the other behind it for run-time console messages. It is possible

for a developer to have a dozen or more open editor tabs and four or more tabs

in the bottom right area.

The Package Explorer shows the parent-child structure of entities within the

project, from packages such as expensesPackage down through methods and class

variables. In typical use, packages and classes are displayed and lower-level in-

formation is hidden until expanded on demand. Expansion lowers the number

of classes that are visible in the Package Explorer. The ExpenseAccess and Ex-

penseDelimitedAccess classes have been expanded by the developer, revealing that

each has overloaded constructors, finalize and store methods, and for the latter

class, an additional method called constructExpenseOutString. The arguments of

each method can be seen with a bit of horizontal scrolling. One must visit the

ExpenseAccess.java editor tab to see that it is an abstract class, and one must

visit the ExpenseDelimitedAccess.java editor tab to see that the abstract class is

therein implemented. This tab also reveals that a BufferedWriter is instantiated

and that its child methods such as out.close are called. A mouse hover would

reveal text indicating that these belong to the java.io package external to the

project. Java.io and its methods are aptly named to tell the developer they write

data and close a data stream; this is not always the case for referenced entities.

Quite a bit of information is present in the IDE, and the developer must change

visual focus, scroll, click hidden tabs, or navigate away from the primary visual

context to access much of it. If sound can be shown to help describe characteristics
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of a software entity of interest or identify and characterize related entities external

to the current visual context, it may hold the promise of streamlining the program

comprehension process by exploiting the potential of the human aural channel.

To explore that potential, a tool has been developed which exposes a mapping

from static software structures to sound patterns. The sounds contained within

the patterns describe structural and functional aspects of Java classes, methods,

interfaces, and packages. Two studies have been performed using the sound map-

ping and the tool. The first study was exploratory, focusing on recognition and

interpretation upon hearing the sound patterns. The second study was a quanti-

tative experiment, focusing on two specific program comprehension tasks.

1.2 Motivation

It may be possible to improve program comprehension by adding sonification in

hitherto unexplored ways. Sonification is defined as “the use of non-speech audio

to convey information.”[87] It is a subset of auditory display [69], the use of sound,

generally non-speech, for understanding, alerting, warning, and real-time control.

Research in Program comprehension studies the acts and mental models involved

in understanding a new or existing computer program [175]. The two research

areas have met mainly in studies of the comprehension of dynamic aspects of a

program, that is, the behavior of a program when it runs, less so in comprehension

of static structure, the fixed construction of a program. Chapter 2 summarizes

applicable program comprehension research. Chapter 3 summarizes applicable

sonification research.

This thesis addresses whether sound can supplement the visual mode of com-

prehension of the static structure of a program by reinforcing information or pro-

viding it in an orthogonal or more convenient manner.
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1.3 Propositions

The overall research question below captures the problem at hand.

Can sonification supplement visual information to support comprehension

of the low-level, static structure of non-trivial computer programs?

“Support” has two implications:

1. that program comprehension can be performed by substituting sonification

for some visual means, and

2. that using sonification presents an advantage in program comprehension over

purely visual means.

Subordinate questions, which shall be referred to as propositions,2 are

1. A consistent, comprehensible mapping of non-speech sound patterns

to the static entities of a software system can be devised.

2. The mapping can be used to identify software entities.

3. The mapping can be used to characterize software entities and their

relationships when encountered.

4. The mapping, incorporated into an integrated software development

environment, can be used in the performance of program compre-

hension tasks.

5. Using the mapping in a multimodal software development environ-

ment can improve performance of software comprehension tasks over

that using a software development environment without sound.

2Not to be confused with propositions in formal logic, these are postulations whose truth
supports an affirmative answer to the research question, after Yin [183].
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Propositions 1, 2, and 3 concern the sound mapping. Their validity or lack thereof

is suggested by the first study and reinforced by the second. Propositions 4 and 5,

concern the use of the tool to facilitate program comprehension tasks. They are

tested through the second, experimental study.

1.3.1 Importance of the Propositions

The impact on program comprehension and sonification is considered.

• Program Comprehension. The last proposition implies that program compre-

hension may be accomplished faster when the auditory sense is involved than

by visual means alone. The propositions taken together offer the possibility

that sonification may lead to more efficient or effective program comprehen-

sion in general. As understanding complete and partially complete programs

is part of the software maintenance process, positive results may ultimately

decrease the cost of developing or maintaining a computer program and

improve the resulting program’s quality.

• Auditory Display. Proposition 1 implies that it is possible to represent rela-

tively abstract items, in this case software entities and their characteristics,

using a coherent system of sounds and sound combinations. This stands in

contrast to representation of concrete items and concepts (such as an auto-

mobile or a war) by intuitively associated sounds (such as a motor or a bank

of cannon, respectively). The concept of an entity being a software class

or method, and a method furthermore belonging to its class or instances of

its class, has no such intuitive audio analog. The first three propositions

state that an audio representation for entities or concepts at the higher level

of abstraction can be usable. Comprehension of analogous areas outside

the software domain may benefit. More immediately, development of a tool

supporting a sound mapping, will contribute to the understanding of sound

mapping design and sound mapping design patterns.
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The following subsections restate and discuss the five propositions.

Proposition 1

A consistent, comprehensible mapping of non-speech sound patterns

to static components of a software system can be devised.

Sounds, notably auditory icons [53], can represent real-world entities directly. The

most intuitive entities feature audio, like an alarm clock or an old-style telephone

bell. Almost as intuitive are things having concrete audio associations, such as

a battle (with cannon shots) or a seashore (with crashing surf). Sonified line

graphs [28], though not auditory icons, are still intuitive, possibly after a bit of

explanation, as pitch is directly and continuously mapped to the Y value as a

function of X. In the problem at hand, some concrete notions can be used, for

example, a door closing for a “close” method. However, notions such as class and

method have neither concrete connotations nor continuous or discrete data values.

Characteristics such as static and accessor have weak aural connotations at best.

Proposition 2

The mapping can be used to identify software entities when they are

aurally encountered.

The following question arises:

• To what extent can identification of software entities be understood?

Proposition 3

The mapping can be used the characterized software entities and their

relationships when encountered.

The following question arises:

• To what extent can characterization of software entities be understood?
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Proposition 4

Such a mapping, incorporated into an integrated software development

environment, can be used in the performance of program comprehen-

sion tasks.

The following questions arise:

• Can triggering the sounds, hearing them, and performing the necessary cog-

nitive processing be performed in a timely and usable manner?

• Can the addition of sound be of low enough cognitive cost to render it

desirable?

• Can it be made usable in both exploratory and more targeted modes of

operation?

• Can a sound mapping be useful in program comprehension given limited

training, especially when the required variation of sounds exceeds the number

of available aural metaphors?

Proposition 5

The mapping can improve performance of software comprehension

tasks over that using a software development environment without

sound.

• Does this apply across types of programs, roles, and comprehension tasks?

• Does musical ability have an impact on performance?

The ultimate goal is to improve the state of the art in program comprehension by

exploiting sonification. The solution herein is motivated by a focus on low-level,

static program structure: the existence of, characteristics of, and relationships

among packages, classes, interfaces, and methods in a Java environment.
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Improvement can occur over several dimensions: speed of completing com-

prehension tasks, accuracy, and depth and breadth of understanding. Speed is

tangible and easily measured within an experimental context. Accuracy necessar-

ily has a relationship to task duration, so an evaluation of accuracy can be made

along with speed when applied to tasks resulting in finite answers to specific com-

prehension questions. To measure depth of understanding would require larger

programs as experimental objects, extended and possibly multiple coordinated

tasks, and a large and possibly subjective data collection instrument. Breadth of

understanding and retention would have similar requirements and be similarly less

tangible than speed. Therefore, speed is chosen as an initial measure of interest.

1.4 Criteria for Success

This research has succeeded when the following criteria are met. Each criterion

maps to the proposition in parenthesis.

1. Define a reference sound mapping to static software entities for one program-

ming language. (Proposition 1)

2. Evaluate the reference sound mapping concept. (Propositions 2, 3, and 4)

3. Apply the mapping to program comprehension tasks. (Propositions 4 and

5)

4. Develop a prototype demonstrator tool using an instance of the reference

sound mappings. (Proposition 4)

1.5 Agenda

This thesis is organized into nine chapters.

Chapter 1, Introduction briefly introduces the problem, propositions concern-

ing the problem, and the structure of this thesis.
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Chapter 2, Program Comprehension is a summary of software maintenance

types and a review of the literature on program comprehension models.

Chapter 3, Sonification is a review of the literature on audio display and soni-

fication, especially as applied in software engineering.

Chapter 4, Listening to Software Structure describes the solution concept.

Chapter 5, Prototype Tool Implementation describes the prototype tool de-

veloped and used experimentally.

Chapter 6, Review of Evaluation Techniques is a review of the literature

on human-subjects evaluation in software engineering and notably in pro-

gram comprehension.

Chapter 7, Studies and Results sets forth two studies and reports their re-

sults. Each study and its protocol is described, then the results of each are

reported in turn.

Chapter 8, Analysis provides analysis and discussion of the results of the study.

Chapter 9, Conclusions provides conclusions and suggests future research di-

rections.

1.6 Summary

This chapter has described the problem of visual information overload in a software

maintenance environment. It has proposed the use of sound during static display

of source code to alleviate visual information overload. A research question and a

set of five propositions has been articulated. It has laid out a set of propositions

concerning the problem and solution, laying the groundwork for the remainder of

the thesis, which investigates the sonification of software.
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Chapter 2

Program Comprehension

This chapter presents the program comprehension literature and related topics of

significance concerning software architecture, software maintenance, and software

visualization. Section 2.1, Introduction, introduces these areas and their rela-

tionship to the problem at hand. Section 2.2, Software Maintenance, introduces

software maintenance and enhancement. Section 2.3, Program Comprehension

Models, introduces models of human program comprehension. Section 2.4, Visual

Tools for Program Comprehension, discusses tools, notably those that support

visualization and how visualization relates to sonification. Section 2.5, Summary,

concludes the chapter.

2.1 Introduction

Program comprehension is essential for successful software maintenance. Similar

systems and reusable components may have to be understood as early as initial

development of a software system.

In this thesis, a person performing program comprehension is referred to as the

developer or maintainer, as further software development and maintenance are the

usual reasons for undertaking program comprehension. It is understood that per-

sons other than developers may perform program comprehension tasks for quality
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assurance, auditing, estimating, and other purposes. Software designers must un-

derstand the software architecture of the system to effect modifications that are

correct and maintainable. Maintainers must understand control-flow and data-

flow interdependencies among the software units. Understanding extends from

the low-level code through data and control structures and finally the application

domain.

2.2 Software Maintenance

“Maintenance and enhancement are generally defined as activities which keep

systems operational and meet user needs [95].” Physical systems require main-

tenance, in general, to negate the effects of aging and wear, returning them to

their original state. Software suffers no such physical effects. Rather, it must be

adapted to changes in its operational domain, including explicit and implicit user

expectations [88]. Software maintenance is currently defined by the International

Standards Organization (ISO) as “the totality of activities required to provide

cost-effective support to a software system [71].” A somewhat less succinct defi-

nition, relevant to software, is that encountered for system maintenance:

the modification or upkeep of information system hardware and soft-

ware to sustain or improve performance, to correct faults or deficien-

cies, or to adapt the system to changes in environment or requirements.

[159]

When user needs result in new functional requirements, enhancements are per-

formed. The phrases program evolution and software evolution are employed to

encompass the progression of a software system through maintenance, including

enhancement [89]. In practice, “maintenance” is often used interchangeably with

“software evolution.”
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Swanson characterized three types of maintenance activities according to the

purpose of the maintainer [162]. The types are corrective maintenance, adaptive

maintenance, and perfective maintenance. Corrective maintenance is performed

in response to processing failures, such as the abnormal termination of a program,

performance failures, the inability to meet performance criteria, and implementa-

tion failures, such as not meeting the functional specification. Adaptive mainte-

nance is performed so that the software product can run correctly in a new pro-

cessing environment or in response to changes in data formats from other systems

and media. Perfective maintenance is performed to “make the program a more

perfect design implementation” by eliminating processing inefficiencies, enhanc-

ing performance, and improving maintainability. Lientz and Swanson added user

enhancements and improved documentation to perfective maintenance activities,

invoking the combined phrase maintenance and enhancement [94][95].

Lientz and Swanson discovered via industry surveys that perfective mainte-

nance, including enhancements for users, accounted for over half of the total

maintenance effort [94]. They also found that less than half of the individuals

assigned to maintenance of an application had worked on the initial development

of the system, that approximately three-fourths of applications were maintained by

one full-time person or less, that at least half of the applications were maintained

by a half-time equivalent or less, and that maintainers of an application often had

other assignments as well. Two implications of these findings are that applica-

tion knowledge must be communicated from developers to maintainers, and that

maintainers may have to refresh their own knowledge after periods of inactivity

with a particular application. Lientz and Swanson confirm that the maintenance

they measure “consists largely of continued development...” [p. 151]

A fourth type of maintenance, preventive maintenance, indicates maintenance

performed to avoid potential, possibly unanticipated failures [71]. The Interna-

tional Standards Organization (ISO) recognizes improvement as a type of main-
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tenance, replacing the term perfective [70].

Von Mayrhauser and Vans listed five types of tasks performed during software

evolution [175]. The types are categorized by the purpose of the maintainer or

developer:

1. Adaptive maintenance - adapt a solution to meet new requirements.

2. Perfective maintenance - improve a solution to better meet its requirements.

3. Corrective maintenance - correct errors in a solution.

4. Reuse - identify and integrate reusable components into a solution.

5. Code leverage - reconfigure an existing set of reusable components into a

new solution.

Each task type is characterized by a set of activities. Understanding is the

first activity listed for all task types. Maintenance tasks require the developer to

understand the system. Reuse and Code Leverage tasks require the developer to

understand the problem as well as at least some portion of an existing code base.

Ideally, a developer evaluating a reusable code library will only have to understand

the class and method specifications which comprise its application programming

interface (API).

Chapin et. al. proposed “a finer grained objective classification of the types of

activities involved in software evolution and software maintenance [32].” Chapin’s

typology is grounded in observation and artifacts rather than in goals as expressed

by maintainers. Mutually-exclusive types are grouped into clusters. An activity

may be an aggregate of types, in which one type can be considered to be dominant.

The clusters and types, in rough order by impact on the software itself, are shown

in Table 2.1.

A decision tree is traversed to determine which type(s) of maintenance have

been performed. Figure 2.1, depicting the decision tree, is an adaptation of a dia-

gram originally by Chapin et. al. [p. 10, fig. 2]. Swanson’s corrective and adaptive
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A. Support Interface Cluster

1. Training

2. Consultive

3. Evaluative

B. Documentation Cluster

1. Reformative

2. Updative

C. Software Properties Cluster

1. Groomative

2. Preventive

3. Performance

4. Adaptive

D. Business Rules Cluster

1. Reductive

2. Corrective

3. Enhancive

Table 2.1: Chapin’s Classification of Maintenance Activities

maintenance categories remain intact. Perfective maintenance becomes reforma-

tive, updative, groomative, preventive, performance, reductive, or enhancive.

Consider that some logging code has been modified to combine multiple logging

classes into one. No functionality has been added, removed, or altered. The

decision tree is traversed in the following sequence:

1. A: Was software changed? Yes.

2. B: Was source code changed? Yes.

3. C: Was function changed? No.

4. C-1: Did the code change make the software more maintainable? Yes, there-

fore the maintenance type is Groomative.

The ISO’s software maintenance standard defines the requirements for an orga-

nization’s maintenance process, which extends to problem reporting, verification,

and management activities [71]. It lists six major maintenance activities, the sec-

ond through fourth of which form the core lifecycle of a problem or modification:
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Figure 2.1: Maintenance Types Decision Tree

1. Process Implementation - define the maintenance process for the software

project.

2. Problem and Modification Analysis - develop options for implementing the

modification. Determine if the modification is a correction or enhancement.

If a correction, determine if it is corrective or preventive. Enhancements

may be adaptive or perfective.

3. Modification Implementation - perform and verify the modification.

4. Maintenance Review/Acceptance - ensure that the modifications are correct

and developed according to standards.

5. Migration - Adapt the system to a new environment, which may require its

own software development lifecycle.

6. Software Retirement - Plan and execute retirement of the system.
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The idea of “evolution” has become strengthened as delivery has become less

of a one-time project milestone. Under the waterfall model of software develop-

ment, software was specified and designed prior to being implemented (coded),

tested, and released [42]. A maintenance lifecycle phase commenced after release

to the customer. More recently, spiral and other iterative lifecycle models have

caused maintenance phases to overlap with new development [20]. Most recently,

agile methods have emphasized short development iterations, each culminating in

product delivery, and intentional development of software that will undergo future

refactoring [65]. These advances have blurred the distinction between development

and maintenance. The first delivery of an application may perform three or four

functions and have a simple, one-frame user interface. As more user interface el-

ements are added for further deliveries, existing elements may undergo perfective

maintenance in their naming and mutual structuring to accommodate a larger set

of elements. Already-functioning modules of code may be altered as it is noticed

that they should fit into a standard design scheme. Maintenance is occurring even

while development is continuing, and it may be difficult to describe an activity as

belonging to one or the other.

“Program understanding has long been recognized as a central activity in a

variety of maintenance tasks [177].” Reverse engineering and ripple analysis are

two activities in which program comprehension is clearly required [57]. Reverse

engineering is undertaken when systems suffer from inadequate or out of date

documentation, or to verify the existing documentation. Maintainers perform

ripple analysis to determining the effects that a modification will have upon other

parts of the software system. To describe and effect modifications, modules (e.g.,

objects in an object-oriented system) must be selected, and at a lower level the

modules must be understood.

Various program comprehension models have been proposed and tested to

describe program understanding. They are explored in the following section.
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2.3 Program Comprehension Models

Narrowly, comprehension is one level of Bloom’s Taxonomy of Education Objec-

tives, as articulated by Kelly and Buckley:

The comprehension category represents the lowest level of understand-

ing. This is where someone understands what is being represented and

can translate the representation into different terms. For example, if a

programmer can summarize a section of code then he is demonstrating

comprehension. [77]

Program comprehension, according to Kelly and Buckley, is commonly used to

refer more broadly to understanding, collecting knowledge, applying synthesis to

previously learned material, and performing analysis. Vinz implies the incremental

nature of program comprehension:

Program comprehension involves the process of extracting properties

from a program in order to achieve a better understanding of the soft-

ware system. [172]

The information sources that serve as input to the program comprehension pro-

cess may be the source code of interest, code from other systems for comparison,

textual descriptions of the design, graphic representations of the design, metrics

derived from the code, and similar items of interest. The source code itself con-

sists of executable and non-executable program statements, comments, identifiers

within source statements, and similar constructs. The information sources may be

examined either statically or dynamically. Static examination is accomplished by

reading The source code and other sources to discover the program’s fixed struc-

ture as described above. Dynamic examination is accomplished by running the

program (either in actuality or on paper/in thought) to discover the program’s

state at given points in its execution. In something of a hybrid approach, ex-
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ecution of part of the program is simulated by the maintainer while it is being

examined statically.

A maintainer forms a mental model [175] of a program as its code and docu-

mentation are assimilated. The mental model is built using cognitive processes,

existing knowledge, and other information structures that together form a cogni-

tive model. The following subsections describe the major cognitive models in the

program comprehension literature.

2.3.1 Top-Down Program Comprehension

Brooks proposed a top-down theory of program comprehension based on formu-

lation and validation of successive hypotheses [27]. The maintainer reconstructs

domain knowledge and maps that knowledge to the code. The comprehension

process is initiated with an often-sketchy primary hypothesis specifying probable

program inputs, program outputs, major data structures, and major processing

sequences. The maintainer forms subsidiary hypotheses in a depth-first manner,

accepting or rejecting them as the code is examined. New information obtained

in this manner can be used to form subsidiary hypotheses elsewhere in the hy-

pothesis space. Brooks posits that the maintainer’s hypothesis-solving technique

is top-down in order to reduce cognitive load.

According to Brooks, hypothesis verification is aided by beacons [27] in the

code. Beacons are “sets of features that typically indicate the occurrence of certain

structures or operations.” [27] Different beacons may have stronger or weaker

probabilities of indicating a structure or operation. As beacons are uncovered, not

only are existing hypotheses verified, rejected, or modified, but new hypotheses

are formed from the broader knowledge gained.

Wiedenbeck demonstrated experimentally that beacons play a large role in the

initial stages of program comprehension [179]. Beacons were better recognized

by those with more programming experience than by novices, consistent with the
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idea that they have learned a larger store of idiomatic patterns. Incorrectly-placed

beacons hampered understanding by experienced programmers, consistent with

the idea that experienced programmers may initially find beacons and tentatively

confirm hypotheses without reading the surrounding code in detail. Wiedenbeck’s

experiment was based on recall tasks and recognition using code fragments (e.g., a

seventeen-line sort procedure), not on a situation involving understanding a large

or complete program.

Soloway and Ehrlich observed top-down program comprehension in two empir-

ical studies when the code is familiar [149]. Subjects matched code they examined

to programming plans, stereotype code fragments representing known action se-

quences. Subjects also employed rules of programming discourse, rules based on

expectations of conventions in the code. Experienced programmers performed

better than novices unless rules of programming discourse were violated in con-

structing the plans, in which case performance was similar. Soloway and Ehrlich

suggest, based upon their observations, that the mental model of the program

involves forming a schema-based hierarchy goals and programming plans. Like

Wiedenbeck, Soloway and Ehrlich did not observe a “real world” program com-

prehension situation, instead basing their first experiment on fill-in-the-blank tasks

and the second on total recall tasks.

Koenemann and Robertson conducted an experiment that affirmed program

comprehension as primarily a goal-oriented, hypothesis-driven process [85]. They

noted the use of beacons, especially in the form of procedure and variable names.

Their experiment involved four maintenance tasks performed among twelve ex-

perienced programmers. Results indicated that maintainers study only that code

deemed relevant on an as-needed basis, as determined via an opportunistic strat-

egy. Evidence was found of three degrees of relevance:

1. Directly relevant code is that which must be modified or copied and edited.

This code is studied in the greatest detail.
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2. Intermediately relevant code includes code segments perceived to interact

with the directly relevant code. This code is studied in less detail than

directly relevant code.

3. Strategically relevant code guides the comprehension process by enabling the

maintainer to locate the other relevant parts of the code. It is not studied

in detail.

The experimental subjects had been provided with program documentation, in-

cluding high-level program descriptions. This may have influenced the choice of a

top-down strategy.

2.3.2 Bottom-Up Program Comprehension

Bottom-up models of program comprehension rely on the concept of chunking

information into groups to be able to store more information in short-term memory

[110]. In bottom-up approaches, such as that of Pennington [121], maintainers read

the code, then group the code statements to form higher-level abstractions. The

abstractions themselves are chunked into abstractions at even higher levels, until

the program as a whole is understood. Pennington identifies a program model

and a situation model. The program model is built first, as the maintainer forms

chunks [110], basic units of retainable information, from syntactic structures and

cross-references the chunks. The program model contains the maintainer’s idea of

sequential control flow within the program. As the program model matures, the

situation model is built, applying domain knowledge to the bottom-up control-flow

abstractions to result in a model containing data-flow and functional abstractions.

Pennington indicates that program model constructs exist at the microstructure

level, consisting of text structure knowledge, while situation model constructs exist

at the macrostructure level where plan knowledge is operative.

Pennington’s subjects were professional programmers, having reasonably well

developed pre-existing text structure and plan knowledge. Pennington noted that
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the comprehension task likely influences the comprehension strategy. In Penning-

ton’s experiment, maintainers were first asked to read code for general understand-

ing, then embark on a maintenance task. It was only during the maintenance task

that maintainers developed the situation model. Pennington also notes that her

experiments involved only small programs. Pennington treats programs as text

(the text being the source code), which precludes introduction of documentation

as an understanding aid. She suggests that the presence of documentation con-

cerning the application domain might promote earlier construction of the situation

model.

2.3.3 Opportunistic and Knowledge-Based Models

Littman, Pinto, Letovsky, and Soloway determined that maintainers use either

a systematic or as-needed comprehension strategy [96]. A systematic strategy is

used to understand program behavior prior to attempting a modification. Through

a systematic strategy, the maintainer explores data flow and control flow paths

among different procedures. An as-needed strategy is employed to minimize time

studying the program. It is localized to the extent that it is “unlikely to detect

interactions in the program that might affect or be affected by the modification.”

A distinction is made between two forms of knowledge:

1. static knowledge, the maintainer’s knowledge of the program’s actions, func-

tional components, and the objects upon which it operates, and

2. causal knowledge, the maintainer’s knowledge of how structurally separate

parts of the program interact.

Experimental results indicated that the error rate resulting from code changes

was greater for maintainers who employed only an as-needed strategy due to the

failure to develop sufficient causal knowledge.



Program Comprehension 36

Letovsky concluded through empirical research that humans performing pro-

gram comprehension use top-down and bottom-up strategies upon discovering cues

appropriate to one or another [92]. Letovsky’s model has three components:

1. knowledge base - the maintainer’s existing knowledge of the application do-

main, programming domain, programming plans, program goals, and rules

of discourse.

2. mental model - the maintainer’s understanding of the program during com-

prehension.

3. assimilation process - the process by which the maintainer’s mental model

evolves, incorporating the maintainer’s knowledge base along with the pro-

gram’s source code and documentation. The process may be top-down,

bottom-up, or a combination of both.

Letovsky identifies the activities which inform the assimilation process as in-

quiries. The maintainer actively or tacitly asks a question, poses a conjecture,

and performs search to verify or reject the answer. Questions are categorized into

five rough types:

1. why - what is the purpose of this design?

2. how - how is a program goal or subgoal achieved?

3. what - what does a function, variable, or construct do?

4. whether - does the program behave one way or another?

5. discrepancy - note an apparent inconsistency in the source code.

Conjectures are plausible inferences that attempt to answer an explicit why, how,

or what question. A subset of what conjectures consists of word conjectures which

pertaining to the meaning of identifiers in the program.
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2.3.4 Integrated Model of Program Comprehension

Von Mayrhauser and Vans extracted the common elements of preceding theories

of program comprehension, specifically involving code cognition, to yield a meta-

theory [175]. Their model covers the kinds of knowledge involved in code cognition,

the mental model that is refined during code cognition, strategies aimed at refining

the mental model, and inferences, hypotheses, and tests that validate or modify

the mental model.

General knowledge and knowledge specific to the application under investi-

gation are needed in the code cognition process. General knowledge covers such

areas as the programming language, common algorithms, and possible approaches

to the solution at hand. If an integrated development environment (IDE) is used,

as is commonly the case for sizable programs, the developer’s general knowledge

includes editors, browsers, and other tools. Such general knowledge would also

include how to assimilate and interpret the information presented by any visual-

ization or sonification used by the developer.

Specific knowledge is built over the code cognition process, during which the

programmer builds and refines a mental model of the program. The mental model

is built top-down through the refinement of plans, beginning with the top-level

plan of the program, and bottom-up through the successive understanding of

chunks, the bottom-most being localized text structures. They are the schemas

in a schema-slot concept of knowledge representation. Formulation and testing of

hypotheses either validate plans in the mental model or cause them to have to be

revised. To test a hypothesis about a plan, the developer formulates a strategy for

understanding and dealing with chunks of program information. The developer

also cross-references knowledge at different levels of abstraction.

Suppose the developer is presented with the project shown in Figure 1.1. See-

ing a class named ExpenseDelimitedAccess, the developer may hypothesize from

his or her knowledge base that this class constructs a string of delimited values
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and writes the string to a file using standard I/O routines. A look at its meth-

ods confirms that it constructs a delimited string, as one of the methods is called

constructExpenseOutString. A look at the store method in the editor pane con-

firms that the output occurs via the standard java.io package by constructing a

BufferedWriter object and calling its write and close methods. Verifying the hy-

pothesis has involved expansion of the class in the browser, bringing up the class

in the editor pane, looking at the class’ imports, examining the constructExpense-

OutString method, examining the store method, and cross-checking that method

with the imported packages.

An expert developer will have at his or her disposal a mental repository of

plans as pre-existing templates. For example, the expert is likely to know about a

variety of design patterns involving multiple objects and their relationships. The

expert can match an observed program chunk to a given design pattern, even if

there is a variation from the template. The expert can develop a mental model

using breadth-first strategies, while the novice will operate in a mostly bottom-up

manner, starting with localized control flow.

The integrated code comprehension model of von Mayrhauser and Vans has

four components: a knowledge base, a top-down model, a situation model, and

a program model. The knowledge base holds the developer’s actual pre-existing

and newly assimilated knowledge, and it informs the other models. the top-down

model reflects top-down refinement of plans. The program model reflects bottom-

up chunking. The situation model relates the program to its problem domain.

Beacons are useful in formulating all three comprehension models.

Von Mayrhaurser and Vans confirmed through observation in an industrial en-

vironment that, for large programs (in one case, 90,000 lines of code), developers

who will be maintaining the code prefer to begin program understanding at a

relatively high level of abstraction and proceed top-down, switching between com-

ponents to understand the architecture [176]. As a developer continues to lower
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levels, bottom-up strategies come into play.

2.3.5 Concept Assignment

Concept assignment is a key idea in program comprehension. Biggerstaff describes

concept assignment as

a process of recognizing concepts within a computer program and

building up an “understanding” of the program by relating the rec-

ognized concepts to portions of the program, its operational context

and to one another. [14]

Biggerstaff differentiates between programming-oriented concepts such as sorts

and structure transformations and human-oriented concepts such as airplane seat

reservations. While reading code, the former are easier to recognize. The latter

are often delocalized within the code.

Rajlich observes that “the knowledge of domain concepts is based on program

use [128].” If a domain (human) concept is a program feature, that is selectable

by the user, a technique for mapping it to code is to run the program twice, once

with and once without invoking the feature, and note which code only runs only

when the feature is selected. This is known as software reconnaissance or dynamic

search. A static method of locating a feature is to search through the code,

following control-flow and data-flow dependencies. This may consume significant

time and effort.

2.3.6 Language Differences and Program Comprehension

Pennington observed that programming language biases the program comprehen-

sion process [121]. Maintainers more familiar with COBOL performed better

answering data-flow questions, while those more familiar with FORTRAN per-

formed better answering control-flow questions. Bergantz and Hassell affirmed
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construction of both a program model and a domain model during comprehension

of PROLOG programs [8].

Objects in an object-oriented language often encapsulate domain concepts or

design-specific concepts. Classes are often named for the domain concepts they

represent. Programming plans are delocalized, passing through multiple classes.

Corritore and Wiedenbeck observed differences between maintainers performing

comprehension of equivalent programs written in procedural and object-oriented

languages [37]. Using Pennington’s model as a framework, they investigated early

and late stage comprehension of C programs by experienced procedural program-

mers and C++ programs by experienced object-oriented programmers. After a

period of code reading, the procedural programmers had developed an incomplete

but “balanced” model of the C code, while the OO programmers had developed

a similarly incomplete but highly domain-weighted model of the C++ code, the

latter performing notably well on structure. After an ensuing maintenance task,

both procedural and OO programmers exhibited a balanced model. Results also

indicated a difference among procedural programmers from Pennington’s obser-

vations in initially developing a balanced rather than program-weighted model.

Corritore and Wiedenbeck postulate that larger program size (approximately 800

lines of code, four times higher that of the small programs in Pennington’s study)

motivated the difference.

Shaft [141] observed that some maintainers use metacognition during program

comprehension. That is, they deliberately choose a comprehension strategy for

a given subtask, then monitor their progress on the subtask. General use of

metacognition appears to reduce comprehension when working in an unfamiliar

domain.
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2.4 Visual Tools for Program Comprehension

Sonification is the aural analog of visualization. Both provide the ability to find

patterns in data and obtain information that may be outside the visual context of

an editor, browser, or other textual display. A number of existing visual tools deal

with a software program’s structural elements. A representation of those tools is

discussed in the following paragraphs.

Rational Rose [68] is representative of a class of tools that support the pro-

duction and display of Unified Modeling Language (UML) diagrams [21]. Ma-

jor UML diagrams supported by Rational Rose include class diagrams depicting

classes and their relationships, sequence diagrams depicting calling sequence sce-

narios, and state diagrams depicting class or program states and their transitions.

These diagrams provide orthogonal views of collections of structural elements in

a software system. The diagrams are interrelated through an underlying model of

the software system.

Sensalire and Ogao [140] provide a summary of ten software visualization tools

ranging in purpose from UML support to graphical test coverage analyis. The typ-

ical tool summarized by Sensalire and Ogao is based on a node and arc paradigm.

The nodes and links can be selected to provide additional, textual detail. Code

Crawler, for example, provides a call graph in which the nodes vary by color, po-

sition, and size to indicate detail such as number of instance variables. Rigi [111]

similarly builds a dependency model and provides dependency graphs. Tools such

as Rigi provide containment and hierarchy information in the same diagram. Rigi

provides multiple views, including the traditional node-link view and a hierarchi-

cal edge bundling view, the former emphasizing hierarchy while the latter flattens

the hierarchy and emphasizes relationships. Storey’s SHriMP [155] adds magnifi-

cation of nodes of interest within several visual representations. SHriMP supports

switching between top-down and bottom-up comprehension strategies by allowing

zooming in and out to higher and lower-level views, respectively. Observation of
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SHriMP revealed that views providing large amounts of data easily resulted in

information overload, and that one particular view, the fisheye view (after Sarkar

and Brown [134]), was rarely used as it did not particularly support a compre-

hension strategy. Creole [140] integrates SHriMP with Eclipse, providing radial,

grid, and tree-map [143] views. SNIFF+ [155] was observed to support switching

between systematic and as-needed strategies by keeping overview and detail views

readily accessible.

Knight [84] demonstrated a novel visual means of exploring Java classes in

which each class is a building in a cityscape. The height of each building represents

the size of its corresponding class. Rooms within the building represent methods.

The buildings are collected into villages representing larger structural collections

of classes. Detail is expressed textually via signs found on the buildings and in the

rooms. The tool’s user can navigate to different classes and methods by virtually

moving about the cityscape. The user can adjust the view by zooming in and out

and observing from different visual angles.

Knight’s cityscape illustrates the application of Shneiderman’s visual informa-

tion seeking mantra: overview first, zoom and filter, then details on demand [143].

One can gain an overview of the software system, then zoom to a given village

and further zoom to an individual class or method.

The information collected by the tools described above is readily culled from

the source code. Other tools cull and process information in ways that would re-

quire deeper search if done manually. One such class of tools supports concept as-

signment, the recognition and allocation of computational intent to corresponding

implementation structures within the program’s source code [14]. The HB-CAS

concept assignment tool [56] was shown to have potential to reduce the cost of

software module comprehension by alleviating the software maintainer of the need

to summarize and abstract the module’s concept list.

The visualization tools summarized in this section supplement a program’s



Program Comprehension 43

source code by providing information in a more convenient or compact form.

Sonification has similar potential. The attributes of structured sound, such as

frequency and event duration, can be used in a denotational manner as can color,

shape, and size. Chapter 3 provides an exposition of sonification and its capabili-

ties.

2.5 Summary

This chapter has provided an exposition of software maintenance and program

comprehension models.

There exist a number of classification schemes for types of software mainte-

nance, grounded either in the intent of the maintainer or in the code itself. Pro-

gram comprehension is essential for successful software maintenance. The main-

tainer forms a mental model of a program by using cognitive processes, existing

knowledge, and other information structures. The program comprehension pro-

cess may be top-down, bottom-up, or a hybrid of the two. Hypotheses are formed

and verified, with beacons in the code aiding the verification process. The choice

of programming language influences the comprehension process. Maintainers may

intentionally choose a comprehension strategy, but such metacognition may reduce

comprehension when working in an unfamiliar domain.

A key idea in program comprehension is that of concept assignment, in which

recognized concepts are related to portions of the program, its operational context,

and one another. Concepts may be delocalized in the code. Objects in an object-

oriented language often encapsulate domain or design-specific concepts.

Sonification, as a tool for program comprehension, has parallels to visualization

that give it promise. Sonification is discussed in Chapter 3.
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Chapter 3

Sonification

3.1 Introduction

This chapter presents a literature review of auditory display and sonification rel-

evant to this thesis. Particular attention is paid to the use of sound in the realm

of software engineering. Non-speech sound is emphasized. A discussion of the ra-

tionale for non-speech sound over spoken text appears at the beginning of Section

3.5. Three advantages are included here.

• Humans process non-speech sounds differently and more quickly than spoken

text, bypassing the language processing capabilities necessary for spoken text

[41].

• A properly designed non-speech sound may be shorter in duration than its

spoken counterpart [168].

• Non-speech sounds may be overlaid or expressed together in rapid sequence

to further compress the time necessary to hear and process them [41].

Advances in auditory display and sonification have been made possible due

to increases in computing speed and power, which in turn has allowed faster and

richer application of digital audio sound generation and processing techniques.
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Digital audio is treated in the book by Coulter [38]. Synthesis techniques are

found in the books by Dodge [43] and Roads [131]. A treatment of the fundamental

physics of sound is found in the venerable work by Jeans [73].

Section 3.2 of this chapter summarizes sonification and auditory display. Sec-

tion 3.3 addresses sonification in computing disciplines. Section 3.4 discusses spa-

tial and temporal metaphors and introduces a visual analogy. Section 3.5 discusses

practices that have been abstracted over the course of studying sonification. Sec-

tion 3.6 discusses human listening modes and learning sound associations. Section

3.7 summarizes the high-end audio engines and tools which make contemporary

sophistication in sound possible. Section 3.8 discusses the previous applications

of sonification to program comprehension. Finally, Section 3.9 summarizes the

chapter.

3.2 Sonification and Auditory Display

The most common classifications of auditory display types in the literature are

auditory icons [53], earcons [15], and data sonification [130]. Auditory icons and

earcons are techniques for aurally communicating small, meaningful sets of infor-

mation, as described below [53]. Data sonification is the use of sound to understand

data sets [180].

Gaver [53] introduced the concept of auditory icons as “caricatures of natu-

rally occurring sounds.” Auditory icons are auditory analogues of visual icons:

brief, unique, nonverbal sounds that represent objects. For example, the arrival of

incoming e-mail might be represented by a metallic sound indicative of a mailbox.

The metallic mailbox-like sound is more associative, and according to Gaver, more

easily learned than the arbitrary sound of a beep or bell. A listener, according to

Gaver, is conscious of the source of the sound, e.g. that it is a metallic object,

rather than the parameters of the sound itself, e.g. pitch, making auditory icons

similar to real-world listening experiences. An auditory icon may carry informa-
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tion beyond the basic object representation. Gaver suggests, for example, that

a distant mailbox sound, lower in amplitude and higher in reverberation, might

be used if the e-mail window is hidden behind other foreground windows. Or, a

lower-pitched metallic sound may indicate a larger incoming message.

As sounds exist in time and are transient, Gaver originally targeted auditory

icons to represent events occurring in time in a computer system, complementing

the more persistent visual representations. Gaver represented such events in his

Sonic Finder, an extension of the visual Finder found in the Apple Macintosh [54].

Objects are represented as visual icons in the Finder; events that the objects are

subject to are represented as auditory icons, exploiting the transient and temporal

nature of sounds. The sonic representations are at various level of concreteness:

dragging is represented by a scraping sound, indicative of physical dragging, while

opening a file is represented as a “whooshing” sound. Auditory icons have been

applied in other domains, such as vehicle collision systems [60]. Sodnik et. al. [147]

found that automobile driving performance was better and perceived workload

lower when using spatialized auditory icons instead of visual icons for secondary

tasks.

Whereas an auditory icon is an unchanging sound or musical tidbit, the earcon

is a brief, structured audio message. An earcon is usually a brief musical frag-

ment, though non-musical earcons that extend auditory icons are possible [15].

The earcon adapts to represent some characteristic of an item in the represented

domain.

A musically-based earcon is based on a primary unit called a motive, equivalent

to a musical motive (of motif), a sequence of one or more pitches with a rhythmic

stamp earcon. Related motives can be organized into families, larger groupings.

Consider, for example, the two motives in Figure 3.1. They share the same rhythm,

but the first is ascending in pitch while the second is descending. Variations in

pitch, rhythm, volume, and timbre may be used to indicate differences in data.
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Earcons need not be musically based, and in fact the class of sounds known as

earcons can be considered to include auditory icons [112]. Earcons having this

Figure 3.1: Earcons within a family

common rhythmic pattern can represent file operations. The upward pattern may

indicate opening a file, while the downward pattern indicates closing a file. For

deleting a file, the final note may be heard in conjunction with a metallic trash-can

sound.

Audemes [46] are sound collages of two to five sounds layered or played in

sequence over a few seconds. The individual sounds may be musical patterns,

sound effects, infrequent sung words, or abstract noises. The collage can last from

three to ten seconds, three to seven seconds being ideal. The audeme as a whole

imparts an intended meaning by invoking an image from the listener’s memory.

For example, consider the sound of a steam-powered locomotive, followed by

horses’ gallops along with gunshots. The image of a Western train robbery is

invoked in those duly acculturated. This audeme may be used in a catalog for the

visually impaired as a placeholder for longer narrative or other material about train

robberies. Audemes are shown to work best when they are “richly metaphoric”

implying that the sounds should be as concrete as possible. Sequences of audemes

can be easily browsed, and due to their short length, both forward and backward

navigation are possible. The Acoustic Edutainment Interface (AEDIN) test bed

[46] was employed to demonstrate browsing capability by the sight impaired.

Mustonen notes that the classification of auditory signs into auditory icons

and earcons is not compatible with the sign descriptions developed in the field

of semiotics [112]. Mustonen uses the umbrella term auditory sign for auditory

icons and earcons, under which the level of signification should be considered on
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a continuum from iconic signs to symbolic signs. The latter employ arbitrary

sign-object relationships defined by social convention.

It should be possible to represent software entities via auditory icons, earcons,

and possibly audemes. The software entity’s type (such as a class) might be

recognizable by some sound characteristic, and its exact identification might be

identifiable via a distinct sound pattern, either as a variation of the characteristic

sound or a separately-heard sound. Characteristics of the entity might be rep-

resented by modifiers. Again, modifiers might be separate sounds appended to

the main sound, or they might be variations in the main sound. Finally, sounds

chosen from a consistent sound universe would help the listener by providing a

retainable metaphor.

Data sonification involves mapping one or more parameters of sound to data

values [180]. Some past applications have been sonified line graphs and sonification

of large data sets [76]. Sonified line graphs exploit the temporal nature of sound

by mapping the domain, or x value, of a line graph to time and the range, or y

value, to pitch [28]. It has been demonstrated that two graphs can simultaneously

be comprehended [28]. Tick marks and other features of the graph have been

realized in sound [114]. While pitch is an intuitive range mapping for line graphs,

it has been found that temporal mapping is better for box plots [122]. Data

sonification can unfold in time much like a musical work. A data sonification

depicting seasonal variation of Martian polar ice caps is an example [76]. Different

orchestral timbres represent different parameters such as hydrogen concentration.

Each timbre repeats continuously at varying rhythmic, density, or pitch levels to

reflect changes over time in the data. The listener gains an overall impression of

the state of the polar caps, which change over time. In such sonifications, the

end-to-end listening time is compressed from months of actual time into minutes.

Conversely, sonifications of millisecond-range event sequences are expanded into

minute-range audio streams. The Martian polar ice cap sonification was applied
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in an educational scenario to student understanding of the ice cap phenomena.

Auditory, visual, and combined treatment groups performed equally in perceiving

the ice cap data.

Data sonification has been applied for understanding very large data sets in

an exploratory manner. Harding’s geoscientific data investigation system (GDIS)

combined visual, haptic, and audio representations of geological structures as-

sembled from high-resolution bathymetric maps [63]. While the visual channel is

considered primary, the secondary haptic channel allows a user to feel and hear

surface features. The idea of simultaneous, multi-sensory investigation is expressed

by the authors:

One advantage of sonification is that the user’s eyes are free to process

visual data while hearing a different set of data. We have integrated a

novel “sound map” into the visual rendering of surfaces, giving the user

the ability to listen to a local surface property while simultaneously

visually observing other properties. [63]

The GDIS investigation included a study of musical parameters that would

best help listeners understand numerical data. Of pitch, timbre, and tempo, it

was found that tempo was best perceived. The study demonstrated that, based

primarily on tempo,

. . . any subject, musical or not, can be trained to differentiate between

five different audio signals and connect those audio signals with num-

bers 1-5 (a so-called ballpark setup).

The GDIS study did not consider durational sound aspects in general, which in-

clude both tempo and rhythm. The study suggests the possibility that durational

aspects should be used to indicate quantity, notably where quantity is divided into

discrete ranges. Static software measures such as size in lines of code per method

and methods per class, which in exploratory situations are only roughly needed,

can be represented in such a manner.
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Childs and Pulkki sonified the movement and intensity of storms across the

United States, compressing an actual period of months into an end-to-end sonifi-

cation measured in minutes [33]. The user selects a geographical reference location

to listen from. Storms approach, occur, and depart as storm-like sounds in audio

space according to a dome-like model. Listeners were able to detect patterns in the

occurrences of storms. The effective use of distance and direction in audio space

for a successful sonification is particularly promising. Polli, from a film and media

background, also sonified storms, concentrating on characteristics of individual

storms [127]. Different variables were represented using a variety of sounds: vocal

sounds, instrumental sounds, insects and other environmental sounds. Percussive

sounds represented water-related variables; long tones represented pressure and

temperature related variables. The storm thus became a five-minute or so musical

composition. Decisions were made such as translating atmospheric pressure to a

very low frequency sound. In doing so, “listeners lost the ability to hear a detailed

melody line describing the pressure changes, but gained a visceral sense of the

storm.”

Interactive Sonification

Interactive sonification can be aimed in two directions: for the sighted and for

the visually impaired. The sighted can use visual navigation techniques, reserving

sound for information presentation where it reinforces visual means or provides

some advantage over it. The visually impaired will navigate using sound. GDIS,

described above, is clearly for sighted users, as it contains interacting visual, au-

ral, and haptic components. The interactive sonifications described below are

targeted primarily for visually impaired users and can be used while working in

an exploratory context.

Zhao, Plaisant, and Shneiderman proposed an Auditory Information Seeking

Principle (AISP) for exploring a general data collection in an interactive, visual
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environment [185]. It is an adaptation to the audio domain of Shneiderman’s

Visual Information Seeking Mantra [142]. AISP exploration occurs in four phases:

gist, navigate, filter, and details on demand, mirroring the phases in the Visual

Information Seeking Mantra. In the visual domain,

1. Gist provides an overview at a glance of a data collection’s pattern. it serves

as a guide for exploration. Anomalous data can be easily detected in contrast

to the overall pattern.

2. Navigate allows the user to quickly visit different parts of the data collection,

selecting interesting areas of the data.

3. Filter allows the user to focus in on data with desirable characteristics,

eliminating unwanted data from consideration.

4. Details on demand allows the user to select a subset of data or a single item

and receive additional information about it.

In the visual world, Shneiderman’s Visual Query concept is built around the Visual

Information Seeking Mantra. One of its applications is as a real estate locator, the

DC HomeFinder [142]. Available houses for sale appear as points on a geographic

city grid, providing a gist. The user may zoom to and visit different areas of the

city, providing navigation and a more localized view of the data. Sliders allow the

user to filter data by price range, number of rooms, and other features, reducing

the number of points in a geographic area. Finally, the user can select an individual

house to obtain its full detail. The user can iteratively return to a gist and select

other houses. Visual navigation, filtering, and details on demand are designed to

operate as fast as possible, in the range of 100 milliseconds or less per operation,

giving the user quick feedback and the feeling of real-time control of the tool. This

apparently real-time way to visually explore data is known as a dynamic query.

Zhao based AISP’s principles for interactive exploration of information spaces

using sound upon the principles of the Visual Information Seeking Mantra. A
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geo-referenced statistical data set was sonified for access by the visually impaired.

Again, the phases are gist, navigate, filter, and details on demand. The 100

millisecond requirement is discarded, as sound itself is a time-dependent medium,

one coherent sound or group of sounds requiring far more than 100 milliseconds.

The AISP phases each meet certain requirements:

1. Gist, being processed in short-term memory, should itself be in the approx-

imate range of five to thirty seconds in length. Gist can be a serialization

of the data items. If so, there needs to be a scheme to hear all the items in

the gist within the desired time frame. If the data set is large, aggregations

must be used.

2. Navigation should allow the user to play, pause, resume, and rewind through

the data in the gist, initiate zoom and selection, and receive feedback to what

extent actions have been performed.

3. Filtering requires operations well outside the 100 millisecond range, possi-

bly involving some audio process independent of gist and navigation and

performed while paused.

4. Even when the gist is achieved through non-speech sound, details on demand

may effectively make use of speech. Otherwise, there may be too many non-

speech sound mappings to remember.

The geo-referenced data set is sonified in two ways: as an enhanced table and as

a spatial choropleth map. In the enhanced table, gist is an ordered serialization

of the fifty U.S. states plus the District of Columbia. Ordering is a mapping from

west to east and north to south to the single time dimension. The state name is

spoken along with a 200 millisecond pitch indicating a value, such as the state’s

elevation. The lowest pitch corresponds to middle C (approx. 261 Hz), with higher

value mapped to higher pitch. Navigation and detail on demand are keyboard-

oriented, the assumption being that a visually impaired user, once oriented to a



Sonification 53

keyboard, can remain oriented. Filtering does not appear to be implemented. The

table is played as a stereo image but without left-right panning.

In the spatial choropleth map, the sound’s azimuth and altitude are respec-

tively mapped to east-west and north-south state location. Azimuth is from -90

degrees to 90 degrees (where zero degrees is front and center). Altitude is -31

degrees to 63 degrees (where zero is level). Sound localization is achieved using

a generic head-relative transfer function (HRTF) [43] to achieve binaural sound

through headphones. Keyboard-based details on demand is also used. In the gist,

a 200 millisecond tone indicating which value is to be heard is played, followed

by a 100 millisecond tone representing the value, both at the state’s mapped spa-

tial location. Keyboard-based commands allow the user to navigate left-right and

up-down.

Zhao reports that there is evidence from the pilot study that AISP is in line

with users’ pattern recognition strategies. Both the enhanced table and the spatial

choropleth map were shown to be effective for conveying the geo-referenced data.

Subjects were able to identify patterns in the data.

To provide gist in an auditory environment, Zhao found it important to provide

serialization of the sounds. Pauses of ample length occur between items: 100

milliseconds between columns in the choropleth map, and 1/2 second at the end

of a row in the map, each of which follow sound patterns in the 300 millisecond

range representing simple data values. In an environment such as a software IDE,

in which each represented item covers a more complex range of information, the

sound patterns would be longer, and the pauses would have to be at least as long

as the row-end pause of 1/2 second.

Zhao also reports that the ability of subjects to locate the sound sources in

space was inaccurate. Improved accuracy would require improved HRTFs and

expensive head tracking devices. Accordingly, localization in a software IDE,

while usable, should not be depended upon as a primary differentiator of items or
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their characteristics.

Kildal and Brewster created a tool to support interactive, audio data tables

[80]. Each table cell contained a numeric value, represented by a piano-like sound

whose pitch was mapped to the value. Users can explore the table sonically using

a 2D touchpad. The user can traverse rows, columns, or diagonal paths through

the table. The user can also play the sounds for a row or column in sequence or

overlapped without the need to physically traverse the row or column. This would

provide a quick idea of the range of values and their weighting. Experimental

subjects successfully garnered patterns in the data through sonic exploration of

the table.

The idea of scanning over cells of a table and hearing a sound associated with

each cell is reminiscent of Shneiderman’s visual queries, giving instant feedback

and the impression of real-time control. Fast scanning may not work as well in an

IDE, in which the sounds are anticipated to be longer and more complex than a

simple tone, but slower scanning or hovering can be implemented. Faster scanning

would result in silence to avoid confusion, time lag, and overload of the auditory

sense.

3.3 Sonification in the Computing World

Sonification has been applied in the computing realm for run-time monitoring of

algorithms [48] and computer networks [55]. Run-time monitoring is a natural

application for auditory display and sonification, as sound itself is temporal in

nature and able to interrupt and re-focus the human attention stream. Monitoring

can, in general, utilize sound actually produced by the monitored source, as in

stethoscope monitoring of one’s heart. Computer algorithms and network traffic

produce no sound of their own, so recorded or generated sounds are mapped to

source events and values.

The Zeus algorithm animation system provided sound as well as visual views
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to monitor sequential and parallel algorithms as they ran [30]. Each compari-

son or data movement in a sorting algorithm resulted in a tone whose pitch was

mapped to the element’s value. Because a sorting algorithm is highly iterative,

the sequence of pitches produced a distinctive signature. Mode changes can be

detected via changes in the signature. Some data relationships can be detected

that did not manifest themselves through any of the visual views. In addition to

pitched sounds, Zeus employed auditory icons, notably when a value inserted into

a hashing algorithm resulted in a collision, in which case a “violent car crash” was

heard [29].

Francioni, Albright, and Jackson sonified the execution behavior of algorithms

running on parallel processors communicating via shared memory [48]. Simple

musical tones and short melodies were mapped to program execution in three

different ways. In the first mapping, each processor was given a distinct timbre,

and distinct notes were used for send, receive, and pending events. A sustained

tone signaling a pending event served to connect a send event and its eventual

receive event. Send, pending, and receive events were mapped to different stereo

positions for aural reinforcement. Listeners can detect send events that were

never received, as the unconstrained sustained tone violated the normal pattern.

Events which occurred simultaneously on multiple processors were serialized, an

adjustment to ensure that events were not aurally lost. The second mapping

depicted busy versus idle processors. Each idle period of significant duration was

signaled by a bell, followed by a lower-intensity string-like sound, its amplitude

increasing with the idle period’s increasing duration. The bell and string-like sound

appeared at a unique pitch for each processor. Listeners can detect significant

idle periods for different processors. This mapping can be used to tune parallel

operation to reduce idle time. The final mapping depicted flow of control within

each processor, different pitches represent different types of events. Bottlenecks in

flow of control can be detected via the absence of a pattern, demonstrating that
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conveying information by negative means (absence of sound) is viable.

The bell and string-like sound, together serving as an earcon, are particularly

intriguing. The bell signals an event, and the string-like sound then highlights the

length of that event. Stated differently, the bell represents the event itself, and

the string-like sound is a modifier that provides additional information.

Personal Webmelody was a musical sonification of web server activity [5].

Short, system-generated music patterns represented web server events. Audio

monitoring can be intermixed with external audio files such that the listener’s

preferred music is played while the real-time status of the web server can be mon-

itored. The listener’s preferred music does play into the sonification; if a web

server goes down, silence replaces the music, signaling and reinforcing the condi-

tion through lack of sound.

A particularly impressive sonification vehicle is the Peep Network Auralizer

for real-time monitoring of computer networks [55]. Sounds were selected for

employment from an environmental sound universe - birds, crickets, waterfalls,

and other sounds in a forest-like setting. The sounds were recorded from nature.

The researchers felt that different sounds from the same natural setting would

be heard as concordant by the listener, analogous to musical chords comprised

of concordant pitches. Sounds represent three basic categories of network occur-

rences: events, states, and heartbeats. An event is something that occurs once,

such as an incoming e-mail message arriving on a server, represented by a sin-

gle bird chirp. As incoming and outgoing e-mail messages often occur in pairs,

their chirps are complementary call and response chirps. Should outgoing e-mail

suddenly stop, the network engineer would notice the absence of response chirps

as anomalous. States are quantities measured during continuous operation of the

network, such as number of users. States are represented by continuous sounds

like wind or a waterfall, which progresses from quiet to loud as more users join the

network. The network engineer, like someone relaxing at a waterfall, can generally
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ignore its sound. When the waterfall becomes too loud, it attracts the network

engineer’s attention. Heartbeats are sounds that occur at constant intervals, and

they either represent quantities or presence of an operating component. Sparse

cricket chirping may represent low network load, while dense chirping represents

high load.

Peep demonstrates that listeners can garner quantitative, parallel information

through superimposed sound patterns. It also demonstrates that sounds from a

consistent universe provide a learnable and retainable metaphor. Finally, Peep

demonstrates that complex sounds, in this case sounds from the natural world,

work well for auditory display.

3.4 Spatial, Temporal, and Visual Metaphors

Pinker [126] describes evidence, gained from observation of spoken and written

language, that the human mind categorizes matter and temporal occurrences sim-

ilarly. Pinker states that,

. . . the mind categorizes matter into discrete things (like a sausage)

and continuous stuff (like meat), and it similarly categorizes time into

discrete events (like to cross the street) and continuous activities (like

to stroll). [126]

Hence, it would appear natural to represent a collection of objects, especially

but not necessarily ordered objects, as a collection of events in time, or vice

versa. Indeed, precedents exist in the auditory display of software entities. Objects

in relational diagrams have been aurally depicted as sound events separated in

time, connected in time by a sound representing the relation between the objects.

Experimental subjects have been able to reconstruct relationships between objects

by listening to the aural depiction. The objects are unordered [107]. A sonification

of the London Underground map is constructed in a similar manner with ordered
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subsets of objects [115].

Pinker proceeds to describe a mental “zoom lens” which allows a single ob-

ject to be broken down into a collection of objects and, more importantly for the

present purpose, a complex temporal event to be broken down into constituent

events. The zoom lens analogy suggests that audio representations may be con-

structed so that the listener can determine the meaning of a coarse event and, if

desired, also determine the meaning of finer subordinate events, as long as they

are seen as belonging to the coarse event. In this manner, internal zoom on the

listener’s part replaces explicit, interactive zoom employed by Metatla, with a

slightly higher cognitive cost.

The use of box and line diagrams [64] to represent software constructs suggests

an approximate analogy in the use of abstract sound structures to represent soft-

ware constructs, as shown in Table 3.1. Boxes and lines are abstract, as are sound

Visual Aural

pixel vibration
symbol (pattern of pixels) note or event (pattern of vibrations)
complex symbol (e.g. box and its
partitions)

complex event (e.g. chord)

multiple symbols multiple complex events

Table 3.1: Box and line analogy, in increasing complexity

events such as musical notes. Neither presents an intuitive association to software

constructs, which may themselves be abstract. Boxes, lines, and other shapes

combine in Unified Modeling Language (UML) diagrams [21] to partly describe

classes and other software constructs. Musical events can also be so combined,

both sequentially and serially. They, too, will only partly describe each software

construct, as “software entities are more complex for their size than perhaps any

other human construct,” making them “differ profoundly from computers, build-

ings, or automobiles, where repeated elements abound,” per Brooks [26], who in-

dicates that design diagrams do not necessarily get to the “essence” of a software
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construct. Brooks continues,

Likewise, a scaling-up of a software entity is not merely a repetition of

the same elements in larger sizes, it is necessarily an increase in the

number of different elements.

UML accomplishes scaling-up through many repetitions of boxes and lines, each

having different contents. The aural analogy is many collections of events having

the same structure but different sounds.

The box and line analogy is necessarily inexact, as the visual medium exists in

two physical dimensions while the aural medium exists in one temporal dimension.

The analogy is also constraining, as sounds have high expressive potential, while

the shapes encountered in box and line diagrams are neutral.

3.5 Design Guidelines

There is evidence that non-speech sound is processed differently by humans than

spoken text, faster in some situations. Leplâtre and Brewster found that a group

of subjects using a telephone menu containing earcons performed required 17% less

key presses than a control group using a text-only menu, and it also decreased the

number of errors [90]. Vargas and Anderson reported similar results (15%) with an

automobile control panel simulator, but they noted that the earcons were longer in

duration than equivalent spoken text in their setting, and accordingly took longer

to process [168]. Their findings indicates that care must be taken in the design of

earcons and their placement. An earcon should ideally communicate equivalent

or more information than its spoken counterpart within the same duration.

Brewster, Wright, and Edwards made explicit the observation that earcons

should be of short duration. In their guidelines for earcon creation, they state,

“Earcons should be kept as short as possible so that they can keep up with in-

teractions in the interface being sonified [25].” Other guidelines from the same
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source are useful:

• When designing a family of earcons start with timbre, register, and rhythm.

Suppose we elect to represent a particular software entity, say a given “acces-

sor,” with a double bell-like sound in a medium-high register. All accessors

should then be represented by double (or at least multiple) bell-like sounds

in a medium-high register, individually varying by their exact pitches and

other factors that retain the characteristic timbre, register, and rhythm.

• The maximum pitch used should be no higher than 5kHz and no lower than

125Hz to 150Hz. Pitches lower than the recommended range are easily

masked by other sounds, and pitches higher than the recommended range

may not be easily heard, especially by but not limited to older listeners.

• To make an earcon capture the listener’s attention, increased intensity (am-

plitude) is effective but crude. A variety of other techniques is available,

including use of accentuated rhythm, or even atonal or arhythmic sounds.

One can envision the best of both worlds: using the atonal and arhythmic

sound of a door closing, say to represent a close method, immediately fol-

lowed by a musical motif indicating some characteristic of the method. This

foreshadows the next recommendation,

• Compound earcons. While a 0.1 second gap between successive serial earcons

is recommended, we envision that there need be no gap if the first earcon

fades out substantially before the second begins.

• Spatial location. A suggestion is that each family of earcons be assigned a

distinct spatial location. However, one can envision an overriding use for

spatial location, namely to separate represented items by providing each

item a location in space. The metaphor of items in space is closely tied to

sounds in space.
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Frauenberger devised a design-pattern methodology for capturing best practices

from the auditory display community [49]. His methodology is an adaptation of

the widely used design pattern methodology in software engineering [52], and it is

partially based on prior work by Barrass [6]. Frauenberger collected an initial set

of design patterns to illustrate and validate the methodology. Each pattern poses

an audio display problem and captures known solutions. Patterns applicable to

the problem at hand are discussed in the following paragraphs.

• “Interaction design exploiting auditory means can impose increased cognitive

effort on users. This results in users perceiving auditory displays as annoying

or tiring.” The pattern points specifically to monotony experienced while

using an auditory menu system using that employed repetitive speech to

indicate the position of items in the menu [50]. Providing sounds from a

rich, non-speech sound universe should alleviate the monotony of repeated

speech. The user should have the ability to turn the sound off entirely,

especially when performing tasks other than the sound-appropriate ones.

The user should also have control over which groups of items are heard.

• “The user should have easy control over . . . how long it takes to explore the

data [in a large table] . . . Instead of looping through the chosen time-line

in a data set at a constant rate, provide interactive control for the user to

change the speed of the presentation. This allows users to explore the data

value for value or skim through the data quickly omitting much of the detail,

but gaining overview.” The file explorer or class browser in an IDE are

essentially data tables. In an exploratory mode, the user will use a pointing

device such as a mouse to click or hover over software entities such as classes

and methods. The sound should be heard as the user clicks or hovers over

each item. The user may stop on individual items or progress through the

entities at his or her own rate. In a multi-modal environment that includes

both visual and audio presentation, non-speech sounds may be used for
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overview while spoken text is be used for detail.

• “A directional link between entities has to be expressed by auditory means.”

In his audio UML diagrams [21], Metatla represents an arrow by a long

tone followed by a short tone, audio equivalents to the line and arrowhead

comprising a visual arrow [107]. In a multi-modal IDE, one may focus on

an entity of interest and request to hear: only those other entities that call

or are called by the entity of interest; those entities from which the entity of

interest inherits; those entities which inherit from the entity of interest; or

some other relationship between entities. Knowing what is to be heard, it

may be possible to omit any explicit representation of a link. If the link is

necessary, Metatla’s audio arrow may be used.

Norman informs auditory design possibilities through his introduction of con-

straints and affordances to visual, user-interface design [116]. Constraints are

associations or concepts which are well known due to habits and cultural con-

ventions. New user interface concepts that are similar to something already well

known are easily learned as they conform to cultural constraints. Hence the con-

cept of a “window” in a graphical user interface. A sound issued to announce a

remotely-initiated instant messaging session may resemble a telephone ringing or

a door bell. An error, on the other hand, is unlikely to be announced by those

sounds. Affordances, closely related to physical constraints, are natural properties

of objects that suggest a type of interaction. For example, a flat rectangular area

in an otherwise vertical shower wall suggests that one should place soap there.

Vickers has advocated increased awareness and application of aesthetics on the

part of sonification designers [169]. Aesthetic considerations range from improving

the realism of the sounds and the virtual acoustical environment to intermixing a

variety of musical and non-musical elements, to the point that one cannot classify a

sonification as musical or non-musical. Vickers suggests that designing for aesthet-

ics, especially in the realm of tonal music and musical fragments, would not make
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the sound scheme a language that the listener would have to learn, and therefore

would not be restricted to or performed better by the more music-literate listen-

ers. If anything, cultural differences might determine variances in understanding

based on the sound scheme. He also argues for relaxation of familiar (19th Cen-

tury) tonal and structural conventions in defining a musical sonification, defining

music as “organized sound,” which is neither tonal nor atonal but may possibly

utilize an eclectic mix of tonal music, atonal music, sound collage sequences as in

musique concrete [78], and other types of sound, from both acoustic and electro-

acoustic sound sources. Going a step further, Vickers questions the distinction

between sonification and musical composition as a matter of one’s perspective.

3.6 Listening, Processing, and Learning

Tuuri, Mustonen, and Pirhonen have built upon work in psychoacoustics to dif-

ferentiate among listening modes [112][167]. Tuuri, Mustonen and Pirhonen agree

with Gaver, above, that everyday listening is focused on sound-source actions and

events rather than on conscious evaluation of the sounds themselves. There exist,

however, acousmatic situations, in which the action or event causing the sound is

hidden from the listener, resulting in reduced listening that focuses on the charac-

teristics of the sound. There are also situations in which sounds are ambiguous,

causing the listener to invoke contextual information to aid in discrimination and

interpretation.

Tuuri summarizes six activating systems which participate in sound discrim-

ination and interpretation: reflexive, denotative, connotative, associative, empa-

thetic, and critical. The reflexive system provides fast, pre-conscious responses

of a physiological nature, requiring little cognitive processing. The critical sys-

tem provides “reflective self-monitoring concerning the verification of perception

and the appropriateness of one’s responses,” requiring significant audio processing.

The other systems require intermediate degrees of cognitive processing. The six
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activating systems work alone or in combination to effect the processing of sounds

in eight modes, shown in Table 3.2, ordered from least to highest processing load.

mode type description

Reflexive pre-
conscious

attention-focusing, startle response

Connotative pre-
conscious

immediately invoked, free-form connotation

Causal source-
oriented

determining likely cause of the sound

Empathetic source-
oriented

determining likely emotional state of source

Functional context-
oriented

determining purpose of the sound

Semantic context-
oriented

determining symbolic/conventional meaning

Critical context-
oriented

determining suitability of sound for situation

Reduced quality-
oriented

describing the properties of the sound

Table 3.2: Listening Modes, adapted from Tuuri

To keep cognitive overhead low, it is reasonable to expect sounds which stim-

ulate reflexive listening to be optimal for warning situations and sounds of a con-

notative nature to be optimal for iconic use. It is also reasonable to expect sounds

in an emotion-free understanding context to be designed such that they are not

listened to in an empathetic mode. Sound and sound patterns serving as arbitrary

signs cannot be truly selected at random, as they may give rise to conflicts in one

or more processing modes and therefore serve as auditory distractors. It may be

necessary to listen to abstract, arbitrary-sign sounds in a reflexive manner when

first learning their associations, but once committed to memory, reflexive listening

should no longer be necessary.

Card, Moran, and Newell combined research in cognitive psychology with com-

puting principles to formulate the Model Human Processor, a simplified model of

human perception, processing, decision making and action applicable to human-

computer interaction [31]. In the model, auditory information is perceived within
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a 50 to 200 millisecond time frame, chunked into information units, and placed in

a short-term auditory image store, where it resides for 900 to 3500 milliseconds, as

contrasted with short-term visual image storage of 70 to 1000 milliseconds. The

auditory image store is within working memory, which is capable of handling ap-

proximately seven simultaneous chunks of information, in agreement with Miller’s

seven plus or minus two principle [110]. Learning occurs as information chunks

are committed to long-term memory. Selective retrieval from long-term memory

improves access time and reinforces learning.

The Model Human Processor incorporates a number of operational principles,

including the Discrimination Principle, which states that the difficulty of recalling

an item is increased if there are similar items in memory, as recall is cue-based.

Items in working memory are most easily confused with other items with similar

acoustical properties, while items in long-term memory are more sensitive to items

with similar meanings. Also notable is the Power Law of Practice, which states

that perceptual-motor learning improves task performance time on successive trials

through a power law. On the other hand, information in long-term memory is lost

during long periods without rehearsal such as overnight.

The work of Card, Moran, and Newell suggests that an audio representation

of a particular software item or class of items should be well bounded temporally,

with enough time afterward for cognitive processing and commitment to long-

term memory. Each item or class of items should be represented by sounds or

sound patterns acoustically distinct enough to differentiate them from others on

recall. If audio metaphors are used, their meanings should also be suitably distinct.

Training and usage scenarios should include sufficient repetition to bring task

performance times to a near-minimum. Training should be reinforced immediately

prior to any experimental trials to restore information lost during long periods

without rehearsal.

Stephan et. al. [154] studied learning and retention of associations between
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auditory icons and referent events, discriminating among direct, related, and un-

related associations. Learning and retention were high irrespective of association

type. Direct and strong indirect associations were better retained in the short

term. Additionally, direct associations were better retained than indirect associa-

tions on follow-up four weeks later. The results suggest that direct associations,

followed by strong indirect associations, should be preferred over unrelated as-

sociations, but that all types are acceptable. Lucas [97] found that association

accuracy of musical earcons is improved when study subjects are presented with

their structure, having implications for training.

3.7 Audio Engines and Tools

High-end audio engines support real-time generation and processing of sophisti-

cated digital sound. MAX/MSP, PD, SuperCollider, and Csound are the most

widely used and well-tested such engines [24][39][105][186]. In addition, the Au-

dacity audio editor is usable for high-end manipulation of audio streams [3].

MAX/MSP and PD are intended for real-time processing of internal and ex-

ternal audio sources. MAX/MSP is an audio engine originally developed for the

Apple Macintosh [39]. PD is a similar, open-source audio engine, developed by

Miller Puckette, the creator of MAX/MSP, who considers MAX/MSP and PD to

both use the MAX family of graphical languages [186]. Sounds and sound pat-

terns are obtained by building a graphical network of objects, a virtual analog of

the collection of patches an analog music synthesizer or, more loosely, a telephone

switchboard. Event objects such as sequencers provide time-regulated successions

of musical events. The final stages in the network are output objects that send

the sound to the computer sound card or other device.

SuperCollider is a real-time audio engine and an audio synthesis programming

language [105][161]. Written by James McCartney, it runs on MacOS, Linux, and

Windows. It supports plugins, extensions, and programmer-provided sound ob-
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jects. Its real-time, interpreted programming language, reminiscent of Smalltalk,

includes unary operators, binary operators, oscillators, noise sources, filters, con-

trols such as gates and latches, amplitude operators, delays, FFTs, sampling and

input/output, event control, and miscellaneous classes such as mixdown units.

The real-time language serves as a network client to the sound synthesis engine,

communicating via the Open Sound Control (OSC) data transport protocol for

musical events [118]. SuperCollider is introduced more fully in a 2008 Linux Jour-

nal article [125].

Csound is a high-end software engine for creating and processing digital audio

[24]. It is a direct descendant of the earliest score-based computer music systems

developed by Max Matthews and dating back to 1969 [102]. Unlike MAX-family

tools, Csound uses textual input, separating its input sources into an orchestra file

and a score file. The orchestra file contains “instruments” built upon a language

reminiscent of a software assembly language. Each line of text utilizes commands

which invoke sound generation and processing objects implemented in C. The ob-

jects are connected textually much as MAX-family tools connect them graphically.

The score file contains performance instructions, turning on and off instruments

and specifying the durations of notes and other performance parameters as defined

by each instrument. Real-time score input can be substituted for a static score

file. MIDI control is also available [109].

MAX/MSP, PD, SuperCollider, and Csound can each be integrated with an

IDE such as Eclipse. Output from Eclipse would serve as input to the chosen

audio engine in real time via an interface using Unix pipes, TCP/IP sockets, or a

similar technique. The audio engine can run on the same machine as the IDE, or

if necessary it can run on a separate machine to take advantage of extra processing

power. Csound offers several advantages over MAX/MSP and PD for Eclipse inte-

gration. The user should not have any need to directly control the sound engine, so

the MAX-family’s graphical, network-based interface is unnecessary. MAX/MSP



Sonification 68

and PD provide the intuitive graphical ability to produce sound in continuous

loops, but that ability was not considered necessary to realize the envisaged aural

concepts. Freely-available Csound instrument libraries provide a wealth of instru-

ments. Finally, Csound’s ability to accept real-time score input from Eclipse has

been demonstrated [12]. Csound’s main advantages over SuperCollider are the

richness and flexibility of its as-distributed sound library and, for this particular

project, familiarity by the researcher.

Audacity is an open-source audio editing tool [3]. Audacity displays sound

as a waveform, showing amplitude versus time. Audacity can be used to provide

editing of sounds serving as input to Csound, to bound them, eliminate noise, and

otherwise clean them up or preprocess them. Audacity can also be used to prepare

audio streams by pasting in successive sounds. Notably, it was used to prepare

the audio stream employed in the experiment described in the following chapter.

3.8 Sonification for Program Comprehension

Most program sonification research to date has addressed the dynamic, or behav-

ioral, aspects of computer programs at the program statement level. It has been

reported that, as early as the 1950’s programmers used AM radios to listen to the

interference caused by computers, monitoring the CPU and recognizing, to some

degree, improper behavior [171]. Later, sound was proposed to enhance program

visualization, transitioning in some cases to a vehicle in its own right.

InfoSound allowed software developers to create and assign sound effects and

musical fragments to chosen program statements, then listen to them in a con-

tinuous stream during program execution [150]. Using InfoSound, the developers

can detect successions of events that were difficult to detect visually. The Audi-

tory Domain Specification Language (ADSL) enabled listeners to specify which

program constructs would be sonified and with which simple sound each would be

represented [19]. Each type of construct resulted in a “track;” there would be a
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track for loop constructs, another for boolean evaluation of expressions, etc. The

listener would select tracks to play, then hear them in program execution sequence.

The visual programming language Sonnet, developed for the aural monitor-

ing and debugging of an executing program, eventually became a platform for

more general real-time investigation [72]. One builds an event-triggered sound

processing network in a style similar to that of MAX [39] described in Section

3.7 below. Again, tagged program statements trigger sounds, and program exe-

cution can be heard as an audio stream. Similarly, the LISTEN system, with its

non-visual programming language LSL, can be used to tag program statements

with simple sounds and musical tones, then hear the program’s execution [16].

Audio execution traces of bubble sort and selection sort algorithms are available

at Mathur [101]. The percussive sounds and tones heard allow one to obtain a

sense of the sort algorithm. However, lengthy exposure is reminiscent of listening

to a machine, and it may result in loss of attention. Baecker, DiGiano and Marcus

designed a visualization system for debugging that incorporated audio elements

similar to those in the sonifications described above. [4] It was employed to help

undergraduates understand algorithms.

Alty and Vickers developed the CAITLIN system and used it to evaluate

the effectiveness of audio display for dynamic program comprehension [170][171].

CAITLIN employed musical motifs, much like the character-identifying motifs in

Prokoffeiv’s Peter and the Wolf and Richard Wagner’s operatic leitmotifs [61]. A

different motif was applied to each point of interest in a Pascal program, such as

the beginning of an IF statement or evaluation of a Boolean expression inside it.

Each motif was a single melodic line performed using a unique timbre. Constructs

having a significant duration, such as an IF statement, were continued with a

continuous drone tone until their end. Thus an IF statement would have an open-

ing motif, a Boolean evaluation motif, possibly an ELSE statement motif, and a

drone terminated by a closing motif. The sounds were realized by an electronic
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musical instrument receiving MIDI input from CAITLIN. Unlike its predecessors,

CAITLIN made use of fixed musical motifs designed to work together to form a

consistent, harmonic scheme that is primarily consonant. This allows a longer

and more pleasing listening experience than do the LISTEN sort examples, and it

affords clearer understanding overlapping sounds. In an experiment, twenty-two

undergraduate computer science students were asked to use CAITLIN to identify

sonified constructs which were not placed in a meaningful context. Sequential

and nested constructs were included. Results were marginal. The students were

then asked to perform eight debugging exercises by listening to the constructs

in context. Each exercise contained branching errors in the program flow. The

errors were covert: the program ran to completion but provided output other

than that expected. The subjects found 60 of 88 sonified bugs (68%) and 46 of

88 non-sonified bugs (52%). Thus, the students were demonstrably able to find

about half of the bugs through sonification, while an unsonified treatment yielded

significantly better results. Time to find sonified versus non-sonified bugs was

not significant, and level of musical experience was not significant. Evidence was

found to suggest that the effectiveness of the sonified treatment increases with the

cyclomatic complexity of the program.

Finlayson delved into the realm of static program comprehension with the

spoken and non-speech AudioView [47]. In the spoken version, the listener was

told what program structures were encountered in Java source code and how many

statements resided in code blocks, including those within IF and FOR statements.

In the non-speech version, the spoken text was replaced by earcons. Variations

among earcons included rhythm differences and musical timbres from different

families of instruments. Pitch was not used as a discriminator. A quantitatiave

study was conducted in which subjects were presented with speech, non-speech,

and combination AudioViews of source code fragments with and without errors.

Subjects were asked to identify code by hearing an AudioView and detect errors.
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Results showed that, at the statement level, the non-speech AudioViews were less

accurate than the spoken AudioViews. However, the results are only suggestive

and admittedly “early,” as the sample of six subjects was small and the earcons

seem similar to one another in terms of pitch and rhythm.

Berman and Gallagher developed three techniques to sonify program slices [11].

A forward program slice with respect to a statement of interest, or slice point, is

the set of source code in the program that depends upon that statement [178].

Conversely, the slice point depends upon the code that is in a backward slice.

A slice may further depend on specific variables at the slice point. In the first

technique, individual program statements are heard as single pitches. Variation

in pitch is used not as a differentiation device, but as a repeating pattern to avoid

monotony when listening to a large number of statements and emphasize breaks

in the pattern. In the second technique, an entire method is heard as a cluster

of pitches, giving an impression of the number of statements in the method that

belong to the slice. The third technique makes use of granular synthesis [43].

For a given Java class, the listener hears a signature sound cloud consisting of

numerous sound grains distributed according to parameters fixed over the cloud’s

duration. The size of the class corresponds to the overall pitch range of the cloud,

and the percentage of the object’s code belonging to the slice corresponds to

the cloud’s density of grains. The cloud can be heard as background along with

one of the other two techniques in the foreground for methods within the class.

Applied to a project browsing environment, the cloud sound changes as the listener

progresses between object boundaries while hovering over different methods. An

informal, qualitative study revealed that the third technique had the advantage

of lasting any time span, controlled by the listener, so that it may be analyzed

over time without having to be replayed. The slice sonifications demonstrate that

musical yet non-melodic and non-harmonic sounds can be employed to represent

differentiating and quantitative information about program source code.
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Boccuzzo and Gall adopted a hybrid approach in which spoken text and non-

speech sound support and extend visualization of software metrics [17]. Visually,

a software unit is represented by a house whose size, shape, and color are mapped

to software metrics, making the representation a cognitive glyph. For example,

the height of the roof represents the number of lines of code. Sounds can provide

notification, indicating outliers such as an unusually high number of critical bugs.

Sounds can also serve as data-driven cognitive glyphs in their own right. To do

so, a tone is presented whose duration, loudness, sharpness, pitch, roughness, and

oscillation map to various metrics.1 Boccuzzo and Gall found, in a human-subject

study, that duration and loudness were hard to perceive in non-ideal environments,

and loudness in particular was hard to map linearly. A more successful strategy

was to map tones having discrete differences to ranges of values so the listener can

get a rough idea of the value. In subsequent research, Boccuzzo and Gall supple-

mented exploration of units shown in a software visualization with an “ambient”

sound similar to that of bubbling [18]. The character of the sound changes as the

user explores different units in the visualization, allowing the user to hear metrics

such as the number and size of changes since the last release.

Several parties have recently extended IDE’s to provide auditory display, sup-

plementing information available visually. One extended Microsoft’s Visual Studio

while the other extended Eclipse.

Stefik and Gellenbeck extended Visual Studio’s run-time debugger with spoken

text [153]. Their Sonified Omniscient Debugger (SOD) builds upon their own

previous work, in which a Visual Studio extension was known as the Wicked Audio

Debugger [152]. SOD and its predecessor operate at the source statement level,

announcing variable and array value replacements, loop iterations, and statement

nesting, as well as values and memory addresses of variables and array elements

navigated to in a list of active variables. For example, it might say, “v sub zero

1The listed characteristics are called the Zwicker parameters in psychoacoustics [187].
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integer of value 5” to announce that the user has navigated to integer array element

zero having a value of 5.

SOD usage was evaluated with the debugger in purely visual mode, purely au-

ditory mode, and a multimedia mode with both visual and spoken cues. Accuracy

and performance time data on debugging tasks performed by forty student sub-

jects, mainly undergraduates, was collected. Task performance time was shortest

with visual-only presentation, marginally longer with multimedia, and significantly

longer with audio-only. Performance time improved as the subject moved through

the different presentations, performing one task using each medium, indicating a

learning effect independent of medium. Accuracy as measured by a comprehension

score did not significantly vary among the three media.

Stefik and Gellenbeck found that subjects who performed tasks using multime-

dia mode last performed better in that mode than did others for whom it was first

or second. They attribute that particular performance improvement to a learning

effect, the subject having already had experience in each mode, and no subject

having ever previously been exposed to any auditory mode. They conclude that a

learning effect took place, and therefore that auditory cues do not afford instant

usability. They also observe that newcomers to the environments that include

audio tend to listen to all auditory cues, only later learning to separate those they

need from those they don’t.

Subjects in the Stefik and Gellenbeck’s experiment were given ten minutes

training time followed by performance of the experimental tasks. Learning effects

may be mitigated in similar experiments by

• extending the training time, possibly by reducing the number of experimen-

tal tasks to keep session time about 90 minutes,

• providing additional offsite training prior to the session,

• providing redundancy in training,
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• providing practice tasks prior to the experimental tasks.

Hussein, Tilevich, and Bukvic extended the Eclipse IDE with an auditory

display, using MAX/MSP as their sound generator [67]. They conducted an ini-

tial experiment to determine quantitatively that non-speech sonification can be

effective in a program comprehension setting. Static program information of a

numerical nature was sonified: number of lines of code within a method, total

number of method calls within a method, and number of calls to a given API by a

method. The ability to know such measures may help a maintainer to strategize

during debugging or help a quality assurance inspector or technical manager de-

termine how to divide oversight effort. Each time a method is selected in Eclipse,

the three quantities are determined for that method, and corresponding sounds

are simultaneously presented in stereo, one from the left speaker, one from the

right speaker, and one in the center of the stereo image. Two of the sounds, rain

from the left speaker and a water stream from the right, are drawn from nature.

The center sound is that of a cello. Each quantity is proportional to the ampli-

tude of its mapped sound. A parallel, visual mapping showed each quantity as a

numerical text-based value. The audio and visual mappings were used alone and

together. Subjects were asked a number of questions comparing the values seen

or heard among different methods within a software program. They were also

asked to provide some conclusions, such as which method was seen as the most

important based on the mappings seen or heard. Finally, they were asked their

preferences.

The number of correct answers was not only equal but also had one-to-one

correlation, demonstrating that the quantifications can easily be discerned, even

in a three-way simultaneous presentation. The asked-for conclusions were all an-

swered using either the visual or audio mapping, but response time was longer

for the audio mapping by five to eleven seconds. The researchers feel that their

study presents strong evidence that non-speech audio can be equally as effective
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as visual approaches, particularly “if used in the right context and with the right

program information data.”

One participant in the Hussein study stated such a context, that in which one

can scan the methods visually, leaving the details to audio. Thus, they would not

have to constantly shift visual context from the scan to the details of each entity.

As shall be seen, several manifestations of this idea are explored in the research

at hand, in which off-screen details are presented and entities’ characteristics are

explored as being one set of the “right program information data.”

The users in Hussein’s study preferred visual presentation over audio presenta-

tion, some questioning the practicality of audio for the chosen purpose, but they

also expressed interest in further exploring the audio approach. Much as Stefik

postulates a non-trivial learning curve for speech-based audio, Hussein’s study

raises the possibility that there exists a comfort curve for non-speech audio which,

if not reached, may negatively impact its adoption. Hussein points to the newness

of the use of non-trivial, non-speech audio by his subjects for their lack of com-

fort with it, a symptom of cultural bias toward the visual for analytical purposes.

However, it is also possible that the auditory experience is not realistic enough, in

spite of the use of natural sounds and the cello. A sound from the “left speaker”

is not as realistic in the listener’s auditory space as a sound placed in the left side

of the stereo image and assigned a simulated distance from the listener through

the use of local and global reverberation, let alone binaural techniques. The rain,

water stream, and cello exist in separate auditory spaces. Moreover, simple use of

higher amplitude to represent a greater numerical value is not realistic. When an

instrument, such as a trumpet, plays louder, its timbral spectrum also changes,

and if one wants a trumpet to be really loud, one uses two or three of them, intro-

ducing slight variations in intonation and vibrato. Recall that the Peep Network

Auralizer increased the number of chirping birds, not only their overall amplitude

[55].
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3.9 Summary

This chapter has provided a review of literature regarding sonification, especially

as employed in program comprehension. That review included a discussion of

sonification and audio display in general, design guidelines, and pertinent material

from semiotics and cognitive psychology. A section of the chapter was dedicated

to audio engines and tools for digital realization of sophisticated sounds. Finally,

sonification in program comprehension was discussed.
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Chapter 4

Listening to Software Structure

This chapter describes an approach to the use of non-speech sound to assist the

comprehension of static program structure. The approach consists of the selection

of a set of questions that can be addressed via non-speech sound, followed by a

solution containing:

• a reference sound mapping

• a tool

• generalized guidelines for sound mappings

The chapter is divided into two main sections. In Section 4.1, The Concept, the

approach and its components are introduced, and that which is new and unique

is pointed out. Section 4.2 presents feedback that occurred during formulation

of the sound mapping, resulting in decisions which informed the final mapping.

Throughout the chapter, the term developer refers to the person involved in pro-

gram comprehension who would be using the tool. The term entity refers to a

package, class, or other specific software entity, and entity type refers to the idea

of package, class, etc.
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4.1 The Concept

As a program is understood, its entities are identified, differentiated, classified,

and related to one another by the developer. The chosen sound universe and

mapping rules must support that process, and a set of tools must support actions

by the developer that facilitate that process.

Accordingly, the solution incorporates sound patterns representing software

entities and their static characteristics into an integrated development environment

(IDE). The developer performing comprehension of a sizable program interacts

with the IDE to listen to source-code entities, their characteristics, and the entities

that relate to them. The developer can make determinations of a structural and

functional nature, even though entities may not be the focus of visual attention

or even in within the visual field.

The solution is realized using synthesized and captured sounds applied to Java

programs. It is intended to supplement visual features of the IDE for sighted

developers.

4.1.1 Low-Level Java Structure

The low-level structure of a Java program indicates the organization of and rela-

tionships among the program’s source packages, classes, interfaces, and methods.

It is static in that it is written by a developer either directly or via some code-

generation process prior to runtime. Source generated dynamically during runtime

using the Reflection classes [106] or their equivalents are not considered, though

the sound mappings and sound formulation principles introduced in this study

would appear to apply to it.

Previous sound-related studies, summarized in Section 3.8, have focused on

hearing the dynamic, runtime aspects of program comprehension. That is, they

have concentrated on listening to the program’s execution as it unfolds over time.

Either the algorithm is heard as it unfolds or the state of the program can be
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heard while it is paused at a debugger breakpoint. As such, previous sonifications

reveal information such as what method is being currently called or what the

current nesting level would be. The sonification concept presented herein reveals

structural and semantic information as designed into the program, such as all the

classes and methods referenced by or referencing a selected method, whether a

method is static, and whether a method’s function is data access.

The Java entity types sonified in this study, and program comprehension ques-

tions whose answers are sonified, are described in the following list.

• Package. A package is a container for classes and interfaces. In a sizable

software project, the entities collected into a package are usually related

by subject, architectural function, or both. A subject is something in the

problem or design domain. A package called editors would be expected to

contain entities that implement editors. A package called dataAccess would

be expected to contain code at the data-access level of a layered architecture.

Sonifiable program comprehension questions concerning packages are:

– Which package is this?

– What classes, interfaces, and methods belong to this package?

– What code external to this package makes use of code within it?

– Does this package have a particular architectural function? E.g., does

it constitute a data access layer?

• Class. A class is a collection of attributes, such as variables, and func-

tions known as methods. These attributes and methods are said to be

encapsulated by the class, in that their visibility outside the class can be

controlled. A class may be active or passive. Active classes contain meth-

ods that implement significant logic. Passive classes only provide access to

encapsulated run-time data. Sonifiable program comprehension questions

concerning classes are:
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– Which class is this?

– Does this class implement any interfaces?

– If so, how many and which interfaces does this class implement?

– What methods belong to this class?

– What other packages, classes, and methods does this class reference?

– What other packages, classes, and methods reference this class?

– Does this class have a particular architectural function? E.g., is it

strictly a data access layer class?

– Is this class active or passive?

– Approximately how many methods does this class contain?

• Interface. An interface is a blueprint or template for a class. It specifies the

signatures of externally-visible methods that a class must implement in order

to conform to it. Sonifiable program comprehension questions concerning

interfaces are:

– Which interface is this?

– What methods does this interface implement?

– Which classes implement this interface?

• Method. A method is a function uniquely identified by its signature: its

name, return type, and formal parameters. Some methods provide significant

program logic, while others only provide access to run-time data. The latter

are known as accessor methods. An accessor method is usually named get,

put, or some variation thereof such as getEmployee. It may contain logic

that adjusts the data’s form, but it does not provide program control logic.

A method may be a constructor, which has the same name as its containing

class and which is called when an instance of the class is instantiated. A
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method may be a finalizer, which cleans up memory references when an

instance is no longer to be used. A static method belongs to the class itself

rather than an instance of the class. Sonifiable program comprehension

questions concerning methods are:

– Which method is this?

– Which package and class contain this method?

– Is this method a constructor? A finalizer?

– Is this method static?

– Is this method an accessor method?

– Does this method strictly perform data access?

4.1.2 Sound Universe

A rich, adaptable set of sounds and sound patterns is needed to sonify the Java

entities and their characteristics to meet the challenges expressed in Section 3.6.

The mappings of sounds and sound patterns to software entities must be coher-

ent and readily learned. The developer should be able to categorize each entity

according to its structural and functional characteristics yet also be able to differ-

entiate entities belonging to the same category. The developer should also be able

to garner at least approximate counts and sizes when presented aurally. Finally,

the developer should be able to determine associations among entities. Thus, the

four outcomes of the sonification of each entity are classification, identification,

counting, and membership.

The sound universe is partitioned according to a three-layer distance metaphor

mapped to the hierarchy of entities. While a three-partition design is driven by the

number of software levels (interfaces being similar enough to classes to be placed

in the same level), it is also well within the number of chunks that can be held

in short-term memory [110] should the listener have to mentally contrast them.
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Packages are fundamentally represented by outer-space kinds of sounds, classes

are fundamentally represented by air-like or wind-like sounds, interfaces are birds

in the air, and methods are represented by any sound occurring at the surface of

the Earth. The sounds for packages and classes let the listener know an entity

is a package or class, respectively, while superimposed musical motifs provide

identification of the specific package or class. Superimposition is not employed for

interfaces (birds) or at the Earthy level of methods. Methods can be represented

via a wide variety of natural, mechanical, and musical sounds. If one hears such a

sound pattern without an accompanying spacey or air-like sound, one has heard a

method. An exception is any bird song, which represents an interface, birds being

associated with the atmosphere. The metaphor is shown in Figure 4.1.

Figure 4.1: Metaphor for software entities

A method’s timbre or pattern can indicate something about that method’s

role. For example, a constructor is always represented as set of hammer strokes

on wood. If a class has overloaded constructors, each is represented by a different

number of strokes. A finalizer is represented as the sound of a machine turning
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off. Every finalizer sounds exactly the same. Every constructor sounds the same

but may have a different number of hammer strokes. Accessor methods are always

bell-like sounds. Data readers and writers are strictly upward or downward musical

patterns, implying that the data are being written (“put up to”) or read (“taken

down from”).

A method can also be augmented through the use of a modifier, a sound

occurring immediately before or after the identifying pattern. For example, a

static method is immediately preceded by an anvil stroke.

Class size is represented by drums playing at different intensities. A consistent

drum sound is used to represent each of three ranges of sizes, as shown in Table 4.1.

Duration is measured without reverberation. The three class sizes are described

and heard starting at 11:08 in the training audio stream.

no. of methods representation Duration (Sec.)

0 single, quiet bass drum stroke 0.2
1 to 10 five moderate bass drum strokes 0.5
11 or more many loud bass drum strokes 1.2

Table 4.1: Mapping bass drum to class size

It is valuable to know whether an entity is within or outside the project of

interest. Entities outside the project are entities found in external libraries such

as java.io. Outside entities may be encountered as classes and methods referenced

by an entity within the project, classes and methods referencing an entity within

the project, or classes and interfaces inherited by or implemented by an entity of

interest. The distinction between entities within or outside the project is realized

through differences in audio distance, where outside entities are heard as far and,

secondarily, to the left or right. The distinction is characterized in Table 4.2.

The sound universe employs auditory icons and earcons, as described in Chap-

ter 3. The invariant turning-off sound that represents a finalizer is an auditory

icon. Most entities, represented by earcons, are more like the static data writer

method, for whom we hear an anvil followed by a unique, upward musical motif.
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Where Audio
Distance

Realization

within the
project

close normal volume and reverberation, placement
may be centered or off-axis

outside the
project

far reduced volume, increased reverberation, and
off-axis placement

Table 4.2: Mapping entities within or outside the project by audio distance

The anvil provides categorization of the method as static, and the upward motif

identifies the method’s function as writing data.

4.1.3 Design Process

The sounds and sound patterns are designed to meet certain goals:

1. The sounds should be coherent.

2. The sound mappings should be readily learned.

3. Related sounds should possess commonality according to structural and

functional characteristics of the represented entities.

4. The sounds should be differentiable from one another.

5. Sounds should be aesthetically pleasing (unless intentionally harsh for rep-

resentational purposes).

The design process employed to obtain the sounds is summarized in Figure 4.2

and described below.

A concrete foreground sound is selected if there is an obvious mapping. For

example, a file open method could map to a door opening sound. Concrete sounds

are either recorded or selected from a library of available sound effects. If no

obvious mapping occurs to the designer, a sound of a more abstract nature must

be generated.

If semantics are to be indicated, an attempt is made to generate a sound pat-

tern evocative of the semantics. For example, a factory method [52] could be
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Figure 4.2: Design process

represented by a sequence of mechanistic sounds arranged in a staccato pattern

to capture the workman-like, mechanistic quality of a factory. The pitches in

the pattern do not correspond with diatonic musical notes so that the mechanis-

tic quality rather than a melody is emphasized. A program’s starting point, its

main method, could be represented by a heralding pattern played by a simulated

trumpet, evoking an entrance or welcoming.

The default type of foreground sound representing an entity is a simple mu-

sical pattern played by a simulated instrument or collection of instruments, most

often a flute or clarinet for their pleasant qualities and ability to cut through any

background sound. Initially during design, the foreground motifs are kept simple,

being made more complex when further patterns are needed for subsequent enti-

ties. Timbres (flute, clarinet, etc.) are varied to help distinguish the sounds from
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one another. The motives are generally kept under several seconds in length.

Modifiers are kept even shorter, a half second to a second in length. Modifiers

shoud be attention-getting and quickly recognized. Hence the use of an anvil stroke

for to indicate a static method: a single, accentuated sound employing a unique

timbre. Bird calls are kept brief, as they can be used as modifiers indicating their

inclusion in a class.

Any background sound should be transparent, that is, allow foreground sounds

to be heard simultaneously. The wind-like sound in the space-air-earth metaphor

meets this criterion. The space-air-earth metaphor itself is adopted as an aid to

recall what kind of entity is being represented.

Sound representations have been subjected to iterative design. The sounds

were played for volunteers who were queried as to concrete sounds’ realism and

other sounds’ ability to be recognized, consistency with related sounds, and overall

discernability. Suggestions were offered, and the sounds’ designs were refined.

4.1.4 Reference Sound Realization

The mappings of sounds to entity types, employed in the reference realization, are

summarized in Table 4.3. The Examples column contains the timings of represen-

tative examples in the training audio stream. The variety of method characteris-

tics is summarized in Table 4.4, following. The set of characteristics employed is

clearly not exhaustive, but it is large enough for the purposes of this study.

Packages

A package is represented using an underlying sound reminiscent of outer space,

as it is at the highest level in the distance metaphor of the hierarchy of packages,

classes, and methods. As there is, in reality, no sound in outer space, a satellite,

an object associated with outer space is substituted. The underlying sound of a

package is similar to those we hear in the media for satellite transmissions. This

underlying sound is invariant among all packages.
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Entity
Type

Sound-
Space
Metaphor

Differentiation
from Others

Identification Modifiers and
Indicators

Examples
(Training
Stream)

package outer space underlying,
invariant
satellite-like
sound

pattern of
overlaid beeps

3:06, 3:17

interface atmosphere always a bird
call

unique bird
call

5:29,
imple-
mented
by class
5:50

class atmosphere underlying,
invariant wind-
like sound

instrument-
like musical
pattern of one
to seven notes

Size - bass
drum-like
sound after
the class
sound itself,
indicating ap-
prox. number
of methods in
the class

11:22 thru
12:02

method earth any sound asso-
ciated with our
ground-level
experience
vs. space or
atmosphere

unique pat-
tern from a
wide variety
of potential
sounds, such
as machine-
like sounds,
a shopping
cart (for an
add-to-cart
method), or
instrument-
like musical
sounds.

see Table 4.4 6:25,
13:24

Table 4.3: Mappings of sounds to entity types
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Characteristic Differentiation
from Others

Identification Examples
(Training
Stream)

Standard Method Types
constructor Sound of hammer-

ing wood
Overloaded con-
structors have
different numbers
of hammer strokes

8:08

finalizer Sounds like a ma-
chine turning off

None; all finalizer
sound the same

8:33

static Identifying sound
preceded by anvil

N/A 9:30

Method’s Functionality or Architectural Role
accessor (get,
put)

Simple bell-like
sounds

Unique pitch or
bell-like pattern

6:36, 7:10.

writer Strict upward pat-
tern of notes

Unique pattern 10:07, 10:32

reader Strict downward
pattern of notes

Unique pattern 9:55

reader-writer Strict upward
followed by strict
downward pattern

Unique pattern none

factory method Musical phrase
with machine-like
timbre

unique phrase none

Class Characteristics
this class Class with single

cello tone in fore-
ground

N/A 13:19

Table 4.4: Mappings of sounds to method and class characteristics
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Above the underlying sound, in keeping with the satellite metaphor, a unique

pattern of beeps identifies the particular package. Differentiation among packages

is achieved by varying the number of beeps, their frequencies, and their durations.

This does not provide the means to differentiate a huge number of packages from

one another, but the number if packages in software projects is much less than

number of classes and methods, so a design trade-off has been made in favor of

keeping with the metaphor.

Classes

A class has an underlying sound of wind, keeping with an atmospheric metaphor

for the second level of the distance hierarchy. As with packages, the underlying

sound is invariant among all classes. Above the underlying sound is superimposed

a musical pattern by a (digitally simulated) wind instrument. The musical pattern

or phrase identifies the particular class. Should the number of classes exceed that

which can be reasonably differentiated by wind instruments, other instruments

such as a (digitally simulated) lyre can be used. The instruments are digitally

simulated so that the patterns or phrases can be generated rather than having to

be pre-recorded.

Interfaces

Given that a wind-like sound underlies classes, and given that it is desired to

reveal which interfaces are implemented by a class, interfaces are all represented

as bird calls, and different bird calls differentiate different interfaces. As these

bird calls do not have a common underlying sound, they are free to be heard stan-

dalone when listening to the interface itself yet also be heard superimposed on an

underlying class sound when listening to the interfaces that the class implements.

In the latter case, the bird call follows the class identifying phrase, both of which

are superimposed on the underlying class sound.

Class size

Drum sounds are used to depict class size in terms of number of methods. In-
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tensity and number of repetitions vary together from a single, quiet drum stroke,

representing a class with no methods, to a loud, repetitious series of drum strokes,

representing a large class. Hypothetically, as classes may vary from zero to hun-

dreds of methods, a continuous spectrum of gradations can be employed, the

bounds configurable by the developer using the tool. For purposes of the present

study, three discrete gradations are employed: one for a class that has no meth-

ods, one for a class having one to ten methods, and one for a class having more

than ten methods. In an exploratory capacity, the discrete set would still offer the

developer a heuristic for which classes to focus on.

Methods

The third distance layer is the surface of the Earth. Since that is the realm

of our common experience, any sound not of outer space or the atmosphere can

represent a method. For this reason, there is no need for an underlying sound; a

simple auditory icon or a standalone musical phrase can represent a method. This

also affords the opportunity, if desired, to superimpose a classes’ methods above

it.

Methods in a software project may number into the thousands, requiring a wide

representational variety. Standalone musical patterns, drawn from a wide variety

of digitally-generated instruments, can be used. The timbres, phrase structure,

and articulation can help differentiate methods from one another. Alternately,

auditory icons composed of “real-world” sounds can be used, especially when

some important semantic aspect of the method is to be expressed. For example,

the sound of a door closing is used to represent a close() method.

A class constructor has such an analog: the sound of hammering wood in an

outdoor environment (i.e., someone constructing a house). Constructors may be

overloaded; multiple constructors within a class are differentiated through different

numbers of hammer strokes. On the other hand, two constructors, one in each of

two classes, may have exactly the same auditory hammering icon, as hearing the



Listening to Software Structure 91

difference in the classes themselves is sufficient to determine that they are different

methods.

It would be desirable to hear the number and type of a method’s formal param-

eters, especially in the case of overloaded constructors. The notion was omitted

from the sonification scheme, however, as it can be considered a detail of the

method, and adding additional sounds to the method representation would make

it more complex and increase cognitive load. Surely the number and type of formal

parameters lives at the interface to other methods, but it is questionable whether

this information is important while working in an exploratory mode.

A class finalizer is always represented by a simple auditory icon depicting a

machine (actually a vacuum cleaner) turning off. Given that there is only one

finalizer per class, named finalize(), there is no need to differentiate overloaded

finalizers as with constructors.

Accessor methods, those which simply “get” and “put” encapsulated memory

variables, are mapped to simple, bell-like sounds, the bell sounding a small number

of times. The unique pitch and timbre of the bell differentiate the methods.

Methods dedicated to reading and writing data are common. Readers are char-

acterized by an upward musical pattern, as if “putting data up” to its destination.

Writers are characterized by a downward pattern, as if “pulling data down.” There

may be many readers and writers in a project, so they are differentiated by differ-

ent actual patterns, each of which retains the upward or downward aspect. Each

of the two patterns shown in Figure 4.3 would be writers.

Figure 4.3: Two writers as strictly upward patterns

The short pattern to the left can be used to represent a writer that performs a

single write, while the one on the right represents a writer that does many writes
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or calls subordinate writers. That determination is up to the discretion of the

human or machine generator of the mapping. Other, similar informal, possibly

program-specific semantics may be so added.

The present study just touches upon the idea of mapping sounds to architec-

tural design patterns. A simple design pattern is the factory method, which is

represented by a quasi-musical phrase having a machine-like, highly enharmonic

timbre.

A method may be static, that is, belong to a class itself rather than an instance

of the class. Because the static keyword in a declaration appears before the name

of the method, so the auditory static modifier, an anvil stroke, appears immedi-

ately before the method identifier. The anvil stroke is brief (about 1/4 second in

duration) to emphasize its use as a modifier.

Internal versus external entities

A sonified entity may be external to the project(s) shown in the Project Ex-

plorer. This can occur when listening to referenced or referenced-by entities. For

example, the entity selected in the Package Explorer may instantiate classes and

call methods in the java.io package in the Java API. The referenced package,

classes, and methods will be heard as being noticeably more distant from the

listener. Sonic distance is implemented through decreased volume and increased

reverberation, and it is reinforced by off-center placement of the sound within the

stereo image. Figure 4.4 depicts close versus distant entities in an auditory space.

Generalization: mapping to auditory icons and earcons

To summarize the sounds and patterns presented above, individual software

entities are mapped to audio constructs in a continuum from simple auditory icons

through complex earcons.

The simplest entity mapping is to a single auditory icon. All finalize() meth-

ods are mapped to a single auditory icon. Its character indicates that the entity
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Figure 4.4: Close vs. distant entities

is a method, as the sound is not of outer space or atmospheric, and the specific,

pre-determined sound indicates that it is a finalizer. No differentiation from other

finalizers is present or necessary. Constructors are similarly mapped. When con-

structors are overloaded within a class, their mappings are to a class of similar

auditory icons that can then be seen as primitive earcons in that they differentiate

the individual entities.

Package and class mappings combine into one construct an underlying auditory

icon with a unique, primitive earcon drawn from a set of sound patterns that

differentiate the specific entities. A method is mapped to an earcons in that it

may carry semantic information such as whether the method is static or that it

is a reader. Finally, class size is mapped to the truest earcon, representing a

continuum according to intensity and drum-roll duration.

Some of the sounds are deterministic, such as the hammering for a constructor.

With others, such as the bell sound for a get() method, timbre is deterministic

while pitch is arbitrarily chosen by the human or automated mapping generator.

The upward motion of a writer is predetermined, but everything else about its

sound mapping to a musical phrase is arbitrary.

Listening to multiple entities

Presentation of a package, all its classes, and all its methods is accomplished

by presenting each entity in sequence. Thus, we linearize a tree structure into
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a sequential succession of sound constructs. One construct is separated from its

predecessor via silences measured in seconds. It is envisaged that the developer can

set the number of seconds between sound constructs as a configuration parameter.

Listening to the parents of a method would entail listening to the method, followed

by its parent class and finally the parent package. Sequential presentation may

slow comprehension due to its length, but that effect may be counterbalanced by

avoiding search.

Using the Sound Mapping

The sound mapping has been designed with a mature version of the tool in mind.

A developer might set what he wants to listen to in the Sonification View, then

hover over various entities in the Package Explorer or editor. The developer might

perform such exploration in sequence, momentarily hovering over items of interest,

or more at random, or possibly according to some heuristic. Upon hovering on an

entity, the desired characteristics of that entity would be heard.

The sound mapping is designed to address exploratory questions posed by

the listener with respect to entities as emerging beacons. Presume the developer

has no prior knowledge of two classes, Response and Responses. Without having

to expand each class in the Project Explorer, the developer visits them in turn,

having chosen to hear classes and their child methods. The set of methods within

Response is heard in sequence. The developer notes that there exists a constructor

(mapped to the wood hammering pattern), some general methods (mapped to

general standalone sounds) and a variety of get() and put() methods. Then the

developer listens to the Responses methods in sequence. Here there are mappings

to a lot of static reader and writer methods (each an anvil followed by an upward

or downward musical phrase). The developer may well postulate that Response

is a domain-related object that holds some kind of response, possibly a textual

response to a developer, and Responses is a helper class that retrieves and stores



Listening to Software Structure 95

serialized Response objects, possibly in a data store known as “Responses.” The

developer would eventually test these hypotheses, but may postpone testing to

continue exploring other entities.

The developer may discern other information about a class by hearing the

serialization of its methods. Simply by hearing a class followed by only accessor

methods, the developer can discern that the class itself is passive, performing no

logic other than that for managing its encapsulated variable. If the developer is

trying to find algorithmic logic, this can quickly be determined not to be a class

of interest.

A method of interest may call or be called by other methods external to the

software project under consideration. Listening to these, the developer can gain

a sense of the coupling points between the project of interest and external code.

For example, the developer can determine that a local class is highly dependent

on methods in the library package java.io. Its classes and methods are heard

as distant and off-center. Note again that the developer may never have had to

expand packages or classes in the Package Explorer, and the developer never has to

visually visit the external package to learn that certain methods are data readers

and writers.

Shneiderman’s concept of gaining knowledge via survey, zoom, filter, and de-

tails [142] is fulfilled by combining visual information and navigation with the

audio constructs and sequences. Navigation is performed in a traditional, visually-

oriented way, via mouse-over. Listening may be done at a package level; when the

developer finds a package of interest, the developer may zoom by expanding the

package and listening to the classes in turn. The developer filters by choosing

what characteristics he would like to listen to. Finally, summary-level details such

as whether a method is static is available at the audio level, with further details

available through traditional, targeted code reading.
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Applicability to Other Languages

The sound mapping has been constructed for the Java language, but it should be

readily adaptable to similar languages of a combined object-oriented, procedural

nature. Examples of such languages are C# [108], C++ [160], Ada95 [163], and

Python [98]. Each has the equivalent of classes, constructors, and inheritance as

well as the equivalent of Java namespaces. Multiple inheritance in C++ can be

accommodated by the existing mapping. The C# language includes properties,

which incorporate accessors and mutators as language concepts, making them ap-

pear as variables to referencing code. This increases the usefulness of the existing

sound mappings for accessors and mutators, as those sounds can help differentiate

accessors and mutators from other kinds of variables during code reading without

having to open and inspect them. New modifiers (such as the anvil sound for

“static”) can be devised for language features such as C# delegates.

4.2 Feedback Results

Informal feedback was solicited during formulation of the mapping concept. The

results were incorporated into the reference mapping and the prototype tool.

Those consulted were experienced in either the programming discipline or the

music discipline. The former were posed questions such as, “does this sound ef-

fectively represent a class, and if not, why not?” The latter were posed questions

such as, “does this construct appear to represent one thing or multiple things?”

Concepts were incorporated or rejected based on the informal feedback, interviews

and brainstorming. The feedback is presented here in essentially the form of an

experience story [58]. Specifically, feedback impacted the presentation of class

size representation, the parallel versus sequential nature of entity presentation,

and connection of referenced entities via an “arrow” sound. Sizes were best com-

municated through differences in intensity and temporal parameters rather than



Listening to Software Structure 97

pitch. Sequential presentation of parent-child entities such as a class and its meth-

ods was chosen over parallel presentation. An arrow sound was dropped from the

sonification scheme.

4.2.1 Class Size Presentation

A concern identified early on was how quantitative information of a non-temporal

nature, namely the size of a class expressed as its number of its methods, may

best be discerned. Initially, mappings of pitch to number of methods were devised,

mapping pitch to size, with higher pitch meaning larger size. Two mappings were

considered: a linear mapping of named pitch (as opposed to frequency) to size,

and an exponential mapping in which a pitch class (such as C) at each octave

is one power of ten higher than the previous. Refer to Figure 4.5. Under either

mapping, either a single pitch was heard representing the class size, or a scheme

was employed in which the lowest pitch was heard, then a glissando (slide) would

occur up to the pitch representing size to try to provide a relative rather than

absolute frame of pitch reference.

Figure 4.5: Pitch mappings to size

The persons to whom these approaches were informally presented, several very

musical, others less so, all performed poorly mapping pitch to size. Thus, these

approaches were disfavored as not being intuitive and were not further pursued.

A hypothesis is that increasing pitch is antithetical to the knowledge that the
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data value is a size, which implies a larger, denser, or louder sound. Further,

in the glissando variation, it takes time to get from the reference pitch to the

target pitch, introducing an explicit temporal element. A hypothesis is that the

introduction of an obvious temporal element destroys the metaphor of a single,

time-independent data value. Finally, the approach does not present a zero value

clearly distinguishable from other values.

Mapping pitch to size was abandoned, and the current approach was adopted

in which increasing number of sub-events (drum strokes) is reinforced by intensity

to fulfill the metaphor of increasing size. Also, size has been divided into ranges,

as it is sufficient to know the approximate number of methods while working in

an exploratory mode. As will be seen, this mapping was successfully realized in

the validation study.

There are three ranges, the sound mapping for each depicted in Figure 4.6. A

single, quite drum stroke represents a value of zero: the class contains no methods.

A brief drum outburst at medium intensity means there are from one to ten

methods. A longer drum outburst means there are more than ten methods. This

Figure 4.6: Drum mappings to size in number of methods

division into ranges is coarse. Future work will be required to determine just how

many ranges of values and gradations of drum rolls can be usefully recognized.

4.2.2 Entity Presentation

Under the mature concept, related entities such as those in parent-child rela-

tionships are presented sequentially. Originally, the intent was to superimpose

parent-child entities. A class would be represented by a wind-like sound, con-
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structed via granular synthesis. Two or three such wind-like components might

appear together in a kind of chord. The center frequencies, densities, and periodic

swells in the sounds would uniquely identify the class. The class sound would

persist while the developer explored methods within the class, shifting to a differ-

ent class sound when the developer moved the pointing device into the browser

area covered by another class. The package sound, as currently constituted, would

be heard occasionally to remind the developer what package the class belonged

to, and method sounds as currently constituted would be heard as methods were

pointed to. The early concept is presented musically in Figure 4.7.

Figure 4.7: Early concept

Listeners informally presented with the early concept found it difficult to per-

form differentiation of classes based purely on the differences in wind-like sounds.

They also felt that it was not necessary to be reminded of the class or package on

an ongoing basis, favoring an on-demand basis. Also, the periodically repeating

nature of the package sound was antithetical to the sense of user control and on-

demand feedback. Finally, it was unclear whether modifiers added to the sound

baseline would apply to the class or method being examined. It became apparent

that it would be more intuitive to present an entity and its modifiers as a single

cluster of sound in time.

Feedback during early developmental stages also indicated that an arrow sound

as described in Chapter 2 had been indeed unnecessary. An arrow sound was

designed that would be inserted between related entities. It would move upward
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in pitch if the second entity was in a higher hierarchical position than the first

(e.g., its parent), downward if lower (e.g., its child). It was to be used mainly for

called-by and called relationships. It was deemed unnecessary because the listener

selects what to listen to, therefore knowing that called-by or called entities are

about to be heard.

4.3 Summary

This chapter has presented a novel concept for listening to software structure at

the level of Java entities: packages, classes, interfaces, and methods. Each entity is

represented by a sound or a time-bounded set of sounds, some of which overlap and

some in sequence as determined by the entity’s type. An earth-air-space metaphor

for the sounds of the entity types serves as a learning and memory aid. Related

entities, especially those in parent-child relationships, can be heard in sequence,

separated by brief silences.

Chapter 5 describes a prototype tool that realizes the concept.
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Chapter 5

Prototype Tool Implementation

This chapter describes the tool that was developed and used experimentally. Sec-

tion 5.1 introduces the concept. Section 5.2 describes the tool. Section 5.3 briefly

describes how sounds were constructed and provides attribution. The final section

summarizes the tool and reference sound mapping.

5.1 Introduction

A prototype tool was designed and built to demonstrate concept viability, facilitate

the establishment of sound mappings and realization guidelines, and support a

human-subjects study. As it became clear that the sound mappings and guidelines

would become the dominant issue to address, tool development was bounded to

support the mapping, with advanced feature implementation deferred for future

study. A working prototype used is described in this section.

The tool consists of an Eclipse plug-in and a Csound audio back end. The

developer using the tool can select items in the software project being worked on

in Eclipse, listen to them, and listen to entities related to them. The plug-in sends

Csound score statements to Csound, which in turn produces the sound.

The tool departs in several key respects from those described in Chapter 3:

• the tool extends static IDE views of the software with sound. Specifically, it
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Figure 5.1: Eclipse user interface for sonification

extends the Eclipse Package Explorer. It can be easily adapted to support

item selection within the Java source code editor. Prior tools have focused

on adding sound to run-time elements such as the debugger.

• The tool focuses on entities at the low-level architectural level: packages,

classes, interfaces, and methods. Prior tools have operated at the statement

level.

• The use of Csound as a back end provides ability to achieve the desired

rich, generalized sound universe, including simultaneity, localization, and

sophisticated sounds which are aesthetically pleasing.

• On-the-fly generation of Csound score statements offers the ability to con-

struct sounds in response to the developer’s navigation and selections.

Use

Figure 5.1 shows the Eclipse user interface enhanced by a sonification view pro-

vided by the sonification tool. Listening to entities requires use of the Sonification

View, to the bottom right in the figure, and the Package Explorer, at the left. The
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Sonification View allows the developer to choose what will be sonified in response

to the selection of an entity. The Package Explorer is the venue for selecting an

entity.

The Sonification View in the prototype tool provides the following listening

options:

• Item - the entity selected in the Package Explorer.

• What class does the item extend? - entity inherited by the class selected in

the Package Explorer. Selected entity must be a class.

• What instantiates the item? - entities that instantiate the class selected in

the Package Explorer. Selected entity must be a class.

• What calls the item - Entities that call the method selected in the Package

Explorer. Selected entity must be a method.

The Sonification View in the prototype tool does not contain the following listening

options intended for future versions:

• Item’s Parents - the containing package, if the selected entity is a class. The

containing package and class, if the selected entity is a method.

• Item’s Child Classes - classes belonging to the selected entity, if the selected

entity is a package.

• Item’s Child Classes and Methods - classes, interfaces, and methods be-

longing to the selected entity, if the selected entity is a package. Methods

belonging to the entity, if the entity is a class.

• Referenced Packages - any packages referenced by the selected entity.

• Referenced Methods - packages, classes, and methods referenced by the se-

lected entity. Thus, the prototype allows the developer to listen to entities
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that reference the selected entity, some of which may be off-screen, but not

entities referenced by the selected entity.

Double-clicking the Play button in the Sonify View actually plays the sound

patterns.

The reader may consider a scenario in which the developer selects, in either

order, What calls this item? in the Sonification View and the store(ExpenseData)

method highlighted in the Package Explorer in Figure 5.1. Upon subsequently

clicking Play, the developer will hear, in sequence, the sounds for the expens-

esPackage package, the ExpenseFacade class, and the store method within that

class. The package will be heard as the characteristic outer-space satellite-like

sound, overlaid with its identifying pattern. The class will be heard as the char-

acteristic wind-like sound, overlaid with its identifying pattern. The method will

be heard as an upward musical pattern, reflecting its role as a data writer. The

entities will be separated in time by brief but discernable silences.

5.2 The Tool

This section discusses the design of the prototype tool. The tool consists of an

Eclipse plugin, a TCP/IP socket interface [62] from Eclipse to Csound, and con-

figuration of Csound orchestra and initialization-time score files.1 The tool’s ar-

chitecture is shown in Figure 5.2.

To produce sounds in response to a developer action, CScore statements are

generated and sent from Eclipse to Csound via the TCP/IP socket interface, whose

sending socket is created and controlled within the Eclipse plugin, and whose re-

ceiving socket is created and controlled Socketreader, a Java program. Socket-

reader, in turn, serves as an input stream to Csound. Score statements are inter-

preted upon receipt according to the instrument definitions in the orchestra file

1The tool has been implemented using Eclipse 3.3.1.1 and above, Java 6, and Csound 5 under
Linux and Mac OS-X.
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Figure 5.2: System Architecture

and the reverberation and other parameters made active by the initialization-time

score file.

Eclipse Plugin

The Sonification Plugin has the following key components:

1. The Sonify View, with event handlers to process the developer selections

and the Play button

2. Event handlers to process selections in the Package Explorer

3. Code which constructs score commands for Csound

4. The sending socket

When a button in the Sonify View is clicked, an event handler is activated.

If the button controls what is played (myself, my parent, etc.), the event handler

communicates this to the sound system. If the button is the Play button, the event

handler invokes a method that causes the appropriate sound to be constructed and

sent to Csound via the socket interface.

Event handlers are also invoked when items in the Package Explorer are clicked.

Upon selection, an item becomes the “current” item, to be heard when the Play
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button is subsequently clicked.

When Play is clicked, the plugin consults a stored list that maps each software

entity to a set of score statements. Multiple score statements comprising a set are

played at specified intervals. The following Java code associates a given entity,

commonPackage, with a set of three sequentially-heard score statements:

e.add(new EntitySoundDescriptor(sonify.languageFeature.PACKAGE,

"commonPackage", "i10 0.0 5.58 45 1 16 7000\ni11 1.1 0.3 45 1

10000 891 1\ni112.9 0.3 45 1 10000 891 1\n"));

The string containing the concatenated score statements is sent through the

socket interface. Each individual score statement is terminated by a line break

(backslash n).

Socket Interface

The socket interface is straightforward. A Java method, establishConnection() in

the Sonification Plugin, creates a new socket on a high-numbered port, establishing

a connection with a listener socket in Socketreader. Immediately thereafter, estab-

lishConnection() reads the initialization score file and sends its contents through

the connection, establishing Csound functions and starting the global reverbera-

tion instrument. Sets of score statements such as that above for commonPackage

are sent in real time, the buffer being flushed after each send.

Csound Processing

The standard output of Socketreader is piped into the standard input of Csound.

Upon receipt, each score statement is processed, and the output of Csound is

directed to the computer’s audio card.

When Csound is started, commonly-used waveforms such as an anvil sound

are read in and preprocessed. A global reverberation instrument is started and

directed to run for many hours, longer than the expected duration of any usage
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of the system. This provides reverberation for participating instruments, giving

the listener they are the impression of being in a consistent physical space. Its

presence also keeps Csound running even when no real-time score statement is

being processed.

Thereafter, score statements are processed in real time until the system is shut

down. A typical collection of score statements is shown below.

i10 0.0 5.58 45 1 16 7000

i11 1.1 0.30 45 1 10000 891 1

i11 2.9 0.30 45 1 10000 891 1

The first line initiates instrument 10, defined in the Csound orchestra file, at

time 0.0 (when received), for a duration of 5.58 seconds. It is heard at azimuth 45

degrees (directly in front of the listener) and elevation 1 (actually, elevation is not

used in the stereo image), using function 16 (a prerecorded, preprocessed wind-like

sound) at amplitude 7000. Overlaid on this wind-like background is instrument

11, first heard 1.1 seconds after the wind-like sound starts for a duration of 0.3

seconds, then heard 2.9 seconds after the wind-like sound starts, for a duration

of 0.3 seconds. Instrument 11 is a computer-generated tone whose frequency in

each case is 891 Hz, utilizing function 1, which describes the timbre of the sound.

Thus, we hear the representation of a class whose characteristic is provided by

instrument 10 and whose unique signature is provided by the two iterations of

instrument 11.

5.3 Sound Construction

The audio realization as implemented in the prototype tool contain acoustically

recorded and synthesized sounds. Some of the acoustically recorded sounds were

captured using a portable, high-quality digital recorder. Others were obtained

from free-use web sites. Some Csound instruments for producing synthesized
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sound were written ab initio. Others were adapted from the Csound Catalog

[23]. Wind-like sounds were achieved through granular synthesis, which had been

demonstrated to effectively serve as a background for overlaid foreground sounds

during sonification of program slices [11]. Flute-like sounds were produced us-

ing physically modeled instruments found in the Csound Catalog, and brass-like

sounds were produced using additive synthesis.

5.4 Summary

This chapter has described a prototype tool that realizes the reference sound map-

ping described in Chapter 4. The tool consists of an Eclipse plugin, a Csound back

end, and one-way communication software in between. The Eclipse plugin cap-

tures mouse events in the Eclipse Package Explorer and provides a custom view for

selecting and playing sounds. The sounds it produces may be digitally generated

or prerecorded. The sounds are further processed to achieve directionality and the

sense of audio distance.
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Chapter 6

Review of Evaluation Techniques

This chapter presents a review of possible evaluation approaches for software en-

gineering problems of the type encountered in this thesis. The first section, Intro-

duction, sets the scope for the subsequent section, Review of Possible Approaches,

which discusses the advantages and disadvantages of a number of approaches to

data collection and evaluation.

6.1 Introduction

Given that software engineering involves activity performed by people individually

and in teams, empirical methods involving human subjects are an important and

widely accepted means of evaluation. Quantitative methods have been employed

in software engineering research since at least the 1980’s, as described by Basili in

his landmark paper [7]. Qualitative methods have been championed by Seaman,

among others [137]. Quantitative and qualitative methods have been employed in

the evaluation of software development methods and processes, cognitive aspects

of software engineering, and tools. Execution of studies, whether quantitative,

qualitative, or mixed, involves data collection followed by coding and analyzing

the data.

Software engineering is a complex human activity. As such, it is not always pos-
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sible to conduct controlled experiments. Often, observations must be made in the

workplace, with the attendant challenges, to evaluate individual task performance

and collaboration among peers. Researchers must also evaluate concepts and deci-

sion making strategies that exist only within the individual software practitioner’s

mind. For these reasons, empirical methods borrow techniques from psychology

and anthropology. A general exposition of many of these techniques can be found

in Cooper [36].

Clarke identifies three empirical research traditions: Conventional, Interpre-

tivist, and Engineering [34]. The Conventional tradition is that which has emerged

over a number of centuries, having been applied early on to the physical sciences

through the work of researchers such as Galileo. Also known as the Positivist

tradition, it is based on the assumption that there is an objective truth whose at-

tainment can be approached through observation of objective reality [138]. Data

collection is concerned with size, duration, and other measurable attributes of ob-

jects and processes. Analysis is often conducted using statistical methods. An

exemplar of the Conventional tradition is the traditional quantitative experiment,

which is discussed at length by Maxwell and Delaney [103]. Quasi-experimental

designs and field experiments afford opportunities to make observations in real-

world situations, but they offer control over fewer independent variables.

The Interpretivist tradition is based on the belief that humans create their

own valid, socially-constructed truths, and that there is no single, objective reality

[138]. Truths may differ across cultures or at different times within a single cul-

ture. Qualitative methods have emerged from the Interpretivist tradition, initially

in the field of anthropology, to describe human understanding, communication,

and understanding. Qualitative techniques are discussed thoroughly by Patton

[120]. While a conclusion cannot be proved by qualitative methods, it can become

accepted through a preponderance of evidence. Textual and pictorial data, rather

than numerical data, are distilled to identify and describe common concepts, which
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can be tested through further data collection and analysis. The coding scheme for

qualitative data often arises out of the data itself. Patton points out a distinc-

tion between constructivism, whose focus is “the meaning-making activity of the

individual mind,” and constructionism, which focuses upon “the collective gener-

ation [and transmission] of meaning.” This distinction can be blurred in terms of

determining where ideas and feelings expressed via some data collection method

originate - the collective certainly has impact upon the individual, individual ideas

are adopted by the collective, and individual ideas can be critical of the collective.

The distinction is clearer in operational terms, for example, examination of soft-

ware processes shared by teams versus elicitation of thought processes of individual

developers performing program comprehension tasks. Many of the data collection

and analysis techniques described below can be applied in both constructivist and

constructionist modalities. Examples of qualitative methods in software engineer-

ing studies include Von Mayrhauser and Vans, who employed qualitative methods

to build a meta-model of the program comprehension process [176], and Das, Lut-

ters, and Seaman, who uncovered characteristics of useful software documentation

and the interaction between maintainers and documentation [40].

Software engineering efforts produce much quantitative data, such as the num-

ber of errors in a program or the duration of a project. Collection and analysis

of quantitative data has been encouraged over the years through initiatives such

as the Software Engineering Institute’s Capability Maturity Model for Software,

whose purpose is organizational software process improvement [164]. Software

engineering efforts require much collaboration and thought, which can largely be

expressed textually and pictorially. Because numerical, textual, and pictorial data

are readily available or readily generated, quantitative and qualitative methods

may coexist-exist in a single research project. The researcher may maintain a pri-

marily positivist mind set, using qualitative analysis for explanatory or amplifying

purposes and as motivation for further theory building [138].
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Finally, research in the Engineering tradition proceeds by conceptualizing,

building, testing, and demonstrating prototype technological artifacts and tech-

niques [34]. An engineering approach is often used in the early stages of applied

software development to mitigate project risk by verifying user interface concepts

or the incorporation of a new technology. It often accompanies and complements

requirements gathering and analysis. In software engineering research, it may com-

plement or enable quantitative and qualitative methods by providing a vehicle for

experimentation such as a tool. An example is the redesign of the SHriMP visual-

ization system’s user interface, in response to observations from a pilot study, to

support the ensuing full study [155].

6.2 Review of Possible Approaches

Singer separates data collection techniques from evaluation techniques, indicating

that a single data collection activity may be followed by distinct qualitative and

quantitative evaluation [145]. For example, a questionnaire-based survey may

contain quantitative questions on a Likert scale as well as space for free-form

textual responses. Qualitative analysis of the text may help explain the motivation

or mind set underlying the quantitative responses.

Major approaches for empirical studies of software practitioners are field stud-

ies, surveys, and formal experiments, the first two being primarily quantitative

or qualitative, the latter being primarily quantitative. Field studies involve re-

searchers performing data collection in or with respect to the practitioners’ actual

work environment. Field studies include case studies, in which a single organiza-

tion is evaluated. Given that a single organization often produces a particular type

of software under unique management circumstances, results from multiple case

studies are amalgamated if generalized results are desired. Surveys study practices

in the field without the researcher having to be present. Formal experiments offer

control of factors that often cannot be controlled in work environments: program-
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ming language, program size, etc., so that the hypothesized, quantitative effects

of one or more treatments can be either verified or rejected. A variation of a

formal experiment that can be performed in the field is the quasi-experiment, in

which subjects are not assigned randomly to treatments. A quasi-experiment may

be necessary if, for example, multiple projects are being studied in the field but

practitioners are already assigned to them [44]. It may also be performed when

self-selected experimental design is necessary, that is, when subjects are allowed

select their own treatments for ethical or advantageous reasons [36]. Case studies,

surveys, formal experiments, and quasi-experiments utilize a variety of techniques

for data collection, some of which, such as interviews, are applicable to multiple

approaches.

An exploratory study is useful when the area of investigation is new or vague

[36]. An exploratory study is undertaken when a researcher needs to develop a

concept more fully, determine operational definitions, or uncover important vari-

ables. There is often a reliance upon qualitative techniques, although quantitative

techniques can be applied as well. Unstructured and semi-structured interviewing

techniques can be utilized in exploratory studies, as can participant observation,

focus groups, and document analysis, all described below.

6.2.1 Data Collection

Data collection techniques are listed below as identified and categorized by Singer

[145]. They are grouped into direct, indirect, and independent techniques. Di-

rect techniques require the researcher to have direct involvement with the study

participants. Indirect techniques require the researcher only to have direct in-

volvement with the participants’ work environment and artifacts. Independent

techniques require only involvement with the artifacts. Within the set of direct

techniques, are inquisitive and observational techniques. Of the two, inquisitive

techniques, which elicit directed and undirected responses from participants, bet-
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ter capture ideas and attitudes. Observational techniques are less subjective and

permit accurate measurements of task durations.

1. Direct techniques - inquisitive

(a) Brainstorming

(b) Focus groups

(c) Questionnaires

(d) Interviews

(e) Conceptual modeling

2. Direct techniques - observational

(a) Work diaries

(b) Think-aloud sessions

(c) Shadowing and observation

(d) Participant observation

3. Indirect techniques

(a) Instrumenting systems

(b) Fly on the wall

4. Independent techniques

(a) Analysis of work databases

(b) Analysis of tool use logs

(c) Documentation analysis

(d) Static and dynamic analysis
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Brainstorming

Brainstorming is a loosely-directed elicitation of ideas from a small group of par-

ticipants. It was first codified in 1953 by Osborn [119]. Its rules are easy to

understand, and it is widely used in marketing, design, and task forces, less so

by researchers. A moderator ensures that the participants articulate ideas that

occur to them. The ideas are quickly and succinctly recorded, evaluation being

deferred until a later activity. Usually performed verbally in person, electronic

brainstorming is also possible. Brainstorming is effective when performed by up

to twelve participants. As the number of participants increases, the number of

new ideas increases, but the number of new ideas per person decreases [51].

Brainstorming is useful when seeking ideas for further exploration. It is cost-

effective, as it elicits information from multiple people at once. The participants

feel a sense of involvement, and they are especially motivated when they believe

that the topic is important. There is a danger that a brainstorming session can

become unfocused when the moderator is not well trained. There is an an added

danger that some participants will be reticent to express ideas in a group setting

[145]. Brainstorming is not geared toward verification or consensus.

Focus Groups

Focus groups are similar to brainstorming in that multiple participants engage

in a structured discussion session, and new ideas may emerge. Patton classi-

fies the focus group as a form of interview in which direct interaction among

participants may play a large role [120]. The typical focus group includes six

to ten participants having similar backgrounds. As in brainstorming, ideas are

elicited for a given topic, but those ideas can be expanded, amplified, and chal-

lenged through conversation. While brainstorming often elicits radical ideas, focus

groups are geared toward uncovering a consensus among participants such that

outlying opinions tend to be negated. Brainstorming and focus groups are both
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cost effective in that they elicit data from multiple participants. Focus groups

have disadvantages over other interviewing techniques: confidentiality cannot be

guaranteed, subtleties are not usually explored, the number of questions that can

be addressed is constrained, and there may be reticence to express minority per-

spectives. In addition, it is useful only to elicit concepts that can be understood in

a limited amount of time, and it requires a relatively homogeneous group of par-

ticipants knowledgeable about the problem domain [86]. For example, Software

Process Assessments, developed by the Software Engineering Institute, required

focus groups of like practitioners: e.g., developers versus testers. [148]. Storey et

al. organized a focus group consisting of programmers to validate the design of

TagSEA, a navigational tool for use in software development [156]. Variations of

traditional focus groups include computer mediated focus groups and electronic

focus groups [86]. The former adds personal computer technology to in-person

focus groups, providing real-time voting, simultaneous and anonymous contribu-

tions, group memory, and electronic record keeping. The latter provide the ability

to hold focus groups across distributed geographic locations.

Questionnaires

Questionnaires are “sets of questions administered in a written format [145].”

Questionnaires can be mailed or electronically distributed to a large number of

geographically-separated participants, and no in-person interaction between re-

searchers and participants is necessary, making questionnaires time and cost effec-

tive. There are no means for participants to indicate that particular questions are

poorly worded or ambiguous, and researcher follow-up is required if they desire to

delve into particular responses. Response rate in general for software engineering

surveys has found to be about five percent [145]. Kitchenham and Pfleeger provide

comprehensive guidance on performing surveys using questionnaires [82]. A sur-

vey by Lethbridge is an example using questionnaires [91]. To better understand
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the areas in which software professionals felt lacking in education, Lethbridge

distributed questionnaires to professionals at private companies and educational

institutions. The questionnaire asked, over an array of topics, questions such as

“How much did you learn about this in your formal education?,” this being a

topic whose usefulness in the professionals’ careers was determined through other

questions. Choices for the answers appeared within Likert scales.

Interviews

According to Patton, “we interview people to find out from them those things we

cannot directly observe [120],” namely

• the interviewee’s thought process, mental model, perceptions, or opinions

• historical data, sometimes to verify or explain written records, but also to

capture data when the written record is sparse [138]

• clarification of observed events or actions [138]

• to garner survey information, as an alternative to a questionnaire [44].

The interviewer must know how to handle incomplete or unduly pithy re-

sponses, steer the interviewee to remain on track, and detect the need for follow-

up questions. Preparation for an interview involves generation of an interview

specification or guide, which can be used for interviewer training as well as direct

reference during the session [82][120]. During the session itself, one or more in-

terviewers elicit responses from one or more interviewees. Often one interviewer

leads, setting direction and asking the majority of questions, while one or more

others serve as scribes [138]. The interview may be audio-recorded.

Interview questions can be structured, open-ended, or interviewee-formulated

[138, 145]. Structured questions, such as “how many years have you been program-

ming?” yield quantitatively codifiable answers. Open-ended questions, whose fo-

cus is qualitative, are designed to prompt the interviewee to offer an explanation
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or engage in discourse. A question such as “What is a ’requirement’ to you?” [75]

may result in a lengthy response, and it may uncover data not anticipated by the

interviewer. Discussion points may be left the the interviewee(s), in which case

the ‘question,’ or more precisely the discussion content, is interviewee formulated.

Interviews themselves may be structured, semi-structured, or unstructured. A

structured interview consists of a fixed list of carefully worded questions asked in

a defined sequence, ensuring consistency in data collected from a large number

of interviewees [145]. Structured interviews often have a quantitative focus, the

interviewer having specific objectives for data to be elicited. [138]. Telephone

interviews are often structured: the interviewer asks a scripted set of questions,

ticking or circling the evoked response or entering it as numerical data. Cost,

coverage, and sampling factors help to determine whether a structured interview

is advantageous over an equivalent structured questionnaire.

In an unstructured interview, “the object is to elicit as much information as

possible on a broadly defined topic [137].” Patton calls this type of interview an

“informal conversational interview,” stating that it “offers maximum flexibility to

pursue information in what ever direction appears to be appropriate [120].” The

interviewer may announce a topic and allow the interviewee(s) to control the flow

of conversation, or the interviewer and interviewee may be equals with respect to

the flow of control. The interviewer must be trained in observing the social aspects

of interviewees’ behavior [44]. Unstructured segments of interviews were employed

in the Software Process Assessment method for evaluating organizational software

process maturity, uncovering factors that contributed to process difficulties [148].

Semi-structured interviews comprise a middle ground in which the interviewer

poses specific and open-ended questions, sometimes drilling further into areas of

interest based on the responses. Semi-structured interviews have an advantage

over questionnaires containing open-ended questions, in that the interviewer may

pose follow-up questions to delve into an area of interest exposed during the inter-
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view. The quality of the collected data in a semi-structured interview is related to

how well the interview is conduced [66]. Seaman provides guidance for conducting

a semi-structured interview [137]. Basili and Seaman employed semi-structured

interviews in a study of communication in code inspections [139]. An interview

guide was constructed after each of many inspection meetings to capture infor-

mation missing from the inspection’s data form, and to pose follow-up questions

that varied by the interviewee’s role in the inspection. Audio recordings of the

interviews were not directly transcribed, but they contributed to the researchers’

field notes. Zannier, Chiasson, and Maurer employed semi-structured interviews

to better understand how software design decisions are made [184]. Their conclu-

sions, or ‘emergent themes,’ were that design is primarily about structuring the

problem and that there are two disparate decision making approaches.

Experience surveys

Experience surveys are a type of semi-structured interview that can be “targeted

toward discovering the parameters of feasible change [36].” The proposed change,

such as the introduction of a new management practice, is evaluated in light of

the subjects’ prior experience and practices. It is also useful in predicting which

practitioners will fit well with the change and who won’t. Experience surveys

may lead to the introduction or refinement of research questions or experimental

parameters.

Conceptual Modeling

Conceptual modeling is a technique that can be employed within interviews or

used standalone. Participants expose their conception of their mental model by

drawing diagrams, designing programs, or performing other production-centered

activities. Ideally, the researcher has domain knowledge of the system or process of

interest, provides a framework for the drawing or other activity, and observes the
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activity as well as interpreting the results [145]. Sayaad and Shirabad performed

a study with conceptual modeling aimed at building a knowledge base using the

terminology and concepts employed by software practitioners to describe a soft-

ware system [136]. The participants organized the terms and concepts into groups

and iteratively refined the emerging conceptual model.

Work Diaries

Work diaries are vehicles for practitioners to record their activities during the work

day. The practitioner either records activities throughout the day, summarizing

activities at the end of the work day, or noting the current activity at selected times

during the day [145]. Many software consulting firms and product organizations

require their personnel to complete daily time sheets which constitute a form of

work diaries. An advantage of work diaries over questionnaires and interviews

is that they provide data as it occurs rather than in retrospect. However, work

diaries rely on self-reporting, which may be biased, and they consume time and

effort. There is also a sort of ‘Heisenberg Principle’ of work diaries in that the

act of recording may influence activity durations and sequencing. Wu, Graham,

and Smith employed work diaries along with interviews and direct observation in a

study of communication among practitioners in five development teams [182]. The

study determined that the practitioners communicated frequently using a variety

of communication modalities and changing their physical locations throughout the

day.

Think-Aloud Sessions

A think-aloud protocol is a form of interview in which participants verbalize their

thoughts in the course of performing an activity [120]. The interviewer’s role is

to elicit thoughts and feelings which are normally only internal dialogues. The

interview is transcribed, audio recorded, or both. An advantage of think-aloud



Review of Evaluation Techniques 121

protocols is the real-time rather than retrospective nature of the information,

which makes it less susceptible to coloring and omission. A major disadvantage is

that the participant’s attention to verbal expression may alter the way in which the

activity is being performed and the activity’s duration, especially when prompted

by the interviewer. Von Mayrhauser and Vans employed think-aloud protocols to

validate their integrated software comprehension model against a variety of in-

dustrial software maintenance tasks [174]. Audio recordings of the sessions were

transcribed and coded to uncover information needs during maintenance tasks,

resulting in improved tool capabilities. Von Mayrhauser and Vans subsequently

developed a coding scheme for analysis of think-aloud protocols wherein the high-

est level of granularity consists of the mental models (program model, situation

model, and domain model) within their program comprehension meta-model [173].

Letovsky employed think-aloud protocols in his study of cognitive processes in

software engineering [92]. Six professional program maintainers, four senior and

two junior, were asked to understand a program in order to plan a modification to

it. The subjects were encouraged to talk freely and also to explain why they were

examining a particular piece of the code or its documentation. The researcher

would prompt the subjects for explanations of their thinking process and to re-

establish the verbal flow when the subject became silent. Each session was video

recorded (see Shadowing and Observation, below). The think-aloud data were a

key element in Letovsky’s formulation of a program comprehension model.

Shadowing and Observation

Researchers may act as observers of individuals or groups with their knowledge,

often in their day-to-day work settings. Seaman refers to this as direct observation

[138]; Singer calls it shadowing and observation [145]. Direct observation allows

researchers to capture quantitative and qualitative information about activities,

interactions, communication, and the work environment. Researchers take field
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notes which include not only what people do and say, but may also explicitly

state what they do not do, for example, the omission of unit testing in a soft-

ware development scenario. Field notes may also include the researcher’s feelings,

reactions, and reflections about what has been observed [120]. Audio recording

may supplement field notes. The researcher may be detached from the group be-

ing observed or may be a participant in the group’s activities, the latter scenario

described in the following section, Participant Observation. Shadowing entails fol-

lowing and recording the actions of one participant at a time, while observation

in general may involve many participants [145]. Limited interaction between the

observer and participants may occur, especially during shadowing, to clarify an

activity that’s being worked on or to explain why something is being done. If such

interaction is kept to a minimum, shadowing and observation can be highly cost-

effective vehicles for information collection. Observation reveals high-level actions

more readily than low-level details, e.g., knowing that a participant is involved in

debugging, or the intermediate results of multiple-step activities, versus knowing

the sequence of control keys being used.

Advantages of direct observation include cost effectiveness and the opportunity

to examine practitioners in realistic settings. However, an industrial setting affords

limited or no ability to control environmental variables, which may vary by location

and over time. Disadvantages include novelty effects, namely the Hawthorne effect

and the learning curve effect [133]. Observed performance may exceed that when

unobserved due to the Hawthorne effect, in which observed parties perform better

because they believe management or researchers are paying attention to them.

Participants working with new techniques or tools are susceptible to the learning

curve effect, the observation that people gain familiarity and facility with the

technique or tool over time. Positive effects from using the new technique or tool

may thus be masked early in its usage. The learning curve effect can be mitigated

through adequate training and practice with the technique or tool [44]. Other
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disadvantages of observation include the possibility that an observer misses an

occurrence of importance, possibly due to momentary inattention, rapid pacing of

events, or observer bias. This can be mitigated by employing multiple observers,

each focusing on different aspects of the situation.

Singer and Lethbridge employed shadowing in a study of software engineers’

work practices [144]. After administration of an initial web-based questionnaire,

the researchers shadowed a software engineer new to the development group one

to one and a half hours per day. After six months, shadowing was reduced dra-

matically, as redundancy was prevalent in the sessions. The researchers were able

to characterize the engineer’s events, interactions, and percentage of time spend

in different activities, detailed to the level of knowing that issuing a Unix com-

mand was the most frequently-repeated action. To capture detail, the researchers

utilized synchronized shadowing, wherein two observers simultaneously shadow an

individual engineer, merging the two sets of field notes afterward.

Letovsky employed observation in a controlled setting during his study of cog-

nitive processes in software engineering [92]. Subjects were videotaped in con-

junction with think-aloud protocols while working on a program comprehension

problem, providing the researcher visual data to supplement and corroborate the

verbal data.

Participant Observation

The researcher may act as a participant in the group activity being observed,

a situation which Singer, Seaman, and others refer to as participant observation

[138][145]. The researcher is able to capture interactions from a first-person point

of view instead of as an independent observer. The researcher may be unable to

take field notes during the observed activities, and it may be difficult to retain

objectivity. The researcher must gain the trust of the group and mitigate the risk

that group members are not continually self-conscious of being observed. Because
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of the time needed to gain trust and comfort with the group, the duration of

participant observation is typically a few weeks or more [44].

McAvoy and Butler performed a qualitative study of learning in an agile soft-

ware development team [104]. Their primary approach involved eight months of

participant observation within a team of seven developers. Their focus was the

failure of translating “espoused theories” or values into actual practice. Seaman

and Basili utilized participant observation in a study of communication in soft-

ware inspections [139]. Seaman was embedded in a software development team

that performed formal inspections over a period of a year and a half. Participant

observation was supplemented by interviews. The overall study invoked both

quantitative and qualitative methods for analysis of the data. Seaman’s observa-

tions inductively produced well-supported hypotheses concerning the relationship

between the network of relationships between developers and the quality of inspec-

tions, including the relative time spent in different inspection sub-activities. This

study is an exemplar of data collection techniques from the interpretivist tradition

being applied under a conventional mind set.

Indirect and Independent Techniques

A number of data collection techniques involving indirect interaction with sub-

jects or practitioners can be used as alternatives or supplements to those described

above. These techniques are summarized by Singer [145]. System instrumentation

such as keystroke and event recording can capture human-computer interactions

for many participants over a long period of time. Fly on the Wall is a hybrid tech-

nique in which participants video or audio tape themselves, allowing the researcher

to be absent during data collection. Work databases such as configuration control

repositories can serve as data sources for analysis, as can logs of automated pro-

gram building tools such as Ant [165]. Documentation as a data source includes

source code comments as well as specifications and other technical documentation



Review of Evaluation Techniques 125

independent of the code. Successive snapshots of work databases and documenta-

tion over time can offer insight into the evolution of a software product. Finally,

static and dynamic analysis of the software product itself can offer insight into the

developers’ thinking, especially about the product’s architecture and organization.

6.2.2 Coding, Analysis, and Experiment Design

Quantitative coding and analysis involve well-established techniques whose expla-

nations are readily available in the literature along with guidance on designing

experiments [36][103]. Experiment design and analysis with a slant toward soft-

ware engineering is presented by Basili [7] and by Pfleeger [123].

Validity of statistical significance tests in an experiment is maximized through

randomization, the random assignment of subjects to groups and of treatments

to experimental objects, which ensures independence [123]. If the treatment is an

enhancement to a program comprehension tool, then a randomized block design

is appropriate, in which each developer is assigned to one of two groups, one using

the enhancement and the other not. Moreover, multiple programs should be used

to prevent localized effects based on a single experimental object, resulting in a

four-group design. The number of subjects may be reduced by having each subject

use the baseline tool on one program and the enhanced tool on the other program,

as shown in Table 6.1. The experimental objects and treatments are ordered,

allowing analysis to reveal a learning curve effect if present.

Group First Program and Treatment Second Program and Treatment

1 Program 1 with baseline tool Program 2 with enhanced tool
2 Program 1 with enhanced tool Program 2 with baseline tool
3 Program 2 with baseline tool Program 1 with enhanced tool
4 Program 2 with enhanced tool Program 1 with baseline tool

Table 6.1: Treatment groups

Qualitative coding and analysis are presented as an entire section in the book

by Patton [120]. Coding in qualitative studies consists of marking up pieces of
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text collected through interviews, surveys, and other approaches to uncover con-

cepts. Inductive analysis is performed to discover patterns, themes, and categories.

Data may also be analyzed through deductive analysis, in which they are analyzed

against a known framework. Qualitative analysis is typically inductive in earlier

research states and deductive at the latest stage. An inductive approach to coding

called open coding has been codified by Strauss and Corbin, whose comprehensive

coding and analysis methodology is one of the major forms of Grounded Theory

[158]. In grounded theory, higher-level concepts are successively discovered from

analysis of lower-level concepts, forming a hierarchy. The highest level represents

a small number of themes, possibly a single theme, about the culture or group

being studied. Preformed codes, which the research formulates prior to coding,

are verified or rejected, and they may result in lower as well as higher level codes.

Divergence as well as convergence in coding and classification are notable. Di-

vergence may uncover outliers which might serve to extend a formative theory or

challenge the explanations for convergence. While coding and analysis proceed,

the researcher may also formulate hypotheses that can be tested through further

study. Ideally, coding occurs while data collection is still in progress, so that the

researcher can determine when saturation has occurred and data collection can

thereby stop. Seaman further discusses the application of grounded theory in

software engineering research [137].

Adolph, Hall, and Kruchten have described how grounded theory can be em-

ployed to study the practice of software development [1]. Use of grounded theory

is appropriate for such study, they maintain, if we accept the idea that people

trump process, so that observation and interviewing rather than the process doc-

umentation yields a true idea of actual practices. The authors point out that most

articles purporting the use of grounded theory only minimally employ the method-

ology. They summarize their experience performing yet-to-be-published studies in

the form of fifteen guidelines, the fifth of which clarifies the somewhat vague ideas
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of concept, indicator, category, and property. In the eighth guideline, they rec-

ommend participant observation as a first class data collection strategy on par

with interviewing. Detailed note-taking and phased research are also emphasized.

Guideline 14 states that commonly used rigor criteria for quantitative research are

not useful for judging the quality of qualitative research. Representativeness of

theory to the data and trustworthiness of the data are suggested criteria. While

some of the guidelines are specific to rigorously-employed grounded theory, others

such as Guidelines 8 and 14 appear to apply to qualitative research in general.

Grounded theory was employed in a study of software process improvement in

Irish software product companies [35]. Findings included the discoveries that all

of the companies tailor their standard software processes, that process formation

depends on the background of the software development manager, and that verbal

communication was substituted for documentation to reduce documentation costs,

resulting in increased sharing of tacit knowledge.

Data from multiple sources, whether quantitative or qualitative, may be com-

bined during analysis, a practice known as triangulation [138]. Triangulation is

employed in several of the software engineering studies cited above, including the

inspection study by Seaman and Basili [139]. One form of triangulation, known

as replication, occurred in the inspection study, as patterns of data occurred in

multiple data sources over many software inspections. Berling and Thelin em-

ployed triangulation to analyze data from interviews, documentation, and direct

observation in a case study of the verification and validation process in a software

development organization [9]. The study centered around the tradeoffs between in-

spections, which occur early in the development process, and testing, which occurs

late. Accordingly, Berling and Thelin developed a goodness measure to compare

the time into a project at which a fault is found with the time it hypothetically

can have been found.
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6.2.3 Evaluation Frameworks versus Empirical Techniques

Software sonification is an audio analogue of software visualization, in that aspects

of software systems are represented aurally or visually, respectively. Software visu-

alizations have been evaluated by constructing user scenarios and walking through

them to see how well they meet the criteria put forth by various question-based

evaluation frameworks, such as that elaborated by Storey [157] and Knight [83].

Kitchenham points out the preliminary nature of such a process, calling it qual-

itative screening and indicating that it can be initially performed by examining

the tool’s literature without actually using the tool itself [81]. Evaluation frame-

works in the sonification arena are neither mature nor widely accepted, the focus

being more toward an experience-based, design pattern approach [49]. According

to Smith, empirical studies of visualizations “attempt to quantify the benefits of

visualizations and provide hard evidence about some hypotheses [146].” Empiri-

cal evaluations of software visualizations have been undertaken by Wiss and Carr

[181] and Storey [155]. The empirical approach requires more resources, but it

is more comprehensive, and “it can highlight usability issues that may have been

overlooked by other methods [146].” A disadvantage of empirical studies of sonifi-

cation is that the sonification, and software sonification in general, is likely to be

entirely new to practitioners, so that their strategies for using a sonification tool

and their performance will differ from that of someone who has been using the

technique for some time and has a high comfort level with it. One way to overcome

this disadvantage would be to study a group of participants using the technique

and tool regularly over a long period of time (weeks or months). A more practical

way to partially overcome this disadvantage is training that includes hands-on

experience, reinforcement, and feedback.
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6.2.4 Chosen Approaches

Because both the idea of sonification in comprehension of static software structure

and the particular sonification design employed are new, it is appropriate to con-

duct an exploratory study as a check of the sound mapping scheme’s viability and

as a vehicle for suggested improvements, followed by a formal experiment to draw

conclusions about its effectiveness in use. The exploratory study is preceded by

even earlier feedback in the form of brainstorming and other informal interaction

to help formulate the sound mapping. The exploratory study itself uses mainly

qualitative techniques, while the formal experiment quantitatively addresses a se-

lected hypothesis concerning the sound mapping and tool. Interviews and direct

observation of subjects, though expensive in terms of researcher time, are vehicles

which promise to provide much information. Pre-trial questionnaires provide sub-

ject demographics and experience profiles. A post-trial questionnaire, at minimal

cost to the researcher and subjects, may capture supplemental information about

the experience of using the tool.

6.3 Summary

This chapter has examined empirical approaches in software engineering. The

following chapter sets forth the approaches and results of both the exploratory

study and the subsequent formal quantitative study.
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Chapter 7

Studies and Results

7.1 Introduction

Two human-subject studies were performed using the reference sound mapping,

the first exploratory and primarily qualitative, and the second a quantitative ex-

periment. This chapter describes the design and results of both studies. Beyond

this Introduction, the chapter is divided into two major parts, Section 7.2, which

describes the methods for both studies in turn, and Section 7.3, which presents

the results of both studies. The chapter concludes with the Summary, Section 7.4.

7.2 Methods

7.2.1 Study One Method

The exploratory study has the following goals:

1. Validate that the mapping concept is viable - that the reference mapping

can be easily learned, understood, and retained.

2. Uncover areas for improvement in the mapping.

3. Discern if the mapping’s projected usage is viable.
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4. Obtain further ideas for the mapping.

5. Obtain further ideas for using the mapping.

6. Formulate guidelines for this and alternate mappings.

Strategy

Subjects participated in one-on-one sessions in which they listened to the refer-

ence sound mapping and offered semi-directed feedback, then discussed the tool

and how they might use it. The study had three phases: participant selection,

participant sessions, and analysis, described below. The protocol for participant

sessions appears in Appendix A.

Participant Selection. The study was designed to achieve saturation, which

occurs when successive subjects reveal little or no new useful information [158].

Starting with an initial number of subjects, additional subjects are added until

saturation occurs. In the present study, the number of subjects is deemed sufficient

when the sound mapping’s viability or lack thereof is established and the flow of

new ideas become minimal. The initial number of eight subjects was based on

the homogeneity of the population (all software professionals), the well-bounded

problem domain, and the informality of the study.

Potential subjects, candidate users of the tool in practice, were required to have

knowledge of object-oriented software design principles. Subjects were professional

software developers and computer science students. Full-time academics were

permitted as long as they had served in industry in the past. Students may be

no less than 4th year upperclassmen due to the requisite programming experience.

No musical skill was required.

Participant Sessions. Each individual-participant session was structured

to last no more than two hours. Participants were permitted to withdraw from

the session at any time. Participant were briefed verbally and in writing on the

session to take place, and each signed a consent form. To begin each session, the
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participant was questioned to verify their object-oriented programming knowledge,

and minimal testing was performed to determine the participant’s level of musical

listening acuity. This was followed by in-session training on the audio mapping.

The core of the session consisted of observations of and directed feedback from

the participant while listening to audio streams representing mappings from actual

software projects, followed by discussion of the mappings and the tool. Those four

activities in sequence, determine skills, train participant, listening and obtaining

participant feedback, are described below.

1. Determine Skills.

Each subject’s basic understanding of object-oriented software construction

was verified. The subject was asked if he or she had worked with a third-

generation, object-oriented language, notably Java or C#. The subject was queried

as to their understanding of interfaces, static methods, and accessor/mutator

methods. The subject was required to demonstrate a basic level of understanding

to continue the session.

Each subject was also given a minimal audio understanding test using a pre-

recorded audio stream. First, pairs of tones were presented, with the subject

answering which tone is higher in pitch, or if both tones are the same pitch. The

test progressed to multi-tone sequences. Finally, tone sequences were presented

at different simulated distances and azimuth angles within a stereo image, the

subject being asked to determine whether each tone was near or far and left,

right, or centered. participant test.wav is the stream that contains the test items.

2. Train Participant.

Each subject was asked to listen to a fourteen-minute, pre-recorded training

stream that introduced the sound mappings and sequential sound presentation.

The audio file training stream.wav contains the training stream. Subjects were

given the opportunity to pause the stream and replay it in part or in its entirety.

Subjects were also afforded the opportunity to pause the stream at any time to
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obtain clarification. The stream is based in part on a software program called

Simple, containing two packages, three classes, and an interface shared by two of

the classes. The subject was shown the Simple project as it appears in an Eclipse

Package Explorer. The subject was also introduced to the Sonify View of the tool

and shown how sequences of entity-sound mappings would be played. The subject

was given, as a reference, a tabular summary of the general entity-mapping scheme

divorced from any particular software program.

3. Listening.

Five sound streams drawn from the Expenses software program were played for

each subject, the subject being asked to answer various questions and reproduce

some of the program’s static structure on paper. Subjects were encouraged to

engage in a mediated think-aloud protocol in which areas of confusion and other

observations were articulated. The subject was also observed to help assess the

relative ease or difficulty at each point. The investigator reserved the ability

momentarily pause the stream to further assess understanding or determine what

specific difficulty was being encountered.

Expenses is a snapshot of an incomplete expense tracking program written

for this exercise. The snapshot compiles to a working prototype that affords

prompted, text-based entry of personal expenses. Information about each ex-

pense, such as its amount and whether it is taxable are entered and stored in

a delimited text file. The method that stores the information inherits from an

abstract method, as does a stub method intended to eventually implement alter-

native data storage in an XML format. The text-based client is separated from

processing and storage functionality so that, in the future, a graphical client can

be added. The program is implemented within a single Eclipse project, the client,

server facade, and server-side data storage functionality belonging to separate

packages. External libraries are referenced, notably java.io for both screen I/O

and file storage. Visual or aural examination of the project should easily reveal the
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existing inheritance and polymorphism, the idea that each package represents an

architectural layer (client, facade, and input/output), and the I/O-centric nature

of the input/output package and its subordinate entities. The five sound streams

are described below.

expenses 5sec.wav - Serially-expressed parent-child relationships of all pack-

ages, classes, interfaces, and methods in the Expenses project. Adjacent

entities are separated by a 5-second pause. The subject is asked to classify

entities, identify entities, describe entities’ characteristics, and describe the

project’s structure.

expenses 2sec.wav - The same serialization as expenses 5sec.wav, but adjacent

entities are separated by a 2-second pause. Subjects were asked to classify

objects and describe the projects’ structure.

called by ExpenseFacade constructor.wav - Serialization by parent-child re-

lationship of the entities called by the constructor ExpenseFacade(). The

subject is asked to classify entities and describe their characteristics, includ-

ing whether they are part of the local project or an external library. All

entities in the stream reside inside the local project.

called by ExpenseDelimitedAccessStore.wav - Serialization by parent-child

relationship of the entities called by the ExpensedelimitedAccessStore() method.

The subject is asked to classify entities and describe their characteristics,

including whether they are part of the local project or an external library.

Several entities in the stream reside inside the local project, the rest residing

in the java.io package external to the project.

class size ascending.wav - Classes of different sizes. Individual classes from

this stream are played, and the subject guesses which size range the class

belongs to.
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4. Obtain Participant Feedback.

After the sound stream presentations, each subject participated in a semi-

directed interview to obtain their observations and impressions. Each session

continued until the subject had nothing further to say. Interviews were audio-

recorded.

Post-Session Analysis. After participant sessions, performance data from

the listening exercise were analyzed to uncover which kinds of mappings and se-

quences posed greater or less difficulty, whether trends existed in understanding

based on the mappings, and whether level of programming experience or mu-

sicality had an impact. Feedback was analyzed using shallow open coding to

uncover common reflections, ideas, and criticisms. Notable individual thoughts

were identified, as were outlying listening responses. The session-specific results

were amalgamated to improve the mapping, formulate guidelines for mapping

non-speech sound to software entities and inform the second study, and begin to

catalog recommendations for future research.

Limitations

It is emphasized that Study One was exploratory. Neither the number of subjects

nor the experimental design was sufficient to measure the efficacy of any given

sound construct as deployed in a tool in an everyday situation to a high level of

confidence, and the study was neither intended nor designed to achieve such a

result.

Internal and external validity threats are summarized in Table 7.1 and dis-

cussed in the list below.

1. Inconsistencies among sessions. It is possible that the relationship between

researcher and subject varied among sessions, inducing differences under-

standing the sound mapping due to comfort level and differences in qualita-

tive feedback due to unobserved prompting.



Studies and Results 136

Limitation Category

Inconsistencies among sessions internal
Methodology internal
Acoustical environment internal
Possible subject selection bias external
Single program external
Single mapping external
Cultural limitations external

Table 7.1: Study One internal and external validity threats

2. Methodology. Quantitative techniques are typically employed for concept

discovery. The data are coded and analyzed in layers to uncover categories

and new concepts. In Study One, textual data were analyzed for common-

alities, ideas, and opinions, but not to uncover hitherto unknown categories

or major concepts. Coding was flat, restricted to one layer above the textual

data. Subjects’ abilities to understand and recall the sound associations were

observed informally rather than being measured using rigorous quantitative

means.

3. Acoustical environment. The acoustical environment varied by session, as

most of the sessions occurred at a location convenient to the participant.

This may have caused aural recognition to vary among participants.

4. Possible subject selection bias. Subject sampling, while targeted to achieve

diversity in non-speech auditory sophistication and software development

experience, was likely biased most subjects having been software profession-

als previously known to the investigator. Subjects were largely of the same

cultural background as the investigator, meaning that metaphors employed

in the sonification scheme, and validated by subjects, cannot be assumed to

be culture-independent. Several subjects were not native English speakers

but have lived in the U.S. for at least five years.

5. Single program. The single program utilized may not be representative of
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any significant subset of programs, notably because it is an early prototype.

6. Single mapping. Because only one mapping was utilized, it is unclear which

mapping decisions need to be present to determine an equivalent class of

understandable mappings.

7. Cultural limitations. The meanings of sounds may be culturally influenced

such that the results cannot be generalized to all cultures represented in the

software engineering community.

7.2.2 Study Two Method

The second study was a quantitative experiment involving twenty-four software

professionals and advanced university students performing comprehension tasks

via code-reading and listening, using Eclipse along with its sonification extension.

The study’s intent is to evaluate task performance with and without sound. The

experiment addresses the following research question:

Can an integrated development environment (IDE) outfitted with sound to

depict characteristics of a program’s static structure facilitate program com-

prehension when compared to the same IDE instead outfitted with equivalent

capability to visually search for method references?

Facilitate in this context means to reduce time or effort or increase correctness.

The null hypothesis is

H0. Use of a sound mapping of static program structure during comprehen-

sion tasks does not reduce the time taken to perform the task.

The alternate hypotheses, below, follows from the null hypothesis.

HA. Use of a sound mapping of static program structure during comprehen-

sion tasks reduces the time taken to perform the task.
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The hypothesis is concerned with measuring task duration. Effort, while re-

lated to task duration, also encompasses cognitive load and the actions necessary

to complete the task. Effort is treated in an explanatory manner. Task correctness

is treated as an explanatory covariate.

Population and task characteristics captured in the experimental scenario are

summarized in Table 7.2.

Characteristic Description

population Professional software engineers and advanced computer
science students. Experiment is designed such that dif-
ferences between professionals and students can be de-
tected.

engineering
role

quality assurance or validation & verification

software
maintenance
type

perfective

language Java (1.4 and beyond)
programming
environment

Eclipse (3.3.1.1 and beyond)

program size 300 to 1,000 lines of code

Table 7.2: Population and task characteristics in the experimental scenario

Experiment Design

The study is a 2 x 2 crossover experiment. Each of the 24 subjects performed two

sets of tasks, each set focusing on one of two computer programs. One set of tasks

was performed using sound, the other without. The 24 subjects were allocated to

four groups, six subjects per group, to which the programs and treatments were

administered as shown in Table 7.3. Software professionals and university students

were members of all four groups in similar proportion.

The minimum number of subjects needed was determined using the Power

Analysis and Sample Size (PASS) computer program [113], which was given as

input the experimental parameters and a desired significance level of 0.05 or less.
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Group First Program Second Program

1 CP (sonified) PICT (unsonified)
2 CP (unsonified) PICT (sonified)
3 PICT (unsonified) CP (sonified)
4 PICT (sonified) CP (unsonified)

Table 7.3: Treatment groups

Population to be Studied

The population consists of programmers with working knowledge of Java who

have no significant visual or aural impairment. Professional and advanced student

programmers were studied, as both groups possessed the capability to adequately

understand software structure at the level sonified in this study, and both were

able to perform the required tasks.

Subject Selection

All of the software professionals had experience developing production-quality soft-

ware subsequently placed in public or private use. Some were full-time software

developers in government and industry, while others were employed in academia

but had prior full-time experience in industry. Persons having only academic

experience were excluded. The students were upper-level undergraduates and

postgraduates in programming-intensive computing disciplines, all of whom had

developed production-quality programs as projects, as demonstrated by placement

of their programs into service. The subjects were familiar with Java and conver-

sant with Eclipse, JGrasp [74], or similar software development environments.

Subjects were recruited in two locations: Baltimore, Maryland, USA and Mel-

bourne, Florida, USA. Professionals in both locations were recruited from area

companies, universities, and government agencies. Students were recruited from

Loyola University Maryland, the Johns Hopkins University, and the Florida In-

stitute of Technology, specifically from the graduate and undergraduate computer

science programs. Subjects participated entirely on a volunteer basis and neither
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expected nor received compensation. The minimum qualifications for subjects are

listed in table 7.4.

Professionals Students

academic level undergraduate degree upperclass undergraduate
major any computer science
programming
knowledge

three years object-oriented
third-generation language

three years object-oriented
third-generation language

Java knowledge see text see text
Eclipse knowledge desirable but not necessary desirable but not necessary
impairments no significant visual or hear-

ing impairment
no significant visual or hear-
ing impairment

Table 7.4: Minimum subject qualifications

Two graduate students participated as subjects in a full pilot version of the

study. Adjustments based on observation and extensive pilot-subject feedback

were incorporated into the actual study. The resulting in-person training protocol

is included in Appendix B, and the experimenter’s instructions for executing trials

are included as Appendix C.

Experimental Objects

The two Java programs selected as experimental objects were chosen on the basis

of their size and their ability to undergo improvements whose characteristics can

be determined by a single person within a reasonable task duration (under fifteen

minutes). Program size (or size of a well-bounded subset of the program) and

complexity were constrained so that, again, task duration would fall within reason,

while complexity was high enough to possess a real-world rather than “toy” set of

capabilities.

The selected programs, Course Predictor (CP) and a Pictionary emulator

(PICT), had been produced in an academic environment. They are functioning,

production-quality programs, yet they afford clear opportunities for perfective

maintenance. For example, inconsistent implementation of log files in CP can be

discovered in a short period of time, compared to implementations in larger and
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mature programs found in open-source repositories such as Sourceforge [151], due

to the size of CP and the unambiguous nature of its logging code.

CP, or Course Predictor, is a Java program written by a senior faculty member

who specializes in software engineering. Written as an applet, it has been in

production for several years on a public web site. In a later version, it had been

converted to an application for retargeting and inclusion of logging capabilities

by subsequent programmers. The application version is a work in progress whose

logging capability is in need of streamlining.

PICT is a multi-player, word-guessing game, modeled after the board game

Pictionary[2] and implemented in Java as a group project during an upper-level

undergraduate Software Engineering course. The program was specified, imple-

mented, and formally tested in conjunction with a business sponsor. After comple-

tion, the game was played heavily in group demonstrations without encountering

errors. In the game, each player interacts with their own instance of a visually-

oriented client. A server manages player turns and keeps score. It also provides

words in turn, in randomized order, from a pre-populated word list. At the be-

ginning of the game, the word list file is read in and randomized by the server.

At the beginning of each turn, a player is presented a word from the list and then

produces a drawing in a pixel field using the mouse. The other players see the

picture as it is drawn and attempt to guess the word, typing their guesses into

a text box. The turn ends either when the word is guessed or the allotted time

expires. The server and clients communicate through TCP/IP sockets. Only the

server-side code was used in the trial.

Characteristics of PICT and CP are given in Table 7.5. Lines indicates the

number of text lines in the program, while LOC, or lines of code, indicates the

number of lines of source code as determined by an Eclipse Metrics plugin [135].

A third program, EXPENSES, previously described in Section 7.2.1, was used

for training purposes immediately prior to each subject’s trial.
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Program Packages Classes Interfaces Methods Lines LOC

PICT
Server

1 3 0 10 489 351

CP 1 7 1 31 953 665

Table 7.5: Program characteristics

Feature Subset

The reference sound mapping was manually realized for each program, as auto-

mated realization of sound mappings from a program has not yet been imple-

mented. A subset of the sonified relationship types in the reference mapping was

made available to subjects, due to the time and effort involved in manual sound

mapping realization.

Having selected an entity within the Package Explorer, each subject was able

to select and listen to any of the following realizations:

• the selected entity itself

• the class that the selected class extends

• interfaces that the selected class implements

• entities that instantiate the selected class

• entities that call the selected method

The omitted relationship type was

• entities referenced by the selected entity

The omission reduces the range of sound-related actions available for performing

the tasks, but it also decreases the time needed for training.

Eclipse releases since at least 3.5.1 have included a Java search feature whereby

a developer can select a Java entity and invokes a search for its references. To

do so, the developer completes a search form, and the results appear in a search

results tab in the lower right portion of the Eclipse window. As seen in Figure
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7.1, for the CP program, the search results tab shows that CLog is instantiated

by the class cpred as the variable consoleLog. Subjects not already familiar with

Java search were introduced to the feature during the in-person training period.

Subjects were allowed to use the Java search feature only while performing tasks

in the unsonified environment. Otherwise, subjects were permitted to use any

other feature provided by Eclipse for task performance under either treatment.

Figure 7.1: Java search feature of Eclipse

Protocol

The experiment’s flow, from the subjects’ perspective, is depicted in Figure 7.2.

Subjects were instructed to perform training activities and a questionnaire two to

three days prior to the trial. Each subject was asked to download and listen to

a twelve-minute audio training stream, followed by a brief set of listening exer-

cises. Each subject also completed an ethics form and a questionnaire concerning

his or her software experience, musical experience and training, and demographic

profile. The trial itself was an individual session lasting approximately 90 min-
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Figure 7.2: Experiment flow, from subject’s perspective

utes. To begin the session, each subject received additional, hands-on training,

performing tasks on the EXPENSES program using the Eclipse sonification ex-

tension. Brief interviews were conducted immediately after exploration to capture

the exploration strategy. The subject then explored and performed tasks on each

program in turn. Brief interviews were again conducted immediately after the last

task for each program. The interviews were audio recorded.

Subjects was asked to freely explore the program for a specified time period:

12 minutes for CP and 5 minutes for PICT, using or not using sound according

to the subject’s group assignment. The subject then performed five tasks per

program, again sonified or unsonified according to the subject’s group. The first

four of the five tasks per program, CP 1 through 4 and PICT 1 through 4, require

only a simple lookup strategy to answer straightforward questions. CP 5 and

PICT 5, both perfective maintenance tasks, require a more complex information

assimilation strategy. Subjects were asked to explain why the program does not

meet a new set of requirements or how it might be streamlined. All of the tasks

are reproduced in Tables 7.6 and 7.7 along with their solutions and maximum

allotted durations.

The final tasks for each program, CP 5 and PICT 5, were used to test the
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Task Task Statement Solution Max.
Dur.

1 Which package/class/method
combinations instantiate the
class URLButton?

The method cpred.init. 5 min.

2 Identify all classes and methods
which are callers of the method
cpred.greenPanel.

The method cpred.init. 5 min.

3 Does URLButton implement any
interfaces? If so how many? Are
they internal or external to the
Java project?

It implements ActionLis-

tener, which is external.
5 min.

4 Is URLButton.actionPerformed

called by any code internal
to the project? By any code
external to the project?

It is called by the infras-
tructure.

5 min.

5 Previous developers have imple-
mented logging of desired mes-
sages. They have each worked
on their own logging code, so
we know that it can be stream-
lined. Currently, logging may
or may not meet the following
requirements: (1)All messages
that are logged will be logged
to both the console and a log
file. (2) All logging shall occur
via a single logging class within
the project. (3) All logging shall
utilize the built-in Java class
java.util.logging.Logger. Deter-
mine if the project meets the re-
quirements stated above. if they
are met, how? If not, why? How
can logging be streamlined?

CLog logs only to the con-
sole, and it doesn’t use the
Logger class, but multiple
cpred methods call it. Log

uses the Logger class, and
one method calls it. His-

tory extends Log, albeit im-
properly, and it is instanti-
ated, but it is never subse-
quently called for any log-
ging. To streamline, re-
move History and its in-
stantiation, remove CLog,
and redirect the CLog calls
to instead call Log.

15
min.

Table 7.6: CP Tasks
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Task Task Statement Solution Max.
Dur.

1 Identify all callers of the method
WordRepository.getNextWord.

GameServer.run. 5 min.

2 What instantiates WordReposi-

tory?
The constructor in the
GameServer class.

5 min.

3 Identify all data writers within
the Pictionary Server package.

There are none. 5 min.

4 Identify any/all dead classes and
methods, i.e., those that are
never called. Write the answer
on paper.

getCurrentWord, getList,

getNumberOfWords, and
getWordsLeft.

5 min.

5 Ensure that the code meets
the following two design criteria:
The entire word list will be made
available in randomized order (a)
before the first round is begun,
and (b) after every five rounds
of turns. (This is an easy way to
minimize word repetition while
avoiding running out of words.)
For each of the two criteria, if
the code does not meet it, ex-
plain why not. If the code meets
it, explain how.

The word list is only re-
freshed upon initialization,
so only (a) is met. Wor-

dRepository.shuffleWords

is called by WordRepos-

itory.loadFile, which in
turn is called by the Wor-

dRepository constructor,
which is only called by the
GameServer constructor,
which is only called by
GameServerMain.main.

15
min.

Table 7.7: PICT Tasks

experimental hypothesis. The first four tasks for each program were included

to afford the subjects familiarity and practice with the Eclipse environment, the

sound mapping, and the visual search function. All ten tasks were observed and

timed.

Study Limitations

Internal and external validity threats are summarized in Table 7.8 and discussed

in the list below.

1. Acoustical environment. The acoustical environment varied by session, as

most of the sessions occurred at a location convenient to the participant.

This may have caused aural recognition to vary among participants.
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Limitation Category

Acoustical environment internal
Restriction of available features internal
Task sequencing internal
Familiarization with the sound mapping internal
User interface limitations internal
Measurement criteria internal
Program selection internal
Task selection internal
Possible subject selection bias internal,

external
Applicability to other programming languages external
Applicability to the visually impaired external
Applicability across cultural boundaries external
Accuracy internal

Table 7.8: Study Two internal and external validity threats

2. Restriction of available features. As pointed out above, the ability to select

an entity and hear those entities that it calls was omitted. This restricts a

means to investigate relationships to off-screen entities, which may in turn

impact task completion times. As mitigation, tasks were selected which do

not rely upon the omitted feature.

3. Task sequencing. The sequencing of four simple tasks followed by a fifth,

more complex task may lead to learning effects, which may impact task

completion time and correctness. This is in contrast to possible learning

effects between the two parts of the trial, which is mitigated through the

ordering of the parts by group.

4. Familiarization with the sound mapping. Most subjects were introduced to

the sound mapping, and indeed to the entire concept being tested, only

by performing the take-home training one to two days prior to the trial,

supplemented by the in-person training immediately prior to the trial. Two

subjects had been exposed to the sound mapping in the previous study,

however, over a year separated the two studies. In actual use, subjects’
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abilities to retain the meanings of sound mappings and develop strategies

using sound would be expected to noticeably improve after having had weeks

or possibly even a few days of experience using the tool, especially after

having worked repeatedly with the same Java program.

5. User Interface Limitations. The Eclipse sonification extension’s user in-

terface has several limitations that may lengthen task durations. First, a

sequence of entities cannot be interrupted; it must play until complete. Sec-

ond, user interaction is blocked during sound playback. Third, the scheme

whereby one selects an entity in the browser, selects the desired related

entities to play, and clicks Play may not be optimal compared to playing

the sound on mouse hover, which is envisioned for future versions of the

user interface. The visual Java Search feature, on the other hand, has been

optimized over many production releases of Eclipse.

6. Program selection. The programs selected to serve as experimental objects

are relatively small in size for production programs, though not trivial. More-

over, they may be more representative, in terms of structure and complex-

ity, of programs in the academic domain as opposed to other domains (e.g.

medicine, defense, business).

7. Task selection. The subject is expected to analyze the source code but not

perform any actual programming. This presents the possibility that appli-

cability better fits tasks of a quality-assurance, verification and validation

nature than hands-on programming tasks.

8. Possible subject selection bias. It is possible that the sample is biased

in terms of skill set and level, due to the small number of organizations

from which subjects were recruited. There is also the possibility of sam-

ple bias toward musically-oriented members of the population. That is, it

is possible that musically-oriented persons were be more interested in par-
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ticipation than those less musically oriented, due to the nature of the ex-

periment, and are therefore over-represented. Subjects were largely of the

same cultural background as the investigator, and metaphors employed in

the sonification scheme cannot be assumed to be culture-independent. All

subjects spoke English fluently, but several were not native English speak-

ers. Musical-orientation bias is mitigated through recruitment of subjects by

non-musically-oriented agents, blind recruitment via physical and electronic

announcements, and recruitment of subjects in group situations.

9. Applicability to other computer languages. The experiment is restricted to

the Java programming language. Results and conclusions should, in gen-

eral, be applicable to other third-generation, object- oriented programming

languages, as they are similar to Java. Some languages in this class are C#

[108], C++ [160], Ada95 [163], and Python [98]. Applicability to languages

outside that class is unknown. Alterations to the sound mapping scheme

would be necessary for those languages.

10. Applicability to the visually impaired. Visual navigation and reinforcement

restrict results of this study to the sighted, although it is expected that the

aural cues would be processed at least as well by the visually impaired.

11. Applicability across cultural boundaries. The sound mapping consists of ar-

bitrary as well as suggestive sounds. The interpretation of meaning in the

sounds may differ across cultural boundaries.

12. Accuracy and Precision. Timings are rounded to the nearest second. Accu-

racy may be affected by the manual nature of the timing.

Measurement, Data Collection, and Data Storage

Timings were performed manually using a stopwatch. The subject signaled com-

pletion of each task prior to offering an answer or explanation. The experimenter
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paused and restarted the stopwatch when posed with a procedural question or

request for clarification.

Task correctness was measured as incorrect, partially correct, and fully cor-

rect. For a task to be partially correct, the subject must demonstrate a level of

understanding that substantially leads toward the full solution. In particular, CP

Task 5 in Table 7.6 lends itself to partial correctness.

Subjects were interviewed as to their exploration strategies immediately after

the free exploration period for each program. Subjects were also interviewed after

performing tasks CP 5 and PICT 5. Responses were voice recorded.

The IBM Post-Study System Usability Questionnaire (PSSUQ) [93] was pre-

sented to subject immediately after the trial to provide feedback about the us-

ability of the Eclipse sonification extension. The instrument contains 19 questions

requiring responses on a seven-point Likert scale, 1 meaning strongly agree and

7 meaning strongly disagree, with space for free-form comment. As the question-

naire is meant to be applied to an entire system or application, it was emphasized

to the subjects that, in this case, it applies only to the sonification extension.

Question 9, having to do with error messages that are minimal in the current tool

implementation, and questions 11 through 14, having to do with non-existent help

and documentation, were categorized as not applicable (NA). In addition, subjects

were allowed to answer NA to any question for which they had no opinion or could

not answer. The questions are listed below.

1. Overall, I am satisfied with how easy it is to use this system.

2. It was simple to use this system.

3. I could effectively complete the tasks and scenarios using this system.

4. I was able to complete the tasks and scenarios quickly using this system.

5. I was able to efficiently complete the tasks and scenarios using this system.
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6. I felt comfortable using the system.

7. It was easy to learn to use this system.

8. I believe I could become productive quickly using this system.

9. (NA)

10. Whenever I made a mistake using the system, I could recover easily and

quickly.

11. (NA)

12. (NA)

13. (NA)

14. (NA)

15. The organization of information on the system screens was clear.

16. The interface of the system was pleasant.

17. I liked using the interface of the system.

18. This system has all the functions and capabilities I expect it to have.

19. Overall, I am satisfied with this system.

Task timings and observations were placed in a folder per subject along with

the completed pre-trial questionnaire, trial-time researcher notes, any trial-time

artifacts produced by the subject (such as handwritten answers to the question

posed in PICT Task 4), and the PSSUQ responses. Data were later transcribed to

a spreadsheet and exported to R [166], a statistical analysis program, for analysis

using tests of statistical significance.
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7.3 Results from Studies

This section reports the results from both studies and also captures early feedback

that helped to shape the sound mapping.

7.3.1 Study One Results

This subsection describes the results of the exploratory human-subjects study,

performed during the period June through December 2009, from subject selection

through listening results.

Subject Profile

Ten subjects were required to reach saturation. The subjects exhibited diversity

in sex, age, musical level, and software ability. Musical level was assigned on

a scale of one, no musical background, to five, professional or semi-professional

performance. Musical level was determined using both an objective criterion -

performance on the listening test - and subjective criteria - information about

the subject’s background obtained during the interview. Subjective criteria were

drawn from comments such as, “I played some clarinet in the high school band”

and “I never played an instrument or studied voice, but I sang in the middle

school chorus and learned to read a little music.” All subjects performed well on

the listening test, making no more than two errors in fourteen questions (14%),

with the mean at less than one error in fourteen questions.

Software level was measured from one, some programming, to five, senior ar-

chitect. Table 7.9 shows the profile of subjects who participated in the study.

Training

The training stream was well understood by all subjects. Subjects rarely requested

that the stream be paused, and when they did, it was to reiterate and verify a

point just heard rather than to resolve a misunderstanding. The need for certain
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subject sex age range musical level software level

1 male 50-59 2 4
2 male 40-49 4 5
3 male 40-49 3 5
4 female 30-39 1 3
5 female 30-39 3 3
6 female 20-29 1 4
7 male 20-29 1 3
8 male 20-29 1 3
9 male 40-49 1 4
10 male 50-59 1 5

Table 7.9: Subject profile

clarifications was uncovered during the listening part of the first few sessions.

Specifically, the needed clarifications occurred in the following three places.

1. Accessor and mutator methods are represented as; two bell-like sounds at

the same pitch in rapid succession.

2. Upward and downward patterns representing writers and readers, respec-

tively, must move strictly upward or downward with possible repeated pitches,

but not generally upward or downward with local reversals.

3. A method can be represented by concrete sounds, like a shopping cart, or

by more abstract sounds, notably musical sounds.

Listening

The listening results for each sound stream are reported in the following subsec-

tions. Major observations are listed below:

1. 100% of the subjects could perform classification without difficulty.

2. Overall, 80% of the subjects could understand modifiers, such as an anvil

mapped to static.

3. 50% could correctly perform specific entity identification.
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4. It appeared that concrete sound associations were easier to learn and asso-

ciate than abstract sound mappings.

5. All subjects could categorize object size into one of three sub-ranges. Two

subjects could only do this correctly upon a second guess, after hearing all

three ranges a second time.

Expenses Project Sound Stream

Subjects listened to the main sound stream for the Expenses Project, contained

in the file expenses 5sec.wav, in which the silences between successive entities are

five seconds in duration. Selected subjects who performed well were also asked to

listen to portions of expenses 2sec.wav, containing the same sequence of entities

separated by two seconds of silence.

All subjects were easily able to classify entities as packages, classes, interfaces,

or methods. One subject, Subject 7, guessed twice that a method was a package,

hearing something that reminded him of the satellite-like sound, but not consider-

ing that there was only one sound, not two simultaneous sounds. The same subject

incorrectly identified a method as an interface, but on repetition later during the

session identified the interface correctly, a possible indicator that training or usage

beyond that experienced in the session might have been required. Subject 7, an

upperclass undergraduate student, was the least experienced in practical software

development, so he may not have been oriented toward interfaces.

On hearing a pattern of an anvil followed by an unspecified, concrete sound,

occurring in the stream expenses 5sec.wav at 00:20, eight of the ten listeners cor-

rectly ascertained that it represented a static method, while two could not re-

member that an anvil signified static. Likewise, on hearing a pattern of an anvil

followed by a bell, occurring twice at 01:48 through 02:01, several subjects could

classify them as static methods and remembered that there was something no-

table about the bell-like sound, but could not remember that the bell signified an
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accessor method.

After an initial hearing of the Expenses Project sound stream, subjects were

asked to listen the the first two minutes of the stream again, notating on pa-

per the type of each software entity, any particular characteristics of each entity

they heard, and the tree structure containing the entities. All subjects were able

to correctly recognize the object types, though some, including Subject 7, were

previously corrected when making classification errors. Three subjects did not

recognize the anvil in the same two patterns as such, indicating that a sound more

clearly recognized as an anvil may be needed. All except two subjects remembered

that an anvil signified static.

After the notation exercise, subjects were told that the first package heard

in the sound stream, consisting of the satellite-like sound plus one superimposed

clarinet-like sound, represented a collection of client classes, the second package

(at 00:43) represented a collection of server-side classes, and the third package

(at 01:28) another server-side collection. Returning to these after listening to

other entities, either the first or second package was played in isolation, and the

participant was asked to identify it. This task was largely unsuccessful. The

subjects indicated that there were simply too many classes and methods with too

little aural differentiation among them. Half of the subjects could remember and

identify the package. Of these, two took several seconds to recall which was which,

one of the two going through an out-loud verbal exercise to recall that the first

package was that with a single clarinet tone.

Subjects had no problem classifying a method as a constructor (an example of

which is heard at 02:16) or as an overloaded constructor (heard at 02:23) when

heard after the initial constructor. Most subjects also had no problem classifying

a finalizer (heard at 02:31), though several distinctly recalled the sound but could

not associated it as a finalizer, however guessing it to be a close method. These

were subjects with lower degrees of experience who had not had occasion to write
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finalizer methods.

Subjects were told that the method at 03:00 was a factory method. On rehear-

ing the same method later in the session, several of the professionals pointed out,

without prompting, that it was a factory method, and all but one reported being

amenable to the idea of the particular mechanistic type of sound heard represent-

ing a factory method or appearing in a factory class. Several subjects had to be

prompted (“is there anything special about this entity?”) before indicating that

it was a factory method. The remainder did not recall anything special about the

method. Once made aware of the sound of a factory method, the senior archi-

tects correctly extrapolated, several upon query and one unsolicited, that the class

heard at 02:43 was a factory class, though this was not in the training material.

Referenced Entities Sound Stream

Subjects listened to called by ExpenseDelimitedAccessStore.wav, a sound stream

consisting of entities in sequence which are called by the method ExpenseDelim-

itedAccess.Store. Some of the called entities are in the local project, in fact in

the same class ExpenseDelimitedAccess, while others are in the external library

java.io.

The first few subjects also listened to called by ExpenseFacade constructor.wav,

a stream of entities called by the ExpenseFacade constructor, all within the local

project. It was determined that the information obtained from subjects listening

to this stream was redundant with the other stream, and its use was discontinued.

The first entity heard in called by ExpenseDelimitedAccessStore.wav is the class

ExpenseDelimitedAccess itself, as the methods following it are within that class.

The foreground sound of the class representation is the cello note indicating this.

By the time they heard this stream, all of the subjects had forgotten from the

training stream that a single, low cello tone mapped to this. A few remembered

that such a cello tone meant something, but could not put that something together
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with this. It is possible that further training or reinforcement would correct the

situation, but it is also possible that the cello tone is not a sufficiently intuitive

mapping to this, and that by convention subjects are looking for a mapping to a

specific class or class type rather than such a self-reference.

All subjects correctly identified the sound immediately following the class as

that of an arbitrary method within the class just heard. Eight of ten subjects

correctly identified the second class (at 00:14 in the stream) and its three methods

as distant and therefore in an external library, as opposed to the local first class

and method. The majority identified the class as a writer class, even though this

idea had not been applied to classes in the training, only methods. All subjects

identified the first external method (at 00:19) as a constructor and the second as

a writer. Subjects had not been told that the sound of a door closing mapped to a

close method, but a majority heard the final door closing sound and guessed upon

inquiry that this would be a stream closing method. Approximately half of the

subjects correctly guessed that the external class and its methods were all about

stream output. In fact, the class was java.io. For some subjects the stream was

played several times before all of these inferences were made.

Class Sizes Sound Stream

The class size stream is ordered by size, so the ordering of sound patterns played

was performed manually by the investigator. The subjects all guessed the class

sizes correctly. Initially, after the first sound was played, two subjects made in-

correct, hesitant guesses but quickly adjusted the guess to the correct one without

prompting, one immediately and one after replaying the sound pattern.

Listening Summary

Overall, the subjects were able to recognize the types of entities and their charac-

teristics. It appears that training or experience with the sound mappings over and
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above that minimally provided in the evaluation would reduce the incidence of not

remembering a sound association, such as an anvil as being static. The subjects

were easily able to infer and reconstruct the relationships expressed through aural

serialization of the entities. All subjects ascertained that entities were part of or

external to the project of interest. The more experienced made inferences of an

structural nature, such as that a package was about managing streams without

knowing its identity as java.io.

Table 7.10 summarizes the degree of success at recognition and understanding

based on the listening exercises, amplified in some cases by participant feedback.

In the table, degree of success is characterized as high, medium, low, or none.

For characterization as a high degree of success, eight of the ten participants

had to demonstrate clear and unambiguous recognition or understanding. A low

degree of success was assigned when five or fewer participants demonstrated clear

recognition or understanding. Anything in between is characterized as medium.

Verification indicates whether the degree of success was determined through the

listening exercise, qualitative feedback, or a combination of both.

Qualitative Feedback

Observations and ideas articulated during participant feedback were considered

important when they exhibited commonality among participants or novelty even

when expressed by a single participant. These observations and ideas are item-

ized by concept as presented below. It is noted that speculative statements such

as the usefulness of the earth-air-space metaphor, while based on participants’

experience, may or may not be borne out through experimentation.

Comparison to spoken text. Several subjects articulated advantages of using

non-speech sound rather than spoken text. One related that speech would

be “monotone”, adding “it would all just blend in and I’d stop paying at-

tention.” Said another, “[It is] easier to identify a particular [non-speech]
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construction/capability degree
of
success

verification

intuit earth-air-space
metaphor

high listening; stated ease of learning and re-
calling

understand entities as suc-
cessive

high listening

understand sequences hav-
ing five-second separation

high listening

understand sequences hav-
ing two-second entity sepa-
ration

low listening; not enough time to keep up
with the pace at subjects’ training level

differentiate package vs.
class vs. interface vs.
method

high listening

identify packages, classes,
interfaces, and methods

low listening; feedback indicating difficulty
and predicting failure as program size
increases

Recognize language-induced
modifier (static)

medium listening; feedback that the anvil sound
in use can be improved; feedback that
degree of success would become high as
experience increases

Recognize purpose-induced
modifier (reader, writer, ac-
cessor)

high listening

Recognize abstract modifi-
cation to identifying sound
based on structure, such as
factory method

medium listening. Subjects were mixed on the
distorted sound used to indicate a fac-
tory method. They felt that concrete
sounds would work better. They were
very enthusiastic about applying this to
design patterns.

Recognize concrete identi-
fying sound, such as close
method

high listening and positive feedback

Differentiate external vs. in-
ternal entities through audio
distance

high listening and positive feedback

Recognize size ranges via
drums

high listening; feedback indicates more than
three size ranges may be discernible,
and the ranges can be selectable by the
developer

ability to draw structural
conclusions from sequences

high feedback; the architects performed bet-
ter than the novices.

receptiveness toward explo-
ration via hover within ex-
plorer

high feedback. Some suggested that hover or
equivalent be extended to editor panes.

Table 7.10: Mapping features and their degrees of success
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sound, especially [given] the way we name stuff with five names concate-

nated.” Asked for an example, the subject articulated the four-word variable

name CustomerSalesInformationBuffer.)

Metaphor and analogy. Most subjects believed, when asked, that the earth-

air-space metaphor helped them to determine entity types. One subject

indicated that any analogy, such as a door closing for a close method, made

a mapping concept easy to understand. A subject offered an insight into her

cognitive process upon hearing a sound mapping: she associated the sound

with a visual image, then later remembered the visual image on hearing the

sound and performs the mapping.

Difficulty of identification. A majority of subjects felt that identification of

specific entities through relatively abstract sounds would be problematic

when applied for programs of any size, especially for larger programs. One

subject stated that the different sound mappings were necessarily “too close

to one another.”

Real-world usefulness. All but one subject saw usefulness in the mapping scheme

and the tool. The lone dissenter, a senior architect, stated, “I could do it

visually much faster.” He stated that he spends a great deal of time reading

others’ code, raising the possibility that he is unusually fast at reading code

and picking out salient features. He did feel, however, that something like

reader-writer is hard to discern while reading code, so such meta-information

would be of value. Another senior architect saw the value of the mapping

and tool for exploration but challenged the usefulness of sound mappings

“as you code.” Another subject, again a senior architect, suggested that

such sonification as one codes may remind us of an entity’s context in ways

orthogonal to the visual context. One subject indicated that it would be

nice to hear, in sequence, the classes within a package in the Package Ex-
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plorer to know what classes implement an interface. If she’s about to change

something in an interface, she can identify all of the impacted classes. Most

subjects articulated the value of listening to off-screen references.

Differentiation of internal versus external entities by their audio distance

was acknowledged by all participants as appropriate and useful.

Suggestions for use and improvement. Multiple subjects suggested instru-

menting the editor with the sound mappings. In both the editor and the

Package Explorer, either hovering over an entity or selecting the entity would

play the desired sound(s). A particular expression of this idea was that

sound should be placed “right in the method,” because, he stated, “even in

my [own] code . . . I sometimes forget what it inherits from, etc.” One subject

suggested extending the mapping down a level to blocks of code within a

method, which would help the subject to remember “what block we’re in”

inside an editor window containing a great deal of text.

At least three subjects expressed enthusiasm about the possibility of extend-

ing the sound mapping to design patterns such as Model View Presenter1

[22]. One subject, a mid-level developer, reported encountering Model View

Presenter frequently in her work situation, so she’d hear a small subset of

sounds repeatedly, reinforcing its meaning. She would use sound in the Pack-

age Explorer to “find all the Presenter classes” for maintenance purposes.

One subject expressed the possible desire to transitively hear “what called

methods call.” Analogously, we might want to hear all parents of an entity,

not just the direct parent.

A subject suggested including referenced database tables in the mapping,

fulfilling an answer to the question, what tables does this entity call? and

extending sonified entities to those outside the Java realm proper.

1Model View Presenter is a frequently-used variation of the Model View Controller pattern
[52].
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Further suggestions are offered within the item below labeled “User control.”

Scalability. Several subjects questioned, to varying degrees, the mapping con-

cept’s scalability to large programs. Degree ranged from doubt to being

“interested to see how it scales up to a real production-level program.”

Self-assessment. One subject compared his performance to his own expectations

prior to the session. “I’m actually doing better at this than I thought I

would.” On hearing a pattern multiple times in different contexts, “I’m

anticipating now. I still have a memory of this.” The particular subject

had been skeptical of the mapping scheme’s usefulness prior to learning and

using it, afterward demonstrating receptiveness to its possibilities.

Representational Accuracy. A subject observed, “We know that people don’t

follow naming conventions.” Therefore, the subject reasoned, the process

of determining the sound mapping should rely on the actual underlying

semantics rather than the entity’s name. like writeData.

User control. Several subjects thought that selecting their own sound mappings,

within a mapping framework, would help them foster their own personal

sound to entity associations. One subject articulated this idea as the ability

to add her own sounds from a library or import them. Another, more senior

subject felt that instead of ultimately having totally automated generation

of the sound mapping, let the developer pick sounds within a prescribed set

of constraints (like three hammer strokes instead of four for a constructor),

but have pre-annotated sounds representing standard packages like java.io.

While several subjects thought that the representation of the self-referential

this class should be eliminated, one subject felt it should be optional, and

that similar options be controllable by the developer. One option would

be the number of size categories that can be heard - more than the three

currently in use, but only as many as each listener would be comfortable
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with. Finally, it was suggested that the amount of time between successive

entities be controllable by the developer. Two seconds was considered too

short, at least given the limited amount of training and experience provided

in the study. Subjects indicated inability to keep up with the pace. Five

seconds seemed quite adequate, and may be on the high side as developers

gain experience.

Overall paradigm. Finally, one subject asked the researcher not to give up on

a paradigm, not employed, of hearing simultaneous entities. “Morse code

people could hear two signals, each in one ear, so class and method may be

able to overlap in time.”

7.3.2 Study Two Results

Trials were performed during the period November 2010 through February 2011.

Twenty-four subjects, whose demographics and backgrounds are summarized in

Table 7.11, participated in the experiment. In the table, level is either professional

(prof) or student (stud). Years of professional experience are listed in the column

yrs. Academic level is either the highest level achieved by professionals or the

current level of students, where pg is a first-year postgraduate and ug is a fourth-

year undergraduate. All subjects have had some exposure to Java and either

Eclipse or an Eclipse-like environment. Java indicates whether the subject has

worked regularly with the Java language (yes, no), and Eclipse indicates whether

the subject has worked regularly in the Eclipse environment (yes, no). Musical

experience can assume the values 0 (none), 1 (instrument or voice up to typical

high-school level), or 2 (semi-professional level or above). Music training is also

rank Subjects were largely of the same cultural background as the investigator,

meaning that metaphors employed in the sonification scheme and validated by

subjects cannot be assumed to be culture-independent. Several subjects were not

native English speakers but have lived in the U.S. for at least five years.
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The acoustical environment varied by session, as most of the sessions occurred

at a location convenient to the participant. This may have caused aural recog-

nition to vary among participants.ed 0-2, 0 meaning none, 1 some instruction,

and 2 highly trained. The numeric rankings are researcher-assigned based upon

responses in the participants’ initial questionnaire.

Group Level Sex Years Ac.
Level

Java Eclipse Music
Experi-
ence

Music
Train-
ing

1 prof. M 25 PhD no no 2 2
1 prof. M 5 PhD yes yes 0 0
1 prof. M 28 PhD yes yes 2 1
1 stud. M NA ug yes no 0 0
1 prof. M 2 MS yes yes 0 0
1 stud. M NA ug yes yes 0 0
2 prof. M 30 PhD yes no 1 0
2 prof. M 6 BS yes yes 0 0
2 prof. M 4 MS yes yes 0 0
2 prof. M 12 BS yes no 1 1
2 stud. M NA pg yes yes 0 0
2 stud. M NA ug yes yes 1 1
3 prof. M 20 PhD yes yes 2 2
3 prof. F 10 MBA yes yes 0 0
3 prof. M 24 MS yes yes 1 1
3 stud. F NA ug yes yes 2 2
3 stud. M NA ug yes yes 0 0
3 stud. M NA ug yes yes 0 0
4 prof. M 25 PhD yes no 0 0
4 prof. M 27 MS yes no 2 1
4 prof. M 5 MS yes yes 1 1
4 prof. F 9 BS yes no 0 0
4 stud. M NA ug yes yes 0 0
4 stud. M NA ug yes yes 1 0

Table 7.11: Subjects, ordered by group

As Table 7.11 shows, the sample contains 15 professionals and 9 students.

Participant demographics are heavily weighted toward male, with 21 males and 3

females. The median professional has 12 years of experience, and the education

level of professionals is weighted toward advanced degrees. Overall Java usage

is high, and Eclipse experience is weighted toward regular Eclipse usage versus
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occasional/past usage.

Statistical Results

The tasks CP 5 and PICT 5 are used for hypothesis testing, as they are the

only multiple-step tasks of significant duration whose questions are those of the

type encountered in program maintenance activities. The observed task durations,

listed by treatment and ordered from lowest to highest, are indicated in Tables

7.12 and 7.13.

group treatment position times mean median stdev

1 sonified first 180 210 275 445 600 624 389 360 196
2 unsonified first 111 201 284 300 370 387 276 292 105
3 sonified second 180 255 310 330 388 640 351 320 158.5
4 unsonified second 135 234 283 283 285 496 286 283 118

Table 7.12: CP Task 5 times, by group

group treatment position times mean median stdev

1 unsonified second 13 140 145 200 330 400 205 172.5 140
2 sonified second 74 127 288 299 342 600 288 293.5 185.5
3 unsonified first 112 135 159 169 180 600 226 164 185
4 sonified first 125 140 169 179 205 327 191 174 72.5

Table 7.13: PICT Task 5 times, by group

The median, quartiles, data extremes, and possible outliers of CP Task 5 and

Pict Task 5 by treatment are depicted by the box plots of Figure 7.3. Whiskers

Figure 7.3: CP Task 5 and PICT Task 5 Box Plots
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extend to the data extremes. For CP Task 5, the box plot for the sonified treatment

consists of Groups 1 and 3. For PICT Task 5, the box plot for the sonified

treatment consists of Groups 2 and 4.

Both the sonified and unsonified data for CP Task 5 or PICT Task 5 are nor-

mally distributed as determined by Kolmogorov-Smirnov tests at a 5% significance

level, whose results are shown in Table 7.14.2

Task Treatment Groups p-value

CP 5 sonified 1 & 3 0.81
CP 5 unsonified 2 & 4 0.86
PICT 5 sonified 2 & 4 0.86
PICT 5 unsonified 1 & 3 0.28

Table 7.14: Kolmogorov-Smirnov tests for normality

Sonified versus unsonified task durations were compared via the t-test. For

CP Task 5, the test result t = 1.531 translates to a p-value of 0.929. For PICT

Task 5, t = 0.396 translates to a p-value of 0.652. In neither case is the null

hypothesis rejected at a 5% one-sided significance level. Due to the presence

of possible outliers, PICT Task 5 was also evaluated using the Wilcoxon non-

parametric rank-sum test. The result W = 79.5, which translates to a p-value of

0.68, similar to the t-test result.

Possible outliers, having task durations greater than the third quantile plus

1.5 times the interquartile distance as revealed by R’s boxplots, are summarized

in Table 7.15. There are no possible outliers with low task durations. Possible

Task Duration Treatment Group

PICT 5 600 unsonified 3
PICT 5 600 sonified 2

Table 7.15: PICT Task 5 possible outliers

outliers did not arise due to experimental anomalies that can be controlled, so

they are included in all statistical test results.

2Statistics were obtained using R, Version 2.12, and are described and further referenced in
The S-Plus4 Guide to Statistics[99]. Plots for this experiment were obtained using R, Version
2.12, and are described in The S-Plus4 Programmer’s Guide [100].
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For each task CP 5 and PICT 5, the group performing the sonified treatment

first was compared to the group performing it second to uncover possible learning

effects affecting task times. Unsonified performance was similarly compared. Nei-

ther t-tests nor Wilcoxon tests support the presence of learning effects. Likewise,

no difference in performance between professionals and students was uncovered.

Nine of the ten tasks yield a correctness value of incorrect or correct, determined

by each subject’s verbal response to the question(s) posed in the protocol. CP

Task 5, whether sonified or unsonified, often resulted in an intermediate response

in which the subject failed to identify one of the logging classes and proceeded to

offer a somewhat weakened explanation of how to fix the logging inconsistencies.

Because of the similarity of the intermediate responses to one another, an inter-

mediate value of partial was added for partially correct task completion. CP Task

5 is the only task for which partial is employed. All responses for CP Task 5 were

either partially correct or fully correct.

Task correctness when sonified was compared to correctness when unsonified

using Fisher’s exact test of independence. The results, reported in Tables 7.16 and

7.17, show no significant advantage of sonified over unsonified task correctness at

a 5% significance level.

CP 5 Incorrect Partial Correct

sonified 0 6 6
unsonified 0 8 4

p = 0.68

Table 7.16: Fisher results for CP Task 5 correctness

PICT 5 Incorrect Correct

sonified 1 11
unsonified 1 11

p = 1

Table 7.17: Fisher results for PICT Task 5 correctness

The results for each task and treatment were tested for a possible correlation

between task performance and task correctness using the Kruskal-Wallis nonpara-

metric test. No correlation was found at a 5% one-sided significance level, as
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shown in Table 7.18.

task treatment p-value

CP 5 unsonified 0.35
CP 5 sonified 0.13
PICT 5 unsonified 0.11
PICT 5 sonified 0.11

Table 7.18: Kruskal-Wallis results

CP Task 4, although not one of the tasks used to assess the null hypothesis, is

remarkable because sonified task duration in this case appears significantly lower

than task duration when unsonified. The t-test yields t = -3.078, for a p-value of

0.0035. There are no outliers. No learning effect was encountered. Box plots for

CP Task 4 are shown in Figure 7.4.

Figure 7.4: CP Task 4 box plots

The Kruskal-Wallis test reveals no correlation between task correctness and

treatment, with p-value at 0.1974 for unsonified and only one group (correct) for

sonified.

For tasks other than CP 4, CP 5, and PICT 5, t-tests indicate nothing remark-

able, and Fisher’s exact test of independence indicates no significant differences

in correctness between sonified and unsonified treatments.
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Interview Data

Brief recorded interviews were successfully obtained for nine of the subjects, in-

cluding professionals and students spanning all four groups. Recorded information

was captured after each exploration period and upon completion of CP Task 5 and

PICT Task 5. Of the subjects not successfully recorded, either the recording device

did not function properly, the recording device was not available, the recording was

garbled, the subject provided only trivial information, or the subject wished not

to be recorded. Comments from non-recorded subjects were captured in written

form. Observations of all subjects were also captured in written form. Pertinent

interview excerpts and observation notes are presented in Chapter 8.

Post-Trial Questionnaire

The individual session concluded with administration of the PSSUQ. The ques-

tionnaire was completed by 16 of the 24 subjects. Sessions sometimes lasted longer

than the anticipated 1.5 hours. When subjects were pressed for time for that or

other reasons, the PSSUQ was omitted. It was not offered as a take-home exercise

because immediate impressions were desired. Box plots of PSSUQ responses are

shown in Figure 7.5.

Overall, responses are in the neutral to agreement range, with fairly large

spreads into the disagreement range. The overall mean of responses to the 19

questions is 3.0. The overall standard deviation is 1.6. The PSSUQ questions are

reproduced in table 7.19 along with descriptive statistics supplementing those in

the boxplot.

7.4 Summary

This chapter has presented the results of both an exploratory study, mainly qual-

itative, and a later quantitative experiment. The exploratory study demonstrated
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Figure 7.5: Box plots for PSSUQ questions
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No. Question Mean SD Median

1 Overall, I am satisfied with how easy
it is to use this system.

3.1 1.4 3.0

2 It was simple to use this system. 3.3 1.8 3.0
3 I could effectively complete the tasks

and scenarios using this system.
3.0 1.8 2.5

4 I was able to complete the tasks and
scenarios quickly using this system.

3.4 1.6 3.0

5 I was able to efficiently complete the
tasks and scenarios using this system.

3.1 1.7 2.5

6 I felt comfortable using the system. 3.0 1.7 3.0
7 It was easy to learn to use this sys-

tem.
2.9 1.8 3.0

8 I believe I could become productive
quickly using this system.

3.1 1.4 3.0

10 Whenever I made a mistake using
the system, I could recover easily and
quickly.

3.2 1.4 3.0

15 The organization of information on
the system screens was clear.

2.7 1.7 2.0

16 The interface of the system was
pleasant.

2.6 1.5 2.5

17 I liked using the interface of the sys-
tem.

2.5 1.5 2.5

18 This system has all the functions and
capabilities I expect it to have.

3.5 1.3 3.5

19 Overall, I am satisfied with this sys-
tem.

2.8 1.5 2.0

Table 7.19: PSSUQ Results
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that using sound to help understand program structure is viable. The experi-

ment’s null hypothesis was not rejected; that is, sonification of program structure

was not shown to improve performance in program comprehension tasks. In addi-

tion, there is no evidence that task correctness is improved through sonification.

One task did lead to better performance when sonified. Chapter 8 presents an

evaluation of the results.
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Chapter 8

Analysis

The present chapter presents analysis based primarily upon the findings stated in

Chapter 7. It was established in Chapter 7 that task performance is not of lower

duration using sound than using visual search under the experimental conditions.

Conversely, Chapter 7 provided evidence of situations in which task performance

may be improved by use of sound, demonstrated by CP Task 4.

Section 8.1 presents analysis from a task strategy perspective based on the tasks

performed in Study Two. Section 8.2 lists threats to validity for both studies.

Section 8.3 extends analysis to considerations such as adoption, incorporating

information from both studies. Section 8.4 presents design guidelines for entity

sounds based upon the results of both studies. Section 8.5 is a brief summary of

the chapter.

8.1 Exploration and Task Performance

Figure 8.1 summarizes the exploration strategies for each program in Study Two.

The usual strategies for PICT were Unsonified Strategy A and Sonified Strategy

A. The unsonified and sonified B strategies were employed by one subject each.

The use of sound appears to have an impact upon the way exploration is

performed. Without sound, a bottom-up, linear code reading strategy is initiated,
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Figure 8.1: Exploration strategies

as opposed to a more breadth-first approach with sound. This may be partly

because subjects are trying to memorize sounds prior to setting out on what they

consider to be the actual exploration, but understanding does appear to occur

during that phase and continues using a breadth-first approach.

8.1.1 CP Exploration, Unsonified

Figure 8.2 is a Unified Modeling Language (UML) class diagram [21] of salient

classes and methods in the CP program, annotated to indicate the calling structure

for CP Task 5.

The usual exploration strategy without sound occurred in a bottom up manner,

driven by the code, with some knowledge of application behavior also used for

guidance. A typical exploration for the CP program proceeded in the following

manner, expanding upon the outline shown in Figure 8.1.

1. Subject locates the main method by name and identifies its class using the
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Figure 8.2: Partial CP Class Diagram

Package Explorer.

2. Subject examines the main method in an editor window. Subject notices

that it is relatively brief, and that it calls init.

3. Subject examines init in an editor window, noticing that it is also brief.

Some subjects notice that init has two logging calls. Subject concludes that

the application is event driven, either by noting initialization of the action

handler or by the brevity of sequential logic.

4. Subject examines actionPerformed, but not deeply.

5. Subject examines logging code discovered by scanning the Package Explorer

or noted in the initialization code. In some cases, the subject did not reach

this stage, and in other cases the subject did not opt to examine logging

code.

6. Subject continues lexically and repeats drilling down.
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8.1.2 CP Exploration, Sonified

The typical strategy with sound was to become familiar with some of the class and

method sounds, then move on to listen to called-by and instantiated-by patterns,

some leading to the visual investigation of items of interest in editor windows.

Several subjects tried to memorize the sounds directly representing all of the

classes and methods, leaving the remainder of the investigation incomplete.

8.1.3 CP Task 5, Unsonified

Having performed exploration, the unsonified task strategy became a search for

calls to the logging methods known from exploration. Subjects often did not

search for additional logging methods once several had been located, resulting in

partially correct responses, in which subjects articulated two of the three logging

methods Log, History, and CLog.

One subject initiated CP Task 5 by searching for ‘log’ using the File Search

capability (distinct from the Java Search capability), which returns all three log-

ging methods and the calls to each. By 45 seconds, the subject determined that

‘requirements two and three are obviously not met.’ Only at 135 seconds did the

subject first notice CLog while revisiting the initial search results. The subject

spent the remainder of the time clicking through all logging calls to ensure that

both console and log file calls existed together each time. This subject performed

one half second short of the median and two seconds above the mean, and the

subject’s answer was fully correct. Use of File Search and visiting all of the re-

sulting calls appears to have assured correctness, achieved over an unremarkable

task duration.

First was like a breadth-first search to try to hear all the different

sounds that I could. I sequentially heard all the classes, then down

into the methods. I didn’t get time to play all the items and then to
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do the appropriate what class does it extend, what calls it, etc. In the

editors, I was partially looking to see if this method looks interesting to

me - cross-checking against the sound.

The breadth-first nature of that subject’s exploration is borne out by the ob-

servation of extensive use of sound, combined with the observation that there were

six editor windows open at the end of the exploration period.

8.1.4 CP Task 5, Sonified

A subject who successfully answered the questions in relatively lengthy task du-

ration (ranking 12th of twelve) reported using the following strategy, also used by

others whose correctness was full or partial:

1. The subject noticed all three logging classes visually in the Package Explorer

2. The subject played calls to all three methods, either remembering the caller’s

sound or else matching the caller to its sound.

A variation, used by the subject whose duration ranked third lowest and whose

response was partially correct, was to determine first, by listening to the two

discovered logging classes, whether either class imports an interface external to

the project. Log does, which the subject confirmed to be the logging interface by

opening the class in an editor window and very quickly observing the Class header,

all within the first 38 seconds of the task. CLog does not, relieving the subject

of the necessity to open and view it while focusing on whether it used the Java

logging interface. (It would have to be opened and viewed at a different point in

the task to determine that it writes to the console as its name implies, unless that

had been determined during exploration.)

The subject with arguably the highest level of musical experience and training,

also having a high level of professional software development experience, provided
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fully correct answers and equalled the shortest duration when sonified. The sub-

ject had been able to complete the typical regimen during exploration, afterward

having almost total recall of the sound associations during task performance. The

subject was also able to recognize an item prior to the completion of its sound,

being prepared to perform the next action immediately upon sound completion.

It is notable that the other subject with the shortest duration when sonified was

a student and reported having no musical experience or training. While this may

have some implication, no relationship among experience, strategy, aural memory,

and task duration, and task correctness was shown statistically in the study.

8.1.5 Discussion of CP Exploration and Task 5 Strategies

Exploration of CP unsonified using Java search, versus sonified, appears in general

to have motivated different strategies. The typical unsonified strategy is to begin

depth-first exploration of the calls in main (and then init). Several levels of calls

are examined, though possibly in a cursory manner, then the next sequential call

in the main method or the init method is examined. The sonified approach begins

breadth-first, with the subject listening to different classes and methods to find out

their sounds (knowing that tasks using those sounds were about to be performed),

but also pausing to explore those of particular interest.

It may be hypothesized that the breadth-first strategy induced by using sound

lends itself to the opportunistic introduction of top-down hypothesizing through

early, semantically-assisted discovery of beacons representing behavior of interest.

While exploring the CP program in a breadth-first manner, the subject notes, ‘oh,

here is our logging code, let’s look a bit at that.’ This strategy is not dependent on

use of sound, but without the presence of sound, exploration appears to be more

likely to proceed bottom-up such that code fulfilling notable functions would be

discovered only after discovering it through linear reading.
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8.1.6 PICT Exploration, Unsonified

Figure 8.3 is a UML class diagram of salient classes and methods in the PICT

server program, annotated to indicate the calling structure for PICT Task 5.

Figure 8.3: Partial PICT Class Diagram

Unsonified exploration of the PICT program was performed using one of two

strategies, Unsonified Strategy A and Unsonified Strategy B for PICT in Figure

8.1.

Unsonified Strategy A for PICT is similar to Unsonified Strategy A for CP, to

proceed lexically through main and explore calls of interest. Unsonified Strategy

B was employed by a particular subject, an experienced software engineer, who

scanned through the classes in editor windows to ‘see where the bulk of the work is,

try to get a flavor of what the methods are, what the class variables are, what does

it extend, eyeball the structure.’ The subject proceeded at least somewhat top-

down by using domain knowledge to pose hypotheses or answer self-constructed

questions. One of the questions addressed by the subject during exploration was,

‘how does it do its randomization?’

It appears that it was possible to learn almost the entire program during ex-

ploration, although only a few of the subjects appeared to accomplish that due to

the time limit.
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8.1.7 PICT Exploration, Sonified

The usual strategy, PICT Sonified Strategy A, was to begin by listening to the

sounds of various items, then learn something of the structure by listening to the

methods’ callers and class instantiators. Subjects skimmed the sequential logic in

the main and run methods, and most also skimmed WordRepository. A subject

(experienced software professional) whose ensuing task duration ranked at the

median described exploration:

Strategy was to explore the three classes inside the package. I could

see the structure of the program a bit from the three names, main and

server and WordRepository, so it was a matter of figuring out who was

calling whom. I ended up using the sounds to verify assumptions that

the main calls server, that server calls word repository, which would be

classic structure for this. I discovered interfaces and a couple of things

with sounds. [Didn’t look at so much code.] For the structure, I would

be looking at method headers, and a lot of the method headers are in

the [Package Explorer], so if we have a type ‘list’ and there’s a method

‘getList,’ then I could deduce a lot of structure from that.

One subject in particular dispensed with playing various items to learn their

sounds, generating Sonified Strategy B. This subject immediately set out by in-

vestigating the main method and its calls selectively, resulting in an exploration

well-suited for the ensuing PICT Task 5:

I used the same method I did before by going to main first, and I didn’t

use sound until I went to ‘start.’ I went to look at start. I went to the

run method - first I looked at the way game server was created, and I

went to the run method. Then I wanted to know about getNextWord,

so I used sound for that, and I looked at where it comes from - what
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calls it, instantiates, for example wordRepository. I wanted to know

where it was instantiated.

8.1.8 PICT Task 5, Unsonified

The essential strategy for performing the task was to either remember shuffleWords

or select it based on its name, search to see where it was used, determine its caller

hierarchy, and note that it is only invoked upon initialization.

Performing the subsequent task became a simple matter of recall. The strat-

egy is one that the subject had gravitated toward years ago while understanding

programs and still employs routinely. The subject completed PICT Task 5 in 13

seconds, ranking lowest in duration, over two minutes shorter than the median

and over three minutes shorter than the mean.

Other subjects proceeded by using the main method as a starting point and

exploring sequentially, pausing on calls of interest to explore them more deeply,

thereby using the bottom-up comprehension strategy often observed during task

CP 5 unsonified. One such subject, an experienced software engineer, also relied

on knowledge gained during exploration, specifically the existence of shuffleWords

and its call hierarchy. According to the subject, ‘it was a matter of looking through

those loops and keeping track of the number of times it was calling shuffle.” The

task required 112 seconds, the second lowest duration. A student, using an al-

most identical strategy, fared almost as well, taking 159 seconds and ranking just

beneath the median.

8.1.9 PICT Task 5, Sonified

All subjects used variations of a single strategy for performing the task. This may

be due to the smaller size of PICT relative to CP. A canonical sequence of steps

follows:

1. Subjects recalled from exploration that the method shuffleWords performs
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the randomization, or they gleaned that as a first task step by seeing its

name in the Package Explorer.

2. Listen to the caller(s) of shuffleWords, which turns out to be loadFile. At

this juncture, some subjects recalled the association of loadFile with its

orchestral-excerpt sound, some did not. Of those who did not, some could

identify its class via its sound, most could not. The ability to associate these

sounds and items appear to have impacted the following step’s duration.

3. Those who could not recall loadFile’s sound association searched for load-

File, sometimes by sequentially searching all methods, sometimes via some

heuristic or random search strategy. The subject who provided an incor-

rect response and consumed 600 seconds failed to locate loadFile. Subjects

who had trouble locating loadFile had to occasionally replay the caller of

shuffleWords to refresh the sound in their mind.

4. Once loadFile had been located, the subjects played its caller(s), determining

within a few seconds that the sole caller is WordRepository’s constructor.

The only other constructor is that within GameServer; playing the sound of

each constructor’s class clarified which constructor was indicated.

5. Some subjects openedWordRepository to learn or help themselves recall that

it calls loadFile once upon instantiation.

6. Subjects played the caller(s) of the WordRepository constructor, or they

played the instantiator(s) of the WordRepository class, to find that the

GameServer constructor is the sole caller.

7. Subjects searched or scrolled within GameServer to find that WordReposi-

tory is only instantiated upon initialization.

A variation was to guess loadFile in the first step, look at it, and determine that

shuffleWords is where the actual randomization occurs. Another variation, used
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by several subjects including the subject whose task duration was shortest, was

to look listen to caller(s) of the method getNextWord. Subjects reported imme-

diately recalling the car-starting sound as being associated with the run method.

Those that did not recall run specifically recalled that the car-starting sound was

associated with some sort of initialization or startup, and quickly deduced the

correct method.

Ten of the twelve subjects performed this task/treatment combination at du-

rations within a range of 125 seconds to 342 seconds. Five of the ten performed

in the narrower 125 to 179 second range. The narrower range, compared to task

CP 5, is in accordance with the lesser size of PICT 5 in terms of both number of

methods and lines of code (see Figure 7.3 and Table 7.5).

One subject performed PICT Task 5, in 74 seconds, the shortest duration

among subjects performing the sonified treatment and second shortest for both

PICT Task 5 treatments. Having had no particular musical experience or training,

this subject was able to utilize sound selectively without a familiarization period.

Subjects not only reported immediate association of the car-starting sound, but

most also reported the ability to immediately recall the hammering sound as that

of a constructor. Both sounds are of the concrete variety, suggesting that concrete

sounds are easier to associate. The hammering to constructor sound association

had also been well rehearsed. The car-starting sound had been encountered a few

times during exploration, so it was not as well-rehearsed as the hammering sound,

but it had been learned within a half hour of performing the task.

8.1.10 Discussion of PICT Exploration and Task 5 Strate-

gies

For this task, examining what turn out to be the the right entities during explo-

ration appears to have shortened task duration. The chances of that happening

for the PICT server are better than for CP because the former’s code base is
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smaller. Beyond that, the best-performing subject was either fortunate to have

paid particular attention to the logging code or correctly anticipated what might

be asked when performing the tasks. Memory and experience may play into this

just as in CP Task 5. CP. The task itself was then reduced to discovering or

verifying the call sequence to do the randomization and noting where call origi-

nation occurs relative to the progress of the game. In this case, the sonified and

unsonified strategies were equivalent.

8.1.11 CP Task 4, Unsonified and Sonified

CP Task 4 is the single task out of ten tasks in which sonified task performance

was lower, overall, than unsonified task performance using the Java Search fea-

ture. For CP Task 4, the subject is asked to determine the callers, if any, of

the method URLButton.actionPerformed. A successful unsonified strategy is to

perform a search for references to actionPerformed, finding no callers internal to

the project, then either recall or intuit from its name that actionPerformed is an

event handler or look at its class header to see that is an event handler. A short

cut was to initially guess by its name that actionPerformed is an event handler,

and further guess that no code internal to the project would call it. No subject

reported employing the short cut. The successful sonified strategy is to listen to

the caller(s) of actionPerformed, hearing ‘infrastructure’ outside the project as

the single result. Another successful short cut, for use with either treatment, is to

have determined the answer during exploration and recall it, but again, no subject

reported being so fortunate. The strategies articulated above will be referred to

as baseline strategies.

Lacking detailed task strategy data from interviews, the unsonified and sonified

performance of CP Task 4 are compared to theoretical minima. A keystroke-level

analysis, using the Keystroke-Level Model (KLM) [31], provides an idea of the

minimum duration for the unsonified and sonified baseline strategies to reach the
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correct conclusion. KLM assigns standard times to keystroke and mouse actions

performed by the application user, in this case the subject. The sum of those times

is the minimum time necessary to perform the complete task. Thinking times are

not included, except as noted. Possible error paths are also not included. KLM

Operators and standardized times, except for mouse positioning (P), are those

given by Kieras [79]. Positioning time is reduced from Kieras due to proximity

of items. Average Positioning (P), Wait times (W) for system responses, and

think times (T) for reading have been measured on a single-user Apple Mac Mini

desktop system which was also used by experimental subjects. The KLM analysis

offers an estimate of minimum task duration for an average user. A minimum

task duration computed using KLM can be exceeded on a keystroke level by an

above-average user. Overall, relative think times, reflecting relative cognitive load,

can be estimated by measuring actual task times against KLM’s theoretical task

times.

The initial state of the environment is shown in Figure 8.4.

Figure 8.4: Initial state of environment for CP Task 4

Analysis of the baseline task duration for the unsonified treatment is shown in

Table 8.1.

Analysis of baseline task duration for the sonified treatment is shown in Table

8.2.
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step time
(sec.)

operator description

1 0.0 Initial state: URLButton.java visible in explorer,
hand homed to mouse

2 0.7 P Move mouse to URLButton arrow icon
3 0.2 BB Click URLButton arrow icon (to expand it)
4 0.7 P Move mouse to actionPerformed
5 0.1 B Right-click actionPerformed, holding down mouse

button (to view a context menu)
6 0.2 W Wait for context menu to appear
7 0.7 P Move mouse to References in context menu
8 0.2 W Wait for second-level context menu to appear
9 0.7 P Move mouse to Workspace or Project in second-

level context menu
10 0.1 B Release mouse
11 0.2 W Wait for search results tab to show no callers
12 1.0 T Read search results
11 0.7 P Move mouse to actionPerformed
12 0.4 BBx2 Double click actionPerformed (to view it in an

editor window)
13 0.5 W Wait for actionPerformed to appear in editor win-

dow
14 0.5 T Read header

6.9 TOTAL - BASELINE MINIMUM DURATION

Table 8.1: KLM analysis of CP Task 4, unsonified

For this task, the single required sound consumes 3.4 seconds, and additional

silence is added to ensure there is no more than one caller, rounding the sound

experience to 4.0 seconds. While listening, the astute subject recognized the infras-

tructure sound, or at least that it represents something external to the program,

and realizes that it is the only caller. Similarly, for the unsonified treatment, the

subject reads the method header and realizes that it an event handler. One must

deal with the relatively lengthy (in terms of KLM operators) time for playing

the sound, but has less steps to perform compared with the unsonified treatment.

The KLM-estimated unsonified baseline task duration is 1.1 seconds less than the

sonified task duration.

KLM estimates versus actual task durations for CP Task 4 are shown in Table

8.3. All durations are in seconds.
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step time
(sec)

KLM
opera-
tor

description

1 0.0 Initial state: URLButton.java visible in explorer,
hand homed to mouse

2 0.7 P Move mouse to URLButton arrow icon
3 0.2 BB Click URLButton arrow icon (to expand it)
4 0.7 P Move mouse to actionPerformed
5 0.2 BB Click actionPerformed
6 0.7 P Move to ‘what calls this item?’ button
7 0.4 BBx2 Double click button
8 0.7 P Move to ‘Play’
9 0.4 BBx2 Double click Play
10 4.0 T Listen to sound; ensure it is the only sound (i.e.,

the only caller)
8.0 W TOTAL - BASELINE MINIMUM DURATION

Table 8.2: KLM analysis of CP Task 4, sonified

Treatment KLM min q1 median mean
Unsonified 6.9 19 21.75 36.0 41.9
Sonified 8.0 5.0 7.5 13.0 17.0

Table 8.3: KLM estimates vs. actual task durations

Two subjects performed the task in less time than the KLM estimate, and

three subjects equalled the estimate. Possible explanations include significant

recall from exploration, guessing, and faster mouse movement and wait times than

estimated by KLM. However, these explanations can also apply to the unsonified

treatment, for which no subject came close to the KLM estimate. Treatment-

specific explanations include not having to listen to the entire sound because the

subject is merely affirming the probable answer, not having to listen to the entire

sound because the subject can recognize ‘infrastructure’ within the first second

of playing the sound. Subtracting three seconds of the sound brings the KLM

estimate to 5 seconds. Even given that consideration, the data suggest that either

more cognitive load is encountered or repeating of actions is done by subjects

given the unsonified treatment.

It is notable that no subject given the sonified treatment incorrectly reported

the answer. While the previous chapter indicated that no correctness advantage
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is inferred on a statistical basis, there is a logical basis for the 100% degree of

correctness using sound. Subjects not using sound could not necessarily conclude

that anything at all calls actionPerformed, because there is no information on any-

thing external to the program. Subjects using sound are given positive feedback

that the something within the system infrastructure (the event controller in this

case) does call the method. Certainly calls of external origin can be added to dis-

played information, but in reality such information is not included in the Eclipse

environment. It is possible that the positive feedback made subjects certain of

their answers more quickly than those performing the task unsonified. Finally, it

is notable that the first-quartile subjects using sound are a mixture of professionals

and students at all levels of musical experience and training.

Discovery of external entities is limited to callers and instantiators in the ex-

periment, which uses a restricted set of sound associations compared to those

projected for the ultimate production version of the tool. Specifically, what an

entity calls, including calling targets outside the program code proper, is omitted.

Possible tasks on the basis of that capability have not been considered. Another

restriction is that of sound to the Package Explorer. The envisioned production

tool would provide the ability to select and listen to entities within editor win-

dows, inline in the code. Subjects’ suggestions during the first study pointed out

the added usefulness of the missing feature.

The length of some of the sound realizations and the inability to cut off sounds

when desired may have had an impact on the experiment by lengthening task

performance times given the sonified treatment. Two examples of how cutting off

aural entity sequences and individual entities follow.

• The listener may desire to know whether anything calls a selected method.

As soon as the listener hears any entity, the remainder of the sequence need

not be heard.

• The listener desires only to know that an selected entity is static. As soon
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as the static sound (an anvil stroke) has been heard, the remainder of the

entity’s sound need not be heard.

8.1.12 Concrete versus abstract sounds

Concrete sounds such as the car-starting sound of a run method and the ham-

mering sound of a constructor appear to have facilitated task performance more

effectively than abstract sound associations with limited rehearsal. Some search

for a sound’s association was often necessary when it is encountered. Even when

search was not required, a several-second pause was often needed to remember the

association. The strong association of a concrete sound both the need to search

and the pause, corroborating Mustonen’s observations and classification [112].

Dingler’s conclusion that earcons are much more difficult to learn than speech

[41] supports the suspicion that learning has not fully occurred during Study Two

in the given time frame. A longer-term learning regimen than that offered in Study

Two may impact task performance and correctness by improving the speed or ease

of their associations to software entities. Dingler’s study only informs short-term

learning.

8.2 Threats to Validity

This section lists threats to validity for both Study I and Study II.

Study Type Title Threat Description

I internal

validity

Saturation It cannot be certain that saturation in

terms of new qualitative information has

occurred, especially given a study with a

small number of participants.
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Study Type Title Threat Description

I external

validity

Single Pro-

gram

Sound associations were tested in Study I

against a single, relatively small Java pro-

gram, which may not be representative of

other programs.

I, II external

validity

Possible

Subject

Selection

Bias

Professional software developers and some

students were recruited personally by the

researchers and their associates. It is possi-

ble for that reason that the sample is not a

representative cross-section of the software

development community.

I, II external

validity

Cultural

Bias

While diversity was sought, the subjects

are primarily Caucasian, predominately

male, and all residents of the United

States. This may affect the association

of sounds, especially those of the concrete

variety whose meanings may be biased by

culture or gender.

II construct

validity

Task Dura-

tion

Measured task duration may not accu-

rately reflect time to solution. Duration is

measured to the point at which the subject

declares arrival at a solution. Some sub-

jects may be confident of a solution as soon

as it occurs, while others may reflect on it

before declaring it. While this likely does

not impact the overall outcome, it may im-

pact the comparative analysis of individual

trials.
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Study Type Title Threat Description

II external

validity

Strategies Students’ comprehension strategies may

differ from that of professionals, and pro-

fessionals’ strategies may differ by age and

background. The overall statistical result

measures a mix of students and profession-

als and therefore may not be applicable to

the professional community as a whole.

II external

validity

Program

Selection

Program comprehension tasks were mea-

sured in Study II against two Java pro-

grams of similar size, both prepared for

production but in an academic environ-

ment. The tasks against these programs

may not be representative of tasks against

programs of other size, scope, language,

domain, etc.

II external

validity

Task Selec-

tion

The measured tasks are of relatively short

duration and are possibly not representa-

tive of the most common program compre-

hension tasks found in industry.

II external

validity

Single

Sound

Scheme

Outcomes may vary given alternate sound

schemes, the ability of the subject to select

a sound scheme, or the partial ability of the

subject to design his or her own scheme.
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Study Type Title Threat Description

II internal

and ex-

ternal

validity

Training The level of training for each study was

limited by practical constraints. Study II’s

task durations and observed comprehen-

sion levels may be impacted by the limited

training and limited pre-trial tool usage.

In industry use, longer training time and

extended tool use may result in lower task

times or higher comprehension levels.

II internal

validity

Locations While consistency between the two loca-

tions was sought, there may be unob-

served variation in administration or mea-

surement between the two geographic lo-

cations, given different examiners.

Table 8.4: Threats to validity

8.3 Other Considerations

The PSSUQ survey and adoption of the concept and tool are considered in this

section.

8.3.1 PSSUQ Survey

The overall results of the PSSUQ responses suggest that the tool is usable with-

out difficulty. The results also suggest that the tool is in need of improvement

which may facilitate future task performance. Table 7.19 in Chapter 7 listed the

results of responses to fourteen PSSUQ questions pertaining to the sonification

tool, collected from subjects during the task-based experiment. Table 8.5 pro-
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vides summary statistics over the fourteen questions. The grand mean is very

low mean high
mean

grand
mean

low stdev high
stdev

avg stdev

2.7 3.5 3.01 1.3 1.8 1.58

Table 8.5: PSSUQ summary statistics

close to the center value of the five-point Likert scale, and the lowest and highest

means are both within a half point of the grand mean. The arithmetic average of

the standard deviations indicates a broad spread. The responses to each question

covered a wide range, none clustering at either extreme. It is possible that one or

more of the following are true:

1. the subjects as a group did not have strong positive or negative opinions of

the tool’s usability,

2. the subjects as a group took into consideration that the tool is a prototype,

which may mitigate negative perceptions,

3. the features provided by the tool are too few for usability to be adequately

captured by the PSSUQ.

Insight may be provided by the low and high means. The low mean, 2.7, is over

the responses to ‘the organization of information on the system screens was clear.’

This suggests that the Sonification View is in need of improvement. It is clear

that the Play button can be eliminated or better differentiated from the selection

buttons. It is also clear that functions can be combined such that no selection

button need to apply only to classes or only to methods. It was suggested by one

subject that additional audiovisual aids may serve to facilitate memory of sounds

during the learning phase or when unfamiliar, rarely-heard entities are encountered

aurally - a ‘sound search’ feature. The high mean is over the responses to ‘this

system has all the functions and capabilities I expect it to have.’ As the subjects

are newcomers to the sonification concept, it would seem likely that most would

not have expectations beyond those they actually encountered.
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8.3.2 Adoption Issues

There is not yet a compelling case for adoption of the sonification concept or tool

presented herein. The reasons are threefold:

1. The studies performed in this thesis did not indicate significant task perfor-

mance improvements.

2. Much of the qualitative feedback from the first study is positive about trying

out the sonification tool during actual maintenance work. On the other hand,

statements by some experienced software engineers during the second study

about using the same comprehension strategies for a number of years suggest

that adoption may be difficult due to reluctance or inability to shift strategy

when necessary.

3. Many developers listen to music using while programming. To facilitate

adoption, a tool may have to allow listening to music but interrupt the

music with sound on demand.

Further evolution of the tool and the scope of the sound mapping, along with

further experiments and case studies involving a wider set of tasks, may help to

alter the outlook for adoption. However, diffusion of technology is a complex pro-

cess that, when successful, can be lengthy. Rogers [132] expresses diffusion as a

form of social change stimulated by effective utilization of communication chan-

nels. Rogers indicates that diffusion can happen in either planned or spontaneous

ways, possibly involve multiple interrelated innovations, and require the assistance

of change agents and opinion leaders. According to Rogers, diffusion progresses

according to an S-shaped curve that enters its largely vertical component only af-

ter early adoption by 10 to 20 percent of the candidate community. Redwine and

Riddle [129] found, through analysis of case studies as of 1985, that maturation

times for technologies (including methodologies and conceptual constructs such

as abstract data types) took 11 to 23 years before reaching the point at which
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widespread diffusion was possible, requiring six major phases from basic research

through propagation to 70 percent of the candidate community. Pfleeger [124] sur-

veyed technology adoption literature, highlighting successful practices. Pfleeger

brings to the fore the role of gatekeepers, who evaluate emerging technologies

to determine if they address organizational needs, exhibit cost-effectiveness, and

meet a variety of other criteria. Pleeger also points out that stakeholders may be

promoters or inhibitors of new technologies.

8.4 Guidelines

Based on the reference mapping scheme and the information garnered through

its validation, a set of rules for best determining the mapping of entities to their

foreground sounds is set forth. The rules below are listed in precedence order from

highest to lowest.

1. The core entity foreground sound pattern should be between 0.5 seconds and

3 seconds in length. Rationale: This was the span in the study, and the

subjects were able to process sound patterns within this range.

2. If a concrete audio representation is available and usable, select one. Ex-

amples: a door closing for a close method, a shopping cart for a shopping

cart class. Constraints: should not be used if the entity has a structural

modifier, that is, its foreground sound may change based on its place in the

architecture. A writer, which is characterized by an upward musical pattern,

cannot be represented by a concrete auditory representation. If the entity

belongs to a collection of similar entities by function, the audio representa-

tion should also belong to a class of such representations. For example, close

methods should always be represented by door closing sounds. Rationale:

concrete sounds which subjects can easily identify proved fastest and most

accurate for recognition of entity characteristics.
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3. If a concrete audio representation is not available, use an abstract or mu-

sical representation. The timbre (sound quality), pitch range, and rhythm

can carry architectural and identifying information. For example, a series of

similar, harsh timbres might indicate a factory class or method. In the ref-

erence mapping, pitches moving strictly upward indicate writing or posting

(‘putting up to’), while strict downward patterns represent reading or get-

ting (‘taking down from’). Rationale: subject performance was good with

these representations, and these types of sound patterns can carry significant

information and are flexible.

4. For entities with commonly recurring functionality, the functionality is more

important than the entity’s specific identification. In the reference mapping,

get and put methods are all bell-like sounds. The pitch of the bell can vary

while remaining within a generally treble range. Rationale: Sometimes

identification of these entities is near-trivial, architectural information is

better understood in this sonification scheme, and architectural rather than

identifying information may reduce visual context switches.

5. Similarly, for entities with a known role in a design pattern, that role is more

important than specific identification. Again, a factory class is an example.

Rationale: Same as previous.

8.5 Summary

This chapter has presented an evaluation of the results from both studies described

in Chapter 7. It has also presented a set of design guidelines for mapping sounds

to software entities, generalizing the reference sound mapping.
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Chapter 9

Conclusions

9.1 Introduction

This chapter summarizes the contributions of the thesis and articulates conclusions

in light of the research question and success criteria. An agenda for future work

is set forth.

The remainder of this introduction summarizes the contributions of this the-

sis. Section 9.2 addresses the success criteria stated in Chapter 1. Section 9.3

addresses the research question, propositions, and associated conclusions. Section

9.4 describes an agenda for future work. Section 9.5 concludes the chapter and

the thesis.

As in previous chapters, the term developer indicates the individual using

Eclipse and its sonification extension.

9.1.1 Contribution

This thesis advances the state of research into the use of sound in program com-

prehension.

Due to visual clutter, the need for visual context changes, and under-employment

of the human audio channel, sonification, or the representational use of non-speech
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sound, is seen to be able to supplement visual means of understanding the static

structure of programs. The following research question was formulated and ex-

pressed in Section 1.3:

Can sonification supplement visual information to support comprehen-

sion of the low-level, static structure of non-trivial computer programs?

It was postulated that a mapping of sound patterns to the low-level struc-

tural entities of a computer program, e.g. the packages, classes, interfaces, and

methods in a Java program, can facilitate a maintainer’s understanding of the

program. A set of propositions and success criteria were established in Section

1.3. The propositions stated that a viable sound mapping, incorporated into an

integrated development environment (IDE), can help to identify software enti-

ties, characterize them, and characterize their relationships, improving program

comprehension performance.

A sound mapping was devised and incorporated into a prototype demonstrator

tool. The sound mapping is described in Chapter 4. In addition to entity iden-

tification, entity characterization, and relationship characterization, the mapping

includes aural representation of a size metric, the number of encapsulated methods

in a class. The tool, an extension to the Eclipse IDE with Csound as a back-end

sound generation engine, is described in Chapter 3.1. It enables the developer to

select an entity and listen to that entity’s referencing entities or the entity itself.

An entity’s parents, such as as method’s class and package, and also its referenc-

ing entities, are heard as a sequence of their respective sounds. An entity itself is

represented as the layering of an underlying sound (for packages and classes), an

identifier sound, and modifiers that indicate either language-specific indications

such as a Java method being static, or semantic indications such as a method’s

role as an accessor.

Two studies were performed. Study One was a human-subjects study to infor-

mally verify that the mapping is viable, that is, easily learned, understood, and
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retained in the short term. The design of Study One is described in Section 7.2.1.

Ten software professionals participated in individual sessions consisting of training,

listening, and interviews. Training was provided in the form of a fourteen-minute,

pre-recorded audio stream explaining and demonstrating the sound mapping. Lis-

tening consisted of interpreting information from five sound streams drawn from

application of the sound mapping to a small Java expense-recording program.

The interview provided a vehicle to discuss the subject’s experience and elicit

impressions and improvement suggestions. Study Two was a 24 subject, 2 x 2

crossover experiment to determine whether using the tool improves the perfor-

mance of program comprehension tasks. The design of Study Two is described

in Section 7.2.2. Subjects were software professionals and advanced computer sci-

ence students. Each subject was provided advance web-based training, followed by

participation in an individual session. Each session commenced with additional,

in-person training, following which the subject performed program comprehen-

sion tasks on two production-quality programs. Each subject performed half of

the tasks with a sonified treatment and the other half unsonified. Subjects were

observed during initial exploration of each program and subsequent performance

of the tasks. Subjects were also interviewed after their explorations and comple-

tion of the final task for each treatment. The interviews were aimed at eliciting

the subjects’ task strategies.

The results of Study One are reported in Section 7.3.1. The results indicate

that the sound mapping can be understood and retained over the course of the

session. The study suggests that characterization of entities and their relationships

was stronger than identification of specific entities.

The results of Study Two are reported in Section 7.3.2. The results indicate,

at a 5% significance level, no improvement (decrease) in task duration when using

sound. The results also suggest no advantage in terms of accuracy of understand-

ing. The result do, however, suggest lower task duration may be achievable given
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the sonified treatment under some circumstances.

Chapter 8 provides analysis of the results of the studies. The analysis indicates

that, in some cases, a sonified treatment motivates a different task strategy than

does an unsonified treatment. The sonified strategy is mainly breadth-first, the

unsonified strategy mainly depth-first. Both strategies primarily utilize bottom-

up comprehension strategies informed by top-down domain knowledge. Given this

finding plus the exceptional finding when listing a method’s callers and the limi-

tations of the study, it is possible that future research will uncover and categorize

tasks in the comprehension of static software structure for which sonification is

advantageous. Section 8.4 contains a set of generalized guidelines for creating

sound mappings to software entities.

9.2 Criteria for Success

Section 1.4 lists five criteria for success, all of which have been met by constructing

the reference sound mapping, developing the tool, and performing two studies.

1. Define a reference sound mapping to static software entities for one pro-

gramming language. A reference sound mapping to static software entities

was devised. The mapping associates earcons and auditory icons to the

packages, classes, interfaces, and methods in Java software programs. The

mapping consists of overlapping and sequentially-presented sound patterns,

both concrete (such as a door closing) and abstract (often musical motives).

The mapping makes use of recorded sounds, sophisticated synthesis and pro-

cessing techniques, and localization to provide a rich aural experience. The

mapping was realized for three programs: an in-progress expense reporting

program, a course predictor program, and the server part of a word-guessing

program. The mapping is fully described in Section 4.1.
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2. Evaluate the reference sound mapping concept. Study One, described in Sec-

tion 7.2.1, provided informal validation that sounds and sequences of sounds

in the mapping can be readily understood and retained. The results of Study

One, reported in Section 7.3.1, indicate that the categorization and charac-

terization of software entities by listening to their sound representations is

viable. Identification of specific entities is less successful. Table 7.10 summa-

rizes participants’ success in recognizing the audio constructs. Study Two,

as analyzed in Section 8.1, strengthened and supplemented the impressions

gained via Study One. Concrete sounds’ associations are easier to recall

than abstract sounds, involving less cognitive overhead. The identification

of specific entities meets with limited success because of the problem of rep-

resenting the relatively abstract software entities with sound combined with

the large number of sounds necessary.

3. Apply the mapping to program comprehension tasks. Study Two, an exper-

iment described in Section 7.2.2, demonstrated that the comprehension of

static program structure is possible using sound as an aid. However, as in-

dicated in Section 7.3.2, no significant advantage was shown in either task

duration, the primary consideration of the experiment, or task correctness,

a secondary consideration. Prior to performing any tasks, each subject was

allowed an exploration period with either the sonified or unsonified treat-

ment. It was shown that exploration of one of the programs unsonified using

a Java search facility, versus sonified exploration, appears to have motivated

different task strategies, as discussed in Subsection 8.1.5.

Although only the two ultimate tasks were used to test the hypothesis, all

task durations were recorded, and one of the penultimate, short-duration

tasks suggests that circumstances involving off-screen entity relationships

may reduce task duration under a sonified treatment. The results for that

task are reported in Section 7.3.2 and discussed in subsection 8.1.11.
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4. Develop a prototype demonstrator tool using an instance of the reference

sound mapping. A tool was developed and subsequently utilized in Study

Two. Described in Section 5.2, the tool consists of an extension to the Eclipse

IDE integrated with Csound, a high-end sound synthesis and processing

engine. The Eclipse extension includes a visual component that enables

the developer to select which kind of sound association to hear and play it.

Entities to hear are selected in the Eclipse Package Explorer.

9.3 Propositions and Conclusions

Chapter 1, Section 1.3 stated an overall research question and five propositions.

The research question asked if sonification can supplement visual information to

support comprehension of the low-level, static structure of non-trivial computer

programs. Results from the task-oriented experiment, using two relatively small

(by industry standards) but non-trivial programs, supports the notion that non-

speech sound is usable for program comprehension when the primary activity is

source code reading and search, but it does not convincingly support the notion

that non-speech sound can add value in terms of increased program understanding

or decreased task time. Conclusions based on each of the five propositions are

presented in Table 9.1.

9.4 Future Work

Future research that centers around three areas is envisaged: the tool, sound

mappings, and program comprehension studies. Advanced ideas may provide a

synthesis of those three areas.
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Proposition Conclusion

1. A consistent, compre-
hensible mapping of non-
speech sound patterns to
the static entities of a
software system can be
devised.

A non-speech sound mapping from auditory signs and
sequences of auditory signs to structural Java con-
structs, referred to as the reference mapping, was de-
vised. That mapping is consistent in structural and
acoustical ways. It is comprehensible when applied
to relatively small programs, as demonstrated in the
first study and verified in the second study.

2. The mapping can be
used to identify software
entities.

The ability to identify specific software entities is lim-
ited. This may hinder the application of the reference
mapping or a similar sound mapping to larger pro-
grams. On the other hand, longer periods of training
and usage than were possible over the course of the
two studies may enhance identification of key entities
through repetition, and may accordingly help over-
come application to larger programs.

3. The mapping can be
used to characterize soft-
ware entities and their
relationships when en-
countered.

Successful characterization of entities as packages,
classes, interfaces, and methods was demonstrated in
both studies. Moreover, successful characterization
of classes according to language-syntactic analogues
(e.g., static) and semantics (e.g., data writer, main
method) is also successful. Listeners can make use of
localization to determine at least simple characteris-
tics such as whether the sound represents a local or
external entity. In the task-based experiment, sub-
jects were easily able to ascertain the relationship of
one entity to others when they could recall the others’
sounds. Otherwise, determining the relationship

4. The mapping, in-
corporated into an inte-
grated software develop-
ment environment, can
be used in the perfor-
mance of program com-
prehension tasks.

The task-based experiment has shown the reference
mapping supported by an audiovisual tool to be us-
able. That is, tasks were completed using the sound
mapping in place of an efficient visual search feature
and in addition to other visual features of Eclipse.
It is expected that this conclusion extends to sim-
ilar languages and integrated development environ-
ments. Retention during task performance appears
to be stronger when the audio representation is con-
crete rather than abstract.

5. Use of the map-
ping in a multimodal
software development
environment can im-
prove performance of
software comprehension
tasks over that using a
software development
environment without
sound.

This has not been convincingly demonstrated. Re-
duced task duration when the tasks and environment
meet certain conditions is suggested by one task (CP
4) in the experiment, but there is insufficient data to
conclude that as valid.

Table 9.1: Propositions and Conclusions
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9.4.1 Tool

The tool can be refined in ways that may further support program comprehension.

The prototype tool can be improved for further experimentation by implementing

the following features:

1. Enable the developer to listen to those on-screen and off-screen entities ref-

erenced by the developer-selected entity.

2. Enable the developer to halt an aural sequence of entities.

3. Enable the developer to pause an aural sequence of entities.

4. Provide the ability to skip aural entity sequences, listening parent-child re-

lationships in their entirety or only to the single entity of interest.

5. Extend sonification to source code in editor windows.

6. Trigger sound by pointing device hover rather than click, which will require

addressing timing considerations (sounds should not start too early or too

late while performing rollover quickly and pausing on various entities).

7. Support transitive entity references.

8. Supplement the tool with an automated means to instantiate the sound

mapping in order to be of practical use over numerous programs. The current

manual method is excessively labor intensive. There may be research issues

encountered in formulating the decision-making process for such automation.

Some of the issues to be addressed include:

• a sound selection algorithm that maximizes differentiation while main-

taining structure and meaning,

• accommodating developer preferences and possibly developer sound se-

lection within a prescribed framework,



Conclusions 205

• incorporating semantic knowledge, for example, design patterns, an

object as a data writer,

• updating entities and their related entities automatically as source code

is being modified.

9.4.2 Mapping Sound

The science of auditory display design is far from mature, and the practice of

audio display design is largely intuitive. Theory is emergent, as demonstrated by

recent literature which provides only the first large-scale attempt to derive common

design patterns [49] and the first significant steps to marry auditory display design

and cognitive psychoacoustics [112]. Advances in the science of auditory display

can inform the evolution of sound mappings with the reference mapping as a

starting point. Future work in the sound mapping domain is discussed below.

1. The rules and design choices should be periodically re-examined from cog-

nitive and empirical perspectives and adjustments made.

2. A useful field study would involve persons in various software engineering

roles using a refined tool over time on a larger project than those in the

present research.

• If appropriate to the situation, researchers should monitor tool usage

through keystroke and sound activation logging.

• A subset of the sound to entity associations should be selected or even

designed by the tool users.

• Interviews and observations can supplement the acquired data to ad-

dress questions such as for what tasks the tool is most frequently used,

whether there is any actual or perceived task improvement, and reten-

tion of associations after substantial use.
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3. The field study may be followed up by a task-based experiment similar to

the second study in the present research, the difference being that the lat-

ter subjects would be have existing experience with mapping and tool and

may have adapted task strategies to accommodate aural input. In one or

more such experiments, various task types and longer task lengths should

be chosen, and maintenance coding may be required.

4. The mapping rules generalized from the reference mapping should be vali-

dated. This could be accomplished in the experiment or field study described

above.

9.4.3 Advanced Ideas

1. As new technologies become less expensive and more widely available, pro-

gram comprehension using auditory means can take advantage of them.

Specifically, binaural sound localization technology based on head-relative

tracking functions, head tracking devices, and digital signal processing hard-

ware and software may provide an added dimension of value. It may help

to make program comprehension a more immersive experience. Audio tech-

niques may be combined with virtual reality software visualization, provid-

ing a fully immersive program comprehension environment. Such an envi-

ronment may ultimately replace the interactive development environment

experience currently known to software developers. Software objects would

“live” in 3D space, both visually and aurally.

2. A sound mapping divorced from visual means may service visually-impaired

software engineers. Aural navigation, filtering, and details on demand would

have to supplement the sound mapping. Details via spoken text may sup-

plement the non-speech sounds. The work of Metatla, who constructed

relational diagrams for the visually impaired, Nickerson, who sonified the
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London Underground Real-Time Disruption Map, and associated research

should be consulted [107][115].

3. A sound mapping and a refined tool may be employed as an educational aid.

Computer science undergraduate programs have historically concentrated

on languages, data structures, and algorithms rather than architectural con-

cerns. The tool may be used in undergraduate programs to enhance stu-

dents’ awareness of software organization at the architectural level without

major curriculum changes. The students would be asked to add or modify

an algorithm or other small set of code in the context of a larger program,

using sound to help understand what entities to integrate to. Awareness of

separation of internal versus external libraries such as java.io would also be

enhanced.

4. The present research addresses usage of the tool, but not construction of the

sound mapping for each program to be investigated. Construction should be

automated, leaving no work to the software developer, who has the program

itself to deal with. Construction should also transparently accommodate

changes made to the program. Construction techniques are destined to in-

volve heuristic as well as deterministic decision making.

5. A sound mapping similar to the reference mapping may be applicable in

other domains. Sonifying non-software domains and performing task-based

evaluation would inform usability, advantages, and generalizations.

9.5 Summary

This chapter has offered conclusions and traced them to the research question

and propositions introduced in Chapter 1. Suggestions for future work were also

presented.
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The thesis as a whole introduced a new concept for use of sonification to aid in

the comprehension of static program structure, described a tool that implements

the concept, offered an exploratory human-subject study to informally test and

advance that concept, and followed that by a human-subject, task-oriented ex-

periment to test the efficacy of the concept in a particular situation. While the

experiment showed no significant improvement over traditional, non-audio means

of performing program comprehension, one of its components suggested possible

improvement under certain circumstances. Because of that, and because of the

exploratory stage of the research and young maturity of the idea, the possibility is

alive that the concept or some derivative of it may improve or influence software

engineering practice. It is the researcher’s hope that the ideas articulated in this

thesis will spawn further ideas as yet unknown and encourage their study.



209

Appendices



210

Appendix A

Study One Session Protocol

This appendix contains the protocol used to guide the subject sessions. The

protocol is meant to offer guidance that can be varied in response to per-subject

variation and conditions that may arise during the session.

Participant Protocol

The human-participant test sequence is given below. The person administering

the test should be sure the participant understands their role and agrees in writing

to the conditions of the test prior to commencement of the steps below.

A. Ensure that Participant Knows Sufficient Computing

Ask the participant to describe the following Java constructs or their equivalents

in another object-oriented language:

1. Meaning of package, class, method, and interface (essential)

2. What a constructor is (essential)

3. Difference between a static method and an instance method (essential)

4. What the “this” keyword means (essential)

5. What an interface is (essential)
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6. A passive class versus an active class (desirable)

B. Administer Tone Recognition Test

1. Announce each group of items as shown in the answer key.

2. Play each of the fourteen items, pausing after each item.

3. For each item, record the Participant’s response before proceeding to next

item.

C. Play Training Stream

1. Provide Simple Package Explorer view for inspection throughout this step.

2. Provide Mapping Guide for inspection throughout this step.

3. Play the training stream for the participant.

4. Allow the participant to ask any questions, pausing the stream.

5. When done, allow the participant to ask questions, replay part of the stream,

or replay the entire stream.

D. Play Expenses stream

1. Begin recording the session.

2. Ask participant to identify each element’s type and characteristics. Early in

the stream, pause as needed. Later in the session, bias toward not pausing.

3. After hearing a package and all of its elements, pause and ask the participant

to describe the structure of the package and the elements it contains.

4. At pauses, ask the structural significance or meaning of groups of elements.
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E. F. G. Play the two References Streams and the Class Size Stream

1. For each stream, ask questions as above.

2. For the references streams, ask which referenced items are external vs. in-

ternal. Also ask any meaning, in an architectural sense, of what is called.

(The external class and its methods are all about data writing.)

3. For the class size stream, ask the size range of each class heard.

H. Draw project structure diagram

1. Provide the participant with paper and pencil.

2. Re-playing the streams heard in E-G above, have the participant draw the

structure of the project in a comfortable form: a tree, UML diagrams, or

other. The participant may re-play parts of the stream as needed.

Interview

1. Elicit any further observations and impressions that the participant may

have. Seed the interview with the following questions:

(a) What was easy and what was hard for you to do?

(b) Would you use a tool based on this sound mapping? Why or why not?

(c) In what circumstances, or in support of what activity, would you envi-

sion using the tool?

(d) What further thoughts strike you?
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Appendix B

Study Two In-Session Training

B.1 Description

The protocol for in-session training is included below. Subjects are encouraged to

ask questions during the training part of the session. A topic can be skipped if it

has been adequately addressed prior to being encountered in the protocol.

B.2 Protocol

B.2.1 Set Up

Bring up and initialize the sonified Expenses project in Eclipse. Expand/contract

stuff such that the three classes appear in the Explorer, but no classes or methods

do. Ensure that diagram is present.

B.2.2 Introduction

• Explain the space-air-earth analog for packages, classes/interfaces, and meth-

ods.

• Have the subject open and close various things in the Eclipse project to

get the feel for navigating among packages, classes, interfaces, and meth-



Study Two In-Session Training 214

ods. Explain the space-air-earth analog for packages, classses/interfaces,

and methods.

B.2.3 Packages

• Explain that a package has an underlying satellite-like sound. Play the

underlying sound.

• Have the subject play the three package sounds using the myself selection.

B.2.4 Classes and Interfaces

• Have the subject expand client1Package and then Expenses.java.

• Have the subject play Expenses.java. Explain that the wind-like sound is the

underlying class sound, and the single tone is the unique sound identifying

the Expenses class.

• Have the subject play Expenses, the class listed immediately underneath

Expenses.java. Ensure that the subject understands that they are both the

same item.

• Have the subject expand commonPackage and expensesPackage (but not

their classes).

• Have the subject play three or four of the newly-appearing classes. (If the

subject stumbles upon an interface, explain it.)

• Have the subject play the method expensesPackage.ExpenseAccess.store.

Explain that the purely upward pattern of a single instrument indicates

a data writer: a method whose sole function is to take some data and write

it. Explain the analogy of an upward pattern as posting something up.

Mention that the converse is a data reader, with a purely downward, single-

instrument pattern. This can be any instrument: a flute, an electronic



Study Two In-Session Training 215

instrument, etc. Also note this is NOT an accessor/mutator method, which

has its own bell-like sound (lengthier than the sound for the present store

method.)

• Explain that interfaces are each unique bird calls. Have the student play

INonTaxable.java (or the interface INonTaxable) and ITaxable.java (or the

interface ITaxable).

• Have the subject play the class NonTaxable[.java]. Explain that an interface

bird call can be placed after a class identifying sound, while still superim-

posed on the underlying wind sound, to indicate that the class implements

that interface. Have the subject play Taxable[.java].

• Not found: Have the student play the TaxNotIncluded class. Explain that

this is the sound not found sound. It applies equally to packages, interfaces,

classes, and methods. The entity exists, but its sound cannot be determined.

• Have the subject play the class ExpenseList. Note that it implements an in-

terface external to the project. That interface turns out to be java.util.Iterator.

B.2.5 Methods

• Have the subject play the constructors for Taxable and NonTaxable. Explain

that constructors are outdoor wood hammering sounds.

• Have the subject play the two constructors for ExpenseDelimitedAccess. Ex-

plain that overloaded constructors have different numbers of (more) hammer

strokes. Have the subject play the constructor for ExpenseList. Note that

it is the same as that for ExpenseDelimitedAccess. Also point out that the

items above ExpenseList() are variables and are therefore not sonified.

• Have the subject play Expenses:main(String[]). Explain that the anvil before

the primary method sound indicates that the method is static.
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• Accessors and Mutators. Have the subject play expensesPackage : AppCon-

figuration : getAccessMethod(). Ask if the subject recalls what the anvil

means. (answer: static.) Explain that the double bell sound indicates an

accessor or mutator. The lower of the two double bells, which also declines

slightly in pitch, means accessor, while the higher one, which rises slightly

in pitch, means mutator. Have the subject open getAccessMethod() in an

editor window to verify that it is static and that it is an accessor. Have the

subject play putAccessMethod() and view it in the editor to verify it is a

mutator.

• Readers and Writers. Have the subject play expensesPackage : AppCon-

figuration : store(ExpenseData). Explain that the purely upward pattern

indicates a data writer, whether to a database, disk, or other permanent

storage. Explain that a reader is purely downward. Also explain that the

upward or downward pattern must be a single sound, not an ensemble (such

as an orchestra) or combined sounds. Have the subject play expensesPack-

age : ExpenseFacade : retrieveAll(). Explain that this is a data reader.

Explain that it meets the criteria by being a single tone in a strictly down-

ward pattern. Have the subject play retrieveByDay(Date). Ask what the

sound means. (It means that the sound is unidentified.)

• Accessors/Mutators vs. Readers/Writers. Ensure that the subject can dif-

ferentiate readers, writers, accessors, and mutators by playing them without

the subject looking and making the subject guess which is being played.

B.2.6 Extends, Instantiated-By, Referenced-By

• Extends. Have the subject turn on Item, select Itaxable.java, and listen to it.

Next have the subject select Taxable.java and listen to it. Have the student

explain what is heard: that Taxable is a class that implements the interface
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ITaxable. Have the student select TaxIncluded.java and listen to it. Now

have the student change from Item to What class does the item extend? and

listen to TaxIncluded. Have the subject explain that TaxIncluded extends

(inherits from) the superclassTaxable, which in turn implements the interface

ITaxable. Be sure the subject understands the sound realization rules of

extends versus implements.

• Extends, continued. Ask the subject to listen to select several other classes

at random and listen to what they extend. Ensure that the student knows

that, if nothing is heard, the class does not inherit from a superclass. Have

the student locate, by listening, another class within expensesPackage, other

than TaxIncluded and TaxNotIncluded, that extends a superclass, and iden-

tify what it inherits from. (ExpenseDelimitedAccess and ExpenseXmlAccess

each inherit from ExpenseAccess).

• Instantiated by. NOTE: instantiated-by is only implemented for classes

within the packages client1Package and commonPackage. Have the student

switch to What calls the item and select a constructor to hear what calls it.

This clearly means that the class is instantiated by the constructor’s caller.

But what if there are multiple constructors or no constructor? Explain that

that’s why What instantiates this item? is also available. Have the student

switch to what instantiates this item? and select and play at least three

classes to hear what instantiates them.

• Called by. NOTE: called-by is only implemented for methods within the

packages client1Package and commonPackage. Have the subject select and

commonPackage : DebugHelper and play its own sound.

• Have the subject switch to what calls the item? and play commonPackage.

Explain the serialization of what calls it.
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B.2.7 Within vs. Outside Project Space

• Called by infrastructure. Have the subject select the method client1Package

: Expenses : main and listen to what calls it. Explain that this sound rep-

resents, generically, infrastructure, meaning the operating system, its event

loop code, and such. Explain that it is characterized as outside the project

space primarily by being off to either side and secondarily by sounding fur-

ther away. Items internal to the project sound centered and closer. Mention

that entities such as the class java.io and its methods are also outside the

project space and therefore also have the off-center, more distant sound.

B.2.8 Practice

Perform each practice task with and without sound. Ensure that the subject

knows about the search features within Eclipse. The subject should strictly use

the sound mapping for the tasks to answer the questions in 1 through 6. The

subject should use sound and then conventional means for 7.

• Various simple tasks for reinforcement. (Does class x implement an inter-

face? What calls method x.y? Does class y extend any superclass?) Repeat

each for multiple items x.

• What calls DebugHelper : getCount? What calls DebugHelper : incIdent?

• What instantiates commonPackage : DebugHelper? Why?

• What calls DebugHelper : warn(String) ? Describe what you hear.

• What instantiates DebugHelper? [answer: nothing does.] Why is De-

bugHelper never instantiated? [answer: all of its methods are static.] Is

it used at all?
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• Are the debug warning messages indicating unimplemented classes imple-

mented in a consistent manner? How best would you make them consistent

and ensure their continued consistency?

• The client gets an expense item from the user, but the server stores it.

Explain how the information placed in an instance of ExpenseData is handled

by the server upon receipt from the client. [Maximum task duration: 5

minutes.] Use sound where applicable.

• Demonstrate how the previous task would be performed without using sound.
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Appendix C

Study Two Session Protocol

C.1 Description

The protocol for the Study Two experiment session follows. This protocol is

performed after completion of in-session training and an optional ten to fifteen

minute break.

C.2 Researcher Instructions

C.2.1 Have on Hand

• Timepiece that counts minutes and seconds (e.g., watch, stopwatch)

• Pad of paper and pen or pencil, for experimenter

• Pad of paper and pen or pencil, for subject

• Experiment description (in case subject did not read theirs beforehand)

• Ethics form (in case subject did not complete theirs beforehand)

• Pre-session questionnaire (in case subject did not complete theirs before-

hand)
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• Training script, for experimenter

• Sound mapping reminder diagram

• Printout of Simple Project for use during training

• Experimenter’s worksheet

C.2.2 Then Do

1. Collect ethics form from the subject, and address any concerns about the

experiment.

2. Collect questionnaire from the subject.

3. Determine if the subject is a professional or a student. In general, a postgrad-

uate student who has performed a year or more of non-trivial programming

work as a research assistant is considered a professional. Add the subject’s

name to the experimenter’s worksheet and add the next sequential subject

number for professional or student.

4. Determine which of the two programs will use sonification, using the exper-

imenter’s worksheet.

5. Determine the order in which the programs will be given and which will use

sonification, using the experimenter’s worksheet.

6. Ensure that the subject completed the pre-session training regimen:

• Played the training audio stream

• Played and performed the training audio exercises

• Completed the Ethics Form

• Completed the Pre-Session Questionnaire
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7. If the regimen was not completed, the subject should complete it before the

session. The subject should take a break of at least five minutes between

the self-training regimen and the next step, in-person training using the

Expenses project.

8. Provide the reminder diagram, bring up the Expenses project, and admin-

ister the in-person training. Follow the relevant steps in the Common Pro-

cedure for Both Programs and Sonified Procedure for Both Programs below

to bring up the Expenses project.

9. Administer the first project, following the relevant procedure.

10. Administer the second project, following the relevant procedure.

C.2.3 Common Procedure for Both Programs

1. Bring up Eclipse. ( /prototype/eclipsedev.sh)

2. Bring up the desired project. (Run Run Configurations Select Configura-

tion)

3. Ensure that the Package Explorer window appears at the left, and ensure

that it is wide enough to show all the class names. If does not appear, make

it visible. (Window Show View Project Explorer)

4. Ensure that the Package Explorer shows the classes but not any of the meth-

ods. (Contract classes if necessary using the arrow to the left of each.)

5. Ensure that no source code appears in any visible editor frame.

6. Ensure that the Sonify View is visible. (Window Show View Other Soni-

fication Sonify View)

7. Provide pad (8.5 x 11 inches or larger) and pen or pencil.
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8. Perform either the SONIFIED PROCEDURE or UNSONIFIED PROCE-

DURE.

Sonified Procedure for Both Programs

1. Ensure that the audio output is not muted.

2. Start CSound by running the appropriate script.

• sonifExp.sh for Expenses

• sonifCourse.sh for Course Predictor

• sonifPict.sh for Pictionary

3. Initialize the project, then initialize the sound stream. (You will hear the

sound stream startup sound.)

4. Administer the in-person training using the Expenses project or administer

exploration using the Course Predictor or Pictionary project.

5. Administer the tasks, observing and listening to the talk-aloud protocol.

6. Administer the post-project debrief.

Unsonified Procedure for Both Programs

1. Do not provide audio. (If desired, mute the audio output to ensure this.)

2. Allow the subject to explore for the duration specified for the project. Sub-

ject may use any visual means available.

3. Administer the tasks and a short debrief after each task.

4. Administer the post-project debrief.
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For Each Task

Explain the task, repeating if asked until clear. For the last task for each project,

place the task description near the subject. Inform the subject to issue a finished

remark when the task has been completed (when the subject is confident of the

result or answer). The subject may also issue a stuck remark when sure he or

she is stuck before the maximum task duration. Start the clock, allowing the

subject to perform the task up to the stated maximum time. Stop the clock

upon the subject’s “finished” or “stuck” remark. Note the time taken and any

other significant observations. Close any open editor window before starting the

subsequent task. Ensure that no classes are expanded prior to the subsequent

task.

C.2.4 CP - Course Predictor

INTRODUCE THE PROJECT

Show the Course Predictor GUI, the applet version of which is at

http://www.loyola.edu/computerscience/graduate/index.html.

Explain that it filters such that one can see courses offered in different categories

for different semesters.

EXPLORATION

Ask if the subject will feel uncomfortable being observed during Exploration. If so,

do not observe the exploration. Otherwise, observe parts of the exploration to gain

an idea whether bottom-up, top-down, or opportunistic comprehension appears

to be occurring. Tell the subject they can freely explore for 12 minutes. Allow

exploration for 12 minutes. Do not count any time spent asking and addressing

clarification.

Ask if the subject will feel uncomfortable if you make an audio recording of
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the remainder of the session. Explain that only the debrief after each task will be

used. If comfortable, start the audio recording.

Briefly debrief the subject after each task as to their strategy and what they

learned about the code.

TASKS, IN SEQUENCE

1. [5 minutes] What package/class/method combination(s) instantiate the class

URLButton? (Answer: the method cpred.init.)

2. [5 minutes] Identify all classes and methods which are callers of the method

cpred.greenPanel. (Answer: the method cpred.init.)

3. [5 minutes] Does URLButton implement any interfaces? If so, how many?

Are they internal or external to the project? (Answer: it implements Ac-

tionListener, which is external.)

4. [5 minutes] Is URLButton:actionPerformed called by any code internal to

the project? Is it called by any code external to the project? (Answer: it is

called by the “infrastructure.”)

5. [15 minutes] (Perfective) (First, describe to the subject the salient points of

the class java.util.logging.Logger.)

Previous developers have implemented logging of desired messages. Multi-

ple developers have each worked on their own logging code, so we know it

can be streamlined. Currently, logging may or may not meet the following

requirements:

• Requirement 1: “All messages that are logged will be logged

to both the console and the log file.”

• Requirement 2: “All logging shall occur via a single logging

class within the project.”
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• Requirement 3: “All logging shall utilize the built-in Java class

java.util.logging.Logger.”

Determine if the project meets the requirements stated above. If they are

met, how? If they are not met, why? How can logging be streamlined?

(Solution: CLog only logs to the console, and it doesn’t use the Java Logger

class, but multiple cpred methods call it. Log does use the Java Logger

class, and one method calls it. History extends Log, albeit improperly, and

it is instantiated, but it is never subsequently called for any logging. To

streamline, remove History and its instantiation, remove CLog, and redirect

CLog’s call targets to Log.)

PROJECT DEBRIEF

Interview the subject about their overall strategies, comfort level with use of sound,

and overall impressions. When done, stop the audio recording.

C.2.5 PICT - Pictionary Server Package

INTRODUCE THE PROJECT

Show or sketch the Pictionary client GUI. Explain that there are rounds of turns

in which each player draws while the others guess. The game provides a random

word from a list to the player whose turn it is. The player draws in the large

graphics area, and the others guess the word in the smaller text area. Either

a player guesses and is awarded points or the timer runs out and the next turn

begins.

EXPLORATION

1. Ask if the subject will feel uncomfortable being observed during Exploration.

If so, do not observe the exploration. If not, observe parts of the exploration
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to gain an idea whether bottom-up, top-down, or opportunistic comprehen-

sion appears to be occurring. Tell the subject they can freely explore for

a few minutes. If SONIFIED, they can use sound and expand anything in

the browser. They cannot bring up files in an editor window. If they do by

accident, they must immediately close the editor window. If UNSONIFIED,

they can do anything that Eclipse will let them do except use sound. Tell

the subject they can freely explore for 5 minutes. Allow exploration for 5

minutes. Do not count any time spent asking and addressing any usage or

clarification questions.

2. Ask the subject if they will feel uncomfortable if you make an audio recording

of the remainder of the session. Explain that only the debrief after each task

will be used. If comfortable, start the audio recording. Note, the tasks

below apply only to items in the PictionaryServer package. Briefly debrief

the subject after each task as to their strategy and what they learned about

the code.

TASKS, IN SEQUENCE

1. [5 minutes] Identify all callers of the following method:

PictionaryServer.WordRepository.getNextWord.

(Answer: the method GameServer.run.)

2. [5 minutes] What instantiates WordRepository?

(Answer: the constructor in the GameServer class.)

3. [5 minutes] Identify all data writers within the Pictionary Server package.

(Answer: there are none. One might guess loadFile, whose representation

has an upward pattern but is not a single sound, and which does more than

simple write data.)
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4. [5 minutes] Identify any/all dead classes and methods. (i.e., those that are

never called.) Write the answer on paper.

(Answer: four of them: getCurrentWord, getList, getNumberOfWords, and

getWordsLeft.)

5. [15 minutes] (Quality Assurance task)

Ensure that the code meets the following two design criteria:

“The entire word list will be made available in randomized order

(a) before the first round is begun, and (b) after every 5 rounds of turns.”

If the code does not meet a criterion, explain why not. If the code meets a

criterion, explain how it does.

(Solution: The word list is only refreshed upon initialization, so only (a)

is met. WordRepository.shuffleWords is called by WordRepository.loadFile,

which is in turn called by the WordRepository constructor, which is only

called by the GameServer constructor, which is only called by GamerServer-

Main:main.)

PROJECT DEBRIEF

Debrief the subject about their overall strategies, comfort level with use of sound,

and overall impressions. When done, stop the audio recording.

C.2.6 PSSUQ

Administer the PSSUQ after both sets of tasks have been performed.
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