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Abstract

Predicting the assembly of multiple proteins into specific complexes is critical to

understanding their biological function in an organism, and thus the design of drugs to

address their malfunction. Consequently, a significant body of research and development

focuses on methods for elucidating protein quaternary structure. In silico techniques

are used to propose models that decode experimental data, and independently as a

structure prediction tool. These computational methods often consider proteins as

rigid structures, yet proteins are inherently flexible molecules, with both local side-

chain motion and larger conformational dynamics governing their behaviour. This

treatment is particularly problematic for any protein docking engine, where even a

simple rearrangement of the side-chain and backbone atoms at the interface of binding

partners complicates the successful determination of the correct docked pose. Herein, we

present a means of representing protein surface, electrostatics and local dynamics within

a single volumetric descriptor, before applying it to a series of physical and biophysical

problems to validate it as representative of a protein. We leverage this representation

in a protein-protein docking context and demonstrate that its application bypasses

the need to compensate for, and predict, specific side-chain packing at the interface of

binding partners for both water-soluble and lipid-soluble protein complexes. We find

little detriment in the quality of returned predictions with increased flexibility, placing

our protein docking approach as highly competitive versus comparative methods. We

then explore the role of larger, conformational dynamics in protein quaternary structure

prediction, by exploiting large-scale Molecular Dynamics simulations of the SARS-CoV-

2 spike glycoprotein to elucidate possible high-order spike-ACE2 oligomeric states. Our

results indicate a possible novel path to therapeutics following the COVID-19 pandemic.

Overall, we find that the structure of a protein alone is inadequate in understanding

its function through its possible binding modes. Therefore, we must also consider the

impact of dynamics in protein assembly.

ii



Declaration

The work in this thesis is based on research conducted within the Degiacomi research

group at Durham University, UK; initially from October 2017 at the Department of

Chemistry, and, from October 2019 onward, the Department of Physics. No part of

this thesis has been submitted for consideration elsewhere for any other degree or

qualification. Everything written here is my own work unless indicated otherwise in

the text.

Copyright © 2021 by Lucas Sebastian Powell-Rudden

“The copyright of this thesis rests with the author. No quotation from it should be

published without the author’s prior written consent and information derived from it

should be acknowledged.”

iii



Acknowledgements

To all the friends, family, teachers, colleagues and acquaintances who have carried me

on my long journey through the entirety of the UK’s education system, thank you.

Most especially to my mum, from reading my history essays to waking me up in the

morning with instant coffee. I couldn’t have done this without your unwavering support.

To my Chemistry teacher Mr Payne at CCF, for inspiring me, and for all the important

lessons that weren’t about Chemistry. To Chloe, who has been my rock throughout my

time at Durham, and who I’ve tortured with every single piece of written work during

my PhD, and in the times before. To all of my undergraduate friends who followed

me on this path: Dan, Colin, Vanessa and Jack, and to the new friends of CG200X

past and present: Martin (ruler of MartinLand), Tom, Gary, Sarah, Andrew, Golda,

Vanessa and Lewis, who brought joy and laughter to my time in the office.

Thank you to the collaborators who made much of the work in this thesis possible.

To Chris, for teaching me pretty much everything you see in Chapter 4. To our 2019/20

Masters student George, who did some preliminary work for Sections 2.6 and 4.3.

To Valentina, who guided me through my Masters, and for introducing me to my

supervisor. And so, to Matteo, who is, without a doubt, the greatest supervisor I

could have possibly asked for. I am privileged, honoured, and extraordinarily lucky

that you chose me as your first PhD Student, in what I’m confident will be a hugely

successful academic career. From your resolve to always pursue loose ends and make

sure we’re correct (all hail the true King of Benchmarks), to staying humble and never

being afraid to admit a mistake. Your kindness – both your continuing support and

friendship, to everyday things like helping that lady on the train back from Sheffield.

Your creativity; thinking up novel solutions to challenging problems, and interesting

projects we could pursue. Your open-mindedness and willingness to listen to ideas, a

trait my friends tell me are unusual in academic supervisors. These are the hallmarks

of not just a great teacher, but of a great person. You will forever be one of the great

teaching influencers in my life, and I am envious of anyone that gets the chance to

be a part of your group. One day, I hope to make you proud, as you make me proud

everyday with your continued dedication to Science and life in general. I just hope I

don’t spend too long analysing that trampled flower on my journey.

iv



Contents

Abstract ii

Declaration iii

Acknowledgements iv

Publications & Manuscripts ix

Common Terms & Abbreviations xi

1 Introduction 13

1.1 The building blocks of life . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Resolving the structure of a protein . . . . . . . . . . . . . . . . . . . . 14

1.3 In silico protein structure prediction . . . . . . . . . . . . . . . . . . . 19

1.3.1 Protein folding . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.2 Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3.3 Protein-protein docking . . . . . . . . . . . . . . . . . . . . . . 23

1.4 Underlying methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.4.1 Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . . . 27

1.4.2 Particle Swarm Optimisation . . . . . . . . . . . . . . . . . . . 32

1.4.3 Solvent Accessible Surface Area . . . . . . . . . . . . . . . . . . 33

1.4.4 Voronoi tessellation . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.5 Thesis objectives & outline . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.6 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2 A novel representation of molecular structure and dynamics 50

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.2 Theory: building the Spatial and Temporal Influence Density map . . . 52

2.2.1 From protein structure to dipole map . . . . . . . . . . . . . . . 53

2.2.2 From dipole map to Spatial and Temporal Influence Density map 54

2.3 Benchmarking and structural characterisation . . . . . . . . . . . . . . 56

2.3.1 STID map parameter determination . . . . . . . . . . . . . . . . 56

2.3.2 Convergence of side-chain motion . . . . . . . . . . . . . . . . . 59

v



CONTENTS

2.3.3 Benchmarking the internal self-consistency of STID maps . . . . 62

2.3.4 Relationship between STID maps and the structure of a protein 64

2.3.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.4 Measuring microscopic permittivity . . . . . . . . . . . . . . . . . . . . 69

2.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.4.2 Measuring the dielectric constant – theory . . . . . . . . . . . . 70

2.4.3 Parameter determination . . . . . . . . . . . . . . . . . . . . . . 72

2.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.4.6 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.5 On the density of proteins . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2.5.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

2.6 Providing insight into residue structure and dynamics . . . . . . . . . . 92

2.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

2.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

2.6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

2.6.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

2.8 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3 JabberDock: Accounting for side-chain dynamics in protein docking112

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.2 The JabberDock protein docking engine . . . . . . . . . . . . . . . . . 114

3.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.3 Water-soluble protein docking . . . . . . . . . . . . . . . . . . . . . . . 123

3.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

3.3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

3.4 Transmembrane protein docking . . . . . . . . . . . . . . . . . . . . . . 131

3.4.1 Convergence of side-chain motion . . . . . . . . . . . . . . . . . 132

3.4.2 Environment-independency of the STID isovalue . . . . . . . . . 133

3.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

3.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

3.4.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

3.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

vi



CONTENTS

3.5.1 Transthyretin fibril formation . . . . . . . . . . . . . . . . . . . 146

3.5.2 Confirming Mass Photometry data for bo3 oxidase dimer formation150

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

3.7 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

4 Beyond JabberDock 160

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4.2 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

4.3 Harnessing dynamics from bound complexes for unbound docking . . . 164

4.3.1 Preliminary work . . . . . . . . . . . . . . . . . . . . . . . . . . 164

4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

4.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

4.4 Gradient-based protein docking . . . . . . . . . . . . . . . . . . . . . . 169

4.4.1 The Signed Distance Function . . . . . . . . . . . . . . . . . . . 169

4.4.2 The analytical solution – docking toy models . . . . . . . . . . . 170

4.4.3 The analytical solution – docking proteins . . . . . . . . . . . . 174

4.4.4 The semi-empirical solution – docking proteins . . . . . . . . . . 180

4.4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

4.4.6 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

4.5 ShapeTracing: rapid generation of protein docking solutions . . . . . . 197

4.5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

4.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

4.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

4.5.4 Software availability . . . . . . . . . . . . . . . . . . . . . . . . 203

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

4.7 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

5 Dynamics of the SARS-CoV-2 spike glycoprotein 209

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

5.2.1 Dual binding mode of the spike is compatible with viral membrane

curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

5.2.2 Dual binding mode of the spike is possible under a range of

virion-ACE2 receptor arrangements . . . . . . . . . . . . . . . . 217

5.2.3 Binding multiple ACE2 to one spike, or a cross-linked spike, is

possible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

5.2.4 Predicting the ACE2–RBD complex with JabberDock . . . . . . 228

5.3 Discussion & conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 229

5.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

5.4.1 Modelling of ACE2 bound to two spikes . . . . . . . . . . . . . 233

vii



CONTENTS

5.4.2 Modelling of multiple ACE2 bound to cross-linked spikes . . . . 235

5.5 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

6 Conclusions 239

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

6.1.1 Aim 1: To develop a representation that encompasses the key

characteristics of a protein . . . . . . . . . . . . . . . . . . . . . 239

6.1.2 Aim 2: To apply our representation in a protein-protein docking

context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

6.1.3 Aim 3: To leverage Molecular Dynamics simulations to elucidate

diverse quaternary structure . . . . . . . . . . . . . . . . . . . . 242

6.1.4 The impact of dynamics in protein assembly . . . . . . . . . . . 243

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

6.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

6.4 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

viii



Publications & Manuscripts

Section 2.2, 2.3, 3.2 and 3.3 contain modified extracts pertaining to the creation and

benchmarking of STID maps, as well as its application to docking.

Lucas S. P. Rudden and Matteo T. Degiacomi

Protein Docking Using a Single Representation for Protein Surface, Elec-

trostatics and Local Dynamics

Journal of Chemical Theory and Computation, 2019, 15(9), 5135-5143, DOI: 10.1021/

acs.jctc.9b00474

Section 2.5 focuses on how STID maps can inform on the relationship between the

density of a protein and its local dynamics.

Lucas S. P. Rudden, Erik G. Marklund, Matteo T. Degiacomi

On the Relationship between Protein Density and Dynamics

In preparation

Section 3.4 shows how our protein-protein docking software released with the 2019

paper, can also be extended to work with transmembrane protein complexes.

Lucas S. P. Rudden, Matteo T. Degiacomi

Transmembrane protein docking with JabberDock

Journal of Chemical Information and Modeling, 2021, 61(3), 1493-1499, DOI:10.1021/

acs.jcim.0c01315

Section 3.5.2 discusses our contribution to a collaborative publication attempting

to qualify the utility of mass photometry for integral membrane protein structure

characterisation.

Anna Olerinyova, Adar Sonn-Segev, Joseph Gault, Cédric Eichmann, Johannes Schimpf,

Adrian H. Kopf, Lucas S. P. Rudden, Dzmitry Ashkinadze, Radoslaw Bomba, Jason

Greenwald, Matteo T. Degiacomi, J. Antoinette Killian, Thorsten Friedrich, Roland

Riek, Weston B. Struwe, Philipp Kukura

Mass Photometry of Membrane Proteins

Chem, 2020, 7, 1-13, DOI: 10.1016/j.chempr.2020.11.011

ix

10.1021/acs.jctc.9b00474
10.1021/acs.jctc.9b00474
10.1021/acs.jcim.0c01315
10.1021/acs.jcim.0c01315
10.1016/j.chempr.2020.11.011


CONTENTS

Section 4.5 is a modifed extract from a collaborative conference paper on a new

algorithm that ray marches 3D non-convex shapes for efficient collision detection.

Adam Leach, Lucas S. P. Rudden, Sam Bond-Taylor, John C. Birgham, Matteo T.

Degiacomi, Chris G. Willcocks

Shape tracing: An extension of sphere tracing for 3D non-convex collision

in protein docking

2020 IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE),

2020, DOI: 10.1109/bibe50027.2020.00016

Chapter 5 discusses our molecular modelling work from a collaboration that aimed to

provide better insight into possible SARS-CoV-2 spike glycoprotein – ACE2 complexes

in light of the COVID-19 pandemic.

authors TBD

Dimeric ACE2 crosslinks SARS-COV2-Spike protein both promoting and

inhibiting infection

In preparation

x

10.1109/bibe50027.2020.00016


Common Terms & Abbreviations

Bound A protein monomeric unit that has been obtained from a known,

resolved complex; i.e. the protein is already in the necessary

conformation to bind with its partner.

CAPRI Critical Assessment of Prediction of Interactions. The community

of scientists that develop and test protein-protein docking software.

CCC Cross correlation coefficient. A statistic that measures the similarity

between two identically sized sets of data. A value approaching 1

means the sets are identical, while −1 indicates the opposite.

fnat. Fraction of correct residue contacts. This is the ratio of correct

residues in contact (defined as an atom within 5 Å of the partner),
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1 | Introduction

1.1 The building blocks of life

If atoms are the building blocks of the Universe, then amino acids are the building

blocks of life. Underpinning the phenomena of life as we know it, from the single-cell

organism to a human, is the ability of these amino acids to assemble into chains.

These chains can be anywhere from a dozen amino acids to the thousands or tens of

thousands. Typically, the smaller molecules (. 50 amino acids), or those produced

through post translational modifications or cleavage, are called peptides, although the

exact definition of a peptide according to its size is ambiguous. The larger chains

we call proteins, deriving from the Greek proteios, meaning “first” or “foremost”,

reflecting their importance to life. The sequence in which the 20 standard amino acids

are arranged determines how the protein will fold into a 3D shape, and is therefore

responsible for the secondary, and subsequently tertiary and so forth, structure (see

Figure 1.1). It is the specific interactions permitted by the structure of these proteins

that facilitate most of the work vital for the regulation of an organism. Thus, the

structure determines the function of a protein.

When a protein misfolds, whether as a consequence of a mutation (i.e. the

sequence fundamentally changes) or entropy over a host’s lifetime, the result is usually

benign, and the protein is destroyed. Occasionally, however, these misfolded proteins

can propagate and grow in number, becoming the dominant variant. Proteins can also

retain their original structure following a mutation but have their binding affinities to

different partners altered. Major diseases such as Alzheimer’s,1 diabetes,2 Parkinson’s1

and cancer3 are as a consequence of a protein’s operational malfunction. Proteins

also play a large role in a range of infectious diseases, making them partly responsible

for devastating pandemics such as COVID-19.4 Resolving the molecular structure of

a protein is, therefore, an area of critical research, both from a medical perspective,

but also to enhance our understanding of the proteome and subsequent higher-level

biological functions. The Protein Data Bank (PDB)5 is a testament to this, with over

170000 structures having been deposited to date. The PDB was originally established

in 1971 containing only 7 structures, but has since grown exponentially into the world’s

13



1.2. Resolving the structure of a protein

largest and most widely utilised databank of protein structures, with 14058 structures

released in 2020 alone.6

O

R

N
H

R

HO

K
D
V
K

F
G

N
D
A
G
V

K
M

L
R

G
V

Single
Amino Acid

Primary
Structure

Secondary
Structure

Tertiary
Structure

Quaternary
Structure

(1) (2) (3) (4)

(5)

Figure 1.1: Protein structure scales for GroEL (PDB: 1SS8). (1) Individual atomic elements make
up a single amino acid, in this case, serine. R denotes the continuation of the backbone. (2) Amino
acids join into a chain to form the sequence/primary structure, coloured by amino acid type. (3)
The chain folds into a 3D secondary structure, a local arrangement of amino acids (coloured by type)
adjacent to one another in the sequence. Here, the chain folds into an α-helix. (4) Different regions
of the larger chain fold heterogeneously, giving rise to a variety of secondary structural elements –
β-sheets (yellow), helices (purple), turns (cyan), and unstructured (white). These, together, make up
the tertiary structure of the protein. (5) Different chains can assemble into a quaternary structure.
Here, we colour the complex by chain.

1.2 Resolving the structure of a protein

Resolving the structure of a protein is non-trivial, with several distinct techniques having

evolved over the years to address the issue.7 X-Ray crystallography is by far the most

popular, providing ∼89% of the protein structures8 in the PDB5 at the time of this thesis’

submission. While the technique is currently the most widely used, ensuring the proper

crystallisation conditions is complicated and time-consuming; indeed, the necessary
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crystallisation procedure can occasionally lead to conformational changes away from

the native state,9 resulting in misleading structures being deposited in the database.

Furthermore, the method struggles with proteins that lack a well-defined structure, such

as intrinsically disordered proteins, due to the requirement of a well-ordered crystal.

Thus, the portion of the proteome largely available on the database are weighted

towards less dynamic proteins that are easier to isolate and characterise, dynamic

referring to anything from side-chain motion to considerable backbone and domain

reshuffling. Nuclear Magnetic Resonance (NMR),10 making up 7% of the database,

can produce an ensemble of structures, providing key information on the dynamics of

a protein and conformational flexibility. However, to uniquely determine a structure

requires a variety of NMR experiments, and in general, these methods are unable to

resolve larger complexes (typically ∼50 kDa), as NMR is essentially an optimisation

problem, with the number of interatomic distances, used ultimately to resolve the

structure, increasing as O(n) with n atoms. Finally, cryo-Electron Microscopy (cryo-

EM),11 making up 3% of the PDB, has increasingly gained traction with the community

due to its significant benefits of providing native-like environments and not requiring

challenging crystallisation conditions. However, routinely obtaining high-resolution

structures comparative to NMR and X-ray crystallography has remained elusive due to

current microscope resolutions. Furthermore, cryo-EM is typically restricted to large

complexes (& 100 kDa). Despite these barriers, it is widely expected that cryo-EM will

become the primary tool in protein structure determination due to its ease of use and

consistent improvement in the quality of structures through the continuing “resolution

revolution”.7

In general, our concept of the proteome is skewed by the techniques used to observe

it,12 thus the majority of resolved structures are rigid molecules, placing limitations on

our interpretation of a protein’s conformational space and dynamics in its function.

Another impact of this bias is our limited access, and therefore understanding of,

membrane proteins, whose reliable structure determination continues to evade all

three methods. Of the ∼170000 structures available on the PDB, only ∼7000 (4%)

are transmembrane proteins5 despite them making up 20-30% of the proteome and

50% of all known drug targets.13 This relatively small number of available structures

is primarily due to the greater technical difficulties associated with characterising

them compared with soluble proteins, whereby removing them from the lipid-soluble

environment can destabilise them. NMR14 and Cryo-EM15 have shown to be able to

overcome some of the issues encountered by X-ray crystallography,16 but both still

have their limitations.

Integrative modelling (see Figure 1.2), where one or more techniques are combined

to fill knowledge gaps or enhance our confidence in a structure, has increasingly

been used to address the shortfalls of these methods, particularly for problematic
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1.2. Resolving the structure of a protein

protein complexes.7,17 For example, low-resolution electron density maps generated

from X-ray crystallography or cryo-EM can still prove useful when coupled with other

structural data. Where NMR is unable to provide a full structure, it can provide

sparse data on structural restraints; namely secondary structure and torsion angles

from chemical shifts,18 orientational restraints from residual dipolar coupling (RDC),19

and distance restraints from Nuclear Overhauser effect (NOE) experiments.20 Other

experimental techniques have developed over the years to address the limitations

of these three key methods, although none can generate a structure by themselves.

Mass Spectrometry (MS) provides structural information through the mass of the

protein or protein fragments. Clever MS pre-processing techniques can provide a rich

amount of structural information; chemical cross-linking21 yields information on residue

contacts and protein conformational dynamics, Hydrogen/Deuterium Exchange probes

the backbone structure, while covalent labelling22 informs on side-chain flexibility

and solvent accessibility. Additionally, ion mobility offers data on the shape of the

protein or protein complex. A significant advantage of MS is that it does not suffer

from the mass limit issues, and requires only a small sample size – in contrast to the

techniques mentioned above. Electron paramagnetic resonance (EPR) spectroscopy,

similar to NOE experiments in NMR, can provide distances between individually

labelled atoms,23 as well as identify secondary structure elements.24,25 Small-angle

X-ray scattering (SAXS) can identify the oligomeric state of a protein, and provide

details on the shape of a complex while retaining its solution environment.26 Generally,

SAXS is used to provide low-resolution data; however, recent efforts have demonstrated

that it can be used exclusively with the sequence to provide the structure.27 Förster

resonance energy transfer (FRET) can be used to probe the specific interactions of

different subunits of a protein, including long-range interactions, by attaching an

acceptor (usually a yellow fluorescent protein), and donor (cyan fluorescent protein)

fluorophores at different termini. It has the distinct advantage in that it can be

performed both in vivo and in vitro, providing key information on both individual

molecule28 and protein-protein interactions.29 All of these methods, by themselves,

are unable to elucidate the entire protein structure. Still, by integrating the limited

structural elements from each, we can overcome their individual limitations, thereby

resolving the structure of a protein.
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Figure 1.2: Schematic of different experimental techniques that can be integrated to enhance protein
structure prediction. Each subfigure contains the specific structural information that can be extracted
from the technique. All protein renderings, including domains and subdomains, are of GroEL (PDB:
1SS8, EMDB: 8750), except for the SAXS subfigure. (a) X-ray crystallography. An X-ray diffraction
pattern30 of a crystallised protein31 is Fourier transformed into an electron density map. Atomic
structures are refined against this map. (b) Cryo-Electron Microscopy. Thousands of proteins images
are extracted from a micrograph32 taken in a flash-frozen solution; the combination of these images
provides an electron density map. (c) Nuclear Magnetic Resonance. Inter- and intramolecular
interactions perturb the local chemical environment, providing structural data from CS, RDC, and
NOE experiments. (d) Mass Spectrometry. Protein or peptide fragments have different time of
flights according to their mass/charge ratio, providing distinct peaks in the spectra.32 (e) Electron
Paramagnetic Resonance. Paramagnetic spin labels, most commonly nitroxide, are attached to
cysteines and the distances between their average position measured. (f) Small-angle X-ray scattering.
The scattering profile of a protein (here lysozyme, PDB: 1DPX) in solution can be used to determine
an average shape. (g) Förster Resonance Energy Transfer. Donor and acceptor fluorophores are
attached to the termini of two proteins of interest to probe the protein-protein interactions.

All of these experimental techniques rely, at some level or another, on computa-

tional software to interpret the experimental data, and there are a plethora of existing

17



1.2. Resolving the structure of a protein

means to assist users in decoding their raw results. Both X-ray crystallography and

cryo-EM utilise human-guided spatial fitting algorithms to position atomic structures

into electron density maps; popular software includes MAUD,33 and Situs34 respectively.

Chemical shift NMR predictive software, such as PROSHIFT,35 requires making chem-

ical shift predictions from a model, before assessing and matching with experimental

data. CHESHIRE,18 can combine this data with the sequence to predict backbone

torsion angles and subsequently secondary structure predictions from PDB insertions.

The Integrative Modelling Platform (IMP)36,37 offers a range of interpretive software

to perform integrative modelling. Recent tools designed within the IMP includes a

means to generate coarse-grained models of large protein complexes to match, score and

rank against ion mobility data of protein shapes.38,39 The popular Rosetta suite also

offers a comprehensive selection of software for most techniques to facilitate integra-

tive modelling. For instance, CS-Rosetta40 provides chemical shift-based predictions,

RosettaNMR20 integrates NOE and rotational restraints into a structure prediction

scoring function, while RosettaEPR23 has been developed to extract data from EPR.

The perpetual advancement of these integrative computational methods continues to

enrich the exploitation of raw data in the pursuit of more accurate structure prediction.

These computational interpretive tools generate protein models to match and

score against the experimental data. This procedure gives confidence in the model

and allows the software to change and improve on it iteratively. However, many of

these models struggle to consider the impact of protein dynamics on the experimental

data. The aforementioned Situs software,34 operates by projecting an atomic structure

probe onto a lattice, convolving this with a Gaussian kernel, before attempting to

match the generated density with a low-resolution electron density map from either

cryo-EM or SAXS. They use Fast Fourier Transform (FFT)-accelerated methods to

rapidly sample the conformational space, determining both the best fit and whether

the probe is appropriate. This method, inherently, struggles to consider the impact

of native dynamics, although recent strides to include flexibility have been made.41

Typical approaches to characterising protein shapes through collision cross-section

measurements via ion mobility, involve generating a super coarse-grained representation

from a crystal structure and matching the collision cross-section of this convex shape

against the experimental data. Since the experimental data includes information on

dynamics, there is potential here for improved matching. Recent efforts, such as

IMMS Modeler42 within IMP, have begun to better consider the impact of dynamics

on generating predictions via a simulated annealing Monte Carlo procedure. Similar

approaches have also successfully used Molecular Dynamics to give better consideration

to the dynamics and flexibility.43 Consideration of protein dynamics is, therefore,

critical to fully interpreting the experimental data, and it is only very recently that

current tools have begun to include dynamics into their modelling.
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In addition to providing models to match experimental data, computational

methods have also been used to generate key parameters used in experimental techniques.

One such fundamental biophysical quantity is the density of a protein. Protein mass

density; i.e. the density of an individual protein as opposed to the density of a protein

solution, is an essential parameter for a range of experimental techniques, most notably

X-ray crystallography structure determination. Since the late ’70s, it has been assumed

to be a constant with several proposed values derived from both experimental data

and theoretical techniques.44–48 In 2004 Fischer et al.49 compared the work on the

theoretical densities of 12 proteins calculated via Voronoi tessellation by Tsai et al.,45

with experimental values from Squire & Himmel,47 and Gekko & Noguchi.48 They

deduced that 1.410(6) g cm−3 should be taken as a minimum value and that the

density is molecular weight-dependent. In contrast, protein densities derived from ion

mobility measurements (in vacuo) have been found to be substantially lower, with

values between 0.85 g cm−3 and 1.1 g cm−3.50 However, these gas-phase densities make

geometric assumptions from the collision cross-section data, and it has been shown that

these can lead to a reduction in the measured density.51 In 2020 alone, values ranging

from 1.2352 to 1.5 g cm−3 53 (with 1.35 g cm−3 being the most common) have been used

in 22 different works, from those looking at collagen-water interactions54 to protein film

formation on cell culture surfaces.55 The values proposed by Fischer et al. referenced

in those works were primarily derived from computational models of static crystal

structures. Since proteins are inherently dynamic, it is necessary to consider whether

the consensus value for protein density holds in different environmental conditions,

where we do not treat the protein atoms as fixed in space. Ashkarran et al.56 recently

presented a novel technique using magnetic levitation to measure the density of proteins

in solution. They indicate that the density could be substantially lower (at a value of

1.03(2) g cm−3) than previously thought. The authors hypothesise that the observed

distribution and disagreement with the hitherto accepted value may be due to protein

dynamics. Ensuring that the density of a protein used in a wide range of fields is correct

is of clear benefit to the community, but this depends on a more reliable computational

model that better considers the native dynamics of a protein in any environment.

1.3 In silico protein structure prediction

In addition to allowing structural biologists to interpret their data, in silico methods

can independently complement experimental methods, or indeed provide insight not

available through in vivo or in vitro experimentation. These computational tools

broadly fall into three catagories: protein folding,57 Molecular Dynamics58 and protein-

protein docking.59
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1.3. In silico protein structure prediction

1.3.1 Protein folding

Despite the significant strides made by the community, there is a considerable gap

between the number of deposited protein structures in the PDB and the number of

known sequences (185 million) in the UniProt database.60 Predictive protein folding

is the solution to this (Figure 1.3). It involves generating a protein’s secondary and

tertiary structure from its primary structure/sequence. The protein folding community

is nucleated around the Critical Assessment of protein Structure Prediction (CASP)61

biannual competition, which attempts to identify the most competitive means to predict

protein structure. While CASP includes prediction categories for integrative modelling

with experimental data from FRET, NMR, SAXS and cross-linking MS,62 it also offers

opportunities to demonstrate the viability of ab initio methods. These software, such as

Rosetta,63 I-TASSER64 and QUARK,65 are primarily based on Monte Carlo methods

that sample possible backbone conformations using sections of the input sequence to

insert structural fragments from the PDB iteratively. An associated scoring function

based on various physical and empirical terms is then used to score a specific structural

arrangement. The task is made considerably more manageable through homology

modelling, whereby a similar sequence with a known structure is used as the basis for

prediction. Popular homology modelling tools include Modeller66 and SWISS-Model.67

Figure 1.3: Protein folding example: from an unstructured species into two α-helices. The two
α-helices on the right are extracted from a monomeric unit of halorhodopsin (PDB: 1E12), with the
structure on the left an unstructured prediction of the same sequence returned by Modeller66 without
any structural constraints.

In a very recent watershed moment for the CASP community, Google’s AI-based

AlphaFold68,69 achieved a median score of 92.4 Global Distance Test (GDT) for the

CASP14 test set.70 GDT is a score between 0 – 100 related to the percentage of amino

acids within some small threshold distance from the correct position. A score of 90 GDT

is considered competitive with experimental methods, a threshold other software rarely

meet. This score is a vast improvement from traditional physics-based approaches,

leading to the CASP assessors themselves to conclude a general solution to the 50

year protein structure prediction problem. It is important to note, however, that it

is not yet a universal solution, as AlphaFold was unable to provide accurate models
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for the most flexible cases – although it did achieve a median score of 83.5 GDT for

the hardest cases versus 67 GDT from the best human-assisted teams. Furthermore,

AlphaFold relied on a training set made up of structures from the PDB, which, as we

have discussed, is biased towards structures that are easier to crystallise. Thus, edge-

case protein families and potentially less understood areas of the proteome, including

transmembrane proteins, still need thorough benchmarking before a universal solution

is declared. Nevertheless, this is still a remarkable scientific breakthrough.

1.3.2 Molecular Dynamics

Proteins often adopt multiple conformations in vivo to fulfil their function, and indeed

will usually react to some binding interaction through an allosteric conformational

switch. Many of these experimental techniques, particularly X-ray crystallography, offer

only the static structure of protein in a singular conformation, neglecting its dynamics

from the side-chain motion to larger domain-level shifts. Capturing these dynamics

is, therefore, critical to understanding the function of a protein. Molecular Dynamics

(MD) offers an in silico means to sample the dynamics of a protein at an atomistic

resolution. MD is versatile, allowing users to create complex heterogeneous systems

with many interacting components, for example, the SARS-CoV-2 spike glycoprotein

with attached glycans in a representative viral membrane bilayer.71

Classical MD typically requires the use of a physics-based forcefield, which provides

properties such as charge and mass to individual atoms (or beads in a coarse-grained

representation), and other key parameters for bonded and non-bonded potentials.

Forcefield terms are typically derived either from experimental data,72 quantum cal-

culations,73 or recently machine learning methods.74 Additional measures such as a

thermostat or barostat are applied to ensure the system remains thermodynamically

stable and accurate while a trajectory of new structures are generated via Newtonian

mechanics. While various MD engines, such as GROMACS75 and NAMD76 exist, each

offering different tools for complex modelling, the primary consideration for an MD sim-

ulation is the choice of forcefield. Numerous forcefields, such as Amber,77 CHARMM,78

and GROMOS79 have evolved over the last 30 years to match specific thermodynamic

conditions and reproduce certain molecular properties such as vibrational frequencies,73

incrementally leading to more accurate models of protein behaviour in a native-like

system.
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1.3. In silico protein structure prediction

Figure 1.4: MD can provide high-resolution insight into the dynamics of a protein for various
complex heterogeneous systems, such as this cytochrome c oxidase subunit (PDB: 3S33) in a lipid
bilayer.

Progressive hardware advancements have allowed users to move from the picosec-

ond timescale in the 1990s, to the microsecond in the present day. This computational

power permits us to sample an extensive range of essential dynamics, from side-chain

motion to previously inaccessible conformational states and kinematics; for example,

the influence of substrate and inhibitor binding to the structure of the human CYP2D6

wild-type enzyme.80 Consequently, MD has had a significant impact on medical studies.

For instance, it is regularly used to identify binding sites and provide related binding

energies for protein-drug interactions over biologically relevant timescales.81 In this,

MD provides a clear advantage over a structure from the PDB, which may not permit a

specific ligand’s binding due to its deposited conformation. In an integrative modelling

context, MD has been combined with existing data, such as NMR,82 to constrain a

system to particular conditions over long timescales which would not usually be viable

under free dynamics.

Despite the insight offered by MD, there are limitations to the method. Since the

computational cost of an MD simulation is heavily dependent on the number of atoms

and hardware being used, we are only now reaching the millisecond timescale for the

smallest of proteins using specialised hardware,83 hardware which is often only available

to exclusive groups. In contrast, allosteric regulation in response to binding events

regularly occurs over a multi-millisecond timescale,84 while protein folding can take

between hundreds of nanoseconds to seconds,85 hence the need for predictive software.

Lipid diffusion constants are typically on the scale of nm2 µs−1,86 adversely impacting

the study of membrane protein systems. Coarse-grained methods provide an avenue to

study these phenomena while avoiding the costs, but they are less widespread, and
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indeed less thermodynamically accurate than atomistic methods, with MARTINI87

the only viable forcefield option for most. Even if a millisecond timescale is routinely

achieved, the thermodynamic stability of a forcefield at this timescale is questionable.88

Of additional concern is that MD is essentially non-ergodic in practice.89 While a

protein might sufficiently sample its phase space over microseconds in vivo, free MD

may require second-long simulations to achieve ergodicity. This contrast is especially

true for large proteins, and when there is significant conformational flexibility. Improved

forcefields and hardware may brute force a solution to these problems eventually, but

there are alternative solutions. Enhanced sampling MD techniques such as replica

exchange offer a means to study long-timescale or rare events while calculating free

energies.90 In addition, recent efforts have highlighted the advantages of machine

learning based methods.74 More specifically, deep learning has shown to be able to

provide plausible conformations distal from anything seen through free MD.91 While

these deep learning methods are still in their early stages, it is clear that they can

enhance our understanding of a protein’s phase space, and compensate for the issues

encountered by MD. Still, the proteome’s vast complexity necessitates that MD will

always have a place in the study of conformational dynamics. Indeed, as well as being

used to enrich studies of complex biological scenarios, MD is frequently used to consider

dynamics in computational structure prediction; for example in conjunction with

Modeller and cross-linking MS data to generate and filter models based on reasonable

physics.92 In this context, integrative modelling of MD into other in silico techniques

is becoming increasingly powerful.

1.3.3 Protein-protein docking

Besides the tertiary structure and dynamics of a protein, predicting the quaternary

structure forged by two interacting binding partners is the final key to rationalising

a protein’s function. To achieve their biological task, proteins often form homo- and

heteromultimeric complexes. Given the plethora of genetic diseases associated with

mutations that alter protein structure and consequently their capacity to interact

with their binding partners,93 a significant body of research and development focuses

on methods for the elucidation of protein quaternary structures. In this context,

computational techniques devised to predict the complex formed when two or more

proteins bind can be of great help. Docking proteins via MD is possible in principle, but

it is prohibitively expensive due to the number of degrees of freedom and the timescales

over which docking events occur, although MD has been used to dock proteins with

small drug molecules.94 Protein docking engines are significantly cheaper and quicker

than MD based methods, and their predictive capability can be harnessed to guide

subsequent targeted experiments, both in vitro and in MD. Protein docking algorithms
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can leverage on integrative modelling to impose constraints, but rather more impressive

are the docking engines capable of taking two binding partners and blindly predicting

the correct complex from the tertiary structure alone. Protein-protein docking, in

general, is the least understood or successful of the three in silico protein structure

prediction methods, although its fulfilment would be another scientific breakthrough,

facilitating a wide range of medical research such as drug discovery and therapeutics.

Analogous to CASP, the community of protein-protein docking is centred around the

Critical Assessment of Prediction of Interactions (CAPRI) competition,95 which hosts

two to four annual prediction rounds to determine the most competitive protein docking

software.

+

Figure 1.5: Predicting the assembly of ribonuclease inhibitor complexed with ribonuclease A (PDB:
1DFJ) from its two monomer units.

Protein-protein docking is a highly complex optimisation problem, requiring

the generation of a considerable number of candidate arrangements. To accurately

discriminate between correct and incorrect docked poses, a suitable scoring function

is essential. Typical scoring functions used in this context involve a set of non-

trivial physical or empirical terms, combined with custom weightings. An ideal scoring

function should feature minimum mathematical uncertainty while accounting for protein

structure and dynamics. A highly efficient exploration method is also required to

navigate the landscape of possible conformations in search of the specific arrangements

that minimise this scoring function. The two are intimately linked, with the scoring

function guiding the behaviour of the navigator.

The simplest and most widespread approaches for protein-protein docking involve

a global, systematic, rigid-body docking search. Typically, a large number of solutions

are generated from a pair of static molecular structures,96–98 and a scoring function

is then used to identify the most favourable arrangement. Treating proteins as fully

rigid objects while simultaneously using a scoring function that accounts for each

atom’s specific position leads to a modelling process that is excessively sensitive to the

specific packing of atoms at the interface. To cater to protein dynamics, alterations to

how models are built or how the scoring function assesses a protein arrangement are

required. Possible strategies include rigid-body docking of ensembles of structures,99–101

additional refinement stages that take place after rigid-body docking,102,103 scoring

24



1. Introduction

functions that feature soft potentials to allow minor molecular overlaps,104,105 pseudo-

coarse-grained protein representations,106 docking subunits connected by potentials,107

matching protein surfaces represented as a collection of patches,108 using normal modes

to account for flexible conformational switches,109 and relaxing the interface of docking

poses using techniques such as MD, Monte Carlo (MC), or simulated annealing.104,106,110

Some methods, such as HADDOCK,111 IMP112 and RosettaDock113 feature scoring

functions that utilise a combination of terms that describe physical interactions and

penalise models that do not recapitulate available experimental data. Some docking

engines such as HADDOCK, are able to apply constraints based on experimental

data, such as FRET, during the exploration of the potential energy surface that scores

the individual arrangements.29 Ultimately, the hardest challenge for these different

approaches is protein flexibility. In both the benchmark that the CAPRI community

provides to newly established protein docking groups,114 and in the complexes given

to challenge competitors during the rounds, there is an assortment of proteins with

varying levels of flexibility. Specifically, they are split into three classifications: easy,

medium and difficult, according to their inherent flexibility (see Section 3.2.3.1 for

more details). It is the harder, more flexible cases that all current approaches struggle

with. This is primarily because flexibility is usually considered during a post-processing

step, or because any coarse-grained representations used for docking are derived from

a static structure. Even when an ensemble of poses is used, they are still a fixed set of

atomic coordinates, and poor consideration is given to the specific side-chain mobility

at the interface. Integrating MD, therefore, during the actual docking procedure seems

an attractive prospect to removing these obstacles.

The vast majority of these docking algorithms focus on only a section of the

proteome by considering the docking of water-soluble proteins. As we have already

discussed, resolving the structure of a transmembrane protein is significantly more

challenging. Indeed, the inherent complexity is highlighted by the distinct absence of

a CAPRI benchmark for transmembrane proteins. Thus, a protein-protein docking

tool capable of predicting transmembrane protein complexes would significantly benefit

protein structure prediction. While docking transmembrane proteins is facilitated

by limitations on the search space imposed by the lipid bilayer, membrane docking

algorithms must consider the impact of the lipid bilayer on a protein’s recognition of a

partner in tandem with the solvent. In this context, there are only a small number of

tools currently available. MPDock,115 utilising existing Rosetta sampling and scoring

methods in an integrative modelling context, found a successful high ranking pose

in three out of five applied bound complexes. Hurwitz et al.’s program Memdock116

uses a traditional rigid docking, refinement, re-ranking method, with energetic terms

representing the membrane’s hydrophobic environment included in the final stage.

Comparing the performance of Memdock and GRAMM-X117 on 11 unbound complexes,
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the authors showed that the first yielded a success rate of 36.4% and the latter of 9.1%.

Viswanath et al. used the DOCK/PIPER118 docking algorithm with an additional

re-ranking step that considered the membrane transfer energy, achieving a success rate

of 36.6% for 26 unbound complexes. Testing other software on the same dataset, the

authors reported success rates of 30%, 46.6% and 56.6% for ZDOCK+ZRANK,96,119

CLUSPRO120 and GRAMM-X,117 respectively. All of these approaches were only

tested against cases featuring α-helical transmembrane proteins. Koukos et al., using

HADDOCK121 without any specific membrane protein optimisation, achieved a blind

docking success rate of 19.2% on their dimeric unbound dataset of 26 complexes

that included β-barrel, monotopic and α-helix proteins. Of these 26 test cases, 11

featured a pair of integral proteins as binding partners, and only three of these were

unbound-ligand-to-unbound-receptor docking. The latter achieved a success rate of

36.4%. HADDOCK has also very recently been combined as a refinement tool with

the LightDock122 docking algorithm and tested against 18 transmembrane-soluble

protein complexes, achieving a success rate of 61.1%.123 Currently, MPDock has only

been presented as a proof of concept, not yet designed for widespread use. The

DOCK/PIPER membrane energy re-ranking tool is available for download, but it must

be applied to models obtained independently. Memdock is usable as a webserver though

requires input structures to have their solvent-exposed regions manually removed. The

limited number of docking engines, in a niche field still in its early stages, has resulted

in little consideration being given to the protein dynamics, particularly as it pertains

to the different environment imposed by a lipid bilayer. Therefore, there is a need for

an effective and user-friendly tool that can consider the impact of biphasic dynamics

on the docking of transmembrane proteins.
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1.4 Underlying methods

The following covers the theory and main aspects surrounding the fundamental tech-

niques used and discussed throughout this thesis.

1.4.1 Molecular Dynamics

1.4.1.1 The equations of motion

Molecular Dynamics (MD) is an in silico technique designed to simulate the behaviour

and interactions of many-body systems over time. Classical MD uses Newton’s equations

of motion to describe the trajectory an atom or molecule might take:

−→
F i = mi

d2−→r i
dt2

= mi
−→a i, (1.4.1)

where
−→
F i is the force acting on particle i, mi the mass of the particle, −→r i its position,

−→a i is its acceleration, −→r i its position, and t is time.
−→
F i is found through the total

potential energy, Utot., which in the simplest microcanonical case, is given as:

−∇iUtot. =
−→
F i. (1.4.2)

Utot. is found by summing the interactions on particle i from all other particles in the

system. These interactions are determined through a forcefield, which are discussed in

more detail in Section 1.4.1.2.

Several algorithms exist to integrate these equations of motion, thereby providing

the trajectory of the system. The general approach is to divide the desired simulation

time into a series of timesteps of length ∆t. The timestep size represents a tradeoff

between efficiency and the build-up of numerical error, which manifests as growing

inaccuracy in the molecules’ behaviour as the simulation progresses. The typical choice

of ∆t = 1 fs in classical MD strikes a balance between these two and is roughly ten times

shorter than the period of the highest frequency motion of an atomistic simulation,

the bond vibrations. Therefore, all motions within an MD simulation can be captured

with this timestep without excessive computation time. The simplest algorithm used

for calculating the motion of the particles is the Verlet algorithm:

−→r n+1
i = 2−→r ni −−→r n−1

i + ∆t2−→a n
i , (1.4.3)

where n represents the current timestep. The Verlet algorithm provides good energy
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and momentum conserveration and is time-reversable, however the presence of the

∆t2 term can cause a rapid build up of system instability due to the aforementioned

numerical error. The more commonly employed algorithm, and the one used throughout

this thesis, is the velocity-Verlet algorithm, which omits this term. For this, each

integration cycle first consists of calculating the velocities, −→vi , at a midstep, n+ 1
2
:

−→v n+ 1
2

i = −→v n
i −

1

2
−→a n

i ∆t. (1.4.4)

From this, we can calculate the positions at the next step:

−→r n+1
i = rni +−→v n+ 1

2
i ∆t. (1.4.5)

After calculating the accelerations at the next step from the potential at these updated

positions, we can then find the velocities for the next timestep:

−→v n+1
i = −→v n+ 1

2
i +

1

2
−→a n+1

i ∆t. (1.4.6)

In modelling proteins, we usually require them to be embedded in some solvent;

in this thesis, either water or lipid. Enough solvent must be used such that the

surrounding solvent can behave as a bulk. Explicitly modelling the solvent to the

necessary dimensions required would demand a large number of atoms and thus is

prohibitively expensive. Furthermore, it requires the non-trivial consideration of the

system’s interface with the surrounding “box”. Periodic boundary conditions, wherein a

small unit cell at the edges of the system are repeated ad infinitum in three dimensions,

is a resolution to this. Periodic boundary conditions effectively allow us to model

an infinite number of atoms, thereby modelling the bulk at a significantly reduced

computational cost. Care is taken when using periodic boundary conditions to ensure

enough solvent to avoid any atoms interacting with their periodic image.

For a simulation to be physically sensible, it must be undertaken under reasonable,

controlled thermodynamic conditions. These conditions are known as ensembles,

and in this thesis, we will exclusively use two ensembles: (1) the Canonical, with

a constant number of atoms (N), volume of system (V ), and temperature (T ); and

(2) the isothermal-isobaric, with constant N , system pressure (P ), and constant T .

In the NV T ensemble, the pressure can vary to maintain the volume, while in the

NPT ensemble, the opposite is true. We typically use the NV T ensemble in the

simulation’s equilibration phase and the NPT in the production, following a short

equilibration in NPT . These ensembles rely on a thermostat and barostat (in the

NPT case) to maintain their thermodynamic conditions. This can be done by, for

example, rescaling velocities with the Berendsen thermostat, or by applying drag in
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the equations of motion using the Langevin thermostat. The Berendsen approach is

typically used for equilibration, as it is both cheap and able to rapidly achieve system

equilibration, but due to the rescaling is not deterministic. In contrast, Langevin,

or other common methods like Nosé-Hoover, are deterministic but tend to be more

expensive and therefore reserved for MD’s production cycle.

1.4.1.2 Forcefields

In classical MD, we approximate the total energy of the system by splitting it into a

series of different contributing energetic terms:

Utot. = Ubond + Uangle + Udihedral + Uelec. + UvdW.. (1.4.7)

Ubond, Uangle, and Udihedral, describe the bonded terms, while Uelec. and UvdW. are the

non-bonded terms. We will briefly discuss below the form these terms take within the

AMBER124 forcefield, which is used for all MD simulations throughout this thesis. It

is the specific form of these energetic terms, and the parameters used within them

that differentiate forcefields. Accordingly, forcefields will have their parameters derived

through different means. For example, in AMBER,124 the parameters were designed to

match protein NMR data, while CHARMM,78 also designed with biosystems in mind,

had its parameters determined through quantum chemical calculations of interactions

with water. The inclusion of additional terms that deviate from Equation 1.4.7 are

typically reserved for forcefields that wish to mimic particular systems, and generally

have poor transferability.

The bonded terms ensure that the overall correct molecular geometry is maintained,

which is critical for systems like folded proteins. The bonded stretching term, Ubond,

directly connects two atoms, i and j, and is described through a harmonic potential:

Ubond(lij) = Kb
ij(lij − l0ij)2, (1.4.8)

where lij is the distance between i and j, l0ij their equilibrium length, and Kb
ij the

bonded force constant. Note the presence of the i and j indices for each term. In

other words, both the bonded force constant and the equilibrium bond length are

unique between these two atoms, while also being unique to the forcefield. For example,

AMBER ff14sb125 uses an l0ij = 1.4 Å and Kb
ij = 392459.2 kJ mol−1 nm−1 between

two α-carbons, while CHARMM36126 uses an l0ij = 1.5 Å and Kb
ij = 186188.0 kJ

mol−1 nm−1. These differences are mirrored with all analogous parameters in the other

energetic terms.
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Uangle is the angle bending term and exists between two atoms, i and k, that

are connected via two bonds through a third atom, j. It is also given as a harmonic

potential:

Uangle(θijk) = Kθ
ijk(θijk − θ0

ijk)
2, (1.4.9)

where θijk is the angle between i, j and k, θ0
ijk is their equilibrium angle, and Kθ

ijk the

angle force constant.

Udihedral is the sum of the proper and improper dihedral angle terms, and describes

the energy between a group of four atoms. The proper dihedral term, Uproper, is

associated with the dihedral energy between a series of connected atoms i-j-k-l, where

the bonds are connected as shown. In AMBER,125 it is given as:

Uproper(φijkl) =
V m
ijkl

2

(
1 + cos(mφijkl − φ0

ijkl)
)
, (1.4.10)

V m
ijkl is the proper dihedral force constant for multiplicity m, and φ0

ijkl the phase angle

for torsional angle parameters. The improper dihedral, Uimproper, provides the energy

when the atoms are not connected in a simple series, such as when j is covalently linked

to i, k and l. For example, in a planar molecule, the dihedral arises from the angle

between the j-l line and the ijk plane.

Uimproper(ψijkl) = K im.
ijkl

(
1 + cos(mψijkl − ψ0

ijkl)
)
, (1.4.11)

where K im.
ijkl is the improper dihedral force constant, and ψ0

ijkl the phase angle, taking the

value of 180° for m = 2 (planer molecule), and 120° for m = 3 (tetrahedral molecule).

While retaining the correct molecular geometry for a simulation is essential,

explicitly modelling bond vibrations restricts the possible timestep to 1 fs. Applying a

constraint ensures the bonds lengths are correct while allowing larger timesteps, usually

2 - 5 fs, thereby reducing the computational costs associated with a simulation. The

constraint applied throughout this thesis is the LINCS algorithm,127 which operates by

first projecting an updated bond onto the same bond from the previous step before

correcting the length of the bond to the specified length. These constraints become

more expensive to apply the more bonded connections there are in a system.

The remaining interactions between any two atoms in a system, both inter- and

intramolecularly, are described through the non-bonded terms. These are split between

the van der Waals potential, Uvdw, and the electrostatic potential, Uelec.. Uvdw effectively

combines dispersion, steric repulsion and induction interactions and is given through a

Lennard-Jones potential:
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UvdW(rij) = εij

[(
r0
ij

rij

)12

− 2

(
r0
ij

rij

)6
]
, (1.4.12)

where rij is the distance between atoms i and j, εij is the well-depth of the potential,

and r0
ij is the position of the minimum. This potential therefore features a repulsive

wall at rij < r0
ij, which prevents atoms from overlapping, and an attractive well when

rij > r0
ij . At large distances, UvdW tends to zero, so the Lennard-Jones potential is well

suited to describe the interactions between atoms.

Finally, the electrostatic interaction is given through a Coulombic potential:

Uelec.(rij) =
qiqj

4πε0rij
, (1.4.13)

where qi and qj are the charges on atoms i and j respectively, and ε0 the permittivity

of free space (8.8542 ×10−12 m−3 kg−1 s4 A2). Both UvdW and Uelec. typically have

cutoffs applied to them, usually 10 - 12 Å, to avoid excess computation of negligible

interactions. However, since Uelec. tends to zero as rij increases at a much slower

rate than UvdW, MD simulations employ additional methods to include long-range

electrostatic interactions within explicitly using Equation 1.4.13. The most common

algorithm is the particle-mesh Ewald (PME) approach, which splits short- and long-

range electrostatic interactions, with short-range interactions calculated via Equation

1.4.13, and long-range interactions beyond the cutoff found through a summation in

Fourier space, with the system split into a series of unit cells, that continue periodically

through the periodic boundary conditions. This long-range summation is between the

charge-density field of the central unit cell, and the average charge-density field of the

surrounding lattice. PME’s inclusion of long-range electrostatics greatly improves the

accuracy of molecular simulations.

There also exist more complex forcefields that do not consider atoms as simple

point charge models and instead include an extra particle attached by a spring to

an atom, thereby introducing polarisability.128 Indeed, there are also forcefields that

are capable of modelling the formation and dissociation of bonds through complex

interaction terms.129 Given that the method by which our protein representations are

built, which aside from the MD simulation itself, uses the partial charges provided

by the forcefield, we elected to use the “simpler” classical forcefields. Both AMBER

and CHARMM have recently been shown to be highly accurate in modelling protein

behaviour;130 however, given AMBER ff14sb is specifically catered to model protein

side-chains accurately, it seemed the more suitable choice as side-chain behaviour plays

a vital role in the shape of our representations.
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1.4.2 Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) is a stochastic optimisation technique that uses a

population of candidate solutions to explore a search space, sampling a fitness function

as they move. Each particle is initialised with a random velocity and position, and their

motions are influenced by their current momentum, the fit at their current position,

the previous position with the best solution, and the position of the current best found

global solution. It was developed by Eberhart and Kennedy in 1995,131 and is inspired

by the motion of bird flocks and schools of fish.

Let each particle, i, have position P n
i at iteration n, in an m-dimensional space:

P n
i = [xn0,i, x

n
1,i, x

n
2,i, ..., x

n
m,i], (1.4.14)

where x represents a coordinate in the m-dimensional space. Each position in this space

will have an associated fitness value, which collectively define the Potential Energy

Surface (PES) that is being explored. At initialisation (n = 0), both the position

of particle i, and the velocity, V n
i , are randomised. The velocity at iteration n, is

accordingly given by:

V n
i = [vn0,i, v

n
1,i, v

n
2,i, ..., v

n
m,i], (1.4.15)

where v represents the velocity associated with each coordinate. Over progressive

iterations, each particle’s updated velocity is influenced by the position of the previous

best solution, P n
i,best, and the current global best solution of the particle swarm, P n

globalbest.

Each particle’s subsequent position is therefore given by the current position and this

influenced velocity:

P n+1
i = P n

i + V n+1
i , (1.4.16)

where V n+1
i is given by:

V n+1
i = wV n

i + c1t1
(
P n
i,best − P n

i

)
+ c2t2

(
P n
globalbest − P n

i

)
. (1.4.17)

The first term represents the particle’s current inertia, the second is the influence

from the particle’s previous best position, and the last is from the current global best

position. w, known as the inertia weight, determines the balance between exploration

and exploitation, with smaller values facilitating better exploitation of known solutions

and higher values leading to exploration outside of these solutions. t1 and t2 are unique
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random weightings for each particle and each iteration and introduce a stochastic

element to the latter two terms. Finally, the c1 and c2 hyperparameters define the

amount by which the particles are influenced by their own history versus the group’s.

The weightings are often modified throughout the optimisation, with the early stages

giving particles higher inertia to facilitate exploration, while the latter stages focus

more on exploitation.

As a consequence of this approach, PSO is able to sample a PES and converge to

global solutions rapidly. As it does not use a gradient, unlike traditional optimisation

methods, it does not require the problem to be differentiable. It is also easily parallelis-

able due to the swarm nature of the method, and is therefore very suitable for rapid

optimisation. PSO is used for all protein docking performed in this thesis, with the

exception of the majority of the work in Section 4.4, and is currently used within the

current iteration of JabberDock available on GitHub.

1.4.3 Solvent Accessible Surface Area

The solvent-accessible surface area (SASA) is an essential biophysical quantity that

represents the surface area of a biomolecule that is accessible by some solvent molecule.

In this thesis, we employ the commonly utilised Shrake-Rupley algorithm,132 also

known as the “rolling ball” algorithm. There are other SASA methods available,133,134

which tend to be quicker but are less accurate.

Given an appropriate probe size, typically 1.4 Å to represent water, the Shrake-

Rupley algorithm draws a mesh grid of points at the probe size’s length beyond each

atom’s van der Waals radius in a molecule. Each point is then checked to ensure it is

not buried within neighbouring atoms, and if it is not, it is classified as accessible (see

Figure 1.6). The number of accessible points is then multiplied by the surface area

each point represents to give a total value for the accessible surface area of a solvent

with the associated probe size.
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Figure 1.6: Schematic for how the SASA of a molecule is calculated. The black probe is “rolled”
along the atoms’ surface, itself represented as the van der Waals radius of each atom, tracing the
path of the solvent accessible area from the position of the centre of the probe. Traced points within
the molecule that clash with another atom are ignored, leading to only the surface accessible points
considered in the SASA calculation.

1.4.4 Voronoi tessellation

Voronoi tessellation is a method to generate a series of n convex polygon cells in space

that surround n points, where the dividing lines between cells lie equidistant between

neighbouring points. An example of a Voronoi tessellated grid in 2D is shown in Figure

1.7.

Figure 1.7: An example of Voronoi tesselation. Each point is placed in a cell, with the dividing lines
of cells equidistant between points.

While Voronoi tessellation was not used explicitly in this thesis, it is discussed in

the context of protein densities in Section 2.5, wherein it was the primary previous

computational method to determine the density of a protein.44–46 Here, each atom

is treated as a point, and the cells are built in 3D around them. The density is

subsequently calculated from the volume enclosed by this grid. As the atomic points
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must by necessity be fixed in space, Voronoi tesselation ignores the contribution of

protein dynamics to density.
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1.5 Thesis objectives & outline

Treating a protein as a rigid object is not sufficient to describe its dynamic properties,

adversely impacting the computational interpretation of experimental data, and intro-

ducing a host of issues in a protein docking context. In this thesis, our primary focus

will be on our solution to this issue; the Spatial and Temporal Influence Density (STID)

map. The STID map is a novel pseudo-coarse-grained protein representation built from

a Molecular Dynamics simulation, capable of simultaneously accomodating side-chain

dynamics, electrostatics and protein shape. In general, however, this study’s emphasis

is to highlight the importance of accounting for dynamics in protein assembly, paving

the way to enhanced protein structure prediction. The main aims and objectives of

this thesis, therefore, are as follows:

1. To introduce a protein representation that encompasses the critical characteristics

of a protein; its side-chain dynamics, electrostatics and shape, and then apply

this representation to a series of physical and biophysical problems to prove its

utility.

2. To apply this representation to the protein-protein docking problem, both for

water and lipid-soluble species, further highlighting the importance of adequate

side-chain motion accommodation.

3. To demonstrate how harnessing the conformational dynamics of microsecond

long atomistic simulations can elucidate diverse quaternary structure, and indeed

inform us on what is required from a larger in vivo system.

To this end, each Chapter will aim to accomplish the following:

Chapter 2: A novel representation of molecular structure and dynamics

This Chapter introduces the concept of the STID map. It lays out the physical back-

ground and provides a series of benchmarks to prove its utility. It describes how we can

infer permittivity trends, calculate accurate protein densities in different environments,

and extract information about the disruption of a residue’s conformational dynamics

from some distal binding interaction.

Chapter 3: JabberDock: Accounting for side-chain dynamics in protein

docking

The aims of this Chapter are to utilize the STID map in a protein-protein docking con-

text; embodied in our protein docking engine, JabberDock. We challenge JabberDock

with the CAPRI benchmark’s 224 soluble protein complexes, and 20 transmembrane

complexes collated from a series of previous transmembrane protein docking attempts.
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In this, JabberDock achieves a success rate of 54% and 75%, respectively. We close

the Chapter by successfully applying JabberDock to two unsolved structure prediction

problems, one water-soluble and one lipid-soluble.

Chapter 4: Beyond JabberDock

This Chapter explores possible steps JabberDock users can take to improve the quality

of predictions, as well as refinements to the STID map and improvements to the

optimisation routine used for docking. While not complete, we endeavour to establish

the practicality of techniques borrowed from the Computer Graphics field in a protein

docking context.

Chapter 5: Dynamics of the SARS-CoV-2 spike glycoprotein

In this Chapter, we move beyond the limits of side-chain dynamics and demonstrates

how large, long-timescale simulations of proteins can assist in protein quaternary

assembly prediction. Specifically, we take the example of the various oligomeric states

formed between the SARS-CoV-2 spike glycoprotein and ACE2 receptor in the wake of

the COVID-19 pandemic. From this, information about the necessary local curvatures

required of both the virus and ACE2 host cell can also be extracted.

Chapter 6: Conclusions

Finally, this Chapter draws together the key results of the previous Chapters, concluding

that better consideration of protein dynamics leads to better protein structure prediction

and depth of understanding of a protein’s function. We close with a brief look into our

vision for future work.

Much of the material presented here has either been published in peer-reviewed journals,

is currently under review or is under preparation for publication. Rather than present

this material in its article format, it has instead been adapted for this thesis. For

Chapter 5, this includes a large quantity of data not included in the final manuscript.

Full details on which Sections have been integrated from publications or manuscripts

are available in the Publications & Manuscripts Section following the Contents.
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[130] D. Petrović, X. Wang and B. Strodel, How accurately do force fields represent protein

side chain ensembles?, Proteins Struct. Funct. Bioinforma., 2018, 86, 935–944.

[131] R. Eberhart and J. Kennedy, Proc. Int. Symp. Micro Mach. Hum. Sci., 1995, pp. 39–43.

[132] A. Shrake and J. A. Rupley, Environment and exposure to solvent of protein atoms.

Lysozyme and insulin, J. Mol. Biol., 1973, 79, 351–71.

[133] J. Weiser, P. S. Shenkin and W. C. Still, Approximate atomic surfaces from linear

combinations of pairwise overlaps (LCPO), J. Comput. Chem., 1999, 20, 217–230.

47

http://www.nature.com/articles/npjcompumats201511


1.6. Bibliography

[134] K. V. Klenin, F. Tristram, T. Strunk and W. Wenzel, Derivatives of molecular surface

area and volume: Simple and exact analytical formulas, J. Comput. Chem., 2011, 32,

2647–2653.

48



2 | A novel representation of molec-

ular structure and dynamics

2.1 Introduction

Treating a protein, in silico, as some coarse-grained representation to bypass side-

chain flexibility is not a novel concept.1 The critical issue with previous approaches

that adopt this tactic,2–5 however, is that fundamentally they build their volumetric

representations from a fixed set of atomic positions, and, in the case of docking, it is only

during a post-processing step that some flexible refinement is considered. Simultaneous

consideration of a protein’s dynamic nature while building a volumetric representation

seems the natural progression from these methods, given the widespread ease and speed

at which Molecular Dynamics calculations can be made, in contrast to the mid-1990s

to late-2000s when many of these methods were developed.

In this Chapter, we shall discuss how we can use Molecular Dynamics as a

foundation to build a protein model capable of representing protein shape, electrostatics

and side-chain dynamics, for application in a variety of common biophysical problems.

This work’s eventual goal is to ensure that our representation, known as Spatial

and Temporal Influence Density (STID) map, is sufficient for protein-protein docking

purposes. We shall begin with the theory behind our representation, as well as

the objective benchmarking applied both during the construction phase, and later

to check that the resultant shape is a good, physical model of a protein, and not

just some abstract object solely applicable for a single purpose.6 Given the success

in demonstrating that our representation is related to some protein characteristics

(Section 2.3.4), we then move on to establish its value in a host of other biophysical

problems. Specifically, to measure the variation in the permittivity of a system on a

nanometre scale, to predict the density of a protein and provide a new dynamics-based

dependency, and to give insight into allosteric changes at a residue level following some

binding event.

The dielectric work discussed in Section 2.4 was partially successful, as our maps
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were able to predict the general trend for a set of solvent’s dielectric constants. The

STID map’s ability to estimate the known correlation between this critical, physical,

quantity and polarisability acts as a validation that our model is not just some abstract

concept. Thus, we avoid falling into the common trap for these shape-based approaches

to protein modelling.

In Section 2.5 we show that STID maps, which are essentially excluded volumes

at the cutoff we derive in Section 2.3.4, are capable of predicting protein densities

in different environments. Specifically, we generate maps in both a water solvent

and in vacuo, matching experimental data for both. This leads to a new definition

for determining the density of protein, a topic that has remained one of dispute

since the late 1990s. Rather than a molecular weight dependency as previous works

have indicated,7 the densities calculated through our STID map based measurements,

validated through experimental data, indicate a dynamics based relationship.

Finally, in Section 2.6 we show that by comparing STID maps of individual

residues extracted from different bound complexes, we can highlight which residues

have their local conformational dynamics altered due to some binding event. While it

does not elucidate the allosteric process itself, nor any large conformational changes,

it does provide a good starting point for understanding which distal (and proximal)

residues are intimately connected, and subsequently impacted as a result of some

interaction with a binding partner.
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2.2 Theory: building the Spatial and Temporal In-

fluence Density map

The following theory is built upon the principle that a volumetric map can consider

both the structural and dynamic properties of a protein. It is constructed from the

inherent motion of charged atoms via the time-averaged dipoles forming within a

localised space. The complete methodology, represented in Figure 2.2.1, is summarised

as follows:

1. The PDB file of a protein structure is parameterized according to a desired

atomistic force field.

2. The protein is immersed in a water box with Na+ or Cl− acting as counter-

ions and automatically subjected to energy minimisation, followed by an MD

equilibration and production protocol.

3. A dipole map, following the Onsager theory of dielectric polarisation, is derived

from the produced MD trajectory.

4. The dipole map is converted into a 3-dimensional grid of points, each containing

a pseudo-atom with a characteristic van der Waals radius.

5. Each pseudo-atom is used to define a local Gaussian distribution, with a shape

determined by the van der Waals radius of the pseudo-atom.

6. A volumetric map is produced by summing, on each grid point, the value of local

and neighbouring Gaussians. The resulting map is finally normalised between 0

and 1.

We only consider the contribution of protein atoms, including hydrogen atoms,

when constructing a STID map. In other words, we ignore the presence of water,

salts, lipids or other non-protein molecules. Despite their absence, the impact of these

non-protein atoms in the MD simulation will be reflected in the STID map through

changes to how side-chains explore their local conformational space, and subsequently,

their position uncertainty.
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Molecular Dynamics 
Output

Dipole Map
Temporal Electronic

Density

(a) (b) (c)

Figure 2.2.1: Pipeline for the generation of STID maps. (a) Super-imposition of multiple structures
from the MD simulation of ribonuclease A (PDB: 9RSA), coloured by secondary structure (α-helices
as blue, 310-helices as light purple, β-sheets as red, unstructured coils as white, and turns as grey).
(b) Superimposed dipole map generated from the simulation. For clarity, only dipoles greater than 0.8
D are shown, D referring to the CGS unit of Debye, commonly deployed to represent electric dipole
moments (1 D = 3.33564× 10−30 C m in SI units). (c) Final STID map derived from the dipole map,
represented by an isosurface through the volumetric grid.

2.2.1 From protein structure to dipole map

The fast local rearrangements of side-chain motion are sampled through a short MD

simulation. Consistent with experimental NMR evidence, we have found that 600 ps is

enough for this purpose (see benchmark and Figures 2.3.4 & 2.3.5 in Section 2.3.2). We

align the resulting protein trajectory according to the centre of mass of the molecule,

and arrange it within a stationary, cubic grid, wherein each voxel is 1 Å across in x,

y and z (a parameter determined quantitatively in a benchmark discussed in Section

2.3.1). We use this information to calculate local dipoles on each grid point. To this

end, we are expanding upon the theory laid out by Kirkwood,8 Fröhlich9 and Neumann

et al.,10 which describe the fundamental theory of dielectrics.

Following the Onsager theory of dielectric polarisation, we represent each voxel,

v, as a spherical solute with volume, Vv, with an internal permittivity, εv, embedded

within a uniform dielectric continuum with permittivity εEx. The charge distribution

inside the voxel is that of several point charges, with a dipole associated with the centre.

Point charges within the neighbouring voxels on each Cartesian edge and corner (i.e.,

a total of 26 neighbours, a quantity determined in a benchmark shown in Figures 2.3.3

& 2.3.7 in Section 2.3.1) are also associated with the central voxel. A sliding window is

applied spatially such that a point charge at a time, t, will contribute to 27 different

voxels in total. A visual guide for how the sliding window is applied is provided in

Section 2.3.1’s benchmark through Figure 2.3.2. Given the fluctuations of the dipole

moment of the solute,
−→
Mv, observed over the simulation in a voxel, it is possible to

calculate εv.
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The Fröhlich-Kirkwood model states that εv is a function of the total dipole’s

second moment probability distribution, with
−→
Mv given by:

−→
Mv =

N∑
i=0

qi,v
−→r i,v, (2.2.1)

where qi,v is the charge of atom i at distance −→r i,v from the geometrical centre of voxel

v. N is the number of atoms that contribute to a voxel’s dipole moment. The charges

are obtained from the forcefield used for the simulation. For a solute with a net charge,

which all voxels with atoms passing through will have,
−→
Mv is dependent on the origin;

thus the grid is fixed in time and space. Therefore, we can produce a dipole map

delivering a representation of local vectorial electrostatic characteristics of a region of

space occupied by a molecule (see Figures 2.2.1(b) & 2.3.8).

2.2.2 From dipole map to Spatial and Temporal Influence

Density map

We can now leverage on the obtained dipole map to derive volumetric information on

a molecule, i.e. a quantity that is easier to visualise and use in a variety of biophysical

contexts, though primarily protein-protein docking. To this end, it is necessary to

convert our dipolar vectorial representation into a scalar quantity. Under the Fröhlich–

Kirkwood model, we can relate the fluctuations of each dipole moment,
−→
Mv, to the

voxel’s dielectric, εv by

〈
−→
M2

v〉 − 〈
−→
Mv〉2

3ε0VvkBTv

=
(2εEx + 1)(εv − 1)

2εEx + εv
, (2.2.2)

where the pointed brackets denotes the average, the square of
−→
Mv refers to the dot

product, kB is the Boltzmann constant (1.3806 ×10−23 m2 kg s−2 K−1), ε0 is the

permittivity of free space (8.8542 ×10−12 m−3 kg−1 s4 A2), Tv is the internal temperature

of a voxel, approximated as the temperature of the system, Vv the volume of a voxel,

and εEx is set to 54 following work by Pitera et al.11 . Solving this for εv gives

εv =
1 + 〈

−→
M2

v〉−〈
−→
Mv〉2

3ε0VvkBTv

2εEx

2εEx+1

1− 〈
−→
M2

v〉−〈
−→
Mv〉2

3ε0VvkBTv
1

2εEx+1

. (2.2.3)

Each εv value derived from the dipole map now encodes information on the local

dynamics and atomic charges. Our next step is to convert the resulting dielectric

map into a quantity that relates to a pseudo-electron density. To do so, we place a
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pseudo-atom at the centre of each voxel and calculate its polarisability, αv, using the

Clausius—Mossotti equation:

αv =
3ε0
Nv

(
εv − 1

εv + 2

)
, (2.2.4)

where Nv is the number density inside the voxel. Since Nv is derived from the number

of pseudo-atoms inside a voxel, by definition one, we can simply set it as the inverse of

Vv. Fedorov et al.12 showed that αv can be related to a van der Waals radius, RvdW,

through a scaling relationship based on a quantum Drude oscillator model:

RvdW = 2.54α(1/7)
v , (2.2.5)

where the constant 2.54 is a universal scaling factor between electron density and

atomic volume at RvdW in atomic units. While Fedorov et al. note that a full derivation

of this constant is still incomplete, they demonstrate that the relationship in Equation

2.2.5 gives theoretical quantities closer to experimental data than previous models

based on classical hard-sphere representations.

The electrostatic and dynamic information encapsulated in the local RvdW values

is now suitable to be transformed into a quantity encoding a pseudo-electron density.

To this end, we assume that each pseudo-atom radius is equal to the full width at

half maximum of a decaying function, here defined as a 3-dimensional Gaussian, with

the maximum at the voxel’s centre. This allows each pseudo-electron density to “leak”

into neighbouring voxels, which is reasonable given that a central voxel’s behaviour is

characterised by the atoms in its neighbourhood.

Contributions from any Gaussians with a non-zero value present within a voxel

are then summed, and the resulting map is finally normalised by dividing the values

within each voxel across the overall map by the maximum value found, i.e. the voxel

containing the largest numerical value from the various Gaussian contributions will

now contain a value of 1. An isosurface example is shown in Figure 2.2.1. These

subsequent molecular representations we call Spatial and Temporal Influence Density

(STID) maps. Because of this methodology, regions inside the protein’s conformational

space that are visited often or are highly charged will have greater associated STID

values. This property makes STID maps a useful tool in a variety of applications as we

will discuss. Most notably, this representation is very profitable in a protein-protein

docking scenario (see Chapter 3), with the electrostatics arising from rapid side-chain

motions, often ignored by other docking software, now accounted for.
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2.3 Benchmarking and structural characterisation

The primary factors that impact the topological features of a STID map are the size of

the voxels, the number of neighbouring voxels we consider when determining RvdW,

and the time over which we generate the map. Here, we will consider each of these in

turn, before finishing with the derivation of a physical relationship between our STID

maps and the structure of a protein.

2.3.1 STID map parameter determination

The voxel size and number of neighbours play an important role in determining

the resolution and weightings we give to different atomic species in a STID map’s

topology. Consequently, our choice for these values has significant implications for future

applications. We, therefore, performed a series of benchmarks to determine the best

quantities for these parameters objectively. Our protein dataset is composed of a diverse

set of 118 water-soluble proteins from the CAPRI benchmark13 with various sizes,

shapes and secondary structure. These cases display a range of inherent flexibilities,

and as they are extracted from a protein docking benchmark, are subsequently classified

according to how challenging their flexibility makes predictive docking. The specifics

on what the three classifications (easy, medium and difficult) relate to, are given in

Section 3.2.3.1.

Every region of space has its local STID characteristics determined based on the

dynamics of atoms in a local neighbourhood of a pre-determined size. We define a

STID map’s resolution as the dimensions in Ångströms of this neighbourhood, i.e., the

diameter of a sphere centred on a point of interest. As here space is voxelated, the

resolution is approximated as the edge length of a cubic cell centred around a point of

interest. Two parameters are associated with a STID map’s resolution: the voxel’s size

and the number of continuous voxels accounted for when sampling a specific region

of space, or window size. We need to find a suitable resolution, too small and we

introduce noise through pockets of vacuum with a large number of empty voxels, too

large and we ignore residue-level detail. We consider STID maps with a higher average

STID value, Davg., to contain the most useful structural information because this would

minimise low occupied or empty voxels, which contribute little. Therefore, resolution

parameters were chosen to maximise the Davg. value over all the proteins tested.

We first performed a sweep of possible voxel sizes (keeping the window size at

1), and measured their influence on Davg. (Figure 2.3.1). In this test, we altered the

voxel size while ignoring contributions from surrounding voxels. Results show that

maximum Davg. is obtained, on average, with 3 Å-wide voxels. The light blue band in
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Figure 2.3.1(a) indicates one standard deviation for the mean Davg. across the dataset.

Contrastingly, in Figure 2.3.1(b), we show the average of every individual Davg. standard

deviation for each benchmarked protein, σPoints. Between 3 Å and 6 Å, σPoints remains

roughly constant at its peak. Thus, in this region, we would expect to observe the

greatest range of structural detail encompassed within a STID map for any specific

protein. Thus, considering this range coupled with the peak of the mean of Davg. for

the dataset, we conclude that a resolution of 3 Å is most appropriate to extract the

greatest range of information from a STID map.
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Figure 2.3.1: (a) The mean of Davg. across 118 benchmarked proteins with increasing voxel width.
The blue band indicates one standard deviation. The shape of the line indicates that the overall
resolution should be chosen between 1.5 Å and 3 Å. (b) The mean standard deviation of Davg. across
the 118 proteins with increasing voxel width. σPoints maintaining the same value through 3 Å to 6 Å
demonstrates that the overall resolution of the STID maps should be within this region.

To determine the number of neighbouring voxels to include within the calculation

of the STID value in a central voxel, the window size, we explored the effects of

increasing the number of nearest neighbours with voxel width. Figure 2.3.2 gives

a visual guide for how the sliding window is applied with an increasing number of

neighbours considered. Figure 2.3.3 shows the impact the number of nearest neighbours

has on Davg. for different window size, illustrated by the differing colours. The dark

blue line represents the case where contributions from neighbouring voxels are ignored;

only the central voxel itself is used, and it thus possesses a window size of one.
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2. A novel representation of molecular structure and dynamics

Figure 2.3.2: (a) A voxel grid extended over the conformational space explored by ribonuclease
A (PDB: 9RSA). The grid also extends back in 3D. The sliding window (highlighted by the thicker
border), demonstrates how the atomic motion in neighbouring voxels (in blue) contribute to the central
voxel (red). The transparency of the box indicates which window it belongs to, with the “newer”
windows darker. (b) A focus on this sliding window with 2 voxels contributing to the properties of
the central red voxel. (c) Number of voxels is 3. (d) Number of voxels is 5.

In Figure 2.3.3, all cases peak at a Davg. = ∼0.57, with the exception of the single

voxel window case. Given this lack of consistency, and our consideration that a larger

Davg. indicates a richer breadth of information; it is not appropriate to choose a window

size of 1 voxel. Using a window size of two voxels to define the local neighbourhood

(i.e., a central voxel, and half a voxel in each direction) leads to Davg. peaking at a voxel

width of 1.5 Å. With a window size of three (one central voxel, and one additional

voxel along each edge and corner) Davg. peaks at a voxel width of 1 Å. This pattern

repeats with larger window sizes. In other words, Davg. is maximised when the voxel

width multiplied by the window size is 3 Å, consistent with the results shown in Figure

2.3.1. Thus, to obtain our optimal resolution of 3 Å; a voxel width of 1 Å and a window

size of 3 should be used when producing the STID maps. While using two voxels, each

having a size of 1.5 Å, could have also been a viable option, we preferred to use three

neighbouring voxels as this simplifies the calculation of the Gaussian distributions that
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define the pseudo-electron density. Any smaller voxel widths would have a greater

demand for computational resources.
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Figure 2.3.3: The impact on Davg. of increasing the window size with voxel width.

2.3.2 Convergence of side-chain motion

To ensure that a STID map is truly representative of side-chain motion and not simply a

snapshot of it, we monitored how the values inside the voxels of the STID maps evolved

over time. We calculated the Pearson cross-correlation coefficient (CCC) between

successive STID maps, built from increasingly long molecular dynamics trajectories.

The CCC, in this context, provides a measure of the similarity between two identically

sized STID maps, where we compare the STID value in specific gridpoints with their

counterpart point in another STID map. A CCC value approaching 1 means the

maps are identical, while −1 indicates the opposite. Figure 2.3.4 illustrates this, with

the CCC increasing rapidly over a very short period, before converging to 1. The

CCC reported is only between STID map’s non-zero values. While the exact time

of convergence to the arbitrarily high CCC value of 0.9997 varies with protein, the

Gaussian fitted in Figure 2.3.4(b) shows that, on average, CCCs converge in 197 ps,

and 98% have converged within 300 ps. This timescale agrees with NMR experimental

data, with the consensus that side-chain motion occurs on a picosecond timescale.14

Quantitatively, using 13C-multiplet NMR Mikhailov et al.15 found that GLY-LYS-GLY

side-chain cross-correlation times were on the order of 120 ± 10 ps at pH 6, which is

similar to the timescales observed here.
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Figure 2.3.4: (a) Cross-Correlation Coefficient (CCC) between successive STID maps built up with
increasingly long timescales. The orange line indicates an average across 118 proteins; the colourmap
represents the number density of proteins at each CCC for each stretch of time. The inset is a zoom
into the top 1% of the figure. The CCC is calculated between non-zero values. (b) The number of
proteins achieving a CCC of 0.9997 by the listed time. A Gaussian (orange) has been fitted to the
histogram. All protein motion converged within 500 ps, with the majority in the first 300 ps. The
mean (µ) and standard deviation (σ) are reported.

To ensure that this convergence (Figure 2.3.4) was primarily due to side-chain

motion and not because of any larger backbone motions, we calculated the root-

mean-square-fluctuation (RMSF) for the Cα atoms for all proteins in the dataset and

categorised their distribution by their associated secondary structure (sheet, helix and

coil, see Figure 2.3.5). Results show that:

1. Fluctuations follow the expected trend, with coils exhibiting a greater RMSF

than helices and sheets.

2. Known more flexible proteins tend to display larger overall RMSF.

3. RMSFs are, in the vast majority of cases, under 1 Å (less than the resolution of

3 Å used to calculate a voxel’s STID value), thus indicating that the dynamics

contributing to our STID maps are primarily due to the side-chain motion.

These results are consistent with the observation that the correlation times of fast,

flexible loops are expected to be of the order of ∼10 ns,16 over one order of magnitude

slower than the simulation timescales used here.
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Figure 2.3.5: The average root mean square fluctuation (RMSF) for the structural elements of each
protein simulated. From these specifically, we distinguish three different structural fragments: (a)
β-sheets (DSSP classification: E, B), (b) helices (G, H, I), (c) coils (C, –, T). The classification for
each protein owing to its inherent flexibility is also indicated by colour. Coil regions feature larger
RMSF than sheets and helices. RMSF values are small (in most cases under 1 Å, our voxel size),
demonstrating that motions captured by STID maps within 0.5 ns-long simulations are primarily due
to side-chain mobility.

To include a safety margin, we run 600 ps long simulations to produce the STID

maps, i.e., a time at which all test cases had reached convergence. This simulation time

is long enough to account for all side-chain motions but short enough that no larger

conformational changes can occur. This is further demonstrated in Figure 2.3.6, which

illustrates the conformational changes observed through the course of a simulation

via the average of the all-atom pairwise root-mean-square-deviation (RMSD) of each

sampled conformation.
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Figure 2.3.6: Distribution of individual protein RMSD variation obtained from the average of a
matrix reporting on the all-atom RMSD between every conformation from the 600 ps simulations.
The colouring indicates the level of inherent flexibility, with the more difficult cases exhibiting more
flexibility.

The outlier at 7σ from the distributions center in Figure 2.3.4, is that of the

C-terminal fragment of rabbit skeletal α-tropomysosin (PDB: 2D3E), a dimer of dimers,

with each dimer subunit consisting of coiled α-helices. This protein is elongated, with

a c-axis along the principal axis of the structure of 36.3 nm, versus 1.8 nm for the

b- and c-axes. Therefore, the prolonged convergence times are likely due to a small

amount of backbone wobble, with small motions at the interaction site between the two

dimers propagating into larger motions distal from the site. Still, Figure 2.3.5 suggests

that this backbone motion must be small, with this case sitting in the outlier region of

Figure 2.3.6. Other cases that fall outside of the general distribution in Figure 2.3.6,

are those that generally feature a greater proportion of unstructured regions or those

that are unstable long-term as monomer units, such as the p300 TAZ2 domain bound

to MEF2 (PDB: 3P57). The short time-frame of the simulation, however, prevents

these monomers from unfolding from their native states.

2.3.3 Benchmarking the internal self-consistency of STID maps

For the maps to be internally consistent, we should be able to find a high CCC between

a highly sampled maps, and a lower sampled maps that has been interpolated to the

same size. We tested this by generating highly detailed maps at four neighbourhood

sizes, Nh, i.e. the window size multiplied by the voxel width, with each highly-detailed

map having a voxel width of 1 Å. We subsequently compared them to maps with

the same Nh, but wider voxels, and therefore, smaller windows. These maps feature
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fewer voxels sampling each local environment overall. We calculated the CCC between

the reference high-sampling 1 Å map and the low-sampling ones, to assess how much

information is retained when the sampling is decreased. To make these comparisons

possible, low-sampling maps were oversampled to have the same number of voxels as

the high-sampling reference (i.e. data was replicated as necessary). For example, in

Figure 2.3.7(a) Nh is held at 10 Å. The point at 1 Å voxel width, therefore, includes the

properties of 10 voxels. The point at 2 Å includes 5 voxels, and so on, until the point

at 10 Å voxel width considers only one voxel. The difference between the individual

subfigures is, therefore, Nh.
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Figure 2.3.7: In each panel, we report the cross-correlation coefficient of each low-sampled map with
respect to the highly-sampled 1 Å voxel width map as a function of voxel width. Five different proteins
were tested, each represented by the coloured points. For each map to have the same neighbourhood
size, Nh, while their voxel width is varied, the window size is adapted as necessary. Each panel
represents a different Nh, according to: (a) Nh = 10 Å, (b) Nh = 12 Å, (c) Nh = 3 Å, (d) Nh = 6 Å.

The CCC between the 2 Å voxel width STID maps and the 1 Å for a variety

of Nh is roughly 0.8, implying that the sampling in this region is dependable. While

sampling 3 or perhaps 4 times less provides an acceptable CCC, beyond this point, the
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differences become too significant. An increased voxel size does affect the topology of a

map. However, this is not unexpected as otherwise high-resolution electron density

maps would always be interpolated from low-resolution data. The fact that the CCC

remains at an acceptable level over the first few voxel widths, demonstrates that the

general topology is respected by the STID maps. Thus, comparative structural data

can still be obtained with different parameters, an important fact for any well-grounded

method.

2.3.4 Relationship between STID maps and the structure of

a protein

The global average STID value, Davg., provides us with a direct comparison between

the different structural and dynamic characteristics of a protein. Davg. is the average

of all voxel’s individual STID values, with the exception of those containing a value of

0. The presence of both rigid and highly-charged regions within a protein contribute

greater STID values to their respective voxels than a flexible or apolar residue. This is

shown in Figure 2.3.8(a), where only the core regions of the protein are observed at

greater isosurface cut-offs, but the more flexible regions can be seen at lower isovalues.

Furthermore, we found that, while having a greater relative quantity of charged or

polar residues did indeed increase the Davg., time-averaged dynamics and the structure

had a considerably larger impact on the maps’ topology.

We sought to determine whether a link exists between the characteristic Davg. of

each protein and any of their physical quantities that are easily measurable. Using the

118 protein dataset, we observed that the ratio between SASA and molecular weight,

Sm, is anticorrelated with Davg. (see Figure 2.3.8(b)). The relationship could be fitted

via a linear least-square fit (Pearson correlation coefficient equal to −0.80):

Davg. = 0.34 Sm + 0.59. (2.3.1)

Thus, each STID map is associated with a characteristic cut-off value, determined by

the SASA and molecular weight of the protein. Important topological features of the

STID maps are entirely independent of the type of protein: core secondary structure

features are always visible in and around an isovalue of 0.8, and highly charged atoms

become isolated from the body of the protein at more stringent cut-offs beyond 0.9.

Typical structural elements are always discernible at the same isovalue, independent

from the protein under study. This means that proteins with a similar mass and aspect

but a different secondary structure will have a different Davg. value. This is because

different secondary structure elements contribute to the STID voxel system in different
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ways, determined by their characteristic structure and dynamics. For instance, a greater

number of unstructured coils will produce a more significant number of occupied voxels

as the protein explores a relatively greater region of the available space, but these will

have smaller associated non-zero STID values, decreasing Davg..
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Figure 2.3.8: (a) Ribonuclease A (PDB: 9RSA) embedded in its associated STID map. Two
isosurface selections are shown. The transparent isosurface, at an isovalue of 0.43, shows how the local
side-chains contribute to the isosurface’s topography. The opaque one, at 0.8, illustrates primarily the
core secondary structure features and charged residues. (b) Bottom left: variation of average nonzero
STID value versus the protein’s solvent-accessible solvent area (SASA) divided by its molecular weight
(shown in palatinate). The fitted grey line was found via a linear least-square fit, with a Pearson
correlation coefficient of −0.80. Top: residual between the points and the fitted line. Bottom right:
representation of the points as the STID average against number density in palatinate, with a fitted
Gaussian shown in grey (µ = 0.432, σ = 0.0356).

This direct link between the structural characteristics of a protein and the shape

of the associated volumetric isosurface makes STID maps an appropriate way of

representing how a protein will be perceived by its immediate surroundings, such as a

binding partner in a docking scenario. Indeed, the direct relationship between Davg.

and SASA indicates that an isosurface extracted from a map at a protein’s Davg. is

indicative of that protein’s excluded volume. We can identify an ideal general cut-off

value in our STID metric (an ideal isovalue) to transform all of these volumetric maps

into three-dimensional shapes by taking the peak of the fitted Gaussian in Figure
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2.3.8(b), which mirrors the distribution observed in Figure 2.3.1(a). This ideal isovalue

of 0.43 is a property that naturally falls from the simulation in solution, specifically from

the relationship between the average STID value and the SASA. In previous electron

density modelling and 3D reconstruction software yielding volumetric representations,

the choices of isovalue cut-off to display isosurfaces have been arbitrary.6 Their choice

is often chosen based on what is deemed by the authors to be most appropriate for

the work, with no apparent link between a defining characteristic of a protein and

the isosurface shown. In contrast, we have demonstrated that our STID map-based

representations can be directly related to a physical and easily measurable quantity. In

the remainder of this Chapter, we will discuss how our STID representations can be

further utilised in a range of additional physical and biophysical scenarios.

2.3.5 Methods

2.3.5.1 Molecular Dynamics

All simulations are run on the GROMACS17 MD engine, with Amber ff14SB force

field.18 Systems are prepared by immersing the protein of interest in a TIP3P water

box, neutralised with Na+ or Cl− counterions. The system is then energy-minimised

using a steepest descent algorithm, with a tolerance threshold set to 200 kJ mol−1

nm−1. The initial step size is set to 1 pm, the maximum number of allowed steps to 5

× 106. The cut-offs for both Coulombic and van der Waals interactions are set to 1.2

nm.

The protein is then equilibrated for 500 ps within a canonical ensemble, with T

set to 310.15 K with 2 fs step size and the constraint algorithm LINCS applied to the

bonds.19 A particle mesh Ewald summation is used to treat long-range interactions

and a velocity-rescale temperature coupling method applied separately to protein and

nonprotein atoms; the coupling constant is set to 0.1 ps. Velocities are randomly

assigned from a Boltzmann distribution of velocities at T .

Finally, production occurs over a 600 ps timescale, for reasons discussed in Section

2.3.2, in an isothermal-isobaric ensemble. T is set as mentioned above; the pressure is

set to 1 bar. Berendsen temperature and pressure coupling methods are used, again

keeping the protein and nonprotein groups separate. The temperature coupling is as

mentioned above, with the pressure coupling constant set to 10 ps. The compressibility

for both is set to 4.5 × 10−5 bar−1. Atomic coordinates are saved every 5 ps.
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2.3.5.2 Dataset setup & SASA parameters

In total, 118 non-redundant proteins (maximum 30% homology) were extracted from

the PDB-REDO databank,20 acting as a diverse subset of the CAPRI protein docking

benchmark.13 All structures were water-soluble proteins featuring solely standard amino

acids, none required applying a biomatrix, and all were composed of more than 30

amino acids.

The SASA of each structure in the benchmark set was calculated using the Shrake-

Rupley algorithm,21 with the solvent probe radius set to 1.4 Å to represent that of

water. For each protein, we report the average SASA over a 600 ps production cycle

(one structure every 5 ps, excluding the first 50 ps). Molecular weights were calculated,

accounting for all atoms present in the atomic structures.
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2.4 Measuring microscopic permittivity

2.4.1 Introduction

Knowledge of a material’s dielectric properties is important across a wide-range of

fields, including the development of battery technologies,22 new industrial processes,23

cosmetics24 and our understanding of dark matter.25 These dielectric properties are

characterised through the local dielectric permittivity or dielectric constant, εr. In the

life sciences, εr is a key quantity in the interactome, from the interaction of amino acids

that give rise to the quaternary structure of a protein, to the many intercellular processes

such as neuron signalling. Variability in the relative permittivity at a molecular level

is, therefore, a fundamental aspect of life, but the complex dynamics and presence

of clustered charged particles results in a constant state of flux. Consequently, εr is

difficult to calculate and predict.

It is beneficial to reconcile the dielectric properties of these non-trivial systems

at a molecular level with the processes that drive biological behaviour. Measuring

the dielectric permittivity at this scale is challenging, with current techniques all

possessing their limitations. Since proteins are considered polarisable materials, common

experimental means of characterising their dielectric properties include the use of

dielectric spectroscopy,26 impedance spectroscopy,27 and dielectrophoresis.28 These

yield average quantities representative of the protein in bulk solution. Microscopic

measurement attempts have been made on DNA using dielectric sensitive fluorescence

dyes.29,30 These provided little information on the polarisability and consequently

tended to overestimate the dielectric constant.31

Theoretical methods can be a little more versatile. Following from the theory laid

out by Kirkwood and Fröhlich,8,9 Pitera et al.11 used MD to calculate the dielectric

properties of globular proteins in the absence of an applied field by exploiting the

instantaneous dipole fluctuations. This approach gave numbers close to experimental

values, though it neglected the microenvironment. Li et al.32 were able to obtain a

much higher resolution by applying their Gaussian smoothing function based on the

inverse of a model for the electron density, in an approach not unlike our own for the

STID maps, except with a quantum focus. However, this technique was parameterised

on a set of fixed atomic structures assumed to be at 0 K, when in reality the dielectric

is likely to be blurred over a localised region due to local dynamics. It also ignored

the dielectric response due to local charge introduction/removal, i.e. the coordination

between a titratable group and a counterion in a solution of appropriate pH. Thus, it

is unknown how transferable it is to a realistic system. Ideally, we require a method

that is easy to use, is widely transferable and affords a high resolution.
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By leveraging on MD, we can address each of these key criteria. MD usage is

widespread and can often run on desktop machines. The forcefields are usually very

transferable, as the most adept get tested under a wide range of thermodynamic

conditions at body temperatures and pressures. By its very nature, MD considers the

dynamic relationship between ions and water in solution with the titratable groups

of a protein. Finally, all-atom forcefields such as OPLS or AMBER33,34 give an

atomic level of resolution. In Section 2.2 we designed a representation of a protein

that accounts for its dynamics, electrostatics and shape. Rather than measure the

dipole fluctuations across the whole protein, we discretised the space further into a

series of voxels, before convolving a Gaussian with a pseudo-atom that occupied the

individual voxels. By truncating this method at the point where local permittivities

were calculated (Equation 2.2.3) we can test whether STID maps are able to coarsely

predict the dielectric constant, thereby providing new insight into the variation of εr

that can occur within a complex, dynamic system, particularly at an interface.

As a proof of concept, we will attempt to replicate experimental permittivities

for a dielectrically diverse set of solvents: ethanol, DMSO, THF, NMP, acetone and

benzene, to ensure that the method is both accurate and applicable. We will first

describe the theory underpinning the method, before determining the best parameters

to predict the permittivities. Finally, we will discuss the results of the approach

and compare with other techniques designed for similar purposes and consider the

overall applicability to proteins. It is worth emphasising, however, that surpassing the

accuracy of current methods designed for the purpose of predicting either protein or

solvent dielectrics would be surprising, as the intended objective of the STID map is its

application in protein-protein docking. Still, being able to predict physical trends using

the foundational theory of the STID map would help legitimise its physical grounding,

in contrast to other shape-based methods used in protein docking.

2.4.2 Measuring the dielectric constant – theory

Dielectric permittivity is a crucial physical property which characterises the electric

polarisation response of a material under the influence of an external electric field. It is

defined as a proportionality constant, ε, given by the ratio between the applied electric

field,
−→
E , and the corresponding electric displacement,

−→
D :

−→
D = ε

−→
E , (2.4.1)

When exposed to a field, electrical charges of the opposite sign will attempt to separate,

with positive charges moving in the direction of the field and vice versa. At low

frequencies, 103 – 109 Hz, molecules with a permanent dipole moment will rotate and
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become aligned parallel to the field, a property known as dipolar polarisation. Between

109 and 1012 Hz, molecular bonds will stretch as ions get pulled apart, and beyond

this, the electron cloud and nuclei begin to separate. At very high frequencies (> 1015

Hz), the material cannot exhibit any dielectric properties due to the formation of a

plasma. In bioscience, it is the dipolar polarisation that is of interest. In this frequency

range, polarisation can also occur with molecules with an instantaneous dipole moment,

though the extent depends on the material and the frequency of the field.

The electric polarisation,
−→
P , represents the extent of separation and thus a

material’s response to an electric field. The following relates the field, displacement

and polarisation:

−→
D = ε0

−→
E +

−→
P , (2.4.2)

where ε0 is the permittivity of free space (ε0 = 8.85 × 10−12 F m−1) which defines

the relationship if the material is non-polarisable (i.e. a vacuum). The dielectric

permittivity and electric displacement, therefore, define the extent a material becomes

polarised while under the influence of an electric field. The dielectric constant of a

material, εr, expresses the ratio between the permittivity in a vacuum and the measured

permittivity:

εr =
ε

ε0
. (2.4.3)

εr is always ≥ 1 and is the quantity we endeavour to find. In the same fashion as

in Section 2.2, we take the conformational space of an MD simulation as a starting

point, with the space discretised into a series of voxels. The internal charge distribution

of each voxel is again the explicit atoms from the MD simulation. The charges

from neighbouring voxels produce the net field required for a dipolar response, and

consequently a dipole associated with the voxel centre. Following Equations 2.2.1

– 2.2.3, we can use the fluctuations of each dipole moment,
−→
Mv, observed over the

simulation to extract εv, our εr affiliated with each voxel. This approach allows us to

explore the variation in the permittivity of a system on an Ångström scale. Whether

we can physically measure the permittivity on an Ångström scale is worth considering,

as typically the electric permittivity is treated as an averaged macroscopic property

of a material. Recent AFM work has shown that it is possible to measure dielectric

variation on a nanometre scale for a series of crystalline materials.35 In addition, recent

work looking into the dielectric constant of water in a confined space was able to

measure the permittivity across a 3 Å film of water, where they found a value of

εr = 2.1, owing to the almost complete suppression of the dipole rotational response in

the interfacial layer.36 Therefore, while the physicality of using a method not designed
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for high-resolution measurements of permittivity, for that purpose, is debatable, there

is a scientific basis to measure what is typically considered a macroscopic quantity on

a microscopic scale.

2.4.3 Parameter determination

We applied this theory to an MD simulation for each solvent; see the Methods section

below for details on the simulation setups. When measuring εr for each solvent, we

must also ensure we account for any discrepancies. Notably, four factors can impact

our permittivity:

1. The timescales over which we measure the dipole fluctuations.

2. The external dielectric, εEx.

3. The voxel volume, Vv.

4. The chosen forcefield.

While both a timescale and Vv were effectively determined in Section 2.3, it is still

necessary to conduct a parallel benchmark here, both because we are attempting to

represent a different physical quantity, and due to the absence of the neighbourhood

factor discussed in 2.3.1. This factor is not applicable here as we are interested in a

single voxel’s dielectric behaviour in isolation, albeit influenced by its surroundings.

We investigated the impact of the forcefield by performing benchmarks with two

forcefields for ethanol, OPLS-AA from 200637 and the LigParGen OPLS-AA webserver

from 2017.38–40 For the following set of benchmarks, the mean of εr from all the voxels

is used, as we must first ensure we can accurately represent the bulk before examining

a higher resolution.

2.4.3.1 Timescales

Prior to checking the other parameters, we must ensure full convergence in our simu-

lation. Figure 2.4.1 shows how successively larger blocks of the MD simulation can

be used to generate εr. In Figure 2.4.1 (right) we move in incremental steps of 500 ps,

first using 0–500 ps, then 0–1000 ps and so on until the full 3 ns post-equilibration

simulation to calculate εr. For this, we used a voxel width of 1 nm and an external

permittivity of 60. The convergence behaviour should be identical regardless of these

parameters. εr is very stable, with no significant deviation across any of the time

segments. We, therefore, looked at smaller time frames using 2 ps increasing segments

from 0–2 ps up to 0–30 ps (Figure 2.4.1 left). We see convergence for all solvents within

71



2.4. Measuring microscopic permittivity

30 ps, thus, we can use a minimum timeframe of 30 ps to calculate εr. However, in

order to be robust, we used a timeframe of 500 ps for the following set of results.
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Figure 2.4.1: Measured average permittivity for each indicated solvents with increasing segments
of time used to measure dipole fluctuations. The dielectric converges rapidly and is stable over long
timescales. (a) 15 individual measurements made using 2, 4, 6 ps and so forth up to 30 ps. (b)
Permittivity over a longer timescale, from 500 ps, 1000 ps, 1500 ps up to the full 3000 ps of the
simulation.

2.4.3.2 External Dielectric and Voxel Volume

Since both the external dielectric constant and the voxel volume feature in Equation

2.2.3, it is necessary to perform a parameter sweep and test both of these in conjunction.

Our choice of external dielectric should match the known value for the homogenous

solvent. However, εEx may not be known when exploring more complex systems, and

certainly, it is not continuous at an interface. Therefore, we tested a range of values

to measure its influence on the dielectric to examine whether it is possible to use an

approximation or indeed fixed value for all. Specifically, we measured εEx between 10

to 90.

To pair with these values of εEx, we swept through a voxel width of 3 Å to 18 Å in

steps of 1 Å. Since each voxel is cubic, the cube of this width gives the volume. Below

this threshold, and we develop internal artefacts that arise due to pockets of vacuum,

similar to the justification for our resolution pick in Section 2.3.1. Above this range,

and it is not possible to exclude edge effects from the box’s boundary. The measured

permittivity for each combination of the two, associated with each solvent, is shown in

Figure 2.4.2.
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Figure 2.4.2: Variation in the measured permittivity dependent both on the voxel width and the
external permittivity, εEx for the seven solvents. The arrows above the colour bar indicate the
experimental values.

Looking at Figure 2.4.2 it is clear that, except for DMSO, all of the solvents

exhibit very large measured permittivities relative to the experimental value beyond

a voxel width of 10 Å. For both ethanols and NMP, measured εr increases sharply

beyond 4 Å. The influence of εEx is more subtle, with only some minor variation along

a fixed voxel width. We can therefore determine more confidently the values of εEx and

voxel width parameters by extracting two slices of Figure 2.4.2 at a voxel width of 3 Å

and 4 Å, shown in Figure 2.4.3.
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(a) (b)

Figure 2.4.3: Variation of measured permittivity with external dielectric for the 7 solvents taken at
a voxel width of: (a) 3 Å, and (b) 4 Å. The dotted lines indicate the experimental values. The green
dotted line relates to both Ethanol06 (yellow) and Ethanol17 (green).

For the first few values of εEx, the measured permittivity is very high, often over

100. This is particularly true for for the solvents with the larger dielectric values,

except for DMSO. After an εEx of 40, the measured permittivities converge to some

fixed quantity that is different between the two plots. In none of the trends in Figure

2.4.3 do we see convergence to the experimental value. However, a voxel width of 3 Å

(Figure 2.4.3(a)), does give values close to the experimental data in the majority of

cases and is certainly an improvement over Figure 2.4.3(b).

Since the permittivity does not quite reach convergence in Figure 2.4.3, we can

extend the number of measured points for a voxel width of 3 Å (Figure 2.4.4). At εEx

> 140, εr for solvents such as NMP and ethanol are still decreasing, however it almost

negligible. Thus, we conclude that convergence for all solvents to some fixed value

occurs at εEx ≈ 140. This quantity is unphysical, very few solvents are this polarisable,

and it is not possible to increase a measured permittivity from dipolar polarisation,

only decrease with electric field frequency. It might, therefore, be pertinent to consider

εEx more as some empirical mathematical constant than a physical quantity.
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Ethanol06 Ethanol17

Figure 2.4.4: Variation in measured permittivity for the 7 solvents with εEx over an extended range,
using a voxel width of 3 Å. The dotted lines indicate the experimental values. The green dotted line
relates to both Ethanol06 (yellow) and Ethanol17 (green).

Therefore, we have determined the parameters required in building our systems

and the constants in Equation 2.2.3 necessary to return the most consistent and

accurate results. A production timescale of 600 ps, a voxel width of 3 Å (giving a Vv of

27 Å
3
), and a εEx of 140. We can now consider the impact of the two forcefields used

for ethanol, as well as compare more directly with the experimental data and other

theoretical methods.

2.4.4 Results

Table 2.4.1 provides a comparison between our theoretical bulk mean values and the

experimental data.

76



2. A novel representation of molecular structure and dynamics

Table 2.4.1: Comparison of experimental and theoretical permittivity results. The standard error for
the results is given in brackets. The standard deviations of the theoretical results are also provided.

Solvent Theoretical Standard Deviation Experimental

Benzene 6.846(9) 1.6 2.3

THF 9.70(2) 3.6 7.58

Acetone 14.95(2) 3.7 20.7

Ethanol06 21.16(5) 8.6 24.5

Ethanol17 23.27(5) 9.0 24.5

NMP 31.9(1) 18.3 32.17

DMSO 10.29(2) 3.3 46.7

From the table, we can see that nearly all the solvents follow the expected trend

and are close to the experimental data, although not all of them within the margin of

error. The clear outlier is DMSO. However, OPLS-AA struggles to replicate DMSO

behaviour,41 and indeed the model comes with a cautionary note in GROMACS due

to the model’s proven inaccuracy. Following the results of Sweere et al.,41 and ignoring

the results of DMSO, we have therefore correctly predicted the relationship between

increased polarisability leading to higher dielectric constants.

The standard deviation indicates that there is a wide variety of εr values found in

the individual voxels. This lack of consistency implies that it will be challenging to

explore the dielectric variation at a higher resolution. Thus, the method only allows us

to report on the dielectric of the bulk.

2.4.5 Discussion

Work by Caleman et al. performed a forcefield benchmark of OPLS-AA and GAFF42

using a different approach that relies on MD to calculate the dielectric constant on a

macroscopic scale. They found that both forcefields struggled with replicating dielectric

values, though GAFF performed marginally better. They note that the viscosity of the

solvent will affect the permittivity measurements. Since polarisability is a contributing

factor both to the viscosity of a fluid and its dielectric constant, the two are intrinsically

linked. A more viscous fluid is unable to display the same degree of time-dependent

fluctuations and response to the electric field as a less viscous one. Indeed, DMSO

has the highest viscosity of the solvents, so is less able to react to an electric field.

This issue is further exacerbated by the fact that it was simulated close to its melting

point (292 K). Coupling this information with the poor performance of OPLS-AA with

DMSO shown by Sweere et al.,41 we can therefore omit this result and conclude that

our approach accurately reflects the trend of increasing dielectric with polarisability.

77



2.4. Measuring microscopic permittivity

Caleman et al. also simulated ethanol using a slightly updated OPLS-AA forcefield

developed for their work and found a permittivity of 21.7. This value is a slight

improvement over the 2006 OPLS-AA forcefield, with our 2017 method giving an

improvement over this measurement again. Therefore the choice of forcefield is essential,

and, unsurprisingly, utilising the more modern versions offers superior results. Of

particular note are the polarisable forcefields based on Drude oscillator models.43 While

more specialised, these forcefields have shown to better replicate dielectric constants,

particularly for highly polarisable molecules.

Deviation from experimental results and the high variance is therefore predomi-

nantly due to the low mobility of the molecules in response to the dynamic environment,

a lack of polarisability and other inaccuracies arising from the forcefield. Nevertheless,

our measurements are still remarkably close given that they are taken from a nanometre

slice, rather than the whole of the system.

Comparing with other computational methods, Jouyban et al. published a method

that calculated the dielectric constant of a solution based on solvent composition and

temperature.44 Their approach builds on Redlich-Kister theory; a means to calculate

the physical and thermochemical properties of binary liquid mixtures based on ionic

activity. They applied their method to twelve binary and three ternary mixtures. On

average, they found their results deviated from the experimental results by 0.52%

for the binary mixtures at room temperature, 1.29% at different temperatures and

1.61% for the ternary solvent mixtures. In contrast, our seven unary mixtures gave a

deviation of 47.8%. Even discounting benzene and DMSO, we achieve 15.0%, which is

significantly larger than the deviation for the more complex binary mixtures.

Considering proteins, the work by Li et al. on creating a model for the dielectric

through a protein,32 was able to achieve dielectric values and consequently pKas of

individual amino acids close to those predicted experimentally. We initially argued that

it was unknown how transferable this method is, particularly to different environmental

conditions. Despite this, it offers a significant accuracy improvement over our method.

Furthermore, while Li et al.’s approach does not accurately represent titratable groups,

our method also mirrors this issue as STID maps are built solely from a protein’s

constituent atoms. Thus, for dielectric investigations into the nature of a protein, their

work is preferable.

In conclusion, we have shown that our technique correctly predicts, in general,

that increased polarisability of a molecule will lead to an increased dielectric. We have

also shown that more recently developed forcefields are better at capturing the correct

dielectric properties of a solvent. However, our method does not provide permittivity

values of bulk solvents as accurately as methods specifically designed for this purpose.

It is nevertheless encouraging to see that the theory used to build the STID map is
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well-grounded in physical theory, and indeed can predict important physical trends.

2.4.6 Methods

2.4.6.1 Molecular Dynamics

We carried out MD simulations of the solvents using the GROMACS molecular dy-

namics engine17 with the 2006 modified OPLS-AA all-atom forcefield.37 An additional

simulation of ethanol was run using the LigParGen OPLS/CM1A parameter generator

for organic ligands.38–40 Each solvent box was cubic, at 3.5 nm across in each direction,

with the typical density of each solvent at 300 K used to estimate the number of solvent

molecules. Each system was initially energy minimised via steepest descent, with the

maximum force tolerance set to 200 kJ mol−1 nm−1. They were then equilibrated

sequentially in an NVT and NPT ensemble for 1 ns, before a 3 ns production simulation

in an NPT ensemble.

In all simulations, long-range interactions were calculated using the particle mesh

Ewald method, and a cut-off of 1 nm was used for the van der Waals and Coulombic

interactions. The LINCS algorithm19 was used to restrain bonds involving hydrogen

atoms. Simulations utilised a 1 fs integration time step, neighbour lists were updated

every 5 steps. In both ensembles, the solvent was coupled to a heat bath set to 300.15

K with time constant τt = 0.1 ps. For the NPT simulations, an atmospheric pressure

of 1 bar was maintained via isotropic pressure coupling using a compressability kx =

ky = kz = 4.5 x 10−5 bar−1 and time constant τp = 1.0 ps.

2.4.6.2 Statistical analysis

When extracting the value of epsilon, we took the mean of all voxels not at the edge of

the system. Even with the exclusion of these edge effects, we still encountered very

extreme dielectric values influencing the mean. We, therefore, used the Pierce Criterion

method to eliminate outliers.

Pierce’s criterion is preferable to other similar methods such as Chauvenet’s

criterion, as it does not make any arbitrary assumptions on the rejection of data,

and can also be used to remove more than one outlier. Pierces’s criterion begins by

assuming one outlier and a normal distribution. Based on the standard deviation of the

data, and the number of observations in the sample set, we find the maximum allowable

deviation of a data point. If the outlier sits outside this range, it is eliminated, and the

process is reiterated, this time assuming two outliers. This process repeats until no

outliers are removed, in which case we can be confident in the remaining dataset.
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2.5 On the density of proteins

2.5.1 Introduction

In Chapter 1 we discussed the issue surrounding the currently accepted value of protein

density, specifically the density of an individual protein, not a protein solution. The

density of a protein is an essential biophysical quantity, used in a wide range of fields –

most notably X-ray crystallography. This value is largely based on Voronoi tessellated

generated volumes from crystal structures, yet it is treated as a constant in in vivo

and in vitro studies.45,46 Our novel protein representation, the Spatial and Temporal

Influence Density (STID) map (see Figure 2.5.1) could provide much-needed clarity as

to what the density of a protein is, and whether it is dependent on the local environment.

We have already demonstrated that these shapes are representative of an excluded

volume in solution (Figure 2.3.8), and we will discuss in Chapter 3 how they are effective

molecular descriptors in a protein-protein docking context, whereby successful poses

maximise surface complementarity. STID maps are therefore appropriate to investigate

the relationship between protein density and dynamics. The volume a map occupies

can be calculated based on the number of voxels enclosed by the surface defined by our

ideal isovalue of 0.43 (see Section 2.3.4). Thus, given a STID map of a protein of known

mass, we can derive a density. Unlike previous computational analyses that adopt

solvent-corrected Voronoi tessellation methods,47–49 our approach does not assume that

every surface exposed atom has a well-defined position. In solution, this means that

side-chain dynamics will reduce adsorption accessibility, resulting in imperfect packing

of water around the protein, and thus leading to the exclusion of a larger volume.

In a vacuum, the side-chain dynamics will naturally be reduced, leading to a more

significant measured density overall.
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Figure 2.5.1: (a) STID map isovalue cutoff versus density of resulting molecular shape. The line
in palatinate is the average value of the protein density for all 433 proteins used for this work, and
the grey region shows the standard deviation. (b) Plasma protein Alpha-1-antichymotrypsin (PDB:
1AS4) embedded in its STID map. Two isosurface selections are shown. The transparent isosurface,
at an isovalue of 0.43, shows how side-chain dynamics contribute to a larger excluded volume, leading
to a density of 0.99 g cm−3. The opaque one, at an isovalue of 0.58, negates some of the contribution
made by these side-chains to give a density of 1.35 g cm−3.

2.5.2 Results

We juxtaposed our method with experimental data gathered by Ashkarran et al.50

obtained in solution at room temperature and atmospheric pressure,51 by applying our

STID map-based technique to calculate the density of five plasma proteins studied by

them (hereon “Dataset A”) under the same conditions. These are immunoglobulin

heavy constant gamma 1 (PDB: 1AQK), Alpha-1-antichymotrypsin (PDB: 1AS4),
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immunoglobulin kappa constant (PDB: 1D5I), Serotransferrin (PDB: 1RYO), and

Immunoglobulin heavy constant gamma 3 (PDB: 5W38). We found an average density

of 1.01(5) g cm−3, which is in excellent agreement with their experimental value of

1.03(2) g cm−3. For a greater understanding of protein density distribution, we then

simulated and analysed a larger dataset of 416 proteins in solution from the established

protein docking benchmark13 (hereon “Dataset R”), as well as the 12 proteins Fischer

et al.7 used to identify a dependency between density and molecular weight (hereon

“Dataset F”) again in solution and at room temperature and atmospheric pressure. The

protein density average for the total of 433 proteins is 0.99(7) g cm−3. This value is

substantially smaller than the typically used 1.35 g cm−3, but again consistent with the

recent results of Ashkarran et al.. To compare with experimental data from ion mobility

experiments, we utilised simulation data from Mandl et al.52 and Marklund et al.53 of

lysozyme, ubiqutin, CTF and Trp-cage (hereon “Dataset E”) in vacuum and solvated by

a single water shell of 6 Å, at 300 K and low temperature (200 K) conditions. We also

utilised simulation data of fully solvated systems of this dataset at 200 K from Mandl

et al.52 and Marklund et al.53 To ensure that the gas-phase simulations of Dataset

E are equilibrated, we monitored how protein density evolved over a 10 ns lysozyme

simulation. We calculated protein density in 2.5 ns–long windows, taken every 250 ps.

Results show that the density displays a small amount of time-independent variation,

and notably, no significant change in the density occurs through the simulation (see

Figure 2.5.2). This result confirms that gas-phase equilibration phenomena such as

side-chain collapse are not impacting our density measurements.

82



2. A novel representation of molecular structure and dynamics

Figure 2.5.2: Density measurements from a sliding 2.5 ns block of a 10 ns simulation of lysozyme
in vacuum, coloured from purple to yellow according to their progress through the simulation. Each
block moves 250 ps forward. We observe no time-dependent evolution of protein density throughout
the simulation.

The average density in vacuum at 300 K is 1.17(5) g cm−3. A breakdown of all

values from each dataset is provided in Table 2.5.1.

Table 2.5.1: Summary of the average protein densities for each dataset alongside the conditions they
were simulated in. Densities are calculated through the volume encompassed by a STID isosurface at
an isovalue of 0.43 for each protein. The brackets indicate the standard deviation of the measurements.
Specifically: Dataset A is Ashkarran et al.’s five plasma proteins,50 Dataset R are the 416 proteins
from the protein docking benchmark,13 Dataset F is Fischer et al.’s 12 proteins used to determine
their mass dependency relationship,7 and Dataset E is lysozyme, ubiquitin, CTF and Trp-cage at 300
K and lysozyme and ubiquitin at 200 K.52,53

Dataset Ref.
Number of

Proteins

Temp.

/ K
Conditions

Average Density

/ g cm−3

Average

RMSF / Å

A 50 5 310.15 Water 1.01(5) 1.1(3)

R 13 416 310.15 Water 0.98(7) 1.1(2)

F 7 12 310.15 Water 1.04(6) 0.9(2)

E 52, 53 4 300 Vacuum 1.17(5) 0.85(12)

E 52, 53 2 200 Vacuum 1.24(4) 0.56(6)

E 52, 53 2 200
6 Å water

shell
1.36(3) 0.37(1)

To investigate whether the observed distribution of protein densities could be

explained by protein dynamics, we calculated the average root mean square fluctuation

83



2.5. On the density of proteins

(RMSF) of each protein from the MD simulation used to generate their STID maps (see

Figure 2.5.3(a)). We observed that protein dynamics and density are anti-correlated

and that an exponential model could be fitted to their distribution:

ρ = 1.33 exp(−0.272×R), (2.5.1)

where ρ is the density in g cm−3 and R the average RMSF in Å. We tested the validity

of this model using the Leave One Out Cross-Validation method, resulting in a training

mean squared error (MSE) of 0.00196 g cm−3 and a test MSE of 0.00204 g cm−3. The

similarity between the two and their low values give confidence to our fit. Low-density

outlying proteins are either highly non-globular or unstable when not in a complex.

Extrapolating to the limit of a hypothetical protein with no dynamics, we find a density

of 1.33(7) g cm−3, which is consistent with the theoretical calculations based on protein

crystal structures.47–49

Figure 2.5.3: Relationship between protein density and dynamics. (a) We used our STID map
representation to calculate density and average root mean square fluctuation (RMSF) for 433 different
proteins and fitted an exponential model to the resulting distribution (palatinate line). The grey
points are the 416 proteins from the protein docking benchmark13 (Dataset R), the black points
are five plasma proteins studied by Ashkarran et al.50 (Dataset A), the blue points are 12 proteins
collated by Fischer et al.7 (Dataset F), and the green points (Dataset E) lysozyme, ubiquitin, CTF
and Trp-cage.52,53 The error bars on Dataset E are the standard deviations found from either 50
replicas of the simulation or independent time blocks of a 10 ns simulation. (b) Histogram of all
protein densities fitted with a Gaussian.

We compared our results with data obtained via the gmx sasa tool54 supplied

through GROMACS,17 a popular method based on Connolly surfaces (see Methods

Section 2.5.4.1). This method requires the definition of a suitable probe size, which is

uncertain in this context. For this reason, we obtained a bracket of possible density

values by analysing all conformations of proteins in Dataset R using the limits of
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typically utilised probe sizes, 0.7 Å and 1.4 Å.55 Consistent with our STID map-based

results, we obtained average densities of 1.13(2) g cm−3 and 0.90(4) g cm−3. These

densities also featured a discernible anticorrelation with respect of RMSF, although

less clear than that observed using our method (see Figure 2.5.4).

Figure 2.5.4: Protein density as measured using the GROMACS analysis tool gmx sasa 54 against
average RMSF for Dataset R. SASAs were measured using two probe sizes (0.7 Å and 1.4 Å)
representing the limits of probe sizes used for similar density calculations.55 Their respective average
protein density values bracket the density value found using our STID map-based method. An
anticorrelation, albeit less clear than that obtained using our method (see Figure 2.5.3), can be
discerned.

We then investigated the relationship between protein density and molecular

weight previously identified by Fischer et al.. We first emulated, on our larger dataset

of 433 proteins, calculations by Tsai et al. using Voronoi tessellation on single structures.

To this end, we calculated densities using the flood-fill algorithm in ProteinVolume,56

with a probe size of 1.4 Å, as a proxy for the Voronoi tessellation method used by Tsai

et al.48 While the ProteinVolume method itself does not apply Voronoi Tessellation, it

is similar in that it does not consider the solvent-excluded volume on the surface of the

protein, in contrast to the gmx sasa tool (see Methods Section 2.5.4.1). The densities of

crystal structures from the PDB are reported in Figure 2.5.5(a) to better compare with

the literature. We also calculated the densities of post-equilibrated proteins following

the MD simulation. Unlike the raw crystal structures, these relaxed structures also

included hydrogen atoms. On average, we observed a difference of only 1.8% between

these two datasets, indicating that both equilibration and the presence of hydrogens

have little impact on protein density. This ProteinVolume approach rendered a trend

similar to that identified by Fischer et al. (Figure 2.5.5(a)). However, using densities

derived via our STID maps (Figure 2.5.5(b)), we could no longer see any discernible
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trend, indicating that protein density is not a molecular weight-dependent property

when dynamics are considered.

Figure 2.5.5: Molecular weight dependency of protein density. (a) The grey, black and blue points —
proteins extracted from the protein docking benchmark,13 Ashkarran et al.50 (Dataset A) and Fischer
et al.7 (Dataset F) — are densities of structures downloaded from the protein data bank, that we
calculated using ProteinVolume.56 The orange and purple points show the Dataset F protein densities
originally calculated by Tsai et al.48 using Voronoi tessellation and experimentally determined by
Squire & Himmel,57 and Gekko & Noguchi.58 (b) Dynamic protein density found using the STID
map method on the 433 proteins featured in this work. The discrepancy in Molecular Weight between
static and dynamic cases arises from the lack of hydrogens in the crystal structure.

Instead of molecular weight, we observed that the protein density and sphericity59

are correlated, under the same environmental conditions (see the top of Figure 2.5.6).

Dataset E contains simulations at different temperatures and pressures, hence the

spread in the density at similar sphericity (see Section 2.5.4.2). Since buried amino

acids typically have lower RMSF than solvent-exposed ones, proteins with higher

surface-area-to-volume ratio will tend to feature larger average RMSF (see bottom of

Figure 2.5.6). Consequently, an aspherical protein will tend to have a lower density

than a globular protein of equal mass.
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Figure 2.5.6: Relationship between protein density, dynamics and sphericity. We calculated the
protein density using our STID map representation, dynamics refers to the average RMSF from the
MD simulations used to produce the STID maps, and sphericity was calculated from the snapshot
in the last frame of each simulation (see Methods Section 2.5.4.2). Point colours are defined as per
Figure 2.5.3. As this trend is environment-dependent, Dataset E measurements do not follow the
pattern of all other datasets, but are retained in the figure of completeness.

Finally, to investigate the impact of the surrounding conditions further, we also

explored the effect of increasing pressure on lysozyme in solution at 300 K. The results

show that an increase in pressure leads to a reduction in RMSF and consequently an

increase in density (see Table 2.5.2).
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Table 2.5.2: Effect of pressure on protein density. These calculations were performed on 1 ns block
averages of a 10 ns simulation of lysosyme (PDB) at 300 K in water. The brackets indicate the
standard error over the 10 blocks.

Pressure / atm. Density / g cm−3 RMSF / Å

10 1.03(1) 0.79(2)

1 1.01(1) 0.83(2)

0.1 1.00(1) 0.84(2)

2.5.3 Discussion

The simulations in vacuum give larger densities than those found in solution. These

values are slightly larger than suggested experimentally by ion mobility results,60

but follow our expected trend (see Figure 2.5.3). In vacuum, the proteins contract

slightly, and the side-chains exhibit slower, more restricted dynamics. This contraction,

therefore, reduces the measured RMSF. At 200 K, the RMSF is diminished further,

both in vacuum and water, and thus the density increases. Simulations from Dataset E

included a 6 Å shell of water at 200 K, where the solvent’s reduced degrees of freedom

decreases the competition for binding to the side-chains. Consequently, the solvent

almost immobilises the side-chains, resulting in a density of 1.36(3) g cm−3. This result

matches the theoretical measurements performed on static structures. Correspondingly,

we also found that an increase in pressure leads to a reduced RMSF and, therefore,

increased density. While this was a preliminary test on a small dataset and larger

pressures should be applied to confirm the trend, these results suggest the same general

relationship to that observed in Figure 2.5.3. These results highlight the influence of

the environment on the density of a protein, and explains why measurements performed

on single-crystal structures are not appropriate as a proxy for the density of a protein

in solution. The density of a protein is dependent on its environmental, and thus

experimental conditions. We have shown that our density-dynamics dependency model

is robust through different environments, in contrast to previous models. Since protein

density is related to its excluded volume, it is typically considered a product of a

proteins interaction with its environment and is thus ill-defined in the gas phase. Our

model provides a novel means to define protein excluded volume, and therefore its

density, in vacuum.

Using our STID map representation, we have shown that the density of a protein is

no fixed value, but can be reliably predicted by including dynamic information. For the

density in solution at room temperature, we find a significantly reduced average from

the commonly used value of 1.35 g cm−3 to 0.99(7) g cm−3. This value is consistent

with new measurements performed by Ashkarran et al. in solution.50 According to
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our model, protein density does not depend on molecular weight but instead on shape

and dynamics, respectively quantified by sphericity and RMSF. Extrapolating our

data into the regime of no internal dynamics, we find a distribution of densities in

agreement with Fischer et al.7 Thus, we have obtained a model based on dynamics

which matches experimental data performed under different conditions. While the

traditional 1.35 g cm−3 remains suitable for measurements performed under conditions

reducing protein dynamics, such as low temperatures or crystalline phases, we suggest

that the average density for proteins in solution at room temperature should be revised

to 0.99(7) g cm−3. A more accurate density value for a protein of interest in different

environmental conditions can be calculated using Equation 2.5.1, provided the average

RMSF extracted from a short MD simulation, or based on the volume occupied by the

STID maps generated by our software.

2.5.4 Methods

See Section 2.3.5.1 for details on the MD setup used for this work.

2.5.4.1 gmx sasa calculations

We used the gmx sasa analytics tool54 available through GROMACS,17 on all proteins

of Dataset R. This tool finds the SASA of a protein for each frame in a simulation

and has been previously used to estimate the density of a protein.55 For our work, we

used the two probe sizes of 1.4 Å and 0.7 Å as these have been indicated to be the

necessary limits.55 The default probe size of 1.4 Å suits conventional SASA calculations

in water, but the choice of 0.7 Å seeks to define a surface closer to the atomic nuclei

in the protein. gmx sasa can also be used to calculate the volume enclosed by the

surface generated which, combined with the mass, can be used to find a density. For

each reported protein density, we averaged the full 600 ps to compare directly with the

STID maps.

2.5.4.2 Sphericity calculation

We calculated the sphericity using ProteinVolume,56 with a rolling ball probe of 3.0

Å. This probe size was chosen following work by Kim et al.,59 who determined how

best to calculate sphericity. The surface area was found using the Shrake-Rupley21

algorithm with the same probe. The sphericity was then calculated using the following:

S =
π1/3(6V )2/3

A
, (2.5.2)
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where S is the sphericity, V the volume and A the surface area. S equal to 1 indicates

a perfect sphere, 0 an infinite plane.
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2.6 Providing insight into residue structure and dy-

namics

2.6.1 Introduction

As emphasised in Chapter 1, the binding of proteins, facilitated by the structure’s

motifs, provide the necessary complexes required for function, or indeed malfunction.

Binding can occur across multiple scales: from the aggregation of transthyretin (<

1 kDa) into amyloid fibrils responsible for amyloidosis,61 to the interaction of the

SARS-CoV-2 spike glycoprotein (> 420 kDa) with the ACE2 receptor in lung cells, the

first critical stage in viral entry, and therefore key to the virus’ overall life cycle.62

When binding occurs with larger proteins, it is usually accompanied by a confor-

mational change, potentially localised at the binding site, but often over a larger scale,

with movement far from the interaction site. These shifts can be anything from a single

residue displaying different dynamics, to large global reshuffling of tertiary structure.

This allostery manifests as distinct unbound and bound states for a protein. In the

SARS-CoV-2 spike glycoprotein, the spike adopts distinct pre- and post-fusion confor-

mational states, with the pre-fusion unbound state required for ACE2 binding, and the

latter post-fusion bound state needed to begin the process of virus endocytosis.63 The

specific pathway that describes rearrangement between the states is complicated and

not well understood. Indeed, in many analogous proteins, there is a poor comprehension

for how or which distal domains or residues can be mechanistically connected without

extensive experimental work, highlighting the need for a computational technique.

Recent work by Ho and Hamelberg64 developed a novel method to automatically

identify if and how distant domains of a protein are coupled by applying a Markov-Ising

model to a set of Molecular Dynamic replica simulations. In their work, they used

bovine pancreatic trypsin inhibitor (BPTI) as their test structure, utilising a very

large (1024 copies of 100 ns) simulation by the D. E. Shaw research group on the

specialised MD supercomputer Anton.65 Ho and Hamelberg’s method identified three

key domains in BPTI (see Figure 2.6.1), where each could exhibit a binary on or off

state depending on their conformation. Their algorithm endeavoured to resolve the

transition probabilities between a domain’s two states after 100 ns based on the on/off

initial states of the other two domains. This would confirm which domains, and by

extension which groups of residues, were coupled.
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Figure 2.6.1: The three domains of BPTI as determined by Ho and Hamelberg64 using their
Markov-Ising model.

They concluded that while the silver and red domains had some dependency

on each other and blue, the blue domain had no dependency on any other domain’s

state. We note that, while not discussed in their work, the blue domain contains the

BPTI binding site across all complexes it is involved in. Thus, it is likely the blue

domain’s state following the formation of a complex is important for the conformation

and dynamics of the neighbouring domains. BPTI, therefore, serves as an excellent

minimal example for the conformational switch phenomenon exhibited by much larger

proteins such as the SARS-CoV-2 spike glycoprotein. It is also a particularly good

example for this work due to the number of complexes it is involved with.

Extending Ho and Hemelberg’s sophisticated model to much larger proteins would

likely incur a significant computational cost; due to the required simulation length

times, the number of replicas needed, and the fact that the number of modes the model

must accommodate for scales as O(n2) with the number of domains. In addition, while

their method identified links between domains, it neglected the residue level changes.

Thus, while this method provides a great deal of information regarding transition

probabilities, and how domains are connected, it is desirable to have a higher resolution,

quicker, and less costly method to better illustrate how binding impacts conformational

state occupation and associated dynamics.

The STID map isosurfaces offer a means to characterise these changes. As shown

in Section 2.5, the topography of an isosurface extracted from a STID map is sensitive

to its environment. Another critical advantage of these isosurfaces, is that they report

on structural information, specifically on how local dynamics can alter the adopted

residue conformational states. Thus, in addition to utilising STID maps to extract

information about a protein from simulations in solution versus vacuum, we can also

investigate whether STID maps can provide insight into how the formation of a protein

complex with a specific receptor might impact the dynamics of the composite proteins

relative to another bound complex, or indeed a protein in isolation.
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By simulating BPTI in several complexes, i.e. with different receptors, we can

build a STID map based on the captured dynamics of BPTI in each of these bound

states to elucidate which domain’s dynamics are impacted by the binding. We can

use the difference between two STID maps (see Section 2.6.4.2) to highlight regions

of interest. Given that we are interested in a high-resolution method to assess the

impact of binding on structure and dynamics, we will compare STID maps of individual

residues extracted from BPTI in different complexes to explore how the orientational

states of residues are affected on the timescale of side-chain dynamics. Thrombin

is known to induce significant structural rearrangement in BPTI.66 Thus, we will

compare a diverse range of 14 other bound complexes and the unbound BPTI with

BPTI extracted from the thrombin-BPTI complex (PDB: 1BTH).

2.6.2 Results

In total, we generated 17 individual simulations of BPTI. One of the unbound wild-

type case (PDB: 9PTI), 14 of BPTI bound with various receptors, and two of BPTI

bound with thrombin (PDB: 1BTH). The 1BTH simulation was repeated such that we

could compare and contrast which dynamic behaviour is due to the different binding

interactions with a receptor, or lack thereof in the unbound case, and which is stochastic.

Table 2.6.1 gives the PDB codes, and binding partner names where appropriate, for

each BPTI case. Following alignment, we compared the STID maps of each BPTI

residue extracted from its bound or unbound simulation versus the reference 1BTH

BPTI residue STID map.
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Table 2.6.1: PDB codes and corresponding receptor, where appropriate, for the various BPTI cases.
Two simulations for 1BTH, highlighted in bold, were generated, the first as a reference and the second
to quantify the stochastic dynamic behaviour of the protein. The 9PTI case is the unbound wild-type
of BPTI.

PDB Code BPTI Binding Partner

1BTH Thrombin

1BZX Anionic Salmon Trypsin

1CBW Bovine Chrymotrypsin

1EAW Matripase

1FY8 Anionic Trypsin II

1TPA Cationic Trypsin

1YKT Trypsin II

2IJO West Nile Virus Protease

2KAI Porcine Kallikrein A

2R9P Trypsin III

2RA3 Trypsin I

3U1J Serine Protease

4DG4 Human Mesotrypsin

4WWY Trypsin I mutant

5YVU Dengue Virus Protease

9PTI –

Figure 2.6.2(a) shows how the fraction of dynamics that are different relative to

the 1BTH BPTI reference, FD, changes across each of the other 16 BPTI cases for

each residue in BPTI. A value of FD = 0.0 measured between a specific case and the

1BTH reference, indicates that a residue behaves identically to its equivalent in 1BTH

BPTI. FD = 1.0 shows that there is no overlap whatsoever between the conformational

states of the two residues (see Section 2.6.4.2 for how FD is calculated). The secondary

structure associated with each residue is indicated above the figure, with C referring

to unstructured, H to α-helix, and E to β-sheet. The figure is split into sections

by colour according to the domain of the residue. The 14 BPTIs bound in various

complexes (i.e. not the unbound case or the 1BTH repeat), were averaged to give

FD,avg.. Therefore, the vertical lines shown in the bottom of Figure 2.6.2 represent one

standard deviation of these 14, while the midpoint is FD,avg.. Also provided, is the

value of FD for the unbound BPTI case (FD,9PTI), shown as a circle, while the 1BTH

BPTI repeat (FD,1BTH) is shown as a cross. Both FD,9PTI, and the standard deviation

of FD across the 14 bound cases, allow us to determine whether any discrepency in

FD,1BTH is due to the stochastic behaviour of the simulation, or whether there is some

underlying mechanism or interaction that has directly impacted the conformational
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space of a specific residue.

Figure 2.6.2: (a) The fraction of BPTI residue conformational dynamics different between any
specific BPTI residue and the BPTI extracted from the 1BTH reference (FD). We show the average
across all 14 BPTI bound cases and the individual 1BTH repeat and unbound 9BTI cases. The black
line shows the standard deviation across the 14 receptor complexes; thus, the midpoint of each black
line denotes FD,avg. for that residue. The unbound ligand FD,9PTI is shown as a circle, while the
1BTH repeat FD,1BTH is a cross. The method by which FD, FD,9PTI, and FD,1BTH are calculated is
provided in Section 2.6.4.2. The secondary structure associated with a specific residue is indicated at
the top, with the traditional terms of C (unstructured, white), H (α-helices, purple), and E (β-sheets,
yellow) used as labels. The three domains, grey, red and blue associated with each residue as shown
in Figure 2.6.1, are indicated by the background colour. (b) The unbound BPTI and 1BTH repeat
FD data points scaled as multiples of the standard deviation from FD,avg.. The dashed line indicates
3σ from FD,avg. for that residue.

Looking at Figure 2.6.2(a), we observe that for every residue the 1BTH repeat

displays dynamics more similar to the original 1BTH simulation than any other complex.

Any difference between these the repeat and the original arises due to a general noise

contribution. We note that to some extent, almost every residue, even those distal to

the binding site, had their dynamics altered through the BPTI ligand binding to a

different receptor than thrombin, although there is no clear means to distinguish which

amino acids belong to which domain. At this domain level, the traditional means of

measuring structural/dynamic changes, the RMSD, yields little information; with the

RMSD averaged over the three-domain residues between each complex and the 1BTH

benchmark: grey (0.8(4) Å), red (0.8(5) Å), and blue (0.7(4) Å), being roughly equal.

In contrast, FD,avg. over the domains, corrected for the noise found through the 1BTH
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repeat, has identified changes; with the grey (0.078(2)) and red (0.052(2)) each showing

levels of impact that are less than the binding site blue domain (0.088(3)). Thus, while

we are not able to identify which residues belong to which domain, we can identify

specific changes in behaviour due to distal binding on a domain-level scale.

Exploring the impact on residue-level dynamics, Figure 2.6.2(b) allows us to

determine which residues are generally impacted by the formation of the 1BTH complex.

Residues below the dotted line fall within a 3σ range of FD,avg.. In other words, these

residues did not show any significant structural or conformational change from the

other complexes outside of the general noise from the simulation. Residues that fall

outside this range had their conformational dynamics fundamentally altered due to

binding to the thrombin receptor. Table 2.6.2 provides information on these residues.

Table 2.6.2: Residues that had a noteable change in registered dynamics through BPTI binding to
thrombin in 1BTH relative to the other 14 complexes. Reported are the number of standard deviations
each 1BTH BPTI quantity is away from the average of the other 14 complexes, hence quantities > 3
are of particular interest. Specifically, we report on the deviation of: (1) FD,1BTH from FD,avg., (2)
the time-averaged RMSD of the 1BTH repeat from the other 14 case’s time-averaged RMSD, and (3)
the single-frame RMSD equivalent (see Section 2.6.4.2).

Residue Domain FD,1BTH

Time-Averaged

RMSD

Single-Frame

RMSD

R1 Grey 9.35 6.01 1.51

R20 Blue 4.33 6.36 1.81

G37 Blue 3.41 0.77 1.19

C38 Blue 4.75 0.44 2.37

R42 Red 12.20 3.44 0.30

G56 Grey 3.75 1.14 1.18

The RMSD is calculated between each BPTI flavour and the first frame of the

1BTH reference. As a fair comparison to our fraction of dynamics that are different

method, we averaged the RMSD difference, across every 5 ps frame in 600 ps, between

each residue and the respective residue from the first frame of the 1BTH reference

simulation, before reporting on the average across the 14 complexes. This is effectively

an RMSF of the trajectory that is then compared to the reference structure. In reality,

most studies would report a single-frame RMSD, i.e. a comparison between two

singular structures; hence we also report the single-frame RMSD for completeness.

These RMSD ratios are calculated similarly to the FD multiple, and are described in

more detail in Section 2.6.4.2. Clearly, the average RMSD gives a better idea as to

which residues are impacted by binding relative to the single frame RMSD. However,

even the more informative average RMSD fails to identify three residues: G37, C38

and G56, which have had their native dynamics significantly altered.

96



2. A novel representation of molecular structure and dynamics

(a) (b)

(c) (d)

(e) (f)

W44t

R42

F4

F4

R42

Figure 2.6.3: (a-b) 1BTH BPTI (red) R42 (orange) forming a cation-π bond with F4 in the same
1BTH BPTI, and (c-d) 1BTH BPTI R42 forming a cation-π bond with 1BTH thrombin (grey) W44t,
the t referring thrombin. (e-f) 1BZX BPTI (blue) R42 (cyan) exclusively interacting with 1BZX
BPTI F4. The wireframes indicate the STID map of R42 at a cutoff of 0.43.

Examining the cause of these dynamics fraction and time-averaged RMSD changes,

we observe that for R20 and R42, the changes are all due to specific interactions with the

thrombin receptor at the binding site which are not present in the other complexes. R20
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is affected by the formation of a salt bridge with thombin’s E39 and D60. Taking R42

as a visual example (see Figure 2.6.3), we see that in the majority of BPTI complexes,

R42 is stabilised via a cation-π interaction with F4 (Figure 2.6.3(e-f)). However, in

1BTH, the thrombin receptor presents a neighbouring tryptophan to interact with. It

has been shown that, among the aromatics, tryptophan hosts the most energetically

favourable cation-π interaction67 with arginine. Thus, R42 spends the majority of its

time in a conformational state that facilitates a cation-π interaction with thrombin’s

W44, but due to thermal fluctuations is still able to switch states and interact with F4

in BPTI, hence the spread of dynamics shown in Figure 2.6.3(a-d). The single-frame

RMSD comparison is unable to capture this switch.

A58

R1

Y23

R1

Y23
A58

Figure 2.6.4: Hydrogen bonding network between Y23>A58>R1 in 1BTH (red, specific residue in
orange) BPTI, faciliated by R42 not forming a cation-π bond with F4. The equivalent residues are
indicated for 1BZX (blue, specific residue in cyan) BPTI. R1 and A58 may still form a hydrogen
bond in 1BZX, but the formation of the above indicated H-bonding network predicates the Y23>A58
interaction. The wireframe indicates the STID map of R1 at a cutoff of 0.43.

These changes to the occupied dihedral conformational states of both R20 and

R42 disrupts the internal hydrogen bonding network of BPTI (see Section 2.6.4.3 for

how this network is predicted). Retaking R42 as an example, the cation-π interaction

with F4 promotes a hydrogen bond between F4 and E7. However, the presence of

thrombin’s W44 significantly reduces the probability that this interaction is occupied;

1% in 1BTH versus 20% averaged over the other complexes, measured over 600 ps. In

turn, this frees up E7 to interact with N43, and subsequently facilitates a H-bonding

network; E7>N43>Y23>A58>R1, that results in R1 being pulled towards the centre

of the BPTI ligand as opposed to open to the solvent (see Figure 2.6.4). This ‘closed’
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R1 state is further stabilised via the formation of a salt bridge between R1 and D3.

Since R1 in 1BTH spends a significant amount of time in this closed state, it is not

able to form a hydrogen bond with G56, thereby inducing a further dynamics shift.

2.6.3 Discussion

The average RMSD was able to identify a dynamics shifts for R1, R20 and R42.

Note that R1, as a terminus, will naturally have a larger RMSD – but these internal

fluctuations are accounted for in the reported ratio. All three are large arginines,

where the all-atom time-averaged RMSD can easily identify shifts between dihedral

states. The larger dynamics fraction change ratio also reflects this fact. However, the

time-averaged RMSD method struggles with the smaller residues’ more subtle dynamic

changes, wherein G37, C38 and G56 had their conformational space altered via the

reshuffling of BPTI’s internal H-bonding network. The RMSD, calculated as an average

of all atoms in a residue, is weighted towards backbone atoms in these smaller residues,

in contrast to the side-chain atoms having a greater weighting in arginine. Therefore,

because the overall backbone motion is comparable between the BPTIs, these residues

seemingly behave similarly if we only look to the RMSD as a means of comparison.

In contrast, our STID map based dynamics fraction method clearly identified these

smaller residues as of interest to a study into the impact of binding on BPTI.

We have compared individual residue STID maps for BPTI extracted from 1BTH

with 14 different BPTI bound complexes, such that we could determine how the

thrombin receptor affects the dynamics of individual residues. We have shown that

while our STID map-based method does not directly provide allosteric information, it

does yield information on which residue’s local structure and dynamics are impacted

by a binding event. This made possible an additional investigation into the H-bonding

network (see Section 2.6.4.3), which provided information on how residue dynamics

both proximal and distal from the binding site are linked. In particular, our STID map

method identified subtle residue conformational changes not found through RMSD

structural comparison methods. We note that, due to the nature of the method, it is

not applicable when larger allosteric or domain-level conformational changes occur,

although these are usually easier to distinguish. Instead, the method’s scope is to

explore the impact of some distal binding event on individual residues that sample

their local space over short, picosecond timescales. In contrast to Ho and Hamelberg’s

method,64 it can also be scaled to substantially larger proteins, with simulation and

STID map build times taking only a few minutes on decent hardware. For practicality

in such a scenario, we recommend comparing the bound complex of interest with several

repeats of either the unbound ligand or another bound complex.
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2.6.4 Methods

2.6.4.1 Molecular Dynamics

See Section 2.3.5.1 for details on the MD setup used for this work.

2.6.4.2 Generating the dynamics fraction & RMSD ratio quantities

Following extraction of the BPTI simulation from each host complex, we aligned each

simulation along the backbone such that the RMSD between them was minimised.

When building the STID map for each residue, we ensured that each map’s origin was

in the same position and that the generated meshgrid had the same length along each

Cartesian axis. Each voxel is kept at 1 Å
3

in volume. The result of these STID maps,

at a cutoff of 0.43 (determined through our benchmark in Section 2.3.4), can be seen

in Figures 2.6.4 & 2.6.3.

When comparing STID maps to consider the fraction of dynamics that are different,

FD, we first convert each STID map into a signed distance field (SDF), defining the

zero contour at a value of 0.43. This means that rather than each voxel in space

corresponding to a STID map value, it instead returns the distance to the surface, by

definition the same shape as the isosurfaces previously described. Points outside the

surface have an associated negative value, points inside a positive value. Further details

on SDFs are given in Section 4.4.1. To define the ‘volume’ of space that is occupied

differently by the dynamics of a residue and the equivalent 1BTH BPTI reference

residue, we calculate the inverse union between the SDFs of these two residues: D1

and D2, through the union minus the intersection:

V1,I = max{−D1, D2},

= D1 −D1 ∩D2 = {x : x ∈ D1 − x ∈ D1 and x ∈ D2},
(2.6.1)

where V1,I represents the SDF of D1 not also encompassed by D2. We then apply

Equation 2.6.1, swapping the indices, to find V2,I. We can then calculate the SDF that

represents the volume occupied by both residues, VU, through the intersection of both

SDFs:

VU = min{D1, D2},

= D1 ∩D2 = {x : x ∈ D1 and x ∈ D2}.
(2.6.2)

FD, therefore, is given as a ratio:
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FD =
|v1,I|+ |v2,I|

|v1,I|+ |v2,I|+ |vU|
, (2.6.3)

The | · | denotes the size of the SDF set. The individual v terms are defined as:

v1,I ⊂ V1,I ; v1,I = {x ∈ V1,I | x ≤ 0},

v2,I ⊂ V2,I ; v2,I = {x ∈ V2,I | x ≤ 0},

vU ⊂ VU ; vU = {x ∈ VU | x ≤ 0}.

The midpoint of the black lines in Figure 2.6.2(a) refers to the average of FD across

the 14 complexes, FD,avg., while the black line itself represents the standard deviation

across these 14. The 1BTH BPTI repeat, where D1 is extracted from the 1BTH repeat

and D2 the 1BTH reference, is given as a cross. The unbound ligand, where D1 is

extracted from 9PTI, is shown as a circle.

When reporting on the standard deviation multiples used in Figure 2.6.2(b) and

Table 2.6.2, which we denote FD multiple in the main text, we use the following to

quantify how far out either FD,1BTH or FD,9PTI are from FD,avg.:

fD,x =
FD,avg. − FD,x

σFD,avg.

, (2.6.4)

where x refers to either 1BTH or 9PTI. fD,x represents the number of standard deviations

a specific FD,x is from FD,avg., and is effectively the number reported in Figure 2.6.2(b)

and Table 2.6.2. Note that Table 2.6.2 only contains data from the 1BTH repeat case.

We do not take the absolute of fD,1BTH, as a negative value would indicate that the

residue in question samples conformational dynamics further from the 1BTH reference

than any of the other BPTI complexes, which would warrent further investigation.

Unsurprisingly, however, this did not occur for any of the residues.

When calculating the standard deviation multiples for the RMSD method com-

parison, we use a similar approach. For the time-averaged RMSD, we also consider

the contribution of the internal fluctuations that occurs over 600 ps. For this, we first

compare, frame by frame, each residue with its equivalent in the first frame of the

1BTH simulation. This returns a distribution of RMSDs for each complexes’ BPTI

(which we index C) with respect to the 1BTH BPTI reference structure. The associated

time-averaged RMSD for each complex is RC , with standard deviation, σRC
. We can

then calculate an overall time-averaged RMSD, Ravg. across the 14 complexes with a

standard deviation representing this distribution, σRavg. . For an application similar

to Equation 2.6.4, we must then propogate these different standard deviations, each

σRC
representing the internal fluctuations of a residue, and σRavg. representing the
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distribution across the 14 complexes:

σR =

√√√√ 1

14

n=14∑
C=1

σ2
RC

+ σ2
Ravg.

, (2.6.5)

where σR is the overall standard deivation for the RMSD fluctuations. Finally, we can

calculate the time-averaged RMSD ratio, fR, reported in Table 2.6.2 as a multiple of

σR:

fR =
Ravg. −R1BTH

σR

, (2.6.6)

where R1BTH is the average RMSD from the repeat 1BTH BPTI simulation. Note that

we do not propagate the standard deviation from the distribution of RMSDs from the

1BTH repeat simulation to avoid a scenario where R1BTH and Ravg., within six effective

σ of one another, is registered as a residue unaltered through ligand binding. The

single-frame RMSD comparison also uses Equation 2.6.6, with the stipulation that σR

is generated only from σRavg. , and R1BTH is not an average across a simulation.

2.6.4.3 Predicting the internal H-bonding network

Once residues of interest are identified through the dynamics fraction ratio method, we

can then explore which other residues can form H-bonds using the VMD68 HBonds

plugin.69 For this, we utilised the default settings: a donor–acceptor distance of 3.0 Å,

and an angle cutoff of 20°. The plugin reports, for every frame in a simulation, the

H-bonds that can form between a residue of interest and the rest of the protein. It

subsequently provides each residue that is interacted with and an occupancy level, i.e.

how much of the simulation is spent in a position where the two are interacting. We

can apply this process iteratively to each connected residue in a chain-like manner to

provide insight into which residues are linked through a H-bonding network.
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2.7 Conclusions

The approximation of treating a protein as a spatially fixed series of atoms connected

by rigid bonds can seem adequate for specific applications, such as utilising Voronoi

tesselation to yield the volume and, thus, the density of a protein for X-ray crystallog-

raphy. Yet, critically it surrenders the key characteristic of dynamics, consequently

ignoring its influence on said volume. In this Chapter, we have introduced a novel

means to represent a protein through the Spatial and Temporal Influence Density map,

capable of simultaneously encompassing the electrostatics, shape and dynamics within

a single representation.

We have shown that this model is built from well-grounded principles and that the

parameters used in generating it have been thoroughly and objectively benchmarked.

In other words, the isosurface we obtain emerge naturally from the properties of the

STID map, itself a property of simulating a protein in solution (or vacuum), without

empirical considerations for later applications.

We have applied our model to three different, distinct physical and biophysical

problems. First, we showed that the theory used to build the STID map could

also predict dielectric trends for different solvents, albeit with the caveat that there

are superior computational methods for measuring small variations in the dielectric

properties of a solvent or protein. We then demonstrated that the excluded volume

a STID map can be considered to represent, has implications in the widely accepted

value for the density of a protein, generating a new relationship based on the dynamics

of a protein rather than the mass. This relationship is robust in different environmental

conditions and more accurately matches recent experimental work used to measure

protein density, with subsequent applications in a wide range of fields, such as the study

of amyloid aggregation.46 Finally, we have shown that STID maps can distinguish

local regions of interest on a protein that are, or indeed are not, impacted through the

formation of a complex as a preliminary means to identify which amino acid’s dynamic

conformational states are influenced by some distal binding interaction. This could act

as a starting point in fields such as drug discovery.

Therefore, we have established that the STID map is a remarkable model and

tool for several research areas, owing to its ability to encapsulate side-chain dynamics,

electrostatics and protein shape. These features are essential in modelling how a

protein experiences and interacts with its environment, which is demonstrated through

arguably the STID map’s most important application in the next Chapter’s work on

protein-protein docking. While all of these characteristics are important, it is the

inclusion of dynamics in the model that is novel over other comparative methods,

particularly in the arena of protein docking. Therefore, in Chapters 3 & 4, we will
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largely focus on how better consideration of dynamics yields higher quality solutions

in a protein docking context, yet it should be emphasised that all three of dynamics,

electrostatics and protein shape, are present and play a role in determining the shape of

the STID map, and subsequently its successful application in protein-protein docking.
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3 | JabberDock: Accounting for side-

chain dynamics in protein dock-

ing

3.1 Introduction

As discussed in Chapter 1, protein-protein docking is a powerful computational tool used

to predict the quaternary structure of a protein complex. It is a path to rationalising a

protein’s function in the body and is used to aid drug design to prevent malfunction.

Protein-protein docking is a highly complex optimisation problem that struggles to

consider the impact of side-chain packing at an interface. Overall, two approaches are

used to describe amino acid side-chains at an interface. They are either represented

explicitly, thus requiring the docking method to determine their correct packing, or their

presence is described through pseudo-coarse-grained representations. The first method

requires highly sophisticated optimisation procedures that may still yield suboptimal

arrangements. In contrast, the second method usually ignores the uncertainty in the

position of the side-chains that comes naturally with any time dynamics. However, since

these pseudo-coarse-grained representations are built from static structures, converting

them back into atomic models following docking can result in unfeasible predictions.

Herein, we describe how we can apply our pseudo-coarse-grained new protein

volumetric representation, named spatial and temporal influence density (STID) maps

in a protein-protein docking context, as a substitute for traditional representations

based on static structures. As shown in Chapter 2, isosurfaces derived from STID

maps are capable of simultaneously describing protein shape, electrostatics, and local

dynamics. We will now demonstrate that the complementarity of these isosurfaces can

help identify suitable solutions in a protein-protein docking scenario. While surface

complementarity techniques have been used for many years,1 they are primarily applied

in the context of the static protein structure shape representations. Thus, the isosurfaces

extracted from STID maps are an attractive alternative to any surface method used to

date. STID maps inherently consider any side-chain flexibility by using the general
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3.1. Introduction

motion of atomic point charges in time as a building block for the model. Indeed, we

will demonstrate that a key consequence of this is the retention of accuracy between

identified docking models regardless of their difficulty.

Our STID map-based scoring method is embodied in JabberDock, a blind protein

docking engine that is supported by the POWer optimisation environment.2 POWer

features a modified Particle Swarm Optimisation (PSO) approach, explicitly adapted

to prevent premature convergence and maximise the diversity of solutions. Hereafter,

we first outline the scoring function used to build the Potential Energy Surface (PES)

associated with the arrangement of two protein STID isosurfaces in Cartesian space.

Then, we present a set of benchmarks aimed at testing the accuracy of our protein-

protein docking method in line with the CAPRI blind docking competition guidelines.3

In Section 3.3 we apply JabberDock both to a large dataset of soluble proteins, and,

using the same scoring function, a smaller benchmark of integral membrane proteins in

Section 3.4, an area with a limited number of software options. Results demonstrate that

JabberDock can return models matching the quality of top de novo docking algorithms

currently available. We will finish by discussing JabberDock’s effectiveness when

applied to two docking applications, one water-soluble and the other membrane-based.
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3. JabberDock: Accounting for side-chain dynamics in protein docking

3.2 The JabberDock protein docking engine

3.2.1 Methodology

JabberDock uses a surface complementarity assessment that takes advantage of an

isosurface generated from a STID map at a cut-off of 0.43 (see Section 2.3.4) to construct

the PES explored by the PSO algorithm implemented in the POWer optimisation engine.

We utilise the CAPRI criteria3 to both assess case difficulty and the accuracy of a

complex predicted by JabberDock.

3.2.1.1 Search space exploration

JabberDock uses a 7-dimensional search space to make implementation easier when

roto-translating the STID maps: three dimensions define ligand translation in the

Cartesian space, three dimensions define an axis of rotation for this ligand, and one

dimension defines a rotation angle around this axis.

In order to navigate the PES associated with the scoring function (see Section

3.2.1.2) and produce an ensemble of possible docked poses, JabberDock leverages a

distributed heuristic global optimisation algorithm featured in the POWer optimisation

environment — PSO “kick and reseed” (PSO-KaR).2 PSO-KaR is used to explore the

PES over 300 iterations using 80 randomly initialised agents (“particles”). According

to the “kick and reseed” procedure, particles converging to a local minimum (i.e., with

a velocity decaying to less than 4% of the search space dimension in each direction)

were randomly restarted, and a repulsion potential placed at their convergence location.

These potentials may generate novel, small minima in the PES, however in general only

10∼15 are added, and their measured impact has been found to be negligible in terms

of providing false solutions.4 The whole optimisation process is repeated three times,

with the memory of previous repulsion potentials retained from one repetition to the

next. In sum, this docking procedure requires the evaluation of 72 000 docking poses.

To obtain a diverse ensemble of solutions, 300 poses are finally selected as repre-

sentatives from the pool of poses having a positive score using a K-means clustering

algorithm on the seven-dimensional coordinates associated with each model.

3.2.1.2 Scoring function

JabberDock’s scoring function is based around maximising surface complementarity

of an isosurface derived from our representations. Surface complementarity is a fairly

generic concept which refers to the maximum amount two shapes can “match” one
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3.2. The JabberDock protein docking engine

another, while featuring minimal shape intersection. For a simple example, consider

two 3D cuboids with lengths: a > b >> c, and ignore the presence of sharp edges or

vertices, which are not present in our protein representations. The two cuboids have

maximum surface complementarity when the two a× b faces are perfectly aligned, and

minimum complementarity, while maintaining contact, if either of the two have their

b× c faces in contact with the other. In contrast, two perfect spheres will feature their

maximum and minimum surface complementarity simultaneously at any geometric

orientation. The surface complementarity, S, of any two surfaces can be calculated

using:

S =

{
SAB

}νA

VA

+
{
SBA

}νB

VB

2
, (3.2.1)

where the curly brackets indicate that we used the median of the scores for protein

A into B and vice versa, νA is the total number of successful contact points on A in

contact with B inside some arbitrary distance cut-off, while VA is the total number

of points describing the surface of A. The same is true but for B with the νB and VB

terms. The individual scores are given by:

SAiBj
= (~nAi

· ~nBj

′)exp
(
−w | ~xAi

− ~xBj

′ |2
)
, (3.2.2)

where ~nAi
is the normal from a point of interest, i, on A’s surface and ~nBj

′ the

antinormal from the corresponding, nearest point, j, on B. w (0.5 Å
−2

) is an arbitrary

weighting found by Lawrence & Coleman5 and | ~xAi
− ~xBj

′ | is the physical distance

between the two points. SAB is, therefore, the exhaustive collection of individual SAiBj

for all points on A in contact with B, as defined by our cut-off distance. The arbitrary

distance cut-off used to consider contact points was empirically determined to maximise

S at 1.6 Å (see Figures 3.2.2 and 3.2.3). The νx and Vx ratio is a term we include to

avoid minor contact points providing good scores. Figure 3.2.1 provides a schematic as

to how the scoring function is calculated for the case of TEM-1 β-lactamase complexed

with its inhibitor (PDB: 1JTG).
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3. JabberDock: Accounting for side-chain dynamics in protein docking

Figure 3.2.1: (a) Prediction of TEM-1 β-lactamase complexed with its inhibitor (PDB: 1JTG),
showing the protein docking process from first an MD simulation of the monomer units, followed by
generation of the STID maps before predictions can be made via our scoring function. The combined
complex corresponds to the known bound docked position. (b) We exhaustively iterate through all
points on the surface of each monomer unit. If a point is in contact with the opposing binding partner,
we determine a score for that point through the closest point to it. The median from the collection
of scores from all individual contacts is used in Equation 3.2.1. In the inset, we show two points in
contact, with their corresponding normals used in Equation 3.2.2.

Following a roto-translation of a model requested by the optimiser, a quick test is

first performed to identify poses featuring no contact or unphysical atomic overlaps

between the ligand and the receptor. Suitable poses, featuring a negative Lennard-Jones

potential between the α carbon atoms of receptor and ligand, are scored according to

the surface complementary of the STID isosurfaces following the same roto-translation.

The shape of the isosurfaces analysed by JabberDock is determined through an isovalue

cut-off, with the appropriate value of 0.43 selected based on the benchmark discussed

in Section 2.3.4. Independently, we also wished to verify whether this isovalue holds

for protein-protein interactions. Figures 3.2.2 and 3.2.3, demonstrate that this cut-off

corresponds to the parameter which returns the highest score at the known docked

pose ground truth.
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Figure 3.2.2: The score of the known docked pose associated with different combinations of isovalue
cut-off and distance cut-off employed to determine if a region of interest is in contact with the surface
of the binding partner. The score is normalised independently for each protein. This analysis was run
for all our benchmark complexes. This figure shows two example complexes studied both as (a, c)
bound and (b, d) unbound. The complexes are (a, b) 1DQJ and (c, d) 1PPE. The bound cases
show a consistent maximum at 0.43 isovalue and 1.6 Å distance cut-offs. The unbound case of 1DQJ
also performs well with these parameters, whereas the unbound 1DQJ case features an additional
maximum at an isovalue of 0.3 (see Figure 3.2.3 for a performance comparison of all protein docking
cases in the CAPRI benchmark6).
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Figure 3.2.3: For each complex in the CAPRI water-soluble protein docking benchmark,6 we
calculated the score of the known docked pose associated with different combinations of isovalue
cut-off and distance cut-off. Here, for all (a) bound and (b) unbound cases we colour the regions of
parameter space yielding the highest scores. Two contour levels for each case are shown, representing
the top 20% and top 10%. The bound cases clearly show a shared maximum isovalue cut-off of
0.43 and a distance cut-off of 1.6 Å. While the unbound cases are less coherent, with not all cases
overlapping, the majority show a maximum at the same parameter choices as the bound cases.

The larger the surface complementary score, the better the fit; thus, the optimiser

is set up to maximise the score. Only positive scores are accepted by POWer. Figure

3.2.4 provides three examples of how the raw score for each generated model matches

with the metrics used to assess the quality of a solution.
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Figure 3.2.4: (a, c, e) Variation in overall score with RMSD and (b, d, f) Fraction of correctly
predicted contact residues (fnat.) for three example unbound cases: (a, b) 2B42, (c, d) 1JTG, and
(e, f) 1PPE. The red dots indicate the top 10 docked candidate models that would be submitted
under the CAPRI guidelines. An ideal model features a low RMSD and a high fnat. (see Section
3.2.3.2). The three structures shown correspond to the intermediate quality model in the top 10
ranked solutions predicted by JabberDock. The known bound state (corresponding to the PDB code),
is shown in grey, the receptor and ligand used for docking in red and blue respectively.

3.2.2 Implementation

3.2.2.1 Software availability

JabberDock is available for download for free under a GPL license at github.com/

degiacom/JabberDock. Included is a manual and a tutorial to assist users in setting

up JabberDock as well as instructions on how to use it. There are also input and target

structures used in our benchmark for the membrane protein docking set, as there is no

equivalent benchmark as there is for water-soluble proteins.
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3. JabberDock: Accounting for side-chain dynamics in protein docking

3.2.2.2 Computational load

MD simulations were all run with GROMACS7 2016, installed with CUDA, on a single

GPU using 4 CPUs and 8 OpenMP threads. The specific hardware used included an

NVIDIA GeForce GTX 1080 GPU, an Intel®Xeon®CPU E5-2650 v4 @ 2.20 GHz,

and 64 GB of DDR4 RAM clocked at 2133 MHz. On average, a complete MD cycle;

including building the system, energy minimisation, equilibration, production, and

parsing the data, takes 30 minutes for water-soluble proteins, and three days for integral

membrane proteins.

The conversion of a trajectory into a STID map can take between 2 and 30 minutes,

depending on the size of the system. Each POWer soluble docking case was run using

MPI on 28 Intel®Xeon®CPU E7-8857 v2 @ 3.00 GHz, across 3 TB of memory and a

1× Intel TrueScale 4× QDR single-port InfiniBand interconnect. Figure 3.2.5 shows the

relationship between POWer execution times and the mass of the soluble complex under

study. Docking runtimes were faster for membrane proteins, owing to smaller protein

sizes and reduced search space. Run across 12 CPUs of the same hardware as above;

each docking run took approximately 12 hours. The docking process is sped up by

roto-translating the smaller protein (“ligand”) and keeping the larger one (“receptor”)

fixed. The calculation of the number of contact points between two STID maps is the

most computationally demanding procedure, acting as a bottleneck unaffected by the

choice of ligand and receptor. The RAM usage is substantial, with the largest protein

run to date, 1N2C – with a total complex mass of 286.8 kDa, using 65 GB of RAM,

the average usage across both soluble and membrane proteins was 10 GB of RAM.

We are currently working on improving the processes that have the biggest impact on

speed and memory demand.

119



3.2. The JabberDock protein docking engine

100 200
Mass / kDa

0

250

500

750

1000

1250

1500

1750

To
ta

l 
C

P
U

 h
o
u
rs

100 200
0

10

20

30

40

50

60

To
ta

l re
a
l h

o
u
rs

Figure 3.2.5: Relationship between the mass of all water-soluble protein complexes simulated with
JabberDock versus the time taken to run the entire POWer optimisation search. The runs were made
across 28 CPUs, the architecture is discussed in the Computational Load section above. The left
y-axis displays the total time to compute per CPU, whereas the right y-axis indicates the real time it
took across the 28 CPUs.

3.2.3 Evaluation

3.2.3.1 Case difficulty classification

Protein-protein docking cases are classified under three levels of difficulty, which is

associated with their flexibility and the RMSD difference between the Cα atoms at the

interface after superposing the bound and unbound interfaces. Cases can be classified

as either rigid-body (or easy), medium, or difficult (or hard). Easy cases are those

with minimal difference between the unbound crystallised structures and the bound:

usually <1 Å difference. In medium cases, the RMSD difference is between 1 Å and

∼2.5 Å. Finally, difficult cases can be anything greater than 2.5 Å. Thus, the difficult

cases are accordingly significantly more challenging than the other two, particularly

given that a difficult case with an RMSD of 10 Å would already lie at the boundary

for the requirements of an acceptable success (see Section 3.2.3.2).

3.2.3.2 Assessment of model accuracy

We use three metrics, pre-defined by the CAPRI community,3 to determine the quality

of a model: (1) The ratio of correct contact residues (a valid contact defined as an

atom within 5 Å of the binding partner) to the number of residues in the predicted

complex, fnat.. (2) The RMSD between the α-carbons of the known crystal pose and

the predicted pose. (3) The RMSD of the two poses between the α-carbons at the
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3. JabberDock: Accounting for side-chain dynamics in protein docking

interface (defined as within 10 Å of the binding partner). This is termed the interfacial

RMSD, or RMSD_I. The CAPRI guidelines specify four levels of possible success

criteria:

Table 3.2.1: CAPRI criteria conditions of success. RMSD_I stands for interfacial RMSD.

Quality Conditions to be met

(1) Incorrect

RMSD > 10.0 Å AND RMSD_I > 4.0 Å

OR

fnat. < 0.1

(2) Acceptable

RMSD ≤ 10.0 Å OR RMSD_I ≤ 4.0 Å

AND

0.1 ≤ fnat. < 0.3

OR

fnat. ≥ 0.3 AND RMSD > 5.0 Å AND RMSD_I > 2.0 Å

(3) Intermediate

RMSD ≤ 5.0 Å OR RMSD_I ≤ 2.0 Å

AND

0.3 ≤ fnat. < 0.5

OR

fnat. ≥ 0.5 AND RMSD > 1.0 Å AND RMSD_I > 1.0 Å

(4) High RMSD ≤ 1.0 Å OR RMSD_I ≤ 1.0 Å AND fnat ≥ 0.5

The protocol for applying this list of inequalities follows the order provided,

beginning with defining the incorrect predictions. We qualify a test case as either high,

intermediate, or acceptable quality if at least one of its top 10 ranked models matches

the criteria above with respect to the target structure.
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3.3. Water-soluble protein docking

3.3 Water-soluble protein docking

Author’s note: the raw results reporting on the success of each individual trialled

protein case (both for the water-soluble proteins in this Section and the transmembrane

protein cases in Section 3.4), are available in a supplementary spreadsheet submitted

with this thesis. We refer to this data as Table S1 and S2 for water-soluble and

transmembrane protein docking cases, respectively.

STID maps encapsulate information on the local dynamics of the atomic charges in a

protein. This feature is particularly attractive in a protein-protein docking context, as

it circumvents the need of determining the specific atomic position of each side-chain

at the interface between two binding partners. Therefore, we used this representation

within a docking protocol, where the scoring function is determined by the surface

complementarity of ligand and receptor STID map isosurfaces (see Section 3.2.1.2).

Benefitting from the fact that the structural characteristics reported by each STID map

isovalue are protein-independent (see Section 2.3.4), we determined that an isovalue of

0.43 is the most appropriate to report on all electrostatic and dynamic features of any

protein within our surface complementarity scheme (see benchmark in Figures 3.2.2 &

3.2.3).

3.3.1 Results

We implemented this calibrated STID map-based scoring into our de novo protein

docking algorithm: JabberDock. The program utilised the PSO algorithm within the

POWer environment2 (see Section 3.2.1.1) to explore the energy landscape associated

with the arrangement of two binding partners, in search of the arrangement maximising

our complementarity score. We assessed the performance of JabberDock against all

230 test cases featured in the most recent iteration of the standard water-soluble

protein-protein interaction benchmark6 (six cases were excluded due to the presence

of non-standard amino acids). According to the RMSD between unbound and known

bound state, 151 of these cases are classified as rigid-body (easy), 45 as medium, and

34 as difficult (see Section 3.2.3.1). To gather further information on the relationship

between docking quality and the conformational change proteins undergo upon binding,

we selected a diverse subset of 32 cases (20 easy, 7 medium, and 5 difficult) that were

also treated as bound cases. In these cases, the subunits used to predict the assemblies

were proteins extracted from the known complex. We classified the quality of all our

modelling runs according to the three CAPRI categories: acceptable, intermediate, and

high (see Section 3.2.3.2). Hereon, we qualify a test case as a success if at least one

model in the top 10 ranked solutions is at least of acceptable quality.
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3. JabberDock: Accounting for side-chain dynamics in protein docking

Against the 32 bound cases, JabberDock was successful in 85.0% of the easy,

71.4% of the medium, and 20.0% of the difficult cases. Challenged with the full

unbound benchmark set, JabberDock yielded successful predictions for 56.3% of the

easy, 60.0% of the medium, and 54.9% of the difficult cases. Although no high-quality

predictions were found for any of the test cases, intermediate quality results were found

for 29.2% of the easy, 22.2% of the medium, and 25.8% of the difficult cases. Examples

of intermediate, acceptable and unacceptable quality structures extracted from the

top 10 ranked solutions for three cases of increasing difficulty are provided in Figure

3.3.1. Overall, these results indicate that JabberDock performance is mostly unaffected

by the case difficulty (full details are provided in Table S1). These results compare

favorably against four of the most commonly used protein-protein docking algorithms:

SwarmDock,8 pyDock,9 ZDOCK,10 and HADDOCK.11 As reported by Vreven et al.

while setting the benchmark set used in this work,6 their acceptable success rate for

rigid-body cases ranges between 31 and 50%, whereas for the medium and difficult

cases, substantially lower success rates (between 4 and 22%) are observed. Regarding

intermediate success rates, 13-18% success rates are found. It is only when considering

the percentage of high-quality models, where success rates <6% are reported, that

JabberDock is outperformed.
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1KXQ
(easy)

2NZ8
(medium)

1PXV
(hard)

Intermediate (**) Acceptable (*) Unacceptable (-)

Rank: 8 Rank: 4 Rank: 1

Rank: 5 Rank: 3 Rank: 1

Rank: 2Rank: 1Rank: 9

Figure 3.3.1: A selection of top 10 ranked structures generated by JabberDock from three cases of
the benchmark, with the ranks indicated bottom right of each subfigure. Specifically, we show a case
from the easy dataset: camelid VHH domain complexed with porcine pancreatic α-amylase (PDB:
1KXQ), the medium dataset: N-terminal DHPH cassette of Trio in complex with nucleotide-free Rac1
(PDB: 2NZ8), and the hard dataset: the staphostatin-staphopain complex (PDB: 1PXV). The known
bound state, as indicated by the PDB code, is shown in grey, while the receptor and ligand are shown
as red and blue, respectively. Note that all three cases would be classified as intermediate successes
and that there are many additional unacceptable solutions where the ligand is distal to the binding
site, but we show here three cases where it is close for easier comparison. See Table S1 for details.
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Figure 3.3.2: (a) (1) STID map of two binding partners is calculated using their respective MD
simulations. (2) STID map representation of both binding partners is leveraged by JabberDock to
predict the complex accurately. The image shows the intermediate quality model of ribonuclease A
complexed with its inhibitor (PDB: 1DFJ). (b) Quality of best models within the top 10 results for
every docking case. For each case, the lowest α-carbon RMSD between prediction and crystallised
complex is presented, against their associated native residue fraction (fnat.). Point colours indicate the
case difficulty, while the dark- to light-shaded regions represent the criteria for high, intermediate, and
acceptable quality results, respectively. Thus, a point landing in one of these regions indicates that the
corresponding success was found within the top 10 ranked JabberDock solutions. The top and right
adjoining subplots show, respectively, the distribution of RMSDs and fnat. across the models. (c)
Percentage of test cases yielding an acceptable (top) and intermediate (bottom) success, as a function
of the number of ranked structures considered as candidate models. Data are reported independently,
in different colours, per case difficulty. The region corresponding to the top 10 models is shaded and
magnified in the insets. In this region, JabberDock’s success rate is consistent between easy, medium,
and difficult docking cases. In the larger pool of 300 models, an acceptable solution is almost always
found for the easy cases.
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3.3. Water-soluble protein docking

The reason behind JabberDock’s consistent performance throughout cases of

different difficulties lies in its ability to identify interfacial amino acids correctly.

Indeed, while the RMSD of models versus the known complex is lower for cases with

more flexible subunits, the average ratio of correct contact residues (fnat.) remains

nearly unaltered (Figures 3.3.2(b) and 3.3.3). The relationship between the number of

candidate models selected from JabberDock’s ranked solutions and the resulting success

rate features an initial steep gradient (Figure 3.3.2(c)). This indicates that the ranking

of JabberDock’s first successful model is most likely to be high. Still, by increasing

the number of candidate models to 100, results with significantly smaller RMSD and

higher fnat. can be found (Figure 3.3.3). Thus, while most successful models usually

rank highly according to our scoring function, better models may well be available

when considering a larger pool of solutions. For instance, in 98.6% of easy cases, our

full data sets of 300 solutions contained at least one acceptable pose (Figure 3.3.2(c)).
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Figure 3.3.3: Quality of best models within the top 100 results for every docking case. For each
case, the lowest α-carbon RMSD between prediction and crystallised complex is presented, against
their associated native residue fraction (fnat.). Point colours indicate the case difficulty, while the dark
to light shaded regions represents the criteria for high, intermediate and acceptable quality results,
respectively. Thus, a point landing in one of these regions indicates that the corresponding success
was found within the top 100 ranked JabberDock solutions. The top and right adjoining subplots
show, respectively, the distribution of RMSDs and fnat. across the models.

By manually aligning each unbound monomeric subunit to their bound counterpart

in the complex and assessing the score achieved at the known docked position, we

observed that four of the easy and one of the difficult cases yielded scores higher

than anything found by JabberDock (see Table S1). One example is the xyloglucan-

specific endo-β-1,4-glucanase (PDB: 3VLB), where the two binding partners are highly

interlocked. In this case, failure was not caused by an unsuitable scoring function,
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3. JabberDock: Accounting for side-chain dynamics in protein docking

but by an underperforming optimiser, which was unable to navigate into the complex

binding site. Many of the successful unbound cases feature interlocked arrangements. In

such cases, if the optimiser can identify the narrow set of roto-translations allowing the

binding partners to interlock, the resulting model will have a high score. A successful

example is that of the β-lactamase TEM1 (PDB: 1BTL) — ribonuclease A (PDB:

9RSA) complex, involving a significantly large and complex contact region, whereby

almost the entire circumference of β-lactamase’s STID map is buried (see Figure

3.3.2(a)).

Unsuccessful cases, such as the profilin-β-actin complex (PDB: 2BTF), most

often feature a flat binding site. In these cases, the surface complementarity score

alone struggles to discriminate between binding and non-binding regions because of a

lack of characteristic surface features, and thus, successful models do not rank highly.

Addressing these cases requires capturing additional properties of protein-protein

interactions. To this end, we explored the possibility of reranking JabberDock models

accounting to the vectoral alignment of neighbouring dipoles (see Figure 2.2.1(b)) at

the interface via the dipole maps used to build the STID maps (see Section 3.3.3.2).

This score is aimed at favouring arrangements featuring alignment of the dipoles. For

instance, during hydrogen bond formation the dipoles neighbouring the hydrogen would

point toward the hydrogen, whereas those near the oxygen would be pointing away;

hence, the two would be roughly aligned within some cut-off. The 2 Å cut-off was chosen

based on the principle that there must be contacts within a typical intermolecular

bond range. This method serves to penalise arrangements where the dipoles of the two

maps are uncorrelated. The dipole score was calculated for each predicted complex and

added to the surface complementarity score (Equation 3.2.1) in an unweighted sum.

The final scores were then used to determine the overall rank. Results indicate that

such a post-processing reranking, while significantly improving the quality of poses for

12% of the data set, overall decreased the success rate. In Section 4.4 we will explore

alternative means to accommodate these featureless surfaces.

The most flexible model for which we had a successful prediction was the histone

chaperone CIA/ASF1-double bromodomain complex (PDB: 3AAD), with an RMSD

between the known unbound and bound state of 4.37 Å. The 46 kDa complex formed

by thioredoxin reductase (thioredoxin) and the NADP+ analogue AADP+ (PDB:

1F6M) was more flexible, exhibiting domain movements associated with an RMSD of

4.9 Å. As no top 10 model produced by JabberDock had an RMSD lower than 10 Å

from the known bound state, this case was declared unsuccessful. However, a top 10

model featured an fnat. of 0.419 (rank 7, see Table S1), indicating that the binding site

was partially identified. Thus, while in terms of RMSD several cases were unsuccessful,

JabberDock could still identify their binding site, as shown in Figure 3.3.2(b).
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3.3. Water-soluble protein docking

3.3.2 Discussion

An isosurface derived from a STID map representation is suitable for the definition of an

accurate protein-protein docking scoring function. Our results show that JabberDock

can predict water-soluble complexes on par with a competitive range of blind protein-

protein docking software and is highly robust across a range of difficult cases, an

achievement not observed in other docking algorithms. The atomic models themselves

are built using the last snapshot from the pool of conformations explored by the binding

partners in their respective MD simulations. Combinations of other conformations

within the monomers’ simulations (see Figure 2.3.6) and dimeric arrangements within

the full collection of candidate assemblies may be closer to that found in the crystallised

bound state.

The strength of JabberDock to yield comparable results across the dataset indicates

that the ability of the STID maps to encapsulate high-frequency atomic motions allows

it to accommodate different levels of flexibility in interacting proteins. In complexes

characterised by flat and relatively featureless binding sites, the surface complementarity

function is likely to fail in highlighting a single most suitable docking position. On the

other hand, when an interface is exceedingly complex, small perturbations about the

docked pose are likely to lead to clashes, hindering the optimiser’s exploration of this

region of the energy landscape. These represent JabberDock’s boundary conditions.

The successful (and most typical) docking cases feature topographical complexities

that enable both the scoring function and the optimiser to work harmoniously and

effectively. This is the significant middle ground where the coupling of POWer and

STID isosurfaces provides excellent results, as indicated by the prediction of accurate

protein complexes for most of the benchmark. These observations are expected to hold

for any complex not requiring refolding or domain-level movements at the interface

between binding partners.

3.3.3 Methods

3.3.3.1 Search space definition

Prior to docking, the two input monomers are centred at the origin via their centres of

mass. With respect to the seven-dimensional search space, the x, y and z translation

values are limited by the size of the receptor, the axis of rotation is constrained between

values ranging from −1 to 1, and the rotation angle in radians ranges between 0 and 2π.

The navigation of the PES and generation of models follows the rest of the procedure

outlined in Section 3.2.1.1.
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3. JabberDock: Accounting for side-chain dynamics in protein docking

3.3.3.2 Dipole alignment re-ranking process

In a post-processing phase, the dipole map of the ligand is aligned to its atomistic

counterpart in each of the 300 representative docked poses. An additional dipole score,

SD, is then calculated between the dipole map of the ligand and that of the receptor:

SD =
{DAB}+ {DBA}

2
, (3.3.1)

where the curly brackets refer to a median of a set of dipole score terms, with each

individual dipole score given by:

DAB =
n∑
k=0

DA ·Dk,B. (3.3.2)

DA is a specific dipole in A, Dk,B a dipole in B, n is the number of dipoles in B that

are within 2 Å of DA.
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3.4. Transmembrane protein docking

3.4 Transmembrane protein docking

Transmembrane proteins play an essential role as a mediator for many functions critical

to an organism’s survival. Situated within a lipid membrane that compartmentalises two

distinct biological regimes; their tasks include sensing, signalling, motility, endocytosis

and anchoring. Their malfunction is responsible for a multitude of diseases,12 and

consequently, they are a frequent target in drug design. The formation of complexes,

wherein two or more transmembrane proteins will oligomerise into either helix bundles

or β-barrels, is of vital significance to both the function and malfunction of these

processes.

As we reviewed in Chapter 1, a plethora of increasingly sophisticated protein-

protein docking approaches have been developed to address the problem of protein

assembly prediction.1 These efforts are nucleated around the community-led CAPRI

competition, which is used to identify the most reliable algorithms, promising method-

ologies and current hurdles.13 As discussed in Chapter 1, the majority of these methods

centre around the docking of two or more water-soluble proteins, with only four methods

engineered towards the task of docking transmembrane proteins, returning success rates

inferior to that achieved by water-soluble docking methods. Furthermore, as largely

proof of concepts, these approaches have given little consideration to the flexibility of

the proteins. Given the challenges associated with the determination of transmembrane

protein quaternary structure, it is clear that there is significant room for improvement

in this niche field. As we have shown in Section 2.5, an isosurface derived from our STID

map, at the ideal cut-off of 0.43 (see Section 2.3.4), is representative of a protein in its

native environment. Therefore, the ability to generate STID maps simulated in any

arbitrary environment makes them an attractive representation for membrane proteins,

exposed to a biphasic environment. This fundamental characteristic, coupled with the

success of JabberDock in Section 3.3, has highlighted JabberDock as an attractive

solution to the lack of competitive software in the transmembrane docking arena. A

STID map representative of a transmembrane protein can be obtained by independently

simulating the pre-oriented partners immersed in an explicit lipid bilayer. Docking

then requires maximising the complementarity of two membrane protein surfaces, with

the ligand’s translational motion perpendicular to the membrane and rotations into the

plane of the bilayer constrained. Herein, we present and test our methodology to dock

integral membrane protein dimers, made available in JabberDock as an automated

pipeline.
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3. JabberDock: Accounting for side-chain dynamics in protein docking

3.4.1 Convergence of side-chain motion

There does not yet exist a standard transmembrane protein docking benchmark equiv-

alent to the soluble proteins one made available by the CAPRI community.6 To test

JabberDock, we selected all the unbound cases involving pairs of transmembrane

proteins within Memdock,14 HADDOCK15 and DOCK/PIPER16 benchmarks. To

avoid testing against similar examples, and thus biasing our statistics, we only selected

one representative within test cases featuring >80% sequence homology. This resulted

in a diverse benchmark set featuring 20 α-helical complexes of 2 easy cases, 15 medium,

and 3 difficult cases under the CAPRI classification (see Section 3.2.3.1). Full details

for each case in our benchmark set, including their sequence identity and three metrics

used to define success by the CAPRI community (RMSD, fnat. and RMSD_I – see

Section 3.2.3.2), are given in Table S2.

The shape of a STID map depends on the length of the Molecular Dynamics (MD)

simulation used to build it. In Section 2.3.2, we compared the Pearson cross-correlation

coefficient (CCC) of STID maps generated from increasingly long trajectories and

observed that this metric converged after 600 ps. This timescale represents the time

required for a protein’s side-chains to explore their local conformational space in a

water solvent. Since side-chain dynamics are slower in a membrane than in water,

longer convergence times should be expected. Therefore, here we performed the same

benchmark described in Section 2.3.2 for the membrane proteins in our benchmark set

to ensure that the surfaces used for docking are fully representative of their biphasic

environment. As in our previous work, we assumed convergence using the same

arbitrarily high CCC value of 0.9997, reported between only a STID map’s non-zero

values.
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Figure 3.4.1: (a) Cross-Correlation Coefficient (CCC) between successive STID maps built from
increasingly long timescales. The palatinate line indicates the average of 17 unbound distinct membrane
proteins used for docking, the grey region represents the standard deviation at each trajectory length.
The inset is a zoom into the top 4% of the figure. The CCC is calculated between non-zero values.
(b) The number of proteins achieving a consistent CCC of 0.9997 by the listed time. A Gaussian
(palatinate) has been fitted to the histogram. All protein motion converged within 9 ns, with the
majority in the first 5 ns. The mean (µ) and standard deviation (σ) are reported.

Figure 3.4.1(a) illustrates the evolution of CCC of consecutive STID (i.e. generated

with increasingly long MD simulations) for 17 unique proteins used for docking. The

CCC increases rapidly over a few ns, before asymptoting towards one. The Gaussian

fitted in Figure 3.4.1(b) shows that, on average, CCCs converge in ∼5.5 ns, but some

require upwards of 8 ns. This simulation time is long enough to account for all side-

chain motions but short enough that no significantly large conformational changes can

occur. Thus, we extract the last 9 ns of proteins simulated in a lipid bilayer to generate

suitable STID maps.

3.4.2 Environment-independency of the STID isovalue

A key characteristic of our STID maps is that the ideal isovalue of 0.43 emerged

naturally from the MD simulations in Section 2.3.4, specifically from the relationship

between the surface accessible solvent area and the average STID value. This isovalue,

as shown through the benchmark in Section 3.2.1.2, also independently serves as the

optimal parameter to return the highest score at the known binding site versus other

cut-offs. Since this value was derived for proteins in solution, we performed a similar

benchmark here.

Figure 3.4.2 shows the variation in the surface complementarity score with cut-off

in the known binding site, normalised and averaged across all 20 cases in our benchmark

set. Again, we find a value of 0.43 to be most appropriate to return the highest quality
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3. JabberDock: Accounting for side-chain dynamics in protein docking

results. Thus, crucially, the STID isovalue is environment-independent.
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Figure 3.4.2: Mean variation in normalised surface complementarity score across the 20 protein cases
with isovalue cutoff choice. The dark central line indicates the mean, the shaded region the standard
deviation. The maximum (indicating what on average yields the best shape complementarity) occurs
at a cutoff of 0.43.

3.4.3 Results

JabberDock docks transmembrane proteins via a multi-stage process summarised in

Figure 3.4.3 and detailed in Section 3.4.5.1. In short, JabberDock requires input protein

structures to be aligned with the centre of mass for the transmembrane region of the

proteins at z = 0, where the z-axis is perpendicular to the bilayer plane. In our tests,

we obtained these pre-orientated structures via the OPM server.17 Structures are first

automatically repaired, immersed in a POPE bilayer, and subjected to a short MD

simulation enabling the generation of STID maps. The maps of both binding partners

are then converted into isosurfaces and docked such that their surface complementarity

is maximised (see Section 3.2.1.2). We explore the search space via a modified PSO

(see Section 3.2.1.1), with the defined search space from the water-soluble benchmark

altered to respect the constraints imposed by the lipid bilayer (see Section 3.4.5.2).
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homodimer 1Q90(BF), using 2ZT9(A) as the receptor (blue) and ligand (red). Step 7 features a representation of the 5th best model; an intermediate success overlaid
on the bound structure (grey).
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3. JabberDock: Accounting for side-chain dynamics in protein docking

To first demonstrate the utility of our surface-based scoring function over atomistic

energy profiles, for all cases in our benchmark set we generated 100 new poses by

applying small, random perturbations (< 2.5 Å) in ligand positions from their known

bound state. We then evaluated their STID map-based score, as well as their atomistic

and coarse-grained van der Waals energies. The coarse-grained vdW score was calculated

from the backbone atoms, with typical MARTINI parameters18 used for the forcefield.

We finally compared all these scores with their value at the known bound state, reporting

them in terms of a percentage increase or decrease. The results of this comparison are

shown for three examples in Figure 3.4.4. The STID score provided distinguishable

gradients to the binding site, with a maximum at the ground truth. In contrast, the

atomistic vdW energy has no discernable trends, with positions away from the binding

site having arbitrarily higher or lower energy. Furthermore, these energies featured

extremely steep gradients, requiring the use of a log-scale for a manageable comparison.

The coarse-grained vdW score features a smooth gradient to the binding site for the

formate channel case (PDB: 3KCU), but returns a similar result to the atomistic vdW

score, albeit significantly less steep, for the other two. van der Waals scores for all

proteins in our dataset behave consistently with the examples shown here. Our STID

score behaves as exemplified for 15 out of 20 cases. In the remaining five cases a

gradient is not clearly distinguishable, although percentage changes always remain in

the same order of magnitude as demonstrated here. Thus, our surface-based STID

scoring function is effective as it bypasses the need to explicitly handle packing of

interfacial atoms, yielding smoother and gentler gradients compared to typical atomistic

representations (see Figure 3.4.4).
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Figure 3.4.4: Comparison between atomistic docking scores, represented by (a) coarse-grain, (b) all-
atom van der Waals energy, and (c) our STID surface complementarity-based score. For three different
transmembrane protein complexes, we perturb the position of the known docked pose, reporting the
percentage deviation of scores from their value at the bound state. For clarity, percentage for atomistic
van der Waals energies are plotted in a log-scale. Our STID score produces clearer and distinctly
gentler gradients.

Challenged with the docking benchmark, JabberDock was successful (i.e. yielding

at least one acceptable model or better among its top 10 candidates) in 75.0% of

cases in our benchmark set, producing an intermediate quality success in 40% of

cases (see Figure 3.4.5, Figure 3.4.6, and Table S2). This remarkable performance

compares favourably against other transmembrane protein docking software and is

an improvement over JabberDock’s performance against water-soluble proteins (54

%). This result is explained by JabberDock’s ability to identify the binding interface

correctly, primarily due to its sensitivity to the dynamics of individual amino acids. As

shown in Figure 3.4.6(a), in nearly every test case, at least one prediction in the top 10

results features a correctly identified binding interface. Given that our STID map-based

scoring function performs comparatively in a water and membrane environment (see

Figure 3.4.2), this substantial increase in the success rate can be explained by the

added benefit of a priori knowledge about the orientation of the proteins with respect

to the bilayer, coupled with the strict constraints imposed by the lipid membrane.
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Figure 3.4.5: Best model in the top 10 for every successful case (noted as * if acceptable, and ** if
intermediate). The known bound state (indicated by its PDB code) is shown in grey, the receptor and
ligand used for docking in red and blue respectively. See Table S2 for details.
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Figure 3.4.6: (a) Quality of best models within the top 10 results for every docking case. For each
case, the lowest α-carbon RMSD between the prediction and crystallised homolog is presented against
the associated native residue fraction (fnat.). The dark- to light-shaded regions represent the criteria
for high to acceptable quality results. (b) Percentage of cases yielding an acceptable (blue) and
intermediate (pink) success as a function of the number of ranked structures considered as candidate
models. The region corresponding to the top 10 models is shaded and magnified in the inset.

Expanding the pool of candidate structures to the whole 300 models returned by

JabberDock does little to improve its overall success rate (85.0%, see Figure 3.4.6(b)), in

contrast to other protein docking software and our soluble benchmark. This is because

JabberDock returned a top 10 successful model for the majority of cases (15 out of

20). The few unsuccessful cases, also challenging for other docking algorithms, possess

similar structural features to those complexes in the water-soluble benchmark that

JabberDock found problematic. For example, the NavAb voltage-gated sodium channel

(PDB: 3RVY) features an interlocked arrangement where, following the unbound MD

simulation, the binding site closed up, preventing the ligand from navigating into the

binding pocket.

We find that the majority of other unsuccessful cases, both in the water-soluble

and transmembrane protein datasets, have binding interfaces devoid of “feature-rich”

regions on the STID isosurfaces. By this, we mean that the surface is relatively flat,

with an absence of “bumpiness”. The ability of JabberDock to consider flat surfaces is

further hindered when a docked pose features some minor shape intersection, which

nullifies subtle detail on the surface. The work in Section 4.4 is focussed on improving

the scoring function to better consider the topography of the isosurface at this scale.

We illustrate two different surfaces; one with a flat surface, that of wild type cytochrome

c oxidase (PDB: 1M56), and one with a bumpier surface, that of cytochrome b6f (PDB:

1Q90) in Figure 3.4.7. This bumpiness is caused by both the flexibility of the backbone,

and the diversity of amino acids present at the binding site, with a variation of those

with short and long side-chain resulting in more topographically distinct surfaces.
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1M56 1Q90(a) (b)

Figure 3.4.7: STID map isosurface at 0.43 cutoff for two cases, with their binding site indicated in
red. (a) Wild type cytochrome c oxidase (PDB: 1M56) receptor, with B = 0.769(1). JabberDock was
unable to identify a single acceptable model for this case. (b) Cytochrome b6f (PDB:1Q90) receptor,
with B = 0.724(2). JabberDock identified an intermediate quality result at rank 5 for this complex.

Since the level of bumpiness can be considered subjective, we attempted to quantify

it by measuring the similarity of local regional surfaces to a plane. Specifically, we first

isolated the binding site STID map from the rest of the protein (indicated in red in

Figure 3.4.7), which we define as residues within 5 Å of the binding partner, for all

proteins in our dataset. We then tessellated the surface at our optimised cut-off of 0.43

with a series of triangles using a marching cubes Lewiner algorithm. Each triangle has

a surface area of 0.5 Å
2
. For the vector normal to each triangle, we calculate the mean

dot product with all other neighbouring triangle normals over a 10 Å
2

surface area as a

measure of the local bumpiness value (B). The mean of all localised B gives the overall

bumpiness of the binding site surface. A value closer to 1 indicates that the surface is

more planar, while 0 is more spherical. Table 3.4.1 provides the corresponding B for

each test case. We find that the majority of proteins involved in cases that succeeded

(i.e. a successful model in the top 10) return a lower B value overall (B = 0.74(2),

averaged across all successful models), while cases which were not so successful feature

more planar surfaces (B = 0.78(1)). While the difference is small, it is statistically

significant.
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Table 3.4.1: Bumpiness of each protein (both receptor and ligand if different), with the chain
indicated in the parentheses and the rank of the first successful model (if applicable). The average for
successful test cases is B = 0.74(2), while that of unsuccessful models is B = 0.78(1).

PDB Code Bumpiness, B First Successful Model

1K4D (C) 0.777(2) 2

3S33 (A) 0.752(1) 1

3S33 (B) 0.741(1) 1

1GU8 (A) 0.737(2) 1

2F95 (B) 0.751(2) 1

3V3C (A) 0.807(1) 1

3A7K (A) 0.742(2) 2

3OMI (A) 0.769(1) X

1QLE (C) 0.771(1) X

2ZT9 (A) 0.724(2) 5

1YQ3 (C) 0.765(2) 159

1YQ3 (D) 0.770(3) 159

1ZRT (C) 0.743(2) 3

1YEW (B) 0.739(2) 8

3KCU (A) 0.746(2) 5

3ODU (A) 0.805(2) X

3RW0 (A) 0.759(2) X

4EA3 (A) 0.755(1) 1

2IC8 (A) 0.736(2) 1

2Y00 (A) 0.759(2) 8

2Y00 (B) 0.756(1) 8

3Q7K (A) 0.775(1) 1

1C8S (A) 0.715(2) 7

2RMZ (A) 0.714(1) 1

2K1A (A) 0.722(3) 1

2N2A (A) 0.768(4) 135

2M0B (A) 0.785(2) 135
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There are exceptions to this flatness rule, including that of 3RVY. Thus, while the

bumpiness of a STID isosurface can play a role in the success of an individual case, it is

not necessarily the sole reason behind unsuccessful cases, hence the similarity of the two

average bumpiness values reported above for successful and unsuccessful cases. Besides

occlusion of the binding site or a flat surface, either as a combination or individually;

remaining unsuccessful cases featured relatively small binding interfaces, which are

particularly demanding to identify given the goal of the optimiser to maximise surface

complementarity.

3.4.4 Discussion

We have presented a pipeline enabling our blind water-soluble protein-protein docking

software, JabberDock, to successfully tackle cases involving integral membrane protein

dimers. This success is due to the molecular representation we adopt to dock proteins,

STID maps; casting electrostatics, dynamics and protein’s shape into a single volumetric

representation. The preliminary stages in the building of a STID map require an MD

simulation; thus, the different characteristics expressed by the protein in both the soluble

and lipid environments are encapsulated in the isosurface’s topography. Consequently,

other than an extended MD simulation, one only needs to restrict the search space of

the ligand in the docking protocol to regions occupied by the lipid membrane. The

problem is, therefore, more manageable than a water-soluble protein docking one.

As no standard transmembrane protein docking benchmark exists, we applied

JabberDock to an unbound benchmark of 20 transmembrane α-helical proteins taken

from three other benchmarks,14–16 which returned a success rate of 75.0%. This is

a significant improvement over the 54% found for the water-soluble protein docking

benchmark. Improvement here, therefore, is primarily due to the reduced size of the

search space. In contrast to the water-soluble docking pipeline, the atomic models

returned are built from the original crystal structure, as we found that returned higher-

quality predictions overall. Our results correspond to correctly identifying 7 versus

DOCK/PIPER’s 2 out of 8 cases,16 8 versus Memdock’s 4 / 11 cases,14 and 1 versus

HADDOCK’s 1 / 3 cases15 (note that two cases were tested by more than one of these

methods, hence 22 individual comparisons from 20 cases). Applying the same difficulty

classification method employed by CAPRI to their benchmark6 (see Section 3.2.3.1), we

see that acceptable models within the top 10 candidates were obtained even for some of

the most flexible cases. Unsuccessful cases were primarily those where the STID maps

featured flat interfaces, a similar issue encountered with the water-soluble benchmark

set. The boundary conditions imposed by this “flatness”, was the motivation behind

the dipole-alignment re-ranking method in Section 3.3.1, and is the focus of much of

the work in Section 4.4. In addition, the work in Section 4.4 also focuses on addressing
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the other major boundary condition introduced through the optimiser: navigating into

occluded binding sites.

Future work to further demonstrate the applicability of JabberDock to transmem-

brane protein docking will need to address the formation of β-barrels and lipid plugs.

Lipid plugs, particularly those with a significant quantity of lipids modulating the

binding interface,19 pose a particular challenge, as the absence of lipid-atoms in the

STID maps, will result in poor surface contact at the known binding pose. Including

lipid-atoms in the STID map is possible; however, this would require prior knowledge

of the binding interface position to avoid losing molecular detail elsewhere. Regardless

of these challenging regions of the proteome, given the success of the results presented

here and that previously demonstrated with globular proteins, we expect JabberDock

to also perform well with transmembrane-solvent proteins, regardless of whether the

ligand is extracellular, periplasmic or cytoplasmic.

3.4.5 Methods

3.4.5.1 Generation of transmembrane protein surfaces

Since STID maps are generated from MD simulations of proteins in their native environ-

ment, we need to first explicitly represent a membrane to simulate the transmembrane

protein in. Here, we detail the operations required to prepare the binding partner STID

maps, corresponding to steps 1, 2 and 3 of Figure 3.4.3. Proteins must be pre-oriented

before input, i.e. the centre of the transmembrane domain of both binding partners is

at the origin with the appropriate orientation given that the bilayer will be built parallel

to the x− y plane. Such pre-alignment comes as standard for structures downloaded

from the OPM server.17

1. Structures are (optionally) initially checked and, where necessary, repaired using

Modeller.20 Specifically, the FASTA sequence of the protein is downloaded from

the PDB database21 (placing the FASTA file in the folder is enough if there is

no connection to the Internet), and used to patch up to 15 consecutive missing

residues.

2. The protein is immersed in a POPE bilayer and solvated via the PACKMOL-

memgen tool22 available through the AmberTools(v.18+) package. Lipid and

TIP3P water molecules are placed using a random seed, and 80 loops are performed

during PACKMOL’s GENCAN routine to improve packing with a total of 120

NLOOPS for all-together packing. A tolerance of 2.4 Å is used to detect clashes

between molecules. POPE residue names are then corrected to reflect the SLipid23

nomenclature before the topology files are generated through GROMACS.7 A
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small fix is used to accommodate the different angle and dihedral descriptions

between SLipid and Amber ff14SB.24 Finally, the system is neutralised with Na+

or Cl− counterions.

3. Membrane protein systems are simulated using GROMACS7 MD engine, with

Amber ff14SB24 and SLipid23 force fields describing the protein and lipids respec-

tively. The system is energy minimised via steepest descent within a tolerance

threshold of 200 kJ mol−1 nm−1, with the maximum number of steps set to

5× 106. Cut-offs for both Coulombic and van der Waals interactions are set to

1.2 nm, with particle mesh Ewald summation treating long-range interactions.

The system is then equilibrated for 20 ns within an isothermal-isobaric ensemble,

with a 2 fs timestep and all bonds constrained with the LINCS algorithm.25

A semi-isotropic Berendsen barostat is used to maintain a pressure of 1 bar,

with a coupling constant of 1.0 ps and compressibility of 4.5× 10−5 bar−1. The

temperature is set to 310.15 K. A further 50 ns is then simulated, with the same

settings but with all constraints removed. Atomic coordinates of the last 10 ns

(for reasons shown in Figure 3.4.1) are saved every 5 ps, and used to generate a

STID map following the procedure described in Section 2.2.

3.4.5.2 Search space definition

Here we provide details on the docking process of protein surfaces generated from

STID maps, corresponding to steps 5, 6 and 7 of Figure 3.4.3, where constraints are

imposed on the search space discussed for the water-soluble proteins in Section 3.3.3.1

due to the presence of the lipid membrane. An initial starting point with the centres

of mass of the two input monomer transmembrane regions are fixed at the origin prior

to generating any models. In the 7-dimensional search space, the x and y translation

values are limited by the size of the receptor, and the ligand is only allowed to move

±5 Å along the z-axis. The axis of rotation is aligned along the z-axis, but is also

permitted to precess by up to 0.157 radians (9°) into the xy-plane. Possible rotation

angles in radians range between 0 and 2π. The navigation of the PES and generation

of models follows the rest of the procedure outlined in Section 3.2.1.1.

3.4.5.3 Homology modelling

Several test cases only had their ligand and/or receptor starting structure known

from a homolog, sometimes bound to an alternative binding partner. For these cases,

receptor and ligand crystal structures were mutated into their target counterparts via

the Modeller program.20 Motifs up to 15 residues long were permitted to be patched

if they were missing from the structure, and structures were kept frozen to prevent
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optimisation of models. The roto-translations returned by JabberDock were applied to

these structures to yield the final predicted complexes. Table S2 reports on the sequence

identity between homologs and the target structure. Their RMSD, determining case

difficulty (see Section 3.2.3.2), is also provided. We note that three benchmark cases

(1ZOY, 2VT4 and 1EHK) feature binding partners extracted from a known complex

that is a homolog to the target. Although not a real-world test case, these are suitable

benchmark cases as the conformations of subunits in the two dimers differ. The RMSDs

reported in Table S2 refer to those between target structures and crystal structure,

either of the unbound molecule or mutated structure from the homolog.
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3.5 Applications

3.5.1 Transthyretin fibril formation

Transthyretin (TTR) is a homotetramer (see Figure 3.5.1) transport protein involved

in various cardiac and neurological genetic diseases. This is due to the ability of

misfolded TTR to form amyloid fibers.26 The pathogenetic variants have shown to

cause hereditary diseases such as Familial Amyloidoic Polyneuropathy and Familial

Cardiomyopathy.27–29 Figure 3.5.1 demonstrates how the common mutations associated

with these diseases occur around or in the amyloid binding sites of TTR. The wild-type

has also been shown to generate amyloids leading to Senile Systemic Amylodosis.30

Designing an algorithm capable of auto-tiling a fibril such as TTR in 3D, in the pursuit

of developing medicines to prevent amyloid aggregation, was the subject of a project

by a visiting PhD student from Université de Lyon, Lorenza Pacini, in July of 2019.

90°90°

MutationsBinding Sites(a) (b)

Figure 3.5.1: Transthyretin homotrimer (PDB: 1F41). (a) Binding site location associated with
TTR amyloid aggregation.31 (b) Common single-point mutations known to catalyse amyloid aggrega-
tion.31,32

The novel auto-tiling method defines several fibril types depending on the oligomeric

interaction site of TTR and the topology of the final arrangement (see Figure 3.5.2

for predicted examples). Tiling the homotetramers into these fibril types requires

prior knowledge of the general repeating unit, and thus an initial roto-translation to

map the homotetramer into the candidate binding position. Once the fibril is built,

it is then possible to compare with electron microscopy (EM) negative stain images

to confirm the validity of the model.33 TTR can form multiple structurally distinct

fibril networks,31 with the different types of fibres also depending on whether the TTR

is wild-type or not. There are, therefore, three key concerns that must be addressed

before the auto-tiling can take place:

1. Initial docked candidates are required with associated roto-translations.

2. A diverse pool of poses are needed to meet the diverse fibre model requirements.
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3. These predicted arrangments need to consider possible mutagenesis.

JabberDock can deliver on all of these fronts. It has shown to provide accurate

docked predictions for soluble proteins (Section 3.3), and the K-means geometric

clustering yields a distinct set of solutions. We have already discussed how STID

maps reflect the changing dynamics of individual amino acids following some distal

binding (see Section 2.6), it would be expected that this property would also serve

to measure the impact of possible mutations. A topographically distinct STID map

would accordingly affect the docking and, thus, the candidate fibril models produced.

Therefore, we applied JabberDock to the TTR wild-type (PDB: 1F41), before the

auto-tiling procedure was applied to generate the different fibres. The results of some

proposed models are given in Figure 3.5.2.
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(a) (b)

(d)(c)

z

y

x

Figure 3.5.2: Four fibril models of TTR predicted through an initial starting docked pose provided
by JabberDock. (a) Rank 4 docked pose, fibril Type 1. (b) Rank 1 pose, Type 2a. (c) Rank 12 pose,
Type 2b. (d) Rank 94 pose, Type 2c.
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The fibril types in Figure 3.5.2 are classified with the following:

1. Periodic stacking in z with minimal displacement into the x− y plane, leading to

a curvature of zero, Figure 3.5.2(a).

2. Stacking occurs with both a non-zero azimuthal and polar angle, leading to a

fibril with a finite radius/curvature with respect to the translational z-axis, i.e.

a helical fibril.

(a) The helix pitch is smaller than the size of the TTR homotrimer along z,

leading to a fibril of finite size that cannot grow due to steric clashes, Figure

3.5.2(b).

(b) The pitch of the helix is larger than the TTR, leading to a helix, Figure

3.5.2(c)

(c) The pitch of the helix and TTR size are similar, leading to a closed helical

fibril, Figure 3.5.2(d)

In generating these fibres, the top 100 poses were selected for further analysis.

The four fibers shown are those with interaction sites that corroborate experimentally

proposed residue contacts31 (see Figure 3.5.1). It is a testament to JabberDock’s

success that two of the top 10 models, including the highest-ranking, are in this set

of four. Considering a greater pool of models enables a richer dataset and a greater

number of plausible fibril models. Within these 100 poses are arrangements that

provide variants on the types shown in Figure 3.5.2 that are equally feasible. Thus,

utilising JabberDock as a preliminary step in the auto-tiling process allows for the rapid

generation of distinct models that can then be compared with experimental data such

as EM negative stain imaging, resulting in a highly detailed, atomistic representation

of the fibre network not available elsewhere. Future work will look into mutant variants

of TTR and other fibres.
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3.5.2 Confirming Mass Photometry data for bo3 oxidase dimer

formation

Author’s note: the experimental results presented in this Section (Figure 3.5.3), were

collected by the co-authors: Olerinyova et al. (see Publications & Manuscripts).

Integral membrane proteins make up 20 to 30% of the proteome and play a significant

role in several tasks such as nutrient transport through the membrane and signalling.34

Despite this, they make up only 4% of structures in the PDB database.21 This is

due to the difficulties associated with studying and characterising them as they are

unstable under typical aqueous conditions. Experimental strategies to investigate

their properties and behaviour rely on retaining a native lipid-like environment. A

diverse range of membrane mimetic systems are used to achieve this, such as nanodiscs,

detergent micelles and amphiphols.35 Since these systems are inherently heterogeneous

with a multitude of interacting components, it is challenging to resolve the structure

and function of an integral membrane protein, particularly at a single molecular level.

The recently developed Mass Photometry technique36 has demonstrated its re-

markable capability as a protein characterisation tool in competition with widely

used techniques such as mass spectrometry. It has shown to accurately determine

molecular masses, detect ligands bound to soluble proteins without a label, and resolve

different oligomeric states. Mass Photometry works by measuring the interference

between light reflected off an interface and light scattered by molecules attached to said

interface, with the amount of interference related linearly to mass. This technique is

non-invasive, requires minimal sample concentrations (<<µm) and volume (µl), it can

report on populations due to its single-molecule nature and does not rely on indirect

absorption measurements. Mass Photometry is, therefore, an attractive tool to apply

to transmembrane protein structure characterisation.
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Figure 3.5.3: Mass Photometry detection of E. coli bo3 oxidase monomers and dimers isolated from
LMNG detergent micelles by dilution.

We demonstrated that Mass Photometry can be used in transmembrane protein

structure prediction by corroborating Mass Photometry predictions with our own

docking approach. In this context, the Kukura group at the University of Oxford

gathered Mass Photometry data of E. coli bo3 oxidase in lauryl maltose-neopentyl

glyco (LMNG) stabilising detergent. The results indicated both a bo3 monomer and a

dimer. The dimer’s presence is debated, with some results suggesting its existence,37

while others indicate its absence.38 The monomer and dimer were found at 80% and

20% abundance respectively (see Figure 3.5.3) by the Kukura group. The measured

monomer mass of 290 kDa suggests the presence of 146 kDa of LMNG, equating

to 146 individual molecules. Similarly, the measured dimer mass of 506 kDa would

correspond to a 288 kDa dimeric protein with 218 LMNG bound molecules. Suspecting

the dimer an artefact of the drop dilution method, analysis was also conducted at a

higher concentration of LMNG above the critical micelle concentration. The results of

this agreed with the original findings.

To test the feasibility of dimer occurrence, we generated potential bo3 (PDB:

1FFT) dimer structures using the transmembrane docking routine of JabberDock.

For this, we followed the procedure outlined in Section 3.4.5.1, by first simulating

the monomer (PDB: 1FFT) in a POPE bilayer for 60 ns, and used this equilibrated

structure to generate a pool of 300 possible dimeric arrangements (the best candidate

is shown in Figure 3.5.4(b)).

We used these models to validate the Mass Photometry data by investigating the

loss of detergent that would be required following the formation the dimer. Specifically,

we calculated the transmembrane solvent-accessible surface area (SASA), assuming a

transmembrane width of 30 Å as indicated by the OPM database,17 via the Shrake-
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Rupley (“rolling ball”) algorithm.39 By first calculating the SASA of the monomer’s

transmembrane region, we can derive a SASA per kDa occupied by the detergent.

Assuming this quantity is invariant between monomer and dimer, we can infer the

total mass of detergent bound to the dimer by measuring its SASA. The drawback of

this method is that its accuracy hinges on an accurate prediction of the location of the

water/POPE interface (inferred here using the OPM database). The transmembrane

SASA of the monomeric bo3 was found to be 21800 Å
2
. Given the mass of LMNG,

determined by Mass Photometry (146 kDa), we can calculate the ratio of SASA per

kDa of detergent:

21800 Å
2

146 kDa
= 149.4 Å

2
kDa−1.

We then calculated the SASA for all dimer complexes generated by JabberDock, the

distribution of which is shown in Figure 3.5.4(a), giving an average surface area of

33100 Å
2
. Taking this as a consensus value, and assuming the ratio of bound lipids is

consistent between monomeric and dimeric bo3, we can derive the mass of LMNG that

are able to pack around the dimer:

33100 Å
2

149.4 Å
2

kDa−1
= 221± 3 kDa.

This prediction is remarkably close to the experimental value of 218 kDa. These

data support the presence of the bo3 oxidase dimer in vitro (see Figure 3.5.4(b)), and

illustrate the accuracy of Mass Photometry in quantifying not only the mass of the

polypeptide, but also the detergent mass bound to solubilised membrane proteins.
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Figure 3.5.4: (a) Distribution of transmembrane surface area across all dimers predicted by
JabberDock. The number at the peak indicates the mean of the data. Both a histogram (red) and a
fitted gaussian (dark red) of the data are shown. (b) Monomer (top) unit of E. coli bo3 oxidase and
the corresponding best ranked candidate dimer (bottom).
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3.6 Conclusions

Protein-protein docking is an immensely useful tool in biomolecular modelling as it

provides oligomeric models not obtainable through traditional, in vitro means. Its

inherent complexity has lead to the development of a wide-range of approaches over the

last 25 years. However, despite the persistent advent of novel software, a global solution

continues to elude the community. Adequately accomodating the flexibility of a protein,

both on a domain and side-chain scale, is an issue that all protein-protein docking

methods must account for. While domain-level shifts only occur for protein complexes

that undergo an allosteric change, side-chain flexibility pervades all docking scenarios.

Typically, atomic positions are treated as spatially fixed, and a local refinement takes

places following rigid-body docking to accommodate this flexibility. These approaches,

therefore, fail to consider the effect of side-chain flexibility during the actual docking

procedure. In Chapter 2 we presented STID maps, a strategy to represent how a protein

is perceived by its immediate surroundings. Our physical formalism encompasses the

localised electrostatic nature of the space occupied by a molecule, and the dynamics of

the protein itself, into a series of local dipole vectors, which is ultimately cast into a

volumetric representation. Our STID maps are, therefore, an attractive solution to the

protein-protein docking problem. STID maps can be constructed from a protein in

its native environment. Thus, it can consider proteins both in water and a membrane

setting, allowing for the design of protein-protein docking software for both of these

distinct environments.

We have discussed how our novel scoring function attempts to maximise the

surface complementarity of two STID map isosurfaces. The isosurface was defined

through independent verification of the isovalue (0.43) in Section 2.3.4, but we also find

that this choice of isovalue, on average, returns the highest score at the ground truth

for both the water-soluble (Section 3.2.1.2) and transmembrane protein complexes

(Section 3.4.2), despite the differing environments. This surface-based scoring function,

shown to be smoother than traditional atomistic approaches (Figure 3.4.4), defines

a potential energy surface which is then navigated by a particle swarm optimisation

engine to predict and provide accurate arrangments. At the end of the optimisation,

all candidate models, typically several thousand, are clustered and returned to the

user (in this work, 300 solutions are returned). Applying our docking protocol to

integral membrane proteins requires only the MD system setup to be altered, longer

MD timescales, and a reduced search space. A pipeline for both docking procedures

has been packaged and is available for free on GitHub through our protein-protein

docking software, JabberDock (https://github.com/degiacom/JabberDock).

Applying JabberDock to a benchmark of 224 unbound, dimeric water-soluble
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protein complexes yielded an overall CAPRI-defined success rate > 54%. Notably, the

success of JabberDock was not adversely affected when it was challenged with the more

difficult, flexible proteins, indicating the ability of the STID map to accommodate

localised flexibility. With a smaller benchmark of 20 unbound dimeric, integral mem-

brane proteins, JabberDock returned a successful model in 75% of cases, a remarkable

improvement to the water-soluble benchmark. This places JabberDock as competitive

in both protein-protein docking fields. Unsuccessful cases in both datasets were those

which the optimiser struggled to navigate into due to obscured non-convex binding

pockets, or, more often, those with a lack of surface features (i.e. flat) that the scoring

function can use to designate good or bad poses. Addressing these two boundary

conditions is the focus of the majority of the work in Section 4.4. We also hypothesise

that using a STID map extracted from a protein’s native bound complex, acting as a

surrogate bound complex, could assist in unbound docking for both soluble and integral

membrane protein docking. We explore this matter further in Section 4.3.

Following its success, we utilised JabberDock in two applications. The first aimed

to predict starting dimeric structures for transthyretin fibril growth as a pre-processing

step in a new auto-tiling algorithm. JabberDock was able to provide numerous, distinct

complexes which corroborated known binding site positions. These initial periodic

units were then utilised in the auto-tiling procedure, producing fibres that matched EM

negative stain images. The second application looked into the feasibility that bo3 oxidase

could dimerise in a membrane, a result inferred from a recent employment of Mass

Photometry to integral membrane protein structure characterisation. The structures

generated indicated a mass of detergent bound to the dimer which matched the

experimental Mass Photometry data, thereby confirming the dimerisation hypothesis.

The success with the soluble and integral membrane protein benchmarks, and the results

from these two applications, confirm the necessity of considering local dynamics during

protein assembly, and consequently the applicability of JabberDock to a wide-range of

biomolecular modelling scenarios.

While the STID isosurfaces have proven successful as a critical component of

our docking method, there is a rich amount of structural, dynamic and electrostatic

information held within a STID map. Future versions of JabberDock will explore

the possibility of leveraging on this additional source of structural information to

provide the user with more accurate models. Other areas of future investigation

will include the adoption of different functions as a model for the pseudo-electron

density discussed in Section 2.2 (e.g., a Lorentzian), using JabberDock for rescoring

models predicted by other protein docking methods, a reranking process building upon

our preliminary results on the usage of a dipole complementarity score, the use of a

different atomistic force field (including a polarisable one) to explore the impact on the

STID maps, and an additional post-processing step based on MD or MC techniques
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to refine the best docking poses. In this context, we also foresee that the use of

optimisation algorithms requiring no weighting could be beneficial.40 Looking at the

current clustering approach, our choice of the metrics used for K-means clustering may

be suboptimal, as we are essentially giving an extra weighting towards the rotational

coordinates. Indeed, as we see in Chapter 4, the translational coordinates are, in

general, a larger determinant of success under the CAPRI criteria (see Section 3.2.3.2).

A superior metric to perform K-means clustering with may be the RMSD variation

within our initial solution pool. Therefore, future versions of JabberDock should change

the metric used to cluster solutions, provided that it can return higher-quality docking

solutions overall. Finally, while JabberDock performs well largely irrespective of case

difficulty, there are limitations as we begin to consider larger conformational changes,

allosteric response upon binding and so on. These are areas, critical to protein function,

where the communities understanding and predictive abilities significantly fall short.

In Chapter 4, we will discuss some of the early work being done to address some

of JabberDock’s limitations, with the goal of establishing JabberDock as one of the

most competitive software available for structural biologists. Overall, enhancements

in the scoring function and solutions reranking will help improve the performance of

JabberDock against cases with low interface complexity, while refining the optimisation

engine will reinforce its performance against cases with highly complex ones.
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4.1 Introduction

The version of JabberDock currently available for download on GitHub https://

github.com/degiacom/JabberDock has shown itself to be competitive with respect

to other protein-protein docking software. In particular, the integral membrane protein

docking pipeline is a remarkable improvement over other methods. However, there is

still clear room for improvement. Throughout Chapters 2 and 3 we have discussed the

various challenges that hindered JabberDock and the concepts that could improve its

success. These include:

1. Harnessing bound dynamics to assist in unbound docking.

2. Considering improved optimisation strategies to navigate ligands into narrow or

occluded binding pockets.

3. Successfully docking isosurfaces with relatively flat binding interfaces (i.e. a lack

of topographically distinct features), cases which the current scoring function

struggles with.

4. Utilising a scoring function with minimal empirical weightings or terms to max-

imise transferability and reliability.

5. Reducing the overall computational costs associated with JabberDock such that

the software is more accessible.

In this Chapter, we shall discuss our attempts to address these objectives.

We have already seen that the bound state impacts the topology of a STID map

in Section 2.6. Therefore, we considered whether the use of a ligand’s STID map

extracted from a native bound complex could assist in unbound docking. We first

discuss some preliminary results from the various benchmarks performed in Chapter 3,

before testing the approach further with the BPTI ligand. Results demonstrate that

leveraging bound dynamics as a surrogate for a target complex, does indeed improve

unbound docking success rates.
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4.1. Introduction

Addressing objectives 2, 3 and 4 requires a little more creative thinking. Docking

shapes, in our case, the protein isosurfaces, can be interpreted as a collision detection

problem. Such problems are common in Computer Graphics research. Therefore, we

will introduce techniques borrowed from this field to better represent a protein’s STID

map isosurface in a protein docking context, following the same methodology as Section

2.6.4.2. These protein representations allow us to leverage accessible gradients that

directly lead to a binding site. We show that while an analytically derived scoring

function works remarkably well for toy models, it proves inadequate for proteins due

to the need to compensate for isosurface intersection. We, therefore, apply an adapted

scoring function with an empirical term that accounts for this overlap. A significant

amount of benchmarking was performed to guarantee both the highest quality results

with respect to the CAPRI guidelines,1 and to ensure we are sufficiently sampling the

potential energy surface (PES). Particular focus is given to the clustering benchmarks

employed to monitor solution convergence and diversity. While not complete, the

results of this work inform us of the tasks yet to complete in the pursuit of JabberDock

2.0.

Finally, our endeavours to tackle the issues we encountered with our gradient-

based method led to the design of a novel means to rapidly generate protein docked

models for assessment. The approach borrows from ray-tracing algorithms, displacing

a protein-ligand to a target receptor by the bounds of the distance between them.

The result of this is an algorithm which is computationally cheaper than our previous

efforts, addressing objective 5 above. This algorithm acts as a preliminary step in

sufficiently sampling a non-trivial PES, thereby enabling some of the shortfalls of our

gradient-based docking approach to be resolved.
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4.2 Terminology

A lot of the techniques in this Chapter are borrowed from the Computer Graphics

field, and thus come with their own terminology that may be unfamiliar to those in

Biophysics. Here, we will briefly define this technical jargon in alphabetical order to

give some context, but will avoid diving into any mathematical detail as it is beyond the

scope of this work. The style of this is similar to the Common Terms & Abbreviations

Section, but is given here for convenience.

Affine trans-

formation

A geometric transformation that preserves the original structural

features of an object being transformed. In our case, these ob-

jects are the SDFs and the affine transformation refers to a roto-

translation. It is equivalent to rotating and translating the ligand

STID isosurface in Chapter 3. The affine grid is a means to apply

these affine transformations to an SDF gridspace.

CUDA

device

A device which can support CUDA code, typically, although not

exclusively, NVIDIA GPUs. CUDA is used as an interface to run

code on the GPU in parallel, similar to MPI on a CPU.

Learning

rate

The amount the weights associated with a parameter are updated

during optimisation iterations. For example, if the 3D Euclidean

translation and the rotational quaternion are our parameters, the

learning rate for each of these relates to how much each can be

numerically changed by the optimiser during a step.

Loss Often referred in the context of a loss function, or cost function.

In our work, it is effectively the energy associated with a specific

arrangment at some arbitrary roto-translation. It is equivalent to

the scoring function, but is usually taken as the inverse, i.e. instead

of maximising the score, we minimise the loss.
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Outer/inner-

loop

These are effectively nested for loops. Consider an algorithm which

loops through the IMDb library of films to find the highest rated

films of all time. The outer-loop may choose years to sample, while

the inner-loop checks the films of that year and finds the highest

rated ones. The outer-loop then stores the highest rated film of

that year before moving on. In optimisation terms, the inner-loop

performs some local optimisation, for example a gradient descent,

while the outer-loop is more global. Outer-loop methods, such as

Monte Carlo, are typically heuristic-based, and are able to rapidly

sample large regions of the search space. Conversly, a gradient-

descent method may be suboptimal globally, but are efficient at

finding local minima.

Quaternion A 1×4 vector used here to represent a 3D spatial rotation, they

are more compact and efficient than traditional rotational matrices.

Throughout this work, we use exclusively unit quaternions, i.e.

those normalised to one to avoid scaling.

Ray-tracing A rendering algorithmic technique which effectively traces paths of

light from a source to a virtual object and simulates the scattering

off that object. Ray-tracing is commonly employed in animated

film-making and graphic design. Indeed, all protein images within

this thesis have been ray-traced.

SDF Signed distance function. The signed distance function of a set

provides the distance from some arbitrary point to the boundary of

the set. For our work, the SDF of a point gives the distance to the

boundary of the STID isosurface. The function has positive values

inside the isosurface, and negative outside.

Unit sphere A sphere with radius 1. Most often used in conjunction with quater-

nions. In other words, the term “projecting the quaternion onto a

unit sphere” means constraining the magnitude of the quaternion

to 1. This prevents the optimiser from applying scaling factors to

the ligand as an alternative means of increasing the score.

162



4. Beyond JabberDock

4.3 Harnessing dynamics from bound complexes

for unbound docking

4.3.1 Preliminary work

Some proteins can form multiple complexes by interacting with different binding

partners. Following our soluble and transmembrane protein docking benchmarks, we

hypothesised whether knowledge of a protein’s bound state with a specific partner

might facilitate its docking with a different one, i.e. the bound state of the native

complex from which the ligand or receptor is sourced can be used as a surrogate for

the target complex.

From the water-soluble protein docking benchmark, an unbound case with struc-

tures that allowed us to test this theory is the UBA domain from Cbl-b ubiquitin

ligase (PDB: 2OOA), a small 11 kDa protein. Although it is crystallised as a ho-

modimer, it is the monomer that participates in the formation of a heteromultimer

(PDB: 2OOB) with ubiquitin. Simulating a 2OOA monomer and using its associated

STID map within JabberDock to predict the 2OOB complex yielded no successful

results. On the other hand, generating a STID map using a monomer extracted from

the simulation of its dimer gave intermediate quality results. This indicates that the

dynamics of a Cbl-b ubiquitin ligase as part of a homodimer or a heteromultimer were

similar. This similarity could be harnessed to improve the predictive power of our

surface complementarity scoring. This approach was also tested with the significantly

larger integrin I domain of complement receptor 3 complex (PDB: 4M76), but no good

pose was found in this scenario. We subsequently applied the same assessment with

the transmembrane wild-type cytochrome c oxidase from Rhodobactor sphaeroides

(PDB: 1M56) test case, comprised of two binding partners (chains A and C) that have

had their structures solved as part of an alternative complex. When docking STID

maps generated from MD simulations of monomeric binding partners, none of the 300

candidate models were successful. In contrast, docking STID maps generated from

surrogate bound-state conformations yielded 8 successful poses, the best one at rank

51. Although not featuring a top 10 successful result, this improvement indicates

that membrane protein docking may also benefit from STID maps representing bound

dynamics extracted from other known complexes these membrane proteins are involved

with.

These cases certainly support our proposed hypothesis. To test this theory further,

we require a protein which participates in a wide variety of complexes to measure the

impact of extracted bound dynamics. As discussed in Section 2.6, the BPTI protein

is prolific in the number of receptors it involved in (see Figure 4.3.1). Furthermore,
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we have already determined that the STID maps built from these different receptor

environments are fundamentally different, reflected in the changes to the STID maps

of individual amino acids. We will, therefore, apply these pre-generated STID maps

from our previous work in Section 2.6 for the unbound BPTI ligand docking with

the unbound matripase receptor (PDB: 1EAX), which corresponds to the benchmark

case supplied by the CAPRI community.2 If successful, this would predicate the usage

of pre-existing bound complexes in generating accurate docked models of a target

complex.

Figure 4.3.1: BPTI (blue) docked into all 15 receptors used in this work. The zoom inset is the
same BPTI bound states rotated 180°, de-emphasising the presence of the genome polyprotein of
Dengue virus 4 (PDB: 5YVU).

4.3.2 Results

Table 4.3.1 shows the results of docking a bound ligand extracted from its associated

complex with the matripase unbound receptor. We use the CAPRI metrics to define

success, and provide the associated quality of the closest prediction in the top 10 ranked

results relative to the target structure of BPTI bound with matripase (PDB: 1EAW);

acceptable, medium or high (see Section 3.2.3.2). Also provided for each, is the non-zero

cross-correlation coefficient between the bound ligand STID maps and the unbound

BPTI wild-type (PDB: 9PTI), as a measure of the difference in topology between the

two. 1BPI is an unbound mutant variant of 9PTI with single point mutations: F22A,

Y23A, N43G, and F45A.
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Table 4.3.1: Quality of results from docking a bound ligand extracted from various complexes (given
by the PDB code) into the unbound 1EAX receptor. The target structure, 1EAW, is highlighted in
bold. Shown is the best RMSD in the top 10 ranked results, with associated fnat., RMSD_I as defined
via the CAPRI criteria (see Section 3.2.3.2). The quality: incorrect (–), acceptable (*), medium (**)
or high (***), of this predicted model is also provided. The results are ranked from highest quality
prediction in terms of RMSD, to lowest. The wild-type 9PTI and mutant 1BTI are kept separate to
denote the unbound structures.

PDB Code CCC with 9PTI RMSD / Å fnat. RMSD_I / Å Quality

1BTH 0.823 4.27 0.682 4.43 **

1EAW 0.790 6.41 0.318 7.11 *

2R9P 0.854 6.70 0.364 7.44 *

2KAI 0.844 6.81 0.636 7.95 *

2RA3 0.850 6.93 0.409 8.41 *

1FY8 0.862 7.16 0.591 7.88 *

5YVU 0.833 7.55 0.773 7.31 *

1CBW 0.863 8.15 0.591 9.54 *

4WWY 0.814 8.40 0.864 8.82 *

1TPA 0.823 8.51 0.318 9.61 *

1YKT 0.850 8.67 0.727 8.39 *

2IJO 0.865 8.90 0.318 8.01 *

1BZX 0.857 8.98 0.273 8.60 *

3U1J 0.822 9.21 0.182 9.98 *

4DG4 0.825 10.00 0.409 9.05 –

9PTI 1.0 9.93 0.364 9.58 *

1BTI 0.836 16.72 0.000 16.21 –

Nearly all cases report a success, with the 1BTH ligand achieving an intermediate

quality prediction. 4DG4, the only bound case without a success, lies on the boundary

of an acceptable score with an RMSD of 10.00 Å. The unbound 9PTI BPTI ligand,

while successful, is only narrowly an acceptable result with an RMSD of 9.93 Å,

although this was the highest-ranked prediction. The unbound mutant 1BTI returned

no successful models in the top 10 ranked results, indeed all top 10 models are very

far removed from the known ground truth. The first acceptable prediction for 1BTI

arrives at rank 34, with an RMSD of 7.94 Å, fnat. of 0.136 and RMSD_I of 10.73 Å.

The average CCC for all BPTI with respect to 9PTI is 0.84(2), indicating that none of

the STID maps are significantly topologically distinct from the rest of the set. However,

we note that this scalar measure does not provide any information on local differences

similar to Section 2.6, and the lack of any cases with CCC ≈ 1 does imply topological

differences between maps.
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4.3.3 Discussion

While the different receptors are distinct, all BPTI ligands are identical. The exception

to this is the unbound 1BTI case, with four single point mutations. None of these amino

acids participate actively in binding, although N44, which forms a hydrogen bond with

R48 in matripase, is sandwiched between two of these mutations. Thus, despite the

sequence of the ligand binding site and structure remaining identical, mutagenesis

distal to the binding site has influenced JabberDock’s likelihood to predict the known

ground truth. The reasons for this are twofold:

1. The mutagenesis disrupts the internal hydrogen bonding network3 of BPTI.

Consequently, the dynamics of individual residues, including at the binding

interface, are altered, as discussed in Section 2.6. Dynamics govern the STID

map’s topology. Thus, there are implications for subsequent docking.

2. The mutated residues will intrinsically alter the shape of the STID map isosurface,

making some arrangements that were previously unfavourable more likely to

occur. This is reflected through a low fnat., with different amino acids now found

at the interface in the selection of best solutions.

These mutations highly destabilise BPTI,3 thus rendering the formation of a complex

with matripase unlikely. It is encouraging to see that JabberDock can predict the effect

of mutants on protein-protein interactions.

Using the bound 1EAW ligand with the unbound 1EAW receptor (PDB: 1EAX),

predictably returns one of the highest quality results. However, it is remarkable that

the 1BTH case returns a better prediction overall. Following our work in Section 2.6,

we know that the 1BTH receptor thrombin alters the dynamics of a few individual

amino acids. It is interesting to see the repercussions of this, where these changes

presumably enhance the quality of the predicted structure. Indeed, two of the top 10

cases were a medium success, in contrast to none in 1EAW; although, we note that

1EAW featured five overall successes in the top 10 versus 1BTH’s four. While R42

in BPTI does not form a cation-π interaction with any residues in matripase, like

it does with W44 in thrombin, 1EAW is the only complex other than 1BTH where

BPTI’s R42 is present at the binding interface. Indeed, the zoom inset of Figure

4.3.1 shows this, with 1BTH in cyan, and 1EAW in purple (see top left region of

receptors interacting with BPTI). Thus, while the specific intermolecular bonds may

be different, the transferability between 1BTH and 1EAW is greater than the other

bound complexes, thereby enhancing the quality of the predicted pose.

In 13 of the 14 bound comparative cases, we return a higher quality prediction

by harnessing the native-complex as a surrogate for the 1EAW bound receptor than

simply using the unbound 9PTI ligand. Therefore, we have established that, despite the
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differences in the ligand STID maps imposed by the different receptors, there is some

level of transferability between complexes. Given this transferability, it is unsurprising

that the success rate is improved by this approach, since the bound cases attempted

in the water-soluble benchmark in Section 3.3.1 overall did return a higher success

rate. While using the bound ligand variants as opposed to the unbound did induce

better quality results in the majority of cases, we emphasise that for the soluble 4M76

protein, no discernible improvement was observed. We initially considered whether

this pre-processing step might only improve small protein docking, but our results

with the transmembrane protein 1M56 indicate otherwise. The observed increase

in docking accuracy from 1M56 is less significant than what we observed for the

2OOB and BPTI water-soluble globular cases, where the improvement yielded several

successful complexes in the top 10 predictions. This difference is potentially because

the impact on the dynamics at the binding interface is smaller when moving from a

lipid environment to the protein surrogate versus water to the surrogate. Future work

will need to quantify the statistical increase in success rate offered by performing this

same benchmark on a much larger dataset of ligands with several distinct receptors,

both for water- and lipid-soluble proteins. Regardless, results suggest that objective 1

in Section 4.1 is resolved, and that future versions of JabberDock, or enterprising users

of the current version of JabberDock, should perform some form of homology checks

prior to docking to determine whether there are any surrogate bound structures that

could be used. By leveraging on these alternative complexes, JabberDock should yield

more accurate predictions than anything found through pure unbound docking.
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4.4 Gradient-based protein docking

4.4.1 The Signed Distance Function

The application of the STID isosurface in a protein-protein docking context has

clearly proven competitive with respect to other methods. Its ability to accommodate

flexibility and local electrostatics during the docking process provides a novel means to

consider how two binding partners might view one another while interacting. However,

there are some limitations with JabberDock, both from the optimisation and protein

representation perspective:

1. Our current approach requires good empirical parameters: the distance cutoff

(see Section 3.2.1.2), and various constants used in the scoring function (Equation

3.2.1) that are taken from the literature. These parameters may not be transferable

to a much larger section of the proteome than our benchmark; itself extracted

from the PDB, which as we discussed in Chapter 1, is weighted towards proteins

that are easier to resolve with current techniques.

2. We can not be sure we are considering every possible arrangement, as there may

be some locked behind high energy barriers which are missed by PSO’s initial

seeding process, or others that are trapped behind narrow pathways.

3. While we are exploring the PES with PSO, we never directly exploit accessible

gradients towards a well-defined minimum at a binding site and instead rely on

PSO inertia.

4. When considering an interaction between the receptor and ligand isosurfaces, we

require several nested loops to measure just the score at a proposed interaction

site, slowing the calculation down.

To address these concerns, we can reconceptualise the STID isosurfaces into

something that is: (1) easier to manipulate, and (2) provides us with gradients for

docking. For this, we borrow from techniques utilised in Computer Graphics for the

development of animated films such as The Incredibles by Pixar.4 Similar to Section

2.6.4.2, we convert our entire STID map isosurface into a Signed Distance Function

(SDF), which we will denote as φ. Each point in space, λ, when acted upon by φ,

returns the scalar distance to a zero-contour surface defined by the original STID

isosurface. Points outside the object are negative, while those inside hold a positive

value. This gives us direct access to information about the proximity to the surface while

docking, and when considering the two SDFs, we achieve a surface complementarity

maximum when these total distance fields are minimised. The SDF is differentiable

almost everywhere, and its gradient satisfies the Eikonal equation:
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||∇φ|| = 1, (4.4.1)

where || · || denotes the Euclidean norm. φ(λ) = 0 is along the surface. Figure 4.4.1

shows an example SDF, both for a toy model and a protein’s STID isosurface.

(a) (b)

(+)

(–)

(–)

(+)

ϕ(λ)=0

(+)

z

x

y

Figure 4.4.1: (a) 2D Disk (top) with associated exact signed distance function (bottom, in red).5

The blue plane denotes the 2D coordinate system of the circle, while the z-axis relates to the value
of the SDF at that coordinate. The intersection between the SDF and plane corresponds to the
zero-contour surface. Therefore, positive SDF values are ‘inside’ the object, while negative SDF values
are ‘outside’ the object. (b) Schematic of a STID isosurface of a protein (top) converted into an SDF
(bottom).

4.4.2 The analytical solution – docking toy models

Let λ be a voxel point in space, where φ1(λ) and φ2(λ) return the SDFs for the receptor

and ligand respectively. For an ideal case of docking with zero collision, we require a

scoring function that is maximised when the receptor and ligand isosurfaces (where

φ(λ) = 0) have maximum surface complementarity. It should tend to 0 as the two

are moved apart, and sharply decrease below zero to penalise any overlap. To obtain

a function with these properties, we combine a Dirac function, d(λ), that acts as a

repulsive potential which increases sharply as the level of intersection increases, and a

Heaviside function, h(λ), which acts as an attractive potential, but asymptotes as we

move further away from the surface. These are defined as follows:

d(λ) =
1

π

1

(1 + λ2)
; λ ∈ IRn×3, (4.4.2)
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and

h(λ) =
1

2

(
1 +

2

π

)
arctan(λ). (4.4.3)

These two give the final energy for a single point λ:

e(λ) = | d(φ1(λ))×
(
h(φ1(λ)) + h(φ2(λ))

)
|, (4.4.4)

where φ2(λ) is the image of the ligand SDF following a projection into an affine grid

which represents an associated roto-translation. φ1(λ) is the SDF of the spatially-fixed

receptor. The | · | denotes that we take the absolute value of the score. Since the overall

score is the sum of all points, λ, the following integral is used:

E(λ) =

∫
Ω

e(λ) dλ. (4.4.5)

Ω is taken over all points λ. A 1D example is shown in Figure 4.4.2.

ϕ1ϕ2

E(λ)

E(λ)

ϕ2(λ)ϕ1(λ)

(λ) (λ)

(a)

(b)

Figure 4.4.2: 1D SDF example of ligand (φ2, blue) docking into the receptor (φ1, red). Positive
SDF values are inside the object (receptor or ligand), negative values are outside it, and zero at the
edge. The two cases shown are those with object contact, but no intersection. Thus, the surface
complementarity is maximised, corresponding to a maximum in the integral (palatinate) of Equation
4.4.5 at the two possible docked positions of φ2. More specifically, the palatinate line relates to the
value of the integral for each position of the ligand along the λ-axis (horizontal).

To exhaustively explore the search space associated with these scores, we initialise

an ensemble of ligands by uniformly sampling a sphere fully surrounding the receptor.
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4. Beyond JabberDock

Ligands are placed at each of these sampling points, and their position is then iteratively

updated according to the gradient of our scoring function. Hereafter, these ligands,

behaving as independent agents, will be named search particles. The specifics of

initalisation and optimisation of search particles throughout Section 4.4 depends on

the approach being taken, but all details are available in Section 4.4.6.

To test whether following the gradient of our scoring function allows a ligand to

find its most suitable position on a receptor, we can expand our models to 3D, creating

toy models for the receptor and ligand. We can conceive our receptor as a sphere with

a spherical dimple, acting as a proxy for a binding site. The ligand is correspondingly a

sphere with a radius matching the cavity. We discuss the creation of these toy models

in Section 4.4.6.1. We initialise the position of 30 ligands through uniform sampling

across the surface of some larger sphere around the receptor (Section 4.4.6.5). We

then track the ligand’s position as they follow the loss function gradient, where the

loss function is the inverse of the scoring function, i.e. we’re trying to minimise the

negative of Equation 4.4.5, through the Adam optimisation algorithm (Section 4.4.6.3).

We use the Adam algorithm available through the Geoopt Python package,6 to keep

our rotations normalised, thereby preventing any scaling. More specifically, we consider

our spatial rotations as quaternions locked to the surface of a unit sphere, although in

the context of the toy models the quaternion is irrelevent as the ligand is rotationally

invariant. A visualisation of the optimisation process is provided in Figure 4.4.3.

To measure the success of our analytical scoring function, in conjunction with the

SDF approach and Adam optimiser, we created two scenarios through two different

receptor spheres. The first hosted a single binding site (top of Figure 4.4.3). The

second had three potential sites of varying depth (bottom of Figure 4.4.3), with the

target complex requiring the ligand to find its way into the largest site. This site was

partly obscured by the entry point rim (i.e. it was larger than half the volume of the

ligand), therefore requiring the ligand to physically pass through the receptor for a

successful binding event. Figure 4.4.3 shows three stages for both of these cases, where

the ligand, regardless of starting position, can successfully follow the gradient and dock

into the correct binding site on the receptor. A short, 1-minute video is also available

to watch these dockings in action, either by scanning the QR code or by following this

link: https://www.youtube.com/watch?v=lwXLIfgPf00&t=1s.
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(1) (2) (3)

Figure 4.4.3: Three stages of the docking process for (top) single binding site receptor (red), and
(bottom) multiple potential binding site receptor. (1) Ligands (blue) are initalised uniformly along
the surface of some larger sphere around the receptor. (2) Ligands follow the gradient towards
the binding site. (3) Regardless of starting position, the ligand is able to converge into the correct
docking pose. Scan the QR code to watch a short video on these dockings, or follow this link:
https://www.youtube.com/watch?v=lwXLIfgPf00&t=1s.

By observing the video of the single-site case (Figure 4.4.3(top)), we note that the

ligands oscillate around the binding site. This is likely due to the high learning rate

over the short timeframe of the simulation, the learning rate being the rate at which the

translation parameters are updated at each optimisation step. Of particular interest is

the ligand’s ability to pass through the receptor completely and emerge in the correct

position. We can take a more detailed look into why the ligand takes a specific journey

by exploring how the score relates to its spatial position, both along the receptor’s

surface and through it. Figure 4.4.4(a) demonstrates how the score changes as we roll

the ligand along the receptor’s circumference. Figure 4.4.4(b) shows how it changes

as we pull the ligand through the centre of the receptor. Both the score and distance

are in arbitrary units. There is a clearly defined minimum at the binding site, while

the rim of the site and centre of the receptor have associated maximums with respect

to the ligand’s path. The rim maximum is much larger than the centre, explaining

why the ligand prefers to pass through the receptor than move across its surface. The

penalty for complete overlap is not too severe, which is unsurprising given the shape of

the integral in Figure 4.4.2, and indeed is preferable than some surface locations on the

receptor. This is ideal behaviour, as it would indicate that the boundary condition of

JabberDock regarding the optimiser (objective 2 in Section 4.1) is resolved, although

before confirming this we must first apply our analytical approach to the docking of

real proteins.
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Figure 4.4.4: (a) Score returned by Equation 4.4.5 after rolling the ligand along the circumference of
the receptor sphere toy model. (b) Score after pulling the ligand through the receptor. The distance
is defined according to the respective schematic, with the global minimum in the score reflecting the
correct docked pose. The score and distance are in arbitrary units.

4.4.3 The analytical solution – docking proteins

The toy models above are minimal examples to demonstrate the functionality of the

scoring function in Equation 4.4.5. Their shape is homogenous except for the binding

site positions, and although the multi-site sphere (bottom of Figure 4.4.3) has some

greater level of heterogeneity, it is insignificant when compared with a protein’s STID

isosurface/SDF. The simplicity of the toy models, therefore, invites simplicity into the

initialisation and optimisation of search particles. In real protein docking, there are

three key factors that must also be considered. The first factor is our choice of isovalue.

While our series of benchmarks in Section 2.3.4 determined that 0.43 was the best

isovalue cutoff for the STID map isosurfaces, and indeed we showed in Section 3.2.1.2

that it performed the best for docking with JabberDock; due to the nature of the

analytical scoring function penalising any overlap – where some overlap is inevitable

due to the side-chain uncertainty, there may be an alternative choice of isovalue here

that yields higher-quality results overall. The second factor is that we now require

a 7-dimensional search space, to represent both rotations and translations; whereas

previously the spherical toy model ligands were rotationally invariant. The third factor

is that we now need to consider how to minimise the number of search particles, while
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4.4. Gradient-based protein docking

also ensuring that the PES is thoroughly explored. In the toy models, the few docking

sites induced a clearly defined global minimum for the search particles to converge into.

The PES associated with real protein docking will have a significant quantity of distinct

local minima, and while the ability of the ligand to pass through the receptor to reach

the global minimum could offer some means to bypass energy barriers, the complexity of

the PES means particles will still get trapped in local minima. Minimising the number

of search particles required can be done through two ways: (1) optimising the starting

positions of the ligand, and (2) determining the minimal density of search particles,

or sampling granularity, required to sufficiently explore the PES. In optimising the

starting positions, initialising the ligand positions on the surface of some sphere is

suboptimal when docking into an elongated receptor, thus mapping these locations onto

the surface of an ellipsoid is advantageous (see Figure 4.4.5 and Section 4.4.6.2). This

is because it does not bias any search particles, and because it reduces the necessary

number of them. In determining the sampling granularity, we consider both the number

of sampling points on the ellipsoid, and the rotations applied to the ligands following

their initial translation, which impacts the number of search particles per point on the

ellipsoid.

Figure 4.4.5: (a) Reduction in the number of sampling points from the ellipsoid mapping procedure,
keeping the a- and c-axes fixed while reducing the b-axis. This moves the shape on which points are
initialised from a sphere, through an ellipsoid, to a disc. The noise is due to the stochastic nature
of the acceptance critera in Equation 4.4.13 (see Section 4.4.6.2). The initalised sampling positions
are in blue, while the receptor (PDB: 1RKE) is in red. (b) Mapping of sphere sampling points (top)
onto the surface of an ellipsoid (bottom), where c < b < a, following the procedure outlined in Section
4.4.6.2. This reduces the number of initial sampled positions from 612 to 429.

We addressed these three factors by performing a series of benchmarks to measure

their impact. We first generated a series of SDFs between isovalues of 0.43 and 0.83

in steps of 0.04. We then initialised the starting positions of our search particles by

uniformly sampling an ellipsoid determined by the receptor’s shape (see Section 4.4.6.2)

at three different sampling granularity levels in an approximately uniform fashion.

Each starting position has two search particles associated with it, corresponding to the
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ligand spun 180° with respect to itself. Full details on the initialisation are available in

Section 4.4.6.6. Following initialisation, each search particle is optimised until the loss

converges (Section 4.4.6.3) to some local minimum, again by applying the Adam-based

optimiser through Geoopt.6 The converged translation and rotation are then applied

to the atomic model, and the various criteria related to success measured (see Section

3.2.3.2). For this protein benchmark, we selected 19 complexes from the soluble protein

benchmark2 used in Chapter 3: 12 easy, 4 medium, and 3 hard (see Section 3.2.3.1

for information on difficulty classification). The diverse set of cases were chosen to

test both our current method with previous successes, and to assess whether this SDF

gradient-based approach could address the boundary conditions of JabberDock laid

out through the objectives 2-4 in Section 4.1.

Preliminary tests showed that, while the toy ligands all converged to the global

minimum, the proteins did not. Therefore, prior to deciding whether a full optimisation

round was successful, we must cluster solutions to avoid redundancy. For this, we applied

a DBSCAN-based7 clustering algorithm (explained in Section 4.4.6.8). DBSCAN

contains two key parameters: M and R, where M is the minimum number of points

in a cluster, and R is the radius used to determine whether a point is close enough

to a previously identified cluster to be included within it. M is traditionally used to

discard noise, but since we wish to consider every possible converged solution, we set

M = 1. We ascertain R through benchmarking. For this, we use two key measures:

1. The silhouette score.

2. The rand index between the DBSCAN identified clusters, and, given the number

of clusters identified by the DBSCAN, a K-means equivalent.

The silhouette score is a measure of correctly assigned cluster diversity. It represents

how similar a point in a cluster is to the other points in the cluster, compared with if

it was a member of another cluster. It can range between −1 and 1, where positive

values indicate the point is well-matched and cohesive. In contrast, a negative value

implies that many points are poorly matched and that either the data is too random to

be clustered, or there are too many or too few clusters. The rand index is a statistical

measure to quantify the similarity between two data clusterings. A value close to 1

suggests the cluster sets are well-matched, while 0 is the opposite. We calculate a

rand index between the clusters generated by DBSCAN, and then verify their validity

with an independent clustering K-means method, using the same number of clusters

determined by DBSCAN.
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4.4. Gradient-based protein docking

4.4.3.1 Effect of clustering on solution diversity

Figure 4.4.6 shows, for each protein and DBSCAN clustering radius R, across all

isovalues and sampling granularity levels: (a) the average silhouette score, as a measure

of the correct assignment to each cluster, and (b) the rand index between the DBSCAN

clusters and K-means equivalent.
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Figure 4.4.6: Identification of the ideal DBSCAN clustering radius, R, showing the variation of R
with (a) silhouette score, (b) the rand index between clusters found with DBSCAN and a K-means
equivalent with K set to the number of clusters given by DBSCAN. All values are averaged across
all 19 benchmark proteins, isovalues and the three sampling granularity levels, with the standard
deviation indicated by the error bars. The dotted line indicates the chosen value of R based on the
results of this Figure.

Figure 4.4.6(a,b) shows that, to maximise the silhouette score and rand index, we

require an R ≤ 5. We then considered how the number of identified clusters, for each

of the different sampling granularities, is dependent on R. Therefore, we calculated

the average percentage increase in newly identified clusters from low to medium and

medium to high sampling granularity levels for each R. The results of this are shown

in Figure 4.4.7.
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Figure 4.4.7: Identification of the ideal DBSCAN clustering radius, R, showing the variation of R
with the average percentage increase in the number of identified clusters from low to medium and
medium to high sampling granularity levels. All values are averaged across all 19 benchmark proteins
and isovalues, with the standard deviation indicated by the error bars. The dotted line indicates the
best choice of R based on this information and Figure 4.4.6.

The % increase in clusters in Figure 4.4.7 represents the average number of

new clusters identified as we increase the number of search particles with sampling

granularity. A larger percentage would indicate that newly added particles converge

to novel solutions. It is expected for the small R to return a large increase, as they

are essentially near-single-point clusters. Ideally, this % increase should be as small

as possible for a range of R to confirm some convergence level in the sampling of

the PES. Following the results from Figure 4.4.6, where we identified R ≤ 5, we see

here that a minimum increase in the number of new clusters of 17% is given when

R = 5. This percentage increase indicates that the PES associated with Equation

4.4.5 has a high Lipschitz constant. In other words, the frequency of the PES is high,

with many local minima in close proximity to one another. We should, therefore,

extend to higher sampling granularity levels with a larger number of search particles.

However, the computational cost of these calculations is significant, with a mean total

optimisation time of 10 hours on an NVIDIA GeForce RTX 2080 Ti. GPU at the

highest sampling granularity level of 12 (466 average search particles). We, therefore,

opted to analyse the success of our current results and consider possible faster methods

for later employment (see Section 4.5). We display the three levels in Figure 4.4.8 for

completeness, and to monitor whether there is a shift in quality because of additional

solutions. Within each cluster returned by M = 1 and R = 5, we checked whether

further clustering was required to accommodate possible rotations. In every cluster

across all isovalues and proteins, the quaternions converged to some fixed rotation,

demonstrating the presence of clear gradients to discrete solutions. Thus, no further

clustering was required.
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4.4. Gradient-based protein docking

4.4.3.2 Effect of isovalue on docking success rate

Given our choice of M and R, we can now measure the success of the clustered solutions,

averaged across the 19 proteins, for each STID isovalue. Figure 4.4.8 compares these

results with the equivalent success found for these 19 proteins with JabberDock.
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Figure 4.4.8: Acceptable success rate of the 19 protein complexes used in this analytical benchmark
as a function of the isovalue used to generate the SDF. The dotted line provides the equivalent success
for these 19 proteins in JabberDock (i.e. not the entire benchmark). Also provided are the different
results returned by the different sampling granularity levels.

Figure 4.4.8 shows a significant difference in success between the sampling granu-

larity levels. For example, an isovalue of 0.67 produces a successful model in 58.8% of

cases at low sampling granularity, but increasing the number of search particles reduces

this success significantly to 23.5%. In contrast, at an isovalue of 0.79 we obtain a success

of 35.3% for high sampling granularity versus for 23.5% for low. Furthermore, there is

a lack of consistency in the increase or decrease of quality with sampling granularity.

For example, an isovalue of 0.63 at medium sampling granularity outperforms the other

two. Clearly, there are regions of the PES with deeper wells that are not mapped with

a smaller number of search particles despite clear gradients, confirming the complexity

of the search space relative to the toy models.

In terms of medium quality success, a 5.2% success rate was found at an isovalue

of 0.43 and low sampling granularity, and 5.2% at 0.75 and medium sampling granu-

larity. 11.8 % of these cases returned a medium quality prediction with JabberDock.

All successful results, where they occur, mirror those correctly predicted by Jabber-

Dock, which is encouraging as it demonstrates that this novel approach carries one
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of JabberDock’s key strengths; its ability to accomodate local protein flexibility in

docking. Where this gradient-based approach consistently outperforms JabberDock

across all the isovalues trialled is the complex formed between a Fab fragment of a

monoclonal IGG antibody and the major allergen from birch pollen Bet v 1 (PDB:

1FSK). This cases features a small, relatively flat binding site, suggesting that this

gradient-based approach could overcome the scoring function boundary condition of

JabberDock (objective 3 in Section 4.1).

The GAP domain of the Pseudomonas aeruginosa ExoS toxin and human Rac

(PDB: 1HE1), is a case that was successful across all the different sampling granularity

levels and isovalues. Here, we observe that many of the binding site interactions take

place via intermolecular hydrogen bonding through water, as opposed to direct side-

chain interactions. As we discussed in Section 2.5, our STID map, at an isosurface cutoff

of 0.43, effectively represents an excluded volume. Docking 1HE1 would, therefore,

require no volumetric overlap between isosurfaces, and still return a maximised surface

complementarity.

Cases that feature a greater number of direct side-chain interactions, such as that

of the cysteine desulfurase CsdA and sulfur-acceptor CsdE complex (PDB: 4LW4),

tended to perform poorly with our analytical method. These complexes featured some

level of STID isosurface overlap at the ground truth. While in JabberDock overlap

was penalised, if it facilitated overall better surface complementarity, it was permitted.

Here, the conditions are much stricter, preventing any form of SDF intersection in

a converged solution, although as we saw in Section 4.4.2, the ligand may still pass

through the receptor to dock into the binding site. The inability to converge into

a solution featuring some intersection may prevent the optimiser from finding good

poses, and explains why smaller isovalues, where side-chain uncertainty is represented

explicitly in the topography of the STID isosurface, perform poorly. Further evidence

for this is that, when placed in the known ground truth, in most cases, the ligand

navigated away from the site outside the range of a successful model. Given the success

of the higher isovalues, as well as the encouraging results from the toy models and this

protein benchmark regarding a resolution to the boundary conditions of JabberDock,

it may now be necessary to consider a means to permit some overlap in the scoring

function to further increase the success rate.

4.4.4 The semi-empirical solution – docking proteins

While it is ideal to keep the scoring function purely analytical, to accommodate the

necessary side-chain uncertainty, we must include an empirical parameter that accounts

for the intersection. For this, we turn to a semi-empirical solution. To compensate for

this intersection, and address the issue identified by the clustering, the high frequency
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PES, we define a new scoring function for a point λ, with characteristics similar to

that of a Lennard-Jones potential:

f(λ′, k) =
(φ1(λ′) + k)exp

(
−φ1(λ′)+k

k

)
k2

; λ′ ∈ IRn×3. (4.4.6)

It uses a sliding hyperparameter, k, that alters the maximum position of the integral

such that overlap between the SDFs is feasible:

F (λ′, k) =

∫
Ω

f(λ′, k) dλ′ . (4.4.7)

λ′ is a ligand boundary point (i.e. the vertices that define the surface of the ligand SDF)

sampled in the receptor SDF. Any λ′ points sampled outside the bounds of the receptor

grid are set to∞. Ω, therefore, represents every point within the bounds of the receptor

grid. This is in contrast to Equation 4.4.5, where the integral sampled the receptor and

ligand image SDFs individually. k > 1.0 permits overlap, and 0.0 < k < 1.0 pushes the

ligand further away from the binding site. When k = 1.0, the function is analytically

exact for models where maximised surface complementarity is desired. This k parameter

effectively accommodates for the uncertainty in the side-chain motion; the larger it is,

the more intersection is permitted. Figure 4.4.9 shows a visual example for this for the

STID maps of HLA-A2 complexed with the T cell coreceptor CD8 (PDB: 1AKJ), with

increasing values of k leading to greater levels of molecular overlap. k has a significant

impact on the overall score and subsequent exploration of the PES through our chosen

optimiser and must be accurately determined through benchmarking. A 1D example

of this function with two values of k is shown in Figure 4.4.10. It is possible to modify

Equation 4.4.5 to include hyperparameters that permit overlap. However, both the

Heaviside and Dirac subfunctions would require their own individual hyperparameter,

whereas Equation 4.4.7 simplifies matters by only needing one.

Figure 4.4.9: Converged docked result from the same initialised position for the HLA-A2 bound to
the T cell coreceptor CD8 complex (PDB: 1AKJ). The ligand is shown in blue, the receptor in red.
With the increasing value of k, we generate structures with greater levels of molecular overlap.
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Figure 4.4.10: 1D SDF example of ligand (φ2, blue) docking into the receptor (φ1, red). Positive
SDF values are inside the object (receptor or ligand), negative values are outside it, and zero at the
edge. (a) k = 1.0, the analytically exact solution with no SDF overlap permitted, with the value of
the integral (Equation 4.4.7), for each possible position of the ligand shown in palatinate. (b) k = 1.5,
the maximum in the integral is shifted to inside the the receptor SDF.

4.4.4.1 Determining the overlap hyperparameter k

To determine the value of k, we begin with a parameter sweep of both k and the

isovalue. For this benchmark, we selected a subset of 9 proteins used for the analytical

benchmark; 6 easy, 1 medium and 2 hard. The reason for this reduction in the dataset

was the execution times of our analytical dataset, with computational costs becoming

more expensive due to the parameter sweep. Similar to the analytical benchmark,

converged roto-translations are applied to the atomic models to assess the quality

according to the CAPRI criteria.1

Our sweep ran through isovalues ranging between 0.4 and 0.72 in steps of 0.04.

Recall, though, that we wish to compensate for side-chain uncertainty with k, not a

higher isovalue. We swept through k between 0.5 and 5.0 in steps of 0.5. While a

gradient descent based method is preferable with our SDF-based method with Equation

4.4.7, given this benchmark requires 72 individual optimisation rounds for 9 proteins,

using Adam in series is not possible due to the time constraints. Therefore, we adopted

a different sampling strategy, whereby we first performed a parameter sweep with

particle swarm optimisation (PSO, see Section 4.4.6.4). The goal of this was to identify
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a region of interest in the parameters, to be further refined via Adam.

For the PSO, we utilised N search particles consisting of random translations

mapped onto the surface of an appropriate ellipsoid (see Section 4.4.6.2) and a random

rotation. We initially set N to 1000, but due to the ellipsoid mapping, N is reduced

by a factor dependent on the shape of the receptor. 500000 iterations were performed

in total per PSO round, with 75 rounds in total, each with a novel seeding of search

particles. Thus, for each protein we perform 50000× 75×N individual evaluations.

The solutions from the 75 individual rounds were then collated, and the top 10 scoring

predictions with an RMSD difference of at least 5 Å between one another recorded. Full

details for the PSO are given in Section 4.4.6.4. The ground truth was also scored at

each value of k for comparison. Ideally, even if none of the top 10 predicted complexes

for each protein are successful models, the ground truth score should at least fall within

the margin of the top 10 scores. If this were the case, it would indicate that a superior

optimisation strategy could natively find the ground truth. Figure 4.4.11 therefore

compares, for each value of k, the ground truth score and the score of the 10th ranking

model.

Figure 4.4.11: For each value of the hyperparameter determining the level of permitted overlap,
k, and isovalue, the corresponding score, averaged across the 9 proteins, of the: (a) ground truth,
(b) the 10th solution. (c) Standard deviation of the 10th model’s score across the 9 proteins. The
errorbars indicate the standard deviation across the different isovalue.

Figure 4.4.11(c) shows that there is little variation in the value of the score

between proteins, and that the averages reported in 4.4.11(b) are not biased by some

exceptionally high or low score from a single protein. The ground truth score is

consistently smaller than the 10th ranked solution. Indeed, for large regions of both

k and choice of isovalue, the ground truth returns a negative score overall, implying

that we would never naturally discover it. However, since we are permitted to move

some distance from the known ground truth under the CAPRI criteria,1 we can also
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explore whether any of these top 10 models correspond to a success. Figure 4.4.12

shows the average success rate of the 9 proteins for each k and isovalue. For comparison,

JabberDock returned a 44.4% success rate for this dataset.

Figure 4.4.12: Average variation in acceptable success rate across the 9 proteins for each overlap
hyperparameter, k, and isovalue choice.

We can see from Figure 4.4.12, that the highest quality models were returned

between a k of 2.5 and 3.5, with a corresponding isovalue between 0.44 and 0.52.

Therefore, we can use this to inform us of a starting point for k in a round of meta-

optimisation. Considering that we wish to retain a lower isovalue to ensure consistency

with our earlier work, we take the success peak at an isovalue of 0.44 to derive the SDF

from the STID map in the next stage of our benchmark.

For this meta-optimisation stage, we return to Adam due to the reduced size of

the parameter space. We treat k as a hyperparameter, optimised via an outer-loop

Adam optimisation approach (Section 4.4.6.3) with the RMSD relative to the ground

truth acting as a loss function. For each outer-loop iteration, we then ask an inner-loop

Adam optimisation round to find the converged translations and rotations that yield

the highest scores at the current value of k. Each of these scoring evaluations consists

of a full docking run, where we scatter 300 ligand positions uniformly on the surface of

some sphere around the receptor, map them to an ellipsoid, provide each search particle

with a random rotation (see Section 4.4.6.7), and then optimise until convergence (see

Section 4.4.6.3). The loss function of this inner-loop is set to Equation 4.4.7. The

full meta-optimisation process was applied to each of the 9 proteins in the current

benchmark. The converged k that returned the best score at the ground truth for each

are given in Table 4.4.1.
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Table 4.4.1: Converged value of the overlap hyperparameter k for each of the 9 proteins via meta-
optimisation with respect to the ground truth. The number of iterations required for k convergence
for each protein is also given.

PDB Code k Iterations #

1AKJ 3.58 36

1BVK 4.72 30

1EAW 3.29 12

1F6M 3.89 19

1FSK 4.55 27

1HE1 3.85 33

1IJK 5.38 55

1NSN 4.57 29

1RKE 3.61 9

Average 4.16 27.8

4.4.4.2 Effect of clustering on solution diversity

Applying an average k of 4.16, we then performed five repeat rounds of Adam optimi-

sation with 200 particles each, once again initialised by scattering uniformly onto the

surface of some sphere, then mapped onto an ellipsoid encompassing the receptor, before

a random rotation was applied (see Section 4.4.6.7). These five additional optimisation

rounds were used to check for solution convergence, similar to the sampling granularity

check in Section 4.4.3. We, therefore, followed a similar procedure to the analytical

benchmark, where we calculate the percentage increase in the number of additional

clusters for each DBSCAN clustering radius R (see Section 4.4.6.8) between 1 Å and

10 Å, the results for which are given in Figure 4.4.13.
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Figure 4.4.13: Identification of the ideal DBSCAN clustering radius, R. We show the dependency
on R of the average percentage increase in the number of clusters identified via DBSCAN with each
optimisation round for the empirical SDF gradient-based scoring function. Optimisation round refers
to the total number of rounds (reseeded initialisation and optimisation) performed prior to a final
clustering. The % increase is averaged over the 9 proteins used in this benchmark, with the error bars
providing the standard deviation. The horizontal dotted line denotes that no additional clusters were
identified. Ideally points should remain on this line; above it, and we are identifying novel clusters
with each round – demonstrating that we are not sufficiently exploring the PES, below it suggests the
presence of cluster merging events, removing diverse solutions.

Similar to Figure 4.4.7, we find in Figure 4.4.13 that at very low R, we continue

to identify novel clusters with each round of optimisation; thus implying a lack of

convergence. At very large R in Figure 4.4.13 we begin to decrease the number of

identified clusters with increased number of search particles, in contrast to Figure

4.4.7. This implies that the converged data is not well clustered, as there are many

points bridging spatial gaps between previously separated clusters, merging them into

one. Indeed, after all five optimisation rounds, we find that at R = 10, we have only

one cluster. We accordingly look for points in Figure 4.4.13 that are close to the

zero-increase line without an error bar crossing it; to ensure that cluster merging events

do not make obsolete high-quality solutions, or bundle high-quality solutions with

those where the ligand is far from the binding site. Clearly, 200 individual randomly

scattered particles are not enough to sample the space, and it is only when we get

to the fifth round (totalling 1000 search particles), that we begin to achieve some

convergence at low R. Similar to the analytical benchmark, a larger number of search

particles are required here to secure convergence. Once again, however, we find that

the calculations take a significant amount of time on the same hardware. 1000 total

search particles corresponded to an average time of completion of 27 hours. Thus,

given the a posteriori quality of the solutions, coupled with the length of time for a
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calculation, we instead opted to consider a superior sampling method (see Section 4.5).

To quantify the success of our current results, we took all five repeat rounds and

clustered them using the same method as Section 4.4.3.1. In other words, we calculated

our silhouette score and rand index for all sets of clusters at each R (see Figure 4.4.14).
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Figure 4.4.14: Identification of the ideal DBSCAN clustering radius, R. We show the variation of
R with (a) silhouette score, (b) the rand index between clusters found with DBSCAN and a K-means
equivalent with K set to the number of clusters given by DBSCAN. The averages given are over the 9
proteins used in this benchmark, with the error bars providing the standard deviation. The vertical
dotted line indicates the chosen value of R, the horizontal dotted line the zero-silhouette score, where
points should remain above this to demonstrate safe clustering.

Figure 4.4.14(a) demonstrates that an R of 2 is needed to ensure the points are

well matched to their clusters, which agrees with the assessment of the rand index in

Figure 4.4.14(b). Note that the rand index at large R drops to zero because all of the

data was placed in a singular cluster – which we defined as NaN, in actuality this would

return 1.0 as the cluster defined by DBSCAN and K-means would match exactly.

Although the silhouette score at R = 2 is positive, it is still small at 0.09,

demonstrating the poor quality of the data. It is challenging for DBSCAN to distinguish

clear clusters, as the search particles remain seemingly randomly scattered following

convergence. Furthermore, there is a lack of quaternion convergence at solutions that do

have their translational components converge, in contrast to the analytical benchmark
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in Section 4.4.3.1. Coupled with the decreased number of clusters with increased

iterations at large R, we can conclude that the minima of the PES are not well defined.

Thus, Equation 4.4.7 is too soft a potential for this exercise. This makes intuitive sense

looking at the impact of k on the slope of the energy profile in Figure 4.4.10. In some

cases, we find that the ligand can only take a few steps towards the receptor before

convergence is achieved, prior to any surface contact. Initialising the docking with the

ligand in a surface contact position goes some way to amending this, but manually

setting up every protein in such a manner, where there are many possible starting

positions for each, is time-consuming and not desirable for a protein docking engine.

4.4.4.3 Protein docking success rate

Taking the clustered results at an R = 2, we return a success rate of 0.0% for all cases.

However, when we calculate the score of ground truth, we found that in 4 our of 9

cases it places competitively, with three of these corresponding to a score higher than

anything found through blind docking. This further reinforces our conclusion that the

gradients are too shallow. Therefore, we require a scoring function with more distinct

gradients, and an algorithm that both initialises the ligand closer to the receptor,

preferably in a surface contact position, and generates solutions faster than the current

method. Our work in Section 4.5 focuses on our efforts to create this algorithm.

4.4.5 Discussion

In conjunction with the clear gradients returned through the SDF of our objects,

our analytical energy profile works exceptionally well for the toy models, where the

binding site is well-defined. Indeed, even in the scenario where there are multiple

high-scoring sites available to the ligand sphere, and the target site is occluded, the

ligand can navigate through the receptor and find its way into the binding pocket.

This demonstrates that the Adam optimiser, coupled with the PES defined by our

analytical scoring function, can navigate through or around energy barriers in search

of global minima. This would suggest a resolution to the PSO boundary condition of

JabberDock, where it was unable to produce solutions that required finding an occluded

site. However, when applying this approach to a small benchmark of proteins, we find

that, in general, the success rate is lower than the previous iteration of JabberDock.

The highest quality model regime occurs around high isovalues (0.67 – 0.79), in contrast

to JabberDock. Using isovalues within this range contradicts the general discussion

about the physicality of the STID isosurface representation made in Sections 2.3.4 &

2.5. This shift in the isovalue is due to necessary shape intersection; where JabberDock

penalised but allowed overlap provided it facilitated better surface complementarity.
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This analytical approach does not permit any intersection. Complexes with a significant

amount of hydrogen bonding through the water at the interface, therefore, perform

well with this analytical method, since the boundary of the isosurface is well defined as

a pseudo-excluded volume to water, as discussed in Section 2.5. Complexes featuring

more direct intermolecular bonds require these regions of side-chain uncertainty to

have some overlap. Increasing the isovalue to ignore this uncertainty is contrary to the

idea behind the STID map, and therefore the first aim laid out in Section 1.5; thus, we

aimed to retain the pre-defined isovalue ∼0.43, and use a semi-empirical solution to

permit some level of overlap.

Based on a Lennard-Jones energy profile, our semi-empirical scoring function

contained a sliding hyperparameter, k, that permitted some level of intersection

depending on its scale. Following a round of meta-optimisation, we determined the

best k value that returned the best average score at the known ground truth was 4.16.

Taking this value of k and following a similar Adam-based optimisation procedure as

the analytical method, returned a success rate of 0.0%. However, when aligning the

unbound monomeric units into their bound complex counterparts, we found that these

ground truth scores would correspond to high-ranking solutions, and if found natively

would push our success rate up to 44.4%. This suggests that the gradients to the

minima are ill-defined and that our energy profile is too soft. Utilising a scoring function

similar to the analytical benchmark, except with terms accounting for intersection, is,

therefore, more likely to yield solutions that represent true minima.

We find that both our approaches perform poorly when we consider solution

convergence. On expanding the number of initial search particles, we see an increased

number of clustered solutions. This indicates, for both the analytical and semi-empirical

PES, that there are isolated lower-energy minima that remain undiscovered. This is

despite the evidence from the toy models that the ligand can pass through energy

barriers to dock into such minima. While the rotation quaternions in the analytical

approach are found to converge at specific translation positions, this was not the case for

the empirical method. Increasing the number of search particles, or running additional

epochs to find more solutions, is impractical both from a benchmarking and general

user perspective. It is unknown if this will return higher-quality models compared with

JabberDock, and current results suggest otherwise. Of particular concern, is the time

taken for these calculations to be performed. The timings for both benchmarks, for

the quality of the returned models, imply that there is little to be gained at significant

computational cost, particularly considering a full benchmark on the 230 water-soluble

test protein complexes2 will be required. Resolving this issue requires either a vastly

quicker sampling method, or a PES with a lower frequency. Generating a PES with a

smaller Lipschitz constant will require an adapted scoring function or a completely new

one. With our current SDF approach, an option such as Margin Ranking Loss,8 or
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Warp Loss9 is attractive, as it allows us to perform meta-optimisation to permit shape

intersection, while iteratively funnelling the surrounding space towards the ground

truth. Regarding a sampling strategy, in the next section, we shall discuss our novel

solution to this problem, with an algorithm capable of rapidly generating solutions

based on ray-tracing methods.

4.4.6 Methods

4.4.6.1 Designing the toy models

We begin by defining a spatially fixed receptor sphere, SR(λ), in 3D:

SR(λ) =
√

(xv − x0)2 + (yv − y0)2 + (zv − z0)2 − rR ; λ ∈ IRn×3, (4.4.8)

where xv, yv and zv are meshgrid points corresponding to the Cartesian grid; x0, y0

and z0 are coordinates to shift the sphere into different regions of space, and rR is the

radius of SR(λ). The number of meshgrid points defines the resolution of the sphere.

The ligand sphere will be defined in a similar manner, but will require seeding across

the search space. A binding site can then be created by first generating the ligand,

SL(λ), in the known binding position(s) with radius rL. Subsequently, we can generate

our receptor sphere with a binding site, SR,mod(λ), via the following:

SR,mod(λ) = max{SR(λ), SL(λ)} (4.4.9)

Due to the marching cubes Lewiner algorithm applied to generate the sphere’s and

binding sites, this modifed receptor sphere SDF does not satisfy the Eikonal equation.

We therefore apply a cubic smooth-min function to return a smoothed receptor sphere

SDF, SR,mod,Smooth(λ), to remove edge effects:

SR,mod,Smooth = min{SR(λ), SR,mod(λ)} − 1

2
m(λ)3 (4.4.10)

where m(λ) is defined as:

m(λ) =
1

2
max{3− |SR(λ)− SR,mod(λ)|, 0}. (4.4.11)

When creating the receptor sphere with multiple binding sites, Equation 4.4.9 can be

applied iteratively with SL(λ) in different positions representing the possible binding
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positions. Equation 4.4.10 only needs to be applied at the end with the final modified

receptor SDF.

4.4.6.2 Generating points on an ellipsoid

Initialising our starting translations is suboptimal when the receptor is elongated

(see Figure 4.4.5), as it can lead to both oversampling of certain regions, and is

computationally inefficient. It is therefore preferable to map starting translations from

our initialised sphere that surrounds the receptor, to an ellipsoid. However, generating

points on an ellipsoid’s surface uniformly and at random is not analytically possible,

unlike the sphere. Consider some long cigar-like ellipsoid, a� b = c = 1, where a, b

and c lie on the Cartesian axes. The density of points at the cigar’s tips (x ≈ ±a) will

be close to that of a unit sphere, yet at x ≈ 0 the density decreases as 1/a relative to

the density of points on the sphere. We can approximately resolve this by generating

the points uniformly on a unit sphere first, then mapping these points to the ellipsoid

scaled to encompass the receptor, f : (x, y, z) 7→ (x′ = ax, y′ = by, z′ = cz) before

discarding points based on some probability associated with it being close to a tip,

p(x, y, z).

We begin by generating our points uniformly and at random on a unit sphere

using the marching cubes Lewiner algorithm, which is topologically correct even for a

very coarse number of points. We then find the product of our two largest principal

axes of the receptor, a× b = umax, before using this as the basis of some acceptance

criteria, axyz, associated with mapping a point from the unit sphere, uxyz = (ux, uy, uz),

onto the ellipsoid surface.

axyz =
√

(ux × b× c)2 + (uy × a× c)2 + (uz × a× b)2. (4.4.12)

The probability of a successful mapping is therefore given by:

p(x, y, z) =
axyz

umax

. (4.4.13)

It is because of this probability that we observe noise in Figure 4.4.5. If we moved to

a much larger number of initial sampling points, it is expected that this noise would

decrease. If a mapping is accepted, the new point, u′xyz, is then transferred to the

ellipsoid surface:

u′xyz = (ux × a, uy × b, uz × c).
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The exact number of points removed by this procedure depends on the change in

surface area between the sphere and ellipsoid. A typical mapping would see the removal

of 30% of the initial number of points, which tends to zero as the receptor protein

becomes more spherical.

4.4.6.3 The Adam optimiser

The Adam optimiser, as applied through the Geoopt Python package6 as a subclass to

the Adam optimiser in Pytorch,10 is an extension to stochastic gradient descent. It

was used for the all of the work requiring gradient descent. It has two key advantages

over traditional stochastic gradient descent:

1. It utilises the momentum of descent to optimise convergence. More specifically, it

combines some fraction of the gradient from the previous update with the current,

allowing it to reach a minimum faster. This also damps oscillatory behaviour.

2. Each parameter has its own associated learning rate, which are adapted inde-

pendently. In our case, the parameters are the translations and rotations, and k

during the meta-optimisation in Section 4.4.4.1.

At each iterative step of optimisation, the following occurs:

1. The current gradients are set to zero.

2. The ligand SDF is roto-translated according to what the optimiser suggests via

an affine grid built using that round’s parameters. In the empirical method used

in Section 4.4.4, the ligand boundary points are moved instead.

3. The loss/score is calculated using an appropriate scoring function and is subse-

quently backpropagated, i.e. the gradients are accumulated.

4. According to these gradients, the parameters are altered in the direction of

minimising the loss.

5. The gradients from this round and the previous are used to inform Adam of any

necessary changes to the learning rates.

Convergence is achieved once the change in loss between steps equates an arbitrary

value of less than 0.001. The starting loss is several orders of magnitude above this.

4.4.6.4 Particle Swarm Optimisation

Particles are initialised following the process described in the first paragraph of Section

4.4.6.7. The search space is defined as a Euclidean 3D translation, and a rotational

quaternion restricted to the surface of a unit sphere. The particle swarm optimisation
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solver was employed through the PyManOpt Python package.11 PSO is used to explore

the PES over 50000 iterations using a population size of N initialised agents – search

particles (where N < 1000 due to the ellipsoid mapping). A social level of 2.0 is used

to facilitate communication between particles about the shape of the PES, with a

nostalgia level of 1.4. Practically speaking, these quantities affect the velocity update of

a particle at each iteration. A particle’s updated position contains contributions from

the current inertia, the momentum at the particle’s best past position (nostalgia), and

the momentum of whichever particle in the population is at the current best position

(social). Note that there is no “kick and reseed” element of this procedure (see Section

3.2.1.1), risking particles getting stuck in local minima – hence the larger population

size to compensate.

4.4.6.5 Toy model initialisation

Both receptor and ligand are generated with their centres of masses at the origin.

Ligands were initalised by translating them onto the surface of a sphere with three

times the diameter of the receptor. This sphere was defined via a marching cubes

Lewiner algorithm, and therefore is physically made up of a polygon mesh of triangles.

One particle was placed for every 20 triangles used to define the sphere’s surface,

resulting in 30 different initialised positions. Each triangle has the surface area of 0.5

a.u.2 (Arbitrary Units), which maps to 0.5 Å
2

for protein systems. The size of this

initialisation sphere was partly to test strength of the gradients at large distances from

the receptor, and partly for visualisation purposes in Figure 4.4.3. While rotations are

redundant with the ligand toy model, we still applied a unit quaternion parameter to

keep the code consistent between methods.

4.4.6.6 Analytical protein docking initalisation

Both receptor and ligand are generated with their centres of masses at the origin. We

begin by measuring the three principal axes of the receptor and ligand, and taking the

sum of the largest from receptor and ligand plus some buffer (25 Å) as the diameter of

a sphere. Ligand translations are then placed on this sphere at three different sampling

granularity levels, one for every 12, 16 and 20 triangles, where each triangle has a

surface area of 0.5 Å
2
. Particles are then mapped to the ellipsoid surface following the

procedure outlined in Section 4.4.6.2. Taking the largest complex (PDB: 3EO1) as the

maximum limit to the number of points, we return 840, 474 and 312 initial translations

per sampling granularity level on the surface of the ellipsoid. In contrast, the smallest

complex (PDB: 1AY7) produced 258, 156 and 90 translations. These translations are

placed on the CUDA device as a parameter with an initial learning rate of 0.005. Note
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that Pytorch’s affine grid functionals use an internal coordinate system, so a 0.005

learning rate equates to a change of 0.005 × half the number of SDF points in the

system along each axes.

Only two rotations are applied per translation. The first is the unit quaternion,

the other is the quaternion required to spin the protein 180° along the axis that

is perpendicular to the vector that connecting ligand and receptor centres of mass

following the translation. This was to minimise the number of initial search particles

by having two individual instances where the side of the ligand SDF facing the receptor

is entirely different. This reduction is suitable given the convergence observed for the

final quaternions in Section 4.4.3. Thus, the total number of search particles is double

the number of initial translations on the surface of the ellipsoid. During optimisation,

each quaternion is projected onto a unit sphere to prevent scaling/warping of the ligand

SDF. Similar to the translations, a starting learning rate of 0.005 was applied here,

equating to change of approximately 0.3° in any direction.

4.4.6.7 Empirical protein docking initalisation

Both receptor and ligand are always initialised with their centres of mass at the origin.

For the PSO parameter scan, we scattered 1000 translations across the surface of some

sphere with radius 1.5 × the largest axis of the receptor grid. These points are then

mapped to the surface of some ellipsoid (Section 4.4.6.2), leaving N search particles

for each protein. Each of these search particles was given an associated, random

rotation quaternion from a unit sphere. These initial points were then fed into the

Particle Swarm Optimisation solver, as described in Section 4.4.6.4. This process was

repeated 75 times, each with a novel set of translations and rotations – resulting in

75×N individual starting locations in the search space, although only N particles

communicated with one another at a time.

For the meta-optimisation of the overlap hyperparameter k, we scattered 300 ligand

positions uniformly on the surface of a sphere around the receptor, before mapping

these points onto an ellisoid. Each search particle was then provided with a random

rotation quaternion constrained to the surface of a unit sphere. The learning rate for the

outer-loop (the RMSD loss to alter k) was initially set to 0.1, the inner-loop (Equation

4.4.7 loss to alter the roto-translation parameters) to 0.01. As a brief benchmark, we

did increase the number of initial points to 500 for the 1HE1 and 1AKJ cases, but

this yielded little change in k, indicating convergence in the hyperparameter. These

initial search particles are then used in the inner-loop Adam optimisation procedure,

as described in Section 4.4.6.3, with the results used to inform the outer-loop of any

necessary changes to k to improve the score of the ground truth.
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In the final production stage, we scattered 200 ligand positions uniformly on the

surface of a sphere around the receptor, before mapping again to the surface of an

ellipsoid. Each search particle was then provided a random quaternion restricted to

the surface of a unit sphere. The learning rate was set again to 0.01. Following a full

round of Adam optimisation for the translations and rotations through each loop, we

repeated the entire process, including the random initialisation stage, until we had 5

repeats in total to ensure we had a greater number of search particles, on average, than

the analytical benchmark. This allowed us to monitor solution convergence with the

number of clusters, similar to the analytical method’s sampling granularity level check.

4.4.6.8 DBSCAN Clustering

JabberDock utilises a K-means based approach to identify similar solutions and cluster

them (see Section 3.2.1.1). However, despite the data being Euclidean (well suited for

K-means) it has two key weaknesses:

1. We require a number of clusters parameter, K. The value of 300 used by

JabberDock is an arbitrary pick. While this demonstrated success in Chapter 3,

it may still not be an optimal pick for our dataset. It also means that noisy or

outlier points can be bundled with incorrect clusters.

2. There is no consideration of the magnitude difference between the rotation and

translations, i.e. the translation quantities, between 0 Å and the size of the

receptor, are almost always larger than the axis of rotation, which is between −1

and 1. This is somewhat resolved by using the angle as a parameter, but there is

still an unfair weighting against the axis of rotation. This could be resolved by

normalising all parameters prior to clustering, but this would weight rotations

against translations, where translations are the largest indicator of success.

We, therefore, desire a method which does not require the number of clusters to be

specified, where the clusters can be of arbitrary shape, and can correctly assign regions

of high sampling granularity to a cluster versus low sampling granularity. Density-

Based Spatial Clustering of Applications with Noise7 (DBSCAN) can help address

these problems. DBSCAN can handle data of arbitrary shape and density. It assigns

each point as either a core, border or outlier point. Each of these labels is determined

by two input parameters, the radius of a point in a neighbourhood to cluster additional

points (R), and the minimum number of points in a cluster (M). Core points are those

with at least M points in the specified radius (given by R). DBSCAN classify border

points if their neighbourhood contains less than M points, but they are within R of a

core point. Combining the border and core points defines a cluster. Outlier points are

those that don’t satisfy any of these critera. M > 1 disregards noise and outliers, but
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these points are still valid predictions for our data. They should instead be assigned to

a single-point cluster. Therefore, for this work, we set M = 1. To avoid the second issue

discussed above, we initially identify clusters solely through the translations. R should

therefore be between 1 and 10 to represent the distances in Ångströms used to define

success by CAPRI. DBSCAN clustering was then not applicable for the analytical

benchmark, as all quaternions converged within each translational cluster, and it had

little impact on the empirical benchmark due to the nature of the poorly-converged

data.
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4.5 ShapeTracing: rapid generation of protein dock-

ing solutions

Author’s note: the results discussed in this Section were obtained by the lead author

of the corresponding publication (see Publications & Manuscripts), Adam Leach. Lucas

Rudden performed preliminary work with early iterations of the method, and contributed

to data interpretation.

Some of the key issues found with the attempts to improve JabberDock revolve around

the speed at which solutions can be found. Generating solutions is key to adapting

parameters or hyperparameters, and quantifying success. However, we can not be

confident that our current predictions are representative of the true minima, in both

protein docking attempts discussed in Section 4.4. This is due to the greater number

of identified distinct clusters with increased solutions, demonstrating that regions of

the PES have not been fully discovered. Whether these additional minima are of

lower energy, or are closer to the ground truth, is a problem that will be addressed

in future by reducing the frequency of the PES, while ensuring distinct gradients –

namely through scoring function modifications. Another less optimal solution is to

apply a brute force method that rapidly samples the space. In our attempts to employ

such a method, we developed a sampling algorithm based on ray-tracing. While not as

successful as a standalone method versus the aforementioned Adam based approaches,

it is novel and has potential in protein docking.

Herein, we present a method for the rapid exploration of the search space associated

with matching two three-dimensional surfaces of arbitrary roughness and demonstrate

its usage for protein docking. Similar to our previous work in this Chapter, both

receptor and ligand are represented implicitly as SDFs (see Section 4.4.1). The points

defining the zero-contour surface of the ligand can then be moved along a direction, ~v,

by the minimum distance between the ligand and the receptor, δ, as with traditional

sphere tracing, but with a modification to the bound that allows tracing of arbitrary

non-convex shapes (see Figure 4.5.1). Our method features two key contributions.

First, it leverages on a novel extension of ray-tracing using spheres,12 derived from first

principles, for detecting collisions between approaching non-convex shapes. Second,

it adopts an implicit approach for finding where surface contact area is maximised,

shown to be effective in an outer-loop Monte Carlo method.
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δ< ε

Ligand

v

Receptor

δ

Figure 4.5.1: 2D example of Algorithm 1, steps 3-5 in Figure 4.5.2. The ligand is moved by the
closest boundary distance from a vertex on the ligand to the surface of the receptor, δ, along the
direction of ~v until within some tolerance ε. Here, we scale down the size of ligand for visualisation
purposes.

4.5.1 Methodology

The task of identifying the best arrangement of two non-convex protein shapes involves:

1. An inner-loop ShapeTracing algorithm which efficiently moves the shape through

space, converging in a few steps, to a bound state.

2. An outer-loop optimiser to initialise the system for the inner-loop, i.e. decide on

a starting position, and choose a direction for the ligand shape to be fired in the

inner-loop ShapeTracing algorithm.

4.5.1.1 ShapeTracing algorithm

The ShapeTracing algorithm updates points, λb ∈ IRn×3, on the boundary of the ligand

SDF along a pre-specified direction ~v until they collide with the receptor. The ligand

is moved along the receptor’s volumetric grid, with the combined boundary points

of ligand with the receptor SDF used to assess whether a collision has occurred in

the current iteration, sampled in a manner identical to Section 4.4.4. Specifically, the

moving points can be defined as:

λ′ = S(λb, φ1, l, ~v) (4.5.1)

where l ∈ IN3 is the side length (in voxels) along each axis of the receptor grid.

S(λb, φ1, l, ~v) is the ShapeTracing function we outline in Algorithm 1:
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4.5. ShapeTracing: rapid generation of protein docking solutions

1. Compute the analytical intersections from rays cast from the source shape (ligand)

at points λb in direction ~v to the target (receptor) bounding box (lines 1-2 in

Algorithm 1) as in Kay et al.13

2. If any rays hit (line 4), advance all points λ′ by the closest distance (line 5). For

glancing rays, push λ′ just inside box by the sign of ~v (line 6) as in Willcocks’

thesis.14

3. Now we know at least one of the points in λ′ is inside the bounds of φ1, find the

closest distance to the receptor (line 7). Any points sampled outside φ1 are set

to ∞.

4. While the shapes are not touching, δ > ε, where ε is the tolerance, and while the

shape is still inside the bounds of φ1 (line 8), continue moving the whole shape

λ′ by the closest distance (lines 10-11).

The value for ε, 0 by default, can be increased for faster convergence if certain tolerances

are acceptable, such as within 1 �A in protein docking. The δ/2 in line 10 reduces the

step (by a value proportional to the maximum derivative of φ), a common strategy in

ray-marching. While in theory we do not need to reduce this step as ||∇φ|| = 1, in

practice ||∇φ|| ≈ 1 due to the discretisation of φ. A 2D example of this algorithm is

provided in Figure 4.5.1

Algorithm 1 ShapeTracing

Input: λb, φ1, l, ~v

Output: λ′

1 tnears = max
(
min

(
(1/~v) · (−λb

)
, (1/~v) · (l − λb

)))
. Determines whether ray

2 tfar = min
(
max

(
(1/~v) · (−λb

)
, (1/~v) · (l − λb

)))
intersects with receptor

3 intersects = {tnears > tfars} . If true, ray intersects

4 if intersects 6= {} then

5 δ = min(tnears[intersects]) . Distance to move by

6 λ′ = λb + δ~v + sign(~v) . Update coordinates

7 δ = min(φ1(λ′)) . Find new minimum distance

8 while δ > ε and δ 6=∞ . Continue until shapes touch

9 do

10 λ′ = λ′ + (δ/2)~v

11 δ = min(φ1(λ′))

12 end

13 end
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4. Beyond JabberDock

Figure 4.5.2: (1) Protein docking with ShapeTracing: the ligand is initialised at random points on
a sphere surrounding the receptor with inward-facing cones. (2) The ligand boundary points are then
analytically moved to be just inside the targets bounding box. (3-5) The ShapeTracing algorithm
iteratively samples the receptor’s signed distance function φ1 at surface positions. The shape is moved
by the bound from the closest point (dashed circle, the minimum of these distances).

4.5.1.2 Outer-loop Monte Carlo docking

The ShapeTracing algorithm can be used to generate solutions rapidly. This is demon-

strated via an outer-loop Monte Carlo docking method, which randomly rotates and

moves the ligand to points on a sphere around the receptor, then fires the ligand towards

the receptor at a random inward angle in a cone (Figure 4.5.2(1)). This method is

outlined in Algorithm 2:

1. Apply a random rotation to the ligand and translate it onto the surface of a

sphere surrounding the receptor (lines 6-7, Figure 4.5.2(1)).

2. Set the ray direction, ~v towards the receptor’s centre, and apply some random

perturbation, γ, within the bounds of a cone (Figure 4.5.2(1), lines 8-9).

3. Fire the ligand at the receptor (ShapeTracing), updating the positions λ′ (line

10, Figure 4.5.2(2)).

4. Sum the contact surface area at the solution λ′ (Equation 4.5.2), and save the

solution parameters if there is more contact than the previous best solution (lines

11-14).
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4.5. ShapeTracing: rapid generation of protein docking solutions

Algorithm 2 Outer-loop Monte Carlo Docking

Input: λorig, φ1, l, γ

1 αbest = 0 . surface area to maximize

2 while true do

3 ~t = random point on receptor sphere . initial translation

4 ~c = random point on unit sphere . for cone

5 R = random rotation matrix . for ligand

6 s = max(l) . max receptor side length

7 λb = Rλorig + ~ts . rotate & translate points

8 ~v = (1− γ)(−~t) + γ~c . construct cone

9 ~v = ~v/‖~v‖
10 λ′ = ShapeTracing(λb, φ1, l, ~v)

11 αcur = L(λ′, k = 1) . contact area

12 if αcur > αbest then

13 αbest = αcur

14 save parameters

15 end

16 end

The final score we maximise is the contact surface area between the receptor and

the ligand, similar to both Equations 4.4.5 & 4.4.7. This scoring function, much like

Equation 4.4.7, can permit intersection with k > 1, although in this work we keep

k = 1.

L(λ′, k) =

∫
Ω

k/π

k2 + φ1(λ′)2
dλ′ (4.5.2)

Ω represents every point within the bounds of the receptor grid. This integral increases

as the ligand approaches the receptor boundary and is not influenced by points away

from the surface (such as the back of the ligand).

4.5.2 Results

We compared the performance of Monte Carlo with and without ShapeTracing in

docking surfaces generated by STID maps. We took the average values of the best

docks over 10 runs and, for each run, sampling was terminated after 5000 iterations as

further iteration yielded little improvement. Docking using ShapeTracing produced

better solutions than a naive sampling of ligand positions with Monte Carlo (see Figure

4.5.3).

200



4. Beyond JabberDock

100

50

0

30

20

10

0 1000 2000 3000 4000 5000

Iteration

R
M

S
D

 /
 Å

S
co

re

MC + ST

MC

(a)

(b)

Figure 4.5.3: Combining ShapeTracing (ST) with a Monte Carlo (MC) search improves the per-
formance of STID map based protein docking. MC+ST finds poses with both (a) higher score and
(b) smaller RMSD with respect of the known docked pose. Example results from CAPRI case 1AKJ
are shown (unbound ligand 2CLR, unbound receptor 1CD8). Results for 14 additional test cases are
available at https://github.com/cwkx/ShapeTracing.

We investigated the relationship between cone width and solution quality by

varying the cone parameter γ. The RMSD and score after 5000 iterations were

averaged over 10 runs. Successful collisions were defined as ligand positions within a

tolerence of ε = 0.0001 Å from the receptor. We found that, in general, larger values of

γ led to worse solutions (see Table 4.5.1), while a value of γ = 0.05 produced the best

results. Slower tracing for higher values of γ is due to near-misses and glancing collisions

requiring more iterations than collisions where ~v is perpendicular to the receptor’s

surface. While Monte Carlo sampling without ShapeTracing is significantly faster, it

generally produces solutions with significantly worse scores. In general, ShapeTracing

produces more viable solutions over a much shorter time period than our previous

efforts in Section 4.4 and Chapter 3.
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4.5. ShapeTracing: rapid generation of protein docking solutions

Table 4.5.1: The impact of the cone parameter, γ, on ShapeTracing (ST), and a performance
comparison between Monte Carlo (MC) and MC+ST. Per second refers to result yields from simulations
run on one NVIDIA GeForce RTX 2080 Ti. While ST is an order of magnitude slower than MC, it
generates four orders of magnitude more docked poses per second.

MC
MC+ST cone parameter, γ

0.00 0.05 0.10 0.15 0.20

Iterations per second 1040 83.8 83.5 82.4 79.5 75.9

Docks per second 0.001 83.8 83.5 82.4 79.5 75.6

Misses per second – 0.00 0.00 0.012 0.04 0.351

Best RMSD at 5k / Å 17.07 9.94 9.33 9.58 11.0 10.3

RMSD Std dev. at 5k / Å 1.89 0.63 1.10 0.90 0.81 1.35

4.5.3 Discussion

We have found that moving the ligand towards the receptor by the shortest distance

to the receptor, and updating this distance at each step, significantly improves the

convergence of finding non-intersecting protein docking solutions. The analytical ray-

box intersection allows for quick evaluation of far-away solutions. The ShapeTracing

algorithm can move arbitrary non-convex shapes with a few, inexpensive operations

that can be calculated in parallel on a GPU. Regarding the ShapeTracing method’s

limitations, the ligand must be initialised away from the receptor, rather than inside it.

Therefore, we cannot find occluded solutions without modification. Furthermore, while

this approach is sensible for finding exact solutions where contact is maximised without

intersection, as we have discussed in length, successful docking poses often feature some

shape overlap. Handling such cases requires an energy profile adapted for intersection,

either through the overlap hyperparameter k in Equation 4.5.2, or through a scoring

function like Equation 4.4.7. However, given that this ShapeTracing method can rapidly

generate solutions on a timescale significantly shorter than efforts discussed in Section

4.4, where the computational expense associated with solution generation was the main

barrier to resolving objectives 2–5; future work should focus on combining this rapid

Monte Carlo + ShapeTracing algorithm with some further inner-loop gradient-based

optimisation approach, facilitating rapid and successful protein-protein docking.

4.5.4 Software availability

The algorithm has been implemented using PyTorch on the GPU and is available at

https://github.com/cwkx/ShapeTracing along with the data for 14 additional test

cases.
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4.6 Conclusions

In making the case for an updated protein docking algorithm in Section 4.1, we outlined

a few key objectives necessary to achieve the desired improvement in success to move

beyond JabberDock. In particular, we wanted to:

1. Investigate whether it was possible to harness bound dynamics as a surrogate for

another complex with utility unbound docking (objective 1).

2. Develop a means for ligands to find their way into occluded binding pockets

(objective 2).

3. Consider a scoring function that scores flat surface contacts well, while still

considering the more complex binding interfaces (objective 3).

4. Use a scoring function with ideally no weightings and is analytically derived to

promote transferability between different parts of the proteome (objective 4).

5. Speed up the general calculation time and reduce the memory requirements.

(objective 5)

These measures would address the key boundary conditions identified in JabberDock,

and enhance the utility for everyday users.

We have provided evidence that utilising ligand or receptor dynamics extracted

from a bound complex does indeed improve the ability of JabberDock to predict

successful models. This indicates transferability at the binding site between monomer

units, and therefore future versions of JabberDock should emphasise the use of bound

surrogates to improve quality. We have also demonstrated that a few single point mu-

tations intrinsically alters a STID map, thus impacting subsequent docking predictions.

This establishes the utility of JabberDock as a tool in mutagenesis work. Future work

will attempt to quantify the exact improvement in success rate given the use of these

bound complexes, as well as identify which regions of the proteome it is viable for, to

determine the benefit for users in different fields.

Converting the STID map at a specific isovalue into a Signed Distance Function

allows us to address the remaining objectives. These SDFs, at every point in space,

provide information on the distance to the surface – which has significant value in a

protein docking scenario. We have shown that an analytically derived scoring function,

which is maximised when the surface complementarity is highest, can generate the

correct target complex for a toy model regardless of initial position and can correctly

predict a solution even when the binding site is occluded. The ability to predict

an exact solution regardless of initialisation is a powerful tool in a wide range of

computer graphics software, for example in the development of video games. However,
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in biophysics, an exact scoring function neglects the necessary shape overlap that must

occur due to the uncertainty in the side-chain motion, a key feature of our STID maps.

Our efforts to address this, lead to the advent of a semi-empirical scoring function with

a sliding hyperparameter that allowed for some intersection. However, upon applying

this scoring function with a similar optimisation approach, we find that solutions do

not converge to known minima (e.g. the ground truth), returning models that are not

representative of the scoring function’s true ranking. In both analytical and empirical

cases, we observe that the number of identified clusters does not converge as we increase

the number of search particles.

A partial solution to this is a brute force method that rapidly samples the PES

to generate preliminary solutions. These solutions could then be considered via an

improved scoring function which decreases the Lipschitz constant of the search space.

In addressing this brute force solution, we developed the ShapeTracing algorithm to

sample the PES rapidly. The algorithm is based on ray-marching methods, which

efficiently and rapidly moves a shape, in our case a protein-ligand, by the bounds of

the distance to some target receptor. At the optimal cone parameter, it was able to

generate 83.5 potential docked solutions every second, whereas, on the same hardware,

the analytical method in Section 4.4.3 was able to generate 0.03 per second, the

semi-empirical in Section 4.4.4 0.01 per second. There is, therefore, several orders

of magnitude difference between this ShapeTracing approach and Adam. While the

overall results returned by the small ShapeTracing benchmark were less successful, its

ability to rapidly generate potential docked solutions makes it an attractive preliminary

step in docking. An outer-loop MC+ST method, like that demonstrated in Section 4.5,

could quickly provide a set of possible solutions already in a surface contact position

to an inner-loop Adam optimisation stage. This inner-loop should then feature a more

suitable scoring function that: (a) permits minor intersection without using a higher

isovalue choice, (b) allows the ligand to pass through the receptor in the pursuit of

occluded minima. and (c) provides clear, well-defined gradients to said minima. While

the aforementioned loss functions in Section 4.4.5 could provide some assistance in this

regard; given our work in Section 4.4, a scoring function like that of Equation 4.4.5

with appropriate hyperparameters k1 and k2 for the Dirac and Heaviside subfunctions

could meet this criteria. Furthermore, the successful case of the protein 1FSK, which

featured a small binding site (see Section 4.4.3), implies that a scoring function like

Equation 4.4.5 will appropriately consider interaction sites which feature minimal

surface features from both ligand and receptor. Thus, our ShapeTracing algorithm,

in conjunction with an adapted energy profile similar to Equation 4.4.5, should meet

the demands of the remaining objectives above, while also retaining the key feature of

the STID map; its ability to encapsulate side-chain motion for docking. Further work

towards JabberDock 2.0 will, therefore, focus on such an approach, and on addressing
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the additional objectives we highlighted in Chapters 2 and 3:

1. Building STID maps with non-Gaussian functions modelling the pseudo-electron

density, e.g. a Lorentzian.

2. Using forcefields other than Amber ff14SB15 during MD and the subsequent

STID map building step, including polarisable models.

3. Adding additional post-processing refinement steps, such as another MD routine.

These remaining areas of interest could further refine the STID map representation

and improve our protein-protein docking engine results. In the next Chapter, we will

look beyond the impact of local side-chain dynamics on the quaternary structure and

function of a protein, and consider larger, domain-level dynamics as we look through

the lens of a relatable case study.
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5 | Dynamics of the SARS-CoV-2

spike glycoprotein

5.1 Introduction

Throughout this work, we have emphasised the importance of accomodating side-

chain dynamics when modelling biomolecular systems. In Chapter 2, we discussed its

relevance in modelling for a variety of problems. In Chapters 3 and 4, we have discussed

its impact in enhancing the quality of solutions for protein-protein docking problems.

However, up to this point, we have largely ignored the impact of larger, domain-level

restructuring and flexibility, which heavily influences the function of protein complexes.

Here, we shall explore the role of tertiary structure dynamics and exploit them to

derive conclusions about possible protein-protein interactions, through a relatable case

study that has impacted almost every person worldwide.

Since the turn of the millennium, beta coronaviruses (CoV) have caused three

zoonotic outbreaks in the global human population. In 2002-2003, severe acute respi-

ratory syndrome coronavirus (SARS-CoV-1) jumped from bat and palm civet groups

to humans in China,1,2 resulting in the infection of over 8000 people and nearly 800

deaths.3 In 2012, Middle East respiratory syndrome coronavirus (MERS-CoV) crossed

from dromedary camel populations in Saudia Arabia,4 and remains a potential endemic

threat to this day in the region. There have been an estimated 2500 cases, resulting in

860 deaths.5 In November 2019, it was discovered that another SARS-CoV (SARS-CoV-

2) virus emerged in human populations in Wuhan, China.6–8 Phylogenetical analysis

suggests that the virus came from local bat species.9 As of this thesis’ submission date

(16/02/2021), SARS-CoV-2 has resulted in over 109 million confirmed cases, many

of these with long term health issues, and been responsible for the deaths of over

2.4 million people worldwide10 – the worst pandemic since the ongoing AIDS/HIV

pandemic that emerged in the 1970s.

Coronaviruses are visually distinct from other viruses due to their use of a spike

glycoprotein (resembling a crown, hence corona), to attack the human angiotensin-
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5. Dynamics of the SARS-CoV-2 spike glycoprotein

converting enzyme 2 (ACE2) receptor9 (see Figure 5.1.1(right)), a transmembrane

protein expressed on the surface of cells in the lungs. The spike glycoprotein of SARS-

CoV-2, which was quickly resolved following the initial, rapid spread of the virus in

Wuhan, is a large homotrimer, each monomer having a mass of approximately 180 kDa

(see Figure 5.1.1(left)). It is made up of two subunits, which mediate attachment and

membrane fusion.
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Figure 5.1.1: (left) Full length SARS-CoV-2 spike glycoprotein trimer with one Receptor Binding
Domain (RBD) in the open state. Each monmeric chain is coloured in different shades of blue.
Residues relevant to our work are indicated with their relative location and domain in the sequence on
the left. The membrane position is indicated by the beige phosphorus atoms. Note that the glycans
have been removed. (right) ACE2 dimer with important residues indicated on the right.

The spike, once in the open state, can use a receptor-binding domain (RBD) to

bind with ACE2, confirmed via a structure of the SARS-CoV-2 spike RBD bound to

the soluble domain of monomeric ACE2 (PDB: 6M0J), which was released in the early

stages of the COVID-19 pandemic. In the closed state, the RBD is shielded by the

head’s surrounding machinery and is therefore inaccessible.11 The spike is the main

target for various antibody therapies and treatments, as preventing the RBD from

interacting with ACE2 obstructs viral entry into the cell. Understanding and predicting

the potential spike-ACE2 complexes that can form is pivotal to further drug discovery.

It was recently suggested that two spikes could bind to a single ACE212 (see Figure
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5.1.2(b.i)), and cryo-EM imaging indicated that the spike glycoprotein could cross-link

to itself on the virion surface (Figure Figure 5.1.2(b.iii)), leading to a large number

of oligomeric spike-ACE2 arrangements.13 This plethora of complexes would expedite

the entry of the virus into the cell, thereby explaining the potency of SARS-CoV-2

over the other beta coronaviruses. We can apply computational methods to assess the

likelihood of these different structures to enhance future medical research.

Hereafter, we leverage on six replicas totalling a 4.2 µs-long MD simulation from

the Amaro research group of the entire, glycosylated SARS-CoV-2 spike protein in the

open state (PDB: 6VSB) simulated attached to a lipid membrane.14 The hinge/stalk

and transmembrane domains (residues 1137-1234) were constructed using homology

modelling via Modeller,15 the cytoplasmic (residues 1235-1273) through I-TASSER.16

Their simulation showed that hinge motion of the stalk region and the presence of the

glycans gave the crown a much greater range of motion with respect to the plane of

the membrane. Therefore, we used this exhibited flexibility to derive possible virion

curvatures that, coupled with the spike’s various conformational states, could lead

to the dual binding of the spike to ACE2. These results corroborate known virion

curvatures and confirm that two spikes can adopt a variety of conformations that

invite dual binding events. Indeed, we show that the spike dynamics can even provide

information on the necessary macro-positioning of the virion with respect to the prey

cell. We also show that we can utilise structural information of the SARS-CoV-1 bound

state to inform us on the possible interactions of SARS-CoV-2 with ACE2, generating

complexes that agree with recent Mass Photometry data for both cross-linked and

single spikes with ACE2 oligomers. Schematics of all possible arrangements proposed

through Mass Photometry that we will consider are shown in Figure 5.1.2(b).
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Figure 5.1.2: (a) Schematic of SARS-CoV-2 virion and spike glycoprotein (blue) interacting with
human ACE2 (orange) anchored to the cell membrane. (b) Possible oligomeric spike-ACE2 complexes
to be considered in this Chapter: (i) 1 ACE2 with 2 spikes (Sections 5.2.1 & 5.2.2), (ii) 3 ACE2
bound to a single spike (Section 5.2.3), (iii) 4 ACE2 bound to a cross-linked spike dimer (Section
5.2.3). Image adapted from our co-authored manuscript with Olerinyova et al. (see Publications &
Manuscripts).
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5.2 Results

5.2.1 Dual binding mode of the spike is compatible with viral

membrane curvature

The binding of two spike glycoproteins onto a single ACE2 receptor is dependent on

three main aspects: the conformation of the spike glycoprotein, the position of the

virion over the ACE2 receptor and the local shape of the viral membrane (see graphical

representation in Figure 5.2.1). We need to account for all of these factors when

investigating whether two spikes from the same virion can bind to the same ACE2.

For this, we overlay spikes from the Amaro lab simulation,14 and, from their relative

arrangement, we can deduce the shape of the viral membrane they are attached to. We

can claim that dual binding is possible if; this alignment occurs without clashes, their

associated membrane curvature is plausible, the distance between the spikes expressed

on the viral membrane match known distances, and the orientation of the virion relative

to the ACE2 cell is within reasonable expectations. We describe the full details for our

methods in Section 5.4.1.
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5.2. Results

To generate a template representing two spike proteins bound to the same ACE2,

we leveraged on a crystal structure of the SARS-CoV-2 spike RBD bound to the soluble

domain of monomeric ACE2 (PDB: 6M0J). We duplicated and aligned 6M0J via its

ACE2 atoms to each of the chains in the full ACE2 homodimer (PDB: 6M18), obtaining

a complete ACE2 receptor with two SARS-CoV-2 spike RBD domains bound. We then

aligned pairs of the MD-generated conformations such that their open RBD binds to

one subunit of ACE2. For all available protein conformation, models could be built

without clashes between spikes (see Figure 5.2.4 in Section 5.2.2). Therefore, for each

simulation frame, we calculated the viral membrane curvature associated with the

relative arrangement of spikes protruding from their receptor. The methodology details

for this are provided in Section 5.4.1. The evolution of the viral membrane curvature

over all six simulations, and the maximum and minimum permissible distances between

the transmembrane domains is shown in Figure 5.2.2. Overall we find an average

nominal curvature of 0.033(17) nm−1, a maximum of 0.099 nm−1, and a minimum of

0 nm−1, where the two transmembrane domains are co-planar. The average inverse

curvature (see Figure 5.2.1) is −0.035(17) nm−1, with a maximum of 0.0 nm−1 and

minimum of −0.074 nm−1. The reported SARS-Cov-2 radii, assuming a spherical shape,

are 50–200 nm.17 In Figure 5.2.2, the corresponding curvature is highlighted with a

red band. Thus, 14.3% of the simulation time is spent in conformations corresponding

to the nominal shape of the virus.17 The geodesic distances between spikes (i.e. along

the membrane connecting them) ranged from 16.2 nm to 58.9 nm, with an average of

33(7) nm. Thus, possible distances between transmembrane domains expressed on the

virion surface can range significantly, between 16.2 nm and 58.9 nm, and still allow for

dual binding to the ACE2 receptor. This is consistent with distances measured via

tomograms (10 nm and 80 nm).18
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5. Dynamics of the SARS-CoV-2 spike glycoprotein

Figure 5.2.2: Evolution in time of: (a) Moving average distance between spike protein transmembrane
domains. The maximum geodesic distance, or arc length, is in dark blue, the minimum/point-to-point
distance in light blue. (b) Curvature, with the moving average denoted in palatinate. Each replica
simulation is separated by a dotted line. The red band indicates simulated curvatures corresponding
to the reported virion radii of 50–200 nm,17 assuming a spherical shape. On the right, histograms of
each quantity have been fitted with Gaussians.

The results described above are obtained by approximating that the two proteins

bound to the ACE2 receptor are in the same conformation (as derived from the same

MD simulation snapshot). We therefore also analysed the expected viral membrane

curvature when the conformations of one protein are derived from MD replica 2,

and the other from replica 3, both 1 µs long. Figure 5.2.3 shows the variation in

curvature with the azimuth angle (see Figure 5.2.1 for visual definition of the azimuth)

for the simulation made up of two different replica of the spike glycoprotein. The

red region corresponds to curvatures displayed experimentally by the virus.17 Large

azimuth angles are required to achieve high curvatures, and thus, the membrane at the

transmembrane domains sites must deform significantly to accommodate dual binding

at these conformations. Therefore, results are comparable to above, indicating that the

approximation made by using two identical simulations for our two spike glycoproteins

is reasonable.
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5.2. Results

Figure 5.2.3: Relationship between membrane local curvature and azimuth describing the orientation
of SARS-CoV-2 virion with respect to the ACE2 membrane (in case of dual binding mode involving
proteins in different conformations extracted from MD replicas 2 and 3). The red band indicates
experimental SARS-CoV-2 virion curvatures.17 Extreme rotations with respect to ACE2 are only
possible under extreme viral membrane curvatures.

5.2.2 Dual binding mode of the spike is possible under a range

of virion-ACE2 receptor arrangements

We analysed possible arrangements of the virion with respect to the target cell’s

membrane, as derived from the arrangement of spike glycoproteins bound to the ACE2

receptor (see Figure 5.2.1 for visual examples). This position is measured via the

spherical angles, elevation (φ) and azimuth (θ), calculated between the viral membrane

normal at the mean position of the two spike transmembrane domains, and the axes

defining the position of the ACE2 cell (using the ACE2 cell membrane as a reference

frame). States where the viral membrane normal is parallel to the positive z-axis

(perpendicular to the ACE2 cell normal) are parallel states (φ < 90°), while the opposite

are antiparallel states (180° > φ > 90°). See Figures 5.2.1, 5.2.4, and 5.2.6 for a visual

demonstration, and Section 5.4.1 for more details.
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Figure 5.2.4: Proposed structure of two SARS-CoV-2 glycoproteins (violet and grey) bound to the homodimer ACE2 receptor (red and blue). The thick black dotted
lines indicates the position of the lipid membrane. The zoom highlights the transmembrane region of the spike glycoprotein, where the membrane-entry and -exit Cαs on
residues 1214 and 1234 for each chain are coloured orange. The blue pseudo-atoms indicate the mean position of each residue set (top and bottom), and average of all
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which bisects at the middle blue pseudo-atom. The intersection of the two planes defines the maximum curvature of the membrane, assuming a perfect circular curvature,
while the point-to-point distance between the middle blue pseudo-atoms considers the case where the curvature tends to zero. Cases where the z -component of the local
viral membrane is aligned with the negative z -axis, or −~nc, is considered an antiparallel φ state. When it is it is aligned along the positive z -axis, it is in the parallel φ. See
Figure 5.2.1 for a schematic of this concept: (left) Conformation in a parallel φ state. (right) Conformation in a antiparallel φ state.
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These angles and curvatures are calculated from the simulation made up of replicas

2 and 3, and are therefore more representative of a realistic system. Figure 5.2.5 shows

that, in the majority of cases, for any rotation along the azimuth or elevation angle

to occur, the alternative angle must be ≈ 90°. Figure 5.2.6 gives some representative

examples of the various more extreme angle states as a visual example. Conformations

where φ is either ∼0° (Figure 5.2.6 (2)) or ∼180° (Figure 5.2.6 (3)), are those where

the virion membrane inner to outer-leaflet direction is parallel or antiparallel to the

ACE2 cell membrane normal respectively. In these states, θ can take any value. In the

case where φ = 90°, the spike glycoprotein hinges must bend such that the two bilayers

are orthogonal (Figure 5.2.6 (1, 4, 5)). This would likely require some significant

deformation of the local virion membrane. States where the head of the spike is at a 90°
angle to the virion membrane, while rare, have been observed experimentally through

Cryo-EM.18 The φ = 90° and θ = 90° states are therefore feasible given the flexibility

of the hinge, but the other extreme angle states, where θ = 0° (Figure 5.2.6 (4)) or 180°
(Figure 5.2.6 (5)) are likely artefacts of deriving virion morphology from the dynamics

of the spike glycoprotein. These states would likely result in the membrane sterically

clashing with one of the spike glycoproteins, and they would require some significant

twisting action of the membrane to accommodate both TM regions.

Figure 5.2.5: Predicted orientation of the virion (in spherical coordinates) with respect to the
ACE2 membrane. The results were derived from dual binding involving spike proteins in different
conformations extracted from MD simulation replicas 2 and 3. Points are coloured according to their
associated membrane local curvature. Low membrane curvatures (consistent with experimental data)
enable binding according to a range of elevations and well-defined azimuth. Variations on azimuth are
possible under extreme membrane curvatures (see also Figure 5.2.3).

Changes in the elevation angle tend to correspond to lower virion’s membrane
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5. Dynamics of the SARS-CoV-2 spike glycoprotein

curvatures, and in general antiparallel states correspond to curvatures demonstrated by

the SARS-CoV-2 virus.17 There is also a larger number of nominal curvature (convex

membrane) states relative to those with an inverse curvature. These curvatures usually

correspond to an antiparallel state, which makes sense considering that a convex

membrane in a parallel state would lead to the virus physically clashing with the ACE2

cell. Those few convex parallel states (curvature > 0 nm−1, φ > 90°), and the concave

viral membranes (curvature < 0 nm−1), require some form of local deformation in the

topography of the membrane. Large curvatures, both nominal and inverse, result from

the azimuth angle close to either 0° or 180° (see Figure 5.2.3). As shown in Figure

5.2.6, this would impose an unusual position for the virial membrane relative to the

spike TM positions, and are therefore likely artefacts of the MD simulations, though

could be facilitated by the formation of blebs or other significant deformations seen

through negative stain imaging.19
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Figure 5.2.6: Extreme angle states from the artificial simulation of replicas 2 and 3. We show a
side-on view of the states on the far left, corresponding to the axis seen on the right, and a top-down
view for clarity. The red protein is the ACE2 receptor, while the spike glycoproteins are in blue. The
light grey sphere represents the intersection point of the two planes that bisect the spike glycoprotein
TM regions and is closest to the TM regions (see Section 5.4.1). The dark grey sphere, where visible,
represents the centre of the circle from which we model the local curvature. The orange arrow,
therefore, is normal to the local virion membrane. We show a schematic of the state on the far right,
with the blue shapes representing the spikes and the orange spheres the lipid heads. The azimuth
angle (θ) is measured relative to the positive y-axis, the elevation angle (φ) to the positive z. j°
represents any angle between 0° and 180°.
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Examining these angles and curvature for the entire set of replica simulations, we

see a similar trend. Figure 5.2.7(a) shows the variation in φ, θ and the curvature for all

six sets of replica simulations. The variation in curvature with these angles is similar to

that displayed in Figure 5.2.5; however, there are two key features in which they differ:

1. In Figure 5.2.7, convex membranes are disallowed at φ < 90° and concave at

φ > 90°.

2. There are some clear structured lines around φ ≈ 90 in Figure 5.2.7, whereas in

Figure 5.2.5 these are more random.

Both of these differences are due to mathematical artefacts that arise from using

two mirror-image simulations. Figure 5.2.7(b) shows the population of states consistent

with expectations. θ ≈ 90° states are the most densely populated, where there is

essentially no rotation about the z -axis. With the elevation, states with φ ≈ 180° are

the most populous, which corresponds to the virus being directly above the ACE2 cell,

and, from Figure 5.2.7(a), displaying a convex membrane (Figure 5.2.1(1)). Therefore,

we expect this to be the preferred angle of attack for the virion, but we note that other

angles are possible given some local viral membrane deformation.
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5.2. Results

Figure 5.2.7: Predicted orientation of the virion (in spherical coordinates) with respect to the ACE2
membrane, derived from dual binding involving spike proteins in same conformation. Points are
coloured according to their associated membrane local curvature. (a) Variability in the elevation
(φ) with azimuth (θ) angle, where each point has been coloured by the appropriate curvature. (b)
Population of orientational states occupied for each θ and φ. A Gaussian has been fitted in palatinate
to the θ subfigure.
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5.2.3 Binding multiple ACE2 to one spike, or a cross-linked

spike, is possible

Recent, unpublished Mass Photometry data obtained by the Kukura group at the

University of Oxford, and low-resolution cryo-EM data,20 suggest that a single spike

could bind up to three ACE2 (Figure 5.2.8(a)). In addition, Mass Photometry also

indicated the presence of much larger oligomeric complexes, where multiple cross-

linked spikes were bound to several ACE2 (Figure 5.2.8(b)). Negative stain-electron

microscopy images by Bangaru et al. confirmed that the spike on the surface of the

virion could cross-link to itself, producing complexes in the MDa.13 Therefore, we can

attempt to build atomic models of both proposed structures to further validate the

Mass Photometry data. Of particular interest is whether it is possible to attach two

ACE2 to the RBD sites below the cross-linked point (see the bottom pathway in Figure

5.2.8(b)).

Figure 5.2.8: Schematic of spike-ACE2 oligomeric possible pathways to be considered. (a) Formation
of three ACE2 bound to a single spike. (b) (top pathway) Additional ACE2 avoid the RBDs directly
below the cross-linked site, resulting in four ACE2 bound to the spike dimer. (bottom pathway) ACE2
actively bind at every available site, including the two below the cross-linked position, leading to six
possible ACE2 bound overall to the spike dimer. Image adapted from our co-authored manuscript
with Olerinyova et al. (see Publications & Manuscripts).
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Aligning the open chain of the SARS-CoV-2 spike glycoprotein 6M18 structure

onto the remaining closed chains yielded no conformations that could permit the

binding of more than one ACE2. Therefore, we leveraged the MD simulation data of

the spike produced by the Amaro research group14 to generate possible conformations

that would facilitate multiple binding of ACE2. Attaching two ACE2 onto the spike,

we find that from a total of 1000 frames of a 1 µs simulation, only one featured a

conformation that would prevent the backbones from clashing. Applying a Rosetta

relaxation refinement21 followed by a short MD simulation, we were able to generate

a structure with two ACE2 bound to the spike with no side-chain clashes. However,

adding an additional ACE2 receptor to match the Mass Photometry data at this point

was sterically not possible.

Therefore, we utilised the SARS-CoV-1 structure with two chains in the open

RBD states (PDB: 6CS1) released by Kirchdoerfer et al. in 2018,22 with a homology

of 63%. Following a coordinate transfer of the open chain onto the remaining closed

chains, we mutated the structure into the SARS-CoV-2 spike glycoprotein via the

Modeller program15 (see Section 5.4.2 for full details). The RBD of SARS-CoV-1 has

a large unstructured domain between R306 and I319 (see Figure 5.2.9), in contrast

to the equivalent coil in SARS-CoV-2. This allows the spike to adopt an “open

flower” configuration where the RBDs are much further apart spatially, as opposed to

a “budding flower” configuration in SARS-CoV-2. We could, therefore, align without

clashes, one ACE2 per open RBD of this new structure (see Figure 5.2.10).

RBD of SARS-
CoV-1 spike

RBD of SARS-
CoV-2 spike

R306

I319

Figure 5.2.9: The unstructured region between R306 and I319 of the RBD keeps the RBDs in an
open flower state, thereby facilitating the attachment of the ACE2. The RBD of both SARS-CoV-1
and SARS-CoV-2 are structurally aligned and shown on the right to demonstrate the importance of
this unstructured region.
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90°

ACE2

Membrane

SARS-CoV-2 Spike 
trimer head

Figure 5.2.10: Three ACE2 bound to a single SARS-CoV-2 spike glycoprotein head. Spike chains
are coloured in various shades of blue, while the individual ACE2 are coloured shades of red.

The individual ACE2 receptors in Figure 5.2.10 are at an angle to one another and

the membrane due to the symmetry operations required to generate the complex. A

large-scale MD simulation would help equilibrate the structure, and allow the ACE2 to

settle in the membrane, but this would be very computationally expensive (∼4 million

atoms), and therefore outside the scope of this work. Defining the central axis of the
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ACE2 transmembrane domains as the axis of the membrane (see Section 5.4.1), we

return a curvature of 0.003 nm−1, i.e. the ACE2 cell membrane is essentially planar.

90°

Curved 
Membrane 

Region

ACE2

SARS-CoV-2 Spike 
dimer of trimer heads

Figure 5.2.11: Four ACE2 bound to the cross-linked SARS-CoV-2 spike glycoprotein head dimer.
Spike chains are coloured in various shades of blue, while the individual ACE2 are coloured in red and
orange.

Given that two spikes can bind the same ACE2, a single spike can bind three ACE2,

and spikes are known to cross-link,13 there exist several possibilities for the formation

of higher-order oligomers that corroborate those detected by the Mass Photometry

experiments. We investigated the formation case of a large and specific ACE2-spike

complex by leveraging on a recent electron microscopy atomic structure of cross-linked

spikes (PDB: 7JJJ).13 Attaching an ACE2 to every available open RBD resulted in the
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5. Dynamics of the SARS-CoV-2 spike glycoprotein

two central ACE2 (below the cross-linked site) to clash, therefore, the bottom pathway

in Figure 5.2.8(b) is not possible. Thus, without invoking any flexibility of RBD

domains, up to five ACE2 can bind to the spike dimer. In vivo, such an event would

require the target cell to feature a local membrane curvature that, although within the

range of known curvatures for cells on which ACE2 is expressed,23 is significant (>0.063

nm−1). By omitting the binding of the central ACE2, such curvature conditions would

relax into a gentler one (0.002 nm−1), with a distance between the two sets of ACE2 of

26 nm.

5.2.4 Predicting the ACE2–RBD complex with JabberDock

As a final note, we also tested the feasibility of using JabberDock to dock an integral

membrane protein with a soluble protein, by docking the RBD with ACE2. Using the

standard transmembrane and soluble pre-processing pipelines separately, we docked the

two proteins by keeping the ACE2 fixed and constraining the STID isosurface of the

RBD above the plane of the ACE2 cell membrane. From the 300 returned models, only

the prediction at rank 196 returned an acceptable result under the CAPRI criteria.24

However, the rank 4 prediction returned an fnat. of 0.4, indicating that we had at least

partially predicted the binding site.
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5.3 Discussion & conclusions

This study first attempted to establish whether the SARS-CoV-2 virion can bind two

spike glycoproteins to the ACE2 receptor simultaneously. To this end, we utilised a

full-length set of atomistic simulations (equating to 4.2 µs) of the SARS-CoV-2 spike

glycoprotein attached to a membrane. These featured a significant range of motion and

flexibility due to the stalk attaching the crown of the protein to the transmembrane

domain.14 We aligned these simulations via the receptor-binding domain (RBD) to

the known bound structure of the RBD with the ACE2 receptor, and then measured

the dynamics of the transmembrane domain as a surrogate for the viral membrane.

Thus, we should emphasise that this is not a study of the dynamics of the membrane;

as the changes in curvature and distances are built from approximations about the

local bilayer position given the flexibility of the spike. Instead, we are considering the

feasibility of the membrane’s shape, and the necessary curvatures it must adopt for a

specific conformational binding mode to be possible.

Our models confirm that the dual binding mode onto the ACE2 receptor is possible

with no steric clashes, provided the spike is in the open state, which is a necessary

prerequisite for binding. By approximating the local shape of the virion’s membrane

as an arc between the two spike glycoprotein transmembrane regions, we estimate

that its curvature can fluctuate between −0.074 nm−1 and 0.099 nm−1. 14.3% of

simulation time features dual binding models that require a virion’s membrane local

curvature to be consistent with that found by experiment.17 In our models, distances

between the transmembrane regions of individual spikes range from 16.2 nm to 58.9 nm.

Recent tomograms have shown that spikes in the open state are distributed anywhere

between 10 nm and 80 nm18 across the virion surface. Thus, experimental distances

measured between spike glycoproteins match those required for dual binding in our

models. The SARS-CoV-2 virus has been observed to exhibit a wide range of membrane

deformations, creating the higher curvature conditions accommodating an even greater

range of possible spike glycoprotein conformations. Neuman et al.25 have noted that

a greater concentration of spike glycoproteins are found at regions of high curvature,

providing further opportunities for dual binding events.

We find that dual binding events are possible for a multitude of relative arrange-

ments between the virion and the ACE2 host cell. Indeed, many of the predicted

conformations require the plane of the virus to be at some angle relative to the normal

of the ACE2 cell membrane. We predict that even in the case where the viral membrane

becomes locally concave, binding events are still possible, and indeed the curvatures

found in these inverted states match those found experimentally.19 Given this evidence,

we can conclude that not only are dual binding events possible but indeed are likely
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given the density of spike glycoproteins expressed on the virion surface and the number

of possible conformations from which they can attach.

With regards to the more extreme angle states discussed in Section 5.2.1 & Section

5.2.2, recent cryo-EM tomography data18 has shown that the spike head usually adopts

a 40° angle with respect to the normal axis of the virion plane. However, within the

∼55000 spike glycoproteins manually identified in the tomograms, it was observed that

∼150 of them adopted a 90° angle with respect to the normal of the virion membrane.

While this may limit the binding modes discussed here, it is worth noting that the more

extreme angle states tended towards lower resolution, making for more challenging

identification. Therefore, while MD may frequently sample conformations far from the

prevailing conformation seen experimentally, we note that these extreme angle states

are still physically plausible. Whether it is possible to have two spike glycoproteins in

these conformations involved in a dual binding mode, thereby requiring significant local

membrane deformation, remains uncertain. Both because of the Cryo-EM indicated

stability of these conformations and because of the necessary deformations required of

the virion membrane.

We have shown that it is sterically impossible to fit three ACE2 onto the current

SARS-CoV-2 spike glycoprotein open structure, and binding two requires a significant

number of expensive refinement steps. Yet, Cryo-EM and Mass Photometry data

indicate that it must be possible to bind multiple ACE2 to a single spike. In order for

a SARS-CoV-2 spike to bind to three ACE2 requires it to adopt a budding flower state

similar to available SARS-CoV-1 spike structures.22 Therefore, we built a homology

model of the SARS-CoV-2 spike based on this structure of the SARS-CoV-1 spike22 to

facilitate binding of three ACE2. ACE2 points radially away from the spike, placing

the remaining unbound ACE out of reach of any free RBD. This indicates that a single

spike should be unable to bind both subunits of the same ACE2.

Given the homology between the SARS-CoV-1 and -2 spikes, it appears plausible

that the SARS-CoV-2 spike can exist in the necessary conformation to permit multiple

binding, but it might only be possible through an allosteric mechanism triggered

by the initial binding of a single ACE2 to a spike. This seems likely given that, in

a 1 µs simulation, there were no conformations that featured the RBD in an open

flower state. Obtaining a SARS-CoV-2 spike structure in this open flower state might,

therefore, pose a considerable challenge. Kirchdoerfer et al.’s approach22 leveraged

on a traditional detergent-based approach prior to flash freezing. Whether this is

more difficult for the SARS-CoV-2 spike is unknown given the short timeframe of

current research, although recent cryo-EM results by Benton et al.,26 coupled with the

Mass Photometry data, certainly suggest thats SARS-CoV-2 spike must be capable of

adopting a similar conformation. Our computational approach, therefore, has assisted

in alleviating this knowledge gap. Furthermore, we have used the dynamics of the
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SARS-CoV-2 spike, or rather the absence of dynamics, to highlight the necessity of

some underlying mechanism to facilitate multiple binding of ACE2 to a single spike.

We then assessed the possible oligomeric complexes when the spike cross-links to

itself. Leveraging once again on the homolog based on the SARS-CoV-1 spike and a

recent structure of the spike dimer (PDB: 7JJJ),13 we find that up to five ACE2 are able

to bind to free RBDs without steric clashes. To reduce any curvature-based energetic

penalties on the ACE2 cell, we can remove the central ACE2 below the cross-linked

site, leaving 4 ACE2 bound. This agrees with preliminary Mass Photometry data

suggests that up to four ACE2 can bind to the cross-linked dimer at a time. Adding

an additional spike to create a trimer of trimers, would close off either one or two of

the RBD sites directly below the new cross-linked site depending on the curvature

of the ACE2 membrane. In other words, for every spike added to the oligomer, an

additional one or two ACE2 dimers are able to bind. Therefore, we can expect the

number of ACE2 receptors to grow as n+2 for an n-length oligomer, or 2n+1 if we

allow higher curvatures. Realistically, forming a large oligomeric complex in vivo might

be challenging, as it requires a high density of ACE2, with the found high oligomeric

ACE2 states occuring only at high concentrations of ACE2 in the Mass Photometry

experiments. Furthermore, adding one or two ACE2 to a cross-linked spike decreases

the number of entry points or pathways for an additional ACE2, particularly as they

are constrained to the surface of the cell. Perhaps more importantly, given the helical

twist exhibited by the spike oligomer as it grows, the significant torsion angles between

terminal spikes would enforce a continual strain on the ACE2 cell membrane. Thus,

while these models may be sterically plausible, further computational modelling is

required to confirm the likelihood of their formation. Nevertheless, our results have

demonstrated the plethora of possible oligomeric ACE2-spike complexes that can form.

Indeed, recent work by Barros et al., have highlighted the inherent flexibility of the

ACE2 receptor27 in complex with the RBD, mirroring the range of motion exhibited

by the spike protein. We expect this flexibility to facilitate the variety of oligomeric

states discussed here while decreasing any high curvature strains for both the virus

and cell membranes.

The inability of JabberDock to provide a high ranking, successful prediction, is

likely, in part, to the absence of the rest of the SARS-CoV-2 spike head. Its presence

would render many of the arrangements sterically impossible. Better insight could be

achieved by using the spike head, with the ACE2 restricted to move in the xy-plane,

using the transmembrane protein docking routine outlined in Section 3.4. However,

this would be very computationally costly. Further tests of JabberDock’s feasibility

with similar, but smaller, docking problems are required before a conclusion can be

made on its suitability.

In summary, our key findings are:
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1. Two spikes can bind to a single ACE2 at a time with a range of virion curvatures.

2. The virion can approach the prey cell from a host of different orientations, and

still enable successful binding of two spikes to the single ACE2.

3. Current, microsecond timescale simulations of the open SARS-CoV-2 spike pro-

vide no conformations that enable three ACE2 to bind to a spike simultaneously.

However, a homolog based on the spike of SARS-CoV-1 does provide configura-

tions that enable three ACE2s to attach. Thus, to agree with the experimental

data there must be some domain reshuffling that extends the RBD into the

open flower state following a single binding event, facilitating further spike-ACE2

interactions.

4. In the event that n spikes cross-link, it is not possible to bind two ACE2 at

the two RBDs below the cross-linked site. While one may bind below these

cross-linked regions, there is the caveat that this imposes a significant strain on

the ACE2 cell membrane. Therefore, we expect the number of ACE2 to grow

as n+2 with n SARS-CoV-2 spike glycoproteins, which agrees with preliminary

Mass Photometry data.

Thus, from the dynamics extracted from a large MD simulation, we have been able

to draw several conclusions that are essential to the wider understanding into how

SARS-CoV-2 is able to penetrate into a cell. The number of binding modes available

to the SARS-CoV-2 spike glycoprotein is extensive, which goes some way to explaining

its potency, highlighting why it has caused one of the world’s worst pandemics of the

last one hundred years. Yet, it also opens the door to possible medical targeting. The

propensity of the spikes to form into large cross-linked species could be used as a route

towards therapeutics that harness this behaviour as a means to aggregate and remove

the spikes, preventing entry into the cell.
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5.4 Methods

5.4.1 Modelling of ACE2 bound to two spikes

The binding of two spike glycoproteins onto the ACE2 receptor is dependent on three

primary aspects: the conformation of the spike glycoprotein, the position of the virion

over the ACE2 receptor and the local shape of the viral membrane (see graphical

representation in Figure 5.2.2). To generate a template representing two spike proteins

bound to the same ACE2, we leveraged on a crystal structure of the SARS-CoV-2 spike

RBD bound to the soluble domain of monomeric ACE2 (PDB: 6M0J). We duplicated

and aligned 6M0J via its ACE2 atoms to each of the chains in the full ACE2 homodimer

(PDB: 6M18), obtaining a complete ACE2 receptor with two SARS-CoV-2 spike RBD

domains bound. To represent the flexibility of SARS-CoV-2 spike in our models, we

adopted the 4.2 µs-long simulation made available by the Amaro group, featuring a

fully glycosylated spike protein with one open RBD, embedded in a lipid bilayer.14 We

duplicated each of its 4200 simulated spike conformations (one per ns) and aligned

them via their open RBD (chain A) to our template RBD domains bound to the

complete ACE2 homodimer receptor (see examples of resulting models in Figure 5.2.4).

From the relative arrangement of the ACE2 receptor and its two bound spikes,

we inferred, for each spike conformation, the relative position of the virion and the

curvature of the membrane between the transmembrane regions of its two spikes. To

this end, we defined our reference frame as the ACE2 cell membrane, where the z-axis

is the membrane plane normal, and the origin is at the mean position of the ACE2

receptor membrane-entry and -exit atoms (Cα atoms of residues 741 to 761). We then

defined the orientation of the viral membrane at the two spikes transmembrane regions

according to the axes connecting the mean positions of their membrane-entry and -exit

residues (Cα atoms residues 1214 and 1234 for all three chains). By correcting these

axes by the observed transmembrane region tilt, we obtained normal vectors defining

planes parallel to the simulated viral membrane. Finally, we defined the viral membrane

shape according to the arc connecting the two viral membrane planes, assuming that

the membrane has constant curvature between the two transmembrane regions. From

all these definitions, we derived the angle of attack of the virion according to the vector

connecting the origin to the midpoint of the arc between the spike proteins, represented

in spherical coordinates (elevation φ and azimuth θ). The distance between spikes’

transmembrane regions was measured as the length of the arc connecting them. The

following provides the full details on our methodology to determine φ, θ and the local

membrane curvature:

1. To account for the spike’s transmembrane tilt, we first record, at every frame,

232



5. Dynamics of the SARS-CoV-2 spike glycoprotein

the rotational matrix required to project the principal axis of the transmembrane

domain onto the normal to the plane of the viral bilayer. These matrices are

non-commutative with the rotational alignment matrix used to generate the

spike-ACE2 complex; hence we convert these corrective matrices into intrinsic

rotations, which are invariant under a change of coordinate system.

2. Following alignment of the spikes to the RBD bound to the ACE2 receptor, we

define the central axis for each spike transmembrane domain, corrected for tilt

via the intrinsic rotation matrix, as the normal to the local viral membrane. (see

Figure 5.2.4). By projecting the transmembrane region’s axis onto the known

viral membrane normal, we create the condition where the local viral membranes

exactly bisect these principal axes at the midpoint (i.e. our planes, by definition,

are parallel to the simulated viral membrane) – see Figure 5.2.4.

3. Three points: two from the individual average positions of the spike transmem-

brane domains (central blue pseudo-atom in Figure 5.2.4), and one from the

intersection between the two planes, defines an arc from which the curvature

of the viral membrane can be derived. The curvature is considered nominal

(resulting in a convex virion) when the normal to the tangent at the top of the

arc, ~nv, is aligned along the inner to outer leaflet of the viral membrane. It is

considered inverse (concave virion) when the opposite is true.

4. The arc length connecting the transmembrane domains via the intersection defines

the maximum possible geodesic distance between the transmembrane domains.

The point-to-point distance between them represents the case where curvature

tends to zero, representing the minimum distance.

5. ~nv is used to examine the virion’s orientation relative to the reference frame of

the ACE2 cell, defining the azimuth (θ) and elevation (φ) angles as ~nv versus the

positive y- and z-axes respectively.

6. The normal to the ACE2 cell membrane (~nc) is colinear to the positive z-axis,

making the two equivalent. When the z component of ~nv is aligned along

the negative z-axis we obtain the antiparallel φ state (Figure 5.2.1(1,2), right

conformation in Figure 5.2.4), when it is parallel to the positive z-axis we obtain

the parallel φ state (Figure 5.2.1(3,4), left conformation in Figure 5.2.4). φ = 90°
indicates that the viral membrane is perpendicular to the ACE2 membrane. We

can, in principle, have either convex or concave membranes in both of these

states.
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5.4.2 Modelling of multiple ACE2 bound to cross-linked spikes

Following a mapping of the open RBD chain of the SARS-CoV-2 spike glycoprotein

onto the remaining closed chains, we found it was sterically not possible to attach

additional ACE2. We, therefore, leveraged on the SARS-CoV-1 structure with two

chains in the open RBD states (PDB: 6CS1), with a homology of 63%.22 Following an

alignment of the open state chain A onto the remaining closed chains, we mutated the

structure into the SARS-CoV-2 spike glycoprotein via the Modeller program.15 Missing

motifs up to 10 residues in length were patched, while the structure was kept frozen

to prevent optimisation away from the desired conformational state. We could align,

without clashes, one ACE2 per open RBD in this new structure (see Figure 5.2.10).

To examine the plausibility of oligomeric states involving cross-linked spikes (see

Figure 5.2.11), we aligned our homology model onto an available dimer of the SARS-

CoV-2 spike (PDB: 7JJJ). We were then able to align five ACE2 onto the free binding

sites without clashes. To calculate the required cellular membrane curvature, we first

measured the curvature between two ACE2 bound to the same spike protein using the

same protocol established above. As curvature between the two was only 0.01 nm−1, we

approximated the two transmembrane stalks as parallel and took their average principal

axes centred at their midpoint as the starting point for calculating the curvature of

the cellular membrane. In calculating the curvature of the two spike – five ACE2

oligomer, instead of calculating the intersection of two planes, we define the principal

axis of the central ACE2 transmembrane stalk as the normal to the intersection point.

The calculation was performed on a single frame, rather than a simulation, hence the

absence of a standard deviation in the reported value.

234



5. Dynamics of the SARS-CoV-2 spike glycoprotein

5.5 Bibliography

[1] Y. Guan, B. J. Zheng, Y. Q. He, X. L. Liu, Z. X. Zhuang, C. L. Cheung, S. W. Luo,

P. H. Li, L. J. Zhang, Y. J. Guan, K. M. Butt, K. L. Wong, K. W. Chan, W. Lim, K. F.

Shortridge, K. Y. Yuen, J. S. Peiris and L. L. Poon, Isolation and characterization of

viruses related to the SARS coronavirus from animals in Southern China, Science (80-.

)., 2003, 302, 276–278.

[2] W. Li, Z. Shi, M. Yu, W. Ren, C. Smith, J. H. Epstein, H. Wang, G. Crameri, Z. Hu,

H. Zhang, J. Zhang, J. McEachern, H. Field, P. Daszak, B. T. Eaton, S. Zhang and L. F.

Wang, Bats are natural reservoirs of SARS-like coronaviruses, Science (80-. )., 2005,

310, 676–679.

[3] C. Kamps, B. S. & Hoffmann, SARS Reference — Preface, 2003, http://www.

sarsreference.com/sarsref/preface.htm.

[4] A. M. Zaki, S. van Boheemen, T. M. Bestebroer, A. D. Osterhaus and R. A. Fouchier,

Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia, N. Engl.

J. Med., 2012, 367, 1814–1820.

[5] H. M. Al-Dorzi, M. D. Van Kerkhove, J. S. Peiris and Y. M. Arabi, Middle east respiratory

syndrome coronavirus, ERS Monogr., 2016, 2016, 21–34.

[6] C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X. Gu,

Z. Cheng, T. Yu, J. Xia, Y. Wei, W. Wu, X. Xie, W. Yin, H. Li, M. Liu, Y. Xiao, H. Gao,

L. Guo, J. Xie, G. Wang, R. Jiang, Z. Gao, Q. Jin, J. Wang and B. Cao, Clinical features

of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet, 2020, 395,

497–506.

[7] L. L. Ren, Y. M. Wang, Z. Q. Wu, Z. C. Xiang, L. Guo, T. Xu, Y. Z. Jiang, Y. Xiong,

Y. J. Li, X. W. Li, H. Li, G. H. Fan, X. Y. Gu, Y. Xiao, H. Gao, J. Y. Xu, F. Yang,

X. M. Wang, C. Wu, L. Chen, Y. W. Liu, B. Liu, J. Yang, X. R. Wang, J. Dong, L. Li,

C. L. Huang, J. P. Zhao, Y. Hu, Z. S. Cheng, L. L. Liu, Z. H. Qian, C. Qin, Q. Jin,

B. Cao and J. W. Wang, Identification of a novel coronavirus causing severe pneumonia

in human: a descriptive study, Chin. Med. J. (Engl)., 2020, 133, 1015–1024.

[8] N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang, J. Song, X. Zhao, B. Huang, W. Shi, R. Lu,

P. Niu, F. Zhan, X. Ma, D. Wang, W. Xu, G. Wu, G. F. Gao and W. Tan, A Novel

Coronavirus from Patients with Pneumonia in China, 2019, N. Engl. J. Med., 2020, 382,

727–733.

[9] P. Zhou, X. L. Yang, X. G. Wang, B. Hu, L. Zhang, W. Zhang, H. R. Si, Y. Zhu, B. Li,

C. L. Huang, H. D. Chen, J. Chen, Y. Luo, H. Guo, R. D. Jiang, M. Q. Liu, Y. Chen,

X. R. Shen, X. Wang, X. S. Zheng, K. Zhao, Q. J. Chen, F. Deng, L. L. Liu, B. Yan,

F. X. Zhan, Y. Y. Wang, G. F. Xiao and Z. L. Shi, A pneumonia outbreak associated

with a new coronavirus of probable bat origin, Nature, 2020, 579, 270–273.

235

http://www.sarsreference.com/sarsref/preface.htm
http://www.sarsreference.com/sarsref/preface.htm


5.5. Bibliography

[10] WHO Coronavirus Disease (COVID-19) Dashboard — WHO Coronavirus Disease

(COVID-19) Dashboard, https://covid19.who.int/.

[11] D. Wrapp, N. Wang, K. S. Corbett, J. A. Goldsmith, C. L. Hsieh, O. Abiona, B. S.

Graham and J. S. McLellan, Cryo-EM structure of the 2019-nCoV spike in the prefusion

conformation, Science (80-. )., 2020, 367, 1260–1263.

[12] R. Yan, Y. Zhang, Y. Li, L. Xia, Y. Guo and Q. Zhou, Structural basis for the recognition

of SARS-CoV-2 by full-length human ACE2, Science (80-. )., 2020, 367, 1444–1448.

[13] S. Bangaru, G. Ozorowski, H. L. Turner, A. Antanasijevic, D. Huang, X. Wang, J. L.

Torres, J. K. Diedrich, J.-H. Tian, A. D. Portnoff, N. Patel, M. J. Massare, J. R. Yates,

D. Nemazee, J. C. Paulson, G. Glenn, G. Smith and A. B. Ward, Structural analysis of

full-length SARS-CoV-2 spike protein from an advanced vaccine candidate, Science (80-.

)., 2020, 370, 1089–1094.

[14] L. Casalino, Z. Gaieb, J. A. Goldsmith, C. K. Hjorth, A. C. Dommer, A. M. Harbison,

C. A. Fogarty, E. P. Barros, B. C. Taylor, J. S. Mclellan, E. Fadda and R. E. Amaro,

Beyond shielding: The roles of glycans in the SARS-CoV-2 spike protein, ACS Cent.

Sci., 2020, 6, 1722–1734.

[15] A. Fiser and A. Sali, ModLoop: Automated modeling of loops in protein structures,

Bioinformatics, 2003, 19, 2500–2501.

[16] A. Roy, A. Kucukural and Y. Zhang, I-TASSER: A unified platform for automated

protein structure and function prediction, Nat. Protoc., 2010, 5, 725–738.

[17] N. Chen, M. Zhou, X. Dong, J. Qu, F. Gong, Y. Han, Y. Qiu, J. Wang, Y. Liu, Y. Wei,

J. Xia, T. Yu, X. Zhang and L. Zhang, Epidemiological and clinical characteristics of

99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study,

Lancet, 2020, 395, 507–513.

[18] H. Yao, Y. Song, Y. Chen, N. Wu, J. Xu, C. Sun, J. Zhang, T. Weng, Z. Zhang, Z. Wu,

L. Cheng, D. Shi, X. Lu, J. Lei, M. Crispin, Y. Shi, L. Li and S. Li, Molecular architecture

of the SARS-CoV-2 virus, Cell, 2020, 183, 730–738.

[19] C. Liu, Y. Yang, Y. Gao, C. Shen and B. Ju, Viral Architecture of SARS-CoV-2 with

Post-Fusion Spike Revealed by Cryo-EM, bioRxiv, 2020, 1–17.

[20] T. M. Clausen, D. R. Sandoval, C. B. Spliid, J. Pihl, H. R. Perrett, C. D. Painter,

A. Narayanan, S. A. Majowicz, E. M. Kwong, R. N. McVicar, B. E. Thacker, C. A.

Glass, Z. Yang, J. L. Torres, G. J. Golden, P. L. Bartels, R. N. Porell, A. F. Garretson,

L. Laubach, J. Feldman, X. Yin, Y. Pu, B. M. Hauser, T. M. Caradonna, B. P. Kellman,

C. Martino, P. L. Gordts, S. K. Chanda, A. G. Schmidt, K. Godula, S. L. Leibel, J. Jose,

K. D. Corbett, A. B. Ward, A. F. Carlin and J. D. Esko, SARS-CoV-2 Infection Depends

on Cellular Heparan Sulfate and ACE2, Cell, 2020, 183, 1043–1057.e15.

236

https://covid19.who.int/


5. Dynamics of the SARS-CoV-2 spike glycoprotein

[21] L. G. Nivón, R. Moretti and D. Baker, A Pareto-Optimal Refinement Method for Protein

Design Scaffolds, PLoS One, 2013, 8, e59004.

[22] R. N. Kirchdoerfer, N. Wang, J. Pallesen, D. Wrapp, H. L. Turner, C. A. Cottrell, K. S.

Corbett, B. S. Graham, J. S. McLellan and A. B. Ward, Stabilized coronavirus spikes

are resistant to conformational changes induced by receptor recognition or proteolysis,

Sci. Rep., 2018, 8, 1–11.

[23] J. Zimmerberg and M. M. Kozlov, How proteins produce cellular membrane curvature,

Nat. Rev. Mol. Cell Biol., 2006, 7, 9–19.

[24] M. F. Lensink, R. Méndez and S. J. Wodak, Docking and scoring protein complexes:

CAPRI 3rd Edition, Proteins Struct. Funct. Bioinforma., 2007, 69, 704–718.

[25] B. W. Neuman, G. Kiss, A. H. Kunding, D. Bhella, M. F. Baksh, S. Connelly, B. Droese,

J. P. Klaus, S. Makino, S. G. Sawicki, S. G. Siddell, D. G. Stamou, I. A. Wilson, P. Kuhn

and M. J. Buchmeier, A structural analysis of M protein in coronavirus assembly and

morphology, J. Struct. Biol., 2011, 174, 11–22.

[26] D. J. Benton, A. G. Wrobel, P. Xu, C. Roustan, S. R. Martin, P. B. Rosenthal, J. J. Skehel

and S. J. Gamblin, Receptor binding and priming of the spike protein of SARS-CoV-2

for membrane fusion, Nature, 2020, 588, 327.

[27] E. P. Barros, L. Casalino, Z. Gaieb, A. C. Dommer, Y. Wang, L. Fallon, L. Raguette,

K. Belfon, C. Simmerling and R. E. Amaro, The Flexibility of ACE2 in the Context of

SARS-CoV-2 Infection, Biophys. J., accepted, year.

237



6 | Conclusions

In this thesis, we have studied the importance of accomodating protein dynamics in

protein quaternary structure prediction as a means to understand the function of a

protein. In Chapter 1, we outlined three key aims to be examined as part of this study.

Each of these aims has been addressed through the course of this thesis. Herein, we

discuss their fulfilment and how we can build upon the work that has been so far

accomplished.

6.1 Summary

6.1.1 Aim 1: To develop a representation that encompasses

the key characteristics of a protein

The STID map was originally designed with the forethought of applying it exclusively

to protein-protein docking. Ideally, however, any model used in such a context should,

independently, demonstrate that it represents the physical characteristics of a protein.

Once the benchmarks in Section 2.3 revealed that this was indeed the case, in contrast

to other coarse-grained models,1 it became obvious that we should also establish the

STID map’s utility in a host of other scenarios. Chapter 2 addresses these applications.

In Section 2.4 we used the STID map construction procedure, truncated at

Equation 2.2.3, to predict a series of dielectric permittivities for a selection of solvents.

A computational method capable of predicting the variation in permittivity on a

nanometre scale would prove invaluable in the study of interfaces, both between

solvents and protein/solvent. While our method does not outperform existing methods

to predict dielectric variation on the nanoscale,2 its ability to correctly identify

trends is encouraging, as it indicates that the underpinning theory works

in practice.

In Section 2.5 we addressed the controversy surrounding the true density of a

protein, as described in Chapter 1. Given that the consensus value for a protein

(1.35 g cm−3), is largely based on volumes generated from crystal structures,3 yet is
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applied in a variety of in vivo and in vitro based studies, we endeavoured to provide

better clarity to its true value and its dependence on the surrounding environment.

We identified a relationship between protein dynamics and density, matching

recent experimental evidence by Ashkarran et al. in solution,4 and in vacuo ion mobility

data.5 These results demonstrate that the STID map isosurface, derived through

the independent benchmark in Section 2.3.4, is capable of representing the key

properties of a protein in different environments through accommodation

of side-chain dynamics.

Finally, in Section 2.6 we demonstrated that a STID map isosurface’s topography

is sensitive to the binding partner. Indeed, we showed in Section 4.3 that mutations

could also significantly influence the topography. This characteristic allowed us to track

which amino acids are affected by some distal binding interaction. These results reveal

that STID maps are sensitive to mutagenesis and binding interactions, with

the exhibited dynamics of individual residuals, fundamentally altered.

Therefore, we have shown that STID maps are well-grounded in physical theory

and represent some critical properties of a protein, such as its density, and are sensitive

to small changes in the structure or sequence. Thus, we are confident that STID

maps are a sufficient model of a protein’s structure and local dynamics.

6.1.2 Aim 2: To apply our representation in a protein-protein

docking context

Having established a physical grounding for our model, we then applied the STID map

isosurface in a protein-protein docking context. Specifically, we designed a protein dock-

ing engine called JabberDock (https://github.com/degiacom/JabberDock), which

we then applied to both a water-soluble and transmembrane protein docking benchmark,

before demonstrating its utility in two applications. This was the focus of the work

in Chapter 3. Following this, we wished to investigate further means to enhance the

algorithm by using bound surrogates for unbound docking and improving the method

by which the STID maps are applied and the optimisation approach. This was the

motivation for Chapter 4.

We first applied JabberDock in Section 3.3 to the standard CAPRI benchmark of

224 water-soluble complexes.6 The cases are split by difficulty depending on backbone

flexibility. JabberDock returned an acceptable success rate of 56.3%, 60.0% and

54.9% for the easy, medium and hard cases respectively, and a corresponding

intermediate rate of 29.2%, 22.2%, and 25.8%. Boundary conditions were associated

with either a flat binding site, that the scoring function failed to score highly, or

occluded interfaces, which the optimiser struggled to navigate into. This work’s key
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success is the absence of any deterioration in the success rate with flexibility,

indicating that accomodating side-chain dynamics into the model is critical

to a successful docking engine. JabberDock is, therefore, very competitive versus

other methods.

In Section 3.4 we examined JabberDock’s effectiveness in transmembrane protein

docking by predicting a series of 20 unbound α-helical complexes sourced from three

different benchmarks.7–9 For this dataset, we returned acceptable and intermediate

success rates of 75% and 40%, respectively. Thus, our inclusion of differential

side-chain dynamics that naturally arise from different environments via MD, coupled

with the restricted conformational space imposed by the membrane, facilitates enhanced

quality docking. These results place JabberDock as highly competitive in the

transmembrane protein docking field, without the need for any manual

preprocessing.

With these benchmarks in toe, in the latter half of Chapter 3, we used JabberDock

in two novel applications. In Section 3.5.1 we used JabberDock to predict TTR fibril

formation from a starting monomeric unit of the TTR tetramer, generating atomistic

fibril structures that matched electron micrographs. Section 3.5.2 illustrated that we

could predict the loss of detergent given the formation of a bo3 oxidase dimer, a complex

whose presence was not yet established in the literature. Our results corroborated Mass

Photometry experimental data and confirmed the application of both Mass Photometry

and JabberDock in transmembrane protein structure prediction.

In Section 4.3 we attempted to qualify whether the use of bound surrogates

could enhance the overall quality of an unbound target; that is, that extracting the

dynamics of a ligand or receptor bound to a foreign binding partner could improve its

docking with its intended target partner. Our results indicated that a preliminary

step of searching for surrogates, and their application thereof, should yield

higher quality predictions, and perhaps assist in addressing some of JabberDock’s

limitations.

Section 4.4 outlined our current efforts to improve the current implementation

of the STID map isosurfaces by converting them into a Signed Distance Function, an

object used frequently in Computer Graphics design. The Signed Distance Function

provides the distance to the isosurface at every point in space, thereby trivialising access

to gradients in a gradient-descent based minimisation procedure. It also predicates the

derivation of an analytically derived scoring function. While early results indicated

that the two aforementioned boundary conditions of JabberDock could be

addressed with this approach; due to the necessary intersection between STID

isosurfaces at the known bound position, the results did not improve upon the current

version of JabberDock. Furthermore, the applied clustering algorithms demonstrated
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that convergence was difficult to achieved due to the number of solutions returned.

These concerns highlighted the need for a rapid optimisation method.

Our first step towards this is the focus of Section 4.5 which described an outer-loop

rapid optimisation method based on ray-tracing. This approach marches a ligand to the

receptor by the bounds of its distance to it, thereby efficiently, and swiftly, generating

docked solutions. Compared with our previous efforts, this Shape Tracing

optimisation method is ∼400× faster on the same hardware. Therefore, we

need to couple this technique with a second, inner-loop gradient-based optimisation

procedure to achieve an improved version of the JabberDock algorithm.

Therefore, we have shown that an isosurface developed from a STID map has

remarkable utility in a protein-protein docking context, both for water-soluble and for

the more challenging transmembrane proteins. The JabberDock tool is continually

maintained and is freely accessible for users, with an accompanying tutorial and manual.

We foresee the exploitation of JabberDock in a wide range of novel applications, as we

have done, thereby enhancing research in the quaternary structure prediction arena,

particularly for those looking to predict integral membrane protein complexes.

6.1.3 Aim 3: To leverage Molecular Dynamics simulations to

elucidate diverse quaternary structure

Aside from accounting for side-chain dynamics, we also endeavoured to showcase how

harnessing larger conformational dynamics extracted from MD can facilitate protein

structure prediction. The recent emergence, and subsequent need for research into the

SARS-CoV-2 virology, provided an opportunity for this. In the wake of the COVID-19

pandemic, we, therefore, endeavoured to uncover the diverse, multiple oligomeric states

of SARS-CoV-2 spike glycoprotein and the ACE2 receptor, in collaboration with an

experimental group at Oxford. The goal of this work was to understand the various

modes of attack for the virus in the pursuit of therapeutics.

Utilising a 4.2 µs simulation of the full-length SARS-CoV-2 spike glycoprotein

produced by the Amaro lab,10 we were able to determine that two spike proteins

could attach to a single ACE2 receptor from numerous conformational states. With

these states in mind, we could predict the necessary curvatures needed of the local

virion membrane to accommodate the binding action. A key result from this is that

the spike proteins spend a significant amount of time in conformations that

correspond to the nominal spherical curvature typically exhibited by the

virion. In addition, only minor deformations are required of the membrane outside of

this time. The MD data also indicate the various positions the virus particle can take

with respect to the ACE2 cell during its attack.
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We then assessed the various oligomeric states possible between multiple ACE2

and the spike glycoprotein, for both a single and cross-linked spike trimer. We were

unable to align multiple ACE2 onto the Amaro lab’s10 simulated spike glycoprotein,

highlighting that some conformational change must occur following binding of the

first ACE2. Via a homology model derived from the SARS-CoV-1 spike glycoprotein,

we were able to align three ACE2 into the single spike’s known binding

positions. For the spike dimer, we found that up to five ACE2 could attach, with the

stipulation that this may place a significant strain on the ACE2 cell membrane. With

this and the Mass Photometry data in mind, we expect up to four ACE2 could

attach to the spike dimer, with the number of ACE2 increasing with n+2

for an n-mer spike oligomer.

Therefore, we have been able to predict a plethora of oligomeric states that can

form between the spike glycoprotein and ACE2, both using a large MD simulation

(accomplishing Aim 3), but also using homolog structures were necessary in the absence

of simulation data. An extensive simulation of the full-length spike glycoprotein bound

to the ACE2 is undoubtedly of interest in this context, but it is prohibitively expensive.

6.1.4 The impact of dynamics in protein assembly

We have realised the three aims laid out in Section 1.5, corresponding to a study into the

impact of dynamics in protein quaternary structure prediction. Sections 2.3.4, 2.4, and

2.5 were used to establish the physical ground of our STID map; demonstrating that it

was physically well-grounded, and a good representation for protein shape, electrostatics

and, most importantly for our goals, local dynamics. We then applied our maps in a

protein-protein docking context through our docking engine, JabberDock, in Sections

3.3 and 3.4, showing it could be used for both water- and lipid-soluble proteins. This

lead to the direct implementation of JabberDock to two applications in Sections 3.5.1

and 3.5.2. Overcoming the identified boundary conditions found through our docking

benchmarks was the focus of Sections 4.4 and 4.5. Furthermore, by demonstrating the

sensitivity of the STID map to a protein’s microenvironment in Section 2.6, we opened

another possible avenue to address these boundary conditions through harnessing

surrogate bound dynamics in Section 4.3. Indeed, Section 2.6 suggested that isosurfaces

could reflect the impact of mutagenesis on protein-protein interactions; Section 4.3

subsequently confirmed this by demonstrating that JabberDock, correctly, was unable

to predict the bound complex given an unstable, mutated ligand. Despite JabberDock’s

success, particularly as it pertains to more flexible cases, there is a lack of support

for accomodating larger, conformational dynamics; in both the docking engine and

the STID maps. Therefore, we endeavoured to exploit large-scale MD simulations in

Chapter 5 to enhance protein quaternary structure prediction. Merging the work of
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the aforementioned Sections and the work in Chapter 5 is a major challenge, but one

that, if successful, would be of great benefit to the biomolecular modelling community.

6.2 Future work

While our three aims have largely been achieved, there are still numerous avenues of

research that could be pursued to improve our findings. The cornerstone of any future

work should be on refining our STID map representation and improving on our general

docking routine. The work presented in Chapter 4 discussed our current efforts towards

this goal. However, it is incomplete; with the general success rate of our proposed

methods inferior to the current iteration of JabberDock.

The critical issue we encountered in Section 4.4 was the high frequency of the

Potential Energy Surfaces (PES) used for docking, regardless of how smooth the energy

profile appeared to be in 1D. This lead to many individual solutions, irrespective of

the optimisation method. While an analytically derived scoring function is preferable,

some constant is likely necessary to damp the PES oscillations by permitting shape

intersection in addition to an alternative optimisation approach. In Section 4.4.5, we

discussed methods such as Margin Ranked loss as a means to determine the empirical

constant in an adapted scoring function required to return the highest quality models.

However, in terms of exploring the space efficiently and mapping local minima which

may correspond to the docked pose (as opposed to the global minimum), basin-hopping

appears to be the more attractive option. Basin-hopping was designed with complex

optimisation problems such as ours in mind,11 and indeed has been used in rigid

protein-protein docking.12 While it can be expensive,13 as we showed in Section 4.5,

we can rapidly generate starting structures with the surfaces in contact, thereby

reducing the overall computational costs. Provided the scoring function is modified to

permit intersection, basin-hopping appears to be an attractive solution to following the

available gradients while also providing possible correct complexes through mapping

high scoring, local minima.

In addition to this larger goal of an improved scoring function and optimisation

approach, several, smaller investigations could yield higher-quality structures:

1. Convolve a Lorentzian with the pseudo-atom van der Waals radii as opposed

to a Gaussian (see Section 2.2.2). By essentially shrinking the STID map

isosurfaces, we may overcome the barriers encountered in Section 4.4 introduced

by the necessary intersection during docking. This may facilitate the usage of

analytically correct solutions, improving both the speed and quality of results.

2. Use alternative atomistic forcefields to Amber ff14SB14 in the MD. This will
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impact the STID map’s topology, if not through the exploration of local confor-

mational space, then by the charges used to build the maps from the forcefield.

While it is unknown whether a different choice will improve the quality of the

STID isosurfaces, it may be necessary to consider alternative forcefields in unusual

systems where no forcefield parameters are available.

3. An additional refinement step to minimise output structures, for example, with

MD. Currently, there is no post-refinement step, and while this is acceptable as

none of the returned 300 models exhibit side-chain clashes owing to the Lennard-

Jones check during optimisation, the prediction returned to the user may yet

be an unfeasible high energy structure, despite being close to the ground truth.

An MD refinement step would help settle the structure into a more reasonable

suggestion.

4. Reduce overall memory/CPU requirements. As we have shown in Section 3.2.2.2,

JabberDock is a demanding program to run, particularly on a desktop computer.

The dockings performed here were primarily done on various supercomputing

clusters. Reducing the computational costs would both enhance the user base,

and facilitate further research. Some of the work described in Chapter 4 may go

some way towards this goal, but optimising the algorithm is the obvious solution.

5. Leverage on experimental data through integrative modelling to enhance structure

prediction, similar to engines like HADDOCK.15 JabberDock is a blind docking

engine, and while as a de novo approach, its success rate is highly competitive,

there is a clear opportunity to couple our energy function with experimental

restraints. Given JabberDock’s remarkable improved success rate with the

transmembrane protein docking benchmark over the water-soluble set, we can

only assume that further constraints will provide even higher-quality models.

6. Dock multimers with a greater number of monomeric units than dimers. Jab-

berDock exclusively targets dimeric proteins. Yet, as we have shown in Section

3.5.1, we can also use the roto-translations returned by JabberDock to provide

significantly larger, multimeric structures. Symmetries provide means to predict

homomultimeric complexes with memory requirements equivalent to those of a

dimer.

7. Upgrade accessibility for users. Many current docking algorithms provide Graph-

ical User Interfaces (GUI) to their userbase. JabberDock is a command-line

program, which may disincentivise users with less computational experience,

particularly those on a non-Linux based operating system. Providing a webserver

to deposit structures, or a GUI for users to run locally, will upgrade the user

experience and improve accessibility.
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Aside from these individual improvements, there are additional benchmarks to per-

form that could highlight JabberDock’s capability as a universal protein-protein docking

engine. For example, using JabberDock’s transmembrane docking routine to predict

β-barrel formation, although this would require the formulation of a new benchmark set

beforehand. Furthermore, we could also apply JabberDock to transmembrane–soluble

protein complexes, similar to the recent work by HADDOCK.16 In these investigations,

we envisage that our surrogate bound state work in Section 4.3 could further enhance

the quality of returned predictions, although additional work should be performed

in this area by benchmarking a much greater range of proteins with bound complex

analogues.

In terms of the work discussed in Chapter 5, we foresee that large simulations

of the ACE2 receptor could corroborate the various identified oligomeric states of the

SARS-CoV-2 spike glycoprotein – ACE2 complexes. Indeed, recent work by Barros

et al.17 have highlighted the flexibility of the ACE2 receptor in complex with the

receptor-binding domain of the spike. The level of flexibility would certainly confer a

greater number of possible oligomeric assemblies, and allow the associated membranes

to relax. The MD data from this work was not released at the time of thesis submission,

but these questions could be addressed following its release.

Finally, we consider perhaps the greatest challenge facing the protein docking

community at present, which unites the general consideration of dynamics in protein

structure prediction and continue our discussion from the end of Section 6.1.4. In

Chapter 1, we outlined how MD is often used to extract conformational states following

allosteric rearrangement. These conformational changes are critical to a protein’s

function. They typically take place over micro to millisecond timescales, pushing many

of them out of reach for Molecular Dynamics for the time being, even with enhanced

sampling techniques. Therefore, predicting the conformational dynamics associated

with allostery remains a complicated task, and coupling that with predictive protein-

protein docking is an even greater challenge. Blindly predicting the quaternary structure

of a complex,18 wherein its monomeric binding units are in a different conformational

state prior to binding, is remarkably complicated. Thus, the two fields remain largely

segregated. Recent work by Noé et al.19 have utilised deep learning to predict BPTI’s

conformational states and the free energy barriers between then, paving the way to

understanding allosteric regulation without the need for long Molecular Dynamics

simulations. Yet, their method is too expensive for larger systems.

The STID map, in its entirety, provides an inviting opportunity to address this.

While in this study, we have almost exclusively used an isosurface at a cutoff of 0.43,

there is a rich bounty of information stored within the map. Larger values are indicative

of more rigid domains, or those that are highly charged, while smaller STID values

are associated with highly flexibly or neutral regions. Accessing this diverse set of
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data is, potentially, the key to considering allosteric conformational dynamics during

protein docking. In this, we foresee the use of image analysis techniques borrowed

from deep learning. Such methods are typically employed for image classification, but

given the similarities between an image’s pixels and the STID map’s voxels, it seems a

natural choice. Therefore, training for docking would require converting unbound STID

maps seeded from different conformational states, perhaps sourced through homology

modelling or MD, into bound complex maps via a generative adversarial network.20

We would then need to ensure a sufficient backwards mapping routine to reconstruct

the atomic structure from this novel STID map. There are significant difficulties to

be surmounted for this task, namely that we must place constraints to retain the

correct sequence and number of atoms. Furthermore, the size of the images must be

consistent without excess zero-padding in the training set, so perhaps this method

could only be applied for a specific size/type-subset of proteins at a time. Of course,

the long-term goal of this would be to accurately predict complexes formed when

only one conformation is available through the PDB; thus, the method would also

need to be highly transferable. Regardless, we expect that accessing the full range of

STID map data is an avenue of further research to improve protein docking, given the

underpinning dynamics hidden therein.

6.3 Concluding remarks

Throughout this thesis, we have endeavoured to demonstrate the importance and

viability of harnessing dynamics to elucidate quaternary protein structure prediction,

and subsequently, shed light on a protein’s function. To this end, we designed the

Spatial and Temporal Influence (STID) map, a representation capable of simultaneously

representing protein side-chain dynamics, electrostatics and shape. We showed that

this representation could represent critical physical and biophysical quantities, and was

remarkably successful in a protein-protein docking context. We also demonstrated the

usage of large scale Molecular Dynamics simulations to elucidate diverse conformational

arrangements between the SARS-CoV-2 spike glycoprotein and ACE2 receptor.

The realisation of our objectives confirms that thorough consideration of a protein’s

dynamics is imperative in predicting a protein’s structure and function. Given this

conclusion, it is clear that any future work exploring a protein’s function should not rely

on models derived from static structures. Instead, they should consider how dynamics

can be accounted for in their models or data interpretation. While the dynamics of a

protein owes much to its structure, we can not solely rely on the structure to rationalise

functionality. Thus, the structure and dynamics determines the function of a protein,

and it is essential to consider the impact of this in the assembly of proteins.
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