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Abstract

While the Standard Model remains the best theory to describe elementary particles

and their interactions, there are still some unresolved issues that cannot be addressed

within its current framework.

Right handed neutrinos are introduced to the Standard Model to explain the observed

active neutrino masses. If CP is violated during their radiative decays an asymmetry

between two circularly–polarised photons can be generated. The CP asymmetry is

somehow connected to circular polarisation. Therefore, observations of such polarised

signal potentially lead to a measurement of the CP violation in the process.

Here, we provide the connection between these two asymmetries for both, Dirac

and Majorana neutrinos. We then apply this formalism to a minimal seesaw model

and give the CP asymmetry in terms of a series of Jarlskog-like parameter. We

also provide the formalism to study the changes in the polarisation of photons at

any energy, since the intensity of such circularly polarised signal could change as it

propagates through the Universe.

Finally, we pay attention to the dark matter paradigm. We discuss the capture of

dark matter in compact stellar objects as complementary to direct detection searches.

We particularly work with white dwarfs (WD) since due to their abundance and

high temperatures they one of the best observed compact objects proposed as cosmic

laboratories for studying physical processes happening at very extreme conditions

that cannot be achieved at terrestrial laboratories. Using an observed WD from the

Messier 4 globular cluster, we set constraints on the DM interactions.
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Chapter 1

Introduction

Everything we know about fundamental particles and their interactions in our Uni-

verse is best described by the Standard Model (SM), developed in the late 60s, right

after the Higgs mechanism was introduced earlier in the 60s. Despite its remarkable

success in describing almost all fundamental interactions, there is strong evidence

that the SM of particle physics must be extended. In Sec. 1.1 we present an overview

of the SM of particle physics. Sec. 1.2 is dedicated to the current challenges the

SM is facing, such as providing an explanation for neutrino masses and dark matter.

Finally, in Sec. 1.3 we motivate and outline this work.

1.1 The Standard Model of Particle Physics

The SM successfully describes particle properties and interactions (in particular the

notions of electromagnetic, weak and strong forces) using the principles of gauge

theory. It has been developed for several decades and remains the best model that we

have to describe all subatomic processes. One might say that the very first element

of the SM of particle physics was born during the late 20s when Dirac applied

quantum field theory (QFT) to the electromagnetic interaction [4], establishing the

well known Dirac equation. This achievement gave rise to the theory of Quantum

electrodynamics (QED), which was further improved by Tomonga, Feynman and
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Schwinger [5, 6, 7, 8, 9, 10]. The second element is a successful description of the

electroweak (EW) interactions by Glashow, Weinberg and Salam in the 1960s who

showed that EM and weak interactions1 can be unified into a single electroweak

theory [11, 12, 13]. The third element is a description of the strong forces which is

not discussed in this work but can be found in Ref. [14].

The SM of particle physics is based on the symmetry group SU(3)C
⊗
SU(2)L

⊗
U(1)Y

where SU(3)C corresponds to the strong interactions and the subscript C stands for

colour. SU(2)L
⊗
U(1)Y corresponds to the electroweak interactions; the subscript

L stands for left and the subscript Y for weak hypercharge. The particles mediating

the interactions are called bosons: there are 8 bosons (the so-called gluons) associ-

ated with the strong force, 3 bosons (the W± and Z bosons) associated with the

weak force and 1 boson (the photon) associated with the electromagnetic force. The

photon is massless but the W± and Z bosons are massive particles [15, 16, 17, 18].

To account for the masses of the gauge bosons in the SM without violating gauge

invariance, Guralnik, Hagen, & Kibble [19], Brout & Englert [20] and, Higgs [21] pro-

posed a new mechanism: the so-called Englert-Brout-Kibble-Guralnik-Hagen-Higgs

mechanism. The mechanism introduces a new particle field to the SM: the Higgs

field, which acquires a non–zero vacuum expectation value because its energetically

favourable according to the quartic potential. As a consequence, when the W and

Z bosons interact with this field, they acquire a mass. We will discuss this in more

detail in the next section. The complete SM Lagrangian in its very compact form is

given as,

LSM =− 1
4FµνF

µν

+ iψ /Dψ

+ iψiyijψjφ

+ |Dµφ|2 − V (φ) + h.c., (1.1.1)

1The eponymous interaction proposed by Fermi in 1933 was a precursor of the weak interactions.
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where Fµν is the gauge field tensor, ψ represent fermion fields, φ is the Higgs field,

Dµ the covariant derivative and yij the Yukawa couplings.

The first term in Eq. (1.1.1) describes the kinetic and self-interactions of the gauge

bosons while the second term describes the kinetic terms of fermions and their

interaction with gauge bosons. The third describes the interactions of the fermions

with the Higgs field. The last term gives the kinetic and self-interactions of the Higgs

boson.

1.1.1 Electroweak Spontaneous Symmetry Breaking

Now that we have discussed some of the most relevant aspects of the SM Lagrangian

given in Eq. (1.1.1), we will discuss the Higgs mechanism in the EW sector.

The non–zero vacuum expectation of the Higgs field initiates Spontaneous Symmetry

Breaking (SSB) of the electroweak sector,

SU(2)L
⊗

U(1)Y → SU(2)QED. (1.1.2)

The Lagrangian is

L ⊂ −1
4(W a

µν)2 − 1
4Bµν + |Dµφ|2 − V (φ) (1.1.3)

with

Bµν = ∂µBν − ∂νBµ

W a
µν = ∂µW

a
ν − ∂νW a

µ − gεabcW b
µW

c
ν (1.1.4)

where Bµ is the hypercharge gauge boson; W a
µ and g are the SU(2)L gauge boson

and coupling, respectively; εabc is the Levi–Civita tensor. The covariant derivative

is defined as,

Dµ = ∂µ − igW a
µ

1
2σ

a − ig′BµYL (1.1.5)

with σa being the Pauli matrices, g′ the U(1)Y coupling and YL the weak hypercharge

for left–handed (LH) fields. The form of the Higgs potential that leads to the SSB
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in Eq. (1.1.2) is

V (φ) = −µ2|φ|2 + λ|φ|4. (1.1.6)

This potential has a minimum at |φ| =
√

µ
2

2λ , and after symmetry breaking we can

write the Higgs doublet in the form,

φ = exp
iξaσ2

v


 0
v+h√

2

 (1.1.7)

where v =
√

µ
2

2λ and h, is the field associated with the Higgs boson. It is simpler to

study this theory in unitary gauge, so we can set ξa = 0.

If we plug in the expression in Eq. (1.1.7), in the unitary gauge, into the covariant

derivative of Eq. (1.1.3), we will obtain the mass terms associated with three massive

gauge bosons

|Dµφ|2 = g2v
2

82

(W 1
µ)2 + (W 2

µ)2 −
(
g′

g
Bµ −W 3

µ

)2
 . (1.1.8)

When diagonalising the mass matrix, we obtain one massless eigenstate and one

massive eigenstate as linear combination of the hypercharge gauge boson and one of

the generators of SU(2). These are the well–known massless photon Aµ and the Zµ

gauge boson

Aµ = sin θwW 3
µ + cos θwBµ ,

Zµ = cos θwW 3
µ − sin θwBµ , (1.1.9)

with tan θw = g′/g. Additionally, we also find the definition for the massive W–

boson,

W±
µ = 1√

2
(W 1

µ ∓ iW 2
µ) (1.1.10)

and the mass terms in the SM Lagrangian are given by

L ⊂ −m2
WW

+µW−
µ −

M2
Z

2 ZµZµ (1.1.11)

Fermionic masses are also not allowed in the SM Lagrangian of Eq. (1.1.1), since
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Field SU(3)C SU(2)L U(1)Y
QL 3 2 1/6
LL 1 2 −1/2
eR 1 1 −1
uR 3 1 2/3
dR 3 1 −1/3
H 1 2 1/2

Table 1.1: SM field content and their corresponding representation.

they break the gauge symmetry. However, the addition of the scalar field φ into the

model will also generate the missing fermion mass terms. This will be discussed in

the following section.

1.1.2 Fermion Masses

We shall now discuss how fermions in the SM of particle physics acquire their mass.

There are three generations of SU(2) LH leptons and quarks in the SM,

LαL =

ν
α
L

`αL

 , QL =

uL
dL

 ,
cL
sL

 ,
tL
bL

 (1.1.12)

where α = e, µ, τ . The right handed (RH) fermions are denoted in the following

form,

eR = (eR, µR, τR)

uR = (uR, cR, tR) dR = (dR, sR, bR) (1.1.13)

LH and RH fermions present different hypercharge. YQ and YL denotes the LH fields’

hypercharges, while Ye, Yu, and Yd denote the RH fields’ hypercharge. The field

contents and their representation under the different gauge groups in the SM are

shown in table 1.1, where the first two columns show the transformation properties

under SU(3)C and SU(2)L, while the last column shows the hypercharge of each

field.

A lepton mass term in the SM Lagrangian would have the form mα[` αR `αL + `
α
L `

α
R]

where L and R stand for left–hand (LH) and right–hand (RH) helicities. Different
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helicities have different SU(2)L and U(1)Y gauge transformations. As a consequence,

the explicit mass terms are forbidden in the SM Lagrangian since they violate

chiral gauge symmetry. The resolution to this problem is achieved by means of

the Higgs field and its interactions with fermions, known as Yukawa interactions.

When the Higgs field acquires its vacuum expectation v, the Yukawa interactions

lead to fermion mass terms as well as mixing between different generations in the

SM Lagrangian of Eq. (1.1.1). For leptons, the Yukawa interaction is given as,

LY,` = y`L
α
LφeR + h.c., (1.1.14)

where y` is the Yukawa lepton coupling. This Lagrangian is SU(2) and U(1) invari-

ant;1 it generates the mass terms for leptons of the form m` = y√̀
2v after SSB, while

neutrinos remain massless. In other words, there are no νR states in the SM, which

is required to produce a ν mass term via an interaction with the Higgs field.

We need to adopt a slightly different approach to get the quark mass terms in the

SM Lagrangian. We define Φ in terms of the Higgs field introduced previously, which

is defined as Φ = iσ2φ
∗ with hypercharge −1/2 and transforms in the fundamental

representation of SU(2). Therefore, we can write a Yukawa term as,

LY,q = ydijφQ
i
Lφd

j
R + yuijQ

i
LΦujR + h.c. (1.1.15)

After SSB, the quark mass terms are

LY,q = v√
2

[dLyddR + uLyuuR] + h.c. (1.1.16)

where uL,R = uL,R, cL,R, tL,R and dL,R = dL,R, sL,R, bL,R. yu,d are mass matrices that

need to be diagonalized by introducing two diagonal matrices Mu and Md and two

unitary matrices Uu and Ud such that2

yu,dyu,d
† = Uu,dM

2
u,dU

†
u,d. (1.1.17)

1Both LH leptons and Higgs are SU(2) doublets while the RH is a SU(2) singlet. To see that the
Lagrangian is also U(1) invariant we need to sum up all the hypercharge, i.e. −YL + Yφ + Ye = 0.

2The matrix yu,dyu,d
† is Hermitian and therefore has real eigenvalues.
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For other unitary matrices Ku,d we can generically write

yu,d = Uu,dMu,dK
†
u,d. (1.1.18)

If we introduce this in the Lagrangian and additionally change the basis for the LH

quarks qL → UqL and the RH quarks qR → KqR, we are left only with the mass

matrices Mu and Md,1

LY,q = md
jd
j
Ld

j
R +mu

ju
j
Lu

j
R (1.1.19)

where mj
u,d are diagonal elements of v√

2Mu,d. In the following section, we will discuss

how this change of basis leads to mixing effects.

1.1.3 CKM Matrix

When the Higgs couples to quarks through Yukawa interactions and it acquires a

vacuum expectation value we must introduce a change of basis for LH (RH) quarks

qL → UqL (qR → KqR) in order to obtain the diagonal mass matrix. As a result,

the W± interactions couple to the physical qL, leading to a mixing between families

Lkin = −g√
2
Q
u
Lγ

µW+VCKMQ
d
L + h.c (1.1.20)

where VCKM = U †uUd is known as the Cabbibo–Kobayashi–Maskawa (CKM) matrix

[22]. The CKM matrix is a 3× 3 unitary matrix that can be parameterized by three

mixing angles and one phase [23],

VCKM =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 (1.1.21)

where sij = sin θij, cij = cos θij corresponds to rotations in the ij–flavour planes and

δ is the phase that accounts for CP–violation in the SM.2

1This is known as going to the mass basis.
2The necessary condition for CP invariance is that elements of the CKM matrix must be real.

This is true for the three quark families only if δ = 0 or δ = π. If δ is not either of those values
means that the CKM matrix is a source of CP–violation.
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1.1.4 CP Violation in the SM

The study of CP violation in the SM dates back to the late 40s and early 50s when

two supposedly different particles τ–meson and Θ-meson were observed to decay,

via weak interactions, into three and two pions, respectively. [24]. The lifetime and

mass of such particles were found to be identical, meaning they might be the same

particle. However, the parity conservation in the decay process indicates that two

pions would combine to produce a net parity of +1, and three pions would combine

to have a net parity of −1 [25]. Therefore, if parity holds τ and Θ could not be the

same particle. This is the so called tau-theta puzzle.

Around 1956, Chen-Ning Yang and Tsung-Dao suggested that parity might not

hold in weak interactions in order to explain the tau-theta puzzle [26]. Among the

several experiments their proposed, one of the simplest one was measurements on

the beta decay of cobalt-60. This experiment was performed by Chien-Shiung Wu1.

Wu observed that majority of emitted electrons went in one direction, showing an

asymmetric behaviour. Thus proving that that parity is violated in weak subatomic

interactions. Chen-Ning Yang and Tsung-Dao won the Nobel prize for such discovery,

however Wu received public recognition only 21 years later, when she was awarded

the Wolf prize.

Later in 1964, Cronin and Fitch decided to test P and C symmetries in Kaon decays.

They discovered that P , C and CP symmetries are violated in such process [27].

It was not until 2001 when CP violation was discovered in B-meson decays by the

Belle experiment [28] at the High Energy Accelerator Research Organisation (KEK)

and the Babar experiment [29] at the National Accelerator Laboratory. Later on

in 2010 LHCb experiment extends measurements of CP violation to much grater

precision in the Large Hadron Collider (LHC) at CERN [30]. LHCb has measured

the CKM mixing matrix elements and CP violation parameters in processes involving

transitions of a b quark to a u or a c quark.
1She also received the help of Ernest Ambler, Ralph Hudson, Raymond Hayward and Dale

Hoppes
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In principle, the charge conjugation parity (CP ) symmetry indicates that the laws

of physics should be the same for matter and antimatter. However, assuming that

the evolution of the Universe preserves the ratio between matter and antimatter

components, the CP–symmetry must have been violated somehow to explain the

predominance of matter over antimatter.

As discussed in the previous section, CP–violation appears in weak interactions

in the SM. Unfortunately, the amount of asymmetry generated during such weak

interactions is not enough to explain the observed matter–antimatter asymmetry.

This strongly suggests that, besides weak interactions in the quark sector,1 there

must be additional sources of CP–violation, in physics beyond SM (BSM). This and

some other SM challenges will be briefly discussed in the next section.

1.2 Physics Beyond the Standard Model

The SM of particle physics is not considered as the final theory of fundamental

interactions. Instead, it is believed that there must be physics beyond the SM

(BSM) and that the SM is only an effective theory below some cut-off scale. In the

following, we briefly discuss some of the shortcomings of the SM that are relevant

to this work. A more detailed discussion will be given in Chapter 2.

• Neutrino masses. Neutrino oscillation experiments have revealed that neutri-

nos are massive particles [31, 32], yet in the Standard Model they are predicted

to be massless. The study of neutrino oscillations is a viable probe of BSM

physics. Neutrino could be Dirac particles, therefore there could be a RH

neutrino sate that does not interact with matter; this is known as a sterile

neutrino. Neutrinos could also be Majorana particles, which implies that the

neutrino is its own antiparticle. If this is the case, then introducing another

Majorana heavy neutrino could explain the very low value of the neutrino
1CP violation can occur in the lepton sector and explain baryogenesis via leptogenesis.
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masses compared to quarks and charged leptons via the seesaw mechanism.

The decay of such a heavy particle could create CP violation large enough to

explain the matter anti–matter asymmetry in the Universe.

• CP–violation and Baryon Asymmetry. Baryon asymmetry is character-

ised in terms of the baryon–to–photon ratio η ∼ 10−10 [33, 34]. The origin of

such asymmetry is one of the most important questions in particle physics, and

one of the conditions to produce such asymmetry is CP–violation. However,

it is well established that CP -violation within the SM cannot explain why

there is more matter than antimatter in our Universe. Hence, a new source of

CP–violation is necessary to explain baryon asymmetry in the Universe.

• Dark Matter. Dark matter (DM) remains an unresolved mystery in cosmo-

logy and particle physics. There exists a body of evidence pointing towards the

presence of some form of invisible matter in the Universe, for more detail see

[35, 36, 37, 38, 39]. Neutrinos in the SM have all the essential characteristics for

being a potential dark matter candidate: they are stable, neutral and without

strong interactions. However, neutrino masses are so small that they would

not be able to produce the observed number of large-scale-structures of our

Universe in the simplest frameworks.

1.3 Motivation and Outline of this Thesis

This thesis is divided into two main subjects, namely polarisation of gamma rays and

dark matter interactions. Firstly we will study the CP violation in radiative neutrino

decays as a possible source of circularly polarised photons and the polarisation

changes of such signals while propagating through the Universe. Secondly and last

part of this work, we pay attention to constraints on dark matter interactions using

compact stellar objects as complementary to DD experiments.

Observations of circular polarisation of gamma-rays provide a new way to search
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for BSM physics. This is because CP must be violated in order to generate a net

circular polarisation. Electromagnetic or strong interactions are symmetric under C

and P transformations, therefore they are also symmetric under CP . This means

that they cannot generate a net circular polarisation. In general, we need processes

that involve the interaction of asymmetric particles in order to obtain a net circular

polarisation effect.

In particular if CP is violated during radiative neutrino decay νi → νf + γλ , an

asymmetry between two circularly–polarised photons can be generated. Therefore

the circular polarisation of gamma–rays provides a potentially crucial probe to show

the existence of CP violation in the neutrino sector.

A milestone in BSM physics is the evidence for DM. Although all the evidence stems

from gravitational effects, the leading paradigm does assume that the DM has weak,

yet not negligible, interactions with SM particles. Probing the existence of DM and

its interactions with the visible sector is one of the biggest challenge contemporary

physics faces. It involves cosmology, astrophysics, as well as particle physics.

There is a vast number of experiments currently searching for DM particles. In par-

ticular, direct detection (DD) experiments aim to observe nuclear recoils produced

by DM particles scattering off target nuclei. During the past decade, significant pro-

gress has been achieved in DD searches. Experiments have reduced the background

due to cosmic and gamma rays by shielding and placing experiments underground.

However, background due to solar and atmospheric neutrinos is still a challenging

problem in the sensitivity of the experiments [40]. Additionally, the sensitivity is

limited by their threshold energy and target mass. Xenon1T has the best experiment

sensitivity (for spin independent interactions), currently is up to a DM-proton cross

section of 4.1× 10−47cm2 for a DM mass around 30 GeV [41].

Objects such as the Sun or planets cannot accelerate DM particles to relativistic

velocities. Consequently, since DM particles are non-relativistic in the Galactic halo,

most of the possible DM interactions with the matter in the Solar neighbourhood
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involve very small transferred momentum and low velocities. Therefore, DD experi-

ments are limited to this non-relativistic regime, which makes it very hard to detect

the DM and place constraints on momentum- or velocity-dependent DM-proton cross

sections.

Finally, in the low mass regime of DM particles, the best constraints (below 5 GeV

and up to 1.8 GeV) are given by Darkside [42]. At such low masses, the recoil energy

produced is tiny and the neutrino floor becomes large, making the task of detection

very difficult.

Due to their high densities, white dwarfs (WDs) are one of the best compact objects

proposed as cosmic laboratories for studying physical processes happening at very

extreme conditions that cannot be achieved at terrestrial laboratories. For instance,

unlike DD experiments, DM particles close to WDs will be accelerated to high

velocities due to the strong gravitational potential enabling us to probe velocity

(momentum) dependent interactions. In addition, the low DM mass regime is not

limited by a recoil threshold.

DM particles surrounding WDs may be captured when interacting with matter

within the star. The capture will occur when the DM particle loses enough energy

after scattering off a nucleus. This energy transferred to the nuclei in the capture

and annihilation processes will lead to a rise in the star temperature. The heat

induced in the WD creates an observational signal that we can use to set constraints

on the interaction strength of DM particle(s) with nuclei.

In Chapter 2, a brief background is presented; a more detailed description of BSM

physics related to neutrino masses and DM candidates is given. The discussion

of radiative transfer of polarisation of low–energy polarised gamma-rays is also

addressed, crucial for the understanding of their propagation through space once

they are generated. Chapter 3 outlines the general connection between CP violation

and circular polarisation for both Dirac and Majorana fermions, and can be used for

any class of models that produce such radiative decays. The total CP violation is

calculated based on a widely studied Yukawa interaction considered in both active
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and sterile neutrino radiative decay scenarios. In Chapter 4, the previous discussion

is applied to a heavy neutrino radiatively decaying by means of SM interactions.

In Chapter 5 we discuss the polarisation of high energy radiation after scattering

off particles. After demonstrating the failure of geometric and low–energy QFT

approaches, the transport formalism is established. This formalism is used to describe

the change of high–energy photon polarisation when propagating through space or

the atmosphere. Compton interactions are the primary focus, but the approach is

general enough to describe the scattering of high energy photons off new particles

or through new interactions. Finally, the conditions for a circularly–polarised γ–ray

signal to keep the same level of circular polarisation as it propagates through its

environment are discussed. Additionally, in the first part of Chapter 6, the study

of the properties of white dwarfs, such as internal structure and equation of state,

are summarised. In the second part, a discussion of the DM capture in WDs and

calculation of bounds on DM interactions are extensively presented. Finally, we

conclude in Chapter 7.





Chapter 2

Background

Polarisation of light is vital for the study of modern physics and BSM physics.

For instance, linear and circular polarisation of the CMB could reveal more about

the early Universe [43]; moreover, the observation and study of polarisation of

electromagnetic waves can lead to hints of physics BSM [44]. Therefore, in the

first part of this chapter, Sec. 2.1 and Sec. 2.2, a review of some of the topics on

physics BSM is presented i.e. current status of neutrino physics and dark matter.

Since circularly polarised photons can be changed when they propagate through the

Universe, in the second part of this chapter, Sec. 2.3, the formalism for the study of

circular polarisation in the classical regime (low–energy photons) is revisited; later

on in this work such formalism will be generalised at any energies.

2.1 Relevant Aspects of Neutrino Physics

Neutrinos are spin 1/2 and electrically neutral particles which appear in three differ-

ent species: νe (electron–type), νµ (muon–type) and ντ (tau–type)2. Due to gauge

invariance neutrino mass terms cannot be included in the SM Lagrangian and as a
2Electron–type neutrinos are produced in nuclear beta decay, particularly in neutron decay

processes n→ p+e−+νe; they are also produced in muon decays µ± → e±+νµ(νµ)+νe(νe). Muon–
type neutrinos and anti-neutrinos are produced in muon decays and pion decays π± → µ±+νµ(νµ).
Tau–type neutrinos are produced in τ± decays.



34 Chapter 2. Background

consequence they are assumed to be massless. Nevertheless, neutrino experiments

have shown that these particles possess very tiny masses since they can oscillate, after

propagating a macroscopic distance, from one species to another νi ↔ νj. A leptonic

mixing matrix will appear analogous to the CKM matrix discussed in Chapter 1.

This gives rise to a leptonic charged current (CC) interaction of the form

LCC = g√
2

(eL µL τL)γµUα iνiW+
µ + h.c. (2.1.1)

with

να = Uαiνi (2.1.2)

where α = e, µ, τ are the flavor eigenstates, i = 1, 2, .., n are the mass eigenstates

and Uα i is a 3× n matrix that connects flavor states with mass states. This matrix

was introduced by Ziro Maki, Masami Nakagawa and Shoichi Sakata in 1962 [45]

to describe the neutrino oscillations. The idea of neutrino oscillation dates back

to 1958 when Bruno Pontecorvo proposed the neutrino-antineutrino transition [46].

Nowadays the mixing matrix is known as the PMNS matrix.

For decades, studies of neutrinos have deepened our understanding of nature [47].

Although their very small but non-zero masses (for at least two of their generations)

and lepton flavour mixing have been observed and verified by neutrino oscillation

experiments, some fundamental questions about neutrinos such as their electromag-

netic properties, CP violation, whether they are Dirac or Majorana fermions and if

they have additional species existing in nature remain unknown.

2.1.1 Dirac vs Majorana Neutrinos

In this section we will address the discussion of neutrino masses. Since the nature of

neutrinos is still an open question, the two possible Dirac and Majorana cases are

discussed.
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Dirac mass term

In order to generate a Dirac neutrino mass, it is necessary to introduce additional

RH neutrino(s) νR to the SM Lagrangian. This will yield to neutrino mass terms

through the Higgs mechanism, just like in the case of quarks and leptons.

RH neutrino fields are invariant under SM symmetries. They are singlets of –

SU(3)C
⊗
SU(2)Y and have hypercharge Y = 0. Since they do not participate

in weak interactions they are called sterile neutrinos. The number of sterile neutri-

nos that can be introduced to extend the SM is not constrained by the theory. In

the simplest case where three sterile neutrinos, one for each flavor, are introduced

to the SM, the extended Lagrangian mass term for leptons is now

Lν,Y = −LLy`φeR − LLyνΦνR + h.c (2.1.3)

with yν a Yukawa matrix, LL given by Eq. (1.1.12) and

νR =


νeR

νµR

ντR

 (2.1.4)

The matrix yν can be diagonalised in a similar way as for charged leptons, see chapter

1, and this is

V ν, `†
L yν ,`V ν ,`

R = yν (2.1.5)

V ν ,`
L and V ν ,`

R are 3 × 3 unitary matrices and the RHS is the diagonalised matrix

yν = yνijδij. From here we see that the change of basis for neutrinos is therefore

ν ′L → V †LνL and ν ′R → V †RνR. Hence when introducing this change of basis and the

diagonalised mass matrix in Eq. (2.1.5) the neutrino Dirac masses terms are finally

obtained in the Lagrangian given by

L.mass = 1
2`LαM``Rα + 1

2νLMννR + h.c. (2.1.6)
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where M` is the diagonal mass matrix for charged leptons and

Mνi
= yνi v√

2
(2.1.7)

The mass terms of leptons in the Lagrangian, including neutrino masses, is given

in Eq. (2.1.6). Following a similar approach of that for quarks in chapter 1, the

change of basis for neutrinos made in this section generates the flavour mixing in

the leptonic Lagrangian. It is straightforward to show that for three Dirac neutrinos

the change of basis is therefore given as,

UD = V ` †
L V ν

L . (2.1.8)

This is the mixing matrix in the leptonic sector analogous to the CKM-matrix for

the case of quarks. For Dirac neutrinos the mixing matrix depends on three mixing

angles and one CP-violating phase. We will further discuss this at the end of this

section.

Majorana mass term

In 1937 Majorana established that a massive neutral fermion can be described

by a real wave equation [48]. This implies that the Majorana particle is its own

antiparticle.1 This led to the Majorana condition,

ν = νC (2.1.9)

where the Majorana field is defined as ν = νL + νCL and νC ≡ C νT , where C is the

charge conjugation matrix.2

The Majorana mass term is obtained by substituting in Eq. (2.1.6) the RH neutrino

νR by the charge conjugated field νL = C νLT , which is indeed a RH chiral field. For

one generation of Majorana neutrino, the Majorana Lagrangian is commonly written
1In the case in which particles and antiparticles were distinguishable, the wave function must

be complex (Dirac nature).
2CγTµ C

−1 = −γµ.
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as

LM = 1
2νLi
←→
/∂ νL −

M

2 (νLCνLT − νLC†νL) (2.1.10)

If now three generation of Majorana neutrinos are considered the Majorana mass

term becomes

L = 1
2
∑
α ,β

ν ′
T
αLC†ML

αβν
′
β L (2.1.11)

As in the case of Dirac neutrinos, it is necessary to diagonalise the complex symmetric

matrixML. This, as usual, is achieved by introducing the 3×3 unitary matrix V nuL

(V ν
L )TMLV ν

L = Mν . (2.1.12)

The diagonalisation is achieved by the change of basis ν ′L→ V ν
L → νL.1 Using this,

the Majorana mass term can be written as

L = 1
2

3∑
i=1

miν
C
iLνiL + h.c (2.1.13)

As in the case of Dirac neutrinos, the leptonic Lagrangian with Majorana neutrinos

can be written as in Eq. (2.1.1) with the Majorana mixing matrix U . Nevertheless,

there is an important difference compared to the Dirac mixing matrix. The Majorana

mass term is not invariant under the global U(1) symmetry. Therefore the physical

CP–violating phases in the Majorana mixing matrix are three instead of one. The

Majorana mixing matrix can be written in terms of the unitary Dirac mixing matrix

in Eq. (2.1.8) and a diagonal matrix Pν with two independent phases

UM = UDPν (2.1.14)

In the following section the discussion of the PMNS matrix parametrization is given

in more detail.
1Here ν′L corresponds to the LH flavour fields and νL to the fields with definite mass.
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2.1.2 PMNS matrix

The PMNS matrix given in Eq. (2.1.8) and Eq. (2.1.14) for Dirac and Majorana

neutrinos, can generically be written as

Uαi = P`, ααV
` †
α jV

ν
j iPν, ii (2.1.15)

where P` is a 3×3 phase matrix and Pν a diagonal matrix, both introduced such that

they reduce the number of phases in the PMNS matrix (UPMNS). In the standard

PDG parametrisation of the UPMNS [47], the matrix for three neutrinos is assumed

to be unitary, i.e.

U †U = 1 →
∑
α

U∗α jUα i = δij, (2.1.16)

hence there are three flavour mixing angles (θ12 , θ13 , θ23) and one (or three) CP–

violating phase(s) corresponding to Dirac (or Majorana) nature of neutrinos. With

this standard parametrisation the explicit form of Eq. (2.1.15) is

UPMNS =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e

−iδν

0 1 0

−s13e
iδν 0 c13




c12 s12 0

−s12 c12 0

0 0 1

Pν

=


c12c13 s12c13 s13e

−δν

−s12c23 − c12s13s23e
δν c12c23 − s12s13s23e

δν c13s23

s12s23 − c12s13c23e
δν −c12s23 − s12s13c23e

δν c13c23

Pν (2.1.17)

where cij ≡ cos θij and sij = sin θij. δν is the CP–violating phase which is referred

to as Dirac phase. Analogous to the quark case discussed in chapter 1 the mixing

matrix of Dirac neutrinos depends on these four physical parameters. Therefore, the

diagonal matrix Pν will be simply a unit matrix. In the case where neutrinos are

considered to be Majorana particles, the diagonal Pν contains additional arbitrary

phases (ρ and σ), called Majorana phases. As a consequence, the physical CP–

violating phases in the Majorana mixing matrix are three instead of one. This is

due to the fact that the Majorana mass term in Eq. (2.1.13) is not invariant under
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global U(1) gauge transformations.

2.1.3 Theory of Neutrino Oscillation

Neutrino flavor oscillations are generated by the mixing of different massive neutrinos

[46, 49]. The probability of the neutrino to oscillate in vacuum from one state to

another will be discussed in this section [50].

A neutrino with flavor α created in a CC weak interaction process from a charged

lepton `α is described by the flavour state, see Eq. (2.1.2),

|να〉 =
∑
i

U∗α i|νi〉 (2.1.18)

The massive neutrino states evolve in time as plane waves,

|νi(t)〉 = e−iEit|νi〉 (2.1.19)

where Ei =
√
m2
i + ~p 2 is the massive neutrino energy. From Eq. (2.1.18) and Eq.

(2.1.19) the time evolution of a neutrino state of flavour α is given as

|να(t)〉 =
∑
i

U∗α ie−iEit|νi〉. (2.1.20)

Using the unitarity relation, Eq. (2.1.16) we can instead write the mass states in

terms of the flavor states as follows

|νi〉 =
∑
α

Uα i|να〉 (2.1.21)

and this result can be introduced into Eq. (2.1.20) to obtain

|να(t)〉 =
∑
β

∑
i

U∗α ie−iEitUβ i|νβ〉 (2.1.22)

this means that the superposition of massive neutrino states |να(t)〉, where |να(0)〉 =

|να〉, becomes a superposition of different flavor states if neutrinos are mixed. The

amplitude of να → νβ transition as a function of time is given by

Aνα→νβ(t) =
∑
i

U∗α iUβ ie−iEit (2.1.23)
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and the transition probability is given by Pνα→νβ(t) = |Aνα↔νβ(t)|2

Pνα→νβ(t) =
∑
i

∑
j

U∗α iUβ iUα jU∗β je−i(Ei−Ej)t (2.1.24)

In the case of ultra-relativistic neutrinos mi << 1, the energy–momentum relation

Ei =
√
m2
i + ~p 2 can be approximated by

Ei ∼ E + m2
i

2E , with E = |~p| (2.1.25)

then, the probability can be written in terms of the neutrino squared–mass difference

∆m2
ij = m2

i −m2
j

Pνα→νβ(t) =
∑
i

∑
j

U∗α iUβ iUα jU∗β je−i
∆m2

ijL

2E (2.1.26)

where we have approximated t ∼ L and L is the distance from the neutrino source

to the detector. From Eq. (2.1.26) we can highlight several things

• Measurements of neutrino oscillations provide information on the values of the

squared–mass difference ∆m2
ij and the elements of the UPMNS matrix.

• It is only possible to obtain values of the squared–differences but not the

absolute values of neutrino masses, i. e. mi or mj.1

• The oscillation probability depends on the elements of the mixing matrix UPMNS

through

U∗α iUβ iUα jU∗β j. (2.1.27)

This quadratic product does not depend on the choice of parametrisation and is

invariant under re-phasing transformations. This means that it is independent

of any phases that can be factorised. Therefore in the case of Majorana

neutrinos, neutrino oscillations are independent of the Majorana phases (ρ,σ)

factorised in a diagonal matrix on the right, see Eq. (2.1.17). Consequently

Majorana phases cannot be measured in neutrino oscillation experiments.
1From solar neutrino experiments we know mi > mj .
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2.1.4 Type-I Seesaw Mechanism

The seesaw model is an extension to the SM of particle physics which introduce

n RH neutrinos. This mechanism supplies with a very elegant way to explain the

non-zero neutrino masses and their smallness with respect to other fermions in the

SM [51]. The Lagrangian of the type-I seesaw model is given as [52, 53, 54],

LI = 1
2NI /∂NI − yIαNIΦ†Lα −

1
2NIMIJ(NIJ)C + h.c (2.1.28)

MIJ is a Majorana mass matrix of the fields NI , yIα are the Yukawa couplings

between the sterile neutrino field, the Higgs Φ = iσ2φ
∗ field and the leptons L, see

Eq. (2.1.3).1

In this work we will work in the minimal type–I seesaw which corresponds to including

only two RH neutrinos NI (I = 1, 2). When the Higgs field acquires a vacuum

expectation, see section 1.1 and section 2.1.1, it generates a matrix of complex Dirac

masses (mD)Iα for LH and RH neutrinos, which is proportional to the Yukawa

coupling,

(mD)Iα = yIαv√
2

(2.1.29)

with v = 245GeV the Higgs vacuum expectation value. After SSB, the Lagrangian

containing the neutrino mass terms can be written as,

LMI ⊂ −
1
2
(
ναL

C NI

) 0αβ (mT
D)αJ

(mD)Iβ MIJ


 ν

L
β

NC
J

+ h.c (2.1.30)

The mass matrix MN corresponding to the minimal type-I seesaw is therefore a 5×5

matrix,

MN =

 0αβ (mT
D)αJ

(mD)Iβ MIJ

 (2.1.31)

This can be diagonalized as in section 2.1.1, with a unitary matrix. The diagonalized
1Here we have changed the notation from νR to NI to indicate we are working with a heavy

RH neutrino.
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mass matrix reads

MN
D =

miδij 0

0 MIδIJ

 (2.1.32)

where mi stands for the three light neutrinos m1, m2, m3 and MI stands for the two

heavy neutrinos N1 , N2. In this thesis, we are considering the case where the RH

neutrino masses are larger than the EW scale, this is the seesaw limit.

The Majorana mass matrix given in Eq. (2.1.31) can be taken as already diagonalized.

MN →MN ≈

mαβ 0

0 MIJ

 (2.1.33)

where the mass matrix of the light neutrinos is given as,

mαβ = −(mD)TαIM−1
IJ (mD)Jβ (2.1.34)

at the seesaw limit, the heavy neutrino mass eigenvalues coincide with the RH

neutrino asses at the Lagrangian level. Moreover, Eq. (2.1.34) indicates that in

the type I seesaw, the masses of the active neutrinos are suppressed by MI . For a

more detailed review we refer the reader to [55, 56, 57]. The mαβ matrix can be

diagonalized by means of a unitary matrix U . This is further discussed in this work.

2.2 Relevant Aspects of Dark Matter

There exists strong evidence pointing towards the presence of dark matter (DM) in

the Universe. However DM remains an unresolved mystery in cosmology and particle

physics that the community actively is addressing [58, 59, 60].

The first evidence of DM, was found by Zwicky [35, 36] who, by observing the

dynamics of cluster of galaxies concluded that, inside the cluster, a significant fraction

of matter was invisible to us. Several years after this observation, another striking

evidence for dark matter was found by, independently, Vera Rubin’s and Albert

Bosma’s in the observation of the rotation of curves of galaxies [37, 38]. In fig. 2.1a
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(a) (b)

Figure 2.1: 2.1a shows the rotation curves for NGC 6503 galaxy in
function of the radial distribution. The dashed line cor-
respond to the expected curve of rotation from visible
matter. The dotted dashed line is the contribution from
the DM halo, fig. taken from [63]. In 2.1b Temperat-
ure anisotropy of CMB from Planck collaboration. Fig.
taken from [62]

an example of a rotation curve from the Galaxy NCG 6503 is shown. According

to Newtonian dynamics, it is possible to establish a relation between the rotation

velocity the stars within our galaxy and its mass distribution. Theoretically, the

rotation velocity is expected to fall off with the distance according to 1/
√
r. However

Albert Bosma and Vera Rubin’s observations shown a flat behaviour at large distances

and so proving that the velocity remains constant at the edge of the visible galaxy.

Furthermore, simulations of the evolution of structure formation in the Universe,

showed that the formation of galaxies could not happen if only ordinary matter is

taken into account. A large amount of dark matter is required to explain observations

of large-scale-structures [39]. Finally, analysis of the power spectrum of the Cosmic

Microwave Background (CMB) gives information about the composition of the

Universe, such as the abundance of baryons and dark matter. Measurements of the

CMB by the Planck Satellite has reported ΩDMh
2 = 0.120± 0.001, confirming that

the Universe is composed of a large amount of dark matter[61, 62].

Since the very first evidence of the existence of DM, there has been great theoretical

and experimental efforts to understand its nature. In the first part of this section,

I briefly discuss some of the most important DM candidates. In the second part, I

present the relevant DM experimental searches.
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2.2.1 Dark Matter Candidates

Based on all the cosmological and astrophysical evidence, physicists have proposed

several DM particle(s) candidates, which needs to be neutral, non-baryonic, non-

relativistic, stable and collisionless.

One simple classification of DM is based on how relativistic they are when leaving

thermal equilibrium in the early Universe. Hot DM (HDM) is still relativistic

when decoupling and is in the range of up to a few tens of eV. It did not cluster

to form clumps, instead galaxies formed only in super cluster regions where the

matter distribution has locally collapsed [64]. Therefore HDM can only contribute

to a small fraction of the total DM density. On the other hand cold DM (CDM)

generally successfully explains the formation of large scale structure, producing

numerical solutions in agreement with observations. However, it predicts too many

substructures and possibly the wrong dark matter halo profile in observed dwarf

galaxies [65]. Warm DM (WDM) could solve the CDM problems at small scales.

WDM particles are usually relativistic at the time of their decoupling and become

non relativistic afterwards.

The following list contains the most relevant DM particle candidates considered in

this thesis.

• SM neutrinos

Neutrinos have all the essential characteristics for being a potential DM can-

didate, such as being stable, neutral and without strong interactions. However,

neutrino masses are so small that they would not be able to produce the

observed large-scale-structures of our Universe in the simplest frameworks.

Therefore, neutrinos cannot be a dominant component of DM. For a more

complete review see Ref. [57].

• Sterile neutrinos
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As originally proposed by Dodelson and Widrow [66], sterile neutrinos with

a mass in the keV range are viable DM candidates. They are meant to be

produced in the early Universe at very high temperatures and are usually

referred to as WDM. For a complete review of sterile neutrinos in cosmology

see Ref. [67].

Observational constraints on sterile neutrinos particle are placed from indirect

detection through sterile neutrino decays (νN → 3ν) [68] and loop mediated

radiative decays νN → ν + γ [69]. The later is the main focus of this work and

will be further discussed in chapter 3.

• Weakly Interacting Massive Particle (WIMP)

Thermal WIMPs are produced and kinetically decouple in the early Universe

after becoming non-relativistic. Because they are usually cold at decoupling,

they are referred to as Cold DM. These hypothetical candidates are in the

range of masses of tens of GeVs and are one of the best theoretically motiv-

ated candidates as their natural scale coincides with the scale of electroweak

symmetry breaking (EWSB) in the thermal standard scenario. Within this

classification, there are many DM-like WIMP particle candidates. We refer the

reader to ref. [70] for a more complete review on WIMP particle candidates.

2.2.2 Searches for Dark Matter

In the following section, the techniques and current experiments searching for DM

are briefly summarised. All experiments and techniques rely on the assumption that

DM particles have a tiny interaction with SM particles.

• Direct detection

These experiments are based on the hypothesis that DM particles interact

weakly with SM particles, i.e. χSM → χSM . Their aim is to measure the

recoil energy generated after a DM particle scatters off a nucleus. Experiments
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are usually placed underground to avoid background such as cosmic rays. Some

examples of direct detection experiments are, XENON1T [41, 71, 72], Lux[73],

PandaX [74], and CRESST [75].

Such experiments have set limits in a wide range of DM masses, but the

best constraint comes from XENON1T at a DM mass around 30 GeV and

DM–nuclei cross section of σ ∼ 4.1× 10−47cm2 [41].

• Indirect detection

This type of experiment is based on the annihilation of DM particles to SM

particles, i.e. χχ→ SM SM . Satellite and ground based telescopes are aiming

to detect a signal on top of the background signal produced by well-known

astrophysical processes. Examples of these experiments are CTA [76], IceCube

[77], AMS [78], Fermi-LAT [79].

• Collider searches

Similarly to direct and indirect detection, collider searches rely on the assump-

tion that DM can be produced in SM particle collisions, i.e. SM SM → χ, χ.

Just as neutrinos, the DM particle will not leave any particular signature in

the detector. For more details on how collider searches work, see Ref. [80].

2.3 Theory of Radiative Transfer

Observation of gamma–rays from different sources in the Universe are key to searches

for BSM physics. More specifically, the polarisation of these electromagnetic waves

encodes important information on BSM interactions [44]. However, when propagat-

ing through our universe this information can be washed out due to further interaction

with other kind of particles. It is thus necessary to establish a formalism that allows

to understand and address such a problem.

The immediate solution comes from radiative transfer established by Chandrasekhar,

who described the polarisation of starlight after scattering off dust particles in the at-
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mosphere using a geometrical approach and introducing modified Stokes parameters,

referred to as (Il, Ir, U, V )[81]. His results for the radiative transfer are encapsulated

in the so-called Phase–matrix (P–matrix) which describes the change in polarisa-

tion after scattering. In 1994 Kosowsky extended Chandrasekhar’s formalism and

described the polarisation of the Cosmological Microwave Background (CMB), as it

propagates in an expanding (inhomogeneous) Universe using a QFT approach (see

Ref. [82]).

Due to the nature of Rayleigh and Thomson scattering interactions, both Chandra–

sekhar and Kosowsky concluded that, a low energy (Eγ < me) circular polarisation

signal cannot generate a linearly polarised component nor can it be produced by the

scattering of a linear polarisation signal off cosmic material. Yet the intensity of a

circularly polarised signal can change after scattering.

In this section we review the formalism introduced by Chandrasekhar to determine

the polarisation of the visible light after Thomson or Rayleigh scattering. We also

discuss possible sources of circularly polarised photons.

2.3.1 Electromagnetic Radiation and its Polarisation

The electric field ~E can be expressed as the linear combination of two perpendicular

polarisation vectors ~εl and ~εr,

~E(x, t) = (Er ~εr + El ~εl)ei(wt−k·x) , (2.3.1)

where Er = are
iδr and El = ale

iδl with al,r being real and δl,r being the phases of

El,r, respectively. From this definition, it follows that the two (orthogonal) vectors

~εl and ~εr, which define the polarisation plane (see Fig. 2.2), can be written as [83]

~εl(k) = 1
k0kT

(kxkz, kykz,−k2
T ) ,

~εr(k) = 1
kT

(−ky, kx, 0) , (2.3.2)



48 Chapter 2. Background

where k refers to the 3-momentum of the propagating light k = (kx, ky, kz) and

kT =
√
k2
x + k2

y. When the two phases are the same δl = δr = δ, the electric field is

linearly polarised, and can be expressed as,

~E(x, t) = (ar ~εr + al~εl ) eiδei(wt−k·x) . (2.3.3)

When the phases differ by δl − δr = ±π/2 and the amplitudes are the same (ar =

al = a), the electric field rotates around the propagation direction and the light is

circularly polarised. The electric field then reads

~E(x, t) = (~εr ± i~εl) a eiδrei(wt−k·x) . (2.3.4)

For convenience, we will define another set of perpendicular vectors ~ε± as a linear

combination of ~εl,r, which can be written as

~ε±(k) = 1√
2

(∓~εl − i~εr) , (2.3.5)

where ~ε+ and ~ε− describe photons with positive and negative helicity along the

propagating direction respectively. The electric field in this “±" basis, reads as

~E(x, t) = (E+~ε+ + E−~ε−) ei(wt−k·x) , (2.3.6)

where E± are given by

E+ =− al e
iδl − iar eiδr√

2
,

E− =al e
iδl + iar e

iδr

√
2

. (2.3.7)

Without loss of generality, one can always re-parametrise E± as E± = a±e
iδ± with

a± being absolute values in the ± basis and δ± the associated phases. The (l, r)

basis is more convenient to describe the linearly polarised light while the ± basis

is more appropriate to describe circularly polarised light. We will use both in the

following, depending on whether the emphasis is on circular or linear polarisation.
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Figure 2.2: Illustration of the scattering plane formed by the incom-
ing and outgoing photon directions. Before the scatter-
ing, the εr and εl vectors that define the polarisation
plane are parallel and perpendicular to the scattering
plane, so we denote them by ε(1)

⊥ and ε
(1)
|| respectively.

After the scattering, the polarisation plane (defined by
ε

(2)
⊥ and ε(2)

|| ) forms an angle θ with respect to the initial
polarisation plane.

Stokes Parameters

One can describe the polarisation of light using four Stokes parameters. In the

conventional formalism, the I–parameter measures the intensity of the polarisation

signal, the Q– and U–parameters provide information regarding the linear polar-

isation of that signal and the V –parameter indicates whether the observed light is

circularly polarised.

In the (l, r) basis, the Stokes parameters are defined by

I = |~εl · ~E|2 + |~εr · ~E|2 = a2
l + a2

r ,

Q = |~εl · ~E|2 − |~εr · ~E|2 = a2
l − a2

r ,

U = 2 Re[(~εr · ~E)∗ × (~εl · ~E)] = 2 ar al cos(δr − δl) ,

V = −2 Im[(~εr · ~E)∗ × (~εl · ~E)] = 2 ar al sin(δr − δl) , (2.3.8)

while in the ± basis (defined by Eq. (2.3.5)), the Stokes parameters read as

I = |~ε+ · ~E|2 + |~ε− · ~E|2 = a2
+ + a2

− ,

Q = −2 Re[(~ε+ · ~E)∗ × (~ε− · ~E)] = −2 a+ a− cos(δ+ − δ−) ,
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U = 2 Im[(~ε+ · ~E)∗ × (~ε− · ~E)] = 2 a+ a− sin(δ+ − δ−) ,

V = |~ε+ · ~E|2 − |~ε− · ~E|2 = a2
+ − a2

− . (2.3.9)

This last equality indicates that there is no net circular polarisation (V = 0) when

the number of polarisation states are the same (a2
+ = a2

−).

Stokes Operator

To describe the change in polarisation and relate the Stokes parameters before and

after scattering using Quantum principles, we first need to remind the reader of the

definition of a photon quantum state. The latter reads as [84]

|γ(α)〉 = ar e
iθr | ε(α)

r 〉 + al e
iθl | ε(α)

l 〉 , (2.3.10)

where |ε(α)
r, l 〉 are the polarisation states and α = 1, 2 denotes the initial and final

states, respectively. Let the operator for the Stokes parameters be Ŝ = (Î , Q̂, Û , V̂ ),

then the associated observables can be constructed using the relationship

S(α) ≡ 〈S(α)〉 = 〈γ(α) | Ŝ(α) | γ(α)〉 , (2.3.11)

with Ŝ(α) being the Stokes operators for the initial or final states defined as

Ŝ(α) = W |ε(α)
j 〉 〈ε

(α)
i | (2.3.12)

with i, j = r, l or ±. In the (l, r) basis, the Stokes operator takes the form


Î

Q̂

Û

V̂



(α)

=



1 0 0 1

1 0 0 −1

0 1 1 0

0 −i i 0


︸ ︷︷ ︸

W



|εl〉〈εl|

|εr〉〈εl|

|εl〉〈εr|

|εr〉〈εr|



(α)

, (2.3.13)
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which leads to the definitions in Eq. (2.3.8). In the ± basis, the Stokes operators

take the form 

Î

Q̂

Û

V̂



(α)

=



1 0 0 1

0 −1 −1 0

0 i −i 0

1 0 0 −1


︸ ︷︷ ︸

W



|ε+〉〈ε+|

|ε+〉〈ε−|

|ε−〉〈ε+|

|ε−〉〈ε−|



(α)

, (2.3.14)

leading to the definitions in Eq. (2.3.9).

2.3.2 Theory of Classic Radiative Transfer

Chandrasekhar was able to predict the polarisation of sunlight after scattering

off dust particles [81] by using a geometrical description of the scattering and by

introducing a modified set of Stokes parameters (Il, Ir, U, V ). Here, Il, Ir are the

intensity components (I = Il + Ir) of the signal in the scattering plane, which is

defined by the εl,r vectors shown in Fig. 2.2. These vectors are themselves defined

with respect to the (ε||,ε⊥) vectors that define the polarisation plane. One can also

define Q = Il − Ir, with Ir = a2
r and Il = a2

l .

The reason why Chandrasekhar could describe the radiative transfer using such

a geometrical approach instead of Quantum Field Theory is that at low energy,

the scattering changes the direction of the outgoing particles but has a negligible

effect on the energy of the scattered particles. Hence, it is possible to express the

radiative transfer in 2D using the one angle between the incident and outgoing

photons (see Fig. 2.2). This makes the relation between the outgoing and incoming

Stokes parameters extremely simple. In 3D, the same geometrical approach requires

4 angles. It is thus somewhat easier to first describe the scattering in 2D and

then embed the result in 3D. The description of the radiative transfer in 2D is

encapsulated in the so-called R–matrix whereas the 3D description is encapsulated

in the P–matrix, and it can be summarised as,
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

Il

Ir

U

V



(2)

= R



Il

Ir

U

V



(1)

, (2.3.15)

where the superscript (1) and (2) denote the parameters before and after scattering

respectively. Since at low energy and in the scattering plane the photons are scattered

with an angle θ in the l direction (see Fig. 2.2), one can deduce that I(2)
l = cos2 θ I

(1)
l

and I(2)
r = I(1)

r . Therefore the R–matrix for Thomson scattering reads as,

RChandrasekhar =



cos2 θ 0 0 0

0 1 0 0

0 0 cos θ 0

0 0 0 cos θ


. (2.3.16)

The P–matrix is then readily obtained by first rotating the plane defined by the

incoming polarisation vectors by an angle −Φ1 and then rotating the outgoing

direction by π − Φ2, as shown in Fig. 2.3b. This leads to the following relationship

between the P– and the R–matrices [81]

PChandrasekhar = L(π − Φ2) RChandrasekhar L(−Φ1) , (2.3.17)

where L(Φ) is defined as,

L =



cos2 Φ sin2 Φ −1
2 sin 2Φ 0

sin2 Φ cos2 Φ 1
2 sin 2Φ 0

sin 2Φ − sin 2Φ cos 2Φ 0

0 0 0 1


(2.3.18)

and leads to the relation displayed in Appendix C.2 for the P–matrix, which even-

tually (see Appendix D and Fig. 2.3) leads to
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Figure 2.3: In panel (a), we show the scattering plane in an absolute
referential frame. The latter is defined by the scattering
of an incoming photon off a particle located in O (see
green vectors). One can associate a polarisation state
for each incoming and outgoing particle, i.e. (ε(1)

l , ε(1)
r )

and (ε(2)
l , ε(2)

r ), noting that εl must be parallel (and
εr perpendicular) to the plane formed by the z–axis
and the corresponding photon direction. In this figure,
Φ1,2 are the angles between the ε(1,2)

l vector and the
scattering plane respectively. In panel (b) we define,
using the green colour, the parallel and perpendicular
directions to the scattering plane as ε(1,2)

||,⊥ . We show the
two rotations that are needed to obtain the P–matrix,
namely L(−Φ1) to rotate the ε(1)

l,r to the ε(1)
||,⊥ basis and

L(π − Φ2) to rotate the ε(2)
||,⊥ to ε(2)

l,r .
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PChandrasekhar =



P11 µ2
2 s

2
12 P13 0

µ2
1 s

2
12 c12 (µ1 c12 s12) 0

P31 −2(µ2 c12 s12) P33 0

0 0 0 P44


(2.3.19)

with

P11 =
(
µ1 µ2 c12 +

√
1− µ2

1

√
1− µ2

2

)2
,

P13 = 1
2 µ

2
2 µ1 sin 2(θ2 − θ1) + µ2

√
1− µ2

1

√
1− µ2

2 s12,

P31 = −1
2 µ2 µ

2
1 sin 2(θ2 − θ1)− µ2

√
1− µ2

1

√
1− µ2

2 s12,

P33 =
√

1− µ2
1

√
1− µ2

2 c12 + µ1 µ2 cos 2(θ2 − θ1),

P44 =
√

1− µ2
1

√
1− µ2

2 c12 + µ1 µ2 ,

(2.3.20)

and s12 = sin(θ2 − θ1), c12 = cos(θ2 − θ1), µ1,2 = cosφ1,2.

We note that it is actually possible to get both R and P–matrices without using

geometrical arguments. Instead, one can use the definitions of the electric field in

Eq. (2.3.1) and Stokes parameters in Eq. (2.3.8). This is demonstrated in Appendix

C.1 where we substituted the polarisation vectors by their rest frame kinematics.

This is important as this means that one should be able to use the definitions of the

square matrix amplitude for Thomson interactions, which is given in terms of the

polarisation vectors, and replace them by their kinematics to obtain the P–matrix.

Indeed the square matrix amplitude for Thomson interactions reads as

|M|2 ∝
∑
λ=r,l

∑
β=r,l
|ε(1)
λ · ε

(2)
β |

2 (2.3.21)

where ε(1)
l,r and ε(2)

l,r are the polarisation vectors associated with the l, r directions in

the scattering plane.
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Since this amplitude essentially conveys the information about the intensity of the

signal, one can write it as the following matrix:

Il
Ir


(2)

=

|ε
(1)
l · ε

(2)
l |

2 |ε(1)
l · ε

(2)
r |2

|ε(1)
r · ε

(2)
l |

2 |ε(1)
r · ε(2)

r |2


Il
Ir


(1)

. (2.3.22)

which after substitution (assuming electrons at rest) reads as
Il
Ir


(2)

=

cos θ2 0

0 1


Il
Ir


(1)

. (2.3.23)

Summing over all the elements to get the total intensity I, we obtain

|M|2 ∝ 1 + cos2 θ , (2.3.24)

which is indeed the square matrix element for the Thomson (i.e. low energy) inter-

actions. The same exercise in 3D leads to the elements of the P–matrix as given by

Chandrasekhar in [81] and eventually gives the following square matrix element

|M|2Thomson ≡
3
4

[
1 + µ2

1 µ
2
2 + (1− µ2

1)(1− µ2
2) c12

+ 2µ1 µ2

√
(1− µ2

1)
√

(1− µ2
2) c12

]
. (2.3.25)

which again leads to the well-known expression of the Thomson cross section in the

electron rest frame, namely

|M|2Thomson,rest ≡ 1 + cos2 φ2 . (2.3.26)

where φ2 is the angle between the outgoing photon direction and the initial electron.

There is therefore a strong connection between the P–matrix that Chandrasekhar

obtained and the square matrix amplitude that one can derive using QFT.

It is possible to define the equivalent of the R–matrix and P–matrix in terms of

the (I,Q, U, V ) Stokes parameters. To avoid a possible confusion, we will denote by

R′ and P′ the equivalent R and P–matrices obtained using the (I,Q, U, V ) Stokes
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parameters. In other words,



I

Q

U

V



(2)

= R′ (or P′)



I

Q

U

V



(1)

. (2.3.27)

Using the definitions of the Stokes parameters in the ± basis, see Eq. (2.3.9), we

obtain

R′ =



3 + cos 2θ −2 sin2 θ 0 0

−2 sin2 θ 3 + cos 2θ 0 0

0 0 4 cos θ 0

0 0 0 4 cos θ


(2.3.28)

and

P′ =



P′11 P′12 P′13 0

P′21 P′22 P′23 0

P′31 P′32 P′33 0

0 0 0 P′44


(2.3.29)

with

P′11 =
(
µ2

1µ
2
2 + 1

)
c2

12 + 2
√

1− µ2
1

√
1− µ2

2 µ1µ2c12 + (1− µ2
1)(1− µ2

2) + s2
12

(
µ2

1 + µ2
2

)
,

P′12 =
(
µ2

1µ
2
2 − 1

)
c12 + 2

√
1− µ2

1

√
1− µ2

2 µ1µ2c12 + (1− µ2
1)(1− µ2

2) + s2
12(µ2

1 − µ2
2) ,

P′13 = − 2 s12

(√
1− µ2

1

√
1− µ2

2 µ2 + c12µ1

(
µ2

2 − 1
))

,

P′21 =
(
µ2

1µ
2
2 − 1

)
c12 + 2

√
1− µ2

1

√
1− µ2

2 µ1µ2c12 + (1− µ2
1)(1− µ2

2) + s2
12

(
µ2

2 − µ2
1

)
,

P′22 =
(
µ2

1µ
2
2 + 1

)
c12 + 2

√
1− µ2

1

√
1− µ2

2 µ1µ2c12 + (1− µ2
1)(1− µ2

2)− s2
12

(
µ2

1 + µ2
2

)
,

P′23 = 2 s12(
√

1− µ2
1

√
1− µ2

2 µ1 + c12µ2

(
µ2

1 + 1
)
) ,

P′31 =− 2 s12

(√
1− µ2

1

√
1− µ2

2 µ1 + c12

(
µ2

1 − 1
)
µ2

)
,

P′32 =− 2s12

(√
1− µ2

1

√
1− µ2

2 µ2 + c12

(
µ2

2 + 1
)
µ1

)
,
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P′33 = 2
(√

1− µ2
1

√
1− µ2

2 c12 + µ1µ2 cos 2(θ2 − θ1)
)
,

P′44 = 2
(
c12

√
1− µ2

1

√
1− µ2

2 + µ1µ2

)
(2.3.30)

with s12 = sin(θ2 − θ1), c12 = cos(θ2 − θ1), µ1 = cosφ1 and µ2 = cosφ2. The

transformation from the R′–matrix to the P′–matrix is given in Appendix C.3.

2.3.3 Sources of Electromagnetic Radiation

Describing the propagation of polarised light is crucial to get information from our

Universe. Such information could be about some of possible mechanisms that may

give rise to a circular polarisation signal (V 6= 0). They are listed below.

• Faraday Conversion

Circular polarisation can be generated by Faraday conversion of linear po-

larisation. This mechanism takes place when linearly polarised photons pass

through a strong magnetic field. A phase shift is generated in the photon linear

polarisation components, and eventually leads to a circular polarisation signal.

• Bi-refringence

Another way to produce circular polarisation signals is through birefringence,

see [85] for details. Birefringence occurs when a linear polarisation signal passes

through a medium of aligned grains whose alignment twists along the line of

sight. When the amount of linear polarisation is high (as this could occur for

example in reflection nebulae), a high degree of circular polarisation could be

produced [86].

• Synchrotron emission

Synchrotron emission can emit polarised light [87, 88, 89, 90, 91, 92, 93, 94,

95, 96] and was proposed as a source of circular polarisation in e.g. Ref [97]

and then developed by Legg [98]. This mechanism continues to be studied, in

particular in light of the recent progress regarding strong magnetic fields as
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well as homogeneous and inhomogeneous magnetic fields see Ref. [99, 100, 101].

We note in addition that a circular polarisation signal may be of intrinsic

origin [102, 103] (i.e. it could be generated in absence of Faraday conversion

of linear polarisation in sites where there exists a large-scale magnetic field).

• Parity-violating interactions and charge asymmetry

Circular polarisation could be produced in cosmic accelerators when Standard

Model particles of the same charge (for example proton-proton) collide with

each other and produce an excess of positive (negative) mesons and muons with

respect to their negative (positive) counterparts [104], which eventually decay

radiatively through parity-violating interactions. Electroweak (loop-induced)

interactions of photons with the cosmological neutrino background could also

create a circular polarisation signal [105], although the signal is expected to be

very small. A circular polarisation signal could also be generated by beyond

the Standard Model interactions, see for example [44, 85, 106, 107, 108, 109,

110, 111, 112, 113].

• 21 cm

Finally a circular polarisation signal is expected in conjunction with the 21 cm

line [114]. The Hydrogen excitation that generates the circular polarisation

signal is produced due to the interaction of the Hydrogen with the CMB

quadrupole moment and could be measured in the future with an array of

dipole antennas. Such a signal would indicate the existence of primordial

gravitational waves [115].



Chapter 3

Neutrino Radiative Decay and

Circular Polarisation

The electromagnetic dipole moments of neutrinos can be generated at various loop

levels and radiative decays νi → νf +γ are induced by off-diagonal parts of the dipole

moments [69, 116, 117, 118, 119, 120]. Charged current interaction contributions in

the SM have previously been calculated at one-loop level in [69, 116, 117, 118, 119]

and later studied in detail in [121, 122]. However, these contributions are tiny due

to the large mass hierarchy between the active neutrinos and the W boson so there

is currently no positive experimental indication in favour of their existence. Whilst

neutrino radiative decays have been extensively studied for some mass regions of

neutrinos, CP violation in these processes has not been studied for a more general

spectrum of mass scales with very few exceptions e.g. [123]. Based on Ref. [1], we

will study CP violation in radiative decays of both Dirac and Majorana neutrinos.

In Sec. 3.2, we outline the most general formalism of CP violation and circular polar-

isation in terms of form factors where the result is independent of the neutrino model

or mass scale. In Sec. 3.3, we discuss CP violation based on a simplified neutrino

model. We begin this section with a discussion about the size of CP asymmetry for

the SM contribution and then consider how CP violation can be enhanced via new

interactions. A comprehensive analytical calculation of CP asymmetry based on
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Yukawa type BSM interactions is then performed. Finally, we summarise in Sec. 3.4

3.1 Introduction

Neutrino electromagnetic interactions provide a tantalising probe for physics beyond

SM (BSM) (for a comprehensive review, see [124] ). If more massive neutrinos exist,

they may decay to lighter active neutrinos radiatively. These heavier neutrinos

will consequently have a larger decay width due to the existence of such decay

channels. Various hypothetical heavier neutrinos have been historically introduced,

motivated by a combination of theoretical and phenomenological reasons. Some

of the most famous ones are those introduced in the type-I seesaw mechanism

[53, 125, 126, 127, 128, 129] proposed in order to address the origin of sub-eV left-

handed neutrino masses. Additionally, phenomenological motivations have suggested

keV sterile neutrinos as dark matter (DM) candidates to explain the detection of a 3.5

keV X-ray line in [130, 131] (for some representative reviews, see [132, 133, 134]). Very

heavy DM was also proposed in order to explain the IceCube data [135, 136, 137, 138].

Radiative decays of such heavy particles may be more significant than those of active

neutrinos due to their very large relative mass. Hence, radiative decay is typically a

major channel of importance in detecting possible keV sterile neutrino DM.

A process involving neutrinos CP violation may exist. At low energy, neutrino

oscillations provide the best way to clarify its existence in the neutrino sector.

Combined analysis of current accelerator neutrino oscillation data [139] supports

large CP violation in the appearance channel of neutrino oscillations [140, 141]. The

next-generation neutrino oscillation experiments DUNE and T2HK are projected

to observe CP violation in the near future [142, 143, 144]. At high energy, the

most well-studied process involving CP violation is the very heavy right-handed

neutrino decaying into SM leptons and the Higgs boson. This effect is the source

of the so-called thermal leptogenesis phenomenon, which can explain the observed

matter-antimatter asymmetry in our Universe [145]. On the other hand, if these
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heavy neutrinos have lighter masses, specifically around the GeV scale, CP violation

may appear in right-handed neutrino oscillations, which provides an alternative

mechanism for leptogenesis [146] (See [147, 148] for some reviews).

Recently, it was suggested in [44] that a net circular polarisation, specifically an

asymmetry between two circularly polarised photons γ+ and γ−, can be generated if

CP is violated in neutrino radiative decays. Therefore, the circular polarisation of

photons provides a potentially crucial probe to prove the existence of CP violation in

the neutrino and DM sectors. In this chapter we discuss a formulation introduced in

[1] to describe both CP violation in neutrino radiative decays and also the resulting

asymmetry between the produced photons γ+ and γ−.

3.2 Polarised Matrix Element

Assuming fermions are Dirac particles, the amplitude for the process νi → νf + γ±

is given by

iM(νi → νf + γ±) = iū(pf )Γµfi(q2)u(pi)ε∗±,µ(q) . (3.2.1)

Here, u(pi) and u(pf ) are spinors for the initial νi and final νf state neutrinos

respectively. By momentum conservation, the photon momentum is q = pi−pf . The

spinors include the spin polarisation of the fermions, this will be discussed in more

detail in the next subsection in a specified inertial reference frame. The transition

form factor is then parametrised as per [118, 119, 120, 149]

Γµfi(q2) = fQ
fi (q2)γµ− fM

fi (q2)iσµνqν + fE
fi (q2)σµνqνγ5 + fA

fi (q2)(q2γµ− qµ/q)γ5 . (3.2.2)

We will not consider electrically charged neutrinos, namely we require that fQ = 0.

The modification to the result in the case of non-zero fQ will be mentioned at the

end of this section. By requiring the photon to be on-shell q2 = 0 and choosing

the Lorenz gauge q · εp = 0, the anapole does not contribute. In this case, only the

electromagnetic dipole moment contributes to the neutrino radiative decay. We then
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rewrite the form factor as

Γµfi(q2) = iσµνqν [fL
fi (q2)PL + fR

fi (q2)PR] , (3.2.3)

where fL,R
fi = −fM

fi ± ifE
fi and the chiral projection operators are defined as PL,R =

1
2(1∓ γ5). The decay widths for νi → νf + γ± are then given by

Γ(νi → νf + γ±) = m2
i −m2

f

16πm3
i
|M(νi → νf + γ±)|2 . (3.2.4)

The amplitudesM(νi → νf + γ±) are directly correlated with the coefficients

M(νi → νf + γ+) = +
√

2fL
fi (m2

i −m2
f ) ,

M(νi → νf + γ−) = −
√

2fR
fi (m2

i −m2
f ) . (3.2.5)

which are derived in detail in Appendix A. The sum of the decay widths for νi →

νf + γ+ and νi → νf + γ− yields the total radiative decay width Γ(νi → νf + γ).

Again, if we only consider radiative decay for an electrically neutral antineutrino,

the amplitudes of radiative decay ν̄i → ν̄f + γ± are then given by

iM(ν̄i → ν̄f + γ±) = iv̄(pi)Γ̄µif (q
2)v(pf )ε∗±,µ(q) , (3.2.6)

where v(pi) and v(pf ) are antineutrino spinors. The decay width for ν̄i → ν̄f ,s′ + γl is

Γ(ν̄i → ν̄f + γ±) = m2
i −m2

f

16πm3
i
|M(ν̄i → ν̄f + γ±)|2 . (3.2.7)

By parametrising the form factor in a similar form to before, we have

Γ̄µif (q
2) = iσµνqν [f̄L

if (q2)PL + f̄R
if (q2)PR] , (3.2.8)

with f̄L,R
if = −f̄M

if ±if̄E
if . Therefore, the amplitudes can be written in a similar fashion

following Eq. (3.2.5), i.e. by replacing fL
fi and fR

fi by f̄L
if and f̄R

if respectively (see

the proof in Appendix (A)). These formulae can be further simplified with the help

of the CPT theorem, which is satisfied in all Lorentz invariant local quantum field

theories with a Hermitian Hamiltonian. Due to CPT invariance, ν̄i → ν̄f + γ∓ and

νf + γ± → νi have the same amplitude, and thus f̄M,E
if (q2) = −fM,E

if (q2) is satisfied
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[124], leading to

f̄L
if (q2) = −fL

if (q2) , f̄R
if (q2) = −fR

if (q2) . (3.2.9)

Hence, amplitudesM(ν̄i → ν̄f + γ+) can be simplified to

M(ν̄i → ν̄f + γ+) = +
√

2fL
if (m2

i −m2
f ) ,

M(ν̄i → ν̄f + γ−) = −
√

2fR
if (m2

i −m2
f ) . (3.2.10)

Physical neutrinos and antineutrinos are related by a CP transformation which

interchanges particles with antiparticles and replaces momentum by its parity con-

jugate p̃ = (p0,−~p). The CP transformation reverses the momentum but preserves

angular momentum. As a consequence, the polarisation is reversed. Performing a

CP transformation for νi(pi) → νf (pf ) + γ±(q) gives rise to antineutrino channels

with reversed 3D momentum and reversed photon polarisations in the final states

ν̄i(p̃i) → ν̄f (p̃f ) + γ∓(q̃). Since the amplitude is parity-invariant, the amplitude of

the process is equivalent to ν̄i(pi)→ ν̄f (pf ) + γ∓(q). Therefore, the radiative decay

of antineutrinos can be represented as a CP conjugate of the decay of neutrinos

iM(ν̄i → ν̄f + γ±) = iMCP (νi → νf + γ∓) . (3.2.11)

In the case of CP conservation, both fE
if (q2) and fM

if (q2) are Hermitian i.e. fM,E
if (q2) =

[fM,E
fi (q2)]∗. This leads to fL,R

if (q2) = [fR,L
fi (q2)]∗, namely, f̄L,R

if (q2) = −[fR,L
fi (q2)]∗

[124, 150]. And eventually, we arrive at the identity

Γ(νi → νf +γ±)−Γ(ν̄i → ν̄f +γ∓) ∝ |M(νi → νf +γ±)|2−|MCP (νi → νf +γ±)|2 = 0 .

(3.2.12)

However, a CP violating source in the interaction may contribute at loop level and

break this equality.
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3.2.1 Correlation Between CP Asymmetry and Circular

Polarisation

We define the CP asymmetry between the radiative decay νi → νf + γ+ and its CP

conjugate process ν̄i → ν̄f + γ− as

∆CP,+ = Γ(νi → νf + γ+)− Γ(ν̄i → ν̄f + γ−)
Γ(νi → νf + γ) + Γ(ν̄i → ν̄f + γ) . (3.2.13)

The CP asymmetry between νi → νf +γ− and its CP conjugate process ν̄i → ν̄f +γ+,

∆CP,−, is defined by exchanging + and − signs. The photon polarisation independent

CP asymmetry is obtained by summing ∆CP,+ and ∆CP,− together which yields

∆CP = Γ(νi → νf + γ+)− Γ(ν̄i → ν̄f + γ−) + Γ(νi → νf + γ−)− Γ(ν̄i → ν̄f + γ+)
Γ(νi → νf + γ) + Γ(ν̄i → ν̄f + γ) .

(3.2.14)

It is also convenient to define the asymmetry between the radiated photons γ+ and

γ− as

∆+− = Γ(νi → νf + γ+) + Γ(ν̄i → ν̄f + γ+)− Γ(νi → νf + γ−)− Γ(ν̄i → ν̄f + γ−)
Γ(νi → νf + γ) + Γ(ν̄i → ν̄f + γ) .

(3.2.15)

Given equal numbers for initial neutrinos and antineutrinos, ∆+− represents the

fraction (Nγ+ − Nγ−
)/(Nγ+ + Nγ−

), where Nγ+ and Nγ−
are the number of polarised

photons γ+ and γ− produced by the radiative decays respectively. It is this source

that generates circular polarisation for the radiated photons giving rise to a non-zero

Stokes parameter V .

Therefore, a non-zero ∆+− is a source of circular polarisation for the photon produced

by the radiative decay. Since the phase spaces are the same for neutrino and

antineutrino channels, these formulae can be simplified to

∆CP,+ = |fL
fi |2 − |fR

if |2

|fL
fi |2 + |fR

fi |2 + |fR
if |2 + |fL

if |2
,

∆CP,− = |fR
fi |2 − |fL

if |2

|fL
fi |2 + |fR

fi |2 + |fR
if |2 + |fL

if |2
, (3.2.16)
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as well as

∆CP = |fL
fi |2 + |fR

fi |2 − |fR
if |2 − |fL

if |2

|fL
fi |2 + |fR

fi |2 + |fR
if |2 + |fL

if |2
,

∆+− = |fL
fi |2 − |fR

fi |2 − |fR
if |2 + |fL

if |2

|fL
fi |2 + |fR

fi |2 + |fR
if |2 + |fL

if |2
. (3.2.17)

The total CP asymmetry and the asymmetry between γ+ and γ− follows simple

relations with ∆CP,+ and ∆CP,− as

∆CP = ∆CP,+ + ∆CP,− ,

∆+− = ∆CP,+ −∆CP,− . (3.2.18)

Therefore, we arrive at an important result that the generation of circular polarisation

is essentially dependent upon CP asymmetry between neutrino radiative decay and

its CP conjugate process. Note that we have not included any details related to the

Lagrangian or interactions yet. Given any neutral fermion, its radiative decay can

always be parametrised by the electromagnetic dipole moments with coefficients fL
fi

and fR
fi (as well as f̄L

if and f̄R
if for its antiparticle), we then arrive at the correlations

between CP violation and circular polarisation in Eq. (3.2.18) with their definitions

in Eqs. (3.2.16) and (3.2.17).

Another source of asymmetry between polarised photons is the existence of an initial

number asymmetry between neutrinos and antineutrinos [44]. There may be some

other CP violating sources in particle physics which can induce this condition [110].

On the other hand, this kind of asymmetry is more likely to be generated in extreme

astrophysical environments. For example, in supernovae explosions, the asymmetry

between sterile neutrinos and antineutrinos may be generated because of the different

matter effects during neutrino and antineutrino propagation [151, 152]. In the rest

of this paper, we will only consider circular polarisation directly produced by the

CP violating decays between neutrinos and antineutrinos.

Now we may turn our attention to obtaining non-zero CP violation for the radiative

decay. For νi → νf + γ+ and νi → νf + γ−, we parametrise the effective coefficients
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fL
fi and fR

fi , these should be obtained from the relevant loop calculations in the form

fL
fi =

∑
l

ClK
L
l , fR

fi =
∑
l

ClK
R
l , (3.2.19)

without loss of generality. Here, we have used l to classify the different categories

of loop contributions. For each loop category l, Cl factorises out all coefficients

of operators contributing to the diagram. KL
l and KR

l represents the pure loop

kinematics after coefficients are extracted out. As a consequence, f̄L
if and f̄R

if (namely

−fL
if and −fR

if ) corresponding to the effective parameters for ν̄i → ν̄f +γ±, can always

be represented in the form 1

fL
if =

∑
l

C∗l K
R
l , fR

if =
∑
l

C∗l K
L
l . (3.2.20)

The CP asymmetries with respect to the photon polarisations can then be simplified

to

∆CP,+ ∝ |fL
fi | − |fR

if | = −4
∑
l 6=l′

Im(ClC∗l′)Im(KL
l K

L ∗
l
′ ) ,

∆CP,− ∝ |fR
fi | − |f̄L

if | = −4
∑
l 6=l′

Im(ClC∗l′)Im(KR
l K

R ∗
l
′ ) . (3.2.21)

Therefore, a non-zero CP asymmetry is determined by non-vanishing Im(ClC∗l′) and

non-vanishing Im(KL
l K

L ∗
l
′ ) (or Im(KR

l K
R ∗
l
′ )) from loops l and l′.

While the imaginary part of Im(ClC∗l′) is straightforwardly obtained from the relevant

terms in the Lagrangian, the main task is to compute the imaginary parts of KL
l K

L ∗
l
′

and KR
l K

L ∗
l
′ . In order to achieve non-zero values of these imaginary parts, one may

apply the optical theorem which can be expressed as

ImM(a→ b) = 1
2
∑
c

∫
dΠcM∗(b→ c)M(a→ c) , (3.2.22)

1To clarify how this parametrisation is valid, we write out the subscripts explicitly, fL
fi =∑

l(Cl)fi(KL
l )fi and fR

fi =
∑
l(Cl)fi(KR

l )fi. Similarly, we can write out fL
if =

∑
l(Cl)if (K

L
l )if and

fR
if =

∑
l(Cl)if (KR

l )if . One can simplify fL
if and fR

if in the following steps. 1) The coefficient (Cl)if
must be the complex conjugate of (Cl)fi since both processes are CP conjugates of one another.
2) (KL

l )if and (KR
l )if , as pure kinetic terms, must satisfy T parity, namely they must be invariant

under the interchange of the initial and final state neutrinos νi ↔ νf , the chiralities must also be
interchanged L↔ R, namely, (KL

l )if = (KR
l )fi and (KR

l )if = (KL
l )fi. Therefore, f

L
if and fR

if can be
re-written to be fL

if =
∑
l(Cl)

∗
fi(KR

l )fi and fR
if =

∑
l(Cl)

∗
fi(KL

l )fi.
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where the sum runs over all possible sets c of final-state particles [153]. Fixing a = νi

and b = νf + γ, c has to include an odd number of fermions plus arbitrary bosons.

All particles heavier than νi cannot be included in c since this would violate energy-

momentum conservation. In other words, the RHS of Eq. (3.2.22) will be zero,

meaning that |M(a → b)|2 is real. Therefore, if we want to generate an imaginary

part in the radiative neutrino decay, this identity must be satisfied. In other words,

the mass of the particle in the initial state a must be larger than the sum of the

masses in the intermediate stat c.

In the next section, we will explicitly show how to derive a non-zero analytical result

for Im(KR
l K

R ∗
l
′ ) based on a simplified BSM model where Im(KL

l K
L ∗
l
′ ) is negligibly

small.

3.2.2 CP Asymmetry for Majorana Neutrino

The above discussion is only limited to Dirac neutrinos. However, neutrinos may also

be Majorana particles i.e. where the neutrino is identical to the antineutrino but with

potentially different kinematics. In this case, both the neutrino and antineutrino

modes must be considered together. The amplitude is then given by iMM(νi →

νf + γ±) = iM(νi → νf + γ±) + iM(ν̄i → ν̄f + γ±). Taking the explicit formulas for

the amplitudes given in Eq (3.2.5) and (3.2.10), we obtain results with definite spins

in the initial and final states as

MM(νi → νf + γ+) = +
√

2[fL
fi − fL

if ](m2
i −m2

f ) ,

MM(νi → νf + γ−) = −
√

2[fR
fi − fR

if ](m2
i −m2

f ) , (3.2.23)

The decay width ΓM(νi → νf + γ±) is still written in the form shown in Eq. (3.2.4).

For Majorana fermions, the CP violation is identical to that obtained from P

violation alone i.e. the CP asymmetry is essentially the same as the asymmetry
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between the two polarised photons ∆M
+−

∆M
CP,+ = −∆M

CP,− ≡ ∆M
+− = ΓM(νi → νf + γ+)− ΓM(νi → νf + γ−)

ΓM(νi → νf + γ)
. (3.2.24)

The CP asymmetry without considering the polarisation of the radiated photon is

zero, namely, ∆M
CP = ∆M

CP,+ + ∆M
CP,− = 0. With the help of Eq. (3.2.23), we can

express ∆M
+− in the form of electromagnetc dipole parameters as

∆M
+− = |fL

fi − fL
if |2 − |fR

fi − fR
if |2

|fL
fi − fL

if |2 + |fR
fi − fR

if |2
. (3.2.25)

We will not discuss the Majorana case further here since the asymmetries are simil-

arly straightforward to obtain once coefficients of the transition dipole moment are

ascertained.

At the end of this section, we comment on CP violation in electrically charged

neutrino decay. In this scenario, the magnitudes of the neutrino and antineutrino

decay modes are modified to

M(νi → νf + γ+) = +
√

2fL
fi (m2

i −m2
f )−
√

2fQfi (mi −mf ) ,

M(νi → νf + γ−) = −
√

2fR
fi (m2

i −m2
f ) +
√

2fQfi (mi −mf ) ,

M(ν̄i → ν̄f + γ+) = +
√

2fL
if (m2

i −m2
f )−
√

2fQif (mi −mf ) ,

M(ν̄i → ν̄f + γ−) = −
√

2fR
if (m2

i −m2
f ) +
√

2fQif (mi −mf ) , (3.2.26)

where, according to the CPT theorem, f̄Qif = −fQif has been used. The modified

amplitudes are equivalent to shifting coefficients fL and fR in Eqs. (3.2.5) and

(3.2.10) to fL′ = fL − fQ/(mi + mf ) and fR′ = fR − fQ/(mi + mf ) respectively.

CP asymmetries ∆CP,+, ∆CP,−, ∆CP and the asymmetry between polarised photons

∆+− (Dirac neutrino), as well as ∆M
+− (Majorana neutrino), are obtained following

the same coefficient shifts.
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3.3 CP -Violation in Neutrino Radiative Decay

Having provided a very general discussion on CP violation and circular polarisation

for neutrino radiative decay in a mass scale and model independent way in the

previous section, in the following sections, we will concentrate on a simplified example

where a sterile neutrino radiatively decays νs → νi + γ and show how to obtain the

exact form of the CP asymmetry and circular polarisation for the radiated photon. In

this example, the initial and final state neutrinos are specified as νi = νs and νf = νi

respectively. In this simplified case, we consider only one sterile neutrino generation

and the three active neutrino generations with both νs and νi (for i = 1, 2, 3)

being mass eigenstates. Extensions to multiple sterile neutrino generations are

straightforward, and thus, will not be discussed here.

We will apply the above formulation in the following way. First, we estimate the

size of CP violation from the SM contribution alone i.e. via the charged current

interaction mediated by the W boson. Then, we consider the enhancement of CP

violation by including BSM Yukawa interactions for sterile neutrinos. Such Yukawa

interactions have a wide array of applications with theoretical and phenomenological

utility which we will outline in the following section. Finally, we list the simplified

analytical result for CP violation and circular polarisation generated from the decay

at the end of this section.

3.3.1 Standard Model Contribution

It is well known that the radiative decay can happen via one-loop corrections induced

by SM weak interactions with SM particles (specifically with charged lepton `α for

α = e, µ, τ and theW boson) in the loop. The crucial operator is the charged-current

interaction is

Lc.c. =
∑

α=e,µ,τ

∑
m=1,2,3,s

g√
2
Uαm ¯̀

αγ
µPLνmW

−
µ + h.c. , (3.3.1)
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W

`α

W

γ(q)

νs(ps) νi(pi)

`α

W

`α

γ(q)

νs(ps) νi(pi)

Figure 3.1: The Feynman diagrams for the one-loop Standard
Model contributions from charged current interactions
are shown above for radiative decay of a sterile neutrino.
Diagrams involving unphysical Goldstone bosons and
ghosts are omitted for the sake of brevity.

where g is the EW gauge coupling constant and Uαm represent the lepton flavour

mixing. Here we have m = i, s (where i = 1, 2, 3) representing the active light

neutrino mass eigenstate νi and the sterile neutrino mass eigenstate νs.

The one-loop Feynman diagrams for the radiative decay via the SM charged current

interaction are shown in Fig. 3.1 1. In the limit m2
s/m

2
W � aα ≡ m2

α/m
2
W , where

mα and mW are the charged lepton and W boson masses respectively, we have the

result for Γµfi given as

Γµis = ieGFσ
µνqν

4π2√2
∑

α=e,µ,τ
U∗αiUαsFα(msPR +miPL) , (3.3.2)

where Fα is a function obtained from the loop integrals and the Fermi constant is

defined GF = g2

4
√

2m2
W

. If mi is much smaller than the charged lepton masses, we

arrive at the classic result [69, 118]

Fα = 3
4

(
2− aα
1− aα

− 2aα
(1− aα)2 −

2a2
α ln aα

(1− aα)3

)
≈ 3

2 −
3
4aα , (3.3.3)

which is insensitive to neutrino masses. A more general neutrino mass-dependent

result for Fα with mi, mf up to the W boson mass has been given in [121, 122]. In

general, for mi < mW , there is not possible final states that can contribute to the
1In the Feynman gauge, additional diagrams involving unphysical Goldstone bosons and ghosts

should also be included, note that these are not shown in the figure. In addition, the one-loop
γ − Z self-energy diagrams are essential to include to eliminate divergences in the presence of the
sterile neutrino [154].
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RHS of Eq. (3.2.22), and thus Fα is always positive.

From the above formulae, we obtain results for fL
fi and fR

fi given as

fL
is = e

g2

2
1

16π2m2
W

∑
α=e,µ,τ

U∗αiUαsFαmi ,

fR
is = e

g2

2
1

16π2m2
W

∑
α=e,µ,τ

U∗αiUαsFαms , (3.3.4)

factorising the SM contribution into a coefficient part and a purely kinetic part yields

fL
fi,SM =

∑
α

CαK
L
α , fR

fi,SM =
∑
α

CαK
R
α (3.3.5)

with

(Cα)is = e
g2

2 U
∗
αiUαs , (3.3.6)

and

(KL
α)is = 1

16π2m2
W

Fαmi , (KR
α )is = 1

16π2m2
W

Fαms , (3.3.7)

with flavour index α = e, µ, τ . Since Fα is real, both Im(KL
αK

L ∗
β ) and Im(KR

αK
R ∗
β )

vanish for any flavours α, β = e, µ, τ . In addition, by interchanging i↔ s we notice

that the one-loop SM contribution exactly satisfies fL
fi = f̄R

if and fR
fi = f̄L

if . Therefore,

there is no CP violation coming from these diagrams.

For a sterile neutrino with mass smaller than the W boson mass, we comment

that a non-zero CP violation can in principle be obtained after considering higher-

loop SM contributions. We analyse this by applying the optical theorem where

Eq. (3.2.22) has to be satisfied n order to generate an imaginary part for the kinetic

loop contribution. Again, we recall that we require on-shell intermediate states and

the sum of their masses must be smaller than the sterile neutrino mass. Thus, only

neutrinos and photons are left in the intermediate state c. There are typically three

cases with intermediate states given by (a) c = νj + γ 1, (b) νj + νk + ν̄k, and (c)

νj + α+ ᾱ for α = e, µ, τ . They correspond to four-, three- and two-loop diagrams

1CP violation for this case has been calculated in [123]
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respectively. Case (c) applies only if ms > 2mα, these contributions are in general

very small. In order to obtain large CP violation, additional loop contributions from

BSM have to be considered.

However, if the sterile neutrino is heavier than the W boson, an imaginary part can

be obtained directly from the SM one-loop diagram, we will discuss this case in some

of the following sections.

3.3.2 Enhancement by Beyond the Standard Model

Physics

In order to enhance the CP violation in the radiative decay of the sterile neutrino,

we include BSM contributions. We being by introducing two new particles, one

fermion ψ and one scalar φ with opposite electric charges Q and −Q respectively.

Their couplings with neutrinos and the sterile neutrino are described by the following

Yukawa interaction

−LBSM ⊃
∑

m=1,2,3,s
λmψ̄φ

∗PLνm + λ∗mν̄mφPRψ , (3.3.8)

where λm, with m = i, s (for i = 1, 2, 3), are complex coefficients to νi and νs, which

are the active and sterile neutrino mass eigenstates respectively. Here, we only

included one generation of φ and ψ respectively. The extension to more generations

is straightforward and will be mentioned as necessary. Neither ψ or φ are supposed

to be a specific DM candidate in this work and they can annihilate with their

antiparticles due to their opposite electric charges.

The full amplitude including the BSM contribution for νs → νi + γ can then be

written

M =
∑
α

MSM
α +

∑
lBSM

MBSM
lBSM , (3.3.9)

where we have flavour index α = e, µ, τ and lBSM represents one-loop BSM contribu-

tions. Since U(1)Q is explicitly conserved and no electric charges are assigned for
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φ(ps − k)

ψ(k)

φ(k − pi)

γ(q)

νs(ps) νi(pi)

ψ(k)

φ(ps − k)

ψ(k − q)

γ(q)

νs(ps) νi(pi)

Figure 3.2: Feynman diagrams for the new physics one-loop contri-
butions to the radiative decay of a sterile neutrino. We
denote amplitudes for the two diagrams asMBSM

1 and
MBSM

2 . ForMBSM
1 we make the momenta assignments

p1 = ps − k, p2 = k − pi and for MBSM
2 , we assign

k′ = k − q. In both diagrams ps = pi + q.

neutrinos at tree level, they keep free of electric charges after loop corrections are

included. Thus, radiative decays are induced only via the electromagnetic transition

dipole moments. The coefficients fL
fi , fR

fi and fL
if , fR

if , including BSM, are now written

as

fL
fi =

∑
α

CαK
L
α +

∑
lBSM

ClBSMK
L
lBSM , fR

fi =
∑
α

CαK
R
α +

∑
lBSM

ClBSMK
R
lBSM ,

fL
if =

∑
α

CαK
R
α +

∑
lBSM

ClBSMK
R
lBSM , fR

if =
∑
α

CαK
L
α +

∑
lBSM

ClBSMK
L
lBSM .

(3.3.10)

From Eq. (3.3.10), we have the necessary expressions to compute the CP violation

and asymmetry between the radiated photons γ+ and γ−. As an example, we take

∆CP,− to demonstrate an explicit calculation. The definition of ∆CP,− has been given

in Eq. (3.2.16) where ∆CP,− ∝ |fR
fi |2 − |fL

if |2. With the help of the parametrisation

in Eq. (3.3.10) and assuming |KR
l | = |K̄L

l | for any loop l, we obtain

|fR
fi |2−|fL

if |2 = −4
∑

α,lBSM

Im(CαC∗lBSM)Im(KR
αK

R ∗
lBSM)−2

∑
lBSM 6=l

′
BSM

Im(ClBSMC
∗
l
′
BSM

)Im(KR
lBSMK

R∗
l
′
BSM

).

(3.3.11)

For the two BSM diagrams shown in Fig. 3.2, where a photon is radiated via

the interaction between scalars φ and fermions ψ respectively, the amplitudes for
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(νs → νi + γ−) can be explicitly written as

iMBSM
1 = C1

∫ d4k

(2π)4
u(pi)PR(/k +mψ)(p1 − p2)µPLu(ps)ε∗−,µ(q)

(k2 −m2
ψ + iε)((k − ps)2 −m2

φ + iε)((k − pi)2 −m2
φ + iε)

,

iMBSM
2 = −C2

∫ d4k

(2π)4
u(pi)PR(/k′ +mψ)γµ(/k +mψ)PLu(ps)ε∗−,µ(q)

((k − ps)2 −m2
φ + iε)(k′2 −m2

ψ + iε)(k2 −m2
ψ + iε)

.

(3.3.12)

Where the coefficients ClBSM (for lBSM = 1, 2) are

C1 = −C2 = −Qeλsλ∗i . (3.3.13)

In this case, Im(C1C
∗
2) = 0 and the second part of Eq. (3.3.11) vanishes. On the

other hand the imaginary part is given by

Im(CαC∗1) = −Im(CαC∗2) = −Q2 e
2g2 Im(UαsU∗αiλiλ∗s) . (3.3.14)

We now turn to the loop contributions. Im(KR
1 K

R ∗
2 ) does not need to be calcu-

lated since Im(C1C
∗
2) vanishes explicitly. Hence, the remaining term to be com-

puted is Im(KR
αK

R ∗
lNP). Furthermore, since the SM contributions are always real,

Im(KR
αK

R ∗
lBSM) = −KR

α Im(KR
lBSM).

In order to obtain CP violation between the radiative decay νs → νi + γ− and its

CP conjugate channel ν̄s → ν̄i+γ+ for a Dirac-type sterile neutrino, a non-vanishing

imaginary part Im(KR
lBSM) is required, this can be summarised

|fR
fi |2 − |fL

if |2 = +4
∑

α,lBSM

Im(CαC∗lBSM)KR
α Im(KR

lBSM) . (3.3.15)

Following a similar approach to determine CP violation between νs → νi + γ+ and

its CP conjugate process ν̄s → ν̄i + γ−, we obtain

|fL
fi |2 − |fR

if |2 = +4
∑

α,lBSM

Im(CαC∗lBSM)KL
αIm(KL

lBSM) . (3.3.16)

Due to the optical theorem, non-zero Im(KL
lBSM) and Im(KR

lBSM) can only be achieved

if the sterile neutrino mass is larger than the sum of the charged scalar and the

charged fermion masses, ms > mφ +mψ. In the remainder of this section, our aim
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will be to compute these quantities.

Here, the loop integrals for the relevant diagrams shown in Fig. 3.2 will be calculated.

Starting from the general form of the amplitude for sterile neutrino radiative decay

νs → νi + γ± given in Eq. (3.2.1), we extract the purely kinetic terms KL
lBSM and

KR
lBSM for lBSM = 1, 2 as 1

KL
1 = mi

16π2

∫ 1

0
dxdydz δ(x+ y + z − 1) z

∆φψ(x, y, z) ,

KR
1 = ms

16π2

∫ 1

0
dxdydz δ(x+ y + z − 1) y

∆φψ(x, y, z) ,

KL
2 = mi

16π2

∫ 1

0
dxdydz δ(x+ y + z − 1)xz

∆ψφ(x, y, z) ,

KR
2 = ms

16π2

∫ 1

0
dxdydz δ(x+ y + z − 1)xy

∆ψφ(x, y, z) , (3.3.17)

where

∆φψ(x, y, z) = m2
φ(1− x) + xm2

ψ − x(ym2
s + zm2

i )

∆ψφ(x, y, z) = m2
ψ(1− x) + xm2

φ − x(ym2
s + zm2

i ) . (3.3.18)

The above results are obtained without any approximations. In order to derive

further simplified analytical formulae, we consider the large mass hierarchy between

νs and νi where mi � ms, and may therefore take the limit mi → 0. In this case,

KL
lBSM = 0 and after integrating over Feynman parameters z and x, KR

lBSM can be

written as

KR
1 = ms

16π2

∫ 1

0
dy y

m2
sy −m2

ψ +m2
φ

log
(

∆φψ(y)
m2
φ

)
,

KR
2 = ms

16π2

[∫ 1

0
dy −m2

ψy

(m2
sy +m2

ψ −m2
φ)2 log

(
∆ψφ(y)
m2
ψ

)
+
∫ 1

0
dy y(y − 1)
m2
sy +m2

ψ −m2
φ

]
,

(3.3.19)

1Here, KL
lBSM

and KR
lBSM

represent (KL
lBSM

)is and (KR
lBSM

)is, respectively. Exchanging i with s,
we obtain (KL

lBSM
)si = (KR

lBSM
)is and (KR

lBSM
)si = 0, this is compatible with our previous statement

that (KL
l )if = (KR

l )fi and (KR
l )if = (KL

l )fi.
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where

∆φψ(y) = y
(
m2
s(y − 1) +m2

φ

)
−m2

ψ(y − 1) ,

∆ψφ(y) = y
(
m2
s(y − 1) +m2

ψ

)
−m2

φ(y − 1) . (3.3.20)

KR
lBSM may have both real parts and imaginary parts. The real part Re(KR

lBSM) is

directly obtained by replacing ∆φψ and ∆ψφ with there absolute values, therefore

simple analytical expressions for Re(KR
lBSM) are difficult to obtain. However, in the

hierarchical case ms � mφ,mψ approximate analytical expressions can be derived

by expanding in powers of m2
φ/m

2
s and m2

ψ/m
2
s. Specifically, the leading-order results

are given by

Re(KR
1 ) ≈ 1

16π2ms

[
log

(
m2
s

m2
φ

)
− 2

]
,

Re(KR
2 ) ≈ 1

16π2ms

× −1
2 . (3.3.21)

Since we are chiefly interested in the CP violating component, we will focus on how

to obtain and simplify the imaginary parts of KR
lBSM .

Since m2
φ,m

2
ψ ≥ 0, the imaginary and thus CP violating component in Eq. (3.3.19)

factorises when the argument of the logarithm is negative, by inspection we can see

this occurs when

∆φψ(y) < 0 ,

∆ψφ(y) < 0 . (3.3.22)

Solutions at the boundaries of the CP violation conditions ∆φψ(y) = 0 and ∆ψφ(y) =

0 are y1,2(mφ,mψ) and y1,2(mψ,mφ) respectively. Therefore the conditions in Eq.

(3.3.22) in terms of y are fulfilled when y1(mφ,mψ) ≤ y ≤ y2(mφ,mψ) and y1(mψ,mφ) ≤

y ≤ y2(mψ,mφ) for the two diagrams respectively, where

y1,2(mφ,mψ) = 1
2 + m2

ψ −m2
φ ∓ µ2

2m2
s

,

y1,2(mψ,mφ) = 1
2 + m2

φ −m2
ψ ∓ µ2

2m2
s

, (3.3.23)
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and µ2 is defined as

µ2 =
√
m4
s +m4

φ +m4
ψ − 2m2

sm
2
φ − 2m2

sm
2
ψ − 2m2

φm
2
ψ . (3.3.24)

It should be noted that in both cases 0 < y1 < y2 < 1 is necessarily satisfied.

Hence, the imaginary component of Eq. (3.3.19) can now be written according to

the complex logarithm definition as

Im(KR
1 ) = ms

16π2 × π
∫ y2(mφ,mψ)

y1(mφ,mψ)
dy y

m2
sy −m2

ψ +m2
φ

,

Im(KR
2 ) = ms

16π2 × π
∫ y2(mψ ,mφ)

y1(mψ ,mφ)
dy −m2

ψy

(m2
sy +m2

ψ −m2
φ)2 . (3.3.25)

Finally, integrating over the final Feynman parameter y leads to

Im(KR
1 ) = ms

16π2
−π
m2
s

[
µ2

m2
s

+ m2
φ −m2

ψ

m2
s

log
(
m2
s +m2

φ −m2
ψ − µ2

m2
s +m2

φ −m2
ψ + µ2

)]
,

Im(KR
2 ) = ms

16π2
+π
m2
s

[
µ2(m2

ψ −m2
φ)

m4
s

+ m2
ψ

m2
s

log
(
m2
s +m2

ψ −m2
φ − µ2

m2
s +m2

ψ −m2
φ + µ2

)]
. (3.3.26)

The requirement ms > mφ +mψ leads to a positive µ2. In the mass-degenerate limit

ms = mφ +mψ, µ2 = 0 and after some simplifications, it can be shown for this case

that Im(KR
1 ) = Im(KR

2 ) = 0. In the massless limit mφ,mψ → 0, these imaginary

parts are approximately given by Im(KR
1 )→ −1/(16πms) and Im(KR

2 )→ 0.

Since we need to compute ∆CP,− to calculate CP violation, we apply Eq. (3.3.15),

which in this example can be written explicitly as

fR
fi |2 − |fL

if |2 = +4
∑
α

Im(CαC∗1)KR
α [Im(KR

1 −KR
2 )], (3.3.27)

| therefore we obtain

|fR
fi |2 − |fL

if |2 = 2πQe2g2

(16π2)2m2
W

∑
α

Im(UαsU∗αiλiλ∗s)Fα Iφψ . (3.3.28)

For ∆CP,+, |fR
fi |2 − |fL

if |2 is obtained by multiplying by a factor m2
i /m

2
s which is

strongly suppressed by the light active neutrino mass.

Here, we have defined Iφψ, an order one normalised parameter which is defined via
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Im(KR
2 −KR

1 ) = ms

16π2
π

m2
s

Iφψ and explicitly given by

Iφψ = µ2(m2
s +m2

ψ −m2
φ)

m4
s

+ m2
φ −m2

ψ

m2
s

log
(
m2
s +m2

φ −m2
ψ − µ2

m2
s +m2

φ −m2
ψ + µ2

)

+m
2
ψ

m2
s

log
(
m2
s +m2

ψ −m2
φ − µ2

m2
s +m2

ψ −m2
φ + µ2

)
. (3.3.29)

See Appendix B for more details regarding the calculation of the imaginary part of

the loop diagrams.

In this example, we may safely ignore the fL
fi and fR

if terms since fL
fi ∼ fR

if ∼ mi
ms
fL

if ∼
mi
ms
fR

fi , thus the asymmetries, defined in Eqs. (3.2.16) and (3.2.17) are approximately

given by

−∆CP,− ≈ −∆CP ≈ ∆+− ≈
|fL

if |2 − |fR
fi |2

|fL
if |2 + |fR

fi |2
(3.3.30)

and ∆CP,+ is negligibly small. This result works for the Dirac neutrino case. In the

Majorana neutrino case, from Eq. (3.2.25), it is straightforward to apply a similar

procedure and obtain

∆M
CP,+ = −∆M

CP,− = ∆M
+− ≈

|fL
if |2 − |fR

fi |2

|fL
if |2 + |fR

fi |2
(3.3.31)

and ∆CP = 0. Regardless of whether the neutrinos are Dirac or Majorana particles

∆CP,− ≈ −∆+− is satisfied. This is true in general if fL
fi , f

R
if � fL

if , f
R
fi .

3.4 Conclusion

Here we discussed a general framework for CP violation in neutrino radiative decays.

CP violation in such processes produces an asymmetry between the circularly polar-

ised radiated photons and provides an important source of net circular polarisation

that can be observed in particle and astroparticle physics experiments.

It was discussed how to generate non-vanishing CP violation through a generic new

physics Yukawa interaction extension consisting of electrically charged scalar and

fermion states. Without introducing any source of electric charge for the neutrinos,
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these particles can decay only via the electromagnetic transition dipole moment. The

explicit analytical result of CP violation for this model was derived and presented.

The formulation between CP violation in neutrino radiative decays and the neut-

rino electromagnetic dipole moment at the form factor level is developed for both

Dirac and Majorana neutrinos. We observed the model-independent connection

between the decays and photon circular polarisation produced by these processes

and concluded that CP violation directly determines the circular polarisation. This

fundamental result is applicable when determining circular polarisation for both

Dirac and Majorana fermions and can be exported for use in any models that gener-

ate radiative decays of this type. Specifically in the Majorana neutrino case, the CP

asymmetry is identical to the asymmetry of photon polarisations up to an overall

sign difference.





Chapter 4

CP–Violation in Heavy Neutrino

Radiative Decay

The formulation based on Chapter 2 has a wide array of possible applications. In

this chapter, we will apply it to the minimal seesaw mechanism where right-handed

neutrinos N1 and N2, with respective masses M1 < M2 much larger than the elec-

troweak scale, are added to the SM in order to recover light active neutrino masses.

In Section 4.2 a full one–loop computation of the neutrino radiative decay, in the

context of Standard Model interactions, is performed in the Feynman gauge. In Sec-

tion 4.2.1 we compute the CP violation generated by a required threshold condition

for the neutrino masses along with non–vanishing CP violating phases in the lepton

flavor mixing matrix. In Section 4.4 we discuss the extended parametrization of the

flavor mixing matrix, including the heavy neutrinos N1 and N2. We give the CP

asymmetry in terms of a series of Jarlskog-like parameter. Finally, in Section 4.5 we

present some numerical results on CP violation asymmetry with inputs of current

neutrino oscillation data. We conclude in Section 4.6.
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4.1 Introduction

The origin of finite but tiny neutrino masses is still unknown. The canonical seesaw

mechanism [53, 125, 126, 127, 128, 129] and its numerous variations are proposed to

solve this problem. The basic idea is that the small masses of left-handed neutrinos

are attributed to the existence of much heavier right-handed Majorana neutrinos.

The minimal seesaw model [155] is a simplified version of the canonical seesaw

mechanism with only two right-handed neutrinos, which has been studied in depth

[55]. See Sec. 2.1.4 in Chapter 2.

Neutrinos are usually considered as electrically neutral particles which do not par-

ticipate in tree-level electromagnetic interactions. However, they may have electric

and magnetic dipole moments appearing at loop level. A transition dipole moment

between two different neutrino mass eigenstates can trigger a heavier neutrino ra-

diatively decaying to a lighter neutrino through the release of a photon. In fact,

if neutrinos are Majorana particles, the property that Majorana fermions are their

own antiparticles implies that neutrinos have only a transitional component to their

dipole moment [156].

A CP violating dipole moment has many interesting phenomenological applications.

It may contribute to leptogenesis to explain the observed baryon-antibaryon asym-

metry in our Universe [123]. It also provides a source of circular polarisation of

photons in the sky for a suitable range of neutrino masses, [44].

In the present Chapter we apply the formalism introduced in Chapter 3. We focus

on discussing CP violation in the neutrino dipole moment in right-handed neutrinos

decays. We provide the one-loop calculation of the CP asymmetry of the neutrino

transition dipole moment in full detail in the framework of the SM with the addition

of SU(2)L-singlet right-handed neutrinos.
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4.2 One–loop Calculation of Neutrino

Electromagnetic Form Factors

It is well known that the radiative decay can happen via one-loop corrections induced

by SM weak interactions with SM particles in the loop.1 We present below, the

one-loop calculation of neutrino radiative decay νi → νf γ for massive neutrinos. The

crucial operator for the charged-current interaction is,

Lc.c. =
∑
α,m

g√
2
Uαm ¯̀

αγ
µPLνmW

−
µ + h.c. , (4.2.1)

where g is the electroweak (EW) gauge coupling constant, α = e, µ, τ represents the

charged lepton flavours, m represents the three light neutrino mass eigenstates and

Uαm is the lepton flavour mixing matrix. In particular, νm = ν1 , ν2 , ν3 corresponds

to the three light neutrino mass eigenstates and νm = N1, N2, . . . are the heavy

neutrino mass eigenstates.

The one-loop Feynman diagrams for the radiative decay via the SM charged current

interaction are shown in Fig. 4.1. The vertex functions of each proper vertex diagram

in Fig.. 4.1are given by,

Γµ,(1)
fi,α = i

eg2

2 UαiU∗αf

∫
dp

γνPL(/pf − /p+mα)γµ(/pi − /p+mα)γνPL

[(pf − p)2 −m2
α][(pi − p)2 −m2

α][p2 −m2
W ]

,

Γµ,(2)
fi,α = i

eg2

2 UαiU∗αf

∫
dp

(mfPL −mαPR)(/pf − /p+mα)γµ(/pi − /p+mα)(mαPL −miPR)
m2
W [(pf − p)2 −m2

α][(pi − p)2 −m2
α][p2 −m2

W ]
,

Γµ,(3)
fi,α = i

eg2

2 UαiU∗αf

∫
dp

γρPL(/p+mα)γνPLV
µνρ

[(pf − p)2 −m2
W ][(pi − p)2 −m2

W ][p2 −m2
α]
,

Γµ,(4)
fi,α = i

eg2

2 UαiU∗αf

∫
dp

(2p− pi − pf )µ(mfPL −mαPR)(/p+mα)(mαPL −miPR)
m2
W [(pf − p)2 −m2

W ][(pi − p)2 −m2
W ][p2 −m2

α]
,

Γµ,(5)
fi,α = i

eg2

2 UαiU∗αf

∫
dp

γµPL(/p+mα)(mαPL −miPR)
[(pf − p)2 −m2

W ][(pi − p)2 −m2
W ][p2 −m2

α]
,

Γµ,(6)
fi,α = i

eg2

2 UαiU∗αf

∫
dp

(mαPR −mfPL)(/p+mα)γµPL

[(pf − p)2 −m2
W ][(pi − p)2 −m2

W ][p2 −m2
α]
, (4.2.2)

1Specifically with charged lepton `α for α = e, µ, τ and the W boson.
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(1) (2)
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γ(q)

νi(pi) νf (pf )
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νi(pi) νf (pf )

(5) (6)

Figure 4.1: All Feynman diagrams contributing to the neutrino elec-
tromagnetic transition dipole moment, where χ is the
charged Goldstone boson.

where dp ≡ d4
p

(2π)4 and,

V µνρ = gµν(2pi − p− pf )ρ + gρµ(2pf − p− pi)ν + gνρ(2p− pi − pf )µ . (4.2.3)

A non-vanishing CP asymmetry requires two conditions; a CP contribution coming

from coefficients of tree-level vertices and an imaginary part coming purely from

loop kinematics [1]. The first condition is satisfied by the complex phases in the

lepton flavor mixing matrix U , this will be discussed in more detail in the following

sections. In this section we focus on the second condition by computing the one-loop

diagrams and deriving their imaginary part analytically.
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We follow the standard procedure to integrate loop momenta with the help of

Feynman parametrisation. Then, we apply the Gordon decomposition with chirality

into consideration, and factorise dipole moment terms with coefficients as

Γµfi,α = eg2

4(4π)2UαiU∗αf iσ
µνqν

∫ 1

0
dxdydz δ(x+ y + z − 1)

6∑
k=1
P(k) , (4.2.4)

where

P(1) = −2x(x+ z)miPR − 2x(x+ y)mfPL

∆αW (x, y, z) ,

P(2) = [xzm2
f − ((1− x)2 + xz)m2

α]miPR + [xym2
i − ((1− x)2 + xy)m2

α]mfPL

m2
W∆αW (x, y, z)

,

P(3) = [(1− 2x)z − 2(1− x)2]miPR + [(1− 2x)y − 2(1− x)2]mfPL

∆Wα(x, y, z) ,

P(4) = [xzm2
f − x(x+ z)m2

α]miPR + [xym2
i − x(x+ y)m2

α]mfPL

m2
W∆Wα(x, y, z)

,

P(5) = −zmiPR

∆Wα(x, y, z) ,

P(6) = −ymfPL

∆Wα(x, y, z) , (4.2.5)

and

∆Wα(x, y, z) = m2
W (1− x) + xm2

α − x(ym2
i + zm2

f )

∆αW (x, y, z) = m2
α(1− x) + xm2

W − x(ym2
i + zm2

f ) . (4.2.6)

Eq. (4.2.4) can be further simplified to

Γµfi,α = eGF

4
√

2π2UαiU∗αf iσ
µνqν(Ffi,αmiPR + Fif ,αmfPL) . (4.2.7)

Here, F is derived from the sum of the integrals P(k),

Ffi,α =
∫ 1

0
dx


(
m2

i−m2
α−2m2

W

)(
m2
α+m2

fx
2
)

+m4
fi,αx(

m2
i −m2

f

)2
x

log
m2

α+
(
m2
W−m2

α−m2
i

)
x+m2

i x
2

m2
α+

(
m2
W−m2

α−m2
f

)
x+m2

fx
2



+

(
m2

i−m2
α−2m2

W

)(
m2
α+m2

f (1−x)2
)

+m4
fi,α(1−x)(

m2
i−m2

f

)2
x

log
m2

W +
(
m2
α−m2

W−m2
i

)
x+m2

i x
2

m2
W +

(
m2
α−m2

W−m2
f

)
x+m2

fx
2




+m
2
f −m2

α − 2m2
W

m2
i −m2

f
, (4.2.8)
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where m4
fi,α = −(m2

i −m2
α −m2

W )(m2
f +m2

α − 2m2
W ) + 2m2

αm
2
W ; the form of Fif ,α is

obtained by exchanging mi and mf . Therefore, we obtain the coefficients fL
fi , fL

if , fR
fi

and fR
if as

fL
fi = eGF

4
√

2π2UαiU∗αfFif ,αmf , fR
fi = eGF

4
√

2π2UαiU∗αfFfi,αmi ,

fL
if = eGF

4
√

2π2UαfU∗αiFfi,αmi , fR
if = eGF

4
√

2π2UαfU∗αiFif ,αmf , (4.2.9)

The integrals within Ffi,α and Fif ,α in Eq. (4.2.8) can be further simplified in the limit

of small neutrino masses, i.e., m2
i ,m

2
f � m2

α,m
2
W . In this case, the logarithm terms

can be expanded in series of m2
i and m2

f , and after a straightforward calculation,

we prove that both Ffi,α and Fif ,α are identical to F (m2
α/m

2
W ) in Eq. (3.3.3) which

is the well-known result of loop factor obtained in the studies of neutrino dipole

moment and radiative decays [69, 118].

4.2.1 Non-zero Imaginary Contribution

In this section, we outline how to obtain the non-zero imaginary parts for Ffi,α

and Fif ,α when neutrinos have large masses. From Eq. (4.2.8) we notice that the

form of the integral include terms of the form
∫ 1
0 dxf(x) log g(x), where g(x) is not

always positive in the domain (0, 1). Instead, we can prove that there is an interval

(x1, x2) ⊂ (0, 1) where g(x) < 0 is satisfied, and x1 and x2 are solutions of g(x) = 0.

The real and imaginary parts in the integration can then be split into,

∫ 1

0
dxf(x) log g(x) =

∫ 1

0
dxf(x) log |g(x)|+ iπ

∫ x2

x1

dxf(x) . (4.2.10)

The imaginary part of
∫ x2
x1

dxf(x) can be obtained analytically [1].

Im(Ffi,α) =πϑi

m
2
i −m2

α − 2m2
W(

m2
i −m2

f

)2

[
−µ2

i
m2

f

m2
i

+m2
α log

(
m2

i +m2
α −m2

W + µ2
i

m2
i +m2

α −m2
W − µ2

i

)]

+

(
2m2

i −m2
f −m2

α − 2m2
W

)
m2
W(

m2
i −m2

f

)2 log
(
m2

i −m2
α +m2

W + µ2
i

m2
i −m2

α +m2
W − µ2

i

)
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+ πϑf

−m
2
i −m2

α − 2m2
W(

m2
i −m2

f

)2

[
−µ2

f +m2
α log

(
m2

f +m2
α −m2

W + µ2
f

m2
f +m2

α −m2
W − µ2

f

)]

+

(
2m2

i −m2
f −m2

α − 2m2
W

)
m2
W(

m2
i −m2

f

)2 log
(
m2

f −m2
α +m2

W + µ2
f

m2
f −m2

α +m2
W − µ2

f

) ,
(4.2.11)

where ϑi, f = ϑ(mi, f −mW −mα) is the Heaviside step function, and

µ2
i =

√
m4

i +m4
α +m4

W − 2m2
im

2
α − 2m2

im
2
W − 2m2

αm
2
W ,

µ2
f =

√
m4

f +m4
α +m4

W − 2m2
fm

2
α − 2m2

fm
2
W − 2m2

αm
2
W . (4.2.12)

Again, Im[Fif ,α] is obtained from Im[Ffi,α] by exchanging mi and mf . In order to

generate a non-zero imaginary part in the loop integration, the threshold condition

mi > mW +mα for the initial neutrino mass is required. In other words, the initial

neutrino mass has to be larger than the sum of the W -boson and the charged lepton

mass. There is a second contribution to the imaginary part of Ffi ,α if the neutrino

in the final state satisfies the threshold condition, mf > mW + mα. Due to sign

difference it partly cancels with the first contribution.

4.3 CP -Asymmetry and Photon Polarisation

With the above results, we are now able to obtain the most general result of CP

asymmetries in neutrino radiative decays. We will use the results of Section 3.2.1 in

Chapter 3. Also see Ref. [1].

From Eq. 3.2.16, for Dirac neutrinos, we derive the CP asymmetry between νi →

νfγ+ and ν̄i → ν̄fγ− and that between νi → νfγ− and ν̄i → ν̄fγ+. These are

respectively given as,

∆D
CP,+ =

−∑α,β J if
αβIm(Fif ,αF∗if ,β)m2

f∑
α,βRif

αβ

[
Re(Ffi,αF∗fi,β)m2

i + Re(Fif ,αF∗if ,β)m2
f

] ,
∆D
CP,− =

−∑α,β J if
αβIm(Ffi,αF∗fi,β)m2

i∑
α,βRif

αβ

[
Re(Ffi,αF∗fi,β)m2

i + Re(Fif ,αF∗if ,β)m2
f

] . (4.3.1)
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where α, β run for charged lepton flavours e, µ, τ and

J if
αβ = Im(UαiU∗αfU∗βiUβf ) , Rif

αβ = Re(UαiU∗αfU∗βiUβf ) . (4.3.2)

We have introduced a set of Jarlskog-like parameter J if
αβ to describe the CP violation

from the vertex contribution. This parametrisation follows the famous definition of

Jarlskog invariant used to describe CP violation in neutrino oscillations [157, 158].

The Jarlskog-like parameter are invariant under any phase rotation of charged leptons

and neutrinos. If they vanish, no CP violation is generated in the neutrino transition

dipole moment.

For Majorana neutrinos the relevant CP asymmetry, via Eq. (3.2.24) and Eq. (3.2.25),

is given by,1

∆M
+− =

J if
αβ

[
Im(Ffi,αF∗fi,β)m2

i − Im(Fif ,αF∗if ,β)m2
f

]
− 2V if

αβIm(Ffi,αF∗if ,β)mimf

Rif
αβ

[
Re(Ffi,αF∗fi,β)m2

i + Re(Fif ,αF∗if ,β)m2
f

]
− 2Cif

αβRe(Ffi,αF∗if ,β)mimf
,

(4.3.3)

where

V if
αβ = Im(UαiU∗αfUβiU∗βf ) , Cif

αβ = Re(UαiU∗αfUβiU∗βf ) . (4.3.4)

V if
αβ is another type of Jarlskog-like parameter which appear only for Majorana

neutrinos. It was first defined in the study of neutrino-antineutrino oscillations in

the context of only three light neutrinos [158]. They are invariant under phase

rotations for charged lepton but not for neutrinos.

4.4 CP violation in the Minimal Seesaw Model

In this section we consider the minimal seesaw model introduced in Sec. 2.1.4.

We remind the reader that this mechanism consists of introducing only two RH

neutrinos [155] in order to generate the tiny masses for LH neutrinos. We recall that

the notation ∆CP ≡ ∆M
+− for Majorana is used. We denote two RH neutrino mass

1We have to sum over lepton flavour α , β in the numerator and denominator.
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eigenstates as NI for I = 1, 2, with masses M1 < M2.

The minimal seesaw model predicts one massless neutrinom1 = 0 in the normal mass

ordering (m1 < m2 < m3) andm3 = 0 in the inverted mass ordering (m3 < m2 < m1)

schemes. In this work, we will only consider the the normal mass ordering. We take

the best fit (in the 3σ ranges) of mass square differences in the normal ordering

scheme [159].

m2 =
√

∆m2
21 = 8.60 (8.24→ 8.95) meV ,

m3 =
√

∆m2
31 = 50.2 (49.3→ 51.2) meV . (4.4.1)

We recall once again the lepton charged-current interaction in Eq. (4.2.1). The three

light neutrino mixing is represented by the first 3 × 3 submatrix of U , i.e. Uαi for

α = e, µ, τ and i = 1, 2, 3. The parametrisation of this mixing submatrix is given in

Eq. (2.1.17). The three mixing angles and the Dirac CP -violating phase for normal

mass ordering are measured to be

θ13 = 8.61◦ (8.22◦ → 8.99◦) ,

θ12 = 33.82◦ (31.61◦ → 36.27◦) ,

θ23 = 48.3◦ (40.8◦ → 51.3◦) ,

δ = 222◦ (141◦ → 370◦) (4.4.2)

at the best fit (in the 3σ ranges), where normal mass ordering has assumed. As we

work in the minimal seesaw model, the lightest neutrino ν1 is massless and only the

second Majorana phase σ, in Eq. (2.1.17), is physical.

We account for the fraction of heavy neutrinos contributing to the flavour mixing

Uα(I+3), which we denote as RαI from now on. Uαi is only approximately equal

to Uαi, Uαi = Uαi + O(RR†). RR† is constrained to be maximally at milli-level

[160]. Therefore, Uαi ≈ Uαi is still a very good approximation. The charged-current
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interaction for leptons in the mass eigenstates is now written as

Lc.c. =
∑

α=e,µ,τ

g√
2

¯̀
αγ

µPL

( ∑
i=1,2,3

Uαiνi +
∑
I=1,2

RαINI

)
W−
µ +O(RR†) + h.c. .(4.4.3)

The Yukawa coupling Y between lepton doublets and right-handed neutrinos are

directly connected with R via YαI = RαIMI/vH [161]. The mixing between fla-

vour states and heavy RH neutrinos are described by R. Following Casas-Ibarra

parametrisation [162], R is given by

RαI ≡ Uα(I+3) =
∑
i=1,2

UαiΩiI

√
mi+1

MI

. (4.4.4)

Here, Ω is a 2 × 2 complex orthogonal matrix satisfying ΩTΩ = ΩΩT = 1 and is

parametrised as,

Ω =

 cosω sinω

−ζ sinω ζ cosω

 , (4.4.5)

where ω is a complex parameter and ζ = ±1. The two possible values of ζ correspond

to two different distinct branches of Ω [163, 164]. In the whole model, three CP

violating parameters are induced, δ, σ and Im[ω], if δ = 0, σ = 0 or π/2 and

Im[ω] = 0, no CP violation can be generated.

The CP violation in the neutrino transition dipole moment can be checked by the

study of the CP asymmetry of neutrino radiative decay. We can find three channels

of interest, νi → νi γ, NI → νi γ and N2 → N1 γ. For the first channel, since the

light neutrinos have masses much smaller that the W boson, CP violation cannot

be generated. The CP asymmetry for NI → νi γ is not negligible if NIas a mass

MI > mW + me. We sum over i = 1, 2, 3 together and calculate the overall CP

asymmetry [cf. Eq. (4.3.3)]

∆CP (NI → νγ) =
∑
i

∑
α,β J

(I+3)i
αβ Im(Fi(I+3),αF∗i(I+3),β)∑

i

∑
α,βR

(I+3)i
αβ Re(Fi(I+3),αF∗i(I+3),β)

. (4.4.6)

This parameter is tiny, numerically confirmed to be maximally . 10−17. The reason

why it is so small can be understood as follows. Since mi is negligible, Fi(I+3),α =



4.5. Neutrino Phenomenology 91

F1(I+3),α, and ∆CP (NI → νγ) ∝ ∑i,α,β J
(I+3)i
αβ = ∑

i,α,β Im(Uα(I+3)U∗αiU∗β(I+3)Uβi) ≈∑
i,α Im(Uα(I+3)U∗α(I+3)) = 0.

Finally, we focus on the CP asymmetry in N2 → N1γ, which is given by

∆CP =
J 54
αβ

[
Im(F45,αF∗45,β)M2

2 − Im(F54,αF∗54,β)M2
1

]
− 2V54

αβIm(F45,αF∗54,β)M2M1

R54
αβ

[
Re(F45,αF∗45,β)M2

2 + Re(F54,αF∗54,β)M2
1

]
− 2C54

αβRe(F45,αF∗54,β)M2M1
.

(4.4.7)

Here, Cif
αβ and V if

αβ were defined in Eq. (4.3.4) and the Jarlskog-like parameter are

given by J 54
αβ = Im(Rα2R

∗
α1R

∗
β2Rβ1) and V54

αβ = Im(Rα2R
∗
α1Rβ2R

∗
β1).

4.5 Neutrino Phenomenology

In the present section we discuss the behaviour of the CP asymmetry in N2 → N1γ

as a function of the RH neutrino mass M2, see Fig. 4.2. We notice that the CP

asymmetry of this channel is much larger than that in NI → νγ. In this figure, we

vary M2 from 0.1 to 10 TeV and consider three benchmark scenarios where the mass

ratioM1/M2 is fixed to 0.2, 0.5 and 0.8 respectively. In all plots, we fix ζ = 1 and the

Majorana phase σ = π/2. Therefore, no Majorana-type CP violation is induced. We

use the best-fit oscillation data as inputs which include a large CP violating value for

δ. In the top panel, we fix ω to be real, ω = 5. Therefore, δ is the only source of CP

violation. We note that a large CP asymmetry ratio |∆CP | ∼ 10−5-10−3 is generated.

Peaks of |∆CP | are generated due to the enhancement in the log term of Im(Ffi,α)

aroundM2 ≈ mW (cf. Eq.(4.2.11)). Sharp changes refer to cancellations occurring in

∆CP due to the selected values of inputs. In the bottom panel, ω = 5−5i, both δ and

ω contribute to the CP violation. The constraints on |RR†| from the non-unitarity

effect has been included [160].

We also show the branching ratio B(N2 → N1γ) = Γ(N2 → N1γ)/ΓN2 . In the total

decay width ΓN2 , we include five main decay channels N2 → `−W+
L,T , νZL,T and νH

[165]. Although the CP asymmetry is large, the branching ratio is suppressed as

shown in the right panel of Fig. 4.2, leading to very small ∆CP × B.
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Figure 4.2: The CP asymmetry (left panel) and branching ratio
(right panel) for the radiative decay process N2 → N1γ
as a function of the heavy neutrino massM2. Four differ-
ent benchmarks for the lightest right-handed neutrino
M1 = 0.2M2, 0.5M2, 0.8M2 are considered as per the
respective plot legends. Values of ω are fixed at ω = 5
(top panel) and 5− 5i (bottom panel), respectively. In
all cases, we use the best-fit oscillation data as inputs
while we set ζ = 1 with a Majorana phase σ = π/2.
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We note that there is particularly interesting phenomenology for ω = 5− 5i as the

branching ratio is greatly enhanced when assigning an imaginary part to ω. This is

because the mixing R is enhanced by sinω and cosω, which are both ∼ e|Im[ω]|. One

can further increase the branching ratio to be much larger than 10−13 by enlarging

the imaginary part of ω, hence the combination ∆CP ×B is also enhanced. Another

feature of the right panels is that, in spite of the different orders of magnitude, the

shape profiles of the curves are almost the same between ω = 5 and 5− 5i. This is

because the inclusion of an imaginary part for ω simply changes the size of RαI but

rarely changes the correlation between the decay width and right-handed neutrino

masses.

In Fig. 4.3 we show a numerical scan performed for M2 in the same range. We

sample M2 logarithmically in the range [0.1, 10] TeV and the ratio M1/M2 in the

range [0.1, 1). The blue points refer to purely real ω randomly sampled from [0, 2π).

In this case, only two of the CP violating phases δ and σ contribute to the CP

violation. The CP asymmetry ∆CP shows a roughly linear correlation with M−1
2 .

Most points of ∆CP are located in the regimes (10−3, 10−5) for M2 ' 0.1 TeV,

(10−4, 10−6) for M2 ' 1 TeV and (10−5, 10−7) for M2 ' 10 TeV. However, the

branching ratio of the decay is tiny, between (10−20, 10−15), which makes the CP

asymmetry unobservable in experiments. For the red points, we allow an imaginary

part for ω as well, namely, Im[ω] ∈ [−5, 5]. A CP asymmetry of order one is then

easily achieved. The branching ratio of the radiative decay can maximally reach

∼ 10−11. We have also checked that the combination ∆CP ×B can maximally reach

4× 10−15. Note that considering a larger imaginary part of ω could further enhance

the branching ratio and ∆CP × B. However, as this process happens at one loop

and there are constraints on the non-unitary effect, the branching ratio is always

suppressed by (16π2)−2|RR†|2/|RR†|. By taking RR† ∼ 10−3, we obtain a branching

ratio which maximally reaches ∼ 10−7 and is therefore challenging to probe in future

experiments.
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Figure 4.3: The CP asymmetry parameter ∆CP (left) and branch-
ing ratio (right) scanned in the regionM2 in [0.1, 10] TeV
and the ratio M1/M2 in [0.1, 1), where both masses are
scanned in the logarithmic scale. The red region refers
to ω = [0, 2π]+i[−5, 5] while the blue region is the smal-
ler ω = [0, 2π]. All oscillation parameters are scanned
in the 3σ ranges, ω = [0, 2π] and ζ = +1 are used. The
scan performed for the ζ = −1 branch gives the same
distribution and is thus omitted.

4.6 Conclusion

We study the CP violation in the neutrino electromagnetic dipole moment. A full

one-loop calculation of the transition dipole moment is performed in the context

of the Standard Model with an arbitrary number of right-handed singlet neutrinos.

The CP asymmetry is analytically derived in terms of the leptonic mixing matrix

accounting for heavy neutrino mass eigenstates. A detailed explanation of how to

generate a non-vanishing CP asymmetry in the neutrino transition dipole moment

is provided. This requires a threshold condition for the initial neutrino mass being

larger than the sum of W -boson mass and the charged leptons running in the loop

and a CP violating phase in the lepton flavour mixing matrix. The threshold

condition is necessary to generate a non-zero imaginary part for the loop function.

An analytical formulation of this loop integral imaginary component is then derived.

The lepton flavour mixing for vertex contributions has been parametrised in terms

of Jarlskog-like parameter. For Majorana particles, the CP asymmetry is identical

to the asymmetry of circularly-polarised photons released from the radiative decay.

The formulation is then applied to a minimal seesaw model where two right-handed
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neutrinos N1 and N2 are introduced with the mass ordering M1 < M2. A complete

study of CP asymmetry in all radiative decay channels was performed, where the

mass range 0.1 TeV < M2 < 10 TeV is considered. The CP asymmetry in N1,2 →

νγ is very small, maximally reaching 10−17. In the N2 → N1γ channel, the CP

asymmetry is significantly enhanced, with ∆CP achieving 10−5-10−3, even with

the Dirac phase δ being the only source of CP violation. There is a significant

correlation between the CP violation in radiative decay and that coming from

oscillation experiments. We performed a parameter scan of the CP asymmetry with

oscillation data in 3σ ranges taken as inputs and found that the CP asymmetry can

maximally reach order one.





Chapter 5

Change in the Polarisation of

Gamma Rays

The measurement of polarisation of light is a cornerstone of modern astrophysics.

Observations of both linear and circular polarisation have been used to understand

the nature of astrophysical sources emitting electromagnetic radiation [43, 166, 167].

Hence, it is important to describe any possible polarisation changes of gamma-

rays propagation due to fundamental interactions. This change can be understood

as follows. Photons have two helicity states. Each of them are associated with

one circular polarisation state (refer to as LH and RH in the following); if one

helicity state dominates over the other a net circular polarisation is realised. If

however the number of photons with ± helicity state is the same, there is no net

circular polarisation. The photon interactions which change the number of photon

polarisation states can thus change the fraction of net circular polarisation. They

can also change the properties of linearly polarised light.

So far the literature has focused on the polarisation of visible light and mm radiation

(see Chapter 2), and there are some efforts to describe the polarisation of X-ray

radiation [43]. However, such formalism breaks down for high–energy gamma–rays

polarisation. Therefore, in this chapter we will describe how the polarisation of these

high energy (
√
s ≥ me) electromagnetic signals changes as they propagate through
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space. We derive the formalism for such studies assuming generic interactions and

eventually focus on Compton interactions.

5.1 Introduction

Electromagnetic interactions at high energy (
√
s > me) are described by the Compton

scattering cross section in the high energy regime (which is different from the Klein-

Nishima regime) and critically includes helicity-flip processes such as e−RγL → e−LγR.

In this regime, the (classical) radiative transfer approach is no longer appropri-

ate since it assumes that the scattering only changes the direction of the outgoing

photons and ignores significant transfer of energy or flip of the helicity configur-

ation of the particles involved. The QFT approach that Kosowsky developed is

more suited to describe the nature of the interactions. Thus, the correct formalism

has to be a mixed of the two; i.e., one needs to embed the QFT formulation in

a radiative transfer framework. Here we develop such a formalism and show how

to recast Chandrasekhar’s low energy P–matrix in terms of the (QFT) scattering

matrix amplitude elements, thus addressing an important gap in the literature. This

formalism is general enough to be applied in a different context, including for ex-

ample to describe the evolution of the Stokes parameters after the light scatters off

generic new particles.

5.2 High Energy Description of Polarisation of

Gamma Rays

One can generalise the geometrical formalism proposed by Chandrasekhar and un-

derstand it in a more fundamental way by using Quantum Field Theory (QFT). In

the following, we show how to relate the Stokes parameters to the scattering matrix

amplitudeM associated with microscopic interactions.
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5.2.1 Generalisation of the Phase–Matrix

Now that we have defined the Stokes operators, we can relate them to scattering

matrix amplitudes. In the remainder of the paper we will focus on Compton interac-

tions but we are keeping the formalism general enough so that it can be applied to

any light scattering process at any energy, that isM(X γi → X γi′) ≡Mi
′
i, with X

being the particle the photon scatters off (e.g. an electron in the case of Thomson

or Compton scatterings). The outgoing polarisation state (|ε(2)
i
′ 〉) is related to the

initial polarisation state (|ε(1)
i 〉) by the matrix element Mi

′
i ≡ 〈ε

(2)
i
′ |ε(1)

i 〉 where i, i′

refers to the (l, r) or the ± basis, leading to

|ε(2)
j
′ 〉〈ε(2)

i
′ | = Mi

′
iM

∗
j
′
j |ε

(1)
j 〉〈ε

(1)
i | . (5.2.1)

Using Eq.(2.3.12) and Eq.(5.2.1), we then obtain

Ŝ(2) = W |ε(2)
j
′ 〉〈ε(2)

i
′ | = WMi

′
iM

∗
j
′
j| ε

(1)
j 〉〈ε

(1)
i | = WMi

′
iM

∗
j
′
j W−1 Ŝ(1), (5.2.2)

which we will write in the following as

Ŝ(2) = A′i′ij′j Ŝ
(1) (5.2.3)

with i′ij′j indices that refer to the different polarisation of the photons in the initial

and final states. We can now express the A′i′ij′j matrix in the (l, r) basis, that is



Î

Q̂

Û

V̂



(2)

= W



MllM
∗
ll MllM

∗
lr MlrM

∗
ll MlrM

∗
lr

MllM
∗
rl MllM

∗
rr MlrM

∗
rl MlrM

∗
rr

MrlM
∗
ll MrlM

∗
lr MrrM

∗
ll MrrM

∗
lr

MrlM
∗
rl MrlM

∗
rr MrrM

∗
rl MrrM

∗
rr


W−1

︸ ︷︷ ︸
A′



Î

Q̂

Û

V̂



(1)

. (5.2.4)



100 Chapter 5. Change in the Polarisation of Gamma Rays

or, in the ± basis,

Î

Q̂

Û

V̂



(2)

= W



M++M
∗
++ M+−M

∗
++ M++M

∗
+− M+−M

∗
+−

M−+M
∗
++ M−−M

∗
++ M−+M

∗
+− M−−M

∗
+−

M++M
∗
−+ M+−M

∗
−+ M++M

∗
−− M+−M

∗
−−

M−+M
∗
−+ M−−M

∗
−+ M−+M

∗
−− M−−M

∗
−−


W−1

︸ ︷︷ ︸
A′



Î

Q̂

Û

V̂



(1)

.(5.2.5)

5.2.2 A′-Matrix Definition in the ± Basis

Replacing the W matrix by Eq. (2.3.14), we find that the A′–matrix takes the

following form in the ± basis

Î

Q̂

Û

V̂



(2)

=



A′11 A′12 A′13 A′14

A′21 A′22 A′23 A′24

A′31 A′32 A′33 A′34

A′41 A′42 A′43 A′44





Î

Q̂

Û

V̂



(1)

, (5.2.6)

with

A′11 = 1
2

(
|M++|2 + |M+−|2 + |M−+|2 + |M−−|2

)
A′31 =Im(M+−M

∗
−− +M++M

∗
−+)

A′12 =−Re (M−−M∗
−+ +M+−M

∗
++)

A′32 =Im(M−−M∗
++ +M−+M

∗
+−)

A′13 =Im (M−−M∗
−+ +M+−M

∗
++)

A′33 =Re (M++M
∗
−− −M+−M

∗
−+)

A′14 = 1
2

(
|M++|2 + |M−+|2 − |M+−|2 − |M−−|2

)
A′34 =Im(M++M

∗
−+ +M−−M

∗
+−)

A′21 =−Re (M++M
∗
−+ +M−−M

∗
+−)

A′41 = 1
2

(
|M++|2 + |M+−|2 − |M−+|2 − |M−−|2

)
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A′22 =Re (M−−M∗
++ +M−+M

∗
+−)

A′42 =Re (M−−M∗
−+ −M+−M

∗
++)

A′23 =Im(M++M
∗
−− +M−+M

∗
+−)

A′43 =Im(M−+M
∗
−− +M+−M

∗
++)

A′24 =Re (M−−M∗
+− −M++M

∗
−+)

A′44 = 1
2

(
|M++|2 + |M−−|2 − |M+−|2 − |M−+|2

)
(5.2.7)

5.2.3 A′-matrix Definition in (l, r) Basis

In the (l, r) basis, the A′–matrix reads as

A′11 = 1
2

(
|Mll|2 + |Mlr|2 + |Mrl|2 + |Mrr|2

)
A′31 =Re(MllM

∗
rl +MlrM

∗
rr)

A′12 = 1
2

(
|Mll|2 − |Mlr|2 + |Mrl|2 − |Mrr|2

)
A′32 =Re(MllM

∗
rl −MlrM

∗
rr)

A′13 =Re (MllM
∗
lr +MrlM

∗
rr) A′33 =Re (MllM

∗
rr −MlrM

∗
rl)

A′14 =−Im(MllM
∗
lr +MrlM

∗
rr) A′34 =−Im(MllM

∗
rr +MrlM

∗
lr)

A′21 = 1
2

(
|Mll|2 + |Mlr|2 − |Mrl|2 − |Mrr|2

)
A′41 =Im(MllM

∗
rl +MlrM

∗
rr)

A′22 = 1
2

(
|Mll|2 − |Mlr|2 − |Mrl|2 + |Mrr|2

)
A′42 =Im(MllM

∗
rl +MrrM

∗
lr)

A′23 =Re(MllM
∗
lr −MrlM

∗
rr) A′43 =Im(MllM

∗
rr +MlrM

∗
rl)

A′24 =−Im (MllM
∗
lr −MrlM

∗
rr) A′44 =Re(MrrM

∗
ll −MrlM

∗
lr) . (5.2.8)

5.2.4 Relationship Between the Initial and Final

Chandrasekhar Stokes Parameters

To compare our results with that of Chandrasekhar, one needs to perform the

following transformation
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

Îl

Îr

Û

V̂


= C



Î

Q̂

Û

V̂


, with C =



1
2

1
2 0 0

1
2 −

1
2 0 0

0 0 1 0

0 0 0 1


. (5.2.9)

This transformation is only valid in the (l, r) basis where we can decompose the

intensity I in terms of Il and Ir. Using this transformation, the change in the

modified Stokes parameters after scattering reads as

Îl

Îr

Û

V̂



(2)

= C A′ C−1︸ ︷︷ ︸
A



Îl

Îr

Û

V̂



(1)

(5.2.10)

with

A =



MllM
∗
ll MlrM

∗
lr A13 A14

MrlM
∗
rl MrrM

∗
rr A23 A24

MllM
∗
rl +MrlM

∗
ll MlrM

∗
ll +MrrM

∗
lr A33 A34

−i(MllM
∗
rl −MrlM

∗
ll) −i(MlrM

∗
ll −MrrM

∗
lr) A43 A44


(5.2.11)

and

A13 =1
2(MllM

∗
lr +MlrM

∗
ll)

A14 =1
2i(MllM

∗
lr −MlrM

∗
ll)

A23 =1
2(MrlM

∗
rr +MrrM

∗
rl)

A24 =1
2i(MrlM

∗
rr −MrrM

∗
rl)

A33 =1
2(MllM

∗
rr +MlrM

∗
rl +MrlM

∗
lr +MrrM

∗
ll) ,

A34 =1
2i(MllM

∗
rr −MlrM

∗
rl +MrlM

∗
lr −MrrM

∗
ll) ,

A43 =− 1
2i(MllM

∗
rr +MlrM

∗
rl −MrlM

∗
lr −MrrM

∗
ll) ,

A44 =1
2(MllM

∗
rr −MlrM

∗
rl −MrlM

∗
lr +MrrM

∗
ll) . (5.2.12)
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We note that, at low energy, the above expression can be used to derive both P and

R–matrices, depending on the choice of kinematics. Using the rest frame kinemat-

ics leads to the expression of the R–matrix while the fixed frame kinematics (see

Eq. (5.2.10)) leads to the P–matrix. Finally we have checked that these expressions

are consistent with Chandrasekhar’s definitions of the R and P matrices in the case

of Thomson interactions in Appendix C.4.

5.3 Compton Interactions

We are now equipped to determine the change in polarisation of γ-rays after they

scatter off electrons, whatever the energy regime (and in particular when the initial

energy exceeds the electron mass, that is
√
s > me). Our formalism is general

enough to study dark photon scattering off electrons or photon scattering off Beyond

Standard Model particles. Unlike Thomson interactions which do not flip the spin

of the electron, Compton interactions can affect both the photon polarisation and

the electron spin configuration due to the energies at play. As a result, we expect

the relation between the outgoing and incoming Stokes parameters to be much more

complex than in the case of Thomson interactions, and to depend on both the

momentum and energy of the incoming particles.

We note that other works have attempted to describe the change in linear polarisation

of high energy gamma-rays after scattering. However there are a number of issues.

For example, Ref. [168] uses Chandrasekhar’s geometrical approach to describe the

scattering of X-rays and gamma–rays but the geometrical approach does not capture

the complexity of Compton scattering interactions at high energy (in particular

the presence of helicity-flip processes). The Klein—Nishina formula has also been

used in [169] to describe the linear polarisation of high energy gamma-rays but it is

only valid when the electrons are strictly at rest and thus does only apply in very

specific circumstances. Finally, other works have used the photon density matrix to

describe the process of polarisation transfer [170, 171, 172] but have not folded in
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the information about the cross section which is critical at high energy (
√
s > me).

The formalism that we have developed thus aims to provide a consistent treatment

of polarisation after scattering, whatever the energy regime one is considering.

In the previous section, we have defined the R–matrix in the (l, r) basis and showed

how to convert it in the ± basis. Defining the R–matrix in the (l, r) basis was

straightforward because at low energy, the scattering only induces a change in the

photon direction (i.e. I(2)
l = cos2 θ I

(1)
l and I(2)

r = I(1)
r ). However at high energies,

the effect of the scattering is much more complex and one needs to account for

helicity-flip processes. This means that i) one needs to use a QFT approach and

ii) the R′–matrix in the ± basis gives more information about the physical process

than the R′–matrix in the (l, r) basis.

For clarity, we remind the reader of our notations:

• A′–matrix: This the most generic relation between the incoming and outgoing

(I,Q, U, V ) parameters. It is valid for any photon energy and scattering off any

type of particle and can be computed using both the ± and the (l, r) photon

helicity states (see Eq. (5.2.5) and Eq. (5.2.4) respectively).

• A–matrix: Similarly, the A–matrix is the most generic relation between the

incoming and scattered (Il, Ir, U, V ) parameters. Due to the definition of the

modified Stokes parameters, the A-matrix is only expressed in terms of the

(l, r) photon polarisation states.

• R′–matrix and P′–matrix: These are the A′-matrices expressed in the rest-

frame (scattering plane) and fixed frame kinematics (3D plane) respectively.

• R–matrix and P–matrix: These are the A-matrices expressed in the rest-

frame (scattering plane) and fixed frame kinematics (3D plane) respectively.
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5.3.1 The Phase–Matrix for Compton Interactions

We can now determine how the Stokes parameters change after γ-rays scatter off

electrons by inserting the Compton scattering matrix elements in Eq. (5.2.3). Using

the definitions Mi
′
i ≡ M(eαγi → eβγ

′
i) (where α, β = ± denote the electron spin

configurations) and

Mi
′
iM
∗
j
′
j ≡

1
2
∑

α,β=±
M(eαγi → eβγ

′
i)M∗(eαγj → eβγ

′
j) (5.3.1)

we find that the A′–matrix simplifies to

A′ =



A′11 A′12 0 0

A′21 A′22 0 0

0 0 A′33 0

0 0 0 A′44


(5.3.2)

with

A′11 = 2
(
p1·k1

p1·k2
+ p1·k2

p1·k1

)
+ 4m2

e

(
1

p1·k1
− 1
p1·k2

)
+ 2m4

e

(
1

p1·k1
− 1
p1·k2

)2

,

A′12 = A′21 = 4m2
e

(
1

p1·k1
− 1
p1·k2

)
+ 2m4

e

(
1

p1·k1
− 1
p1·k2

)2

,

A′22 = 2 + 2
(

1 +m2
e

(
1

p1·k1
− 1
p1·k2

))2

,

A′33 = 4 + 4m2
e

(
1

p1·k1
− 1
p1·k2

)
,

A′44 = 2
(
p1·k1

p1·k2
+ p1·k2

p1·k1

)
+ 2m2

e

(
p1·k1

p1·k2
+ p1·k2

p1·k1

)(
1

p1·k1
− 1
p1·k2

)
, (5.3.3)

where p1 is the 4–momentum of the incoming electron and k1, k2 are the 4–momentum

of the incoming and outgoing photons respectively.

R′ and P′–Matrices for Compton Interactions

We can now express the R′ and P′–matrices for Compton scattering by taking the

appropriate kinematic limit. In the rest frame of the electron, the R′-matrix reads
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as

R′ = 2
me



R′11 −me sin2 θ 0 0

−me sin2 θ me(1 + cos2 θ) 0 0

0 0 2me cos θ 0

0 0 0 R′44


(5.3.4)

with R′11 = ∆Eγ(1− cos θ) +me(1 + cos2 θ), R′44 = [2me + ∆Eγ(1− cos θ)] cos θ and

∆Eγ ≡ (Eγ,1 − Eγ,2). The angle θ is the angle between the incoming and outgoing

photons. Here Eγ,1 and Eγ,2 are the energies of the incoming and outgoing photons,

respectively.

R and P – Matrices for Compton Interactions

Similarly we can find the R–matrix using the expression of the A–matrix in the

(l, r) basis, that is

A =



A11 A12 0 0

A21 A22 0 0

0 0 A33 0

0 0 0 A44


(5.3.5)

with

A11 = 4 +
2m2

e (p1·k1 − p1·k2)
(
m2
e (p1·k1 − p1·k2) − 2 p1·k1 p1·k2

)
(p1·k1)2(p1·k2)2 ,

A12 = A21 =
2m2

e (p1·k1 − p1·k2)
(
m2
e (p1·k1 − p1·k2) − 2 p1·k1 p1·k2

)
(p1·k1)2 (p1·k2)2 ,

A22 = 2
(p1·k1)2(p1·k2)2

[
m4
e (p1·k1 − p1·k2)2 + 2m2

e p1·k1 p1·k2 (p1·k2 − p1·k1)

+p1·k1 p1·k2

(
p1·k1

2 + p1·k2
2
)]
,

A33 =
2
(
(p1·k1)2 + (p1·k2)2

) (
m2
e (p1·k2 − p1·k1) + p1·k1 p1·k2

)
(p1·k1)2(p1·k2)2 ,

A44 = 4 + 4m2
e

(
1

p1·k1
− 1
p1·k2

)
. (5.3.6)
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The R–matrix then reads as

Îl

Îr

Û

V̂



(2)

=



R11 R12 0 0

R21 R22 0 0

0 0 R33 0

0 0 0 R44





Îl

Îr

Û

V̂



(1)

(5.3.7)

with

R11 = 1
2 (A11 + A12 + A21 + A22) R12 = 1

2 (A11 −A12 + A21 − A22)

R21 = 1
2 (A11 + A12 −A21 −A22) R33 = A33 (5.3.8)

R22 = 1
2 (A11 −A12 −A21 + A22) R44 = A44

which leads in the rest frame of the electron (see Appendix D)

R = 2
me



sin2 θ
2 ∆Eγ + 2me cos2 θ sin2 θ

2 ∆Eγ 0 0

sin2 θ
2 ∆Eγ sin2 θ

2 ∆Eγ + 2me 0 0

0 0 2me cos θ 0

0 0 0 R44


(5.3.9)

with R44 = [2me + ∆Eγ (1− cos θ)] cos θ.

The expression of the P-matrix for Compton scattering (3D, fixed frame) is too long

to be given in this Chapter.

As one can see, the expression of the R-matrix now involves ∆Eγ and a less straight-

forward combination of the scattering angle which is not just purely a geometrical

factor. Using Eq. (5.3.9) (as well as the expression of the P–matrix) and taking the

low energy limit (Eγ,1 ' Eγ,2 � me), we could verify that we recover the same R and

P –matrices as in [81] (see Eq. (2.3.16)), thus confirming that using a QFT approach

and taking different kinematics is indeed an alternative to Chandrasekhar’s geomet-

rical approach for deriving the P –matrix. The novelty of this technique though

is that it allows us to compute the relationship between the Stokes (or modified

Stokes) parameters – before and after scattering – whatever the incident photon



108 Chapter 5. Change in the Polarisation of Gamma Rays

energy, interaction and type of scattering material (i.e. whether the particles belong

to the Standard Model or to some extensions).

Scattering with Unpolarised Electrons

Now that we have described how the polarisation of high energy photons could

change after scattering, we can focus on either linear or circular polarisation. Circular

polarisation is given by the V parameters and, like observed by Chandrasekhar for

Rayleigh scattering, we note that in the rest frame, there is no transfer from linear

to circular polarisation and vice versa even for high energy photons. Indeed under

these conditions, A′44 (and therefore R′44) is secluded. In other words, a net circular

polarisation signal cannot be converted into a linear polarisation signal and vice versa.

This means that no circular polarisation signal can be created by the scattering of

linearly polarised light (i.e. V (2) 6= 0 requires that V (1) 6= 0) and implies that a

change in circular polarisation can only occur if there is a change in the number of

photons with a given polarisation state. These results have also been checked using a

different approach to calculate the scattering amplitude based on its decomposition

in terms of different photon polarisations. We refer the reader to Appendix E for

further details.

With the formalism given in this chapter, we can study the change of polarisation

when high energy γ–rays hit electrons. Since A′i4,i 6=4 = 0 (i.e. there is no transfer of

polarisation from linear to circular polarisation and vice versa), a possible change in

the magnitude of the circular polarisation signal after scattering, V (2) 6= V (1), has to

reflect the number of photons whose polarisation state is changed by the scattering

process. If the scattering is as likely to change the photon polarisation as to maintain

it, we would expect no net circular polarisation – that is V (2) = 0 – regardless of the

initial net polarisation. Therefore the change in net circular polarisation (∆V ) can

be formulated in terms of the scattering matrix amplitudes, as 1

1Here, the subscripted signs ± refers to the photon polarisation state, i.e. eγi → eγj , where
i, j = ±.
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∆V = |M++|2 + |M−−|2 − |M+−|2 − |M−+|2

|M++|2 + |M−−|2 + |M+−|2 + |M−+|2
= A′44

A′11
, (5.3.10)

where

|M±±|2 = 2
(
p1·k1

p1·k2
+ p1·k2

p1·k1

)
+m2

e

(
2 + p1·k1

p1·k2
+ p1·k2

p1·k1

)
×

×
(

1
p1·k1

− 1
p1·k2

)
+m4

e

(
1

p1·k1
− 1
p1·k2

)2

|M±∓|2 = m2
e

(
2− p1·k1

p1·k2
− p1·k2

p1·k1

)(
1

p1·k1
− 1
p1·k2

)
+m4

e

(
1

p1·k1
− 1
p1·k2

)2

.

(5.3.11)

From this expression, one readily sees that the value of ∆V is limited to the range

[−1, 1] and different values can be interpreted as follows.

• ∆V = 1: There is no change in the initial value of the V parameter (i.e., no

change in the amount of circular polarisation left after scattering).

• 0 < ∆V < 1: The initial circular polarisation is partly washed out by the

scattering.

• ∆V = 0: Any net circular polarisation will be erased completely after one

single scattering.

• −1 < ∆V < 0: The sign of the circular polarisation is changed and most

polarisation states have flipped.

• ∆V = −1: All polarisation states have flipped (V (2) = −V (1)).

A similar information can be defined in terms of the total cross section corresponding

to each amplitude (see Appendix F for details). We can now determine how likely

a net circular polarisation signal is expected to change after Compton scattering

as a function of the incoming and outgoing kinematics. In Fig. 5.1 we present the
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Figure 5.1: The change of net circular polarisation after a single
e − γ scattering in (a) the centre of mass frame, (b)
the electron rest frame, (c) the spin frame, and (d) the
fixed frame. In the former three frames, we choose the
incoming photon energy Eγ,1 and the angle between
outgoing and incoming photons θ as variables. In the
last frame, the incoming photon energy Eγ,1 and the
angle between outgoing photon and incoming electron
are chosen as variables.

asymmetry ∆V defined in Eq. (5.3.10) as a function of the incoming photon energy

and the angle between the incoming and outgoing photon (θ). The results are shown

in the centre of mass frame (COM), the rest frame, the spin frame and the fixed

frame. The rest frame is very useful for energetic photons propagating through a

medium and scattering with very low energy (background) electrons. The spin frame

is a new frame that we define in this Chapter to reflect the fact that for incoming

and outgoing electrons travelling in the ∓z, the spinor definitions that we are using

to calculate the matrix amplitude correspond to the spin eigenstates of the electrons.

The results in this frame thus match the result in the COM frame. The fixed frame
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gives the most general description of electron photon scattering. The only constraint

is that the momentum of the incoming electron is fixed along the +z direction. This

gives us more freedom about the angular configuration of the scattering. In this

frame, it is not very intuitive to show ∆V as a function of θ so we will present it as

a function of the angle between the outgoing photon and the incoming electron (i.e.,

φ2), as in Fig. 5.1d. In this figure, we have fixed the incoming electron momentum

at p1 = 5 MeV, as well as the angles φ1 = θ1 − θ2 = π/3, where φ1 is the angle

between incoming electron and photon and θ1 − θ2 is the difference of the angles of

the incoming and outgoing photons projected on the plane perpendicular to the z

direction. Note that this plot is just shown as an example, more results for the fixed

frame can be found in Appendix F.1. The polarisation behaviour is dependent on

all these kinetic variables. If one of them changes, ∆V changes quite a bit too. For

more information about how ∆V varies in the different frames of reference, we refer

the reader to Appendix D.

A common feature among the first three frames is that, for a low energy incoming

photon, Eγ,1 � me, the asymmetry ∆V crucially depends on the direction of the

outgoing photon after scattering. The fixed frame does not follow this feature simply

because we have assumed a relativistic incoming electron by fixing p1 at 5 MeV. If

the incoming electron is non-relativistic (as can be seen in the appendix F.1) we get

similar results as in the other frames.

In the high energy regime of the incoming photon (Eγ,1 � me), Compton scattering

preserves the polarisation states of most of the outgoing photons regardless of the

direction of the incoming photon. However, this is not true in the rest frame (Fig.

5.1b), where ∆V strongly depends on the scattering direction of the outgoing photon

with respect to the incoming photon and is independent on the incoming photon

energy. When the initial electron is at rest, the only way that a “+/−” polarised

photon can conserve angular momentum requires the photon to be scattered in

the forward direction. Otherwise, it would have to flip its polarisation. On the

contrary, when the electron has some initial energy, (like in the spin or COM frames
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for Eγ,1 � me), the photon can scatter in any direction while keeping its initial

polarisation without violating angular momentum conservation. One common feature

of all the frames in this regime is that the change of the net polarisation no longer

depends on the incoming photon energy. However, when the energy of the incoming

photon is around or slightly above the electron mass, the value of ∆V then becomes

strongly frame dependent.

5.4 Boltzmann–Like Equation for Polarisation

Now that we know how the Stokes parameters are modified after scattering, see

Eq. (5.3.9), we can study their evolution as light propagates through space. This

is possible by using the Boltzmann equation. The general form of the Boltzmann

equation is
dn

dt
= C[n] , (5.4.1)

where n is the phase space photon distribution function and C is the collisional term,

i.e., a functional of the photon distribution function n describing the scattering of

the photon with any other particles ψ in the medium. The latter reads as

C[n] =
∫
dp1 dp2 dk2 |M(ψγ → ψγ)|2 (2π)4×

× δ4(p1 + k1 − p2 − k2)[nψ(p2)nγ(k2)− nψ(p1)nγ(k1)], (5.4.2)

where p1(2) ≡ (Eψ,1(2), p1(2)) is the four-momentum of the incoming (outgoing)

particle ψ in the medium, k1(2) ≡ (Eγ,1(2), k1(2)) is the four-momentum of the

incoming (outgoing) photon, dk2 ≡
d3k2

(2π)32Eγ,2
, dp1(2) ≡

d3p1(2)

(2π)3
mψ

Eψ,1(2)
, nψ,γ is the

distribution function of the particles ψ and γ respectively, and |M(ψγ → ψγ)|2 is

the squared scattering matrix amplitude. In the current form, this equation is for

any particle physics process involving photon scattering.
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5.4.1 Boltzmann Formalism for Generic Interactions

In order to study the evolution of the polarisation, we need to relate the photon

energy distribution to the Stokes parameters. In Eq. (2.3.14), we saw that the Stokes

parameters could be expressed in terms of the different photon states. The next step

is to relate them to the density matrix. Combining Eq. (2.3.14) with the definition

of density matrix

ρij = |εi〉〈εj|Tr(ρ) , (5.4.3)

where i, j = {l, r} or {+,−}, and making use of

〈S〉 = Tr(ρŜ) , (5.4.4)

with S = I,Q, U, V , the Stokes parameters in the ± basis can be expressed as

〈I〉 = ρ++ + ρ−− ,

〈Q〉 = − (ρ+− + ρ−+) ,

〈U〉 = i (ρ+− − ρ−+) ,

〈V 〉 = ρ++ − ρ−− (5.4.5)

To continue further, we need to define the time evolution of the different matrix

density elements. This can be done by expressing the photon number operator

Dij(k) ≡ a†i(k)aj(k) in terms of the density matrix associated with the different

photon polarisation states [82]. Making use of the relation

〈Dij〉 = (2π)3δ(0)2k0ρij(k) (5.4.6)

and assuming that the collision time scale is smaller than the time scale for the

variation of the density matrix (which is true for weak scale processes), we can then

express the density matrix in terms of the photon number operator [173]

(2π)3δ(0)2Ek
d

dt
ρij(k) = −1

2

∫ ∞
−∞

dt〈[H0
I (t), [H0

I (0),D0
ij(k)]]〉 , (5.4.7)

where H0
I is the interaction Hamiltonian to first order.
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Assuming that most of the particles in space are not polarised since there is no

left/right asymmetry, Eq. (5.4.7) can be rewritten as

2Eγ,1
d

dt
ρij(k1) = −1

4

∫
dp1 dp2 dk2 (2π)4 δ4(p2 + k2 − p1 − k1) Mαα

′M∗
β
′
β

× [nψ(p1)δβα′(δiαρβ′j(k1) + δjβ′ρiα(k1))− 2nψ(p2)δiαδjβ′ρα′β(k2)] ,

(5.4.8)

where Mαα
′ ≡M(ψγα → ψγα′) with α, α′ = ± being different polarisation states of

the photon. This eventually leads to

d

dt
ρ++(k1) = − 1

8Eγ,1

∫
dp1dp2dk2(2π)4δ4(p2 + k2 − p1 − k1)

×
(

2|M++|2[nψ(p1)ρ++(k1)− nψ(p2)ρ++(k2)]

+ 2|M+−|2[nψ(p1)ρ++(k1)− nψ(p2)ρ−−(k2)]

+ nψ(p1) (ρ−+(k1) (M++M
∗
−+ +M+−M

∗
−−)

+ ρ+−(k1) (M−+M
∗
++ +M−−M

∗
+−))

− 2nψ(p2)[M++M
∗
+−ρ+−(k2) +M+−M

∗
++ρ−+(k2)]

)
,

d

dt
ρ−−(k1) = − 1

8Eγ,1

∫
dp1dp2dk2(2π)4δ4(p2 + k2 − p1 − k1)

×
(

2|M−+|2
[
nψ(p1)ρ−−(k1)− nψ(p2)ρ++(k2)

]
+ 2|M−−|2

[
nψ(p1)ρ−−(k1)− nψ(p2)ρ−−(k2)

]
+ nψ(p1) (ρ+−(k1) (M−+M

∗
++ +M−−M

∗
+− )

+ ρ−+(k1) (M++M
∗
−+ +M+−M

∗
−−))

− 2nψ(p2)[M−+M
∗
−−ρ+−(k2) +M−−M

∗
−+ρ−+(k2)]

)
,

d

dt
ρ+−(k1) = − 1

8Eγ,1m2
ψ

∫
dp1dp2dk2(2π)4δ4(p2 + k2 − p1 − k1)× ,

×
(
nψ(p1) [ ρ+−(k1)(|M++|2 + |M−+|2 + |M+−|2 + |M−−|2)

+ (ρ++(k1) + ρ−−(k1))(M++M
∗
−+ +M+−M

∗
−−) ]

− 2nψ(p2)[M++M
∗
−+ρ++(k2) +M+−M

∗
−−ρ−−(k2)

+M+−M
∗
−+ρ−+(k2) +M++M

∗
−−ρ+−(k2)]

)
,
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d

dt
ρ−+(k1) = − 1

8Eγ,1m2
ψ

∫
dp1dp2dk2(2π)4δ4(p2 + k2 − p1 − k1)

×
(
nψ(p1)

[
ρ−+(k1)(|M++|2 + |M−+|2 + |M+−|2 + |M−−|2)

+(ρ++(k1) + ρ−−(k1))(M−+M
∗
++ +M−−M

∗
+−)]

− 2nψ(p2)[M−+M
∗
++ρ++(k2) +M−−M

∗
+−ρ−−(k2)

+M−+M
∗
+−ρ+−(k2) +M−−M

∗
++ρ−+(k2)]

)
. (5.4.9)

Expressing the scattering matrix elements in terms of the A′–matrix elements, we

then get

|M++|2 = 1
2

(
A′11 + A′14 + A′41 + A′44

)
M++M

∗
−+ = 1

2

(
−A′21 −A′24 + iA′31 + iA′34

)
|M+−|2 = 1

2

(
A′11 −A′14 + A′41 −A′44

)
M−−M

∗
+− = 1

2

(
−A′21 + A′24 − iA′31 + iA′34

)
|M−+|2 = 1

2

(
A′11 + A′14 −A′41 −A′44

)
M++M

∗
+− = 1

2

(
−A′12 − iA′13 −A′42 − iA′43

)
|M−−|2 = 1

2

(
A′11 −A′14 −A′41 + A′44

)
M−+M

∗
+− = 1

2

(
A′22 + iA′23 + iA′32 −A′33

)
M++M

∗
−− = 1

2

(
A′22 + iA′23 + A′33 − iA′32

)
M−+M

∗
−− = 1

2

(
−A′12 + A′42 − iA′13 + iA′43

)
(5.4.10)

Therefore, using Eqs. ((5.4.5)) and ((5.4.9)), we obtain the time evolution of the

Stokes parameters, namely

d

dt
I(k1) = − m2

ψ

8πEψ,1Eγ,1Eψ,2

∫ ∞
0

dEγ,2Eγ,2

∫ dΩ
4π δ

(
Eψ,2 + Eγ,2 − Eψ,1 − Eψ,1

)
×

×

(nψ,1I(k1)− nψ,2I(k2)
)

A′11

+ nψ,1

(
V (k1)A′41 +Q(k1)A′21 − U(k1)A′31

)
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− nψ,2
(
V (k2)A′14 +Q(k2)A′12 − U(k2)A′13

)
d

dt
Q(k1) = − m2

ψ

8πEψ,1Eγ,1Eψ,2

∫ ∞
0

dEγ,2Eγ,2

∫ dΩ
4π δ

(
Eψ,2 + Eγ,2 − Eψ,1 − Eψ,1

)
×

×

(nψ,1I(k1)− nψ,2I(k2)
)

A′21 + nψ,1Q(k1)A′11

− nψ,2
(
V (k2)A′24 +Q(k2)A′22 − U(k2)A′23

)
d

dt
U(k1) = − m2

ψ

8πEψ,1Eγ,1Eψ,2

∫ ∞
0

dEγ,2Eγ,2

∫ dΩ
4π δ

(
Eψ,2 + Eγ,2 − Eψ,1 − Eψ,1

)

×

− (nψ,1I(k1)− nψ,2I(k2)
)

A′31 + nψ,1U(k1)A′11

+ nψ,2

(
V (k2)A′34 +Q(k2)A′32 − U(k2)A′33

)
d

dt
V (k1) = − m2

ψ

8πEψ,1Eγ,1Eψ,2

∫ ∞
0

dEγ,2Eγ,2

∫ dΩ
4π δ

(
Eψ,2 + Eγ,2 − Eψ,1 − Eψ,1

)

×

(nψ,1I(k1)− nψ,2I(k2)
)

A′41 + nψ,1V (k1)A′11

− nψ,2
(
V (k2)A′44 +Q(k2)A′42 − U(k2)A′43

) (5.4.11)

where p2 = p1 + k1 − k2 and where it is assumed that the particles in the medium

follow a thermal Maxwell-Boltzmann distribution so that nψ,1(2) ≡ nψ,1(2)(x) =∫ d3p1(2)

(2π)3 fψ(x,p1(2)). We are now ready to compute the time evolution of the

circular polarisation component by inputting the appropriate electron densities and

A′–matrix elements. This has been done for low energy photons in [174].

5.4.2 Boltzmann Formalism for Photo – Electron

Scattering

For the study of more than one process we now apply the Boltzmann formalism

to the photon-electron scattering. Using the general results in Eq. (5.4.11) and

Eq. (5.3.2) the Boltzmann equation for photon-electron scattering simplifies and can

then be expressed in terms of the A′–matrix elements. Consequently, for the specific
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case of Compton scattering, we get

d

dt
I(k1) =− m2

e

8πEe,1Eγ,1Ee,2

∫ ∞
0

dEγ,2Eγ,2

∫ dΩ
4π δ

(
Ee,2 + Eγ,2 − Ee,1 − Ee,1

)

×

(ne,1I(k1)− ne,2I(k2)
)

A′11 +
(
ne,1Q(k1)− ne,2Q(k2)

)
A′12

 ,
d

dt
Q(k1) =− m2

e

8πEe,1Eγ,1Ee,2

∫ ∞
0

dEγ,2Eγ,2

∫ dΩ
4π δ

(
Ee,2 + Eγ,2 − Ee,1 − Ee,1

)

×

(ne,1I(k1)− ne,2I(k2)
)

A′12 + ne,1Q(k1)A′11 − ne,2Q(k2)A′22

 ,
d

dt
U(k1) =− m2

e

8πEe,1Eγ,1Ee,2

∫ ∞
0

dEγ,2Eγ,2

∫ dΩ
4π δ

(
Ee,2 + Eγ,2 − Ee,1 − Ee,1

)
×
[
ne,1U(k1)A′11 − ne,2U(k2)A′33

]
,

d

dt
V (k1) =− m2

e

8πEe,1Eγ,1Ee,2

∫ ∞
0

dEγ,2Eγ,2

∫ dΩ
4π δ

(
Ee,2 + Eγ,2 − Ee,1 − Ee,1

)
×
[
ne,1V (k1)A′11 − ne,2V (k2)A′44

]
, (5.4.12)

where c2 ≡ cos 2φ2 and c1 ≡ cos 2φ1 and the explicit form of the A′–matrix elements

are given by Eq. (5.3.3).

We note that the evolution of the intensity I(k1) and linear polarisation parameter

Q(k1) are independent of the evolution of the U(k1) and V (k1) parameters. Con-

sequently, for Compton scattering, there is no conversion between circular and linear

polarisation over time as expected.

5.5 Conclusion

The formalism developed in this work provides with a powerful tool to study the

changes in circular polarisation as light propagates through any type of medium.

This implies that observations of circularly polarised light can be used to deepen our

understanding of the nature of dark matter or other theories beyond the Standard

Model.

As it is expected, the A′–matrix elements at high energy (Eq. (5.3.2)) are significantly

different from the ones at low energy. Some of the elements which were vanishing in
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the low energy limit do not vanish at high energy. Furthermore, unlike in the low

energy case, the change of the Stokes parameters after scattering also depends on the

photon energies in the initial and final states. The relationship between the Stokes

parameters before and after scattering is therefore more complex at high energy than

at low energy. Nevertheless, just like for the interactions at low energies, circular

polarisation is secluded. Consequently, if the V -parameter changes after scattering,

this means that a number of photons with a given helicity state were converted into

photons with the opposite helicity. Therefore, if one kind of circular polarisation

dominates over the other one, we will be able to observe a net circular polarisation

signal i.e. ∆V 6= 0.

We also determine the conditions for which a net circular polarisation signal would

be preserved after scattering at low/high energies. This was done in four different

frames: centre of mass frame, rest frame, spin frame and fixed frame. We observed

that, for the first three frames mentioned before, a common characteristic is that for

low energy incoming photon, the change on the net circular polarisation depends on

the scattering direction. The fixed frame does not have this characteristic because

the incoming electron is relativistic. On the other hand, for high energies of the

incoming photon in the centre of mass and spin frame, the circular polarisation is

conserved independently of the scattering direction. This is not true for the rest

frame, where the change in the net circular polarisation depends on the scattering

direction of the outgoing photon. The only way the polarisation changes in this

frame is when the photon scatters in the forward direction.

To complement this work, we developed a general formalism to study the time evol-

ution of the Stokes parameters in the (I,Q, U, V ) basis in terms of the scattering

matrix elements. For the particular case of Compton scattering, we found that the

time evolution of the V –parameter is independent of the other Stokes parameters.

This means that even after multiple scatterings, while the amount of circular po-

larisation might change (i.e., the difference between left or right helicity states),

circularly polarised light will never become linearly polarised or vice versa.



Chapter 6

Capture of Dark Matter in White

Dwarfs

In this chapter, we will discuss the DM capture mechanism in stars [60]. We will apply

this formalism to the case of DM captured in white dwarfs (WDs). In Sec. 6.2 we will

provide a complete discussion on the physics of WDs such as their composition and

equation of state (EoS). In Sec. 6.3 we will introduce the DM capture rate formalism.

We also estimate the effects of evaporation for low DM masses in Sec. 6.4. Finally

in Sec. 6.5, we turn our attention to setting constraints on DM interactions.

6.1 Introduction

Compact stellar objects such as WDs generate a very strong gravitational potential.

Hence, the flux of DM particles in the neighbourhood of the stars will be gravita-

tionally pulled towards the star increasing the scattering probability of DM particles

off stellar targets such as nucleons, nuclei or leptons. If DM particles lose enough

energy, they will not be able to escape the star. The captured DM will concentrate

in the centre of the star where further annihilation provides extra heating that could

affect the WD luminosity. Therefore, observations of WDs lead to new ways to place

limits on the strength of DM interactions.
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Dark matter capture in stars was first introduced by William H. Press and David

N. Spergel [175]. They calculated the capture rate of DM in the Sun to account

for the observed solar neutrino discrepancy. Later the formalism was improved by

Andrew Gould who computed the capture rate for a generic spherical object and

then applied this calculation to DM capture in the Sun and in the Earth [176, 177].

The capture probability for a DM particle passing through the Sun, or the Earth,

is very small compared to that of a DM particle passing through a compact stellar

object. This is because the gravitational potential of the Sun and the Earth is several

orders of magnitude weaker than that of a compact star. Due to this fact, later

work has focused on the capture of DM in compact objects such as neutron stars

(NSs) to probe the particle properties of DM [178, 179, 180]. NSs are the smallest

and densest stars known in the Universe which could make difficult observations of

their thermal emissions [180]. To place limits on DM interactions using NSs, it is

necessary to observe sufficiently old, isolated, and nearby stars. The detection of the

thermal emission of a NS due to maximal DM capture in the star might be possible

with forthcoming infrared telescopes [181].

On the other hand, as we shall see in sec. 6.2, WDs are very well observed and

studied compact stellar objects. Due to the vast number of observations, their high

densities and the better understanding we have of their inner structure, WDs are

promising probes to set constraints on the DM scattering cross section. The capture

rate of DM particles in WDs has been already explored, see e.g. Refs. [182, 183].

However, relativistic effects due to the star compactness and inner structure have

been neglected.

Here, we adapt the treatment of the capture process, established in Ref. [184] for

the Sun and later improved in Ref. [60] for NSs, to DM capture in WDs. To obtain

more realistic estimates of the capture rate, first we discuss the physics of such stars

i.e. their composition and inner structure in the following section.
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6.2 White Dwarfs

There are three possible final states for a star when collapsing gravitationally; the

precise evolutionary path a star follows primarily depends on its mass at birth.

Massive stars (mass ∼ 10− 29M�) will become either neutron stars or black holes.

Around 90% of all stars in the Galaxy, with masses M? . 8− 10M�, will become

white dwarfs.

Compact stars differ from normal stars in two aspects: (1) Fusion does not occur

anymore. Consequently, there is no outward thermal pressure, in the particular case

of WDs the only support against gravitational collapse is the pressure generated by

highly degenerate electrons. (2) They are extremely small, therefore they generate

a much stronger gravitational field.

In the following, we will discuss some physical aspects that are useful for the com-

putation of the capture rate of DM in WDs.

6.2.1 Composition

WDs are compact objects with extremely high energy densities (∼ 106kg/m3). Ac-

cording to observations [185, 186, 187], a typical WD is about 0.6M�, with an surface

temperature of the order of 104 K and a radius of the order of that of the Earth. At

the extremely high densities found in WDs, electrons are highly degenerate [188]

so that, because of Pauli’s principle, an electron degeneracy pressure arises, which

supports WDs against gravitational collapse. Therefore, electrons determine the

equation of state (EoS) and the internal structure of white dwarfs. When the WD

mass exceeds the so called Chandrasekhar limit MCH ∼ 1.4M�[189], the electron

degeneracy pressure becomes insufficient to support WDs against gravitational col-

lapse. Below this limit, the WD will remain stable; however, if the WD mass becomes

greater than MCH, the star will further collapse into a different type of stellar rem-

nant such as NSs or BHs. Massive WDs with mass around ∼ 1.33M� have been
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observed [190]. Such WDs generate a significantly strong gravitational field so that

general relativistic (GR) effects become relevant for the study of their structure and

evolution, see Fig. 6.1.

Most WDs are thought to be composed of carbon and oxygen, nonetheless observa-

tions show that WDs possess also an atmosphere either H–dominant or He–dominant.

The envelope account for 1% of the fraction of the total mass. Typically the atmo-

sphere is composed of a maximum amount of helium around 10−2M? and a maximum

mass of hydrogen around 10−4M? [191]. There are other (less abundant) types of

WDs where the dominant element in the envelope is different from Hydrogen and

Helium. We will discuss this in more detail in section 6.2.4.

WDs are born at very high temperatures and they require several billions of years to

cool down. Hence, observations of the coldest WDs contain information of the early

stages of our Galaxy. Moreover, their extremely high densities cannot be reproduced

at terrestrial laboratories becoming “physics laboratories” for matter in extreme

environments.

6.2.2 Equation of State

Equations that relate thermodynamic properties, such as temperature, pressure and

density, of a system are called equations of state. We use this set of equations to

describe the properties of matter in the interior of stars. In this section, we discuss

the ideal and Salpeter equations of state of a WD. In both approaches we assume

that a WD is made of only one element.

Ideal Equation of State

In the classical approach the WD EoS is obtained by considering WD matter con-

sisting of electrons and nuclei of atomic weight A and atomic charge Z. Additionally,

given that in the WD interior electrons are highly degenerate it is a good first

approximation to consider the matter at absolute zero temperature.
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In this first approach, not only the effects of temperature are neglected, but also

interactions among electrons and nuclei are not taken into account and the main

molecular weight µe = A/Z is considered as constant. As a result, the EoS given by

the parametric forms of the total energy density ε(ξ) and pressure p(ξ) receive only

two contributions: εn and εe which are respectively the nucleon and electron energy

density contributions. For non interacting electrons of number density ne = nn/µe,

these contributions are defined as,

εn(ξ) = ε0
Muµe
3me

sinh3 ξ

4 , (6.2.1)

with Mu the atomic mass unit, and

εe(ξ) = ε0
8

[
1
4(sinh ξ − ξ)− 8

3 sinh3 ξ

4

]
, (6.2.2)

where we have used ξ = 4 sinh−1 x, ε0 = m
4
ec

5

π
2~3 , x = pF/mec and pF is the electron

Fermi momentum.

The internal pressure of the WD is given by the changes in the Helmholtz free energy

F (T,E). Considering the limit of zero temperature we have,

p = − 1
4πr2

ea
3
0

dE

dre
, (6.2.3)

where E = ε/ne, the pressure in the classical approach without temperature depend-

ence and electromagnetic interaction corrections is given by

p(ξ) = ε0
96

[
sinh ξ − 8 sinh ξ2 + 3ξ

]
. (6.2.4)

Salpeter Equation of State

In Ref. [192], Salpeter introduced several corrections to the classical approach dis-

cussed above. He principally relaxed the assumption of non-interacting electrons

and introduced corrections to the electron energy due to the electrostatic potential,

which is the most important correction to the EoS. A uniformly negatively charged

spherical cell of radius rea0, with a positively charged ion at the centre, is assumed
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in this treatment, where a0 is the Bohr radius and re the classical electron radius.

This is the so called Wigner–Seitz (WS) cell. Additional corrections were discussed

in his work such as the ions not being rigid in the WS cell, and self interactions

but he concluded that they are not relevant at high densities. We now list all the

corrections introduced to the EoS in Ref. [192].

1. Coulomb effects: As stated before, the electron-proton lattice is assumed to

be the Wigner-Seitz cell approximation. When relaxing the assumption of

non-interacting electrons, we consider interactions among electrons in the cell

as well as with the positive ion. However, the electrostatic interaction among

different cells remains neglected. The corresponding corrections terms to the

total energy density ε are,

a) Classical Coulomb effect, which accounts for the electrostatic interaction

between electrons and ions,

εC(ξ) = −32K
3

9
10

( 4
9π

)1/3
αZ2/3 sinh4 ξ

4 . (6.2.5)

with K = πm
4
ec

5

4~3 , me the electron mass and α the fine-structure constant.

b) The Thomas-Fermi correction. This correction accounts for a deviation

of the electron charge distribution from uniformity and is given by,

εTF (ξ) = −32K
3

162
175

( 4
9π

)2/3
α2Z4/3 cosh ξ4 sinh3 ξ

4 . (6.2.6)

c) Exchange Energy. This contribution accounts for the fact that electrons

are indistinguishable and it is necessary to consider electron interactions

via the transverse electromagnetic field. To evaluate this correction, the

influence of the ionic charge on the electron’s charge distribution is omit-

ted,

εex = − 3
128πα

32K
3

[
18 + 12ξ sinh ξ2 − 3ξ2 − 16 cosh ξ2 − 2 cosh ξ

]
.

(6.2.7)
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d) Correlation energy. This is the next term for the interaction energy

between electrons. The correlation energy correction accounts for how

affected is an electron due to the presence of others

εcorr = 32K
3 α2 sinh3 ξ

4

(
−0.0277 + 0.031 loge

[
α

sinh ξ
4

])
. (6.2.8)

2. Ion motion: estimation of the zero-point energy of the actual motion of the

ions produced by another ions as well as electrons. The computation is based

on the motion of a single ion at a time. However, this contribution is not

relevant for large nuclei and low density. The Coulomb effects due to electrons

predominate.

3. Other corrections: These are some types of corrections which are small or even

absent.

a) Self-energy term. It is expected that the Fermi gas of electrons affects the

self–energy of an individual electron. This comes from the virtual emission

of a photon accompanied by the recoil of the electron and followed by the

re–absorption of the photon.

b) Absence of corrections due to a potential gradient. Besides the electric

field due to individual nuclei in the star, as described in item 1, there is

a macroscopic electrostatic field through the spherically symmetric star

φ(r). However, when calculating the total energy density ε, electrons

were considered free. This is, the potential φ created by the macroscopic

electric field was neglected.

c) Effect of the potential. If on the contrary, a constant potential φ(r) = φ0

is introduced in each region of the star, it can be demonstrated that the

EoS is unaffected by the numerical value of φ0. However, if we are dealing

with a Lorentz invariant scalar potential V instead of an electrostatic

potential φ0, in the definition of x and energy density ε, the electron mass

would be replaced by (me + V c−2).
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4. Restrictions on Z (atomic charge) and A (atomic mass). So far these quantities

have been considered as constant and independent of the electron number

density. However, even at zero temperature reactions such as inverse β–decay

can occur if the density is high enough. Such reactions, change the electron

per nucleon fraction, and thus affect the EoS. Salpeter briefly discuss this

correction indicating that values for Z and A as continuous functions of the

density have to be derived.

The inclusion of electrostatic contributions in the EoS, results in a more realistic

approach, since they account for interactions among electrons and nuclei. The total

energy density for a non-ideal gas is therefore,

ε(ξ) = εn(ξ) + εe(ξ) + εc(ξ) + εTF(ξ) + εex(ξ) + εcorr(ξ). (6.2.9)

Using Eq. (6.2.3), the corresponding pressure corrections due to Coulomb effects are,

PC = −16
5 KαZ

2/3
( 4

9π

)1/3
sinh4 ξ

4 ,

PTF = −576
175Kα

2Z4/3
( 4

9π

)2/3
sinh4 ξ

4 tanh ξ4 ,

Pex = − α

2πK
[
cosh ξ + 8 cosh ξ2 − 6ξ sinh ξ2 + 3

2ξ
2

−9− 4
3 tanh ξ4

(
sinh ξ − 2 sinh ξ2 − 3ξ cosh ξ2 + 3ξ

)]
,

Pcorr = −32
9 0.0311Kα2 sinh3 ξ

4 . (6.2.10)

6.2.3 Internal Structure

Coupling the classical form of the equation of hydrostatic equilibrium and the mass

equation given by,

dP

dr
= −GM(r)ε(r)

c2r2 , (6.2.11)

dM

dr
= 4πr2ε(r)

c2 , (6.2.12)
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Figure 6.1: Mass radius relation for white dwarfs calculated with
the ideal and the Salpeter equations of state for different
chemical compositions.

to the EoS p = p(ε) given by the parametric forms of the energy density ε(ξ) and

pressure p(ξ) of a degenerate Fermi gas, we obtain the pressure and mass at different

shells of the stellar interior.

If the star is very compact, then relativistic effects have to be taken into account.

Hence, the Newtonian expression for the equation of hydrostatic equilibrium is

replaced by its GR counterpart, the Tolman–Oppenheimer–Volkoff (TOV) equation.

The compact object is in gravitational equilibrium due to the balance of the internal

pressure support against the gravitational field of the star. The TOV equation is

derived from the Einstein’s field equation,

Gαβ + Λαβ = 8πG
c4 Tαβ. (6.2.13)

In this equation, Gαβ is the Einstein curvature tensor and Λαβ the cosmological

constant that can be ignored at galactic scales. For a non-rotating spherical compact

object, we use the Schwarschild metric given in spherical coordinates,

gµν(r) = diag(eν(r),−eλ(r),−r2,−r2 sin2 θ). (6.2.14)

And the principal task is to find the form of the ν(r) and λ(r) functions so that we

can determine the TOV equation. In the process of finding the latter we also obtain
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Figure 6.2: B radial profile for carbon WDs of 0.65M�, 1M� and
1.4M� with Salpeter EoS.

the following relation1

d

dr
B(r) =

8πG
c
4 rP (r) + 2GM(r)

c
2
r
2

1− 2GM(r)
c
2
r

B(r). (6.2.15)

Contrary to NSs, GR corrections encoded in B(r) for a WD of mass 1M� or even

a WD as massive as 1.4M� are always close to 1 which means that the relativistic

effects due to the compactness of the star can be safely neglected, see Fig. 6.2.

Finally, the TOV equation is given by,

dP (r)
dr

= −Gε(r)M(r)
r2

[
1 + P (r)

c2ε(r)

] [
1 + 4πr3

c2M(r)
P (r)

] [
1− 2M(r)

c2r

]−1

. (6.2.16)

In the left panel of Fig. 6.1, the mass radius relation for WDs of any composition

with µe = 2 is obtained. To illustrate the effect of including GR corrections we

couple the ideal EoS to the classical form of the equation of hydrostatic equilibrium

(dashed blue line), and to the TOV equation (dashed-dotted magenta line). Finally,

we couple the Salpeter EoS for He WDs to the TOV equation (orange solid line). We

notice that for massive WDs relativistic effects are significant. On the other hand,

Coulomb corrections are significant for less dense WDs.
1On the surface of a compact object of mass M? and radius R? it is easy to show that

B(R?) = 1− 2GM?

c2R?
.

.
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The right panel of Fig. 6.1 shows the mass radius relation for WDs made of different

elements: helium (He), carbon (C), oxygen (O) and iron (Fe). For all cases the

relation was determined using the TOV equations with Salpeter EoS. For a WD

composed of heavy elements the energy density is higher. Hence, the negative

contributions to the energy density and pressure from electron interactions with

electrons and ions are higher than for lighter elements. As a consequence for a Fe

WD, the maximummass the star can achieve is significantly below the Chandrasekhar

mass limit, contrary to WDs made of lighter elements [193].

6.2.4 WD Observations

Most WDs are thought to be composed of carbon and oxygen. Spectroscopy shows

that their emitted light comes from an atmosphere which is either H– or He– rich.

The dominant element is usually 1000 times more abundant than all the other

elements. Due to the high surface gravity, heavy elements are on the core and lighter

elements on the top.

Since electrons have a large mean free path due to the Fermi sea, there is high

conductivity [194]. Therefore, the core of a WD is considered to have a uniform

temperature. The core is covered by non degenerate outer layers in “radiative

equilibrium” and there is an energy flux carried outward by the diffusion of photons

from the outer layers [195]. If we know the temperature gradient, is possible to

find the surface effective temperature Teff in terms of the core temperature Tc.

The luminosity L, of a WD with mass M? and radius R?, is related to the core

temperature Tc by [196, 197]1,

L = 5.7× 105erg s−1 µ

µ2
e

1
Z(1 +Xh)

M?

M�

(
Tc
K

)3.5
. (6.2.17)

Notice that this result is similar to L = 4πσBR2
?T

4
eff which is the luminosity for a

black body, where σB, is the Stefan–Boltzmann constant. However, Eq. (6.2.17)

1Note that in Eq. (4.1.3) and Eq. (4.1.10) of Reference [196] factors of 1/K−3.5 and 1/K1.5,
respectively, are missing and have been added here. The later can be checked in Ref. [197].
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Type Spectrum
DA Only Balmer emission lines (H), no He or metals
DB He I lines, no H or metals
DC Continuous
DO He II strong, He I or H present
DZ Metal lines only, no H or He lines
DQ Carbon features, atomic or molecular

Table 6.1: White dwarfs spectral classification. The letter “D” in
these designation stands for “degenerate” in the original
classification [201].

involves the temperature of the core Tc instead of the observable temperature of

the surface Teff . This suggest that the observed temperature, known as effective

temperature, is related to the core temperature by

T 7/2
c = 4πσBR2

?

5.7× 105erg s−1
µ2
e

µ
Z(1 +Xh)

M�
M?

T 4
eff

K−7/2 , (6.2.18)

where µ is the mean molecular weight and µe = Y −1
e with Ye the mean number of

electrons per nucleon. In the latter expression, Z stands for the fractional abundance

of elements heavier than hydrogen and helium and Xh is the fractional abundance

of hydrogen [198]. For more details, we refer the reader to Appendix G.

Spectral Types.

Colour photometry is the observed correlation between the colour of the star and

the strength of specific absorption lines which leads to a classification scheme into

spectral types. Additionally, each spectral type corresponds to a certain range of

colour temperature; hotter stars are bluer and cooler stars are redder. The spectral

energy distribution is determined by 1) the temperature structure, characterised

by the effective temperature Teff , 2) the pressure stratification, determined by the

surface gravity g and the chemical composition of the atmosphere layers. The

classification criteria for major spectral types are listed in Table 6.1 [199, 200].

Observations and Abundances.

WD mass distributions can be found in the literature. For instance, in refs. [185]

and [190], the authors presented the mass distribution for all pure DA WDs detected
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in the Sloan Digital Sky Survey (SDSS) data release 10,1 as well as DB WDs and

compared them with Monte Carlo simulations. The mass distribution for DAs with

Teff ≥ 13000 K and DBs with Teff ≥ 16000 K have a maximum around M? =

0.624M�. Additionally observed WD mass distribution samples from SDSS and

Gaia local 20 pc surveys were explored [186, 202]. The samples are restricted

to 16000 < Teff(K) < 22000, 16 < g(mag) < 18.5 and to single non-magnetic

WDs. The simulations of the local 20 pc predict a larger maximum mass (M? =

0.702M�) in comparison to the SDSS (M? = 0.642M�), this is in agreement with

observations. However, in both samples, simulations predicted a larger number

of WDs. Probably causes are, binary evolution, neglect of magnetic white dwarfs

(SDSS), and unidentified faint massive objects (20 pc sample). It is expected that

most of these uncertainties will be improved by Gaia [203].

6.3 Capture Rate

When DM particles are gravitationally attracted to WDs, the probability they scatter

with the constituents of the stellar matter increases. These interactions can provoke

that DM particles lose enough energy so they become gravitationally bound to the

star. In principle, DM can scatter off nuclei and electrons of the stellar matter.

In this work, we only consider DM scattering off nuclei. We first pay attention to

the capture rate in the optically thin limit. Further considerations such as the star

opacity will be reviewed later in the section.

The rate at which DM particles are captured into massive objects such as planets

or the Sun after a single scattering, was derived by Gould in Ref. [176, 177]. Later,

this computation was improved in Ref. [184], including velocity and momentum

dependent DM-nucleus interactions, the inner structure and the opacity of the Sun.

Recently, the capture rate formalism for compact stars has been improved, including
1The Sloan Digital Sky Survey or SDSS is a major multi-spectral imaging and spectroscopic

redshift survey.
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among other effects GR corrections, see Ref. [60]. In order to include GR effects

due to the compactness of the star, the Schwarzschild metric, Eq. (6.2.14), was

used on the star surface, and the TOV equations inside, Eq. (6.2.16). Following

the formalism given by Gould, the authors arrived to a capture rate that accounts

for relativistic effects induced by the compact star on the DM flux. Relativistic

corrections to the capture rate are encoded in B(r) given in Eq. (6.2.15). In a NS

B(r) varies in the range of 0.2− 0.7 [60] which indicates that relativistic effects are

not negligible. Conversely, as shown in Fig. 6.2, even for the heaviest WD B(r)

remains approximately constant and very close to 1. Consequently, in order to

calculate the capture rate in WDs, it is safe to follow the non-relativistic approach

for the Sun given in Ref. [184].

To derive the capture rate, we consider the number of DM particles per unit time

crossing a spherical surface of radius r and thickness dr,

dN

dt
= 2π ρχ

mχ

f(u)du
u

JdJ

m2
χ

, (6.3.1)

where J is the DM angular momentum with a maximum given by Jmaxclas = mχve(r)r.

Here, ρχ is the local DM density, mχ is the DM mass, ve(r) is the star escape velocity

and f(u) is the DM velocity distribution assumed to be Maxwell–Boltzmann and,

in the limit of T? → 0, where T? is the temperature of the isothermal region (core

temperature Tc), it reads,

lim
T?→0

f(u)du = u

vdv?

√
3

2π

[
e
− 3

2v2
d

(u−v?)2

− e
− 3

2v2
d

(u+v?)2]
du, (6.3.2)

where u stands for the DM velocity far away from the star, v? is the WD velocity

relative to the Galactic rest frame and vd is the Galactic halo velocity dispersion.

In order to obtain the differential capture rate, the number of DM particles entering

the star has to be multiplied by the scattering rate Ω−(w), see Sec. 6.3.1. Finally,

after integrating over the DM momentum J , the differential capture rate is given by,

dC

dr
= 4πr2 ρχ

mχ

w

u
f(u)duΩ−(w), (6.3.3)
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where ṙ = ~w indicates the DM velocity once it has fallen close to the star and,

w2 = u2 + ve(r)2. (6.3.4)

The WD escape velocity is defined as,

v2
e(r) = 1−B(r). (6.3.5)

The differential capture rate in Eq. (6.3.3) has two main components, one from

astrophysics and the other from particle physics. On the astrophysics side, we have

the DM flux (ρχ/mχ)(f(u)du/u). On the other hand, the particle physics description

is encoded in the Ω−(w) function defined as the DM interaction rate i.e. the rate at

which DM scatters off stellar matter, see Sec. 6.3.1 for details.

The expression for the capture rate is,

C =
∫ R?

0
4πr2 ρχ

mχ

w

u
f(u)duΩ−(w). (6.3.6)

This definition differs from that given in Ref. [60] by the B(r) term in the denomin-

ator.

6.3.1 Interaction Rate

The next step in the computation of the capture rate is to evaluate the interaction

rate, Ω−(w), which is given as a function of the differential scattering cross section. A

DM particle will be captured in the WD if its final velocity, after scattering off stellar

matter, results less than or equal to the escape velocity. Otherwise the rate will

correspond to particles escaping the star after scattering. Then, the DM interaction

rate is given by,

Ω−(ω) =
∫ ve

0
dv R−(ω → v), (6.3.7)

where R− is the DM differential interaction rate.

The differential interaction rate R−(w → v) indicates the rate at which a DM particle

with velocity w scatters off a nucleus to a final velocity v. In the lab frame, this
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rate is given by the product of the differential cross section, dσ/dv, the Maxwell-

Boltzmann number density and the relative velocity between a DM particle with

velocity w and a nucleus of velocity vT [204],

dR = dσTχ
dv

(v2
T + w2 + 2vTw cos θ)1/2 2

π1/2nT (r)κ3v2
T e
−κ2

v
2
T θ(1− | cos θ|)dvT d cos θ,

(6.3.8)

where θ is the lab frame angle between the direction of the incoming and outgoing

DM particle, nT is the target nucleus number density and κ2 = mT/2T?, where T? is

the nuclei temperature and mT the nucleus mass. This can be rewritten in the centre

of mass (com) frame, as a function of s and t which are respectively the velocity of

the centre of mass and the velocity of the DM particle before the collision in the

centre of mass frame. Therefore, w and vT should be written in terms of the s and

t velocities, this can be done using the following relations,

w = s+ t,

(1 + µ)s = |µw + vT |,

(1 + µ)t = |w − vT |, (6.3.9)

where µ = mχ/mT , µ± = (µ± 1)/2. The nucleus velocity written as a function of s

and t is determined by combining the last two expressions in Eq. (6.3.9),

v2
T = 2µµ+t

2 + 2µ+s
2 − µw2, (6.3.10)

and Eq. (6.3.8) in the com reads,

dR = 32µ4
+

π1/2 κ
3nT (r)t

2s

w
e−κ

2
v

2
T
dσTχ
dv

Θ(w − |s− t|)Θ(s+ t− w)dsdt, (6.3.11)

where we have substituted d cos θ = 4µ2
+t

wu
dt and vTdvT = 2µ+sds. The differential

DM-nucleus cross section in the com frame can be expressed as,

dσTχ
dv

= dσTχ
d cos θcm

d cos θcm
dv

, (6.3.12)

where the angle θcm is recast in terms of the variables s and t by finding the angle
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between t and t′, where the latter is the DM velocity in the com frame after scattering.

Therefore, cos θcm is given by,

cos θcm ≡ cos(θst ± θst′) = cos θst′ cos θst + sin θst′ sin θst sinφst′ , (6.3.13)

θst′(st) is the angle between t′(t) and s. φst′ is the azimuthal angle of the DM speed

after the scattering. From Eq. (6.3.9)

cos θst′ = v2 − s2 − t2

2st → d cos θst′
dv

= v

st
. (6.3.14)

Finally the differential interaction rate is given by [204],

R(w → v) =
∫ ∞

0
ds
∫ ∞

0
dt

32µ4
+√
π
κ3nT (r) dσTχ

d cos θ
vt

w
e−κ

2
v

2
T

×Θ(t+ s− w)Θ(w − |t− s|)Θ(v − |s− t|)Θ(s+ t− v), (6.3.15)

where Θ(v − |s − t|)Θ(s + t − v) are introduced to account for cos θst′ = ±1 in

Eq. (6.3.14).

As a first approximation, we can take the T? → 0 limit, since the thermal motion

of the nuclei is negligible in the capture process. Following Ref. [184] one arrives to

[177],

R−(w → v) = 4µ2
+

µw
nT (r) dσTχ

d cos θ Θ
(
v − w |µ−|

µ+

)
. (6.3.16)

Plugging this expression into Eq. (6.3.7), the DM interaction rate is then given by,

Ω−(w) = 4µ2
+

µw
nT (r)

∫ ve

w
|µ−|
µ+

dvv
dσTχ
d cos θ

(
qtr, w

)
. (6.3.17)

The transfer momentum is given by,

q2
tr = (1− cos θcm)v2

r

2m2
χ

(1 + µ)2 . (6.3.18)

From Eq. (6.3.9), we rewrite the relative velocity as v2
r = t2(1 + µ)2, leading to

qtr = (1− cos θcm)2m2
χt

2. (6.3.19)

From Eq. (6.3.9) and Eq. (6.3.13), and averaging over the azimuthal angle of DM
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speed after scattering, qtr reads,

q2
tr = 2m2

χt
2
(

1− (s2 + t2 − v2)(s2 + t2 − w2)
4s2t2

)
. (6.3.20)

Assuming the target velocity is zero, we arrive to

q2
tr = m2

χ

w2 − v2

µ
. (6.3.21)

Before computing the capture rate in the optically thin limit, it is worth to define

a natural limit for this rate. This is the geometric limit which corresponds to the

case where DM capture occurs on the surface of the star. The capture rate cannot

exceed this limit. The geometric limit of the capture rate in Eq. (6.3.6) takes the

following form,

Cgeom = πR2
?ρχ

3v?mχ

(3v2
esc(R?) + 3v2

? + v2
d)erf

√3
2
v?
vd

+
√

6
π
v?vde

− 3v2
?

2v2
d

 . (6.3.22)

It is obtained by assuming the maximum interaction rate i.e. Ω− → 1. In this limit,

the DM capture rate is proportional to 1/mχ and it is independent of the DM-proton

cross section. Fig. 6.3 shows the capture rate in the geometric limit for WDs made of

different elements (He, C, O and Fe) in terms of their radius (R?) and their masses

(M?). We see that there is a maximum capture rate for He, C and O WDs with

R? ' 6 × 103 km and M? = 0.85 M�. The maximum in the geometric limit is due

to the mass radius relationship. In other words the escape velocity is suppressed in

lighter WDs due to a larger radius which reduces the capture rate.

The geometric limit in Eq.(6.3.22) is unique for all the star constituents, however

the saturation limit, will be different for every species. It restricts the value of

the capture rate at large cross sections, however, contrary to the geometric limit,

the interaction rate is different from 1. For WDs made of only one element, the

saturation limit is given by,

Csat = πR2
?

ρχ
mχ

∫ ve
√
µ/|µ−|

0
duf(u)4µ2

+

µ

∫ ve

w
|µ−|
µ+

dvv
dσTχ
d cos θ (qtr, w, v)

∣∣∣∣∣∣
r=R?

, (6.3.23)

we refer the readers to Ref. [184] for details.
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Figure 6.3: Capture rate in the geometric limit for different WDs
as a function of R? (left) and M? (right).

6.3.2 EFT operators in the non-relativistic limit

In this section we will consider generic fermionic DM interactions with ordinary

matter. Such interactions are described by means of dimension 6 Effective Field

Theory (EFT) operators [205, 206]. At high–energy, the operators are given in terms

of quarks and gluons [206]. In table 6.2, we show 5 of the 10 dimension 6 operators.

These are spin independent (SI). We only use SI operators because we are assuming

carbon-12 WDs, which has nuclear spin zero. However, if DM and the targets are

not relativistic, the interactions will happen at very low energies. Hence, we should

calculate the EFT operators in the non-relativistic limit. Therefore, we now go from

quark–gluon to nucleon level operators by calculating the matrix element 〈N |qq|N〉.

By expanding the Dirac spinor functions in their non relativistic limits and evaluating

the matrix element 〈χ,N |Di|N,χ〉, where Di corresponds to the operators given in

Table 6.2, we determine low energy operators at nucleon level. In the fourth column

we show the respective DM–proton scattering cross–sections in the non-relativistic

limit with µ = mχ/mN . These operators are a linear combination of the following

non-relativistic (NR) operators [208],

O1 = 1, O10 = i(~sN · ~qtr),

O8 = ~sχ · ~w⊥, O11 = i(~sχ · ~qtr),

O9 = i~sχ · (~sN × ~qtr), O12 = ~w⊥ · (~sχ × ~sN), (6.3.24)
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Name Operator Coupling dσ
d cos θ (w

2, q2
tr)

D1 χ̄χ q̄q yq/Λ2 (cSN )2

Λ4
m

2
χ

2π(µ+1)2

D2 χ̄γ5χ q̄q iyq/Λ2 (cSN )2

Λ4
q
2
tr

8π(µ+1)2

D5 χ̄γµχ q̄γ
µq 1/Λ2 (cVN )2

Λ4
m

2
χ

2π(µ+1)2

D6 χ̄γµγ
5χ q̄γµq 1/Λ2 (cVN )2

Λ4
4m2

χw
2+(µ2−2µ−1)q2

tr

8π(µ+1)2

D10 χ̄σµνγ
5χ q̄σµνq i/Λ2 (cTN )2

Λ4
8m2

χw
2−(µ2+4µ+1)q2

tr

2π(µ+1)2

Table 6.2: EFT operators [206] with spin-independent interactions
and differential cross sections for the scattering of Dirac
DM off a nucleon N = p, n. Here, µ stands for µ =
mχ/mN . Here, qtr and w are defined for nucleons. The
effective couplings for each operator are given as a func-
tion of the quark Yukawa coupling, yq, and the cutoff
scale, Λ. The fourth column shows the differential cross
section at low energy [207].

Name NR limit

D1 c
S
N

Λ2 (4mNmχO1)

D2 c
S
N

Λ2 (−4mNO11)

D5 c
V
N

Λ2 (4mNmχO1)

D6 c
V
N

Λ2 8mχ(mNO8 +O9)

D10 c
T
N

Λ2 8(mχO11 −mNO10 − 4mχmNO12)

Table 6.3: EFT operators [206] with spin-independent interactions
and differential cross sections for the scattering of Dirac
DM off a nucleonN = p, n in terms of the non-relativistic
(NR) operators [208].

where ~sN and ~sχ are the nucleon and DM spin, respectively and the perpendicular

DM relative velocity is defined as w⊥ = ~w−q2/2µN with µN the DM-nucleon reduced

mass. In Table 6.3 we show the SI EFT operators in terms of the NR operators

given in Eq. (6.3.24). The coefficients for the differential cross sections in Table 6.2

read,

cSN =
√

2mN

v

 ∑
q=u,d,s

f
(N)
Tq

+ 2
9f

(N)
TG

 , (6.3.25)

cVN = 3, (6.3.26)
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cTN =
∑

q=u,d,s
δ(N)
q , (6.3.27)

where v = 246 GeV is the EW vacuum expectation value, f (N)
Tq

, f (N)
TG

and δ(N)
q are

the hadronic matrix elements, determined either experimentally or by lattice QCD

simulations. Note that f (N)
TG

= 1−∑q=u,d,s f
(N)
Tq

. The values of the hadronic matrix

elements for protons are listed in Table 6.4.

q f
(p)
Tq

δ(p)
q f

(n)
Tq

δ(n)
q

u 0.0153 0.840 0.0110 -0.230
d 0.0191 -0.230 0.0273 0.840
s 0.0447 -0.046 0.0447 -0.046

Table 6.4: Hadronic matrix elements for nucleons [209].

To compute the corresponding DM-nucleus cross section we follow Ref. [208],

dσTχ
d cos θ = 1

32π
|MT |

2

(mχ +mT )2 . (6.3.28)

The DM-nucleus average matrix elements depend on the momentum transferred qtr

and in some cases on the relative velocity vr = |~w − ~vT | between the DM and the

nucleus through the following expression

|MT |
2 = m2

T

m2
N

∑
N,N

′
,i,j

CN
i C

N
′

j FNN
′

ij (q2
tr), (6.3.29)

where the CN
i coefficients correspond to the NR operator Oi prefactors in the right

column of Table 6.3. Note that qtr and w are defined with respect to the nucleus.

FNN
′

ij are the form factors in terms of the transferred momentum qtr, N,N ′ = p, n

and i, j indicates NR operators in the right column of Table 6.3. The form factors

FNN
′

ij (q2
tr) are given in terms of the isoscalar (0) and isovector (1) basis F ab

ij , whose

non-zero elements for carbon–12 are a function of [210],

F 00
M = 0.565882e−2y(2.25− y)2

F 00
Φ′′ = 0.0480805e−2y

F 00
MΦ′′ = e−2y(−0.371134 + 0.16498y), (6.3.30)
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Figure 6.4: Capture rate as function of the DM mass in the optical
thin limit for the SI EFT operator D1 (green), D2 (blue),
D5 (magenta), D6 (light blue) and D10 (orange) given
in Table 6.2. The capture is computed in the carbon
WDs in Table 6.5.

where y = (bqtr/2)2 with b =
√

41.467/(45A−1/3 − 25A−2/3) fm and A the atomic

mass of the target. The relations between the nuclear response functions F ab
ij and

FNN
′

ij are given in Ref. [205]. E.g. F 00
ij is,

F 00
ij = 1

4
(
F pp
ij + F nn

ij + F pn
ij + F np

ij

)
. (6.3.31)

In Fig. 6.4 we compare the capture rate in the optically thin limit for the SI EFT

operators, D1 (green), D2 (blue), D5 (magenta), D6 (light blue) and D10 (orange)

given in Table 6.3, for the 3 carbon WDs with Salpeter EoS in Table 6.5, we assume

dispersion velocity vd = 270 kms−1 and star velocity v? = 220 kms−1 and a DM

density ρχ = 0.4 GeV cm−3. We notice that, for DM masses above ∼ 103 GeV,

the capture rate is suppressed for all operators. This is because we have assumed

capture of DM after a single scattering. Such assumption breaks down for massive
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DM particles which require more than one scattering in order to be captured [182].

On the other hand, the suppression at low masses comes from the form factor and

its dependence on the transferred momentum q2
tr, being the operator D10 the most

deflected. As expected, the capture rate is more suppressed for less massive WDs due

to their weaker gravitational potential. The capture rate for D2 is more suppressed,

at large DM masses, with respect to the other operators since the interaction of the

DM with the nucleon is only momentum transfer dependent.

6.3.3 White Dwarf Opacity

Another physical consideration we have to account for is the star opacity. The DM

flux of particles passing through the WD can be significantly reduced at deeper

layers. Recall we have neglected corrections due to multi–scattering. Therefore, in

order to incorporate the opacity of the WD into the capture rate computation, we

follow the approach outlined in Ref. [60] for single scattering which calculates an

optical factor eta,

η = e−τχ , (6.3.32)

which is given in terms of an optical depth τχ calculated along the DM orbit inside

the star instead of assuming that DM particles follow a linear trajectory [184]. The

optical depth indicates how transparent is the stellar matter to DM particles, in a

certain position within the star. The optical factor removes DM particles from the

incoming flux once they are captured.

The integral of the interaction rate along the path a DM particle follows until is

captured is the optical depth,

τχ(r) =
∫
γ

dτ

dr
Ω−(r)dr, (6.3.33)

where γ is the DM path and τ is the proper time. DM particles travelling towards

the star can follow two possible paths in order to reach a point x over a shell of

radius r within the star. The first path corresponds to the optical depth τ−χ and it
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goes from the WD surface to x, without passing the perihelion. The second path

corresponds to the optical depth τ+
χ and goes from the WD surface to the perihelion

and then to the point x. These two possible optical depths are,

τ−χ (r) =
∫ R?

r

dx√
1− J

2

Jmax(x)2

Ω−(x)√
B(x)(1−B(x))

, (6.3.34)

τ+
χ (r) = τ−χ (rmin) + 2

∫ r

rmin

dx√
1− J

2

Jmax(x)2

Ω−(x)√
B(x)(1−B(x))

, (6.3.35)

where J(r) is the DM angular momentum and it can be written in terms of the

maximum angular momentum,

J(r) = yJmax(r), 0 6 y 6 1, (6.3.36)

with

Jmax(r) = mχr

√√√√1−B(r)
B(r) . (6.3.37)

For each angular momentum J and position r there is a perihelion, which is denoted

by rmin. Hence we solve yJmax(r) = Jmax(rmin) in order to find the perihelion in

function of y and r.

The optical depth can be written in terms of yJmax(r) instead, this would lead to

τ−χ (r, y) =
∫ R?

r

dx√
1− y2 Jmax(r)2

Jmax(x)2

Ω−(x)√
B(x)(1−B(x))

, (6.3.38)

τ+
χ (r, y) = τ−χ (rmin, y) + 2

∫ r

rmin

dx√
1− y2 Jmax(r)2

Jmax(x)2

Ω−(x)√
B(x)(1−B(x))

. (6.3.39)

Averaging over the two possible trajectories, the total optical depth factor is

η(r) = 1
2[η−(r, y) + η+(r, y)]. (6.3.40)

When calculating the differential capture rate in Eq. (6.3.6) an integral over J was

performed. Therefore, we average the optical depth factor over the DM angular
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EoS WD1 WD2 WD3
ρc [kg m−3] 4.77× 109 3.37× 1010 3.29× 1013

Pc [Pa] 2.79× 1022 4.70× 1023 5.10× 1027

M? [M�] 0.65 1.00 1.39
R? [km] 7.98× 103 5.40× 103 9.19× 102

Table 6.5: Three different configurations of the Salpeter EoS for
carbon white dwarfs, where ρc and Pc are respectively
the star density and pressure in the core.

momentum, J , distribution,

η(r) = 1
2

∫ 1

0

ydy

1− y2 [η−(r, y) + η+(r, y)]. (6.3.41)

Introducing Eq. (6.3.41) into Eq. (6.3.6), the complete expression for the capture

rate reads,

C = ρχ
mχ

∫ R?

0
4πr2η(r)nT (r)

∫ ∞
0

du
w

uχ
fMB(uχ)4µ2

+

µw

∫ ve

w
|µ−|
µ+

dvv
dσTχ
d cos θ . (6.3.42)

In Fig. 6.5 we show the complete expression of the DM capture rate for single

scattering, Eq. (6.3.42), as a function of the DM-proton cross section (solid lines)

that we assume to be constant for mχ = 100 GeV. We have taken into account

the three carbon WD configurations, shown in Table 6.5, for three different SI

EFT operators, D1 (blue), D2 (magenta), and D10 (orange), given in Table 6.2.

The optically thin limit that neglects the opacity of the star, is represented as dot–

dashed lines and the geometric limit as brown dashed lines. Notice that the optically

thin limit is a good approximation for small DM-proton scattering cross sections.

Observe that for larger cross sections the capture rate is suppressed due to the

optical depth factor η and approaches asymptotically to the geometric limit. Thus,

Eq. (6.3.42) realises the transition between the optically thin limit and the optically

thick (geometric). In all WDs, this transition happens around σth ∼ 10−43 cm2 D2

and D10 operators. On the other hand, D1 approaches to the geometric limit around

σth ∼ 10−42 cm2 in the lighter WDs (see top panels) and around σth ∼ 10−43 cm2 in

the heaviest WD (bottom panel).
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Figure 6.5: Capture rate as a function of the DM–proton cross sec-
tion for a DM of mχ = 100GeV the SI EFT operator
D1 (blue), D2 (magenta), and D10 (orange) given in
Table 6.2. Dashed brown lines denote the geometric
limit, dot–dashed lines correspond to the optically thin
limit and solid lines include the effect of the star opacity.
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6.3.4 Temperature effects

To account for the temperature effects on the capture rate, we use the complete form

of the DM velocity distribution function given by,

f(u)du = u

v?

√√√√ 3
2π(v2

d + 3T?µ/mχ)

e −3(u−v?)2

(v2
d+3Tµ/mχ) − e

−3(u+v?)2

(v2
d+3Tµ/mχ)

 . (6.3.43)

As mentioned above, the interaction rate also depends on the star temperature and

its form is given in Eq. (6.3.15). Hence, we compute the temperature dependent

capture rate for the SI EFT operators in Table 6.2. The geometric limit is obtained

by substituting in the Eq. (6.3.22)

vd →
√
v2
d + 3T?/mT . (6.3.44)

We computed the capture rate including temperature effects for different WDs with

T = 105 K. In the left panel of Fig. 6.6 we present the ratio of the finite temperature

capture rate to the zero temperature limit for a WD of M? = 0.49M�. The right

panel shows the same for a WD ofM? = 1.38M�. The capture rates where computed

for Λ = 1 for all operators in Table 6.2. The vertical brown dashed line indicates

the mass at which evaporation becomes relevant (see Section 6.4). We observe that

the effects of the temperature are more noticeable below this mass while for larger

mass range the zero temperature limit capture rate is accurate.

6.4 Evaporation

In the region of low DM masses, there is another phenomena we should take into

account; this is called evaporation. This process is the opposite to DM capture. It

happens when a captured DM particle scatters off nuclei and gains energy and as a

consequence, the DM escapes the star.

The evaporation rate was first described in Ref. [211] and later improved in [212]

for the Sun. The physics of WDs is very different from that of the Sun. The



146 Chapter 6. Capture of Dark Matter in White Dwarfs

10-6 10-5 10-4 10-3 10-2 10-1

mχ(GeV)

10-1

100

101

102

103

104

105

C
(T

=
10

5
K

)

C
(T

→
0)

Capture − Evaporation
Equilibrium

M = 0.49M¯ ,  T = 105K,  tM4 = 11.6Gyr 
Nucleons

D1,D5
D2,D10
D6
mevap

10-6 10-5 10-4 10-3 10-2 10-1

mχ(GeV)

10-1

100

101

102

C
(T

=
10

5
K

)

C
(T

→
0)

Cap.− Evap.
Equilibrium

M = 1.38M¯ ,  T = 105K,  tM4 = 11.6Gyr 
Nucleons

D1,D5
D2,D10
D6
mevap

Figure 6.6: Finite temperature effects on the capture rate for carbon
targets, for two WDs in the globular cluster M4, M? =
0.49M� (left) and M? = 1.38M� (right). The DM mass
range where capture and evaporation are expected to be
in equilibrium is shaded in yellow. The dashed brown
line corresponds to the evaporation mass.

principal differences come from the fact that in the Sun fusion still happens in the

core releasing energy that keeps the core hot. The outer layers are heated by energy

transferred from the core, therefore a temperature gradient exist between the core

and the outer layers. On the contrary, in WDs, which are stellar remnants, fusion is

a dead process and the only source of thermal energy is the internal energy of the

ions. When WDs are formed they still are among the hottest stars in the Universe,

all the heat in their interior is trapped and only the heat in their outer layers can

escape into space in form of radiation. Since there are no active fusion processes the

star gradually cools down. As degenerate electrons are excellent heat conductors and

the cooling process is very slow, the core temperature is considered to be constant.

In order to estimate the DM evaporation rate in a WD the DM population in the

star is required. This is obtained from DM energy transport, see Ref. [213, 214, 215].

Assuming that DM particles do not interact among them, DM thermalisation is

usually split in two regimes: local and global.

When thermalisation is local (LTE), DM particles scatter very often so they are in

local thermodynamic equilibrium with the stellar matter. As a consequence, DM

particles in this regime will reflect the local temperature at every point in the star.
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The corresponding DM number density for LTE is given by,

nLTE(r) = nLTE(0)
(
T?(r)
Tc

)3/2

e
−
∫ r

0

α(r′)
dT?(r′)

dr
′ +mχ

dφ(r′)
dr
′

T?(r′)
dr
′

, (6.4.1)

where φ(r) is the local value of the gravitational potential and α is the thermal

diffusivity. The LTE DM number density is a function of the temperature gradient

in the core and the thermal diffusivity of the star α. The latter, in the case of

the Sun, varies throughout the star according to the relative abundances of the

different atomic nuclei. In the case of a WD, the heat escapes very slowly and the

temperature is taken to be constant. If the WD is considered made of only one

element i.e. carbon, the thermal diffusivity will also be constant across the star.

In the case of global thermalisation, DM particles are isothermically (iso) distributed

and consequently they reflect an overall temperature. The number density of DM

captured in a compact object by the effect of gravity in this regime is given by,

niso(r) = e−mχφ(r)/Tχ∫ R?
0 dr4πr2e−mχφ(r)/Tχ

. (6.4.2)

DM particles cluster stronger in the core of the star, assuming a spherically symmetric

mass distribution and a uniform density the form of φ(r) under such symmetry leads

to,

niso(r) = e−r
2
/r

2
χ∫ R?

0 dr4πr2e−r
2
/r

2
χ

, (6.4.3)

where

rχ =
√√√√ 3Tc

2πGρcmχ

, (6.4.4)

is known as the DM length scale. It is the radius of the DM distribution within

the star. This number is usually compared with the inner scattering distance `χ =

[nT (r)〈σTχ〉]−1. This comparison is given by the Kundsen number K = `χ/rχ. Based

on the results of Ref. [176], we define,

f(K) = 1
1 + K

2

K
2
0

, (6.4.5)

where K0 ≈ 0.4 (for the Sun) is the crossing point from local to global regimes . The
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DM velocity distribution within the star, is given by

fevap(v) = [1− f(K)]niso(r)e
−
mχv

2

2Tχ + f(K)nLTE(r)e−
mχv

2

2T (r) . (6.4.6)

From Eq. (6.4.5) we observe that when K < 1 DM is in the LTE regime, while

K > 1 corresponds to the isothermal regimen.

Similarly to the capture rate, the evaporation rate is defined as,

E =
∫ R?

0
dr4πr2η(r)

∫ ve(r)

0
fevap(w)Ω+(w)dw. (6.4.7)

Here we are using the η(r) for evaporation, which now depends on the star temper-

ature, see Ref. [184] for details and Ω+(w) is the rate at which DM escapes the star

and is given by

Ω+(w) =
∫ ∞
ve

R+(w → v), (6.4.8)

and R+ is the rate at which a DM particle with velocity w scatters to a final velocity

v larger than the WD escape velocity. This is calculated as in Eq. (6.3.15), however,

we cannot take the T? → 0 limit since for evaporation the nuclei temperature is not

negligible anymore because it affects the kinematics. In order to calculate numerically

the differential interaction rate for evaporation we make a change of variables, e.g.

s+ t = x and t− s = y,

R+(w → v) = 8µ4
+√
π

v

w
nT (r)

∫ ∞
0

dx
∫ ∞
−∞

dyκ3(y + x)e−κ
2
v

2
T
dσTχ
d cos θΘ(x− w)Θ(v − |y|),

(6.4.9)

where now we have v2
T = 1

2µµ+(x+ y)2 + µ+
2 (x− y)2 − µw2.

Since the WD core temperature is expected to be constant, to estimate the evap-

oration rate we have considered only the isothermal DM number density (global

regime). In other words we have taken the f(K)→ 0 limit in the velocity distribu-

tion function.

We can estimate the number of DM particles N accumulated in a WD by solving

the following equation,
dN

dt
= C − EN, (6.4.10)
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Figure 6.7: Evaporation rate as a function of the DM mass for oper-
ators D1, D2 and D6. The brown dashed line indicates
the inverse of the estimated age of M4.

where C and E are respectively the capture and evaporation rate; we have ignored

the effects of annihilation. Considering the capture and evaporation rate as constant

over time, the total number of DM particles is given by,

N(t?) = Ct?

(
1− e−Et?
Et?

)
. (6.4.11)

If evaporation is negligible, all particles are captured after scattering off nuclei and

the DM population would be given by Ct?. On the contrary, when evaporation is

relevant, the DM population in the WD is reduced by the factor,(
1− e−Et?
Et?

)
. (6.4.12)

In Fig. 6.7 shows the evaporation rate as function of the DM mass for two WDs in the

globular cluster M4 with M? = 0.49 M� (left) and M? = 1.38 M�(right), T ≈ 106 K,

for the operators D1 (magenta), D2 (orange) and D6 (blue). As mentioned above,

the factor in Eq. (6.4.12) quantifies the impact of the evaporation process on the

number of accreted DM particles. When E(mχ)t→∞ this term tends to zero which

means that all captured DM escapes the star. When E(mχ)t? & 1 the number of DM

particles in the WD is reduced significantly. Therefore, we define the evaporation

mass as the DM mass for which E(mevap)t? ∼ 1, see the dashed brown line where

we have assumed t? = tM4 (tM4 ∼ 11.6 Gyr [216]). We find mevap ∼ 19MeV and
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mevap ∼ 0.7MeV for the WD of M? = 0.49 M� and M? = 1.38 M�, respectively. The

evaporation mass in the heavier star is smaller, therefore massive WDs would allow

us to set constraints on the interactions of sub-GeV DM.

6.5 Limits on DM-nucleon Interactions

In this section we will use the capture rate in the optically thin limit to set constraints

on DM–nucleon interactions. As it can be seen in Eq. (6.3.6) and Fig. 6.5 in this

limit the capture rate is proportional to the DM–proton cross section. In this limit,

we should not use cross sections that exceed the threshold cross section σth, which

is given by the intersection of the optically thin limit and the geometric limit.

Several works have compared the luminosity due to the capture and further anni-

hilation of DM particles in WDs, with the observed luminosity in order to derive

constraints on the DM scattering cross section [217, 218, 219]. In those analyses, it

was assumed that DM particles were captured after a single scattering. Recently,

multi–scattering was implemented in the capture rate calculation [182] and limits

on DM interactions for massive DM particles were improved [183].

DM captured in the WD core self annihilates. Hence, the number of DM particles

in the WD core, in the absence of evaporation, is defined as,

dN

dt
= C − A, (6.5.1)

here A is the annihilation rate given by,

A = 1
2
N2〈σannv〉

4
3πr

3
χ

, (6.5.2)

where rχ is given in Eq. (6.4.4), N is the total number of DM in the WD and

〈σannv〉 is the thermally averaged annihilation cross section. We assume equilibrium

between DM capture and annihilation processes since in WDs the time-scale for

this to happen is very short (of the order of one year) [217]. When the capture

and annihilation rates are in equilibrium (C = A) Eq. (6.5.1) will be equal to
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zero. Therefore we can assume that the captured DM is instantly converted into

additional star luminosity [217]. Such luminosity contribution due to DM capture

and immediate DM self-annihilation is given by,

LDM = mχC. (6.5.3)

Using the fact that the observed WD luminosity should be greater than or equal to

the DM contribution, we can calculate upper limits on the DM-nucleon cross section.

6.5.1 Comparison with previous work

In Ref. [183] WDs observed in the closest globular cluster M4 [216] (about 1.9 kpc [220])

were used to derive constraints on the DM–proton cross section. These WDs were

selected since they are old compact stars. Their cooling age is estimated by means

of observations of their temperature and luminosity as well as theoretical WD lu-

minosity functions. WDs in the M4 globular cluster are cool enough to actually

observe effects arising from captured DM. Furthermore, if DM is present in M4,

the expected DM density is very large when compared to the DM density in the

Solar vicinity which enhances the capture rate. Using a Navarro-Frenk-White profile

to model the DM halo, the DM density in M4 at the largest radius within which

the WD data was taken rmax = 2.3 pc, is estimated to be ρχ = 798 GeVcm−3 for a

contracted halo and ρχ = 532 GeVcm−3 for an uncontracted halo [219]. To compare

our results with the bound derived in Ref. [183], we use a WD with the same char-

acteristics as the authors considered, namely made of carbon, R? ∼ 9× 103 km and

L ∼ 2.5× 1031 GeV s−1.

In order to model the inner structure of the WD, we use the Salpeter EoS coupled

to the TOV equation Eq. (6.2.16) and the mass equation Eq. (6.2.12). To solve

this system of equations an additional parameter is necessary, the central density

ρ(0) = ρc that gives the estimated radius of the star. For the above mentioned WD

we find that ρc = 1.99 × 109 kg m−3 and M? = 0.49 M�. In this process we obtain
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the radial profiles for the number density of the targets and the escape velocity.

We are now able to compute the capture rate in the optically thin limit given

in Eq. (6.3.6). We derive an upper bound on the DM–cross section by imposing

the observed luminosity must be greater than the contribution from DM capture

and further annihilation. The bounds are determined for the two DM profiles

(contracted and uncontracted). Note that for WDs in M4 the exact values of the

star and DM dispersion velocities are unknown but the star velocity is assumed

to be v? = 20 km s−1 and the dispersion velocity is found to be not greater than

vd = 8 km s−1 [219].1

In Fig. 6.8 we compare bounds for the scalar operator D1 calculated using our

approach (light green band), see Sec. 6.3 with the result from Ref. [183] (grey

line) and a heavier M4 WD (light blue band). It is evident that in the range

of large DM masses (mχ & 105 GeV) it is necessary to consider multi–scattering.

We have improved Ref. [183] computations by introducing the inner structure of

the M4 WD. In addition, in the DM-nucleus cross section we have included the

response function for carbon–12 [210], to properly describe the inner structure of

the nucleus. The simplifying assumptions made in Ref. [183] overestimate the WD

upper bound by around 1.5 order of magnitude, using the same WD, in the mχ &

10 GeV, while in the sub-GeV regime the difference is about one order of magnitude.

Notice also that for mχ . 19 MeV the evaporation processes are relevant and reduce

the DM population available for annihilation within the star. Hence we cannot

derive limits in this DM mass region. In addition, we have taken into account

the uncertainty in the DM density in M4, which gives slightly different bounds

on the DM interactions. For comparison, we also show limits from the leading

direct detection (DD) experiments, such as DarkSide-50 [42], Xenon1T [41, 71, 72],

projected sensitivities from SuperCDMS SNOLAB Ge/Si [221], CDEX-1T [222],

and Darwin [223], as well as the neutrino coherent scattering background for Xenon

1The DM velocity dispersion in the M4 cluster is estimated by integrating the hydrostatic
equation, Eq. (6.2.11), assuming the contracted (uncontracted) DM profile.
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Figure 6.9: Luminosity vs mass for WDs observed in the M4 glob-
ular cluster [219].

detectors [40]. Notice that upper bounds from WDs are orders of magnitude stronger

in the low DM mass regime in comparison with constraints from current and future

direct detection experiments. Observe that in the DM mass region around 0.1 −

10 GeV there is a significant change in the order of magnitude of the DM-proton

cross section. This is because of the DM-target dependence on the form factor and

the DM-nucleon and DM-target mass ratios. For small DM masses mχ << mp, the

DM cross section is dominated by the proton/target mass ratio and it behaves as

if it were independent of the DM mass. The region above 10 GeV corresponds to

the limit of mχ >> mT , where the DM mass dependence approximately cancels out.

Therefore in these two limits, mχ << mp and mχ >> mT , the DM-proton cross

section is approximately independent of the DM mass, while in between these two

extreme cases, the DM mass is comparable to either the proton or the target mass,

making its contribution significant.

In this work we follow the approach from Ref. [219], rather than Ref. [183], to set

constraints on DM interactions. This is because observed luminosities and effective

temperatures are correlated quantities, L = 4πKBR
2
?T

4
eff . Therefore, bounds derived

from L vs R? in Fig. 6.8 are misleading (light green band and green line [183]). The

heavier the WD the higher the DM capture rate which enhances the DM contribution

to the star luminosity. Furthermore, massive WDs cool down faster than lighter
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WDs. As a result, the heaviest WD with the lowest observed luminosity, which for

M4 corresponds to a WD with mass M? = 1.38 M� and L ∼ 2.5× 1028 ergs s−1 (see

Fig. 6.9), set an upper limit on LDM . In addition in Ref. [183] a luminosity that

does not correspond to a WD of radius R? ∼ 9 × 103 km as reported in Ref. [219]

was used, see Fig. 6.9.

Finally, using the above mentioned WD, we find an improved upper bound on

the cross section for the scalar operator D1 (see light blue band). Observe that

constraints in the sub-GeV DM region are improved by around 2 orders of magnitude

for DM capture rate and one order of magnitude above ∼ 10 GeV. Furthermore,

due to the DM evaporation mass reported in the previous section for this WD

(mevap = 0.7 MeV) is possible to set constraints on the interactions of even lighter

DM.

6.5.2 Results

In this section we use the WDs observed in the M4 globular cluster [216] to estimate

bounds on the cutoff scale of the SI EFT operators. We assume the WDs are made of

carbon and that the DM is captured in the star after a single scattering.1 Constraints

on these DM models have been obtained recently using NSs and considering DM

interactions with nucleons and electrons [207, 224, 225]. Here we will assume the

DM interacts only with carbon nuclei.

In order to set limits on the cutoff scale of the operators in Table 6.2, we assume

the observed WD luminosity should be greater than or equal to the luminosity from

DM contributions from DM capture and further annihilation in the WD core, see

Eq. (6.5.3). Here L corresponds to the observed luminosity of the WDs in the M4

globular cluster reported in Ref. [219].

In Fig. 6.10 we show limits on the cutoff scale, Λ, for the operators given in

Table 6.2 using a WD of M? = 1.38 M� instead the one used in Ref. [183]. We

1Which is not true for DM masses above 105 GeV, where multi–scattering needs to be considered
in the capture rate computation.
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also show bounds on Λ calculated with the most stringent DD limits on the DM-

proton cross section and sensitivity projections from future experiments in Fig. 6.8.

The brown vertical line indicates the evaporation DM mass; in the yellow region

(meva . 0.7 MeV) capture and evaporation are in equilibrium, hence the limits in

this region are not valid. Notice that the bound on Λ for the operator D1 is about 1.5

orders of magnitude suppressed with respect to D5. The suppression comes from the

Yukawa couplings in D1 which are not present in D5. The operator D2 is even more

suppressed in the regime of large DM masses due to the cross section dependence

on the momentum transfer. Operators D6 and D10 are velocity and momentum

dependent and their constraints on Λ are similar for large DM masses. Notice that

in the low mass region D10 is suppressed several orders of magnitude since, unlike

D6, the momentum transfer component in the DM-nucleon cross section contributes

negatively to the total cross section. If DM is present in M4, DM captured in WDs

provide the strongest upper limit in the low mass region, mχ . 10 GeV, for the 5

SI EFT operators compared to current and future DD experiments. For D1 and

D5 Xenon1T and the future Darwin experiments outperform the WD limit in the

intermediate region, mχ & 10 GeV, Darwing would be able to place the strongest

bounds in this mass region, while the current leading bounds are set by XENON1T.

On the contrary, for operators D2, D6 and D10, DM captured in WDs overcomes the

velocity and momentum suppression that hampers terrestrial experiments, giving

the strongest bounds in both, low and large, DM mass regimes. Note also that for

D6 and D10, the future Darwin experiment might be able to set stronger bounds on

the cutoff Λ in the region ∼ 10− 103 GeV. For heavy DM (mχ & 105 GeV) multiple

scattering is not accounted for in Fig. 6.10.

6.6 Conclusions

Due to their high gravitational potential and vast number of observations, white

dwarfs are one of the best compact stellar objects to set bounds on DM interactions
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Figure 6.10: Limits on the cutoff scale Λ as a function of the DM
mass for the different operators given in Table 6.2. Lim-
its are calculated using the same WD as in Fig. 6.8 and
ρχ = 798 GeV cm−3 (contracted halo) [219]. DD limits
from DarkSide-50 [42], Xenon1T [41, 71, 72], projected
sensitivities from SuperCDMS SNOLAB Ge/Si [221],
CDEX-1T [222], and Darwin [223] are shown for com-
parison.
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with ordinary matter. DM captured in WDs can increase the star temperature, as a

consequence a fraction of the observed luminosity might come from the DM capture

and annihilation processes. In order to observe such effects coming from accretion

of DM in the core, the star has to be old enough i.e. should have cooled down. Here

we have improved the capture rate calculation for WDs, using the recent treatment

for the DM capture rate computation given in Ref. [60]. We have incorporated the

inner structure of the WD by coupling the EoS with the TOV equation, Eq. (6.2.16)

as well as the star opacity and a more realistic DM-nucleus scattering cross section

by including the nuclear response functions for carbon–12 given in Ref. [210].

Most WDs are mainly made of carbon nuclei and degenerate electrons. In this work

we have considered only DM interactions with nuclei. This simplifies in some aspects

the discussion given in Ref. [60] and allows us to use the non-relativistic treatment

in Ref. [184] since nucleons are not degenerate in WDs. To explore the impact of the

WD configuration on the capture rate, we assumed different WDs made of only one

element. We found a WD configuration, made of either helium, carbon or oxygen,

with mass around 0.85 M� for which the DM capture rate in the geometric limit is

maximum. Then, we assumed three hypothetical WDs made only of carbon in order

to compute the capture in the optically thin limit and including the star opacity.

In order to set constraints on the DM–proton scattering cross section, we used

WDs observed in the M4 globular cluster. We follow the discussion in Ref. [183]

and compare their results with those obtained using the formalism given in this

work. Despite the discrepancy between the two approaches due to more realistic

considerations, i.e. inner structure of the WD, and the response function in the DM-

nucleus interactions, we find that in any case WDs would provide significantly more

constraining power than current Earth–based experiments in the regime of low and

large DM masses in regions with a high DM density. Although in our formalism it is

necessary to implement multi–scattering in the large DM regime i.e. mχ & 105 GeV.

We have then used an Effective Field Theory approach to describe the interactions

between fermionic DM and nuclei and calculated bounds on the cutoff scale of spin-
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independent operators. We have found that if DM is present in M4, DM captured

in WDs places the strongest bound on velocity and momentum independent DM-

nucleon interactions in the low mass regime, while Xenon1T is more stringent above

mχ & 10 GeV. For DM interactions with momentum and velocity dependence, DM

captured in WDs places the strongest constraints on the whole DM mass region

where the EFT is valid. Summing up, WDs can be a complementary probe to direct

detection experiments, improving constraints on the low DM mass region and on

velocity– momentum dependent DM-interactions. Observations of these stars may

shed some light on the nature of DM particles.





Chapter 7

Conclusions

The Standard Model of particle physics is the best available theory describing the

most elementary components of our Universe and their interactions. However, there

is strong evidence that indicates it is not the ultimate theory and it requires new

physics in order to provide a complete description of nature. In this thesis we have

discussed different alternatives to probe physics beyond the Standard Model.

In the radiative decay of neutral fermions, CP violation can produce an asymmetry

between circularly polarised directions of radiated photons giving rise to a net

circular polarisation in particle and astroparticle physics observables. In Chapter

3 we discussed how CP asymmetry and circular polarisation are connected. Then

we showed the formalism for analytical calculations of the CP asymmetry using a

simplified neutrino model.

Assuming neutrinos as Dirac and later as Majorana particles, we computed the CP

asymmetry given in terms of electromagnetic dipole moments. We found that the

generation of circular polarisation is essentially dependent upon CP asymmetry

between neutrino radiative decay and its CP conjugate process. We discussed the

CP violation within the SM framework and then how there is no CP violation

coming from these diagrams. In order to obtain a non-vanishing CP violation we

introduced a new generic Yukawa interaction consisting of electrically charged scalar

and fermion states. We extensively discussed how CP violation in the radiative
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decay of a massive neutrino can be enhanced by means of such a new interaction.

These results can be applied to any models where radiative decays of this type take

place. Therefore, observations of circular polarisation in future telescopes are a

useful probe of new physics.

In Chapter 4 we discussed the CP violation in the neutrino transition electromagnetic

dipole moment within the SM framework. We introduced two RH neutrinos N1 and

N2, with masses M1 < M2. We then, presented the generic full one-loop calculation

of the neutrino electromagnetic form factors corresponding to three channels of

interest: νi → νj γ, NI → νj γ and N2 → N1 γ. We gave analytical expressions for

the CP violation and obtained the CP asymmetry for the last two channels only.

This is because the condition for CP violation is such that the mass of the decaying

particle has to be larger than the W boson mass i.e. NI > mW . Hence, for the first

channel, CP violation vanishes due to the light neutrinos masses mi << mW .

For the numerical computation of the CP asymmetry, we considered a mass range

of 0.1 TeV < M2 < 10 TeV. We found that the CP asymmetry for the NI → ν γ

process is very tiny, reaching a value of the order of 10−17. On the other hand, in

the decay process N2 → N1 γ, CP asymmetry is enhanced reaching values of the

order of magnitude of 10−5 to 10−3. By performing a scan, using the 3σ ranges, of

the CP asymmetry we found that CP asymmetry can reach values of order one.

In order to study BSM physics via such neutrino radiative decays it is necessary

that we can observe the signal of circularly polarised photons produced in these

processes. Nonetheless, such signal could be washed out during propagation through

the Universe, by scattering off various intermediate particles. In Chapter 5 we studied

the propagation of energetic gamma-rays and the change on their net polarisation.

We generalised the radiative transfer formalism introduced by Chandrasekhar to

any type of photon interaction at any energy. Roughly, this was done by writing

the P–matrix, describing the changes on polarisation, in terms of the scattering

amplitude. We then applied our results to the specific case of Compton scattering

where we observed that the parameter V related to the circular polarisation was
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excluded. This is because in Compton scattering, circular polarisation cannot change

to linear polarisation and vice versa. Instead the circularly polarised signal could

be attenuated by an asymmetry between the two kind of polarisations. We finally

computed the conditions in which a circularly polarised signal is conserved after

scattering for different frames of reference. We found different results for each case

one, in the low and high energy regimes. Finally, for completeness, we perform a

general formalism to study the time evolution of the circular polarisation in a generic

scattering process and then applied it to the particular case of Compton scattering.

This work is of great importance, since it could provide a way to search for new

interactions. In this work we particularly used Compton scattering, however the

formalism is general enough to compute the P–matrix for photons scattering off,

for instance, Axions or Axion-like particles (ALP). This might not only change the

photon polarisation while propagation, but it could also be a source of circular

polarisation itself [226].

In Chapter 6 we derived constraints on dark matter interactions using white dwarfs.

Due to their strong gravitational field and low temperatures, old compact stars

such as neutron stars or white dwarfs are the best objects to set bounds on DM

interactions. The accretion and annihilation of DM in these objects can increase the

star temperature affecting their observed luminosity.

In this work we have adapted the treatment of the DM capture given in Ref. [60]

and used the non-relativistic approach of Ref. [184]. We assumed three hypothetical

WDs made of carbon in order to compute the capture rate in the optically thin limit

and including the star opacity in the zero temperature approximation. We have used

an Effective Field Theory (EFT) approach to describe fermionic DM interactions

with ordinary matter. We also considered finite temperature effects on the capture

rate and estimated the evaporation rate for WDs observed in the M4 globular cluster.

We found that the effects of the temperature in the capture rate are significant in

the very low mass regimen where DM evaporation takes place. The latter was found

to be mevap = 0.7 MeV for a WD of M? = 1.38 M� in M4.
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Finally, we derived bounds on the scale cutoff of spin-independent EFT operators.

If DM is present in M4 DM captured in WDs will place the strongest bounds for

sub-GeV with scalar, vector and tensor DM interactions as well as DM interactions

with momentum and velocity dependence.



Appendix A

Polarisation-dependent amplitudes

We may derive the amplitudes of neutrino and antineutrino radiative decays specify-

ing the photon polarisation in the final state,M(νi → νf +γ±) andM(ν̄i → ν̄f +γ±).

We apply the chiral representation, where the γ matrices are given by

γµ =

 0 σµ

σ̄µ 0

 , γ5 ≡ iγ0γ1γ2γ3 =

−1 0

0 1

 , (A.0.1)

σµν = i

2[γµ, γν ] , PL,R = 1∓ γ5

2 , (A.0.2)

and σµ = (1, σ1, σ2, σ3) and σ̄µ = (1,−σ1,−σ2,−σ3) and σi are Pauli matrices.

Given momentum p = (p0, ~p), the normalised particle and antiparticle Dirac spinors

are represented by

uS(p) =


√
p · σ ξS
√
p · σ̄ ξS

 , vS(p) =


√
p · σ ηS

√
−p · σ̄ ηS

 , (A.0.3)

where ξS and ηS are two-component spinors normalised to unity. Here, we include

the polarisation index S for two independent spinors.

To simplify the derivation, we prefer to work in the rest frame. Frame-independent

results can be obtained straightforwardly from this case. In the rest frame, the initial
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sterile neutrino νi is at rest pµi = (mi, 0, 0, 0)T , and the photon is released in the +z

direction with momentum qµ = (q, 0, 0, q)T . Conservation of momentum requires

pµf = (Ef , 0, 0,−q)T with q = (m2
i −m2

f )/(2mi) and Ef = (m2
i +m2

f )/(2mi). In this

frame, S denotes spin along the +z direction i.e. Sz, which takes values ±1
2 . This

geometry is shown in Fig. A.1.

���+

S = �1

S = �1

2

S = �1

2

S = +
1

2
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1
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⌫i⌫i

⌫f ⌫f

Figure A.1: Polarisation for neutrino radiative decay in the rest
frame.

The angular momentum along the z direction is conserved Sz(νi) = Sz(νf ) + Sz(γ).

For a fermion, Sz = ±1/2 and for a massless photon, Sz = ±1. Given the initial

state νi with spin Sz(νi) = +1/2(−1/2), the only solution for spins in final states is

Sz(νf ) = −1/2(+1/2) and Sz(γ) = +1(−1). In other words, the released photon is

the right-handed γ+ (left-handed γ−).

For the photon moving in the +z direction, the polarisation vectors are as defined

in [153]

εµ+ = 1√
2

(0, 1, i, 0) , εµ− = 1√
2

(0, 1,−i, 0) (A.0.4)

correspond to spin Sz = +1 and −1, respectively 1.
1Here we apply the convention in the textbook [153]. The definition of ε+ in this convention

has a sign difference from the one shown in [44]. Using the convention in [44] leads to a sign
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In this frame, for the neutrino νf moving in the −z direction, the spinors uS(p) and

vS(p) with spin ±1
2 are simplified to

u+ 1
2
(pf ) =


√
E + q ξ+ 1

2
√
E − q ξ+ 1

2

 , u− 1
2
(pf ) =


√
E − q ξ− 1

2
√
E + q ξ− 1

2

 ,

v+ 1
2
(pf ) =


√
E + q η+ 1

2

−
√
E − q η+ 1

2

 , v− 1
2
(pf ) =


√
E − q η− 1

2

−
√
E + q η− 1

2

 , (A.0.5)

with

ξ+ 1
2

= η− 1
2

=

1

0

 , ξ− 1
2

= η+ 1
2

=

0

1

 . (A.0.6)

In the massless case, u+ 1
2
and u− 1

2
are purely left- and right-handed respectively

(because we have assumed νf is moving in the −z direction). Spinors for initial

neutrino νi and antineutrino ν̄i are given by

u+ 1
2
(pi) =

√
E

ξ+ 1
2

ξ+ 1
2

 , u− 1
2
(pi) =

√
E

ξ− 1
2

ξ− 1
2

 ,

v+ 1
2
(pi) =

√
E

 η+ 1
2

−η+ 1
2

 , v− 1
2
(pi) =

√
E

 η− 1
2

−η− 1
2

 , (A.0.7)

The amplitudes with definite spins in the initial and final states are then given by

M(νi,+ 1
2
→ νf ,− 1

2
+ γ+) = +

√
2fL

fi (m2
i −m2

f ) ,

M(νi,− 1
2
→ νf ,+ 1

2
+ γ−) = −

√
2fR

fi (m2
i −m2

f ) ,

M(ν̄i,+ 1
2
→ ν̄f ,− 1

2
+ γ+) = −

√
2f̄L

if (m2
i −m2

f ) ,

M(ν̄i,− 1
2
→ ν̄f ,+ 1

2
+ γ−) = +

√
2f̄R

if (m2
i −m2

f ) , (A.0.8)

Here, νi,+ 1
2
→ νf ,− 1

2
+ γ+ and ν̄i,− 1

2
→ ν̄f ,+ 1

2
+ γ− are CP conjugates, while νi,− 1

2
→

νf ,+ 1
2

+ γ− and ν̄i,+ 1
2
→ ν̄f ,− 1

2
+ γ+ are CP conjugates. The other channels have

vanishing amplitudes, consistent with angular momentum conservation.

difference for iM(νi,+ 1
2
→ νf ,− 1

2
+ γ+) and iM(ν̄i,+ 1

2
→ ν̄f ,− 1

2
+ γ+) in Eqs. (3.2.5) and (3.2.10)

and iMM(νi,+ 1
2
→ νf ,− 1

2
+ γ+) in Eq. (3.2.23).
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We can generalise the result in Eq. (A.0.8) to any inertial reference frame via spatial

rotations and Lorentz boosts. These transformations change spins for fermions but

leave photon polarisation invariant. Eventually, we obtain the Lorentz-invariant

amplitudes M(νi → νf + γ±) and M(ν̄i → ν̄f + γ±) taking the same result as

Eq. (A.0.8) in any reference frame. Using the CPT -invariance property, namely,

f̄R,L
if = −fR,L

if , we eventually arrive at Eqs. (3.2.5) and (3.2.10). These are the most

general results independent of either particle model or reference frame.



Appendix B

Derivation of imaginary parts of

the loop integrals

The two NP contributions to the sterile neutrino radiative decay given by the new

proposed interactions are shown in Fig. 3.2. In order to compute their respective

matrix elements, we use the couplings of the new particles φ and ψ with neutrinos

and sterile neutrinos shown in Section 3.3.2.

In general, we have

iM(νs → νi + γ±) = iu(pi)Γµis(q2)u(ps)ε∗±,µ(q) (B.0.1)

and the matrix elements for each loop contribution,Mj ≡Mj(νs → νi+γ±), shown

in Fig. 3.2 take the form

iM1 = −Qeλsλ∗i×

×
∫ d4k

(2π)4
u(pi)PR(/k +mψ)(p1 − p2)µPLu(ps)ε∗±,µ(q)

(k2 −m2
ψ + iε)((k − ps)2 −m2

φ + iε)((k − pi)2 −m2
φ + iε)

,

iM2 = +Qeλsλ∗i×

×
∫ d4k

(2π)4
u(pi)PR(/k′ +mψ)γµ(/k +mψ)PLu(ps)ε∗±,µ(q)

((k − ps)2 −m2
φ + iε)(k′2 −m2

ψ + iε)(k2 −m2
ψ + iε)

. (B.0.2)
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Due to the projection operators, the matrix elements reduce to

iM1 = −Qeλsλ∗i
∫ d4k

(2π)4
u(pi)/k(p1 − p2)µPLu(ps)ε∗±,µ(q)

(k2 −m2
ψ + iε)((k − ps)2 −m2

φ + iε)((k − pi)2 −m2
φ + iε)

iM2 = +Qeλsλ∗i
∫ d4k

(2π)4
u(pi)/k

′
γµ/kPLu(ps)ε∗±,µ(q)

((k − ps)2 −m2
φ + iε)(k′2 −m2

ψ + iε)(k2 −m2
ψ + iε)

.

(B.0.3)

In order to perform dimensional regularisation to Eq. (B.0.3), we must substitute the

denominator with the relevant Feynman parameters, therefore, we perform the loop

momentum shifts ` = k − (xps + zpi) and ` = k − (xps + zq) for the two diagrams

respectively. This leads to

iM1 = −Qeλsλ∗i
∫ dd`

(2π)d
∫
dxdydzδ(x+ y + z − 1)×

×
u(pi)[−2`µ/̀+ (ps + pi)µ(/psy + /piz)− 2(psy + piz)µ(/psy + /piz)]PLu(ps)ε∗±,µ(q)

(`2 −∆φψ(x, y, z))3 ,

iM2 = +Qeλsλ∗i
∫ dd`

(2π)d
∫
dxdydzδ(x+ y + z − 1)×

×
u(pi)[/̀γµ/̀+ (/q(z − 1) + /psx)γµ(/qz + /psx)]PLu(ps)ε∗±,µ(q)

(`2 −∆ψφ(x, y, z))3 , (B.0.4)

where ∆φψ(x, y, z) and ∆ψφ(x, y, z) have been defined in Eq. (3.3.18). We ignore

linear terms of ` since these terms vanish after integration. We use the following

results from [153] for d-dimensional integrals over ` in Minkowski space

∫ dd`

(2π)d
1

(`2 −∆)n
= (−1)n

(4π)d/2
Γ(n− d/2)

Γ(n)

( 1
∆

)n− d2
∫ dd`

(2π)d
`α`β

(`2 −∆)n
= i

(−1)n−1

(4π)d/2
gαβ

2
Γ(n− d/2− 1)

Γ(n)

( 1
∆

)n− d2−1
. (B.0.5)

After dimensional regularisation, we set d = 4− ε, therefore the amplitudes acquire

the following general form

iM1 = −iQeλsλ
∗
i

(4π)2

∫
dxdydzδ(x+y+z−1)u(pi)

[(
−2
ε

+ log ∆φψ(x, y, z)
4π + γε +O(ε)

)
γµ

−
(ps + pi)µ(/psy + /piz)− 2(psy + piz)µ(/psy + /piz)]

∆φψ(x, y, z)

]
PLu(ps)ε∗±,µ(q),
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iM2 = iQeλsλ
∗
i

(4π)2

∫
dxdydzδ(x+y+z−1)u(pi)

[(
−2
ε

+1+log ∆ψφ(x, y, z)
4π +γε+O(ε)

)
γµ

−
(/q(z − 1) + /psx)γµ(/qz + /psx)

∆ψφ(x, y, z)

]
PLu(ps)ε∗±,µ(q). (B.0.6)

We simplify the above expressions by making use of the following identities

u(pi)(ps + pi)µPLu(ps) = u(pi)[γµ(msPR +miPL) + iσµνqνPL]u(ps) ,

u(pi)(/ps + /pi)γ
µPLu(ps) = u(pi)[2miγ

µPL + iσµνqνPL + qµPL]u(ps) ,

u(pi)γµ(/ps + /pi)PLu(ps) = u(pi)[2msγ
µPR + iσµνqνPL − qµPL]u(ps) . (B.0.7)

Finally, applying the Ward identity qµMµ = 0 and ignoring terms proportional

to γµ, since these are simply vertex corrections to the overall electric charge1, we

only need to consider the tensor-like terms within Γµis to determine the form factor

resulting from these diagrams. These are given by

Γµis,1 = −Qeλsλ
∗
i

(4π)2 iσµνqν

∫ 1

0
dxdydzδ(x+ y + z − 1)(msyPR +mizPL)

∆φψ(x, y, z)

Γµis,2 = +Qeλsλ
∗
i

(4π)2 iσµνqν

∫ 1

0
dxdydzδ(x+ y + z − 1)(msxyPR +mixzPL)

∆ψφ(x, y, z) . (B.0.8)

Setting mi → 0 for the active neutrino mass in Eq. (B.0.8) and integrating over z

yields

Γµis,1 = C1

(4π)2 iσ
µνqν

∫ 1

0

∫ 1−y

0
dxdy msyPR

m2
φ(1− x) + xm2

ψ − xym2
s

Γµis,2 = C2

(4π)2 iσ
µνqν

∫ 1

0

∫ 1−y

0
dxdy msxyPR

m2
ψ(1− x) + xm2

φ − xym2
s

. (B.0.9)

From these last expressions, we can identify the factors KL
1,2 and KR

1,2 given in

Eq. (3.3.17) and then integrate over the remaining Feynman parameters x and y as

shown in Eq. (3.3.19).

1Notice that when both contributions are added the divergent terms cancel out.





Appendix C

Low energy regimen: Phase

matrix derivation

In this appendix, we briefly review the change of photon polarisation during Thomson

scattering. Most of the result are well-known and are convenient to be compared

with our results of scattering in the high energy limit.

C.1 Deriving the Thomson P–matrix directly

from the Stokes parameters

For the Thomson scattering, the P–matrix can be directly obtained by following

the original definition of Stokes parameters. Applying the formula in Eq. (2.3.8) to

Stokes parameters for both incoming photon and outgoing photon, we obtain

I
(2)
l = (~ε (2)

l · ~ε (1)
r )2a2

r + (~ε (2)
l · ~ε (1)

l )2a2
l + 2ar al cos(δl − δr)(~ε (2)

l · ~ε (1)
r )(~ε (2)

l · ~ε (1)
l ),

= (~ε (2)
l · ~ε (1)

r )2 I(1)
r + (~ε (2)

l · ~ε (1)
l )2 I

(1)
l + (~ε (2)

l · ~ε (1)
r )(~ε (2)

l · ~ε (1)
l ) U (1),

I(2)
r = (~ε (2)

r · ~ε (1)
r )2a2

r + (~ε (2)
r · ~ε (1)

l )2a2
l + 2ar al cos(δl − δr)(~ε (2)

l · ~ε (1)
r )(~ε (2)

r · ~ε (1)
l ),

= (~ε (2)
r · ~ε (1)

r )2 I(1)
r + (~ε (2)

r · ~ε (1)
l )2 I

(1)
l + (~ε (2)

l · ~ε (1)
r )(~ε (2)

r · ~ε (1)
l ) U (1),
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U (2) = 2(~ε (2)
r · ~ε (1)

r )(~ε (2)
l · ~ε (1)

r )a2
r + 2(~ε (2)

r · ~ε (1)
l )(~ε (2)

l · ~ε (1)
l )a2

l

+2ar al cos(δl − δr)
[
(~ε (2)
r · ~ε (1)

r )(~ε (2)
l · ~ε (1)

l )− (~ε (2)
r · ~ε (1)

l )(~ε (2)
l · ~ε (1)

r )
]

= 2(~ε (2)
r · ~ε (1)

r )(~ε (2)
l · ~ε (1)

r ) I(1)
r + 2(~ε (2)

r · ~ε (1)
l )(~ε (2)

l · ~ε (1)
l ) I(1)

l

+
[
(~ε (2)
r · ~ε (1)

r )(~ε (2)
l · ~ε (1)

l ) + (~ε (2)
r · ~ε (1)

l )(~ε (2)
l · ~ε (1)

r )
]
U (1),

V (2) = 2ar al sin(δl − δr)
[
(~ε (2)
r · ~ε (1)

r )(~ε (2)
l · ~ε (1)

l )− (~ε (2)
r · ~ε (1)

l )(~ε (2)
l · ~ε (1)

r )
]

=
[
(~ε (2)
r · ~ε (1)

r )(~ε (2)
l · ~ε (1)

l )− (~ε (2)
r · ~ε (1)

l )(~ε (2)
l · ~ε (1)

r )
]
V (1) . (C.1.1)

From these relations, one obtains the following expression for the P–matrix in terms

of the photon polarisation vectors

P=



(~ε (2)
l · ~ε (1)

l )2 (~ε (2)
l · ~ε (1)

r )2 (~ε (2)
l · ~ε (1)

r )(~ε (2)
l · ~ε (1)

l ) 0

(~ε (2)
r · ~ε (1)

l )2 (~ε (2)
r · ~ε (1)

r )2 (~ε (2)
r · ~ε (1)

r )(~ε (2)
r · ~ε (1)

l ) 0

(~ε (2)
r · ~ε (1)

l )(~ε (2)
l · ~ε (1)

l ) (~ε (2)
r · ~ε (1)

r )(~ε (2)
l · ~ε (1)

r ) P33 0

0 0 0 P44


(C.1.2)

with

P33 =
[
(~ε (2)
r · ~ε (1)

r )(~ε (2)
l · ~ε (1)

l ) + (~ε (2)
r · ~ε (1)

l )(~ε (2)
l · ~ε (1)

r )
]
,

P44 =
[
(~ε (2)
r · ~ε (1)

r )(~ε (2)
l · ~ε (1)

l ) − (~ε (2)
r · ~ε (1)

l )(~ε (2)
l · ~ε (1)

r )
]
. (C.1.3)

One can recover Chandrasekhar’s expression for the P–matrix in Eq. (2.3.19) by

substituting the 3D kinematics in a general (fixed) frame, see Appendix D for the

dot products between the incoming (1) and outgoing (2) polarisation vectors, namely

~ε
(2)
l · ~ε (1)

l = sinφ1 sinφ2 + cosφ1 cosφ2 cos (θ2 − θ1) ,

~ε (2)
r · ~ε (1)

r = cos (θ2 − θ1) ,

~ε
(2)
l · ~ε (1)

r = cosφ2 sin (θ2 − θ1) ,

~ε (2)
r · ~ε (1)

l = − cosφ1 sin (θ2 − θ1) · (C.1.4)
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C.2 P–matrix for Thomson interactions

Using the expression of the R–matrix as shown in Eq. (2.3.16), we obtain the

following PChandrasekhar–matrix elements

P11 = (cos θ cos Φ1 cos Φ2 − sin Φ1 sin Φ2)2

P12 = (cos Φ1 sin Φ2 + cos θ sin Φ1 cos Φ2)2

P13 = 1
2

(
− cos2 θ sin 2Φ1 cos2 Φ2 − cos θ cos 2Φ1 sin 2Φ2 + sin 2Φ1 sin2 Φ2

)
P21 = (cos θ cos Φ1 sin Φ2 + sin Φ1 cos Φ2)2

P22 = (cos Φ1 cos Φ2 − cos θ sin Φ1 sin Φ2)2

P23 = 1
2

(
sin 2Φ1

(
cos2 Φ2 − cos2 θ sin2 Φ2

)
+ cos θ cos 2Φ1 sin 2Φ2

)
P31 = sin 2Φ2

(
cos2 θ cos2 Φ1 − sin2 Φ1

)
+ cos θ sin 2Φ1 cos 2Φ2

P32 = sin 2Φ2

(
cos2 θ sin2 Φ1 − cos2 Φ1

)
− cos θ sin 2Φ1 cos 2Φ2

P33 = cos θ cos 2Φ1 cos 2Φ2 − 2
(
1 + cos2 θ

)
sin Φ1 cos Φ1 sin Φ2 cos Φ2 (C.2.1)

C.3 P′–matrix for Thomson interactions

The P′–matrix denotes the P–matrix in the (I,Q, U, V ) basis. Considering a rotation

of the plane defined by the incoming polarisation vectors by an angle Φ1 and a

rotation for the final photon with another angle Φ2, the P′ follows the transformation

P′ = L′(π − Φ2) R′ L′(−Φ1) , (C.3.1)

where L′(Φ) takes a different form from L(Φ) in Eq. (2.3.18),

L′(Φ) =



1 0 0 0

0 cos 2Φ sin 2Φ 0

0 − sin 2Φ cos 2Φ 0

0 0 0 1


. (C.3.2)
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This eventually leads to the following P′–matrix elements

P′11 =R′11 P′31 =R′31cΦ2 +R′21sΦ2

P′32 =cΦ1

(
R′32cΦ2+R′22sΦ2

)
+sΦ1

(
R′33cΦ2 +R′23sΦ2

)
P′12 =R′12cΦ1 +R′13sΦ1

P′33 =cΦ1

(
R′33cΦ2 +R′23sΦ2

)
−sΦ1

(
R′32cΦ2 +R′22sΦ2

)
P′13 =R′13cΦ1−R′12sΦ1

P′14 =R′14 P′34 =R′34cΦ2 +R′24sΦ2

P′21 =R′21cΦ2−R′31sΦ2 P′41 =R′41

P′22 =cΦ1

(
R′22cΦ2−R′32sΦ2

)
+sΦ1

(
R′23cΦ2−R′33sΦ2

)
P′42 =R′42cΦ1 +R′43sΦ1 ,

P′23 =sΦ1

(
R′32sΦ2−R′22cΦ2

)
+cΦ1

(
R′23cΦ2−R′33sΦ2

)
P′43 =R′43cΦ1−R′42sΦ1 ,

P′24 =R′24cΦ2−R′34sΦ2 , P′44 =R′44 (C.3.3)

with cΦ1 ≡ cos(2Φ1), cΦ2 ≡ cos(2Φ2), sΦ1 ≡ sin(2Φ1), sΦ2 ≡ sin(2Φ2).

C.4 Deriving the P–matrix using the Quantum

formalism

We can now compare both the geometrical formalism derived by Chandrasekhar and

our quantum formalism by studying the special case of Thomson interactions. We

first need to replace each of the matrix amplitude elements, as defined in Eq.(5.2.11),

in the quantum formalism by their QFT definition. Without loss of generality, the

matrix elements for Thomson scattering can be parameterized as

Mi
′
i = Mµν ε

(1)µ
i ε

∗(2)ν
i
′ , (C.4.1)

where µ, ν are Lorentz indices, in the Lorentz gauge εi = (0,~εi) and Mµν the polar-

isation vector-independent amplitude associated with each Feynman diagram. The

amplitude squared for Thomson scattering is given by

Mi
′
i M

∗
j
′
j =

∑
λ=s,t,st

(
MµνM

∗
µ
′
ν
′

)
λ
ε

(1)µ
i ε

∗(2)ν
i
′ ε

∗(1)µ′
j ε

(2)ν′

j
′ , (C.4.2)
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where the amplitudes for the different s, t, st channels
(
MµνM

∗
µ
′
ν
′

)
s,t,st

are equal to

(
MµνM

∗
µ
′
ν
′

)
s

= gνν′gµµ′ ,(
MµνM

∗
µ
′
ν
′

)
t

= gνν′gµµ′ ,(
MµνM

∗
µ
′
ν
′

)
st

= 2 (2gµνgµ′ν′ − gνν′gµµ′) . (C.4.3)

Using these definitions together with Ai
′
ij
′
j ≡WMi

′
iM
∗
j
′
jW

−1 and P = CAi
′
ij
′
jC
−1,

one finds that the Stokes parameters after Thomson scattering are given by



Îl

Îr

Û

V̂



(2)

=



|ε(2)
l · ε

(1)
l |

2 |ε(2)
l · ε

(1)
r |2 (ε(2)

l · ε
(1)
r )(ε(2)

l · ε
(1)
l ) 0

|ε(2)
r · ε

(1)
l |

2 |ε(2)
r · ε(1)

r |2 (ε(2)
r · ε(1)

r )(ε(2)
r · ε

(1)
l ) 0

(ε(2)
r · ε

(1)
l )(ε(2)

l · ε
(1)
l ) (ε(2)

r · ε(1)
r )(ε(2)

l · ε
(1)
r ) P33 0

0 0 0 P44





Îl

Îr

Û

V̂



(1)

(C.4.4)

with

P33 =
[
(ε(2)
r · ε(1)

r )(ε(2)
l · ε

(1)
l ) + (ε(2)

r · ε
(1)
l )(ε(2)

l · ε
(1)
r )

]
,

P44 =
[
(ε(2)
r · ε(1)

r )(ε(2)
l · ε

(1)
l )− (ε(2)

r · ε
(1)
l )(ε(2)

l · ε
(1)
r )

]
, (C.4.5)

which indeed agrees with Chandrasekhar’s results as displayed in Eq. (C.1.2). Using

the Thomson kinematics in the fix frame, we obtain Eq. (2.3.19), as expected.

Therefore, In the low energy limit of the incoming photon, the two formalisms are

equivalent.





Appendix D

Kinematics and results in the

different frames of reference

D.1 Reference frames

To compare the polarisation of light in processes with relativistic electrons from

those with non-relativistic electrons we consider some frames of reference. Such

frames are the centre of mass (COM) frame, the rest frame, the fixed frame and

the spin frame; each of them is good for describing different physics aspects of the

process.

The COM frame is a good approximation for describing thermal photon scattering

with thermal electron. The rest frame can be treated as a limit of an energetic

photon scattering with electron with a small momentum. The spin frame specifies

the electron spin Jz = ±1/2 in the z direction. The fixed frame can be applied to

an energetic electron scattering with a soft photon.

For every frame of reference shown in Fig. D.1 the four-momenta p1 and p2 corres-

pond to the incoming and outgoing electrons as well as the four-momenta k1 and k2

correspond to the incoming and outgoing photons respectively. In the following we

give the explicit kinematics for each of the frames.
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Rest frameCOM frame

Fixed frame

z

x

z

x

p1

k1

k2

p2

θ

k1

p1k2

p2

θ

ϕ2

ϕ1

θ1

z

x

y

p1

k1

k2

π+θ2

Spin frame

k1 k2

p1 p2

z

x

θ

Figure D.1: Frame of references for the photon-electron scattering.
For all four frames, the blue bold line refers to the in-
coming (outgoing) electron, the red line refers to the
incoming (outgoing) photon. The straight arrows in-
dicate the momentum direction for each particle while
the deflect arrows indicate the helicity of the photons.
In the upper-left corner we have the centre of mass
(COM) frame, upper-right corner shows the rest frame,
and lower-left corner shows the spin frame, where both
the incoming and outgoing electrons are on the z direc-
tions. In each frame, the θ angle always corresponds to
the angle between the outgoing and incoming photon.
Finally, the lower-right corner shows the general fixed
frame which contains four parameters, θ1, θ2, φ1 and
φ2.

Centre of mass frame

In this frame the incoming photon and electron move in opposite directions with the

same momentum |p1| = Eγ, which is the photon energy. The outgoing photon and

electron do not change energies but only directions. We assume the angle between

incoming photon and outgoing photon is θ. Finally, in this frame the energy for the
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incoming electron is E2
e = E2

γ +m2
e and the four momenta reads as follows,

p1 = (Ee, 0, 0,−Eγ) ,

k1 = (Eγ, 0, 0, Eγ) ,

k2 = (Eγ, Eγ sin θ, 0, Eγ cos θ) ,

p2 = p1 + k1 − k2 . (D.1.1)

Rest frame

In this frame the electron is initially at rest and the photon has energy Eγ,1 and

momentum k1 = Eγ,1 on the z direction. After the scattering the photon acquires

an energy Eγ,2 and goes to a direction θ respect to the z–axis with momentum p2.

The four-momenta are defined as,

p1 = (me, 0, 0, 0) ,

k1 = (Eγ,1, 0, 0, Eγ,1) ,

k2 = (Eγ,2, Eγ,2 sin θ, 0, Eγ,2 cos θ) ,

p2 = p1 + k1 − k2 . (D.1.2)

We present the squared matrix element for different polarisation transitions in terms

of the initial and final photon energies since it simplifies our results drastically. For

this we use

cos θ = 1− me(Eγ,1 − Eγ,2)
Eγ,1Eγ,2

,

sin θ =

√
me(Eγ,1 − Eγ,2)(2Eγ,1Eγ,2 −meEγ,1 +meEγ,2)

Eγ,1Eγ,2
. (D.1.3)

Spin frame

In this frame of reference the incoming and outgoing electrons are moving along the

±z direction respectively, and the incoming and outgoing photons are moving in the
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x− z plane. The four-momentum of the particles in this frame are given by,

p1 = (Ee, 0, 0,−kz) ,

k1 = (Eγ, kx, 0, kz) ,

k2 = (Eγ, kx, 0,−kz) ,

p2 = (Ee, 0, 0, kz) . (D.1.4)

where Ee =
√
k2
z +m2

e and Eγ =
√
k2
x + k2

z . Without of generality, kx, kz > 0 are

assumed. Note that kz = Eγ sin θ
2 , and kx = Eγ cos θ

2 , with θ being the angle between

the incoming and outgoing photon.

Fixed frame

In the fixed frame, we chose the incoming electron of energy Ee,1 and momentum

p1 moving purely along the z direction. The photon in the initial state is coming

from any direction with an energy Eγ,1 and momentum k1. The outgoing photon

gets energy Eγ,2 and momentum k2 changing its directions with respect to the initial

states. We define the four-momentum particles as,

p1 = (Ee,1, 0, 0, p1) ,

k1 = (Eγ,1, Eγ,1 cos θ1 sinφ1, Eγ,1 sin θ1 sinφ1, Eγ,1 cosφ1) ,

k2 = (Eγ,2, Eγ,2 cos θ2 sinφ2, Eγ,2 sin θ2 sinφ2, Eγ,2 cosφ2) ,

p2 = p1 + k1 − k2 , (D.1.5)

where φ1 is the angle between the incident photon and the incoming electron, φ2 is

the angle between the incident electron and the outgoing photon. Additional θ1 and

θ2 are the angles between the incoming electron and the incoming photon, and the

angle between the direction of the incoming electron and the outgoing photon in the

x− y plane respectively. In the fixed frame we require that p2
2 = p2

1 which leads to

Eγ,2 = Eγ,1(Ee,1 − p1 cosφ1)
Ee,1 − p1 cosφ2 − Eγ,1(sinφ1 sinφ2 cos(θ2 − θ1) + cosφ1 cosφ2 − 1)
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= Eγ,1(Ee,1 − p1µ1)
Ee,1 − p1µ2 − Eγ,1(

√
1− µ2

1

√
1− µ2

2 cos(θ2 − θ1) + µ1µ2 − 1)
, (D.1.6)

where we have used cosφ1 = µ1 and cosφ2 = µ2. In the above, one may use the

angle between incoming photon and outgoing photon θ, which is given by

cos θ = sinφ1 sinφ2 cos(θ2 − θ1) + cosφ1 cosφ2 , (D.1.7)

to simplify the formula.

D.1.1 Polarised squared amplitudes for the different

frames

Using the general result of the squared amplitude in Eq. (5.3.11), we have calculated

the amplitudes of photon-electron scattering with specified polarisations eγ± → eγ±

and eγ± → eγ∓ in our four different frames. In the non-relativistic limit (me �

Eγ,
√
E2
e −m2

e), all four frames approximate to Thomson scattering. However, in

the relativistic limit, different frames can be applied to different physical contexts.

Centre of mass frame

Amplitudes for the photon-electron scattering in this frame of reference with specified

polarisations are given by

1
2
∑
spins
|M(eγ− → eγ−)|2 =1

2
∑
Se

|M(eγ+ → eγ+)|2

=(1 + cos θ)

(
E2
γ(1− cos θ)2 + (Eγ + Ee)2(cos θ + 1)

)
(Ee + Eγ cos θ)2 ,

[.5cm]12
∑
spins
|M(eγ+ → eγ−)|2 =1

2
∑
Se

|M(eγ− → eγ+)|2

=(1− cos θ)2 (Ee − Eγ)
(
E2
e − E2

γ cos θ
)

(Ee + Eγ)(Ee + Eγ cos θ)2 . (D.1.8)

In the high energy limit, i.e., the ultra-relativistic limit, they approximate to

1
2
∑
spins
|M(eγ± → eγ±)|2 =1 + cos θ + 4

1 + cos θ ,
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1
2
∑
spins
|M(eγ± → eγ∓)|2 = m2

e(1− cos θ)3

4E2
γ(1 + cos θ)2 . (D.1.9)

Here, we have dropped the small mass in the denominator. These formulas are not

valid if θ is close to π.

Rest frame

Working in the rest frame of reference, the corresponding squared amplitudes for

processes where the photon helicity is preserved and changed are, respectively

1
2
∑
spins
|M(eγ± → eγ±)|2 =(2Eγ,1Eγ,2 − Eγ,1me + Eγ,2me)(E2

γ,1 + E2
γ,2 − Eγ,1me + Eγ,2me)

E2
γ,1E

2
γ,2

,

1
2
∑
spins
|M(eγ± → eγ∓)|2 =me(Eγ,1 − Eγ,2)2(Eγ,1 − Eγ,2 +me)

E2
γ,1E

2
γ,2

. (D.1.10)

In the ultra relativistic limit (Eγ,1 →∞), we get

1
2
∑
spins
|M(eγ± → eγ±)|2 =2E

2
γ,1 + E2

γ,2

Eγ,1Eγ,2
,

1
2
∑
spins
|M(eγ± → eγ∓)|2 =me(Eγ,1 − Eγ,2)3

E2
γ,1E

2
γ,2

. (D.1.11)

Spin frame

Based on this frame, the amplitudes for the different polarisation transitions are

1
2
∑
spins
|M(eγ± → eγ±)|2 =

4E2
e sin2 θ

(
E2
γ cos2 θ

(
1 + cos2 θ

)
+ m2

e sin2 θ
)

(
E2
e − E2

γ cos4 θ
)2 ,

1
2
∑
spins
|M(eγ± → eγ∓)|2 =

4m2
e cos4 θ

(
E2
e + E2

γ cos2 θ
)

(
E2
e − E2

γ cos4 θ
)2 . (D.1.12)
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Fixed frame

When we sum/average over final/initial spins, the different polarisation transitions

in the fixed frame are:

1
2
∑
spins
|M(eγ± → eγ±)|2 =

(
m2
eEγ,2(Ee,1 − pe,zµ2)− Eγ,1(Ee,1 − pe,zµ1)(m2

e − 2Eγ,2(Ee,1 − pe,zµ2))
)

E2
γ,1E

2
k2(Ee,1 − pe,zµ1)2(Ee,1 − pe,zµ2)2

×
(
E2
k1(Ee,1 − pe,zµ1)2 −m2

eEγ,1(Ee,1 − pe,zµ1)

+ Eγ,2(Ee,1 − pe,zµ2)(m2
e + Eγ,2(Ee,1 − pe,zµ2))

)
,

1
2
∑
spins
|M(eγ± → eγ∓)|2 =

m2
e(∆− 1)2

(
m2
e + Eγ,1Eγ,2(1−∆)

)
(Ee,1 − pe,zµ1)2(Ee,1 − pe,zµ2)2 , (D.1.13)

where ∆ ≡ cos θ =
√

1− µ2
1

√
1− µ2

2 cos(θ1− θ2) +µ1µ2, µ1 = cosφ1 and µ2 = cosφ2.

In the ultra (Eγ,1 →∞) relativistic limit we obtain

1
2
∑
spins
|M(eγ± → eγ±)|2 =

(
Ee,1 − µ1pe,z

)(
1−∆2

)
m2
e

Eγ,1 ,

1
2
∑
spins
|M(eγ± → eγ∓)|2 =

(
Ee,1 − µ1pe,z

)(
1−∆

)2

m2
e

Eγ,1 . (D.1.14)
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Second Approach

In section 5.3.1 we have calculated the A–matrix elements given in Eq. (5.2.7), by

directly substituting the explicit form of the electron spinors u(p)± 1
2
, into the matrix

elementM accordingly to the chosen frame of reference. However, for the case of

unpolarised electrons there is another way to get explicit form of these elements.

Nonetheless the form of the general expression is not simple until applying the

kinematics.

In the second approach instead of replacing all the elements in the amplitude, we

sum/average over the electron spin as usual and use trace technology. Therefore, this

approach can only be applied to the case of unpolarised electrons. Normally, if we

do not care about the polarisation of the photons during the scattering process, we

also sum/average over their helicity states. However, in order to find the polarised

amplitude of polarised photon scattering, we assume definite helicity states for each

polarisation vector in the initial and final states.

The calculation of the squared polarised amplitude using this approach starts from

Eq. (5.3.1), which can be written as

1
2
∑

α,β=±
M(eαγi → eβγi′)M

∗(eαγj → eβγj′) ≡

(
Mi
′
iM

∗
j
′
j

)
s

+
(
Mi
′
iM
∗
j
′
j

)
t
+ 2 Re[Mi

′
iM
∗
j
′
j]st , (E.0.1)
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where we have summed/averaged over electron spin, but not photon helicity. The

sub indices correspond to the s and u–channel contributions and i′, i, j′, j indicates

the polarisation. More explicitly, each term in the equation above is given by,

(
Mi
′
iM
∗
j
′
j

)
s

= e4

(s−m2
e)2

(
MµνM

∗
µ
′
ν
′

)
s
ε

(1)µ
i ε

∗(2)ν
i
′ ε

∗(1)µ′
j ε

(2) ν′

j
′ ,

(
Mi
′
iM
∗
j
′
j

)
t

= e4

(t−m2
e)2

(
MµνM

∗
µ
′
ν
′

)
t
ε

(1)µ
i ε

∗(2)ν
i
′ ε

∗(1)µ′
j ε

(2) ν′

j
′ ,

(
Mi
′
iM
∗
j
′
j

)
st

= e4

(s−m2
e)(t−m2

e)
(
MµνM

∗
µ
′
ν
′

)
st
ε

(1)µ
i ε

∗(2)ν
i
′ ε

∗(1)µ′
j ε

(2) ν′

j
′ . (E.0.2)

(
MµνM

∗
µ
′
ν
′

)
s,t,st

are the squared polarisation vector–independent amplitude corres-

ponding to each channel. This is the most general expression for the polarised

squared amplitude of photon–scattering.

For simplicity, and comparison with Eq. (5.3.4) in section 5.3.1, we apply the rest

frame kinematics. Therefore, the polarised squared amplitude takes the form,

1
2
∑
α,β

M(eαγi → eβγi′)M(eαγj → eβγj′)
∗ = 1

2meE
2
γ,1Eγ,2

×

×
[
2Eγ,1k1 · ε

∗(2)
i

[
(Eγ,2 − Eγ,1)ε(1)

i
′ · ε(2)

j k2 · ε
∗(1)
j
′ + (Eγ,1 + Eγ,2)k2 · ε

(1)
i
′ ε

(1)
j
′ · ε(2)

j

]
+2Eγ,1k1 · ε

(2)
j

[
(Eγ,1 − Eγ,2)k2 · ε

(1)
i
′ ε
∗(1)
j
′ · ε∗(2)

i − (Eγ,1 + Eγ,2)k2 · ε
∗(1)
j
′ ε

(1)
i
′ · ε∗(2)

i

]
+Eγ,2

[
ε
∗(1)
j
′ · ε(2)

j ε
(1)
i
′ · ε∗(2)

i

(
2E2

γ,1

[
(Eγ,2 − Eγ,1)(cos θ − 1) + 4me

]
+m3

e

)
−
(
ε
∗(1)
j
′ · ε∗(2)

j ε
(1)
i
′ · εi(k2)− ε∗(1)

j
′ · ε(1)

i
′ ε
∗(2)
i · ε(2)

j

)
(2E2

γ,1(cos θ − 1)(Eγ,2 − Eγ,1) +m3
e)
]]
,

(E.0.3)

where we have neither specified the photon polarisation in the initial nor final state.

Considering the case where polarisation is conserved (changed), i.e., eγ± → eγ±

(eγ± → eγ∓), the expression for the polarised squared amplitude simplifies even more

and leads to the same result as in (D.1.10). Furthermore, the result in Eq. (E.0.3)

allows to calculate the A–matrix by just doing every combination ofMi
′
iM
∗
j
′
j required

in Eq. (5.3.1). In here, we have done it for the rest frame. However, is possible to

do all this process for any frame of reference in Appendix D.



Appendix F

Cross section calculations

The cross section for the process preserving circular polarisation (eγ± → eγ±) and

the process changing it (eγ± → eγ∓) can be calculated by following the procedure

described in Appendix B of [227], by which we express the amplitude in terms of

the variables χ and η, where χ = (p1 · k1)/m2
e and ω = (p1 · k2)/m2

e and perform the

integral over ω:

σ =
∫ 2χ

2χ
2χ+1

1
32πm2

eχ
2 |M(χ, ω)|2dω . (F.0.1)

We can then use the Lorentz invariant amplitudes in Eq. (5.3.11) to find the corres-

ponding cross sections

σ(eγ± → eγ±) = 3σT

8

(
2 + 3χ− χ2

χ2(1 + 2χ)
− 2 + χ− 2χ2

2χ3 log(1 + 2χ)
)
,

σ(eγ± → eγ∓) = 3σT

8

(
2 + 9χ+ 13χ2 + 4χ3

χ2(1 + 2χ)2 − 2 + 3χ
2χ3 log(1 + 2χ)

)
, (F.0.2)

where σT = 1
6πm2

e

.The same method can be used to calculate the cross sections for

the photon scattering off polarised electrons.

The summation of both photon and electron polarisations gives the standard Compton

scattering amplitude

|MC|2 = 1
4
∑
k,l=±

∑
α,β=±

|M(eαγk → eβγl)|2

= 2
(
p1·k1

p1·k2
+ p1·k2

p1·k1

)
+ 4m2

e

(
1

p1·k1
− 1
p1·k2

)
+ 2m4

e

(
1

p1·k1
− 1
p1·k2

)2

(F.0.3)
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and the total Compton scattering cross section is

σC = 3σT

4

(
2 + 8χ+ 9χ2 + χ3

χ2(1 + 2χ)2 + −2− 2χ+ χ2

2χ3 log(1 + 2χ)
)
, (F.0.4)

which is consistent with former result in [228]. It is useful to define the “summed”

asymmetry between the two photon helicity states at the cross section level,

∆σ
V = σ(eγ+ → eγ+) + σ(eγ− → eγ−)− σ(eγ+ → eγ−)− σ(eγ− → eγ+)

σ(eγ+ → eγ+) + σ(eγ− → eγ−) + σ(eγ+ → eγ−) + σ(eγ− → eγ+)

=
χ(1 + χ)

(
−2χ(1 + 3χ) + (1 + 2χ)2 log(1 + 2χ)

)
2χ
(
2 + 8χ+ 9χ2 + χ3

)
+
(
−2− 2χ+ χ2

)
(1 + 2χ)2 log(1 + 2χ)

(F.0.5)

which is the ratio of total conserved circular polarisation after integrating over phase

space. Its behaviour as a function of χ is numerically shown in Fig. F.1. The

Thomson scattering refers to the limit χ → 0. In this case, only ∆σ
V = 0, which is

well-known [81]. The circular polarisation is likely to be preserved with larger χ,

which corresponds to larger energy momentum transfer between photon and electron.

For χ & 104 (corresponding to Eγ,1 & 0.361 GeV in the COM frame, or Eγ,1 & 511

GeV in the rest frame), ∆σ
V can reach 0.8.

10-3 10-2 10-1 100 101 102 103 104 105 106 107 108 109

χ
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∆
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Figure F.1: The change of the net circular polarisation at the cross
section level, ∆σ

V , as a function of the Lorentz invariant
parameter χ = p1·k1/m

2
e.
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F.1 More plots in the fixed frame

The fixed frame is the most generic frame of reference we consider and consequently,

has more kinematic parameters that can be changed. For the scattering with high

energy incoming electron, circular polarisation is conserved for any angular distribu-

tion and any energy of the incoming photon, which agrees with the results in the

spin and COM frames. However, for low energy incoming electrons, taking different

kinematic configurations from the one shown in the main text (Fig. 5.1d), the plot in

the fixed frame changes dramatically. Here, we show two sets of plots (Fig. F.2 and

F.3) where we vary the energy of the incoming electron and the angular configuration

of the scattering process. In every set of plots, the vertical axis corresponds to the

energy of the photon in the initial state and the horizontal axis corresponds to cosφ2

which is the angle between outgoing photon and incoming electron as discussed in

section 5.3.1.

In Fig. F.2, we fixed the incident angle of the photon, φ1, i.e., the angle between

the incoming photon and electron, with its cosine value fixed at cosφ1 = 1, 0.5 and

0 in the left, middle and right panels, respectively. For each row, we fix the kinetic

energy of the incoming electron p1 = 1 keV, 0.1 MeV, 1 MeV, 5 MeV, respectively.

θ1 − θ2 is the difference between incoming and outgoing photons projected on the

x − y plane at π/3. The influence of θ1 − θ2 is less important, so we fix its cosine

value at 0.5 for all plots. As shown in the left-top corner, by setting the incident

angle φ1 = 0, the result for photon scattering with low energy electron is almost the

same as that in the rest frame. But this behaviour changes largely once the incident

angle increases. Increasing the energy of the incoming electron in general lead to

larger ∆V , i.e., less change of the net circular polarisation after scattering. Once

p1 � me, the circular polarisation is more likely to be preserved for large incident

angles. In Fig. F.3, we fixed p1 = 1 GeV, and see that the ∆V < 0.9 only for very

small φ1, noting that cosφ1 = 0.99999999 and 0.999999 correspond to φ1 ≈ 0.0081◦

and 0.081◦, respectively. Only for φ1 & 0.1◦, ∆V > 0.9 is satisfied.
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Figure F.2: The asymmetry of photon helicity states ∆V in fixed
frames with respect to different direction and energy
information. For each row, we fix incoming electron
kinetic energy p1 = 1 keV, 0.1 MeV, 1 MeV and 5 MeV,
respectively and for each column, we fix the angle φ1
between incoming photon and electron with cosφ1 = 1,
0.5 and 0, respectively. The angle difference between
incoming and outgoing photons projected on the x− y
plane is fixed cos(θ1 − θ2) = 0.5.
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Figure F.3: The asymmetry of photon helicity states ∆V for photon
scattering with energetic electron in the fixed frame.
The kinetic energy of incoming electron is fixed at 1
GeV, cos(θ1 − θ2) = 0.5 is used as in Fig. F.2, and
cosφ1 = 0.99999999, 0.999999, 0.99999 respectively in
each subfigure.





Appendix G

Relationship between Teff and Tc

in a WD

The photon diffusion equation is (with T given in K)

L = −4πr2 c

3κε
d

dr
(aT 4), (G.0.1)

where L is the luminosity, (aT 4) is the black body energy density and κ is the opacity

of the stellar material. In this expression, 1/κε is an estimation of he photon mean

free path. This leads to the energy transformation which determines the temperature

gradient,
dT

dr
= − 3κε

4acT 3
L

4πr2 . (G.0.2)

The aim is to find the luminosity surface L in terms of the temperature of the core

Tc. This will lead us to a relation between the observed temperate Teff of the star

and Tc. To do so we start from the equation of hydrostatic equilibrium

dP

dT
= GM(r)ε

c2r2
4acT 3

3κε
4πr2

L
. (G.0.3)

At high densities, the appropriate approximation to the opacity is Kramer’s opacity

which is κ = κ0ε
(
T
K

)−3.5
with κ0 = 4.34 × 1024Z(1 + Xh) cm2 g−1. In the latter

expression, Z stands for fractional abundance of elements heavier than hydrogen and
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Xh is the fractional abundance of hydrogen [198]. Introducing the non-degenerate

pressure given by the ideal gas law as P = εKBT/(Muµ), we obtain

PdP = 4n a c4πM(r)G
3κ0µL

T 7.5dT (G.0.4)

where µ is the mean molecular weight. In the surface layers, we can set M(r) = M?.

We then integrate, with the boundary condition P = 0 at T = 0 and obtain

ε =
√

2
8.5

4 a c4πM?G

3κ0L

µMu

KBK
3.5T

3.25. (G.0.5)

We just have obtain ε in terms of the temperature in the outer region of the star.

Kelvins (K) in red comes from the definition of κ. The surface approximation breaks

down at some point in the interior layers when matter becomes degenerate. This

occurs when the non-degenerate pressure equals the degenerate pressure at radius

Rc. In this case, the core energy density is defined as

εc = 0.5× 10−8g cm−3Y −1
e

(
Tc
K

)1.5
, (G.0.6)

where Ye is the mean number of electrons per baryon and Tc is the core temperature.

Matching expressions Eq. (G.0.5) and Eq. (G.0.6) and solving for L leads to

L = 5.7× 106erg s−1µY 2
e

1
Z(1 +Xh)

M?

M�

(
Tc
K

)3.5
, (G.0.7)

where the gravitational constant G has been written in terms of the solar mass

for convenience. Notice that this result is similar to L = 4πσBR2
?T

4
eff

1 which is

luminosity for a black body, but involves the temperature of the core Tc instead

of the observable temperature of the surface Teff . This suggest that the effective

temperature is related to the core temperature as Teff ∝ T 7/8
c .

1σB has units of[erg cm−2 s−1 K−4] which gives the correct units for the luminosity.
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