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Abstract

Modern scientific experiments often rely on different statistical tools, regularisa-

tion being one of them. Regularisation methods are usually used to avoid overfitting

but we may also want use regularisation methods for variable selection, especially

when the number of modelling parameters are higher than the total number of

observations. However, performing variable selection can often be difficult under

limited information and we may get a misspecified model. To overcome this issue,

we propose a robust variable selection routine using a Bayesian hierarchical model.

We adapt the framework of Narisetty and He to propose a novel spike and slab

prior specification for the regression coefficients. We take inspiration from the im-

precise beta model and use a set of beta distributions to specify the prior expectation

of the selection probability. We perform a robust Bayesian analysis over this set of

distributions in order to incorporate expert opinion in an efficient manner.

We also discuss novel results on likelihood-based approaches for variable se-

lection. We exploit the framework of the adaptive LASSO to propose sensitivity

analyses of LASSO-type problems. The sensitivity analysis also gives us a novel

non-deterministic classifier for high dimensional problems, which we illustrate using

real datasets.

Finally, we illustrate our novel robust Bayesian variable selection using synthetic

and real-world data. We show the importance of prior elicitation in variable selection

as well as model fitting and compare our method with other Bayesian approaches

for variable selection.
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Chapter 1

Introduction

1.1 Overview

In this thesis, we focus on high-dimensional statistical modelling with limited data.

That is, we try to find a mathematical relation between a response (or, output) vari-

able and predictor (or, input) variable(s) in a regressional context and the number

of observations is less than the number of predictors. High-dimensional statistical

modelling is an integral part of several scientific and socio-economic problems such

as space exploration, clinical trials, climate modelling, stock analysis, etc. However,

in many of these fields, we have to model with limited information as the exper-

iments are often expensive and time consuming. We, therefore, are interested in

high-dimensional statistical models that are not sensitive with respect to perturba-

tion in data and performs well in prediction as well.

The concept of statistical modelling dates back to the early nineteenth century.

Legendre used the method of least squares and proposed a formulation, which is

vaguely related to linear models [50]. The notion of high-dimensional statistical

modelling is relatively new within the scientific community and became popular in

late twentieth century. However, an elicitation-based method has not been pro-

posed to tackle the lack of information. In this thesis, we will draw inspiration

from Bayesian variable selection approaches to develop a novel variable selection

approach. We first investigate different regularisation methods to understand the

sensitivity of variable selection with respect to the regularisation term. We then ad-

1



1.1. Overview 2

dress this issue of variable selection in a Bayesian paradigm. Parts of the sensitivity

analysis have been published [5, 6].

Variable selection is a popular topic among both frequentist and Bayesian statis-

ticians. Large datasets, such as gene micro-arrays often contain more predictors

than the total number of observations. These datasets are often highly correlated

and require variable selection methods to avoid overfitting. One of the foremost

works in Bayesian variable selection was presented by Mitchell and Beauchamp [56].

The authors used a two-component prior to specify the regression coefficients. They

proposed a point mass at 0 and a uniform distribution elsewhere. Later, George

and McCulloch [41] proposed a Gibbs sampling method for variable selection, where

they used latent variables to identify the active variables. Later Ishwaran and Rao

[48] provided a more generalised framework for two-component priors and coined the

term spike and slab prior. They used a continuous bi-modal prior for the regression

coefficient.

The frequentist approach for variable selection became popular after Tibshirani

[69] introduced the LASSO (or, least absolute selection and shrinkage operator). In

the LASSO, an `1 penalty-term is added to the log-likelihood of the linear model.

This type of penalty keeps the penalised likelihood convex unlike subset selection,

where `0 is used as a penalty. Introduction of the LASSO led to several other works

on the theoretical properties of variable selection. Fan and Li [34] worked on the

oracle properties of the LASSO and showed that it can be inconsistent in variable

selection and introduced the SCAD (or, smoothly clipped absolute deviation). Later

in 2006, Zou [86] introduced the adaptive LASSO and showed that simple use of data

driven weights can result in consistent variable selection and asymptotic unbiased

estimates.

Introduction of the LASSO led to several Bayesian variable selection methods as

well. Tibshirani [69] noted that a Laplace (double exponential) prior can be used

to specify regression coefficient as a Bayesian alternative for the LASSO. Park and

Casella [60] exploited the use of Laplace prior and proposed a hierarchical setup for

variable selection. Lykou and Ntzoufras [54] proposed a modification of the model

by Park and Casella [60] and introduced selection indicators. Other notable works
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are (i)the Dirichlet-LASSO by Bhattacharya et al. [11], using global-local mixtures

of Gaussians for prior specification and (ii)the spike and slab LASSO by Roc̆ková

and George [64], using a Laplace prior to construct the spike and slab distributions.

A key issue for high-dimensional problems is the data sparsity. Most of the

methods are often based on the assumption that the observed data is the true

representation of the problem. However, in real life this may not be the case. Further

observations may change the variability of the predictors and may suggest that more

(or, less) predictors should be in the model. To overcome these issues, we will adapt

a spike and slab model with robust Bayesian analysis.

A robust Bayesian analysis [10] considers a set of priors instead of fixing a single

prior. It emphasises the fact that it is almost impossible to capture prior evidence

by using a single prior and it is better to consider all the priors which are reasonable.

A set of priors can be chosen based on several criteria. In this setting, we will focus

on the range of prior hyper-parameters to obtain the set. We consider an imprecise

beta model, which is a special case of Walley’s imprecise Dirichlet model [76]. We

use a set of imprecise beta distributions to specify our hyperprior for the selection

probability of a co-variate.

We exploit the use of conjugate priors in our robust Bayesian analysis. Our use

of a set of priors gives us a set of posteriors for efficient computation. We inves-

tigate the posterior estimates of the regression coefficients and selection indicators

to obtain a robust variable selection. This is the first instance of an imprecise vari-

able selection scheme for high-dimensional statistical modelling. Our evaluation of

imprecision works in two levels. Our method allows a variable to be indeterminate

which shows the imprecision in the variability of the co-variates. The second in-

stance of imprecision is addressed through the posteriors of selected variables. The

sets of posteriors provide a range for the posterior estimates instead of single values.

This helps us to understand the indeterminacy in the model fitting. However, this

type of imprecision is often dependent on the scale of the dataset and we use a

relative measure to characterise this type of imprecision.
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1.2 Contribution and outline

This thesis revolves around two novel methods for high-dimensional problems. One

of these methods is sensitivity analysis for LASSO-type problemsChapter 5 and

the other one is robust Bayesian variable selectionChapter 8. The span of the

contributions motivates us to present this thesis from a unified frequentist-Bayesian

perspective and we discuss the relevant developments accordingly. In this chapter,

we have discussed some of the works in the high-dimensional statistics and the

methods that we use to present our contributions. The rest of thesis is organised

as follows. In Chapter 2, we explain statistical modelling in a formal manner and

discuss different aspects of statistical modelling with a special focus on linear models.

After Chapter 2, this work is split into two broad categories. Chapter 3 deals

with likelihood-based parameter estimation, followed by our novel contribution on

LASSO-type problems in Chapter 5. On the other hand, Chapter 6 and 7 are

focused on the Bayesian methodologies, followed by Chapter 8 where we present

a novel variable selection scheme using robust Bayesian analysis. We also discuss

the mathematics behind numerical optimisation along with different optimisation

methods for likelihood-based approaches in Chapter 4.

In Chapter 3, we discuss several likelihood-based parameter estimation tech-

niques. We introduce the notion of likelihood and maximum likelihood estimates

as a frequentist point estimate and show the use of likelihood-based parameter es-

timation for linear models and regularisation techniques. We then discuss different

variable selection routines using likelihood based estimation and model selection

techniques for the best fit. Finally, we conclude this chapter by introducing infer-

ential methods for regularisation techniques.

Chapter 4 is focused on the several optimisation methods, which are required

for likelihood-based estimation. The chapter starts with basic notions of convexity

and duality for constrained optimisation followed by a discussion on different opti-

misation techniques for non-smooth objective functions, which occur frequently in

variable selection methods.

In Chapter 5, we discuss a sensitivity analysis for LASSO-type problems. We

exploit the notion of adaptive LASSO to show how we can assess the variability
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of predictors and their effect on variable selection. We use this idea to introduce

a novel credal classification routine for logistic regression. Parts of this work were

published in [5, 6].

Chapter 6 is focused on the statistical inference in Bayesian paradigm. We

discuss the role of subjective belief in statistical analysis and its effect in choosing

a prior. We explore different Bayesian regression models and discuss their analogy

with frequentist counterparts through maximum a posteriori estimates. Chapter 6

also gives a formal definition of spike and slab models, which are the basis of our

robust Bayesian variable selection approach. We discuss different types of spike and

slab models and their mathematical formulations.

Chapter 7 starts with the notion of robust Bayesian analysis. We discuss the

scope of robust Bayesian analysis in high-dimensional models and introduce the

imprecise beta model. Later, we formulate our model for variable selection using

robust Bayesian analysis. We use this formulation in Chapter 8 to demonstrate our

contribution in robust Bayesian variable selection. We analyse our model for various

sets of selection probabilities. We discuss the effects of these selection probabilities

through posterior means of the regression coefficients and selection indicators. We

illustrate our method using several synthetic datasets and also perform a dedicated

analysis of real datasets in Chapter 9

Finally in Chapter 10, we conclude this thesis. We discuss our findings and issues

while investigating the problem.
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Figure 1.1: Flow diagram of the thesis



Chapter 2

Statistical Modelling

For an efficient statistical inference from a population, we need a suitable model

that describes the characteristics of the population. The population may contain

several random or deterministic variables. In statistical modelling, we establish a

mathematical relationship between these variables by using statistical assumptions.

In a regression context, these variables can be categorised as response variables and

predictor variables. We can also characterise predictor variables as independent

variables and response variables as dependent variables. We can describe predictors

and responses in the following way:

1. Predictor (or, independent) variables are characteristics of the system which

directly control the properties of the system.

2. Response (or, dependent) variables are characteristics of the system which

depend on the predictor variables. In other words, they respond to a change

of values of the predictors in some systematic fashion.

Assume, we have a dataset containing n independent and identically distributed

(i.i.d.) observations of responses y1, . . . , yn ∈ R, along with corresponding vector-

valued predictors x1, . . . , xn ∈ Rp. We consider each xi to be a column vector.

We also use another type of variables in a regression setting. These are p unknown

parameters β := (β1, · · · , βp)T . One of the objectives of statistical modelling is to

identify a functional relationship (‘model’) between the responses and the predictor

7
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variables:

E(yi|xi) = φ(xi, β) (2.1)

where φ is a function that depends β.

2.1 Linear Regression

Linear regression is one of the most popular forms of statistical modelling. Here, the

functional relationship between the response and predictor is linear i.e. φ(xi, β) :=

xTi β, and usually the assumption εi
i.i.d.∼ N (0, σ2) is made for the random errors.

The linear model can be written in a matrix form for all cases i ∈ {1, . . . , n} simul-

taneously as follows:

y = xβ + ε (2.2)

where

y :=


y1

...

yn

 x :=


xT1
...

xTn

 β :=


β1

...

βp

 ε :=


ε1
...

εn

 . (2.3)

The matrix x is called the design matrix. Remember that each xi ∈ Rp is considered

as a column-vector, so x is an n× p matrix.

This can be extended to non-parametric approaches which do not assume an

explicit parametric shape, but most of such approaches achieve this by simply in-

troducing a large number of basis vectors, so that they still can be expressed as in

Eq. (2.1).

Example 2.1 (Gaia Dataset). Gaia1 is a mission by the European Space Agency

(ESA) to formulate a three dimensional map of our galaxy [32]. The data depicted

in Fig. 2.1 are part of a dataset that was generated prior to the launch of the mission

by computer simulations [31, 4]. The data contain essentially spectral information

divided into p = 16 wavelength bands (intervals), along with certain stellar param-

eters, which are to be inferred from the spectral data. That is, each observation in

1This dataset is openly available and has been loaded from the R package LPCM [30] for illustra-

tion.



2.1. Linear Regression 9

var 1
0.

0
1.

0
0.

0
1.

0
0.

0
1.

0
0.

0
1.

0
0.

0
1.

0
0.

0
1.

0
0.

0
1.

0

0.0 1.0

0.
0

1.
0

0.0 1.0

0.51

var 2

0.34

0.54

var 3

0.0 1.0

0.0 1.0

0.72

0.74

0.29

var 4

0.32

0.63

0.92

0.15

var 5

0.0 1.0

0.0 1.0

0.50

0.99

0.55

0.74

0.64

var 6

0.72

0.96

0.52

0.88

0.73

var 7

0.0 1.0

0.0 1.0

0.51

0.38

0.97

0.11

0.90

0.39

0.88

var 8

0.74

0.14

0.86

0.20

0.83

0.15

0.69

0.94

var 9

0.0 1.0

0.0 1.0

0.92

0.47

0.22

0.85

0.32

0.46

0.40

0.66

var 10

0.51

0.78

0.52

0.95

0.38

0.79

0.71

0.37

0.68

var 11

0.0 1.0

0.0 1.0

0.55

0.78

0.50

0.97

0.35

0.78

0.70

0.34

0.71

0.98

var 12

0.26

0.68

0.91

0.25

0.98

0.69

0.90

0.87

0.78

0.22

0.48

0.44

var 13

0.0 1.0

0.0 1.0

0.087

0.75

0.92

0.51

0.89

0.76

0.95

0.85

0.69

0.72

0.68

0.92

var 14

0.36

0.60

0.90

0.12

0.99

0.62

0.86

0.89

0.83

0.35

0.35

0.31

0.98

0.87

var 15

0.0 1.0

0.0 1.0

0.
0

1.
0

0.35

0.55

0.
0

1.
0

0.86

0.
0

1.
0

0.96

0.56

0.
0

1.
0

0.80

0.85

0.
0

1.
0

0.81

0.42

0.
0

1.
0

0.22

0.21

0.
0

1.
0

0.90

0.77

0.
0

1.
0

0.94

var 16

Figure 2.1: Correlation between the predictors in Gaia dataset.

the data set represents a stellar object, and the measurement for each ‘band’ is the

energy flux (photon counts) emitted from that object within that wavelength interval.

In the dataset that we have available, a total of n = 8286 observations (stellar ob-

jects) are recorded. In our example, we consider steller temperature as the response

variable. We will discuss this in Section 9.2.

We scale the predictors such that the range is 0 to 1 and show the scatterplot

matrix of the predicors in Fig. 2.1. We observe strong correlations between the

predictors suggesting that they carry redundant information.

An important aspect of a statistical model is the presence of randomness within

the model. In Fig. 2.1, we observe the presence of random noise along with the
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trend. Therefore, besides model fitting, our goal is also to quantify the randomness

present within the model. For that, we rely on statistical inference techniques.

2.2 Statistical Inference

Statistical inference is the process by which we use the available data to gain knowl-

edge about the model parameters, as well as their uncertainties. In a wider sense

it will also include methods by which we quantify and validate our assumptions on

the model. Statistical inference deals with the estimation of parameters that are

used to specify the family of probability distributions which underlie the statistical

model for yi|xi. There are several methods available to do statistical inference. How-

ever, we will discuss statistical inference using two approaches: the likelihood-based

approach and the Bayesian approach.

The likelihood-based approach (Casella and Berger [15], Cox [22]) is a widely used

estimation method. The estimation can be a point estimate, where we simply try to

find the best numerical value for the parameter of the model. Alternatively, we may

seek an interval which covers the unknown parameter value with high probability

(generally 0.95). We call this a 95% confidence interval.

While several point estimators are available, the maximum likelihood estima-

tor (or, MLE) is the most popular method because of its simple and wide imple-

mentability and its consistency properties. Maximum likelihood estimator finds the

parameter value which maximises the probability density of the sample given the

parameter, i.e. the likelihood. For linear regression models with Gaussian errors,

MLE is equivalent to ordinary least squares.

The Bayesian approach (Berger [9], Gelman et al. [39]) starts from Bayes’s rule

for conditional probability. Let y denote the data. For example, in our setting,

y is simply the vector of observed response values (y1, . . . , yn)T . The statistical

model is specified through a likelihood function P (y | β). In the context of the

regression model, this likelihood would be considered conditional on the observed

values of the predictors, that is, the observed values of the predictors are considered

as fixed. Finally, we need a prior distribution P (β) for the model parameters β
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to incorporate our prior knowledge. Bayes’s rule then tells us that the posterior

distribution P (β | y) is given by

P (β | y) ∝ P (β)P (y | β). (2.4)

The normalisation constant can be calculated from the law of total probability if

necessary. However, this calculation may not be trivial and simulation methods like

MCMC need to be employed. The posterior distribution is then used for further

inference. For instance, we can look at its mean, mode, or other characteristics. In

many cases the posterior mode corresponds to the maximum likelihood estimate.



Chapter 3

Likelihood-based estimation

In Chapter 2, we have introduced the notion of statistical modelling and statistical

inference. This chapter focuses on the likelihood-based approaches in the context

of linear models. We define maximum likelihood estimation (or, MLE) in Sec-

tion 3.1 and use the notion of MLE to show its relation with ordinary least squares

in Section 3.2. After Section 3.2, we focus on the regularisation methods for high-

dimensional models. We discuss Ridge regression and it’s properties in Section 3.3.

Section 3.4 is focused on variable selection techniques, where the non-negative gar-

rote and regularisation under `q penalties have been investigated. These type of

methods are closely related to ‘Least Absolute Shrinkage and Selection Operator’ or

LASSO, which we discuss in Section 3.5 along with the LASSO for logistic regres-

sion in Section 3.6. Regularisation methods often require model selection, which

is discussed in Section 3.7. Finally, we discuss inference for these regularisation

techniques in Section 3.8.

3.1 Likelihood Function

In Chapter 2, we discussed the notion of random noise within the observations and

the underlying distributional assumption. We use this distributional assumption

and treat these observations as random variables. This treatment allows us to form

a joint probability density function with respect to the unknown parameters. We

call this joint probability density function as the likelihood function. Therefore, for

12
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a sequence of observations y := (y1, · · · , yn)T and parameters β := (β1, · · · , βp)T , we

define the likelihood function in the following way:

L(β; y) =
n∏
i=1

P (yi | β) (3.1)

where P is a probability density function that comes from the distributional as-

sumption.

Definition 3.1 (Law of Likelihood). Let β′ := (β′1, . . . , β′p)
T be a vector of pa-

rameters. Then the observations y := (y1, · · · , yn)T support β over β′ if L(β; y) >

L(β′; y). Alternatively if,

r :=

∏n
i=1 P (yi | β)∏n
i=1 P (yi | β′)

> 1. (3.2)

The evidence is indifferent to the parameters β and β′ if the ratio is equal to 1.

Note that, law of likelihood allows us to interpret likelihoods but it’s not suf-

ficients as there can be other set of observations which are more informative. A

detailed discussion on different aspects of likelihood can be in Likelihood by Ed-

wards [28]. The book also provides a formal discussion on the notion of ‘support’,

which we do not intend to cover in this thesis. For the sake of interpretation, we

use the term ‘support’ as a measure of evidence produced by the data as suggested

in the Cambridge Dictionary of Statistics [33].

3.1.1 Maximum Likelihood Estimation

If the parameters β are unknown, we can exploit law of likelihood to estimate these

parameters. We maximise the likelihood function to get estimates of the unknown

parameters β. These maximum likelihood estimates are given by:

β̂ := arg max
β

n∏
i=1

P (yi | β) (3.3)

In some cases, we may take logarithm on the likelihood function for the sake of

calculation as it is a monotone operator.
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For linear models, we assume that the random noises follow normal distribution.

This gives us the following likelihood function.

L(β; y,x) =
1

(
√

2πσ2)n

n∏
i=1

exp

(
−(yi − xTi β)2

2σ2

)
(3.4)

=
1

(
√

2πσ2)n
exp

(
−‖y − xβ‖2

2

2σ2

)
. (3.5)

Taking logarithm on both sides gives us,

lnL(β; y,x) = −n ln
√

2πσ2 − ‖y − xβ‖2
2

2σ2
. (3.6)

Since the first term in the right hand side of Eq. (3.6) is independent of β, therefore

maximising lnL(β; y,x) is equivalent to minimising the sum of the squared error

given by:

R(β) :=
n∑
i=1

ε2i =
n∑
i=1

(yi − xTi β)2 = ‖y − xβ‖2
2. (3.7)

We use ‖ · ‖2 to denote the standard Euclidean norm, that is ‖z‖2 :=
√∑n

i=1 z
2
i .

3.2 Ordinary Least Squares

Minimising the sum of the squared errors in Eq. (3.7) gives us ordinary least squares

estimates [26]. We can express this in the following way:

β̂OLS := arg min
β
R(β). (3.8)

A necessary condition to have a minimum for Eq. (3.7) is

∂

∂β
R(β) = −2xTy + 2(xTx)β = 0. (3.9)

To ensure that the solution to Eq. (3.9) gives us the minimum, we need to investigate

the second derivative, which is given by:

∂2

∂β2
R(β) = 2(xTx) (3.10)

Now, the solution to Eq. (3.9) exists when xTx is invertible. This also assures that

xTx is positive definite (see Lemma A.1) and satisfies the sufficient condition for
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minimum, that is the second derivative is positive definite. Then the ordinary least

squares estimates are given by

β̂OLS = (xTx)−1xTy, (3.11)

where (xTx)−1xT is the Moore-Penrose inverse of x. The Gauss-Markov theorem

states that when the errors are uncorrelated with expectation zero and constant vari-

ance, then the ordinary least squares estimator is the best linear unbiased estimator

as it has lowest sampling variance.

Ordinary least squares estimates also give us closed-form expressions for the

variances of the regression coefficients, which allow us to perform inference. However,

two issues that often arise are:

1. If p > n then xTx is singular, hence Eq. (3.9) has no unique solution.

2. Even if p ≤ n, p may still be much larger than needed, and we may wish

to identify sparse solutions where unnecessary parameters are set to zero. In

other words, we may wish to perform variable selection as part of our statistical

inference.

Illustration

We illustrate ordinary least squares estimation using a synthetic dataset. This allows

us to investigate the efficiency of the method and compare ordinary least squares

estimates with true regression coefficients.

Example 3.2. We construct a synthetic dataset to illustrate least squares method

with 10 predictors and 100 observations. We generate this dataset from a standard

normal distribution, so that is xi,j ∼ N (0, 1) for i = 1, 2,. . . , 100 and j = 1,

2, . . . , 10. We generate the response vector y such that, yi = xTi β + εi, where

β = (−18,−79,−23, 59, 54,−1, 64, 41, 98,−20)T and εi ∼ N (0, 0.01).

We fit an ordinary least squares model using the function lm from the R package

called stats [63]. We provide the summary in Table 3.1. The first row in the table

represents the intercept term in the linear model and rest represent the regression
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coefficients. We present the least square estimates in the left most column followed

by the standard error of these regression coefficients. In the third column we present

the t- value or simply the ratio of the least square estimates and their standard errors.

In the right most column we provide the p-value or the probability of the observed

data when the null hypothesis is true. A detailed discussion on these terms can be

found in the books authored by (Casella and Berger [15], Cox [22]).

We observe that the least squares estimates for the regression coefficients are in

good agreement with the true value that we used to generate the synthetic dataset

in Example 3.2. We notice that we have a non-zero intercept term. However, the

p-value is significantly high for the intercept term. Therefore we may consider the

null hypothesis to be true and take intercept term as zero.

Estimate Std. Error t-value p-value

Int -0.01 0.01 -1.2e+00 2.33e-01

β1 -18 0.01 -1.8e+03 <2e-16

β2 -79 0.01 -8.4e+03 <2e-16

β3 -23 0.01 -2.3e+03 <2e-16

β4 59 0.01 6.0e+03 <2e-16

β5 54 0.01 5.8e+03 <2e-16

β6 -1 0.01 -1.1e+02 <2e-16

β7 64 0.01 6.9e+03 <2e-16

β8 41 0.01 4.7e+03 <2e-16

β9 98 0.01 9.4e+03 <2e-16

β10 -20 0.01 -1.8e+03 <2e-16

Table 3.1: Summary of ordinary least squares estimates using Example 3.2.

3.3 Ridge Regression

In Section 3.2, we discuss ordinary least squares estimates and its properties. How-

ever, ordinary least squares are not applicable for correlated datasets or high-

dimensional problems. This issue can be resolved by adding a suitable regularisation
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term in the negative log-likelihood of the linear model. Tikhonov [70] introduced

ridge regression by adding an `2 penalty term to the squared error. Therefore, we

formulate ridge estimates in the following way:

β̂R(λ) := arg min
β

(
R(β) + λ‖β‖2

2

)
. (3.12)

A necessary condition to have a minimum for Eq. (3.12) is

∂

∂β

(
R(β) + λ‖β‖2

2

)
= −2xTy + 2(xTx)β + 2λIpβ = 0. (3.13)

Now, second derivative is given by:

∂2

∂β2

(
R(β) + λ‖β‖2

2

)
= 2

(
xTx + λIp

)
. (3.14)

The introduction of regularisation term ensures that
(
xTx + λIp

)
is invertible and

positive definite. Therefore from Eq. (3.13), we have the Ridge estimates as

β̂R(λ) =
(
xTx + λIp

)−1
xTy. (3.15)

Unlike, ordinary least squares, these estimates are dependent on an additional pa-

rameter, λ. Therefore, we need to select an optimal value of λ through a suit-

able model selection technique, which we discuss in Section 3.7. Ridge regression

also gives us closed-form expressions for variences of the regression coefficients and

asymptotically unbiased (check Lehmann and Casella [51, p. 438]) under suitable

regularity conditions (see Lemma A.3).

Illustration

We illustrate ridge regression using a similar dataset to the one we see in Exam-

ple 3.2. However, for ridge regression, we are interested in the case when xTx is not

invertible. To achieve that, we introduce collinearity in the design matrix.

Example 3.3. We generate this synthetic dataset by simulating first 9 predictors

from standard normal distribution so that xi,j ∼ N (0, 1), where i = 1, · · · , 100 and

j = 1, · · · , 9. We construct another predictor xi,10 =
∑9

j=1 xi,j. This ensures that

the matrix xTx is singular. We obtain the response vector in the similar fashion to
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Example 3.2. Therefore, yi = xTi β + εi, where β = (−18,−79,−23, 59, 54,−1, 64,

41, 98,−20)T and εi ∼ N (0, 0.01).

Since we introduced collinearity by constructing the 10-th predictor as xi,10 =∑9
j=1 xi,j, we can show that for the first 9 predictors, true regression coefficients are

β = (−38,−99,−43, 39, 34,−21, 44, 21, 78)T and the 10-th regression coefficient is

equivalent to zero.

Estimate Std. Error t-value p-value

Int -3

β1 -35.4 1.5 2.41e+01 <2e-16

β2 -90.1 1.3 6.91e+01 <2e-16

β3 -38.0 1.4 2.69e+01 <2e-16

β4 34.2 1.4 2.45e+01 <2e-16

β5 26.8 1.3 2.08e+01 <2e-16

β6 -17.0 1.3 1.34e+01 <2e-16

β7 40.2 1.3 3.15e+01 <2e-16

β8 18.1 1.2 1.48e+01 <2e-16

β9 69.9 1.5 4.67e+01 <2e-16

β10 0.7 0.3 2.75e+00 6e-03

Table 3.2: Summary of the ridge estimates obtained from Example 3.3.

We fit the ridge regression model using the package ridge [24], which performs

an automatic tuning of λ using the method proposed by Cule and Iorio [23]. The

optimal λ by this method is given by 0.09. We provide the summary of ridge

regression estimates in Table 3.2. We follow the same convention as of Table 3.1.

We provide the estimates in left most columns followed by the standard errors, t-

value and p-value. In ridge regression, we usually consider the intercept term to

be constant. Therefore, the first row in Table 3.2 remains empty except for the

estimate of this intercept.

We can also perform variable selection based on the p-values on the right most

column. We assume that the regression coefficients are equal to zero under the null

hypothesis [25]. In this example we see that the p-value of the 10th co-variate is
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significantly higher than the p-values of other regression coefficients. Therefore, we

may argue that this estimate can be considered as zero.

3.4 Sparse Regression

In our previous example, we discussed how we can perform variable selection using

p-value. However, to decide on the threshold for p-value is subjective and therefore

we may seek for a method which performs automatic variable selection. Several

variable selection routines are available to obtain sparse estimates or simply zero as

estimated value for some of the regression coefficients. In this section, we discuss

these variable selection methods using likelihood-based approaches.

3.4.1 Non-Negative Garrote

The non-negative garrote was introduced by Breiman [14]. It is a two stage proce-

dure that gives a sparse solution. It has a close relationship to the LASSO [44, 69].

However, as a starting point of the problem ordinary least squares estimates are

required. Given the initial estimate β̂OLS ∈ Rp, we solve the following optimisation

problem over m = (m1,m2, · · · ,mp)
T :

m̂ = arg min
m≥0
‖m‖1≤t

‖y − xmβ̂OLS‖2
2 (3.16)

where m := diag(m) ∈ Rp×p, and ‖ · ‖1 denotes the `1-norm; that is ‖m‖1 :=∑p
i=1 |mi|. We get the final non-negative garrote parameter estimate β̂NG by setting

β̂NG, j = m̂jβ̂OLS, j for each j ∈ {1, 2, . . . , p}.

Solution for the non-negative garrote

The non-negative garrote can be formulated as a constrained optimisation problem.

Therefore, we can get the non-negative garrote estimates by using the notion of

duality, which we will explain in Section 4.1. We introduce a Lagrangian multiplier

λ for the constraint ‖m‖1−t ≤ 0 [44]. This gives us the following objective function:

max
λ≥0

min
m≥0

(
‖y − xmβ̂OLS‖2

2 + λ(‖m‖1 − t)
)

(3.17)
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Effectively, we thus need to solve

m̂λ = arg min
m≥0

(
‖y − xmβ̂OLS‖2

2 + λ‖m‖1

)
(3.18)

where the Lagrange multiplier λ ≥ 0 can be interpreted as a regularisation param-

eter. If ‖m̂λ‖1 ≤ t for λ = 0, then we are done. Otherwise, λ is calibrated until

‖m̂λ‖1 = t, as we will show in Section 4.1. This value for λ is also the value that

achieves the maximum in Eq. (3.17). When xTx = Ip, we have an explicit solution

of Eq. (3.18) as given by Yuan and Lin [81]:

m̂λ,j = max

{
0, 1− λ

(β̂OLS, j)2

}
. (3.19)

Consequently, in this case, if the coefficient β̂OLS, j of a predictor is less than
√
λ,

then m̂λ,j = 0, and therefore also β̂NG, j = m̂λ,jβ̂OLS, j = 0. In this way, larger λ will

produce sparser solutions.

The starting point of this method depends on the least squares estimates β̂OLS.

Therefore, if p > n, then no unique solution is available. However, alternative initial

estimators such as the LASSO can be used in this case [81].

Illustration

We illustrate the non-negative garrote using Example 3.2. For the computation

of regression coefficient estimates nngarrote [18] has been used. The coefficient

estimates are provided in Table 3.3. To obtain these estimates, we perform model

selection over different values of λ. We us cross-validation method to find this

optimal λ which is equal to 0.009. For this value of λ, we see that β6 is considered

as non-important.

Int β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

-0.9 -16.4 -77.0 -20.6 56.8 51.5 0 62.5 39.3 96.4 -18.1

Table 3.3: Non-negative garrote estimates obtained from Example 3.2.
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q=2 q=1 q=0.5 q=0.01

Figure 3.1: Contour plots of different `q penalty functions.

3.4.2 Regularisation under `q penalty

Unfortunately, the non-negative garrote in Eq. (3.16) still fails to deliver when we

have no least squares estimate to start from, which happens for instance when we

have more predictors than observations. To solve this, we can use a different method,

where no initial estimate is needed. The basic idea is to add a penalty term to the

least squares problem, in order to penalise non-zero parameter values. This can be

done in the following way:

β̂λ = arg min
β

(
1

2
‖y − xβ‖2

2 + λ‖β‖qq
)

(3.20)

where q ≥ 0 determines the shape of the penalty, and λ ≥ 0 determines the strength

of the penalty. Here,

‖z‖qq :=


∑n

i=1 |zi|q if q > 0∑n
i=1 Izi 6=0 if q = 0

(3.21)

where Izi 6=0 = 1 if zi 6= 0, and 0 otherwise. So, ‖z‖0
0 simply counts the number of

non-zero components of z.

For different values of q we have different types of regularisation. This leads to

ridge regression for q = 2, LASSO for q = 1, and subset selection method for q = 0

[44].

In Fig. 3.1, we illustrate some contour plots of the `q penalty function, for dif-

ferent values of q. As will be illustrated in Section 3.5, it is the ‘spiked’ shape of

the contours on the co-ordinate axis that leads to sparse estimates; in other words

all penalties with q ≤ 1 will lead to sparse estimators. However, for q < 1, the `q
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penalty function is no longer convex, as can be seen from the contour plots. There-

fore, q = 1 is the only value for which the problem is convex and allows sparse

solutions. Further discussion on the non-convex penalties of the form can be found

in the book Statistical Learning with Sparsity by Hastie et al. [46, p. 84].

3.5 LASSO

The LASSO estimator was first proposed by Tibshirani [69]. The objective is to

solve the ordinary least squares problem, but subject to an additional constraint on

the `1 norm of the parameters, as follows:

min
β : ‖β‖1≤t

(
1

2
‖y − xβ‖2

2

)
. (3.22)

It is usually assumed that x and y are standardised to mean 0. Otherwise, they can

always be standardised without any loss of generality.

Solution for the LASSO

By strong duality (see Theorem 4.1 in Section 4.1), equivalently, we can solve the

dual problem, by introducing a Lagrangian multiplier λ for the constraint ‖β‖1−t ≤

0:

max
λ≥0

min
β

(
1

2
‖y − xβ‖2

2 + λ(‖β‖1 − t)
)
. (3.23)

For the inner minimisation problem, we need to find

β̂L(λ) := arg min
β

(
1

2
‖y − xβ‖2

2 + λ‖β‖1

)
. (3.24)

Eq. (3.24) is solved using numerical optimisation methods. However, when the

columns of x are standardised such that xTx = Ip , the solution to this system can

be expressed as a thresholded version of the ordinary least squares [44]:

β̂L, j(λ) = Sλ(β̂OLS, j) (3.25)

with soft-thresholding operator (see Fig. 3.2)

Sλ(βj) := sign(βj) max{0, |βj| − λ} (3.26)
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Figure 3.2: Soft-thresholding function Sλ(x) for λ = 1.

where

sign(βj) :=


−1 if βj < 0

0 if βj = 0

1 if βj > 0.

(3.27)

The contour lines in Fig. 3.3 illustrate the way LASSO works. The contours refer to

the ordinary least squares problem, and the diamond corresponds to the constraint

‖β‖1 = t. We search for the point on the diamond closest to the ordinary least

squares. This is likely to lie on the axes, hence setting smaller parameters to 0.

Illustration

We illustrate LASSO using the dataset in Example 3.3, where we have 10 predictors

and 100 observations. In this case, singularity comes from the collinearity introduced

in the predictors. We use the package glmnet [36] to perform cross validation for

model selection which gives us the optimal λ = 1.682. We provide these LASSO es-

timates in Table 3.4. We observe that the LASSO considers β10 to be non-important

for the optimal value of λ.
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● β̂
OLS

Figure 3.3: Relationship between the OLS estimate and the `1 constraint imposed

by the LASSO (red); adapted from [46].

Int β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

-0.8 -36.2 -97.1 -40.1 37.3 32.6 -20.6 42.0 19.1 76.8 0

Table 3.4: The LASSO estimates obtained from Example 3.3.

3.6 LASSO for Classification

Classification is a method for assigning a new object to a class or a group based

on the observed features or attributes of the object. Classification is used in many

applications such as pattern recognition for hand writing, disease treatment, facial

recognition, chemical analysis, and so on. In general, a classifier can be seen as a

function that maps a set of continuous or discrete variables into a categorical class

variable. Constructing a classifier from random samples is an important problem in

statistical inference. In our work, we will restrict ourselves to the case where there

are only two classes to choose from, i.e. ‘binary classification’.

Let c be a random variable that takes values in {0, 1}. Let x be a p-dimensional

vector that denotes the attributes of an object and let β = (β1, β2, . . . , βp)
T denote

the vector of regression coefficients. In a regression setting, we construct a classifier

through a generalised linear model (GLM) as follows:

E(c | x) = h
(
xTβ

)
(3.28)
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where h acts as a ‘link’ function and E stands for expectation. We define

π(x) := E(c | x) = P (c = 1 | x). (3.29)

3.6.1 Logistic Regression

Logistic regression is a well-used special case of the GLM, which is suitable for

classification with continuous attributes. Now, consider the generalised model in

Eq. (3.28). For logistic regression, we use the following link function:

h(a) :=
exp(a)

1 + exp(a)
. (3.30)

We define a vector c := (c1, c2, . . . , cn)T denoting n observed classes such that,

ci ∈ {0, 1}. The ci’s are thus Bernoulli random variables. Let x := [x1, x2, . . . , xn]T ,

with xi ∈ Rp, denote the observed attributes for n objects, so that x corresponds to

the design matrix in the terminology of classical statistical modelling. It is easy to

see that the log likelihood of the data is:

log(L(c,x; β)) =
n∑
i=1

(
ci
(
xTi β

)
− log

(
1 + exp(xTi β)

))
. (3.31)

Therefore, the maximum likelihood estimate of the unknown parameter β is equiv-

alent to:

β̂lr := arg min
β
{− log(L(c,x; β))}. (3.32)

3.6.2 Penalised Logistic Regression (PLR)

In the high-dimensional case, that is when the number of attributes is more than

the number of observations (p > n), the performance of logistic regression is often

not satisfactory. Apart from over-fitting, numerical optimisation methods often con-

verge to local solutions because of multi-collinearity. Several techniques have been

proposed to deal with this. Generally, a penalty term is introduced in the negative

log-likelihood, leading to penalised logistic regression. A LASSO-type penalty [69]

is very popular because of its variable selection property [67, 85]. The penalised

logistic regression (PLR) as a regularisation method is defined by:

β̂plr(λ) := arg min
β

{
− log(L(c,x; β)) + λ

p∑
j=1

|βj|q
}
, (3.33)
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We get sparse estimate for β when 0 ≤ q ≤ 1.

Once we have the estimate, we can then define, for any new object with known

attributes x∗ ∈ Rp and unknown class c∗,

π̂(x∗, λ) := P
(
c∗ = 1 | x∗; β̂aplr(λ)

)
= h

(
xT∗ β̂aplr(λ)

)
. (3.34)

We can then for instance classify the object as 0 if π̂(x∗, λ) < 1/2, as 1 if π̂(x∗, λ) >

1/2, and as either if π̂(x∗, λ) = 1/2. The value of λ is chosen through cross-validation

(explained in Section 3.7.1), where λ acts as a tuning parameter.

3.7 Model Selection

In the previous sections, we show how we require model selection to determine the

optimal value for the regularisation parameter λ. For ridge regression, we can find

this optimal value using an automatic method as described in [23]. For the non-

negative garrote or the LASSO, we rely on a different model selection method called

cross-validation. This is also used for model validation in some cases.

3.7.1 Cross-Validation

Cross-validation is a commonly used method to identify the optimal value of a tuning

parameter, which is in our case the penalty parameter λ. It is based on minimising

an estimate of the prediction error. In cross-validation, we use one part of the data

to fit the LASSO model, and the other part of the data to validate it [46].

We fix initially a dense grid of values of λ, that is λ is discretised with small

step-sizes over a suitable range which reflects the scope of the regularisation trade-

off that we are willing to consider. The dataset is then divided into K equally

sized partitions. We assume for simplicity that K is a divisor of n so that each

partition contains n/K elements. For each fixed value of λ of the grid, and the k’th

partition, k = 1, . . . , K, we fit the regression model using the remaining K−1 parts

and calculate the prediction error of the fitted model. Specifically, denote β̂−kλ the

parameter vector obtained under a penalty of λ when omitting the k’th partition, so

that xTi β̂
−k
λ is the corresponding fitted model under predictor xi. Then the averaged
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loss for the k’th partition is

Rk(λ) =
K

n

n
K∑
i=1

d(yi, x
T
i β̂
−k
λ ) (3.35)

where for the linear model (Eq. (2.2)), the loss function ‘d’ is just the squared error.

We repeat this step for every k = 1, 2, · · · , K and combine the values of Rk(λ) to

find the average loss, R(λ) = K−1
∑K

k=1 Rk(λ). This is then repeated for every value

of λ in the grid, and we choose the value of λ which minimises R(λ) [44].

Typically for the LASSO, smaller values of λ result to more predictors in the

model, which may lead to an over-fitted model. However, for larger values of λ,

the model has fewer predictors leading to sparsity and producing a more easily

interpretable model.

To avoid misunderstandings, it is noted that the problem of finding the optimal

λ (in the sense of minimal prediction error), as discussed in this subsection, is very

different from, and entirely unrelated to, the problem of maximising over λ as, for

instance, in Eq. (3.23). The latter is a purely formal operation which ensures math-

ematical equivalence of the two dual versions of the LASSO optimisation problem,

and does not imply any statement on the best choice of λ.

3.8 Inference for Regularisation Techniques

Regularisation techniques such as the non-negative garrote or the LASSO don’t

have any closed-form expression for variance. Therefore we need other methods to

perform inference on the parameter estimation. In the context of linear regression,

we perform inference in two major ways, using the refit-based method and using the

bootstrap method.

3.8.1 Refit-based Methods

Refit-based methods are usually used for sparse regression. Once we attain sparsity

within a model we select the non-zero co-variates to form a new predictor matrix.

We then apply ordinary least squares on these co-variates which allows us to obtain
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different statistical quantities of these parameter estimates such as standard error,

p-value, etc.

Refit for non-negative garrote In Section 3.4.1, we illustrated the non-negative

garrote using Example 3.2. We observed that 6-th predictor was non-important

based on the optimal λ which we obtained through cross-validation. Now, we dis-

card the 6-th predictor and construct a new design matrix using the other predictors

from Example 3.2. By construction of this design matrix, this is non-singular and

therefore, we can fit least squares to obtain standard errors of the estimates. We

show our results in Table 3.5. From left to right, we provide estimated value, stan-

dard error, t-value and p-value, similar to our analysis with ordinary least squares.

We notice that the refit estimates are in good agreement with the true regression

coefficients. We also observe an additional non-zero intercept term in the model.

However, high p- value suggests that we can consider this intercept term to be zero.

Estimate Std. Error t-value p-value

Int -0.2 0.1 -1.6e+00 1.17e-01

β1 -18 0.1 -1.6e+02 <2e-16

β2 -79 0.1 -7.6e+02 <2e-16

β3 -23 0.1 -2.1e+02 <2e-16

β4 59 0.1 5.3e+02 <2e-16

β5 54 0.1 5.2e+02 <2e-16

β7 64 0.1 6.2e+02 <2e-16

β8 41 0.1 4.2e+02 <2e-16

β9 98 0.1 8.6e+02 <2e-16

β10 -20 0.1 -1.6e+02 <2e-16

Table 3.5: Refit estimates after performing the non-negative garrote on Example 3.2.

Refit for the LASSO To illustrate the LASSO, we used a dataset with collinear-

ity in it. Now, from the illustration in Section 3.5, we observe that the LASSO

estimator considers the 10-th predictor as non-important therefore we discard this
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predictor to construct a new design matrix. Clearly, this modified dataset is non-

singular and hence we can apply ordinary least squares. We show the result ob-

tained from the refit model in Table 3.6. The columns from left to right represents

the estimated value, standard error, t-value and p-value as discussed earlier in our

illustration for the non-negative garrote. From the table, we see that refit estimates

are in good agreement with the true regression coefficients which we provided in

Example 3.3.

Estimate Std. Error t-value p-value

Int -0.01 0.01 -1.2e+00 2.33e-01

β1 -38 0.01 -3.6e+03 <2e-16

β2 -99 0.01 -1.0e+04 <2e-16

β3 -43 0.01 -4.2e+03 <2e-16

β4 39 0.01 3.8e+03 <2e-16

β5 34 0.01 3.5e+03 <2e-16

β6 -21 0.01 -2.2e+03 <2e-16

β7 44 0.01 4.6e+03 <2e-16

β8 21 0.01 2.3e+03 <2e-16

β9 78 0.01 7.3e+03 <2e-16

Table 3.6: Refit estimates after performing the LASSO on Example 3.3.

3.8.2 Bootstrap

Bootstrap is a general frequentist method to quantify statistical accuracy, where one

randomly draws samples from a given training dataset with replacement, the sample

size being equal to that of the original training dataset. This is done for B times.

Then one fits the model to each of these B datasets and examines the empirical

distributions of the estimated parameters. We illustrate this method using the

package called bootstrap [59].

Bootstrap for non-negative garrote We perform bootstrapping using non-

negative garrote estimator. In Table 3.7 we provide the summary. In the left most
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column, we provide the averaged estimate from the bootstrap samples; followed by

1st quartile, Median, 3rd quartile and standard deviation. We see that the non-

negative garrote estimate for the 6-th predictor is equal to zero for every bootstrap

sample. We also notice that both means and medians of the regression coefficients

are in good agreement with true regression coefficients.

Bootstrap for LASSO Similar to the non-negative garrote, we perform boot-

strapping for the LASSO and provide our results in Table 3.8. We notice that the

10-th predictor remains non-important in every bootstrap samples and therefore is

in good agreement with our illustration of the LASSO using Example 3.3.

Mean 1st Qu Median 3rd Qu Sd

Int -0.8 -1.2 -0.8 -0.5 0.6

β1 -16.3 -16.7 -16.3 -15.9 0.6

β2 -77.0 -77.3 -76.9 -76.7 0.5

β3 -20.6 -21.0 -20.6 -20.2 0.6

β4 56.8 56.5 56.8 57.2 0.5

β5 51.4 51.0 51.4 51.7 0.4

β6 0 0 0 0 0

β7 62.4 62.1 62.4 62.7 0.5

β8 39.2 38.9 39.2 39.6 0.5

β9 96.4 96.0 96.4 96.8 0.5

β10 -18.1 -18.5 -18.1 -17.6 0.6

Table 3.7: Bootstrap summary for the non-negative garrote.
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Mean 1st Qu Median 3rd Qu Sd

Int -0.9 -1.3 -1.0 -0.6 0.6

β1 -36.4 -36.8 -36.5 -36.1 0.5

β2 -97.1 -97.3 -97.1 -96.8 0.4

β3 -40.7 -40.9 -40.7 -40.4 0.5

β4 37.1 36.7 37.2 37.4 0.5

β5 31.4 31.1 31.4 31.7 0.4

β6 -18.9 -19.1 -18.9 -18.6 0.5

β7 42.7 42.4 42.6 43.0 0.5

β8 19.5 19.2 19.6 19.9 0.5

β9 76.1 75.8 76.1 76.4 0.5

β10 0 0 0 0 0

Table 3.8: Bootstrap summary for the LASSO.



Chapter 4

Optimisation Methods

In Chapter 3, we noticed how optimisation is an important part of likelihood based

approaches. Methods such as ordinary least squares or ridge regression are easy

to optimise due to their closed form expressions. However, methods like LASSO

need efficient numerical optimisation techniques and can not be solved using clas-

sical methods such us gradient descent method. This motivates us to inspect the

theory behind the optimisation algorithms for LASSO-type problems. This is also

beneficial for an in-house software implementation for optimisation with piece-wise

differentiable functions.

In this chapter, we first discuss the mathematical foundations of non-linear opti-

misation in Section 4.1. We present the notion of subgradient of a function followed

by the necessary conditions for optimality in constrained optimisation problems.

Later, in Section 4.2, we derive the necessary conditions mentioned in Section 4.1

for LASSO and discuss different numerical schemes to obtain optimal solution for

LASSO-type problems.

4.1 Strong Duality Conditions

In this section, we briefly give the main duality result for non-linear optimisation

that we mentioned in Chapter 3. An extensive detail on the following topic can

be found in the book authored by Boyd and Vandenberghe [13]. Here, we will

only present the fundamental concepts that are required to present optimisation for

32
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piece-wise differentiable functions.

Assume we aim to minimise a function f(β), where β ∈ B ⊆ Rp subject to

a constraint h(β) ≤ 0. In the following sections, we will have either B = Rp or

B = Rp
+ (i.e. the set of non-negative vectors in Rp), although in principle B can be

an arbitrary convex set. So, we try to find

f ∗ := min
β∈B
h(β)≤0

f(β). (4.1)

One may think of the function f(·) as a least squares criterion or a negative (log-

)likelihood. Define now the Lagrangian:

`(β, λ) := f(β) + λh(β) (4.2)

and the Lagrange dual function:

g(λ) := min
β∈B

`(β, λ). (4.3)

Note that

max
λ≥0

g(λ) = max
λ≥0

min
β∈B

`(β, λ) ≤ max
λ≥0

min
β∈B
h(β)≤0

`(β, λ) (4.4)

≤ min
β∈B
h(β)≤0

f(β) = f ∗. (4.5)

This inequality holds in general. Strong duality tells us that, under certain condi-

tions, the inequality becomes an equality [13, §5.2.3].

Theorem 4.1 (Strong Duality). If f and h are convex functions, and h(β) < 0 for

at least one β ∈ B, then

max
λ≥0

g(λ) = min
β∈B
h(β)≤0

f(β) = f ∗ (4.6)

So, under strong duality, to minimise f(β) over β subject to h(β) ≤ 0, we

can also instead maximise the Lagrange dual function over λ ≥ 0. In that case,

the Karush-Kuhn-Tucker conditions provide necessary and sufficient conditions for

optimality.
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Definition 4.2 (Subgradient). For any function F on B, we say that v ∈ Rp is a

subgradient of F at β whenever

F (β′)− F (β) ≥ vT (β′ − β) (4.7)

for all β′ ∈ B. The set of all subgradients of F at β is denoted by ∂F (β).

Theorem 4.3 (Karush-Kuhn-Tucker). If f and h are convex functions, and h(β) <

0 for at least one β ∈ B, then f(β) = f ∗ if and only if

0 ∈ ∂f(β) + λ∂h(β) (4.8)

λh(β) = 0 (4.9)

h(β) ≤ 0 (4.10)

λ ≥ 0 (4.11)

Eq. (4.8) is just a fancy way of writing that β is a global minimum of f +λh, for

a fixed value of λ. Equation (4.8) is called the stationarity condition. Equation (4.9)

is called the complementary slackness condition, and implies that either λ = 0 or

h(β) = 0. The inequality h(β) ≤ 0 is called primal feasibility, and the inequality

λ ≥ 0 is called dual feasibility.

To solve the Karush-Kuhn-Tucker conditions, we split the problem into two

cases as per Eq. (4.9), λ = 0 and h(β) = 0. We then solve Eq. (4.8) under each

equality constraint. We throw away any solution that does not satisfy primal or

dual feasibility, and then choose the solution that achieves the lowest value.

For the case λ = 0, we need to find the global unconstrained minimum of f . If

the primal feasibility constraint h(β) ≤ 0 is satisfied at the global minimum of f ,

then we have found a solution. Obviously, this solution must be the optimal solution

of the original constrained problem as well.

If h(β) > 0 at the global minimum of f , then we need to find the minimum of

f under the constraint that h(β) = 0. We could do so by finding a joint solution

to the system of equations formed by Eq. (4.8) and h(β) = 0. Alternatively, we

could gradually increase λ until the global unconstrained minimum g(λ) of f + λh

satisfies h(β) = 0. Indeed, due to the form of the objective function, increasing λ

will favour β that have lower values for h(β), so eventually, h(β) = 0. By strong
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duality, we also know that finding this λ is equivalent to maximising the Lagrange

dual function g(λ) over λ ≥ 0.

4.2 Optimisation for LASSO

For LASSO, the Lagrangian is given by

1

2
‖y − xβ‖2

2 + λ(‖β‖1 − t). (4.12)

From the discussion in Section 4.1, we know that if ‖β̂0‖1 ≤ t, then the solution is

immediately given by β̂0 (note that β̂0 = β̂OLS). If ‖β̂0‖1 > t, then we need find

that value for λ ≥ 0 for which ‖β̂λ‖1 = t, and the solution is then given by the

corresponding β̂λ. In either case, this λ is also the λ which achieves the maximum

in Eq. (3.23), and which solves the Karush-Kuhn-Tucker conditions in Theorem 4.3.

As we can see, along with complementary slackness (either λ = 0 or ‖β‖1 = t)

and feasibility (λ ≥ 0 and ‖β‖1 ≤ t), this condition fully characterises the optimality

of our solution. The stationarity condition (Eq. (4.8) in Section 4.1) says that the

subgradient with respect to β of this Lagrangian must contain the origin. There-

fore, we derive the stationarity condition of the Karush-Kuhn-Tucker equations for

LASSO in the following way:

0 ∈ −xT (y − xβ) + λ∂‖β‖1. (4.13)

It can be shown that [58, §3.1.5]

∂|βj| :=


{−1} if βj < 0

[−1, 1] if βj = 0

{1} if βj > 0,

(4.14)

for j = 1, 2, · · · , p. Therefore, we can write Eq. (4.13) in the following way

xT (y − xβ) = λs (4.15)

where s = (s1, s2, . . . , sp) are auxiliary variables subject to the constraint sj ∈ ∂|βj|.
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Note that, for LASSO, it is sufficient to minimise the following objective function:

J(β) =
1

2
‖y − xβ‖2

2 + λ(‖β‖1). (4.16)

This formulation of the objective function also allows us to express it as a decom-

posible function.

Definition 4.4 (Decomposible). A convex function J(β) is decomposible if it can

be written as sum of two convex function

J(β) = f(β) + h(β) (4.17)

where f(β) is differentiable but h(β) is not.

Therefore, for LASSO, the term obtained from the likelihood is differentiable,

however the penalty term is not.

4.2.1 Sub-gradient Method

Subgradient method is an alternative to gradient based optimisation methods for

non-differentiable functions (Shor et al. [68]). If a function is convex but not neces-

sarily differentiable then we can apply sub-gradient method for minimisation. Then

for any subgradient g(β) and sequence of stepsize t(k), the algorithm for subgradient

method can be shown in the following way:

Algorithm

• Initial guess: β0

• Increment step: β(k+1) = β(k) − t(k+1)g(β(k))

• Updating: β
(k+1)
best = arg min{J(β(1)), · · · , J(β(k+1))}

In the updating step we have to make sure that we are keeping track of the best

solutions as subgradient method is not necessarily descent.
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Convergence The convergence rate of subgradient method is based on the Lip-

schitz continuity of the objective function J(β). That is, let L1 > 0 be a constant

such that,

|J(β)− J(γ)| ≤ L1‖β − γ‖2 (4.18)

then for a sequence of step sizes t(k) and optimal solution β∗, we can derive the

following inequality:

J(β
(k+1)
best )− J(β∗) ≤ d2 + L2

1

∑k
i=1(t(i))2

2
∑k

i=1 t
(i)

(4.19)

where d2 = ‖β(0) − β∗‖2
2. Therefore the convergence rate is dependent on the the

choice of the sequence of step sizes.

4.2.2 Proximal Gradient Method

Proximal gradient method exploits the notion of decomposible function for the min-

imisation process. It uses a quadratic approximation of the differentiable term and

keeps the non-differentiable term as it is.

Therefore, we can use proximal mapping of J(β) (Eq. (4.16)) given by:

proxt(β) = arg min
γ

1

2t
‖β − γ‖2

2 + ‖γ‖1 (4.20)

This operator makes sure that the solution remains close to β as well as minimises

the `1 penalty term. Beck and Teboulle [8] used this proximal operator to propose

the following proximal gradient algorithm:

Algorithm

• Initial guess: β0

• Increment step: βtemp = β(k−1) − t∇f(β(k−1))

• Updating: β(k) = proxt (βtemp)

where t denotes a fixed step size. We can also do a lines search technique to accelerate

the optimisation problem. We add an intermediate step in the following way:

v = β(k−1) +
k − 2

k − 1
(β(k−1) − β(k−2)) (4.21)
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and increment

βtemp = v − t∇f(v) (4.22)

Convergence Unlike the subgradient method, the convergence of the proximal

gradient method is based on Lipschitz continuity of the gradient of the differentiable

term f(β). That is, let L2 > 0 be constant such that

|∇f(β)−∇f(γ)| ≤ L2‖β − γ‖2 (4.23)

then for a fixed step-size t ≤ 1/L2

J(β(k))− J(β∗) ≤ ‖β
0 − β∗‖2

2

2kt
(4.24)

where β∗ is the optimal solution. This convergence rate can be improved for accel-

erated variant such that

J(β(k))− J(β∗) ≤ 2‖β0 − β∗‖2
2

k(t+ 1)2
. (4.25)

4.2.3 Co-ordinate Descent Method

The coordinate descent method successively minimises a multivariate function along

each coordinate [66] and achieves global minimum. Tseng [73] showed that the solu-

tion obtained through coordinate descent method converges to the optimal solution.

The algorithm is straight forward and simple.

Algorithm

• Initial guess: β0

• Updating:

β
(k+1)
1 = arg min

β1
J(β1, β

(k)
2 , β

(k)
3 , · · · , β(k)

p )

β
(k+1)
2 = arg min

β2
J(β

(k+1)
1 , β2, β

(k)
3 , · · · , β(k)

p )

...

β(k+1)
p = arg min

βp
J(β

(k+1)
1 , β

(k+1)
2 , β

(k+1)
3 , · · · , βp)
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Convergence The convergence rate for coordinate descent methods have not been

explored much in the literature. However, for LASSO, the convergence is given by

Saha and Tewari [65]. The convergence rate for coordinate descent method is also

dependent on the Lipschitz continuity of the gradient of the dfferentiable component

of the objective funtion. That is, if

|∇f(β)−∇f(γ)| ≤ L2‖β − γ‖2 (4.26)

for some constant L > 0, then under some suitable regularity condition

J(β(k))− J(β∗) ≤ L2‖β0 − β∗‖2
2

2k
. (4.27)

Saha and Tewari [65] showed that for LASSO, coordinate descent performs much

faster than the other two methods. However, for a general optimisation problem,

the performance depends on several parameters and we do not have a single best

method. Besides these three methods, there is also a dedicated optimisation method

for LASSO-type regression problems called ‘LAR’ or least angle regression developed

by Efron et al. [29]. However, we omit ‘LAR’ in our discussion as the other three

methods are easily interpretable and applicable to any optimisation problem without

much modification. These three methods are also useful in the context of Bayesian

inference where we may want to compute maximum a posteriori (MAP) estimates.



Chapter 5

Sensitivity Analysis of

LASSO-type Problems

In Chapter 3, we have discussed different likelihood-based approaches for linear

regression. We learnt how the LASSO can be used for high-dimensional models

because of its efficient variable selection. The introduction of LASSO led to sev-

eral works on the asymptotic properties of variable selection methods. Fan and Li

[34] provided the conditions for consistent variable selection and described these

properties as oracle properties for variable selection methods. They showed that

LASSO can be inconsistent in variable selection at times. Later, Zou [86] introduced

an adaptive version of LASSO that satisfies oracle properties for variable selection.

That is, adaptive LASSO is consistent in variable selection and the adaptive LASSO

estimates are asymptotically unbiased.

In this chapter, we exploit the framework of adaptive LASSO and present a novel

sensitivity analysis of LASSO-type problems. In Section 5.1, we introduce adaptive

LASSO for linear and logistic models followed by the consistency properties of these

LASSO-type problems in Section 5.2. In Section 5.3. we show our sensitivity analysis

on adaptive LASSO along with novel error bounds for adaptive LASSO. Finally, in

Section 5.4 we introduce a novel robust classification routine for logistic regression

problems. Part of these sensitivity analyses have been published [5, 6].

40
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5.1 Adaptive LASSO

Zou [86] introduced the notion of adaptive LASSO. They proposed the idea of data-

driven weights in the penalty which satisfies the oracle properties introduced by Fan

and Li [34]. Van De Geer and Bühlmann [75] gave restricted eigen value conditions

for the LASSO and Van de Geer et al. [74] provided an error bound for the adaptive

lasso for misspecified models.

5.1.1 Adaptive LASSO

Let β̂ := (β̂1, · · · , β̂p) be any root-n-consistent estimator (see Lehmann and Casella

[51, p. 454]) of β, then the adaptive LASSO estimates [86] are given by

β̂AL(λ, γ) := arg min
β

(
1

2
‖y − xβ‖2

2 + λ

p∑
j=1

wj(γ)|βj|

)
(5.1)

where

wj(γ) =
1

|β̂j|γ
, for γ > 0. (5.2)

Note, that γ = 0 gives us the usual LASSO estimates for β. Zou [86] showed that

positive values of this additional parameter γ allows the adaptive LASSO to be a

consistent estimator which we will discuss in Section 5.2.

The adaptive LASSO can be computed as regular LASSO by using transforma-

tion of variables. We rewrite Eq. (5.1) as

β̂AL(λ, γ) = k(γ) arg min
β∗(γ)

(
1

2
‖y − xk(γ)β∗(γ)‖2

2 + λ

p∑
j=1

|β∗j (γ)|

)
(5.3)

where

k(γ) := diag

(
1

w1(γ)
, · · · , 1

wp(γ)

)
= diag

(
|β̂1|γ, · · · , |β̂p|γ

)
(5.4)

and

β∗(γ) := (w1(γ)β1, · · · , wp(γ)βp) = [k(γ)]−1β. (5.5)

Therefore, with x∗(γ) := xk(γ),

β̂∗(λ, γ) := arg min
β∗(γ)

(
1

2
‖y − x∗(γ)β∗(γ)‖2

2 + λ‖β∗(γ)‖1

)
, (5.6)
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from which we can compute adaptive LASSO estimate by β̂AL(λ, γ) = k(γ)β̂∗(λ, γ).

In general, we cannot find an analytical solution to Eq. (5.1) or Eq. (5.6) and

we need to use an iterative soft-thresholding operator to get a solution similar to

LASSO. For the orthogonal design case, the weights and the parameter γ (Eq. (5.2))

in the adaptive LASSO gives us a modified soft-thresholding operator (see Sec-

tion 3.5) in the following way:

β̂AL(λ, γ, β̂) = Soft(β̂OLS;λ/|β̂|γ) = sign(β̂OLS) ·max

{
0,

(
|β̂OLS| −

λ

|β̂|γ

)}
, (5.7)

where β̂ is any root-n-consistent estimate of β in Eq. (2.2). Since ordinary least

squares estimates are root-n-consistent, therefore using β̂ = β̂OLS in Eq. (5.7), we

get

β̂AL(λ, γ) = Soft(β̂OLS;λ/β̂γOLS). (5.8)

In Fig. 5.1, we illustrate these soft-thresholding operators using Eq. (5.8) for different

values of γ. Here, the dotted line represents the true values of β and bold line

represents adaptive LASSO estimates. We see that setting γ = 0 (top left) gives

us a constant shift from the true value even for large values of β. However, as we

increase γ, we see that the adaptive LASSO estimates becomes close to true value.

5.1.2 Adaptive Penalised Logistic Regression (APLR)

Similar to LASSO, the LASSO-type penalty in PLR can be inconsistent in vari-

able selection and it is also not asymptotically unbiased. We can overcome this

issue through the idea of adaptive LASSO. This approach is known to be adaptive

penalised logistic regression (APLR) [86, 2].

Let β̂ := (β̂1, β̂2, · · · , β̂p) be any root-n-consistent estimate for our logistic re-

gression problem. Then, for any fixed γ > 0, the APLR [86] estimates are given by:

β̂aplr(λ, γ) := arg min
β

(
− log(L(c,x; β)) + λ

p∑
j=1

wj(γ)|βj|

)
(5.9)

where

wj(γ) :=
1

|β̂j|γ
. (5.10)
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Figure 5.1: Soft thresholding operator for different values of γ and fixed λ (= 2).
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Zou [86] showed that with these weights along with some suitable regularity condi-

tions, APLR follows desirable asymptotic properties for high-dimensional problems

[34].

Computation: For γ > 0, the objective function of APLR is given by:

J(β) :=

(
m∑
i=1

[
−ci

(
xTi β

)
+ log

(
1 + exp(xTi β)

)]
+ λ

p∑
j=1

wj(γ)|βj|

)
, (5.11)

where wj(γ) is given by Eq. (5.10). Now, for optimality Eq. (5.11) must satisfy the

Karush-Kuhn-Tucker condition. Therefore, we have,

0 ∈
m∑
i=1

[
−xijci + xij

exp(xTi β)

1 + exp(xTi β)

]
+ λwj(γ)∂(|βj|), (5.12)

where ∂|βj| is as defined in Eq. (4.14).

Let s := (s1, s2, · · · , sp) be subject to the constraint s ∈ ∂|βj|. Then, β̂aplr

satisfies the following:

m∑
i=1

−xijci + xij
exp

(
xTi β̂aplr(λ, γ)

)
1 + exp

(
xTi β̂aplr(λ, γ)

)
 = −λwj(γ)sj (5.13)

m∑
i=1

xji

ci − exp
(
xTi β̂aplr(λ, γ)

)
1 + exp

(
xTi β̂aplr(λ, γ)

)
 = λwj(γ)sj. (5.14)

Now, let h(xβ̂) :=
(
h
(
xT1 β̂

)
, h
(
xT2 β̂

)
, · · · , h

(
xTn β̂

))T
, where h is the link function

defined in Eq. (3.30). Then, we can write Eq. (5.14) as,

xT
[
c− h

(
xβ̂aplr(λ, γ)

)]
= λw(γ) · s (5.15)

where ‘·’ denotes component wise multiplication. Note that Eq. (5.15) is not ana-

lytically solvable for β̂aplr. However, any sub-gradient based numerical optimisation

method can be applied to solve it. Then similar to our discussion in Section 3.6, we

compute π̂(x∗, λ, γ) for new observation x∗ to predict the corresponding class.

5.2 Consistency and Oracle Properties

Let the LASSO estimator be defined by Eq. (3.22). We define the subset S such

that,

S := {j : βj 6= 0} and |S| = p∗ < p. (5.16)



5.2. Consistency and Oracle Properties 45

That is, the true model can be specified by p∗ predictors. Then we can rearrange

the input matrix x such that first p∗ predictors correctly identify the model. Since,

|S| = p∗ < p, then without loss of generality we can write the following

lim
n→∞

1

n
xTx = Σ =

Σ11 Σ12

Σ21 Σ22

 , (5.17)

such that Σ11 is a p∗ × p∗ matrix. Now, let for n number of samples Sn := {j : β̂j 6=

0}. Then Zhao and Yu [84] and Zou [86] independently showed that the following

condition is necessary for the consistency of the LASSO estimator.

Theorem 5.1. Let, limn→∞ P (Sn = S) = 1. Then there exists some sign vector

s := (s1, s2, · · · , sp∗) such that,

|Σ21Σ−1
11 s| ≤ 1 (5.18)

for each component of the left hand side.

This may not seem convincing at first. However, this holds as Σ11 Σ21 are limiting

values of block diagonal components as described in Eq. (5.17). We suggest to check

the articles by Yuan and Lin [80] and Zou [86] for a detailed discussion and proof.

Consistency for Adaptive LASSO

Let S(n)
AL be the selected subset by the adaptive LASSO when the sample size is n.

That is,

S(n)
AL := {j : β̂

(n)
AL; j 6= 0}. (5.19)

Let β∗ := (β∗1 , · · · , β∗p) be the vector of true regression coefficients. Zou [86] showed

that the Adaptive LASSO estimates satisfy the following asymptotic properties:

Definition 5.2 (Oracle Properties). Let λ(n)√
n
→ 0 and λ(n)n(γ−1)/2 →∞.

P.1 Consistent variable selection: limn→∞ P
(
S(n)
AL = S

)
= 1

P.2 Asymptotic normality:
√
n
(
β̂

(n)
AL, S − β∗S

)
d−→ N (0, σ2Σ−1

11 )

Here,
d−→ denotes the convergence in distribution (see Lehmann and Casella [51]

for further readings). Zou [86] also noted that adaptive LASSO estimates can follow

oracle properties under even weaker conditions on the convergence of λ.
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Consistency for APLR

For a sequence of n observations, where xi is the attribute vector for the i-th obser-

vation, we now denote:

xn := x = [x1, · · · , xn]T (5.20)

in order to make the dependence of this p× n matrix on n explicit.

Let S be the true subset as defined in Eq. (5.16) and let φ(x) := log(1 + exp(x)),

then for any observation xi ∈ Rp (1 ≤ i ≤ n), we define the Fisher information

matrix by:

I(β) := φ′′(xTi b)xix
T
i =

I11 I12

I21 I22

 (5.21)

where I11 is a p∗ × p∗ matrix.

Regularity Conditions: We define the following regularity conditions for asymp-

totic properties of APLR.

LC.1 Let λn(γ) be a sequence such that, for γ > 0

lim
n→∞

λn(γ)√
n

= 0 and lim
n→∞

λn(γ)n(γ−1)/2 =∞. (5.22)

For example, the above holds for λn(γ) = n1/2−γ/4.

LC.2 The Fisher information matrix is finite and positive definite.

LC.3 Let there exist an open set B ⊆ Rp, such that β∗ ∈ B. Then for every β ∈ B

and observation xi ∈ Rp (1 ≤ i ≤ n), there exists a function M so that

∣∣φ′′′(xTi β)
∣∣ ≤M(xi) <∞. (5.23)

Let S(n)
aplr := {j : β̂

(n)
aplr; j 6= 0}..

Theorem 5.3. Under LC.1-LC.3, APLR estimates satisfy the following properties:

LP.1 Consistency in variable selection, i.e.

lim
n→∞

P
(
S(n)
aplr = S

)
= 1 (5.24)
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LP.2 Asymptotic normality, i.e.

√
n
(
β̂aplr, S − β∗S

)
d→ N (0, I−1

11 ) (5.25)

Note, that here β̂aplr, S is dependent on both λn(γ) and γ but we omit these for

the sake of notation. The proof is already provided by Zou [86] and therefore we

omit.

5.3 Sensitivity Analysis of Adaptive LASSO

The framework of the adaptive LASSO allows us to investigate and understand

the sensitivity of the adaptive lasso estimates with respect to the weight parameter

γ. For this we apply a two-step approach. We use a root-n-consistent estimate

to initialise the adaptive LASSO and consider the weights as function of γ. This

allows us to obtain the adaptive lasso estimates as functions of γ and we use these

estimates to obtain novel error bounds for special type of problems. Let,

y = xβ∗ + ε (5.26)

be the model with true regression coefficients β∗, such that |β∗| � 1 and x has full

column rank, ie. xTx is invertible.

Let, k(γ) be defined by Eq. (5.4) and for the sake of notation, we write it as k.

Let β̂ be any root-n-consistent estimate such that

β̂ = (β̂1, · · · , β̂p). (5.27)

Theorem 5.4. Then, for large effects models (ie. |βj| � 1 and 0 < λ < min{kxTy},

we have, ∥∥∥β̂AL(λ, γ)− β∗
∥∥∥2

2
≤ σ2

n

∥∥Σ−1
n

∥∥+
λ2p

n2

∥∥Σ−1
n

∥∥2
min

1≤j≤p
|β̂j|−2γ, (5.28)

∥∥∥y − xβ̂AL(λ, γ)
∥∥∥2

2
≤ λ2p

n

∥∥Σ−1
n

∥∥ min
1≤j≤p

|β̂j|−2γ. (5.29)

This shows that we reduce the mean square error by increasing the value of γ.

It also indicates that for higher values of γ, λ does not control any shrinkage over

large effects and produce unbiased estimates. This happens as the |β̂j|γ becomes

close to zero for higher values of γ and therefore the effect of λ gets reduced.
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Proof. Let the adaptive LASSO model be defined by Eq. (5.1). We use Ridge

estimates as the weights of adaptive lasso. Then the weights are given by:

w(γ) =

(
1

|β̂1|γ
, · · · 1

|β̂p|γ

)
. (5.30)

Then, applying w(γ) as weights in adaptive LASSO estimates we get,

β̂AL(λ, γ) = arg min
β

(
1

2
‖y − xβ‖2

2 + λ

p∑
j=1

wj(γ)|βj|

)
. (5.31)

Now, applying Karush-Kahn-Tucker condition in Eq. (5.31), we have

0 ∈ −xT (y − xβ) + λk−1∂‖β‖1, (5.32)

with ∂‖β‖1 as defined in Eq. (4.14). Note that, for any fixed λ < min{kxTy},

βj 6= 0 for 1 ≤ j ≤ p. Then, from Eq. (4.14) we have:

sign(βj) :=

{−1} if βj < 0

{1} if βj > 0.

(5.33)

Therefore, we write Adaptive LASSO estimates as:

xT
(
y − xβ̂AL(λ, γ)

)
= λk−1s (5.34)

xT
(
xβ∗ + ε− xβ̂AL(λ, γ)

)
= λk−1s (5.35)

where s = (s1, s2, . . . , sp∗) are auxiliary variables subject to the constraint sj ∈

sign(βj).

Now, from Eq. (5.35), we get

1

n
xT
(
xβ∗ + ε− xβ̂AL(λ, γ)

)
=
λ

n
k−1s (5.36)

1

n
xTx

(
β∗ − β̂AL(λ, γ)

)
=
λ

n
k−1s− 1

n
xT ε (5.37)

Since, inverse of xTx exists. Then,(
β∗ − β̂AL(λ, γ)

)
= Σ−1

n

(
λ

n
k−1s− 1

n
xT ε

)
(5.38)
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taking norm in both sides,∥∥∥β̂AL(λ, γ)− β∗
∥∥∥2

2
=

∥∥∥∥Σ−1
n

(
1

n
xT ε− λ

n
k−1s

)∥∥∥∥2

2

(5.39)

≤
∥∥∥∥Σ−1

n

1

n
xT ε

∥∥∥∥2

2

+

∥∥∥∥λnΣ−1
n k−1s

∥∥∥∥2

2

(5.40)

≤ 1

n

∥∥Σ−1
n

∥∥2

∥∥∥∥ 1√
n
xT ε

∥∥∥∥2

2

+
λ2

n2

∥∥Σ−1
n k−1

∥∥2 ‖s‖2
2. (5.41)

Here, ‖.‖ is the induced matrix norm in Rp. Now, since, ‖s‖2
2 = p

≤ σ2

n

∥∥Σ−1
n

∥∥2 ‖Σn‖+
p · λ2

n2

∥∥Σ−1
n

∥∥2 ∥∥k−1
∥∥2

(5.42)

≤ σ2

n

∥∥Σ−1
n

∥∥+
λ2p

n2

∥∥Σ−1
n

∥∥2 ∥∥k−1
∥∥2

(5.43)

≤ σ2

n

∥∥Σ−1
n

∥∥+
λ2p

n2

∥∥Σ−1
n

∥∥2
min

1≤i≤p
|β̂i|−2γ. (5.44)

Similarly, from Eq. (5.34), we have,

(
xxT

)−1
xxT

(
y − xβ̂AL(λ, γ)

)
= λ

(
xxT

)−1
xk−1s (5.45)(

y − xβ̂AL(λ, γ)
)

= λ
(
xxT

)−1
xk−1s (5.46)

Taking norm on both sides of Eq. (5.46), we get∥∥∥y − xβ̂AL(λ, γ)
∥∥∥2

2
= λ2

∥∥∥(xxT )−1
xk−1s

∥∥∥2

2
(5.47)

applying the Cauchy-Schwartz inequality

≤ λ2

n

∥∥Σ−1
n

∥∥∥∥k−1
∥∥2 ‖s‖2

2. (5.48)

Therefore, we get the following:∥∥∥y − xβ̂AL(λ, γ)
∥∥∥2

2
≤ λ2p

n

∥∥Σ−1
n

∥∥ min
1≤i≤p

|β̂i|−2γ. (5.49)

5.3.1 Simulation Study

Example 5.5. We simulate the predictors from a standard normal distribution such

that, xi,j ∼ N (0, 1) for j = 1, · · · , 20 and i = 1, · · · , n. We assign the regression

coefficients so that βj ∼ Uniform(−15,−1) for 1 ≤ j ≤ 10 and βj ∼ Uniform(1, 15)
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for 11 ≤ j ≤ 20. This construction assures that the true regression coefficient values

are greater than 1. We consider standard normal noise to construct the response

vector yi =
∑20

j=1 xi,jβj + εi, where εi ∼ N (0, 0.01) for i = 1, · · · , n. We repeat this

experiment for n = 50, 100, 1000.

We analyse the sensitivity of the model for 0 ≤ γ ≤ 10 (γ = 0 allows us to

obtain regular LASSO estimates). On the right hand side in Fig. 5.2, we show the

total number of selected predictors in the model for three different choices of n. The

different lines corresponds to different values of λ. We see an interesting feature of

the model. The λ forcefully shrinks some true non-zero effects to zero for the smaller

values of γ. However, as γ increases, the effect of λ becomes less significant and the

predictors are included in the model.

To inspect the effect of γ in model fitting, we use mean squared error as a measure

of accuracy. We compute the mean squared error as:

MSE =
1

n
‖y − xβ̂‖2

2. (5.50)

In the left hand side of Fig. 5.2, we show these mean squared errors. We notice that

MSE becomes smaller as the γ increases. We can also see that as we increase the

amount observations, the MSE becomes smaller.

5.4 High-dimensional Credal Classification

In Section 5.1, we discussed how an adaptive version of the LASSO for penalised

logistic regression can be used for variable selection, which satisfies suitable asymp-

totic properties [34]. Several other works can be found in the field of penalised

logistic regression. However, there isn’t as much work on the cases where we deal

with limited information, which requires a robust classification regime. We there-

fore propose an imprecise probabilistic approach in the context of high-dimensional

logistic regression.

Several works related to classification can be found in the imprecise probability

literature. Zaffalon [82] introduced the idea of the naive credal classifier related

to the imprecise Dirichlet model [76]. Bickis [12] introduced an imprecise logit-

normal model for logistic regression. Corani and de Campos [20] proposed the tree
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Figure 5.2: Mean squared error (left) and number of active predictors (right) for

three different sample size n = 50 (top), n = 100 (middle) and n = 1000 (bottom).

augmented naive classifier based on the imprecise Dirichlet model. Paton et al. [61,

62] used a near vacuous set of priors for multinomial logistic regression. José del Coz
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et al. [49] and Corani and Antonucci [19] investigated rejection-based classifiers for

attribute selection. However, high-dimensional problems with automatic attribute

selection are yet to be tackled in the context of imprecise probability.

In this section, we introduce a novel imprecise likelihood-based approach for high-

dimensional logistic regression problems. We use a set of sparsity constraints through

weights in the penalty term. Working with a set of weights relaxes the assumption

of preassigned weights and also helps to identify the behaviour of the attributes,

whereas sparsity constraints help in variable selection, which is essential for working

with high-dimensional problems. We use cross-validation for model validation using

different performance measures as suggested by Corani and Zaffalon [21].

5.4.1 Imprecise Adaptive Penalised Logistic Regression

The use of data-driven weights in APLR makes APLR consistent in attribute se-

lection, where the parameter γ is pre-assigned (usually equal to 1) or is estimated

through cross-validation. However, high-dimensional problems are sparse in nature,

i.e. we have to deal with very limited information and the preliminary estimates

(ridge estimates) used for the weights in the adaptive LASSO can be sensitive and

unstable. Therefore a single may leads to misclassification, especially when the vari-

ability of the attributes is negligible with respect to each other or the observations

contain outliers. Sometimes, APLR may also perform poorly during model valida-

tion as, a single value of γ can provide two very different vectors of weights for two

different parts of a single dataset. For instance, fixing γ = 1, essentially gives us the

inverse of the absolute values of our estimates, which are generally sensitive to the

data in sparse regime. So, we propose a sensitivity analysis of APLR over an interval

of γ and obtain a non-determinate classifier. We call this method as imprecise adap-

tive penalised logistic regression or simply IAPLR. This allows the weights to vary

in the order of γ providing us a set of sparsity constraints of the form
∑p

j=1 |βj|/|β̂j|γ

(see Chapter 4 for constrained optimisation). This set of weight vectors allows the

model to be flexible but consistent as we only rely on the data-driven weights.

The sensitivity analysis gives us a set of APLR estimates as a function of γ. We

use this set of APLR estimates to obtain a set of estimated probabilities which are
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used for the decision making.

Decision rule

Consider the APLR estimates defined by Eq. (5.9) and Eq. (5.10). As we described

earlier, we perform a sensitivity analysis on the parameter γ. This gives us a set of

estimated probabilities dependent on γ, such that γ ∈ [γ, γ]. We use the notion of

credal dominance [82] for the decision criteria.

We can then for instance classify a new object with attributes x∗ ∈ Rp as {0}

if π̂(x∗, λ, γ) < 1/2 for all γ ∈ [γ, γ], as {1} if π̂(x∗, λ, γ) ≥ 1/2 for all γ ∈ [γ, γ],

and as {0, 1} (i.e. indeterminate) otherwise. Note that our classifier now returns

non-empty subsets of {0, 1} rather than elements of {0, 1}, to allow indeterminate

classifications to be expressed.

5.4.2 Prediction Consistency

We already discussed that IAPLR may give us non-deterministic class as output.

The non-deterministic output suggests that we need more samples to obtain a deter-

ministic output. However, for that, we want to be sure that a method is consistent in

prediction. That is, if we have infinite amount of data during the decision making

process, then we our estimated decision probabilities will be converge to the ac-

tual decision probabilities in distribution (see Lehmann and Casella [51] for further

discussion on asymptotic concepts).

We define the following:

x∗,S := [x∗,j]j∈S , (5.51)

i.e., x∗,S is a p∗-dimensional vector.

Theorem 5.6. Let x∗ ∈ Rp such that xT∗,Sx∗,S > 0. Then for γ > 0 and under LC.1

-LC.3, we have the following:

√
n (π̂(x∗, λn(γ), γ)− π(x∗))

d→ N
(
0, [π(x∗) (1− π(x∗))]

2 xT∗,SI
−1
11 x∗,S

)
(5.52)

where I11 is the leading block matrix of the Fisher information matrix defined in

Eq. (5.21).
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Proof. Let S(n)C

aplr be the set so that

S(n)C

aplr := {j : β̂
(n)
aplr; j = 0}. (5.53)

Then we have,

xT∗ β̂aplr = x∗,S(n)aplr
β̂

aplr, S(n)aplr
+ x

∗,S(n)
C

aplr

β̂
aplr, S(n)

C

aplr

(5.54)

= x∗,S(n)aplr
β̂

aplr, S(n)aplr
(5.55)

=
∑
j∈S(n)aplr

x∗β̂aplr, j. (5.56)

We know that, under LC.1-LC.3 APLR estimates satifies LP.1. Therefore, as n →

∞, ∑
j∈S(n)aplr

x∗β̂aplr, j
p→
∑
j∈S

x∗β̂aplr, j = xT∗,S β̂aplr, S (5.57)

where
p→ denotes convergence in probability. Since convergence in probability im-

plies convergence in distribution and h is continuous bounded mapping, we can write

the following:

π̂(x∗, λn(γ), γ)
d→ h

(
xT∗,S β̂aplr, S

)
. (5.58)

For a detailed discussion on the above convergence properties we refer to the book

authored by Lehmann and Casella [51].

Now, by LP.2, we know that β̂aplr, S is root-n-consistent. Therefore,(
β̂aplr, S − β∗S

)
= Op(n

−1/2). (5.59)

Here Op is used to denote that
√
n
(
β̂aplr, S − β∗S

)
is bounded in probability (adapted

from Theory of Point Estimation [51]). Now, following the approach of Agresti [1]

for logistic regression problems, we apply Taylor’s series expansion in Eq. (5.58)

with respect to the true parameter β∗S . Then we have,

π̂(x∗, λn(γ), γ)
d→ h

(
xT∗,Sβ

∗
S
)

+
(
β̂aplr, S − β∗S

)T ∂h (xT∗,Sβ∗S)
∂β∗S

+ op(n
−1/2) (5.60)

d→ π(x∗) +
(
β̂aplr, S − β∗S

)T ∂h (xT∗,Sβ∗S)
∂β∗S

+ op(n
−1/2). (5.61)
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Here, op(n
−1/2) is used to denote convergence in probability in the order of n−1/2.

We get this convergence from Eq. (5.59). Now, re-arranging the terms we get,

π̂(x∗, λn(γ), γ)− π(x∗)
d→
(
β̂aplr, S − β∗S

)T ∂h (xT∗,Sβ∗S)
∂β∗S

+ op(n
−1/2). (5.62)

Now, from LP.2 we have,

√
n
(
β̂aplr, S − β∗S

)
d→ N

(
0, I−1

11

)
. (5.63)

Then, applying Eq. (5.63) in Eq. (5.61), we get

√
n (π̂(x∗, λn(γ), γ)− π(x∗))

d→ N

0,

[
∂h
(
xT∗,Sβ

∗
S
)

∂β∗S

]T
I−1

11

∂h
(
xT∗,Sβ

∗
S
)

∂β∗S

 . (5.64)

Now,

∂h
(
xT∗,Sβ

∗
S
)

∂β∗S
=

[
exp

(
xT∗,Sβ

∗
S
) (

1 + exp
(
xT∗,Sβ

∗
S
))
− exp

(
xT∗,Sβ

∗
S
)2(

1 + exp
(
xT∗,Sβ

∗
S
))2

]
x∗,S (5.65)

=

[
exp

(
xT∗,Sβ

∗
S
)(

1 + exp
(
xT∗,Sβ

∗
S
))2

]
x∗,S (5.66)

= h
(
xT∗,Sβ

∗
S
) [

1−
exp

(
xT∗,Sβ

∗
S
)

1 + exp
(
xT∗,Sβ

∗
S
)]x∗,S (5.67)

= h
(
xT∗,Sβ

∗
S
) (

1− h
(
xT∗,Sβ

∗
S
))
x∗,S (5.68)

= h
(
xT∗ β

∗) (1− h (xT∗ β∗))x∗,S (5.69)

= π(x∗) (1− π(x∗))x∗,S . (5.70)

Therefore, using Eq. (5.70) in Eq. (5.64), we have

√
n (π̂(x∗, λn(γ), γ)− π(x∗))

d→ N
(
0, [π(x∗) (1− π(x∗))]

2 xT∗,SI
−1
11 x∗,S

)
(5.71)

5.4.3 Model Validation

In our method, we perform a sensitivity analysis over γ. This gives us a set of

estimated probabilities for each fixed value of λ. Depending on these values in this

set, the predicted class will be either unique or both ‘0’ and ‘1’. Therefore, the

classical measures of accuracy will not be applicable in this context. So we use the

following performance measures, proposed by Corani and Zaffalon [21] for Naive

Credal Classifier (NCC).
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Measures of Accuracy

We use cross-validation for model selection and validation where λ is used as a

tuning parameter. We consider the following performance measures [21, 62] for

credal classification.

Definition 5.7 (Determinacy). Determincay is the performance measure that counts

the percentage of classifications with unique output.

Definition 5.8 (Single accuracy). Single accuracy is accuracy of the classifications

when the output is determinate.

There are two other performance measures called indeterminate output size and

set accuracy. However, in the context of binary credal classification, indeterminate

output size is always equal to 2 and set accuracy is always equal to 1.

The above mentioned performance measures will be used for both model selec-

tion and model validation, we first need to choose an optimal λ, i.e. a value of λ

that maximises the performance of our model. For this purpose, we need to use a

trade-off between determinacy and single accuracy. We use u65 utility on the dis-

counted accuracy, as proposed by Zaffalon et al. [83]. Zaffalon et al. [83] suggest

several other discounted utility. However, we notice that u65 gives us a good balance

between single accuracy and determinacy unlike u80, which puts less weight on single

accuracy. Therefore u80 tends to give higher score to non-deterministic classifiers

and comparison with classical methods can be misinterpreted. To avoid these issues,

we use u65, which we show in Table 5.1, where each row stands for predicted class

and each column stands for the actual class.

{0} {1}

{0} 1 0

{1} 0 1

{0, 1} 0.65 0.65

Table 5.1: Discounted utility (u65) table for binary credal classification

Note that, for binary credal classification, we can formulate this unified u65
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accuracy measure in the following way:

Accuracy = Determinacy× Single accuracy + 0.65× (1−Determinacy) (5.72)

Model Selection and validation

We use nested loop cross-validation for model selection and validation. We first

split the dataset D in 2 equal parts D1 and D2. We take D1 and split it in 5

equal parts. We use 4 of them to train our IAPLR model and use the remaining

part for the selection of λ. We do this for each of the 5 parts to get an optimal λ

based on the averaged performance measure. After obtaining the optimal λ though

cross-validation, we validate our model with D2.

We repeat the same for D2, we use D2 to obtain an optimal λ for model selection

and then validate it using D1. This way, we use each observation exactly twice for

testing. This also gives a comparison between these two models obtained from D1

and D2 and gives us an idea of variability of the attributes.

5.4.4 Illustration

We use two different datasets for illustration, the Sonar dataset [42] and the LSVT

dataset [71]. In both cases, we normalise the attributes to avoid scaling issues and

split the datasets in two equal parts DS,1 DS,2 (Sonar) and DL,1, DL,2 (LSVT). We

first select our model using DS,1 (DL,1). We vary our set of weights through 20

different γ’s ranging from 0.01 to 1. We take a grid of 50 λ values where the bounds

are taken following the suggestion by Friedman et al. [35]. We find optimal λ by

5-fold cross validation. We use this optimal λ for model selection.

We compare our results with the naive credal classifier (NCC) [82]. For this,

we first categorise the attributes in 5 factors. We train our model in a grid of the

concentration parameter s with 50 entries ranging from 0.04 to 2. We run a 5-fold

cross-validation for the choice of optimal s and use this value of s for model selection.

We also compare our result with the naive Bayes classifier (NBC) [55] and APLR

[86, 2]. For APLR select the value of optimal λ through a 5-fold cross-validation.

We use glmnet [36] for training APLR and IAPLR model. We validate our model



5.4. High-dimensional Credal Classification 58

using DS,2 (DL,2). We then select our model using DS,2 (DL,2) and validate using

DS,1 (DL,1) to capture interaction between the observations.

We show a summary of our results in Table 5.2. The left-most column denotes

the training set. We show determinacy in the second column. In third and fourth

column, we display the single accuracy and utility based (u65) accuracy, respectively

and in the right-most column we display the range of active attributes.

Sonar Dataset

We use the Sonar dataset1 for the illustration of our method. The dataset consists of

208 observations on 60 attributes in the range of 0 to 1. Sonar signals are reflected

by either a metallic cylinder (M) or a roughly cylindrical rock (R), and the attributes

represent the energy of the reflected signal within a particular frequency band inte-

grated over time. We use these attributes to classify the types of the reflectors. Q-Q

plot suggests that these attributes can be treated as Gaussian. Therefore, we can

easily apply IAPLR for variable selection. To do so, we first scale the data so that

mean of each attribute is equal to zero and standard deviation of each attribute is

equal to 1. For NBC and NCC, we simply cut these attributes in five different levels

to treat these as categorical variables. We perform a weighted random sampling to

split the dataset in two equal parts. This ensures that ratios of M and R remain

close in both parts.

In the top row of Fig. 5.3, we provide the cross validation plots with respect

to λ. The shaded grey area denotes the one standard deviation from the averaged

accuracy. The vertical dotted line in each plot denotes the optimal λ. For DS,1, the

optimal λ is found to be 0.039 and for DS,2 the value is equal to 0.087. We also show

the number of active attributes in Fig. 5.4 for these fixed optimal values of λ. We

observe that for both partitions the method tends to select more attributes as the

value of γ increases.

We show the summary of our illustration in Table 5.2. The left-most column

denote the method followed by training dataset, determinacy, single accuracy, u65

1This dataset is publicly available for use and can be found in UCI machine learning repository

[27].



5.4. High-dimensional Credal Classification 59

utility measure and range of active attributes. For Sonar dataset, IAPLR outper-

forms the rests in terms of determinacy and the u65 utility measure. It also has

a good agreement in model validation with respect to the datasets unlike NCC or

NBC, which are sensitive with respect to the training dataset. It performs an auto-

matic variable selection like APLR. For IAPLR, we have a range of active attributes

unlike APLR, which is computed using γ = 1. We observe that for DS,1, the sparsity

of the model is more sensitive than the sparsity of the model trained by DS,2.

LSVT Dataset

We use the LSVT (Lee Silverman Voice Treatment) dataset2 for the illustration with

high-dimensional data. The dataset consists of 126 observations on 310 attributes.

The attributes are 310 different biomedical signal processing measures which are

obtained through 126 voice recording signals of 14 different persons diagnosed with

Parkinson’s disease. The responses denote acceptable (1) vs unacceptable (2) phona-

tion during LSVT rehabilitation. We follow a similar data preparation method as

of Sonar dataset. We perform a weighted random sampling and split the dataset in

two equal halves. We also factorise the data in 5 levels for using NBC and NCC.

We show the cross validation plots in the bottom row of Fig. 5.3. For DL,1, the

optimal λ is found to be 0.018 and for DL,2 the value is equal to 0.014. We show the

number of active attributes in the bottom row of Fig. 5.4. We observe that for both

partitions the method tends to select fewer attributes as the value of γ increases

unlike our experiment with Sonar dataset.

We provide the summary of our analyses in Table 5.2 We observe that IAPLR

performs much better than the other methods for LSVT dataset. It also has a

good agreement in model validation with respect to the datasets unlike NCC, NBC

and APLR. However, we notice that the sparsity levels are significantly different for

different partitions of the dataset unlike APLR, which selects only 11 attributes for

both the partitions.

2The dataset is openly available in the UCI machine learning repository [72].
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Figure 5.3: Cross-validation curve with respect to the tuning parameter λ. The top

row represents the results obtained for DS,1 (left), DS,2 (right) and the bottom row

represents that of DL,1 (left), DL,2 (right).
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Figure 5.4: Sensitivity of sparsity with respect to γ. The top row represents the

results obtained for DS,1 (left), DS,2 (right) and the bottom row represents that of

DL,1 (left), DL,2 (right).
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Method Training Deter.(%) Single Acc.(%) u65(%) Active

Sonar dataset; 60 active predictors

IAPLR (λ = 0.039) DS,1 87 73 72 28–43

IAPLR (λ = 0.087) DS,2 87 77 75 17–25

NCC (s = 0.02) DS,1 77 68 67 –

NCC (s = 0.56) DS,2 49 78 72 –

NBC DS,1 – – 59 –

NBC DS,2 – – 74 –

APLR (λ = 0.104) DS,1 – – 71 12

APLR (λ = 0.189) DS,2 – – 72 9

LSVT dataset; 310 active predictors

IAPLR (λ = 0.018) DL,1 98 82 82 17–24

IAPLR (λ = 0.014) DL,2 83 85 81 40–51

NCC (s = 0.08) DL,1 14 78 67 –

NCC (s = 0.04) DL,2 25 88 71 –

NBC DL,1 – – 51 –

NBC DL,2 – – 40 –

APLR (λ = 0.052) DL,1 – – 81 11

APLR (λ = 0.285) DL,2 – – 76 11

Table 5.2: Summary of model selection and validation



Chapter 6

Bayesian Inference

In Chapter 3, we learnt how likelihood-based approaches can be used in the inference

for high dimensional statistical modelling. In likelihood based approaches, we rely on

the data and underlying distributional assumptions to perform statistical analysis.

However, in high dimensional modelling, the problems are inherently sparse and

come with limited information. Therefore, we need to be cautious while performing

inference and should consider prior information. The Bayesian paradigm allows us

to incorporate this prior belief in the model by exploiting Bayes’s rule.

In this chapter, we discuss this Bayesian approach in the regressional setting.

We introduce the basic notions of Bayesian inference in Section 6.1. In Section 6.2,

we discuss basic Bayesian regression models using different choices of priors. After

that, we investigate Bayesian variable selection in Section 6.3, where we discuss the

method proposed by George and McCulloch [41]. In Section 6.4, we discuss the

Bayesian alternative of LASSO as proposed by Park and Casella [60] and finally in

Section 6.5 we explore different Spike and Slab priors for variable selection.

6.1 Foundation

Here, in this section, we provide the fundamental concepts of Bayesian inference.

We briefly discuss different notions of Bayesian inference. Further discussion on

Bayesian inference can be found in the books authored by Berger [9], Gelman et al.

[39], Casella and Berger [15] etc. As we discussed earlier in Section 2.2, the Bayesian

63
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approach is based on Bayes’s rule [7] given by

P (β | y) ∝ P (y | β)P (β) (6.1)

where P (β | y) is our posterior or the probability density of the unknown parameter

β conditional on the observed data y. This is directly proportional (up to a constant

that may depend on y but does not depend on β) to the product of our prior belief

P (β) on β and our likelihood function P (y | β).

6.1.1 Prior

In Bayesian statistics, the choice of prior plays an important role in inference. A

prior can be considered as the statistician’s belief or knowledge on the modelling

parameter. Therefore, the choice of prior can often be subjective and we can not find

a best choice. However, we would like to consider a prior which agrees well with the

parameter support as well as helps us to incorporate our prior information about the

problem. In general, we may categorise these priors in two major ways: subjective

priors and objective priors. However, the classification of priors is controversial and

many researchers prefer different ways of categorising them.

Subjective Priors

Subjective priors are usually used to incorporate one’s subjective belief about the

modelling parameter. Subjective priors are often elicitation-based and allow us to

gather information from previous analysis. There are several ways of choosing a

subjective prior. Garthwaite et al. [37] provided a detailed discussion on elicitation-

based approach for choosing a prior. Berger [9] suggested that use of histogram based

approaches or empirical cumulative distribution function to construct a subjective

prior for a continuous random variable. We can also use point estimates to construct

a subjective prior from a conjugate class of priors.
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Prior Predictive

Before the data y is observed, we can look into the distribution of this unknown but

observable data y, which is given by:

P (y) :=

∫
β

P (y | β)P (β)dβ (6.2)

where P (y | β) refers to our sampling distribution of some observable quantity y

and P (β) refers to our prior on the parameter β. We call this distribution P (y) the

prior predictive distribution. This is useful to understand, if our choice of prior is

consistent to the observable data.

Objective Priors

Objective prior is an alternative method for describing a prior where we usually use

objective source of information about the modelling parameter such as parameter

support or sign of the modelling parameter. We often consider these priors as non-

informative priors as they do not posses any other descriptive information. However,

we may argue that our knowledge of parameter support is also relevant information

and therefore some researchers coin these type of priors as weakly-informative priors.

We usually consider flat priors for this kind of analysis. One of such priors is the

uniform distribution on the parameter support which assigns equal density to each

point within the parameter support.

Improper Priors

Improper priors can also be classified as objective priors. However, improper priors

may not integrate to 1. To give some intuition, we can consider an unbounded

parameter, then a uniform distribution will result to an improper prior. In general,

improper priors are chosen so that the posterior density function remains proper.

However, improper priors are particularly useful for conditional analysis, which we

will show while discussing Bayesian regression.
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Conjugate Priors

In Bayesian inference, if the posterior and prior belong to the same family of prob-

ability distributions then the prior and posterior are called conjugate distributions

with respect to the likelihood and the prior belongs to a class of conjugate priors.

For regression analysis we usually work with Gaussian assumption on the noise and

so for the likelihood. Therefore, we consider exponential family distributions for

choice of priors.

Definition 6.1 (Exponential Family). Let β := (β1, · · · , βr) be a vector of parame-

ters. Then the exponential family of distributions is defined by:

f(y | β) = h(y) exp

(
r∑
i=1

ai(β)Ti(y)− b(β)

)
(6.3)

where h, a, T and b are fixed functions for each probability distribution.

For instance, in case of a normal distribution, the probability density function is

given by:

f(y | µ, σ2) =
1√
2πσ

exp

(
−(y − µ)2

2σ2

)
(6.4)

=
1√
2π

exp

(
−y

2 − 2yµ+ µ2

2σ2
− lnσ

)
(6.5)

=
1√
2π

exp

((
− 1

2σ2
,
µ

σ2

)
· (y2, y)T − µ2

2σ2
− lnσ

)
. (6.6)

Therefore for normal distribution, h(y) := 1√
2π

, a(µ, σ2) :=
(
− 1

2σ2 ,
µ
σ2

)
, T (y) :=

(y2, y) and b(µ, σ2) := ( µ2

2σ2 + lnσ).

6.1.2 Estimation

In the Bayesian paradigm, we rely on the posterior distribution for the parameter

estimation. From the posterior distribution, we can learn about the parameter in

three different ways. The most common and convenient way to learn from the

posterior distribution is to check the posterior mean given by:

E(β | y) =

∫
βP (β | y)dβ. (6.7)
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However, this only works when there exist a finite mean. Besides posterior mean, we

sometimes look for the maximum a posteriori (MAP) estimates. That is we look for

the value that achieves greatest posterior density. We look for MAP in the following

way:

βMAP := arg max
β

P (β | y). (6.8)

In some cases, we also check for the posterior median as a robust estimate especially

if we suspect that the data contain some outliers.

Posterior Predictive

The posterior predictive is the distribution of a future data point, conditional on

the data already observed. That is, let y∗ be new observed variables then we can

define posterior predictive in the following way:

P (y∗ | y) :=

∫
β

P (y∗ | β)P (β | y)dβ. (6.9)

6.2 Bayesian Regression

As we discussed earlier, the choice of prior plays an important role in Bayesian

inference. This is applicable for Bayesian regression as well. We usually perform

Bayesian regression in two different ways, based on the choice of priors.

6.2.1 Notation of the Model

We construct the likelihood from the normality assumption of the noise. We write

this likelihood in the following way:

y | µ, β, σ2,x ∼ N (µ+ xβ, σ2In). (6.10)

Here µ denotes the intercept term of the regression model and x denotes the matrix

of predictors. We assume µ to be known, and scale the data set accordingly, so

without loss of generality, µ can be assumed zero. We also consider x to be non-

random and therefore we can drop the conditional on x. That is, we can simply

write this as

y | β, σ2 ∼ N (xβ, σ2In). (6.11)
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6.2.2 Improper Prior

For the priors on the β and σ2, we can consider non-informative priors. Gelman

et al. [39] discussed the use of improper priors to specify model parameters. They

use a uniform prior on the joint density of (β, log σ), which gives us the following

improper prior:

P (β, σ2) ∝ 1

σ2
. (6.12)

This setting allows us to learn completely from the data points with the joint pos-

terior given by:

P (β, σ2 | y) ∝ P (y | β, σ2)P (β, σ2) (6.13)

∝ 1

σn+2
exp

(
− 1

2σ2
‖y − xβ‖2

2

)
. (6.14)

We can exploit the conjugacy property of this prior to get the following posterior

distribution of β conditional σ2 (see Gelman et al. [39])

β | σ2, y ∼ N
(
β̂OLS, (x

Tx)−1σ2
)

(6.15)

where β̂OLS := (xTx)−1xTy are the ordinary least squares estimates. Therefore the

posterior expectations of the regression coefficients are equal to the ordinary least

squares estimates.

Now, for ordinary least squares, we know that,

‖y − xβ‖2
2 = (y − xβ)T (y − xβ) = ‖y − xβ̂OLS‖2

2 + ‖xβ̂OLS − xβ‖2
2. (6.16)

Then, from Eq. (6.14), then we can write following:

P (β, σ2 | y) ∝ 1

σn−p+2
· 1

σp
exp

(
−‖y − xβ̂OLS‖2

2

2σ2

)
exp

(
−‖xβ̂OLS − xβ‖2

2

2σ2

)
(6.17)

Now, for some suitable integration constant K, we get the posterior probability of

σ2 such that,

P (σ2 | y) = K · 1

σn−p+2
exp

(
−‖y − xβ̂OLS‖2

2

2σ2

)
(6.18)
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Therefore, σ2 follows an inverse gamma distribution such that,

σ2 | y ∼ InvGamma

(
n− p

2
,
‖y − xβ̂OLS‖2

2

2

)
. (6.19)

Then, the posterior expectation of σ2 is given by:

E(σ2 | y) =
‖y − xβ̂OLS‖2

2

n− p− 2
. (6.20)

6.2.3 Informative Priors

Another possible approach for Bayesian linear regression is to use a normal prior to

specify β and inverse gamma prior for σ2. We can therefore, use a normal distribu-

tion with large variance to specify β such that,

P (β | σ2
β) ∼ N (µβ, σ

2
βIp). (6.21)

We usually choose a large value for σ2
β, which acts as a regularisation weight on the

regression coefficients. However, we are certain about our prior information then we

may consider smaller values. We can also use the same variance parameter σ2 as of

Eq. (6.11) for easier interpretation. Therefore another way to define priors for both

β and σ2 is given by:

P (β | σ2) ∼ N (µβ, σ
2Ip) (6.22)

P (σ2) ∼ InvGamma(a, b) (6.23)

where a, b > 0 are fixed constants. Therefore, the joint posterior of β and σ2 is given

by:

P (β, σ2 | y)

∝ P (y | β, σ2)P (β | σ2)P (σ2) (6.24)

∝ 1

σn
exp

(
− 1

2σ2
‖y − xβ‖2

2

)
1

σp
exp

(
−‖µβ − β‖

2
2

2σ2

)
1

σ2(a+1)
exp

(
− b

σ2

)
. (6.25)

Now, when xTx is invertible, we can apply the identity from Eq. (6.16) and write

the joint posterior of β conditional on σ2 as

P (β | σ2, y)
β∝ exp

(
−(β̂OLS − β)T (xTx)(β̂OLS − β)

2σ2

)
exp

(
−‖µβ − β‖

2
2

2σ2

)
(6.26)



6.2. Bayesian Regression 70

Now,

(β̂OLS − β)T (xTx)(β̂OLS − β)

2σ2
+
‖µβ − β‖2

2

2σ2

=
βTxTxβ − 2βTxTxβ̂OLS − 2βTµβ + βTβ +R1

2σ2
(6.27)

where R1 denote additional terms that are independent of β. Then,

=
βT (xTx + Ip)β − 2βT (xTxβ̂OLS + µβ) +R1

2σ2
(6.28)

=
βT (xTx + Ip)β − 2βT (xTx + Ip)(x

Tx)(xTx + Ip)
−1
(
β̂OLS + (xTx)−1µβ

)
+R1

2σ2
.

(6.29)

Now, it can be shown that,

xTx(xTx + Ip)
−1 =

(
Ip + (xTx)−1

)
(6.30)

Then from Eq. (6.29) we have

(β̂OLS − β)T (xTx)(β̂OLS − β)

2σ2
+
‖µβ − β‖2

2

2σ2

=
βT (xTx + Ip)β − 2βT (xTx + Ip)

(
Ip + (xTx)−1

) (
β̂OLS + (xTx)−1µβ

)
+R1

2σ2

(6.31)

=
(β − β′)T (xTx + Ip) (β − β′) +R2

2σ2
(6.32)

where β′ :=
(
Ip + (xTx)−1

) (
β̂OLS + (xTx)−1µβ

)
and R2 denote additional terms

independent of β. Therefore, from Eq. (6.26) and Eq. (6.32), we get the following

posterior of β conditional on σ2:

β | σ2, y ∼ N
((

Ip + (xTx)−1
)−1

(β̂OLS + (xTx)−1µβ), σ2
(
Ip + xTx

)−1
)
. (6.33)

Then the posterior expectation of β conditional on σ2 is given by:

E(β | σ2, y) =
(
Ip + (xTx)−1

)−1
(β̂OLS + (xTx)−1µβ). (6.34)

Now, if we set our prior information on β around zero then we can write Eq. (6.34)

as

E(β | σ2, y) =
(
Ip + (xTx)−1

)−1
β̂OLS (6.35)

=
(
Ip + (xTx)−1

)−1
(xTx)−1xTy (6.36)

=
(
xTx + Ip

)−1
xTy. (6.37)
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Eq. (6.37) corresponds to the ridge estimates in Eq. (3.15) for fixed λ = 1. Alterna-

tively, we can say that using a normal prior on β gives us Bayesian alternative for

ridge regression.

6.3 Bayesian Variable Selection

One of the major issues in high dimensional statistical modelling is to achieve vari-

able selection in a model. This led to several likelihood-based approaches, which

we discussed in Chapter 3. In this section, we discuss the Bayesian alternatives for

variable selection. One of the earlier methods for Bayesian variable selection was

proposed by Mitchell and Beauchamp [56]. They proposed a hierarchical model for

Bayesian variable selection. Later, George and McCulloch [41] proposed the use of

latent variables to attain sparsity. They suggested the use of the Gibbs sampling

algorithm [16, 38] to obtain the posterior.

6.3.1 Gibbs Sampling Algorithm

Gibbs sampling is an iterative Markov Chain Monte Carlo (MCMC) algorithm for

sampling from the posterior. Initially, the algorithm was proposed by Geman and

Geman [40] as a special case of the Metropolis-Hastings algorithm [47]. Later

Gelfand and Smith [38] proposed a generalised framework to sample from multi-

variate probability distributions.

Let θ := (θ1, θ2, · · · , θr) be r modelling parameters. Then the Gibbs sampling

algorithm can be performed using the following algorithm:

Algorithm

• Initial guess: θ(0)
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• Updating:

draw θ
(k+1)
1 from p(θ1 | θ(k)

2 , θ
(k)
3 , · · · , θ(k)

r )

draw θ
(k+1)
2 from p(θ2 | θ(k+1)

1 , θ
(k)
3 , · · · , θ(k)

r )

...

draw θ(k+1)
r from p(θr | θ(k+1)

1 , θ
(k+1)
2 , · · · , θ(k+1)

r−1 )

where p(θi | θ1, · · · , θi−1, θi+1, · · · , θr) denotes the known conditional distribution of

θi. The simple framework also allows us to perform block Gibbs sampling, where

we can sample from a multivariate conditional distribution by exploiting conditional

independence.

6.3.2 Variable Selection Via Gibbs Sampling

Variable selection via Gibbs sampling was first suggested by George and McCul-

loch [41]. They suggested the use of latent variables to specify active and inactive

co-variates. The Gibbs sampling framework avoids the computationally expensive

search of the whole model space of dimension 2p. Their suggested hierarchical model

is given by:

y | x, β, σ2 ∼ N
(
xβ, σ2In

)
(6.38)

βj | zj = 0, σ2
βj
∼ N (0, σ2

βj
) (6.39)

βj | zj = 1, σ2
βj
∼ N (0, c2

jσ
2
βj

) (6.40)

zj ∼ Ber(qj) (6.41)

σ2 ∼ InvGamma(a, b). (6.42)

George and McCulloch [41] suggested sufficiently small values for σ2
βj

’s such that βj

can be safely replaced with zero and choice of cj > 1 should be sufficiently large

so that a true active co-variate is included in the model. They also discussed the

possibility of choosing the value of cj based on the intersection points of the densities

N (0, cjσ
2
βj

) and N (0, σ2
βj

). This allows us to interpret cj’s as prior odds.

The choice of qj is based on expert opinion. A special case is qj = 1/2, this

corresponds to the indifference prior or uniform prior on the selection probability.
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The model selection is performed by inspecting the posterior of z. The authors

suggested that inspection of individual sub model can be considered to perform

variable selection, that is if P (zj | y) > 0.5 then we can conclude that xj is included

in the model.

6.4 Bayesian LASSO

The Bayesian LASSO provides a natural way to quantify the model uncertainty in

a LASSO-fitted model. To motivate this approach, recall firstly that, under the

assumption ε ∼ N (0, σ2In), we can write the likelihood of a linear model y = xβ+ ε

in the following way,

p(y | x, β) ∝ e−
1

2σ2

∑n
i=1 ε

2
i

∝ e−
1

2σ2
‖y−xβ‖22 .

(6.43)

Tibshirani [69] suggested the use of a Laplace prior

p(β) ∝ e−λ‖β‖1 (6.44)

for the model parameters, yielding the following posterior,

p(β | x, y) ∝ p(y | X, β)p(β)

∝ e−( 1
2σ2
‖y−xβ‖22+λ‖β‖1)

(6.45)

It is a well-established result that the mode of Eq. (6.45), that is the posterior

mode of β under Laplace priors, corresponds just to the frequentist LASSO estimate

[54, 60, 69]. Draws from this posterior are not necessarily sparse, but still can be used

to assess uncertainty of model parameters through checking the sample variances of

the modelling parameters[44].

The Bayesian LASSO has been implemented in several different ways, which

differ essentially in how sparsity is induced, and how the regularisation parameter

is handled.

Let, τ = (τ1, · · · , τp). Then for j = 1, · · · , p, Park and Casella [60] proposed the
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following hierarchical mixture model for parameter estimation:

y | µ, β, σ2 ∼ N (µ+ xβ, σ2In), (6.46)

β | σ2, τ ∼ N (0p, σ
2Dτ ) (6.47)

τ 2
j ∼

λ2

2
e−λ

2τ2j /2 (6.48)

σ2 ∼ πσ2(σ2). (6.49)

where Dτ = diag
(
τ 2

1 , · · · , τ 2
p

)
and πσ2(σ2) denotes the improper prior. In this

formulation τ 2
j acts as a scale for the regression coefficients and after marginalising

these regression coefficients over all τ 2
j we get the conditional prior on β of the

following form

π(β | σ2) =

p∏
j=1

λ

2σ
e−λ|βj |σ. (6.50)

Choice of λ

Unlike the variable selection via Gibbs sampling, we don’t have any natural way of

co-variate selection fo Bayesian LASSO. Therefore choice of λ plays an important

role in this context as λ forces β to give sparse posterior medians. For this, Park

and Casella suggested two different techniques.

Firstly, they suggested the possibility of using marginal maximum likelihood

estimates for the choice of λ. They considered a Monte Carlo EM algorithm [52],

which in iteration k, updates the parameter λ using the iterative scheme

λk =

√
2p∑p

j=1 Eλk−1
[τ 2
j |y]

, (6.51)

where y is assumed to be centred, and the conditional expectation is estimated via

averages of Gibbs samples. For p < n, the initial value λ0 was suggested to be

λ0 =
p
√
σ̂2

OLS∑p
j=1 |β̂OLSj |

, (6.52)

where σ̂2
OLS and β̂OLS are ordinary least squares estimates.

In another approach, they discussed the possibility of using gamma priors on λ2:

π(λ2) =
δr

z(r)
(λ2)r−1e−δλ

2

; λ2 > 0 (r > 0, δ > 0), (6.53)
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where r is the shape parameter and δ the rate parameter. Lykou and Ntzoufras [54]

used gamma priors for λ, and developed a concept for specification of the hyperpa-

rameters based on Bayes factors, which evaluate the evidence for inclusion of the

respective predictor variables.

6.5 Spike and Slab Priors

Spike and slab priors belong to a family of distributions which are widely used

in Bayesian variable selection methods. As the name suggests, these types of prior

consists of a spike component and a slab component. Ishwaran and Rao [48] proposed

the following compact form to describe spike and slab models.

y | β, σ2 ∼ N (xβ, σ2In), (6.54)

β | σ2, τ ∼ N (0p,Dτ ) (6.55)

σ2 ∼ πσ2(σ2) (6.56)

τ 2
j ∼ πτ2j (τ 2

j ). (6.57)

where Dτ = diag
(
τ 2

1 , · · · , τ 2
p

)
works as a scale for the regression coefficients similar

to what we see for the Bayesian LASSO in Section 6.4. Both πσ2 and πτ2j are chosen

to ensure that these excludes values of zero with probability 1. Ishwaran and Rao

[48] classified these types of priors in two broad categories, one with two component

indifference priors and the other with continuous bimodal priors.

Two component Indifference priors

A popular example of two component indifference prior is the hierarchical model

proposed by George and McCulloch [41], which we discuss in Section 6.3. The prior

specification using the 0, 1 latent variables can be easily translated into formal spike

and slab specification so that,

τ 2
j | cj, σ2

βj
, zj ∼ (1− zj)δσ2

βj
(·) + zjδcjσ2

βj
(·) (6.58)

zj | qj ∼ (1− qj)δ0(·) + qjδ1(·). (6.59)

Here, δη(·) denotes the discrete mass concentrated at η. Usually, we set the value of

qj = 1/2 which is referred as indifference towards the selection of a co-variate.
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Continuous bimodal priors

The choice of cj, σ
2
βj

and qj can be difficult and therefore improperly chosen values

may perform poorly in variable selection. To overcome this issue, Ishwaran and

Rao [48] proposed a continuous model based on their previous unpublished work on

variable selection. They suggested the following hierarchical model:

βj | zj, σ2
βj
∼ N (0, zjσ

2
βj

) (6.60)

zj | q, η0 ∼ (1− q)δη0(·) + qδ1(·) (6.61)

σ−2
βj
| aβj , bβj ∼ Gamma(aβj , bβj) (6.62)

q ∼ Uniform[0, 1]. (6.63)

Alternatively we can write τ 2
j = zjσ

2
βj

and therefore, integrating over q gives us

the regular spike and slab model specification. The uniform prior on q ensures the

continuity of the model and specifies how likely a co-variate β to be selected.

Spike and Slab LASSO

Several other hierarchical models have been proposed based on the spike and slab

specification. Roc̆ková and George [64] suggested the use of Laplace priors on the

regression coefficients β and coined the term spike and slab LASSO as the log poste-

rior resembles weighted LASSO. They suggested the following specification for the

prior on β

P (βj | zj) = zjψ1(βj) + (1− zj)ψ0(βj), (6.64)

where ψ1(βj) = λ1
2
e−λ1|β| with small λ1 to express the slab component and ψ0(βj) =

λ0
2
e−λ0|β| with large λ0 to specify the spike component.



Chapter 7

Robust Bayesian Analysis

In the previous chapters, we saw how likelihood based approaches can be used for

regularisation in high dimensional problems. We investigated the use of sensitivity

analysis to understand the variability of the LASSO estimates. However, these

likelihood based approaches do not allow us to incorporate our prior belief in the

model for which we need to do a Bayesian analysis. In Chapter 6, we discussed

Bayesian analysis from a regressional point of view and showed how the choice of

priors can play an important role in the analysis. In this chapter we explore a robust

Bayesian framework to perform Bayesian analysis to obtain an efficient model under

limited information.

Section 7.1 is focused on why a robust Bayesian analysis is important and how

this is efficient in processing prior information. In Section 7.2 we discuss the Im-

precise Beta Model (or IBM) and its usage in robust Bayesian analysis. We use

the framework of IBM to specify Bernoulli distributed random variables. In Sec-

tion 7.3, we investigate different sources of uncertainty in high dimensional models

and how these uncertainties can be treated using robust Bayesian analysis and pro-

pose a stepping stone for our novel hierarchical model for robust Bayesian variable

selection.

77
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7.1 Motivation for Robust Bayesian Analysis

In high dimensional models, we require an efficient parameter estimation routine to

determine the regression coefficients as well as select co-variates to attain sparsity.

LASSO or other likelihood based approaches rely on the optimisation methods to

achieve sparsity and we do not have any straightforward expression to explain the

level of sparsity. This motivates us to perform a Bayesian analysis based on spike

and slab prior specification to understand our modelling parameters β as well as the

level of sparsity in the model. However, choosing a suitable prior for β is particularly

difficult for high dimensional models for variety of reasons. Firstly, high dimensional

models come with very limited information as the number of predictors are much

more than the observation. Therefore, it is hard to extract information to specify

our priors for the modelling parameters and usually dealt with the assumption that

number of true active covariates are less than the total number of observations.

Another issue, that occurs in high dimensional problems, is choosing a prior

to specify the selection of a predictor. The choice of selection indicator plays an

important role in understanding the level of sparsity in the model. However, the

prior specification of the selection indicators has not been explored much in the

literature, the previous works on the spike and slab priors mostly relied on the use

of a uniform prior to specify the selection probability. This can be problematic as the

model allows to learn from the data only and doesn’t incorporate any expert opinion

on the inclusion of the predictors. Another conventional approach for specifying this

prior probability is to fix a beta distribution with prior expectation 1/2. This is

also considered as an indifference prior among the researchers. It has been argued

that setting prior with prior expectation 1/2 is useful to show our lack of evidence.

However, this can increase the chance of selecting a non-important predictor.

Moreover, one common issue in statistical modelling is to incorporate expert

opinions. The Bayesian paradigm allows us to incorporate expert opinion through

suitable prior specification and we would like to exploit this in all possible ways.

However, as we discussed earlier, extracting information for these kind of problems

is very hard and therefore expert opinions may vary based on their analyses. This

motivates us to perform a robust Bayesian analysis for high dimensional models. In



7.2. Imprecise Beta Model 79

robust Bayesian analysis, we specify a set of priors instead of a single prior. This

modification allows us to incorporate all these expert opinions in a more convenient

manner. In this case, we get a set of posteriors instead of a single posterior.

7.2 Imprecise Beta Model

The imprecise beta model is a robust Bayesian approach to analyse binomial data.

This is a special case of Imprecise Dirichlet model for multinomial data [77]. We

formulate the imprecise beta model using an alternative parametrisation using mean

(α) and concentration (s). Let q be the probability of a binomial distribution then

we define the imprecise beta distribution in the following way:

f(q;α, s) =
1

B(sα, s− sα)
qsα−1(1− q)s(1−α)−1 (7.1)

where α ∈ [α, α] and s > 0 is fixed constant. The choice of s can also be imprecise

and we may use an interval instead. For a fixed value of the concentration parameter

s, we can compute the prior lower and upper expectation in the following way:

E(q | α, s) := inf
α∈[α,α]

α = α (7.2)

E(q | α, s) := sup
α∈[α,α]

α = α. (7.3)

Similarly, we can get a set of variances such that

Var(q | α, s) :=

{
α(1− α)

s+ 1
: α ∈ [α, α]

}
. (7.4)

Therefore, if [α, α] contains 1/2 then we have the maximum variance given by:

Var(q | α, s) =
1

4(s+ 1)
(7.5)

and minimum variance occurs in one of the bounds of α. Larger values of s lead to

smaller variances and vice-versa.

This particular property of imprecise beta distribution allows us to represent the

imprecision in terms of variance as well. Based on the range of the variance, we

can specify a set for the concentration parameter s. A further discussion on the

properties of imprecise beta model can be found in [78].
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Now, since the Bernoulli distribution can be interpreted as binomial distribution,

therefore, we can apply this imprecise beta distribution to specify the selection

indicators in Bayesian variable selection. Let z be a Bernoulli distributed variable

so that

P (z | q) = qz(1− q)1−z. (7.6)

Then for q ∼ Beta(sα, s− sα), we have the following

P (q | z, α, s) ∝ qz(1− q)1−zqsα−1(1− q)s(1−α)−1 (7.7)

∝ qz+sα−1(1− q)1−z+s(1−α)−1. (7.8)

That is, q | z, α, s follows a beta distribution such that

q | z, α, s ∼ Beta (z + sα, 1− z + s(1− α)) . (7.9)

7.3 Uncertainty Treatment in Variable Selection

In Section 7.1, we discussed why want to perform a robust Bayesian analysis to

tackle different issues. In this section we provide a basic framework, which we will

use to perform a robust Bayesian variable selection. We adapt the framework of

Narisetty and He [57] to propose our spike and slab model given by:

βj | zj = 1, σ2 ∼ N (0, σ2τ 2
1 ) (7.10)

βj | zj = 0, σ2 ∼ N (0, σ2τ 2
0 ). (7.11)

This is slightly different to the model proposed by George and McCulloch [41]. In

this specification, we fix τ0 close to zero and our choice of τ0 does not contribute in

the slab component. For τ1, we can perform a sensitivity analysis. We notice that

setting a very large τ1 for an orthogonal design case (that is when xTx = nIp) will

force non-zero components to be non-important. Therefore, it is reasonable to fix

τ1 ≥ 1, but not too large.

To overcome the uncertainty around the selection indicators zj, we use the im-

precise beta model introduced in Section 7.2. We specify our selection indicators in
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the following way:

zj | qj ∼ Ber(qj) (7.12)

qj ∼ Beta(sαj, s(1− αj)). (7.13)

Here s > 0 is fixed constant and α ∈ P , where P is any subset of p-dimensional unit

hypercube. The use of the set P allows us to incorporate prior information about

the co-variates. This can be done in two different ways, which we will explain in

Chapter 8.



Chapter 8

Robust Bayesian Variable

Selection

In Chapter 6, we discussed different variable selection methods in the Bayesian

paradigm and introduced the notion of spike and slab priors in Section 6.5 which

are efficient in achieving sparsity. However, we saw that choosing priors can be

difficult in spike and slab models. This motivates us to perform a robust Bayesian

analysis on spike and slab priors. We therefore introduced the notion of robust

Bayesian analysis in Chapter 7 along with its applicability. Moreover, we addressed

different sources of uncertainty in high-dimensional models and possible treatment

of these uncertainties to obtain a robust model.

In this chapter, we use the frameworks discussed in Chapter 6 and Chapter 7

to give a formal description of our novel robust Bayesian model. We introduce

our model in Section 8.1, followed by a discussion on the choice of different prior

parameters. In Section 8.2, we investigate different properties of the posterior distri-

butions by using an orthogonal design case. The orthogonal design case allows us to

decompose the joint posterior in an efficient manner and obtain closed-form expres-

sions for posterior distributions. We use these closed-form expressions to provide

a connection between selection indicators and regression coefficients, both of which

are important in Bayesian variable selection. Section 8.3 is focused on the general

high-dimensional case, where we do not have analytical expressions and therefore

we need numerical tools to perform statistical analysis. We show that our choice of
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priors allows us to obtain closed-form full conditional distributions and we can sam-

ple from our posteriors through a Gibbs sampling framework. Finally in Section 8.5,

we illustrate our results using synthetic datasets to show our method’s performance

in variable selection.

8.1 A Hierarchical Model

We follow the discussion in Section 7.3 to propose the following hierarchical model

for variable selection, such that for β := (β1, · · · , βp)T and 1 ≤ j ≤ p,

y | β, σ2 ∼ N
(
xβ, σ2In

)
(8.1)

βj | zj = 1, σ2 ∼ N (0, σ2τ 2
1 ) (8.2)

βj | zj = 0, σ2 ∼ N (0, σ2τ 2
0 ) (8.3)

zj | qj ∼ Ber(qj) (8.4)

qj ∼ Beta(sαj, s(1− αj)) (8.5)

σ2 ∼ InvGamma(a, b), (8.6)

where s, a, b > 0 are fixed constants.

The latent variables z := (z1, · · · , zp) in the model correspond to spike and slab

prior specification routine where zj represents the selection of the co-variate xj. We

consider normal distributions for both spike and slab components to exploit the

continuity of our prior specification. We fix a sufficiently small τ0 (1 � τ 2
0 > 0) so

that βj|zj = 0 has its prior probability mass concentrated around zero. Therefore

probability distribution of βj|zj = 0 represents the spike component of our prior

specification. We can also specify the spike component by using Dirac measure at

zero. However, we loose the continuity of the prior at zero, which is undesired for

computation purposes. To construct the slab component, we consider τ 2
1 to be large

so that τ1 � τ0. This allows the prior for βj | zj = 1 to be flat. We can also use

log-normal distributions for the spike and slab specifications, which we have not

explored as log-normal distributions do not allow us to obtain interesting analytical

results which we will discuss in Section 8.2.

We use imprecise beta priors to specify the selection probabilities q := (q1,. . . ,qp).
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We use α := (α1, . . . , αp) to represent our prior expectation of the selection proba-

bilities (q) and s to represent concentration parameter. We consider α ∈ P , where

P is any subset of p-dimensional unit hypercube, that is P ⊆ [0, 1]p. This setting

allow us to incorporate prior information in two different ways. We can set individ-

ual αj based on our prior information about the j-th co-variate or, we consider an

equiprobable setting where we assume α1 = α2 = · · · = αp and αj belong to any

subset of [0, 1] for j = 1, · · · , p. Therefore, if we have no prior information about the

problem, then we consider a near-vacuous set for the elicitation of each αj. That

is, for 1 � ε1, ε2 > 0, αj ∈ [ε1, 1 − ε2]. This is equivalent to saying that the prior

expectation of the total number of active co-variates lies between pε1 to p(1− ε2).

To show the importance of αj, let fzj(βj) be the density of βj | zj as mentioned

in Eq. (8.2) and Eq. (8.3). So that,

fzj(βj) :=
1√

2πστzj
exp

(
−

β2
j

2σ2τ 2
zj

)
. (8.7)

Then the hierarchical model implies the following:

P (βj | σ2) =
∑
zj

P (βj | zj, σ2)

(∫
P (zj | qj)P (qj)dqj

)
(8.8)

=
∑
zj

[f1(βj)]
zj [f0(βj)]

1−zj
(∫

q
zj
j (1− qj)1−zjP (qj)dqj

)
(8.9)

=
∑
zj

[αjf1(βj)]
zj [(1− αj)f0(βj)]

1−zj (8.10)

= αjf1(βj) + (1− αj)f0(βj). (8.11)

That is, we can express our prior on βj as a mixture of normal distributions where

the weights are the prior expectation of the selection probability. In Fig. 8.1 we

show the effect of αj on the prior specification of β for fixed τ0 = 10−4, τ1 = 10 and

σ = 1. We notice that smaller values of αj forces the prior to be more concentrated

around 0 whereas higher values of αj result to a flatter prior. This also suggests

that we can impose our prior belief on βj through αj. We can assign a sufficiently

large value for τ1 to capture the prior expected range of βj and vary αj to control

the tail of the marginalised probability distribution.
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Figure 8.1: Marginalised densities of βj (Eq. (8.11)) for different values of αj. The

figure on the right side shows the tails of the distributions.

8.2 Posterior for Orthogonal Design

For investigating different analytical properties of the posterior, it is useful to have

the different modelling parameters a posteriori independent. In general it is not

possible to have such parameters. However, orthogonal design case allows to obtain

parameters which are a posteriori independent. As described earlier in Section 7.3,

we consider a case to be orthogonal design when xTx = nIp. Clearly, for orthogonal

design, we have β̂OLS = (xTx)−1xTy = xTy/n, where β̂OLS := (β̂OLS, 1, . . . , β̂OLS, p)
T

are the ordinary least squares estimates. Then,

P (y | β) (8.12)

=
1√

(2πσ2)n
exp

(
− 1

2σ2
‖y − xβ‖2

2

)
(8.13)

=
1√

(2πσ2)n
exp

(
− 1

2σ2

(
nβTβ − 2nβT β̂OLS + yTy

))
(8.14)

=
1√

(2πσ2)n
exp

(
− 1

2σ2

(
n
(
βTβ − 2βT β̂OLS + β̂TOLSβ̂OLS

)
+ yTy − nβ̂TOLSβ̂OLS

))
(8.15)

=
1√

(2πσ2)n
exp

(
−n‖β − β̂OLS‖2

2

2σ2

)
exp

(
yty − nβ̂tOLSβ̂OLS

2σ2

)
(8.16)
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=
1√

(2πσ2)n
exp

(
yty − nβ̂tOLSβ̂OLS

2σ2

)∏
j

exp

−n
(
βj − β̂OLS, j

)2

2σ2

 (8.17)

∝
∏
j

exp

−n
(
βj − β̂OLS, j

)2

2σ2

 . (8.18)

The above expression shows that for orthogonal design case, the likelihood is pro-

portional to the product of the functions of each component of β. This allows us

to decompose the joint posterior and show that the modelling parameters are a

posteriori independent.

Let z := (z1, . . . , zp) and q := (q1, . . . , qp), then the joint posterior of the

proposed hierarchical model can be computed in the following way:

P (β, σ2, z, q | y) ∝ P (y | β, σ2)P (β | z, σ2)P (z | q)P (q)P (σ2). (8.19)

To show the analytical properties of our model we will assume that σ2 is known and

fixed. First, we will discuss the posterior of selection indicators and then regression

coefficients.

8.2.1 Selection indicators

To examine selection indicators or z, we marginalise the joint posterior in Eq. (8.19),

we write the posterior of z as

P (z | y) =

∫∫
P (β, z, q | y)dqdβ (8.20)

∝
∫
P (y | β)

(
P (β | z)

∫
P (z | q)P (q)dq

)
dβ. (8.21)

Since P (zj | qj) = q
zj
j (1− qj)1−zj and qj follows Beta distribution,

P (β | z)

∫
P (z | q)P (q)dq

=
∏
j

(
[f1(βj)]

zj [f0(βj)]
1−zj

∫
q
zj
j (1− qj)1−zjP (qj)dqj

)
(8.22)

=
∏
j

(
[αjf1(βj)]

zj [(1− αj)f0(βj)]
1−zj

)
. (8.23)
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Now combining Eq. (8.18), Eq. (8.21) and Eq. (8.23) we get

P (z | y) ∝

∫ ∏
j

exp

−n
(
βj − β̂OLS, j

)2

2

2σ2

([αjf1(βj)]
zj [(1− αj)f0(βj)]

1−zj
)
dβ

(8.24)

∝
∏
j

∫
exp

−n
(
βj − β̂OLS, j

)2

2

2σ2

([αjf1(βj)]
zj [(1− αj)f0(βj)]

1−zj
)
dβj

(8.25)

Note that in Eq. (8.24), dβ has not been changed as the integration operator is

outside of the product. Now, we have the decomposed posterior of zj such that

P (zj | y) = Mj

∫
exp

−n
(
βj − β̂OLS, j

)2

2σ2

 [αjf1(βj)]
zj [(1− αj)f0(βj)]

1−zjdβj,

(8.26)

where Mj is a normalisation constant independent of zj. Then we have,

P (zj = 1 | y) = Mjαj

∫
exp

−n
(
βj − β̂OLS, j

)2

2σ2

 f1(βj)dβj. (8.27)

Now, for k ∈ {0, 1} and j ∈ {1, · · · , p} we have

exp

−n
(
βj − β̂OLS, j

)2

2σ2

 fk(βj)

= exp

−n
(
βj − β̂OLS, j

)2

2σ2

 1√
2πστk

exp

(
−

β2
j

2σ2τ 2
k

)
(8.28)

=
1√

2πστk
exp

−n
(
βj − β̂OLS, j

)2

2σ2
−

β2
j

2σ2τ 2
k

 (8.29)

=
1√

2πστk
exp

−nτ 2
k

(
βj − β̂OLS, j

)2

+ β2
j

2σ2τ 2
k

 (8.30)
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=
1√

2πστk
exp

(
−

(nτ 2
k + 1)β2

j − 2nτ 2
kβjβ̂OLS, j + nτ 2

k β̂
2
OLS, j

2σ2τ 2
k

)
(8.31)

=
1√

2πστk
exp

−(nτ 2
k + 1)β2

j − 2nτ 2
kβjβ̂OLS, j +

n2τ4k
nτ2k+1

β̂2
OLS, j +

nτ2k
nτ2k+1

β̂2
OLS, j

2σ2τ 2
k


(8.32)

=
1√

2πστk
exp

−(nτ 2
k + 1)

(
βj −

nτ2k
nτ2k+1

β̂OLS, j

)2

+
nτ2k
nτ2k+1

β̂2
OLS, j

2σ2τ 2
k

 (8.33)

=

√
nτ 2

k + 1
√

2πστk
√
nτ 2

k + 1
exp

(
−

nβ̂2
OLS, j

2σ2(nτ 2
k + 1)

)
exp

−
(
βj −

nτ2k
nτ2k+1

β̂OLS, j

)2

2σ2τ2k
nτ2k+1


(8.34)

= wk,j
1√

2πσk
exp

−
(
βj − β̂k,j

)2

2σ2
k

 , (8.35)

where β̂k,j :=
nτ2k β̂OLS, j

nτ2k+1
, σ2

k :=
σ2τ2k
nτ2k+1

and wk,j := 1√
nτ2k+1

exp

(
− nβ̂2

OLS, j

2(nσ2τ2k+σ2)

)
. Then

using Eq. (8.35) we have

P (zj = 1 | y) = Mjαjw1,j (8.36)

and

P (zj = 0 | y) = Mj(1− αj)w0,j. (8.37)

Therefore,

zj | y ∼ Ber

(
αjw1,j

αjw1,j + (1− αj)w0,j

)
. (8.38)

Co-variate selection

For the co-variate selection we investigate the posterior odds of each zj. We assign

a co-variate to be non-active when

sup
αj∈P

{
P (zj = 1 | y)

P (zj = 0 | y)

}
< 1, (8.39)

for j = 1, · · · , p. Or equivalently when

sup
αj∈P

{
w1,jαj

w0,j(1− αj)

}
< 1. (8.40)
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Similarly, we assign a co-variate to be active if,

inf
αj∈P

{
w1,jαj

w0,j(1− αj)

}
> 1. (8.41)

We define the rest to be indeterminate or indecisive.

Property of the posterior odds:

For 1 ≤ j ≤ p, the posterior odds of the selection indicators are given by:

w1,jαj
w0,j(1− αj)

=
w1,j

w0,j

(
1

1− αj
− 1

)
. (8.42)

Now, the first derivatives of the posterior odds are given by:

w1,j

w0,j

1

(1− αj)2
> 0. (8.43)

Therefore, we see that the posterior odds are monotone increasing with respect to

the prior selection probability αj.

Now, recall the near-vacuous set defined in Section 8.1. Because of the mono-

tonicity property of the posterior odds, we only need to compute the posterior odds

on the lower and upper bounds of the set instead of the whole interval. That is

sup
αj∈[ε1,1−ε2]

{
w1,jαj

w0,j(1− αj)

}
=

(1− ε2)

ε2
· w1,j

w0,j

(8.44)

and,

inf
αj∈[ε1,1−ε2]

{
w1,jαj

w0,j(1− αj)

}
=

ε1
(1− ε1)

· w1,j

w0,j

. (8.45)

Therefore, we say that a co-variate is considered to be active if ε1
(1−ε1)

· w1,j

w0,j
> 1 and

a co-variate is considered to be inactive if (1−ε2)
ε2
· w1,j

w0,j
< 1.

8.2.2 Regression coefficients

Similar to the selection indicators, the joint posterior of the regression coefficients

is given by:

P (β | y) =
∑
z

∫
P (β, z, q | y)dq (8.46)
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∝
∑
z

∫
P (y | β)P (β | z)P (z | q)P (q)dq (8.47)

∝ P (y | β)
∑
z

(
P (β | z)

∫
P (z | q)P (q)dq

)
. (8.48)

From Eq. (8.23) we have

P (β | z)

∫
P (z | q)P (q)dq =

∏
j

(
[αjf1(βj)]

zj [(1− αj)f0(βj)]
1−zj

)
. (8.49)

Then we can write Eq. (8.48) as

P (β | y) ∝ P (y | β)
∑
z

(∏
j

(
[αjf1(βj)]

zj [(1− αj)f0(βj)]
1−zj

))
. (8.50)

Now,

∑
z

(∏
j

(
[αjf1(βj)]

zj [(1− αj)f0(βj)]
1−zj

))

=
∑
z1

· · ·
∑
zp

(∏
j

(
[αjf1(βj)]

zj [(1− αj)f0(βj)]
1−zj

))
(8.51)

=
∑
z1

· · ·
∑
zp

[α1f1(β1)]z1 [(1− α1)f0(β1)]1−z1 · · · [αpf1(βp)]
zp [(1− αp)f0(βp)]

1−zp

(8.52)

=
∏
j

∑
zj

[αjf1(βj)]
zj [(1− αj)f0(βj)]

1−zj (8.53)

=
∏
j

[αjf1(βj) + (1− αj)f0(βj)]. (8.54)

Therefore we get,

P (β | y) ∝ P (y | β)
∏
j

[αjf1(βj) + (1− αj)f0(βj)]. (8.55)

Now combining Eq. (8.18) and Eq. (8.55) we have

P (β | y) ∝ exp

(
− 1

2σ2

(
nβTβ − 2nβT β̂OLS

))∏
j

[αjf1(βj) + (1− αj)f0(βj)]

∝ exp
(
− n

2σ2
‖β − β̂OLS‖2

2

)∏
j

[αjf1(βj) + (1− αj)f0(βj)] (8.56)

∝
∏
j

exp

(
−n(βj − β̂OLS, j)

2

2σ2

)
[αjf1(βj) + (1− αj)f0(βj)]. (8.57)
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Therefore, the βj’s are a posteriori independent and for each 1 ≤ j ≤ p, we have,

P (βj | y) ∝ exp

(
−n(βj − β̂OLS, j)

2

2σ2

)
[αjf1(βj) + (1− αj)f0(βj)]. (8.58)

Let Wj := αjw1,j +(1−αj)w0,j. Then combining Eq. (8.35) and Eq. (8.58) we show,

βj | y ∼
αjw1,j

Wj

N
(
β̂1,j, σ

2
1

)
+

(1− αj)w0,j

Wj

N
(
β̂0,j, σ

2
0

)
, (8.59)

where β̂k,j :=
nτ2k β̂OLS, j

nτ2k+1
, σ2

k :=
σ2τ2k
nτ2k+1

and wk,j := 1√
nτ2k+1

exp

(
− nβ̂2

OLS, j

2(nσ2τ2k+σ2)

)
.

Eq. (8.59) shows that the posteriors of the regression coefficients are mixtures of

two normal distributions. Clearly, the posteriors are bimodal when β̂OLS, j 6= 0. We

illustrate the posteriors in Fig. 8.2 for fixed σ2 = 1, n = 100, τ0 = 10−4 and τ1=10. In

Fig. 8.2, the left column shows the density functions and in the right column shows

the posterior cumulative distribution functions (CDF). We show these posteriors

for four different values of β̂OLS, j (β̂ in the figure) over equispaced grids of αj so

that αj ∈ [0.05, 0.95]. We observe that the posterior densities are bimodal except

for the top row and each of the posteriors has a spike component at zero. We also

notice that for smaller values of β̂OLS, j, the posterior CDFs are more concentrated at

zero. However, as we increase the value of β̂OLS, j, the posterior CDFs shift towards

β̂OLS, j. For a sufficiently large value of β̂OLS, j, the posterior CDFs are concentrated

at β̂OLS, j.

Properties of the posterior:

To analyse the properties of the posterior, we first consider the ratio of the weights

in Eq. (8.59). For 1 ≤ j ≤ p, ratios of the weights are given by:

αjw1,j

(1− αj)w0,j

. (8.60)

This corresponds to posterior selection probability of selection indicators. Therefore,

for active co-variates this ratio becomes greater than 1 for all αj ∈ [ε1, 1 − ε2] and

N
(
β̂1,j, σ

2
1

)
dominates the posterior. Similarly, for non-active co-variates this ratio

becomes less than 1 for all values of αj and N
(
β̂0,j, σ

2
0

)
dominates the posterior.
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Figure 8.2: Posterior density function and corresponding cumulative distribution

function of βj for different values of β̂OLS, j over a set of αj such that αj ∈ [0.05, 0.95].
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Alternatively, exploiting the monotonicity property of the posterior odds, we can

say that N
(
β̂1,j, σ

2
1

)
dominates the posterior if ε1

(1−ε1)
· w1,j

w0,j
> 1. That is, if

exp

(
−

nβ̂2
OLS, j

2(nσ2τ 2
1 + σ2)

+
nβ̂2

OLS, j

2(nσ2τ 2
0 + σ2)

)
>

(1− ε1)
√
nτ 2

1 + 1

ε1
√
nτ 2

0 + 1
(8.61)

−
nβ̂2

OLS, j

2(nσ2τ 2
1 + σ2)

+
nβ̂2

OLS, j

2(nσ2τ 2
0 + σ2)

> ln

(
(1− ε1)

√
nτ 2

1 + 1

ε1
√
nτ 2

0 + 1

)
(8.62)

nβ̂2
OLS, j

2σ2

[
− 1

(nτ 2
1 + 1)

+
1

(nτ 2
0 + 1)

]
> ln

(
(1− ε1)

√
nτ 2

1 + 1

ε1
√
nτ 2

0 + 1

)
(8.63)

nβ̂2
OLS, j

2σ2

nτ 2
1 − nτ 2

0

(nτ 2
1 + 1)(nτ 2

0 + 1)
> ln

(
(1− ε1)

√
nτ 2

1 + 1

ε1
√
nτ 2

0 + 1

)
. (8.64)

Then after rearranging the terms on both sides, we get:

β̂2
OLS, j >

σ2

n

(nτ 2
1 + 1)(nτ 2

0 + 1)

nτ 2
1 − nτ 2

0

[
2 ln

(
1− ε1
ε1

)
+ ln

(
nτ 2

1 + 1

nτ 2
0 + 1

)]
. (8.65)

Similarly, we say that, N
(
β̂0,j, σ

2
0

)
dominates the posterior if,

β̂2
OLS, j <

σ2

n

(nτ 2
1 + 1)(nτ 2

0 + 1)

nτ 2
1 − nτ 2

0

[
2 ln

(
ε2

1− ε2

)
+ ln

(
nτ 2

1 + 1

nτ 2
0 + 1

)]
. (8.66)

We can further simplify this for ε1 = ε2 = ε, that is when αj ∈ [ε, 1 − ε]. Let

τ0 � 1/n, then N
(
β̂1,j, σ

2
1

)
dominates the posterior if,

β̂2
OLS, j >

σ2

n

(nτ 2
1 + 1)

nτ 2
1

[
ln
(
nτ 2

1 + 1
)

+ 2 ln

(
1− ε
ε

)]
, (8.67)

and similarly, N
(
β̂0,j, σ

2
0

)
dominates the posterior if,

β̂2
OLS, j <

σ2

n

(nτ 2
1 + 1)

nτ 2
1

[
ln
(
nτ 2

1 + 1
)
− 2 ln

(
1− ε
ε

)]
. (8.68)

We can compute a region of indeterminacy using Eq. (8.67) and Eq. (8.68). If

the value of β̂2
OLS, j lies in between these bounds then we consider the j-th co-variate

as indeterminate. We illustrate this in Fig. 8.3 for fixed σ2 = 1, n = 100 and

τ0 = 10−4. The shaded area shows the region of indeterminacy for different values

of αj ∈ [ε, 1 − ε]. Clearly, the region of indeterminacy depends on the values of ε.

Higher values of ε(< 0.5) shrink the region of indeterminacy. We also notice that

higher values of τ1 force the bounds to be higher. Therefore, extreme values of τ1

may lead to poor results in variable selection. A very small value of τ1 will force

some non-active co-variates to be indeterminate whereas a very high value of τ1 will

force some non-zero small effects to be inactive.
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Figure 8.3: Effect of τ1 in specifying the region of indeterminacy for different values

of ε.

Posterior mean and variance:

The posterior mean of βj is given by:

E(βj | y) =
αjw1,j

Wj

β̂1,j +
(1− αj)w0,j

Wj

β̂0,j. (8.69)

We show illustrate these posterior means in Fig. 8.4. We fix τ0 = 10−4, τ1 = 10,

n = 100 and σ2 = 1. We check posterior means for six different possible values of

β̂OLS, j (β̂ in the figure). In the top row we show our results for β̂OLS, j > 0. We

see that in the first two cases, the posterior means are monotonically increasing and

in the third case it is close to constant. Similarly in the bottom row, we show our

result for β̂OLS, j < 0. We see that the posterior means are decreasing in the first

two cases, and remains close to constant in the third case.

We also get a closed-form expression for the posterior variance. By Lemma A.4,

we have

Var(βj | y)

=
αjw1,j

Wj

(
σ2

1 + β̂2
1,j

)
+

(1− αj)w0,j

Wj

(
σ2

0 + β̂2
0,j

)
−

[
αjw1,jβ̂1,j + (1− αj)w0,jβ̂0,j

Wj

]2

(8.70)
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Figure 8.4: Relation between posterior expectation of β and prior selection proba-

bility α for different values of β̂.

=
αjw1,jσ

2
1 + (1− αj)w0,jσ

2
0

Wj

+
αjw1,jβ̂

2
1,j + (1− αj)w0,jβ̂

2
1,j

Wj

−

[
αjw1,jβ̂1,j + (1− αj)w0,jβ̂0,j

Wj

]2

(8.71)

=
αjw1,jσ

2
1 + (1− αj)w0,jσ

2
0

Wj

+
α(1− α)w1,jw0,j(β̂1,j − β̂0,j)

2

W 2
j

. (8.72)

Therefore, we get a set of posterior variances Vj such that:

Vj :=

{
αjw1,jσ

2
1 + (1− αj)w0,jσ

2
0

Wj

+
α(1− α)w1,jw0,j(β̂1,j − β̂0,j)

2

W 2
j

: αj ∈ (0, 1)

}
,

(8.73)

where wk,j and σk are as defined before.

The posterior variance of βj does not show a monotone trend like the posterior

mean. In Fig. 8.5, we show the effect of αj on the posterior variance for six different

values β̂OLS, j. We fix τ0 = 10−4, τ1 = 10, n = 100 and σ2 = 1 to obtain these

posterior variances. In the top row, we show variances for β̂OLS, j > 0 and in the

bottom row we show the case for β̂OLS, j < 0. We notice that for extreme values of

β̂OLS, j, the posterior variance behaves like a constant and is close to σ2

n
= 0.01.
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Figure 8.5: Relation between posterior variance of β and prior selection probability

α for different values of β̂.

8.3 Posterior Computation for the General Case

The orthogonal case allows us to decompose the joint density function in a convenient

way for known variance σ2. However, this can be non-trivial when the variance is

unknown. Moreover, variable selection is generally applied for correlated datasets

or high-dimensional problems. As a consequence, it is not possible to have an

orthogonal design in many cases. Therefore, we need a suitable computation scheme

for general cases, that is, when the datasets are non-orthogonal or we don’t have

any information about the variance. Interestingly, our choice of priors allows us to

obtain full conditional distributions of the modelling parameters and therefore for

the general case, we follow a Gibbs sampling routine (Section 6.3.1) to compute

posterior distributions and hence perform variable selection [57]. To avoid confusion

we use a special notation
t∝, which means that left hand side is proportional to

the terms which are function of t and the rest are considered as constants. Now,

recall the joint posterior in Eq. (8.19). Then the joint conditional distribution of

the regression coefficients is given by:

P (β | z, σ2, q, y)
β∝ P (β, z, σ2, q | y) (8.74)
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β∝ P (y | β, σ2)P (β | z, σ2) (8.75)

β∝ exp

(
− 1

2σ2
‖y − xβ‖2

2

) p∏
j=1

fzj(βj) (8.76)

β∝ exp

(
−β

TxTxβ − 2βTxTy

2σ2

) p∏
j=1

fzj(βj) (8.77)

β∝ exp

(
−β

TxTxβ − 2βTxTy

2σ2

) p∏
j=1

exp

(
−

β2
j

2σ2τ 2
zj

)
. (8.78)

Let Dz := diag(τ−2
zj

), then we rewrite Eq. (8.78) as

P (β | z, σ2, q, y)
β∝ exp

(
−β

TxTxβ − 2βTxTy

2σ2

)
exp

(
−β

TDzβ

2σ2

)
(8.79)

β∝ exp

(
−β

TxTxβ − 2βTxTy + βTDzβ

2σ2

)
(8.80)

β∝ exp

(
−(β − µ∗)TV −1(β − µ∗)

2σ2

)
, (8.81)

where µ∗ := V xTy and V := (xTx + Dz)
−1. Therefore the full conditional of β

follows a multivariate normal distribution such that:

β | z, σ2, q, y ∼ N (µ∗, σ2L). (8.82)

For the selection indicators, we only need to compute the probability of zj condi-

tional on β, σ2 and qj. Therefore, we can compute these posteriors component-wise,

such that:

P (zj | βj, σ2, qj)
zj∝ P (βj | zj, σ2)P (zj | qj) (8.83)

zj∝ q
zj
j (1− qj)1−zjfzj(βj) (8.84)

zj∝ [qjfzj(βj)]
zj [(1− qj)fzj(βj)]1−zj . (8.85)

Therefore, zj | βj, σ2 follows a Bernoulli distribution such that

P (zj = 1 | βj, σ2) =
qjf1(βj)

qjf1(βj) + (1− qj)f0(βj)
. (8.86)

Unlike the orthogonal design case, the choice of concentration parameter plays

an important role on the conditional distributions of qj’s for the Gibbs sampling

algorithm. We know that,

P (qj | zj) ∼ P (zj | qj)P (zj). (8.87)



8.4. Measures for Prediction 98

Then the conditional distribution of the qj follows a beta distribution such that:

qj | zj ∼ Beta(sαj + zj, s(1− αj) + 1− zj), (8.88)

where αj ∈ P .

For the general case, we are also interested in the posterior of σ2. The conditional

distribution of σ2 is given by:

P (σ2 | β, z, y)

σ2

∝ P (y | β, σ2)P (β | z, σ2)P (σ2) (8.89)

σ2

∝ 1

σn
exp

(
−‖y − xβ‖2

2

2σ2

)
1

σp
exp

(
−β

TDzβ

2σ2

)
1

σ2(a+1)
exp

(
− b

σ2

)
(8.90)

σ2

∝ 1

σ2(p/2+n/2+a+1)
exp

{
− 1

σ2

(
‖y − xβ‖2

2

2
+
βTDzβ

2
+ b

)}
(8.91)

Therefore,

σ2 | β, z, y ∼ InvGamma

(
a+

p

2
+
n

2
, b+

‖y − xβ‖2
2

2
+
βTDzβ

2

)
(8.92)

8.4 Measures for Prediction

A robust Bayesian routine needs different measures of accuracy as we don’t have a

single posterior for prediction. We introduce a new measure which can be considered

to evaluate prediction accuracy and call it minimum squared error. Let

A(α) :=

{
j :

{
w1,jαj

w0,j(1− αj)

}
> 1

}
. (8.93)

Therefore, A(α) or simply, A denotes the set of active variables for each value of α.

Let, xA := [xj]j∈A and βA := [βj]j∈A. We define minimum squared error by:

Minimum Squared Error = min
α∈P
‖y − xAβ̂

post
A ‖

2
2, (8.94)

where β̂post
A := E(βA | y) is the posterior mean of βA.

The sensitivity analysis also creates an indeterminacy in prediction. Therefore,

we define a similar measure called maximum squared error over the set of α ∈ P .

We use both minimum and maximum squared error to introduce a new measure to

capture the indeterminacy such that:

Indeterminacy =
Maximum Squared Error−Minimum Squared Error

Maximum Squared Error
. (8.95)
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Therefore, indeterminacy gives us a relative difference between the best fitted model

and worst fitted model obtained from the robust Bayesian analysis. Clearly, we will

aim to reduce the indeterminacy for our robust Bayesian model.

8.5 Simulation Studies

In this section we will show the accuracy of our method in terms of variable selection.

We construct four different synthetic datasets to investigate different aspects of

variable selection problems.

Example 8.1. In this example, we construct an orthogonal design matrix xi,j with

50 predictors and 100 observations. We assign the regression coefficients so that βj ∼

Uniform ([−200,−80] ∪ [80, 200]) for 1 ≤ j ≤ 6 and βj = 0 for j > 6. We consider

standard normal noise to construct the response vector yi =
∑6

j=1 xi,jβj + εi, where

εi ∼ N(0, 1) for i = 1, · · · , 100. This setting allows us to evaluate the performance

of our method with only strong non-zero effects.

Example 8.2. In this case, we construct an orthogonal design matrix as of Exam-

ple 8.1. We assign the regression coefficients such that the first 12 βj’s represent

a strong effect and the next 20 βj’s represent a mild effect. To do so, we consider

βj ∼ Uniform ([−200,−80] ∪ [80, 200]) for 1 ≤ j ≤ 12, βj ∼ Uniform([−20,−10]∪

[10, 20]) for 13 ≤ j ≤ 32 and βj = 0 for j > 32. We construct the response vector

in the following way: yi =
∑32

j=1 xi,jβj + εi, where εi ∼ N(0, 1) for i = 1, · · · , 100.

This type of coefficient assignment allows us to investigate both medium and large

effects within the model.

Example 8.3. We use this example to illustrate the high-dimensional case. We

construct the design matrix with 100 observations and 200 predictors from a mul-

tivariate normal distribution so that xi ∼ N (0, I200), where 1 ≤ i ≤ 100. We set

regression coefficients so that βj ∼ Uniform ([−200,−80] ∪ [80, 200]) for 1 ≤ j ≤ 12,

βj ∼ Uniform ([−20,−10] ∪ [10, 20]) for 13 ≤ j ≤ 32 and βj = 0 for j > 32. We

construct the response vector in a similar fashion as of Example 8.1 and Example 8.2.

Clearly, in this case the design matrix can not be constructed as an orthogonal design

matrix as the total number of observations is less than the total number of predictors.
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Example 8.4. We use this dataset to show the performance of our method for

high dimensional problems with small effects. We generate the predictors from a

multivariate normal distributions so that xi ∼ N (0, I100), where 1 ≤ i ≤ 50. To

show the small effects, we set βj ∼ Uniform ([−4,−1] ∪ [1, 4]) for 1 ≤ j ≤ 60 and

βj = 0 for j > 60. For the random noise we consider smaller variance unlike the

previous examples where we take 1 as the variance of the error term. We use smaller

variance as we consider small effects only and higher variance of random noise may

contribute more in the response than the predictors. Therefore, we construct the

response vector so that yi =
∑60

j=1 xi,jβj+εi, where εi ∼ N(0, 0.01) for i = 1, · · · , 50.

This way, we get a problem with small effects only. For this dataset, the number

of true active regression coefficients is more than the total number of observations

unlike the previous examples.

Results

To investigate our method’s accuracy in variable selection, we consider two different

sets for α so that one set represents a near-vacuous case and the other set represents

prior information. To specify the near-vacuous case, we consider αj ∈ [0.1, 0.9]

for the j-th co-variate. For the sake of simplicity, we drop this subscript j and

write αj as α. The choice of the elicitation-based set is dependent on the example.

For instance, for Example 8.1, we set α ∈ [0.1, 0.12] based on the true values of

the regression coefficients. Similarly, we consider α ∈ [0.1, 0.64] for Example 8.2,

α ∈ [0.06, 0.2] for Example 8.3 and α ∈ [0.1, 0.6] for Example 8.4. We fix τ0 = 10−6

for all of the experiments to specify the spike component of our prior. For σ2, we use

an inverse-gamma distribution with both scale and shape parameters being equal to

10−5. Experiments suggest that higher values of τ1 give us poor results for variable

selection. To show that, we consider three different values of τ1 for Example 8.1 and

Example 8.2, which are 5, 10 and 50. This way, we get the effect of τ1 on variable

selection. However, for Example 8.3 and Example 8.4, we notice that setting τ1 > 1

gives us poor results. Therefore, for these two datasets, we consider τ1 = 1 for

the illustration, along with 10 and 50. We provide the summary of our results in

Table 8.1. The left-most column shows the method of variable selection followed by
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three columns which represent the status of the true active variables after variable

selection which are ‘active’, ‘inactive’ and ‘indeterminate’. Similarly we show the

status of true inactive variables in the next three columns. We also perform variable

selection with three other Bayesian methods for comparison. For this, we use basad

[57], blasso [60] and SSLASSO [64].

We observe that for the first dataset, all methods are in good agreement except

for SSLASSO which identifies only 4 co-variates as active. It can be seen from the

Table 8.1 that the choice of τ1 or α have no effect on the variable selection and our

method identifies all the true important co-variates correctly.

The analyses using Example 8.2 is particularly interesting. In this case, the effect

of τ1 is more prominent. We see that increasing value of τ1 results in fewer active

variables, which follows our result for orthogonal design case. We also notice that

choice of α can be crucial in identifying the active co-variates. The elicitation-based

choice underperforms when τ1 = 50, α puts less weights on some of the mild effects

and higher τ1 reduces the posterior odds of their corresponding selection indicators.

However, this is not the case for near-vacuous case and all of the mild effects remain

indeterminate. We also see that our results are somewhat in agreement with basad

and SSLASSO for higher values of α and selects less variables as active. This is not

the case for blasso which identifies all the 32 true important coefficients as active.

The Example 8.3 is used to illustrate the high-dimensional problem. In this

case, our method is in good agreement with basad for τ1 = 1. However, for higher

values of τ1 it tends to select fewer covariates as active and gives a similar result

to that of SSLASSO. However, unlike the previous cases, there is not a single choice

of τ1, for which our method identifies every true important covariate correctly. In

this particular example, blasso outperforms other methods in terms of variable

selection.

We use Example 8.4 to show the performance of our method for high dimensional

models with small effects. We see that blasso performs poorly in terms of variable

selection and considers many of the true active effects as inactive. This also the

case for SSLASSO, which gives similar result. We observe that our method also

tends to select fewer covariates as active. However, it does not assign all of those
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variable as inactive and classifies most of them as indeterminate. As a result, our

method reduces the risk of producing too many false inactive covariates. We also

see that our method gives least number of false active covariates among the four

methods. However, our method is not a clear winner, as basad performs the best

when it comes to identification of active covariates despite giving more false inactive

covariates than our method.

We see that for the first two datasets, both blasso and our method identify all

the true active covariates, especially when τ1 = 1. This is not the case for the third

dataset, where our method fails to identify every true active covariate and blasso

is the clear winner. However, for the fourth dataset blasso performs the worst

in terms of the variable selection. This happens as the double exponential prior

do not have enough mass at zero relative to the tail (check Castillo et al. [17] for

further discussion on this). Therefore, blasso can not allow near zero active effects

and inactive effects simultaneously and it tends to overshrink the small effects and

the median estimates become sparser than desired. Our method do not experience

such issues and the robust Bayesian approach makes sure that we do not produce

too many false inactive covariates. As a result, our method performs well for every

dataset irrespective of the construction.



8.5. Simulation Studies 103

True Active True Inactive

Parameter Setting/ Method Act Inact Indet Act Inact Indet

Dataset 1, 6 active and 44 inactive

α ∈ [0.1, 0.9], τ0 = 10−6, τ1 = 5 6 0 0 0 44 0

α ∈ [0.1, 0.9], τ0 = 10−6, τ1 = 10 6 0 0 0 44 0

α ∈ [0.1, 0.9], τ0 = 10−6, τ1 = 50 6 0 0 0 44 0

α ∈ [0.1, 0.12], τ0 = 10−6, τ1 = 5 6 0 0 0 44 0

α ∈ [0.1, 0.12], τ0 = 10−6, τ1 = 10 6 0 0 0 44 0

α ∈ [0.1, 0.12], τ0 = 10−6, τ1 = 50 6 0 0 0 44 0

BASAD 6 0 – 0 44 –

BLASSO (Median) 6 0 – 0 44 –

SSLASSO (Double Exponential) 4 2 – 0 44 –

Dataset 2, 32 active and 18 inactive

α ∈ [0.1, 0.9], τ0 = 10−6, τ1 = 5 32 0 0 0 18 0

α ∈ [0.1, 0.9], τ0 = 10−6, τ1 = 10 17 0 15 0 18 0

α ∈ [0.1, 0.9], τ0 = 10−6, τ1 = 50 4 0 28 0 18 0

α ∈ [0.1, 0.64], τ0 = 10−6, τ1 = 5 32 0 0 0 18 0

α ∈ [0.1, 0.64], τ0 = 10−6, τ1 = 10 18 0 14 0 18 0

α ∈ [0.1, 0.64], τ0 = 10−6, τ1 = 50 7 5 20 0 18 0

BASAD 16 16 – 0 18 –

BLASSO (Median) 32 0 – 0 18 –

SSLASSO (Double Exponential) 4 28 – 0 18 –

Dataset 3, 40 active and 160 inactive

α ∈ [0.1, 0.9], τ0 = 10−6, τ1 = 1 14 0 26 0 0 160

α ∈ [0.1, 0.9], τ0 = 10−6, τ1 = 10 3 0 37 0 0 160

α ∈ [0.1, 0.9], τ0 = 10−6, τ1 = 50 4 1 35 0 1 159

α ∈ [0.06, 0.2], τ0 = 10−6, τ1 = 1 14 1 25 0 160 0

α ∈ [0.06, 0.2], τ0 = 10−6, τ1 = 10 14 15 11 0 154 6

α ∈ [0.06, 0.2], τ0 = 10−6, τ1 = 50 5 10 25 0 160 0

BASAD 12 28 – 0 160 –

BLASSO (Median) 40 0 – 0 160 –

SSLASSO (Double Exponential) 3 37 – 0 160 –

Dataset 4, 60 active and 40 inactive

α ∈ [0.1, 0.9], τ0 = 10−6, τ1 = 1 6 0 54 1 0 39

α ∈ [0.1, 0.9], τ0 = 10−6, τ1 = 10 0 0 60 0 0 40

α ∈ [0.1, 0.9], τ0 = 10−6, τ1 = 50 0 1 59 0 0 40

α ∈ [0.1, 0.6], τ0 = 10−6, τ1 = 1 5 10 45 1 12 27

α ∈ [0.1, 0.6], τ0 = 10−6, τ1 = 10 0 1 59 0 5 35

α ∈ [0.1, 0.6], τ0 = 10−6, τ1 = 50 0 16 44 0 8 32

BASAD 34 26 – 11 29 –

BLASSO (Median) 16 44 – 4 36 –

SSLASSO (Double Exponential) 17 43 – 3 37 –

Table 8.1: Summary of variable selection for four different synthetic datasets.



Chapter 9

Data Analysis

We have discussed different Bayesian modelling approaches for linear regression in

Chapter 6 and our novel robust Bayesian approach in Chapter 8. In these two

chapters, we showed how our choice of priors contributes to parameter estimation.

In Chapter 8, we illustrated these Bayesian variable selection techniques along with

our novel approach using synthetic dataset. However, we are also interested in model

fitting which is an important part of statistical modelling with real datasets.

In this chapter, we perform robust Bayesian analysis using different real datasets.

These datasets are carefully chosen so that we can perform our analysis for different

cases which may occur in variable selection problems. We start our analysis using

the Diabetes dataset in Section 9.1 followed by Gaia dataset in Section 9.2. These

two dataset are not high-dimensional in nature, however, these are correlated in

nature. Especially for Gaia, we can observe collinearity within the dataset which

is an important problem in Bayesian variable selection. In Section 9.3, we investi-

gate an ultra high-dimensional dataset for which use a preliminary screening before

performing our robust Bayesian analysis.

104
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9.1 Diabetes Dataset

The Diabetes dataset1 [29] concerns 10 predictors which are age, sex, body mass

index, average blood pressure and six blood serum measurements. The response

denotes the disease progression in one year. Here the ‘sex’ predictor is not Gaussian

and we use dummy variables to work with this. We show the correlation plot in

Fig. 9.1, where we can see a mild correlation between the predictors.
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Figure 9.1: Correlation plot matrix of Diabetes dataset

We perform a preliminary analysis to get an idea about the number of active

covariates in the dataset. We randomly sample 100 observations from the dataset

and fit ordinary least squares. We provide the summary of ordinary least squares in

Table 9.1. As we discussed earlier for ridge estimates in Section 3.3, we can simply

check the p-values to get an idea about the importance of the covariates. We see

1This dataset is openly available and has been loaded from the R package lars [45] for illustra-

tion.
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from Table 9.1, p-values of ‘sex’ and ‘ltg’ are less than 0.01. So we can safely assume

that there are at least two active covariates in the model. Similarly we can consider

3 other variables to be active based on our threshold for the p-values. Therefore,

we can expect to have 2 to 5 active variables in the dataset. Now, based on this

preliminary analysis, we consider two different sets to specify our prior expectation

of the selection probabilities denoted by α := (α1, . . . , αp). We first specify a near-

vacuous set so that, αj ∈ [0.1, 0.9] and we choose the other set so that αj ∈ [0.2, 0.5].

Therefore, our second choice of αj’s a direct representation of our prior information

on the selection probability of variables.

Estimate Std. Error t-value p-value

(Intercept) 155 5 27 <2e-16

age 62 138 0.5 6.5e-01

sex -381 136 -2.8 6.3e-03

bmi 381 164 2.3 2.3e-02

map 365 167 2.2 3.2e-02

tc -1149 887 -1.3 1.9e-01

ldl 924 759 1.2 2.2e-01

hdl 334 447 0.7 4.6e-01

tch 244 334 0.7 4.7e-01

ltg 971 361 2.7 8.6e-03

glu 182 143 1.3 2.1e-01

Table 9.1: Summary of ordinary least squares estimates for the Diabetes dataset.

Analysis

To perform variable selection and model fitting, we randomly sample 100 observa-

tions from the dataset. We perform our analysis with two different choices of αj as

we mentioned earlier. We fix τ0 = 10−2, τ1 = 5 and use inverse-gamma distribution

to specify σ2 so that the scale and shape parameters are equal to 10−5. We also

consider four other methods for comparison. Three of these methods are based on

spike and slab priors which are spikeslab [48], SSLASSO [64] and basad [79]. The
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other method we explore for illustration is Bayesian LASSO [60] using the pack-

age blasso [43]. We also randomly sample 20 new observations for investigating

prediction accuracy and posterior predictive checking.

Method Act Inact Indet Min. Sq. Err Indeterminacy

RBVS; αj ∈ [0.1, 0.9] 2 5 3 2.4e+04 0.29

RBVS; αj ∈ [0.2, 0.5] 2 6 2 2.4e+04 0.28

SSLASSO 2 8 – 3.3e+04 –

Spike & Slab 8 2 – 2.6e+04 –

BASAD 2 8 – 3.3e+04 –

BLASSO 5 5 – 2.5e+04 –

Table 9.2: Summary of variable selection and model fitting for the Diabetes dataset.

We show the summary of our analysis in Table 9.2. In the left-most column we

provide different methods followed by three columns which represent the number of

active covariates, inactive covariates and indeterminate covariates. From Table 9.2,

we notice that both choices of αj give us 2 active co-variates which are ‘bmi’ and

‘ltg’. This is also the case for SSL and basad. However, blasso and spikeslab

include more variables in the model. Our method also identifies some indeterminate

variables in the Diabetes dataset. For the near-vacuous case, we have 3 indetermi-

nate variables whereas 2 indeterminate variables for the second case. We show the

cumulative distributions of the selected covariates in Fig. 9.2, which are obtained

from 1000 MCMC samples of the posteriors.

We provide the minimum squared error and indeterminacy in last two columns

of Table 9.2. We observe that our method outperforms other methods in terms of

minimum squared error. We also see that the near-vacuous case and the elicitation-

based case are in good agreement in terms of the indeterminacy. We also show the

posterior predictive distributions in Fig. 9.3. We use 20 newly sampled responses to

construct the reference distribution, which we show by the black bold line. The red

shaded lines on the left denotes the posterior predictive distributions obtained from

near-vacuous case and green shaded lines on the right shows the posterior predictive

distributions obtained from the elicitation-based case. To construct this distribu-
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tions we randomly choose 100 MCMC samples from the posteriors. We see that

both are in good agreement and the shaded areas cover the reference distribution.
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Figure 9.2: Empirical cumulative distribution functions of the selected covariates

for near-vacuous set (top) and elicitation-based set (bottom).
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Figure 9.3: Posterior predictive distributions obtained from the Diabetes dataset for

near-vacuous set (left) and elicitation-based set (right).

9.2 Gaia Dataset

The Gaia dataset2 was used for computer experiments [4, 31] prior to the launch of

European Space Agency’s Gaia mission [32]. The data contains spectral information

of 16 (p) wavelength bands, and four different stellar parameters. In this example,

we take stellar-temperature (in Kelvin scale) as the response variable. This dataset

contains 8286 observations which are highly correlated. We show the correlation

between the co-variates in Fig. 9.4.

Previous work by Einbeck et al. [31] suggests that this dataset contains 1-3 main

contributory variables. Based on this information, we take two sets for αj similar

to our choice of αj for Diabetes dataset in Section 9.1. We specify our first set as

near-vacuous set and choose αj ∈ [0.1, 0.9]. The second set is based on our prior

information on the contributory variables and therefore a natural choice of αj is

[1/16, 3/16].

2This dataset is openly available and has been loaded from the R package LPCM [30] for illustra-

tion.
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Figure 9.4: Correlation plot matrix of the Gaia dataset

Analysis

Similar to our example in Section 9.1, we consider 100 observations to fit our model.

We also use same parameter values to perform our robust Bayesian analysis. We

compare our method with four other methods and provide the summary of our

comparison in Table 9.3. For both choices of αj, we notice that our method considers

‘band 6’ to be the active co-variate in the model. However, the choice of αj is more

significant in identifying the inactive variables. We observe that for the near-vacuous

set, our method remain indecisive in terms of rejecting a variable and produces 15

indeterminate variables. For the elicitation-based set we see that there are only two

indeterminate variables unlike for the near-vacuous set. We notice that our method

is in good agreement with SSLASSO and blasso in terms of variable selection. The

other two methods include more variables in the model. We show the empirical

cumulative distribution functions of the 6-th co-variate in Fig. 9.5. It can be seen

from the figure that the CDFs obtained for near-vacuous set have larger variance

than that of elicitation-based set.
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Method Act Inact Indet Min. Sq. Err Indeterminacy

RBVS; αj ∈ [0.1, 0.9] 1 0 15 6.2e+07 0.45

RBVS; αj ∈ [1/16, 3/16] 1 13 2 6.1e+07 0.21

SSLASSO 1 15 – 6.4e+07 –

Spike & Slab 4 12 – 6.6e+07 –

BASAD 3 13 – 7.9e+07 –

BLASSO 1 15 – 6.5e+07 –

Table 9.3: Summary of variable selection and model fitting for the Gaia dataset.
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Figure 9.5: Empirical cumulative distribution functions of the selected covariate for

near-vacuous set (left) and elicitation-based set (right).

We also investigate accuracy of our method in terms of prediction which we show

in 4-th and 5-th columns. We sample 20 new observations from the Gaia dataset to

evaluate prediction accuracy. We notice that our method outperforms other methods

in terms of minimum squared error. It can be seen that the indetermincay is higher

for near-vacuous set than the case where an elicitation-based set is used for αj.

We also use these observations to obtain posterior predictive distributions, which

we show in Fig. 9.6, similar to our illustration with the Diabetes dataset. We see

that the posterior predictive distributions are in good agreement with the reference
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distribution denoted by the black bold line and covers the reference distribution

denoted by the black bold line.
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Figure 9.6: Posterior predictive distributions obtained from the Gaia dataset for

near-vacuous set(left) and elicitation-based set (right).

9.3 Lymphoma Dataset

We investigate the Lymphoma dataset3 [3] to illustrate our result for a high-dimensional

problem. In this dataset, there are 7399 genes related to B-cell Lymphoma along

with the response which denote censored survival times. There are only 240 ob-

servation in this dataset which makes the problem ultra-high-dimensional, that is

p � n. Performing Bayesian analysis in this type of dataset is extremely difficult

and we use a variable screening method to identify 200 important co-variates. We

use the package VariableScreening [53] to obtain the first 200 co-variates based

on the correlation distance. We provide the correlation plot of these co-variates in

Fig. 9.7. It can be observed that the dataset is highly correlated and forms several

cluster along the diagonal.

3This dataset is openly available and has been collected from the following website: https:

//web.stanford.edu/~hastie/StatLearnSparsity/data.html

https://web.stanford.edu/~hastie/StatLearnSparsity/data.html
https://web.stanford.edu/~hastie/StatLearnSparsity/data.html
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Figure 9.7: Correlation plot matrix of the Lymphoma dataset

The choice of αj for this dataset is difficult and we choose αj based on the

selected co-variates after the variable screening. We fit a ridge regression model

to examine the p-values. This preliminary analysis suggests that we may consider

20 to 30 variables based on our tolerance for p-values. Therefore, we specify our

elicitation-based as αj ∈ [0.1, 0.15]. For the near-vacuous case, we stick to our

previous examples and choose αj ∈ [0.1, 0.9].

Analysis

Similar to our previous examples, we sample 100 observations for variable selection

model fitting. For this dataset, we fix τ0 = 10−3, τ1 = 1 and use an inverse-gamma

distribution with shape and scale parameters being equal to 1. We provide the

summary of our Bayesian analysis in Table 9.4. Similar to our analysis of Gaia

dataset in Section 9.2, we observe that our method does not identify any inactive
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Method Act Inact Indet Min. Sq. Err Indeterminacy

RBVS; αj ∈ [0.1, 0.9] 1 0 199 1.2e+02 0.89

RBVS; αj ∈ [0.1, 0.15] 1 191 8 1.1e+02 0.54

SSLASSO 0 200 – 1.7e+02 –

Spike & Slab 10 190 – 1.6e+02 –

BASAD 3 197 – 1.4e+02 –

BLASSO 3 197 – 1.7e+02 –

Table 9.4: Summary of variable selection and model fitting for the Lymphoma

dataset.

variable for the near-vacuous set of αj. This is not the case for the elicitation-

based set and identifies 191 inactive variables and only 8 as indeterminate variables.

Another, interesting thing happens where, SSLASSO, selects the null model unlike

other methods used for comparison. It can be seen that both basad and blasso

identify three active co-variates, whereas spikeslab selects 10 co-variates. Our

method in this case identifies only the 7251-th predictor as active, irrespective to

the choice of αj. We show the empirical CDFs in Fig. 9.8, it can be noticed that

the variances are higher for the near-vacuous case than the elicitation-based case.

We also notice that for the Lymphoma dataset, the estimates are close to 0, which

results to the bimodal nature of the CDFs.

For the prediction accuracy, we sample 20 new observations similar to our analy-

sis using the other two datasets. We observe that our method performs better than

the other methods in terms of minimum squared error. However, the indeterminacy

is higher than the previous examples and for the near-vacuous set, the indeterminacy

is 0.89, which is undesirable. High indeterminacy suggests that we must incorpo-

rate some prior information on this dataset, which we do with the second choice of

αj. This is slightly better for the second choice of αj which is based on elicitation.

High indeterminacy for both choices of αj is also an indication that we don’t have

a best method for the Lymphoma dataset. We also show the posterior predictive

distributions in Fig. 9.9. In the figure, the left hand side shows the plots for the

near-vacuous case and right hand side shows the plots for the elicitation-based case.
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Figure 9.8: Empirical cumulative distribution functions of the selected covariates

for near-vacuous set (left) and elicitation-based set (right).

We observe that elicitation-based set gives much better result than the near-vacuous

set and posterior predictive distributions obtained from elicitation-based case covers

the reference distribution. However, this is not the case for near-vacuous case.
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Figure 9.9: Posterior predictive distributions obtained from the Lymphoma dataset

for near-vacuous set(left) and elicitation-based set (right).



Chapter 10

Conclusion

This chapter summarises all of the work presented in the thesis followed by discus-

sions and potential areas of future work.

10.1 Summary of the thesis

The thesis was focused on investigating the imprecision in high-dimensional statis-

tical modelling and building a robust variable selection routine for problems with

limited information. We investigated this in two different ways. First, we examined

the use of the weights in adaptive LASSO to perform a sensitivity analysis and check

the resulting variation in variable selection and model fitting. The other approach

we considered was robust Bayesian analysis. We specified the selection probabilities

of the co-variates using an imprecise beta distribution to obtain a robust Bayesian

variable selection routine. We applied our method to both synthetic datasets and

real life datasets to check the efficiency of our method.

In Chapter 2, we introduced the notion of statistical modelling from a regressional

point of view. We investigated linear regression and discussed its different properties

followed by a general framework of uncertainty quantification. We briefly introduced

the likelihood-based approach and the Bayesian approach for statistical inference to

build the foundation of this thesis.

Chapter 3 was focused on the theoretical framework of the likelihood-based ap-

proaches for linear regression. We discussed the maximum likelihood estimation as

116
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a tool to perform parameter estimation, which laid the foundation for ordinary least

squares and several other regularisation methods. We set up the idea of regularisa-

tion through ridge regression, which is one of the foremost works in high-dimensional

statistical modelling. Despite being a popular method because of its simple imple-

mentation and closed form expressions, it is not particularly useful for achieving

sparsity. To achieve sparsity, we require variable selection methods, which we dis-

cussed later on. We emphasised LASSO and other LASSO type problems because

of their easy implementations and fast computation. The regularisation methods

described in the thesis depend on the use of additional penalty term, which are

often solved using a regularisation parameter. This regularisation parameter gives

us different models based on its value and we require a model selection technique to

find the best fit. Besides this, regularisation methods often require numerical opti-

misation and we may not have closed form expressions to obtain variance formulas.

To overcome these issues, we need suitable model selection techniques and inference

methods which have been discussed to assist the readers.

Chapter 4 was focused on theoretical aspects of numerical optimisation. We

discussed the basic mathematics behind numerical optimisation and presented three

different optimisation techniques for LASSO along with the convergence of these

methods.

In Chapter 5, we discussed the theoretical aspects of variable selection methods

for high-dimensional problems. For a consistent variable selection an estimator

needs to satisfy several asymptotic conditions. These asymptotic conditions are

termed as the oracle properties. LASSO, despite being a popular variable selection

method, fails to satisfy the oracle properties. This led to several other works on

variable selection, adaptive LASSO being one of them. We introduced the notion

of the adaptive LASSO, which is a modification of LASSO and satisfies these oracle

properties. The formulation of adaptive LASSO allows us to perform a sensitivity

analysis over a set of weights. We discussed this sensitivity analysis along with

novel error bounds, which help us to understand the effect of data driven weights

in variable selection. The other important topic we discussed in this chapter is the

binary credal classification under sparsity constraints. This is an extension of the
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adaptive penalised logistic regression. In binary credal classification, we obtain a

robust classification routine through sensitivity analysis.

Chapter 6 was focused on the Bayesian approaches for linear modelling. We first

discussed different types of prior for Bayesian analysis followed by the estimation

techniques in Bayesian paradigm. Later on, we focused on different Bayesian mod-

elling strategies for linear regression. We investigated the use of both informative

priors and improper priors for linear models. In this thesis, we are particularly

interested in high-dimensional models and variable selection strategies. To achieve

sparsity, we need special types of hierarchical models to specify the regression coef-

ficients. We discussed these hierarchical models in this chapter. At first, stochastic

search variable selection was introduced, which achieves sparsity by introducing se-

lection indicators in the model. This is a special version of spike and slab priors,

which have been discussed as well. Besides this, we discussed the Bayesian LASSO,

which is the direct Bayesian representation of LASSO.

The Bayesian paradigm allows us to incorporate our prior beliefs in an efficient

way. However, in high-dimensional models, the severe uncertainty often results in

different models based on different prior specifications. Therefore, we are interested

in a robust Bayesian analysis which is performed through specifying a set of priors

instead of a single prior. This robust Bayesian analysis was introduced in Chapter 7.

We discussed the philosophy behind robust Bayesian analysis and its relevance in

high-dimensional statistical modelling. After that, we introduced the imprecise beta

model, which is an integral part of our robust Bayesian variable selection. Finally,

we laid the foundation stone of our method by pointing out different sources of

uncertainty in high-dimensional models and their remedies through robust Bayesian

analysis.

Chapter 8 was dedicated to our novel robust Bayesian variable selection frame-

work. We discussed our hierarchical model and the motivation behind our prior

specifications. The choice of our prior selection probability plays an important role

in robust variable selection, for which we use the imprecise beta prior. The robust-

ness is achieved through a sensitivity analysis over a set of α. We used this α to

specify our prior expectation of the selection probability. Our choice of conjugate
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priors gives us a nice framework for conditional analysis. We considered an orthog-

onal design case, which allowed us to decompose the joint posterior in a convenient

way to perform conditional analysis. We discussed the posteriors for regression pa-

rameters and selection indicators through our analysis. We also provided a general

framework for robust variable selection which can be achieved efficiently through

a Gibbs sampling algorithm. Our robust Bayesian methodology gives us a set of

posterior distributions instead of a single posterior, for which two measures have

been introduced, which were used to capture the indeterminacy in model fitting.

Finally, an application of our methodology was shown in Chapter 9. In this

chapter, we investigated three different real datasets to capture different aspects of

high-dimensional modelling.

10.2 Discussion and future works

An important aspect of research work is to put light on the issues, which have not

been tackled yet. This thesis investigates a novel robust Bayesian approach for

variable selection, where we face some limitations on the modelling strategies and

need to be improved. For instance, we need to find a suitable measure to evaluate

prediction accuracy as well as the underlying imprecision. In this section, we briefly

discuss some of these limitations of our work along with other promising areas of

our research, which could be further investigated.

An important part of our variable selection method is to have a decision criterion

for the posterior odds of the selection indicators. This is an interesting area of

research, which we can develop further. In this thesis, we adapt the approach of

George and McCulloch [41] to specify the active co-variates. George and McCulloch

[41] considered the median probability of the selection indicators and checked if these

are greater than 1/2. We adapt this decision rule in our robust Bayesian analysis

by checking the posterior odds over the set of α. However, we may also consider

this co-variate selection as a decision making problem and the notion of median

probability can replaced by a more generalised utility-based decision rule.

Our methodology is based on the sensitivity analysis over the sets of prior selec-
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tion probability but another important aspect of our method is the spike and slab

prior specification. The choice of scale parameters in slab component of the model is

very crucial. For the orthogonal design case, we can evaluate the effect of this scale

parameter in variable selection through a closed form expression, however, this is

not the case for general design. Extreme choices of this scale parameter contribute

to more indeterminate variables. We were able to explain part of this effect but

it is not fully understood yet. This remains as an open question where we would

like to understand the behaviour of our model based on the specification of the slab

component.

Our robust Bayesian method also raises research questions around prediction and

model fitting. One aspect of linear regression is model fitting, where we are interested

in the goodness of fit. In robust Bayesian analysis, we have a set of posteriors,

which makes model fitting non-trivial. We introduced two different measures for this

purpose. However, these are very crude ways of explaining goodness of fit as well as

indeterminacy in model fitting. We would like to have a more sophisticated way of

explaining these measures of accuracy, which can be compared with other methods

as well. This is a very interesting aspect of robust Bayesian methodology and not

just our variable selection routine. A unified measure of accuracy for goodness of

fit will be beneficial for robust Bayesian analysis and will open the door of a more

explicable comparison with other methods, where we don’t have a set of posterior

distributions or posterior estimates.

Moreover, we can exploit our robust Bayesian variable selection method to in-

troduce modelling strategies for other types of regression models, especially when

our regressors are continuous. Our hierarchical model with conjugate priors can

be easily extended to other problems, which involve a likelihood from the exponen-

tial family of distributions. This opens the door for several future works in robust

Bayesian variable selection, which we would like to explore in the future.



Appendix A

Proofs of Lemmas

Here, we provide proof of different lemmas and results, which we use in the thesis.

The lemmas are well known and often can be found in the literature as statements.

We aim to provide the proof for convenience and continuity of our proofs in the

main text.

A.1 Likelihood-based Approaches

A.1.1 Invertible covariance matrices are postive definite

Let x be a n× p design matrix that is the matrix of predictors.

Lemma A.1. If xTx is invertible then it is positive definite.

Proof. Let, v ∈ Rp be a non zero vector. Then,

vTxTxv = (xv)Txv = ‖xv‖2
2 ≥ 0. (A.1)

That is xTx is positive semi definite. Now, since v is non zero vector therefore

‖xv‖2
2 = 0 implies that columns of x are not linearly independent and xTx is not

invertible.

This contradicts our assumption and therefore, ‖xv‖2
2 > 0. That is xTx is

positive definite when xTx is invertible.
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A.1.2 Ridge estimates are root-n-consistent

Let ‖ · ‖ denote the matrix norm in the space Rp×p such that, for any matrix A

‖A‖ := sup
‖x‖2=1

{‖Ax‖2 : x ∈ Rp}, (A.2)

where ‖ · ‖2 denotes the usual Euclidean norm in Rp. Note that, ‖A‖ is the largest

eigenvalue of A.

Let {An}n be the sequence of matrices

An =
1

n

(
xTx + λnIp

)
, (A.3)

where 0 < λn <∞.

Lemma A.2. The limn→∞A
−1
n exists and it equals to Σ−1.

Proof. To prove Lem. A.2, we first show that, limn→∞An exists and is equal to Σ.

‖An − Σ‖ =

∥∥∥∥ 1

n

(
xTx + λnIp

)
− Σ

∥∥∥∥ (A.4)

=

∥∥∥∥ 1

n
xTx− Σ +

λn
n

Ip

∥∥∥∥ (A.5)

by applying triangle inequality in Eq. (A.5), ie. ‖a+ b‖ ≤ ‖a‖+ ‖b‖, we get,

‖An − Σ‖ ≤
∥∥∥∥ 1

n
xTx− Σ

∥∥∥∥+

∥∥∥∥λnn Ip

∥∥∥∥ (A.6)

=

∥∥∥∥ 1

n
xTx− Σ

∥∥∥∥+
λn
n
. (A.7)

Now, as n→∞, limn→∞
1
n
xTx = Σ Therefore,

‖An − Σ‖ → 0 (A.8)

=⇒ lim
n→∞

An = Σ. (A.9)

Since, {An}n is convergent, therefore it is a Cauchy sequence, that is, for every

δ > 0 there exists a positive natural number N such that for all natural numbers

m1,m2 > N

‖Am1 − Am2‖ < δ. (A.10)

Now, since, An is sum of a positive semi-definite matrix ( 1
n
xTx) and a diagonal

matrix with positive entries (λnIp), it is easy to see that An is positive definite.
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Then, the inverse A−1
n exists. Let, An = UnDnU

T
n where, Dn is a diagonal matrix

and Un is orthogonal. Now,

‖A−1
n ‖ =

∥∥(UnDnU
T
n )−1

∥∥ (A.11)

=
∥∥(UnD

−1
n UT

n )
∥∥ (A.12)

since, Un is orthogonal and Dn is diagonal, we get,

‖A−1
n ‖ = sup

1≤j≤p
{[D−1

n ]jj} (A.13)

=
1

inf1≤j≤p{[Dn]jj}
. (A.14)

As, An = 1
n

(
xTx + λnIp

)
is positive definite, therefore all of its eigen values are

greater than or equal to λn. Therefore,

‖A−1
n ‖ ≤

1

λn
. (A.15)

Then,

A−1
m1
− A−1

m2
= A−1

m1
Am2A

−1
m2
− A−1

m1
Am1A

−1
m2

(A.16)

= A−1
m1

(Am2 − Am1)A
−1
m2

(A.17)∥∥A−1
m1
− A−1

m2

∥∥ =
∥∥A−1

m1
(Am2 − Am1)A

−1
m2

∥∥ (A.18)

applying the Cauchy-Schwartz inequality we get,∥∥A−1
m1
− A−1

m2

∥∥ ≤ ∥∥A−1
m1

∥∥ ‖Am2 − Am1‖
∥∥A−1

m2

∥∥ (A.19)

using Eq. (A.10), ∥∥A−1
m1
− A−1

m2

∥∥ ≤ δ
∥∥A−1

m1

∥∥∥∥A−1
m2

∥∥ (A.20)

≤ δ

λ2
n

. (A.21)

Therefore, for every δ
λ2n

> 0, we can find a positive natural number N , such that

for every m1,m2 > 0,
∥∥A−1

m1
− A−1

m2

∥∥ ≤ δ
λ2n

. Hence, {A−1
n }n is a Cauchy sequence.

Since, Rp is a Banach space under the Euclidean norm ‖ ·‖2, therefore every Cauchy

sequence is convergent. Then there exist L such that, limn→∞A
−1
n = L. Now,

AnA
−1
n = Ip = A−1

n An (A.22)
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lim
n→∞

AnA
−1
n = Ip = lim

n→∞
A−1
n An (A.23)

since both An and A−1
n is convergent,

lim
n→∞

An · lim
n→∞

A−1
n = Ip = lim

n→∞
A−1
n · lim

n→∞
An (A.24)

Σ · L = Ip = L · Σ (A.25)

Therefore, limn→∞A
−1
n = Σ−1.

Recall the Ridge estimates in Eq. (3.12) given by:

β̂R(λn) := arg min
β

(
1

2
‖Y − xβ‖2

2 + λn‖β‖2
2

)
. (A.26)

Lemma A.3. Let λn be sequence of regularisation parameters such that λn√
n
→ 0 as

n→∞, then the ridge estimates are root n-consistent.

Proof. Let An = 1
n

(
xTx + λnIp

)
β̂R(λn) = (nAn)−1 xT (xβ + ε) (A.27)

= (nAn)−1 xTxβ + (nAn)−1 xT ε (A.28)

We know that, E[xT ε | x] = 0. Therefore, conditioning on x, we get

E[β̂R(λn)− β | x] = (nAn)−1 xTxβ − β (A.29)

= (nAn)−1 (nAn − λnIp) β − β (A.30)

= β − (nAn)−1 λnβ − β (A.31)

= −λn (nAn)−1 β. (A.32)

Multiplying
√
n on both sides,

E[
√
n(β̂R(λn)− β) | x] = −

√
nλn (nAn)−1 β (A.33)

= −
√
n

n
λnA

−1
n β (A.34)

= − λn√
n
A−1
n β (A.35)

Now, as n→∞, from Eq. (A.35), we get:

lim
n→∞

E[
√
n(β̂R(λn)− β) | x] = lim

n→∞
− λn√

n
A−1
n β (A.36)
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since, by Lem. A.2, limn→∞A
−1
n exists and β is independent of n, therefore using

product rule of limits we get

= −β lim
n→∞

λn√
n

lim
n→∞

A−1
n (A.37)

= −β · 0 · Σ−1 (A.38)

= 0. (A.39)

This proves
√
n
(
β̂R(λn)− β

)
is asymptotically unbiased. Along the same lines it

would be possible to show that ns
(
β̂R(λn)− β

)
is asymptotically unbiased for any

0 ≤ s < 1 under suitable convergence criterion for λn.

As before, conditioning on x, we get:

Var
[√

n
(
β̂R(λn)− β

)
| x
]

= Var
[√
n
(
(nAn)−1 xT ε

)]
(A.40)

= Var

[√
n

n
A−1
n xT ε

]
(A.41)

= Var

[
A−1
n

(
1√
n
xT ε

)]
(A.42)

= A−1
n Var

[(
1√
n
xT ε

)]
·
(
A−1
n

)T
(A.43)

since, A−1
n =

(
1
n
xTx + 1

n
λnIp

)−1
is symmetric

= A−1
n ·

1

n
xTx · Var[ε] · A−1

n . (A.44)

Now, as n→∞,

lim
n→∞

Var
[√

n
(
β̂R(λn)− β

)
| x
]

= lim
n→∞

A−1
n ·

1

n
xTx · Var[ε] · A−1

n . (A.45)

Since, by Lem. A.2, limn→∞A
−1
n exists and limn→∞

1
n
xTx exists by assumption,

therefore applying product rule of limits, we get:

= Var[ε] · lim
n→∞

A−1
n · lim

n→∞

1

n
xTx · lim

n→∞
A−1
n (A.46)

= σ2Σ−1ΣΣ−1 (A.47)

= σ2Σ−1. (A.48)

Now, by the central limit theorem we know,

√
n
(
β̂R(λn)− β

)
d−→ N

(
E
[√

n
(
β̂R(λn)− β

)]
,Var

[√
n
(
β̂R(λn)− β

)])
.

(A.49)
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Now, applying Eq. (A.28), Eq. (A.35) and Eq. (A.48) we get,

√
n
(
β̂R(λn)− β

)
d−→ N

(
0, σ2Σ−1

)
. (A.50)

A.2 Robust Bayesian Variable Selection

A.2.1 Variance formula for mixture of distributions

Lemma A.4. Let

X ∼ w1f1 + w2f2 (A.51)

where fi denotes a normal density with mean µi and variance σ2
i for i = 1, 2. Then,

V ar(X) =
2∑
i=1

wi(σ
2
i + µ2

i )−

(
2∑
i=1

wiµi

)2

(A.52)

Proof. First, note that

E(X2) =

∫
x2[w1f1(x) + w2f2(x)]dx (A.53)

= w1

∫
x2f1(x)dx+ w2

∫
x2f2(x)dx (A.54)

= w1(σ2
1 + µ2

1) + w2(σ2
2 + µ2

2). (A.55)

Consequently, Then, the variance of X is given by:

Var(X) = E(X2)− [E(X)]2 (A.56)

=
2∑
i=1

wi(σ
2
i + µ2

i )−

(
2∑
i=1

wiµi

)2

. (A.57)
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