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Abstract

We present investigations of the nonlinear optical phenomenon of four-wave mixing
(4WM) in a thermal vapour at a high magnetic field. The 5S1/2, 5P1/2, 5P3/2, and
5D3/2 terms in rubidium-87 are used. In a 0.62 T field, the optical transitions
become separated by more than their Doppler width, effectively isolating a four-level
system. Spontaneous 4WM in this system is used to generate herald-signal photon
pairs and to realise a heralded single-photon source, as demonstrated by a Hanbury
Brown–Twiss (HBT) experiment giving a g(2)(0) value of 0.35 ± 0.02. We show that
increased correlation between herald and signal leads to a g(2)(0) value closer to zero,
and we investigate the parameters that increase this correlation. We additionally
characterise the parameters in the seeded 4WM system and show that working in the
hyperfine Paschen–Back (HPB) regime leads to a good agreement between theory
and experiment. The splitting of the seeded 4WM lineshape is used to extract an
excited state dipole matrix element. We also study the background photons in our
system, showing that they are partly a result of a collisional transfer process. We
build a bespoke etalon lens filter to aid in filtering out these photons and show
that the use of this filter improves the correlation between herald-signal photon
pairs. In order to perform HBT experiments that take over twenty-four hours to
run, we devise a novel laser locking scheme, named STROLL, that simultaneously
stabilises the frequencies of two lasers to a two-photon transition over that time
period. Difficulty with optimising the alignment of photons into a fibre leads us
to also develop an innovative method of using machine learning for automatically
aligning laser beams; we implement this method on a physical device, which we
have named the Pi Auto-aligner.
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“I am among those who think that science has great
beauty... A scientist in his laboratory is not only a techni-
cian: he is also a child placed before natural phenomena
which impress him like a fairy tale. We should not al-
low it to be believed that all scientific progress can be
reduced to mechanisms, machines, gearings, even though
such machinery also has its own beauty.”

MARIE CURIE
1867–1934
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Chapter 1

Introduction

In this work, we explore the optical phenomenon of four-wave mixing (4WM), in
which three optical fields are coherently combined to produce a fourth field. This
process in nonlinear optics has found use in a variety of applications, including the
production of correlated photon pairs for use in quantum information protocols [2];
for transferring trans-spectral orbital angular momentum [3]; for precision spectro-
scopic measurements [4]; for the creation of entangled imaging systems [5]; and for
observing collective quantum beats [6], to name but a few.

Atoms of a single isotope can be considered to be identical oscillators1. EM fields
affect the state of an atom, allowing the atom to be used as a sensor for these
fields [9–11]. Conversely, light incident upon an atom is changed by the atom,
allowing atomic media to be used to manipulate light [12]. Traditionally—since
laser cooling was developed [13]—cold atoms have been used for these purposes.
However, thermal vapours have distinct advantages due principally to the absence
of a need for sophisticated apparatuses for cooling and trapping. This leads to
thermal atomic vapour experiments being simpler to make, cheaper, and more
compact. The compactness allows for devices built using thermal vapour cells to
be miniaturised [14,15]. Furthermore, with vapour cells, one can change the atomic
1This is true provided the atoms are observed under the same conditions (e.g., at rest in the
same magnetic field). This then allows them to be used as ultra-precise clocks with long-term
stability [7, 8].
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Chapter 1. Introduction

number density in a range that spans many orders of magnitude, simply by changing
their temperature. The workhorses in the field are alkali metals because they have
simple, well-established atomic structures and well-understood interactions with
external fields. Throughout this work, we work with a thermal vapour of pure (i.e.,
at the 98% level) rubidium-87.

Atomic energy levels are very sensitive to externally applied magnetic fields [16],
allowing them to be used as sensors for these fields [17]. In magnetic field strengths
of ∼1 T, the ground state alkali-metal atoms enter what is known as the hyperfine
Paschen–Back (HPB) regime where the Zeeman shifts exceed the atomic hyperfine
splittings. It is possible to purchase permanent magnets with the high field strengths
required to reach this regime. As vapour cells can be small, good field homogeneity
across the cell is also readily achievable with such magnets. In the HPB regime,
each of the transitions are individually resolved and therefore separately addressable.
This enables simplified spectroscopic measurements in thermal vapours [6,18–25]
as ideal two-, three- [24] and four-level [25] systems are realised.

We characterise a four-level seeded 4WM system in a diamond configuration in
the hyperfine Paschen–Back regime and show how the 4WM signal can be used to
extract an excited state dipole matrix element. We enter the arena of quantum
nonlinear optics by showing how the particular case of spontaneous 4WM can
be used to create a heralded source of single-photons in rubidium vapour. This
is demonstrated by a Hanbury Brown–Twiss (HBT) experiment giving a g(2)(0)
value of 0.35± 0.02. We find that to bring this number closer to zero, and thus
the system closer to an ideal single-photon source, it is necessary to increase the
correlation between the herald-signal photon pairs produced. We explore the
various parameters that can increase this correlation.

Along the way to these results, we design and build a bespoke etalon filter to aid
in the removal of background photons, and show that it has the effect of improving
correlations between herald and signal photons. We perform a set of investigations
into these background photons, confirming that they result from the collisional
transfer of states. We devise a new laser locking method, called STROLL, that
is effective at locking two lasers simultaneously to a two-photon transition in the

2



Chapter 1. Introduction

hyperfine Paschen–Back regime. We also design and build a novel machine-learning
device to automatically align laser beams, which will, amongst other things, allow
the maximum number of signal photons to be captured.

1.1 A brief history of quantum theory, leading
to quantum optics

A short trip through the history of quantum theory will situate our work in quantum
optics within the larger historical context. Since this is a long and interesting set of
narratives, we will limit the discussion to points that the author found interesting
and relevant to the work in this thesis.

Perhaps the best place to begin is with the rivalry between Newton and Huygens:
in the early 1800s, theirs were the two competing theories of light. Huygens held
to a wave theory of light and Newton to a particle (“corpuscular”) theory. Both
Huygens’ wave concept and Newtons’ particle concept differ considerably from the
modern understanding of particles or waves. Huygens’ wave concept lacked both a
frequency or a wavelength; Newton’s particles were four-sided [26]. Nevertheless,
Newton was able to use his concept to explain the behaviour of light being split
into ordinary and extraordinary beams by a calcite crystal, and it turns out that
his explanation was essentially an elucidation of the polarisation properties of
light.2

It seemed initially that the wave theory was the best explanation for Young’s
double-slit experiment of 1801 [27] and diffraction, as explained by Fresnel in 1815
[28]. Familiarity with Young’s double-slit experiment and the ease with which the
results can be explained by wave interference may make us overlook its strangeness
from the point of view of light-as-particles: adding light (through a second hole)
leads to lower light intensity (at some points on a screen)3. And so by the end
2The author finds it encouraging that it is possible to be wrong in the specifics and yet be right
in the general or, alternatively, to be interestingly wrong such that one opens the way to the
right answer.

3This strangeness only deepens with later experiments [29,30] showing that double-slit experiments
with a single photon at a time still give these interference effects.

3



Chapter 1. Introduction

of that century, a little after the Maxwell-Heaviside equations showed wavelike
solutions that travelled at the speed of light, the corpuscular theory seemed to have
been undermined.

However, the corpuscular theory was swiftly revived in 1900 when Planck [31]
hypothesised that black-body radiation could be explained as discrete packets of
energy called quanta. In particular, he accounted for the spectral distribution
of radiation from a thermal source by postulating that the energy of a harmonic
oscillator is quantised [32,33]. This solved the ultraviolet catastrophe problem that
had been one of the outstanding problems in physics to that date, despite that
specific problem not being the motivation for Planck’s hypothesis [34]. Initially
Planck did not believe this quantisation to be anything more than a mathematical
trick [35]. Half a century later, only after quantum theory was fully developed
would Planck write, “I now knew for a fact that the elementary quantum of action
[Planck’s constant] played a far more significant part in physics than I had originally
been inclined to suspect...” [36]

In 1905, Einstein [37] used the nascent quantum theory to explain the photoelectric
effect. Planck’s and Einstein’s work inspired much of the early work on the
development of quantum mechanics. Yet those early experiments did not constitute
direct experimental evidence that it was light that was quantised. Indeed, it can
be shown that the photoelectric effect can be explained by assuming only that
the atom has quantised energy levels. Throughout its history, there have been
few experiments which directly show the quantum nature of light. This recurring
theme appears in the experiments in this thesis. Proving the single-photon nature
of our source took at least as long as building the source in the first place.

Experimental quantum optics proper can perhaps be said to begin with Taylor’s
experiment of 1909 [29]. This was a successor experiment to Young’s with the light
beam intensity attenuated such that there was only one quantum of energy in the
apparatus at any given time.

Theoretical quantum optics proper began in the 1920s. The word “photon” was
coined by Lewis in a letter to Nature in 1926 [38]4, and in 1927 Dirac [41] established
4To be exactly accurate the word “photon” was first used by Troland [39] but it meant something
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his quantum theory of radiation. In the same decade, Dirac suggested that light
is both a particle and a wave at the same time [42]. Until the 1950s, the subject
of quantum optics, in theory and practice, was devoted to studying the optical
spectra of atoms.

The game-changer of the field was the invention of the laser in 1960 ([43] &
[44]). The laser allowed experimental explorations of quantum theory in multiple
directions. Of particular interest to us is Glauber’s 1963 [45] descriptions of states
of light that have different statistical properties to classical light. In 1977, these
non-classical properties were confirmed by Kimble, Dagenais, and Mandel [46] with
the first demonstration of photon antibunching.

We finish by mentioning the work of Hanbury Brown and Twiss [47]. In 1956,
they recorded correlations between starlight intensities detected on two separated
detectors. These experiments investigated light intensity fluctuations on short-
time scales which paved the way for photon statistics experiments that can only
be explained by quantised light. It is by using a modern version of Hanbury
Brown–Twiss experiment that we are able, in this thesis, to show we have built a
single-photon source.

1.2 Thesis summary
Chapter 2 – We explicate the theoretical underpinnings of the basic atom-light
interactions work underlying this work. Starting from a two-level system and
computationally solving the Lindblad equation, extra levels are added to show how
the absorptive and dispersive properties of the medium change. The changes to
the energy-level structure of rubidium in the hyperfine Paschen–Back regime are
explained.

Chapter 3 – We detail the ancillary experimental apparatus and techniques required
for our experiments. We explain how to optimise the power output of a tapered
amplifier and how to use an optical cavity to calibrate the frequency of a laser.

different to him; it was Lewis that used the word to mean something similar to what we mean
now. The word remains controversial in some quarters [40].
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The design of a bespoke etalon lens filter that we built to narrowly filter light is
discussed.

Chapter 4 – We describe the design and implementation of an innovative machine-
learning device for automating the alignment of laser beams. Both the first-
generation (Build 1.0) and second-generation (Build 2.0) designs are discussed and
their differences explained.

Chapter 5 – We describe a novel laser locking scheme that simultaneously stabilises
the frequencies of the 780 nm pump laser and the 776 nm coupling laser to a
two-photon transition in the hyperfine Paschen–Back regime.

Chapter 6 – We undertake an investigation of the background photons generated
by collisional transfer. It is shown that the generation of 780 nm fluorescence light
from 795 nm laser light in a rubidium vapour, and vice versa, is dependent on the
atomic number density.

Chapter 7 – We characterise the seeded four-wave mixing (4WM) system, and show
that the experimental data agree with the computational model. In particular,
we explain that this works despite the model being a simple one because of the
effective four-level system created in the hyperfine Paschen–Back regime. The
4WM signal is used to extract a dipole matrix element.

Chapter 8 – We describe how spontaneous four-wave mixing is used to create a
single-photon source. The single-photon nature of the source is demonstrated by
showing that a Hanbury Brown–Twiss experiment gives a value for g(2)(τ = 0)
below 0.5. All the experimental variables that bring this value closer to zero are
investigated.

Chapter 9 – Each chapter of the thesis is summarised, and the outlook for the
research is commented upon.
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1.3 Publications
The following papers have come out of the work described in this thesis:

Renju S. Mathew, Francisco Ponciano-Ojeda, James Keaveney, Daniel J. Whit-
ing, and Ifan G. Hughes, Simultaneous two-photon resonant optical laser locking
(STROLLing) in the hyperfine Paschen–Back regime, Optics Letters 43 17, pp. 4204-
4207 (2018). doi:10.1364/OL.43.004204 [48].

Renju S. Mathew, Roshan O’Donnell, Danielle Pizzey, and Ifan G. Hughes. The
Raspberry Pi Auto-aligner: Machine Learning for Automated Alignment of Laser
Beams, Review of Scientific Instruments 92 015117 (2018). doi:10.1063/5.0032588 [49].

Daniel J. Whiting, Renju S. Mathew, James Keaveney, Charles S. Adams, and Ifan
G. Hughes, Four-wave mixing in a non-degenerate four-level diamond configuration
in the hyperfine Paschen–Back regime, Journal of Modern Optics 65 713 (2018).
doi:10.1080/09500340.2017.1377308 [25].

Clare R. Higgins, Danielle Pizzey, Renju S. Mathew and Ifan G. Hughes. Atomic
line versus lens cavity filters: a comparison of their merits. OSA Continuum 3 961
(2020). doi:10.1364/OSAC.390604 [50].

The following papers are in preparation:

Direct measurement of an excited-state dipole matrix element using four-wave
mixing in the hyperfine Paschen–Back regime.

Single-photon generation in rubidium vapour via four-wave mixing in the hyperfine
Paschen–Back regime.

1.4 Contributions
Ifan Hughes was the principal investigator for this project. Charles Adams was the
secondary supervisor. Contributions from other researchers are detailed below.

Nicholas Spong was involved at the origin of Build 1.0 of the machine-learning
project. He provided guidance and support in the early stages of that project.
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Clare Higgins was involved at the end of that project and helped to test the device.
Investigations were performed on the spontaneous four-wave mixing project with
Clare’s assistance. The etalon filter was built by Clare & Danielle Pizzey. Build 2.0
of the machine-learning project was built by Roshan O’Donnell. The building of
the STROLL lock was done jointly with Francisco Ponciano-Ojeda. He was also
involved at the beginning of the investigations into background photons. Seeded
four-wave mixing (4WM) work, excluding the measurement of the dipole matrix
element, was done jointly with Dan Whiting, with Dan doing much of the modelling.
Postdoctoral support was provided by James Keaveney in the first third of the
project, by Liz Bridge in the second third and Danielle Pizzey & Lina Hoyos-Campo
in the last third. Any highly specific contributions are indicated in the relevant
chapters.
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Chapter 2

Theory: Atom-light
interactions

In this chapter, we shall introduce the basic physics underlying the atom-light
interactions described in the rest of the thesis. We shall begin by considering
the dynamics of the simplest system, a hypothetical two-level atom coupled by a
driving field (Fig. 2.1) and determine the steady-state solution. We shall then add
levels until we reach the four-level system that is considered in most of this work.
We then cover the energy level structure of the atom which we will use in all of
our experiments, rubidium-87, and finish by explaining how the energy levels shift
in the hyperfine Paschen–Back regime. More advanced, as well as more specific,
theory will be covered in the relevant chapters.

2.1 Time evolution of a two-level system
Our discussion begins with a hypothetical atom with just two levels that are coupled
by a monochromatic light field. The two-level atom has a ground-state |g〉 of energy
Eg and an excited-state |e〉 of energy Ee, where Ee−Eg = ~ω0, and ω0 is the atomic
resonance frequency. We can describe the state of the two-level atom by using a
density matrix [51]. The density matrix method allows the computation of the
dynamics of quantum systems without requiring full information about all of the
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Chapter 2. Theory: Atom-light interactions

Figure 2.1: (a) Two-level, (b) three-level, and (c) four-level systems coupled with
seed, pump, and coupling lasers with Rabi frequencies Ωs, Ωp, and Ωc respectively.
In the main text, |0〉 & |1〉 are also referred to as |g〉 & |e〉, for ground and excited
respectively.

system’s underlying details [52]. The two-by-two density operator, ρ̂, representing
the two-level system is

ρ̂ =

ρgg ρge

ρeg ρee


 , (2.1)

where the subscripts ‘g’ and ‘e’ refer to the ground and excited states, respectively.
The diagonal elements represent the populations of the states, and the off-diagonal
elements represent coherences between the states. This generalises so that an
n-level system can be described with an n-by-n matrix, where the diagonal terms
correspond to the populations of each level and the off-diagonal terms correspond
to the coherences between levels.

We now consider an incident plane-wave optical field of angular frequency ω with
an electric field

~E(ω) = êE cos(ωt) = êE
2
(
eiωt + e−iωt

)
, (2.2)

where ê is a vector describing the polarisation of the field. In full generality, this
field is written ~E(ω, t) = êE cos(ωt− kz), where k = 2π/λ is the wavenumber and
z is the propagation direction, but we can make use of the dipole approximation
[16] to allow us to neglect the spatial z dependence. This approximation can be
made when the wavelength of the light is much larger than the spatial extent of

10



Chapter 2. Theory: Atom-light interactions

the atomic wavefunctions, as is the case for all the systems considered.

The field couples the two states via an electric dipole transition which has the
dipole operator

d̂ =

 0 ~dge
~deg 0


 ,

where ~dij = 〈i|e~r|j〉 are the dipole matrix elements, e is the electron charge, and ~r
is the displacement vector.

The atom-field interaction can then be described by the following Hamiltonian:
[16]

Ĥint = −d̂ · ~E. (2.3)

Liouville evolution

The time evolution of the system can now be calculated using the Liouville equa-
tion1 [53]

dρ̂
dt = − i

~
[Ĥ, ρ̂], (2.4)

where the total Hamiltonian Ĥ = Ĥ0+Ĥint is the sum of the interaction Hamiltonian,
Ĥint (Eq. 2.3), and the unperturbed atomic Hamiltonian, Ĥ0, which is described
by

Ĥ0 =

Eg 0

0 Ee


 . (2.5)

It is useful to perform a rotating frame transformation using the following unitary
operator:

Û =

e
−iEg/~t 0

0 e−iωte−iEg/~t


 . (2.6)

This frame contains a term which oscillates with the driving field frequency, and it
allows us to shift the energy scale such that the ground state is zero. This gives
the transformed density matrix
1This is equivalent to using the time-dependent Schrödinger equation with a quantum wavefunction.
Eq. 2.4 is often also referred to as the Liouville–von Neumann equation as it was von Neumann
that first introduced the formalism of density operators and matrices [53].
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ρ̃ = Û †ρ̂Û =

 ρgg ρgee−iωt

ρegeiωt ρee


 ,

and the transformed Hamiltonian

H̃ = Û †ĤÛ − i~Û †dÛdt

= 1
2


 0 −~dge · ~εE[1 + e−2iωt]
−~deg · ~εE[1 + e2iωt] 2[Ee − Eg − ~ω]


 .

We now use the rotating-wave approximation (RWA) [16]: the rapidly oscillating
terms can be discarded because their time dependence averages out over the
relatively larger time scale required for the evolution of the atomic populations.

So, we have

H̃RWA = 1
2


 0 −~dge · ~εE
−~deg · ~εE 2[~ω0 − ~ω]


 .

By making use of the definitions for the angular Rabi frequency, Ω = −~dge · ~εE/~,
and the detuning, ∆ = ω − ω0, we obtain the final Hamiltonian2

H̃RWA = ~
2


 0 Ω

Ω∗ −2∆


 .

In preparation for adding more levels (See Fig. 2.1), let us write this as

H̃2level = ~
2


 0 Ωs

Ωs −2∆s


 , (2.7)

where the subscript ‘s’ indicates the seed beam3 that couples the two levels to-
gether.
2Ω = Ω∗ since ~deg = ~dge.
3This is conventionally referred to as the probe beam, but we refer to it as the seed beam as it
will eventually be identified as the seed for the seeded four-wave mixing process.
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Lindblad master equation

Even though we are considering the atom interacting with a single light field, there
is some interaction of the atom with the vacuum, which leads to the emission of
photons. This is the well-known phenomenon of spontaneous emission ([16] &
Section 10.3.2 of [54]).

This decay is not accounted for by the Liouville–von Neumann equation (Eq. 2.4)
because that only describes the coherent evolution of the density matrix. The
decay can be included phenomenologically as a statistical process packaged into
the decay matrix, L̂, which is added to the right hand side of Eq. 2.4. This gives
the Lindblad master equation ([55–57], Eq. 9 in [57])

dρ̂
dt = − i

~
[Ĥ, ρ̂] + L̂, (2.8)

where L̂ = ∑
n[2Ĉnρ̂Ĉ†n − (ρ̂Ĉ†nĈn + Ĉ†nĈnρ̂)]/2, Ĉn = √γnÂn are the collapse

operators, and Ân are the operators describing the coupling of the environment to
the system with rates γn . For spontaneous decay from the excited state to the
ground state (with a lifetime τ = 1/Γs), the collapse operator is Ĉ =

√
Γs|g〉〈e|.

We shall see that Γs is the linewidth of the transition.

Writing out each term in equation 2.8 leads to the optical Bloch equations [58]. For
the two-level system, the steady-state solutions can be derived analytically. The
coherence between the two states is,

ρeg = − iΩ/2
Γs/2− i∆ (ρgg − ρee) . (2.9)

Taking the limit of ρeg/Ω as Ω → 0, i.e., in the limit of a weak incident electric
field, we find that

lim
Ω→0

ρeg
Ω = 1

2∆ + iΓs
. (2.10)
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Macroscopic properties

We now relate the ρeg term to the macroscopic properties of a medium containing
many two-level atoms. The optical response of the system can be described in
terms of its complex electric susceptibility, χ. The macroscopic polarisation, ~P ,
is related to the individual (microscopic) electric dipole moment of each atom as
follows. The polarisation is given by the number density of dipoles N multiplied
by the average dipole moment,

~P = N〈d̂〉 = Tr(ρ̂d̂)N = N(~dgeρege−iωt + c.c.), (2.11)

where c.c. is the complex conjugate.

The polarisation of the macroscopic medium can also be written as [59]

~P = ε0χ~E = 1
2ε0

~E(χe−iωt + c.c.), (2.12)

where ε0 is the permittivity of free space. The complex susceptibility is frequency-
dependent, and the medium’s dispersive and absorptive properties are described
by the real and imaginary parts of χ, respectively. We can equate equations 2.11
and 2.12 in order to relate the microscopic and macroscopic quantities. Taking the
dot product with ~dge of both sides gives

Nd2
geρeg = 1

2ε0
~E · ~dge
~

~χ. (2.13)

Rearranging, we can write the susceptibility in terms of the microscopic quantities
as

χ = −2d2
ge

~ε0

(
ρeg
Ω

)
N, (2.14)

where the definition of Rabi frequency Ω = −~dge · ~εE/~ has been used.

Now, combining Eq. 2.14 and Eq. 2.10 (i.e., the weak-probe regime [60] where the
susceptibility is independent of the incident electric field strength) we have

14



Chapter 2. Theory: Atom-light interactions

χ(∆) =
iNd2

ge

ε0~(Γs/2− i∆) . (2.15)

The complex refractive index of the medium, n 4, is related to the susceptibility
by n =

√
1 + χ. In terms of the real and imaginary parts of the refractive index

(n = nR + inI), we can write the modification of the electric field due to the
medium as Ê(z) = Ê0e

inRkze−knIz. The real part of the complex refractive index,
nR, characterises the phase velocity, v, of the light in the medium: nR = c/v,
where c is the speed of light in vacuum5. As the electric susceptibility is a function
of detuning, nR contains information on how the phase velocity varies with the
frequency of the wave, i.e., its dispersion. The imaginary part of the refractive index,
nI, leads to an exponentially decaying amplitude which describes the extinction of
the field. This is often referred to as absorption. The transmitted intensity through
a medium of thickness l can be written as T = exp(−αl) where the so-called
absorption coefficient α depends linearly on the imaginary part of the refractive
index α = 2knI. This is Beer’s law [61], also known as the Beer-Lambert law.

Systems containing more than two levels cannot be easily solved analytically, and
so computational methods are used. For this purpose, we have used, to good effect,
the Quantum Toolbox in Python (QuTiP) module [57] which numerically solves
the master equation (Eq. 2.8). Since we use QuTiP to model three- and four-level
systems, we will, for consistency, also use it to model the two-level system just
described.6 The figures that follow are created using outputs from QuTiP. We are
not here attempting to match theory to experiment—where relevant this will be
done in the appropriate chapters of the thesis; rather, the figures illustrate how the
absorptive and dispersive lineshapes vary as extra levels, and couplings between
levels, are introduced. For the two-level system, Fig. 2.2 shows the absorptive
and dispersive lineshapes. The absorptive line shows the characteristic Lorentzian
lineshape of Eq. 2.10 with a full-width at half-maximum linewidth of Γs. The
4The underline indicates that it is a complex quantity.
5In everyday usage, often what is referred to as the “refractive index” is only the real part, i.e.,
nR = n = c/v.

6Although we used QuTiP to model the weak probe (seed) beams which we used in our experiment,
QuTiP is not limited to low-intensity beams.

15



Chapter 2. Theory: Atom-light interactions

Figure 2.2: Two-level system. The imaginary (blue) and real (red dotted) parts
of the normalised electric susceptibility, χ, are plotted, showing the characteristic
absorptive and dispersive lineshapes respectively.

dispersive line has the characteristic dispersive lineshape, i.e., an odd function
centred around resonance, positively valued below resonance and negatively valued
above it.

2.2 Three-level system
Following the procedure detailed in Section 2.1, we can arrive at the Hamiltonian
for a three-level system (Fig. 2.1), where the subscript ‘p’ indicates the pump laser
that couples the ground state to the new excited state:

H̃3level = ~
2




0 Ωs Ωp

Ωs −2∆s 0
Ωp 0 −2∆p


 . (2.16)

By comparing elements, it can be seen that this naturally extends the H̃2level matrix
(Eq. 2.7) and so could, in principle, be immediately written down without going
through the entire procedure in Section 2.1.
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Figure 2.3: Three-level system. The real (red) and imaginary (blue) parts of the
normalised electric susceptibility, χ, are plotted. The top panel shows that the EIT
window increases in size as the pump beam Rabi frequency, Ωp = Ω02, increases
from Ωp = 1.6 Ωs (dotted) to Ωp = 1.8 Ωs (dashed) to Ωp = 2.0 Ωs (solid).

We see in Fig. 2.1 that two resonant transitions (|0〉 → |1〉 & |0〉 → |2〉) are
coherently coupled to a common state (|0〉). The presence of the strong pump laser
creates an electromagnetically induced transparency (EIT) in the seed absorption,
as seen in Fig. 2.3. This EIT window can be explained as follows: The strong
pump laser shifts the energy levels of the bare atomic states (the AC Stark effect),
“dressing” them. The new dressed states [58] are the eigenstates of the H̃3level

Hamiltonian. Destructive interference between the resulting new paths leads to a
reduction in the absorption of the weak seed laser7, leading to an electromagnetically
induced transparency (EIT) window within the absorption peak. This EIT window
can be seen in Fig. 2.3, where our computational model shows how increasing the
stronger pump laser leads to a larger EIT window. Also shown is that associated
with the change in absorption, there is a concomitant modification of the refractive
index, as seen in the change in the dispersive feature. In Chapter 5, this effect will
7In the case of one particular pump detuning, this is equivalent to saying that the relevant two
probability amplitudes for excitation to the dressed states are equal but of opposite phases, and
so cancel.
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be exploited to create the STROLL laser locking system.

2.3 Four-level system
Following the procedure detailed in Section 2.1, we arrive at the Hamiltonian for a
four-level system, where the subscript ‘c’ indicates the coupling laser that couples
the excited state to the new doubly excited state (|2〉 → |3〉). Once again, it can
be seen that this naturally extends the H̃3level matrix (Eq. 2.16):

H̃4level = ~
2




0 Ωs Ωp 0
Ωs −2∆s 0 0
Ωp 0 −2∆p Ωc

0 0 Ωc −2(∆p + ∆c)



. (2.17)

Addition of the strong coupling laser leads to the previously mentioned dressed
states being symmetrically split by the AC Stark effect. Again, there is interference
between paths, leading to the original EIT feature being split (as seen in Fig. 2.4).
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Figure 2.4: Four-level system. The real (red) and imaginary (blue) parts of the
normalised electric susceptibility, χ, are plotted. Ωp = 1.6 Ωs. The top panel
shows that the splitting of the EIT window increases as the coupling beam Rabi
frequency, Ωc = Ω23, increases from Ωc = 1.9 Ωs (dotted) to Ωc = 2.6 Ωs (dashed)
to Ωc = 3.2 Ωs (solid).
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2.4 Doppler broadening due to atomic motion
Since all the experiments covered in this thesis occur in thermal vapour, the thermal
velocity of the atoms must be accounted for. The frequency of the light that the
atom experiences is Doppler shifted by an amount

∆D = −~k · ~v, (2.18)

where ~v is the velocity of the atom and ~k is the wavevector of the incoming laser
beam. We can choose ~k to lie along the z-axis and so ∆D = −kvz. A Maxwellian
distribution of velocities is expected so that the atomic density for a velocity class
N(v) is given by [62]

N(v) = N0
e−v

2/u2

u
√
π
, (2.19)

where u is the one-dimensional root mean square (rms) speed of the atoms,
u =

√
2kBT/m. In the case of 87Rb atoms (of which more in the next section) at

room temperature (20 ◦C), u = 237 m/s.

As an example, for the four-level system, we add Doppler broadening by replacing
∆i with (∆i − kiv) where i = {p, c, s}, with p, c and s referring to the pump,
coupling and seed beams respectively. Assuming all the beams are parallel, this
gives the modified Hamiltonian,

H̃ = ~
2




0 Ωs Ωp 0
Ωs −2(∆s − ksv) 0 0
Ωp 0 −2(∆p − kpv) Ωc

0 0 Ωc −2(∆p − kpv + ∆c − kcv)



. (2.20)

This is the Hamiltonian used in the full model that we use later in this thesis
and which we shall see agrees with our experimental data. Further details and
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discussion of the full model will be found in Chapters 7 and 8, which discuss seeded
and spontaneous four-wave mixing respectively. For the sake of completeness, a
preview of the theoretical absorption profile generated by the full model for the
rubidium four-level system is shown in this chapter in Fig. 2.5, for a temperature of
87 ◦C. The split EIT transmission window can be seen within the absorption profile.
The key point to note is that the Doppler broadening is ∼100 times that of the
natural linewidth (Γs/2π = 6 MHz). In Chapter 7, we shall see the experimental
transmission spectrum associated with this figure.
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Figure 2.5: A Doppler-broadened absorption profile generated by the full com-
putational model for rubidium vapour in a 2 mm-length cell at a temperature of
87 ◦C. The normalised intensity of the seed beam is plotted against the seed linear
detuning from resonance. The Doppler broadening is ∼100 times that of the natural
linewidth (Γs).
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2.5 The atomic structure of rubidium
We have hitherto focused on hypothetical atoms with two, three, and four levels.
In all of the experiments covered in this thesis, the atom used is rubidium-87.
Rubidium is a Group I alkali-metal atom with a single valence electron, occurring
naturally as two isotopes: 85Rb with a nuclear spin I = 5/2 and 87Rb with a
nuclear spin I = 3/2; rubidium-87 is used throughout this work. Figure 2.6 is a
schematic diagram of its energy level structure. The gross structure is determined
by the principal quantum number (n = 5). Fine-structure arises from the spin-orbit
interaction, i.e., the interaction between the electron spin (~S) and its orbital angular
momentum (~L). The resulting new energy eigenstates have total electron angular
momenta ~J = ~L + ~S. They are well identified by the quantum number J = | ~J |,
along with mJ , which is the projection of ~J onto a quantisation axis defined by
a magnetic field. Hyperfine structure arises from the interaction between the
total electron angular momentum ( ~J) and the nuclear spin (~I). The new energy
eigenstates have total angular momenta ~F = ~I + ~J . They are well identified by the
quantum number F = |~F |, along with mF , the projection of ~F onto a quantisation
axis defined by a magnetic field. The energy level structure changes on application
of a large magnetic field [63], to the point where, in the hyperfine Paschen–Back
regime, we are able to address individual transitions and effectively treat the atom
as a four-level system.
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Figure 2.6: 87Rb atomic structure. Data from [64] and [65].
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2.6 Application of a high magnetic field: the hy-
perfine Paschen–Back (HPB) regime

The Zeeman effect [63] describes the splitting of sharp spectral lines into multiple
lines when an external magnetic field is applied. It is caused by the Zeeman
interaction in which the external magnetic field exerts a torque on magnetic dipoles;
it can be described with the magnetic interaction Hamiltonian:

ĤZeeman = −(~µI + ~µL + ~µS) · ~B, (2.21)

where ~µI , ~µL, and ~µS are the magnetic moments associated with the nuclear
spin, the orbital motion of the electron, and the electron spin respectively. The
contribution due to nuclear spin can be ignored because the nuclear magneton is
three orders of magnitude smaller than the Bohr magneton [51].

For weak magnetic fields, each hyperfine level is split into 2F+1 levels symmetrically
about the zero field level with the energy level shift equalling ∆E = gFmFµBB,
where µB is the Bohr magneton and gF is the Landé factor. This is known as
the hyperfine linear Zeeman (HLZ) regime. In the HLZ regime, the |F,mF 〉 base
describes the interaction best.

The so-called hyperfine Paschen–Back (HPB) regime is entered when the Zeeman
interaction causes an energy shift equal to the hyperfine splitting. At fields on the
order of ∼1 Tesla, for alkali-metal atoms in the HPB regime, the nuclear, I, and
total electron, J , angular momenta are decoupled. The energy splitting is then
equal to ∆E = gJmJµBB + gImIµBB.

Fig. 2.7 (e) shows8 the change in the energy level structure of 87Rb with applied
magnetic fields up to a strength of 0.62 T. In the absence of a magnetic field, the
mF states are degenerate. Application of a magnetic field lifts this degeneracy.
By 0.33 T [65], the HPB regime is reached for the ground state. J equals 1/2,
giving two branches, mJ = +1/2 and mJ = −1/2. Since I = 3/2, there are 2I + 1
= 4 energy levels in each branch, labelled mI = −3/2,−1/2,+1/2,+3/2. States
8The figure was created using the author’s adaptation of code written by J. Keaveney; it makes
use of the modules of the ElecSus computational model [66,67]. Linear detunings are used.
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with mJ = +1/2,−1/2 shift linearly with the magnetic field as ∆E = gJmJµBB
9,

where gJ is the Landé factor [68]. Since, in this case, the Landé factor gJ = 2 10,
the energy shift per magnetic field simply equals the value of the Bohr magneton
in frequency units, ±14 GHz/T (Table E. 2 of [68])11. We are stating shifts of
frequency, ∆ν, as it is most useful for the experimentalist, but E = hν can be used
to convert between the two, where h is Planck’s constant. Note that at a field of
0.62 T, J and I are not yet completely decoupled. Thus, for the ground states
whose state decomposition has been explicitly stated at the bottom of the diagram,
we see there is still some small amount of hyperfine mixing.

For the excited state 5P1/2, J equals 1/2. This again gives two branches,mJ = ±1/2,
with each branch again containing four energy levels, mI = ±3/2, ±1/2. In this
case, the Landé factor gJ = 2/3. Thus the energy shift is equal to 1/3 of the Bohr
magneton value12. In the case of the excited state 5P3/2, shown in Fig. 2.8 (e),
J now equals 3/2 and so there are now four branches, mJ = ±3/2, ±1/2. Each
branch again contains four energy levels, mI = ±3/2,±1/2. The Landé factor
gJ = 4/3 and so the energy shift of the maximally stretched states (mJ = ±3/2)
equals twice the Bohr magneton value, i.e., ±28 GHz/T 13. For the other two states
(mJ = ±1/2), the slopes are one-third of this value.

The transmission spectra at different magnetic field strengths for the seed/795 nm
beam illuminating the 87Rb D1 line are shown in Fig 2.7 (a–d), and the spectra for
the pump/780 nm beam illuminating the 87Rb D2 line are shown in Fig. 2.8 (a–d).
Both figures will be discussed together. The beam in both cases propagates along
the direction defined by the magnetic field; it is linearly polarised and, as such,
equally drives σ+ (∆mJ = +1) and σ− (∆mJ = −1) transitions. In the forward
geometry, where the beams are propagating along the direction of the B field,
there is no electric field in that direction (i.e., it is all in the x-y plane) and so π
transitions are not driven. ∆mI = 0 in all cases as the light does not interact with
9The contribution due to the nuclear spin has been ignored due to it being three orders of
magnitude smaller. It is, however, included in the code generating the Breit-Rabi diagrams.

10gJ = 3
2 + S(S+1)−L(L+1)

2J(J+1) , with J = 1/2, L = 0, and S = 1/2
11 ∆E/B = gJmJµB= 2× 1

2 × µB = µB
12 ∆E/B = gJmJµB= 2

3 × 1
2 × µB = 1

3µB
13 ∆E/B = gJmJµB= 4

3 × 3
2 × µB = 2µB
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the nuclear spin.

In (b) and (c), the excited state is in the HPB regime but the ground state is
not, giving transitions that are only partially resolved. It is therefore difficult to
identify which spectral lines are due to which transitions. When the HPB regime
is reached in (d), we see that the lines are fully resolved and each spectral line can
be associated with a particular transition. This will allow us to isolate a four-level
system. If the weak transitions due to remaining hyperfine mixing are ignored,
spectral lines in the negatively detuned regions correspond to light driving σ−

(purple) transitions, and those in the positively detuned regions correspond to light
driving σ+ (cyan) transitions.
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Figure 2.7: (a)–(d) Theoretical transmission plots for 795 nm light for a 2 mm
length 87Rb vapour cell on the D1 line at 75 ◦C, for magnetic fields of different
strengths, with the zero field case shown on the topmost panel. (e) The associated
transitions for the 0.62 T case are shown on the Breit-Rabi diagram. For the
geometry of this experiment, 795 nm light drives sigma minus, σ− (purple), and
sigma plus, σ+ (cyan), transitions on the D1 line. Weak transitions due to the
residual hyperfine mixing are shown as thinner lines.
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Figure 2.8: (a)–(d) Theoretical transmission plots for 780 nm light for a 2 mm
length 87Rb vapour cell on the D2 line at 75 ◦C for magnetic fields of different
strengths, with the zero field case shown on the topmost panel. (e) The associated
transitions for the 0.62 T case are shown on the Breit-Rabi diagram. For the
geometry of this experiment, 780 nm light drives sigma minus, σ− (purple), and
sigma plus, σ+ (cyan), transitions on the D2 line. Weak transitions due to the
residual hyperfine mixing are shown as thinner lines. For the 5P3/2 state, the 4 |mI〉
levels associated with each |mJ〉 are not visible at this scale.
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2.7 Conclusion
In this chapter, we have covered the basic physics underlying atom-light interactions
for two-, three-, and four-level systems. We have shown how the absorptive and
dispersive features of the seed transmission vary with the addition of energy levels
and couplings between levels. We finished by detailing the energy level structure
of rubidium, our atom of choice, and explained how that structure changes on
applying a magnetic field so that the HPB regime is reached. This will allow us to
effectively treat the atom as a four-level system.
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Chapter 3

Experimental techniques and
apparatus

Section 3.2 of this chapter is based on the following publication:

C. R. Higgins, D. Pizzey, R. S. Mathew and I. G. Hughes. Atomic line versus lens
cavity filters: a comparison of their merits. OSA Continuum 3 961 (2020). [50]

In this chapter, we describe ancillary parts of the experimental set-up which were
crucial to obtaining the best results from our experiments: (1) It was necessary to
install a tapered amplifier (TA) because the power from our coupling/776 nm laser
led to a photon pair rate in Chapter 8 which was too low to perform a Hanbury
Brown–Twiss experiment. (2) The large number of background photons (See
Chapter 6) in our experiments led to the implementation of a bespoke frequency
filtration device. (3) A simple cavity is used to calibrate the frequency of the
pump/780 nm and seed/795 nm lasers.

To maximise the number of photons collected into the fibres connected to our
photon detectors, we designed and implemented a machine learning automation
system (the Pi Auto-aligner); this will be covered in the next chapter.
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Figure 3.1: Optical table layout for maximising the output of the BoostTA tapered amplifier. The optical isolators
after the DL Pro and the BoostTA have isolation levels of 40 dB (Isowave I-80-3L) and 60 dB (Isowave I-80U-4-L)
respectively.
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3.1 Setting up a tapered amplifier
We found that the Hanbury Brown–Twiss (HBT) experiment of Chapter 8 required
a large photon pair rate and that a large coupling power was required to achieve
this. We, therefore, installed the optical components needed to maximise the
amplified power from a tapered amplifier (TA), the Toptica BoosTA.

A tapered amplifier is a semiconductor device in which a semiconductor chip with
a tapered gain region amplifies seed light. The tapering prevents damage to chip
from the high light intensities within. Unseeded, the TA behaves as a laser with
amplified spontaneous emission (ASE) output from both the front and back of the
chip. The beam emerging from the back of the chip can be used as a guide beam:
to align the seed light into the TA, we ensure that the seed and guide beams are
overlapped.

We achieve an absolute maximum of 1 W straight out of the tapered amplifier.
However, to avoid damage from back-reflections, the TA should never be operated
without an optical isolator, and so we will always quote the power output once
the light has passed through an isolator with a 79% transmission; so, the effective
maximum output is 820 mW. We shall see that losses throughout the path mean
that by the time the light reaches the experimental cell, the maximum is only
∼400 mW. Nevertheless, this is still greater than a tenfold increase compared to
without the TA.

Detailed layout

A simplistic picture of TA operation would be that an input of x mW of seed light
results in an output beam of 10x mW. There are several complications:1

1. The TA requires the input beam to have the same profile as the guide beam to
ensure that the whole of the gain region is used. The beam must, therefore, be
reshaped by a pair of cylindrical lenses before entering the TA.

2. The optical fibre taking the output beam to the experiment requires a particular
1The level of detail in this section (Section 3.1) is provided in the hope that it will be of help to
future researchers setting up a TA.
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profile. Therefore, a pair of anamorphic prisms and a pair of cylindrical lenses are
placed before the input of the fibre.

Figure 3.1 shows the set-up required to obtain the maximum transmission from
the TA. The light emitted from the DL Pro 776 nm laser passes through an optical
isolator and is steered using two mirrors through a pair of 10 cm lenses to collimate
the beam. The beam then passes through a λ/2 waveplate plus polarising beam
splitter (PBS) combination to limit the beam power to <40 mW as a seed power
above this risks damage to the TA. The beam next passes through two cylindrical
lenses of focal length 5 cm and 15 cm respectively. This changes the beam waist
from 0.8 mm × 0.6 mm before the lenses to 0.7 mm × 1.8 mm before the TA.
The approximate 1:3 ratio matches the required input for the TA, as stated in its
specification documentation. Before entering the TA, the beam is steered by two
mirrors through a λ/2 and λ/4 pair as polarisation-matching into the TA is also
required.

After being amplified, the beam exits the TA through an optical isolator with 79%
transmission. A pair of anamorphic prisms and a pair of 5 cm and 15 cm cylindrical
lenses reshape the beam from 1.9 mm × 0.6 mm to 0.9 mm × 0.8 mm, which is
the size required for input into the optical fibre2. The fibre then carries the light
to the experiment.

2Thorlabs P3-780PM-FC-2 optical fibre with the F220APC-780 fibre collimation package.
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Figure 3.2: TA output power increases linearly with increasing current and
increasing seed input power. The data are shown with straight-line fits for three
different seed input powers: 40 mW (dark blue), 20 mW (purple), and 10 mW
(green). We also show amplified spontaneous emission, ASE (yellow). The data
without an optical isolator are also shown for reference (red), although the TA
should generally not be operated without the optical isolator.

Characterisation of the TA

Figure 3.2 shows how the output power of the TA increases with current. Data are
shown for different seed powers with fits to a straight line. In all cases, there is a
linear increase from 800 mA upwards; in the case of 10 mW of seed power (green
points), there is a deviation from linearity at the highest currents of 2000 mA and
2100 mA. The yellow points show that in the absence of seed light, the TA does
indeed behave as a laser that outputs amplified spontaneous emission (ASE).

Figure 3.3 shows how the output power, Pout, of the TA increases with increasing
seed power, Pin. Data are shown for different TA currents with fits to logarithmic
lines, Pout = m× ln(Pin) + c. This is more evident on a graph with log scaling on
the x-axis, as in Figure 3.4. The logarithmic scaling means that little is gained by
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Figure 3.3: TA output power increases with increasing seed power and increasing
current. The data are shown with fits to logarithmic lines, Pout = m× ln(Pin) + c.
The TA currents are, from top to bottom, 2100 mA (yellow), 1750 mA (blue),
1500 mA (red), 1250 mA (grey), and 1000 mA (green).

increasing seed power, e.g., there is very little difference in output power between
a seed input of 30 mW compared to 40 mW. In order to maximise output power,
we, therefore, worked at maximum current (2100 mA) and limited the seed light
input to 35 mW because, as previously mentioned, above 40 mW there is a risk of
damage to the TA.
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Figure 3.4: TA output power increases logarithmically with increasing seed power.
These are the same data as in Figure 3.3, except that the logarithmic scaling is
now immediately evident because of the log scale. The data are shown with fits to
logarithmic lines, Pout = m× ln(Pin) + c. The TA currents are, from top to bottom,
2100 mA (yellow), 1750 mA (blue), 1500 mA (red), 1250 mA (grey), and 1000 mA
(green).
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3.2 A lens etalon spectral filter
Throughout this work, we will find it necessary to separate output light from
input light. In most cases, we can use commercially available interference filters
because the “noise light” differs from “signal light” by nanometres in wavelength.
However, in Chapters 6 & 8, we shall see that our experimental situation creates a
large number of background photons that are very close in frequency to the signal
light. We therefore found it useful to implement a narrower, sub-nm, bandwidth
filter.

We designed and implemented a cavity filter3 consisting of two highly-reflective
(HR) (reflectivity, R∼99) dielectric-coated surfaces separated by a fixed length.
Light entering the cavity only exits when the light is resonant with the cavity; the
result is a periodic set of transmission peaks, as shown in Fig. 3.5. This periodicity
can be seen in the spectrum for the 5.0 mm length lens (dotted cyan): both the
leftmost and rightmost peaks on the figure are TEM00 modes, separated by the
free spectral range (FSR) of 19.9 ± 0.1 GHz. The periodicity cannot be seen in
the spectrum of 2.5 mm length lens (purple), which is the one we use in the main
experiment: this is merely an artefact of not being able to scan the laser over the
calculated FSR of 39.7 GHz. The free spectral range is given by

FSR = c

2nL, (3.1)

where c is the speed of light, n is the refractive index of the lens (n = 1.51), and L
is its length (thickness).

Following the method of [69], we used a single high-reflection coated planoconvex
lens to obtain the two highly-reflective (HR) surfaces. This design was chosen
instead of the more familiar one that consists of separate HR coated mirrors
attached to a spacer because our design obviates the need to lock mirror positions,
and so is intrinsically stable. Compared to that other design, our planoconvex
geometry also gives a higher cavity finesse, F , where F is given by (π

√
R)/ (1−R).

The presence of the different TEM modes, as shown in Fig. 3.5, also demonstrates
3The terms lens “cavity filter” and lens “etalon filter” are used interchangeably.
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Figure 3.5: Normalised transmission spectrum (purple) for the lens etalon filter of
length 2.5 mm used in the experiment. The spectrum (dotted cyan) for a 5.0 mm
cavity is shown for comparison. Shown from left to right are CCD images of the
TEM00, TEM10, and TEM20 modes. Alignment into the cavity is achieved by
maximising the transmission of the TEM00 mode.4

the spatial mode filtering of our design. Any commercially available lenses can be
used, provided they are given a high-reflectivity coating; we happened to use the
services of Lambda Research Optics Inc.

We tested several lenses, as explained in [50]. For the work in this thesis, we used
the 2.5 mm thickness lens, which gave transmission peaks of width 128 MHz, with
the resonant frequency being tunable with temperature. The shift of the resonant
frequency, ν, is given by

dν
dT ≈ −

(
α + 1

n

dn
dT

)
ν, (3.2)

where α and n are the thermal expansion coefficient and refractive index of the lens
material respectively, and dn/dT is calculated from the Sellmeier function [70]5.
4Data & photos taken by Clare Higgins.
5Eq. 10 of the technical report produced by SCHOTT (2016) [71] “TIE-19 Temperature Coefficient
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We experimentally determined the resonant frequency change with temperature,
dν/dT , to be -3.36 ± 0.06 GHz/K, which is in agreement with the value obtained
with Eq. 3.2 of -3.37 GHz/K.

The corollary of tunability with temperature is that the appropriate temperature
requires stabilisation. As given by Eq. 3.2, for a frequency stability of 10 MHz,
we need a temperature stability of 3 mK, which we achieved as follows. The lens
tube is screwed into a Teflon covered stainless steel block attached to a Peltier
heater & thermistor, and the temperature is controlled with a Koheron TEC100L
temperature controller.

Any stress in the cavity glass can lead to birefringence. As the polarisation of
light changes, this birefringence induces a shift in the position and shape of the
transmitted peaks [71]. Our mounting method minimises such stress, and so we
measured negligible frequency shifts with changes in polarisation.

The mode of the laser beam must be matched to the fundamental mode of the
cavity. For this purpose, a mode-matching lens is placed upstream of the cavity.
It is selected so that the curvature of the wavefront matches the front (convex)
surface of the cavity and the beam focuses at the back (planar) surface of the cavity.
The beam waist of the fundamental cavity mode is w0 =

(
λnL
π

(
r
nL
− 1

)1/2)1/2
[72].

The focal length of the mode-matching lens needed is f = w1w0π
λ

[73], where w1 is
the initial beam waist6.

It is necessary to carefully align the light into the cavity to maximise the transmission
of the TEM00 mode. This is accomplished with the use of a pair of steering mirrors
before the cavity. A camera may initially be needed to identify the TEM00 mode,
but alignment thereafter can be performed by visualising the transmission spectrum
on an oscilloscope7.

of the Refractive Index” was used.
6Of course, lenses come in fixed focal lengths, and so perfect mode-matching is not possible.
7Because of laser beam drift over time, some periodic realignment of this part of the experiment
is necessary to maintain maximum transmission through the etalon. Periodic and frequent
realignment of laser beams is a recurring theme throughout this thesis. The next chapter,
Chapter 4, describes a novel use of machine learning which we designed and implemented to
help automate this humdrum activity.
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3.3 Laser frequency calibration
There is another optical cavity in our experiment, which we use to calibrate the
frequency of the pump/780 nm and seed/795 nm lasers. We follow the method of
[74]; here, we describe the method in brief8.

The laser beam passes through an optical cavity, and the signal is detected on a
photodiode. When we “scan” the laser, i.e., change the frequency with time, the
peaks in the cavity transmission signal must occur at fixed frequency intervals (as
given by Eq. 3.1). However, we find that the cavity transmission peaks do not occur
at fixed time intervals. This indicates that the laser frequency scan is nonlinear
with time. However, our knowledge that the peaks occur at fixed frequencies allows
us to fit a function which can thenceforth be used to convert from the time of the
scan to the frequency of laser at that time. In this way, we linearise the frequency
axis for our data. At this point, we still only have a relative frequency axis. To
convert to an absolute frequency axis, we simply match our rubidium spectral dip
features to the well-known atomic transition frequencies for rubidium vapour.

It should be noted that although we linearised the scan as a matter of course, in
practice the original nonlinearity of the lasers is negligible for most purposes except
when performing precise fitting with ElecSus. To give a measure of the difference
when fitting, there is a difference of <1 ◦C in the temperature extracted from a
spectrum which has had its nonlinearity corrected and one which does not. We
emphasise that this will differ from laser to laser.

3.4 Conclusion
In this chapter, we have shown how to set up and optimise the power output of
a tapered amplifier (TA). The TA will be of particular use in Chapter 7, when
obtaining data for the measurement of a dipole matrix element, and in Chapter 8,
when performing a Hanbury Brown–Twiss experiment. We have also shown how
we designed the lens etalon spectral filter; this will be of benefit in creating ‘purer’
photons in Chapter 8. We ended with explaining the use of an optical cavity to
8A fuller description is given in Section 4.3 of [75].
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calibrate the frequency of all of our lasers. In the next chapter, we discuss a novel
laser-alignment device, which we designed and built, that uses machine learning to
automatically optimise the alignment of laser beams.
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Chapter 4

Machine learning in quantum
optics experiments

The following paper is based on this chapter:

Renju S. Mathew, Roshan O’Donnell, Danielle Pizzey, and Ifan G. Hughes. The
Raspberry Pi Auto-aligner: Machine Learning for Automated Alignment of Laser
Beams, Review of Scientific Instruments 92 015117 (2018). [49]

4.1 Introduction
One of the difficulties with quantum optics experiments involving single-photons
is isolating the photons of interest from the countless number of background
photons in the environment. In the spontaneous four-wave mixing experiment of
Chapter 8, the photons of interest are the herald photons (762 nm) emitted on
the 87Rb transition |5D3/2, mJ = 1

2〉 → |5P1/2, mJ = −1
2〉 and the signal photons

(795 nm) emitted on the |5P1/2, mJ = −1
2〉 → |5S1/2, mJ = 1

2〉 transition.

In order to obtain the normalised cross-correlation between herald and signal
photons, g(2)

h,s , it is necessary to maximise the number of herald photons collected by
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one optical fibre and to maximise the number of signal photons collected by another
optical fibre. We perform this alignment manually for each fibre by adjusting the
orientations of two mirrors1 so that the photon count rate on our photon-counter
is maximised. We first optimise the mirror orientations for the case of seeded
four-wave mixing (Chapter 7), where the beams can be seen on an IR card or
photodiode. For the purposes of this chapter, we shall call these beams “visible”.
Then we re-optimise the mirror orientations in the case of spontaneous four-wave
mixing (Chapter 8), where the beams can no longer be seen. These beams we shall
call “invisible”.

Alignment is particularly problematic as we approach the single-photon level. In
the case of a visible beam, the tacit knowledge of how to align a beam becomes
second nature with practice. However, for an invisible beam, alignment becomes
increasingly difficult as the beam becomes arbitrarily weak because of two issues
that make the process non-intuitive even after much practice. Firstly, aligning
photons onto a photon-counter requires the experimenter to wait, after each change
to the mirror orientation, for the photon counts to be integrated. Secondly, the
magnitude of the Poissonian noise on the signal can be approximately the same as
the signal magnitude.

We demonstrate here that both cases, visible and invisible, can be done automat-
ically via machine learning. For a machine, there is, in principle, no difference
between maximising the coupling efficiency of a laser beam, as measured by a
photodiode or power-meter, and maximising the coupling efficiency of a beam of
photons, as measured by a photon-counter. Although there are several practical
complications that must be addressed, our central idea is straightforward: Mirrors
direct a beam of light into an optical fibre, and we attach motors to these mirrors;
we give control of the motors to a computer, and a machine learning algorithm,
M-LOOP [76], optimises2 the orientation of the mirrors so that the power output
of the fibre is maximised. We call the entire set-up a “beam auto-aligner” or “fibre
auto-coupler”.
1Each mirror has a pitch knob and a yaw knob, so throughout this chapter we are dealing with
four mirror knobs. In other words, four independent parameters need to be optimised.

2For this to work, we must always begin by manually coupling some nonzero amount of light into
the fibre.
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Commercially available equipment to align just two mirrors costs ∼£3000 3 whereas
our device can be assembled for a fraction of the cost4. Because commercial devices
have hardware and software that are proprietary, the equipment must be used
as a black-box, and so there is no room for customisation. Commercial software
may need to be bought separately from the hardware and need periodic updating.
Most relevantly, at the time of writing, commercial devices cannot align invisible
(arbitrarily weak) beams.

4.2 Machine learning (ML)
Machine learning (ML) methods discover patterns in data without requiring any
assumptions about the data’s structure [77]. Performing research with machine
learning began in earnest in the 1980s [78], and by 1992 ML methods were used to,
for example, create non-intuitive laser pulse-sequences for excitation of rotational
quantum states [79]. However, it is only in the last decade or so that ML methods
have begun to be used more widely in the atomic, molecular, and optical (AMO)
physics community. It has been used to create self-tuning, mode-locked lasers
[80–82]; for automating the production of Bose-Einstein condensation [83]; and for
maintaining doughnut-shaped beams in scattering media [84]. ML has recently
even been used to create new quantum experiments: the system both learned to
create a variety of entangled states and improved the efficiency of their realisation
[85].

Surprisingly, to our knowledge, ML has not been used to achieve automatic beam
alignment. Whilst it is entirely possible to imagine a science of the future still
using waveplates, mirrors, and other such optical elements, it is difficult to imagine
all of these being manipulated solely by hand. It would be disappointing if self-
driving cars were in widespread use before automation appeared in the labs of laser
physicists5. Automation is not new in other scientific disciplines, including other
3Polaris R© Kinematic Mirror Mounts with Piezoelectric Adjusters (∼£700 each) &
Kinesis NanoTrak R©Fiber Alignment Controllers (∼£1000)

4The cost is dominated by the price of the Raspberry Pi (£65) and the motors (£35 each).
5Here we are adapting, and making more general, a comment made by Baumeister et al. [86]
about their self-tuning laser.
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ML
Algorithm Experiment

Experimental 
parameters

Experimental 
result

Figure 4.1: Machine learning (ML) feedback loop: The ML algorithm sends
experimental parameters for one run of the experiment & the experimental result
is returned to the algorithm. On each iteration of this loop, the ML algorithm
builds a more accurate internal model so that the correct parameters for the “best”
experimental result is found. The “best” case must be precisely defined by the
experimenter.

branches of physics. For example, Adams [87] writes that in synchrotron radiation
laboratories “the art of remote controlling a hundred-meter-long beamline has been
carried to perfection.” Recently in chemistry, a robotic lab assistant was developed
to automate routine experiments [88]. It does seem a worthy goal to attempt to
automate anything that does not require creativity [89]. More prosaically, but no
less importantly, automation would be a helpful addition to laser safety protocols.
Aligning beams with ML is a relatively simple case from which lessons can be
learned about how to apply ML to more complicated cases. So, when thinking
about the design of the apparatus, it is useful to think at a high level of abstraction,
i.e., what are the most general terms in which to think about this problem? In the
most general terms, to automate any part of an experiment, we require a feedback
loop, Fig. 4.1, between the ML algorithm and the experiment. The output of the
experiment is the input to the ML algorithm. From this input, the ML algorithm
improves its internal model of the problem-situation and determines what new
experiment would improve its model further. The output of the algorithm is the

45



Chapter 4. Machine learning in quantum optics experiments

set of parameters for the next experimental run. This loop cycles until the “best”
set of parameters is found within some tolerance, where the best case is defined
by the experimenter. All of this relies on efficient interfacing between the abstract
algorithm and the physical experiment.

Many different types of ML algorithms, including genetic algorithms (GAs) [79,
90, 91] and deep neural networks (DNNs) [78, 86, 92] have been used in optics
experiments. We used the Gaussian process (GP) algorithm in M-LOOP: M-LOOP
was designed to be used in atomic physics experiments [76], and GPs can deal
effectively with uncertainty in the model because GPs are a probabilistic technique
based on Bayesian inference. This effectiveness with dealing with uncertainty
should make them especially useful in beams dominated by Poissonian noise, as is
the case of our experiments involving single-photons in Chapter 8.

The M-LOOP algorithm is minimising a cost function, similar to finding the
minimum of an error surface. The internal model that M-LOOP builds becomes
increasingly accurate with each iteration. Simultaneously, it tries to find the global
minimum of the cost function landscape and ends when this is found, or some
other halting conditions are met. Further details will be provided in Section 4.4.
Unfortunately, GPs also have computational training times that scale cubically
with data [93], although this is not a problem in our case as we only have four
parameters to optimise.

4.3 Implementation
The implementation in the laboratory involves certain additional subtleties and
complexities which we describe here. There are two different builds. The first,
“Build 1.0”, uses small motors (28BYJ-48 5V Stepper Motors with ULN2003 driver
boards), Fig 4.2, and worked for coupling visible, weak beams into a fibre. It
did not always work for invisible beams when those beams became arbitrarily
weak, necessitating a second build, “Build 2.0”, using large motors (17HD48002H-
22B Stepper Motors with L298N driver boards), Fig 4.3. The testing of the
second build is ongoing. The building of Build 2.0 was done as a master’s level
project by Roshan O’Donnell [94]; technical details for the build are found in the
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19 mm
Stepper
motorConnector

Figure 4.2: Build 1.0. Photo of the small 28BYJ-48 stepper motor (grey colour)
with steel connector (silver colour) for connection to stable mirror mount (not
shown). (Photo taken by Clare Higgins.)

Figure 4.3: Build 2.0. Photo of large 17HD48002H-22B stepper motor (black, left)
attached with steel connector (silver, centre) to a stable mirror mount (blue, right).
(Photo taken by Roshan O’Donnell.)
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supplementary material to the paper associated with this chapter [49]. At the
time of writing, Build 2.0 had not yet been tested on invisible beams. To avoid
later confusion, we will state here the principal difference between the two builds.
Build 1.0 requires manual hysteresis correction; once this is performed, it works
as required on visible beams. Build 2.0 requires no manual hysteresis correction
because we tested different parts of the system individually, redesigning as required
to minimise hysteresis. Build 1.0 was essentially a proof-of-principle construction
which demonstrated that our central idea of using ML to automatically align lasers
would work. The second version was an attempt to fine-tune the whole system.
Nevertheless, Build 1.0 worked better than expected and, provided the hysteresis
correction is done, works well for aligning visible beams.

Two motors are used to control the orientation of each mirror so as to change the
alignment of the laser beam incident upon it. The computer that we use to both
run the ML algorithm and to control the motors is a Raspberry Pi 3 Model B+.
The Raspberry Pi has a row of GPIO (general-purpose input/output) pins that
allows direct communication with the motors. Furthermore, it is a small device,
with dimensions 8.5 cm × 5.6 cm × 1.7 cm, that can be placed directly on the
optical table.

Unfortunately, because of software driver incompatibility, the Pi does not readily
connect to either the power-meter (Thorlabs PM100D) or the photon-counter6, so
we had to use a desktop computer as an intermediary. Python sockets connect the
desktop computer and the Pi: the computer (server) sends power-meter/photon-
counter readings to the Pi (client) on request. The Pi and the computer can be
connected wirelessly, although we did not implement this as we had a conveniently
located ethernet port for a wired connection.

This slightly more complex implementation is diagrammatically represented in
Fig. 4.4 and Fig. 4.5. We now discuss various specific details of the implementation.

6Excelitas SPCM-AQRH Single Photon Counting Module in combination with a SensL HRM-TDC
High Resolution Time-to-Digital Converter Module; the timing module is required because the
photon-detector cannot be directly connected to the Raspberry Pi.
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Computer Pi Motors
1 & 2

sensL
Motors
3 & 4

Timing
Card

Photon
Counter

Figure 4.4: Schematic of laboratory implementation. A desktop computer acts
as an intermediary between the photodiode/power-meter/photon-counter and the
Raspberry Pi (which runs the ML algorithm). Stable mounts are required to secure
the mirrors. Electrical paths are shown as black dashed lines; the laser beam path
is shown in red.

Electronics

An analogue-to-digital converter (ADC), the 16-bit ADS1115 ADC, is used to
convert the analogue output of a photodiode (PD) to the required digital signal
input required by the Pi.

Shift registers (SRs) allow the relatively small number of GPIO (general-purpose
input-output) pins on the Pi to control an arbitrary number of drivers/motors. The
74HC595 shift register is able to operate two stepper motors. Two shift registers
are connected in series to operate four motors.
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Optical Fiber
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Figure 4.5: Illustration of concept. A Raspberry Pi controls stepper motors
attached to mirrors, and a machine learning algorithm automatically aligns the
laser beam so as to maximise the optical power coupled into a fibre. Also shown are
the motor-mirror coupler connections to connect the mirror mount knobs securely
to the motors. Inset is a photograph of the motor-mirror coupler. Support mount
for the motor-mirror couplers are not shown. For scale, the breadboard that the
beam auto-aligner is mounted on is 115mm× 115mm. Details of the different
components are given in the main text.7

7Adapted from figure produced for paper by D. Pizzey.
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Motors and mirrors

A motor is attached to the knob controlling the pitch of the mirror mount, and
another is attached to the yaw knob. A set of pitch & yaw values sets the orientation
of the mirror mount, hence changing the alignment of the laser beam incident upon
it. A bespoke 3-D printed motor-to-mirror connector placed on the mirror-mount
knob secures the motor in position. The 3-D printed components degrade within
weeks of use, so our workshop machined the final versions in steel. We also created
3D-printed stands for the physical driver boards to electrically insulate them from
the optical table.

We found that it was difficult to return the mirrors to their starting orientation if
standard Thorlabs mirror mounts, posts, and bases were used. This problem was
solved using stable mirror mounts (SR100-100-2-BU) from Photonics Technologies
(LiOp-Tec) and stable pedestals (RDS-MNI-P-75) and holding forks (RDS-MNI-
HF-M) from Radiant Dyes Laser.

Hysteresis

With Build 1.0, we found that we always needed to account for some amount of
mechanical hysteresis: If the motor turns N steps8 clockwise followed by N steps
counterclockwise, the mirror mount knob does not return to its starting position.
The coupling efficiency of the laser into the fibre changes correspondingly. This is
because during the shift in direction (either clockwise to anticlockwise or vice-versa)
there are effectively a number of steps where the motor turns, but the mirror knob
does not9.

For Build 2.0, we redesigned the interfaces between the motor-to-mirror so that the
hysteresis is negligible. For Build 1.0, we need to calibrate each motor-knob pair
to determine the number of extra steps required for a directional change. We then
8The relationship between the number of motor steps and the amount of mirror knob rotation
depends on the particular mirror and motor used. Build 1.0 (with Thorlabs Mirrors): ∼360 steps
per 360◦ rotation; Build 2.0 (with LiOp-Tec mirrors): ∼200 steps per 360◦. In practice, it is
always the number of steps that are the relevant quantity.

9The word “effectively” indicates a simplifying model: although the actual cause of the hysteresis
may be more distributed across many parts of the apparatus, it can be treated and corrected by
assuming the cause is at the motor alone.
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correct for this when we send commands to the motor. This is a straightforward
procedure: We begin by coupling some light into the fibre and measuring the
power output using a power-meter. The Pi sends a command to the motor (via its
driver) to turn a mirror knob by a full 360◦ clockwise rotation, in increments of 1
motor step. No changes are made to the other mirror knobs. Then, the Pi send a
command to the motor to turn the original mirror knob in the reverse direction
by the same number of steps. At each step, the power is recorded. The results
are shown in Fig. 4.6, where the lack of overlap between the two cases indicates
the hysteresis correction required. In the case of the data shown, nine motor steps
needed to be added whenever the motor changes from clockwise to anticlockwise
(and vice versa): this is the x distance between the peaks of the two curves. Once
this is done, rerunning this experiment gives two curves which exactly overlap.
This procedure is performed for each of the four mirror knobs separately.
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x

Figure 4.6: Before hysteresis correction, if the motor turns the mirror knob
clockwise from 0 to 240 steps (in increments of 1 step) and then turns the mirror
knob anticlockwise by the same number, the mirror does not return to the same
position. By use of the curve above, hysteresis correction can be included in the
code by adding extra steps equal to the distance, x, between the peaks each time
the motor changes direction.
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Figure 4.7: Starting by manually achieving maximum fibre coupling efficiency, the
motor moves the mirror to a random orientation (a red point) and immediately
moves it back to the starting position (the top of the landscape). This is repeated
one thousand times. A landscape is mapped out, as shown by the gray lines and
purple shading.

Reproducibility

It is necessary to be able to reproducibly put the mirror into an arbitrary orientation.
To show this, we do a simple test whereby we cycle back and forth between the
starting orientation and some random orientation for one thousand iterations. We
test the reproducibility of this by using the mirror to couple light into a fibre. We
first manually couple light into our fibre until maximum coupling efficiency has
been achieved and use this as our starting mirror orientation. The results are shown
in Fig. 4.7, where the top of the landscape is the starting point. The fact that this
procedure has mapped out a Gaussian landscape of fibre output powers shows that
the motor-mirror set-up is working as required. If the hysteresis correction steps
are inaccurate, this landscape is not created because the mirror will, with each
iteration, drift away from the starting orientation.
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4.4 Using ML to maximise fibre coupling effi-
ciency

To couple light into a fibre, we require a fibre and fibre collimator unit in a fixed
position and two mirrors, each with a pitch knob and a yaw knob, to direct the light
into the fibre. We begin by directing some amount of light into the fibre. Then,
once we have connected four motors and determined and corrected the number of
hysteresis steps for each motor-knob pair, we are in a position to allow M-LOOP
to determine the best mirror orientations.

M-LOOP is used as follows. There is some “cost”, which is simply a number that
the algorithm attempts to minimise. We are interested in maximising the power
out of the fibre, Pout, so we can simply set the cost to equal the negative of the
power, −Pout. M-LOOP is initialised with the boundary values of the parameter
space it should explore. This will initially require some trial and error. In the
following, these values are normalised so that the parameters only ever take a value
between 0 and 1. We have four parameters: a pitch (parameter 1, p1) and yaw
(parameter 2, p2) for mirror 1 and a pitch (parameter 3, p3) and yaw (parameter
4, p4) for mirror 2. There is some unique set of values (p1, p2, p3, p4) where the
coupling efficiency is at its maximum.

M-LOOP begins by outputting a file containing an initial set of parameters (p(i)
1,

p(i)
2, p(i)

3, p(i)
4) for which it wants10 the associated cost. The Pi sends commands

to the motors to set each mirror knob to these values. The Pi then requests and
receives from the server the power on the power-meter, Pout. The negative of this
number (−Pout) is written to a cost file. M-LOOP waits until it detects this cost
file and writes a file containing new parameters and the process repeats.

The initial set of parameter values is random. However, on each run of the above,
M-LOOP begins to build an internal model of the parameter landscape. From
this, it begins to test the parameter values most likely to minimise the cost.
10We will be using some anthropomorphic language throughout: there is no suggestion that
M-LOOP is actually thinking; it is simply more intuitive to explain M-LOOP’s behaviour as
though it were an agent. This note is included as we are aware that such language has caused
confusion in other branches of science. [95]
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Figure 4.8: Direct output from the M-LOOP algorithm. The legend on the direct
output is not easily visible; an extra legend has been added by the author (top left).
The y-axis is the normalised number of turns on a mirror knob where 0.5 means
no change from the original position. After a certain number of runs, M-LOOP
homes in on the best parameters. For this dataset, the best value for parameter 1
(red) lay outside the range we allowed M-LOOP to explore.

M-LOOP finishes when one of three certain conditions are met; these are set by
the experimenter before the first run and are as follows: (1) The maximum number
of runs has been reached. (2) The minimum cost value has been reached. (3) A
certain number of runs has elapsed without a lower cost being found.

Figure 4.8 is a direct output from the M-LOOP algorithm. Better formatted
versions of these types of plots will appear later in this chapter, but it seemed to
us that it might be helpful for those working with M-LOOP for the deciphering of
a direct output to be explained as the direct output is difficult to read. A careful
study of the output gives insight into what M-LOOP is doing at each run and
gives indications on how to debug. For example, we can see that for the first 25
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runs, a random set of parameters is tried. This is typical though the number of
runs during this random search varies. By run 25, M-LOOP has homed in on an
optimum set of parameter values, as shown by the plateaus for all four parameters.
It continues testing the nearby parameter space but regularly tries completely
different parameters to ensure that it is not stuck in a local cost minimum. Indeed,
by run 70, it has discovered a different set of optimal parameters. However, by
run 77, parameter 1 (red) is at the very edge of its constraint. The algorithm wants
to explore values below 0, but our initial boundary conditions do not allow it.

This is also clear in Figure 4.9, which again is a direct output from the M-LOOP
algorithm for the same experimental set, showing the predicted landscape of cost
against parameter value. The minimum of the parameter 1 curve (red) seems to lie
just outside of the range that we allowed M-LOOP to investigate, as can be seen
if we imagine extrapolating the red curve into the region of the negative x-axis.
Nevertheless, the smooth curves for each of the four parameters demonstrate that
our program is working as expected; M-LOOP takes approximately 20 minutes
from start to finish for 200 runs.
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Figure 4.9: Direct output from the M-LOOP algorithm. With a sufficient number
of runs, M-LOOP builds an internal model of the parameter landscape. The dotted
lines indicate error boundaries as determined by M-LOOP. Smooth curves indicate
that the device is functioning as expected. The cost is simply the negative of the
power recorded on the power-meter. The minimum cost (maximum power) for all
parameters except 1 have been found. The minimum cost for parameter 1 appears
to lie outside the range we allowed M-LOOP to explore.
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4.5 Using ML to maximise photon count rate
Once the system is optimised for visible beams incident on a power-meter, it is, in
principle, straightforward to do the same for maximising counts on a photon-counter
with an attenuated beam.

In practice, we found there was a greater proneness to failure in the case of using
M-LOOP for photon counting. The figures in Figs. 4.10 and 4.11 show various
scenarios.

Figures 4.10a and 4.10b show what happens when we start the machine learning
after manually aligning the fibre. In Figure 4.10a, as expected, M-LOOP does a
random exploration of the parameter space for 10 runs and quickly finds that the
original location, {0,0,0,0}, is optimal. It nevertheless tests to see if there are any
better values for these parameters; on run 55, it decides that indeed {0,0,0,0} is the
best case. Although it continues to test further, it does not find better parameters.
The fact that the points from runs 70 to 80 are not exactly overlapping is an
indication of the mechanical creep between runs. Figure 4.10b is the case where
the auto-coupler works exactly as it was designed to do. As before, we start at a
position we think is the best. Between runs 15 to 50, M-LOOP agrees with us until
it discovers an even better set of parameter values. In the remaining figures, we
do not start at a position we think is best. Instead, we make sure there is enough
light entering the fibre such that the photon-counters detect some light. Fig. 4.10c
shows M-LOOP discovering three sets of good parameters, the first set between
runs 10-30, the second between 80-140 and the third between 140-200. By checking
the costs associated with each, we can confirm that the last set is the best, i.e.,
it gives maximum number of photons. Fig. 4.10d shows M-LOOP discovering a
good set of parameters between runs 10 to 20, then looking for a better set, but
not finding any before reaching the maximum number of runs, which was 100 in
this case. M-LOOP takes approximately 10 minutes from start to finish for 100
runs.

Figs. 4.11 show failure cases where M-LOOP has to be reset and run again. In Fig
4.11a M-LOOP seems to find a good set between runs 15-20 but is not sure of the
correct value for the parameter corresponding to blue. We find in these cases, as
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with Fig 4.10d, that no changes need to be made to any M-LOOP configuration
and simply rerunning the procedure will result in a good set being found.

In Fig 4.11b, however, it is clear that M-LOOP wants to look outside the boundary
conditions we have given it for both red and blue. In this case, we must rerun
M-LOOP having expanded the boundaries within which it is allowed to search.

It is not so clear in Fig 4.11c and Fig 4.11d why M-LOOP has been unable to find
the optimal parameters. The solution is usually to restart the whole procedure but
set the starting parameters to some sensible new values, e.g., the parameter set at
55 for 4.11c and run 20 for 4.11d.
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(a) If one begins at the best coupling, one
returns to the best coupling.
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(b) M-LOOP finds a better set of parameters
(runs 50+) than we did.
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(c) Three good parameter sets found.
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(d) Parameters are found and then lost.

Figure 4.10: These figures illustrate M-LOOP in action. Parameters p1, p2, p3, and p4 are represented by blue, red,
orange, and green, respectively.
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(b) Boundaries of search need to be expanded.
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(c) Not able to find optimal values for all parameters simultan-
eously.
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(d) Optimum value for one parameter (red)
cannot be found.

Figure 4.11: These figures help troubleshoot M-LOOP. Parameters p1, p2, p3, and p4 are represented by blue, red,
orange, and green, respectively.
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4.6 Discussion
Beam-alignment using four motors was consistently achieved within twenty minutes11.
Both Build 1.0 and 2.0 are able to couple visible light. Build 1.0 occasionally fails
for coupling invisible light and, indeed, this occasional failure was our motivation
for creating the second build. The main difference between 1.0 and 2.0 is that
the latter has, by design, a negligible amount of hysteresis. This was achieved by
characterising each part of the new device individually and then redesigning parts
as required. This involved rebuilding the motor-mirror connectors and mounting
the motors more securely12.

The general method we have used is that the output of the experimental signal
becomes the input for the ML algorithm, and the output from the algorithm are
the parameters for the next experiment. This procedure is iterated until the “best”
signal is found. This method can be used for other experimental variables, provided
they are electronically controllable. Electronic controllability has its weakest point
at the physical interface between the electronics and the experimental equipment.
We designed and built bespoke interfaces between motors and mirror mounts. If
the described ML procedure were to be used to control voltage for something other
than turning a motor, e.g., an AOM detuning or power, the interfacing should be
less of a problem.

Build 2.0 suffers from a larger footprint than Build 1.0 because of the combined
size of the motors and motor holders; nevertheless, it is comparable in size to the
commercial alternative13. In comparison with the commercial product, our machine
is easily customisable. All parts could be readily exchanged with alternatives. This
includes changing the ML algorithm at the heart of the device. So, although we
found the use of GPs useful because of the ease with which it deals with experimental
uncertainty, GPs have the weakness that computational time increases considerably
with increasing numbers of parameters. Genetic algorithms (GAs) do not have
11To avoid any confusion, we restate here that, to begin the procedure, some nonzero amount of
light must first be coupled into the fibre manually.

12Technical details are available in the paper associated with this chapter [49].
13121 mm×60 mm×47 mm for the Thorlabs Fiber Alignment device and 83 mm×100 mm×125 mm
for Build 2.0 [94].
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this particular problem and are a commonly-used alternative [79, 80, 90]. GAs
work analogously to evolution by artificial or natural selection: they select the best
parameter sets from a large population, recombining and creating a new generation,
and then iterating the process.

For future versions of this machine, a piezoelectric device could be added to allow
for even finer control of beam alignment. However, these devices require high
voltage supplies which are bulky; they are also expensive, as is the device itself—
these being the reasons we have not yet implemented them. The driver is more
important for precision than the stepper motor, and so it is worth investing in
better quality drivers. Our method is easily scalable and could also be used for
continual auto-optimisation. It is much easier to return a signal to maximum once
the signal has been found because only a small, local parameter space needs to be
explored. So, for example, the device could be set to perform auto-alignment at a
set time every morning before the experimenter enters the lab. Remote alignment
could also be easily performed as we have shown that the Pi can be controlled via
the intranet using the commonly used ssh protocol, which is inbuilt into the Pi’s
Linux operating system.

4.7 Conclusion
Aligning laser beams manually is both labour- and time-intensive. In this chapter,
we have demonstrated how this process can be automated with our Beam Auto-
aligner. Build 1.0 of our device works well enough to be used for aligning visible
beams detectable by photodiodes. Build 2.0 is still being tested for use in aligning
invisible, arbitrarily weak beams, detectable only by photon-counters. Depending
on the number of optical components on the table, it is easy to underestimate how
much researcher time is devoted to aligning and realigning lasers, so Build 1.0 alone
is a useful addition to the lab.
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Chapter 5

Simultaneous two-photon
resonant optical laser locking
(STROLLing) in the hyperfine
Paschen–Back regime

This chapter is based on the following publication:
Renju S. Mathew, Francisco Ponciano-Ojeda, James Keaveney, Daniel J. Whit-
ing, and Ifan G. Hughes, Simultaneous two-photon resonant optical laser locking
(STROLLing) in the hyperfine Paschen–Back regime, Optics Letters 43 17, pp.
4204-4207 (2018) DOI:10.1364/OL.43.004204

Many experiments in quantum optics require laser frequencies to be highly stable
over an extended period of time; in particular, we find that Hanbury Brown–Twiss
(HBT) experiments1 require two lasers to have stable frequencies for at least 24
hours. However, because we need to stabilise the laser frequencies (commonly known
as laser locking) by using an excited state transition in the hyperfine Paschen–Back
(HPB) regime, none of the techniques in general use was immediately suitable for
1See Chapter 8.
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our purpose. We therefore devised our own method of locking to a two-photon
resonance.

In this chapter, we demonstrate a technique to simultaneously lock two laser
frequencies to each step of a two-photon transition, in the presence of a magnetic
field large enough to gain access to the hyperfine Paschen–Back regime. A ladder
configuration with the 5S1/2, 5P3/2 and 5D5/2

2 terms in a thermal vapour of
isotopically enriched (>98%) 87Rb is used. Both lasers remain locked for more than
24 hours. For nearly all measured time scales, we measure a frequency instability
for the sum of the laser frequencies of less than the rubidium D2 natural linewidth
of 6 MHz.

5.1 Introduction
Stabilisation of the optical output frequency of a laser, i.e., laser locking, is necessary
in many research areas. It is especially important in atomic physics where the
requisite absolute stability can often be sub-MHz because it is determined by
the width of atomic resonance lines. A myriad of methods is available for on- or
near-resonant locking. However, performing thermal vapour experiments in the
hyperfine Paschen–Back (HPB) regime [6, 18–25], where the atomic resonances are
Zeeman-shifted by tens of GHz3, necessitates the development of new laser locking
methods.

Currently available methods for on- or near-resonant locking include locking to
wavelength meters [96], stable optical cavities [97], and beat-note locks [98, 99]. In
atomic physics research, lasers can be stabilised to particular atomic resonance lines.
For generating dispersive error signals with zero crossings, there are a variety of
spectroscopic techniques that can be used. Those that require external modulation
of the laser include frequency-modulation (FM) [100] and modulation transfer
(MT) spectroscopy [101, 102]. Methods that do not require external modulation
2For four-wave mixing experiments, we use the 5D3/2 level. The only difference for the laser lock
is that the error signal is a little smaller due to the weaker line strength, requiring tweaking of
the laser PID (proportional-integral-derivative) controller setting. Alternatively, the coupling
power can be increased.

3Chapter 2.6.
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are simpler to implement. Such methods include dichroic atomic vapor laser
locking (DAVLL) [103–106], polarisation spectroscopy [107], saturated absorption
spectroscopy [108], and prismatic deflection [109]. The Faraday effect can also be
used to form an off-resonance laser lock [110], as can Zeeman-shift based locking
(ZSAR) [111]. Both of these have the advantage of being tunable over a wide
range. At large detunings, frequency stabilisation can be achieved using saturation
absorption spectroscopy [112] or with a low-quality cavity technique [113]. An
interesting alternative to all of these schemes is to avoid external locking altogether
by placing atomic media in the external cavity feedback of the laser, causing the
laser to be intrinsically stabilised [114].

If there are several lasers, as in the case of atomic systems where multiple levels
are coupled, the excited-state transitions can also be used as locking signals. These
include locks based on fluorescence detection [115] and electromagnetically induced
transparency (EIT) [116–118]. Excited-state polarisation spectroscopy can also
be performed with [119] and without [120] a small magnetic field. As we perform
our experiments in a large magnetic field, none of the techniques mentioned so
far are immediately suitable for our purposes. Furthermore, quantum optics
experiments [121–126], including those reported in Chapter 8, often require long
integration times [2], meaning that lasers may need to remain locked for a day or
more and many of the mentioned techniques are not suitable for such large time
periods.

We shall present a technique to simultaneously lock two lasers to two transitions
that form a ladder-type excitation scheme (see the top right of Fig. 5.1). We thus
stabilise the sum of their frequencies over a timescale of hours. In the presence of
the large magnetic field (0.62 T), both transitions are significantly Zeeman-shifted
from their zero-field frequencies. Apart from being able to work in large fields, there
are at least two other advantages of our scheme: (1) tunability on the first step of
the excitation and (2) the lock compensating for drift in one laser by automatic
adjustment of the other.
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Figure 5.1: Schematic of the experimental configuration (read from left to right).
Probe beams (solid red lines) and coupling beam (dashed blue line) are counter-
propagated and focussed through the locking vapour cell. The 1 mm3 cell contains
isotopically enriched 87Rb and is in a uniform magnetic field of up to 0.62 T
along the optical axis. Only the coupling beam and probe beam 2 are overlapped
within the cell. Angles are not to scale. Beam polarisations are set by half- and
quarter-waveplates (λ/2 & λ/4). By subtracting the signals from the photodiodes
(PD) at the output of a polarising beam splitter (PBS), the Stokes parameter S1 is
measured. PDs 1 & 2 are used for the 780 nm lock, and 3 & 4 are used for the
776 nm lock. The monitor vapour cell, interference filter (IF), and PD5 are used
to monitor the atomic resonance of experimental interest. The relevant rubidium
energy levels are shown on the top right.
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5.2 Concept
We start by using the off-resonant Faraday-rotation method described in [110]
to stabilise the 780 nm probe4 laser. We then use a novel Faraday EIT method
to stabilise the 776 nm coupling laser. The implementation of our simultaneous
two-photon resonant optical laser lock (STROLL) is in the HPB regime in order to
create a suitable crossing for the resonances of interest to us.

By measuring the optical rotation due to the Faraday effect near an atomic
resonance, we obtain a dispersive error signal on the first probe beam (Probe 1).
The probe laser can then be locked to this signal [110]. The origin of this signal is
explained as follows. In an external axial magnetic field, an atomic medium has
different refractive indices for right- and left-handed circularly polarised light. This
is circular birefringence, and it leads to the rotation of the plane of polarisation of
linearly polarised input light. The angle of rotation is proportional to the real part
of the difference in refractive indices. That difference depends on the detuning of
the light from the atomic resonances. The rotation is measured using the Stokes
parameter, S1 = (Ix − Iy)/I0, where I0 is the incident intensity, and Ix and Iy are
the intensities of orthogonal linear polarisation components of the output light (see
Fig. 5.1). Thus S1 is the normalised difference in the intensities of the orthogonal
linear polarisation components. The normalisation ensures that S1 lies between -1
and 1, and so the lineshape of S1 has zero crossings. An appropriate zero crossing
in S1 (see bottom panel of Fig. 5.2) is used as the error signal to the feedback loop
of our probe laser PID (proportional-integral-derivative) controller.

Once the 780 nm probe laser is locked, the 776 nm coupling beam can then be
locked. We use a second probe beam (Probe 2) that is overlapped with the coupling
beam in the locking cell. It is important to ensure that the first probe beam is
not overlapped with the coupling beam. This configuration of beams leads to the
presence of an electromagnetically induced transparency (EIT) feature on Probe 2
but not on Probe 1. EIT is a well-known phenomenon that is often used in multi-
4For consistency with the paper associated with this chapter, we use the term probe instead of
the term pump which we use in other chapters. There is no confusion of terms as both pump
and probe are only ever used for the 780 nm beam.
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level atomic systems [127,128]5. EIT is the reduction in the absorption of a weak
probe beam when a strong coupling laser field is used to drive a resonant transition
in a three-level atomic system, where the two resonant transitions are coupled
coherently to a common state [58]. Associated with the change in absorption, there
is a concomitant modification of the refractive index [129]. In the HPB regime, the
EIT only changes the refractive index associated with one hand of polarisation.
EIT thus causes additional birefringence and a change in the S1 signal [110]. EIT
appears on the S1 signal in the form of a dispersive feature when the probe laser is
scanning and the coupling beam is on and at a fixed frequency (see the highlighted
region of Fig. 5.3 (b)). When the probe laser is locked and the coupling beam
is scanning, we use this feature as the error signal (see Fig. 5.3 (c)) to the PID
feedback loop of our 776 nm coupling laser controller.

5.3 Experimental demonstration
A schematic of the experimental set-up is shown in Fig. 5.1. Two weak, 50 µW,
780 nm probe beams are focussed to a beam ellipse with waists6 of (83 ± 2) µm ×
(106 ± 2) µm through a 1 mm3 vapour cell. This is the ‘locking vapour cell’ that
contains the isotopically enriched rubidium. A strong, 16 mW,7 776 nm coupling
beam is focussed to a beam ellipse with waists of (74 ± 2) µm × (80 ± 2) µm [130].
This beam is counterpropagated through the cell. Only the second probe beam and
the coupling beam, which are resonant with the |5S1/2, mJ = 1

2〉 → |5P3/2, mJ = 3
2〉

and |5P3/2, mJ = 3
2〉 → |5D5/2, mJ = 1

2〉 transitions respectively, are overlapped
within the cell. One advantage of our scheme is that, on exiting the cell, the strong
coupling beam can be reused in further experiments. The raw intensity differences,
i.e., Ix − Iy, are determined with the use of polarising beam splitters (PBS) and
photodiodes: PD1 & PD2 are for the probe lock and PD3 & PD4 are for the
coupling lock.

The probe and coupling light are also sent through a 2 mm length heated vapour
5Three-level EIT has been covered in Chapter 2, Section 2.4.
6The beam waist is measured using [130].
7A higher power of 40 mW is used if using the 5D3/2 level, to compensate for the weaker line
strength.
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cell—the ‘monitor vapour cell’8—of pure (>98%) rubidium. By monitoring the
absorption in this cell using a photodiode (PD5), we can choose where to lock the
780 nm laser. This is shown in Fig. 5.2: the zero crossing on the bottom panel
is chosen depending upon the resonance of interest in the top panel. Both cells
contain unknown buffer gas; this causes an additional broadening of 7 MHz on the
D2 line, as determined by a fit with ElecSus [66].

A magnetic field of up to 0.62 T is achieved across each vapour cell with the use
of two cylindrical NdFeB magnets. Figure 5.1 shows a cross-sectional view of the
top-hat profile of the magnets. There is a maximum variation of 1 mT across
the 2 mm cell. The magnetic field is measured with a Hall probe and the value
confirmed by fitting with ElecSus. The field profile is shown in Fig. 1 of reference
[24]. Further details of the field uniformity and the magnet design are in [131] and
[75]. By changing the separation of the respective magnets, the strength of each
field can be varied. Changing the strength of the field across the locking cell gives
us tunability for the lock-point of the 780 nm laser, although the STROLL will
remain locked to the two-photon resonance.

8This also happens to be the experiment cell (‘science cell’) but, for the purposes of this chapter,
it is simpler to consider it to be part of the laser locking set-up.
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cell at 106 ◦C; the bottom panel displays the S1 signal in the locking cell at 100 ◦C. This temperature is chosen as a
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5.4 Results
To monitor the long-term stability of the locked lasers, we make use of the overlap-
ping Allen Deviation, σODEV , a measure typically used to quantify the stability of
oscillators [134,135]. The Overlapping Allan deviation as a function of averaging
time, mτ0, can be defined via the following equation9:

σ2
ODEV (mτ0) = 1

2 (mτ0)2 (N − 2m)

N−2m∑

n=1
(xn+2m − 2xn+1m + xn)2 , (5.1)

where xn is the time-series of frequency measurements spaced by the measurement
interval τ0, and N is the total number of measurements. We explain the meaning
of equation 5.1 by first rewriting the terms in the brackets of the summation as
(xn+2m − xn+1m) − (xn+1m − xn). As an example, let m = 1 & n = 1, giving
(x3 − x2) − (x2 − x1). So, we have the change between the frequency difference
of x1 & x2 and the frequency difference of x2 & x3. Doing this for all n up to
N − 2 means finding the change in frequency differences for every possible triplet of
consecutive measurements. To complete the explanation, we turn to Fig. 5.4 which
shows the overlapping Allan deviation of the concurrent frequency measurement
of the 776 nm and 780 nm diode lasers. Averaging all the changes in frequency
differences (and normalising) gives the frequency stability for a timescale equal to
the measurement interval τ0. The square root of this value gives a single point—the
leftmost point—on Fig. 5.4. All other points are for timescales equal to integer
multiples, m, of the measurement interval.10 Thus we can tell how stable the
frequency is across any timescale.

9We note, for clarity and completeness, that the square of the Allan deviation is the Allan variance
(i.e., the left hand side of the equation) although the latter concept will not be used further in
this work.

10The maximum value of the averaging time, mτ0, is half of the total measurement time, explaining
why the figure shows only ∼13 hours for a total measurement that took ∼26 hours.
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Figure 5.4: Overlapping Allan deviation of the frequency measurement of the 780 nm probe laser (red locked and
pink unlocked), the 776 nm coupling laser (cyan locked, and light blue unlocked) and the summed frequency (black).
Γ/2π is the natural linewidth of the 5S1/2 → 5P3/2 probe transition. The first maximal turning point is explained by
temperature fluctuations (Fig. 5.5).
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We used a High Finesse WS7 wavemeter with a switcher box to simultaneously
monitor both laser frequencies over a period of 24 hours, where the measurement
interval, τ0 = 0.5 s. The lasers stay locked for the whole of the 24-hour period.11

The frequency instability of the sum of both lasers when locked is less than the
natural linewidth of the probe transition of 6 MHz and of the EIT linewidth of
25 MHz. For most timescales, it is clear that the frequency instability of the sum
is less than the frequency instability of either the 780 nm laser or the 776 nm laser
alone. STROLL ensures that the lasers stay locked to the two-photon transition.
Even if the frequency of one laser drifts, the frequency of the other laser changes
accordingly to compensate. When the lasers are unlocked, they stay at an equivalent
stability only for averaging times less than ∼15 mins. This is of importance in
quantum optics measurements where data must be accumulated over hours [6], e.g.,
for measurements of g(2) autocorrelations.

Our first attempt at making these measurements used two wavemeters, but the
availability of the switcher box made the one-wavemeter method more convenient.
In particular, when using two wavemeters it can be tricky to ensure that time is
precisely synchronised between the two devices. (The solution is to write code so
that a single program controls both wavemeters.)

The laser frequency stability that we achieve is adequate for our purposes. How-
ever, temperature sensitivity is a known issue with Faraday locking [110] with a
temperature dependence of the zero crossing of < 1 MHz/◦C. In future, if required,
it is possible to make further improvements to the frequency stability by adding
active temperature stabilisation. Figure 5.5 shows the overlapping Allan deviation
for the temperature of the cell over the timescales of interest to us. The cell
temperature was measured, using a Pico PT-104 Data Logger, to be stable to
better than 1 ◦C over several hours. This measurement also revealed that the peaks
at 150 s in Fig. 5.4 can be explained as being due to temperature variation since
the frequency variation peaks coincide in averaging time with the temperature
variation peaks.

11We find in Chapter 8 that, in practice, the lock can remain stable over a whole weekend period
of 60 hours. The seeming loss of stability at long timescales is attributable to the fact that the
reference wavemeter drifts at that timescale.
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The strength of the magnetic field sets the tunability of the probe laser lock, giving
several GHz of freedom. There is further freedom from the fact that the Zeeman
shift exceeding the Doppler width gives rise to many possible zero crossings in the
S1 signal, as seen in the bottom panel of Fig. 5.2.

5.5 Conclusion
In this chapter, we demonstrated a technique to simultaneously lock two laser
frequencies to the two-photon transition 5S1/2 → 5P3/2 → 5D5/2 in 87Rb, in the
presence of an applied magnetic field that is sufficiently large to gain entry to the
HPB regime. When the lasers are locked simultaneously, we showed a frequency
instability for the sum frequency of less than 6 MHz for nearly all of the measured
timescales. Whilst the specific application here happens to be in rubidium, the
STROLL concept is easily transferrable to three-level ladder systems in other alkali
metals. We shall find it necessary to use the STROLL lock to perform the quantum
optics experiments in Chapter 8 which require two lasers to be locked in the HPB
regime for timescales up to a day.
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Spectral Redistribution

6.1 Introduction
In the spontaneous four-wave mixing (4WM) experiments of Chapter 8, there
appears to be a large number of 795 nm “background” photons present. An initial
investigation into this phenomenon is described here as it is both experimentally
and conceptually simpler than the experiments in the next two chapters. In the
experiments of this chapter, only one laser is incident upon the rubidium atoms
at any one time. We find that switching on only the 780 nm pump beam and
passing it through heated rubidium vapour leads to the generation of 795 nm
photons (Fig. 6.1 (a)). As the pump power is increased, so too are the number of
795 nm photons that are generated.1 Since these photons have not been released
via a 4WM process, they merely create a background of uncorrelated photons. We
know that these photons are not produced by some decay mechanism from the
higher-lying P state (5P3/2) to the lower-lying P state (5P1/2) because the opposite
case is also observed: we do observe 780 nm photons when only the 795 beam is
on2. A simple decay process is, therefore, not an adequate explanation. As we
shall show in the rest of the chapter, the number of background photons (780 nm
or 795 nm) depends in a quantifiable way on the temperature. As the temperature
1This shall be referred to as the 780→795 experiment(s).
2This shall be referred to as the 795→780 experiment(s).
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increases, so does the atomic number density and the number of atomic collisions.
This suggests the transitioning between the P states is due to the collision between
atoms.3

(a)

Fine-structure
changing
collision

(b)

Figure 6.1: Rubidium energy levels for (a) 780→795 experiments: When a 780 nm
beam is inputted, 795 nm photons are generated, and (b) 795→780 experiments:
When a 795 nm beam is inputted, 780 nm photons are generated. This is due
to collisions transferring population between the two P states shown. (The 5D3/2
state plays no part in this process but is included as a reminder that the above
process always plays a part in all the 4WM experiments in later chapters where
this state is involved.)

Investigation of this effect has a long history. Some of the earliest experiments in
atomic physics in the 20th century were performed on this very phenomenon: In
1918, Wood & Mohler [136] illuminated the D2 line in sodium and observed that
light was produced on the D1 transition. It was determined that this effect was
due to collisions between sodium atoms or between sodium atoms and hydrogen
molecules. At that time this phenomenon was referred to as “sensitised fluorescence”,
a term which has since fallen out of favour. There seems to be no single term
used to describe this phenomenon now: throughout the years it has been variously
referred to in the literature as “fine-structure changing collisions” [137], “collisional
excitation” [138], “collisional transfer of excitation” [139,140], “redistribution of
3We note that the energy gap between the two P states is on the order of kBT. which is ∼7 THz
in frequency units.
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resonance radiation” [141], and “spectral redistribution” [142], amongst others.
We shall generally use the last term, “spectral redistribution” although the other
terms will occasionally be employed as they emphasise different aspects of the
phenomenon. Another reason for the lack of an accepted common term seems to be
that this phenomenon appears in many different contexts. Towards the end of the
last century [143], there was renewed interest in this topic as these fine-structure
changing collisions were leading to atomic loss from cold-atom traps. Most recently,
there has been interest in this phenomenon as a possible route by which an alkali
laser [144–146] could be made. At high densities for the non-Rb species, the
phenomenon can be due to both two-body and three-body collisions [137]. For
many gases, and across a wide range of pressures, it is now well-known that as
buffer gas densities increase, so does the amount of light generated [139,147,148].
As suggested by the variety of terms used to describe spectral redistribution, the
literature is vast and the topic deep. We shall be limiting ourselves to performing
some simple experiments in this chapter instead of attempting a full investigation,
as our principal interest is in confirming that the background photons are indeed
due to spectral redistribution.
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rubidium-87. The cell is sandwiched between two magnets that produce a field of 0.62 T in the direction of the
780 nm beam propagation. After passing through the cell, the 780 nm transmission is measured by the photodiode.
The 780 nm is then filtered out, allowing the generated 795 nm photons to be measured by the photon counter.
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6.2 Experimental set-up
Figure 6.2 shows the experimental set-up. It is instructive to compare the set-up
here to the one in the next chapter, Fig. 7.4: the principal difference is the absence
of all lasers but one. As we are interested in this phenomenon in the context of the
4WM experiments performed in the next two chapters, it is reasonable to keep the
set-up as similar as possible. For the 780→795 experiment, the pump/780 nm laser
is passed through a heated 2 mm length vapour cell containing 98% rubidium-87.
The cell is placed between two NdFeB magnets which create a magnetic field of
0.62 T [75] across the vapour cell. The circularly polarised 780 nm pump beam
drives the σ+ transitions between 5S1/2 and 5P3/2. A photodiode detects the
transmitted pump beam and a photon detector detects the generated 795 nm
photons along the axis of the pump beam. It is important to allow only 780 nm
light into the cell and, conversely, to disallow 780 nm light onto the detector by
using appropriate filters.

For the 795→780 conversion experiment, only a few changes are needed. The
pump/780 nm laser is replaced with the seed/795 nm laser, and the 780 nm
interference filters in the experiment are swapped with 795 nm interference filters
and vice versa.
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Figure 6.3: Theoretical transmission plots for 780 nm light (top) for an 87Rb vapour cell at 100 ◦C in a 0.62 T
magnetic field, and the associated transitions (bottom). For the geometry of this experiment, 780 nm light drives
sigma minus, σ− (purple), and sigma plus, σ+ (cyan), transitions on the D2 line. For the 5P3/2 state, there are 4 |mI〉
levels associated with each |mJ〉 but they are not visible at this scale.
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6.3 Results & Discussion
780 nm → 795 nm Spectral Redistribution
Figure 6.3 shows all the possible transitions for this geometry that are caused
by the 780 nm/pump beam at 0.62 T; σ− transitions are shown in purple and
σ+ transitions are shown in cyan. The top panels show the theoretical spectral
features associated with each transition. The lowest level shown in the Breit-Rabi
diagram is 0.99| − 1/2, 3/2〉+ 0.14|1/2, 1/2〉 because at the magnetic field of 0.62 T
the levels are not fully decomposed into pure |mJ ,mI〉 states. This leads to more
transitions than would be expected if the bottom level were pure | − 1/2, 3/2〉. The
diagram is simplified in Fig 6.4, where only the major transitions for σ+ are shown;
the spectrum at the top of the diagram is experimental data for the transmission of
780 nm light. Setting the pump beam on resonance with the leftmost transition on
the diagram4 and increasing the power of the pump beam gives an increased number
of generated 795 nm photons (Fig. 6.5). This is as expected: if fine-structure
changing collisions involving P states are the underlying mechanism, we first have
to promote atoms into one of the P states, and the higher the power, the more
atoms are promoted. In order to maximise the signal-to-noise ratio, we chose
to work at 16 mW of power, i.e., an intensity of 2.0 × 106 W/m2 for a waist of
50 µm.

For 780 nm light driving σ+ transitions, there are four transitions from |5S1/2, mJ = 1
2〉

to |5S3/2, mJ = 3
2〉, and a further four transitions from |5S1/2, mJ = −1

2〉 to
|5S3/2, mJ = 1

2〉. We find that associated with each transition, there is generation
of 795 nm photons, as shown in Fig. 6.6.5 For high temperatures, there is an ap-
parent splitting of the peaks of the generated photons, perhaps due to reabsorption
on-resonance.

Comparing the data for low (Fig. 6.6) and high temperatures (Fig. 6.7), we can
already see that there are more 795 nm photons produced for higher temperatures.
This is as expected since collisions are the underlying mechanism, and the rubidium
4|5S1/2, mJ = 1

2 ,mI = 3
2 〉 → |5P3/2, mJ = 3

2 ,mI = 3
2 〉

5Approximately double the number of photons are produced from the maximally stretched state
(mJ=3/2, mI=3/2), but this appears to be a high-power effect that disappears when the pump
beam is in the weak probe regime.
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Figure 6.4: Experimental transmission plots for 780 nm light (top) for an 87Rb
vapour cell at 100 ◦C in a 0.62 T magnetic field, and the associated transitions
(bottom). For 780 nm light driving σ+ transitions, there are four transitions from
|5S1/2, mJ = 1

2〉 to |5P3/2, mJ = 3
2〉 (the four transitions on the left), and a further

four transitions from |5S1/2, mJ = −1
2〉 to |5P3/2, mJ = 1

2〉 (the four transitions on
the right).
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Figure 6.5: 795 nm photon count rate (Ċ) increases with increasing pump power
(P ). The dotted line is a fit to a function of the form Ċ = aP b, where fitting gives
a = 4.5 ± 0.6 and b = 0.77 ± 0.6. The Poissonian error bars are too small to be
seen.

number density increases exponentially with temperature. So throughout the follow-
ing, we need to convert temperature to number density. First, the temperature in
degrees kelvin, T [K], is converted to vapour pressure in units of atmosphere, p[atm],
and then the vapour pressure is converted to atomic number density, n [66]:

log10(p[atm]) = A+B(T [K])−1 + C log10(T [K]). (6.1)

For solid Rb, A=4.857, B=−4215, and C = 0; for liquid Rb A=8.316, B=−4275,
and C=−1.3102 [149]. The melting point of rubidium is 39.50 ◦C [150]. The atomic
number density is found from the pressure by assuming an ideal gas:

n = p

kBT
. (6.2)

We performed a series of experiments at different temperatures to determine the
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Figure 6.6: 780→795 experiment. Low temperature (73 ◦C). For each 780 nm
transition (top panel), there is an associated peak of 795 nm photon generation
(bottom panel). Approximately double the number of photons is produced from
the maximally stretched state compared to the others, an effect that disappears at
low input power.

88



Chapter 6. Spectral Redistribution

Figure 6.7: 780→795 experiment. High temperature (140 ◦C). For each 780 nm
transition (top panel), there is an associated peak of 795 photon generation (bottom
panel). The splitting of some of the peaks may be due to reabsorption. There is a
greater photon generation rate at higher temperatures.
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exact temperature dependence of the count rate of the generated 795 nm photons.
As there was ample signal, for each data-point we needed to count for only 60
seconds. We focused our efforts on the peak used in the 4WM experiments, i.e.,
the leftmost peak in Fig. 6.6. Initially, the experiments were performed by setting
the cell to a particular temperature, producing a figure like Fig. 6.6, and then
repeating for a different temperature. For each temperature, we recorded the value
of the count rate associated with the transition of interest. Whilst this procedure
was adequate, it was also slow. We designed a much faster method6 by making use
of Newton’s Law of Cooling [151]:

T (t) = Tenv + (T (0)− Tenv) e−rt, (6.3)

where T (t) is the temperature of the cell at time t, Tenv is the temperature of the
environment, T (0) is the initial cell temperature, and r is the positive constant
that characterises the system. The cell is heated to a high temperature (150 ◦C),
and the heaters are switched off. Every minute, a weak probe spectrum is acquired,
and the data are fitted with ElecSus [66] to determine the temperature, T , at
that time, t. We are then able to fit these (T (t), t) data points using Eq. 6.3 to
determine r, and so obtain a calibrated cooling curve that gives temperature as a
function of time.

We again heat the cell to the same high temperature, turn off the heaters and record
the count rate recorded by the photon-counters as a function of time. We use the
calibrated cooling curve to convert this to count rate as a function of temperature.
Lastly, we convert to count rate versus number density using equations 6.1 and
6.2. The data obtained using this faster method matched that from the slower
method, and we were able to obtain many more data points as the photon-counter
is continuously recording.

We attempt to fit to the data, Fig. 6.8, a function of the form Ċ ∝ na where Ċ is
the count rate, n is the rubidium number density and the exponent a is allowed
to float. For the data in the “low-temperature” range (31 ◦C — 86 ◦C), we obtain
6This reduced the time taken to obtain data from one day to one hour.
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Figure 6.8: 780→795 experiments. In the low-temperature region (31 ◦C — 86 ◦C),
where the fit to the data (yellow points) is shown as a dotted line, the photon
generation rate is linearly proportional to the number density, n1. In the high-
temperature region (86 ◦C — 120 ◦C), where the fit is shown as a dashed line, the
photon generation rate is proportional to n1.6.

a = 1.03± 0.04 with a reduced chi-squared, χ2
ν , of 1.3, indicating a good fit [133]. For

the data in the “high-temperature” range (86 ◦C — 120 ◦C), we obtain a = 1.6± 0.1
with a reduced chi-squared, χ2

ν , of 1.3, indicating a good fit. We performed the
same experiment for all the different peaks. For the high-temperature region, a
always lies between 1.6 and 1.8. Finally, at the highest temperatures (>120 ◦C)
saturation occurs, which we surmise is due to 795 nm photon reabsorption in the
dense atomic vapour. Recalling that these generated photons lead to uncorrelated
background noise in our spontaneous 4WM experiments, their dependence on
n gives us some control over their number. To keep the number of background
photons to a minimum, it is best to work at lower temperatures. More exactly, we
would like to work at the high end of the linear regime (∼86 ◦C) because the genuine
signal increases as n2 with temperature as will be seen in the next chapter.
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Figure 6.9: Theoretical transmission plots for 795 nm light (top) for an 87Rb vapour cell at 100 ◦C in a 0.62 T
magnetic field. For the geometry of this experiment, 795 nm light drives sigma minus, σ− (purple), and sigma plus,
σ+ (cyan), transitions on the D1 line.
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795 nm → 780 nm Spectral Redistribution
With the seed/795 nm laser in place of the pump/780 nm laser, for each 795 nm
transition (Fig. 6.10) 780 nm photons are generated (Fig. 6.11). Figure 6.9 shows,
for this geometry, all the possible transitions that are caused by the seed beam
at 0.62 T; σ− transitions are shown in purple, and σ+ transitions are shown in
cyan. The top panels show the theoretical spectral features associated with each
transition. A simplified version of the diagram is presented in Fig 6.10, where only
the major transitions for σ− are shown; the spectrum at the top of the diagram
shows experimental data for the transmission of 795 nm light.

A short investigation gave similar results (Fig. 6.12) to the 780 nm → 795 nm
experiment. We find that associated with each transition, there is the generation
of 780 nm photons, as shown in Fig. 6.11.7 There is a low-temperature region
(31 ◦C — 85 ◦C) where the 780 nm photon generation rate has an n1 dependence.
There is a high-temperature region (85 ◦C — 120 ◦C) where the 780 nm photon
generation rate has an n1.8 dependence. Above a certain temperature, saturation
occurs.

Spectral Redistribution: 780 nm → 795 nm & 795 nm → 780 nm
Both the 780→795 case and the 795→780 case suggest the following. At low
temperatures where the n1 dependence is evident, the rubidium atoms are colliding
with some buffer gas, X, in the cell:

For 780→795,
Rb(5P3/2) + X→ Rb(5P1/2) + X. (6.4)

For 795→780,
Rb(5P1/2) + X→ Rb(5P3/2) + X. (6.5)

In the 795→780 case, this requires the conversion of the kinetic energy of the
collisions (kBT ∼ 7 THz) to the energy difference between the two P states (= 7 THz).
7We also looked for generated photons in the forward and backward direction to rule out any
significant difference from looking from different directions.
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Figure 6.10: Experimental transmission plots for 795 nm light (top) for an 87Rb
vapour cell at 100 ◦C in a 0.62 T magnetic field, and the associated transitions
(bottom). For 795 nm light driving σ− transitions, there are four transitions from
|5S1/2, mJ = 1

2〉 to |5P1/2, mJ = −1
2〉.
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Figure 6.11: 780 generation associated with each 795 transition. Photons were
detected in the backward (blue & purple) and forward (red) directions, as shown
in the bottom panel.
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Figure 6.12: 795→780 experiments. In the low-temperature region (31 ◦C — 85 ◦C),
where the fit to the data (yellow points) is shown as a dotted line, the photon
generation rate is linearly proportional to the number density, n1. In the high-
temperature region (85 ◦C — 120 ◦C), where the fit to the data is shown as a dashed
line, the photon generation rate is proportional to n1.8.

96



Chapter 6. Spectral Redistribution

Although the cell was not made with the intention of containing buffer gas, we
know from previous measurements [24] that it does contain some residual gas, of
unknown identity, from the manufacturing process.

At high temperatures, the exponent of n changes from 1 to approximately 2
indicating an extra mechanism at work. A possible explanation is that it is not only
inter-species collisions (between Rb and buffer gas) but also intra-species collisions
(between two Rb atoms) that occur in the high-temperature regime:

For 780→795,
Rb(5P3/2) + Rb→ Rb(5P1/2) + Rb. (6.6)

For 795→780,
Rb(5P1/2) + Rb→ Rb(5P3/2) + Rb. (6.7)

As mentioned in the introduction, the avenues of possible exploration on this topic
are numerous. For example, with the current investigation, we cannot determine
precisely which transition is giving rise to the 795 nm photons. This can be done
using the etalon filter discussed in Chapter 3.2, and this is presently being explored
by other members of our group.

6.4 Conclusion
This short investigation into the generation of background photons confirms that
these photons are being generated by a well-understood phenomenon which is
encountered in many atomic physics experiments. It goes by many names, and
we have chosen to use the term spectral redistribution. Spectral redistribution
increases at higher input powers and higher temperatures because it is due to
the redistribution of energy during collisions between atoms. To keep this effect
to a minimum, it is best to work at low temperatures. However, as we shall see
in the next chapter, this also decreases the signal in our experiments, and so a
compromise is required.
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Seeded four-wave mixing
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Chapter 7. Seeded four-wave mixing

7.1 Introduction
Four-wave mixing (4WM1) is a nonlinear optical process in which three optical
fields are coherently combined to produce a fourth field. It has been used in
numerous applications, including for the production of correlated photon-pairs [2]
for use in quantum information protocols; for the creation of entangled imaging
systems [5]; for creating collective spin excitations [152]; and for observing col-
lective quantum beats [6]. The particular case of seeded 4WM has found use in
precision spectroscopic measurements [4]; in displacement measurements in electro-
mechanical cantilevers [153]; and in photon storage [154]. Different configurations of
energy levels have been used to generate 4WM, including the double-lambda [155],
double-ladder [123], and the diamond [24,156–158] schemes. In this chapter, we
shall experimentally characterise a four-level seeded 4WM system in the diamond
configuration and show how the results can be modelled. We shall then use the
4WM signal to extract the corresponding excited state dipole matrix element. Our
full characterisation of the seeded 4WM system gives us a good understanding of
how the 4WM signal varies with the parameters of the experiment, which becomes
crucial in the next chapter where we switch to spontaneous 4WM.

Atomic vapours are especially useful for some of the aforementioned applications
as the photons produced are already frequency- and bandwidth-matched to atomic
resonances and, for that reason, matched to other elements of an atom-based
technology, e.g., atom-based quantum memories [159], quantum repeaters [160],
and quantum gates [161]. Experiments with thermal vapours are advantageous in
comparison to the experiments with cold-atoms because the former are relatively
inexpensive, simpler, and miniaturisable. However, thermal motion leads to the
Doppler broadening of absorption lines and multiple path interference occurs, which
is often disadvantageous. Interferences occur when ωD ≥ δ, where ωD is the Doppler
width and δ is the separation between lines. ωD is on the order of hundreds of
MHz and, for alkali metal D-lines, δ is typically 100 MHz. This means that, under
normal laboratory conditions, ωD is indeed greater than δ and interference will
occur.
1Four-wave mixing is often also abbreviated as FWM in the wider literature, but we prefer 4WM
because ‘4’ immediately indicates four whereas ‘F’ does not.
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However, the application of a strong magnetic field has been shown to simplify
nonlinear atom-light interactions in thermal vapours, resulting in enhanced control
of electromagnetically induced transparency [24] and absorption [23], without the
need for optical pumping. At a field strength where the Zeeman shift exceeds the
internal hyperfine energy intervals of the atom, the hyperfine Paschen–Back (HPB)
regime2 is entered. In the absence of a magnetic field, there is coupling between the
total electronic momentum J and the nuclear spin momentum I to give the total
angular momentum, F where F = I+J . The ‘good’ quantum numbers to describe
the system are therefore F and mF . In the HPB regime, there is decoupling of J
and I and so the ‘good’ quantum numbers for describing states are mJ and mI .
We show here that entering the HPB regime also simplifies 4WM as it does other
nonlinear optical phenomena [6, 18–22,65,110,162–164].

The conceptual core of the experiment covered in this chapter is illustrated in
Figures 7.1 and 7.2. The seed, pump, and coupling laser beams, i.e., the three
optical fields, are coherently combined and the medium, rubidium-87 thermal
vapour, generates a fourth signal field when the phase-matching condition is met:
kpump + kcoupling = kseed + ksignal. On the left of Figure 7.1, we show that in the
absence of a magnetic field, the hyperfine splitting of the four levels results in
many paths by which the 4WM signal is generated. The electric fields from the
different paths mutually interfere, leading to a complicated 4WM signal, as shown
in the bottom-left panel of Figure 7.2. In contrast, as shown on the right of the
respective figures, when a large magnetic field is applied such that the HPB regime
is entered, adjacent levels are separated by more than the Doppler width and a
single four-level system can be isolated. We see, in the bottom-right panel, that
the 4WM signal thus produced is much simpler and can therefore be quantitatively
modelled. We did not note any significant amplitude difference between the two
4WM signals (i.e., with and without the magnet).

In the HPB regime, the four-level system consists of levels |0〉, |1〉, |2〉, and |3〉
which are explicitly the following states in 87Rb:
|0〉 = |5S1/2, mJ = 1

2〉, |1〉 = |5P3/2, mJ = 3
2〉, |2〉 = |5D3/2, mJ = 1

2〉, and
|3〉 = |5P1/2, mJ = −1

2〉. In all cases, mI = 3
2 .

2See Section 2.6 for a discussion of the HPB regime.
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Figure 7.1: Rubidium energy levels in the diamond configuration in the absence
(left) and presence (right) of a 0.62 T magnetic field. Three beams (pump, seed &
coupling) are added. When the phase-matching condition is fulfilled, the four-wave
mixing process (4WM) generates a fourth signal beam. With no magnetic field,
there is multiple-path interference; the magnetic field removes this interference.
The states labelled |0〉, |1〉, |2〉 & |3〉 are those used in the model.

Figure 7.2: Example experimental four-wave mixing spectra in the diamond config-
uration in the absence (left) and presence (right) of a 0.62 T magnetic field. In the
zero-field case, the four-wave mixing spectra are very sensitive to the experimental
conditions and thus difficult to model. Application of a magnetic field results in
‘textbook’ four-wave mixing spectra which can be quantitatively modelled. The
right panel shows the model (blue) overlaid on the experiment (purple).
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7.2 Theory
To understand how the 4WM signal is produced by the medium we need to consider
the polarisation of the medium, P̃ (t), which depends on the strength of an applied
optical field Ẽ(t). In linear optics, P̃ (t) = ε0χ

(1)Ẽ(t) where χ(1) is the linear
electric susceptibility. When an optical field is incident on a medium, a nonlinear
response is possible where the polarisation of the medium can develop frequency
components that are not present in the incident field. These components then act
as sources of new frequency components of the optical field [165]. Four-wave mixing
is a nonlinear optical phenomenon; here, the macroscopic optical response can be
described by generalising the previous equation by expressing the polarisation as a
power series in the field strength [165]:

P̃ (t) = ε0[χ(1)Ẽ(t) + χ(2)Ẽ2(t) + χ(3)Ẽ3(t) + ...],

where χ(2) and χ(3) are known as the second- and third-order nonlinear optical
susceptibilities, respectively. The value of χ(2) is only nonzero for crystals that
do not display inversion symmetry (noncentrosymmetric crystals [165]). Thus
for the case of interest to us, which is 4WM in a thermal vapour, it is χ(3)Ẽ3(t)
which is of relevance. In 4WM, because three optical fields Ẽ1(t), Ẽ2(t), and Ẽ3(t)
are coherently combined to produce a fourth one, the relevant term becomes:
χ(3)Ẽ3

total(t), where Ẽtotal = Ẽ1(t) + Ẽ2(t) + Ẽ3(t).

Our model consists of a system of four levels that interact with three continuous-wave
driving fields with wavelengths 780 nm (pump), 776 nm (coupling), 795 nm (seed),
with Rabi frequencies ΩP, ΩC, ΩS and detunings ∆P, ∆C, ∆S respectively3. We
begin by writing the density matrix, ρ̂, for the unperturbed atom. We then find the
time evolution of the density matrix in response to a Hamiltonian and spontaneous
emission by using the master equation in Lindblad form [57,166]:

dρ̂
dt = − i

h
[Ĥ, ρ̂] +

∑

n

1
2[2Ĉnρ̂Ĉ†n − (ρ̂Ĉ†nĈn + Ĉ†nĈnρ̂)],

where Cn = √γnÂn, Ân are the collapse operators through which the environment
3These angular detunings are converted to linear detunings in the figures, i.e., ∆/2π.
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and system couple and γn are the corresponding rates. The total Hamiltonian,
Ĥ = Ĥ0 +Ĥint, where Ĥ0 is the unperturbed Hamiltonian and Ĥint is the interaction
Hamiltonian. The interaction Hamiltonian Ĥint = −d̂ · ~E, where d̂ is the electric
dipole operator and ~E is the electric field vector. We note in passing the relationship
between the macroscopic and microscopic descriptions [165]: P̃ = N〈d̂〉 = N ·Tr(ρ̂d̂),
where N is the atomic number density. We write the interaction Hamiltonian, in
the rotating wave approximation, as4

Ĥ = ~
2




0 ΩP 0 ΩS

ΩP −2∆P ΩC 0
0 ΩC −2(∆P + ∆C) 0

ΩS 0 0 −2∆S



.

Once the appropriate decay rates are included, we can solve the Lindblad master
equation to find the steady-state density matrix ρ. There is an emitted electric
field which is proportional to the coherence between |3〉 and |2〉, ρ23: this is the
4WM signal [165].

Atomic motion is modelled by including the Doppler-shifted detunings for each
velocity class v. The total emitted field is the sum over all ρ23(v) weighted by the
1-D Maxwell-Boltzmann distribution, P (v)dv = Be−Av

2dv, where A = m
2kBT

and
B =

√
A/π [167]. It is also necessary to take into account the spatial intensity

profiles of the driving fields, i.e., the driving laser beams. These beams have
Gaussian intensity profiles in the radial direction and are assumed to be perfectly
overlapped. The emitted field is calculated for radial shells where each shell is
assumed to be of constant intensity. Because of phase-matching, the emitted field
(i.e., the 4WM signal) is in a well-defined direction. In the experimental set-up,
the signal is sent to the photon counter through a single-mode fibre. We model the
effect of collecting with the fibre by considering the fibre to be a Gaussian spatial
filter that acts on the emitted field. Thus the amplitude of the signal is calculated
as

S ∝
∫ ∞

0
|ρ23|2 exp(−2r2/w2

D) r dr, (7.1)

4The Hamiltonian looks slightly different from the theory chapter only because of a relabelling of
the states, done to keep this chapter consistent with its associated paper.
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where wD ≈ 90 µm is the waist that we measure at the output of the optical fibre
after the 11 mm collimating lens.

Model parameters

In order to solve for the steady-state density matrix, the correct decay rates must
be coded into the computational model. The decay rates of the relevant atomic
states are Γ30 = 2π × 5.7 MHz, Γ10 = 2π × 6 MHz, Γ20 = 2π × 0.07 MHz
Γ21 = 2π×0.17 MHz, and Γ23 = 2π×0.43 MHz [168]. In the model, the decay rates
Γ20, Γ21, and Γ23 are multiplied by a factor α. This factor includes the contributions
from collisional buffer gas broadening on the excited-state transitions [169] and the
effect of inhomogeneity in the magnetic field. By using a value of α = 35, we obtain
a good agreement with the data. This corresponds to an additional broadening of
∼20 MHz, which agrees with values which have previously been measured [24].
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Figure 7.3: Schematic of the routes taken by the lasers in the experiment. Before reaching the experiment, the seed
and pump beams are split and sent to the Fabry-Pérot etalon, which is used as a frequency reference. The pump and
coupling laser beams are split and sent to the STROLL lock for stabilising the frequencies of both lasers. For a full
table layout see Appendix A.
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Figure 7.4: Diagram of the experimental set-up, read from right to left. All three beams pass through a heated 2 mm
length vapour cell containing 98% rubidium-87. Pump and seed beams are aligned along the 0.62 T magnetic field
axis whilst the coupling beam is at a small angle (10 mrad). The quarter-waveplate (λ/4) sets the pump and seed
polarisations to be right-hand circularly polarised and left-hand circularly polarised respectively. The edge mirror is
translated up on the diagram during initial alignment. The phase-matching condition is illustrated in the panel.
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7.3 Experimental set-up
A schematic of the routes taken by each of the laser beams is shown in Fig. 7.3,
and a diagram of the experimental set-up is shown in Fig. 7.4. We first describe
the experimental set-up summarily in the précis below and then expand upon the
details of the entire set-up in the rest of the section.

Précis

A vapour cell of length 2 mm containing 98% 87Rb, which is housed within a heater,
is placed between two NdFeB magnets. These cylindrical magnets have a top-hat
profile [75] and allow us to achieve a magnetic field of 0.62 T across the vapour
cell, which has a maximum variation of 1 mT across the 2 mm.5 Adjusting the cell
temperature gives us control over the atomic number density, as shown in Fig. 1.1
of [75]. The circularly polarised 795 nm seed beam of 1 µW power drives the σ−

transition between |0〉 and |3〉. The circularly polarised 780 nm pump beam, of
opposite handedness, of 1 µW power drives the σ+ transition between |0〉 and
|1〉. The 776 nm 30 mW coupling beam drives |1〉 to |2〉. High intensities6 are
achieved by focussing the beams to a ∼60 µm 1/e2 radius at the cell centre. The
generated 762 nm signal beam (|2〉 → |3〉) fulfils the phase-matching condition:
kpump + kcoupling = kseed + ksignal. With the use of an edge mirror on a translation
stage, the coupling beam is crossed at a small angle (10 mrad) to the optical axis.
This allows the seed/pump beams, which lie along the optical axis, to be physically
separated from the coupling/signal beams at the output of the cell so that the
signal and seed beams can be detected at different detectors. A photodiode detects
the transmitted seed beam and a photon detector detects the four-wave mixing
signal, which has a well-specified direction given by phase-matching.

5The field profile is shown in Fig. 1 of reference [24].
6The equation for converting between power and intensity for a given beam waist is given in
Eq. 7.3.
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Full experimental set-up

As shown in Fig. 7.3, the seed (795 nm), pump (780 nm) and coupling (776 nm)
light are generated by three external cavity diode lasers and coupled into polar-
isation maintaining fibres before arriving at the experimental cell. For all lasers,
polarisation-matching into fibres is performed following the method of [170]. In
brief, the method involves using a λ/2 and λ/4 waveplate before the fibre input.
These waveplates are set at rotations that minimise the polarisation fluctuations at
the fibre output, where the polarisation fluctuations are deduced by measuring the
beam power fluctuations after the beam passes through a polarising beam splitter
(PBS). These fluctuations can be more quickly observed if the fibre is briefly heated
and allowed to cool, although this is not a necessary step.

The pump/780 nm light is emitted by a Toptica DL100 780 nm diode laser. After
passing through an optical isolator, it is split into two paths via a λ/2 waveplate
and PBS: one path is fibre coupled to the experimental vapour cell while the
other path is split into two again via a PBS. One arm is coupled to a reference
Fabry-Pérot etalon which is used as a frequency reference7, and the other beam is
sent to the STROLL locking system discussed in Chapter 5.

En route to the experimental cell, the light is passed through a narrowband 780 nm
interference filter (Semrock LL01-780 with a measured extinction of 10−6). This is
only essential for the photon counting experiments in the next chapter (Chapter 8)
as there is a small but significant number of 795 photons in the pedestal of the
780 spectrum—this must be eliminated before it reaches the detection end of the
experiment. The light is transmitted through a PBS and then circularly polarised
with a λ/4 waveplate before being focussed by a lens into the experimental cell.

The seed/795 nm light is emitted by a Toptica DL100 795 nm diode laser. As
with the pump light, this light passes through another optical isolator and is split
with λ/2 waveplate combined with a PBS. One beam is sent to the aforementioned
Fabry-Pérot etalon to create a frequency reference for this laser. We can switch
between observing 795 nm or 780 nm transmission peaks with the use of a removable
magnetic mirror before the etalon. The rest of the light is sent to the experimental
7Section 3.3.
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Figure 7.5: (a) Theoretical transmission spectrum of the rubidium D1 (795 nm)
line in the presence (solid grey line) and absence (dotted grey line) of a 0.62 T
magnetic field with the vapour cell at a temperature of 80 ◦C. The unshaded region
is the detuning range for the experimental data shown below. (b) Experimental
spectra for the transmitted seed light in the presence of (i) only the seed beam
(ii) both the seed and pump beams, and (iii) all three beams (seed, pump, and
coupling).
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cell. The seed light is reflected through the same PBS that transmits the pump
light and so when it passes through the λ/4 waveplate it is circularly polarised in
the opposite sense to the pump light. It is then focussed by the 20 cm lens into
the cell.

The coupling/776 nm light is generated by a Toptica DL Pro 776 nm 100 mW
external cavity diode diode laser, passed through an optical isolator and amplified
by a tapered amplifier, as fully explained in Chapter 3.1. En route to the cell, it
is split by a λ/2 waveplate and PBS. Some of the light is sent to the STROLL
cell; the rest is reflected into the cell, through the 20 cm focusing lens, by an edge
mirror that is atop a translation stage.

When setting up from scratch, it can be difficult to obtain the 4WM signal because
very precise alignment is required to overlap three focussed beams at the centre
of a 2 mm cell, especially as the cell is not visible to the naked eye when it is
placed at the centre of the magnet holders. Initially, it is best to perform the
alignment procedure without the magnet in place. In the next two subsections, we
report the alignment (Section 7.3.1) and realignment (Section 7.3.2) procedure as a
detailed set of instructions to aid experimenters working with the same or similar
set-up.

7.3.1 Initial alignment

1. Position the cell on the table above an optical table hole.

2. Align the seed beam so that it passes through the cell and simultaneously passes
over holes on both the input and output ends of the vapour cell. This defines
the optical axis.

3. Insert a pair of irises at both the input and output ends of the cell but outside
the footprint of the magnet—this will help with realignment in the future.

4. Insert the magnet holder containing the two magnets. The spectrum on the
photodiode observing the seed light is shown in Fig. 7.5 (b)(i).

5. Align the pump beam along the optical axis by aligning the beam through
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the irises using beam walking techniques. An electromagnetically induced
transparency (EIT) signal should appear on the seed spectrum, as shown in
Fig. 7.5 (b)(ii).

6. Walk the pump beam so that the amplitude of the EIT feature is maximised.

7. Insert a pair of focusing/defocusing lenses (20 cm) into the beam path at the
correct positions.

8. Translate the edge mirror perpendicular to the optical axis so that the centre of
the mirror blocks the pump and seed beams. Align the coupling beam through
the irises such that the beam is aligned along the optical axis. At this point,
all three beams would be perfectly overlapped and copropagating if the edge
mirror were not blocking two of the beams.

9. Translate the edge mirror so that the distance between the centre of the lens
and the coupling beam spot on the lens is 2 mm. This gives a 10 mrad angle
of incidence.8 Splitting of the EIT feature should be evident, as shown in
Fig. 7.5 (b)(iii).

10. Maximise the splitting of the EIT signal by walking the coupling beam. Insert
one more pair of irises in the path of the coupling beam to help with future
realignment of this beam.

11. The photodiode observing the signal/762 nm light (See Fig. 7.4) should now
show a 4WM spectrum, as shown in the right panel of Fig. 7.2.

7.3.2 Realignment

It is important that the previous alignment be performed as well as possible as even
slight misalignment leads to some asymmetry in the lineshapes. Due to changes in
the laboratory environmental conditions and the mechanical relaxation of optical
8This value for the angle of incidence was kept constant throughout all the experiments in this
thesis involving the coupling beam. The value was chosen so that the phase mismatch is minimal
while still allowing the output beams to be easily separated from the input beams. An interesting
future direction for this project would involve checking how the 4WM signal varies with the
angle, as more collinear beams may give a better signal.
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components, all of the beams require periodic realigning. It is hoped that in the
future this realignment can be automated using the Pi Auto-aligner of Chapter 4.
Here we outline a possible manual realignment protocol. For all three input beams,
begin by maximising the light through their respective irises. It is likely that this
will not give the best possible signal. Therefore, it is useful to block the coupling
laser and maximise the EIT signal by walking the pump beam. Then unblock the
coupling laser and maximise the splitting of the EIT signal by walking the coupling
beam.

We found that on those occasions where the 4WM signal was completely lost, it is
useful to first detect the blue light (420 nm photons) that arises from the second
step of the two-step decay from the upper state to the ground state: 5D3/2 →
6P3/2 → 5S1/2 (See Fig. 1 of [171]). We place a photomultiplier tube (PMT,
Hamamatsu H10682-210) with a blue light filter perpendicular to the optical axis
so that blue light fluorescence can be detected. Exciting to the upper state requires
only the pump and coupling lasers to be switched on (i.e., the seed laser can be
blocked). So, maximising blue light detection is one way of ensuring maximal
overlap between these two lasers.

In summary, to maximise the overlap of the three beams, first overlap the pump
and seed beams by maximising the EIT signal. Then, translate the edge mirror to
a position such that the coupling beam crosses at 10 milliradians. Finally, overlap
the coupling beam, with the pump beam fixed, by maximising the blue light signal.
This procedure results in a maximised 4WM signal.

7.3.3 Detection

There are two detection “arms” to the experiment: in both cases the experimental
set-up terminates with the capture of photons on photon detectors. These detectors
(Excelitas SPCM-AQRH-14-FC) are connected to a timing device, a SensL HRM-
TDC, which precisely records the time of arrival of the photons. Although photon
detectors are essential for the experiments done in the next chapter on spontaneous
4WM, they are not necessary here. However, their use gives 4WM spectra with
an excellent signal-to-noise ratio. For alignment purposes it is easier to start by
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looking at both the seed spectrum and the 4WM signal on photodiodes (Hamamatsu-
C5460) which have a much larger active surface area than photon detectors. A
removable mirror on a magnetic mount allows us to switch between observing the
four-wave mixing 762 nm/signal light on the photodiode and the photon detector.
We calibrate the photon detector and photodiode by detecting a beam of light of
known power (1 µW attenuated sufficiently using ND filters).

On the seed/pump (795 nm/780 nm) detection arm, the 795 nm photons are
separated from the 780 nm photons by the use of a 795 nm interference filter
(IF) (Semrock LL01-808, placed at an angle to allow only 795 nm light through9,
giving a measured extinction of 10−6) and by polarisation filtering with a λ/4, λ/2
and Glan-Taylor polariser giving an extra 10−4 extinction. A beam splitter on a
magnetic mount allows observation of the 795 nm weak probe transmission when
required.

On the coupling/signal (776 nm/762 nm) detection arm, the 776 nm light is filtered
out using two 780 nm interference filters (Semrock LL01-780 with a measured
extinction of 10−6) which are set at an angle so that only 762 nm light passes through.
Two filters are required because there are milliwatts of 776 nm power on this arm,
compared to the microwatts of 795 nm power on the other arm. Polarisation
filtering using a λ/4, λ/2 and Glan-Taylor polariser is also performed.

9We use a filter designed for 808 nm because at the time of purchase there was no readily available
filter specified for 795 nm.
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7.4 Results
Here we report the dependence of the 4WM signal on atomic number density, seed
power, pump power, coupling detuning, and coupling power. In the next section
(Section 7.5), we will show how to use the dependence on coupling power to extract
the relevant dipole matrix element. By characterising the seeded 4WM system,
we show that it behaves as expected from our model, and we position ourselves
to perform the single-photon experiments of the spontaneous 4WM system of the
next chapter.

For clarity, we note that the phrase “on resonance” is used to mean that the
detunings of all the lasers are zero, i.e., ∆P = ∆C = ∆S = 0; this is the only case
where the doublet feature of the 4WM signal is perfectly symmetrical. Perfect
symmetry is in practice very difficult to achieve as it requires exquisite alignment
of the beams, as described in the previous section.

The waists of the three beams are measured by taking images on a CCD camera
and fitting a Gaussian curve to each image. The error is the statistical error from
fitting many images. This gives waists for the seed, pump and coupling beams of
(60 ± 1) µm, (60 ± 1) µm and (63 ± 1) µm respectively.

7.4.1 Dependence on atomic number density

We increase atomic number density by increasing the temperature of the cell and
find that the 4WM signal intensity scales quadratically with atomic number density,
as shown in Fig. 7.6. This is as expected since the intensity is proportional to the
square of the electric field and the electric field scales linearly with the number
of atoms because 4WM is a coherent effect. Above a temperature of 80 ◦C (i.e.,
number densities above 5 × 1018 m−3), the 4WM signal saturates because the
vapour cell becomes optically thick for ground-state transitions.

7.4.2 Dependence on seed power

Increasing the seed power increases the 4WM signal, as shown in Fig. 7.7. We
estimate the saturation parameter by inspection of the graph. It becomes apparent
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Figure 7.6: The resonant four-wave mixing signal peak power as a function of
vapour cell temperature and atomic number density. The signal has an initial
quadratic rise (solid blue line) after which it saturates at a temperature of ∼90 ◦C.
The unshaded region indicates the points included in the fit for the solid line.
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Figure 7.7: The 4WM signal increases with seed power, saturating at
Psat795 = 2 µW. The three curves correspond to power law fits to the first four
points for pump powers 0.5, 1, and 2 µW. If the pump power is increased, the
signal increases but Psat795 is unchanged.

at Psat795 = 2.5 µW. 10 The signal also increases with pump power but Psat795

remains the same. For the pump powers of 0.5, 1, and 2 µW, the initial increase
can be fitted with power laws with exponents 0.6 ± 0.1, 0.7 ± 0.1 and 0.7 ± 0.1
respectively. For seed powers above 10 µW, the signal decreases again, which we
attribute to power broadening of the pump transition.

7.4.3 Dependence on pump power

Fig. 7.8 and 7.9 shows that increasing the pump power increases the 4WM signal.
Between 0 and 20 µW, the 4WM signal increases linearly. By inspection of the
graph, we estimate that saturation occurs at Psat780 = 40 µW.11

The linear increase in the 4WM signal with pump power can be fitted with
10This is a Rabi frequency, Ωsat795 , of 15 (×2π) MHz.
11This is a Rabi frequency, Ωsat780 , of 68 (×2π) MHz.
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Figure 7.8: The 4WM signal increases linearly with pump power between 0 to
20 µW. The signal saturates at 42 µW. The dotted lines are fits to straight lines.

straight lines of the form y = mx + c. At a cell temperature of 114 ◦C, for seed
powers of 0.1 µW, 0.5 µW, 1.0 µW and 2.0 µW, m = 1.57 pW/µW, 4.41 pW/µW,
13.38 pW/µW, 25.33 pW/µW and c = 0.05 pW, 0.16 pW, 0.5 pW, 0.01 pW respect-
ively. The errors are given by the fitting procedure12 and are ∆m = ±0.01 pW/µW
and ∆c = ±0.01 pW. We would expect c to equal 0 and the small nonzero value is
likely to be an indication of unsubtracted background light.

7.4.4 Dependence on coupling detuning

The strong coupling beam dresses the pump transition, which creates two paths
to the 5D state. As we see in the colour map, Figure 7.10 (b), there are two
peaks in the 4WM signal corresponding to the resonances with these dressed states.
The colour map shows that the theoretical 4WM signal has contributions from
many different atomic velocity classes. Above the colour map on panel (a) each
12Weighted least-squares minimisation, the lmfit module in python.

117



Chapter 7. Seeded four-wave mixing

0.2 0.4 0.6 0.8 1.0
Pump power (µW)

0

5

10

15

20

25

4W
M

sig
na

l/
pW

2 µW seed
1 µW seed
0.5 µW seed
0.1 µW seed

Figure 7.9: Same data as in Figure 7.8 but showing only the fitted region. The
dotted lines are fits to straight lines, demonstrating clearly that the 4WM signal
increases linearly with pump power. Error bars are too small to be seen.
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Figure 7.10: (a) The theoretical 4WM signal generated by our computational
model has individual contributions from many (but not all) velocity classes. (b)
Each of the coloured 4WM signals shown above the colourmap is the contribution
from one velocity class as the seed laser is scanned across resonance. The dotted
envelope is the sum of these contributions and matches the observed experimental
4WM signal.
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individually coloured 4WM signal results from the contribution of one velocity
class as the seed laser is scanned across resonance. The dotted envelope is the sum
of these contributions.

If we now change the coupling detuning, different velocity classes are involved
and the splitting of the peaks in the 4WM signal changes, as does the asymmetry.
This is seen in Fig. 7.11 which shows how the splitting of the experimental signal
changes as the coupling detuning changes. Only on resonance, where the coupling
detuning is zero, are the peaks symmetric.

7.4.5 Dependence on coupling power

Increasing the coupling power leads to a splitting of the dressed-state energy
levels. The coupling Rabi frequency, Ωc, is proportional to the square root of the
coupling power and the dressed states split proportionally to ~Ωc (Autler-Townes
splitting). We find that the splitting of the 4WM doublet follows this square-root
relationship.

Initially, the absolute value of the 4WM signal increases with coupling power
but the signal saturates at a coupling power of 10 mW [25]. Nevertheless, the
Autler-Townes splitting, S, continues to increase even above these powers, as can be
seen in Fig. 7.12. The asymmetry of the lineshape in the figure is due to imperfect
overlap of the three beams in the cell. We can make the features less asymmetric by
tweaking of the alignment of all three beams. Nevertheless, it is difficult to achieve
and keep perfect symmetry because of exquisite sensitivity to alignment. We find
that this does not change the frequency position of the peaks. For fixed beam
powers, when all three beams are on resonance with their respective transitions,
the splitting between the peaks is minimised. Asymmetry can also be due to the
pump or coupling beam being off-resonance. In the case of the data shown, we
know this is not the case because any attempt to change these detunings in the
experiment led to an increase in splitting. In other words, we set the coupling,
pump, and seed powers to fixed values, and then we adjust the pump and coupling
detunings so that S is minimised. This ensures that the coupling and pump beams
are exactly on resonance.
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Figure 7.11: (a) The four-wave mixing (4WM) signal as a function of both seed
(795 nm) and coupling (776 nm) detuning, where the avoided crossing indicates
Autler-Townes splitting. The theoretical prediction of this splitting is displayed
as a solid blue line. Panels (b) and (c) show individual 4WM spectra at coupling
detunings of 0 and -360 MHz respectively, with theory overlaid.
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Figure 7.12: Experimental data showing that the splitting, S, of the peaks of the
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The separation between the peaks of the doublet, which we call the splitting, S,
is proportional to the dipole matrix element of the excited state transition. From
careful measurements of S we can extract the dipole matrix element of the excited
state transition.

For a two-level system, S = Ω, i.e., the proportionality constant between splitting
and Rabi frequency is one [16]. This is not true for a four-level system: when we
input a particular value for the coupling Rabi frequency, Ωc, into the computational
model, we find that the splitting of the generated theoretical signal, S is always
less than the coupling Rabi frequency such that

S = m′ × Ωc, (7.2)

where m′ < 1. The exact value of the proportionality constant m′ depends upon
the power of the seed and pump beams. We ran simulations for different seed
and pump powers to determine the correct value of m′ for the experiment. In the
limit, as these beams are made weaker and weaker, we find m′ = 0.725. This is
shown in Fig. 7.13, where it can be seen that m′ is only a constant at very low
pump powers. Unfortunately, we cannot make the beams arbitrarily weak in the
experiment without losing the 4WM signal, meaning there is some uncertainty in
the m′ associated with any particular experimental run. The powers of the pump
and seed beams used in the experiment were 0.9 ± 0.1 µW, which, as seen in the
figure, gives m′ = 0.83+0.07

−0.02.

7.5 Extracting a dipole matrix element
In this section, we show how the splitting of the four-wave mixing signal can be
used to extract the relevant dipole matrix element. The transition of interest is
that addressed by the 776 nm coupling laser, which has the dipole matrix element
|〈5P3/2, mJ = 3/2|er|5D3/2, mJ ′ = 1/2〉|. Using Wigner 6-j and 3-j symbols, we
can also determine |〈5P3/2||er||5D3/2〉|, |〈5P3/2||er||5D5/2〉|, and |〈5P ||er||5D〉|, as
explained in the next subsection.
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Figure 7.13: Data from simulations. The scaling factor,m′, that relates the splitting
of the peaks, S, to the coupling Rabi frequency, Ωcoupling, is only a constant at very
low pump powers (< 10−2 µW).

Experimental measurement of dipole matrix elements is of more than pure in-
tellectual interest. The importance of the dipole matrix element becomes clear
when Fermi’s golden rule is recalled: the transition probability between two states
is proportional to the associated matrix element squared [26]. In other words,
the strength of a transition is determined by the magnitude of the dipole matrix
element, and a transition is “forbidden” when this element goes to zero.

The Rb |〈5P ||er||5D〉| matrix element, which we determine here, is a commonly
used transition in atomic physics [172–175]. Even when not addressed directly, it
has to be accounted for in those rubidium experiments (e.g., atomic traps) where
the degree of the A.C. Stark shift (i.e., the light shift) needs to be established.
To determine this shift, the polarisability is calculated from the sum of matrix
elements and from the beam detunings.

Safronova (2004) [176] has calculated a value from theory for many atomic trans-
itions, including this one (|〈5P3/2||er||5D3/2〉|). However, it is particularly difficult
to measure dipole matrix elements associated with excited state transitions [24]. To
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our knowledge, at the time of writing, no experimental value had been established.
It had certainly not been established using our method, which we believe to be
novel. Because our method relies on the dipole matrix element being directly
proportional to the splitting of the 4WM signal, the experiment is relatively simple
to perform.

7.5.1 Calculating |〈5P3/2, mJ = 3/2||er||5D3/2, mJ ′ = 1/2〉|
We first show how to calculate from theory the expected value of 0.239 ea0 for
|〈5P3/2, mJ = 3/2||er||5D3/2, mJ = 1/2〉|, and then we compare against the experi-
mental value. We begin with the fully reduced dipole matrix element |〈5P ||er||5D〉|,
which from experimental measurements was found to be 2.069 ea0 [177]. From this
we can obtain |〈5P3/2||er||5D3/2〉| using the Wigner 6-j symbol [74,178] as so:

|〈J ||er||J ′〉| =
√

(2J + 1)(2J ′ + 1)



J ′ 1 J

L S L′



 |〈L||er||L

′〉|,

where J = 3/2, J ′ = 3/2, L = 1, L′ = 2 and S = 1/2, giving

|〈5P3/2||er||5D3/2〉| =
√

4× 4× 1
2
√

30
|〈5P ||er||5D〉|

= 2√
30

(2.069) ea0

= 0.755 ea0.

We can then obtain the more specific transition matrix element
|〈5P3/2, mJ = 3/2||er||5D3/2, mJ ′ = 1/2〉| using the Wigner 3-j symbol [24, 178]
as so:
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(ea0) ratio
|〈5P ||er||5D〉| 2.069 1
|〈5P3/2||er||5D3/2〉 0.755 2√

30
|〈5P3/2,mJ = 3/2||er||5D3/2,mJ ′ = 1/2〉 0.239 2√

30 ×
1√
10

|〈5P3/2||er||5D5/2〉 2.266
√

30
5

|〈5P3/2,mJ = 1/2||er||5D5/2,mJ ′ = 3/2〉 0.717
√

30
5 × 1√

10

Table 7.1: Dipole matrix elements calculated from the measured value in row one,
where the measured value is from [177].

|〈J,mJ ||er||J ′,mJ ′〉| =

 J 1 J ′

−mJ q mJ ′


 |〈J ||er||J ′〉|,

where J = 3/2, J ′ = 3/2, mJ = 3/2, mJ ′ = 1/2 and q = mJ−mJ ′ = 1, giving

|〈5P3/2, mJ = 3/2||er||5D3/2, mJ ′ = 1/2〉| = 1√
10
|〈5P3/2||er||5D3/2〉|

= 1√
10
× 0.755 ea0

= 0.239 ea0.

These results are tabulated in Table 7.1, along with the other matrix elements of
interest that we have recalculated here and which can be compared with [177].
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7.5.2 Analysing experimental data

In order to obtain the dipole matrix element, we must start with the properties of
the strong coupling laser beam. For a Gaussian beam with waist w, we can write
the intensity as I = I0e

−2r2/w2 , where r is the distance from the centre and I0 is
the intensity at the centre. The total power P is the integral of the intensity over
the area of the beam in the x-y plane, which gives [73]

I0 = 2P
πw2 . (7.3)

We know that the intensity of a plane EM wave is I0 = 1
2cnε0E

2
0 , where c is the

speed of light, n is the refractive index of the medium, ε0 is the permittivity of free
space, and E0 is the strength of the electric field. Rearranged, this gives

E0 =
√

2I0

cnε0
. (7.4)

Lastly, the angular Rabi frequency is

Ωang = dE0

~
,

where d is the strength of the dipole moment given by the appropriate dipole matrix
element. The angular Rabi frequency, Ωang, and the linear Rabi frequency, Ωlin are
related as so: Ωlin = Ωang

2π . This gives

Ωang = 2d
~w

(
P

cnε0π

)1/2
,

and
Ωlin = d

~πw

(
P

cnε0π

)1/2
. (7.5)

Since we will be using linear Rabi frequencies throughout for all beams, we shall
drop the subscript. We see that Eq. 7.5 is of the form Ω = m

√
P and so a plot of

linear Rabi frequencies against the square root of the input power should give a
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Figure 7.14: Four-wave mixing signal as a function of seed/795 nm beam detuning,
with the pump and coupling beams on resonance, and the residuals (experiment
minus theory) plotted below. The purple points are experimental data and the
blue line is the theoretical signal given by the computational model. Zero detuning
is the weighted D1 line centre of rubidium (of natural abundance) in zero magnetic
field [132].

straight line going through the origin. From the gradient of this line, m = Ω/P 1/2,
we can extract the dipole matrix element, d, as so:

m× ~πw(cnε0π)1/2 = d. (7.6)

In the experiment, we measure the splitting S and not the Rabi frequency Ω, and
we plot S = M

√
P and extract M and not the required m. However, from Eq. 7.2,

we know these are simply related: in short, we obtain m from M by dividing
through by the scaling factor m′, i.e., M/m′ = m.

7.5.3 Estimating the error

Figure 7.14 shows the experimental 4WM signal (purple points) with the theoretical
signal generated by the computational model (blue line) overlaid. Here we reanalyse
the data for this curve. Measuring the splitting, S, of the peaks on the experimental
data gives 95 MHz.

The power measured on the power meter was 25.2 ± 0.1 mW. Before this laser
light reaches the atoms it passes through two glass surfaces each with 4% loss.
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A multiplicative factor of 0.92 13 is therefore required, giving an input power of
23.2 mW. We need to further reduce this value to account for the non-uniformity
of the power across the Gaussian beam: a factor of 0.74 (equivalent to reducing the
seed input Rabi frequency by 14%) gives an input power of 17.12 mW. Using Eq. 7.5,
with w = 63± 2 µm, this gives the seed Rabi frequency, ΩS = 144± 4 MHz.

If this Rabi frequency value is inserted into the computational model, the splitting
of the peaks on the theoretical signal is 106 MHz. So, the experimentally measured
value of the splitting (95 MHz) is 0.90 times the value given by the model (106 MHz).
This gives an estimate of the error we expect from our dipole matrix element
measurement.

7.5.4 Experimental determination of the excited state di-
pole matrix element

We collected two distinct supersets of data, one with a coupling beam waist of
w = 110 µm and one with w = 63 µm. Each superset contains many datasets
which are experimental repeats used to determine the statistical error.

We take 4WM signal spectra (762 nm) for different coupling powers and measure the
splitting of the peaks, S, for each spectrum. This doublet is due to Autler-Townes
splitting and should equal m′ times the Rabi frequency of the coupling laser as
given in Eq. 7.2. An example spectrum is shown in Fig. 7.14.

For the first superset of data, where w = 110 µm, when the splittings, S, are plotted
in Fig. 7.15 and Fig. 7.16, the expected square root dependence is evident. We use
the gradient, M , of the gold line of Fig. 7.16 to obtain the dipole matrix element, d,
using Eq. 7.6 and obtain the following. The gradient is (2.83± 0.01)× 108 s−1W−1/2.
Dividing by m′ = (0.83 ± 0.01) and multiplying by14 ~πw(cnε0π)1/2/ea0 gives
0.135 ea0 , which is only 57% of the expected 0.239 ea0.

13i.e., 100 × (1−0.04)2
14Recall Eq. 7.6.
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If we instead use the line of best fit that does not force the y-intercept, S0, to equal
zero, we obtain a gradient of (3.18 ± 0.01) × 108 s−1W−1/2 and a y-intercept of
(-7 ± 1) MHz; this gives a final value of 0.150 ea0 which is closer to the theoretical
value but still only 63% of the expected. The reason for the nonzero intercept is
likely to be that we did not manage to place the coupling laser exactly on resonance
(i.e., the data indicates that it is (-7 ± 1) MHz away from resonance).15

For the second superset of data, where w = 63 µm, when the experimental data are
plotted in Fig. 7.17, again the expected square root dependence is evident. Now
when we use the gradient, M , of the gold line of Fig. 7.17 to obtain the dipole
matrix element, d, using Eq. 7.6, we obtain a value closer to the theory. The
gradient is (6.32 ± 0.01) × 108 s−1W−1/2. Dividing by m′ = (0.83 ± 0.01) and
multiplying by ~πw(cnε0π)1/2/ea0 gives 0.171 ea0 , which is 72% of the expected
0.239 ea0. If we now use instead the line of best fit that allows a nonzero y-intercept,
we obtain a gradient of (6.60 ± 0.01) × 108 s−1W−1/2 and a y-intercept of (-4 ± 1)
MHz; this gives a final value of 0.179 ea0 which is closer to the theoretical value
but still only 75% of the expected.

A discussion on errors

We note that our best value for the matrix element is 25% lower than the theoretical
value. Here we discuss several possible reasons. We believe that there are two
main sources of error, the uncertainty in the measurement of the beam waist and
the uncertainty in m′. For the first source, the difficulty lies in knowing the exact
position where the three beams overlap within the cell and also placing the CCD
element of the camera at exactly that position. Placing the camera is difficult as
there is no physical access with the magnets in place. For the first superset of data
(where the final value for the matrix element is only 63% of that expected), we
attempted to measure the waist using a mirror: We first measured the distance
from the first lens to the cell (20.0 cm) and then temporarily inserted a mirror
and photographed the reflected beams at the equivalent distance. For the second
superset of data, we recorded on the table the position of the cell and then removed
15Because of this difficulty with placing the coupling laser exactly on resonance, in the future, we
should try to take repeat data for different detunings of the coupling laser.
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Figure 7.17: Extracted values of the splitting of the peaks, S, for increasing
values of the square root of the coupling-beam power (

√
PC). The gold line is

a weighted least-squares fit to the function S = M
√
PC . The dashed line is a

weighted least-squares fit to the function S = M
√
PC + S0. The beam waist is

63 µm.

both the cell and magnets and then photographed the beams at that position. This
gave a much closer value to the theoretical, only 25% less instead of 37%. But even
with this method, there is some uncertainty as to exactly where the CCD element is
inside of the camera. So there is still, potentially, ±3 mm of error in the z-position.
We know that the beam width diverges according to w = w0×

√
1 + (z/zR)2 where

zR = πw2
0/λ, w0 is the minimum waist, and zR is the Rayleigh range. Using this

equation we find that the error, when propagated, leads to ±1.3 µm of error in the
waist measurement, leading to up to a 5% change in the final value of the dipole
matrix element calculation.

The other large source of error is the value ofm′ = 0.83, the proportionality constant
that relates S, the splitting, to the Rabi frequency, Ω. Although we know from the
computational model that m′ is 0.725 in the limit of weak beams, we cannot get a
large enough signal-to-noise ratio for such weak beams. This means that, for an
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error of ±0.1 µW, there is up to +0.07
−0.02 of error on this constant. So comparing the

dipole element resulting from using m′ = 0.81 versus m′ = 0.90, leads to up to a
20% change in the final value of the dipole matrix element calculation.

In order to perform a more accurate and precise measurement of this dipole matrix
element, these two problems need to be solved: the exact value of both m′ and the
beam waist, w0, needs to be established.

7.6 Conclusion
In this chapter, we have experimentally studied the nonlinear optical phenomenon
of four-wave mixing. We devised a novel method of extracting an excited dipole
matrix element but found that, for the level of precision required, we are limited
by experimental constraints. However, our model allows us to understand how
the four-wave mixing signal varies with different experimental parameters. In
particular, we have shown how applying a large magnetic field simplifies the system
to allow for agreement between model and experiment. We also characterised our
system, which gives us a good understanding of the variables that alter the 4WM
signal so that we are well-positioned to study spontaneous four-wave mixing, which
is the topic of the next chapter.
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Chapter 8

Spontaneous four-wave mixing
leading to a heralded
single-photon source

We have so far shown that when the phase-matching condition is met, turning on the
seed, pump, and coupling lasers results in a seeded four-wave mixing (4WM) signal.
In this chapter, the seed laser is switched off but, remarkably, the 4WM process
still continues as spontaneous 4WM because of coupling between the vacuum and
the doubly excited state. The 762 nm photon produced on the |5D3/2〉 → |5P1/2〉
transition and the 795 nm photon produced on |5P1/2〉 → |5S1/2〉 transition are
now a simultaneously produced correlated pair. One member of this pair, the
herald 762 nm photon, can be used to identify its correlated counterpart, the signal
795 nm photon. In this way, we turn our rubidium thermal vapour into a heralded
single-photon source in the hyperfine Paschen–Back (HPB) regime.1

We begin the chapter by explaining the theory behind herald-signal photon pair
production in spontaneous four-wave mixing. The experimental section that follows
1Please note the new labelling of the photons. In the wider literature they are often called signal
(762 nm) and idler (795 nm). Our labelling clearly indicates that we are using the first 762 nm
herald photon to announce the imminent (i.e., within a known time window) arrival of the
second 795 nm signal photon. The bottom right of Fig. 8.1 shows the relevant energy levels.

134



Chapter 8. Spontaneous four-wave mixing leading to a heralded single-photon
source

is short as there are only slight modifications to the experimental section of the
previous seeded 4WM chapter (Chapter 7). The section that follows details how
to transform raw photon counts into the normalised cross-correlation function,
g

(2)
h,s(τ). We simulate such a situation computationally, both to gain insight into
the function and also to explain the code which analyses experimental data. We
then explain the Hanbury Brown–Twiss (HBT) experiment that is required to
prove the single-photon nature of our source, and we show the result from a single
HBT experiment: the classic g(2)(τ) dip2. From several HBT experiments, we
show the important experimental result that a higher g(2)

h,s(τ) peak gives a deeper
g(2) dip. In other words, the greater the maximum correlation between herald
and signal photons, g(2)

h,s−max, the closer the source is to an ideal single-photon
source. The rest of the chapter investigates the parameters required to increase this
correlation, namely, lower temperature, lower pump and coupling power, greater
pump detuning, and use of the etalon lens filter of Chapter 3. In all cases, we
find that we can increase the correlation but at the expense of a lower rate of
single-photon production.

8.1 Introduction
Sources of single-photons are highly sought-after because photons are excellent
quantum information carriers due to the combination of their high speed and
long coherence times at room temperature [179–181]. Although photons are the
fundamental unit of light, this does not mean that making single-photons is simple.
An obvious method would be to simply attenuate a laser beam so that the mean
photon number for a single laser pulse is very low. However, photons display
Poissonian statistics [54], and there is no guarantee that exactly one photon will
be delivered, as opposed to many or none.

Another conceptually simple method is to make use of spontaneous decay in a
2To avoid any later confusion, we shall state here that when the term g(2)(τ) is used without the
subscripts, it refers to the g(2)

s1,s2|h(ts1,s2) of the signal light in the HBT experiment. This is a
subtle concept that will be explained in Section 8.6. For now, we note that a g(2)(τ) plot shows
a dip whilst a g(2)

h,s(τ) plot shows a peak.
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single quantum emitter. For example, excite an atom [182] and allow it to decay;
when it decays, a single-photon is released. The difficulty with this method lies
in the uncertainty as to when and where the photon is released. The temporal
uncertainty comes from spontaneous decay not being deterministic: although the
decay has a predictable half-life, the exact time of photon release cannot, even in
principle, be known beforehand. The spatial uncertainty arises from the spatial
distribution of the emitted mode being such that the photon can be released within
a very broad angular range. It is thus difficult to capture, especially against the
background of other photons. It is possible to improve upon this by placing the
quantum emitter in an optical cavity so that photon is preferentially emitted
into the direction defined by the axis of the cavity. These sources are known as
deterministic single-photon sources because the photons are generated on-demand.
Photons produced using deterministic sources include those from single atoms
[183, 184], single ions [185,186], single molecules [187], quantum dots [188, 189] and
colour centres in crystals [190,191].

A different approach is to use a source that creates photon pairs, so that detection of
the first member of the pair “heralds” the release of the second member of the pair.
Since such sources usually involve many independent emitters, they are probabilistic
sources of single-photons. Their advantage is that, due to the phase-matching
condition, the photons are emitted into well defined spatial modes. Single-photons
have been created in this way in different physical systems including nonlinear
optical crystals (via spontaneous parametric downconversion [192]), photonic crystal
fibres [193], and atomic ensembles [194], amongst others.

When extended atomic media—thermal vapours [195] and cold-atom ensembles [196]
—are used as probabilistic sources, the emitted photons are naturally frequency-
and bandwidth-matched to other atomic devices. In particular, the matching
to atomic quantum memories allows the probabilistic source to be converted to
a deterministic source by allowing the probabilistically generated photons to be
stored until they are needed [197]. Spontaneous four-wave mixing has been used to
create probabilistic sources in cold atoms [125, 198, 199] and in thermal vapours
[2, 123,152,200,201]. In the case of thermal vapours, typically optical pumping is
required to isolate the necessary energy levels. As in the case of the seeded 4WM

136



Chapter 8. Spontaneous four-wave mixing leading to a heralded single-photon
source

performed in the last chapter, an alternative method of isolating the atomic levels
is to enter the hyperfine Paschen–Back (HPB) regime3.

In this chapter, we show how spontaneous four-wave mixing in thermal rubidium
vapour performed in the HPB regime can be used to create a heralded source of
single-photons.

8.2 Theory
We begin by summarising the seeded 4WM process using a concept—the spin-
wave—which has so far not been needed but which will be useful in understanding
spontaneous 4WM. This section draws heavily from the theoretical model developed
by Whiting and Šibalić [6, 131]. Spatiotemporal polarisation oscillations in an
atomic medium, called spin-waves, can result from continuous resonant driving of
a two-level system. These oscillations of polarisation lead to an EM-field being
emitted. In the case of a single resonant driving field, this field is both at the
same frequency as the driving field and out of phase with it. It is the destructive
interference between these two fields that results in the extinction of the driving
field, which we have hitherto described with the absorption coefficient α. In a
four-level system that is coupled with three driving fields, the resulting spin-wave
oscillates at a sum or difference frequency of the driving fields, and an EM-field is
emitted. This generated light is emitted from the uncoupled transition and is the
seeded four-wave mixing signal; this whole process is known as seeded four-wave
mixing (4WM) [165]. Under the phase-matching condition,

kpump + kcoupling = kseed + ksignal, (8.1)

the fields emitted by all the atoms add constructively in one direction, and the
4WM signal light is emitted in the phase-matched direction.

Starting with the same atomic transitions as in Chapter 7 (shown again on Fig. 8.1),
the seed beam is removed, and there remain only the pump and the coupling
beams. Atoms are driven to the doubly excited state and, from there, there is
3The HPB regime is described in Chapter 2.
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spontaneous decay via the herald and signal channels. As the two lasers are
almost co-propagating, the spin-wave imprinted on the vapour has a wavenumber
approximately equal to kp + kc. This is approximately twice that of the herald
wavenumber, kh, meaning that there is no phase-matched emission for herald
photons. They are thus emitted in all directions. However, in the case of a herald
photon that happens to be emitted in the forward direction, the resulting spin-wave
has the wavenumber, ks = kp + kc− kh. Now there is a phase-matched emission for
the signal photon in the forward direction. This means that a pair of photons, herald
& signal, has been emitted such that detection of the herald photons tells us of the
emission of a signal photon in the phase-matched direction. The phase-matching
condition is now

kpump + kcoupling = ksignal + kherald . (8.2)

We can quantify the extent of the correlation between the herald (subscript
‘h’) and signal (subscript ‘s’) photons using the second-order cross-correlation
g

(2)
h,s ([33]),

g
(2)
h,s(τ) = 〈Ê

†
s (t+ τ)Ês(t+ τ)Ê†h(t)Êh(t)〉

〈Ê†s Ês〉〈Ê†hÊh〉
. (8.3)

This is a measure of the likelihood of detecting a genuine signal photon (as opposed
to a ‘background’ photon) at a time t + τ , given that a herald photon has been
detected at time t. The meaning of g(2)

h,s will be explained more fully in the next
few sections.

If we now consider the signal light field alone, measurement of the second-order
autocorrelation4 function allows us to demonstrate nonclassicality of the light. For
classical light, g(2)(0) ≥ 1. In terms of the photon number distribution, the function
is given by [33],

g(2)(0) = 1 + (∆n)2 − 〈n〉
〈n〉2 , (8.4)

where 〈n〉 is the mean photon number and (∆n)2 is the photon number variance. A
single-photon number state has 〈n〉 = 1 and (∆n)2 = 0, giving a g(2)(0) = 0. This
4All of the ‘h’ subscript labels in Eq. 8.3 are replaced by ‘s’.
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would be a perfectly pure single-photon source. By comparing how close g(2)(0)
is to zero we can quantify how close we are to the ideal. Before explaining how
raw data are transformed into the correlation function, we shall first detail the
experimental procedure.

8.3 Experimental set-up
Figure 8.1 shows the experimental set-up for spontaneous four-wave mixing. A full
table layout is shown in Appendix A. A vapour cell of length 2 mm containing
98% 87Rb, which is housed within a heater, is placed between two NdFeB magnets.
These cylindrical magnets have a top-hat profile [75] and allow us to achieve a
magnetic field of 0.62 T across the vapour cell. There is a maximum variation of
1 mT across the 2 mm cell.5

In order to perform spontaneous 4WM, first the seeded 4WM light must be
obtained. Because of the low amount of 4WM light generated, it is important
to initially maximise the 4WM light using the variables explored in Chapter 7.6

The seed beam is then turned off. The circularly polarised 780 nm pump beam
drives the σ+ transition between |0〉 and |1〉. The 776 nm coupling beam drives
the σ− transition between |1〉 to |2〉. High intensities7 are achieved by focussing
the beams to a ∼60 µm 1/e2 radius at the cell centre. The generated 762 nm
herald (|2〉 → |3〉) and 795 nm signal (|3〉 → |0〉) photons fulfil the phase-matching
condition: kpump + kcoupling = kherald + ksignal. With the use of an edge mirror on
a translation stage, the coupling beam is crossed at a small angle (10 mrad) to
the optical axis. This allows the signal & pump light, which lie along the optical
axis, to be physically separated from the herald & coupling light at the output
of the cell. An optical fibre connected to a photon detector (D0) detects the
herald beam; this is registered on Channel 0 (CH0) of the timing module. A split
optical fibre collects the signal light and acts as a 50:50 beam splitter, sending
5The magnetic field is measured with a Hall probe and the value confirmed by fitting with ElecSus.
The field profile is shown in Fig. 1 of reference [24].

6A high temperature is the most relevant variable for maximising the seeded 4WM light but the
temperature will need to be decreased afterwards to obtain strong correlations, as we shall see.

7The equation for converting between power and intensity for a given beam waist is given in
Eq. 7.3.
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the signal photons to two photon detectors (D1 & D2); these are registered on
Channel 1 (CH1) and Channel 2 (CH2) of the timing module respectively. The
timing module precisely records the arrival of the photons with a resolution of
27 picoseconds. As CH0 is used as the herald channel, it is important that the
BNC cable connecting D0 to CH0 is shorter than the cables connecting the other
detectors to their respective channels, thus ensuring that the herald photon is
registered before the signal photon.

8.4 Normalised cross-correlation, g(2)
h,s(τ )

For any two detectors numbered i and j, we obtain g(2)
i,j from the probability of

coincidence between the clicks from both detectors (Pi,j) and the probability of
independent clicks, Pi and Pj on each detector, as so8:

g
(2)
i,j = Pi,j

PiPj
=

G
(2)
i,j

rirj∆tcT
, (8.5)

where Gi,j is the total number of coincidences in measurement time T , ri and rj
are the count rates on detectors i and j, and ∆tc is the width of the coincidence
time window used for G(2)

i,j . The term g
(2)
i,j always refers to the normalised version

of G(2)
i,j . Thus, it can be convenient when analysing raw data from detector clicks

to think of g(2)
i,j as the normalised double-coincidence (pair) events9.

8This is Eq. 3.4 from [202] or Eq. 7 from [203].
9Similarly, g(2)

i,j,k can be thought of as normalised triple-coincidence events for the three detectors
of Section 8.6.
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Figure 8.1: Diagram of the experimental set-up, read from right to left. Two beams pass through a heated 2 mm
length vapour cell containing 98% rubidium-87. The pump beam is aligned along the 0.62 T magnetic field axis
whilst the coupling beam is at a small angle (10 mrad). The quarter-waveplate (λ/4) sets the pump to be right-hand
circularly polarised. The detected 762 nm herald photons and 795 nm signal photons are produced by spontaneous
4WM at the cell. The two beam-splitters (BS) are easily removable. The differences between this set-up and that of
the last chapter are that the seed beam has been switched off and there are now three photon detectors connected
to a timing module. The rubidium energy levels used are shown in the bottom right corner. |0〉 = |5S1/2, mJ = 1

2〉,
|1〉 = |5P3/2, mJ = 3

2〉, |2〉 = |5D3/2, mJ = 1
2〉, and |3〉 = |5P1/2, mJ = −1

2〉.
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We shall model the situation where herald photon arrivals are registered on Chan-
nel 0 (CH0) and signal photon arrivals are registered on Channel 1 (CH1) of the
timing module. The normalised cross-correlation, g(2)

h,s (τ)= g
(2)
0,1(τ), is then given by

[125]

g
(2)
0,1(τ) = G(2)(τ)

r0r1∆τT , (8.6)

where G(2)(τ) is the histogram of coincidence events as a function of time delay τ ,
T is the total integration time, ∆τ is the width of each time bin, and r0 and r1 are
the rates of the channels 0 and 1 respectively. It is also possible to normalise G(2)(τ)
differently by replacing the denominator by G(2)(τ =∞) because g(2)

0,1(τ →∞) is
one [204]. Experimentally, we do both and find that the two methods agree. This
agreement is a useful check that the analysis is correct—especially in the case of the
slightly more involved case of the triple-coincidence events of the HBT experiment
of Section 8.6.1. The previous equation (Eq. 8.5) allows us to provide a simple
interpretation of g(2)

h,s . Since the background level is 1 [204], a g(2)
h,s of some value

x means that detection of a correlated signal photon is x times more likely than
detection of an uncorrelated background photon. There is no theoretical upper
limit to g(2)

h,s [204].

To gain further insight into Equation 8.6, we shall first simulate the arrival of
photons computationally. This will also explain how we transform the photon
detection data taken in the lab to values for g(2)

h,s(τ). In the following, we will be
showing both pseudocode and, on occasion, full python code. Whilst this may
seem more detail than a physics thesis warrants, it is our hope that this level of
detail will save future researchers time and effort10.

8.5 Simulating photon arrivals
Photon arrival times obey Poissonian statistics, and so the probability of arrival
is given by the cumulative distribution function for the exponential distribu-
10Typically, we include such details only when we ourselves would have benefitted if we had
previously seen it in this form. In particular, it is hoped that thinking through double-coincidence
events will make the case of triple-coincidence events simpler.
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tion [16]:
P(t) = 1− e−λt,

where the rate parameter, λ, is the average number of arrivals per second. To
determine the time between two photons arriving, i.e., the timegap, we simply
rearrange the above for t, giving

t = −ln(1− P(t))
λ

. (8.7)

To transform this11 into the exact time of each photon arrival (the timetag), we
need to simply cumulatively sum the timegaps.

Correlated arrivals: Cross-correlation between CH0 and CH1

We can now model herald photons arriving at CH0 and signal photons arriving
at CH1. Cumulatively summing the timegaps given by Eq. 8.7 generates a set of
timetags for photon arrivals on CH0. To create correlated arrivals on CH1, we
could simply duplicate this set. However, to bring our simulation closer to the
experimental case, we model the delay associated with electrical signals travelling
through BNC cables of different lengths by adding a delay to each CH0 timetag,
and this becomes the set of timetags for photon arrivals on CH1. Clearly, in our
experiment, we must ensure that the BNC cable from D1 to CH1 is longer than
the cable from D0 to CH0.

Because this delay is not fixed but happens within the lifetime of the excited state
(with additional broadening due to the atomic motion, see Sec 2.4), we can choose
the delay to have a Gaussian distribution12. We can also choose the degree of
correlation by only adding this delay to some percentage of the timetags from CH0.
The rest of the set of CH1 timetags is uncorrelated and generated in the same way
as CH0 timetags, i.e., using Eq. 8.7.

We use Eq. 8.6 to build the histogram of coincidence events. It is instructive to
11The inbuilt Python function random.expovariate(λ) provides exactly this. However, for the
millions of counts we wish to simulate, it is faster to perform array operations using the NumPy
module and write Eq. 8.7 as numpy.log(numpy.random.random(λ)) / λ.

12Pythonically, this is: delay = µ + (numpy.random.randn(Ch1_length))*σ
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consider how this is done computationally as this is exactly how we analyse the
data acquired by the photon-counting module during our experiments. We compile
all the timetags at which clicks are detected as an ordered array. We also have
a corresponding array that lists on which channel each click was detected. We
identify the first timetag (tn) at which a click on CH0 happens. Then, if the next
timetag (i.e., tn+1) corresponds to a click on CH1, we subtract the timetags to
obtain a timegap. We then proceed sequentially through the array, adding to our
list of timegaps every time a click on CH1 follows a click on CH0. We can then bin
these timegaps to produce the final histogram.

The method described is summarised by the following pseudocode:
1 f o r every CH0−c l i c k :
2 i f CH0−c l i c k i s f o l l owed by CH1−c l i c k :
3 add to histogram timegap between CH0−c l i c k and CH1−c l i c k

It turns out that this is too slow in an actual experiment since there are millions
of timetags to iterate through. This also prevents us from saving the raw photon
counts in the experiment as 1 GB of data are generated every 10 seconds. This
was one of the motivations for simulating the data generation: doing so allows us
to test the analysis code without running the experiment. Array operations using
the numpy module in Python speed up the code considerably:

1 t imetags = time−ordered array o f a l l t imetags
2 channe l s = time−ordered array o f the cor re spond ing channel va lue (0 or 1)
3 i n d i c e s = i n d i c e s ( o f above ar rays ) where a CH0−c l i c k i s f o l l o w e d CH1−c l i c k
4 t imegaps = t imetags [ i n d i c e s +1] − t imetags [ i n d i c e s ]
5 G = histogram of timegaps

The “histogram of timegaps” is the G(2)(τ) term of Eq. 8.6 and is normalised using
that equation.

There is a subtlety here which is easily overlooked: The signal click may not imme-
diately follow the herald click. There may be one or more uncorrelated photons in
between both clicks. The meaning of "followed by" in "CH0-click is followed
by a CH1-click" must include these possibilities. This can be done by including an
extra loop so that timegaps = times[indices+1] - times[indices] becomes
timegaps = times[indices+i] - times[indices] where i, in principle, loops
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through every timetag but, in practice, can be truncated at <10 for our time
window of interest.

We expect the largest histogram bin to appear at the delay we set. We show in
Fig. 8.2 the normalised cross-correlation in the case where we have chosen 50%
of the timetags to be correlated, and indeed we see that the histogram peaks at a
delay of 20 ns. We also found, as expected, that as the percentage of correlated
pairs decreases, the normalised cross-correlation decreases.

So far, we have explained how to transform double-coincidence (pair) data into
g

(2)
h,s (τ); next, we shall explain how to turn triple-coincidence data into g(2)(τ), and
show experimental results.

Figure 8.2: The normalised cross-correlation between simulated arrivals at channels
0 and 1. The timetags are generated such that 50% of the timetags in CH1 are
temporally offset from the timetags in CH0 by a Gaussian distribution of delays
with µ = 20 ns and σ = 2 ns.
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8.6 The Hanbury Brown–Twiss (HBT) experi-
ment

To show that the signal light field is a single-photon state, we turn to the Hanbury
Brown–Twiss (HBT) experiment. The HBT experiment [205] is straightforward to
describe conceptually and harder to implement experimentally. Conceptually, for
the case that we are interested in, it is as follows: a stream of single-photons is
sent towards a 50:50 beam-splitter (BS)13. Detector 1 (D1) clicks when a photon is
transmitted through the BS while Detector 2 (D2) clicks when a photon is reflected
by the BS. If only single-photons are passing through the BS, then it is impossible
for both D1 and D2 to click simultaneously because either the photon passes
through the BS or it is reflected by the BS, i.e., the photon cannot be split. This is
exactly the case where g(2)(0) = 0 and, in the experiment, the closer this value is to
zero14 the closer we are to an ideal single-photon source. Classically, g(2)(0) < 1 is
forbidden: obtaining a value in that range is equivalent to a violation of the Cauchy
inequality (p. 171 of [204]), which is a measure of the nonclassicality of light.

8.6.1 Obtaining a g(2)(τ) measurement from experimental
data

The double coincidence analysis code is adapted for analysing triple coincidence
events as so:

1 f o r every CH0−c l i c k :
2 i f CH0−c l i c k i s f o l l owed by CH1−c l i c k
3 ( with in a s e t time window)
4 and then fo l l owed by CH2−c l i c k :
5 add to histogram timegap between CH1−c l i c k and CH2−c l i c k

In this case, the if statement indicates that the third click is counted only when
the second click happens within a particular coincidence window, Tc, after the first
13In our case, the 50:50 beam splitter is a 50:50 optical fibre.
14The value of g(2)(0) < 0.5 has been used as a cut-off for when a source is emitting single-photons
[206].
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Figure 8.3: The result of a typical experiment: the normalised double coincidence
events (orange & green) and the normalised triple coincidence events (blue) are
shown after rectangular smoothing. The subscript label ‘h’ refers to the herald
photon that is detected on D0, and the labels ‘s1’ and ‘s2’ refer to signal photons
that are detected on D1 and D2 respectively.

click15. The coincidence window is centred around the peak of the first herald-signal
correlation. We chose Tc = 1.5 ns as a compromise between a high herald-signal
correlation and an adequate number of photon counts. Figure 8.3 shows the results
of a typical experiment. The normalised double-coincidence and triple-coincidence
histograms after the pythonic processing just described are shown, where we have
used a simple rectangular smoothing method16 to make the peaks associated with
each measurement visually obvious. The triple coincidence histogram requires
several hours of data-collection—eight hours, in this case, giving 1× 105 datapoints;
in the same time period, each double-coincidence histogram accumulates 1× 107

datapoints. Thus, the double-coincidence histograms can be created much quicker
15We must also account for the difference in the timing between channels due to the differing
BNC cable lengths.

16Also known as the sliding-average, this simply involves replacing each point with the average of
adjacent points.
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after collecting only ∼20 minutes of data.17 The figure shows that, as expected,
both g

(2)
h,s1 and g

(2)
h,s2 are almost identical in shape and differ only in the time at

which their peaks occurs. The similarity in the shape is expected because the only
difference between the two is which arm of the 50:50 fibre the signal photons travel
through. The peak height for both, g(2)

h,s−max, is 6.4; recall that Eq. 8.5 allows us to
interpret this as the detection of a correlated signal photon being 6.4 times more
likely than detection of an uncorrelated background photon. The full width at half
maximum (FWHM) of the peak is 1.8± 0.1 ns. As with other Doppler-broadened
systems [123], this corresponds to the inverse of the Doppler width of 560±30 MHz
(associated with a temperature of 97± 40 ◦C.) The time difference in the peaks is
simply due to different lengths of the BNC cables connecting detectors to channels.
So, in everything that follows, we translate the curves horizontally so that the
peaks g(2)

h,s1 , g
(2)
h,s2 , and g

(2)
h,s1,s2 coincide at τ = 0. Note that g(2)

h,s1,s2 , the normalised
triple coincidence histogram shown in blue in the figure, is not yet the g(2)(τ) value
for the signal light in the HBT experiment.

To obtain the g(2)(τ) value for the signal light in the HBT experiment, we must
make use of the fact that a single-photon from a heralded single-photon source
is defined only with the detection of the herald photon [203] at Detector 0 (D0).
We follow the method of Grangier [203] and of Srivathsan18 [125,202] to calculate
g(2)(τ) in the HBT experiment:

Recall that, for any two detectors, we obtain g(2)
1,2 from the probability of coincidence

between the clicks from both detectors (P1,2) and the probability of independent
clicks, P1 and P2 on each detector, as so:

g
(2)
1,2 = P1,2

P1P2
. (8.8)

In the case of a heralded source of photons, the signal photon is only defined
17If a correlation between the double-coincidence histogram and the triple-coincidence histogram
can be established, this obviates the need to always collect enough data for the second histogram
as the correlation can be used to infer the properties of the second from the first. This will be
done in the next subsection.

18I would like to thank Dr. Bharath Srivathsan for providing some clarifying comments on
calculating g(2)(τ) from experimental data.
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upon detection of a herald photon [203]. Thus, the probabilities in 8.8 must be
conditioned upon detecting a herald photon:

g
(2)
s1,s2|h = Ps1,s2|h

Ps1|hPs2|h
. (8.9)

We use the multiplication rule19 for probability calculus, P (A | B) = P (A,B) · 1
P (B)

to convert the above to:

Ps1,s2|h

Ps1|hPs2|h
=

Ph,s1,s2 · 1
Ph

(Ph,s1 · 1
Ph

)(Ph,s2 · 1
Ph

) = Ph,s1,s2Ph

Ph,s1Ph,s2

. (8.10)

Converting to coincidences, this is

g
(2)
s1,s2|h =

G
(2)
s1,s2,hNh

G
(2)
h,s1G

(2)
h,s2

, (8.11)

where G(2)
s1,s2,h is the number of triple coincidence events between the herald and

the two signal modes; G(2)
s1,h and G(2)

s2,h are the number of double coincidence (pair)
events between herald and each of the signal modes; and Nh is the total number of
heralding events20. For every delay between the two signal modes, ts1,s2 , we can
write

g
(2)
s1,s2|h(ts1,s2) =

G
(2)
s1,s2,h(ts1,s2)Nh

N(ts1,s2) . (8.12)

The denominator, N(ts1,s2), is not simply the product, G(2)
h,s1(th,s)G(2)

h,s2(th,s), of the
two double coincidence histograms because these histograms are not functions of
ts1,s2 . To transform G

(2)
h,s1(th,s) and G(2)

h,s2(th,s) into N(ts1,s2) we must integrate over
all possible delays of th,s within our coincidence window, Tc, that result in a delay
19The multiplication rule is often written as P (A | B) = P (A ∩B) · 1

P (B) .
20Instead of using Nh, it is possible to normalise the function by using the knowledge that
g

(2)
s1,s2|h(ts1,s2) must go to 1 for large values of ts1,s2 . As we indicated before, this is a helpful
check that the analysis is correct.
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ts1,s2 :
N(ts1,s2) =

∫ Tc

0
G

(2)
h,s1 (th,s)G(2)

h,s2 (th,s + ts1,s2) dth,s. (8.13)

Please see Appendix B for a pythonic implementation of this function.

Figure 8.4: Hanbury Brown–Twiss experiment shows a g(2)(τ = 0) dip below
1.0, demonstrating the presence of signal single-photons. g(2)(0) = 0.35 ± 0.02.
Experimental conditions: cell temperature, 114 ◦C; pump laser power, 55 µW;
coupling laser power, 100 mW. The pump laser was detuned from resonance by
-2063 MHz, and the coupling laser was detuned from resonance by 1925 MHz. Data
have been smoothed using a rectangular smoothing method. Errors (light blue)
are calculated by propagating the Poissonian error on the photon counts.
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Once this is done, g(2)
s1,s2|h(ts1,s2) can be written more simply as g(2) (τ) and visualised.

Figure 8.4 shows the result of a single HBT experiment. The g(2) dip is clearly
evident on this curve: g(2)(0) = 0.35 ± 0.02. The error is calculated by propagating
the Poissonian error,

√
N , on the photon counts, N . The width of the dip is

3.8 ± 0.1 ns. This is approximately double that of the width of the g(2)
h,s peak

because of the extra broadening introduced by the N(ts1,s2) function: Because g(2)
h,s1

has a Gaussian lineshape and g(2)
h,s1 ≈ g

(2)
h,s2 , N(ts1,s2) is effectively the convolution of

g
(2)
h,s1 with part of itself, resulting in a broadened Gaussian.

8.6.2 Relationship between g
(2)
h,s and g(2)

1 2 3 4 5 6 7 8 9
g

(2)
h,s−MAX

0.0

0.2

0.4

0.6

0.8

1.0

g
(2

) (τ
=

0)

Figure 8.5: The single-photon purity is higher as g(2)
h,s−max increases. As the

correlation between herald and signal increases (at greater detunings of the pump
laser), the HBT experiment gives a deeper g(2) dip, i.e., closer to 0. The dotted
line is a guide to the eye.

Figure 8.5 shows that the HBT experiment gives a lower g(2) dip as the correlation
between the herald and signal pair increases. In other words, we get “purer” single-
photons as g(2)

h,s−max increases. Much of the rest of the chapter focuses on how to
improve g(2)

h,s−max. We shall find that there are many ways to do this, albeit at the
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expense of the pair rate. The pair rate, or corrected coincidence rate, is calculated
by subtracting uncorrelated coincidences from all coincidences: For an arbitrary
data-taking time, T , if we only look in a window defined by t0 & t1, this is

Pair rate = 1
T




t1∑

τ=t0
G

(2)
h,s(τ)


− rhrs (t1 − t0) . (8.14)

The total number of coincidences is the number of data points in the unnormalized
double-coincidence histogram, (∑t1

τ=t0 G
(2)
h,s(τ)). The number of uncorrelated coin-

cidences, (rhrs (t1 − t0)), is the number of data points underneath the background
level. Thus, the ratio between correlated and uncorrelated coincidences varies
according to the shape of the G(2)

h,s(τ) curve.

We generally obtained data with a coupling laser that is frequency stabilised
(“locked”) to the 5P3/2–5D3/2 transition using STROLL (Chapter 5). This allows
us to collect data over a time frame of over 24 hours, which is essential for those
regions of the parameter space where the g(2)

h,s−max is high but the pair rate is low.
When we are not locking the coupling laser, we can choose arbitrary detunings on
the transition that this laser couples. Thence it was possible to find a detuning
where there is both a higher correlation (g(2)

h,s−max > 7) and a higher pair rate
(>15 Hz) that allows for an HBT experiment to be done within 6-8 hours. If we
attempt to further detune, the pair rates are too low for an HBT experiment to
be done in a time frame before the laser drifts completely away from the optimal
region.

8.7 Towards a more ideal heralded single-photon
source

Having now established that higher cross-correlations between herald and signal
give deeper g(2) dips, in this section we examine all the experimental parameters
giving higher cross-correlations in order to create a purer single-photon source.

The errors on the following data are calculated by obtaining the standard error from
repeated measurements [133]. This error dominates over the Poissonian statistics
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from counting the photons.21

8.7.1 Dependence on temperature

Figure 8.6 shows the variation with temperature of both the maximum herald-
signal cross-correlation, g(2)

h,s−max, and the pair rate. We find that the maximum
cross-correlation follows the curve expected from Chapter 6: The value increases
with temperature until the value of 85 ◦C, after which it decreases again. We saw
there that the background counts increase linearly with laser input until 85 ◦C, after
which it increases nonlinearly. We also saw, in Chapter 7, that light generated by
the seeded 4WM signal increases quadratically with the atomic number density.
Thus, just at or below 85 ◦C would be the ideal temperature to work at if one were
interested in maximising g(2)

h,s .

However, we also see that the pair rate continues to increases beyond a temperature
of 85 ◦C. It is for this reason that we chose to perform our HBT experiments at
higher temperatures. However, having used the higher pair rates to show that a
large cross-correlation gives deeper g(2) dips, we would recommend working below
85 ◦C if possible.22

21This is partly due to the difficulty in returning to precisely the same laser alignments. We
expect the finalised Build 2.0 of the Pi Auto-aligner (Chapter 4) to reduce this difficulty.

22To be perfectly clear on this point, we note that we only performed the HBT experiments at
higher temperatures because we could not collect enough data at lower temperatures. However,
the combination of Fig. 8.6 and Fig. 8.5 tell us that if we could collect enough HBT data at
lower temperatures, they would give deeper g(2) dips.
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Figure 8.6: The herald-signal pair rate increases as the temperature increases but
the maximum cross-correlation decreases. More precisely, with all other parameters
fixed, the maximum correlation increases with temperature up to 85 ◦C but then
decreases as the temperature goes above 85 ◦C.
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8.7.2 Dependence on pump detuning

Figure 8.7 shows the variation with pump laser detuning of both the maximum
herald-signal cross-correlation and the pair rate. We find that the maximum cross-
correlation increases with pump detuning, increasing rapidly at large detunings.
This is partly because at larger detuning, there is a decreased population of the
intermediate P state from which collisional transfer can create uncorrelated 795
photons, as we saw in Chapter 6. It is also true that when the pump detuning
exceeds the Doppler width, there are only a relatively small number of atoms
that are two-photon resonant with both lasers. When the detuning is sufficiently
large [207], the total coherence due to the off-resonant interaction is stronger than
that due to resonant interactions. This means that the relevant coherence decreases
more slowly with detuning than the relevant population; again, this increases the
correlation. In a now familiar theme, there is a trade-off with pair rate: as the
detuning is increased, the rate of pair production decreases while the maximum
cross-correlation increases.
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Figure 8.7: The maximum cross-correlation between herald and signal increases
with pump detuning while the herald-signal pair rate decreases with pump detuning.
The coupling detuning is adjusted so that the two-photon detuning is always equal
to zero. The data were taken at a pump laser power of 55 µW, a coupling laser
power of 180 mW and a temperature of 114 ◦C. Error bars are the standard error
from repeated measurements.
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8.7.3 Dependence on pump power

Figure 8.8 shows that as the pump power increases, the maximum cross-correlation
between the herald-signal pairs decreases. This is partly because there is an
increased population of the intermediate P state from which collisional transfer
can create uncorrelated photons of the same colour as the signal photons, as we
saw in Chapter 6. The largest g(2)

h,s that we recorded for our system was g(2)
h,s = 105

at the weak pump power of 0.5 µW but, at this power, there is a pair rate that is
less than 0.1 Hz.
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Figure 8.8: The maximum cross-correlation between herald and signal decreases
with pump power. The data were taken with pump laser detuned by -1110 MHz
from resonance, with a coupling laser power of 30 mW, and the cell at a temperature
of 114 ◦C. Some error bars are too small to be seen. The dotted line is a guide to
the eye.
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8.7.4 Dependence on coupling power

Figure 8.9 shows the variation with the coupling power of both the maximum
herald-signal cross-correlation and the pair rate. Our main motivation for increasing
coupling power was to increase the pair rate in order to do an HBT experiment.
With increased coupling power there is more population in the doubly-excited state
and consequently greater herald-signal pair production. However, as can be seen
from the figure, the maximum cross-correlation decreases with increased power.
This is partly because atoms may be being de-excited from the D state to the P3/2

state, leading to the collisional transfer process releasing uncorrelated background
photons. We found that the 30 mW from the coupling laser alone gave only ∼1 Hz,
which was too low, while the full 330 mW with the TA reduced the correlations too
much. We settled on 100 mW as a compromise that gave a ∼5 Hz pair rate.
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Figure 8.9: The maximum cross-correlation between herald and signal decreases
with coupling power. In other words, as the Rabi frequency of the coupling laser
increases, the g(2)

h,s−max decreases. The data were taken at a pump laser power of
55 µW detuned by -1850 MHz, the coupling laser at a frequency that keeps the
two lasers two-photon resonant, and a cell temperature of 114 ◦C. The dotted lines
are guides to the eye.
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8.7.5 Deepening the g(2) dip using an etalon lens filter

In Chapter 3 we discussed the details of the etalon lens filter that we built for
spectral filtration. Here we address two related questions: Is it possible to use the
etalon filter to obtain a higher g(2)

h,s peak, and to obtain a deeper g(2) dip?

We found that with enough careful tuning of the etalon central frequency, it is
always possible to make the g(2)

h,s peak higher when the 795 nm photons are sent
through the etalon. Figure 8.11 shows that, for several detunings, the correlation
associated with the light that passes through the etalon is higher than for the light
that does not pass through the etalon. Figure 8.10 shows how the ratio between
the two peaks in Fig. 8.11 (a) varies with the etalon central frequency. Figure 8.10
also illustrates how the etalon frequency is tuned to find the etalon’s transmission
peak so that we maximise the transmission of the herald photons: We start by
placing the etalon peak at the same detuning as the seeded 4WM signal. Then
we plot how the ratio of the g(2)

h,s with and without the etalon varies with etalon
frequency (i.e., Fig. 8.10). The peak of the resulting curve gives the transmission
peak frequency of the etalon.

Although Fig. 8.5 strongly suggests that whenever we have a large g(2)
h,s peak, we

will have a deep g(2)(τ = 0) dip, the only way to prove this is by doing an HBT
experiment. However, when the signal light is sent through the etalon, the pair rate
drops by an order of magnitude which meant that enough data could not be collected
for the HBT measurement during the time that the lasers stay locked.23 In the case
of the HBT experiment, the slight increase in signal-to-noise ratio as demonstrated
by the higher g(2)

h,s is not enough to compensate for the overall decrease in signal. So
although the etalon is discarding background photons, it is also discarding signal
photons. If the background photons had been sufficiently different in frequency
from the signal photons (i.e., greater than the FWHM linewidth of the etalon of
128 MHz), this would not occur. Therefore, we learn that a large number of the
background photons must be at a very similar frequency (i.e., different by less than
23While, in principle, it would be possible to integrate the results of many experiments, practically
this is very difficult for two related reasons: (1) We would still need to integrate over several
weeks to get a single result, and (2) it is not feasible to keep experimental conditions the same
over that time period.
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128 MHz) to the signal photons.

Ideally, we would want to spectrally filter the herald (762 nm) photon as well, but
because this photon comes from the decay of an excited state, it is difficult to
position the etalon central frequency. Fortunately, it is less important to filter this
light as there is no spectral redistribution process generating unwanted light at the
herald frequency.
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Figure 8.10: Ratio of correlation peaks (between with and without etalon). The
x-axis is the etalon central frequency in units of etalon FWHM linewidth; the etalon
has a FWHM linewidth of 128 MHz. The etalon central frequency depends on the
temperature of the etalon, which is controlled by the voltage on the temperature
controller. 1 mV gives a change of 37 MHz.
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Figure 8.11: Cross-correlation of herald and signal, without (blue) and with (red) the lens etalon filter, at different
pump detunings, ∆p. (a) ∆p = 0 MHz (b) ∆p = −375 MHz, and (c) ∆p = −1050 MHz. The data were taken at
a pump laser power of 55 µW, a coupling laser power of 100 mW, and a cell temperature of 114 ◦C. In all cases,
the maximum correlation, g(2)

h,s−max, is higher with the etalon than without. In each case, we have used a version of
Fig. 8.10 to find the correct frequency to set the etalon lens filter at.
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8.8 Discussion
For maximum g

(2)
h,s values that are ∼10, the pair rate is always on the order of ∼Hz.

At the same time, the raw count rate on the photon counter for the herald channel
(which will include background or ‘noise’ photons) is on the order of ∼kHz. This
leads to the probability of detecting a signal photon conditional on detecting a
herald photon, i.e., the heralding efficiency, of less than 0.1%. This is very low
compared to other sources; a comparable, cold-atom, system which uses the same
diamond configuration in 87Rb (but not in the HPB regime) has pair rates on the
order of kHz and a heralding efficiency of 23% [125].

There are many possible reasons for our low numbers. One is that, as stated in
the theory section, there is no phase-matched emission for the herald photons.
Only those photons that happen to be emitted in the forward direction will have
a phase-matched signal photon emitted. This means that the optical fibre can
accidentally collect photons at the colour of the herald photon but those photons
do not have a paired signal photon associated with them. Secondly, inefficiencies in
the detection of the photons accumulate: the quantum efficiency of the detectors is
specified to be 60% at 780 nm; the optical fibre efficiency is estimated to also be
60% and the 50:50 split in the fibre introduces another 50% loss; the losses due
to the narrowband interference filters was measured to be 3% for each of the 3
filters; and the loss due to reflection at the vapour cell surfaces was measured to
be 8%. In combination, the total efficiency is no more than 10%. Last but not
least, there is a problem specific to thermal vapour: for light emitted by atoms
from different velocity groups, destructive interference occurs, reducing correlations
between photon pairs. This may explain the most significant difference between a
cold-atom source and ours.

A comparable thermal vapour system is the double-ladder configuration in thermal
87Rb where the 5S1/2, 5P3/2, and 5D3/2 terms [123] are used, resulting in 780 nm
herald and 776 nm signal photons. In the double-ladder configuration, detuned
780 nm and 776 nm laser beams are used to generate, via 4WM, resonant 780 nm
and 776 nm pairs. Compared to our system, they report a lower g(2)(0) = 0.037(3)
with a higher pair rate of ∼1 kHz. However, we found a higher peak g(2)

h,s value of

162



Chapter 8. Spontaneous four-wave mixing leading to a heralded single-photon
source

105 compared to their 85. We note, however, that this was done at a very low
pump power, giving a small pair rate and they may not have investigated this
region of the parameter space. There are two main differences between our system
and that system. First, ours is in the HPB regime; that system is not. We would
not expect this to degrade the performance of our source because, as we have seen,
both in this thesis and the wider literature [6, 18–25], the HPB regime is used
precisely because it leads to a simplified, more controllable experiment. Indeed,
use of the HPB regime would remove the extra beam that system requires for
performing optical pumping to prepare the initial state of the atoms. Secondly, that
system uses a double-ladder configuration whilst ours is a diamond configuration.
We expect the root of the difference to lie there. Thus, a logical step for the
future direction of our project is to repeat the experiments in this chapter in a
double-ladder configuration in the HPB regime.24 Before ending, we should note
that the double-ladder must be done in the counter-propagating geometry. It is
possible that this alone contributes to some improvements in the important metrics
because a broad range of velocity groups is involved in generating the photon
pairs. Therefore, before changing to the double-ladder configuration, it would
be worthwhile trying to change the direction of the beams in our system from a
co-propagating to a counter-propagating geometry. For this we require greater
angular access to our cell; a new cell holder and heater are being built for this
purpose.

We note that there is no single overarching figure-of-merit used in the literature on
single-photons [179], and the metric(s) of importance depends on the application
for which the single-photons will be used. Perhaps, if our source were combined
with a quantum memory, as suggested in the introduction [197], the low pair
rate may not be an issue because the single-photons generated slowly by our
source could be stored by the quantum memory until they are needed. We will
note here two advantages of our system. Compared to other configurations, the
diamond configuration in rubidium vapour gives rise to pairs of photons that
differ in wavelength by nanometres and so are easily separated from each other.
24Of course, if then all our metrics are still worse, then we must seriously consider that the physics
of the HPB regime is responsible though at present we have no reason to suspect this.
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Compared to cold-atoms, use of a thermal vapour means that none of the elaborate
equipment and mechanisms of cooling are required in order to build our single-
photon source.

8.9 Conclusion
In this chapter, we showed that we have built a heralded single-photon source in
thermal rubidium vapour, as demonstrated by the Hanbury Brown–Twiss experi-
ment giving a g(2) dip of g(2)(0) = 0.35 ± 0.02. We have shown that maximising
the cross-correlation, g(2)

h,s , between herald and signal photons leads to a deeper
g(2) dip, and have explored all the experimental parameters that increase this
cross-correlation. Furthermore, we have shown that our bespoke etalon lens filter
also increases g(2)

h,s by spectrally filtering out uncorrelated photons but at the cost
of a lower pair rate. In the next chapter, we will note possible avenues of future
research and conclude the thesis.
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Summary and Outlook

We conclude the thesis by summarising each chapter, noting important links
amongst chapters, and describing some possible further avenues of research.

Chapter 2: Theory: Atom-light interactions. We introduced the basic
atomic physics underlying the work in this thesis. Starting from a two-level system
coupled by a seed (probe) beam, we wrote the associated density matrix and
Hamiltonian. Computationally solving the Lindblad equation gave the steady-state
solution, which allowed us to determine the electric susceptibility, χ, of the medium.
From this, we showed how the absorptive and dispersive properties of the system
vary with the seed frequency. We then showed how these properties vary as extra
energy levels and couplings between these levels were introduced. Specifically,
we noted how the addition of an extra energy level coupled by a strong pump
laser leads to an electromagnetically induced transparency (EIT) window in the
seed transmission. Addition of a further level coupled by a coupling laser led to
the splitting of the EIT feature. These EIT features appear experimentally in
Chapter 7. We ended by explaining the hyperfine Paschen–Back (HPB) regime
and how the rubidium energy level structure changes there. We noted that the
simplification of energy levels in the HPB regime allows us to create the effective
four-level system required for Chapters 7 & 8.
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Chapter 3: Experimental techniques and apparatus. [50] We detailed the
method by which the output power of a tapered amplifier (TA) can be maximised,
finding that careful mode-matching, at both the input and output ends of the
TA, was required. We described the design of a bespoke etalon lens filter that we
commissioned to aid in filtering out unwanted light in our spontaneous four-wave
mixing (4WM) experiments of Chapter 8. We also described, in brief, the method
of using a separate optical cavity to calibrate the relative frequency spectrum of
our lasers.

Chapter 4: Machine learning in quantum optics experiments. [49] We
noted that a perennial problem in laser physics experiments is the need to continually
align and realign lasers. We demonstrated that this process can be automated with
the use of inexpensive components, controlled by a machine learning algorithm.
With Build 1.0 of the “Raspberry Pi Auto-aligner”, we found that, after hysteresis
correction, the device could align weak beams detectable by a photodiode. However,
the device was not as reliable in aligning photons detectable only on a photon-
counter. Thus, a more fine-tuned device (Build 2.0) was designed and built.

When Build 2.0 of this device has been fully tested, we expect to be able to set
as its cost function the negative of the g(2)

h,s peak value: This should allow for
a more reliable way of finding the best alignment to obtain the purest photons.
Once this first alignment is performed, it is expected that the machine will be
used for automatic realignment—it can simply be set to run every morning before
experiments are undertaken. At the time of writing, one of our colleagues outside
the Quantum Light & Matter group1 has indicated his intention to implement a
copy of our device in his laboratory for a use which we had not originally envisioned,
indicating to us that there a large number of uses for our device that are yet to be
discovered.

Chapter 5: Simultaneous two-photon resonant optical laser locking
(STROLLing) in the hyperfine Paschen–Back regime. [48] We demon-
strated a novel technique to simultaneously lock two laser frequencies to a two-
photon transition (5S1/2 → 5P3/2 →5D5/2) in 87Rb. We showed data demonstrating
1Dr A Hindmarch, Durham University, personal communication.
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a frequency instability of less than 6 MHz for a time scale of 10 hours. In practice,
the lasers can stay locked for much longer: We regularly locked for over 24 hours
to perform the Hanbury Brown–Twiss experiments of Chapter 8 despite, in that
chapter, locking the second laser to the weaker 5P3/2 → 5D3/2 transition.

The present STROLL scheme works well for our purposes. We are able to detune
on the first step, ∆pump, of the two-photon transition by varying the magnetic field
strength. The lock automatically adjusts the detuning of the second laser, ∆coupling,
so that the ∆pump + ∆coupling = 0. This is an advantage when one always wants to
lock to the two-photon frequency, but it does not allow the freedom to arbitrarily
detune the coupling laser. This limitation could be circumvented by incorporating
an acousto-optic modulator into the setup.

Chapter 6: Spectral redistribution. We described the phenomenon of spectral
redistribution where 780 nm light is generated by the input of 795 nm light
into the rubidium vapour cell and vice versa. This phenomenon is due to the
collisional transfer of states between the 5P1/2 and 5P3/2 levels. We found that this
transfer increases, as expected, with both the power of the input beam and the
cell temperature (and hence the atomic number density). There were two distinct
temperature regimes, one where the generated photon count rates increase linearly
as a function of atomic number density and a second regime where it increases
nonlinearly.

Using an etalon lens filter will allow for the determination of which hyperfine
transitions give rise to which photons. Capturing photons emerging at 90◦ to the
laser beam path will allow for a comparison of the relative rates of 780 nm and
795 nm photon production from atoms interacting with a single laser beam.

Chapter 7: Seeded four-wave mixing. [25] We experimentally studied the
nonlinear optical phenomenon of seeded four-wave mixing in a diamond configur-
ation in rubidium and showed that a simple model allows us to understand the
variation of the 4WM signal light with experimental parameters. It was possible to
work with this simple model because—as explained in Chapter 2—the application
of a high magnetic field allowed us to isolate a four-level system. Thus, when we
characterised the system, there was good agreement between theory and data. We
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also devised a novel method of extracting the excited state dipole matrix element
|〈5P3/2, mJ = 3/2|er|5D3/2, mJ ′ = 1/2〉| by measuring how the splitting (S) of the
peaks of the 4WM signal increases as the coupling beam power (P ) increases. From
the gradient, M , of the graph of S = M

√
P , the dipole matrix element can be

determined. Although a measurement was made that was close to the theoretical
figure, the precision was limited by experimental constraints.

Chapter 8: Spontaneous four-wave mixing leading to a heralded single
photon source. The thesis culminated in the demonstration of how the nonlinear
optical phenomenon of spontaneous 4WM in rubidium vapour can be used as
a source of single-photons. We explained the computational techniques used to
investigate photon statistics. We demonstrated the single-photon nature of the
rubidium vapour source by performing a Hanbury Brown–Twiss (HBT) experiment
that gave a g(2)(τ = 0) of 0.35 ± 0.02. We found the greater the cross-correlation
between herald and signal photon, the closer g(2)(τ = 0) is to zero (i.e., “purer”
photons). We explored all the experimental parameters that increase this correlation,
including the use of the etalon lens filter to remove background photons. We found
that, in all cases, there is a compromise involved: the purer the single-photons
produced, the fewer of them there are.

We investigated our particular excitation configuration (diamond) and beam geo-
metry (co-propagating) exhaustively. We would expect that changing the geometry
to counter-propagating would give more seeded 4WM signal light as more velocity
classes of atoms would be excited. It is not clear that this necessarily means a
higher-quality single-photon source, however. The counter-propagating geometry
requires a greater angular difference between the beams and, in preparation for this
change in geometry, a new cell holder is under commission to enable greater optical
access. In the wider community, a different 4WM configuration—double-ladder
[123] instead of diamond—has been used to create a single-photon source. The
future of this project will involve attempting this configuration in the HPB regime,
as it will be simpler to understand and model within the effective four-level atomic
system. The opportunities for continuing research into nonlinear optical phenomena
in the hyperfine Paschen–Back regime have by no means been exhausted.
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Full Optical Table Layout
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Appendix B

Python Code

We show code for calculating Eq. 8.13 from Chapter 8, which is displayed again
below for the reader’s convenience.

N(ts1,s2) =
∫ Tc

0
G

(2)
h,s1 (th,s)G(2)

h,s2 (th,s + ts1,s2) dth,s. (8.13)

The code is shown written with loops as this is the clearer implementation. Using
the cross-correlation function in the numpy module (numpy.correlate) would be
faster but less instructive.

1 de f Nplus (x , y ) :
2 Y = np . pad (y , (0 , l en ( y ) ) , ’ constant ’ )
3 Z = [ ]
4 f o r j in range ( l en ( x ) ) :
5 z = 0
6 f o r i in np . arange ( l en ( x ) ) :
7 z = z + ( x [ i ]∗Y[ i+j ] )
8 Z . append ( z )
9 r e turn np . array (Z)
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