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A Detailed Field study of a Silicic Tuff ring in Southwest Tenerife, Deposited During 

Small, Phonolitic Eruptions. 

 

Oliver Bowers 

 

Abstract 

 

Caldera del Rey is a small, double-crater, silicic tuff ring situated on Tenerife’s southern 

coastline, located close to the diffuse southern rift zone. The Caldera del Rey formation 

displays extensive exposures of the proximal and medial deposits of the tuff ring that grew 

as a result of interactions between trachy-phonolitic magma and shallow groundwater 

within an underlying basaltic aquifer. Detailed fieldwork, laboratory work and the analysis 

and correlation of 39 sections through the deposits show that the eruption repeatedly 

alternated between eruption styles. The formation is divided into an upper and lower 

sequence that both initiated with a period of pumice fall from eruption plumes of almost 

subplinian dimensions. Over time the eruptive processes transitioned towards dominantly 

wetter phreatomagmatic eruptions. As the eruptions reached the climactic stage, 

numerous powerful, single-surge pyroclastic density currents dispersed radially up to 4 km 

from the vent. The depletive currents show various downcurrent lithofacies transitions that 

record transformations of the depositional flow-boundary zone with distance. In some 

cases, transformations from granular fluid-based to fully dilute currents occurred as a result 

of loss of granular fluid by deposition. The ash aggregation deposits share the same couplet 

structure seen in other ignimbrite sheets formed elsewhere on Tenerife, with variations 

from this occurring due to the rapid, pulsatory nature of phreatomagmatic eruptions. Tuff 

ring explosive activity so close to densely populated urban areas is rarely recognised, but it 

remains a possibility that should be factored into hazard assessments.  
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Chapter 1: Literature Review 
 

1.1 Introduction  

 
The literature contains numerous accounts of basaltic and trachybasaltic tuff ring forming 

eruptions (e.g. Waters and Fisher, 1971; Kienle et al., 1980; Yamamoto et al., 1991; Sohn, 

1996). Similarly, the vast majority of documented maar-diatremes were created by 

eruptions with mafic and ultramafic magmas (White and Ross, 2011). However, relatively 

few silicic tuff ring and maar examples are recorded (e.g. Sheridan and Updike, 1975; 

Brooker et al., 1993; Colella and Hiscott, 1997; Brown et al., 2007; Cano-Cruz and Carrasco-

Núñez, 2008; Austin-Erickson et al., 2011). Therefore, this thesis aims to provide a detailed 

study of a monogenetic silicic eruption. 

 

The thesis will also focus on the transitions between wetter and drier phreatomagmatic 

eruptions, and the evolution in eruption dynamics, which have been previously identified 

in tuff rings and maars elsewhere (Lorenz, 1986; White and Ross, 2011).  

 

1.2 Tuff Rings and Maars 

 

Phreatomagmatism is a common eruption style in which magma is explosively fragmented 

due to interaction with external water, irrespective of the magma composition 

(Zimanowski et al., 2015). Magma typically encounters ground or surface water during its 

ascent.  

 

The eruptions usually produce small monogenetic hydrovolcanoes. The morphology of 

these volcanoes is controlled by the dominant depositional processes (Sohn, 1996). Steep-

sided tuff cones are found where tephra is predominantly deposited by fallout, with 

minimal lateral emplacement. Low-relief tuff rings and maars are constructed where most 

of the tephra is emplaced laterally (Sohn, 1996). They all consist of a crater, surrounding 

tephra ring and a diatreme under the crater (Lorenz, 1986; White and Ross, 2011). A full 

spectrum of crater diameters exists from a few tens of metres to 2-3 kilometres (Ross et 

al., 2017).  
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Diatremes are the sub-crater portions of maar-diatreme and tuff ring volcanoes. They are 

typically a cone-shaped body that gradually tapers downwards, composed of mostly 

pyroclastic rocks, surrounded by the country rock (Ross et al., 2017). Stratified pyroclastic 

deposits and post-eruptive sediments that usually dip inwards are commonly preserved in 

the upper levels of the diatreme (White, 1991). Juvenile clasts and lithic fragments are 

found within the pyroclastic rocks in the diatreme (Ross et al., 2017). Diatremes can have 

horizontal diameters of tens of metres to a few thousand metres and can extend hundreds 

of metres to a few thousand metres below the surface (Valentine et al., 2017). The eruptive 

activity is dominated by the shallowest explosions (Lorenz, 1986), with the diatreme itself 

acting as a heterogeneous aquifer (Valentine et al., 2017). 

 

Tuff rings are typically composed of a wide central crater (<3 km) with low-relief crater rims 

(<100 m) that are built from outward-dipping ejecta that accumulates at or above the pre-

existing surface (Cas and Wright, 1987) (Figure 1.1A). They are formed by explosive 

eruptions at or near the surface with generally shallow diatremes (Ross et al., 2017).  

 

Maar-diatremes develop from higher levels of excavation to produce deep craters, up to 

500 m deep, that are situated below the pre-existing ground surface (Lorenz, 1973; 

Vespermann and Schmincke, 2000) (Figure 1.1B). They are commonly characterised by 

deep diatremes (Ross et al., 2017) filled with pyroclastic material with a high abundance of 

accidental lithic fragments (Lorenz, 1986). Maar-forming eruptions have an explosive 

character that usually results from hydrovolcanic explosions that occur deep within 

aquifers (e.g. Zimanowski et al., 1991; Austin-Erickson et al., 2008; Valentine and White, 

2012).  

 

The dominant eruptive style of tuff ring- and maar-forming eruptions is typically 

phreatomagmatic. However, many examples have magmatic phases (White and Ross, 

2011) and rapid fluctuations between wetter and drier phases are common (e.g. Ukinrek, 

Alaska, Self et al., 1980; Crater Hill, New Zealand, Houghton et al., 1996). 
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In both tuff rings and maars, the tephra rings generally contain well-bedded deposits that 

formed mainly from radially dispersed low-concentration dilute pyroclastic density 

currents (PDCs) and fallout (Kokelaar, 1986). Granular fluid-based pyroclastic density 

currents are typically rarer (e.g. White 1991; White and Schmincke, 1999). The PDCs are 

characteristically generated from transient fountaining of the tephra that is normally 

ejected in upwards directed jets. These jets, which usually have heights less than 1 km, are 

either the result of single pulses or unsteadily sustained for only short durations. The 

resultant currents have runout distances of between 0.5 and 3 km (Brown et al., 2007).  

 

Taalian eruptions are those where low-concentration pyroclastic density currents 

dominate and occur through an aquifer, where the supply of water is usually limited 

(Kokelaar, 1986). They are named after the 1965 eruptions at Taal Volcano, Philippines (see 

Moore et al., 1966; Moore, 1967; Waters and Fisher, 1971). In this case the eruptions are 

commonly powerful and may operate near maximum thermodynamic efficiency. The 

associated ejecta rings of Taalian eruptions normally have low profiles and are widely 

distributed (e.g. Wohletz and Sheridan, 1983). These density currents can travel up to 4-5 

km from the vent (Moore, 1967).  

 

Surtseyan eruptions occur through open water (Kokelaar, 1983) and therefore have 

relatively high water:magma ratios (Moore, 1985). They are named after the 1963-1965 

submarine and emergent eruptions that formed the island of Surtsey, Iceland 

A 

B 

Figure 1.1 Structure and morphology of small hydrovolcanic landforms – (A) Tuff rings are built above the 
level of the pre-existing surface. (B) Maar-diatremes excavate into the substrate and their crater lies below 
the level of the pre-existing surface. Edited from Wohletz and Sheridan (1983). 
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(Thorarinsson, 1967). In comparison to Taalian eruptions they typically eject tephra to 

lower altitudes and at lower velocities, due to excess water quenching the system (Brown 

et al., 2007). 

 

Stratified-tuff and lapilli-tuff lithofacies dominate in small hydrovolcanic volcanoes, with 

many of the deposits containing low-angle cross-bedding, dunes, ripples and planar-

bedding (e.g. Sheridan and Updike 1975; Sohn and Chough, 1989; Colella and Hiscott 1997; 

Vasquez and Ort, 2006; Ross et al., 2011). Ash aggregates are commonly intercalated as 

lapilli horizons (e.g. Fisher and Waters, 1970; Buchel and Lorenz, 1993). Bed thickness 

typically ranges from millimetre to metre scale (Ross et al., 2017). Post-eruptive crater infill 

is common (White and Ross, 2011). Ejecta rings consist of tens to hundreds of beds, which 

suggests a pulsatory eruptive style (Ross et al., 2017). 

 
1.2.1 Ash Aggregation  

 

Ash aggregation is a common process in many hydrovolcanoes (e.g. McPhie, 1986; De Rita 

et al., 2002; Freda et al., 2005) and hydrostatic adhesion is the dominant mechanism 

(Mueller et al., 2016; Van Eaton et al., 2012). The aggregates can be separated into two 

broad categories: simple aggregates and complex aggregates. Simple aggregates typically 

lack structure and come in the form of particle clusters (Carey and Sigurdsson, 1982) and 

structureless aggregates (ash pellets – Thordarson, 2004). Alternatively, complex 

aggregates occur as either coated ash pellets or accretionary lapilli (Figure 1.2). Coated 

pellets are commonly spherical to sub-spherical and have a thin laminated fine-ash exterior 

and are produced as ash pellets pass through the ash-choked atmosphere elutriated above 

a PDC (Van Eaton et al., 2013). Accretionary lapilli contain multiple concentric layers 

surrounding a coarser core, with fragile ultra-fine outer rims and are produced when ash 

pellets descend through the turbulent levels of the PDCs (Brown et al., 2010). Ash 

aggregation is also an important process within co-PDC plumes (Brown et al., 2010).  
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Figure 1.2 Diagram showing the types of the ash aggregates found within this study. (A) Ash pellets (B) Coated 
ash pellets (C) Accretionary Lapilli.  

 
1.2.2 Silicic Tuff Rings 

 

The similarities between felsic hydrovolcanoes and the more common ultramafic and mafic 

counterparts are numerous (White and Ross, 2011). The morphological features and 

overall structure are thought to be similar with the ejecta ring and diatreme structure 

comparable (Ross et al., 2017). The crater and diatreme dimensions and depths observed 

are generally similar to those of mafic and ultramafic compositions (White and Ross, 2011). 

The ejecta rings have similar thicknesses and distributions, and features such as dune 

bedforms and low-angle cross-bedding are common in both ultramafic/mafic and felsic 

examples (Ross et al., 2017). The lithofacies are also similar, with pyroclastic fall deposits 

and pyroclastic density current deposits common. The poorly sorted, relatively coarse, 

heterolithic diatreme deposits of felsic volcanoes are very similar to their ultramafic and 

mafic counterparts (Ross et al., 2017).  

 

Ultramafic/mafic hydrovolcanoes often, but not always, evolve into scoria cones or lava 

lakes when the aquifer is exhausted or the eruptive rate increases (e.g. Lorenz, 1986; 

White, 1991; White and Ross, 2011). Felsic hydrovolcanoes can show an analogous 

evolution with late stage evolution towards lower water content phreatomagmatic 

eruptions, magmatic explosive eruptions and/or lava dome formation (Ross et al., 2017).   

 

Additionally, felsic hydrovolcanoes are observed in groups (e.g., Cerro de Pasco, Peru, 

Baumgartner et al., 2008, 2009; Montana Tunnels, Montana, Sillitoe et al., 1985). This is 

also the case for many monogenetic volcanoes (e.g. Nemeth and Kereszturi, 2015). The 

pumice clasts originating from both ultramafic/mafic and felsic eruptions have similar 

A B C 
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ranges in vesicularities and degassing histories, with often dense and poorly vesiculated 

pumice clasts (Ross and White, 2012).  

 

Despite numerous similarities between felsic and ultramafic/mafic hydrovolcanoes, there 

are also important differences. Firstly, the explosive interaction of felsic magmas differs 

from ultramafic/mafic magmas (discussed below). Secondly, the dykes that feed felsic 

diatremes may be larger than those related to ultramafic/mafic diatremes (Ross et al., 

2017). The wider conduits are needed for the more viscous felsic magma to ascend to the 

surface (Carrasco-Núñez and Ort, 2012). Thirdly, the composition of the magma can have 

an impact on the textures of the juvenile pyroclasts with variations in mineralogy and flow 

banding observed.  

 

1.3 Magmatic and Phreatomagmatic Fragmentation 

 

The explosive fragmentation of magma during volcanic eruptions results in the formation 

of pyroclasts. Explosive fragmentation can occur through two primary mechanisms. 

Magmatic eruptions result from prompt decompression that causes the rapid exsolution of 

dissolved magmatic gases (Cashman and Scheu, 2015). Moreover, phreatomagmatic 

eruptions initiate from the interaction of hot magma with external water sources 

(Zimanowski et al., 2015). Magmatic and phreatomagmatic fragmentation are not mutually 

exclusive mechanisms. Phases of one mechanism can occur during sustained phases of the 

other mechanism (e.g. Moore, 1967; Austin-Erikson et al., 2011) 

 

1.3.1 Magmatic Fragmentation 

 

Magma is comprised of three separate phases: gas/volatiles (e.g. H2O, CO2, S), a silicate 

melt and crystals. The behaviour and quantity of the gas phase is the dominant control on 

eruption style. This is because explosive eruptions are driven by the rapid expansion of the 

gas phase during decompression (Cashman and Scheu, 2015). Magmatic eruptions are 

generated when magma is allowed to rise, decompress and exsolve gas in a process called 

vesiculation. The vesiculation process facilitates the magma passing up the conduit (Fowler 

et al., 2010). It is during ascent that a gas-particle mixture is created from the 

fragmentation of the vesiculated magma. This accelerates up the conduit and is emitted 

into the atmosphere (Rust and Cashman, 2011). 
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1.3.2 Phreatomagmatic Fragmentation 

 

Phreatomagmatic fragmentation is triggered by the interaction of magma with external 

water. The external water is rapidly heated upon contact with magma, which causes a 

volumetric expansion (Zimanowski et al., 2015). Thermal energy is converted into both 

mechanical and kinetic energy during phreatomagmatic eruptions. Phreatomagmatic 

eruptions typically form deposits with a fine grainsize and a greater distribution of 

pyroclasts. This is because increases in mechanical energy, caused by the greater eruption 

efficiency, leads to greater fragmentation of the magma (Zimanowski et al., 2015). 

 

Phreatomagmatic eruptions are a type of molten fuel coolant interaction (MFCI), where 

the magma is the fuel and water the coolant. The highly explosive dynamics of 

phreatomagmatic eruptions results from the direct contact between the fuel and the 

coolant (Austin-Erikson et al., 2011). The viscosity of the magma, which is controlled by the 

magma composition, plays an important role in this mechanism. Therefore, felsic magmas 

are expected to interact differently compared to mafic and ultramafic magmas (Ross et al., 

2017).  

 

This mechanism has been studied in great detail for mafic melts, through both field 

observations (e.g. Houghton et al., 1999; Hooten and Ort, 2002) and laboratory 

experiments (e.g. Büttner et al., 1999, 2002; Dellino et al., 2004; Mastin, 2007). However, 

whilst silicic phreatomagmatism occurs (e.g. Sheridan and Updike, 1975; Heiken and 

Wohletz, 1987; Houghton et al., 1987; Sheridan et al., 1987), the dynamics have not been 

closely examined or described in detail.  

 

MFCI occurs as a four-step process (Morrissey et al., 2000). In the case of low viscosity mafic 

magmas, it is generally accepted that coarse mixing is the first step, which occurs when the 

two liquids mingle with a thin vapour film separating them. This likely occurs through the 

dispersion of water or wet sediment into the magma (Zimanowski et al. 1997). After a 

period of seconds to minutes, this is followed by vapour film destabilisation which allows 

direct contact between the magma and the liquid. The two liquids hydraulically couple 

which results in increased heat transfer, with the melt cooling and the water heating 

(Zimanowski, 1998). The third stage of the process is the fine fragmentation of the magma. 
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This results from brittle failure of the magma due to shock waves exceeding the bulk 

modulus (Austin-Erikson et al., 2011). The fourth stage is very rapid expansion and 

explosions that last seconds to minutes (Zimanowski, 1998). 

 

Hydrodynamic mixing efficiency, which controls the coarse mixing stage, relies on a limited 

viscosity contrast between the magma and the aquifer (Zimanowski and Büttner, 2002). 

Therefore, the MFCI processes for the interaction of water and relatively low-viscosity 

fluids, such as basalt (10–100 Pa s), is very well established. However, the processes of 

coarse mixing with a felsic magma, such as a rhyolite (100–1000 Pa s), is more difficult due 

to the large viscosity contrast (Zimanowski, 1998).  

 

Laboratory experiments allow the interaction of rhyolite with water and provide evidence 

as to the processes occurring in a natural setting (Austin-Erikson et al., 2008). Cracking of 

the magma, resulting from the injection of compressed air, allowed liquid water to come 

into direct contact with the hot magma, encouraging rapid heat transfer (Austin-Erikson et 

al., 2008). 

 

Austin-Erickson et al. (2008, 2011) suggest a potential mechanism occurring in natural 

settings. A felsic dyke rising in an existing diatreme at shallow depths will have highly 

viscous margins that fracture and heal repeatedly because of flow-related strain (Tuffen et 

al., 2003; Rust et al., 2004). These temporary fractures may allow the infiltration of external 

water, or fluidised sediment, into the felsic magma, and in turn allow phreatomagmatic 

explosions to occur. 

 

1.4 Emplacement Processes 

 
1.4.1 Pyroclastic Density Currents and the Flow-Boundary Approach 

 

The lithofacies interpreted in this study utilise the concept of progressive aggradation 

(Branney and Kokelaar, 2002). According to this concept, pyroclastic density currents are 

variably sustained, density-stratified and contain particle and gas phases. They deposit 

within a ‘flow-boundary zone’ which incorporates the uppermost part of the deposit and 

the lowermost part of the current. The velocity and concentration profiles of the flow-

boundary zones have a large control on the characteristics of the deposits. The depositional 
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mechanisms of the flow-boundary zone can be significantly different to the conditions 

higher in the current. Thus, the lithofacies reflect the spatial and temporal evolution of the 

lower flow-boundary.  

 

Two types of ‘end member’ pyroclastic density currents are proposed that cover a broad 

spectrum and all transitions can occur between these. Fully dilute currents are low-

concentration, density stratified, and particles are dominantly supported by the effects of 

turbulence of the fluid phase (dusty gas). They ordinarily produce parallel and cross-

stratified layering. Alternatively, granular fluid-based currents are high-concentration and 

support particles via collisional momentum transfer and/or fluid escape. Turbulence is 

typically suppressed, and traction reduced near the lower flow-boundary zone (Branney 

and Kokelaar, 1997). They often produce massive and diffuse-bedded deposits.  

 

Branney and Kokelaar (2002) proposed four intergradational ‘end-member’ types of flow-

boundary: direct fallout-dominated, traction-dominated, granular flow-dominated and 

fluid escape-dominated (Figure 1.3). 

 

Direct fallout-dominated flow-boundaries deposit clasts from suspension via fallout with 

negligible fluid-escape and clast-interaction interfaces and little lateral transport (Figure 

1.3B). A sharp rheological contrast is present between the current and the deposit. Direct 

fallout can occur from umbrella clouds and from dilute pyroclastic density currents with 

low velocities and tractional processes. During steady fallout massive deposits can aggrade.  

 

In traction-dominated flow-boundaries a marked step is observed at the flow boundary for 

both the concentration and velocity profiles where there is a sharp interface between the 

current and the deposit (Figure 1.3C). Clasts are supported and transported by fluid 

turbulence, saltation and traction. This type of flow-boundary tends to produce relatively 

well sorted deposits that show cross-stratifications and planar stratifications.  

 

Granular flow-dominated flow-boundaries occur when grain interactions dictate clast 

support due to high concentrations and shear rates (Figure 1.3D). Hindered settling is 

important at these high concentrations. Under steady conditions, massive deposits 

gradually aggrade. Current unsteadiness and non-uniformity produce diffuse bedding and 

stratification.  
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Fluid escape-dominated flow-boundaries develop from high clast concentrations and low 

shear rates (Figure 1.3E). Particles are supported by the effects of escaping dusty gas which 

is expelled upwards as a result of deposition. There is little contrast between the 

uppermost part of the deposit and the lowermost part of the current. The velocity profile 

decreases gradually through the flow-boundary zone as the concentration gradually 

increases. This type of flow boundary typically produces poorly sorted, massive and loosely 

packed deposits.  

 

To determine the changing behaviour of an entire current, each lithofacies must first be 

interpreted regarding the processes at the flow-boundary zone. Analysing the vertical and 

lateral changes allows one to elucidate how the flow-boundary evolved through time and 

space (Branney and Kokelaar, 2002). 
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Figure 1.3 Flow-boundary zone ‘end-members’ during steady conditions with schematic concentration and 

velocity profiles (modified from Branney and Kokelaar, 2002). (A) Location of the flow-boundary zone that 

contains the lowermost part of the current and the uppermost part of the deposit. (B) Direct fallout-dominated 

flow–boundary zone. (C) Traction-dominated flow-boundary zone. (D) Granular flow-dominated flow-

boundary zone. Boundary depicts sense of shear.  (E) Fluid escape-dominated flow-boundary zone. Complete 

gradations can occur between flow-boundary types. 

 

1.5 Geological Setting 

 
1.5.1 Tenerife History 

 

Tenerife is the largest island within the Canary Island archipelago, situated in the northeast 

of the Atlantic Ocean. The archipelago consists of seven intra-plate ocean islands which 

each represent different stages of their volcanic evolution (Carracedo, 1999). Tenerife, the 



 21 

centremost island, is at the peak of its volcanic development (Carracedo, 1999; Carracedo 

et al., 1998). The unique location of the islands over old oceanic crust, close to a passive 

continental margin, allows the islands to remain above sea level for a significant amount of 

time. This encourages a long magmatic history which, in turn, supports magma 

differentiation in large volumes (Carracedo et al., 2007; Nelson et al., 2005). This separates 

the Canary Islands from other intraplate ocean islands which typically form over faster-

moving and more flexible crust (Carracedo et al., 2007). 

 

The earliest records of subaerial volcanism occurring on Tenerife are preserved in three, 

deeply eroded independent basaltic massifs of Miocene to Pliocene age (Ancochea et al., 

1999; Ancochea et al., 1990). The Anaga massif is situated in the northeast of the islands, 

the Teno in the northwest and the Roques del Conde in the south (Ancochea et al., 1990). 

These deposits were termed the ‘Old Basaltic Series’ by Fuster et al. (1968). The 

coalescence of these three large shield volcanoes built the foundations of the island 

(Carracedo et al., 2007). The ages of the deposits range between 11.6 and 3.3 Ma 

(Ancochea et al., 1999). They formed as a result of several independent volcanic cycles that 

predominantly produced basalts, with smaller quantities of trachytes and phonolites 

(Ancochea et al., 1990).  

 

Following the Old Basaltic Series, volcanism shifted to the centre of the island where a new 

composite volcano, called Las Cañadas, was constructed (Bryan et al., 1998). The deposits 

of Las Cañadas have partially covered the remnants of the eroded basaltic shields 

(Ancochea et al., 1990). The earliest eruptions, between 3.5–2 Ma, were dominantly 

basaltic and effusive. The later eruptions, between 2.3–0.18 Ma, generated more evolved 

and explosive products (Brown, 2001; Ancochea et al., 1999; Martí et al., 1994). These 

deposits are typically basaltic, trachybasaltic, trachytic and phonolitic (Ancochea et al., 

1990) and the pyroclastic products are exceptionally exposed in the southern flanks of the 

island (Brown et al., 2003; Dávila Harris, 2009). 

  

A large nested summit caldera has developed as a result of subsidence occurring during 

numerous large-scale ignimbrite forming eruptions (Brown et al., 2003). Following the last 

caldera-forming event, 200 Ka, the stratocones of Teide and Pico-Viejo have since formed 

(Carracedo et al., 2007). Three rift zones are found on the island that all radiate from the 

summit caldera. The most prominent rifts are the northeast and northwest trending rifts. 
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A more diffuse rift zone is found trending towards the south of the island (Dávila Harris, 

2009). Sustained activity along these rift zones, coupled with growth of the central volcano, 

has created a bimodal distribution in the composition of the eruptive products. More 

differentiated magmas in the central areas have produced dominantly phonolitic and 

explosive products, whereas in the distal sections of the rift, basaltic eruptions typically 

occur (Carracedo et al., 2007).  

 

1.6 Caldera del Rey 

 

Caldera del Rey is a monogenetic silicic tuff ring found in southwest Tenerife, 2 km north 

of Playa de las Américas (Figure 1.4). The volcano is of similar age to older deposits of the 

Bandas del Sur group exposed on the southwest flanks of the Las Cañadas Volcano, 

together with other localised flank and rift eruptions. The tuff ring is situated parallel to 

Tenerife’s diffuse southern rift zone, trending at 035°, a direction of regional importance in 

the Canarian Archipelago (Paradas and Fernández, 1984 and reference therein). The 

volcano erupted trachy-phonolitic magma (Dávila Harris, 2009; Figure 1.5). 40Ar/39Ar dating 

gives an age of 0.953 ± 0.01 Ma for the eruption (Dávila Harris, 2009). 

 

The distinctive double depression found at Caldera del Rey is the result of two overlapping 

craters which have excavated into the basaltic substrate of the Roques del Conde, a 

preserved remnant of the ‘Old Basaltic Series’ (Fuster et al., 1968). The two-fold eruption 

firstly created a smaller crater in the south, followed by a larger crater in the north. The 

formation of the northern crater destroyed the northern part of the older southern crater 

and gave Caldera del Rey a distinctive pear shape appearance (Figure 1.4). 

 

The southern and northern craters have maximum diameters of approximately 750 m and 

1360 m respectively. The deposits of Caldera del Rey predominantly built the surrounding 

tephra-ring. However, in the northern point of the northern crater, the rim is locally made 

up of layered basalts of the Roques del Conde. The eroded rims of the southern and 

northern craters, relative to the base of the craters, reach maximum thicknesses of 40 m 

and 100 m respectively. The bases of the craters have since filled with alluvium, and are 

currently cultivated, meaning the true depth of the substrate is unknown and the 

diatremes are not exposed.  
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The deposits that construct the slopes of Caldera del Rey generally have fairly shallow 

quaquaversal dips of between 5-10° that radiate away from the craters. However, the pre-

existing topography of the area has a controlling factor on the dip. Where the deposits are 

rested up against the topographic barrier of the Roques del Conde to the north, the dips 

reach up to 52°. Furthermore, paleo-valleys to the west of Caldera del Rey significantly 

disturb the azimuth and angle of the surrounding dipping beds. The centroclinal dips are 

generally greater than the quaquaveral dips, reaching up to 40°. These are rarely preserved 

and are best appreciated in a cut section through the southern crater. Erosion and collapse 

of the crater, causing it to widen, is likely the reason the inward dipping layers are not 

preserved (Paradas and Fernández, 1984). 

 

Figure 1.4 Aerial photograph and location map of Caldera del Rey. 
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The deposits from Caldera del Rey cover a surface area of approximately 4.5 km2. The 

deposits are predominantly found in the areas immediately surrounding the tuff ring and 

in localised patches. However, a thin distal deposit of ash-fallout layers, measuring 75 cm 

thick, is found north of Montaña Guaza, 4 km from source. The impacts of erosion, urban 

developments, sediment reworking and younger overlying eruptions has reduced the 

present-day exposure of the deposits, compared to the exposure at the time of eruption. 

 

 
Figure 1.5 Total-alkali vs silica (TAS) classification plot (Le Bas, 1986) for the Caldera del Rey formation. Edited 
from Dávila Harris (2009). 

 

1.6.1 Previous Work  

 

The first recordings of Caldera del Rey and the associated deposits are present in work by 

Hausen (1956) and Fuster et al. (1968), which give a brief description within the wider 

history of Tenerife’s volcanism. It is also mentioned, without detailed descriptions, as an 

example of maar and tuff ring volcanism (Araña and López Ruiz, 1974; Araña and 

Carracedo, 1979). The first detailed study of the tuff ring was undertaken by Paradas and 

Fernández (1984). This was followed by brief accounts from Fúster et al. (1994), Bryan et 

al. (1998) and Huertas et al. (2002). However, the deposits were not placed in the correct 
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stratigraphic context until Dávila Harris (2009). The initial understanding was 

predominantly hampered by imprecise radiometric dating of the deposits (Fúster et al., 

1994; Huertas et al., 2002). Additionally, the deposits were incorrectly correlated with 

other accretionary lapilli-bearing deposits and phonolitic pumice-fall deposits from the Las 

Cañadas volcano (Bryan et al., 1998). 

 

The initial study by Paradas and Fernández (1984) placed the deposits in relative 

stratigraphic order with the surrounding deposits of Montaña del Mojon and Montaña 

Guaza. It was Fúster et al. (1994) who labelled the deposits on the southwest flanks of the 

Las Cañadas volcano as the ‘Cañadas Formation’, which included the Caldera del Rey 

deposits within the ‘Adeje-type ignimbrites’. A K/Ar age of 1.54 ± 0.28 Ma, calculated from 

feldspar concentrates taken from ignimbrites, was proposed (Fúster et al., 1994).  

 

Later work by Bryan et al. (1998) described two different deposits, found around Aldea 

Blanca, thought to have originated from separate Caldera del Rey eruptions. The older 

deposits, the ‘Caldera del Rey pumice members’, consisted of two pale grey phonolitic, 

accretionary lapilli-rich, pumice-fall deposits (CRP-1 and CRP-2), with a collective thickness 

of 4.3 m. The younger of the deposits, the ‘Caldera del Rey ignimbrite member’, was 

described as a 10 m thick, massive, cream coloured, pumice-rich ignimbrite that is exposed 

north of Moñtana Guaza. The deposits were believed to be younger than the 0.569 Ma 

Granadilla member, but older than the 0.316 Ma Poris member (Bryan et al., 1998) and 

placed within Cycle 3 of Bryan et al. (1998). 

 

However, the dates suggested by Bryan et al. (1998) contrasted with those proposed by 

Huertas et al. (2002) which gave a plateau age of 1.13 ± 0.04 Ma, using 40Ar/39Ar from an 

anorthoclase crystal taken from an ignimbrite deposit. The deposits were placed within the 

‘Las Américas Phase’. The age proposed is constrained by field relationships that place the 

deposits stratigraphically lower than the neighbouring 0.88 Ma Las Américas ignimbrite 

(Huertas et al., 2002). The deposits also correlate with phreatomagmatic deposits overlying 

the Adeje ignimbrites and are believed to be related to PH2 (Huertas et al., 2002), not PH1, 

as first proposed by Fúster et al. (1994). 

 

The interpretation of the ‘Caldera del Rey ignimbrite member’ in the area surrounding 

Aldea Blanca, as suggested by Bryan et al. (1998), contains two main issues. Firstly, the 
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pyroclastic surge deposits lie approximately 10 km east of Caldera del Rey, over rugged 

terrain. Secondly, the deposits described by Bryan et al. (1998) could not correlate to the 

deposits of Huertas et al. (2002) as proven by field relationships from neighbouring younger 

deposits (Huertas et al., 2002). Brown et al. (2003) re-designated the deposits as part of 

the Poris Formation. However, Dávila Harris (2009) later determined them to belong to the 

Tosca formation. 

 

Similarly, the ‘Caldera del Rey pumice members’ of Bryan et al. (1998), which were first 

described by Paradas and Fernández (1984), were inferred to originate from Caldera del 

Rey. However, isopach and isopleth data, produced for the first time by Brown et al. (2003), 

indicate that the deposits have a source within the Las Canadas Caldera, dispersed on a 

south-southwest axis. The name ‘Caldera del Rey pumice members’ was dropped and 

replaced by the ‘Aldea Blanca pumice fall deposits’ (Brown et al., 2003).  

 

The most recent recordings of the Caldera del Rey deposits were produced by Dávila Harris 

(2009). A new age of 0.953 ± 0.01 Ma is presented and is well constrained by the younger, 

neighbouring Montaña Guaza phonolite dome, dated at 0.926 ± 0.02 Ma (Carracedo et al., 

2007). For the first time the succession was sub-divided into 6 stratigraphic divisions, 

varying from member CR-A to CR-F.  

 
1.7 Thesis Research Aims 

 

This project has the following research aims and objectives: (a) to confirm and, where 

necessary, develop a new detailed stratigraphic framework; (b) to describe and interpret 

the eruptive history of each of the eruption members, subunits and flow-units; (c) to 

produce a detailed geological map on a member scale; (d) to uncover the depositional 

processes for each pyroclastic density current eruption using a progressive aggradation 

model.  
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Chapter 2: Methodology 
 

2.1 Fieldwork 

 

The aim of this project was to understand the eruptive and emplacement processes of the 

pyroclastic lithofacies that were produced during the Caldera del Rey eruption in southwest 

Tenerife. This was achieved by characterising and interpreting the lithofacies through 

detailed fieldwork. In proximal areas the exposure is generally excellent with outcrops 

continuing over 100s metres. However, in distal areas the outcrop exposure is limited due 

to urbanisation and burial from younger deposits. This restricts understanding of the 

dispersion and eruptive volumes of the Caldera del Rey eruption in these areas.  

 

This study is the product of 7 weeks of fieldwork in Tenerife over two field seasons between 

October 2018 and May 2019. The conclusions drawn in this thesis are primarily from field 

observations. Field data was recorded through detailed lithological descriptions, geological 

mapping and centimetre scale sedimentary logging. The lateral and vertical facies 

variations observed within the various members were primarily deciphered in the field by 

multiple detailed logs and photographs. 

 

2.1.1 Acquisition of Field Data  

 

A total of 39 sections were logged, equivalent to over 275 m, primarily through road cuts 

and barrancos in the areas surrounding Caldera del Rey. The logging of sections involved 

the recording of data, measuring thicknesses, photographing and sampling where 

appropriate. 72 localities of interest were recorded. At these localities, sections were 

logged, sketches drawn, and descriptions recorded. The grid references used within the 

text are given in metres and refer to UTM grid zone 28, northern hemisphere. Aerial 

photographs were used for aids during mapping. In total, 1380 field photos were taken 

over both field seasons, some of which are included as figures within this study.  
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2.1.2 Sampling  

 

A total of 15 rock samples and 500 pumice clasts were taken from the various members of 

the Caldera del Rey formation. Sampling of lithic clast populations was conducted in the 

field, with a minimum of 500 clasts recorded for each individual member. Ballistic projectile 

data was recorded throughout both field seasons. This involved recording the size of the 

clasts and the length and depth of the sags where present. Additionally, the clast lithology, 

the eruption member and the grid reference locations were recorded. 783 measurements 

were taken in order to determine how the size of the ballistic blocks and the sags varied 

with distance from the source. 

 

2.1.3 Lithostratigraphy 

 

The Caldera del Rey formation follows the scheme of the upper Bandas del Sur group (Bryan 

et al., 1998). The formation corresponds to the deposits of an entire eruption, whereas the 

members relate to individual phases of the eruption that vary in eruption processes. Some 

members have been further subdivided into units that are traceable across the region. 

Certain sections could be divided into flow-units that were deposited from a single current 

at that location. Palaeosols and sediments are recorded due to their importance in 

recording time gaps between periods of volcanism. 

 

2.1.4  Lithofacies 

 

During this study, a lithofacies approach was utilised to describe and interpret the 

pyroclastic deposits from Caldera del Rey. Facies analysis is a technique that has been used 

by geologists previously and is discussed in more detail by Anderton (1985) and Reading 

(1996). Facies studies on volcanic rocks have been previously discussed by Suthren (1985) 

and Cas and Wright (1987). Facies are defined as a body of rock that can be characterised 

by certain features including colour, grainsize, internal structure, geometry, texture and 

composition (Anderton, 1985). Individual lithofacies are used to objectively describe a rock 

unit that has a particular depositional process, or a combination of processes (Reading, 

1978).  
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The lithofacies defined in this study are described using non-genetic terminology and 

reflect the structure, grainsize and geometry of the deposits found in the field. Through 

detailed logging in the field, multiple lithofacies have been defined. This allows units within 

members to be divided into lithofacies, depicted as lithofacies codes (following Branney 

and Kokelaar, 2002; see Table 2.1). Detailed interpretations of the emplacement process 

were achieved by defining commonly occurring lithofacies and the relationships between 

different lithofacies. 

 

2.1.5 Terminology 

 

The term ‘pyroclastic’ is used to describe tephra that has been fragmented by explosive 

volcanism and subsequently deposited by primary pyroclastic processes. This includes 

sedimentation by pyroclastic density currents, ash fall and ballistic emplacement.  

Code Lithofacies 
mLT Massive lapilli tuff 
dbLT Diffuse-bedded lapilli tuff 
dsLT Diffuse-stratified lapilli tuff 
bLT Bedded lapilli tuff 
sLT Stratified lapilli tuff 
xsLT Cross-stratified lapilli tuff 
xsT Cross-stratified tuff/ash 
mT Massive tuff/ash 
mTacc Massive tuff with accretionary lapilli 
mTpel Massive tuff with pellets 
//sT Parallel-stratified tuff/ash 
mL Massive Lapilli 
bL Bedded Lapilli 

 
Abbreviation Meaning 
T Tuff/ash 
LT Lapilli tuff/lapilli ash 
L Lapilli 
l Lithic-rich 
m Massive 
s Stratified 
//s Parallel-stratified 
b Bedded 
xs Cross-stratified 
p Pumice-rich 
acc Accretionary lapilli 
pel Pellets 
  

Table 2.1 Summarised codes and abbreviations for the non-genetic lithofacies used in this study (modified 
from Branney and Kokelaar, 2002). 
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2.2 Laboratory Work 

 

2.2.1 Pumice Density and Vesicularity 

 

The densities of pumice clasts were measured by using a water immersion technique first 

developed by Houghton and Wilson (1989). The densities were converted to vesicularities 

which provided information regarding the relative timing of fragmentation and the role of 

external water during explosive eruptions.  

 

This method applies Archimedes’ principle to determine the densities of the pumice clasts. 

The pumice clasts were weighed in air and in water and the difference between these two 

values is the same as the mass of water displaced by the clasts. Assuming that the density 

of the water is 1 g/cm3, this is also the volume of the water displaced, which is equivalent 

to the volume of the clast.  

 

Sample Collection 

 

A minimum of 100 pumice clasts were collected for each member. The samples were 

selected from the same horizons in an attempt to retrieve pumice clasts that were ejected 

simultaneously. The pumice clasts were sampled in proximal regions to remove the effects 

of aeolian fractionation of denser clasts compared to lighter clasts in pumice fall deposits 

(Fisher and Schmincke, 1984). Additionally, juvenile clast densities vary with size (e.g. 

Walker, 1981). Therefore, clasts between 32 and 16 mm were collected to provide a large 

range of sizes that are typically common in proximal locations.   

 

Sample Preparation  

 

Firstly, the samples were sieved through 32 mm and 16 mm sieves to ensure the pumice 

clasts were within the acquired size fraction. 100 samples were used for each member. The 

pumice clasts were then washed in an ultrasonic washer to remove any excess material. 

The pumice clasts were reasonably clean once the beaker contained little to no residue. 

The samples were then dried in foil containers at 70°C in an oven for 24 hours. Following 

this, the pumice clasts were ranked by decreasing size and numbered from 1-100.  
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Sample Weighing 

 

The samples were firstly weighed in air and recorded in a table. The pumice clasts were 

then wrapped in an impermeable film (parafilm). The amount of parafilm used was 

recorded and subtracted from the weight of the submerged clast. To ensure the pumice 

clasts were fully submerged, they were placed within a ballast of a known weight and the 

joint weight of the ballast and wrapped pumice clasts were recorded. The weight of the 

submerged pumice clasts was calculated by subtracting the weight of the film and the 

ballast. The apparatus used to measure the submerged weight is shown in Figure 2.1.  

 

Sample Analysis  

 

The following equation was used to calculate the density of each individual pumice clasts: 

!!"#$% &!
&!	#	(%&	#	%'	#	%()

 

Where !!"#$, refers to the bulk density of the pumice clast, "', Pumice clast weight in air, 

"(, Pumice clast weight in water,	"), the weight of the film in water, and "!, the weight 

of the ballast in water. 

The vesicularity value for each clast was converted from the density value using the dense 

rock equivalent (DRE) density for a phonolitic composition (Seifert et al., 2013). The 

following equation was used: 

$%&'()*+,'-.	(%) = 	
100	(!*+,	 −	!!"#$)

!*+,
 

Where !!"#$, refers to the bulk density of the pumice clast, !*+,, the dense rock 

equivalent density.  
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2.3 Data Analysis  

 

2.3.1 Construction of Isopach and Isopleth Maps 

 

The variations in the member thickness and clast size moving away from the vent were 

measured in the field through detailed logging. Isopach maps were produced from the 

member thickness variations for thicknesses of 15, 10, 5, 2 and 1 metre. Isopleth maps 

were produced from the clast size variations for lithic and pumice clasts. The average 

maximum size of the clast was used and isopleth contours of 5, 3, 2 and 1 cm in diameter 

were estimated. Ellipses were used for the shape of the contours, however, in the case of 

the isopleth maps where this was not possible, the contours were drawn free hand.  

 

The isopach and isopleth maps were hand drawn, which is common practise when 

producing these maps (Engwell et al., 2015). However, this method can carry a large degree 

of uncertainty. A number of factors can control the quality of hand-drawn contours, 

including errors in field measurements, the quantity and spatial distribution of data points 

42.69 g

Figure 2.1 Apparatus set-up used to weigh submerged pumice clast – Pumice clast, wrapped in parafilm, is 
freely suspended in the water using a ballast and metal wire of a constant and known weight and volume. 
The pumice clast is attached to a coat hanger that connects to a metal ruler through wire. The metal ruler 
is secured to the scales. Water is topped up periodically to the same level. Scales are zeroed prior to the 
pumice clast being hung to the coat hanger. The apparatus was tested using a cylinder of a known volume 
to ensure it was in correct working order. 
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and assumptions of deposition processes occurring (Engwell et al., 2015). Hand-drawn 

maps also rely on the judgement of the scientist, which can be highly variable (Klawonn et 

al., 2014). Issues associated with urbanisation, lack of exposure and the loss of distal 

deposits offshore meant that data was scarce and often clustered, which significantly 

hampered the production of isopach and isopleth maps. Additionally, uncertainties in the 

rate of thinning of the members, further complicated by aggregation processes varying 

with distance from source (Carey and Sigurdsson, 1982), meant it was not possible to 

extrapolate the thicknesses of the members. Due to the lack of preservation of distal 

deposits, the distal trends presented are likely a reflection of the proximal trends, which 

themselves are liable to large uncertainties associated with the nonlinear processes of near 

vent dispersal (Bonadonna and Costa, 2012; Engwell et al., 2015). 

 

Tephra volume estimates are derived from the hand-drawn isopach maps, which is 

important in understanding eruption parameters. The accuracy of the volume estimates is 

dependent on the method used to draw the contours and the quality and quantity of field 

data. The empirical method used within this study is the most widely applied technique 

(e.g. Thorarinsson, 1954; Walker, 1980; Pyle, 1989; Bonadonna and Houghton, 2005). 

Whilst there is no standardised method for producing isopach maps, an intrinsically less 

subjective approach to creating isopach contours is to apply mathematical interpolation to 

the tephra thickness data (e.g. Bursik and Sieh, 2013; Engwell et al., 2015). However, the 

number of measurements is a major control on the uncertainty of volume estimates, 

regardless of the method used to produce the isopach maps. A mathematical interpolation 

approach would require a greater number of data points, over a greater area, than those 

collected, and is therefore beyond the limitations of this study. 

 

The isopach and isopleth maps produced carry a large degree of uncertainty, and this 

uncertainty is carried forward when estimating the erupted tephra volumes, given that the 

area and thicknesses contours of the isopach maps is fundamental in this calculation.   

 

2.3.2 Estimating Eruption Parameters 

 

The volume of the tephra fallout deposits was calculated using the exponential thinning 

method of Pyle (1989). The model assumes that the thickness of the deposit decays 

exponentially away from the vent: 
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6 = 6.%/$'
*/,  

Where	6, refers to the deposit thickness, 6., initial thickness at the vent, 7, area of the 

deposit and 8, a thinning constant.  

This can be simplified into a linear equation: 

*96 = *96. − 870/2 

The thickness half-distance, :3, is the distance over which the measured thickness from 

the vent decreases by half. It describes the morphology of the deposit, from cone-like to 

sheet-like. 	

:3 =	
ln	(2)
8√?

 

Using the parameters 6. and :3, the bulk tephra volume is estimated: 

$ = 13.086.:32 

The exponential thinning model uses information about the eruptive process and was 

preferred to simply finding the volume of the isopachs as there is a higher chance this 

would lead to underestimations due to the close proximity of the ocean. 

 

Firstly, the area of each individual isopach of a given thickness was established. Following 

this, a plot of the square root of the calculated area(√+) against the natural logarithm of 

the isopach thickness (ln	[-ℎ'(E9%&&]) was produced. The square root of the isopach area 

is used instead of the distance from the vent. This is to average out the effects of the wind 

on tephra dispersal.  

 

The value for the parameters 8 and ln(6.) can be estimated from the slope and the 

intercept of the plot respectively. Using the estimated parameters 8 and ln(6.), the values 

of :3	and the bulk tephra volume were determined. 

The erupted mass (M) of the deposits was then calculated assuming the deposits to have a 

phonolitic composition (Seifert et al., 2013). 

G = 	!$ 

Where the mass is denoted by G, deposits density, !, and volume, $. 

The Volcanic Explosivity Index (VEI) for the eruption can be calculated using the equation: 

$HI = 	JKL0.(G) − 7 

In order to calculate the dense rock equivalent (DRE) volume, the bulk tephra volume ($) 

is multiplied by the ratio of average bulk density of the deposit (!*) to the volcanic rock 

density (!+). 
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NOH	PK*)Q% = 	$(!*: !+) 

To determine the average eruption rate (S) the duration of the eruption is required. The 

eruption duration is calculated from the deposit thickness divided by the average 

deposition rate. 

H,)T-'K9	U),+-'K9 =
N%TK&'-	-ℎ'(E9%&&

7P%,+L%	U%TK&'-K9	,+-% 

The deposit thickness is measured in the field. The average deposition rate was estimated 

at 0.3 Q	ℎ,/0. This was estimated from historical eruptions. The 1973 eruption of Heimaey 

produced a deposition rate between 0.5 and 0.33 Q	ℎ,/0 for deposits 200-300 m from the 

vent. Similarly, the AD 79 Vesuvius eruption yielded deposition rates of 0.12-0.15 Q	ℎ,/0 

directly downwind, 4.7 km from the source (Francis and Oppenheimer, 2004). 

 

The deposition rate from a plume in any one place is controlled by many parameters, 

namely the eruption type, magma composition and viscosity, proximity to vent and wind 

speed. Vesuvius, a trachyte/phonolitic eruption, is closer in magma composition to Caldera 

del Rey than Heimaey, which represents a basaltic eruption. Therefore, it would be 

expected that the deposition rate would be closer to Vesuvius. However, the Heimaey 

example represents an eruption type closer to that of Caldera del Rey, and at a similar 

proximity to the vent. As a result, an eruption rate was deemed likely to be closer to 

Heimaey than Vesuvius. Whilst lots of consideration was given to predict an accurate 

eruption rate, the estimation still carries a high degree of uncertainty, which is also carried 

forward to the eruption rate and eruption column height.  

 

Using the calculated eruption duration and the DRE volume, the average eruption rate is 

calculated. 

S =	
NOH	PK*)Q%

H,)T-'K9	U),+-'K9 

The eruption column height (V3) was estimated using the following equation from Carey 

and Sigurdsson (1987). 

V3 = 1.67(S)..256 

 

2.3.3 Classifying Pyroclastic Deposits 

 

Pyle (1989) developed a scheme which uses isopach and isopleth data to determine the 

style and size of an eruption. A plot of the thickness half-distance (:3) against the half-
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distance ratio (:7	 :3⁄ ) contains different fields that embody the most important types of 

volcanic activity and allows pyroclastic deposits to be distinguished. The fields are divided 

by contours of the clast size half-distance (:8). This parameter closely relates to the height 

of the eruption column. 

 

Theoretical models predict that the clast size has an exponential dependence with the 

distance from the vent (Pyle, 1989). The slopes of lithic and pumice clasts are similar, but 

not equal. This reflects the greater influence of the wind on lower-density pumice clasts 

compared to denser lithic fragments. Lower-density clasts have a greater maximum 

entrainment size and, for a given size, will be dispersed across a greater area than higher 

density particles.  

 

The area of each isopleth, for both pumice and lithic clasts, was estimated and plotted on 

a graph of the square root of the area(√+) against the natural logarithm of the isopleth 

clast size (ln	[(*+&-	&'Y%]).  

 

The thinning constants, 8# and 89, were calculated from the gradient of the slope. These 

values were used to estimate the clast size half-distance (:8) for both the lithic and pumice 

clasts. This is a measure of the average distance from the vent at which the clast size 

reaches half of the initial size. The clast size half-distance is controlled by the height of the 

column and the intensity of the eruption. 

	

:7 =	
ln	(2)
8√?

 

A plot of the thickness half-distance (:3) against the half-distance ratio (:7	 :3⁄ ) was 

produced that graphically categorised the eruption based on the data from the lithic and 

pumice clasts. Plotting the thickness half-distance (:3) against the half distance ratio 

(:7	 :3⁄ ) acts to smooth out any differences that may arise from variations in magnitude 

(Francis and Oppenheimer, 2004). The half-distance ratio (:7	 :3⁄ ) is a measure of the 

degree of fragmentation or the entrained grainsize. A deposit with a low value will likely be 

finer-grained (Pyle, 1989).  
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2.3.4 Volcanic Ballistic Projectiles 

 

The initial velocities ($:) for the smallest, largest and average ballistic projectile were 

estimated using the following equation: 

O = 	
$:
L 	Z'9(2[) 

Where O, refers to the horizontal distance from the vent, $:, the initial velocity at the vent, 

L, acceleration due to gravity, and [, the angle of ejection. An ejection angle of 60° was 

assumed for the estimated velocities. Acceleration due to gravity was taken as 9.81 m s-2. 

 

The volume ($) for the different sized ballistic projectiles was calculated by assuming the 

blocks to be cube shaped. From this, the mass of the ballistic projectiles was estimated, 

assuming the density of basalt to be 2.7 g/cm3 (Sparks et al., 1980).  

Q = 	!$ 

Where Q,	is the mass of the object, !, the density, and $, the volume. 

 

2.3.5 Methodology Limitations 

 

Isopach and isopleth construction was hindered by a lack of data points. Measuring the 

entire member thickness in the field was challenging due to the lack of exposure. Similarly, 

distal deposits were lost to the ocean and meant that proximal deposits were 

predominantly studied. This created further challenges because the high abundance of 

ballistic clasts meant it was difficult to determine the maximum clasts size of the umbrella 

cloud derived material. Whilst the proximal deposits are fairly well constrained, the actual 

isopach and isopleth contours for the distal deposits may significantly differ from those 

estimated.  

 

Some of the eruption parameters were derived from the thinning constant (8) and the 

initial thickness at the vent (6.). These two parameters were extrapolated from a graph 

that contained a small number of data points. This was because only a limited number of 

isopach and isopleth contours were drawn. Similarly, the estimated volume of the deposits 

is extrapolated from the areas where the deposits are thickest to where they are at their 

thinnest. The bulk of the volume of the deposits is found within these smaller thicknesses 

for which the exposure is limited. Therefore, the extrapolations agree close to source for 
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the greatest thicknesses. However, they may diverge considerably when extrapolated to 

smaller thicknesses. 

 

The initial velocities calculated for the ballistic projectiles assumes a constant ejection angle 

of 60°. This is an over-simplification given that a variety of ejection angles are expected. 

Furthermore, in the case where blocks are influenced by an eruption plume and later 

decoupled, the ejection angle may vary considerably from the assumed angle. The method 

does not account for drag forces or any discrepancies in the elevation. Additionally, the size 

of the clast is not used as a parameter in calculating the velocity. Instead, the method uses 

the horizontal range based on the observation that the size of the ballistic projectiles 

decreases with distance from the vent. The assumption that the ballistic projectiles were 

perfect cubes is another over-simplification.  
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Chapter 3: Results 
 

3.1 Caldera del Rey Formation 

 

The Caldera del Rey formation comprises thick successions of pumice-rich fall deposits and 

lithic-rich ignimbrites of a trachy-phonolite composition (Dávila Harris, 2009; Paradas and 

Fernández, 1984). The products of the eruption are deposited around Costa Adeje and Las 

Américas, southwest Tenerife (Figure 3.1). 

 

The deposits at Caldera del Rey can be divided into a lower and upper sequence, originating 

from the older southern crater and the younger northern crater respectively. The lower 

sequence comprises of two members: CDR Member A and CDR Member B. Likewise, the 

upper sequence is made up of CDR Members C – E. (Figure 3.2). For the first time the 

individual members of Caldera del Rey have been mapped at a 1:20,000 scale (Figure 3.1).  

 

The Caldera del Rey formation was previously sub-divided into 6 stratigraphic units, 

Members CR A-F, by Dávila Harris (2009). However, after careful field observations it was 

determined that Member CR-A does not belong to the Caldera del Rey formation. Hence, 

the formation is now subdivided into 5 members, with the names of the members shifting 

so that the member formerly known as Member CR-B is now represented by CDR Member 

A. Additionally, the stratigraphic boundaries between the members were re-structured 

where necessary, and thus the members presented here may not directly relate to the 

deposits outlined by Dávila Harris (2009). This is particularly relevant for the boundary 

between CDR Members C and D (Figure 3.2). 

 

The newly defined type locality for the Caldera del Rey formation is found directly 

northeast of Siam Park, within Las Américas (GR: 0330509 3106651). The section lies 

between 675 m and 550 m west of the centre of the southern crater. At this locality, 

proximal deposits of CDR Members A-D, dipping shallowly to the southwest, are clearly 

exposed by road cuts. The profile of the road allows one to easily walk stratigraphically up 

the sequence.  
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Figure 3.1 Geological map and accompanying schematic cross-section for the Caldera del Rey formation. 
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Member D - Thickly bedded 
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ash aggregates. 

Member deposited from 
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Figure 3.2 Generalised vertical column for the Caldera del Rey formation. 
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At proximal locations the formation sits upon an aphanitic basaltic lava flow that grades 

into a thick well-developed palaeosol, of variable thickness between 0.1 m and 1 m, 

containing fragments of the basaltic lava it sits on upon. This often passes into a ∼0.6 m 

thick, massive, pale brown coloured, fine grained bed which was formerly determined 

to represent the start of the Caldera del Rey eruption sequence (Member CR-A of Dávila 

Harris, 2009). The lower 20 cm of the bed is lithic rich, containing angular clasts of 

basaltic lava up to 15 cm in size. The sediment has a sandy texture, similar to the fluvial 

sediments found within the Barranco del Rey. Locally, the upper 10 cm of the bed 

transitions from a pale brown colour into an orange colour, suggesting the formation of 

a palaeosol in places. It is for these reasons that the bed is determined to represent re-

worked sediments, likely from local pyroclastic material. Similarly, the formation of a 

soil indicates a time-gap between the formation of this bed and the onset of the 

eruption.  

 

In other proximal locations the formation rests upon the southern slopes of the Roques 

del Conde, made up of horizontally bedded lava flows. Towards the west of Caldera del 

Rey, and in the Costa Adeje region, the lower contact of the formation unconformably 

overlies phonolite lava and the Adeje formation. In distal locations, the formation 

overlies fluvial gravels north of Montaña Guaza and lies upon a local lava flow and soil 

where exposed by Barranco del Rey, to the northeast of Caldera del Rey.  

 

The overlying deposits often lie unconformably due to periods of erosion and the main 

emplacement directions of some of the members. In proximal locations the formation 

is predominantly overlain by the Aldea Blanca ‘B’ pumice fall deposits (Brown et al., 

2003) and occasionally the Abrigo formation to the east. In the distal exposures east of 

Caldera del Rey, the formation is overlain by a 0.926 ± 0.02 Ma (K/Ar; Carracedo et al., 

2007) phonolite autobreccia originating from the Guaza dome. In other distal localities 

the formation is overlain by sedimentary gravels and the Tosca formation, which sits 

upon thinly stratified facies (Dávila Harris, 2009). Exposures to the northeast of Caldera 

del Rey are overlain by local lava flows from flank eruptions that have somewhat baked 

the sediments below.  
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Table 3.1 and Figure 3.3, Figure 3.4 and Figure 3.5 below outline the main lithofacies 

encountered in the deposits of Caldera del Rey. The lithofacies are defined from primary 

lithological descriptors and subdivided into lithofacies based on a combination of 

features that include bedding and composition. The lithofacies abbreviations follow the 

scheme of Branney and Kokelaar (2002).  

 

3.1.1 Caldera del Rey Pumice Clasts 

 

The pumice clasts of the Caldera del Rey formation are typically yellow coloured, range 

from coarse ash to block sized and can be rounded to angular in shape. They occur in 

matrix to clast supported quantities and vary in density and vesicularity. However, they 

maintain some features that are consistent within all of the members. 

 

The phenocryst population comprises translucent elongated sanidine phenocrysts that 

are mostly 10 mm in diameter (up to 17 mm) and make up 5% of the pumice clasts. Black 

elongated amphibole phenocrysts are generally 5 mm (up to 10 mm) and make up 5–

10% of the pumice clasts. 

 

The pumice clasts are often altered to clays, most likely zeolites, that give the pumice 

clasts a powdered texture and distinct yellow colour (Hernandez et al., 1993). This 

predominantly affects the exteriors of the clast creating an altered rim that is typically 

<1 mm thick (up to 3-4 mm). Where the pumices are absent, the rim is often intact with 

powdered remnants of the original pumice.  
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Lithofacies Description Interpretation 
Massive lapilli 
tuff (mLT); 
lithic-rich 
(lmLT) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3 C, 
D, J 

Lithology: variable proportions of lithic and 
pumice lapilli, matrix-supported in poorly 
sorted, fine to coarse-grained tuff matrix; 
lithic lapilli accounts for <5-50% of the 
lithofacies; Pumice lapilli accounts for <5-
45% of the lithofacies; Lithic fragments, 
angular to sub-rounded, <50 cm in diameter, 
typically 3-20 cm, generally composed of 
various basaltic lavas and ignimbritic 
material; Pumice clasts, sub-rounded, 
<30mm, typically 2-10 cm 
Sub-facies: lithic-rich massive lapilli-tuff 
(lmLT); as mLT, 30-60% lithic lapilli 
Structure: massive to diffuse stratified; 
stratification plane-parallel or discontinuous 
defined by grainsize and lithic 
concentrations; non-graded 
Geometry: dm-thick, laterally continuous 
bodies 
 

Rapid progressive aggradation 
from a high-concentration fluid 
escape-dominated depositional 
flow-boundary of a PDC, 
indicated by massive nature, 
absence of tractional structures 
and poor sorting (Branney and 
Kokelaar, 2001); diffuse bedding 
results from local current 
unsteadiness, non-uniformity 
and the development of 
granular-flow dominated flow-
boundaries; lmLT as mLT, higher 
lithic content reflects increase in 
supply at source.  

Diffuse-
bedded lapilli 
tuff (dbLT); 
lithic-rich 
(ldbLT) 
 
 
 
 
Figure 3.3 A, 
B, C, K 

Lithology: as massive lapilli tuff (mLT) 
Sub-facies: ldbLT as lmLT 
Structure: discontinuous, sub-parallel and 
undulating diffuse bedding defined by cm-
thick lithic horizons or by thin (<2 cm) fine-
grained layers. 
Geometry: individual beds persistent over 2-
6 m before dying out. Lithofacies pass 
laterally into mLT, lmLT, ldbLT, bLT, xsLT, xsT; 
dm-thick packages interbedded with mLT 
and bLT 
 

Similar composition and lack of 
internal traction structures 
indicate deposition processes 
similar to massive lapilli tuff 
(mLT); diffuse bedding results 
from current unsteadiness, 
perhaps in granular flow-
dominated flow boundaries; 
discontinuous nature and lateral 
thickness variations reflect 
current non-uniformity. 

Diffuse-
stratified 
lapilli tuff 
(dsLT) 
 
 
Figure 3.3 A, 
B, D, F, G, I 

Lithology: Similar to massive lapilli tuff (mLT) 
Structure: diffuse, discontinuous, parallel to 
sub-parallel, cm scale stratification, in sets 4 
cm to 50 cm thick; defined by alternating 
horizons of fine-grained, lapilli-sized and 
lithic-rich deposits;  
Geometry: grade vertically and/or laterally in 
to mLT, dbLT and sLT 
 

Rapid progressive aggradation 
from flow boundary zone; 
unsteadiness during deposition, 
perhaps in granular flow-
dominated flow boundary zone, 
indicated by diffuse 
stratification and disordered 
structure.   

Bedded lapilli 
tuff (bLT); 
Lithic-rich 
(lbLT) 
 
 
 
 
 
Figure 3.3 K 

Lithology: similar to massive lapilli tuff (mLT) 
Sub-facies: lbLT as lmLT 
Structure: well bedded, internally massive; 
beds typically <30cm thick with parallel to 
sub-parallel boundaries; upper and lower 
boundaries of internal layers can be sharp 
Geometry: occur in discrete tabular beds, 
and in stacked beds up to ∼3 m; more 
laterally persistent than dbLT; grade 
vertically and/or laterally in to mLT and dbLT 
 

General interpretation as for 
mLT; stratification records local 
traction-sedimentation; lbLT as 
bLT, higher lithic content 
reflects increase in supply at 
source. 

Table 3.1 Summarised description and interpretation of lithofacies in the Caldera del Rey formation. 
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Table 3.1 (Continued) 
 
 
 

Lithofacies Description Interpretation 
Stratified 
lapilli tuff 
(sLT); 
Stratified tuff 
(sT) 
 
 
 
 
 
 
Figure 3.3 H, 
I, J 
 

Lithology: alternating moderately sorted fine-
grained layers and more poorly-sorted coarser-
grained layers; matrix supported sub-angular 
to sub-rounded pumice and lithic lapilli 
Sub-facies: sT as sLT, thin sharp-bounded mm 
thick laminae 
Structure: parallel to sub-parallel strata <1-5 
cm thick in sets 4 cm to 60 cm; very low-angle 
truncations are present 
Geometry: generally fairly laterally persistent 
over 10s–100s m; interstratified with and pass 
laterally and vertically into dbLT, dsLT and bLT 
 

Tractional sedimentation from the 
low-concentration flow boundary 
zone of fully dilute PDCs; allows 
efficient elutriation and 
winnowing of low-density pumice 
and fine ash, indicated by well-
developed stratification and 
sorting of layers. 
 

Cross-
stratified 
lapilli tuff 
(xsLT); Cross-
stratified tuff 
(xsT) 
 
 
 
 
 
 
Figure 3.3 C, 
D, E, F, G 

Lithology: similar to stratified lapilli tuff (sLT) 
Sub-facies: cross-stratified tuff (xsT) finer-
grained 
Structure: low-angle cross-stratification; mm-
cm thick strata; planar or concave downwards 
forset laminae that dip ∼5-20°, occasionally 
truncated on their stoss-side; stoss-side 
laminae are sometimes preserved; bedform 
amplitudes up to 1 m, typically 10-30 cm; 
wavelengths persistent over several metres; 
low-angle truncations and pinch and swell 
structures are common; ripples present on 
occasions (wavelengths of m’s, amplitudes of 
cm’s) 
Geometry: cm-dm thick packages that pass 
vertically into dbLT, dsLT and sLT.  
 

Deposition from traction-
dominated flow-boundaries of 
fully dilute PDCs; current 
unsteadiness and passage of 
successive currents recorded by 
low-angle truncations; upcurrent-
dipping strata record the 
plastering of moist ash against 
topographic irregularities. 

Massive tuff 
(mT) 

Lithology: fine-grained, moderately sorted, 
matrix-supported tuff; minor pumice and lithic 
lapilli (<5%) 
Structure: internally massive to diffusively 
stratified, lateral thickness variations common 
Geometry: mantles topography; 1–20 cm thick; 
pass laterally into sT, mTacc and mTpel. 
 

Deposition from fluid escape-
dominated flow boundaries of 
PDCs, indicated by massive nature 
and absence of tractional 
structures. 

Massive 
accretionary 
lapilli tuff 
(mTacc) 
 
 
 
 
 
 
 
Figure 3.5 B, 
C 

Lithology: similar to massive tuff (mT), contains 
scattered, matrix to clast-supported, multi-
rimmed accretionary lapilli (up to ∼1.5 cm in 
diameter, typically 3–5 mm); rim fragments 
common 
Structure: usually internally massive units; 
vertically and laterally variable proportions of 
accretionary lapilli, fragments and matrix; beds 
variably persistent up to ∼4 km 
Geometry: occur as individual beds or in 
stacked sets m’s in scale; passes vertically into 
mTpel and laterally into mT 
 

Deposition processes as mT, 
accretionary lapilli horizons signify 
possible fallout into the current 
from the overlying co-ignimbrite 
ash clouds; fragmented 
aggregates likely form from the 
fracturing of lithified ash 
aggregates either on impact or 
during transport. 
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Composition: T, tuff; LT, lapilli tuff; L, lapilli; l, lithic-rich; acc, accretionary lapilli-bearing; pel, pellet-
bearing; Structure: m, massive; db, diffuse-bedded; ds, diffuse-stratified; b, bedded; s, stratified; xs, 
cross-stratified; //s, parallel-laminated; 
Scheme follows that devised by Branney and Kokelaar (2002). 
 
Table 3.1 (Continued) 
 
 
 
 
 
 
 
 
 

Lithofacies Description Interpretation 
Massive pellet 
tuff (mTpel) 
 
 
 
 
 
 
 
Figure 3.5 A, 
C 
 
Parallel-
laminated tuff 
(//sT) 
 
 
 
 
 
 
 
 
Figure 3.4 D 

Lithology: similar to massive accretionary lapilli 
tuff (mTacc), contains small (1-5 mm 
diameter), clast-supported to framework 
supported coated pellets and ash pellets 
Structure: variably internally massive and 
normally graded; laterally variable proportions 
of ash aggregates and matrix; beds variably 
persistent up to ∼ 4 km  
Geometry: can occur above mTacc, although 
not exclusively; passes laterally into mT 
 
Lithology: matrix-supported, moderately 
sorted, fine-grained tuff; Pumice and lithic 
lapilli are rare (<10 %); sometimes contains 
matrix-supported to clast–supported 
concentrations of simple ash aggregates 
Structure: parallel laminations at mm scale; 
Laminations occasionally undulate; beds 
typically 1-2 cm thick, up to 5cm; variably 
persistent up to 1-2 km.  
Geometry: beds often drape topography with 
little thickness variations, occasionally 
thickness variations of 1-2cm; commonly occur 
vertically above mL, mLT, dbLT, bLT 
 

Laterally persistent horizons may 
reflect fallout from co-ignimbrite 
ash cloud; where framework 
supported ash pellets are found, 
likely represent the fall out of a 
co-ignimbrite ash cloud that does 
not pass through an underlying 
current. 
 
 
 
Where the deposits drape the 
topography with no thickness 
changes then an ashfall origin is 
likely; deposits may also originate 
from a fallout-dominated flow-
boundary zone of a dilute, low-
velocity rolling ash cloud (Branney 
and Kokelaar, 2002). 
 

Massive lapilli 
(mL); bedded 
lapilli (bL); 
Pumice-rich 
(pmL) 
 
 
 
 
 
Figure 3.4 A, 
B, C, D 

Lithology: clast-supported, pumice and lithic 
lapilli, moderately sorted; pumice clasts <20 
cm diameter, sub angular to angular, regularly 
impact-fractured; varying proportions (<35%) 
of lithic lapilli, <15 cm 
Sub-facies: bedded lapilli (bL) as massive lapilli 
(mL); Pumice-rich (pmL) <90% pumice lapilli 
Structure: massive with occasional diffuse 
stratification and parallel stratification, defined 
by grainsize and lithic abundance 
Geometry: sheet form, mantles topography; 
laterally persistent over km scale; 
 

Sorting, composition, mantling 
bedding and lateral extent 
suggests pumice-fall deposition; 
unsteadiness in the eruption 
column and shower bedding in 
reflected by grainsize 
stratification. 
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Figure 3.3 Lithofacies of the Caldera del Rey formation with a PDC origin - (A) dbLT – Diffuse bedding 
defined by size and concentration of pumice and lithic lapilli. Beds range from trains of single clasts to 
units 10cm thick. The lithofacies are interbedded with dsLT that are lighter cream coloured and finer 
grained. Note the erosional top contact. Flow direction is from left to right. 30 cm rule is for scale. (GR: 
0330736 3107765). (B) dsLT – Diffuse stratification as seen in Fig.3.4A. Diffuse stratification is marked by 
changes in grainsize and lithic content, exaggerated by the effect of denudation. Passes laterally into 
xsLT and vertically intodbLT. 30 cm rule is for scale. 
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Figure 3.3 (Continued) - (C) dbLT; xsLT – Base of outcrop shows diffuse-bedded lapilli tuffs that pass 
laterally into cross-stratified lapilli tuffs. Diffuse bedding predominantly marked by trains of lithic lapilli. 
Passes vertically into dbLT with lithic units <5 cm thick and mLT. Flow direction is out of the page. (GR: 
0330508 3106679) (D) xsT – cross-stratified tuff with low angle forset laminae. Passes vertically into dsLT. 
Flow direction is from left to right. (GR: 0330353 3107939). 
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xsLT 

E 

F 

xsLT 

dsLT 

Figure 3.3 (Continued) - (E) and (F) xsLT – Medial deposits of cross-stratified lapilli tuffs. Forset laminae 
have low dip angles. Stoss-side laminae are rarely preserved. Flow direction is from left to right. Note the 
upcurrent dipping strata reflects the plastering of moist ash against the previous deposits. 30 cm rule for 
scale. (GR: 0330290 3107935).  
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Figure 3.3 (Continued) - (G) xsT); dsT - proximal, crater infilling, diffuse- stratified tuffs and cross-
stratified tuffs. Beds show lateral impersistence and thickness changes. Note alternations between lighter 
coloured, coarser grained units and darker coloured, finer grained units. 30 cm rule for scale. (GR: 
0331057 3106420). (H) sT – Thick layer of sT. Stratification is marked by changes in lithic content and 
subtle grainsize variations. 30 cm rule for scale. (GR: 0329793 3107997). 
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Figure 3.3 (Continued) - (I) sLT); sT; dsLT – Medial sLT, sT and dsLT. Flow direction is from left to right. 
Deposits are found vertically above thick, mT. (GR: 0330082 3107958). (J) sT; mLT – Interbedded fine-
grained sT with a coarser, lithic-rich mLT. Passes vertically into a xsT. Flow direction is from left to right. 
30 cm rule for scale. (GR: 0330308 3107925).  
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lbLT 

dbLT 

lbLT 

bLT 

K 

4 m 

Figure 3.3 (Continued) - (K) bLT; dbLT - bLT and dbLT within a fine-grained matrix. Bedding is defined by 
grainsize and lithic content. Diffuse bedding predominantly marked by trains of single lapilli sized clasts. 
(GR: 0332363 3107396) 
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Figure 3.4 Lithofacies of the Caldera del Rey formation with a fallout origin - (A) and (B) bL - Medial 
deposits of finely bedded, well sorted, pumice fall units. Bedding is defined by changes in grainsize and 
lithic content. Likely originated from a plume of almost subplinian dimensions. (B) shows in detail the 
units towards the top of (A). 30 cm rule for scale. (GR: 0329862 3108103). 
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Figure 3.4 (Continued) - (C) bL; mL - Medial deposits of finely bedded pumice fall units that pass vertically 
into a massive, moderately sorted pumice fall unit. Angular, framework-supported pumice lapilli with 
usually subordinate angular lithic lapilli. Likely originate from a subplinian column. (GR: 0330492 
3106977) (D) //sT – Thin beds of very fine-grained //sT interbedded with beds of pmL. mTpel closely 
resemble the parallel-stratified tuffs //sT. (GR: 0330518 3106609). 
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Figure 3.5 Ash aggregation lithofacies of the Caldera del Rey formation - (A) mTpel - laterally continuous 
lenses of framework supported coated pellets and ash pellets, within a massive, fine ash matrix. The 
pellets, when coated, have a single rim of finer ash. Note the increased resistant to weathering of the 
finer rims compared to the hollowed cores. Ruler shows cm’s. (GR: 0330495 3106674). (B) mTacc - 
Variable proportions of accretionary lapilli within a massive and/or bedded fine-grained tuff matrix. The 
rims of the accretionary lapilli and complex, containing multiple coatings that fine outwards. Rule shows 
cm’s on left hand side. (GR: 0330596 3107709). 
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mTacc 

C 

mTpel 

Figure 3.5 (continued) - (C) mTpel; mTacc - Accretionary lapilli within a fine-grained massive tuff. Ash 
aggregates fine upwards and increase in concentration, where they transition from dominantly 
accretionary lapilli to dominantly coated ash pellets. Rule shows cm’s on right hand side. (GR: 0330954 
3107624). 
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3.2 CDR Member A 

 

Member A is composed of a coarse-grained, moderately sorted, thickly bedded (<2 m), 

pumice fall deposit with a maximum preserved thickness of ∼11 m (Figure 3.6). It is 

composed of lapilli sized pumice and lithic clasts with rare obsidian lapilli. The pumice is 

generally framework-supported and lacks a matrix. Member A predominantly outcrops 

in the south and southwest areas of the mapped area (Figure 3.1). The member outcrops 

over 0.2 km2. Dips between 4° and 10° that slope towards the southwest are recorded 

for this member. 

 

The deposits of Member A typically drape the pre-existing topography and maintain a 

constant thickness when infilling depressions.  

 

The member unconformably overlies basaltic lavas, re-worked sediments and 

palaeosols, phonolitic lava flows, and an ignimbrite of the Adeje Formation. The upper 

boundary with Member B is sharp.  

The pumice clasts are generally angular to sub-angular and typically make up 80-90% of 

the deposit. The clasts are mostly lapilli-sized and average 1–3 cm in diameter. However, 

their size ranges between coarse ash to block size (up to 40 cm in diameter). Pumice 

clasts are typically low density (Chapter 3.9) and have vesicles that are visible to the 

naked eye. Dense pumice class occur in much lower quantities (<10 %). The pumice 

clasts are poorly sorted in proximal locations. However, with distance from the vent the 

grainsize decreases and the clasts become better sorted. Pumice clasts exhibit fracture 

and joint bound surfaces. 

Lithic fragments are angular and comprise 10-20 % of the deposit. The lithic fragments 

are generally ash to lapilli sized and are found up to 3-4 cm in diameter. The lithic 

fragments are predominantly composed of mafic lavas, of which aphanitic basalt is the 

most dominant (Figure 3.7). Lithic fragments of an orange coloured ignimbrite, 

belonging to the Adeje formation, are found in high abundance in this member, making 

up 10% (Figure 3.7). 

 

 



 58 

 

 
 

 
Figure 3.6 CDR Member A - (A) Vertical exposure opposite the Las Américas bus station, showing the 
basal contact and overlying contact with Member B. Represented by Log no. 3 (Figure 3.8). (GR: 0330241 
3106276). (B) Ballistic block (aphanitic basalt) found within the upper bedded regions of Log no. 2 
(Figure 3.8). (GR: 0330079 3106813). 
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Figure 3.6 (Continued) - (C) Pumice blocks surrounded by smaller framework-supported pumice clasts. 
Taken at an outcrop 750 m from source. (GR: 0330425 3106755). (D) Finer-grained base of Member A 
that passes into the main body. Rule shows 30 cm. (GR: 0330092 3107421). 
 
 
 

pmL 

Member A 

Palaeosol 

C 

D 

pmL 



 60 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
3.2.1 Units 

 

Member A has three sub-units that are characteristic of the structure of the deposit and 

can be traced across the region (Figure 3.8): 

 

Unit 1 consists of a coarse-grained pumice-rich fall deposit (mL). The unit is typically 

massive. Unit 1 contains a 4 cm thick base composed of well-sorted pumice (80%) and 

lithics (20%) clasts measuring 3-4 mm in diameter. This passes gradationally into the 

main body of the unit. The unit has a maximum thickness of at least 5.7 m close to source 

(GR: 0330425 3106755). Where the unit lies on the main dispersal axis, 0.98 km from 

source, it has a thickness of 3.9 m (Figure 3.8). Moving across the main dispersal axis the 

unit thins to just over 1 m thick (Figure 3.8). Unit 1 passes gradationally into unit 2.   

 

Unit 2 is a coarse-grained, massive, pumice fall deposit (mL). The maximum average size 

of the lithic fragments is approximately 6 cm, rising from 4.85 cm in unit 1. The unit has 

a maximum thickness of 3.2 m close to source. Unit 2 has a thickness of 0.9 m on the 

main dispersal axis at 0.98 km from source (Figure 3.8). The thickness varies across the 

main dispersal axis, ranging from 1 m to 2.5 m thick (Figure 3.8). There is a transitional 

boundary between unit 2 and unit 3.  
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Figure 3.7 Pie chart showing the abundance of lithic fragments of various compositions within Member A. 
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Unit 3 comprises a coarse-grained, bedded pumice fall deposit (bL). The unit is thinly 

bedded, containing beds 2 to 10 cm thick. In comparison to the other units, there is an 

increase in the size and abundance of ballistic projectiles in unit 3. Ballistic blocks, 

commonly composed of mafic lavas, can reach up to 1.4 m in diameter (GR: 0330394 

3106697). The unit has a maximum thickness of 1.5 m close to source (Figure 3.8). Unit 

3 has a thickness of 1.4 m on the main dispersal axis; moving across the main dispersal 

axis the unit thins to 0.5 m thick (Figure 3.8). There is a sharp top contact between this 

unit and the overlying member.  

 

3.2.2 Distal Deposits 

 

The distal outcrops of Member A are lithologically similar to proximal deposits. At a small 

outcrop near Barranco de Torviscas, 1.77 km from source (GR: 0329803 3107998), the 

entirety of Member A is exposed. The member has an overall thickness of 1.1 m. Units 

1 and 2 are a combined 0.8 m thick, with unit 3 0.3 m thick. The deposits are fairly well 

sorted and contain pumice clasts with an average maximum size of 2 cm.  

 

Isopach data indicates that Member A was erupted from the southern crater and 

dispersed to the west (275°) (Chapter 4.1). The member is at its thickest and coarsest in 

line with this axis. Moving off this axis the deposits can thin by as much as 4.7 m over 

0.66 km. Similarly, the grainsize also decreases from an average maximum size of 6 cm 

to 5.1 cm over this distance. Additionally, the member generally thins, fines and 

becomes better sorted with distance from the source. 
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Figure 3.8 Fence diagram of Member A. These are the first deposits of the Caldera del Rey formation and 
show pumice fall deposits. Lithic abundance increases upwards. The thickest deposits are found close to 
source and lie close to the main dispersal axis. 
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3.3 CDR Member B 

 

Member B is composed of pyroclastic density current deposits with a maximum 

preserved thickness of ∼10 m. It generally consists of stratified and cross-stratified, fine-

grained and coarse-grained tuffs (Figure 3.9). The deposits are commonly moderately 

sorted and contain ash and lapilli sized pumice and lithic fragments within a fine-ash 

matrix. It is typically a weathered pale cream colour and thickly (80 cm) to thinly (5 cm) 

bedded. Member B is dispersed in the southern and western areas of Caldera del Rey 

(Figure 3.1). The member outcrops over 0.36 km2. Bedding dips are 5° and 7° towards 

the southwest. 

 

The deposits of Member B generally maintain a constant thickness and the individual 

flow units can be traced radially across the area south of Caldera del Rey.  

 

Member B sits concordantly on Member A. In proximal areas the contact is gradational 

over 0.5 m, but in medial areas the contact is sharp. The top contact is generally 

gradational into Member C. In proximal areas it grades over a distance of 1-2 m, while 

in southern areas it is locally overlain by a younger ignimbrite from Las Canadas Volcano.  

 

The pumice clasts are generally sub-rounded to sub-angular, typically make up 15-25% 

of the deposit, and reach up to 14 mm in diameter. Pumice clasts decrease in size slightly 

with distance from the vent. The pumice clasts are predominantly low density (<90%), 

with sub-rounded to sub-angular vesicles up to 1-2 mm in diameter (Chapter 3.9).  

 

Lithic fragments are angular to sub-angular and comprise 20-30% of the deposit. The 

lithic fragments are generally ash to lapilli sized (<2.5 cm in diameter; average 1 cm). 

The lithologies are similar to those found in Member A, with a small decrease in the 

abundance of the Adeje formation ignimbrite and an increase in the abundance of older 

welded ignimbrites. The lithic fragments predominantly consist of mafic lavas, of which 

aphanitic basalt makes up 44%, and ankaramite 18% (Figure 3.10). 
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Figure 3.9 CDR Member B – (A) Proximal deposit showing the base of Member B where two thickly 
bedded fine-grained packages are found, which transition vertically into finer- and coarser-grained beds. 
Black hammer is 20cm. (GR: 0330456 3106717). (B) Cross-stratified and diffuse-bedded tuffs at a 
proximal outcrop 550m from source. (GR: 0330508 3106679). 
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Figure 3.9 (Continued) - (C) Medial outcrop showing the full sequence of Member B. The member transitions 
from thicker packages of stratified tuffs into thinner packages. Silver rule shows 30 cm. (GR: 0330048 
3107445). (D) Medial outcrop showing the full sequence of Member B found 1.78 km from source. (GR: 
0329793 3107997). 
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Pumice and lithic clasts are enclosed in a light brown fine-grained matrix that makes up 

45-65% of the deposit.  It contains sanidine and amphibole crystals, <5 mm, that typically 

make up ~5% of the matrix. 

 

The deposits of Member B show evidence of cross-stratification, diffuse bedding and 

parallel stratification. Cross-stratification is generally low angle, between 3° and 10° to 

bedding, and laterally persistent over 10s metres. Diffuse bedding is generally 

discontinuous, sub-parallel and undulatory and is defined by cm-thick lithic-rich horizons 

that are laterally persistent over several metres. Parallel stratification, commonly 

spaced 2–5 cm, is laterally persistent over 100s metres. 

 

3.3.1 Units 

 

Member B has four sub-units that are characteristic of the structure of the deposit and 

can be traced across the region (Figure 3.11). 

 

Unit 1 comprises a thickly bedded, fine-grained sequence of sT. The unit exhibits 

stratifications 1-5 cm thick. Unit 1 contains locally diffuse stratified layers of matrix 

supported accretionary lapilli and/or coated pellets (mTacc). Stratification at the base 

and middle of the unit is defined by 1–2 cm thick horizons of lapilli-sized pumice and 

N=500 
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Figure 3.10 Pie chart showing the abundance of lithic fragments of various compositions within Member B. 
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lithic clasts. Variable proportions of ash aggregates are found throughout the unit. 

However, towards the top of the unit the abundance decreases. The unit has a maximum 

thickness of 1.8 m close to the vent (Figure 3.11) where it is thickly bedded (60-80 cm) 

and cross-stratified in places. Medial exposures reach 1 m thick, whereas in distal 

exposures it is 0.83 m thick (Figure 3.11). Unit 1 passes gradationally into unit 2. 

 

Unit 2 is a package of bLT and bT. The deposits are thin to medium bedded (3 - 20 cm). 

The boundaries between these individual packages are often sharp. The unit has a 

maximum thickness of 1.2 m close to source (Figure 3.11). This thins to 0.33 m in medial 

exposures, over a distance of 0.8 km. In distal exposures it is 0.3 m thick. There is a sharp 

contact between unit 2 and unit 3.  

 

Unit 3 is composed of a bedded, fine-grained deposit of stratified tuffs (sT). The unit 

contains stratifications which are commonly spaced 1-10 cm. Unit 3 contains variable 

amounts of diffuse stratified accretionary lapilli (5-20 %) and coated pellets (5-25 %). In 

proximal locations the unit is locally cross stratified and diffuse stratified (Figure 3.9). 

The unit has a maximum thickness of 1.80 m close to source (Figure 3.11). Medial 

exposures of unit 3 measure 0.2 m thick (Figure 3.11) whereas in distal exposures it is 

0.14 m thick. There is a sharp contact between unit 3 and unit 4.  

 

Unit 4 is a package of mLT, sT, mTacc and mTpel. The unit is bedded (2.5 m - 5 cm). Ash 

aggregates occur as separate beds composed entirely of accretionary lapilli and pellets. 

The bases of these beds are typically composed of matrix to clast supported quantities 

of accretionary lapilli; the middle, framework-supported coated pellets, and the top 

contains poorly preserved, framework-supported ash pellets.  

 

The base and middle of unit 4 is thickly to very thickly bedded (40 cm - 2.5 m). This passes 

up into the upper thinly bedded (1 m - 5 cm) region of the unit. Additionally, the top of 

the unit shows bedded (50 - 5 cm) pumice lapilli fall deposits (mL). The boundaries 

between these individual packages are often sharp. The unit has a maximum thickness 

of 5.12 m close to source (Figure 3.11). This thins to 1.03 m in medial exposures, over a 

distance of 0.8 km. In distal exposures it is 0.64 m thick. There is a gradational contact 

between unit 4 and the above member.  
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Figure 3.11 Fence diagram of Member B. The deposits originated from the southern crater of Caldera del Rey. 
The member maintains a constant unit structure away from the vent. 
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3.3.2 Ash Aggregates  

 

Ash aggregates are moderately abundant (10-60%) within the fine-grained beds of 

Member B. They appear in thin to medium bedded fine-grained packages and in beds 

composed wholly of ash aggregates. Accretionary lapilli, coated pellets and ash pellets 

are found that can either be fully intact or broken fragments. Fining upwards sequences 

are common.  

 

Accretionary lapilli, typically sub-spherical, occur matrix-supported within the stratified 

and cross-stratified tuffs. The size of the aggregates are usually between 5 and 8 mm. 

The core of the aggregates are often massive, coarse-grained and resemble the matrix 

of the beds they are found within. The rims, typically 1 to 1.5 mm thick, are made up of 

multiple concentric layers of fine-grained ash that commonly fine outwards. However, 

in some cases, the rims show a fine-coarse-fine structure outward. The accretionary 

lapilli are generally well preserved. 

 

Coated pellets with a single ultra-fine-grained rim are matrix- to clast-supported. They 

are typically spherical to sub-spherical, 3 mm in diameter, with rims commonly 0.5 mm 

thick. Conversely, ash pellets occur in exclusively framework-supported beds. They are 

composed of fine to medium ash and are typically 2 mm in diameter. However, they are 

commonly poorly preserved.  

 

3.3.3 Distal Deposits 

 

The distal deposits of Member B maintain the same unit structure as those in proximal 

and medial locations (Figure 3.9). A distal outcrop, 1.77 km from source (GR: 0329803 

3107998), has an overall thickness of 1.93 m. Units 1, 2, 3 and 4 measure at 0.83 m, 0.32 

m, 0.14 m and 0.64 m respectively. The grainsize is finer within the mLT compared to 

proximal outcrops, with the average maximum thickness of the pumice clast 1 cm in 

diameter. 

 

The units of Member B can be traced around the southern and western areas of Caldera 

del Rey. The member thins and fines with distance from the source.  
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3.4 CDR Member C 

 

Member C is composed of a thick, coarse-grained, moderate to poorly sorted, pumice 

fall deposit (mL, bL) with a maximum preserved thickness of ∼18 m (Figure 3.12). The 

pumice is almost always framework-supported and lacks a matrix. The member is 

typically a weathered yellow colour and very thickly bedded (<5 m). It is composed of 

lapilli sized pumice and lithic clasts. Member C contains thin fine-grained //sT that 

separate the pumice-fall deposits. Member C predominantly outcrops in the southern 

and western areas of mapped area (Figure 3.1). The member outcrops over 0.32 km2. 

Bedding dips between 4° and 7° are recorded that slope towards the south and west of 

Caldera del Rey. 

 

The deposits of Member C typically drape the pre-existing topography and maintain a 

constant thickness when infilling depressions.  

 

Member C sits concordantly on the deposits of Member B. In proximal areas the contact 

may be gradational due to the clast supported fall deposits found within unit 4 of 

Member B. Further from source the contact is sharp. A sharp boundary is observed 

where the member passes up into the deposits of Member D. In southern areas the 

member is locally overlain by a dark coloured, younger ignimbrite from Las Canadas 

volcano.  

 

The pumice clasts are generally sub-angular, typically make up 65-85% of the deposit 

and average 1 - 3.5 cm in diameter. However, larger pumice clasts can reach up to 35 

cm. Pumice clasts decrease in size and become moderately sorted with distance from 

the vent. The pumice clasts are mostly low density (Chapter 3.9) and micro-vesicular.  

 

Lithic fragments are angular and make up 10-35% of the deposit. The lithic fragments 

are generally ash to lapilli sized (<3.3 cm in diameter; average 1.2 cm). The lithic 

fragment lithologies are predominantly composed of aphanitic basalt (48%), porphyritic 

basalt (12%) and ankaramite (17%). Small amounts of welded ignimbrite (3%) and 

phonolite (3%) are found (Figure 3.13). 
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Figure 3.12 CDR Member C – (A) Medial outcrop of thickly bedded pumice lapilli of unit 1, 650 m from 
source (GR: 0330503 3106631). (B) Bedded deposits defined by changes in lithic abundance, 
interstratified with thin beds of parallel laminated tuff. Found towards the top of unit 1. (GR: 0330509 
3106606). 
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Figure 3.12 (continued) - (C) Thinly bedded units from a medial exposure. Bedding defined by changes in 
grainsize and lithic content. (GR: 0329865 3108100). (D) Exposure of Member C to the southwest of 
Caldera del Rey. The thinly bedded unit 1 transitions into thickly bedded unit 2 (GR: 0329935 3107619).  
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Figure 3.12 (continued) - (E) Detail of the internal stratification in unit 2. The unit is overlain by Member 
D. (GR: 0330134 3107545). (F) Fractured pumice clast surrounded by moderately sorted pumice clasts. 
(GR: 0329946 3107488).  
 
 



 74 

 
 
Figure 3.13 Pie chart showing the abundance of lithic fragments of various compositions within Member 
C. 

 

3.4.1 Units 

 
Member C has two sub-units that are characteristic of the structure of the member and 

can be traced across the region (Figure 3.14). 

 

Unit 1 consists of multiple coarse-grained pumice-rich fall deposits (mL, bL). The unit is 

typically very thickly bedded (0.3 – 5.75 m) to thinly/medium bedded (3-20 cm). Unit 1 

contains distinct lithic rich (40%) and lithic poor (15%) beds that are normally between 

10 and 35 cm thick. The unit has a maximum thickness of at least 16.5 m close to vent 

(GR: 0330425 3106755). The unit thins to 3.15 m in medial locations (Figure 3.14). In the 

southern areas of Caldera del Rey the unit is thickly bedded, whereas in western areas 

it is thinly bedded. Unit 1 passes gradationally into unit 2.   

 

Unit 2 comprises a bedded, coarse-grained pumice-rich fall deposit (bL). The unit is 

typically thickly to very thickly bedded (0.5–1.9 m) with internal stratifications (1-3 cm). 

There is an increase in the abundance of lithic fragments in unit 2 with lithic rich horizons 

(35-40%) typically 1–2 cm thick. A fine-grained matrix is present (<20% of the deposit). 

The unit has a maximum thickness of at least 2.9 m where it is exposed 1.1 km from the 

vent (Figure 3.14). In southern medial locations the unit is 1.6 m thick, whereas in 
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western medial locations it is 2.4 m thick (Figure 3.14). A sharp boundary is observed 

where unit 2 passes up into the deposits of Member D. 

 

3.4.2 Distal Deposits 

 

The distal deposits of Member C maintain the same unit structure as the medial deposits 

(Figure 3.12). A distal outcrop, 1.57 km from source (GR: 0329933 3107766), has an 

overall thickness of at least 4.6 m. Unit 1 measures at least 2.6 m and unit 2 is 2 m thick. 

The grainsize is finer within the mL compared to medial outcrops, with the average 

maximum thickness of the pumice clast 2 cm in diameter. The member generally thins, 

fines and becomes better sorted with distance from the source.  
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Figure 3.14 Fence diagram of Member C. These are the first deposits from the northern crater of the Caldera del Rey 
formation and show pumice fall deposits. The logs are positioned with increasing distance from the estimated initial 
dispersal axis. 
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3.5 CDR Member D 

 

Member D predominantly consists of xsLT, dbLT and mLT, interbedded with thin ash 

aggregate bearing layers (mTacc) and pumice fall deposits (bL) (Figure 3.15). This 

member is up to 34 m thick in proximal locations. The deposits are commonly poorly to 

moderately sorted and contain ash to block sized pumice and lithic clasts within a fine- 

to medium-ash matrix. It is typically a weathered cream colour, very thickly (200 cm) to 

thinly (3 cm) bedded and radially dispersed around Caldera del Rey (Figure 3.1). Member 

D is the most widely dispersed member and outcrops over 3.23 km2. Bedding dips 

between 4° and 52° are recorded that slope radially away from the vent. Westward 

dipping beds, <30°, are exposed east of Caldera del Rey, where the deposits are 

plastered up against a slope of ‘Old Basaltic Series’ lavas. 

 

The deposits of Member D are often difficult to trace laterally and show lateral 

lithofacies transitions away from the vent (see section 3.9). The deposits thicken into 

palaeovalleys (Figure 3.15A) and generally infill topographic low points.  

 

The lower contact is concordant with Member C. In southern areas the contact is fairly 

gradational over 0.3 m. However, in western areas a sharp contact is observed. The 

member unconformably overlies basaltic lavas and the Adeje formation. The upper 

boundary with Member E is sharp. 

The pumice clasts are generally sub-rounded and make up 5-40% of the deposit. Pumice 

clasts are generally lapilli-sized (<8.8 cm in diameter, average 0.5-1.3 cm). Pumice clasts 

are typically high density (Chapter 3.9) and microvesicular. Vesicles that are visible to 

the naked eye are generally sub-spherical and reach up to 1.5 mm in diameter.  

 

Lithic fragments are angular and make up 5-40% of the deposit. The lithic fragments 

range in size from coarse ash to block sized (<50 cm in diameter; average 0.5-2 cm). The 

lithic fragment lithologies are predominantly composed of aphanitic basalt (33%), 

ankaramite (15%) and welded ignimbrite (20%) (Figure 3.16).  
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Figure 3.15 CDR Member D – (A) Palaeovalley infilling deposits of Member D overlying Member C. (GR: 
0330126 3107537). Photo credits: Alexis Schwartz (B) Basal outcrop of Member D unconformably 
overlying mafic lavas. Basal deposits of massive pellet tuffs (mTpel) pass up into massive lapilli tuffs 
(mLT). (GR: 0330793 3107920). 
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Figure 3.15 (Continued) - (C) Proximal deposits of unit 2 showing interbeds of massive lapilli tuffs (mLT) 
and stratified lapilli tuffs (sLT). (GR: 0330952 3107700). (D) Close-up of the medial deposits of unit 1. 
Diffuse-bedded lapilli tuffs (dbLT) pass vertically upwards to stratified lapilli tuffs (sLT) and lithic-rich 
massive lapilli tuffs (lmLT). (GR: 0330551 3107684). 
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Figure 3.15  (continued) – (E) Medial deposits of unit 2 showing interbeds of cross-stratified lapilli tuffs 
(xsLT) interbedded with bedded lapilli tuffs (bLT) and stratified tuffs (sT). (GR: 0330354 3107943). (F) 
Distal outcrop exposed in Barranco del Rey, composed of predominantly massive pellet tuffs (mTpel) and 
bedded pumice fall deposits (bL). (GR: 0333177 3107862).  
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Figure 3.16 Pie chart showing the abundance of lithic fragments of various compositions within Member 
D. 

Member D is predominantly composed of a fine-grained matrix that makes up 25-70% 

of the deposit. The matrix is generally a light brown colour. It contains sanidine and 

amphibole crystals, <10 mm, that typically make up <5% of the matrix.  

 

The deposits of Member D are diffuse bedded, cross-stratified and parallel stratified. 

The bedforms typically have wavelengths <2 m and amplitudes <0.3 m (Figure 3.17;  

Table 3.2). Cross-stratification is generally low angle, between 5° and 15°, and laterally 

persistent over centimetres to 10s metres. Diffuse bedding is generally discontinuous, 

sub-parallel and undulatory. The bedding is typically defined by dm-thick lithic-rich 

horizons. These beds are laterally persistent up to 15 m. Parallel stratifications, 

commonly spaced 2–10 cm, are laterally persistent for 10s metres.  
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Figure 3.17 Member D bedforms (A) Plot of wavelength against frequency (B) Plot of  
amplitude against frequency 
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 Wavelength 
(m) 

Amplitude 
(m) 

Mean 
average 

4.4 0.37 

Maximum 
value 

17 1.7 

Minimum 
value 

0.28 0.02 

 

Table 3.2 Table showing the mean, maximum and minimum values recorded in the Member D bedforms. 

 

3.5.1 Units 

 

Member B has two sub-units that are characteristic of the proximal structure of the 

deposit (Figure 3.18).  

 

Unit 1 comprises packages of dominantly mLT and bLT. These are interbedded with sLT, 

mL and mTpel. The unit is medium to very thickly bedded (10-200 cm) and lithic-rich 

close to source. In eastern and western areas unit 1 contains a 1.5 m thick base 

composed of variable amounts of coated pellet (0-60%) within a light cream coloured, 

fine-grained ash matrix. Towards the top of the unit there is a slight increase in the 

abundance of ash aggregates and sLT. The unit has a maximum thickness of 18.5 m close 

to source, 600-700 m from the vent (Figure 3.18). Unit 1 passes gradationally into unit 

2.                                                                                                                                                                                                                                                                                                                                                                                        

 

Unit 2 comprises packages of mainly mLT, bLT and sLT. These are interbedded with sT, 

mL and mTpel. The unit is thin to thickly bedded (8-90 cm) and lithic-rich close to source. 

Pumice-rich, matrix- to clast-supported beds occur occasionally in this unit. The top of 

the unit sees an increase in the number of thinly bedded stratified tuffs and a decrease 

in the average bed thickness. The unit has a maximum thickness of 15.5 m close to 

source, 600-700 m from the vent (Figure 3.18). A sharp contact is observed where unit 

2 is overlain by Member E.                                                                                                                                                                                                                                                                                                                                                                                                                                          
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Figure 3.18 Selected logs from Member D. The deposits were dispersed radially from the northern crater. The 
lithofacies undergo transitions from proximal deposits to medial deposits (Logs 1–4). Various deposits that 
overcame topographic barriers are shown (Logs 5 and 7). 
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3.5.2 Ash Aggregates 

 

Ash aggregates are moderately abundant and occur matrix-supported and framework-

supported (mTacc, mTpel). Accretionary lapilli, coated pellets and ash pellets are 

present that can either be fully intact or broken fragments. Fining upwards sequences 

are common. 

 

Accretionary lapilli, typically sub-spherical, are usually found in matrix-supported 

quantities (10-25%) within bedded, stratified and cross-stratified tuffs. The size of the 

aggregates average 5–6 mm in diameter (range 3.5–10 mm). The core of the aggregates 

are often massive, coarse-grained and resemble the matrix of the beds they are found 

within. The rims of the aggregates, typically 1 to 1.5 mm thick, are composed of multiple 

concentric layers of fine-grained ash that commonly fine outwards. The accretionary 

lapilli are generally well preserved. 

 

Coated pellets are the dominant ash aggregate found in Member D. They are typically 

spherical and are found in matrix to clast supported quantities (10-40%). They contain a 

single ultra-fine-grained rim around a core of medium to coarse ash. The coated pellets 

average 4 mm in diameter (range 2–7 mm), with rims commonly 0.5–1 mm thick. 

 

Ash pellets occur in exclusively framework-supported beds (1-4 cm) that occasionally 

grade up from framework supported coated pellet beds. They are typically spherical, 

well sorted and make up 30-60% of the deposit. They are composed of fine to medium 

ash and are typically 1.5 mm in diameter (range 1–3 mm). Ash pellets are commonly 

poorly preserved.  

 

3.5.3 Medial and Distal Deposits  

 

The medial and distal deposits of Member D vary from the proximal structure outlined 

above. This is partly due to vertical lithofacies transitions and the palaeotopography. 

The member thins and fines with distance from the source. 
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A medial outcrop, 1.5 km from the vent has an overall thickness of 19.7 m (Figure 3.18). 

The basal 30 cm of this outcrop is composed of thinly bedded fine-grained tuffs (bLT) 

that thicken into the palaeo-valley. This passes up into very thickly bedded (1-2 m) dbLT. 

These deposits likely belong to unit 1 of the proximal structure. There is a sharp contact 

where the deposits transition into thin to medium interbedded layers of bLT, xsLT, sT 

and mTacc. These deposits gradationally pass upwards into dominantly xsLT and bLT. 

These deposits likely correlate to unit 2 of the proximal structure. 

 

3.5.4 Barranco del Rey deposits 

 

A distal outcrop of Member D, situated 300 m above the current level of the crater floor, 

is preserved 1.7 km east of Caldera del Rey, within a section exposed by Barranco del 

Rey. The outcrop is 120 m long and pinches and swells to a maximum thickness of 4 m. 

The deposits unconformably rest upon a 0.5 m thick dark cream coloured palaeosol. The 

deposits are overlain by a dark orange coloured palaeosol that passes up into a 6 m 

thick, localised mafic lava flow deposit. The outcrop mainly consists of white coloured, 

fine-grained tuffs (mT) that are commonly ash and coated pellet bearing (mTpel). Lithic-

rich, coarse-grained pumice fall deposits (mL) are interbedded. The beds are typically 

moderately sorted, matrix- to framework-supported and very thinly to medium bedded 

(1-30 cm). 

 

Pumice clasts are typically sub-angular, ash sized and average <0.5 cm in diameter. Lithic 

fragments are angular, ash sized and average <0.5 cm in diameter. A fine to medium ash 

matrix is present that comprises 20-90% of the deposits. Coated pellets are the 

dominant ash aggregate found within the deposits of this outcrop. Ballistic clasts, <50 

cm, composed of mafic lavas and pumice blocks, often have substantial sags. The 

deposits have an overall thickness of 4 m.  

 

Due to high elevation of the outcrop it does not show the same unit structure to the 

proximal deposits of Member D. A four unit structure can be identified for this outcrop 

(Figure 3.18). Unit 1 is 1.39 m thick and consists of stratified, white coloured, fine-

grained tuffs that commonly contain coated pellets. This passes in to unit 2 which 

consists of 0.61 m of lithic-rich pumice fall deposits, interbedded with finer-grained 
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tuffs. Unit 3, 0.72 m thick, is mainly composed of thinly bedded, stratified fine-grained 

tuffs. Coated pellet beds are common. 3–4 cm thick, lithic rich fall deposits are 

interbedded. Unit 4 is 1.17 m thick and consists of predominantly lithic-rich fall deposits 

interbedded with fine-grained tuffs.  

  



 88 

3.6 Member E 

 

Member E comprises fine-grained beds forming xsT, sT and ash aggregate bearing tuffs 

(mTacc, mTpel). It has a maximum preserved thickness of 27.5 m. The deposits are 

generally matrix supported and well sorted. The member is typically a weathered brown 

colour and bedded (0.2-5 m). It is predominantly composed of ash sized pumice and 

lithic clasts. Member E is only exposed in the intracaldera areas (Figure 3.1). The 

member outcrops over 0.26 km2. Centroclinal dips of between 6° and 40° are recorded 

that dip northwards. 

 

The member creates an angular unconformity where it infills parts of the southern crater 

and is plastered up against the older deposits of the Caldera del Rey formation (Figure 

3.19). The deposits thin into the angular unconformity.  

 

The contact between Member E and the other members is generally sharp. The member 

is overlain by fluvial sediments that have infilled the craters.  

 

The pumice clasts are generally sub-rounded, typically make up 15-30% of the deposit, 

and average 1.5-2 mm in diameter. Larger pumice clasts are occasionally preserved and 

reach an average maximum size of 4.2 cm. The pumices are typically high density 

(Chapter 3.9) and microvesicular. Phenocrysts are rare within Member E.  

 

Lithic fragments are angular, make up 10-20% of the deposit, and have an average 

maximum size of 2 mm in diameter. Larger clasts are occasionally preserved and reach 

up to 1.5 cm. The clasts are predominantly composed of mafic lavas, of which aphanitic 

basalt is the most dominant. Porphyritic and vesicular basalt are also abundant. 

 

Member E is predominantly composed of a well sorted, fine-grained ash sized matrix 

that makes up 40-60% of the deposit. The matrix is generally a dark brown colour and 

contains sanidine and amphibole crystals.   
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Figure 3.19 CDR Member C – (A) Angular unconformity between Member E and the older members of 
the Caldera del Rey formation. Exposed at the old Caldera del Rey entrance road cut (GR: 0331057 
3106420). (B) Overview of Member E infilling the southern crater. Concrete bridge is 15.8 m tall.  
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Figure 3.19 (continued) – (C) Lithic rich cross-stratified tuffs (lxsT) that pass into cross-stratified tuffs (xsT) 
at the base of unit 1. (D) Detailed view of the ash aggregates present in the deposits of unit 1. Rule shows 
30 cm.  
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A wide variety of structures and bedforms are preserved in the deposits of Member E. 

Cross-stratification angles range between 7° and 12°. The deposits also show scour 

surfaces, impersistent bedding, soft-state deformation and evidence of slumping. 

Parallel stratifications, <0.5 cm thick, are laterally persistent. 

 

3.6.1 Units 

 

Member E has two sub-units that are characteristic of the structure of the member 

(Figure 3.20). 

 

Unit 1 consists of fine-grained xsT, mTacc and mTpel. The unit is typically medium to 

thickly bedded (20-80 cm). Ash aggregates are heterogeneously distributed within the 

beds of unit 1 (Figure 3.21). The unit has a maximum preserved thickness of 10.5 m 

(Figure 3.20). Unit 1 passes gradationally into unit 2.  

 

Unit 2 is generally composed of sT, bLT and massive ash aggregate tuffs (mTacc, mTpel). 

The unit is thickly bedded (1-5 m). Pumice-rich horizons, 10–30 cm thick, occasionally 

occur and contain pumice clasts up to 10 cm in diameter. The unit has a maximum 

preserved thickness of 17 m (Figure 3.20). 
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Figure 3.20 Log from Member E. The variations in the size and abundance of ash aggregates within the member 
are also shown. 
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3.6.2 Ash Aggregates 

 

Ash aggregates are abundant within member E, making up 10-40 % of the deposit when 

present (Figure 3.21). Coated pellets are the dominant aggregate found, with 

accretionary lapilli present in lesser concentrations. Fining upwards sequences are 

common. Lithic fragments, <1 mm, are found in the rims of the aggregates. The 

aggregates are often fully intact and stand proud from the matrix. 

 

Accretionary lapilli, typically sub-spherical, are matrix supported (10-20%) and occur 

between 6 and 10 mm in diameter. The core of the aggregates are often massive, 

coarse-grained and resemble the matrix of the beds they are found within. The rims, <1 

mm thick, are made up of multiple concentric layers of fine-grained ash that fine 

outwards.  

 

Coated pellets with a single ultra-fine-grained rim are matrix to clast supported (20-

40%). They are generally spherical, average 4 mm in diameter, with rims commonly 0.5 

mm thick. The coated pellets are found alongside accretionary lapilli as well as in 

individual packages. Ash pellets are absent in Member E.  

 

3.6.3 Distal Deposits 

 

The deposits of Member E are exclusively exposed in intra-crater sections (GR: 0331057 

3106420). It is likely that some parts of the member were originally deposited beyond 

the crater walls but were not preserved.  
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3.7 Distal Outcrops 

 

3.7.1 Fañabe Beach 

 

A distal outcrop of the Caldera del Rey formation is exposed 2.5 km west of Caldera del 

Rey, at the northern end of Fañabe beach (GR: 0329068 3108273). The outcrop is 35 m 

long and 6 m tall. The outcrop has a sinusoidal shape (Figure 3.22). The deposits 

unconformably rest upon a dark brown coloured massive ignimbrite that passes 

upwards into an orange coloured palaeosol that varies in thickness between 0.2–1 m. 

The deposits are overlain by a 3-4 m thick, fine-grained, white coloured massive 

ignimbrite. The outcrop shows CDR Members A – D (Figure 3.23). The contacts between 

the members are often sharp. The outcrop is determined to represent Caldera del Rey 

deposits due to the sequence of the members encountered and the correlation with 

other distal of the same members. 

 

CDR Member A has an overall thickness of 1.17 m. Units 1 and 2 share a combined 

thickness of 0.92 m. Unit 3 measures only 0.25 m thick, with the top 10 cm grading 

normally into the top contact. The overall grainsize of the member is finer, with the 

average maximum thickness of the pumice clasts 1.5 cm and the lithic fragments 1.1 cm. 

 

CDR Member B has an overall thickness of 1.42 m. Unit 1 measures 0.55 m and contains 

up to 50% coated pellets and accretionary lapilli that reach an average maximum size of 

4.5 cm. Units 2 and 3 have thicknesses of 0.15 m and 0.11 m respectively. Unit 4 has a 

thickness of 0.61 m and is thinly bedded (6–9 cm). Sharp contacts are observed between 

the different units.  

 

CDR Member C has an overall thickness of 3.77 m. Unit 1, 2.5 m thick, is thinly to medium 

bedded (3–20 cm). Individual beds show coarsening upwards sequences and variations 

in pumice abundance. Unit 2 measures 1.27 m thick. The average maximum size of the 

pumice and lithic fragments are 1.9 cm and 1.3 cm respectively.  

 

Only the basal beds of CDR Member D are exposed and have a minimum thickness of 

∼2 m. The first 0.77 m are composed of interbeds of prominent fine-grained mTacc and 

A 
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less prominent coarser-grained bLT. These beds resemble those observed in western 

medial locations (Figure 3.15A). They are typically thin to medium bedded (4.5–35 cm) 

and occasionally contain 1 mm thick stratifications. Accretionary lapilli are found 

between 3 and 10 cm and make up 30–70% of the deposit. Pumice and lithic clasts are 

found up to 1.5 cm. The beds maintain the sinuous shape of the outcrop. This is overlain 

by thin to medium bedded, sT, xsT and bLT. The average maximum size of the pumice 

clasts increases to 3 cm. The beds are parallel bedded and infill the space created by the 

sinuous shape of the underlying deposits. This creates an erosional contact within the 

some of the beds of Member D.  
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Figure 3.22 Distal outcrop of the Caldera del Rey Formation – (A) Overview of the outcrop at the 
northern end of Playa de Fañabe beach. Note the sinuous shape of the outcrop. (GR: 0329068 3108273). 
(B) Detailed view of CDR Members A-C that unconformably overlie a massive ignimbrite and palaeosol. 
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Figure 3.23 Log of the distal deposits at Fañabe Beach. The outcrop shows CDR Members A – D. 
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3.7.2 North of Montaña Guaza  

 

A distal outcrop of the Caldera del Rey formation is exposed 3.9 km east of Caldera del 

Rey, north of the Montaña Guaza (GR: 0334235 3104847). The outcrop is 40 m long and 

5 m tall. The deposits are parallel stratified (Figure 3.24). The deposits unconformably 

rest upon fluvial gravels that pass into a soil. The deposits are immediately overlain by 

reworked material that is laterally impersistent. Subsequently, this is overlain by a light 

cream coloured massive ignimbrite that belongs to the Tosca Formation. Individual 

members cannot be distinguished. However, it is likely the deposits are primarily 

composed of CDR Member D due to the similarity with the deposits of this member 

observed east of Caldera del Rey (Figure 3.15F). 

 

The Caldera del Rey deposits have an overall thickness of 0.88 m. The basal 10 cm of the 

deposits are comprised of thin to medium bedded layers of sT that are composed of fine 

to medium ash. Rare amounts of coated ash pellets are found up to 2mm in diameter 

and make up <50% of the deposit. This passes into an 8.5 cm thick package of mT. This 

is overlain by 6 cm of sT. These layers are composed of very fine and fine ash and are 

found between 0.2–1.3 cm thick. This is followed by 17.5 cm of ash aggregate bearing 

tuffs. The base of this bed is primarily composed of accretionary lapilli which are up to 

5 mm in diameter and make up <25% of the deposit. This grades upwards into an ash 

pellet-rich top which is framework-supported and contains rare accretionary lapilli 

found up to 8 mm in diameter.  

 

The following 17 cm is composed of sT. These layers are composed of very fine and fine 

ash and are found between 0.5-2 cm thick. This passes into a 20 cm thick package of sT 

that are 3–4 cm thick. The final 9 cm comprise of a mT that is composed of medium ash 

and contains weak stratifications.  
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Figure 3.24 Distal outcrop of the Caldera del Rey Formation north of Montaña Guaza – (A) Detailed view 
of the distal facies of the Caldera del Rey Formation. Rule shows 30 cm. (GR: 0334235 3104847). (B) 
Overview of the outcrop. The Caldera del Rey Formation unconformably overlies fluvial gravels and is 
overlain by reworked deposits that pass into the Tosca Formation (Dávila Harris, 2009). Photo credits: 
Richy B. 

 
  

Tosca Formation 

Regolith 

Fluvial gravels 

CDR Formation 

B 

A 

Fluvial gravels 



 101 

3.8 Lithic Fragments 

 

Lithic fragments are abundant in the Caldera del Rey formation. They are often angular, 

ash to block sized and poorly sorted. Nine different types of lithic fragments are found 

in varying abundances within the formation (Table 3.3). The deposits from the southern 

crater often contain a greater volume of lithic fragments. It is likely that many of the 

larger blocks were emplaced as ballistic projectiles (see section 3.12). 

 

The dominant lithic fragments present throughout the formation are aphanitic basalt 

(33–48%), porphyritic basalt (10–12%) and ankaramite (15–18%) (Figure 3.25). Red 

scoria (<7 %), amygdaloidal basalt (<8%) and vesicular basalt (<7%) occur in lower 

abundances. At the base of the formation there is an increased abundance of ignimbrite 

fragments from the Adeje Formation (Dávila Harris, 2009), whereas at the top of the 

formation welded ignimbrites become more abundant (Figure 3.25).  

 
Lithic fragment Description Interpretation 
Aphanitic basalt 
 

Mafic black coloured (melanocratic); 

aphanitic groundmass; equigranular 

 

likely originates from ‘Old 

Basaltic series’ (Fúster et al., 

1968) 

 

Porphyritic 
basalt 
 

Mafic black coloured (melanocratic); 

porphyritic; subheadral phenorcysts; 

pyroxene phenocrysts, <5–10% of the 

rock, <3 mm; plagioclase feldspar 

phenocrysts, 5–10% of the rock, <5 mm, 

elongate; aphanitic to fine-grained 

phaneritic groundmass 

 

likely originates from ‘Old 

Basaltic series’ 

Ankaramite 
 

Mafic black coloured (melanocratic); 

porphyritic; subheadral phenorcysts; 

pyroxene phenocrysts, <10–15% of the 

rock, <4 mm; olivine phenocrysts, 5–10% 

of the rock, <5 mm, elongate, often 

altered; aphanitic groundmass  

 

likely originates from ‘Old 

Basaltic series’ 

Adeje 
Formation 
 

Orange coloured, crystal-rich, partly 

welded ignimbrite (Davila-Harris, 2009) 

 

Derived from underlying, pre-

dating pyroclastic units that were 

dispersed close to Adeje, west of 

Caldera del Rey (Davila-Harris, 

2009) 

 

Red scoria 
 

Mafic red coloured; abundant vesicles 

(40–60%), variable size; aphanitic solid 

portions; frothy textured 

Likely originates from localised 

scoriaceous basalt that belongs 

to the ‘Old Basaltic series’ 
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Amygdaloidal 
basalt 
 

Mafic black coloured (melanocratic); 

equigranular; aphanitic groundmass; 

vesicular; amygdular texture, amygdales 

of zeolites and carbonates 

 

likely originates from ‘Old 

Basaltic series’ 

Vesicular basalt 
 

Mafic black coloured (melanocratic); 

equigranular; aphanitic groundmass; 

vesicular, <30-60% of the rock, < 8 mm 

 

Likely originates from ‘Old 

Basaltic series’ 

 

Welded 
ignimbrite 
 

Cream/dark brown coloured; welded 

ignimbrite; slight eutaxitic texture, 

stretched mafic minerals, aspect ratios 

<1:10; can contain green coloured, 

eutaxtitic, pumice fiamme 

Likely derived from underlying, 

pre-dating pyroclastic units 

Phonolite Brown/green coloured; mingled texture; 

intermittent mafic streaks 

Likely derived from localised 

phonolite lavas 

Table 3.3 Summarised description and interpretation of the lithic fragments present within the Caldera 
del Rey formation. 
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Lithic fragment abundance 

Figure 3.25 Variations of the lithic clast abundance through the Caldera del Rey formation.   
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3.9 Pumice Densities 

 

The density and the vesicularity of the pumice clasts show changes between eruption 

styles and upwards variations through the Caldera del Rey formation. The lower the 

average density of the clasts, the higher the average vesicularity, and vice versa. 

Members A and C have the lowest average densities of 0.56 and 0.62 g/cm3, 

respectively, and have a unimodal distribution (Table 3.4; Figure 3.26). Members B, D 

and E have a broad range of density values and have average density values that are 

significantly higher than Members A and C (Table 3.4). 

 

The density and vesicularity curves (Figure 3.26) show an overall upwards trend towards 

higher density, lower vesicularity values. Additionally, two phases showing trends of 

increasing density upwards can be picked out (Figure 3.26). The first phase is recorded 

in Members A and B that originated from the southern crater. A density decrease is 

observed between Members B and C, before a second general increasing density trend 

is present in Members C, D and E that were erupted from the northern crater.  

 
 

 Member A Member B Member C Member D Member E 
Mean density 
(g/cm3) 

0.56 0.69 0.62 0.99 0.93 

Maximum density 1.07 1.61 1.64 2.17 2.04 

Minimum density 0.33 0.32 0.36 0.49 0.34 

Mean vesicularity 
(%) 

75 67 72 52 55 

Maximum 
vesicularity 

86 86 85 79 86 

Minimum 
vesicularity 

55 32 31 9 14 

Table 3.4 Density and vesicularity values for the pumice clasts of the Caldera del Rey formation.   
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Figure 3.26 Variations in the density of pumice clasts throughout the Caldera del Rey formation.   



 106 

3.10 Ballistic Projectiles 

 

Volcanic ballistic projectiles are common in the Caldera del Rey formation and present 

a potentially fatal hazard close to erupting vents (Yamagishi and Feebrey, 1994; Waitt 

et al., 1995; Williams et al., 2017). Ballistic projectiles are most abundant in Unit 3 of 

Member B and throughout Member D, with up to 35 clasts per square metre. The 

deposits from the northern crater contain the largest blocks (up to 2.5 m) compared to 

the southern crater (up to 1.4 m), with 13 blocks over 1 m in diameter. They are also 

found at a greater distance from the vent in the northern crater (1.6 km) compared to 

the southern (1 km). The size of the ballistics varied between lapilli and blocks (0.05–2.5 

m) and decreased in size, alongside their spatial density, with distance from the vent 

(Figure 3.27).  

 

Ballistic projectiles were identified by their often block size (>64 mm), blocky shape, 

anomalous size with respect to surrounding clasts and impact sags. The ballistic 

projectiles were predominantly composed of mafic lavas (90%) and pumice (10%). 

 

The composition of the mafic ballistic blocks is similar to the lithic fragment population 

(see section 3.10) with aphanitic basalt (50%), porphyritic basalt (11%) and ankaramite 

(12%) the most common.  

 

The limited exposure of Members A and B restricted the data points of ballistic 

projectiles from the southern crater to 23. The ballistic projectiles derived from the 

southern crater are found up to a maximum range of 1 km from the vent and average 

42 cm in diameter. The largest block, 1.4 m in diameter, can be found 0.69 km from the 

source.  

 

Given the great exposure of the deposits from the northern crater, 683 data points were 

collected, and a study was undertaken within these members to determine the eruptive 

processes of the ballistic blocks for the entire Caldera del Rey eruption. The ballistic 

projectiles ejected from the northern crater are at distances of 0.65 km to 1.6 km from 

the vent (Figure 3.28). They have an average size of 0.22 cm (Table 3.5). The largest 

block, 2.5 m in diameter, is situated 0.75 km from the vent. The calculated initial velocity, 
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volume and mass for the largest and average blocks observed are presented in Table 

3.5.  

 
Figure 3.27 Graph showing the number of ballistic projectiles measured for a given size from the northern 
crater. 

 
Figure 3.28 Graph showing the number of ballistic projectiles measured in relation to their distance from 
the vent for the northern crater. The red trendline shows a decrease in abundance with distance from the 
vent. 
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 Largest block Minimum block Average size 
Bomb size (m) 2.5 0.05 0.22 

Distance from vent (km) 0.75 1.37 0.92 
Initial velocity (m s-1) 92 152 102 

Density (g/cm3) 2.7 2.7 2.7 
Volume (m3) 15.63 1.25 x10-4 0.01 

Mass (kg) 42, 200 0.338 27.3 
Table 3.5 Ballistic projectile characteristics for the deposits of the northern crater.   
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Chapter 4: Interpretation 
 

4.1 Member A 

 

Member A records the first deposits of the Caldera del Rey formation and the southern 

tuff ring. The member comprises pumice fallout deposits from a sustained plume that is 

classified close to subplinian. The clast-supported nature, constant thickness and the 

mantling of topography confirms the deposits are of air fall origin, which suggests this 

was a fairly dry phase of the eruption. 

 

The first deposits of the eruption are much finer grained than the main body of the 

eruption. This suggests the eruption column was at a lower height initially. As the 

column height rose and the eruption intensified, the grainsize increased and thickly 

bedded pumice rich fall deposits were deposited (units 1 and 2). These most likely 

originated from a steady sustained umbrella cloud. These pass into closely bedded, 

lithic-rich deposits that are found within unit 3 of this member. This is the result of 

fluctuations of the sustained eruption column. These fluctuations could be caused by 

changes at the source, which has the potential to control the lithic abundance and the 

column height. Sharp increases in the abundance of lithic fragments have been directly 

associated with increases in the amount of external water available to the eruptive 

system (Houghton and Smith, 1993). Additionally, the bedding may be caused by subtle 

changes in the wind direction that causes changes to the main dispersal axis of the 

eruption plume.  

 

A main dispersal axis towards the southwest, trending at roughly 275°, is calculated from 

isopach maps (Figure 4.1). The rapid thinning of the deposits shown in the isopach maps 

is reflective of the cone-shaped structure (Figure 4.2). Isopleth maps constructed from 

pumice clasts are dispersed across a greater area than the lithic fragments. Similarly, 

pumice clasts of a given size reach a greater distance from the vent than lithic fragments 

of the same size (Figure 4.3). This reflects the greater influence of the wind on the lower-

density pumice clasts compared to the denser lithic fragments (Francis and 

Oppenheimer, 2004).  
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Figure 4.2 Plot of the square root of the area against the natural logarithm of the thickness, derived 
from isopach maps under normal wind conditions (Fig. 4.4A). The gradient of the slope is equivalent to 
the thinning constant (K). 
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Figure 4.1 Member A isopach map 
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Using the estimated volumes from the isopach and isopleth maps, the eruption 

parameters for the Member A pumice fall are estimated (Table 4.1) (Pyle, 1989). An 

eruption speed of 102 m3 s-1 is estimated, which is equivalent to 2.42 x 105 kg s-1. The 

eruption corresponds to a VEI 3 eruption. The plume is estimated to have reached a 

Figure 4.3 Member A isopleth maps – (A) Pumice clast isopleth map (B) Lithic clast isopleth map. 

A 

B 
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maximum height (HT) of 5.53 km (Pyle, 1989). This classifies the plume close to 

subplinian (Figure 4.4).  

 

The roughly elongated nature of the isopach and isopleth maps likely reflects the 

influence of the wind in directing the eruption plume downwind. Additionally, the lack 

of upwind deposits suggests that the plume may have been bent over. The low level of 

the umbrella cloud, below the tropopause, allows the plume to be subject to strong 

winds that have the potential to cause downwind extension of a plume (Francis and 

Oppenheimer, 2004).  

 
Eruption Parameter Value 

Bulk tephra volume (km3) 0.044 

Mass (kg) 4.40 X 1010 

DRE volume (km3) 0.018 

Eruption rate (m3 s-1) 102 

Eruption rate (kg s-1) 2.42 X 105 

VEI 3 

Maximum plume height (km) 5.53 

Table 4.1 Estimated eruption parameters for the eruption plume that deposited Member A. 
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Figure 4.4 Diagram classifying the pyroclastic fall deposits of Member A. Edited from Pyle (1989). 
Isopleth volumes were extracted for both lithic and pumice clasts. The differing clast size half distance 
(!!) demonstrates the density contrast between the different types of tephra. 
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4.2 Member B 

 

The deposits of Member B were erupted from the southern crater and were deposited 

by multiple closely spaced, depletive, pulsatory, fully dilute pyroclastic density currents. 

The member is typically composed of fine-grained tuffs with stratified and cross-

stratified bedforms, that record a wet phase. The matrix-supported nature, variable 

thickness, poor sorting and infilling of topography confirms the deposits were produced 

from pyroclastic density currents.  

 

Unit 1 is composed of xsLT in proximal locations that transition into sT with distance. 

This unit was deposited from depletive, fully dilute currents with traction-dominated 

flow-boundary zones. The cross-stratified structures represent areas of localised non-

uniformity (Branney and Kokelaar, 2002). The fine-grainsize of the unit is a result of 

extreme fragmentation that is typical of phreatomagmatic eruptions (Zimanowski et al., 

2015).  

 

Unit 2 is composed of bLT and bT. The finer-grained bedded tuffs were likely deposited 

from fully dilute currents with traction-dominated flow-boundary zones. However, the 

coarser-grained bedded lapilli tuffs, which are often internally massive, were most likely 

deposited from higher concentration currents, with granular flow-dominated flow-

boundary zones (Branney and Kokelaar, 2002). 

 

Unit 3 is composed of xsLT and dsLT in proximal locations that quickly transition into sT 

with distance. The proximal deposits were deposited from depletive, close to fully dilute 

currents with mainly traction-dominated flow-boundary zones. Diffuse-stratification 

suggests localised transitions towards more granular flow-dominated flow-boundaries 

(Branney and Kokelaar, 2002). With distance the currents transition closer towards the 

fully dilute end member (see section 4.9).  

 

Unit 4 comprises beds of mLT and sT. The stratified tuffs were likely deposited from close 

to fully dilute currents with traction-dominated flow-boundary zones whereas the 

massive lapilli tuffs were likely produced by closer to granular fluid-based currents with 
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granular flow-dominated flow-boundary zones. The unit shows alternations between 

the degree of phreatomagmatic fragmentation. A thin pumice fall deposit may have 

originated from a small, short-lived plume that originated alongside the 

phreatomagmatic explosions forming PDCs. Alternatively, the deposit may have 

originated from the sustained plume that produced Member C and marks the start of 

the eruption from the northern crater.  

 

The different grainsizes observed in this member, and within units 2 and 4, are often 

sharp and show abrupt vertical changes in the depositional structures. This is likely 

controlled by the amount of water available, which controls the degree of 

phreatomagmatic fragmentation. The fine-grained deposits are produced by high levels 

of fragmentation during phreatomagmatic eruptions whereas coarser grained deposits 

result from lower water content eruptions (Zimanowski et al., 2015). The periodic 

ingress of water into the system could be a result of low groundwater recharge rates 

(Lorenz, 1986). Many hydrovolcanoes show similar rapid fluctuations between wetter 

and drier phases (e.g. Ukinrek, Alaska, Self et al., 1980; Crater Hill, New Zealand, 

Houghton et al., 1996).  

 

The PDCs that deposited Member B were generated following the collapse of the 

buoyant plume. Considering the phreatomagmatic influence, it is likely the addition of 

water into the system had an impact on triggering a reduction in plume buoyancy by 

lowering the plume temperature (Houghton et al., 2015). Fracturing of the country rock 

and downward migration of the diatreme eruptive explosions may have allowed greater 

access for water (Ross et al., 2017). Additionally, the increased lithic content observed 

in unit 3 of Member A could be evidence of the vent widening, which would have 

reduced the exit velocity and in turn decreasing the likelihood of the plume becoming 

buoyant (Varekamp, 1993). This process would account for transitional contact 

observed between Member A and B. 

 

4.3 Member C 

 

Member C records the first deposits erupted from the northern crater. The member 

comprises pumice fallout deposits from a quasi-sustained, fluctuating plume of almost 
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subplinian dimensions. The clast-supported nature, constant thickness and the mantling 

of topography confirms they are ash fall deposits. Similarly, inter-bedded beds of 

parallel-stratified tuffs likely have an ashfall origin. The fallout origin of this member 

suggests it was a relatively buoyant phase. 

 

Fractures and jointing have formed in some of the pumice clasts that are found both 

throughout the pumice clasts and on the outer rims. This is most likely due to impact 

fracturing on deposition and the formation of thermal fractures during cooling (Patel et 

al., 2013; Cioni et al., 2015) 

 

Unit 1 was deposited from a southwest dispersed umbrella cloud, trending at roughly 

215°, which deposited thickly bedded lithofacies on the main dispersal axis (Figure 4.5) 

and thinly bedded lithofacies in western areas. It is inferred the western deposits 

represent the margins of the umbrella cloud where a lower amount of tephra is 

supplied, and any variations are more pronounced (Francis and Oppenheimer, 2004).  

 

 

Figure 4.5 Member C isopach map 
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The bedded nature of these deposits is a result of fluctuations in the plume height and 

changes in the supply at the vent. Sharp lithic-rich and lithic-poor beds may reflect 

changes in the supply of lithic material at source. Alternatively, the fallout of pumice 

clasts into small, moderately lithic-rich PDCs may produce lithic-rich beds. Parallel-

stratified tuffs represent the intermittent fallout of fine-grained ash or the formation of 

rolling ash clouds (Branney and Kokelaar, 2002).  

 

The main dispersal axis then shifted westwards, trending at roughly 250°, and produced 

deposits of unit 2. This is inferred from the greater thickness of deposits in western areas 

compared to southern areas. The unit was produced from a sustained plume, but 

internal stratifications reflect the fluctuating height of the plume and changes in the 

tephra emitted from the vent. 

 

The rapid thinning of the deposits shown in the isopach maps is reflective of the cone-

shaped structure observed in the field (Figure 4.5; Figure 4.6). Isopleth maps 

constructed from pumice clasts are dispersed across a greater area than isopleth maps 

from lithic fragments, reflecting the greater influence of the wind on the lower-density 

pumice clasts (Francis and Oppenheimer, 2004).  

 

 

Figure 4.6 Plot of the square root of the area against the natural logarithm of the thickness, derived from 
the isopach map. The gradient of the trendline (dotted line) is equivalent to the thinning constant (K). The 
gradient of the slope for segment 1 is significantly steeper than the other segments. This is a result of the 
greatest thicknesses being preferentially deposited in proximal regions and is reflective of the cone-shaped 
morphology of the deposits (Pyle, 1989). 
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Using the estimated volumes from the isopach and isopleth maps (Figure 4.7), the 

eruption parameters for plume that deposited Member C are estimated and presented 

in . An eruption speed of 249 m3 s-1 is estimated, which is equivalent to 5.92 x 105 kg s-1. 

The eruption corresponds to a VEI 4 eruption. The plume is estimated to have reached 

a maximum height (HT) of 6.97 km (Pyle, 1989). This classifies the plume close to 

subplinian (Figure 4.8).  

 

The roughly elongated nature of the isopach and isopleth maps suggests the wind had 

a great influence on directing the eruption plume downwind. Additionally, the lack of 

upwind deposits and the low level of the umbrella cloud suggests that the plume may 

have been somewhat bent over. 

 

 

A 
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Eruption Parameter Value 
Bulk tephra volume (km3) 0.129 
Mass (kg) 1.29 X 1011 
DRE volume (km3) 0.054 
Eruption rate (m3 s-1) 249 
Eruption rate (kg s-1) 5.92 X 105 
VEI 4 
Maximum plume height (km) 6.97 
Table 4.2 Estimated eruption parameters for the eruption plume that deposited Member C. 
 

Figure 4.7 Member A isopleth maps – (A) Pumice clast isopleth map (B) Lithic clast isopleth map. 

B 
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4.4 Member D 

 

The deposits of Member D, erupted from the northern crater, are the most widely 

dispersed of the Caldera del Rey formation. They are formed from multiple closely 

spaced, depletive pyroclastic density currents that range between fully dilute and 

granular fluid-based. The member is typically composed of mLT and sLT lapilli tuffs that 

show variable water contents. The matrix supported nature, variable thickness, poor 

sorting and infilling of topography confirms the deposits were dominantly produced 

from pyroclastic density currents. 

 

The proximal deposits of both unit 1 and unit 2 comprise mLT and bLT that were 

produced by more granular fluid-based currents with fluid escape- to granular flow-

dominated flow-boundary zones. Occasional diffuse-bedding is the result of current 

unsteadiness caused by high shear rates. Conversely, sLT were likely produced by close 

to fully dilute currents with traction-dominated flow-boundary zones. Lateral lithofacies 

changes are observed with distance from source (see section 4.9). mL are occasionally 

found and record fallout from short-lived umbrella clouds.  
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Figure 4.8 Diagram classifying the pyroclastic fall deposits of Member C. Edited from Pyle (1989). 
Isopleth volumes were extracted for both lithic and pumice clasts. The differing clast size half distance 
(!!) demonstrates the density contrast between the different types of tephra. 



 120 

 

4.4.1 Barranco del Rey deposits 

 

In this location Member D is predominantly composed of fine ash (mT) and mTpel. These 

beds record fallout from co-ignimbrite plumes that lofted to heights of at least 300 m 

above the vent. The occurrence of multiple thin beds suggests a significant number of 

co-ignimbrite plumes were generated that may individually correlate with underflow 

deposits.   

 

Pumice fall deposits (mL) are interbedded and record the formation of short-lived 

umbrella clouds that were generated alongside pyroclastic density currents. The pumice 

fall deposits found in this location likely correlate with the pumice fall lithofacies found 

alongside the underflow deposits. 

 

4.4.2 Eruption Characteristics 

 

Different grainsizes observed within this member reflect different degrees of 

fragmentation that are primarily controlled by the phreatomagmatic influence and 

energy of the eruption. This could be a result of low groundwater recharge rates (Lorenz, 

1986) or result from increased mass discharge rates (Brown et al., 2007).  

 

Member D marks a transition from a buoyant plume and umbrella cloud (Member C) to 

a phase of generally pulsatory fountaining. It is likely the change in plume buoyancy 

resulted from the addition of water into the system and progressive vent widening. 

Multiple, short-lived eruption columns and umbrella clouds developed during the 

persistent phreatomagmatic explosivity, possibly marking relatively dry eruptions, 

similar to the 1965 eruption at Taal Volcano (Moore, 1967).  

 

4.5 Member E 

 

The deposits of Member E represent the final eruptive phase. They were erupted from 

the northern crater and formed from multiple short-lived, pulsatory fully-dilute 

pyroclastic density current. The member is typically composed of sT and xsT tuffs with 
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abundant coated ash pellets. This member records a very wet phase. The matrix 

supported nature, thickness variations, poor sorting and infilling of topography confirms 

the deposits were produced from PDCs. Fractures and jointing have formed in exteriors 

of some of the pumice clasts. These most likely represent thermal fractures that formed 

during cooling (Patel et al., 2013). 

 

Unit 1 is primarily composed of thinly bedded, xsT. This unit was deposited from closely 

spaced, short-lived, successive fully dilute currents with traction-dominated flow-

boundary zones. Cross-stratification is very common, suggesting there was regularly 

non-uniformity between the current and the substrate (Branney and Kokelaar, 2002). 

 

Unit 2 is composed of thickly bedded sT and bLT that were produced from multiple 

closely spaced eruptions. The lithofacies were likely deposited from fully dilute currents 

with traction-dominated flow-boundary zones. The thickly bedded nature suggests the 

eruptions were more sustained than unit 1. 

 

The fine grainsize, abundant coated ash pellets, impersistent bedding, soft-state 

deformation and slumping suggest that this member was produced by moist and cool 

currents. This member contained the greatest water component of the Caldera del Rey 

formation and was likely accompanied by a sustained and substantial influx of water 

into the system. This could be a result of progressive fracturing of the basaltic aquifer 

opening pathways for groundwater to enter the system. Alternatively, surface water 

may have accumulated in the crater and provided a source of additional external water. 

However, there was no evidence of crater lake deposits found in the field.  

 

The transition from coarse-grained granular fluid-based PDCs of Member D to fine-

grained fully dilute PDCs of Member E represents the waning phase of the northern 

crater eruptions. The PDCs of Member E likely originated from sustained low fountaining 

eruptions that lacked the kinetic energy normally transferred from a high fountain 

(Branney and Kokelaar, 2002).  

 

4.6 Distal Outcrops 
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The most distal outcrop, exposed 3.9 km east of Caldera del Rey, is primarily composed 

of sT and mTpel. The deposits were produced by co-ignimbrite plumes and depletive 

pyroclastic density currents (Figure 4.9). The limited thickness of the deposits (90 cm) is 

a result of distance from the vent. The preserved deposits formed from the highest 

energy eruptions to overcome the large distance and potential barriers.  

 

The stratified tuffs are inferred to have originated via ash fallout from either the distal 

portions of an umbrella cloud or co-ignimbrite plume. mT record the fine-grained 

deposits of depletive pyroclastic density currents. Coated ash pellets are the fall-out 

products of wet co-ignimbrite plumes. mTacc are found which pass upwards into 

framework-supported pellets and record the simultaneous deposition from a co-

ignimbrite plume and dissipating pyroclastic density currents.  

 

Individual members are not distinguishable in this outcrop. However, it is likely the 

deposits belong to Member D given the lithofacies present and the widespread 

dispersion of this member. Furthermore, the resemblance of these deposits to the 

deposits found in the hills northeast of Caldera del Rey provides more evidence to 

support this.  
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Figure 4.9 Log and interpretation of the distal outcrop of the Caldera del Rey Formation north of 
Montaña Guaza (GR: 0334235 3104847). 
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4.7 Ash Aggregation 

 

Ash aggregates are commonly found within the phreatomagmatic deposits of Caldera 

del Rey (Members B, D and E) which likely contained the necessary water to promote 

hydrostatic adhesion of ash aggregates (Schumacher and Schmincke, 1991, 1995; James 

et al., 2002; Van Eaton et al., 2012, 2015). 

 

Accretionary lapilli are commonly found matrix-supported and randomly distributed in 

the deposits of Members B and D. It is inferred that accretionary lapilli originate from 

ash pellets in the upper levels of co-ignimbrite plumes that lofted from the top of the 

dilute pyroclastic density currents. As the ash pellets pass through the lower parts of a 

hot, turbulent, density-stratified underflow they accrete a fining outwards ash rim and 

are transformed into accretionary lapilli (Brown et al., 2010). 

 

Several layers, particularly found in Member D, that commonly overlie the accretionary 

lapilli bearing deposits, contain a layer of coated pellets that occasionally grade up into 

framework-supported ash pellets. This likely records the fallout of ash pellets from co-

ignimbrite plumes during quiescent intervals. Coated pellets form as the ash pellets fall 

through dusty moist air left over from recently dissipated currents. Ash pellets fall 

through clean air (Brown et al., 2010) and, when present, reflect a substantial hiatus 

between currents. This sequence is observed in many of the large ignimbrites on 

Tenerife (Brown et al., 2010) and occurs in many other hydrovolcanoes (e.g. Walker, 

1984; Sohn and Chough, 1989; Chough and Sohn, 1990; Mastrolorenzo, 1994). The 

deposits often show soft-state deformation and fluid-escape structures which suggest 

they were wet when deposited (Brooker et al., 1993). 

 

Many of the deposits containing ash aggregates show an increase in abundance 

between proximal and medial locations. This suggests that the co-ignimbrite plumes 

mostly become buoyant and lofted on the slopes of the tuff ring. Coated ash pellets are 

abundant in the deposits of Member E. These likely formed as they passed through the 

fallout-dominated flow-boundary zone of weak, fully-dilute PDCs (Branney and 

Kokelaar, 2002). Where framework-supported quantities of aggregates are found it is 

assumed that this corresponds to the main period of fallout from the co-ignimbrite 
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plume. Matrix-supported quantities likely formed from a depleted co-ignimbrite plume. 

It is assumed that multiple co-ignimbrite plumes were created during the deposition of 

this member.  

 

The generally random distribution of ash aggregates in the Caldera del Rey formation is 

a result of the pulsatory eruptions typical of phreatomagmatic eruptions (Colella and 

Hiscott, 1997). This leads to multiple flows occurring within quick succession of each 

other. Pauses long enough to allow fallout from co-ignimbrite plumes are rare and the 

process will often be disturbed by the next current. This is reflected by the abundance 

of accretionary lapilli and the rarity of ash pellets in this formation. This likely created a 

semi-constant ash plume around the tuff ring, in a similar way to an Oruanui-like 

scenario (Houghton et al., 2015, Fig.30.9B).  

 

4.8 Lithic Fragments 

 

A large majority of the lithic fragments are derived from the ‘Old Basaltic Series’ that 

forms the substrate and the northern rim of Caldera del Rey. Directly north of Caldera 

del Rey the ‘Old Basaltic Series’ is composed of horizontally orientated, very thickly 

bedded (2–5 m), lava flow deposits (Ancochea et al., 1990). These are typically basaltic 

and have multiple petrographic variations (Table 3.3). Additionally, fragments of pre-

dating pyroclastic units are found. Fragments of the welded, distinctly orange coloured 

1.559 ± 0.014 Ma Adeje formation (Dávila Harris, 2009) and a welded, poorly eutaxitic 

ignimbrite are found. 

 

Aphanitic basalt is the most dominant lithology present (Figure 3.25) throughout the 

Caldera del Rey formation. This suggests that this is the dominant aquifer lithology in 

the diatreme, where the phreatomagmatic eruptions occur. Similarly, porphyritic basalt 

and ankaramite are also found in substantial abundances which suggests they are also 

dominant in the aquifer. A wide variety of lithologies reflects the sharp differences in 

lava flow deposits of the ‘Old Basaltic Series’ and suggest a diatreme vertical length of 

hundreds of metres (White and Ross, 2011). 

 



 125 

The Adeje formation, approximately 0.6 Ma older than the Caldera del Rey formation, 

is likely the youngest lithic fragment found, and at the time of the eruption, would have 

been situated very close to the surface. This fragment type is dominantly found in 

Member A and decreases in abundance upwards through the Caldera del Rey formation. 

Additionally, fragments of welded ignimbrite show a marked increase in abundance in 

Member D. Therefore, it is inferred that these observed changes in lithic fragment 

lithology shows the downward migration of the diatreme with time during 

phreatomagmatic explosive activity (Lorenz and Kurszlaukis, 2007). Similar inferences 

have been made elsewhere for hydrovolcanoes (e.g. Saefell tuff-cone, Iceland, Mattsson 

et al., 2005; Kienle et al.,1980; White, 1991). 

 

4.9 Pumice Densities 

 

Pumice clasts show a general upwards trend to higher densities and lower vesicularities 

in the Caldera del Rey formation. The mean vesicularity of the pumice clasts is generally 

high (52–75%; Figure 3.26), which is common for silicic pyroclastic deposits (Houghton 

and Wilson, 1989; Cashman and Mangan, 1994; Gardner et al., 1996). Additionally, there 

is a marked difference in vesicularity values for different depositional processes. Pumice 

clasts from fall deposits (Members A and C) generally have high average vesicularities 

(72-75%) and a small range of values. Conversely, pumice clasts deposited by pyroclastic 

density currents (Members B, D and E) have lower average vesicularities (52-67%) and a 

greater range of values. This a common characteristic of hydrovolcanic juvenile clasts 

(e.g. Mt Rawdon, Australia, Brooker, 1991; Brooker and Jaireth, 1995; Tepexitl, Mexico, 

Austin-Erickson et al., 2008, 2011; Houghton and Wilson, 1989; Klug et al., 2002; 

Cashman and Rust, 2016). 

 

The pumice clasts sampled from Member B were taken from pumice fall beds found in 

unit 4. The fine-grainsize of the finer-grained beds in Member B meant it was not 

possible to collect samples of an adequate size. Hence, the pumice clasts of Member B 

plot closer to Members A and C. The density of the pumice clasts present in the 

phreatomagmatic beds in Member C would be expected to give values similar to 

Members D and E. 
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The pumice clasts generated during the phases that produced pyroclastic density 

currents have significantly lower vesicularities than those produced by pumice clasts 

found in the pumice fall deposits. It is possible the additional water quenched the 

pumice clasts soon after fragmentation, and in doing so inhibited bubble growth and 

coalescence (Klug et al., 2002). 

 

The upwards trend towards higher densities observed within Members A and B forming 

from the southern crater and Member C – E forming from the northern crater may also 

suggest a transition towards pumice clasts fragmenting from either crystalline or 

partially degassed magma. This transition would produce pumice clasts with highly 

variable densities that are typically close to 1 g/cm3 (Cashman, 2004; Cashman and Rust, 

2016), as is observed in the pumice clasts of Members D and E (Figure 3.26). 

 

4.10 Volcanic Ballistic Projectiles 

 

Volcanic ballistic projectiles are centimetre- to metre-sized pyroclasts of solid to molten 

fragments ejected during explosive volcanic eruptions (Taddeucci et al., 2017). They 

move through the atmosphere along ballistic trajectories that are dependent on the 

highly variable nature of explosive volcanic eruptions (Self et al., 1980). The ballistic 

projectiles in the Caldera del Rey formation are predominantly composed of blocks of 

mafic lavas that were fragmented from the basaltic aquifer below Caldera del Rey. The 

impact of the ballistic projectiles often results in well-defined sags that reflect the wet 

nature of the deposits. 

 

The spatial density of the clasts decreases with distance from the vent (Figure 3.28). This 

is a common occurrence for ballistic projectiles irrespective of the eruption style (Kilgour 

et al., 2010). A circular distribution is observed for the ballistic projectiles that originated 

from the northern crater (Figure 4.10). This suggests the eruptions were predominantly 

vertical and the axis symmetrical (e.g. de’Michieli Vitturi et al., 2010). 

 

The size of the ballistic projectiles generally decreases away from the vent (Figure 4.10). 

This is a common characteristic of phreatomagmatic eruptions (Lorenz, 1970; Self et al., 

1980; Waitt et al., 1995; Sottili et al., 2012). Furthermore, the same trend is observed in 
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the ballistic projectiles produced by a Plinian phase from the 79 A.D. Vesuvius eruption 

(De Novellis and Luongo, 2006). This distribution results from the pyroclasts being 

ejected and supported in a gas stream (Lorenz, 1970), and the time at which they 

decouple is a function of their angle of ejection and terminal velocity. Smaller projectiles 

are influenced more by the turbulent plume motion than larger ones, and as a result are 

carried to greater heights in the atmosphere before leaving the eruption column (Self et 

al., 1980). Hence, larger blocks tend to fallout first and closer to the vent. 

 

Evidence for blocks being entrained and carried to substantial heights before decoupling 

was observed in the deposits of Member D situated in Barranco del Rey, east of Caldera 

del Rey. The deposits record ballistic projectiles, up to 50 cm in diameter, which are 

situated 300 m above the base of the current caldera floor. 

 

Given the almost continuous explosions at the crater during phreatomagmatic phases, 

a fairly maintained gas stream column is likely, similar to that recorded during the 1957 

Capelinhos eruption (Waters and Fisher, 1971). 

 

Figure 4.10 Map showing the size distribution of ballistic projectiles originating from the northern crater. 
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4.10.1 Ballistic Eruption History 

 

Member A contains a moderate abundance of ballistic projectiles that dramatically 

increase in abundance at the top of the member. The typically coarse lapilli and block 

sizes reflect the high energy and the eruptions and poor fragmentation rates. The 

eruption column that produced the deposits of Member A likely facilitated the ejection 

of the ballistic projectiles to significant heights before decoupling. The sudden increase 

towards the top of the member crated a belt of impact craters and likely represents a 

phase of vent widening and crater forming explosions (Self et al., 1980). 

 

Ballistic projectiles are limited in abundance and size in Member B. This is attributed to 

more efficient fragmentation (Carrasco-Núñez et al., 2007) and reduced energy being 

available for ejecting blocks in phreatomagmatic explosions (López-Rojas and Carrasco-

Núñez, 2015). Where impact sags are present, they tend to show the greatest plastic 

deformation of the Caldera del Rey formation, reflecting the high-water content. In 

some cases, the deformation is larger than the diameter of the ballistic block. The 

maximum velocities of the ballistic blocks are expected to be lower in this member given 

the high-water content (Self et al., 1980). 

 

Ballistic projectiles are rarely observed in Member C. The member represents a fairly 

dry phase of the Caldera del Rey formation in which the fragmentation of the substrate 

was somewhat limited. When sags are preserved, they tend to show considerable 

deformation with the sag size often greater than the size of the block. 

 

There is a sharp increase in the abundance of ballistic projectiles in Member D. This 

marks the onset of phreatomagmatic explosions and the growth of the diatreme. 

Persistent vent widening, diatreme growth and recycling of material provided a 

continuous supply of blocks. The ballistic projectiles were mainly supported in a gas 

stream that is typical of phreatomagmatic eruptions (Lorenz, 1970). Intermittent 

subplinian columns may have lofted some blocks to greater heights before decoupling. 

Larger ballistic projectile sizes and smaller sag sizes are observed in Member D 

compared to Member B, suggesting the eruptions were not suppressed due to 

extremely high-water contents, as they were in Member B. 
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Member E contains a low abundance of ballistic projectiles that are rarely greater than 

lapilli sized. However, they create significant sags when present. This reflects the high 

water content of the deposits which most likely led to high fragmentation rates and 

subdued eruptions. The ballistic projectiles were likely erupted at lower maximum 

velocities than the other members. A 10 wt.% increase in water content has been proven 

to lower velocities by up to 20% (Self et al., 1980). 

 

4.10.2 Initial Velocities 

 

Various ballistic projectile eruption characteristics were observed and calculated for the 

deposits of Member D and are presented in Table 4.3. The ballistic projectiles of 

Member D were used due to the large sample size (683 samples). Member D represents 

the climactic phase of the Caldera del Rey formation. Therefore, it is likely that some of 

the largest initial velocities were produced by this member. The ballistic projectiles of 

Member A were likely influenced by the eruption plume and had initial velocities greater 

than those calculated for Member D. 

 

The largest and smallest ballistic projectiles observed have calculated initial velocities of 

92 and 152 m s-1 respectively. The range in diameter and initial velocities for the ballistic 

projectiles of Member D is concordant with other phreatomagmatic eruptions (Table 

4.3). Similarly, the maximum distance at which ballistic projectiles were recorded is 

consistent with other similar eruptions (Table 4.3). 

 

The average block size (22 cm) for the Member D ballistic projectiles is calculated at 102 

m s-1. This is similar to the values predicted by Self et al. (1980), who calculated initial 

velocities of 100 ± 20 m s-1 for clasts 20–40 cm in diameter for the 1977 Ukinrek maars 

eruption. As with the Caldera del Rey formation, Self et al. (1980) calculated lower initial 

velocities for the larger ballistic blocks. Ballistic projectiles >40 cm in diameter were 

predicted to have initial velocities of 86–98 m s-1. This was also noted by Rohlof (1969), 

who calculated initial velocities around 100 m s-1 for blocks >2 m. 
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Eruption Style Max distance 

(km) 

Diameter 

range (m) 

Initial velocity 

(m s-1) 

Reference 

Caldera del 
Rey 

Phreatomagmatic
/subplinian 

1.6 0.05 – 2.5 92 - 152  

Atexac maar 
(Mexico) 

Phreatomagmatic  0.1 – 2 100 – 120 López-Rojas and 
Carrasco-Núñez 

(2015) 
1977 Ukinrek 

maars 
(Alaska) 

Phreatomagmatic 0.7 2 – 25 100 – 150 Self et al. (1980) 

Sabatini 
Volcanic 

District (Italy) 

Phreatomagmatic 0.9 0.1 – 2 50 – 110 Sottili et al. 
(2012) 

Big Hole maar 
(USA) 

Phreatomagmatic 3 0.1 – 2.3 90 – 120 Lorenz (1970) 

1996 
Soufriere Hills 
(Montserrat) 

Subplinian 2.1 0.1 – 2 155 - 840 Waitt et al. (1995) 

Table 4.3 Table comparing Caldera del Rey ballistic projectile eruption characteristics with other 
examples from the literature. 

 

4.11 Eruption History 

 

Caldera del Rey was constructed by two overlapping craters that show similar 

progressions regarding their eruptive history. The eruptions started with the generation 

of a buoyant plume that collapsed to form multiple, closely spaced pyroclastic density 

currents that originated from phreatomagmatic eruptions. The formation commenced 

with eruptions that led to the creation of the southern crater. The eruptions then shifted 

northwards, where a second larger crater was created. The shift in vent location is 

attributed to a change in the direction of supply or the generation of a second feeder 

dyke (Ross et al., 2017). 

 

Eruptions occurred between magma and groundwater within an aquifer composed of 

‘Old Basaltic Series’ lava flow deposits (Fuster et al., 1968). Intermittent supply of 

groundwater led to wet and dry eruption phases as well as variations in the degree of 

phreatomagmatic fragmentation.  

 

The first phase of the Caldera del formation was the generation of a sustained, initially 

steady, bent-over eruption plume and umbrella cloud that produced the massive 

pumice fall deposits of Member A (Figure 4.11A). This initial phase to the eruption 
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mirrors that of the 1977 Ukinrek maars eruption, Alaska (Self et al., 1980). The plume 

was directed westward. Over time the plume began to fluctuate in height and a sudden 

increase in ballistic projectiles towards the top of the member suggests a period of vent 

widening and the formation of a protodiatreme (Valentine and White, 2012). This was 

likely the result of an increased supply of groundwater into the system from a 

progressively fracturing aquifer.  

 

Once the vent widening and diatreme downward migration reached a critical point, the 

plume collapsed, and a period of low fountaining developed and deposited Member B 

(Figure 4.11B). This produced mainly fully-dilute pyroclastic density currents that 

originated from the interaction of a large supply of groundwater and magma within a 

growing diatreme. The supply of water became intermittent towards the top of the 

member. The typically fine-ash grainsize of the deposits suggests very effective 

phreatomagmatic fragmentation occurred. It is also likely that Member B formed from 

partially degassed magma. 

 

The eruptions then shifted to the northern crater where a highly fluctuating, moderately 

sustained bent-over eruption plume and umbrella cloud generated pumice fall deposits 

of Member C (Figure 4.11C). The plume was initially directed southwards before shifting 

westwards towards the end of the eruption. Member C possibly marks a return to drier 

conditions. However, the eruptions contained a higher wt.% water than those that 

produced Member A. This was likely a period in which the groundwater level was 

returning to pre-Member B levels.  

 

The eruption style then transitioned into closely spaced, pulsatory pyroclastic density 

currents that developed from semi-constant fountaining and deposited Member D 

(Figure 4.11D; Figure 4.11E). The currents were widely and radially dispersed and 

represent the climactic phase of the Caldera del Rey eruptions. Co-ignimbrite plumes 

commonly lofted from the top of these currents. This phase of the Caldera del Rey 

formation likely records 10s to 100s of phreatomagmatic explosions. The beds show 

rapid changes in the degree of fragmentation which shows changes in the amount of 

water interacting with the magma. Additionally, short-lived umbrella clouds deposit thin 

pumice fall beds and represent periods of plume buoyancy. An increase in the 
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abundance of ballistic projectiles at the base of this member suggests a period of vent 

widening and the formation of a new diatreme.  

 

The final phase of the Caldera del Rey formation generated sustained low fountaining 

that produced slow moving depletive pyroclastic density currents that deposited 

Member E in the intracaldera regions (Figure 4.11F). This member marks the waning 

period following the deposits of Member D. The phreatomagmatic deposits resulted 

from a high wt.% water content that suggests a substantial ingress of water into the 

system. It is also likely that the deposits formed from partially degassed magma. Post-

eruptive fluvial sediments have since partially filled the craters.  
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Figure 4.11 Schematic diagrams depicting the eruptive processes for various phases of the Caldera del 
Rey formation – (A) Generation of Member A pumice fall deposits from a bent over plume and umbrella 
cloud. Shallow eruptions occur during the protodiatreme stage. (B) Generation of Member B 
phreatomagmatic deposits which resulted from low-level fountaining following plume collapse. Multiple 
eruptions have resulted in progression to a mature diatreme stage. 
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Figure 4.11 (continued) – (C) Generation of Member C pumice fall deposits from a bent over plume and 
umbrella cloud that fluctuates in height. (D) Generation of Member D phreatomagmatic deposits which 
resulted from low-level fountaining that radially dispersed multiple pyroclastic density currents. Multiple 
eruptions have resulted in progression to a mature diatreme stage.  
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Figure 4.11 (continued) – (E) Generation of a buoyant plume co-erupting with pyroclastic density currents 
during the deposition of Member D. (F) Generation of Member E phreatomagmatic deposits that infilled 
the craters. 
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Chapter 5: Lithofacies Transitions 
 
5.1 Lateral Lithofacies Transitions 

 

Lateral lithofacies transitions are observed in the deposits of the pyroclastic density 

currents that deposited Members B and D. The great exposure in proximal and medial 

locations allows the transitions to be studied in detail. Lateral lithofacies Transition 1 

(LFT 1) is observed in Member B, whereas LFT 2-5 are observed in Member D. This is due 

to a wider variety of lithofacies observed at proximal locations within Member D.  

 

The downcurrent lithofacies transitions are all accompanied by radial thinning and fining 

trends from proximal to distal locations. The thickest and coarsest deposits are found at 

the crater rim and are the most proximal. There are presently no outcrops that show 

either diatreme or extreme distal deposits.  

 

LFT 1 (xsLT, dsLT – mTacc, sT) 

 

This sequence is observed within units 1 and 3 of Member B. The sequence begins with 

xsLT and dsLT in proximal locations (Figure 3.9A; Figure 3.9B). The deposits are generally 

thickly bedded between 60–80 cm. Cross-stratification is typically low angle (3–10°) and 

laterally persistent over 10s metres. Diffuse-bedding is discontinuous, sub-parallel, 

undulatory and usually defined by cm-thick lithic horizons and occasionally accretionary 

lapilli. This transforms downcurrent into mTacc, mTpel and sT ( 

Figure 5.1A). 

 

LFT 2 (mLT – xsLT - sLT) 

 

This sequence begins with mLT and dbLT lapilli-tuffs in proximal locations (Figure 3.18). 

The beds are typically thickly to very thickly bedded and poorly sorted. Diffuse-bedding 

is generally defined by lithic-rich horizons. In medial locations the lithofacies transition 

into xsLT. These beds are typically poorly sorted and medium to thickly bedded. Cross-

bedding is generally low angle and cross cutting. Cross stratifications become more 
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common and well-developed with distance from the vent. This transforms further 

downcurrent into sLT ( 

Figure 5.1B). 

 

LFT 3 (mLT, bLT – mTacc, mT) 

 

This sequence begins with mLT and bLT lapilli-tuffs in proximal locations (Figure 3.18). 

The beds are typically thickly to very thickly bedded and poorly sorted. This transforms 

downcurrent into mTacc and mT. These beds are thin to medium bedded and contain 

matrix- to framework-supported quantities of accretionary lapilli ( 

Figure 5.1C). 

 

LFT 4 (dblLT, lmLT – lbLT – bLT) 

 

This sequence begins with lithic-rich dblLT and lmLT in proximal locations (Figure 3.18). 

The beds are typically thickly to very thickly bedded, poorly sorted and contain high clast 

concentrations. In medial locations the lithofacies transition into lbLT. These beds are 

also poorly sorted and medium to thickly bedded. This transforms further downcurrent 

into bLT ( 

Figure 5.1D).  

 

LFT 5 (mT, dsLT, mTacc – mTacc, sT) 

 

This sequence begins with dominantly massive mT in proximal locations (Figure 3.18). 

The beds are occasionally dsLT and can contain mTacc. The beds are typically thickly to 

thinly bedded. Soft-state deformation and prominent bedding sags formed beneath 

emplaced ballistic clasts is common. This transforms downcurrent into mTacc and sT. 

These beds are thinly bedded and contain mainly framework-supported quantities of 

accretionary lapilli ( 

Figure 5.1E). 
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A LFT 1 (xsLT, dsLT – mTacc, sT) 

B LFT 2 (mLT – xsLT - sLT) 
 

C LFT 3 (mLT, bLT – mTacc, mT) 
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Figure 5.1 Lateral facies transitions observed in the Caldera del Rey formation. (A) Transition from xsLT 
and dsLT in proximal locations to mTacc, mTpel and sT downcurrent, observed in Member B. (B) mLT and 
dbLT transition to xsLT in medial locations and sLT further downcurrent in distal locations. (C) mLT and 
bLT in proximal locations shift towards mTacc and mT downcurrent. (D) A sequence of dbLT and lmLT in 
proximal locations which in medial locations transition to lbLT and further downcurrent into bLT. (E) 
Proximal deposits of dominantly mT and occasional beds of dsLT and mTacc transition downcurrent into 
mTacc and sT. 
 
5.2 Interpretation of Transitions 

 

The lateral lithofacies transitions observed in Members B and D of the Caldera del Rey 

formation are interpreted as downcurrent changes from proximal to distal locations. 

Repetitive phreatomagmatic blasts generated closely successive density currents that 

decelerated and lost capacity and competence with distance from the source (Chough 

and Sohn, 1990). The lithofacies record deposition from single-surge, depletive currents 

D LFT 4 (dblLT, lmLT – lbLT – bLT) 
 

E LFT 5 (mT, dsLT, mTacc – mTacc, sT) 
 

dominated 
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that travelled downslope away from the vent. Where the deposits are channelised, they 

maintain competence and are not as depletive.  

 

The inferences here are derived from the literature where there are similar examples of 

lithofacies transitions within small pyroclastic density currents that originated from tuff 

rings (Sohn and Chough, 1989; Chough and Sohn 1990; Colella and Hiscott, 1997; 

Vasquez and Ort, 2006; Brown et al., 2007).  

 

The occurrence of cross-stratification and diffuse-stratification in the proximal deposits 

of units 1 and 3 of Member B indicates that the PDCs were likely fully dilute with 

traction-dominated flow-boundary zones (Brown et al., 2007). However, numerous 

thickly-bedded massive and diffuse-bedded lapilli tuffs occur in proximal locations in 

Member D. This suggests that these lithofacies were rapidly deposited from granular 

fluid-based density currents with granular flow-dominated and fluid escape-dominated 

flow boundary zones. These types of currents are more often associated with the 

deposition of ignimbrites, rather than the phreatomagmatic pulses that typically 

originate from tuff rings (Brown et al., 2007). 

 

The coarsest material was generally deposited within 1 km of the vent, with the coarsest 

lithic blocks depositing rapidly and transported as bedload with only partial support 

from the turbulent particulate fluid (Branney and Kokelaar, 2002). Coarse lithic blocks 

that travelled to greater distances (>2 km) were feasibly entrained within the granular 

fluid at the low levels of the current (Choux and Druitt, 2002). Conversely, pumice clasts 

of a given size are found at a greater distance from the vent than lithic fragments of the 

same size. This is likely the result of overpassing of pumice and early deposition of dense 

lithic fragments (Branney and Kokelaar, 2002).  

 

Various flow-boundary zone transitions are observed in the Caldera del Rey formation. 

The differences are the result of dissimilarities in the initial physical constitution of the 

erupted tephra that forms the currents. During phreatomagmatic explosivity there can 

be substantial variability in the amount of potential energy, thermal energy and clast 

concentrations (Kokelaar, 1986).   
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FLT 1 (xsLT, dsLT – mTacc, sT) 

 

Facies transition laterally from cross-stratified and diffuse-bedded lithofacies into 

accretionary lapilli bearing and stratified lithofacies (LFT 1; Figure 5.2). The proximal 

lithofacies were deposited from close to fully dilute currents with traction-dominated 

flow-boundaries. Diffuse-bedding and the poor sorting suggests temporary shifts to 

granular flow-dominated processes (Brown et al., 2007). The high particles 

concentrations within the diffuse-bedded deposits limited the efficiency of particle 

segregation (e.g. by winnowing) in the flow-boundary zone (Branney and Kokelaar, 

2002). 

 

The lithofacies show a quick downcurrent transition to fully dilute currents with mainly 

direct fallout-dominated and occasional traction-dominated flow boundary zones 

(Branney and Kokelaar, 2002). This indicates tractional processes occurred over long 

distances as the currents decelerated and subsequently lost capacity with distance from 

the vent.  

 

LFT 2 (mLT – xsLT - sLT) 

 

The lateral transition from massive lithofacies into cross-stratified and stratified 

lithofacies (LFT 2; Figure 5.3) records the downcurrent evolution from granular fluid-

based currents to fully dilute currents. The proximal massive lapilli-tuffs were deposited 

from fluid escape- to granular flow-dominated flow boundary zones within granular 

fluid-based currents. Traction-dominated flow-boundary zones dominate in medial and 

distal regions. This transition is due to the dilution and expansion of the current and the 

progressive deposition of the bedload (Vasquez and Ort, 2006). This results in low 

particle concentrations in the flow-boundary zone which creates a sharp interface 

between the current and the deposit where tractional processes can dominate. Cross-

stratifications record localised current non-uniformity (Brown et al., 2007). Finer-

grained material is transported to distal regions because of the depletive competence 

of the current, coupled with the proximal deposition of the coarse bedload.  
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Figure 5.2 Illustration showing the lateral downcurrent lithofacies changes inferred to have occurred in 
the single-surge, depletive pyroclastic density currents that deposited LFT 1. Progressive air ingestion and 
the proximal deposition of coarse bedload resulted in the lateral transition from traction- and granular 
flow-dominated flow-boundary zones near source to direct fallout- and traction-dominated flow 
boundary zones in distal regions. Ash aggregates formed in the lofted ash plumes and accreted rims as 
they passed through the successive density currents. Flow boundary illustrations modified from Branney 
and Kokelaar (2002). 
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The transition from granular-fluid based currents to fully dilute currents has been 

observed at other tuff rings (e.g. Sohn and Chough, 1989; Chough and Sohn 1990; Colella 

and Hiscott, 1997; Brown et al., 2007). Single-surge depletive currents have a finite 

amount of tephra with which they are initiated with. This progressively diminishes with 

deposition and elutriation of fine-ash into a buoyant cloud during transport. Thus, some 

granular fluid-based currents can transition into fully dilute currents with a 

corresponding traction-dominated flow-boundary zone (Brown et al., 2007).  

 

LFT 3 (mLT, bLT – mTacc, mT) 

 

Downcurrent transitions from massive and bedded lapilli-tuffs to accretionary lapilli 

bearing massive tuffs records the evolution from granular flow-dominated flow-

boundaries to fluid escape- to fall-out-dominated flow boundaries (LFT 3; Figure 5.4). 

Particle concentrations in the flow-boundary zone must have remained high enough to 

inhibit the penetration of turbulent eddies onto the substrate, even in distal regions 

(Brown et al., 2007). 

 

LFT 4 (dblLT, lmLT – lbLT – bLT) 

 

The lithofacies transition from diffuse-bedded and massive to bedded lapilli-tuffs 

records the deposition from granular fluid-based currents (LFT 4; Figure 5.5). Lithic-rich 

diffuse-bedded and massive lithofacies in proximal regions record fairly rapid 

aggradation from granular flow- to fluid escape-dominated flow boundaries. Diffuse-

bedding is the result of current unsteadiness caused by high shear rates (Brown et al., 

2007). Massive lithofacies are caused by lower shear rates and/or higher aggradation 

rates and represent a transition towards fluid escape- to granular flow-dominated flow 

boundaries (Branney and Kokelaar, 2002). The depletive flow results in the proximal 

deposition of the coarsest bedload. However, the depositional flow-boundary zone 

retained high clast concentrations, which inhibited winnowing in the lowermost zones. 

This suggests the flux of clasts to the flow-boundary zone was equal, or greater than, 

the flux of clasts lost by deposition (Brown et al., 2007). Thus, a large proportion of the 

load was likely carried as granular fluid (Branney and Kokelaar, 2002).  
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Figure 5.3 Illustration showing the lateral downcurrent lithofacies changes inferred to have occurred in 
the single-surge, depletive pyroclastic density currents that deposited LFT 2. Progressive air ingestion and 
the proximal deposition of coarse bedload resulted in the lateral transition from fluid escape- to granular 
flow-dominated flow boundary zones to traction-dominated flow-boundary zones in medial and distal 
regions. The lithofacies record the downcurrent evolution from granular fluid-based currents to fully 
dilute currents. Flow boundary illustrations modified from Branney and Kokelaar (2002). 
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Figure 5.4 Illustration showing the lateral downcurrent lithofacies changes inferred to have occurred in 
the single-surge, depletive pyroclastic density currents that deposited LFT 3. Transitioning from granular 
flow-dominated flow boundaries to fluid escape- to fall-out-dominated flow boundaries occurred as a 
result of depletive flow. Particle concentrations in the flow-boundary zone remained high. Ash 
aggregates formed in the lofted ash plumes and accreted rims as they passed through the successive 
density currents. Flow boundary illustrations modified from Branney and Kokelaar (2002). 
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Figure 5.5 Illustration showing the lateral downcurrent lithofacies changes inferred to have occurred in 
the single-surge, depletive pyroclastic density currents that deposited LFT 3. The lithofacies record the 
deposition from granular fluid-based currents with granular flow- to fluid escape-dominated flow 
boundaries. Flow boundary illustrations modified from Branney and Kokelaar (2002). 
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LFT 5 (mT, dsLT, mTacc – mTacc, sT) 

 

The lateral transition from massive, diffuse-stratified and ash aggregate bearing 

lithofacies into ash aggregate bearing and stratified lithofacies (LFT 5; Figure 5.6) records 

the downstream evolution from fully dilute currents. The proximal facies were 

deposited from mainly granular flow-dominated flow boundaries, whereas the medial 

and distal lithofacies were deposited from currents with fall-out- to traction-dominated 

flow boundaries. 
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Figure 5.6 Illustration showing the lateral downcurrent lithofacies changes inferred to have occurred in 
the single-surge, depletive pyroclastic density currents that deposited LFT 5. Fully dilute currents show a 
transition from mainly granular flow-dominated flow boundaries in proximal regions to fall-out- to 
traction-dominated flow boundaries in medial and distal regions. Ash aggregates formed in the lofted 
ash plumes and accreted rims as they passed through the successive density currents. Flow boundary 
illustrations modified from Branney and Kokelaar (2002). 
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Chapter 6: Discussion 
 

6.1 Eruption Dynamics  

 

6.1.1 Tuff Ring and Maar Elements 

 

Caldera del Rey has previous designations of both a maar (Paradas and Fernandez, 1984; 

Fuster et al., 1994; Martin and Nemeth, 2004) and a tuff ring (Dávila Harris, 2009). Tuff 

rings, by definition, are built above the pre-existing surface, with typically low-relief 

crater rims (Cas and Wright, 1987; Reading, 1996) (Figure 1.1). They are formed by 

explosive eruptions at or near the surface with typically shallow diatremes (Ross et al., 

2017). Conversely, maars develop deep craters, that are situated below the pre-existing 

ground surface (Lorenz, 1973; Vespermann and Schmincke, 2000) and contain a high 

abundance of accidental lithic fragments that originated from the conduit and underling 

aquifer (Lorenz, 1986; Ross et al., 2017). 

 

Caldera del Rey has elements of both tuff rings and maars. The dominance of one over 

the other alternates throughout the eruptions that produced Caldera del Rey. The 

evidence supporting a tuff ring interpretation is that the crater rims are predominantly 

built from material that was produced by the Caldera del Rey eruption and they sit above 

pre-existing ground surface.  

 

The evidence supporting a maar interpretation includes: (i) the great depth of the 

northern crater, up to 100 m, is more typical of maar volcanoes. This value may in fact 

be an underestimate, given that the crater is filled with post-eruptive sediments and the 

actual depth of the crater could be much greater than this; (ii) the high abundance of 

lithic fragments is suggestive of a deep diatreme excavating into the country rock. 

Therefore, it is inferred that Caldera del Rey represents a hybrid model of the two 

transitional components (see following section). 

 

 



 150 

6.1.2 Phreatomagmatic Phases  

 

Phreatomagmatism is the dominant eruptive style at Caldera del Rey, producing 

Members B, D and E with the following features (Ross et al., 2017): (i) abundant lithic-

fragments that signify efficient fragmentation of the country rock (Figure 3.25); (ii) the 

presence of abundant ash aggregates that indicate high amounts of water in the 

eruption column (Van Eaton et al., 2012, 2015; Mueller et al., 2016); (iii) bomb sags and 

soft-sediment deformation indicated water-rich deposits; (iv) dense and poorly vesicular 

juvenile clasts (Figure 3.26). 

 

However, the Caldera del Rey deposits show changes in the degree of  phreatomagmatic 

fragmentation. The transition from thick pumice fall deposits from quasi-subplinian 

eruption columns (Members A and C) to multiple closely spaced, pulsatory pyroclastic 

density currents that developed from semi-constant fountaining (Members B, D and E) 

is inferred to represent the downward migration of the eruption loci within a growing 

diatremes over time, resulting in an increased water content and vent widening 

(Kokelaar, 1986). 

 

Furthermore, the units within Members B and D show abrupt vertical changes in the 

degree of fragmentation and the processes that produced them, suggesting rapid 

variations in the water:magma ratio (White and Ross, 2011; Austin-Erikson et al., 2011; 

Ross et al., 2017). Many of the deposits were produced by high levels of fragmentation 

during wet phreatomagmatic eruptions. However, some coarser-grained deposits 

contain large pumice clasts, and discontinuous pumice fall deposits, that likely resulted 

from drier phreatomagmatic eruptions (Zimanowski et al., 2015).  

 

Alternations between phreatomagmatic and magmatic eruptions have been inferred at 

tuff rings and maars elsewhere (Lorenz, 1986; White and Ross, 2011). Rapid fluctuations 

between wetter and drier phases, evidenced by changes in the degree of 

phreatomagmatic fragmentation and the abundance of lithic fragments, are common 

(e.g. Ukinrek, Alaska, Self et al., 1980; Crater Hill, New Zealand, Houghton et al., 1996; 

Tepexitl, Mexico, Austin-Erikson et al., 2008, 2011).  
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Alternations in the water:magma ratio are dominantly controlled by the availability of 

groundwater. Drier phreatomagmatic deposits may represent a periods of groundwater 

depletion and temporary drying out of the aquifer (e.g. Lorenz, 1986). Periodic increases 

in mass flux can exert a strong control over the eruption style in phreatomagmatic 

eruptions (Houghton and Nairn, 1991; Houghton et al., 1996), and could have led to a 

decreased water:magma ratio, resulting in incomplete phreatomagmatic fragmentation 

(Brown et al., 2007). This is most feasible for the deposits of Member D that marks the 

climactic phase.  

 
6.1.3 Waxing and Waning  

 

Variations in the degree of phreatomagmatic fragmentation and runout distances 

indicates that the eruption intensity has undergone a waxing and waning evolution that 

is particularly evident in the phreatomagmatic beds. Similar evolutions are recorded in 

other tuff rings (e.g. Glaramara tuff ring, Brown et al., 2007). The units of Member B 

contained fine-grained beds produced by weak phreatomagmatic eruptions. These were 

predominantly deposited from currents with traction-dominated flow-boundaries and 

contained abundant ash aggregates. 

 

As the eruption intensity waxed to its climax in Member D, PDCs were generated that 

were sufficiently more competent and able to transport lithic lapilli to greater distances. 

The waxing resulted in a progradation of facies away from the vent. Many of the 

deposits of Member D reflect a period of highly efficient mixing and heat exchange 

between the magma and water, with no excessive quenching. This added power in the 

fountain and currents accounts for the greater runout distances (Brown et al., 2007).  

 

The eruption waning is evident in Member E with progressively weaker 

phreatomagmatic explosions. The deposits of Member E were produced by pyroclastic 

density currents with traction-dominated flow-boundary zones. The abundance of 

coated pellet-rich beds indicates prolonged pauses, possibly up to minutes, between 

currents that allowed the ash aggregates to settle (Brown et al., 2007). The short runout 

distances of these deposits is reflective of the weaker phreatomagmatic explosions. 
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6.2 Comparison with Felsic Tuff Rings and Maars 

 

The Caldera del Rey volcano exhibits similarities with other silicic tuff rings, such as 

morphology, crater dimensions, ejecta ring structure, dominant lithofacies and inferred 

eruptive processes (e.g. Hoya de Estrada, Mexico, Cano-Cruz and Carrasco-Nunez, 2008, 

2011; Tepexitl, Mexico, Austin-Erikson et al., 2011; Wau, Papua New Guinea, Sillitoe et 

al., 1984; Glaramara tuff ring, Brown et al., 2007; Ukinrek, Alaska, Self et al., 1980; Crater 

Hill, New Zealand, Houghton et al., 1996).  

 

6.2.1 Pyroclastic Density Currents 

 

The importance of dilute PDCs (base-surges) in the tephra ring deposits of 

hydrovolcanoes has been recognised since the seminal work of Moore et al. (1966) and 

Fisher and Waters (1970). The deposits from these dilute currents are found in great 

abundance at Caldera del Rey. Additionally, deposits from more concentrated PDCs are 

also observed at Caldera del Rey and elsewhere (e.g. White, 1991). It is, in fact, common 

for ejecta ring deposits to show deposition from both fully-dilute and granular fluid-

based currents that may change from one to the other (Brown et al., 2007). Such 

transitions from from thick, structureless, and block-rich beds in proximal locations to 

well-developed crossbedding in medial locations and thin distal planar beds (Figure 5.3) 

are observed in deposits of Caldera del Rey and other tuff rings and maars (e.g. e.g. 

Yokoyama and Tokunaga, 1978; Sohn and Chough, 1989; White, 1991; Colella and 

Hiscott, 1997; Vasquez and Ort, 2006; Brown et al., 2007). This is because the currents 

are single-surge, depletive and as they decelerated away from the vent, they lost 

capacity and competence (Brown et al., 2007). 

 

6.2.2 Late Stage Evolution 

 

Silicic tuff rings and maars often show a late stage evolution towards lower water 

content phreatomagmatic eruptions, magmatic explosive eruptions and/or lava dome 

formation (e.g. Hoya de Estrada, Mexico, Cano-Cruz & Carrasco-Nunez, 2008; Tepexitl, 

Mexico, Austin-Erikson et al., 2011; Wau, Papua New Guinea, Sillitoe et al., 1984). The 

character of many of the upper parts of ejecta rings show a reduction in the number of 
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ballistic projectiles and impact sags, and lack fine fragmentation and soft-sediment 

deformation (Ross et al., 2017). This is interpreted as reflecting eruptions occurring in 

an exhausted aquifer or increased eruptive rates (Austin-Erickson et al., 2008, 2011; 

Brown et al., 2007). 

 

Caldera del Rey differs from this model significantly. Whilst Member D shows 

alternations in the degree of phreatomagmatic fragmentation, Member E contrasts this 

model, with increased water content phreatomagmatic eruptions in the latter stages 

that have strongly modified what would normally be the dome forming stage (Figure 

3.19). The setting of Caldera del Rey on Tenerife’s southern coastline is suggestive that 

seawater incursion may have had a strong control on groundwater recharge (Elliot et 

al., 2015). This differentiates Caldera del Rey from other tuff rings where eruptions occur 

within unconnected aquifers and through surface water, which are more likely to 

become exhausted and therefore evolve to lower water content eruptions (Lorenz, 

1986).  

 

6.3 Ash Aggregates  

 

There is no general pattern to the ash aggregates found in the Caldera del Rey formation 

and the deposits generally do not conform to the structure of other larger ignimbrites 

on Tenerife (e.g. Brown et al., 2010). Accretionary lapilli are variably distributed and 

matrix-supported throughout many of the tuff and lapilli-tuff deposits (Figure 3.5B). Thin 

beds of coated ash pellets are occasionally interbedded (Figure 3.5A). 

 

Five beds, particularly found in Member D, show a complete vertical couplet sequence 

comprising a basal layer of matrix-supported accretionary lapilli in the upper parts that, 

with height, become smaller, closer-spaced, and grade up into coated ash pellets and 

finally into framework-supported ash pellets (Figure 3.5C). This sequence is present in 

many of the large ignimbrites on Tenerife (e.g. Adeje Formation, Dávila Harris, 2009; 

Poris ignimbrite, Brown et al., 2010) and elsewhere (Van Eaton et al., 2012). This records 

the formation of ash pellets in the upper levels of pyroclastic density currents that 

accrete rims and are deposited as accretionary lapilli through the flow-boundary zones 

of density currents. As the current begins to dissipate, coated pellets form as they fall 
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through the dusty moist air, and finally ash pellets fall through the clean air (Brown et 

al., 2010). 

 

The variations from this couplet sequence most likely arose from the numerous, rapidly 

successive, short-lived density currents that tuff rings tend to generate (Moore et al., 

1966; Moore, 1967; Sohn, 1996). Additionally, a semi-constant ash plume covering the 

tuff ring is inferred, similar to an ‘Oruanui-like’ scenario (Houghton et al., 2015). 

Therefore, it is likely that the deposition cycles were frequently interrupted by the next 

currents before the cycle was complete, and full sequences record quiescent intervals 

(Brown et al., 2010).  
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Chapter 7: Conclusions 
 

This study has provided new insights into the explosive volcanism that produced the 

Caldera del Rey volcano, in southern Tenerife. The volcano is interpreted as a hybrid tuff 

ring constructed during periods of Taalian hydro-explosive activity and subplinian 

explosivity which produced pumice fall deposits, ash fall deposits and PDC deposits. The 

stratigraphy originally defined by Dávila Harris (2009) has been redefined and a total of 

five members (A-E) have been presented alongside a new geological map produced at 

member scale. Lithofacies associations in each eruption-member have been interpreted 

in terms of eruptive and emplacement processes.  

 

The data collected over two field seasons reveals two major crater forming phases which 

exhibit broadly similar vertical lithofacies successions, involving subplinian pumice 

deposits fall deposits, overlain by massive, cross-stratified and stratified PDC deposits 

generated by phreatomagmatic explosions. Analysis of the architecture of the 

phreatomagmatic tuff deposits has revealed how the PDCs evolved and deposited in 

space and time. The lithofacies record deposition from single-surge, closely successive, 

depletive currents that decelerated and lost capacity and competence away from the 

vent. The currents show lateral transitions from granular-fluid based currents to fully 

dilute currents. The lateral and vertical lithofacies associations are similar to those 

documented at many modern tuff rings. 

 

Abundant accretionary lapilli and coated ash pellets were generated during the 

eruptions, likely in ash plumes above the pyroclastic density currents. Many of the ash 

aggregates fell through the pyroclastic density currents and were deposited from the 

depositional flow-boundary. However, those found in thin fine-grained tuffs record 

deposition during quiescent intervals by fallout from these lofted plumes.  

 

Volcanic ballistic projectiles, most common in Members B and D, show characteristics 

that are typical of phreatomagmatic eruptions. Blocks have a maximum size of 2.5 m in 

diameter and are found up to 1.6 km from the vent. Blocks as large as 70 cm in diameter 
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are observed 1 km from the vent. This highlight a potentially fatal hazard close to 

erupting vents.  

 

The high explosivity of the eruptions is a result of the interaction of magma with 

groundwater. This is responsible for the creation of two large craters and the partial 

fragmentation of the underlying aquifer. The lithic fragment population changes 

upwards through the formation, with lithologies initially close to the surface found in 

the oldest members, and deeper lithologies more abundant in the youngest members. 

This reflects the downward migration of the locus of explosivity in the diatreme. The 

formation shows two repeating transitions from subplinian to phreatomagmatic 

activity, resulting from a substantial increase of water into the system, likely caused by 

diatreme growth and fracturing of the aquifer, and an increase in the mass flux rate of 

the magma. The last stage of the Caldera del Rey eruption involved a substantial ingress 

of water, resulting in finer-grained phreatomagmatic deposits, relative to the other 

phreatomagmatic phases.  
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