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Cosmology and the Dusty Universe via VST

ATLAS and ALMA

Behzad Ansarinejad

Abstract: Clustering analyses of the large-scale structure of the Universe provide a powerful

tool for testing the current standard model of cosmology (ΛCDM). To this end, we exploit

the multi-band optical imaging from the VST ATLAS survey, which covers ∼ 4700 deg2 of

the southern sky. Our main goals are to create a galaxy cluster catalogue and use it to test

the predictions of ΛCDM; to use the cross-correlation of various ATLAS galaxy samples with

the CMB as a probe dark energy, and to study star formation in the most massive halos in

the early Universe which are the progenitors of present-day clusters. We find the ATLAS

galaxy cluster catalogue to be more complete than the SDSS RedMapper cluster sample at

z < 0.35. We use this catalogue to improve the completeness of the Planck SZ cluster sample

by identifying 11 SZ sources with no confirmed optical counterparts, for which we obtain

spectroscopic redshifts and cluster mass measurements. The ATLAS cluster mass functions

prefer a value of S8 = σ8
√

Ωm/0.3 = 0.77 ± 0.03, which is in good agreement with various

other low-redshift analyses of the large-scale structure, but ∼ 2σ lower than the latest Planck

CMB measurement. We then measure the Integrated Sachs-Wolfe (ISW) effect based on

the cross-correlation of ATLAS galaxies and the Planck CMB temperature map. Combining

our results with previous measurements from SDSS, we detect the ISW signal at 2.6σ at

z < 0.55, in agreement with the ΛCDM model. However, at z = 0.68, we find the measured

ISW amplitude to be ∼ 2σ lower than the ΛCDM predictions. Future confirmation of these

results based on SKA, DESI or LSST observations, could open the door to alternatives to

dark energy, including modified gravity. Finally, using ALMA observations of four z > 6 and

two z ∼ 2.5 sub-mm galaxies, we demonstrate that AGN rather than star formation, are the

dominant dust-heating mechanism in these sources.
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Chapter 1

Introduction

1.1 An overview of modern cosmology

The groundwork for our understanding of modern cosmology was laid by Isaac Newton in his

1687 ‘Philosophiæ Naturalis Principia Mathematica’1, which provided the first description of

a universal law of gravity. The inception of modern cosmology however, is often attributed

to Albert Einstein’s 1917 paper, ‘Cosmological Considerations in the General Theory of Rel-

ativity’ (Einstein, 1917)2, which introduced the first relativistic model of the Universe. The

notion of a cosmological constant (Λ), which we shall revisit later, was also first introduced

in this work in order to satisfy Einstein’s assumption that the Universe is static with a uni-

form matter distribution, by providing a repulsive force which contracts the effects of gravity.

However, this model was later shown to be unstable as a slight increase in the density of

matter would cause the Universe to contract, while a slight decrease would lead to a runaway

expansion.

Observationally, in 1913, Vesto Slipher obtained the first spectroscopic measurement of the

Andromeda galaxy (M31), observing a Doppler shift in the spectral lines which indicated the

M31 was moving towards us (Slipher, 1913). However, Slipher soon realised that most "spiral

nebulae" similar to Andromeda (now known as spiral galaxies) are moving away from the

earth based on their redshifted spectra (Slipher 1915; Slipher 1917). Slipher however, did not

realise the significance of his observations which provided the first observational evidence for

an expanding Universe. It is also believed that Einstein was unaware of Slipher’s observations

1See Newton (1999) for a modern publication of this work.
2English translation: https://einsteinpapers.press.princeton.edu/vol6-trans/433, also see

O’Raifeartaigh et al. (2017) for a detailed review of this paper.

1

https://einsteinpapers.press.princeton.edu/vol6-trans/433
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when assuming a static Universe, as he was developing his model in 1917. Indeed until years

later, it remained a matter of great debate (Shapley & Curtis, 1921) whether or not these

observed nebulae were distant galaxies separate from our own. This debate was finally settled

based on Hubble’s observations of Cepheid variables in M31 and M33 galaxies (Hubble, 1925),

which provided distances to these galaxies placing them outside of the Milky Way.

In 1929, based on observations of Cepheid variables and radial velocities for a sample of 24

galaxies, Hubble provided the first conclusive observational evidence showing a relationship

between galaxy recession velocities and distances (Hubble, 1929). This relationship, which is

now known as Hubble’s law is given by:

v = H0 × d, (1.1.1)

where v and d are the recession velocity and the distance of an object moving away from the

observer due to the expansion of the Universe. Here, the Hubble constant, H0, is the present

day value of the Hubble parameter, H, with dimensions of inverse time. Over the years, the

value of H0 has been the subject of much debate and as we will discuss later, tensions between

measurements of this value obtained using different techniques remain to this day. For this

reason, the Hubble constant is often parameterised as:

H0 = 100h km s−1Mpc−1, (1.1.2)

with h allowing for adjustments to the value of the Hubble constant in the absence of a

consensus on the precise value of H0.

1.1.1 The expansion history & geometry of the Universe

Hubble’s 1929 observations gave credence to Alexander Friedmann’s 1922 cosmological model

of an expanding Universe, which he derived from Einstein’s field equations (Friedmann,

1922)3. A similar model was independently developed by Georges Lemaître in which he

suggested the Universe began with a big bang (Lemaître, 1927)4. Modifications of these

models, which were further developed and proved by Howard P. Robertson and Arthur G.

Walker in the 1930’s (Robertson 1935; Walker 1937), are now known as the Friedmann –

Lemaître – Robertson – Walker (FLRW) space-time metric, which can describe a homoge-

neous, isotropic, expanding Universe, thus providing the best approximation for the observed

3See Friedmann (1999) for an English translation.
4See Lemaître (1931) for an English translation.
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Universe at the time. In comoving spherical coordinates (rc, θc and φc), the FLRW metric

takes the form:

(ds)2 = (cdt)2 − a2(t)
[

dr2
c

1− kr2
c

+ r2
c(dθ2

c + sin2 θcdφ
2
c)
]
, (1.1.3)

where ds is the space-time line element, c is the speed of light and a(t) is the scale factor

of the Universe. The scale factor links the proper distance, d(t), between two objects which

are moving away from each other due to the expansion of the Universe at time t, to their

comoving distance, rc, which remains constant as the Universe expands (as it is defined in a

coordinate system expanding at the same rate as the Universe). In effect, a(t) describes the

expansion history of the Universe and by definition, the present day (t0) value of the scale

factor is a(t0) = 1. The k term in the FLRW metric is a constant with units of [length]−2,

which describes the geometry of the Universe, often referred to as the ‘curvature’. The three

possible spatial geometries of the Universe are: k > 0 denoting a spherical geometry or a

closed Universe, k = 0 giving a flat geometry and Universe or a k < 0 curvature, corresponding

to an open Universe with hyperbolic geometry.

As the redshift (z) of an object is defined as the ratio of its observed wavelength (λobs) to its

emitted wavelength (λem), in cases where the object is moving away from the observer due

to the expansion of the Universe, (or with the ‘Hubble flow’), we can link the redshift of an

object with the scale factors of the Universe at the time when the object’s light was emitted

a(tem) and observed a(tobs):

1 + z ≡ λobs
λem

= a(tobs)
a(tem) =

√
1 + v/c

1− v/c. (1.1.4)

The final expression which applies in the special relativistic regime links the redshift of an

object to its recession velocity, v, with this relation simplifying to z = v/c in cases where

v << c. However, there is a second component to the motion of objects referred to as

peculiar velocity, vpec. This velocity is due to local gravitational forces acting on the object

(e.g. in case of a galaxy residing in a cluster due to the gravitational potential energy of the

halo and gravitational forces from nearby galaxies). As a result, the observed redshift of an

object is given by (1 + zobs) = (1 + zcos)(1 + zpec) where zcos is the cosmological redshift of

the object due to the expansion of the Universe, while zpec is the Doppler shift due to the

object’s peculiar velocity (see Appendix 1 of Davis & Scrimgeour (2014) for a derivation of

this equation). For the remainder of this Section we assume z = zcos, (with zcos >> zpec).
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We now introduce another set of key cosmological equations, known as the Friedmann equa-

tions. These equations were first derived by Alexander Friedmann (Friedmann, 1922) in the

framework of general relativity by solving the Einstein field equations (Einstein, 1916). The

Friedmann equations link the expansion of space-time to the comoving density ρ, pressure p

and geometry of the Universe:

H2(a) =
(
ȧ

a

)2
= 8πG

3 ρ− kc2

a2 + Λc2

3 , (1.1.5)

ä

a
= −4πG

3

(
ρ+ 3p

c2

)
+ Λc2

3 , (1.1.6)

where H(a) is the Hubble parameter, G is the gravitational constant and Λ is a cosmological

constant with units of [length]−2. We note that these equations hold under the assumption

that we live in an isotropic and homogeneous Universe where on large scales, pressure and

matter density are the same everywhere. As we mentioned earlier, the cosmological constant

Λ was first introduced by Einstein in order to balance the effect of k and ρ to achieve a static

Universe where H = 0. We will shortly explore the implications of different values of Λ on

the evolution of the Universe.

The density term in the Friedmann equations is composed of two components with ρ(a) =

ρm(a)+ρr(a), where the evolution ofmatter density, ρm(a), with the expansion of the Universe

is given by:

ρm(a) = ρm0

a3 , (1.1.7)

with ρm0 denoting the present-day value of the matter density, and the radiation density

evolves with:

ρr(a) = ρr0

a4 , (1.1.8)

with ρr0 being the present-day value of the radiation density. The difference in the propor-

tionality of the two densities with the scale factor is due to the fact that as the Universe

expands, its total matter content remains constant and the matter density decreases at a

rate proportional to the increasing volume; however, in the case of radiation the expansion

of space also causes the wavelength of photons to be redshifted to lower energies, introducing

a further factor of a which accounts for this additional reduction in the radiation energy

density.

The above densities are often expressed as dimensionless quantities, relative to the critical

density of the Universe, ρc, which is the density required for a flat Universe with the curvature
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parameter k = 0. The critical density of the present-day Universe is given by:

ρc(t0) = 3H2
0

8πG, (1.1.9)

and the density parameter, Ω, is defined as:

Ω ≡ ρ

ρc
. (1.1.10)

Using the above definition (see also Peebles 1993, pp. 310-321; Hogg 1999, eq. 14), one can

express Equation 1.1.5, in terms of redshift and the present-day values of various density

parameters (denoted below by the subscript zero):

E(z) ≡ H(z)
H0

=
√

Ωm0(1 + z)3 + Ωr0(1 + z)4 + Ωk0(1 + z)2 + ΩΛ0 , (1.1.11)

with

Ωm0 ≡
8πGρm0

3H2
0

, (1.1.12)

Ωr0 ≡
8πGρr0

3H2
0
, (1.1.13)

Ωk0 ≡ −
kc2

H2
0
, (1.1.14)

ΩΛ0 ≡
Λc2

3H2
0
. (1.1.15)

1.1.2 Cosmological distances

In this Section, we define various cosmological distances used in this thesis. These defini-

tions largely follow those given by Hogg (1999), and we refer the reader to this paper and

the references therein (in particular Peebles 1993 and Weinberg 1972), for further details

and derivations of the cosmological distances presented here. Furthermore, as we assume

a flat Universe with Ωk = 0 throughout this thesis, we only present cosmological distances

corresponding to this specific case. However, one can find variations of these expressions cor-

responding to an Ωk > 0 or Ωk < 0 Universe in Hogg (1999) and elsewhere in the literature.

Equipped with Equation 1.1.11, one can obtain the line-of-sight comoving distance rc(z) to

redshift z using:

rc(z) = DH

∫ z

0
E−1(z)dz, (1.1.16)
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where DH is the Hubble distance given by DH = c/H0 = 3000h−1Mpc.

Another key cosmological distance is the angular diameter distance, DA(z) = l/θ, defining

the ratio of an object’s transverse physical size l, to its observed angular size on the sky θ (in

units of radians). In the case of a flat universe, the angular diameter distance is given by:

DA(z) = rc(z)
1 + z

, (1.1.17)

(Weinberg 1972, pp. 421–424; Peebles 1993, pp. 325–327; Hogg 1999, eq. 18). Next, we

define the luminosity distance, DL(z), which links an object’s bolometric luminosity, L, in

units of [W ], to its bolometric flux, F , in [Wm−2]:

DL(z) ≡
√

L

4πF = (1 + z)rc(z) = (1 + z)2DA(z), (1.1.18)

(Weinberg 1972, pp. 420–424; Hogg 1999, eqs. 20, 21). The luminosity distance is also used

to define the distance modulus, µ = m −M , which is the difference between the apparent

magnitude, m, of an object (i.e. its observed magnitude), and its absolute magnitude, M ,

(i.e. the apparent magnitude an objected would have if it was observed from a distance of 10

parsecs, assuming no extinction due to dust). The distance modulus is given by:

m−M = 5log10

(
DL(z)
10pc

)
. (1.1.19)

Finally, we define the comoving volume, Vc, (i.e. a volume in which the number density of

non-evolving objects locked into Hubble flow is constant at different redshifts). The comoving

volume element in redshift dz and solid angle interval dΩ is given by:

dVc(z) = DH
(1 + z)2D2

A
E(z) dΩdz. (1.1.20)

1.2 ΛCDM: the current standard cosmological model

The ΛCDM model provides the current best description of the expansion history and the

large-scale structure features of the Universe. This model, also referred to as the standard

model of cosmology, describes the bulk of the matter content of the Universe as a collisionless

dark matter with no electromagnetic interactions with ordinary matter, i.e. cold dark matter

(CDM). The first evidence for the existence of dark matter came from the observation of the
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motion of galaxies in the Coma cluster by Zwicky (1933), which revealed that these galaxies

were moving with velocities that are too high for the cluster to remain bound, given the

mass of the cluster estimated based on its observed luminous matter. On this basis, Zwicky

posited that the missing cluster mass may be in the form of a non-luminous, ‘dark matter’.

A key piece of observational evidence supporting Zwicky’s hypothesis was later discovered

by Rubin et al. (1978) whose observation of the flat rotation curve of the Andromeda galaxy

pointed to the existence of a dark matter halo encompassing the galaxy which extends further

in space than the galaxy’s visible component. Later on, multi-wavelength observations and

weak lensing analysis of a merging galaxy cluster known as the ‘Bullet cluster’ (1E 0657-56;

Markevitch et al. 2004; Clowe et al. 2004; Clowe et al. 2006) provided additional evidence

for the existence of dark matter while providing direct constraints on the dark matter self-

interaction cross-section.

The other main component of the ΛCDM model attributes the majority of the energy den-

sity of the Universe to a cosmological constant, Λ, which is associated with dark (or vacuum)

energy, describing the accelerating expansion of the Universe. The first piece of observational

evidence supporting the existence of the cosmological constant causing the accelerated expan-

sion of the Universe came from standard candle observations of type Ia supernovae (SNe Ia)

by Riess et al. (1998), finding them to be on average 10− 15% farther than predicted based

on the assumption of a low mass-density Universe with no cosmological constant. These mea-

surements have since been confirmed and improved using alternative calibrations of SNe Ia

standard candle distance measurements, using Cephid variables and the tip of the red giant

branch (see e.g. Riess et al. 2016; Riess et al. 2019; Freedman et al. 2019). The existence of

dark energy has also been confirmed via various other means including observations of the

CMB by Planck Collaboration et al. (2020) which estimated the content to of the Universe

to be made up of 68.3% dark energy, 26.8% dark matter and 4.9% baryonic matter, in good

agreement with distance measurements using the Baryon Acoustic Oscillations (BAO) fea-

ture in the clustering of galaxies and quasars (e.g. eBOSS Collaboration et al. 2020). The

ΛCDM model has therefore had astonishing success in providing a comprehensive statistical

description of the large-scale structure and expansion history of the Universe.

1.2.1 The Cosmic Microwave Background: A powerful tool for cosmology

The analysis of the Cosmic Microwave Background (CMB) is one of the most useful tools in

testing different cosmological models. Indeed the discovery of the CMB provided a second
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key piece of evidence, which along with the discovery of the expansion of the Universe, led to

the widespread acceptance of the inflationary big bang model, providing the basis of ΛCDM.

After the big bang, the Universe consisted of a hot, dense plasma in which photons and

baryonic matter were coupled together and existed in thermal equilibrium. At this time the

interaction between photons and electrons was primarily due to Thompson scattering, while

Coulomb interactions between electrons and protons kept protons in thermal equilibrium with

radiation. As the Universe expanded, the energy density of the plasma was reduced, allowing

electrons and protons to combine and form hydrogen atoms. This in turn permitted photons

to stream freely through space resulting in the decoupling of matter and radiation. At this

point the Universe became transparent, releasing the radiation that eventually became the

CMB shown in Figure 1.1a. On angular scales of ∼ 1 degree, the observed temperature

anisotropies of the CMB provide a snapshot of the slight inhomogeneities in the distribution

of matter in the early Universe. The CMB anisotropies originate during matter-radiation

decoupling, with photons moving away from slightly denser regions of space losing a fraction of

their energy as they climb out of the gravitational potential of the dense region, leaving them

with a slightly lower temperature compared to the average temperature of CMB photons.

The opposite effect takes place in case of photons emitted in regions of space with lower than

average densities, causing these photons to have slightly higher temperatures than average.

The CMB power spectrum provides a quantitative measure of the relative strength of the

CMB anisotropies, as a function of angular separation (or multipole moments l). As such, the

CMB power spectrum provides a unique observational signature that needs to be described

by any viable cosmological model, making it one of the most important cosmological tools.

Measurements of the CMB temperature power spectrum (shown in Figure 1.1b) highlight

the success of the ΛCDM model in providing an excellent fit to the observations of CMB

by various surveys including the Wilkinson Microwave Anisotropy Probe (WMAP; Hinshaw

et al. 2013), Planck (Planck Collaboration et al., 2014b), South Pole Telescope (SPT; Story

et al. 2013) and The Atacama Cosmology Telescope (ACT; Das et al. 2014), at a wide range

of angular separations.

The observed peaks in the CMB power spectrum are caused by the counteracting forces of

gravity and radiation pressure leading to the formation of acoustic oscillations in the plasma of

the early Universe. As we will discuss in the next Section, measurements of the positions and

amplitudes of these peaks can provide precise constraints on the key parameters of ΛCDM.
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(a)

(b)

Figure 1.1: (a) The Planck 2018 map of CMB temperature anisotropies based on the CMB
component separation of the commander algorithm. (Figure from Planck Collaboration
et al. 2018). (b) Measurements of the CMB temperature power spectrum (TT ) by the WMAP,
Planck, SPT and ACT collaborations, with the best-fit Planck ΛCDM model shown by the
solid curve. The dotted line separates regions of the horizontal axes plotted in linear and
logarithmic scales. (Figure from Zyla et al. 2020).
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Similar power spectra measurements can be obtained from the CMB polarisation maps which

consist of two components (E and B-modes). However, the CMB polarisation anisotropy E-

modes are weak relative to the CMB temperature anisotropies, making the E-mode power

spectrum harder to measure. The CMB polarisation B-modes have an even lower amplitude

than the E-modes, requiring extremely sensitive measurement and careful foreground sub-

traction which could interfere with this signal. Nonetheless, detection of the CMB B-modes

remains a key goal of future CMB experiments, as it can provide the smoking gun evidence for

inflation via the detection of signatures of primordial gravitational waves (see, e.g. Abazajian

et al. 2015).

1.2.2 Parameters of ΛCDM

The ΛCDM model requires measurements of only six independent parameters to fully define a

cosmological paradigm. Although there is some freedom in the choice of these six parameters,

CMB measurements (e.g. Planck Collaboration et al. 2020) have provided some of the most

precise constraints on the parameters of the ΛCDM model to date5. Consequently, the

parameters used to define the ΛCDM model are often expressed in terms of quantities which

are directly measurable from the observations of CMB.

A key parameter of the standard model is the acoustic scale angle θ∗, which is given by

the ratio of the sound horizon (rs), to the angular diameter distance to the surface of last

scattering. The sound horizon is the distance acoustic oscillations of a particular frequency

would have travelled to reach maximum compression at the time the CMB radiation was

emitted. We can therefore determine rs by measuring the position of the first acoustic peak in

the CMB temperature power spectrum (located at an angular scale of ∼ 0.9°, see Figure 1.1b).

Due to the dependence of the angular diameter distance on the curvature of the Universe Ωk,

the measurements of the position of the first acoustic peak could provide tight constraints

on Ωk. A universe with a positive curvature would have a peak that is shifted to larger

angular separations compared to the position of the peak for a flat universe, while a negative

curvature would result in the peak being shifted to lower angular separations.

Other defining parameters of the ΛCDM model are the amplitude of the initial curvature

perturbations As, which is given by the power spectrum amplitude measured at a particular

scale, and the scalar spectral index ns which describes the variation of density fluctuations

5However, as we will discuss in Section 1.2.3, there are remaining tensions between the Planck CMB
measurements of some of these parameters and those obtained from other cosmological probes.
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as a function of angular scale. In other words, the scalar spectral sets the "slope" of the

CMB power spectrum as a function of angular separation, with an increase in the value

of ns, tilting the amplitude of the power spectrum lower at very large angular separations,

and higher at very small angular separations. Other parameters of ΛCDM include Ωbh
2

and Ωch2, which are the densities of baryonic matter and cold dark matter, (with the total

matter density of the Universe given by Ωm = Ωb + Ωc). Constraints on these parameters

can be obtained from the CMB power spectrum as an increase in Ωb will lead to an increase

in the enhancement of the power spectrum compression peaks (odd-numbered peaks), over

rarefaction peaks (even-numbered peaks), (i.e. the second peak would be suppressed relative

to the first and the third). Another consequence of an increase in Ωb would be a decrease in

the frequency of the oscillations. On the other hand, an increase in the total matter density

Ωm, results in a decrease in the overall amplitude of the CMB power spectrum. As a result,

one can determine the ratio of the baryon to dark matter content of the Universe, based on

the ratio of the amplitudes of the first and second peaks. The sixth key parameter of ΛCDM

measured from the CMB power spectrum is the optical depth to reionization τ , measuring

the line of sight free-electron opacity to the surface of last scattering. As the optical depth

impacts the level at which the primary CMB anisotropies are scattered as the CMB radiation

travels to the observer, higher values of τ result in a reduction of the amplitude of the power

spectrum peaks6.

The Planck 2018 CMB constraints (Planck Collaboration et al., 2020) on the above cosmolog-

ical parameters are: Ωbh
2 = 0.02233±0.00015, Ωch2 = 0.02233±0.00015, 100θ∗ = 1.04108±

0.00031, τ = 0.0540 ± 0.0074, ln(1010As) = 1.04108 ± 0.00031 and ns = 0.9652 ± 0.0042. A

final commonly used cosmological parameter is σ8, which in linear perturbation theory, is

the present-day root-mean-square variance of the matter density field averaged over spheres

of radius r = 8h−1Mpc, (setting the amplitude of the linear matter power spectrum P (k)

at a scale of 8h−1Mpc). The value of σ8 has a major influence on the determination of the

rate of structure growth in the early Universe, with the Planck Collaboration et al. (2020)

analysis of the CMB giving a σ8 constraint of 0.811 ± 0.006. Accurate measurement of this

parameter is crucial, as its local value should be consistent with that predicted based on

gravitational growth of primordial fluctuations, which are measured using CMB anisotropies.

However, as we will see in the next Section, tensions between the early-time measurements of

σ8 (and H0) from the CMB and their late-time measurements from analyses of the large-scale

6For animated illustrations of the impact of variations of the above parameters on the shape of the CMB
temperature power spectrum visit: https://space.mit.edu/home/tegmark/cmb/movies.html

https://space.mit.edu/home/tegmark/cmb/movies.html
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structure (LSS) have persisted in the past decade, presenting an ongoing challenge for the

ΛCDM model.

1.2.3 Challenges to ΛCDM and other unsolved mysteries

We now present a brief overview of a number of current challenges to the ΛCDMmodel arising

from measurements of different cosmological probes at various points during the history of

the Universe. Perhaps the greatest remaining challenge to the flat ΛCDM model is the H0

tension, where a growing number of low redshift measurements of the expansion of Universe

have been found to be significantly discrepant from the early-time constraint on H0 based on

the Planck CMB analysis (Planck Collaboration et al., 2020), (for a recent review of the this

issue see Verde et al. 2019).

In recent years, increasingly precise measurements of H0 obtained from probes of expansion

in the local Universe and the constraints from CMB experiments, have revealed a statistically

significant tension between late and early-time measurements of H0. The latest distance lad-

der measurements provided by the ‘Supernovae, H0, for the Equation of State of Dark Energy’

(SH0ES; Riess et al. 2016; Riess et al. 2018) team have in particular offered improvements on

the measurements of expansion rate both in terms of precision and controlling of systematics.

As shown in Figure 1.2 combining the SH0ES H0 measurement of Riess et al. (2019) which is

based on observations of Cepheids in the Large Magellanic Cloud (LMC), and the ‘H0 Lenses

in COSMOGRAIL’s Wellspring’ (H0LiCOW) collaboration’s independent constraint on the

expansion rate based on observations of lensed quasars (Wong et al., 2020), results in a 5.3σ

tension between late and early-Universe measurements of H0, with values of 73.8 ± 1.1 and

67.4± 0.5 respectively.

Several studies have suggested that the H0 tension could be in part due to unaccounted sys-

tematics in the local or CMB measurements of the expansion rate (e.g. Rigault et al. 2015;

Bernal et al. 2016; Addison et al. 2018; Rose et al. 2019; Shanks et al. 2019). However, there

is currently no consensus that systematics could entirely explain the tension between the

early and late-Universe measurements, as multiple probes with independent systematics pro-

duce similar values of H0 both in the early and local Universe. A solution to the H0 tension

may also come from other independent probes of the expansion rate (or alternative routes

to calibrating the local distance ladder), such as analysis of Baryon Acoustic Oscillations

(BAO) and galaxy clustering (e.g. eBOSS Collaboration et al. 2020; Abbott et al. 2018b),

observations of water masers (e.g. Braatz et al. 2018; Reid et al. 2019), X-ray observations
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of SZ clusters (Kozmanyan et al., 2019), the analysis of CMB polarisation (Henning et al.,

2018), extra-galactic background light γ-ray attenuation (Domínguez et al., 2019) and grav-

itational waves standard siren measurements (see, e.g. Chen et al. 2018; Di Valentino et al.

2018; Soares-Santos et al. 2019; The LIGO Scientific Collaboration et al. 2019). Although

the precision of H0 constraints based on these measurements is currently lower than those

obtained from SH0ES or Planck, with the availability of larger datasets and higher quality

observations, in the future a resolution to the current H0 tension may emerge from these

alternative probes. However, if the H0 tension persists in future measurements, it could also

be indicative of new physics favouring cosmologies beyond the standard flat ΛCDM model.

Figure 1.2: Figure 12 of Wong et al. (2020) showing H0 constraints from early-time Planck
Collaboration et al. (2020) CMB and Abbott et al. (2018b) DES clustering, weak lensing,
BAO, and big bang nucleosynthesis measurements. Also shown are the H0 constraints of
Riess et al. (2019) based on observations of Cepheids in the Large Magellanic Cloud, as well
as Wong et al. (2020) H0 measurements from lensed quasars. The combination of these two
measurements from the late Universe results in a > 5σ tension with the H0 constraint from
Planck.

It is also possible to solve the H0 tension by introducing a dynamical form of dark energy

(see, e.g. Copeland et al. 2006; Di Valentino et al. 2017, Figure 1.3; Zhao et al. 2017). The

standard parametrisation of the dynamical dark energy equation of state is:

ω(a) = ω0 + (1− a)ωa, (1.2.1)

where a is the scale factor of the Universe, ω0 is the present-day value of the equation of state,
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and ωa describes the variation of the equation of state with time, with ω = −1 corresponding

to a cosmological constant. Here a value of wa < 0 corresponds to a model where ω increases

with a, while wa > 0 means ω becomes more negative with a. For models with w < −1, the

dark energy density increases with time leading to the expansion of the Universe in excess of

the predictions of the cosmological constant, thus providing a resolution to the current H0

tension (see, e.g. Risaliti & Lusso 2019; Alestas et al. 2020).

Figure 1.3: Figure 1 of Di Valentino et al. (2017), showing constrains on the dynamical dark
energy parameters ωa and ω0, based on Planck Collaboration et al. (2016f) CMB analysis,
local H0 constraints of Riess et al. (2016) and combined BAO constraints from the analysis
of 6dFGS (Beutler et al., 2011), SDSS (Ross et al., 2015) and BOSS (Anderson et al., 2014)
galaxy samples. The cross corresponds to values of ωa and ω0 in the standard ΛCDM model
with the dark energy equation of state ω = −1 corresponding to a cosmological constant.

In the past decade, another challenge to the ΛCDM model has emerged in the form of a

statistically significant tension between the CMB and late-Universe constraints on σ8. An

early indication of this tension came from the comparison of the Planck σ8 constraints based

on the analysis of SZ cluster counts and the CMB (see Figure 1.4a; Planck Collaboration

et al. 2014d; Planck Collaboration et al. 2016d). This discrepancy could be as high as 3.7σ

depending on the chosen method of calibrating the Planck SZ cluster masses.
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(a)

(b)

Figure 1.4: (a) Figure 13 of Planck Collaboration et al. (2016d) showing the tension between
the combined Planck SZ cluster count and BAO constraint on σ8, and the measurement
based on the Planck CMB analysis. (b) Figure 8 of Heymans et al. (2020) showing the
tension between the Planck CMB (Planck Collaboration et al., 2020) constraints on σ8, and
the weak lensing and galaxy clustering constraints from the KiDS (Heymans et al., 2020) and
DES (Abbott et al., 2018b) surveys, as well as those from joint analysis of BOSS and KiDS
surveys (Tröster et al., 2020).
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However, as shown in Figure 1.4b, recent low redshift measurements of σ8 including the KiDS-

1000 galaxy clustering and weak lensing (3×2pt) analysis of Heymans et al. (2020), the DES

Year 1 3× 2pt analysis of Abbott et al. (2018b) and the joint BOSS and KiDS-450 analysis

of Tröster et al. (2020) remain in tension with the results of the Planck CMB analysis. In

Chapters 4 and 5 we present discussions of potential systematics7 that could be responsible

for the σ8 tensions. The σ8 tension, however, could also be an indication of new physics,

requiring modifications to the standard model. For instance, a solution to both σ8 and H0

tensions could come from interactions between dark matter and dark energy (Di Valentino

et al., 2020a), while Kreisch et al. (2020) suggest neutrino self-interactions as a joint solution

to both tensions.

Figure 1.5: Figure 6 of Di Valentino et al. (2020b) showing the increased tension between
the Planck 2018 σ8-Ωm constraints (red contours) and the weak lensing constraints from the
KiDS-450 (Hildebrandt et al., 2017) cosmology (grey contours) as a result of incorporating
Ωk in the Planck analysis (blue contours). Here the contours represent the 1 and 2σ error
regions.

7For an interesting discussion of the potential interplay between the H0 and σ8 tensions see Sanchez (2020)
who suggests that expressing σ8 in units of h−1Mpc could be in part responsible for aggravating the tension
between local and early Universe constraints on this parameter. Instead, the author recommends expressing
the amplitude of the matter power spectrum as σ12 (i.e. the mass fluctuation in spheres of 12Mpc in radius).
We note, however, that Heymans et al. (2020) found a similar tension between their low redshift constraints
on σ12 and those given by the Planck analysis.
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Another challenge to the flat ΛCDM model is highlighted by a recent work by Di Valentino

et al. (2020b), where they suggest that the enhanced lensing amplitude observed in the Planck

2018 (PL18) CMB power spectra result in a preference for a closed universe with (ΩK < 0)

at a confidence level of 99.985%. As shown in Figure 1.5 the inclusion of Ωk in the PL18

analysis results in an increased tension between the late and early-Universe constraints on the

σ8-Ωm parameter space (in the case of KiDS-450 and PL18 comparison, increasing the tension

from 2.3σ to > 3.5σ). The inclusion of Ωk in the PL18 analysis also results in significant

tensions with lower redshift BAO measurements. The authors consequently suggest that

the assumption of a flat Universe may be masking a possible crisis for the ΛCDM model,

making this a vital topic of research for future CMB experiments which can determine if

the observed enhancement of the lensing amplitude is due to undetected systematics or a

statistical fluctuation, or indicative of deviations from a flat ΛCDM model.

Another conundrum facing the ΛCDM model, often referred to as the fine-tuning or cosmo-

logical constant problem, arises as the observed value of Λ is 120 orders of magnitude smaller

than the theoretical prediction from quantum field theory, with large amounts of fine-tuning

of initial conditions required to explain the late-time accelerating expansion of the Universe

(see Weinberg 1989; Adler et al. 1995; Carroll 2001; Sahni 2002). Although there are many

proposed solutions to this problem, including invocation of the anthropic principle (e.g. Banks

et al. 2001; Garriga & Vilenkin 2001), scalar field models of dark energy (Copeland et al.,

2006); modified gravity models (e.g. Sotiriou & Faraoni 2010; Bamba et al. 2012; Clifton

et al. 2012) and cosmological model beyond ΛCDM (e.g. Bull et al. 2016; Marsh 2016).

However, the community is yet to achieve a consensus on a resolution to this conundrum.

1.3 Thesis motivation and outline

The first aim of this thesis is to test the predictions of the standard model against the observed

clustering of the large-scale structure (LSS) of the Universe. To this end, we make use of

data from the recently completed VST ATLAS survey, which is described in Chapter 2. The

ATLAS survey provides multi-band optical coverage of large, previously unmapped areas

of the Southern sky, making it an ideal dataset for performing cosmological tests based on

analysis of the LSS. We then compare our results to the predictions of the standard model,

as well as those obtained from other datasets.

In Chapter 3, we introduce a new cluster catalogue obtained in the VST ATLAS survey.

We present details of our cluster richness and photometric redshift estimation and assess the
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completeness and purity of our sample by comparing it to other optical, SZ and X-ray cluster

samples.

In Chapter 4, we present our spectroscopic observations and cluster mass estimates for a

sample of previously unidentified Planck SZ sources with counterpart optical detections in

the VST ATLAS cluster catalogue.

In Chapter 5, we present details of the calibration of the ATLAS cluster mass-richness scaling

relation based on comparison to external optical, X-ray and SZ cluster masses. We then

compare the mass functions of our clusters to those obtained from other optical and SZ

samples, and the predictions of ΛCDM at different redshifts.

In Chapter 6, we obtain new measurements of the Integrated Sachs-Wolfe (ISW) effect (which

probes the late time accelerating expansion of the Universe), based on the cross-correlation

of various ATLAS galaxy samples and the Planck CMB temperature map. We then compare

our results with previous measurements from the SDSS survey as well as the predictions of

the ΛCDM model at different redshifts.

In Chapter 7, we exploit ALMA observations of our samples of z > 6 and z ∼ 2 sub-mm

galaxies in order to calculate their star formation rate surface densities. We then use these

measurements as a proxy to identify whether AGN or star formation is the dominant fueling

mechanism of these sources.

We conclude this thesis in Chapter 8 by presenting a summary and discussion of the cosmo-

logical implications of our findings, as well as the scope for future work.



Chapter 2

The VST ATLAS survey

2.1 Introduction

The VST ATLAS (Shanks et al., 2015) is an European Southern Observatory (ESO) public

survey of the southern sky, designed to provide optical imaging in ugriz bands to similar

depths as The Sloan Digital Sky Survey (SDSS; Eisenstein et al. 2011) in the north. The

data is taken using the Very Large Telescope (VLT) Survey Telescope (VST; Schipani et al.

2012) a 2.61-m telescope with a 1 deg2 field of view located at the Paranal observatory. The

telescope is equipped with the 268 megapixel OmegaCAM camera (Kuijken, 2011), composed

of a mosaic of 32 CCDs. Figure 2.1 shows a comparison of the VST ATLAS and SDSS ugriz

band transmission curves. The VST and Sloan telescopes have a similar throughput in

ugri bands, while the VST z band has a throughput approximately twice that of the Sloan

telescope.

The processing of the raw data is performed by the Cambridge Astronomy Survey Unit

(CASU1), providing catalogues with ∼ 5σ detections, fixed aperture fluxes and morphologi-

cal classifications which we use for star-galaxy separation. The CASU morphological classi-

fication relies on the curve of growth of each detected source (i.e. variations in the object’s

brightness with varying aperture size) as described in detail in Section 3.1 of González-Solares

et al. (2008). The data provided by CASU is de-biased using nightly calibration images and

flat-fielding is performed using monthly stacked twilight sky flats. The CASU sky estimation

is performed using an automatic 2-D background following algorithm, as described in section

1http://casu.ast.cam.ac.uk/, we also refer the reader to http://casu.ast.cam.ac.uk/
surveys-projects/vst/technical/catalogue-generation for additional information on the source
catalogue parameters provided in by CASU.
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Figure 2.1: Filter, telescope and atmosphere corrected transmission curves, calculated at
airmass of 1.3, for the VST ATLAS and SDSS ugriz bands. Figure from Shanks et al.
(2015).

3 of González-Solares et al. (2008). Further details of the CASU data reduction pipeline

and VST ATLAS zero-point calibration are provided in Shanks et al. (2015) and improved

global photometric calibration using the Gaia survey (Gaia Collaboration et al., 2018) is now

publicly available with the fourth Data Release (DR4) of the survey2.

2.2 Survey coverage & observing strategy

The total survey area consists of 4711 deg2, with 2087 deg2 in the NGC and 2624 deg2 in the

SGC. Figure 2.2 shows the coverage of the VST ATLAS survey compared to the DES (The

Dark Energy Survey Collaboration, 2005), DESI (DESI Collaboration et al., 2016), KiDS (de

2https://www.eso.org/sci/publications/announcements/sciann17211.html

https://www.eso.org/sci/publications/announcements/ sciann17211.html
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Jong et al., 2013) and eROSITA (Merloni et al., 2012) surveys. In the future, the 4MOST

(de Jong et al., 2019), Euclid (Laureijs et al., 2011) and LSST (LSST Dark Energy Science

Collaboration, 2012) surveys will also provide multi-wavelength imaging and spectroscopic

coverage of the VST ATLAS survey area. The survey is now complete in ugriz in both

galactic caps, while an ongoing Chilean observing program will double the u-band exposure

over the full survey footprint3.

Figure 2.3 shows an example of a VST ATLAS r-band image, composed of images taken by

OmegaCAM’s 32 CCD chips, covering a 1 deg2 area. The CCD gaps are covered by taking

two sub-exposures for each tile, with a dither of 25′′ in RA and 85′′ in DEC. This approach

also removes the impact of cosmic rays and bad pixels. The u and g-band exposures consist

of 2×60s and 2×50s stacked sub-exposures, respectively, while riz-band stacks are composed

of 2× 45s sub-exposures.

The ATLAS observations are taken in blocks of 17 tiles (or a concatenation) in the RA

direction while keeping DEC constant, with a 2′ overlap in RA and DEC between tiles. For

all ATLAS bands, the seeing and airmass are required to be < 1.4′′ and < 1.4, respectively,

while observing conditions are required to be < 10% cloud cover, with transparency variations

of < 10%.

2.3 ATLAS seeing and magnitude limits

Figure 2.4 shows the seeing histograms of the ATLAS g, r, i and z bands. Table 2.1 summarises

the median ATLAS and SDSS seeing in these bands and compares the magnitude limits of

the two surveys. (Note that we do not show similar information for the u-band as it is not

used in the analysis of this thesis).

2.4 Band-merged catalogue generation

Based on the ATLAS DR4 data, we produce a band-merged griz catalogue4 using a pipeline

developed with the ‘Starlink Tables Infrastructure Library Tool Set’ (STILTS; Taylor 2006)

3The latest survey progress maps are available at http://astro.dur.ac.uk/Cosmology/vstatlas/
4For each 1 deg2 ATLAS tile, CASU provides catalogues of the detected sources in separate bands (often

observed on different nights). The band merging process is therefore performed independently of CASU to
generate a source catalogue containing data from all ATLAS bands, prior to using the data for the analysis of
this thesis. Here, the band-merged catalogue refers to a fits table where each row contains relevant information
for a detected object, including the object’s measured magnitudes and morphological classifications in different
bands (which are presented in the columns of the table).

http://astro.dur.ac.uk/Cosmology/vstatlas/
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Figure 2.3: Example of an ATLAS r-band tile (o20120114_00055) with 0.9′′ seeing. The gaps
between the 32 OmegaCAM CCD chips are covered by a second exposure with a 25′′ × 85′′
dither in RA and DEC. The two exposures are then stacked to provide the final image for
each tile.

framework. The pipeline first merges the CASU griz-band catalogues on a tile by tile basis,

keeping a subset of relevant columns from the tables for each object. During band-merging,

we include all objects with detections in a minimum of two bands. We then concatenate the

band-merged catalogues generated for the individual tiles and remove duplicate detections of

the same objects in the tile overlap areas based on an internal match with a radius of 0.7′′.

In this work, we utilise the VST ATLAS aperture magnitudes provided by CASU for ob-

taining galaxy colours while relying on the CASU Kron pseudo-total magnitude for imposing

magnitude limits on our galaxy samples. The ATLAS Kron magnitudes are measured using



2.4. Band-merged catalogue generation 24

Figure 2.4: Seeing distributions of the VST ATLAS g, r, i and z bands. Bins are 0.05 arcsecs
in width.

Band g r i z

ATLAS Seeing [′′] 0.99 0.96 0.84 0.87
SDSS Seeing [′′] 1.36 1.24 1.18 1.20
ATLAS Mag. Lim. 22.7 22.2 21.4 20.2
SDSS Mag. Lim. 22.7 22.3 21.7 20.1

Table 2.1: Comparison of VST ATLAS and SDSS median seeing in g, r, i, z bands. Also
shown are the ATLAS median 5σ magnitude limits for galaxies and SDSS 5σ point source
magnitude limits, with all magnitudes given in the AB system. All values presented here are
taken from Table 1 of Shanks et al. (2015), with the exception of ATLAS seeing values which
have been updated to include the latest observations.

circular apertures of 2× the Kron radius, with the definition of the Kron radius given by

Bertin & Arnouts (1996). The use of Aperture magnitudes to measure galaxy colours was

motivated by the inspection of the red-sequence of rich, spectroscopically confirmed Abell

clusters as well as comparison of galaxy colours between ATLAS Kron and Aperture magni-

tudes and SDSS model magnitudes in a ∼ 200 deg2 overlap area between the two surveys.

These tests showed that aperture magnitudes have a lower level scatter than Kron around
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the red-sequence and when compared to SDSS. This is most likely due to fact that unlike

aperture magnitudes which are measured within fixed radii, for individual objects Kron radii

can vary in different bands making the colour measurements noisier. On the other hand

comparison between ATLAS and SDSS shows that Kron magnitudes provide a more reliable

measure of the galaxies’ total magnitudes compared to aperture magnitudes, which could

miss a larger fraction of the galaxy flux (see also Shanks et al. 2015). We denote aperture

magnitudes corresponding to the ATLAS Aperture flux 3, and Aperture flux 5 using

subscripts ‘A3’ and ‘A5’. These apertures have radii of 1 and 2′′ respectively and we apply

their associated aperture corrections labelled as APCOR in the CASU catalogue. For g, r, i and

z bands, the mean values of APCOR3 are 0.45, 0.42, 0.35 and 0.38 mags, while mean values of

APCOR5 are 0.12, 0.12, 0.11 and 0.12 mags. Although these aperture corrections are derived

for stars, they also provide a first-order seeing correction for faint galaxies, and overall, we

find that aperture magnitudes appear to give the most consistent galaxy colours compared

to SDSS model magnitudes. Where Kron pseudo-total magnitudes are used, we correct these

to total magnitude for galaxies by applying a −0.15 offset. This value is chosen based on

an empirical comparison of the ATLAS Kron and SDSS model magnitudes for galaxies in an

overlap area between the two surveys as shown by Shanks et al. (2015).

We correct all magnitudes for Galactic dust extinction Ax = CxE(B − V ), with x represent-

ing a filter (griz), taking the SDSS Cx values presented in Schneider et al. (2007) (3.793,

2.751, 2.086, and 1.479 for griz respectively) and using the Planck E(B − V ) map (Planck

Collaboration et al. 2014a).

2.4.1 Morphological classifications

In order to isolate galaxies from stars in the ATLAS data, we use the default morphological

classifications supplied in CASU catalogues (see the top panel of Figure 2.5), a description

of which can be found in González-Solares et al. (2008). The performance of the CASU

morphological classification is reduced at fainter magnitudes, approaching magnitude limits of

the survey. In such cases, plots of ATLAS Aperture vs. Kron magnitudes, in which stars and

galaxies appear as distinct populations, can be used to further remove stellar contamination

from galaxies. In the upcoming chapters, we explicitly mention the cases where this approach

is implemented to further improve on the star-galaxy separation provided by CASU.
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Figure 2.5: Top panel: An ATLAS i-band image with the CASU morphological classifications
for the detected objects overlayed (blue: point-like sources; green: extended sources; red:
noise). Here, we can see how a halo caused by reflection from a bright star can be misclassified
as multiple extended sources in the CASU catalogue. Middle right: an ATLAS RGB image
showing multiple bright star halos. Here, objects classified as galaxies are plotted by red
dots. It can be seen that our match to the TYCHO2 bright stars catalogue has successfully
masked these bright star halos. However, in some cases, the matching radii are not sufficient
to remove the entire halo (middle left). Here blue dots are bright stars in the TYCHO2
catalogue and pink dots are objects classified as galaxies in our ATLAS input catalogue.
These cases as well as nearby galaxies (bottom left) and other remaining artefacts (bottom
right) are manually masked (grey regions).
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2.4.2 Removal of artefacts

Reflections from bright stars in the VST ATLAS data could lead to the formation of circular

halos which in some cases can be misidentified as multiple extended sources and misclassified

as galaxies by the CASU source detection algorithm (see top panel of Figure 2.5). To overcome

this, we mask circular regions around these bright stars based on cross-matching the input

catalogue to the Tycho-2 Catalogue of the 2.5 million brightest stars (Høg et al., 2000). The

Tycho bright stars are masked with radii varying according to their V -band magnitudes. For

this purpose we choose the following radii based on visual inspection of stars with various

magnitudes: V < 8: 340′′; 8 < V < 9: 80′′; 9 < V < 10: 45′′; 10 < V < 11: 30′′; V > 11:

20′′. However, depending on the position of the star on the CCD chip, in some cases the halo

can be off-centred from the stars. The remaining stellar halos and other major remaining

artefacts such as nearby galaxies or satellite trails are manually removed by performing a

visual inspection of the data (see Figure 2.5).



Chapter 3

The VST ATLAS Southern galaxy

cluster catalogue

3.1 Introduction

In the context of hierarchical structure formation, primordial peaks in the density field of the

early Universe collapse and merge, leading to the incremental formation of gravitationally

bound halos of increasing mass (Peebles, 1980). Galaxy clusters are the largest of these

gravitationally bound structures in the Universe, occupying the extreme tail of the halo mass

function. As a result, the evolution of galaxy cluster abundance with mass and redshift is

extremely sensitive to variations in cosmological parameters. Precise observations of large

numbers of clusters over a range of redshifts can therefore provide powerful cosmological

constraints (see reviews by Allen et al. 2011; Weinberg et al. 2013). In the context of the

ΛCDM model, the study of galaxy clusters can place independent constraints on Ωm, the

matter density parameter (Evrard 1997; Schuecker et al. 2003), ΩΛ, the dark energy density

parameter and ω, the dark energy equation of state parameter (Morandi & Sun 2016), as well

as σ8, the normalization of the matter power spectrum on the scale of 8 h−1Mpc (White et al.

1993; Croom & Shanks 1999). Furthermore, extensions to ΛCDM such as massive neutrinos

can be investigated via the study of galaxy cluster number counts (Costanzi et al. 2013;

Roncarelli et al. 2015), while non-standard modified gravity models can be constrained via

the study of cluster properties (Brownstein 2009; Llinares & Mota 2013; Planck Collaboration

et al. 2016b; Bocquet et al. 2019). Galaxy clusters and groups also provide useful tools in

studying galaxy evolution in extreme environments and their physical properties could aid

our understanding of structure formation, providing vital information on collapse of dark

28
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matter and evolution of baryons in dark matter potentials (see reviews in Rosati et al. 2002;

Voit 2005 and Kravtsov & Borgani 2012).

As the most prominent features visible in the large-scale structure, galaxy clusters are ob-

servationally accessible by various means. Galaxy clusters consist of multiple components,

including dark matter (which contains most of the cluster mass), stars, cold gas and dust in

the galaxies, as well as large quantities of intracluster medium (ICM), in the form of ionized

diffuse hot gas containing the bulk of the baryonic matter in the cluster. The presence of

large quantities of dark matter makes galaxy clusters ideal sites for identifying strongly-lensed

background galaxies (Smail et al., 2007), providing a window into star formation in the early

Universe (Swinbank et al., 2010), as well as an independent method of measuring cluster

masses (Hoekstra et al., 2013). Due to the multi-component nature of clusters, they can be

detected in multiple wavelengths, with galaxies emitting in optical and infrared, while the

ICM is detectable in X-ray via thermal bremsstrahlung and line emission. Furthermore, in-

verse Compton scattering due to interaction with high energy electrons in the ICM provides

a boost in energy to the cosmic microwave background (CMB) photons passing through the

clusters, making them detectable via a phenomenon known as the Sunyaev-Zel’dovich (SZ)

effect (Sunyaev & Zeldovich 1980). In what follows, we provide a brief overview of various

historical and modern cluster detection techniques in different wavelengths.

3.1.1 Optical detection

Optically, galaxy clusters are revealed as overdensities in the projected distribution of galax-

ies on the sky, and due to their distinct appearance as concentrations of galaxies, their initial

detection dates back as far as the 18th century (Biviano, 2000). The study of physical proper-

ties of clusters, however, began in the early 20th century leading to substantial astronomical

advancements including the discovery of dark matter in the Coma cluster by Zwicky (1933).

This was followed by more comprehensive statistical studies of clusters, leading to the creation

of the earliest cluster catalogues. These early catalogues were based on visual inspection of

a series of photographic plates, combined to cover large areas of the sky in search of galaxy

overdensities identified using uniform selection methods. Amongst the most famous of these

early efforts is Abell’s all-sky catalogue of 4073 clusters (Abell 1958; Abell et al. 1989), in

which clusters were defined as overdensities of 30 or more galaxies within a fixed radius of

1.5h−1Mpc, each no more than 2 magnitudes fainter than the third brightest cluster member.

Furthermore, clusters were placed in distinct classes based on an estimate of their distance
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given by the magnitude of the 10th brightest cluster member. This distance indicator was

later improved upon by defining distance in terms of redshift rather than magnitude. Similar

catalogues with different selection criteria were also independently developed by Zwicky et al.

(1961).

The Abell catalogue has had significant influence in the field, providing the basis for a wide

variety of research including the first studies of the large-scale matter distribution of the Uni-

verse (Bahcall & Soneira 1983; Postman et al. 1992), as well as utilisation of the Brightest

Cluster Galaxies (BCGs) in construction of Hubble diagrams (Gunn & Oke 1975; Postman

& Lauer 1995). Despite these successes, however, the Abell catalogue is affected by projec-

tion effects, where un-associated foreground and background field galaxies can contaminate

the result of measured properties of the clusters such as richness or estimated distance (see

Sutherland 1988). Moreover, apparent overdensities in projection which are not gravitation-

ally bound can be identified as false clusters (Lucey, 1983), while further uncertainties can

arise in the selection function as a consequence of reliance on visual cluster identification.

To overcome these limitations, later efforts focused on the construction of new optically se-

lected cluster samples using digitized photographic plates (such as the Automated Plate Mea-

surement (APM) galaxy survey; Dalton et al. 1992), along with automated cluster selection

techniques (Lumsden et al. 1992; Dalton et al. 1994; Gal et al. 2003). Further instrumental

advancements led to the availability of wide-field surveys containing vast samples of galaxies

with multi-band CCD imaging. Amongst the first of these surveys was Sloan Digital Sky

Survey (SDSS; York et al. 2000), a subset of which was used to generate an input catalogue

of 2.3× 107 galaxies with ugriz photometry which form the basis of the MAXBCG (Koester

et al., 2007) and redMaPPer (Rykoff et al., 2014) cluster catalogues. The VST ATLAS survey

(Shanks et al., 2015), which is the basis of this work later provided coverage of ∼ 4700 deg2

over the southern sky to similar depths as SDSS (but with superior seeing). Other notable

ongoing and upcoming photometric surveys include Dark Energy Survey (DES; The Dark

Energy Survey Collaboration 2005; Rykoff et al. 2016), Pan-STARRS (Kaiser et al. 2002;

Ebeling et al. 2013), the Kilo-Degree Survey (KiDS; de Jong et al. 2013; Radovich et al.

2017), the Hyper-Suprime Camera (HSC; Aihara et al. 2017), and the Large Synoptic Survey

Telescope (LSST; LSST Dark Energy Science Collaboration 2012) and Euclid (Laureijs et al.,

2011), providing enormous quantities of data upon which the search for clusters of galaxies

has and will be based.

With the availability of such vast quantities of data, comes the demand for fully automated
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galaxy cluster detection techniques and algorithms that could analyse the data to identify

uniform, pure and complete samples of clusters. In the absence of spectroscopic redshifts,

galaxy redshifts can be estimated photometrically based on techniques such as SED tem-

plate fitting (e.g. Hyperz; Bolzonella et al. 2000), using Bayesian probabilistic methods (e.g.

BPZ; Benítez 2011) or via machine learning approaches utilising artificial neural networks

or boosted decision trees (e.g. ANNz2; Sadeh et al. 2016). Due to their large uncertainties

(often many times larger than the physical size of clusters), photometric redshifts alone are

not sufficient for accurate identification of galaxy clusters via 3D reconstruction of the distri-

bution of galaxies. However, many cluster detection algorithms rely on photometric redshifts

(photo-z’s) as part of their cluster identification process (see, e.g. van Breukelen & Clewley

2009; Durret et al. 2011; Wen et al. 2012), often with a combination of other techniques

including matched filter (Milkeraitis et al. 2010; Szabo et al. 2011) and Voronoi Tessellation

methods (Ramella et al. 2001; Soares-Santos et al. 2011).

Another approach to detecting clusters in the optical regime, as proposed by Gladders & Yee

(2000), is based on taking advantage of the cluster red sequence (Baum 1959; Bower et al.

1992). The red sequence refers to the tight correlation followed by the cluster galaxies in the

colour-magnitude space, this feature arises due to galaxy clusters mostly containing early-

type elliptical and lenticular galaxies which consist of passively evolving stellar populations

giving rise to strong metal absorption lines at wavelengths blue-wards of 4000Å. As a result,

the majority of cluster members appear red in colour and occupy a narrow ridge in the colour-

magnitude space, when viewed through broadband photometric filters that straddle the 4000Å

break. In this way cluster galaxies can be isolated from active, star forming field galaxies. The

4000Å break evolves red-ward with increasing redshift allowing for identification of clusters

across a range of redshifts using a combination of filters at various wavelengths in order

to track this evolution. Algorithms utilising the red sequence for cluster detection include

Koester et al. (2007); Gladders et al. (2007); Thanjavur et al. (2009); Hao et al. (2010); Rykoff

et al. (2014) as well as The Overdense Red-sequence Cluster Algorithm (orca; Murphy et al.

2012) used in this work.

3.1.2 X-ray detection

Galaxy clusters have also been detected in X-ray exploiting the radiation from the hot ICM

(Cavaliere & Fusco-Femiano 1976; Allen et al. 2002) with several catalogues constructed

based on the ROSAT All-Sky Survey (Voges et al. 1999; Ebeling et al. 1998; Reiprich &
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Böhringer 2002; Böhringer et al. 2004; Böhringer et al. 2016), as well as deeper observations

of high-redshift clusters (Burenin et al. 2007; Ebeling et al. 2010; Mehrtens et al. 2012).

The main advantage of X-ray compared to optical cluster samples is their significantly lower

vulnerability to line of sight projection effects. This is a consequence of the dependence of

X-ray signal on electron density squared which makes the signal more peaked at the cluster

centre relative to the projected cluster galaxy distribution in optical observations (see e.g.

Ebeling et al. 2010; Allen et al. 2011). On the other hand, in the X-ray regime, AGN present

the main challenge for cluster samples. This is because AGN significantly outnumber galaxy

clusters and their superposition can be a source of contamination in X-ray cluster samples,

especially in X-ray observations with a lower resolution (see e.g. Böhringer et al. 2014; Biffi

et al. 2018; Finoguenov et al. 2020).

In this work, we compare our optically detected cluster catalogue with The MCXC: a meta-

catalogue of X-ray detected clusters of galaxies (Piffaretti et al. 2011; which contains 1743

clusters based on publicly available ROSAT All Sky Survey-based (NORAS, REFLEX, BCS,

SGP, NEP, MACS, and CIZA) samples and serendipitous (160SD, 400SD, SHARC, WARPS,

and EMSS) cluster catalogues. In the near future, an ongoing all-sky X-ray survey eROSITA

(Merloni et al., 2012) with the aim of detecting ∼ 100, 000 galaxy clusters out to z > 1 will

significantly increase the cluster sample size in the X-ray regime. The cluster catalogue intro-

duced in this work will provide a valuable resource which could be used to better characterise

the selection function of the eROSITA cluster in terms of sample completeness and purity.

3.1.3 SZ detection

With the benefit of a detection signature that is essentially independent of redshift, the SZ

effect offers a new window on the cluster population providing a nearly mass-limited sample

at high redshifts, where cluster abundance can place sensitive constraints on cosmological

parameters (Carlstrom et al. 2002; Planck Collaboration et al. 2014d). In recent years,

several SZ surveys have been undertaken with South Pole Telescope (SPT; Carlstrom et al.

2011) survey, the Atacama Cosmology Telescope (ACT; Fowler et al. 2007), and Planck

(Tauber et al., 2010), providing the first SZ-selected cluster samples (Vanderlinde et al. 2010;

Menanteau et al. 2010; Planck Collaboration et al. 2011; Reichardt et al. 2013; Hasselfield

et al. 2013). In Section 3.4.1, we also draw a comparison between our cluster catalogue and

The second Planck catalogue of Sunyaev-Zeldovich sources (henceforth Planck SZ; Planck

Collaboration et al. 2016e), which contains 1653 detections, out of which 1203 are confirmed
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clusters based on identification of counterparts in external datasets. Similarly, we compare

the ATLAS cluster catalogue with SZ detections from the AdvACT sample (Hilton et al.,

2020), which has a large overlap with the SGC of ATLAS. The AdvACT sample contains

over 4000 cluster detections in a survey area of 13, 168 deg2, probing lower cluster masses

than the Planck SZ sample.

The layout of this Chapter is as follows: In Section 3.2 we describe the VST ATLAS survey

galaxy input catalogue, followed by Section 3.3, where we present a brief description of the

orca algorithm, as well as a description of our machine learning approach to obtaining

photometric redshifts for our clusters. We then present a description of our cluster richness

estimation. In Section 3.4, we present the ATLAS cluster catalogue and compare our results

with external multi-wavelength cluster samples, providing estimates of the completeness and

purity of the ATLAS cluster catalogue. Finally, we conclude this work by presenting a

summary in Section 3.5.

3.2 Dataset

The input catalogue given to orca for cluster detection consists of objects detected in two

adjacent bands (i.e. g & r, r & i, or i & z which are used for cluster red-sequence detection).

We also require objects to be classified as galaxies in a minimum of two bands. Here, we only

require objects to be classified as galaxies in two bands as demanding a galaxy classification

in all bands was deemed too strict, resulting in a ∼ 10% decrease in the overall sample size.

The slight increase in stellar contamination introduced in this approach is unlikely to be a

problem in our cluster detection, due to orca’s reliance on the red sequence in selecting

cluster members (see Section 3.3.1). We do not include the u band due to its shallow depth

and the incompleteness of the u-band observations resulting in large gaps in across the survey

area at the time of conducting this work.

As the VST ATLAS survey observations are conducted in 17 deg2 concatenations (in DEC),

taking data in a single band at a time, nightly variations in seeing, sky brightness and other

observing conditions can result in slight variations in survey depth across different concatena-

tions. After band merging, these slight fluctuations in object densities in some concatenations

could result in artificial inhomogeneities across the sky. Consequently, we select magnitude

limits of gKron < 22.0; rKron < 21.6; iKron < 21.1; zKron < 19.9 as a compromise between

increasing the survey depth and increasing homogeneity between concatenations. The fi-
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(a) VST ATLAS NGC

(b) VST ATLAS SGC

Figure 3.1: The orca galaxy input catalogues in the NGC and SGC of the VST ATLAS
survey. The input catalog contains objects classified as galaxies in two bands, with magnitude
limits of g < 22.0; r < 21.6; i < 21.1; z < 19.9. Here the darker colours represent denser
regions.
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nal input catalogues contain ∼ 8, 740, 000 galaxies in the SGC, ∼ 7, 825, 000 in the NGC.

Figure 3.1 shows the orca input catalogues in the NGC and SGC of the ATLAS survey.

In order to impose magnitude limits on the input catalogues, we make use of the VST

ATLAS Kron pseudo-total magnitudes, adding an offset to total of -0.15mag (see discussion

in Section 2.4 and Section 3.3 of Shanks et al. (2015) for the origin of this offset). The

Kron magnitudes provide the most reliable measure of the galaxies’ total magnitudes in

comparison to SDSS model magnitudes, with a lower level of dispersion compared to VST

ATLAS Petrosian magnitudes. However, when measuring the galaxy colours, we make use of

the ATLAS Aperture 5 magnitudes which provide the most consistent colours compared to

SDSS. The ATLAS Aperture 5 has a radius of 2′′, and we add the associated VST ATLAS

aperture corrections (APCOR5) with mean values -0.12, -0.12, -0.11 and -0.12mag to the gA5,

rA5, iA5, zA5 respectively.

3.3 Methodology

3.3.1 orca: The cluster detection algorithm

A detailed description of the ‘Overdense Red-sequence Cluster Algorithm’ (orca) which is

used to create the ATLAS cluster catalogue can be found in Murphy et al. (2012). Figure

1 of the reference paper (shown as Figure 3.2 here), provides an illustration of five main

stages involved in orca’s cluster detection. The algorithm detects the red sequence in pairs

of adjacent bands or colours (i.e. g − r, r − i or i − z). In the first stage, the algorithm

applies a selection function to the input catalogue in the form of narrow slices in the colour-

magnitude space. This photometric filtering separates galaxies within a specific redshift range

from foreground and background objects, broadly isolating the cluster galaxies via the 4000Å

break. By detecting clusters in two colours concurrently, fore- and background contamination

can be significantly reduced, as galaxies follow unique tracks in different colour-redshift spaces

(see Figure 3.3). During this stage, the red sequence is isolated across a range of redshifts,

through modifications of the colour slice in successive runs of the algorithm in order to

systematically scan the entire photometric space.

Upon the application of the photometric filtering, the algorithm estimates the surface density

of the remaining galaxies by calculating the Voronoi diagram of their projected distribution

on the sky. The Voronoi cells are then separated into overdense and underdense cells based

on a user-specified probability threshold (Pthresh), related to how likely they are to belong to
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Figure 3.2: Figure 1 of Murphy et al. (2012) illustrating the five stages of the orca cluster
detection algorithm based on a 9′ × 9′ region of the SDSS Stripe 82. The first panel on the
left shows the distribution of galaxies in this region. In the second panel, galaxies are isolated
in a specific redshift range based on a photometric colour selection. In the third panel the
Voronoi diagram and surface densities of these galaxies are calculated. The galaxies are then
divided into overdense (yellow) and underdense (grey) cells, as shown in the fourth panel.
In the final panel orca’s Friends-Of-Friends algorithm connects the overdense cells until the
density of the whole system falls below a user-specified density threshold. The system is then
considered a cluster if there are at least Nmin linked members, where the value of Nmin is also
specified by the user.

a random distribution (for more details, see Section 3.4 of Murphy et al. 2012). Finally using

the Friends-of-friends technique, the algorithm connects adjacent overdense cells until the

density of the whole system falls below a user-defined critical density (∑crit). At this stage

if the system has at least Ngals linked galaxies (in this case we set Ngals = 5), it is defined as

a cluster.

We optimize the Pthresh and ∑crit parameters for performance on VST ATLAS based on

multiple runs of the orca algorithm on a ∼ 300 deg2 area and assessing its performance

based on recovering the Abell, MCXC, RedMapper and Planck SZ clusters in this region.

We then set ∑crit = 2.5∑̄ (where ∑̄ is the mean galaxy density), and Pthresh = 0.0125, using

the default for other adjustable parameters of the algorithm as these do not have a major

effect on improving the results.

As the adjustment to the colour slice is by design less than the width of the red sequence, the

same cluster can be identified multiple times in successive runs of the algorithm. However,

multiple detections are identified and merged into one in the final stage of the algorithm

in a process described in Section 3.6 of Murphy et al. (2012). Attached to each merged

cluster in the final catalogue is a list of the candidate cluster galaxies considered by orca in

separate runs, which were not merged into a final cluster. These are referred to as associate

cluster members and in some cases could contain actual cluster members which for instance

could be identified with the help of photo-z’s. These cluster associates will be released in a

supplementary catalogue in conjunction with the ATLAS cluster catalogue.
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Figure 3.3: Figure 2 of Murphy et al. (2012) showing the redshift evolution of the mock
galaxy r-i colours. Here blue indicates low and red indicates high-density regions. By se-
lecting galaxies in the narrow colour slices as shown by the shaded region, orca is able to
isolate galaxies within a specific redshift range. Furthermore, concurrent detection of the
red-sequence in two colours (e.g. g-r and r-i) significantly reduces contamination from fore-
and background galaxies.
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3.3.2 ANNz2: Photometric redshift estimation

We make use of the publicly available ANNz21 (Sadeh et al., 2016) algorithm in order

to obtain photometric redshift estimates for the VST ATLAS cluster members. For this

purpose, we simultaneously make use of a combination of two machine learning methods

offered by the algorithm; Artificial Neural Networks (ANNs) and Boosted Decision Trees

(BDTs). After performing various tests, this approach was shown to produce the best RMS

scatter in comparison to using ANNs or BDTs alone. Here the RMS error is given by:

σ∆z/(1+z) ≡

√√√√√ 1
ngals

∑
gals

(
zphoto − zspec

1 + zspec

)2

, (3.3.1)

where ngals is the number of galaxies in the training set and zphoto and zspec are estimated

photometric and measured spectroscopic redshifts of these galaxies, respectively. We define

outliers following the conventional form as galaxies where

| zphoto − zspec |
1 + zspec

> 0.15, (3.3.2)

and assess the photometric redshift estimation performance with and without including these

outliers.

To estimate photometric redshifts using machine learning, we are required to provide the

algorithm with a training sample of galaxies with measured redshifts, which overlap the VST

ATLAS survey area. For this purpose, we make use a total of 21,114 galaxies with redshifts

obtained from various surveys as detailed in Table 3.1. In cases where the same objects have

redshifts provided by more than one survey, we keep the redshift with the smaller uncertainty.

Figure 3.4 shows the redshift distribution of the galaxies included in the training set used in

our photometric redshift estimation.

In order to improve our photometric redshift training, in addition to the ATLAS griz bands,

we add the W1 and W2 magnitudes from the "unblurred coadds of the WISE imaging"

catalogue (unWISE; Schlafly et al. 2019)2. Here we use a 2′′ radius to match ATLAS and

unWISE sources and we correct for galactic dust extinction in W1 and W2 bands by sub-

tracting 0.18×E(B−V ) and 0.16×E(B−V ) from the W1 and W2 magnitudes respectively.

1https://github.com/IftachSadeh/ANNZ
2We note that despite the 6′′ WISE PSF, thanks to the improved modelling of the blended sources in

the unWISE catalogue, the addition of W1 and W2 information to our machine learning training still proved
useful in improving our photo-z RMS scatter.

https://github.com/IftachSadeh/ANNZ
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Table 3.1: Details of the samples used in our photometric redshift training. Here the redshift
coverage, the mean redshift of the samples, and the number of galaxies corresponds to the
number of objects with redshifts with counterparts identified as ATLAS cluster members by
the orca algorithm.

Sample Redshift coverage z̄ Number of galaxies Reference
2dFGRS 0.00 < z < 0.30 0.13 9,426 Colless et al. (2003)
SDSS DR12 0.05 < z < 0.35 0.15 5,260 Alam et al. (2015)
GAMA G23 0.05 < z < 0.50 0.21 3,008 Liske et al. (2015)
Primus 0.05 < z < 0.60 0.24 177 Cool et al. (2013)
2dFLenS 0.05 < z < 0.75 0.26 2,717 Wolf et al. (2017)
BOSS LOWZ 0.05 < z < 0.45 0.26 375 Dawson et al. (2013)
BOSS CMASS 0.40 < z < 0.75 0.52 141 Dawson et al. (2013)

These E(B − V ) values are taken from the same Planck dust map (Planck Collaboration

et al., 2014d) used to correct the ATLAS magnitudes for galactic dust extinction and the

0.18 and 0.16 coefficients are taken from Yuan et al. (2013).

Figure 3.4: The redshift distribution of the training sample used to estimate the photometric
redshifts of the ATLAS galaxy cluster members by ANNz2.

Finally, we calculate the weighted mean photometric redshift of our clusters using:

z̄ =
∑
zi/σi

2∑ 1/σi2
, (3.3.3)

where zi and σi are the photometric redshift and photometric redshift error of the i-th cluster

member. The error on the weighted mean redshift of each cluster is then given by:

σz̄ =
√

1∑ 1/σi2
. (3.3.4)
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3.3.3 Cluster catalogue post-processing

As discussed in 3.6 of Murphy et al. (2012), multiple detections of the same cluster found in

different colour-magnitude spaces are merged together by orca based on five tests of ‘cluster

similarity’. These criteria are based on the similarity of the clusters’ red-sequence, the extent

of spatial overlap and the number of common galaxies between the two detections.

In this work, we utilise our photometric redshifts to further merge overlapping cluster detec-

tions that are likely to belong to the same system based on the following criteria:

• Spatial overlap: A cluster centre lies within the cluster radius of a nearby cluster.

Here, the cluster centre is defined as the mean RA and DEC of its cluster member and

cluster radius is defined as the angular separation between the furthest cluster member

and the cluster centre. In addition, we require at least one of the below criteria to be

satisfied in order for overlapping detections to be considered as part of the same system.

• Photometric redshift overlap: The error weighted mean cluster photometric red-

shift lies within 3σ of another spatially overlapping cluster. Here σ is defined as the

error on the weighted mean cluster redshift (with an average value of 0.007± 0.003).

• Red-sequence overlap: The mean colour of a cluster’s members (in either g−r, r− i

or i− z) is within one standard error of another overlapping cluster’s mean colour.

Requiring the combination of spatial overlap, with either photometric redshift or red-sequence

overlap, results in the merging of 9% of the clusters in the catalogue. Figure 3.5 shows an

example of merged overlapping clusters based on the above criteria.

3.3.4 Cluster richness (N200)

In order to provide an estimate of cluster richness, we first count the number of galaxies

within a 1h−1 Mpc aperture of the cluster centre, N1Mpc, which are fainter than the BCG,

and brighter than 0.4L∗. Here L∗ is the characteristic luminosity in the Schechter luminosity

function, and following Reyes et al. (2008), we take the z = 0.1, i-band value of L∗ = 2.08×

1010h−2L�. To calculate the K-corrections, we make use of the ‘K-corrections calculator’

Python algorithm3, which is based on the procedure described in Chilingarian et al. (2010).

3http://kcor.sai.msu.ru/getthecode/

http://kcor.sai.msu.ru/getthecode/
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Figure 3.5: The outcome of merging overlapping clusters based on spatial and photometric
redshift, or red-sequence overlap. The cluster centres of the merged overlapping clusters
are coloured by their newly assigned cluster IDs, with the circles showing the corresponding
cluster radii used to identify spatially overlapping clusters.

Once the values of N1Mpc are determined, we calculate the cluster radius R200, defined as

the radius within which the cluster galaxy number density is 200Ω−1
m times the mean galaxy

density of the present Universe. We calculate R200 (in units of h−1Mpc) using an empirical

relation presented by Hansen et al. (2005):

R200 = (0.142± 0.004)N0.6±0.01
1Mpc , (3.3.5)

based on their analysis of the SDSS maxBCG clusters. R200 is in turn used to obtain the final

cluster richness N200 which is calculated in the same way as N1Mpc, but now using R200 as

the aperture within which the cluster members are counted as opposed to the fixed aperture

of 1 Mpc.

3.3.5 Scaling N200 by n(z)

Due to the magnitude limits of our data, our ability to detect fainter cluster members is

reduced as a function of redshift, which could lead to an under-estimation of our cluster N200

values at higher redshifts. In order to correct for the impact of the survey magnitude limits

on our N200 and subsequent cluster mass (M200) estimation, we up-weight our N200 values

by a theoretical galaxy n(z) curve which gives the relative number of galaxies detectable as

a function of redshift, given our i < 21.1 magnitude limit. This theoretical n(z) is obtained
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based on a luminosity function which assumes a Schechter (1976) function, with the i-band,

‘red’ galaxy values of α = −0.46 and the z = 0.1 value of M∗ − 5 log h = −20.63 taken from

table 3 of Loveday et al. (2012), k and evolution corrected (with a characteristic time-scale

of τ = 2.5 Gyr), using the Stellar population synthesis model of Bruzual & Charlot (2003).

Figure 3.6a shows the cluster membership of our orca clusters (as well as orca clusters

matched to Planck, AdvACT, MCXC and Abell cluster samples) as a function of redshift.

Here, we are also plotting the theoretical n(z) described above, normalized to match our

maximum value of Ngal = 220 at z = 0.1. Also shown is a fitted curve to the theoretical n(z)

which is used to obtain the scaling factor, C(z̄), applied to our N200 in the z > 0.1 redshift

range, where the number of our cluster members begin to drop as a function of redshift. This

scaling factor takes the form of:

C(z̄) = 220/(571.7z̄2 − 819z̄ + 292.8), (3.3.6)

i.e. the ratio of Ngal = 220 to our normalized theoretical n(z) at each redshift and is shown

in Figure 3.6b as a function of redshift.

In order to apply the C(z̄) scaling to our N200 values, we first scale our N1Mpc values which

are used to estimate the value of R200 for each cluster. We then count the number of cluster

galaxies within R200 to obtain N200. The N200 values are then scaled by the C(z̄) scaling

factor to give the scaled N200 values plotted in Figure 3.7a as a function of redshift. The

uncertainty on the scaled N200 is then given by propagation of the
√
n error on N200 and the

uncertainty on C(z̄):

σN200 = 2200

√√√√4N2
200(5717z̄ − 4095)2σ2

z̄ +
√
N200

2(5717z̄2 − 8190z̄ + 2928)2

(5717z̄2 − 8190z̄ + 2928)4 . (3.3.7)

Note that in the above equation the N200 values are not scaled by C(z̄). For the remainder

of this work however, unless otherwise specified, our use of N200 refers to these n(z) scaled

N200 values.

We note that our cluster mass estimates and the resulting mass functions (see Chapter 5) are

not very sensitive to the chosen value of normalisation and exact parameters of equation 3.3.6.

This is because any systematic offsets introduced during the n(z) scaling is removed when

we calibrate our cluster mass-richness scaling relation to masses from external samples (in

Section 5.2). However, in future works, we shall verify the performance of our cluster detection

algorithm, as well as our richness estimation and n(z) scaling, by injecting mock clusters and

redshifted versions of nearby clusters with few members preserved. This has the potential to
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(a)

(b)

Figure 3.6: (a) orca cluster membership Ngal as a function of photometric redshift. Also
shown are orca clusters with counterparts in Planck SZ, MCXC, AdvAct and Abell cluster
catalogues. The best fit curve (dashed pink line), fitted to the normalized theoretical n(z)
described in Section 3.3.5 is used to determine the redshift dependent N200 scaling factor
shown in panel (b).
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(a)

(b)

Figure 3.7: (a) n(z) scaled N200 values as a function of photometric redshift. A comparison
of this plot with Figure 3.6a shows that this scaling has compensated for our tendency to
under-estimate cluster richness values with increasing redshift. For clarity we do not show
the error bars on the scaled N200 values in panel (a). However, in panel (b) we show the
mean uncertainty on the scaled N200 values as a function of cluster photometric redshift.
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improve the accuracy of our cluster mass estimates by revealing any unknown systematics

that might be present in our analysis, in a manner that is independent of other cluster samples

which could suffer from their own systematics.

3.3.6 Cluster quality flags

We assign a quality flag to each cluster detection based on the various factors described in

this Section.

• Seeing flag, Qseeing: Seeing is the main observing condition that could impact our

cluster detection success rate, and perhaps to a greater extent, the number of galaxies

identified as cluster members by orca. As discussed in Section 3.2, seeing variations

across different ATLAS concatenations (series of 17 tiles forming an ATLAS Observing

Block), could result in slight variations in the number of objects detected/classified as

galaxies across different concatenations. In cases where these artificial inhomogeneities

result in galaxy densities that are lower than the mean galaxy density across the survey,

the number of cluster detections (and the richness of the cluster) can be underestimated.

In order to provide a measure of which clusters may be impacted in such a way by below

average seeing, we assign a seeing flag to each cluster ranging from 0 to 1, based on the

mean of the tile seeing in g, r, i and z-bands, with clusters detected in the tile with the

best mean seeing being assigned a seeing flag of 1.

• Photometric redshift flag Qphotoz: A second detection quality flag (once again

ranging in value from 0 to 1) is assigned to each detection based on the uncertainty

on the weighted mean photo-z of each cluster. As we later show in Figure 3.11d, the

error on the mean photometric redshift of our clusters increases with increasing redshift,

so in order to take this into account we first divide our clusters into six redshift bins

covering the range 0.05 < z < 0.65 with bin widths of ∆z = 0.1. We then remove any

3σ redshift outliers from each cluster, recalculate the redshift error on the mean cluster

redshift and divide the new error by the cluster R200. The division by cluster radius

will allow for variations in error on the redshift caused by variations in physical cluster

sizes. In the final step, we rank these "R200 normalized" redshift errors from highest to

lowest in each redshift bin, assigning a redshift flag of 1 to the cluster with the lowest

normalized error on the mean redshift.
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A final detection quality flag (QORCA) is determined by taking the mean of Qseeing and Qphotoz

providing a measure of the quality of each detection based on variations in seeing and the

level of scatter on the cluster photometric redshift.

3.4 Results and discussion

3.4.1 The VST ATLAS cluster catalogue

The sky distribution of ATLAS clusters in the SGC and NGC of the survey are shown in

Figures 3.8 and 3.9, respectively. For clarity we limit the clusters to those with richnessN200 >

15. For comparison, we also include the ABELL, MCXC, Planck SZ and AdvACT cluster

samples in the VST ATLAS coverage areas. In Section 3.4.4, we assess the completeness of

the ATLAS cluster sample as a function of cluster mass and redshift by drawing comparison

to these four cluster samples.

Figure 3.10 shows the number of ATLAS clusters as a function of cluster richness (N200). A

similar histogram showing the richness (λ) of the SDSS RedMapper sample is also added for

comparison. Although RedMapper clusters with (λ < 20) are not available with the public

release of the catalogue, it can be seen that in both samples follow similar cluster richness

distributions with thousands of clusters in bins of richness smaller than ∼ 40, hundreds in

richness bins between ∼ 40 and 80, and tens of clusters in bins of richness ranging from

∼ 80− 140. The ATLAS sample however contains a slightly larger number of richer clusters

(∼ 10%), which is likely due to differences in the definitions of cluster richness between the

two samples.

We present a more detailed comparison of various properties of the ATLAS and RedMapper

samples in Section 3.4.5, where we also obtain an estimate of the purity of the ATLAS samples

based on this comparison.

3.4.2 Photometric redshifts

Following the procedure described in Section 3.3.2, we use ANNz2 to obtain photo-z estimates

for our cluster galaxies with an RMS scatter of ∼ 0.024 (see Figure 3.11a), upon removing the

outliers as defined in Equation 3.3.2. Inclusion of outliers results in an RMS of ∼ 0.026. The

photometric redshift distribution of BCGs of the full ATLAS sample containing ∼ 53, 000

orca detections, as well as ∼ 22, 000 clusters with N200 > 10 and 9, 000 clusters with
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Figure 3.10: ATLAS cluster richness N200 distribution in comparison to SDSS RedMapper
cluster richness λ. Here both samples are limited to the redshift range 0.1 < z < 0.4, and
the RedMapper histogram is scaled down by a factor of 2.2 to account for the differences
between survey areas.

N200 > 20 are shown in Figure 3.11b. Here, the peaks of the distributions lie at z ∼ 0.25 and

clusters are detected up to z ∼ 0.7, (or z ∼ 0.6 for clusters with N200 > 20).

Figure 3.11c shows the distribution of the error on the weighted mean cluster redshift peaking

at ∼ 0.006 for the full sample, with errors of ∼ 0.004 and 0.003 for clusters with N200 > 10 and

N200 > 20 respectively. Finally, for the full sample, we show the error on the mean cluster

photometric redshifts as a function of redshift in Figure 3.11d, with the error gradually

increasing from ∼ 0.005 at z = 0.1 to 0.015 at z = 0.6.

In Figure 3.12 we compare the photometric redshift of our ATLAS clusters with spectro-

scopic redshifts from their cluster counterparts from MCXC, SDSS RedMapper, Planck and

AdvACT samples. While we find a general agreement between the ATLAS photometric red-

shifts and the spectroscopic redshifts from external samples, we find the rms scatter on this

comparison to external sample to be ∼ 3× higher than our estimated error on the cluster

weighted mean photometric redshifts (shown in Figure 3.11d). This indicates that the error

on the weighted mean given by Equation 3.3.4 tends to underestimate the uncertainty on

the cluster redshift. Prior to the public release of the cluster catalogue, we shall perform a

detailed study of alternative approaches to estimating the cluster photometric redshift un-

certainties (such as standard error, jackknife and bootstrap techniques) that could provide a
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(a) (b)

(c) (d)

Figure 3.11: (a) Photometric vs. spectroscopic redshift of the orca cluster members. The
photometric redshifts are calculated following the procedure described in Section 3.3.2. Out-
liers (red) are defined in Equation 3.3.2. (b) The distribution of the (error-weighted) mean
photometric redshift of the VST ATLAS clusters, with the error on the weighted mean pho-
tometric redshift shown in panel (c). (d) The error on the mean cluster photometric redshifts
as a function of redshift. Here the error bars represent the standard deviation in each bin.
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Figure 3.12: A comparison of our ATLAS cluster photometric redshifts to spectroscopic
redshifts from the MCXC, SDSS RedMapper, Planck and AdvACT SZ cluster samples.

more realistic estimate of the error.

In the future, it may be possible to improve on our current photometric redshifts by adding

J, Y,H and K bands from the VHS survey to aid our machine learning training at higher

redshifts. Another improvement will come from the increased size of the high redshift spec-

troscopic training samples from surveys including Euclid and 4MOST. Finally, photometric

redshift improvements may also be achieved by using different machine learning algorithms

such as GPZ (Almosallam et al., 2016), or more novel deep learning approaches (e.g. D’Isanto

& Polsterer 2018).

3.4.3 ATLAS cluster catalogue columns

Table 3.2 provides a description of the ATLAS catalogue columns, detailing the various

properties of clusters including redshift, richness, cluster radius and cluster mass. For each

catalogue column, we provide the column title given in the catalogue, the corresponding

symbol as used in the text of this work, followed by the units and a description of the values

in each column.
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Table 3.2: A description of the columns of the ATLAS cluster catalogue. For each catalogue
column, the symbols column of this table shows the corresponding symbol used in the text
and figures of this thesis.

Column Symbol [units] Description

ClusterID — A unique cluster identification number assigned to

each cluster by the orca cluster detection algorithm.

RA [Degrees J2000] Right Ascension of the cluster centre (mean RA of

cluster members).

DEC [Degrees J2000] Declination of the cluster centre (mean DEC of cluster

members).

Photoz z̄ Error-weighted mean photometric redshift of the clus-

ter (given by Equation 3.3.3).

Photoz_err σz̄ Error on the weighted mean cluster photometric red-

shift (given by Equation 3.3.4).

orca_Ngal Ngal The number of cluster galaxies detected by orca.

R_orca RORCA [arcmin] The projected radius of the orca cluster on the sky,

defined as the angular separation between the cluster

centre and the furthest cluster galaxy.

N_1Mpc N1Mpc The number of cluster galaxies detected by orca

within a radius of 1h−1Mpc from the centre of the

cluster. This number is scaled by the theoretical n(z)

following Equation 3.3.6.

R_200 R200 [h−1Mpc] The radius from the cluster centre within which the

density is 200× the mean density of the Universe

(given by Equation 3.3.5.

N_200 N200 The number of cluster galaxies within a radius of R200

from the centre of the cluster. This number is scaled

by the theoretical n(z) following Equation 3.3.6.

N_200_err σN200 The error on N200 given by Equation 3.3.7.

Continued on next page
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Table 3.2 – Continued from previous page

Column Symbol [units] Description

M_200 M200 [1014M�] The cluster mass enclosed within a radius of R200 from

the centre of the cluster (given by Equation 5.2.1).

The cluster masses in our catalogue are measured with

respect to the mean density of the Universe (often rep-

resented using the symbol M200m in literature).

M_200_err σM200 [1014M�] The error on the M200 cluster mass given by Equa-

tion 5.2.2.

Q_orca [Qseeing, Qphotoz,

QORCA]

Tuple containing seeing, photometric redshift and

overall cluster detection quality flag (see Sec-

tion 3.3.6).

Notes — (If present) ‘Lensed?’: Previously unpublished can-

didate strong lensing cluster, ‘Lensed’: Spectroscopi-

cally confirmed / published strong lensing cluster (see

Section 3.4.6 for details); ‘Ext: Abell, RM, PSZ, Ad-

vACT, MCXC’, representing cluster counterparts in

Abell, SDSS RedMapper, PSZ, AdvAT and MCXC

cluster catalogues, respectively (within RORCA).

Table 3.3 provides a description of the columns in the ATLAS cluster members catalogues

providing unique identifiers, coordinates and photometric redshifts of each cluster galaxy.

3.4.4 Mass and redshift completeness

Figure 3.13a shows the fraction of clusters from the SDSS RedMapper, AdvACT, Planck,

MCXC and Abell catalogues overlapping the ATLAS coverage area, that are detected in

the ATLAS cluster catalogue. This provides a measure of the completeness of the ATLAS

cluster sample as a function of redshift. Here we use the orca cluster radius (Rorca) as our

matching radius for the AdvACT, RedMapper, MCXC and Abell cluster catalogues, while

using the Planck position error on the SZ cluster centre as the matching radius. In the

case of the AdvACT and Planck samples, we limit the match to clusters with SZ detections

with SNR > 5. In all cases, the cluster samples are limited to clusters with masses greater

than 1 × 1014M�, roughly corresponding to the lower mass limit of the ATLAS clusters.
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Table 3.3: A description of the columns of the ATLAS cluster members catalogue. For each
catalogue column, the symbols column of this table shows the corresponding symbol used in
the text and figures of this Chapter.

Column Symbol [units] Description
ClusterID — A unique cluster identification number assigned to

each cluster by the orca cluster detection algorithm.
ObjID — A unique object identification number assigned to each

cluster galaxy by the orca cluster detection algo-
rithm.

RA [Degrees J2000] Right Ascension of the cluster member.
DEC [Degrees J2000] Declination of the cluster member.
Photoz z Cluster galaxy photometric redshift as determined

by ANNz2 machine learning algorithm (see Sec-
tion 3.3.2).

Photoz_err σ(z) Error on cluster galaxy photometric redshift as deter-
mined by ANNz2.

(a) Relative redshift completeness (b) Mean redshift completeness

Figure 3.13: (a) The redshift completeness of the ATLAS cluster sample, based on the
fraction of the recovered SDSS RedMapper, AdvACT, Planck, MCXC and Abell clusters
overlapping the ATLAS coverage area (see text for selection and matching criteria). The
error bars are given by the propagation of

√
n error estimates and for clarity, the data points

corresponding to different datasets have been slightly shifted along the x-axis. (b) The mean
redshift completeness of the ATLAS clusters sample based on the comparison to external
clusters in panel (a). Here, the error bars being given by the standard error on the mean.

Figure 3.13b shows the mean completeness of the ATLAS cluster samples as a function of

redshift, where the sample is > 95% complete in the range z < 0.3 and > 80% complete up

to z = 0.4. We note that the sharp fall in our completeness comparison to Planck at z = 0.5

is due to small number statistics of the Planck sample at this redshift range where we detect

3/7 Planck SZ clusters overlapping the ATLAS coverage area.
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(a) Relative cluster mass completeness (b) Mean cluster mass completeness

Figure 3.14: (a) The fraction of SDSS RedMapper, AdvACT, Planck and MCXC clusters
overlapping the ATLAS coverage area which are detected in the ATLAS cluster catalogue.
This provides an estimate of the completeness of the ATLAS cluster sample as a function of
mass. The error bars shown in this panel are given by the propagation of

√
n error estimates

and for clarity, the data points corresponding to different datasets have been slightly shifted
along the x-axis. (b) The mean completeness of the ATLAS sample as a function of cluster
mass, based on comparison to the samples shown in panel (a). Here, the error bars given by
the standard error on the mean.

Figure 3.14a shows the mass completeness of the ATLAS cluster catalogue by assessing the

fraction of SDSS RedMapper, AdvACT, MCXC and Planck clusters detected in the ATLAS

sample as a function of cluster mass. Here, all samples are limited to the redshift range 0.1 <

z < 0.3 in order to ensure the mass completeness is not impacted by our reduced completeness

at higher redshifts. Figure 3.14b shows the mean cluster mass completeness of the ATLAS

sample, with the sample being > 95% complete across the full 1× 1014 − 1.5× 1015M� mass

range, with a near full recovery rate of external clusters for masses > 5× 1014M�.

3.4.5 Comparison to RedMapper

In Figure 3.15, we show a comparison of the ATLAS and SDSS RedMapper cluster catalogues

in the regions where the two surveys overlap. We note the caveat that the comparison

performed in this Section is limited to an overlap area of ∼ 200 deg2 between the ATLAS

and RedMapper cluster samples (i.e. ∼ 4% and ∼ 2% of the ATLAS and SDSS survey areas

respectively), with the overlap area being situated at the edge of both surveys. Furthermore,

While we remove any cluster that lies within 5′ of the boundaries of the two survey coverage

areas, given the limited overlap area and potential "edge effects", one should keep in mind that
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the comparison performed here may not be representative of the complete cluster samples.

Here, we limit the ATLAS and RedMapper clusters to those with richness greater than 30 to

match the richness lower limit of the Abell clusters which are added along with clusters from

the AdvACT catalogue for comparison. For reasons that we will explore in more detail later,

in the redshift range 0.05 < z < 0.35 ATLAS appears to perform better than RedMapper

in recovering Abell and AdvACT clusters4. In the 0.35 < z < 0.55 redshift range, however,

RedMapper appears to recover a larger fraction of AdvACT clusters than ATLAS. We also

note that at higher redshifts there appears to be a larger number of RedMapper clusters with

no detections in ATLAS or AdvACT catalogues compared to lower redshift ATLAS clusters

with no detections in the other catalogues.

Table 3.4 shows a comparison of the sky density of the ATLAS cluster catalogue to the SDSS

RedMapper catalogue in five bins of redshift ranging from z = 0.05− 0.55. For the purposes

of this comparison, we limit the ATLAS sample to clusters with richness N200 > 20, to allow

for direct comparison with the sky densities of the RedMapper sample, given their similar

λ > 20 richness cut. Similar to what we saw in Figure 3.15, one can see here that the ATLAS

catalogue has a higher sky density of clusters compared to RedMapper, in the redshift range

z < 0.25 while the situation is reversed in the redshift at z > 0.35.

Table 3.4: Number and sky density (number of clusters per square degree) of ATLAS and
SDSS RedMapper cluster samples in different redshift bins. Here, we apply a richness cut of
N200 > 20 to our ATLAS sample, to match the RedMapper richness cut of λ > 20.

Number of clusters Sky density
Redshift ATLAS RedMapper ATLAS RedMapper

0.05 < z < 0.15 41 17 0.19 0.08
0.15 < z < 0.25 127 71 0.59 0.33
0.25 < z < 0.35 112 127 0.52 0.59
0.35 < z < 0.45 67 215 0.31 1.00
0.45 < z < 0.55 41 99 0.19 0.46

A similar pattern can be seen in Figure 3.16a where we compare the photometric redshift

distributions of ATLAS and RedMapper samples for clusters with richness greater than 20.

To further examine this, we calculate the detection rate of Abell clusters (which are classified

as clusters with 30 or more members), by the RedMapper catalogue across the full SDSS

4We note that the Abell sample is not as complete as the ATLAS and RedMapper samples as the latter
surveys have the advantage of detecting clusters in multiple colours, (with both catalogues detecting ∼ 3 − 4
times as many clusters as the Abell sample across their full survey footprints in the z < 0.3 redshift range).
However, Abell is still a useful sample for comparison to ATLAS and RedMapper, as clusters detected in
both ATLAS and Abell samples are likely to be genuine rich clusters which should be detected by RedMapper
within its λ > 20 limit
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survey footprint. We find that RedMapper only recovers ∼ 60% of the 0.05 < z < 0.3

Abell clusters, compared to a ∼ 80% recovery rate in the ATLAS sample with a richness

cut of N200 > 20. Consequently, the higher number of ATLAS detections in this redshift

range relative to RedMapper is likely to be predominantly due to the incompleteness of the

RedMapper sample at lower redshifts.

(a) (b)

Figure 3.16: (a) A comparison of the photometric redshift distribution of ATLAS and SDSS
RedMapper cluster catalogues. Here, the ATLAS samples is restricted to clusters with rich-
ness N200 > 20 to roughly match the RedMapper richness cut of λ > 20. The RedMapper
histogram is scaled down by a factor of 2.2 to account for the difference between survey ar-
eas. (b) The number density of ATLAS and RedMapper clusters per Gpc3. Here, in addition
to the richness>20 cuts imposed in panel (a), the two samples are limited to clusters with
masses M200 > 3 × 1014h−1M� for the purpose of comparison to the cluster mass functions
later presented in Chapter 5.

In Figure 3.16b we compare the redshift distributions of the ATLAS and RedMapper samples

per unit volume and impose a mass cut of M200 > 3× 1014h−1M� on both samples (details

of our cluster mass calibrations are presented in Section 5.2), in addition to limiting them to

clusters with richness>20. Here, the better agreement between the ATLAS and RedMapper

redshift histograms at z > 0.35 compared to Figure 3.16a, suggests that the majority of the

additional RedMapper detections at higher redshifts are clusters withM200 < 3×1014h−1M�.

We now explore the completeness and purity of the ATLAS sample based on direct comparison

to RedMapper across the full range of cluster masses. In column (2) of Table 3.5, we calculate

the fraction of SDSS RedMapper clusters (within the ATLAS coverage area) that are also

detected by orca using the ATLAS data5. Here, our aim is to simply compute the likelihood

5Similar to Section 3.4.4, we use the orca radius RORCA as our matching radius here and throughout the
rest of this Section when comparing the two catalogues.
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that a SDSS RedMapper cluster detection is also identified by orca in the ATLAS data;

as such, when performing the matching, we only impose a redshift cut on the RedMapper

catalogue to allow for matches to be made in cases where the two catalogues assign the same

cluster to different redshift bins. We also remind the reader that in the public release of the

RedMapper catalogue a richness cut of λ > 20 has been imposed on the clusters, however, for

the purpose of this comparison we do not disregard successful matches between RedMapper

and ATLAS clusters that have an estimated richness of N200 < 20.

With these caveats in mind, we convert the recovery fractions shown in column (2) to per-

centages giving an estimate of the completeness of the ATLAS catalogue as a function of

redshift (under the assumption that the RedMapper sample is 100% pure with accurate es-

timates of photometric redshift). Based on this comparison, we find that the ATLAS sample

is 100% complete up to z < 0.25, with a slight reduction in completeness to 95% between

0.25 < z < 0.35 and a further reduction down to 65% completeness at z > 0.35. Although

these values are presented here to show a full comparison of the two samples, we note that

the mean completeness shown in Figure 3.13b is likely to be a more reliable estimate of the

completeness of the ATLAS cluster sample than estimates based on comparison to any one

external sample alone.

Table 3.5: Various comparisons of the intersections between the ATLAS and SDSS RedMap-
per cluster catalogues.

Redshift AT/RM AT Comp. RM/AT VI AT Purity RM Comp.
(1) (2) (3) (4) (5) (6) (7)

0.05 < z < 0.15 13/13 100% 16/37 +18/37 34/37 (92%) 16/34 (47%)
0.15 < z < 0.25 54/54 100% 60/95 +20/95 80/95 (84%) 60/80 (75%)
0.25 < z < 0.35 118/126 94% 71/100 +14/100 85/100 (85%) 71/85 (84%)
0.35 < z < 0.45 172/262 65% 53/91 +7/91 60/91 (66%) 53/60 (88%)
0.45 < z < 0.55 79/122 65% 19/58 +6/58 25/58 (43%) 19/25 (76%)

Notes. (columns 2 & 3) Fraction & percentage of SDSS RedMapper clusters with detections in
the ATLAS cluster catalogue. (4) The fraction of ATLAS clusters with counterpart detections
in the RedMapper catalogue. (5) Among the ATLAS clusters not matched to RedMapper
in column (4), how many clusters we constitute as genuine and rich detection clusters based
on Visual Inspection (VI) of their photo-z n(z). (6) The fraction of ATLAS detections that
are either detected by RedMapper or appear as likely detections based on the VI of the
cluster n(z)s. (7) An estimate of the completeness of the RedMapper based on the ratio of
RedMapper cluster detections to the number of "pure" ATLAS detections (from column 6).

In columns (4, 5 & 6) of Table 3.5, we estimate the purity of the ATLAS cluster catalogue

based on comparison to the cluster detections by RedMapper in the overlap region between

SDSS and ATLAS. As a richness cut of λ > 20 is imposed on the RedMapper sample, here,
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we are also limited to the richness range N200 > 20 when estimating the purity of our cluster

detections. As we are interested in assessing our sample purity as a function of redshift,

we limit the ATLAS sample to photometric redshift bins shown in column (1) and look for

confirmation that the ATLAS detection is also identified by RedMapper in SDSS as a cluster

with λ > 20. The fraction of ATLAS detections confirmed by RedMapper in this way at each

redshift bin is shown in column (4).

We note, however, that without access to the full RedMapper catalogue we have no way

of checking whether our N200 > 20 clusters with no successful matches to RedMapper may

have been detected and classified by RedMapper as clusters with λ < 20. To overcome

this limitation, in the next step we visually inspect the photometric redshifts of the clusters

that were detected as N200 > 20 systems in ATLAS, but did not have a successful match in

RedMapper. We also count our cluster detections as "pure" (i.e. non-spurious detections)

if > 50% of the cluster members appear concentrated in a histogram with a width of z ±

0.025 (corresponding to the ATLAS RMS error on cluster galaxy photometric redshifts).

The choice of this criterion was motivated based on visual inspection of the photometric

redshift histograms of ATLAS clusters with successful matches to RedMapper, where almost

all clusters detected in both catalogues had ATLAS or SDSS photometric redshift histograms

which were centred around a redshift with more than half of cluster members lying within

z ± 0.025 of the histogram peak. Figure 3.17 shows colour images and photometric redshift

histograms of two N200 > 20 ATLAS clusters with no SDSS RedMapper detections, which

were confirmed as pure following the procedure described above.

The fraction of additional clusters confirmed as genuine cluster detections based on visual

inspection is presented in column (5), with column (6) showing the sum of the fractions in

columns (4 & 5) with the percentages in this column providing an estimate of the purity

of the ATLAS cluster detections. Based on this estimate we find our cluster sample to be

> 90% pure at z < 0.15, and ∼ 85% pure in the redshift range 0.15 < z < 0.35. The purity

of the sample then falls to 66% and 43% in our final two redshift bins. This reduction of

sample purity with increasing redshift could be partially due to the fact that as we reach

the magnitude limits of the ATLAS and SDSS surveys the likelihood of real but faint cluster

members not being detected by RedMapper increases, bringing clusters with richness greater

than 20, below their λ > 20 limit. Similarly, the increase in the uncertainty on our estimated

photometric redshifts with increasing redshift, reduces the number of clusters classified as

pure on the basis of their photo-z histograms in column (5). On the other hand, it is

also possible that at higher redshifts RedMapper performs better than orca in overcoming
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(a) (b)

(c) (d)

Figure 3.17: (a & b) PanSTARRS colour images of two N200 > 20 ATLAS clusters with no
RedMapper detections in SDSS. Here the cluster members identified in orca are shown by
the red squares. (c & d) The photometric redshift histograms for clusters in panels (a & b)
respectively.

projection effects which could artificially increase the richness of our clusters, or result in

false cluster detections. We refer the reader to Section 6.4.3 of Murphy et al. (2012), for a

different analysis of the purity of orca cluster detections as a function of cluster mass and

redshift, based on comparison to SDSS-like simulated mock cluster catalogues. Based on this

comparison, the purity of orca detections at the median redshift of the survey was shown

to be > 70% across all cluster masses.
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Column (7) of Table 3.5 shows an estimate of the completeness of the RedMapper sample,

which is defined as the fraction of "pure" ATLAS detections co-detected by RedMapper6.

Here, we find the completeness of RedMapper to gradually increase from 47% in the z = 0.1

bin to 88%, in the z = 0.4 bin, before falling down to 76% at z = 0.5. At this point we

remind the reader that although we were able to estimate the completeness of the ATLAS

sample in column (3) by including successful matches between ATLAS and RedMapper in

cases where a λ > 20 RedMapper cluster had an ATLAS detection with N200 < 20, we are

unable to do the reverse in column 6. So while it is possible that some of our N200 > 20

ATLAS detections may have RedMapper counterparts with λ < 20 which would increase

the RedMapper completeness estimate; we have no way of verifying this. Nonetheless, the

information in column (7) provides a useful estimate of the percentage of low-redshift ATLAS

clusters with richness N200 > 20 that are missed by RedMapper, (possibly due to differences

in our definitions of cluster richness and what constitutes a "pure" cluster detection). The

increased RedMapper completeness with redshift could be due to the reduced completeness

of the ATLAS sample as a function of redshift, or due to the fact that at higher redshifts

ATLAS and RedMapper tend to contain a larger fraction of clusters with higher masses which

are easier to detect. However, this could also be indicative of a genuine improvement in the

completeness of the RedMapper sample with redshift.

To summarise, comparison of the ATLAS cluster catalogue to RedMapper shows that at

z < 0.35 the ATLAS sample is highly complete, and the majority of our clusters appear to

be genuine detections. At z < 0.3 we also find that a number of N200 > 20 ATLAS clusters

(which were visually confirmed as rich clusters) are not detected as λ > 20 clusters by

RedMapper. Similarly, we found that ATLAS generally performs better than RedMapper at

recovering z < 0.35 Abell and AdvACT clusters, with ATLAS recovering ∼ 80% of 0.05 < z <

0.3 Abell clusters while RedMapper only recovers ∼ 60% of Abell clusters. At z > 0.35 while

ATLAS appears to be less complete (65%) compared to RedMapper, Figure 3.16b suggests

that the additional RedMapper cluster detections at higher redshifts tend to be clusters of

lower mass with a good agreement being found between the n(z) of the two samples for

clusters with masses M200 > 3× 1014h−1M�.

6We refer the reader to Section 11 of Rykoff et al. (2014) for a more systematic analysis of the completeness
of the RedMapper sample.



3.4. Results and discussion 63

3.4.6 New gravitational lensing systems

As shown in Table 3.2, in the ‘notes’ column of the cluster catalogue, we flag any clusters

identified as candidate strong lensing systems. In order to identify giant lensing arc can-

didates, we visually inspect the ATLAS clusters with richness N200 > 20 using gri colour

images from DES DR1 (Abbott et al., 2018a) and grz colour images from DECaLS DR5

(Dey et al., 2019) surveys. These surveys offer the advantage of being deeper than ATLAS,

making it possible to identify strong lensing arcs that are too faint to be visible in the ATLAS

data. However, in areas where these surveys do not overlap with ATLAS, we rely on ATLAS

and Pan-STARRS (Chambers et al., 2016) gri colour images. Our visual inspection was con-

ducted using the Aladin V10.0 software (Bonnarel et al., 2000) which provided the DES,

DECaLS and Pan-STARRS colour imaging data, with an interactive user interface allowing

for fast visual inspection of a large number of clusters. This results in the detection of 23

previously unpublished strongly lensed candidates, four of which are shown in Figure. 3.18.

Figure 3.18: Four newly discovered strong lensing ATLAS clusters. Note that the colours
images shown here are composed of DECaLS grz data which are deeper than ATLAS imaging,
thus allowing for the detection of lensing arcs that are too faint to be seen in ATLAS imaging.
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With the aid of the ATLAS cluster catalogue, in the future machine learning algorithms

(e.g. Jacobs et al. 2017; Huang et al. 2020) can be implemented to identify many more

cluster lenses in ATLAS imaging, in a more systematic and automated manner. These lensed

clusters can then be modelled in bulk using automated machine learning algorithms such as

Hezaveh et al. (2017). More detailed analyses of these clusters can also be conducted using

algorithms such as hybrid-Lenstool (Niemiec et al., 2020) which can provide cluster masses

with an average precision of 5% using a combination of strong lensing in the cluster core and

weak lensing in the cluster outskirts, providing a valuable sample for improved calibration of

SZ and X-ray cluster masses.

3.5 Conclusions

In this Chapter, we have presented a new catalogue of photometrically detected galaxy groups

and clusters, using the orca cluster detection algorithm in combination with the griz bands

of the VST ATLAS survey, covering ∼ 4700 deg2 of the Southern sky. The catalogue contains

∼ 9, 000 clusters with richness N200 > 20. We obtained photometric redshifts for our cluster

members using the ANNz2 machine learning algorithm. This resulted in photometric redshifts

with an RMS of ∼ 0.025 for our cluster galaxies and a mean redshift uncertainty of ∼ 0.005

for our clusters with richness N200 > 20. The photometric redshift of our sample peaks at

z ∼ 0.25, extending up to z = 0.7.

We presented a discussion of our calculations of cluster richness (N200) which we shall later

use to obtain estimates of our cluster masses (M200) in Chapter 5. We then assessed the

completeness of our cluster sample based on comparison to external cluster catalogues, finding

our sample to be complete at > 95% in the range z < 0.35, > 80% complete up to z = 0.45,

and ∼ 60% complete in the 0.45 < z < 0.65 redshift range. In terms of cluster mass, we found

our sample to be greater than ∼ 95% complete in the mass range 1 × 1014 − 1.5 × 1015M�,

with near full completeness in the > 5× 1014M� mass range. Based on a comparison to the

SDSS RedMapper cluster detections as well as visual inspection of our clusters, we estimate

the purity of our cluster detections with richness N200 > 20 to be 92% in the range z < 0.15,

85% at 0.15 < z < 0.35, 66% at 0.35 < z < 0.45 and 43% at 0.45 < z < 0.55.

Our comparison to the RedMapper catalogue showed that in the 0.05 < z < 0.35 redshift

range, the ATLAS sample contains a larger number of cluster detections and recovers a larger

fraction of Abell and AdvACT clusters compared to RedMapper. At higher redshifts (0.35 <
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z < 0.55) the RedMapper catalogue appears to perform better than ATLAS at recovering

AdvACT clusters, but also detects a large number of clusters not found in the AdvACT

sample. At z > 0.35 we also find a good agreement between the redshift distributions of the

ATLAS and RedMapper samples above a mass limit of M200 > 3 × 1014h−1M�, indicating

that the difference in the number of cluster detections between orca and RedMapper at

higher redshifts is limited to relatively low mass clusters.

Finally, based on visual inspection of our rich ATLAS clusters, using DES, DECaLS, Pan-

STARRS and ATLAS imaging, we identified 23 previously unpublished strong lensing cluster

candidates. With future follow-up spectroscopic observations these clusters can yield high-

precision masses which could be used to improve the ATLAS cluster mass calibrations.



Chapter 4

Spectroscopic follow-up of Planck

SZ clusters

4.1 Introduction

The Sunyaev–Zeldovich (SZ; Sunyaev & Zeldovich 1972; Sunyaev & Zeldovich 1980) effect

originates due to inverse Compton scattering of CMB photons as they pass through galaxy

clusters and interact with the high-energy electrons in the intracluster medium (ICM). On

average, this scattering results in a boost to the energy of the CMB photon, causing a small,

frequency-dependent distortion of the CMB spectrum observed through the cluster, known

as the thermal SZ (tSZ) effect. The magnitude of this effect is proportional to the product

of the ICM electron density and temperature, integrated along the line of sight and provides

a powerful tool for detection of galaxy clusters (Allen et al., 2011).

The SZ temperature distortion, ∆T , at a frequency ν is given by:

∆T (ν) = T̄CMBfSZ(x)
∫
ne
KBTe
mec2 σTdl ≡ T̄CMBfSZ(x)YSZ, (4.1.1)

where the mean CMB temperature T̄CMB = 2.7260±0.0013 (Fixsen, 2009), x = hν/kBT̄CMB,

h is Planck’s constant, kB is the Boltzmann constant, c is the speed of light, ne, Te and me

are the electron density, temperature and mass respectively, σT is the Thomson cross-section,

and the integration is performed along the line of sight. fSZ(x) encapsulates the frequency

dependence of the SZ effect with:

fSZ(x) =
(
x
ex + 1
ex − 1 − 4

)
(1 + δrc), (4.1.2)

66
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where δrc encompasses relativistic corrections (Nozawa et al., 2000).

A secondary, smaller distortion of the CMB is caused by the kinetic SZ (kSZ) effect which

arises due to the peculiar motion of a galaxy cluster with respect to the CMB rest frame,

with a magnitude proportional to the peculiar velocity of the cluster. We refer the reader to

Carlstrom et al. (2002) for a review of the SZ effect and its applications in cosmology.

In this chapter, we present our follow-up spectroscopic observations of 11 Planck SZ sources

with no previous cluster identification or redshifts, with optical counterparts identified via

the VST ATLAS cluster catalogue. Our targeting of these clusters was primarily motivated

by the tension found between the constraint on σ8 obtained from Planck SZ cluster counts

and the constraint based on Planck analysis of primary fluctuations in the CMB (see Figure

13 of Planck Collaboration et al. 2016d). The source of this tension could be attributed to

incompleteness of the Planck SZ sample, or biases in the scaling relations used to convert the

SZ signal to cluster masses (which are discussed in detail in Planck Collaboration et al. 2020).

Currently 365 (∼ 25%) of Planck SZ sources have no redshift measurements or confirmed

counterparts in external cluster samples, with 41 of these sources1 overlapping the ATLAS

survey coverage area. By obtaining multi-object spectroscopic observations of these clusters

we will be able to confirm the mean cluster redshift, enabling us to estimate the cluster mass

based on its Planck SZ flux, which we can compare to the second estimate of the cluster

masses based on the velocity dispersion of the cluster galaxies.

In Section 4.2, we provided a list of our 11 observed clusters for which we have successfully

obtained redshifts, velocity dispersions and cluster masses. We also provide a summary of

other Planck SZ clusters targeted in our observations which require further analysis and may

be published in future works. Section 4.3 contains a description of our observations, data

reduction, spectra extraction and template fitting, followed by details of how our cluster

mass estimates based on the Planck SZ flux and cluster member velocity dispersions are

obtained. In Section 4.4, we compare the spectroscopic redshifts of our observed clusters

to the photometric redshifts from the ATLAS cluster catalogue. We then compare the SZ

flux-based masses of our observed clusters to those based on velocity dispersions, as well

as masses obtained from our ATLAS cluster richness estimates (see Section 5.2). We then

provide further analysis of the reliability of our measured spectroscopic redshifts by plotting a

Hubble diagram of our cluster BCGs and discuss why we believe we have correctly identified

the optical cluster counterparts to our targeted SZ source. Finally, we present a summary of

1Here we limit SZ sources to those with a SNR> 5 or a neural network quality flag QNEURAL > 0.9.
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our results in Section 4.5 and discuss their implications for future works.

4.2 Target List

In Table 4.1 we provide general details of 10 low redshift (LOZ) and one high redshift (HIZ)

Plank SZ clusters which were targeted and spectroscopically confirmed by our EFOSC2 and

FORS2 MOS observations as described in Section 4.4.1. The information provided in this

table is taken from the PSZ2 cluster catalogue (Planck Collaboration et al., 2014a). In all

cases, our chosen targets have SNR> 5 or a neural network quality flag QNEURAL > 0.9

(see the reference paper for a detailed definition of QNEURAL), making it unlikely that these

sources are spurious Planck SZ detections.

Here, we defined our low redshift targets as those with matches in the ATLAS cluster cat-

alogue and photometric redshifts z < 0.5. Our high redshift targets are assumed to have

a redshift z > 0.5 and were chosen on the basis of their lack of detection in the ATLAS

cluster catalogue (and imaging), but faint detection in the Vista Hemispheric Survey (VHS;

McMahon et al. 2013) J and K imaging, indicating their high redshift. Another two high

redshift cluster candidates were selected for observations from outside the ATLAS survey

area, following the suggestion of the Planck team. Figure 4.1 shows an example of a Planck

SZ cluster candidate (shown by the red square) in the ATLAS coverage area, with no previous

spectroscopically confirmed optical counterpart. Here, the yellow circles indicate the galaxies

identified as cluster members by ORCA using ATLAS imaging.

The results presented in this Chapter are a subset of a larger sample of 35 low redshift and

4 high redshift clusters which were among the target list for our multi-object spectroscopy

observations. Table 4.2 shows a summary of the Planck SZ clusters with ATLAS cluster

counterparts that were amongst our EFOSC2 and FORS2 target list, but with no successful

redshift confirmation. In each case the ‘Notes’ column indicates the reason why we have not

presented a redshift for these clusters along with our results in Chapter 4. We were not able

to observe 6/35 low redshift targets due to unsuitable observing conditions i.e. high cloud

coverage or high winds requiring telescope dome closure. Furthermore, the pipeline reduction

failed for 2 low redshift targets requiring manual reduction, with a further 4 low redshift and

3 high redshift clusters requiring further customisation of the pipeline settings (or manual

reduction) in order to improve the sky subtraction, as the sky lines currently dominate the

spectra for these clusters. For the remaining 13 low redshift clusters, we were unable to obtain
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Table 4.1: Details of our observed Planck SZ clusters.

Target ID Name RA DEC SNR QNEURAL Y5R500
(1) (2) (3) (4) (5) (6) (7)

LOZ-1 PSZ2 G013.06-75.46 23:47:24.63 -31:09:03.1 5.29 0.95 1.75± 0.73
LOZ-2 PSZ2 G029.66-47.63 21:45:44.22 -21:46:48.8 5.74 0.94 1.25± 0.39
LOz-3 PSZ2 G025.89-46.67 21:38:42.60 -23:59:05.8 4.93 0.93 2.41± 1.2
LOZ-4 PSZ2 G043.44-41.27 21:36:44.07 -10:17:47.8 5.55 0.97 1.54± 0.59
LOZ-5 PSZ2 G317.79+26.63 13:55:58.09 -34:22:01.1 5.76 0.45 4.17± 1.79
LOZ-6 PSZ2 G269.02+46.30 11:19:10.48 -10:23:55.2 4.67 0.90 0.82± 0.22
LOZ-7 PSZ2 G278.92+31.06 11:18:57.03 -27:27:28.1 5.18 0.99 1.07± 0.32
LOZ-8 PSZ2 G270.88+37.23 11:05:19.48 -18:56:55.0 5.48 0.99 4.03± 2.29
LOZ-9 PSZ2 G253.43+30.57 10:00:22.09 -15:24:36.4 4.94 0.90 1.88± 0.80
LOZ-10 PSZ2 G210.02-56.38 03:16:27.66 -20:46:40.3 4.73 0.99 4.78± 2.75

HIZ-1 PSZ2 G208.61-74.39 02:00:14.95 -24:54:24.1 4.86 0.97 0.94± 0.25

Notes. (1) Cluster short name (LOZ: low redshift candidate, HIZ: high redshift candidate),
(2) Planck SZ catalogue name, (3 & 4) SZ coordinates, (5) Signal to noise ratio, (6) Neural
network quality flag, (7) SZ flux in terms of the total integrated Comptonization parameter.

Figure 4.1: The VST ATLAS cluster counterpart to a previously unconfirmed Planck SZ
source. Here the g-band image is shown with the orca detected cluster galaxies circled in
yellow and the Planck SZ source indicated by the red square.

accurate redshifts due to the relatively low S/N ratios (due to factors including bad seeing,

presence of bright stars close to our targeted cluster or high sky brightness in cases where
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some of the observations had to be taken close to twilight). Some of these clusters, along

with those that require re-reduction may be published in future works upon more careful

manual analysis of the data. The ATLAS cluster counterparts to the SZ targets without

successful spectroscopic redshifts measurements vary in richness from 5-102 (with a mean

richness of 33 ± 9) and have photometric redshifts in the range of 0.12-0.44 (with a mean

of 0.28 ± 0.02). We do not find a significant difference between these values and the mean

redshift (0.26± 0.03) and richness (46± 11) of the spectroscopically confirmed SZ clusters.

Table 4.2: Details of the additional Planck SZ clusters in our EFOSC2 / FORS2 target list,
which either could not be observed or require further analysis.

Target ID Name RA DEC SNR QNEURAL Y5R500 Notes
(1) (2) (3) (4) (5) (6) (7) (8)

LOZ-11 PSZ2 G017.72-51.40 21:54:59.82 -30:07:56.9 4.54 0.98 2.32± 1.11 NO
LOZ-12 PSZ2 G026.34-58.64 22:30:37.72 -26:15:58.9 4.55 0.97 0.85± 0.26 RR
LOZ-13 PSZ2 G018.76-61.65 22:42:32.87 -30:18:54.2 5.04 0.94 1.55± 0.65 UR
LOZ-14 PSZ2 G014.72-62.49 22:46:32.03 -32:12:04.0 5.21 0.98 2.63± 1.27 NO
LOZ-15 PSZ2 G035.89-61.39 22:47:02.24 -22:13:41.7 4.73 0.96 7.51± 4.44 UR
LOZ-16 PSZ2 G051.40-61.15 22:58:11.53 -15:16:20.7 4.60 0.97 5.93± 3.52 UR
LOZ-17 PSZ2 G027.99-69.85 23:20:50.11 -27:01:47.9 5.18 0.99 1.07± 0.32 UR
LOZ-18 PSZ2 G006.16-69.49 23:22:09.00 -34:34:30.8 4.55 0.93 1.33± 0.68 RR
LOZ-19 PSZ2 G355.22-70.03 23:31:19.63 -37:54:41.2 4.68 0.99 1.07± 0.47 MR
LOZ-20 PSZ2 G003.21-76.04 23:53:24.29 -33:17:35.7 4.79 0.84 1.04± 0.38 RR
LOZ-21 PSZ2 G315.71-83.81 00:44:55.01 -33:08:48.2 4.55 0.89 2.63± 1.28 UR
LOZ-22 PSZ2 G180.74-85.21 01:09:13.90 -24:30:38.8 5.17 0.99 2.15± 1.01 UR
LOZ-23 PSZ2 G224.86-79.51 01:38:19.58 -28:48:26.6 4.98 0.89 0.88± 0.25 UR
LOZ-24 PSZ2 G240.71-74.03 01:59:20.36 -33:32:22.3 5.25 0.79 1.54± 0.72 UR
LOZ-25 PSZ2 G204.91-69.71 02:18:46.13 -22:37:21.0 4.77 0.99 1.04± 0.61 NO
LOZ-26 PSZ2 G256.41+32.31 10:13:01.09 -15:53:29.6 4.95 0.88 1.57± 0.60 RR
LOZ-27 PSZ2 G261.11+34.90 10:32:23.72 -16:26:38.7 4.68 0.67 0.74± 0.16 UR
LOZ-28 PSZ2 G263.65+27.87 10:21:17.19 -23:18:53.6 5.19 0.99 0.99± 0.31 UR
LOZ-29 PSZ2 G271.53+36.41 11:05:29.39 -19:55:07.5 5.19 0.93 3.32± 1.27 NO
LOZ-30 PSZ2 G289.50+32.71 11:59:54.46 -28:48:16.8 4.97 0.98 4.97± 2.65 UR
LOZ-31 PSZ2 G297.91+31.43 12:31:24.79 -31:14:31.8 4.96 0.93 2.33± 1.37 NO
LOZ-32 PSZ2 G323.96+43.81 13:54:06.11 -16:28:57.3 4.97 0.67 3.62± 1.85 MR
LOZ-33 PSZ2 G325.19+49.12 13:49:59.50 -11:11:57.5 4.62 0.98 2.12± 1.06 UR
LOZ-34 PSZ2 G096.14+56.24 14:35:56.21 -28:17:01.4 6.58 9.97 4.00± 1.48 UR
LOZ-35 PSZ2 G349.18+38.66 15:11:53.38 -11:16:42.5 5.15 0.99 4.04± 1.50 NO
HIZ-2 PSZ2 G201.20-42.83 03:58:49.74 -10:12:58.5 4.70 0.92 1.94± 1.11 RR
HIZ-3 PSZ2 G194.68-49.76 03:25:22.01 -09:40:49.6 5.71 0.80 1.40± 0.44 RR
HIZ-4 PSZ2 G045.96-26.94 20:50:08.37 -01:35:25.9 5.10 0.96 1.73± 0.71 MR

Notes. (1) Cluster short name (LOZ: low redshift candidate, HIZ: high redshift candidate), (2) Planck
SZ catalogue name, (3 & 4) SZ coordinates , (5) Signal to noise ratio, (6) Neural network quality flag,
(7) SZ flux in terms of the total integrated Comptonization parameter, (8) Reason for not including
this cluster in our analysis; NO: Not Observed; MR: Manual Reduction required due to data reduction
pipeline failure; RR: Data needs to be Re-Reduced with further tweaks to the pipeline settings to
improve sky subtraction / spectra extraction; UR: Uncertain Redshift (mostly due to low S/N of the
spectra caused by bright twilight sky, faint galaxies or bright stars in the MOS field).
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4.3 Methodology

4.3.1 Spectroscopic observations of Planck SZ clusters

In this Section, we describe our observations and data reduction, followed by our spectra

fitting procedure used to extract the redshifts of our clusters. We then provide a description

of our cluster velocity dispersion and mass calculations.

When targeting our cluster candidates for Multi-Object Spectroscopy (MOS) observations,

we first need to design MOS masks with slits assigned to the cluster galaxies for which we

intend to obtain a redshift. In designing our MOS masks, we first place the slits on the

brightest identified cluster members which would give the highest S/N spectra, and where

slit overlaps do not allow for targeting of an ORCA identified cluster member, we place the

slit on galaxies with similar colour and brightness to those identified as cluster members.

We conduct the spectroscopic observations of our low redshift Planck SZ clusters, using the

ESO NTT EFOSC2 (Buzzoni et al., 1984) instrument. The EFOSC2 MOS mask slits are

made using punch head no. 7 with a width and length of 1.34′′ and 8.6′′ respectively. Given

the 4.1 × 4.1′ field of view of the instrument, on average, this allows us to target ∼ 15

galaxies per cluster. Note that at least 3 slits need to be assigned to bright reference stars in

the telescope field of view to allow for the alignment of the mask on the sky by taking short

exposures during target acquisition. Our choice of the slit width combined with the EFOSC2

no. 1 grism will allow us to cover the 4000 − 10000Å wavelength range with a resolution of

58Å FWHM.

In the case of our MOS observations of high redshift Planck SZ cluster candidates, we use

the VLT FORS2 (Appenzeller et al., 1998) instrument. Here, we punch the MOS mask with

slits of 1′′ in width and 4′′ in length. This choice of slit width, combined with the 6.8× 6.8′

FORS2 field of view, allows us to target up to ∼ 150 objects in the instrument field of view.

By using the FORS2 GRIS-300I+11+OG590 grism in combination with our chosen slit width

we are able to cover the 6000− 11000Å wavelength range with a resolution of 12.5Å FWHM.

Figure 4.2 shows an example of one of our FORS2 masks targeting a high redshift Planck

cluster candidate. The blue square shows the focal field projected on the CCD, with the

crosses on the two sides of the box marking the "forbidden" target selection areas where the

spectra of objects with slits placed in these regions will be cut by the CCD edge. In this case,

we target over 100 galaxies in the field of view, with ∼ 25 of these being placed on candidate

cluster members in the centre of the field. Both FORS2 and EFOSC2 MOS observations
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Figure 4.2: One of our FORS2 MOS masks with the mask slits labelled by different numbers
and the black horizontal lines indicating the area where the spectra of each object will be
projected. The background image is a 5 minute, i-band exposure taken by FORS2. Here,
5 bright reference stars used for aligning the mask on the sky during target acquisition are
marked by the large empty circles.

require pre-images taken using the instrument. In both cases we take 5 minute exposures in

the i-band reaching magnitude limits of iAB = 21.4 and iAB = 24 in our EFOSC2 and FORS2

pre-imaging respectively. Furthermore, during target selection for MOS observations, we use

the Data release 2 of the GAIA catalogue (Gaia Collaboration et al., 2018) in order to avoid

accidentally targeting any stars that may appear as red or yellow extended sources (which

could be confused with cluster galaxies) in our field of view.

We reduce our MOS observations using the ESO GASGANO software2, and the redshift of

our targeted galaxies are determined by fitting templates using the publicly available marz3

2https://www.eso.org/sci/software/gasgano.html
3https://samreay.github.io/Marz/#/overview

https://www.eso.org/sci/software/gasgano.html
https://samreay.github.io/Marz/#/overview
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algorithm (Hinton et al., 2016). Figure 4.3 shows an example of a z = 0.24 EFOSC2 and a

z = 0.71 FORS2 cluster galaxy spectra. In both cases, the redshifts are obtained by fitting an

early-type galaxy template using marz. In the case of the low-redshift EFOSC2 observations,

as the spectra have a lower resolution relative to the FORS2 observations, we primarily make

use of the H, K and Mg absorption lines (as well as the position of the cross-correlation peak

provided by marz) in order to determine the redshift of each object.

As our MOS observations are conducted in three individual 20-minute exposures, we extract

and fit the spectra from the individual exposures, as well as a combined 60-minute exposure,

which is the mean of these three frames. The redshift is then taken to be the mean of the

redshifts from the individual frames or the redshift from the combined frame for galaxies that

are only detected in the combined frame. The redshift errors are then given by the standard

error on the mean in cases where spectra are extracted from multiple frames and where an

object is only detected in an individual frame they are estimated based on a linear fit to the

relationship between redshift errors and the height of the spectra-template cross-correlation

peak given by marz.

4.3.2 Cluster velocity dispersions and masses

We now convert the redshift of each galaxy to peculiar velocities vp, following Equation 16

of Davis & Scrimgeour (2014), with:

vp = c

(
zi − z̄
1 + z̄

)
, (4.3.1)

where zi is the redshift of the i-th cluster galaxy and z̄ is the mean cluster redshift.

Following the approach of Caldwell et al. (2016), we then use the ‘gapper’ estimator of Wainer

& Thissen (1976) to calculate cluster velocity dispersions based on the peculiar velocities of

the cluster galaxies. The gapper estimator is calculated based on the weighted average of the

gaps of an ordered statistic (xi, xi+1, ..., xn) and we choose this estimator due to its efficiency

in cases with deviations from a Gaussian distribution and robustness at low richness (Beers

et al., 1990). In order to obtain an estimate of the velocity dispersions using this method,

we first remove any galaxies with redshifts > 3σ away from the mean cluster redshift (where

σ is the standard error on the mean redshift). The velocities are then sorted in ascending

order and the velocity dispersion is given by:
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σgap =
√
π

N(N − 1)

N−1∑
i=1

ωigi, (4.3.2)

where N is the number of galaxies in the cluster, the weights are given by ωi = i(N − i),

and the gaps are defined as gi = vi+1 − vi, where vi is the velocity of the ith cluster galaxy,

ranked by increasing velocity. Following Caldwell et al. (2016) and Eke et al. (2004), we

then multiply σgap by a factor of
√
N/(N − 1). This is to account for the fact that the

central galaxy is moving at the centre-of-mass velocity of the halo, which is not typical of the

velocities of the satellite galaxies.

Following Section 4.2 of Ruel et al. (2014) which presents a detailed analysis of the uncertain-

ties on the measured cluster velocity dispersions in cases with few spectroscopically confirmed

cluster galaxies, we define the uncertainty on σgap as:

∆σgap = Cgapσgap√
N − 1

. (4.3.3)

The value of the constant Cgap is determined to be 0.91 based on resampling of 1000 pseudo-

observations (i. e. subsamples) with varying number of cluster members from a stacked

cluster4. Ruel et al. (2014) find that their σgap uncertainties (while well captured by Equa-

tion 4.3.3), are ∼ 30% larger than estimates commonly obtained in the velocity dispersion

literature based on the jackknife or bootstrap techniques. Ruel et al. (2014) attribute these

larger uncertainties to non-Gaussianity in the measured velocity distributions, as well as their

use of 3σ cluster membership selection (similar to our approach in this work) which could

lead to an increased scatter in the measured dispersion by removing genuine cluster members

or including non-members.

We then convert σgap to cluster dynamical mass using the scaling relation from Ruel et al.

(2014) and Saro et al. (2013):

M200,gap =
(

σgap
A× h70(z)c

)B
1015M�, (4.3.4)

where A = 939, B = 2.91 and C = 0.33. The errors on M200,dyn are calculated based on the

propagation of velocity dispersion errors using the Python uncertainties package5.

4The stacked cluster was constructed in order to examine confidence intervals on the velocity dispersion
measurements in clusters with few spectroscopically confirmed members. We refer the reader to Section 3.2.1
of Ruel et al. (2014) for a description of how this stacked cluster was constructed using observations of 48 SPT
SZ clusters.

5http://pythonhosted.org/uncertainties/

http://pythonhosted.org/uncertainties/
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As well as masses based on velocity dispersions, we use the observed redshift of our clusters

to obtain cluster masses based on the SZ flux of each system. To do this, we follow the SZ

observable-cluster mass scaling relation given by Equation 7 of Planck Collaboration et al.

(2016d), with:

E−β(z)
[
D2

A(z)Ȳ500
10−4Mpc2

]
= Y∗

[
h

0.7

]−2+α [(1− b)M500
6× 1014M�

]
, (4.3.5)

where E(z) ≡ H(z)/H0, DA(z) is the angular diameter distance, Ȳ500 is the SZ signal strength

in terms of the Compton y-profile integrated within a sphere of radius R500, β = 0.66± 0.5,

logY∗ = −0.19± 0.02, α = 1.79± 0.8 and (1− b) = 0.8.

Here, the "mass bias" parameter b, is a key parameter of the mass scaling relation which

directly impacts the determination of cosmological parameters including Ωm and σ8 from

cluster counts analysis. This parameter is introduced to correct for differences between the

true halo mass (M500) and X-ray calibrated cluster masses (MX) (obtained based on the

scaling relation of Arnaud et al. 2010) which are known to be biased towards lower masses

(see e.g. Nagai et al. 2007), with MX = (1− b)M500.

The mass bias parameter is assumed to be independent of mass and redshift, however, as

discussed in Planck Collaboration et al. (2016d), this assumption is merely due to the fact

that the statistics of the current lensing samples make it difficult to constrain any mass or

redshift dependence. This limitation is however likely to be removed with the availability of

future CMB lensing surveys and larger weak lensing samples from surveys such as LSST and

Euclid.

We refer the reader to Section 5.7 of Planck Collaboration et al. (2020) for a full review of the

current constraints on (1− b) obtained through various techniques. In short, Planck Collabo-

ration et al. (2020) derive a value of (1− b) = 0.62±0.03 based on TT,TE,EE+lowE+lensing

likelihood combined with the Planck cluster counts, which is at the lower limit of current weak

lensing cluster mass estimates (e.g. Sereno et al. 2017) and roughly 2σ lower than the value

found based on the Planck CMB lensing mass calibration reported by Planck Collaboration

et al. (2016d). For consistency, here we decide to use the base-line value of (1− b) = 0.8 from

Planck Collaboration et al. (2014c) which was used to determine theMSZ masses provided in

the Planck 2015 catalogue of SZ sources (Planck Collaboration et al., 2016e), which remains

the most up to date Planck SZ cluster catalogue.

A final consideration in our calculation of the Planck cluster masses, based on the SZ flux,

is that the 2015 Planck SZ catalogue (Planck Collaboration et al., 2016e) only provides
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estimates of the SZ strength parameter Y5R500 (as defined by Equation 5 of the reference

paper), with accurate conversion to Y500 requiring the use of conversion coefficients derived

from the model which was assumed during extraction of the SZ signal (see the discussion

in Section 5.2 of the reference paper), which are not included in the public release of the

Planck SZ catalogue. Empirically, we find that using the Planck Y5R500 values instead of

Ȳ500 in Equation 4.3.5 results in masses larger than the MSZ masses supplied in the Planck

catalogue by a mean value of 2.07±0.01. We therefore apply this scaling to the SZ flux-based

masses of our observed Planck clusters when presenting our results.

4.4 Results and Discussion

4.4.1 Spectroscopic confirmation of ATLAS cluster counterparts to Planck

SZ sources

We present the spectroscopic redshifts and peculiar velocities of our observed cluster galaxies

in Table A.1 of Appendix A. Table 4.3 shows a summary of the number of spectroscopically

confirmed galaxies for each of our observed clusters in comparison to the number of cluster

galaxies detected by ORCA, as well as the number of ORCA detected cluster galaxies within

the radii of 1 Mpc and R200 from cluster centres (where the final two richness estimates are

scaled by Equation 3.3.6, as described in Section 3.3.5). This comparison shows that with the

exception of LOZ-1 and LOZ-6, all of our target clusters appeared as relatively rich clusters

with N200 ∼ 30 or higher based on their ORCA detections, increasing our confidence that

our targeted clusters are associated with the Planck SZ detections. Furthermore, visual

inspection of LOZ-6 in the imaging data reveals it as a bright cluster, with no other visible

clusters appearing within a Planck positional error of the SZ source. In the case of LOZ-1,

although the cluster lies in a busier field compared to LOZ-6, we see no evidence of brighter,

lower redshift, clusters that could be associated with the SZ source. We remind the reader

that due to its high redshift, the HIZ-1 cluster is not detected by ORCA in the ATLAS data

and was targeted as a high redshift candidate on this basis.

We present the mean redshift of our observed Planck SZ clusters in column (2) of Table 4.4.

In Figure 4.4 we compare these redshifts with the photometric redshifts estimated for these

clusters based on their ORCA detection in ATLAS (as described in Section 3.3.2), finding a

good agreement between the two measurements sets. A second test of our measured cluster

redshifts is performed in Figure 4.5 where we plot the Hubble diagram of the ATLAS BCGs
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Table 4.3: Planck SZ cluster candidates vs. ORCA counterpart memberships.

Target ID Nspec NORCA N1Mpc N200
(1) (2) (3) (4) (5)

LOZ-1 9 7 19 10
LOZ-2 3 55 125 127
LOz-3 11 28 41 41
LOZ-4 12 10 33 33
LOZ-5 6 36 51 51
LOZ-6 6 8 6 6
LOZ-7 7 72 100 105
LOZ-8 12 78 103 117
LOZ-9 5 102 124 130
LOZ-10 14 64 86 107
HIZ-1 17 - - -

Notes. (1) Cluster short name, (2) Number of
spectroscopically confirmed cluster members,
(3) number of ORCA cluster galaxies detected
by ORCA, (4) number of ORCA cluster mem-
bers within 1h−1 Mpc of the cluster centre,
scaled by Equation 3.3.6, (6) number of ORCA
cluster members within R200 of the cluster cen-
tre, scaled by Equation 3.3.6.

with N200 > 20 and spectroscopic redshifts from external samples. Here, the BCGs of

our observed clusters appear to follow the same trend in redshift and magnitude as the

larger population of ATLAS BCGs, with no evidence that our cluster redshifts have been

misidentified.

Column (3) of Table 4.4 shows the gapper velocity dispersion estimate for each cluster, which

is calculated using Equation 4.3.2. The cluster masses based on these velocity dispersions

(obtained using Equation 4.3.4), are presented in column (4). Column (5) shows the Planck

SZ flux proxy, which is converted to SZ masses in column (6) by evaluating Equation 4.3.5

at redshifts presented in column (2). Due to the low number of spectroscopically confirmed

cluster galaxies, we can see that the magnitude of the uncertainties on the cluster masses

estimated from velocity dispersions are comparable to the cluster masses themselves. Indeed,

for a typical cluster with a velocity dispersion of ∼ 1000 kms−1 one would need to measure

redshifts for ∼ 100 members per cluster in order to obtain cluster masses with a precision of

∼ 20%. On the other, hand as one can see in column 6 of Table 4.4, the precision of Planck

SZ flux measurements combined with our mean cluster redshifts measured at a < 1% level,

allows us to obtain SZ mass estimates with a precision of ∼ 20%.



4.4. Results and Discussion 79

Figure 4.4: A comparison of the spectroscopic redshifts of our observed Planck SZ clusters
(column 2 of Table 4.4) to the ANNz2 photometric redshifts obtained for these clusters based
on their ORCA detection in ATLAS.

Figure 4.5: A Hubble diagram of our cluster BCGs with richness N200 > 20, compared to
our observed Planck SZ cluster BCGs. Here only ATLAS BCGs with spectroscopic redshifts
from external sources are shown.

Figure 4.6 shows a comparison of the SZ flux-based masses of our observed clusters and the

cluster masses based on the richness of the ORCA detections of these clusters in ATLAS.
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Table 4.4: Planck SZ cluster candidate redshifts, velocity dispersions and cluster masses.

Target ID z̄ σgap M200,gap Y5R500 MSZ M200,ATLAS
(kms−1) (1014M�) (1014M�) (1014M�)

(1) (2) (3) (4) (5) (6) (7)
LOZ-1 0.3991± 0.0013 940± 300 8.5± 7.9 1.75± 0.73 5.8± 1.4 1.5± 0.2
LOZ-2 0.2986± 0.0020 620± 400 2.7± 5.0 1.25± 0.39 4.0± 0.7 9.1± 0.8
LOZ-3 0.2396± 0.0008 640± 180 3.0± 2.5 2.41± 1.2 4.9± 1.4 2.6± 0.3
LOZ-4 0.4399± 0.0011 840± 230 5.9± 4.7 1.54± 0.59 5.8± 1.2 3.2± 0.4
LOZ-5 0.2301± 0.0012 900± 360 8.0± 9.5 4.17± 1.79 6.5± 1.5 3.0± 0.3
LOZ-6 0.1214± 0.0013 410± 160 0.9± 1.1 0.82± 0.22 1.5± 0.2 1.1± 0.1
LOZ-7 0.1926± 0.0010 620± 70 2.8± 0.9 1.07± 0.32 2.6± 0.4 5.5± 0.5
LOZ-8 0.2224± 0.0011 930± 260 9.1± 7.2 4.03± 2.29 6.2± 2.0 6.4± 0.6
LOZ-9 0.1995± 0.0008 330± 170 0.9± 1.5 1.88± 0.80 3.7± 0.9 5.9± 0.5
LOZ-10 0.2372± 0.0007 740± 190 4.6± 3.4 4.78± 2.75 7.1± 2.3 6.3± 0.6

HIZ-1 0.7100± 0.0011 900± 200 6.2± 4.0 0.94± 0.25 5.3± 0.8 —

Notes. (1) Cluster short name, (2) Mean cluster redshift and standard error on the mean, (3) gapper
velocity dispersion, (4) Cluster masses, (5) Planck SZ flux in terms of the total integrated Comp-
tonization parameter, (6) Planck SZ cluster mass based on Y5R500(z̄) evaluated at redshifts presented
in column 2. (7) M200 masses based on ATLAS cluster richness N200.

Figure 4.6: Comparison of the SZ flux-based masses of our observed clusters to masses based
on cluster richness from the ATLAS cluster catalogue.

Here, the discrepancy between our richness based mass estimates and the SZ masses is gen-

erally in line with the level of scatter we found in Figure 5.2a, after calibrating our ATLAS

M200 masses to masses from external catalogues. In the case of LOZ-2 however, (where the



4.5. Conclusions 81

ATLAS cluster mass appears to be overestimated by a factor of three), this is indicative of

an overestimation of our cluster richness. A visual inspection of the cluster imaging suggests

that this could be due to the presence of contamination in ORCA’s assignment of cluster

galaxies to this system as the cluster lies in a busy field where two or more clusters with

similar colours may have been detected as one. However, the reasonable agreement between

the velocity dispersion and SZ flux masses of this cluster, combined with the fact that we

targeted the most localized cluster lying within the 3.2′ positional error on the Planck SZ

source, makes it unlikely that our observed cluster is not associated with the SZ source.

Although the observations presented in this Chapter are not enough to significantly impact

the Planck cluster count cosmological results; in the coming years, similar observational

campaigns (guided by optical cluster catalogues) could provide spectroscopic confirmation for

the remaining ∼ 25% of sources in the Planck SZ sample, with no current cluster counterparts.

We can then repeat the cosmological analyses of the Planck SZ cluster counts with a better

grasp of the survey completeness and systematics.

4.5 Conclusions

In this Chapter, we presented the results of our MOS follow-up of 11 Planck clusters with

no previous spectroscopic confirmation, which were optically identified with the aid of the

ATLAS cluster catalogue. We found a good agreement between the measured spectroscopic

redshifts and our estimated photometric redshifts for these clusters. We then obtained two

estimates of the cluster mass, based on our measured velocity dispersions and conversion of

the Planck SZ flux to cluster mass using our measured redshifts.

Due to our low number of spectroscopically confirmed galaxies per cluster, we found the

uncertainties on the velocity dispersion based cluster mass estimates to be comparable to the

cluster masses. However, we provide SZ mass estimates for our observed clusters at a ∼ 20%

level, comparable to the precision of other SZ mass estimates in the literature (e.g. Bleem

et al. 2015; Bocquet et al. 2019).

Besides the 11 Planck clusters presented here, we observed 14 additional low redshift (z < 0.5)

and 2 high redshift (z > 0.5) Planck SZ cluster candidates. Although we were unable to obtain

reliable redshifts for these clusters (due to various reasons discussed in Section 4.4.1), upon

re-reduction and more detailed, manual analysis of the spectra, redshift confirmation and

cluster masses for some of these systems may be released in future works.
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The cluster counterparts to Planck SZ sources presented in this Chapter had most likely

remained unconfirmed due to the lack of multi-wavelength imaging in the southern sky prior

to the completion of the ATLAS survey. As we will discuss in the next Chapter, the tension

between the Planck SZ cluster counts and CMB measurements of σ8 is most likely dominated

by remaining systematics in the calibration of Planck SZ flux-cluster mass scaling relation. We

note, however, that ∼ 1/4 of Planck SZ sources currently do not have redshift confirmations

and this lack of sample completeness is also likely to contribute to the SZ cluster count-CMB

σ8 discrepancy. As such, future spectroscopic follow-up of cluster counterparts to Planck SZ

sources such as those presented in this Chapter remains a worthwhile endeavour. Follow-up

of higher redshifts (z > 0.4) Planck SZ cluster candidates are of particular importance, as at

these redshifts, the Planck sample currently contains fewer detections due to the increase in

the survey’s lower limit of SZ detection with redshift.



Chapter 5

Cluster masses & the evolution of

cluster mass function

5.1 Introduction

In the hierarchical theory of structure formation, galaxy clusters are the culmination of

structure growth processes and as such their observed number densities as a function of

mass and redshift (i.e. the cluster mass function) can provide stringent tests of cosmological

models. In particular, cluster abundances are highly sensitive to the values of cosmological

parameters including Ωm, σ8, potential redshift evolution of dark energy and extensions to the

standard model such as massive neutrinos (see, e.g. Huterer et al. 2015; Planck Collaboration

et al. 2016b; Bocquet et al. 2019; DES Collaboration et al. 2020).

The first analytical estimation of the cluster mass function was obtained by Press & Schechter

(1974), by linking the linear matter power spectrum to the halo mass function, under the

assumption that mass fluctuations follow a Gaussian distribution. The Press–Schechter for-

malism was found to be in general agreement with observed mass functions and results from

various numerical simulations (e.g. White et al. 1993; Lacey & Cole 1994 and Reiprich &

Böhringer 2002).

More recent numerical N -body simulations include those that focus on the friends-of-friends

(FoF; Davis et al. 1985) definition of the halo mass (e.g. Sheth & Tormen 1999; Jenkins et al.

2001; Reed et al. 2003; Warren et al. 2006; Lukić et al. 2007; Reed et al. 2007; Crocce et al.

2010; Bhattacharya et al. 2011; Angulo et al. 2012), as well as those that are defined in terms

of spherical or virial overdensities (e.g. Tinker et al. 2008; Watson et al. 2013; Bocquet et al.

2016; Despali et al. 2016; Comparat et al. 2017).

83
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Our aim in this chapter is to compare the observed mass function of the ATLAS cluster cat-

alogue to theoretical predictions of ΛCDM based on the Tinker et al. (2008) model and other

cluster samples. The Tinker et al. (2008) model is based on measurements of dark matter

halos in 18 sets of N-body cosmological simulations of a flat ΛCDM cosmology generated us-

ing the Hashed Oct-Tree (HOT) code of Warren & Salmon (1993), the Adaptive Refinement

Technique (ART) code of Kravtsov et al. (1997) and the GADGET2 code of Springel (2005).

Based on these simulations, Tinker et al. (2008) successfully calibrated the mass function at

z = 0 for halos of 1011h−1M� ≤M ≤ 1015h−1M� at . 5%.

Unlike earlier studies of the halo mass function which usually identified halos using the

friends-of-friends algorithm, Tinker et al. (2008) adopted the spherical overdensity (SO) halo

finder (Lacey & Cole, 1994), which defines halos in simulations as spherical regions of specific

overdensities. Tinker et al. (2008) argued that masses measured using the spherical overden-

sity method are more directly linked to cluster observables than those obtained using the FoF

technique, making them more suitable for providing accurate forecasts of cluster abundances.

One of the key features of the Tinker et al. (2008) mass function which set it apart from

previous analyses based on the FoF method, is a monotonically decreasing amplitude of the

mass function with increasing redshift, with the high-mass end of the mass function evolving

faster than the low-mass end. In the past decade the Tinker et al. (2008) mass function

has been one of the most commonly used models to provide theoretical predictions of cluster

abundances based on the ΛCDM model (see e.g. Vikhlinin et al. 2009; Allen et al. 2011;

Bleem et al. 2015; Planck Collaboration et al. 2016d; Bocquet et al. 2019; DES Collaboration

et al. 2020).

The layout of this Chapter is as follows: in Section 5.2, we obtain estimates of cluster masses

for the ATLAS sample, using a mass-richness scaling relation calibrated to cluster masses

from the MCXC, AdvACT, Planck and SDSS RedMapper samples. Section 5.3 provides a

description of the Tinker et al. (2008) mass function models which are generated assuming

a ΛCDM cosmology with the Planck 2018 (Planck Collaboration et al., 2020) parameters.

In Section 5.4, we compare the observed cluster mass functions of the ATLAS, RedMapper,

Planck and AdvACT samples, with theoretical predictions of the Tinker et al. (2008) model.

In all cases, the comparisons are performed in five redshift bins covering the range 0.05 < z <

0.55 in order to examine the evolution of the cluster mass functions. Finally, we conclude by

presenting a summary of our results and the scope for future works in Section 5.5.
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5.2 ATLAS cluster mass-richness scaling relation

Using our N200 estimates from Section 3.3.4, along with the mean photometric redshifts of

our clusters z̄, we provide cluster masses M200 (in units of 1014M�) based on the following

scaling relation:

M200 =
(
N200
20

)1.1
× 3z̄ 0.9 + 1. (5.2.1)

The form and parameters of this relation are chosen based on comparison1 of the resulting

ATLAS cluster mass estimates to masses of 626 clusters from external samples. These include

218 AdvACT and 95 Planck SZ clusters, 185 SDSS RedMapper clusters and 118 MCXC X-ray

clusters. The error on our cluster masses are then approximated using:

σM200 =

√
0.015σ2

N200
N0.2

200z̄
1.8 + 0.01N2.2

200σ
2
z̄

z̄0.2 , (5.2.2)

where σz̄ and σN200 are the uncertainties on z̄ and N200 respectively. The derivation of the

above expression can be found in Appendix B.1.

Figure 5.1 shows the redshift and mass distribution of the clusters from these four samples.

The combination of these samples provide a reasonable number of counterparts to ATLAS

clusters across the redshift range of 0.05 < z < 0.55 and the mass range of 1014 − 1015

M�. Here, we calibrate the parameters in our cluster mass-richness scaling relation (Equa-

tion 5.2.1) using all available cluster masses from these four samples simultaneously, to avoid

biasing our masses towards the range of masses covered by the individual samples.

We obtain the masses of the RedMapper clusters using the weak lensing calibrated mass-

richness scaling relation of Simet et al. (2016), where:

M200m = 1014.344
(
λ

40

)1.33
. (5.2.3)

Here, M200m is the M200 cluster mass with respect to the mean density of the universe (in

units of 1014h−1M�) and λ is the richness of RedMapper clusters as defined by Rykoff et al.

(2014). Similarly, we use the M200m cluster masses from the AdvACT catalogue. As the

MCXC cluster masses are defined as M500, we multiply these by a factor of 1.5 in order

to remove the mean offset found between the MCXC M500 masses and the M200m masses

of their RedMapper and AdvACT counterparts. Similarly, we correct for the mean offset

1The ATLAS mass-richness scaling relation is chosen to minimise the offset and scatter in Figure 5.2a.
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(a)

(b)

Figure 5.1: Redshift (a) and mass (b) distributions of the galaxies from the AdvACT,
RedMapper, MCXC and Planck SZ cluster catalogues, used to calibrate the ATLAS cluster
masses.
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between the Planck SZ mass proxy values, MSZ , and the M200m masses of their RedMapper

and AdvACT counterparts, by multiplying the Planck masses by a factor of 1.3. Once

the Planck and MCXC masses are scaled to roughly correspond to M200m masses, we use the

masses from the four samples to calibrate the ATLAS mass-richness scaling relation following

Equation 5.2.1. In the case of the AdvACT and Planck SZ samples, we limit the sources to

those with a SNR>5.

The ratio of our ORCA cluster masses to masses based on their counterparts from these

four samples are shown in Figure 5.2a. Our cluster masses are calibrated on the basis of

minimizing the mean offset and scatter in this plot as well as the mass ratio histogram shown

in Figure 5.2b. The level of scatter found in the ratio of our richness-based cluster mass

estimates, to masses from external X-ray and SZ samples is comparable to that found when

we compare the RedMapper richness-based cluster masses to masses from these external

samples.

The photometric redshift term in our ATLAS mass-richness scaling relation (Equation 5.2.1)

is added to remove a redshift dependent offset found between ourM200 masses and the masses

from the four external catalogues. This redshift dependence may be partially attributed to the

Butcher-Oemler effect (Butcher & Oemler, 1978), where the fraction of late-type, blue cluster

galaxies increase with redshift, causing our cluster richness values to be under-estimated at

higher redshifts, (as blue galaxies will not be counted as cluster members due to ORCA’s

reliance on the red-sequence for cluster detection).

Another contributing factor which makes the use of this photometric redshift term necessary

is the presence of a slight systematic offset towards lower redshifts in our photometric redshift

estimates in the z > 0.35 redshift range, which is likely caused by the relatively lower number

of galaxies in our spectroscopic training set in this redshift range (see Figures 3.4, 3.12 and

the discussion in Section 3.4.2). The presence of such systematic offset towards lower redshift

will, in turn, result in a lower n(z) scaling factor being applied to the high redshift cluster

richness values, biasing our estimates of N200 and M200 low.

Finally, although no evidence has been found to suggest cluster mass-to-light ratios (M/L)

increase as a function of redshift (e.g. Lin et al. 2006; Muzzin et al. 2007; Soucail et al. 2015),

the increase of cluster M/L as a function of cluster mass has been well established. Over a

wide range of masses, various studies have found a ratio of M/L ∝Mα, with α ranging from

0.2− 0.4 (Girardi et al. 2002; Lin et al. 2003; Rines et al. 2004; Popesso et al. 2007). Given

that with increasing redshift (and in the z > 0.3 range in particular) due to the magnitude
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(a)

(b)

Figure 5.2: (a) The ratio of our ORCA cluster masses to masses of their cluster counterparts
from external samples. The dotted lines show regions where our masses are in agreement
with external masses within ±50%. (b) Histogram showing the ratio of the ORCA cluster
masses to external cluster masses shown in (a). Here, we mark the percentage of clusters
with mass ratios below, above and within the ±50% region.
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limits of our sample we are increasingly likely to miss smaller, lower mass clusters, with

the same being true (to varying degrees) for the external cluster samples used in our mass

calibrations2, the increased fraction of higher mass clusters at higher redshifts could mean

that our N −M scaling relation which provided a good estimate of total cluster masses at

lower redshifts, is under-estimating the mass of our high redshift population which tend to

have higher M/L ratios due to their higher mass.

5.3 Cluster mass function model

The Tinker et al. (2008) mass function takes the form:

dn

d ln (M) = f(σ) ρ̄m
M

d ln (σ−1)
d ln (M) , (5.3.1)

where dn/d ln (M) is the comoving halo number density per logarithmic mass interval in units

of (Mpc/h)−3 and ρ̄m = Ωm(z)ρcrit(z) = ρ̄m(z)(1 + z)3 is the mean density of the universe.

The Tinker et al. (2008) parametrization of the f(σ) function is given by:

f(σ) = A

[(
σ

b

)−a
+ 1

]
e−c/σ

2
, (5.3.2)

where the variance of the linear matter density field,

σ2 =
∫
Plin(k)Ŵ (kR)k2dk, (5.3.3)

and Plin(k) is the linear matter power spectrum as a function of wave-number k, which is

smoothed with the Fourier transform of the real-space top-hat window function Ŵ of radius

R = (3M/4πρ̄m)1/3. The redshift evolution of the f(σ) parameters of the Tinker et al. (2008)

model is given by:

A(z) = A0(1 + z)−0.14, (5.3.4)

a(z) = a0(1 + z)−0.06, (5.3.5)

b(z) = b0(1 + z)−α, (5.3.6)

2This is due to the flux limit of the RedMapper and MCXC samples, and for Planck and AdvACT, due to
the SZ lower-limit of cluster mass observability.



5.4. Results and discussion 90

logα(∆) = −
[ 0.75

log(∆/75)

]1.2
, (5.3.7)

where for an overdensity of ∆ = 200 (corresponding to our M200 cluster mass definition), the

z = 0 values of the above parameters are: A0 = 0.186, a0 = 1.47, b0 = 2.57. The c parameter

does not evolution with redshift and takes the value of c = 1.19.

We generate the mass function models using the ‘Halo mass function’ module of the COLOS-

SUS3 python package which is described by Diemer (2018) and obtain the volume of the sur-

vey elements in each redshift bin using of the cosvol algorithm of the celestial v1.4.64

package, which follows Hogg (1999) and Wright (2006) in calculating cosmological volumes.

5.4 Results and discussion

5.4.1 ATLAS cluster masses

Figure 5.3 shows a comparison of the ATLAS cluster masses, obtained using Equation 5.2.1, to

SZ cluster masses of the full AdvACT and Planck samples. As seen in Figure 5.3a the ATLAS

cluster catalogue provides a complimentary sample to the Planck catalogue, by detecting

clusters in a lower mass range than possible with Planck. As discussed in Section 4.2 of

Carlstrom et al. (2002), for SZ surveys the observable lower-limit in mass is determined by

factors including the effective beam size and instrument sensitivity, as well as the profile of

the cluster on the sky. Following Carlstrom et al. (2002) equation 5, the integrated SZ signal

over the solid angle of a cluster (with an area A on the sky), dΩ = dA/D2
A, is given by:

∫
∆TSZdΩ ∝ NeT̄e

D2
A
∝ MT̄e

D2
A
. (5.4.1)

Here, the CMB spectral distortion is expressed as a temperature change ∆TSZdΩ, Ne repre-

sents the total number of electrons in the cluster, T̄e is the average electron temperature and

M is the cluster gas mass. The angular diameter distance (i.e. the ratio of the physical size of

an object to the angular size of the object on the sky) can be expressed asDA(z) = DC/(1+z),

where DC is the comoving distance to the source.

Consequently, as seen in Figure 5.3a, in the z < 0.6 range covered by our cluster sample,

the lower-limit of mass observability for the Planck SZ survey with a fixed flux sensitivity,

3https://bdiemer.bitbucket.io/colossus/lss_mass_function.html
4https://www.rdocumentation.org/packages/celestial

https://bdiemer.bitbucket.io/colossus/lss_mass_function.html
https://www.rdocumentation.org/packages/celestial
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increases as a function of redshift due to rise in DA(z), while optical cluster samples like

ATLAS do not have the same redshift dependence on the lower-limit of cluster mass observ-

ability. On the other hand, SZ cluster surveys offer the ability to detect all clusters above a

certain mass threshold with little dependence on redshift, whereas optical surveys are limited

in their ability to detect clusters at higher redshifts by the magnitude limit of the survey. As

a result the two approaches to cluster detection are highly complementary in maximizing the

mass and redshift completeness of cluster samples.

As seen in Figure 5.3b, the ATLAS cluster sample also complements the AdvACT SZ sample

in terms of detection of lower mass clusters in the redshift range z < 0.5. We note however,

that due to it’s higher angular resolution and superior flux sensitivity, AdvACT is able to

detect lower mass SZ clusters than Planck. The larger Planck beam size, however, makes it

more sensitive to clusters at z < 0.05 when compared to AdvACT (due to the larger projected

area of these low redshift clusters on the sky).

Figure 5.4a shows a comparison of our ATLAS cluster masses, with X-ray cluster masses

(M500) from the MCXC sample. While most X-ray surveys included in the MCXC sample

tend to be more sensitive to low-mass, low-redshift clusters in comparison to optical clus-

ter catalogues, the completeness of these X-ray flux-limited cluster samples is reduced with

redshift, with optical and SZ surveys providing more complete cluster samples at higher

redshifts. Nevertheless, X-ray cluster samples play an important role in calibrating optical

and SZ cluster masses and in determining the cluster gas fractions. The next generation of

deeper X-ray cluster samples such as eROSITA will significantly improve on the completeness

and statistics of current X-ray cluster samples by detecting ∼ 100, 000 galaxy clusters with

masses > 5× 1013h−1M� (Pillepich et al., 2012), a 2 orders of magnitude improvement over

the MCXC cluster sample size.

Finally, we compare the ATLAS cluster masses to cluster masses from the SDSS RedMapper

cluster catalogue in Figure 5.4. It can be seen that the two samples cover a similar range of

cluster masses and redshifts, which is expected, given that both samples detect clusters using

optical griz bands with a similar depth. However, as the ATLAS catalogue covers areas of the

southern sky, not covered by the SDSS RedMapper catalogue, the two catalogues are highly

complementary. For reasons which we discussed in Section 3.4.5, the ATLAS sample also

contains a larger number of cluster detections in the redshift range 0.05 < z < 0.3, while the

RedMapper catalogue contains more cluster detections in the 0.3 < z < 0.55 range, making

this another aspect in which the two catalogues are complimentary.
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(a)

(b)

Figure 5.3: Comparison of the ATLASM200m cluster masses to Planck SZ massesMSZ (panel
a), and AdvACT M200m SZ masses (panel b).

5.4.2 Comparison of cluster mass functions

We now compare the observed cluster mass functions of ATLAS, RedMapper, Planck and

AdvACT samples to the theoretical predictions of the Tinker et al. (2008) model. The mass

function models are generated for spherical overdensities defined as M200m, assuming the
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(a)

(b)

Figure 5.4: Comparison of the ATLAS M200m cluster masses to MCXC M500 cluster masses
(panel a), and SDSS RedMapper M200m cluster masses (panel b), obtained using equa-
tion 5.2.3.

Planck 2015 cosmology (Planck Collaboration et al. 2016b; Table 4, column 6). We compare

the observed mass functions to the models in five redshift bins, in order to examine the

evolution of the cluster mass function in the redshift range 0.05 < z < 0.55. Here, we apply

a richness cut of N200 > 20 to the ATLAS clusters to match the RedMapper richness cut of
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λ > 20.

In Figure 5.5 we compare the redshift evolution of observed optical and SZ cluster mass

functions to the predictions of ΛCDM. Here, the fall in the amplitude of the cluster mass

functions at lower masses is due to the reduced completeness of the samples as they approach

their lower limit of cluster mass detection. As expected, the optical samples probe a lower

range of cluster masses than the SZ masses at higher redshifts.

As seen in Figure 5.5 in the 0.05 < z < 0.35 redshift range, we find the ATLAS cluster

mass functions to have a higher amplitude relative to RedMapper, placing them in better

agreement with the ΛCDM predictions. The lower amplitude of RedMapper could be in

part due to an underestimation of RedMapper cluster masses at lower redshifts. This is in

line with the discussion presented in Section VI.B of DES Collaboration et al. (2020), where

the lower than expected Ωm obtained from cluster counts of the DES RedMapper sample is

attributed to a possible underestimation of the RedMapper masses obtained based on the

weak lensing calibration of the mass-richness scaling relation.

However, in Section 3.4.5 we also found a higher density (per unit volume) of ATLAS clusters

at z < 0.35 compared to RedMapper. Similarly, our comparison of ATLAS and RedMapper

samples to the Abell cluster catalogue at lower redshifts showed that for clusters with richness

greater than 20, ATLAS recovers ∼ 80% of Abell clusters, while RedMapper recovers Abell

clusters at a lower rate of ∼ 60%. This could be taken as an indication that at lower redshifts

RedMapper is likely to miss a larger fraction of genuine (and relatively rich) clusters compared

to ATLAS. Consequently, RedMapper’s lower completeness at z < 0.35 could also be an

important contributing factor towards the lower amplitudes of its mass function relative to

ΛCDM predictions.

As one can see in Figure 5.5, although the AdvACT survey probes a lower range of cluster

masses than Planck5, at all redshifts we find a good agreement between the mass functions

of the two SZ samples in the range of masses where both surveys are complete. With the

exception of the z = 0.5 redshift bin (Figure 5.5e), the Planck and AdvACT mass functions

also appear to be in general agreement with RedMapper, placing them below the ATLAS

cluster mass functions and the predictions of ΛCDM.

5Note that in the z = 0.1 bin (Figure 5.5a) the fact that Planck probes lower redshifts than AdvACT, offsets
AdvACT’s ability to probe clusters of lower masses, resulting in both samples having a similar completeness
in the M200 < 3 × 1014h−1M� mass range.
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(a) (b)

(c) (d)

(e)

Figure 5.5: A comparison of ATLAS, RedMapper, Planck and AdvACT cluster mass func-
tions to the theoretical predictions of the Tinker et al. (2008) ΛCDM models assuming a
Planck 2015 cosmology (Planck Collaboration et al., 2016b). Here, the error bars on the
observed mass functions are estimated as

√
n.
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The lower amplitude of the SZ cluster mass functions compared to ΛCDM is likely to be due

to systematics in the SZ flux-cluster mass scaling relation resulting in an under-estimation

of cluster masses of these samples. Indeed, as discussed in Section 4.3.2, some SZ mass

calibration techniques place the Planck cluster counts in closer agreement to the prediction

of the ΛCDM model. However, as we discussed in the previous Chapter, the incompleteness

of SZ samples could be another explanation for the lower amplitude of their mass functions

relative to the models. To investigate this possibility, we compare the AdvACT6 and Planck

samples to the Abell clusters with richness classes > 2 and > 3, (which limit the catalogue

to clusters with greater than 80 and 130 members respectively). A summary of our results is

presented in Table 5.1, where we find the SZ samples to recover ∼ 30% of Abell clusters with

a richness class>2 and ∼ 50% of Abell clusters with richness>3. Figure 5.6 shows examples

of four z ∼ 0.2 ATLAS clusters with mass estimates of M200 > 4× 1014h−1M� placing them

above the Planck lower limit on mass observability. In the future, spectroscopic follow up of

SZ clusters guided by optical cluster catalogues (similar to those presented in the previous

Chapter) could improve the completeness of current SZ samples. Similarly, a more detailed

study of potential issues which could lead to the lack of detection of rich clusters in SZ

samples based on comparison to optical catalogues such as ATLAS and RedMapper would

be an interesting topic for future works.

Table 5.1: Fraction / percentage of rich Abell clusters overlapping the Planck and AdvACT
surveys recovered by each SZ survey. ACO2 and ACO3 denote Abell clusters with richness
class>2 and 3 respectively.

Redshift AdvACT/ACO2 PSZ/ACO2 AdvACT/ACO3 PSZ/ACO3
0.05 < z < 0.15 16/73 (22%) 50/170 (29%) 4/9 (44%) 13/29 (65%)
0.15 < z < 0.25 34/105 (32%) 105/300 (35%) 13/28 (46%) 36/64 (56%)

Although the lower amplitude of SZ cluster mass functions relative to the ΛCDM predictions

are most likely due to the issues described above, we note that a value of σ8 ≈ 0.7 (with

Ωm = 0.3), could also produce such observations. Furthermore, suppression of observed

cluster mass functions compared to ΛCDM predictions at higher masses (similar to those

seen in the ATLAS mass functions) could originate from primordial non-Gaussianities (Dalal

et al. 2008; Verde 2010) or signal the presence of massive Neutrinos (e.g. Costanzi et al. 2013;

Castorina et al. 2014; Biswas et al. 2019).

6We note that although Planck SZ detections with no measured redshifts are included in the catalogue
used in this comparison, at the time of this writing, we only had access to AdvACT SZ detections with cluster
counterparts identified based on their photometric or spectroscopic redshifts
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Figure 5.6: DES, DECaLS or PanSTARRS images of four z ∼ 0.2, M200 > 4 × 1014h−1M�
ATLAS clusters which are also detected in the Abell sample, with no detections in the Planck
SZ catalogue.

5.4.3 σ8 and the evolution of cluster mass function

In order to determine the value of σ8 preferred by the data, we fit the Tinker et al. (2008)

models to the observed ATLAS mass functions in each redshift bin. This is done by treating

σ8 as a free parameter when generating the mass function models at each redshift, while

assuming the Planck Collaboration et al. (2016b) values for all other cosmological parameters.

This results in a mean σ8 value of σ8 = 0.76 ± 0.02, where the uncertainty is given by the

standard error on the mean. This corresponds to S8 = 0.77± 0.03, where S8 ≡ σ8
√

Ωm/0.31.

In Figure 5.7, we compare the value of S8 measured from the ATLAS cluster mass functions

to various other measurements, including the Planck CMB analysis (Planck Collaboration

et al., 2020), as well as the large-scale structure clustering and weak lensing analyses from

the KiDS (Heymans et al., 2020), DES (Abbott et al., 2018a) and BOSS (Tröster et al.,

2020) surveys. Recent measurements based on various other cluster samples, including the

Planck (Planck Collaboration et al., 2016d) and SPT (Bocquet et al., 2019) SZ clusters, the

DES Y1 optical cluster sample (DES Collaboration et al., 2020), and the REFLEX II X-ray

cluster sample (Böhringer et al., 2014) are also shown. As we can see, the majority of S8

measurements (blue data points) appear to be in good agreement, and taking the mean of
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Figure 5.7: Comparison of S8 measurements from the analysis of VST ATLAS cluster mass
functions and measurements from various other surveys. Here, OP-CL, SZ-CL and X-ray-
CL are used to distinguish optical, SZ and X-ray cluster samples, respectively. With the
exception of the Planck 2018 CMB constraint and the weak lensing calibrated analysis of
the DES Year 1 (Y1) cluster sample (red data points), the S8 measurements from all other
surveys (blue data points) appear to be in good agreement. The solid line shows the mean
of the blue data points with a value of S̄8 = 0.761± 0.007 where the uncertainty is given by
the standard error on the mean. For illustration purposes, in this plot we show the standard
deviation on the mean as a measure of the scatter, using the dotted lines.

these measurements results in a value of S̄8 = 0.761±0.007. However, the analysis of the DES

Y1 cluster sample results in a S8 value which is 2.7σ lower than S̄8 (this is mostly driven by

their low measurement of Ωm = 0.179+0.031
−0.038), while the Planck CMB constraint on S8 is in a

4.6σ tension with S̄8. The source of the tension between Planck’s early-Universe constraints

on S8 and the lower redshifts measurements from the analyses of the large-scale structure

remains unknown and an important topic of study in future works.
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(a) (b)

Figure 5.8: (a) The redshift evolution of the Tinker et al. (2008) mass function models. (b)
The redshift evolution of the Tinker et al. (2008) mass function models, fitted to ATLAS
observations. At each redshift, the best-fit is obtained by varying the normalization of the
models by the factors shown in the plot legend. For clarity, we do not plot the observed
ATLAS mass functions here.

Figure 5.8a shows the redshift evolution of the Tinker et al. (2008) mass functions (assuming

our fiducial, Planck Collaboration et al. 2016a cosmology), while Figure 5.8b shows the

redshift evolution of ATLAS cluster mass functions based on the best-fit Tinker et al. (2008)

models. Here, instead of varying σ8 (which modifies the shape, as well as normalization of the

models), we keep the cosmological parameters constant and simply adjust the normalization

of models by the factors shown in the legend of Figure 5.8b in order to find the best fit

values preferred by the data at each redshift. Our findings show that with the exception of

z = 0.2, the data appear to prefer lower mass function amplitudes relative to the Tinker et al.

(2008) predictions with the difference between the observations and predictions being higher

at z > 0.35. While this comparison provides a preliminary indication of the divergence of

observations to predictions of the model, a more comprehensive analysis of the systematic

and statistical uncertainties on the ATLAS cluster mass function (with errors estimated from

the data using jackknife or bootstrap techniques or using mock catalogues) is needed before

the statistical significance of the divergence between the observations and the predictions

can be quantified. We leave this, as well as comparison of the observations to different mass

function models, and obtaining constraints for a larger set of cosmological parameters from

the ATLAS cluster mass functions to future works.
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5.5 Conclusions

In this chapter, we converted our cluster richness (N200) values which were presented in Chap-

ter 3 to estimates of cluster mass (M200) based on a mass-richness scaling relation calibrated

to cluster masses from the SDSS RedMapper, MCXC, Planck and AdvACT samples.

We then compared the cluster mass functions of ATLAS, RedMapper, Planck and AdvACT

samples to the theoretical predictions of Tinker et al. (2008) models (assuming a Planck

Collaboration et al. 2020 ΛCDM cosmology), in the 0.05 < z < 0.55 redshift range. The

summary of our findings is as follows:

• At z < 0.35, ATLAS cluster mass functions have a higher amplitude compared to

those of the SZ samples and the RedMapper mass functions. This places the ATLAS

measurements in better agreement with ΛCDM predictions with σ8 = 0.811 ± 0.006

(based on the CMB analysis of Planck Collaboration et al. 2020), rather than some of

the previous constraints from the Planck SZ cluster counts, which depending on the SZ

mass calibrations, can give σ8 measurements as low as 0.71±0.03 (Planck Collaboration

et al., 2016d).

• Incompleteness of the SDSS RedMapper cluster sample at lower redshifts is likely to

be a contributing factor to the lower amplitude of its mass functions relative to the

predictions of ΛCDM.

• While systematics in SZ mass calibrations are likely to be the dominant contributing

factor to the lower mass function amplitude of SZ samples relative to the models, the

current incompleteness of SZ samples are also likely to have a non-negligible impact on

the lower than expected mass function amplitudes.

• Follow-up spectroscopic observations of SZ clusters guided by optical cluster catalogues

such as ATLAS and RedMapper could improve the completeness of SZ samples. Fur-

thermore, future detailed studies of rich optical clusters which remain undetected in

SZ samples could help with the identification of any unknown issues impacting the

completeness of SZ catalogues.

• Fitting the ATLAS mass functions over the full redshift range of the sample with σ8

treated as a free parameter yields a best-fit value of S8 = 0.77 ± 0.33. While this

value in good agreement with the values obtained from the weak lensing and clustering

analyses of DES and KiDS surveys, as well as measurements from Planck, SPT and
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REFLEX II cluster samples, it is ≈ 2σ lower than the Planck CMB constraint. This

discrepancy increases to 4.6σ when the Planck CMB S8 measurement is compared to

the mean S8 value obtained from the combination of constraints from the DES and

KiDS weak lensing and LSS clustering analyses and the ATLAS, SPT, REFLEX II and

Planck SZ cluster counts results. The source of this tension is an important topic of

investigation for future works.

• Focusing on the redshift evolution of ATLAS cluster mass functions, we found the AT-

LAS mass functions to generally prefer lower values of normalisation relative to the

Tinker et al. (2008) model predictions (by up to a factor of ∼ 2 at z > 0.35). This

is with the exception of the z = 0.2 redshift bin, where the ATLAS mass function

normalisation appeared to be 1.11× higher than that of the Tinker et al. (2008) model

prediction. In future, better characterisation of the statistical and systematic uncertain-

ties on the ATLAS cluster mass functions (e.g. based on analysis of simulated mocks),

will allow for a rigorous statistical analysis of these deviations between the observations

and theoretical predictions.



Chapter 6

Cross-correlating Planck with VST

ATLAS LRGs: a new test for the

ISW effect

6.1 Introduction

Based on the latest observational evidence, the universe is believed to be spatially flat (Planck

Collaboration et al. 2016b) and undergoing a late-time accelerating state of expansion (Riess

et al. 1998; Alam et al. 2017). In the current standard model of cosmology ΛCDM, dark en-

ergy, parameterised as a cosmological constant (Λ), is believed to be the driving force behind

this late-time accelerating expansion. Various alternatives to the cosmological constant have

been proposed including modified gravity (Clifton et al. 2012), scale-invariant (Maeder 2017)

or spatially inhomogeneous cosmological models (see e.g. Dunsby et al. 2010; Rácz et al.

2017). As a consequence of the accelerated expansion of the universe, cosmic microwave

background (CMB) photons passing through gravitational potential wells, caused by large-

scale structure such as galaxy clusters, are left with a net gain of energy as the potential wells

become shallower as the photons cross them. In a matter-dominated universe, the net gain

of energy due to gravitational blueshifting of a CMB photon as it "falls into" gravitational

potential wells is cancelled out by the photon’s gravitational redshifting as it "climbs out"

of the potential well. However, as the Universe becomes dark energy dominated (at z < 1

according to the ΛCDM model), its accelerating expansion causes the gravitational potential

well to decay and become shallower on the time scale it takes for the photon to pass through

it. This results in a boost to the energy of CMB photons leaving them with a slightly higher

102
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temperature than the average temperature of the CMB. The opposite effect takes place as

the photons pass through gravitational potential peaks (i.e. voids) with the photons under-

going a net loss of energy and a slightly lower than average temperature. The combination

of these phenomena leads to secondary anisotropies on the CMB temperature map known as

the (late-time) Integrated Sachs-Wolfe (ISW; Sachs & Wolfe 1967) effect. The change in the

CMB temperature ∆T (n̂) resulting from the ISW effect in direction n̂ is linked to the change

in the gravitational potential Φ̇(n̂, τ) with respect to conformal time τ , integrated from the

surface of last scattering to the observer:

δT (n̂) = ∆T (n̂)
T̄

= 2
∫ τ0

τLS
Φ̇(n̂, τ)dτ, (6.1.1)

where δT (n̂) is the observed CMB temperature anisotropy due to the ISW effect measured

at the present day (τ0), T̄ is the mean CMB temperature and τLS is the time of the matter-

radiation decoupling when the CMB was emitted. In matter-dominated Universe, Φ is con-

stant in the linear perturbation limit (as large-scale density perturbations grow at the same

rate as the scale factor of the Universe). However, in a dark energy dominated Universe, the

scale factor grows faster than the linear perturbations resulting in the gravitational potential

to decay with time (see Crittenden & Turok 1996; Nadathur et al. 2012; Huterer et al. 2015).

The signature of the ISW effect can be observed as a non-zero signal in the cross-correlation

between the distribution of foreground tracers of mass (such as galaxies) and the temperature

of CMB, providing a direct probe of the late-time expansion of the universe. Early attempts

at measuring the ISW signal using the cross-correlation method, include an analysis of the

COBE CMB map by Boughn & Crittenden (2002) followed by detections of the signal us-

ing the WMAP CMB data, albeit often at relatively low to moderate levels of significance

(Scranton et al. 2003; Nolta et al. 2004; Boughn & Crittenden 2004; Corasaniti et al. 2005;

Padmanabhan et al. 2005; Giannantonio et al. 2006; Cabré et al. 2006; Rassat et al. 2007;

Raccanelli et al. 2008; Granett et al. 2009; Bielby et al. 2010; Sawangwit et al. 2010; Kovács

et al. 2013). Other studies have however claimed detections in the range of 3− 5σ (Fosalba

et al. 2003; Fosalba & Gaztañaga 2004; Vielva et al. 2006; McEwen et al. 2006; Giannantonio

et al. 2008; Ho et al. 2008; Granett et al. 2008; Giannantonio et al. 2012; Goto et al. 2012;

Planck Collaboration et al. 2016c).

Another common approach in measuring the ISW signal is by stacking of voids and super-

clusters. Similar to the cross-correlation method, studies using this approach have obtained

detection significances ranging from low to moderate (Granett et al. 2015; Kovács et al.
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2017), to 3σ or higher (Pápai et al. 2011; Nadathur & Crittenden 2016; Cai et al. 2017;

Planck Collaboration et al. 2016c). Interestingly, a number of these studies have reported a

signal with a higher amplitude than expected based on ΛCDM predictions.

Here, we follow the work of Sawangwit et al. (2010) where the ISW analysis was performed

on photometrically selected Luminous Red Galaxies (LRGs) from SDSS in the Northern

Hemisphere. In that work, three redshift-limited LRG samples were created allowing the

measurement the ISW signal at redshifts of z̄ = 0.35, 0.55 and 0.68. Although an ISW

signal consistent with ΛCDM was detected at z̄ = 0.35 and 0.55, no such signal was detected

at z̄ = 0.68 albeit, as in the other two cases, the uncertainties were large relative to the

expected signal. Given the implications of any ISW deviations from ΛCDM predictions

(which could provide evidence for modified gravity or inhomogeneous cosmological models),

the lack of detection of the ISW signal at z̄ = 0.68 in SDSS, is a particularly important topic

for investigation using independent samples of LRGs. Sawangwit et al. (2010) also detected

the ISW effect in three magnitude limited galaxy samples (18 < r < 19, 19 < r < 20 and

20 < r < 21), peaking in redshift at z ≈ 0.20, 0.27 and 0.36, providing some confirmation of

the ISW measurements in the two lower redshift LRG samples but not in the third, highest

redshift, sample.

In this work we measure the ISW signal in the cross-correlation of similar samples of galaxies

to those of Sawangwit et al. (2010) but now selected from the VST ATLAS Survey (Shanks

et al. 2015), with the Planck CMB temperature map (Planck Collaboration et al. 2016a). The

VST ATLAS survey has the advantage of covering large areas (∼ 4070 deg2) of the previously

unexplored Southern sky, making it an ideal dataset for improving ISW constraints. This is

because most of the available area in the North has already been covered by SDSS and, since

the ISW signal weakens beyond z ≈ 1, there is limited option to increase the signal at larger

distances. Indeed, with these Southern VST ATLAS data we may be approaching the upper

limit to the significance of ISW detection due to cosmic variance in our limited ‘local’ volume

(see Francis & Peacock 2010).

VST ATLAS is thus located wholly in the Southern Hemisphere and is split into two areas

by the Galactic Plane. In the Northern Galactic Cap (NGC1), the survey covers an area

of ∼ 1450 deg2, while the Southern Galactic Cap (SGC) covers an area of ∼ 2620 deg2. In

these regions, the survey provides imaging data in ugriz bands to similar depths as SDSS in

1We note that at the time of conducting this research, observations of the ATLAS survey in the g and
r-bands were incomplete in the DEC<-20 region of the NGC. The analyses presented in this Chapter are
therefore limited to the DEC>-20 region of the NGC.
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the North, but with superior seeing. We shall use these data to select three LRG samples

and three magnitude limited samples, closely analogous to those created by Sawangwit et al.

(2010) using SDSS.

In order to test our LRG selections, we shall first compare the angular auto-correlation

functions of our VST ATLAS LRG samples to those of Sawangwit et al. (2011). After cross-

checking our photometric selections, we shall perform the ISW measurements and combine

our results with those of Sawangwit et al. (2010), to obtain better constraints on the ISW

effect at each redshift. As a further verification of the SDSS ISW measurements at z̄ = 0.35,

z̄ = 0.55 and z̄ = 0.68 we repeat the measurements using the LOWZ and CMASS LRG

samples from Data Release 12 (DR12; Alam et al. 2015) of the SDSS BOSS survey and the

eBOSS DR14 LRG sample (Prakash et al., 2016) respectively. Unlike photometrically selected

samples, these spectroscopically confirmed samples do not suffer from contamination due to

stars, or from galaxies outside the redshift range. This makes them ideal datasets for further

testing the SDSS photometric ISW measurements, in particular. We note however, that

while spectroscopic samples are not affected by stellar contamination or systematics related

to photometric redshifts, they are not immune to targeting systematics which could introduce

artificial correlations between the inferred density field and factors including stellar density,

fiber collisions and observing conditions. In this work, when using spectroscopic samples,

we account for these potential systematics by applying the BOSS/eBOSS weights (where

available), as described in Section 6.3.2.

To test the robustness of our ISW detections, we perform rotation tests similar to those

previously implemented by Sawangwit et al. (2010) and Giannantonio et al. (2012), where

the ISW cross-correlation measurement is performed on incremental rotations of the LRG

overdensity maps (about the galactic pole) with respect to the CMB to test for systematics.

In their analysis, Sawangwit et al. (2010) found that in approximately 1 or 2 out of 8 cases,

the rotated maps produce a more significant ISW detection than the un-rotated map. Using

a similar approach, Giannantonio et al. (2012) claimed that the results of their rotation tests,

were consistent with the statistical variance of their associated datasets. Here we shall apply

the rotation test to the ISW measurements obtained from the BOSS LOWZ and CMASS

spectroscopic LRG samples, to check their robustness and compare our findings with those

of Giannantonio et al. (2012).

Hence, our aims are first to use ATLAS to test the reproducibility of the ISW measurements

in the three LRG and the three magnitude limited galaxy samples as selected by Sawangwit
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et al. (2010) in SDSS. Of particular interest, is whether the VST ATLAS data independently

reproduce the null detection of the ISW effect in the highest redshift LRG sample at z̄ = 0.68.

Our second aim is to check the robustness of the previous SDSS LRG results using new

spectroscopically confirmed SDSS LRG samples, particularly in the two lower redshift ranges.

The final aim is to apply the rotation test to the BOSS LRG samples to assess the robustness

of such ISW measurements.

The layout of this Chapter is as follows: we present a description of the selected datasets in

Section 6.2, followed by an outline of all relevant methodology in Section 6.3. We present the

results of our analysis and a discussion of our findings in Section 6.4 and conclude this work

in Section 6.5.

Throughout this work all magnitudes are given in the AB system, and for consistency, we

assume the fiducial ΛCDM cosmology adopted by Sawangwit et al. (2010) with ΩΛ = 0.7,

Ωm = 0.3, fbaryon = 0.167, σ8 = 0.8 and h = 0.7.

6.2 Datasets

6.2.1 Planck 2016 CMB temperature map

In our ISW analysis, we use the full Planck 2016 COMMANDER CMB temperature map (de-

scribed in Planck Collaboration et al. 2016a), downgraded to a HEALpix2 (Górski et al. 2005)

resolution of Nside = 512 (FWHM=20 arcmin). This is consistent with the HEALpix reso-

lution used in the analysis of Sawangwit et al. (2010). We apply the associated COMMANDER

"confidence" mask to remove sections of the sky where the temperature and polarization

CMB solution cannot be trusted. The masked Planck CMB maps corresponding to coverage

area of VST ATLAS Northern and Southern Galactic Caps are shown in Figure 6.5. In this

Figure, we also show the overdensity maps for our z̄ = 0.68 LRG and 20 < r < 21 magnitude

limited galaxy sample, as described in Sections 6.2.5 and 6.2.6 respectively. Here we show

the overdensity maps of our faintest and highest redshift samples, as they are the most chal-

lenging to obtain due to their susceptibility to residual stellar contamination and artificial

inhomogeneities caused by factors such as varying observing conditions.

2http://healpix.sourceforge.net
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6.2.2 VST ATLAS luminous red galaxies

Following the photometric selection criteria of Sawangwit et al. (2010), which was used to

extract LRGs from the SDSS Data Release 5 (DR5; Adelman-McCarthy et al. 2007) data,

we use the VST ATLAS survey (described in Chapter 2) to define three LRG samples at

low (z̄ = 0.35), intermediate (z̄ = 0.55) and high (z̄ = 0.68) redshifts. Sawangwit et al.

(2010) in turn adopted their selection criteria based on those of the SDSS LRG (Eisenstein

et al. 2001), 2DF-SDSS LRG and QSO (2SLAQ; Cannon et al. 2006) and Anglo-Australian

Telescope (AAT)-AAOmega (Ross et al. 2008) spectroscopic redshift surveys, corresponding

to the low, intermediate and high redshift LRG samples respectively. In Appendix C.1 we

compare the ATLAS and SDSS g − r, r − i and i − z colours, finding a reasonably tight

scatter with no major systematic offsets in all cases. This enables us to adopt the above

mentioned SDSS-based photometric selection criteria in defining our redshift limited ATLAS

LRG samples.

As observations for the VST ATLAS survey are taken in one band at a time and the telescope

has a 1 deg2 field of view (henceforth referred to as a ‘tile’), it is possible that different bands

are observed on separate nights with varying atmospheric conditions. Although ATLAS has

a relatively tight seeing distribution, in a small number of cases, variations in seeing could

result in fewer objects being detected in one band (especially at fainter magnitudes). This

is because unlike SDSS, forced photometry is currently unavailable for the VST ATLAS

catalogue and in this work we only have access to colours for objects with > 5σ detection in

each band. Consequently, when the selection is applied, regions of the sky covered by these

tiles will appear under-dense. Conversely, a few tiles could have a much higher than average

number density due to residual stellar contamination (particularly in the NGC where the

edge of the survey approaches the Galactic plane).

In order to reduce the impact of these factors on our clustering measurements, we impose a

lower and an upper limit on the number of objects per tile, which masks any significantly

under and over-dense tiles. This ensures the LRG samples used in our cross-correlation

analysis do not contain artificial inhomogeneities due to photometric artefacts or residual

stellar contamination. We select these lower and upper limits based on comparing the auto-

correlation function of the LRG samples to the measurements of Sawangwit et al. (2011),

thus ensuring that such artefacts and contaminations do not impact our ability to recover

the true clustering of the LRGs.
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6.2.3 z̄ = 0.35 low redshift LRG sample

Objects in our low redshift LRG sample are selected based on satisfying the following condi-

tions:

17.5 < rKron < 19.2, (6.2.1)

rKron < 13.1 + c‖/0.3, (6.2.2)

c⊥ < 0.2, (6.2.3)

corresponding to ‘Cut I’ of Eisenstein et al. (2001), or ‘Cut II’ of the same study as defined

by:

17.5 < rKron < 19.5, (6.2.4)

c⊥ > 0.45− (gA5 − rA5)/6, (6.2.5)

gA5 − rA5 > 1.3 + 0.25(rA5 − iA5). (6.2.6)

The colour variables c‖ are and c⊥ are given by:

c‖ = 0.7(gA5 − rA5) + 1.2(rA5 − iA5 − 0.18), (6.2.7)

c⊥ = (rA5 − iA5)− (gA5 − rA5)/4.0− 0.18. (6.2.8)

We note that our use of SDSS cuts in our LRG sample selection is justified given the simi-

larity between ATLAS and SDSS bands (see Figure C.1 for comparison of ATLAS and SDSS

colours). Figure 6.1 shows the cuts used to selected our z̄ = 0.35 LRG sample in the r− i vs.

g − r colour space.

To restrict our sample to galaxies we require the CASU r-band morphological classification

Classification_r=1, and we remove noisy regions (due to remaining ghost reflections from

bright stars or large galaxies) by requiring sky_rms_r<0.2. We further remove residual stellar

contamination via visual inspection of the rA3 vs rKron diagram (see Figure 6.2) by requiring:

rA3 > 0.909rKron + 2. (6.2.9)

In the case of our low redshift sample we mask tiles with fewer than 5 deg−2 and more than

100 deg−2 LRGs. This results in the removal of 10 tiles in the NGC and 8 in the SGC, leaving

31,531 (∼ 22 deg−2) and 63,245 (∼ 24 deg−2) LRGs in the NGC and SGC respectively.
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Figure 6.1: Our z̄ = 0.35 LRG photometric selection, based on ’Cut I’ and ’Cut II’ of Eisen-
stein et al. (2001), used in photometric selection of SDSS LRGs. Here, as in subsequent
plots, the colour gradient illustrates the density of the points, with darker shades represent-
ing a higher number of data points occupying a region of the colour space. The objects
shown in this plot are classified as galaxies based on their VST ATLAS r-band morphological
classification and lie within a magnitude limit of 17.5 < rKron < 19.5.

17:5 18:0 18:5 19:0 19:5
rKron

18

19

20

21

r A
3

Figure 6.2: Further removal of residual stellar contamination from our z̄ = 0.35 LRG sample.
The dashed line is described by equation 6.2.9, separating the stars (below the line) from
galaxies (above the line).
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Figure 6.3: Our z̄ = 0.55 LRG photometric selection, following the colour cuts of Cannon
et al. (2006) used in the selection of the 2SLAQ LRG sample. The objects shown here are
classified as galaxies based on their VST ATLAS i-band morphological classification and lie
within a magnitude limit of 17.5 < iKron < 19.8.

6.2.4 z̄ = 0.55 intermediate redshift LRG sample

We select our intermediate redshift LRG sample based on the following criteria which is an

adaption of the photometric cuts of Cannon et al. (2006) used in the selection of the 2SLAQ

LRG sample (see Figure 6.3):

17.5 ≤ iKron < 19.8, (6.2.10)

c‖ ≥ 1.6, (6.2.11)

d⊥ > 0.55, (6.2.12)

0.5 ≤ (gA5 − rA5) ≤ 3.0, (6.2.13)

(rA5 − iA5) < 2, (6.2.14)

where c‖ is defined in equation (6.2.7) and d⊥ is given by:

d⊥ = (rA5 − iA5)− (gA5 − rA5)/8. (6.2.15)

We restrict our selection to galaxies using the CASU i-band morphological classification

(Classification_i=1), limit sky_rms_i<0.2 and remove residual stellar contamination by

imposing:

iA3 > 0.8iKron + 4.4, (6.2.16)
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in the NGC for iKron < 19.6 and in the SGC for iKron < 19.1, while imposing:

iA3 > 1.3iKron − 4.95 (6.2.17)

for the NGC in the range iKron > 19.6 and

iA3 > 1.8iKron − 14.7 (6.2.18)

for the SGC in the range iKron > 19.1. Here we require different slopes for removing residual

stars in the NGC compared to the SGC, as the edge of the survey lies closer to the Galactic

plane in the NGC resulting in an increase in the level of contamination from residual stars.

We mask tiles with fewer than 10 and more than 130 LRGs in the NGC and those with fewer

than 10 and more than 150 LRGs in the SGC. This results in the removal of 21 tiles in the

NGC and 8 tiles in the SGC, leaving 78,102 (∼ 55 deg−2) and 172,744 (∼ 66 deg−2) LRGs

in the NGC and SGC respectively.

6.2.5 z̄ = 0.68 high redshift LRG sample

The high redshift LRG sample is selected based on the following criteria (see Figure 6.4):

19.8 < iKron < 20.5, (6.2.19)

e‖ ≥ 1.95, (6.2.20)

0.5 ≤ (rA5 − iA5) ≤ 1.8, (6.2.21)

0.6 ≤ (iA5 − zA5) ≤ 1.5, (6.2.22)

or

0.2 ≤ (iA5 − zA5) ≤ 0.6, (6.2.23)

x ≤ (rA5 − iA5) ≤ 1.8, (6.2.24)

with x being the smaller of e‖ = (iA5 − zA5) + (9/7)(rA5 − iA5) or 1.2 at a given (iA5 −

zA5). The sample is restricted to galaxies using the CASU i-band morphological classification

(Classification_i=1) and stellar contamination is removed by imposing:

iA3 > 1.2iKron − 3.45, (6.2.25)

in the NGC for iKron < 20.02, otherwise:

iA3 > 1.4iKron − 7.42. (6.2.26)
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Figure 6.4: Our z̄ = 0.68 LRG photometric selection, following the colour cuts of Ross et al.
(2008) used in the selection of the AAOmega LRG sample. The objects shown here are
classified as galaxies based on their VST ATLAS i-band morphological classification and lie
within a magnitude limit of 19.8 < iKron < 20.5.

In the SGC the imposed cuts are:

iA3 > 1.2iKron − 3.55, (6.2.27)

for iKron < 20.23, otherwise:

iA3 > 1.4iKron − 7.55. (6.2.28)

For this sample we mask tiles with fewer than 10 and more than 90 LRGs in both NGC and

SGC. This excludes 101 tiles in the NGC and 192 in the SGC, leaving 62,379 (∼ 46 deg−2)

and 138,977 (∼ 57 deg−2) LRGs in the NGC and SGC respectively.

6.2.6 Magnitude limited galaxy samples

To select our three magnitude limited galaxy samples we require objects to be classified as

galaxies using the CASU r-band morphological classification (Classification_r=1). We

then simply select objects satisfying 18 < rKron < 19, 19 < rKron < 20 and 19 < rKron < 20.

In all cases we apply the additional cut of rA5 > 0.94rKron + 1.08 to remove any residual

stellar contamination from our samples. For the 18 < rKron < 19 sample this results in

507,813 (∼ 350 deg−2) and 839,208 (∼ 320 deg−2) galaxies in the NGC and SGC respectively,

with the 19 < rKron < 20 sample containing 1,567,450 (∼ 1100 deg−2) galaxies in the NGC
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Table 6.1: Details of the VST ATLAS, BOSS LOWZ and CMASS, and eBOSS LRG samples
used in our cross-correlation analyses. For comparison we have included the same information
for the SDSS LRG samples used in the analysis of Sawangwit et al. (2010). *Other magnitude
limits used in the selection of the eBOSS sample can be found in Prakash et al. (2016).

Sample (z̄) Number of LRGs Masked Area Sky Density Magnitude
(deg2) (deg−2) (AB)

ATLAS (0.35) 94,776 ≈ 4060 ≈ 23 17.5 < r < 19.5
ATLAS (0.55) 250,846 ≈ 4050 ≈ 62 17.5 < i < 19.8
ATLAS (0.68) 201,356 ≈ 3800 ≈ 53 19.8 < i < 20.5
SDSS (0.35) 106,699 ≈ 8210 ≈ 13 17.5 < r < 19.5
SDSS (0.55) 655,775 ≈ 7715 ≈ 85 17.5 < i < 19.8
SDSS (0.68) 800,346 ≈ 7622 ≈ 105 19.8 < i < 20.5

LOWZ (0.32) 313,446 ≈ 8337 ≈ 38 16.0 < r < 19.6
CMASS (0.57) 849,637 ≈ 9376 ≈ 91 17.5 < i < 19.9
eBOSS (0.70) 141,000 ≈ 1670 ≈ 84 19.9 < i < 21.8*

(a) CMB NGC (b) CMB SGC

(c) z̄ = 0.68 NGC (d) z̄ = 0.68 SGC

(e) 20<r<21 NGC (f) 20<r<21 SGC

Figure 6.5: The Planck CMB temperature anisotropy map covering the NGC (a) and SGC
(b) of the VST ATLAS survey (described in Section 6.2.1). (c & d) The VST ATLAS
z̄ = 0.68 LRG overdensity maps. Although we have included a number of under-dense con-
catenations in the final sample (marked by dotted boxes), our tests show that our auto and
cross-correlation measurements are insensitive to masking these. (e & f) The VST ATLAS
galaxy overdensity maps for our 20 < r < 21 magnitude limited sample (described in Sec-
tion 6.2.6).
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and 2,589,744 (∼ 1000 deg−2) galaxies in the SGC. For the 19 < rKron < 20 sample, we

find 6,072,488 (∼ 2, 314 deg−2) and 3,522,801 (∼ 2, 426 deg−2) galaxies in the NGC and

SGC. The mean redshift of our 18-19, 19-20 and 20-21 magnitude limited samples are z̄ ≈

0.20± 0.09, 0.27± 0.13 and 0.36± 0.16 respectively.

6.2.7 BOSS DR12 LOWZ, CMASS and eBOSS DR14 LRG samples

The LOWZ samples covers an area of ∼ 8337 deg2 with a number density of ∼ 38 deg−2.

As z . 0.4 LRGs were targeted in the LOWZ sample, we remove the lower redshift objects

by imposing a redshift cut of z > 0.23, thus achieving a subset of the LOWZ sample with a

mean redshift of z̄ = 0.35. The CMASS sample covers an area of ∼ 9376 deg2 with a number

density of ∼ 91 deg−2 and an effective redshift of z ≈ 0.57. A full description of the target

selection criteria for these samples is provided by Reid et al. (2016).

The eBOSS LRG target selection is fully described in Prakash et al. (2016), with the sample

used here containing ∼ 141, 000 LRGs, covering an area of ∼ 1670 deg2, resulting in an LRG

number density of ∼ 84 deg−2 with a median redshift of z ≈ 0.7. A summary of the above

information for our BOSS and eBOSS LRG samples is provided in Table 6.1.

6.3 Methodology

6.3.1 Measuring LRG angular auto-correlation function

We measure the angular correlation function ω(θ) of our LRG samples using the Landy-Szalay

estimator (Landy & Szalay 1993):

ω(θ) = 1 +
(
Nr
Nd

)2 DD(θ)
RR(θ) − 2

(
Nr
Nd

)
DR(θ)
RR(θ) , (6.3.1)

where DD(θ), DR(θ) and RR(θ) are data-data, data-random, and random-random pair

counts at an angular separation of θ. We perform this calculation using the CUTE3 algo-

rithm (Alonso 2012). The correlation function is calculated up to θ = 100 arcmin (using

19 logarithmically spaced bins), to match the range covered by Sawangwit et al. (2011) and

allow for the comparison of the two results. For each sample we generate random catalogues

with 20× the mean number density of LRGs in the NGC and SGC and apply the same masks

as applied to the data.

3https://github.com/damonge/CUTE
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In order to obtain an estimate of the errors on the correlation functions we divide each sample

into Ns = 6 non-overlapping subsamples (with 2 in the NGC and 4 in the SGC), each ∼ 668

deg2 in area. The mean number of LRGs in each subsample are ∼ 15, 800, ∼ 41, 800 and

∼ 33, 600 for our z̄ = 0.35, 0.55 and 0.68 samples respectively. We then calculate the mean of

these measurements, ω̄(θ), for each sample and simply take the standard error on the mean

σω̄(θ), as the uncertainty on the correlation function:

σω̄(θ) = σNs−1√
Ns

=
√∑(ωi(θ)− ω̄(θ))2

N2
s −Ns

. (6.3.2)

Here the sample standard deviation σNs−1 is normalized to Ns−1 (as the mean is determined

from the same dataset, reducing the number of degrees of freedom by one), and ωi(θ) is the

correlation function of the i-th subsample.

6.3.2 Measuring LRG-CMB cross-correlation

We adopt a similar approach to Sawangwit et al. (2010) in calculating the LRG-CMB cross-

correlation, a summary of which is presented here. In this work, we use the NPT (N-point spa-

tial statistic; Gray et al. 2004) code to perform the cross-correlation analysis. First HEALpix

(Górski et al. 2005) is used to create LRG distribution maps by dividing our LRG samples

into spherical pixels of equal area, matching the resolution of our Planck CMB temperature

map (Nside = 512; FWHM=20 arcmin). We combine our LRG mask with the Planck CMB

temperature mask and apply it to both the LRG distribution and CMB temperature maps.

The LRG distribution map is then used to calculate the LRG number over-density, δL(n̂),

per pixel:

δL(n̂) = nL(n̂)− n̄L
n̄L

, (6.3.3)

where nL is the number of LRGs in a given pixel and n̄L is the mean number of LRGs for

the sample being studied.

In the case of CMASS and eBOSS spectroscopic samples, we include the associated weights

when calculating the LRG over-density:

δL(n̂) = nL(n̂)− wtot × n̄L
wtot × n̄L

, (6.3.4)

where wtot = wsystot× (wcp +wnoz− 1). Here wsystot = wsee×wstar, is the angular systematic

weight, introduced to account for non-cosmological fluctuations in target density with stellar

density and seeing, wcp accounts for fibre collisions and wnoz corrects for redshift failures
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by up-weighting the nearest neighbour. A more detailed description of these weights is

presented by Ross et al. (2012). We do not include any weights when measuring the ISW

amplitude using the LOWZ sample, as systematic weights were not supplied with the DR12

LOWZ catalogue. As inclusion of weights do not appear to have a significant impact on our

CMASS and eBOSS ISW measurements however, the impact of weights on our LOWZ ISW

measurement is also likely to be small.

We then calculate the LRG-CMB two-point angular cross-correlation function, ωLC(θ), using:

ωLC(θ) =
∑
ij fiδL(n̄i)fj∆T(n̂j)∑

ij fifj
, (6.3.5)

with fi representing the fraction of the i-th pixel located within the unmasked area, n̂i.n̂j =

cos(θ) and ∆T being the Planck CMB temperature anisotropy after removing the monopole

and dipole contribution. As we are using a high pixel resolution however, the contribution

from the factors weighting for unmasked fractions become negligible, and we simplify equa-

tion (6.3.5) to ωLC(θ) = 〈δL(n̂1)∆T(n̂2)〉. Here we measure the cross-correlation function

using 14 logarithmically spaced bins covering the range of θ < 1400 arcmin.

In order to account for the correlation between the bins in the correlation function and

obtain an accurate estimation of the significance of the results, we have to consider the full

covariance matrix Cij when fitting a model to the data. Ideally, the covariance matrix is

calculated based on thousands of simulated mock catalogues. However, creating such mock

catalogues is a complex and computationally extensive task which lies beyond the immediate

scope of this work. As a result, here we follow the technique used by Sawangwit et al.

(2010) and obtain the covariance matrix using the jackknife re-sampling technique, dividing

the masked Planck CMB temperature and ATLAS LRG over-density maps into 36 fields of

equal area (24 in SGC and 12 in NGC). Based on these NJK = 36 jackknife subsamples are

generated, omitting one field at a time. The covariance matrix is then given by:

Cij =NJK − 1
NJK

NJK∑
n=1

[(ωLC,n(θi)− ω̄LC(θi))(ωLC,n(θj)− ω̄LC(θj))], (6.3.6)

where ωLC,n(θi) is the measured cross-correlation of the n-th subsample, ω̄LC(θi) is the mean

of the measurements from all subsamples and i and j denote the i-th and j-th bins. The

NJK − 1 factor is required in order to account for the fact that the subsamples are not

independent and the uncertainty on each angular bin of the cross-correlation function σωLC(θ),

is given by the square root of the diagonal elements of the covariance matrix.

For each of our samples, we obtain separate measurements of ωLC(θ) in the NGC and SGC
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which are combined by taking the weighted mean ω̂LC(θ), of the two measurements:

ω̂LC(θ) =
∑
m ωLC,m(θ)/σ2

ωLC,m(θ)∑
m 1/σ2

ωLC,m(θ)
, (6.3.7)

where m denotes the measurement from NGC/SGC and the error on the weighted mean

σω̂LC(θ) =
√

1/∑m 1/σ2
ωLC,m(θ).

Given that our samples cover the same range of redshifts as those of Sawangwit et al. (2010),

and we have assumed the same fiducial cosmology, in this work we do not generate indepen-

dent theoretical predictions for the ISW signal. Instead we simply compare our results with

the models calculated in Section 3 of Sawangwit et al. (2010) based on ΛCDM predictions.

Using the covariance matrix, we then calculate the χ2 parameter providing a statistical

measure of the quality of the fit provided by the model to our observations. The χ2 is

given by:

χ2 = [ω̂LC,obs(θ)− ωLC,mod(θ)]TC−1[ω̂LC,obs(θ)− ωLC,mod(θ)], (6.3.8)

where ω̂LC,obs(θ) is our measured cross-correlation and ωLC,mod(θ) is the prediction from the

model4.

6.4 Results and Discussion

6.4.1 VST ATLAS LRG angular auto-correlation function

The angular auto-correlation functions for our low, intermediate and high redshift LRG sam-

ples are presented in Figure 6.6. For all three samples we find a reasonable agreement between

our results and the SDSS measurements of Sawangwit et al. (2011). In all cases the agree-

ment between the auto-correlation function amplitudes of the ATLAS and SDSS LRGs (and

best-fit double power law models), is an indication of the success of our applied photometric

selection criteria at extracting similar LRG samples from the VST ATLAS survey as those

extracted from SDSS. Given the sensitivity of the auto-correlation function amplitude to stel-

lar contamination, these results also show that our cuts have succeeded in efficiently reducing

stellar contamination in our three LRG samples. Furthermore, even though our LRG samples

have different number densities compared to those of Sawangwit et al. (2010), the agreement

between the ATLAS and SDSS auto-correlation functions suggests that the LRG clustering

4See Section 6.4.2 for a discussion of why we ultimately adopt an alternative approach to χ2, in accessing
the level of agreement between our results and the model.
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Figure 6.6: The VST ATLAS LRG angular auto-correlation functions, for our low, interme-
diate, and high redshift samples (diamonds). The SDSS measurements of Sawangwit et al.
(2011) (circles) and their best-fit double power-law models (solid lines) are added for com-
parison. Here, the error bars are shown inside the open data points. The good agreement
between the measurements from the two datasets is an indication of the success of our LRG
photometric selection in limiting the samples to the correct redshift range as well as efficient
removal of stellar contamination.
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amplitude is preserved in our samples. As a result, we do not expect our measurements of

the ISW amplitude to be influenced by our different sample number densities. We believe our

lower LRG densities are in part due to the slightly larger scatter in the VST ATLAS colours

used in the LRG sample selections, compared to the colour scatter in SDSS. Another factor

influencing our lower number density could be our additional Aperture vs Kron magnitude

cuts applied to remove residual stellar contamination as described in Section 6.2.2.

Further tests of impact of survey systematics due to excess stellar contamination, galactic

dust extinction and variations in airmass and seeing are presented in Appendix C.2. Our tests

indicate that these systematics do not have a significant effect on our ISW measurements.

6.4.2 VST ATLAS LRG-Planck CMB cross-correlation

Figure 6.7a shows a comparison of our ISW measurements based on the cross-correlation of

VST ATLAS LRGs and Planck CMB temperature anisotropy map, to the results of Sawang-

wit et al. (2010) (where the same analysis was perform using SDSS LRGs and the WMAP

temperature map). We find a good agreement between the two measurements in terms of

ISW amplitude at all redshifts. Our error bars are however larger than those of Sawangwit

et al. (2010), which can be partially attributed to the ∼ 2× lower sky coverage of the ATLAS

survey compared to SDSS, as well as the lower number density of LRGs, at least in the case

of our z̄ = 0.55 and z̄ = 0.68 samples (see Table 6.1).

As on large scales relevant to ISWmeasurements the statistical error is limited by sample vari-

ance, one would expect the errors on our ISW measurements to scale with σATLAS/σSDSS ≈√
(ASDSS/AATLAS) where A represents the area of each sample. We therefore expect the

ATLAS error bars to be ∼ 1.4× larger than those of SDSS. However, we find that the errors

on our VST ATLAS LRG ISW measurements do not obey the above scaling with SDSS and

are ∼ 1.9×, ∼ 2.4× and ∼ 3.0× larger than those from SDSS, for our z̄ = 0.35, 0.55 and

0.68 samples respectively. Assuming the SDSS ISW errors of Sawangwit et al. (2010) are

not under-estimated, the reason behind the larger than expected errors on our LRG ISW

measurements remains unknown.
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Figure 6.7: (a) The VST ATLAS LRG-Planck CMB cross-correlation signal from our low,
intermediate and high redshift samples compared to SDSS LRG-WMAP CMB measurements
of Sawangwit et al. (2010). The predictions of the ΛCDM model are shown by the red solid
lines. (b) The weighted mean of the two measurements in (a).
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Figure 6.8: (a) The weighted mean of the SDSS+ATLAS ISW measurements at z̄ = 0.35 and
0.55 (i.e the top panels of Figure 6.7b). (b) The z̄ = 0.68 measurement (bottom left panel of
Figure 6.7b). As shown in Table 6.2, when combining the z̄ = 0.35 and 0.55 measurements,
we detect the ISW signal at 2.6σ and we note the result is in agreement with the predictions
of ΛCDM. However, at z̄ = 0.68 the ISW amplitude is close to zero and deviates from the
ΛCDM predictions by 2.0σ.

Similarly to Sawangwit et al. (2010), when fitting our measurements to the ΛCDM model, we

find the resulting χ2 values (given by equation 6.3.8) to be unreliable. This is likely due to

our use of the jackknife technique in estimating the covariance matrices (see equation 6.3.6)

and the failure of this technique in accurately estimating the off-diagonal covariance matrix

elements, which in turn impacts the χ2 fitting results. As mocks are currently not available

for the VST ATLAS survey (and the Bootstrap technique was also unsuccessful in improving

our covariance matrix estimations), we follow the approach of Sawangwit et al. (2010) and

simply assess the deviation of our measurements from the ΛCDM predictions and a null ISW

amplitude, based on a single large bin covering the 12 < θ < 120 arcmin range.

Table 6.2 contains a summary of the our single bin ISW measurements, those of Sawangwit

et al. (2010) and also the weighted mean of the results from the two studies (see Figure 6.7b).

In the case of the z̄ = 0.35 and 0.55 LRG samples we found our detected ISW amplitude to be

in agreement with the predictions of ΛCDM, supporting the late-time accelerated expansion of

the Universe. As seen in Table 6.2, upon combining the ATLAS and SDSS measurements, at

these redshifts we detect the ISW effect at 1.2σ and 2.3σ (or 2.6σ combined5 - see Figure 6.8a).

In the case of the z̄ = 0.68 LRG sample however, where the ISW measurement from VST

ATLAS has a similar negative amplitude to SDSS, we find a ∼ 2σ deviation from the ΛCDM

prediction, when combining the results from the two studies (Figure 6.8b).

5Based on the weighted mean of the results from the two redshifts.



6.4. Results and Discussion 122

Table 6.2: Summary of our VST ATLAS and BOSS/eBOSS LRGs-Planck CMB cross-
correlation measurements of the ISW amplitude (based on a single bin covering the 12 <
θ < 120 arcmin range). The SDSS LRG-WMAP CMB measurements of Sawangwit et al.
(2010) and weighted mean of the results from the various datasets are also included. The
final column shows the deviation of each measurement from the predictions of the ΛCDM
model and a null amplitude. In all cases, we use the weighted mean to combine the results
from different redshifts.

Sample z̄ ω(12-120 arcmin) Deviation significance

[µK] (ΛCDM, null)

0.35 0.47± 0.62 (0.0σ, 0.8σ)

VST ATLAS 0.55 0.41± 0.51 (0.1σ, 0.8σ)

(this work) 0.68 −0.49± 0.59 (1.3σ, 0.8σ)

0.35+0.55+0.68 0.11± 0.33 (0.8σ, 0.3σ)

0.35 0.33± 0.33 (0.5σ, 1.0σ)

SDSS 0.55 0.44± 0.21 (0.5σ, 2.1σ)

(Sawangwit et al., 2010) 0.68 −0.13± 0.20 (2.0σ, 0.6σ)

0.35+0.55+0.68 0.21± 0.14 (1.2σ, 1.5σ)

0.35 0.32± 0.38 (0.4σ, 0.9σ)

BOSS/eBOSS 0.55 0.73± 0.38 (1.1σ, 2.0σ)

(this work) 0.68 0.50± 0.76 (0.3σ, 0.7σ)

0.35+0.55+0.68 0.52± 0.25 (0.6σ, 2.1σ)

0.35 0.36± 0.29 (0.5σ, 1.2σ)

VST ATLAS+SDSS 0.55 0.43± 0.19 (0.5σ, 2.3σ)

(weighted mean) 0.68 −0.17± 0.19 (2.3σ, 0.9σ)

0.35+0.55 0.41± 0.16 (0.1σ, 2.6σ)

0.35+0.55+0.68 0.20± 0.12 (1.4σ, 1.7σ)

0.35 0.36± 0.32 (0.4σ, 1.1σ)

VST ATLAS+BOSS/eBOSS 0.55 0.62± 0.31 (0.9σ, 2.0σ)

(weighted mean) 0.68 −0.12± 0.47 (0.8σ, 0.3σ)

0.35+0.55 0.49± 0.22 (0.4σ, 2.2σ)

0.35+0.55+0.68 0.38± 0.20 (0.1σ, 1.9σ)

In these measurements, the signal is mostly dominated by SDSS and combining the VST

ATLAS and SDSS results only yields a small increase in the significance of detection (or

rejection) of the ΛCDM ISW predictions, compared to the results previously obtained from
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SDSS alone. We note however, that the errors in the ATLAS ISW measurements would

be 50-70% smaller if they had scaled correctly with sample size, which may explain the

unexpectedly good agreement between SDSS and ATLAS results in all three redshift ranges.

Overall, the results of this study offer a valuable confirmation of the measured ISW amplitudes

of Sawangwit et al. (2010) based on SDSS and WMAP, using the cross-correlation of two

independent datasets (VST ATLAS and Planck) that also cover completely separate areas of

the sky.

6.4.3 Comparison to BOSS DR12 LOWZ, CMASS and eBOSS LRGs sam-

ples

To further verify the SDSS measurements at z̄ = 0.35, 0.55 and 0.68 we compare the re-

sults with those obtained using the LOWZ, CMASS and eBOSS LRG redshift samples (see

Section 6.2.7). As shown in Figure 6.9 with the exception of the θ > 100 arcmin higher

BOSS ISW amplitude at z̄ = 0.55, the BOSS measurements provide a general confirmation

of the SDSS results at z̄ = 0.35 and z̄ = 0.55. The z̄ = 0.35 results show particularly good

agreement between the photometric and spectroscopic samples. The reason behind the higher

than expected z̄ = 0.55 BOSS amplitude at large separations remains unknown. At z̄ = 0.68,

the ISW amplitude is more positive in the eBOSS LRG sample than observed in SDSS or

ATLAS (see Figures 6.9 and 6.10a). Nevertheless, the eBOSS result shows a qualitatively

different form to that of the lower redshift results generally rising towards larger separations

rather than falling. This behaviour is also similar to that seen in SDSS and ATLAS at the

same redshift, just with a higher amplitude for eBOSS.
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Figure 6.9: Comparison of the SDSS and BOSS/eBOSS ISW measurements.
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(a) VST ATLAS vs. BOSS/eBOSS.
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(b) VST ATLAS + BOSS/eBOSS.

Figure 6.10: (a, b) same as (6.7a, 6.7b) but comparing / combining the VST ATLAS ISW
measurements to those based on BOSS/eBOSS.
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At z̄ = 0.35 and z̄ = 0.55, we therefore find similar results whether we combine ATLAS with

SDSS photometric, or BOSS/eBOSS spectroscopic LRG samples. For example, in Table 6.2,

at z̄ = 0.35 and 0.55, the null amplitude is rejected at 1.1 and 2.0σ when combining the

ATLAS+BOSS measurements (Figure 6.10b); similar to the 1.2 and 2.3σ ATLAS+SDSS

ISW detection. When combining the measurements at z̄ = 0.35 and 0.55, the ATLAS+BOSS

result rejects the null signal at 2.2σ, compared to the 2.6σ null rejection obtained from

ATLAS+SDSS.

At z̄ = 0.68 however, Table 6.2 shows a 0.8σ deviation from ΛCDM rather than 2.3σ,

when the ATLAS measurement is combined with eBOSS instead of SDSS. Similarly, the

ATLAS+BOSS/eBOSS weighted mean of the results from the 3 redshift bins appears to be

in better agreement with ΛCDM compared to ATLAS+SDSS (a 0.1σ deviation compared to

1.4σ). However, in both cases this lower rejection significance of ΛCDM is mainly due to

the larger eBOSS errors, rather than any intrinsically improved agreement of the form of the

high redshift result to the ISW model.

These larger errors on the eBOSS ISW measurements are due to its lower sky coverage than

that of the equivalent SDSS LRG sample, and SDSS thus remains the z̄ = 0.68 measurement

with the highest signal in this sky area. We therefore conclude that ATLAS+SDSS mea-

surement shown in Figure 6.8b provides the best estimate of the ISW effect using z̄ = 0.68

LRGs, in the full North+South combined sample. Similarly, in Figure 6.8a we use the AT-

LAS and SDSS data to provide the best z̄ = 0.35 plus z̄ = 0.55 ISW measurement in the full

North+South sample. The difference between the two appears clear, although the z̄ = 0.68

deviation significance from ΛCDM, is currently only at a moderate level of ∼ 2.3σ. It is

therefore important to re-measure the high redshift ISW signal using the complete eBOSS

survey, as well as future surveys such as DESI (DESI Collaboration et al., 2016) and LSST

(Ivezić et al., 2019), which will offer large, high-purity LRG samples that could assess any

potential deviations from ΛCDM at a higher statistical significance.

6.4.4 Magnitude limited samples

Figure 6.11a shows a comparison of our measurements of the three r-band magnitude lim-

ited samples to the SDSS measurements of Sawangwit et al. (2010). Once again a general

agreement is found between the two sets of measurements. Unlike our redshift limited LRG

samples, here the number of galaxies in our three samples are in line with theoretical ex-

pectations, and we find the VST ATLAS error bars to be comparable to those of Sawangwit
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(a) VST ATLAS vs. SDSS.
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Figure 6.11: (a) The ISW signal from our three VST ATLAS r-band magnitude limited
galaxy samples (diamonds) in comparison with the SDSS results of Sawangwit et al. (2010)
(circles) and ΛCDM model prediction (solid lines). (b) weighted mean of the results from
the two studies. Here the mean redshifts of the 18 < r < 19, 19 < r < 20 and 20 < r < 21
samples are z̄ ≈ 0.20, 0.27 and 0.36 respectively.

et al. (2010) based on SDSS, once the difference in survey areas is accounted for.

Upon combining the two sets of measurements by taking their error-weighted mean (see

Figure 6.11b), we find that on scales of 12 < θ < 120 arcmin, the null amplitude is rejected

at moderate levels of ∼ 1.3σ, ∼ 1.9σ and ∼ 2.0σ for the 18 < r < 19, 19 < r < 20 and

20 < r < 21 samples respectively. Recalling that these samples have mean redshifts of

z̄ ≈ 0.20± 0.09, 0.27± 0.13 and 0.36± 0.16, we note that the ∼ 2.0σ ISW detection obtained

from the 20 < r < 21 ATLAS+SDSS galaxy samples, provides a further confirmation of our

1.2σ ISW detection based on the z̄ = 0.35 ATLAS+SDSS LRG samples.
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6.4.5 ISW rotation test

Following the approach of previous works including Sawangwit et al. (2010) and Giannantonio

et al. (2012), we test for presence of systematic effects and the robustness of our measure-

ments by rotating the LRG data with respect to the CMB map in increments of 40° about

the Galactic pole (by adding 40° to the Galactic longitude). Here we perform the rotation

test on the LOWZ and CMASS samples, as they provide contamination-free samples of spec-

troscopically confirmed LRGs. Given the current low sky coverage and large uncertainties on

the eBOSS measurement, we do not include this sample in our rotation tests.

Figure 6.12a shows the results of our single-bin (12 < θ < 120 arcmin) rotation tests for

the LOWZ and CMASS samples. Statistically, one would expect 32 and 5 per cent of the

rotations to exceed the 1 and 2σ thresholds. In the case of the LOWZ sample we find that

4/8 and 2/8 (50 and 25 per cent) of the rotations result in amplitudes that lie above the 1

and 2σ thresholds respectively. Furthermore, we find that 2/8 (25 per cent) of the rotations

produce a more significant rejection of null, than the zero-rotation value.

For the CMASS sample we find that 4/8 and 1/8 (50 and 12.5 per cent) of the points are

further than 1 and 2σ away from zero respectively, while 1/8 (12.5 per cent) of the rotations

produces a more significant null rejection than our zero-rotation result. In order to ensure the

single-bin measurements in Figure 6.12a do not appear to be artificially deviated from zero

due to the presence of outliers in the full-range cross-correlation functions, in Figure 6.12b

we show the full-range cross-correlation function for the 240° rotation of the CMASS sample

(which resulted in the highest deviation from zero). Here, we can see that the 240° rotation

appears to have produced an ISW amplitude which is consistently high in our 12 < θ < 120

arcmin range of interest, resulting in a higher null rejection when compared to the 2σ rejection

obtained from the zero-rotation CMASS result as shown in Table 6.2.

Here our results are in agreement with those of Sawangwit et al. (2010), who found that in

1 to 2/8 cases, the rotated maps produced a more significant null rejection than the zero-

rotation result. However, we find our results to be in contrast to the findings of Giannantonio

et al. (2012) (as shown in their Table 3), where in their 6 studied samples only 23 and 2 per

cent of their rotations exceeded the 1 and 2σ thresholds (fully consistent with the 32 and 5

per cent statistical expectations), with none exceeding the null rejection significance of the

unrotated map. Similarly, Giannantonio et al. (2012) found that across all 7 samples studied

by Sawangwit et al. (2010), only 39 and 11 per cent of rotations exceeded the 1 and 2σ

thresholds.
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Figure 6.12: (a) The BOSS LOWZ and CMASS single-bin (12 < θ < 120 arcmin) ISW
amplitudes as a function of rotation angles (see text for details). The 1 and 2σ error regions
around the null amplitude are shown by dotted and dashed lines. These are based on the
error bars of the zero rotation data points and represent level of variance in the data. (b)
The full-range 240° rotation result for the CMASS sample showing that in the 12 < θ < 120
arcmin range used to extract our single bin measurement, the ISW amplitude is consistently
high and is not merely due to the presence of a few outliers.

Giannantonio et al. (2012) suggest that the higher percentage of points exceeding the 1 and

2σ thresholds, found by Sawangwit et al. (2010) could be due to their use of the jackknife

method in estimating the errors, which has been shown to produce somewhat smaller errors
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(see Cabré et al. 2007) than those obtained from simulated mocks (as used by Giannantonio

et al. 2012). This could in part also explain the higher than expected percentages found in

our rotation tests. However, given that for the LOWZ and CMASS samples, 50 percent of

our rotations exceeded the 1σ threshold, 25 and 12.5 percent exceeded the 2σ threshold, and

2/8 and 1/8 rotations produced a more significant rejection of null than the unrotated map;

our findings suggest that the robustness of current ISW detections is still not completely

secure even at z̄ = 0.35 and z̄ = 0.55. Consequently, as well as any remaining statistical

gains, improvements in reducing systematics on ISW measurements should still be sought in

future works.

6.5 Conclusions

We have presented our measurements of the ISW signal in the cross-correlation of the Planck

CMB temperature map with three photometrically selected LRG samples with mean redshifts

of z̄ = 0.35, z̄ = 0.55 and z̄ = 0.68, selected from the VST ATLAS survey. We then

combine our measurements with those of Sawangwit et al. (2010), where the same analysis

was performed using the WMAP CMB temperature map and LRG samples selected from

SDSS.

Upon combining the measurements from ATLAS and SDSS, at z̄ = 0.35 and z̄ = 0.55, we

detect the ISW signal at 1.2σ and 2.3σ respectively (i.e. a combined detection of 2.6σ).

This is in agreement with the predictions of ΛCDM supporting the late-time accelerated

expansion of the Universe. We further verify our results at these redshifts by repeating the

measurements using the BOSS DR12 LOWZ and CMASS spectroscopic LRG samples. This

time upon combining the ATLAS and BOSS measurements, we detect the ISW signal at

1.1σ and 2.0σ (with a combined significance of 2.2σ). Furthermore, we detect the ISW effect

in 3 magnitude limited galaxy samples, with mean redshifts of z̄ ≈ 0.20, 0.27 and 0.36, at

∼ 1.3, 1.9 and 2.0σ respectively.

However, we do not detect the ISW signal at z̄ = 0.68 when combining the ATLAS and

SDSS results. Further tests using eBOSS LRGs at this redshift remain inconclusive (with an

amplitude of 0.50± 0.76) due to the large uncertainties, caused by the current relatively low

sky coverage of the survey. If the ISW signal is shown to be inconsistent with the predictions

of ΛCDM at high redshifts, it could open the door to alternative theories such as modified

gravity models. It is therefore important to repeat the z ∼ 0.7 ISW measurement upon
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the completion of the eBOSS survey and using data from upcoming surveys such as DESI

and LSST which will provide the statistics and reduced systematics required to assess any

deviations from the predictions of ΛCDM.

Finally, we test the robustness of our ISW measurements at z̄ = 0.35 and z̄ = 0.55 by rotating

the LRG overdensity map with respect to the CMB temperature map in 8 increments about

the Galactic pole. Here, in contrast to the findings of Giannantonio et al. (2012), we find that

a higher percentage of rotations result in amplitudes 1 and 2σ away from zero than statistically

expected. Furthermore, we find that in the case of LOWZ and CMASS samples 2/8 and 1/8

rotations result in more significant rejections of the null amplitude than obtained from our

unrotated maps. Consequently, our results indicate that the robustness and significance of

ISW detections still warrant further examination in future works. Similarly rotation tests

could serve as a useful tool for determining the level of systematics in ISW measurements

obtained from future surveys.

In summary, the results of this study provide a confirmation of previous ISW measurements

from Sawangwit et al. (2010). However, despite the visual impressions given by the cross-

correlation measurements, our detections of the ISW signal at z̄ = 0.35, z̄ = 0.55 and in

3 magnitude limited samples remain at low to moderate levels of significance. However,

previous works such as Francis & Peacock (2010) have demonstrated that the ISW signal

could remain evasive in & 10 per cent of cases, even with the availability of the best possible

data. Nonetheless, given the cosmological implications of any significant deviations from the

predictions of ΛCDM, repeating the ISW measurement at z ∼ 0.7, where our results point

to the possibility of such deviations, using the next generation of large sky surveys, remains

a worthwhile and important endeavour.



Chapter 7

An ALMA investigation of SMG

dust heating mechanisms

7.1 Introduction

Sub-millimetre galaxies (SMGs) were first detected as highly luminous Far-infrared (FIR)

sources (see, e.g. Smail et al. 1997; Barger et al. 1998; Hughes et al. 1998; Dey et al. 1999)

using the James Clerk Maxwell Telescope’s (JCMT) Submillimetre Common-User Bolometer

Array (SCUBA; Holland et al. 1999). These objects were soon found to be high-redshift,

dust-obscured sources which contribute to a significant fraction of the energy output of all

galaxies in the early Universe (Blain et al., 2002). Sub-millimetre observations, therefore,

opened a new window for studies of galaxy formation and evolution since the cosmic dawn

(see Casey et al. 2014 for a detailed review).

The identification of the dominant fueling mechanism which powers SMGs is an ongoing topic

of research. The standard view is that SMGs are predominantly hyper-luminous starburst

galaxies, seen during an obscured phase of their evolution (see, e.g. Alexander et al. 2005;

Dudzevičiūtė et al. 2020). However, it was also found that due to their high mass and star

formation rates (SFR) they present a problem for the ΛCDM model, with the Semi-Analytic

Model of Baugh et al. (2005) under-predicting the abundance of SMGs and requiring the

adoption of a top-heavy stellar initial mass function in starbursts to account for the observed

SMG number counts.

An alternative view is that Active Galactic Nuclei (AGN) are the dominant mechanism that

power SMGs. Although many SMGs are known to host AGN, they are usually viewed to be

131
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subdominant to star-formation in fueling these sources (see, e.g. Laird et al. 2010; Johnson

et al. 2013; Wang et al. 2013).

On the other hand, there are various arguments for considering obscured AGN as the primary

power source for SMGs. For instance, a population of heavily obscured quasars could explain

the missing hard X-ray background (Comastri et al. 1995; Worsley et al. 2005; Polletta et al.

2007), while their dust-rich nature would mean that they would have large emissions in

the infra-red (IR) due to the emission of reprocessed light from the AGN. Indeed, obscured

AGN models have been shown to provide a reasonable fit to the bright end of the SMG

source counts (Hill & Shanks, 2011), removing the need for top-heavy IMF for high-redshift

starbursts, while at fainter fluxes, star-forming galaxies are expected to dominate the SMG

number counts. For AGN to be the dominant source of powering the sub-mm emission rather

than star formation, the dust torus must lie far enough (on ∼ kpc scales) from the nucleus to

maintain a cool temperature of ∼ 35K and produce spectra consistent with observations; a

picture which is feasible if one assumes a torus model similar to Kuraszkiewicz et al. (2003).

In recent years the unprecedented sensitivity and angular resolution of Atacama Large Mil-

limetre/Submillimetre Telescope (ALMA) has enabled the study of the dust heating mech-

anisms of SMGs up to very high redshifts. Using 0.3′′ imaging from ALMA, Simpson et al.

(2015) found that most of their targeted z ∼ 2 SMGs are just resolved, with their imaging

probing scales of ≈ 2h−1kpc. Furthermore, they found the K-band optical extent of these

SMGs to be roughly four times larger than their extent in sub-mm. Using higher resolution

(0.16′′) ALMA imaging, Hodge et al. (2016) found sub-mm sizes of ∼ 1.3 kpc for a sample

of 16 z ∼ 2.5 SMGs. Similarly, Gullberg et al. (2019) studied a sample of ∼ 150 SMGs with

0.18′′ ALMA observations, finding a compact sub-mm dust continuum emission extended to

just ∼ 1kpc, in comparison to the Hubble Space Telescope (HST) imaging of the optical/UV

emissions of the same sources extending to ∼ 8 − 10 kpc. These works attributed the com-

pact size of the sub-mm emitting region of these sources to a central starburst evolving into

a galactic bulge or bars. However, an alternative interpretation could be the presence of

AGN which are fueling the inner regions of these SMGs, producing luminosities comparable

to quasar emissions.

Measuring the star formation rate surface densities ∑SFR of SMGs is one way to determine

whether the observed emission from the inner regions of SMGs can be entirely explained

by star formation or if the emission exceeds the "Eddington limit" of star formation set by
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radiation pressure on dust1 (∑SFR ≈ 1000 M� yr−1 kpc−2; see, e.g. Thompson et al. 2005;

Walter et al. 2009; Hopkins et al. 2010; Decarli et al. 2018; Hodge et al. 2019), indicating

an AGN dominated fueling mechanism. In this Chapter, we present ∑SFR based on the

continuum emission from four z > 6 and seven z ∼ 2 SMGs observed with ALMA. Our z > 6

ALMA observations were conducted with a resolution of 0.3′′ while our z ∼ 2 observations

had a resolution of 0.1′′. The higher resolution of our observations relative to previous

studies is a clear advantage, as this will enable us to measure the area of the small inner

regions of our targeted SMGs where the bulk of the sub-mm emission is produced. As a

result, unlike observations with lower angular resolutions (where the sources may only be

marginally resolved), the high resolution of our data reduces the risk of over-estimating the

sub-mm emitting regions of these SMGs which could, in turn, result in an under-estimation of

their ∑SFR values. In the case of the seven z ∼ 2 SMGs, Shanks et al. (in prep.) also present

a comparison of AGN and star-forming fits to the spectral energy distributions (SEDs) of

these sources, constructed using multi-wavelength data ranging from X-ray to radio bands.

For two of our four z > 6 SMGs, we also obtain estimates of ∑SFR based on star formations

calculated using their [Cii] line emissions. The FIR fine-structure [Cii] line at 158 µm is known

to be one of the brightest cooling lines in local galaxies, and has been shown to be an efficient

tracer for star-formation at high redshifts (e.g. Wang et al., 2013; Knudsen et al., 2016).

The first [Cii] detection in a high redshift quasar was presented by Maiolino et al. (2005),

finding evidence for an intense burst of star-formation in the host galaxy. More recently, a

small but growing number of studies have presented [Cii] detections for high redshift quasars,

(e.g. Venemans et al., 2012; Cicone et al., 2015; Bañados et al., 2015; Willott et al., 2015;

Venemans et al., 2016; Decarli et al., 2018; Bethermin et al., 2020).

The outline of this chapter is as follows; in Section 7.2 we describe the X-Shooter observations

of our z > 6 SMGs which were initially identified as quasars in the VST ATLAS survey. We

then describe the ALMA observations of these sources and our z ∼ 2 SMGs. In Section 7.3,

we describe our measurements of the sizes and fluxes of our ALMA sources, as well as our

calculations of the SFR surface densities based on continuum and [Cii] fluxes. We present

our results in Section 7.4 and conclude this chapter by presenting a summary of our findings

and planned future works in Section 7.5. Throughout, we adopt a fiducial ΛCDM cosmology

with H0 = 70 km s−1 Mpc−1, Ωm = 0.3, ΩΛ = 0.7 and present all magnitudes in the AB

1The Eddington limit on
∑

SFR arises due to the momentum deposited due to radiation pressure from stars
blowing the star-forming gas and dust out of the system.
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system.

7.2 Observations

7.2.1 Identification of our four z > 6 and seven z ∼ 2 SMGs

The four z > 6 SMGs studied in this Chapter were initially identified as quasar candidates

in the VST ATLAS survey using the colour selection criteria of (Carnall et al., 2015). These

candidates were confirmed as z ∼ 6 quasars using low-resolution spectroscopy on the LDSS-3

instrument on the Magellan 6.5m telescope, and later with moderate resolution X-Shooter

(Vernet et al., 2011) spectra by Chehade et al. (2018). A summary of the properties of these

quasars including their black hole masses inferred from the [Civ] broad emission-line width

MBH[CIV] reported by Chehade et al. (2018) is presented in Table 7.1.

All four sources are amongst the most optically luminous known quasars at z > 6, with their

redshifts placing them within the first Gyr of cosmic history. As these QSOs represent some

of the most massive super-massive black holes (SMBHs) at this epoch, their study could

reveal valuable insights into the growth of black holes at early times, given that they will be

the hardest to produce in so short a time-frame.

The z ∼ 2 SMGs studied here, were initially detected in a S870µm > 3 mJy survey of the

central region of the William Herschel Deep Field (WHDF), which was conducted using the

LABOCA instrument of the APEX telescope (Siringo et al., 2009). A full description of

these observations which resulted in the > 3σ detection of 11 sub-mm sources is presented

by Bielby et al. (2012). In this work, we study 7 of these sources which were targeted by

ALMA (as described in the next Section). Two of these sources LAB-05 and LAB-11 have

been identified as quasars by Bielby et al. (2012) with redshifts of z = 2.12 and z = 1.32

respectively. A summary of the redshifts and coordinates of these sources can be found in

Table 7.1.

7.2.2 ALMA observations

As shown in Figure 7.1, due to the reduction of the angular diameter distance DA at redshifts

z > 1.5, for a fixed angular resolution, at z ∼ 6 we are able to probe proper distances as

small as those at z ∼ 0.5. Taking advantage of this property of the Universe, we were able

to resolve 3/4 of our z ∼ 6 SMGs using our Band 6 (211–275 GHz) ALMA observations with

a resolution of 0.3′′.
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Figure 7.1: Due to the evolution of the angular diameter distance with redshift, for a fixed
instrumental angular resolution, we are able to probe physical scales at z ∼ 6 which are as
small as those at z ∼ 0.5.

Although all four of our z ∼ 6 ALMA observations were targeted for [Cii], due to the low

resolution of their Magellan spectra, the uncertainties in the measured redshifts of two of

these sources (J332-23 and J029-36) resulted in the [Cii] line being at a frequency which was

missed from our targeted window. In the case of J025-33 the [Cii] line was located at the

edge of our detection window missing some of the [Cii] flux. However, Decarli et al. (2018)

have presented ALMA [C ii] observations of J025-33 (albeit with a larger angular resolution

of 0.8′′), and we make use of these measurements in order to obtain an estimate of the size

of the [Cii] emitting region and [Cii] SFR surface density for this object.

Our z ∼ 2 WHDF SMGs were observed with 25 minute ALMA band 7 (275–373GHz) expo-

sures with an angular resolution of 0.1′′. All 7 sources were strongly detected and resolved

in these observations. In all cases, we make use of the standard ALMA data reduction and

calibration pipelines, which are part of the Common Astronomy Software Application

(CASA v4.7.2; McMullin et al. 2007) package2.

2The ALMA observations of the SMGs studied in this Chapter were conducted by T. Shanks and R. Bielby
in October and November 2016, while the data reduction and scientific analyses of these sources was performed
by B. Ansarinejad.



7.3. Methodology 137

7.3 Methodology

7.3.1 Source sizes and fluxes with imfit

In Fig. 7.2 we show the FIR continuum emission detected in our ALMA observations for each

of our four z > 6 SMGs. Overlaid are the fitted elliptical sizes estimated using the imfit

routine, which is part of the CASA package. As well as a measurement of the extent of the

sources, imfit provides the integrated flux for each object which is used to calculate their

SFR as detailed in Section 7.3.2. Fig. 7.2 also shows the clean beam size for each object

which in all cases is larger than the fitted elliptical area of our sources.

With the exception of J025-33 which was identified as a point source by imfit with a FWHM

major axis < 0.2′′, all our other sources appear to be resolved. Given the relatively circular

shape of J025-33 as shown in Fig. 7.2 we assume a circular shape with a radius 0.2′′ in order

to obtain an upper-limit on the area of this source. Consequently, in Section 7.4 we only

present a conservative lower limit for the star formation rate surface density (∑SFR) of this

object. We note that J025-33 lies closer to the edge of the field in the ALMA observations

and therefore has a lower S/N compared to the other detections, which lie closer to the field

centre. We believe this to be the mostly likely contributing factor for this source remaining

unresolved.

Figure 7.2: 3′′ × 3′′ ALMA postage stamps with a resolution of 0.3′′, showing the continuum
emitting regions of the z ∼ 6 SMGs. The red outline is the beam-deconvolved elliptical fit
given by imfit with the major and minor axes presented in Table 7.3. The solid oval in the
bottom left indicates the ALMA clean beam size. There is no fitted ellipse to J025-33 as this
source was identified as a point source by imfit and remains unresolved.

Figure 7.3a shows FIR continuum emission of the 7 WHDF SMGs with the red ellipses

marking the fitted imfit profiles. In Figure 7.3b we show the HST Advanced Camera for

Surveys (ACS) i-band coverage of these sources with a resolution of 0.2′′, with the ALMA

FIR continuum and the Spitzer IRAC Equatorial Survey (SpIES; Timlin et al. 2016) 3.6

micron profiles over-plotted as red and yellow contours respectively. Also shown as light
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(a)

(b)

Figure 7.3: (a) 3′′×3′′ ALMA postage stamps with a resolution of 0.1′′, showing the continuum
emitting regions of our z ∼ 2 SMGs. The red outline is the beam-deconvolved elliptical fit
given by imfit with the major and minor axes (FWHM) presented in Table 7.3. The solid
oval in the bottom left indicates the ALMA clean beam size. (b) HST i-band images for the
SMGs in (a) with the ALMA and SPIES 3.6µ profiles (with a resolution of 1.2′′) over-plotted
as red and yellow contours, respectively. Also marked are detected sources in Chandra X-ray,
Calar AltoH-band and EVLA 8.4GHz imaging in dark blue, light blue and green respectively.

blue ellipses are the H-band detections of Metcalfe et al. (2006), obtained with the Calar

Alto Omega Prime camera (Bizenberger et al., 1998), as well as Chandra X-ray (Shanks

et al., in prep.) and EVLA 8.4GHz (Heywood et al., 2013) source detections, marked by
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dark blue and green ellipses respectively. On average, we find the ALMA continuum sizes of

our sources to be ∼ 6× smaller than their PSF-corrected extent in the H-band. However,

in the future, more detailed comparison of the sub-mm and optical extent of these sources

can be made using deep (K ≈ 25.7), high-resolution (< 0.5′′) imaging with an instrument

such as HAWK-I (Pirard et al., 2004), HST or the James Webb Space Telescope (JWST;

Gardner et al. 2006), while accurate redshifts for these sources could be obtained with X-

Shooter. Such observations would enable us to determine if the sub-mm emission of these

sources predominantly originates from their central regions and is therefore more consistent

with an AGN power source, or if the optical and sub-mm emissions follow a similar larger

scale galactic profile favouring the star-burst origin for the sub-mm emission.

7.3.2 Continuum luminosity and SFR surface density

Following Decarli et al. (2018) and the references therein, we calculate the IR Luminosity of

our objects by modeling the dust continuum emission as a modified black body and integrating

the following equation between ν = 3 and 1000µm:

Lν,dust = 2hν3

c2 κν(β) Mdust
ehν/kbTdust − 1

, (7.3.1)

where κν = 0.77(ν/352GHz)β is the opacity law, with the dust emissivity index β = 1.6

and the dust temperature set to Tdust = 47K in the case of our z > 6 quasars (see e.g.

Willott et al. 2017) and 35K (e.g. Cooke et al. 2018) for our WHDF z ∼ 2 sources. Here

we select a value of dust mass Mdust, which results in an Lν that corresponds to the peak

flux of each object. In line with Decarli et al. (2018) we calculate the far-IR luminosity using

LFIR = 0.75LIR and obtain the SFR following Kennicutt & Evans (2012):

SFRFIR
M�yr−1 = 1.49−10LFIR

L�
. (7.3.2)

Our main quantity of interest, the star formation rate surface density∑SFR, is then obtained

by dividing SFRFIR by the area of the ellipse fitted to the continuum emitting region using

imfit.
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7.3.3 [CII] luminosity and SFR surface density

Following Decarli et al. (2018) and Carilli & Walter (2013) we convert the [CII] integrated

line flux F[CII] to line luminosity using:

L[CII]
L�

= 1.04× 10−3 F[CII]

Jy km s−1
νobs
GHz

(
dL(z)
Mpc

)2
. (7.3.3)

L[CII] is in turn converted to SFR[CII] using the relation presented by De Looze et al. (2014):

logSFR[CII] = −8.52 + 1.18× logL[CII]. (7.3.4)

7.4 Results and discussion

The results of fitting the [CII] and continuum emission maps of our sources using the imfit

algorithm, are presented in Table 7.2. These include the clean ALMA beam size, as well as

beam deconvolved minor and major axes FWHM of the fits which are used to estimate the

area of the continuum and [CII] emitting regions. Also included is the integrated flux of each

source as measured by imfit. Interestingly, we find the area of J158-14 and J025-33 to be

more extended in [CII] than in continuum by factors of ∼ 4 and ∼ 12 respectively. Although

a number of recent studies have reported similar results (see, e.g. Fujimoto et al. 2019;

Fujimoto et al. 2020; Carniani et al. 2020), the exact mechanism leading to the formation of

these extended [CII] halos around SMGs remains unknown.

Table 7.3 shows the dust mass, FIR or [CII] luminosities, star formation rates and star

formation rate surface densities of our SMGs. Here we can see that in all of the four z > 6

SMGs, as well as LAB-02 and LAB-10, the FIR SFR surface densities (∑SFR, shown in column

5 of the table) exceed or approach the theoretical Eddington limit of ∼ 1000M�yr−1kpc−2,

which has a lower limit3 of ∼ 650M�yr−1kpc−2. This supports the hypothesis that AGN are

the dominant fueling mechanism of these SMGs. We also find that for J158-14 and J025-33,

the lower values of SFR obtained from [CII] emission, combined with the more extended

size of the [CII] emitting region, results in ∑SFR values which are much smaller than those

obtained from the continuum emissions of these sources. In the case of Lab-1, 3, 4, 5 and 11

3A derivation of the Eddington lower limit is presented in Section 4.1 of Hodge et al. (2019). In summary,
this lower limited is obtain by converting the Eddington flux for optically thick starbursts (as given by Andrews
& Thompson 2011) to the Eddington limited SFR density: (

∑
SFR)Edd ∼ 7.2M�yr−1kpc−2f

−1/2
gas f−1

dg . Here,
the gas fraction fgas is taken to be unity as the most extreme scenario, while the dust-to-gas ratio fdg is
assumed to be 1/90.
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however, the ∑SFR values appear below the Eddington lower limit of star formation, offering

no direct evidence that AGN are the dominant power source of these SMGs. We note however

that with the exception of Lab-11 the rest of the WHDF SMGs are within a factor of ∼2-3

of the Eddington lower-limit. Furthermore, Shanks et al. (in prep.) found the SED of these

WHDF SMGs to be more consistent with AGN rather than star-forming models (with the

exception of LAB-10, where the SED comparison was inconclusive).

Figure 7.4: The galaxy-averaged star formation rate surface density (∑SFR) as a function
of half-light radius for local U/LIRGs of Barcos-Muñoz et al. (2017), the ALESS SMGs of
Hodge et al. (2019), compared to the WHDF SMGs and the z ∼ 6 AGN presented in this
work. The solid horizontal line indicates the Eddington limit for star formation with its
lower limit shown by the horizontal dotted line. The dashed diagonal lines represent lines of
constant Far-IR luminosity ranging from log(LFIR)∼ 11.75, 12.25, 12.75, 13.25L� from left to
right respectively. Elements of this plot have been replicated from Figure 6 of Hodge et al.
(2019).

In Figure 7.4, we show the galaxy-averaged star formation rate surface density of our sources

given by ∑̄SFR = 0.5×SFR/(πR2
e) following (Hodge et al., 2019), where the half-light radius

Re is taken as the mean of the major and minor axes FWHM of our sources divided by 2 (see

column 6 of Table 7.2). For comparison, we also plot the ∑̄SFR measurements of the local

U/LIRG sample of Barcos-Muñoz et al. (2017) and high resolution (∼ 0.07′′) observations of
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the ALMA follow-up of the LABOCA ECDFS submillimeter survey (ALESS; Hodge et al.

2013) SMG sample, as presented in Figure 6 of Hodge et al. (2019). Here, we find all of

our z ∼ 6 AGN to have ∑SFR values that exceed or approach the Eddington limit of star

formation as shown by the solid horizontal line. In the case of the z ∼ 2− 3 WHDF SMGs,

we find the ∑̄SFR values to be slightly higher than those of the ALESS SMG sample (which

have redshifts in the range z ∼ 1.5 − 5), but still below the Eddington lower limit on star

formation. We note however, that 3/7 of these sources have galaxy-averaged star formation

rate surface densities within a factor of ∼ 2− 3 of the Eddington lower-limit.

7.5 Conclusions

In this Chapter, we presented our ALMA band 6 observations targeting the [C ii] emission

in 4, z > 6 SMGs, which were initially detected as quasars in the VST ATLAS survey. We

detected significant continuum dust emission in all four sources, and strong [C ii] emission

was detected in two of the targets (see also Decarli et al., 2018). Intriguingly, all four sources

are either not resolved or only marginally spatially resolved (at an angular resolution of 0.3′′)

in the dust continuum emission. Additionally, we presented our high resolution (0.1′′), band

7, ALMA observations of seven z ∼ 2− 3 SMGs originally detected in the William Herschel

Deep Field (WHDF).

Similar to a number of previous studies, we found our sources to have significantly more

extended profiles in [C ii] than in continuum, with the origin of this phenomenon being an

area of ongoing research. The null [C ii] detections in our z > 6 SMGs were most likely due to

uncertainties in the measured redshifts of these sources, and it may be that the observations

simply missed the [C ii] emission from the host galaxy. Indeed, one of the strong [C ii] line

detections was found to be on the edge of our chosen ALMA spectral window, limiting our

ability to ascertain the line flux.

Our primary goal in this Chapter was to identify the dominant fueling mechanism behind

the observed sub-mm emission of the SMGs. To this end, we used our ALMA observations

of these sources to perform measurements of their sizes and star formation rates based on

their continuum (and where available [C ii]) fluxes. We then used these measurements to

calculate the star formation rate surface densities (∑SFR) of the sub-mm emitting regions

of these SMGs. In the case of our z > 6 SMGs we found their ∑SFR values to approach or

exceed the theoretical Eddington limit on star formation (≈ 1000 M� yr−1 kpc−2), favouring

an AGN-dominated fueling source behind their sub-mm emission.
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In the case of our seven WHDF SMGs however, we found the ∑SFR values of two SMGs

to exceed the Eddington limit, while an additional four are within a factor of ∼ 2 − 3 of

the Eddington lower-limit of ≈ 650 M� yr−1 kpc−2. Furthermore, Shanks et al. (in prep.)

have found the SED of 6/7 of these sources to be more consistent with an AGN rather

than a star-forming model. In future, high-resolution (sub-0.5′′) and deep imaging of these

sources in IR bands (e.g. with JWST), could provide another means of testing the AGN vs.

star-formation hypothesis, by revealing whether the sub-mm and IR profiles of these sources

extend to similar scales, or if the sub-mm emission is focused in the central regions of these

SMGs, a picture which would favour the AGN dust heating model.



Chapter 8

Conclusions & Future Work

8.1 Summary of results & the scope for future work

In this thesis, we exploited the recently completed VST ATLAS survey of the Southern sky

to test the predictions of the standard model of cosmology (ΛCDM) based on clustering

analyses of the large-scale structure of the Universe. In particular, we investigated the ten-

sion between the CMB and late-Universe measurements of σ8 based on our ATLAS cluster

mass functions, as well as potential deviations from the standard ΛCDM predictions of the

cosmological constant via the Integrated Sachs-Wolfe effect. In Chapter 3, we introduced the

VST ATLAS galaxy cluster catalogue comparing it to existing optical, SZ and X-ray clus-

ter samples. In Chapter 4, we presented our follow-up spectroscopic observations of cluster

counterparts to Planck SZ sources with no previous identifications, which were detected in

the ATLAS cluster catalogue. Chapter 5 focused on our calibration of the ATLAS cluster

mass-richness scaling relation to masses from external optical, X-ray and SZ surveys. We

then compared the observed cluster mass functions of ATLAS, SDSS RedMapper, Planck

and AdvACT SZ samples to the predictions of ΛCDM. In Chapter 6, we presented the cross-

correlation of various photometrically selected galaxy samples from ATLAS with the Planck

CMB temperature map, providing new measurements of the Integrated Sachs-Wolfe (ISW)

effect in the Southern sky. We then compare these measurements as well as those given by

SDSS, BOSS and eBOSS surveys to the predictions of ΛCDM. Finally, in Chapter 7, we

examined the dust heating mechanism of intermediate and high-redshift sub-mm galaxies

(SMGs) based on high-resolution, high S/N ALMA observations of these sources.

We now present a summary of our key findings and discuss possible extensions to these

research topics in future works.

146
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8.1.1 Galaxy cluster cosmology

• While the ATLAS and SDSS RedMapper cluster catalogues probe a similar range of

redshifts and cluster masses, based on comparison to external catalogues we found AT-

LAS to be more complete than RedMapper at z < 0.35, with ATLAS and RedMapper

recovering ∼ 80% and ∼ 60% of Abell clusters in this redshift range respectively. At

z < 0.35, We also found the majority (> 85%) of ATLAS detections with a richness

N200 > 20 to be genuine cluster detections. At z > 0.35 we found RedMapper to detect

a larger number of clusters in the M200 < 3 × 1014h−1M� mass range compared to

ATLAS.

• Comparison of ATLAS and RedMapper cluster mass functions to models based on a

Planck Collaboration et al. (2020) ΛCDM cosmology, showed a better agreement be-

tween the ATLAS cluster mass functions and the predictions of ΛCDM, (with RedMap-

per underestimating the mass function amplitude at z < 0.35). In line with our earlier

findings this is likely due to the incompleteness of the RedMapper sample at these

redshifts, while as discussed in DES Collaboration et al. (2020), under-estimation of

RedMapper weak-lensing calibrated masses may also be a contributing factor to these

lower mass function amplitudes.

• We also found the amplitude of Planck and AdvACT SZ mass functions to be lower than

the predictions of ΛCDM at all considered redshifts (z < 0.55). While the lower SZ mass

function amplitudes are likely to be predominantly due to systematics in the current

calibration of SZ flux-cluster mass scaling relations, we showed that the incompleteness

of SZ samples is also likely to be a non-negligible contributing factor to their lower than

predicted mass function amplitudes.

• We measure the value of S8 = σ8
√

Ωm/0.3 = 0.77 ± 0.03 from our analysis of ATLAS

cluster mass functions at z < 0.55. This is in good agreement with the mean value of

S̄8 = 0.761 ± 007 obtained from the combination of various late-Universe S8 measure-

ments from the DES, KiDS, BOSS, Planck and SPT surveys. However, our value is

∼ 2σ lower than the early-Universe measurement from the Planck 2018 analysis of the

CMB (S8 = 0.830 ± 0.013), which is in turn 4.6σ higher than the S̄8 constraint from

the late-Universe probes.

• Comparing the normalisation of the ATLAS cluster mass functions to the predictions

of the Tinker et al. (2008) models, we found that in general ATLAS observations tend
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to prefer lower normalisations than the models (by up to a factor of ∼ 2 at z > 0.35).

In future works, we shall perform an in-depth analysis of the systematic and statistical

uncertainties on the ATLAS mass functions, allowing us to assess the statistical sig-

nificance of any deviations between the redshift evolution of the observed cluster mass

functions and theoretical predictions.

The agreement between SZ cluster mass functions and theoretical predictions may improve in

the future via improvements in the calibration of the SZ flux-cluster mass scaling relations.

These calibrations can benefit from a sample of SZ clusters with 5% mass measurements

given by a combination of strong and weak lensing techniques (e.g. von der Linden et al.

2014; Hoekstra et al. 2015; Niemiec et al. 2020), as well as CMB lensing methods which

could yield cluster masses with a similar level of precision (e.g. Raghunathan et al. 2017;

Gupta & Reichardt 2020). Spectroscopic follow-up campaigns of SZ clusters with no current

counterpart identifications (such as the observations presented in Chapter 4), could also

improve the completeness of SZ samples as well as providing precise constraints on cluster

masses which could be used to improve SZ cluster mass calibrations. Optical cluster samples

such as ATLAS and RedMapper are ideal for guiding such future observations. Furthermore,

in the coming years X-ray cluster masses from the eROSITA survey will provide a large sample

of clusters extending to z ∼ 1, while probing a wide range of cluster masses. X-ray masses

from eROSITA will therefore play a key role (alongside other mass calibration techniques) in

improving the current SZ mass calibrations and bringing SZ clusters to the era of precision

cosmology.

Another interesting topic for future work is the measurement of the stacked SZ signal by

cross-correlating optical cluster samples, including ATLAS or the RedMapper samples from

DES and SDSS, with high angular resolution SZ maps from surveys such as ACT or SPT.

Such analyses provide a statistical measure of the SZ signal for lower mass halos which would

otherwise be hard to measure on an individual basis due to their weak SZ signal. A combined

analysis of the stacked SZ and lensing signals, in particular, can provide a powerful tool for

calibration of the SZ signal-cluster mass scaling relation as a function of mass and redshift

(see Oguri & Takada 2011; Fang et al. 2012; Vikram et al. 2017). Similarly, cross-correlation

of SZ and optical data can aid with the identification of clusters that may be missed by

red-sequence cluster detection techniques due to containing large fractions of blue galaxies.

Besides the applications mentioned here, the ATLAS cluster catalogue can be used for many

other science goals. For instance, Eltvedt et al. (in prep.) have cross-correlated the ATLAS
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cluster and quasar catalogues in order to study quasar weak lensing magnification bias, find-

ing an anti-correlation at faint quasar magnitudes (19<g<22), and a positive cross-correlation

amplitude at brighter quasar magnitudes (17<g<19). These measurements provide a general

confirmation of results from previous works including those of Myers et al. (2003) and Scran-

ton et al. (2005). In addition, the ATLAS cluster catalogue has been used by the ACT team

to provide optical confirmation and photometric redshifts for a sample of ∼ 50 AdvACT SZ

clusters (Hilton et al., 2020). In the future, the ATLAS cluster catalogue can also provide

a basis for comparison to the next generation of cluster samples from eROSITA, Euclid and

4MOST, providing a valuable tool for characterising the selection functions of these surveys,

as well as their implemented cluster detection techniques. These surveys can in turn be used

to improve the cluster mass calibrations of the ATLAS and RedMapper catalogues, and to

further investigate the completeness of current SZ samples. In the coming years, these efforts

shall enable us to isolate contributions of systematics to the current σ8 tension from genuine

signatures of physics beyond the standard ΛCDM model.

8.1.2 The Integrated Sachs-Wolfe effect

• In order to study the late-time accelerating expansion of the Universe via the ISW effect,

we take advantage of data from the ATLAS survey, which covers previously unmapped

areas of the southern sky.

• Based on the combination of ATLAS and SDSS LRG-CMB cross-correlation measure-

ments, at z = 0.35 and 0.55, we detected the ISW signal at 1.2σ and 2.3σ respectively.

At these redshifts, we found the ISW amplitude to be in good agreement with the pre-

dictions of ΛCDM. We then verified these results by repeating the measurements using

the BOSS LOWZ and CMASS, spectroscopically confirmed LRG samples.

• We also detected the ISW effect in three magnitude-limited ATLAS+SDSS galaxy

samples extending to z ≈ 0.4 at ∼ 2σ per sample.

• However, we did not detect the ISW signal at z = 0.68 in either ATLAS or SDSS, or the

combined data from the two surveys, finding a slightly negative ISW amplitude with a ∼

2σ deviation from ΛCDM predictions. Further tests using spectroscopically confirmed

eBOSS LRGs at this redshift remained inconclusive due to the low sky coverage of the

eBOSS LRG sample at the time of conducting this research.
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• Finally, we confirmed the robustness of our ISW measurements against observational

and survey systematics including seeing, stellar density and galactic dust extinction.

If the ISW signal is shown to be redshift-dependent in a manner inconsistent with the predic-

tions of ΛCDM, it could open the door to alternative cosmological models that predict such

ISW amplitudes. Examples of such models include ‘Kinetic Gravity Braiding’ as introduced

by Deffayet et al. (2010), in which the late-time ISW effect is expected to anti-correlate with

large-scale structure (Kimura et al., 2012); a ‘Galileon’ model of modified gravity as first

proposed by Nicolis et al. (2009), different variations of which predict a negative ISW am-

plitude or lower ISW power relative to ΛCDM (Barreira et al., 2014). However, given the

ISW observations presented in this thesis, the ‘backreaction’ model based on the AvERA

simulation of Rácz et al. (2017) could be the most promising alternative to ΛCDM. In this

model ΩLambda = 0 and instead, local inhomogeneities are treated as different Universes which

evolve according to their local set of cosmological parameters, averaging out on large scales

to produce the observed expansion of the Universe. As demonstrated by Beck et al. (2018),

such models could produce a change of sing of the ISW amplitude as a function of redshift,

similar to that found in this work. Given the large cosmological implications, repeating the

high-redshift ISW measurement presented in this work using the completed eBOSS sample,

as well as upcoming surveys such as DESI, Euclid, 4MOST and LSST would therefore be

an important topic for future works. Additionally, future ISW measurements using the ra-

dio data provided by SKA (Dewdney et al., 2009), can be used to check for any undetected

systematics in our z ∼ 0.7 ISW analysis.

8.1.3 AGN vs. star formation fueling of SMGs

• Based on high-resolution (0.3") continuum ALMA observations, we found the star for-

mation rate surface densities of four z > 6 SMGs to exceed the Eddington limit of star

formation. This suggests that AGN, rather than star formation, are the dominant dust

heating mechanism in these objects.

• Our (0.1") ALMA observation of the continuum emission of a sample of seven z ∼ 2

SMGs revealed star formation rate surface densities exceeding the Eddington limit in

2/7 sources, with 4/7 sources being within a factor of ∼ 2− 3 of the Eddington lower-

limit.

In the future high-resolution ALMA imaging and spectroscopic follow-up observations of a
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larger sample of SMGs could allow for accurate constraints on the star formation rate surface

brightness of these sources, providing us with a better understanding of the power source of

this galaxy population. Furthermore, deep, high resolution (sub-0.5") imaging of our z ∼ 2

SMGs with instruments such as JWST, can reveal whether the sub-mm and IR profiles of

these sources extend to similar scales, or if the sub-mm emission is limited to the inner regions

of these SMGs, a picture which would favour the AGN dust heating hypothesis.

8.2 Cosmology in the coming decade

Today cosmology is at a pivotal moment. A flat ΛCDM model has so far proven to be

our best approximation for the observed large-scale structure and cosmic evolution of the

Universe. Over the past decade, however, the increased statistical power of our observations

has revealed potential tensions between measurements of various key cosmological parameters

based on probes in the early and local Universe. Furthermore, the physical nature of dark

matter and dark energy, the two main components of the ΛCDM model have so far remained

elusive.

In the coming decade, the availability of an enormous wealth of multi-wavelength data

from various state-of-the-art astronomical surveys including DESI, Euclid, LSST, 4MOST,

eROSITA, SKA, SPT-3G (Benson et al., 2014), and CMB-S4 (Abazajian et al., 2016), may

finally provide us with the statics needed to unravel the nature of the mysterious dark sector.

Analysis of the Baryon Acoustic Oscillations (BAO) feature using Euclid, DESI and 4MOST

data will soon extend our ability to measure the expansion of the Universe to higher redshifts

(z ∼ 2), with a much higher level of precision than possible today (Laureijs et al. 2011;

DESI Collaboration et al. 2016; Richard et al. 2019). Furthermore, these surveys in combi-

nation with SKA, will also probe the growth rate of structure via redshift space distortions

at unprecedented levels of precision, providing new insights into the σ8 tension.

In the near future, a combination of spectroscopically confirmed quasars from DESI, 4MOST

and Euclid, with the latest eROSITA X-ray data will allow us to further test the feasibility

of a quasar Hubble diagram based on quasar distances estimated from their X-ray and Ultra-

violet emission. This Hubble diagram will extend to high redshifts (up to z ∼ 6), breaking

degeneracies for studies of dark energy by providing complementary measurements to those

obtained at lower redshifts (z < 2) using supernovae and BAO. This approach follows a novel

technique introduced by Risaliti & Lusso (2019), who found the quasar Hubble diagram to



8.2. Cosmology in the coming decade 152

be in a ∼ 4σ deviation from the predictions of ΛCDM at z > 1.4, where the standard model

is currently poorly tested. In this work, the authors demonstrated that if one allows the dark

energy equation of state to vary with redshift, (with ω = ω0 + ωa(1 − a), where the scale

factor of the Universe a = 1/(1 + z)), the combination of the quasar Hubble diagram and

Planck CMB+weak lensing data result in a preference for values of ω0 ≈ −1.5 and ωa ≈ 1 at

a > 3σ level of significance relative to the ΛCDM model with ω = −1. Interestingly, an evolv-

ing dark energy equation of state, as suggested by the quasar Hubble diagram, would also

present a solution to the current H0 tension between local indicators and the measurements

form the CMB (see also Zhao et al. 2017; Di Valentino et al. 2016). While the quasar Hubble

diagram holds much promise as a novel and independent probe of the expansion history of

the Universe at higher redshifts, future studies applying this technique for cosmology need

to overcome challenges including quasar X-ray and UV variability which could increase the

uncertainties on the distance measurements. Furthermore, more work is still needed to fully

constrain the impact of systematics such as intrinsic extinction and host galaxy contamina-

tion in the UV, as well as Photoelectric X-ray absorption on these distance measurements.

Using an independent and complementary technique, multi-epoch observations provided by

LSST, combined with eROSITA quasar X-ray flux measurements can be used to construct a

high-redshift Hubble diagram via quasar reverberation mapping (see, e.g. Fine et al. 2013;

Czerny et al. 2018).

The next generation of wide-field astronomical surveys will also enable us to adopt a multi-

wavelength, multi-probe strategy at measuring key cosmological parameters, an approach

that will significantly improve our ability to isolate systematics from genuine deviations from

the predictions of cosmological models. At the same time, further advances in simulation

techniques and computing, as well as wider adoption of machine learning approaches in

astronomy, will also play an instrumental role in our ability to fill the remaining gaps in our

current understanding of the Universe. If the promise of the next decade turns into reality,

we may now be on the verge of unlocking some of the most fundamental mysteries of the

Universe.



Appendix A

A.1 Planck SZ cluster galaxy redshifts and peculiar velocities

The confirmed redshifts and peculiar velocities of our observed Planck SZ clusters are pre-

sented in Table A.1. Here our peculiar velocities are calculated based on Equation 4.3.1.

In this table the BCG of each cluster is listed as the 0-th member of each group with the

remaining galaxies presented in order of decreasing RA.

Table A.1: Planck SZ confirmed cluster members spectroscopic redshifts and peculiar veloc-
ities.

Target ID RA DEC Redshift Peculiar velocity

LOZ-1.0 23:47:32.54 -31:08:50.7 0.400± 0.002 119± 521

LOZ-1.1 23:47:31.75 -31:08:54.4 0.4018± 0.0005 569± 297

LOZ-1.2 23:47:30.01 -31:09:02.4 0.39554± 0.00004 −764± 274

LOZ-1.3 23:47:28.34 -31:09:04.4 0.3995± 0.00047 89± 292

LOZ-1.4 23:47:25.35 -31:09:55.5 0.3984± 0.0001 −151±−275

LOZ-1.5 23:47:22.12 -31:07:54.2 0.394± 0.002 −1127± 421

LOZ-1.6 23:47:21.43 -31:09:24.8 0.397± 0.002 −520± 422

LOZ-1.7 23:47:20.34 -31:08:54.8 0.3995± 0.0006 78± 300

LOZ-1.8 23:47:19.02 -31:09:49.5 0.4071± 0.0004 1706± 288

LOZ-2.0 21:45:29.91 -21:43:22.8 0.2984± 0.0003 −51± 459

LOZ-2.1 21:45:26.09 -21:42:59.7 0.9528± 0.0004 −760± 462

LOZ-2.2 21:45:23.08 -21:44:58.5 0.3021± 0.0006 811± 475

LOZ-3.0 21:38:12.05 -23:58:55.1 0.2439± 0.0007 1046± 256

LOZ-3.1 21:38:17.73 23:59:13.2 0.2361± 0.0006 −855± 244

LOZ-3.2 21:38:16.81 -24:00:09.6 0.2384± 0.0006 −294± 244

Continued on next page
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Table A.1 – Continued from previous page

Target ID RA DEC Redshift Peculiar velocity

LOZ-3.3 21:38:15.91 -23:57:29.7 0.2399± 0.0009 79± 272

LOZ-3.4 21:38:13.49 -23:59:23.5 0.2403± 0.0007 177± 252

LOZ-3.5 21:38:12.04 -23:57:54.1 0.2392± 0.0005 −98± 231

LOZ-3.6 21:38:11.29 -23:58:44.1 0.2396± 0.0005 −1± 231

LOZ-3.7 21:38:11.00 -23:59:18.1 0.235± 0.003 −1144± 640

LOZ-3.8 21:38:10.37 -23:59:32.0 0.2435± 0.0006 952± 245

LOZ-3.9 21:38:08.32 -23:58:07.2 0.2392± 0.0005 −104± 225

LOZ-3.10 21:38:06.92 23:58:06.3 0.2406± 0.0006 241± 244

LOZ-4.0 21:36:38.80 -10:18:36.3 0.4429± 0.0007 643± 271

LOZ-4.1 21:36:46.76 -10:20:02.4 0.437± 0.002 −546± 474

LOZ-4.2 21:36:45.86 -10:18:47.3 0.437± 0.001 −693± 327

LOZ-4.3 21:36:44.57 -10:19:03.6 0.43473± 0.00003 −1067± 225

LOZ-4.4 21:36:42.51 -10:19:09.9 0.437± 0.002 −679± 451

LOZ-4.5 21:36:41.73 -10:18:36.5 0.4348± 0.0007 −1045± 268

LOZ-4.6 21:36:40.95 -10:18:56.4 0.4443± 0.0007 918± 269

LOZ-4.7 21:36:39.60 -10:18:25.1 0.4453± 0.0008 1130± 281

LOZ-4.8 21:36:37.38 -10:18:55.2 0.442± 0.001 469± 345

LOZ-4.9 21:36:36.30 -10:18:49.6 0.4405± 0.0008 127± 280

LOZ-4.10 21:36:35.31 -10:20:05.5 0.4402± 0.0008 69± 280

LOZ-4.11 21:36:31.67 10:18:59.3 0.443± 0.001 674± 322

LOZ-5.0 13:56:05.41 -34:21:10.6 0.2289± 0.0003 −294± 299

LOZ-5.1 13:56:15.36 -34:21:13.3 0.2272± 0.0005 −707± 317

LOZ-5.2 13:56:08.68 -34:20:55.7 0.227± 0.002 −689± 607

LOZ-5.3 13:56:04.70 -34:21:40.0 0.2349± 0.0006 1172± 329

LOZ-5.4 13:56:03.92 -34:20:46.6 0.2308± 0.0005 176± 322

LOZ-5.5 13:55:58.08 -34:20:05.0 0.2315± 0.0005 341± 317

LOZ-6.0 11:19:05.96 -10:22:52.6 0.1224± 0.0003 274± 357

LOZ-6.1 11:19:07.04 -10:23:25.6 0.1229± 0.0007 582± 274

LOZ-6.2 11:19:05.42 -10:22:24.5 0.1211± 0.0006 −82± 380

LOZ-6.3 11:19:05.02 -10:22:03.0 0.1194± 0.0002 −528± 351

LOZ-6.4 11:19:03.58 -10:23:59.9 0.1180± 0.0002 −906± 350

Continued on next page
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Table A.1 – Continued from previous page

Target ID RA DEC Redshift Peculiar velocity

LOZ-6.5 11:19:03.35 -10:23:40.8 0.1203± 0.0006 −296± 382

LOZ-7.0 11:18:58.34 -27:25:33.5 0.1961± 0.0003 892± 259

LOZ-7.1 11:19:02.79 -27:26:41.3 0.1904± 0.0007 −542± 305

LOZ-7.2 11:19:00.71 -27:25:32.1 0.1889± 0.0007 −919± 304

LOZ-7.3 11:18:59.70 -27:25:49.6 0.194± 0.002 −348± 479

LOZ-7.4 11:18:58.85 -27:25:27.1 0.1905± 0.0005 −510± 282

LOZ-7.5 11:18:55.84 -27:26:40.5 0.195± 0.001 472± 346

LOZ-7.6 11:18:55.04 -27:25:36.2 0.194± 0.001 259± 418

LOZ-8.0 11:05:04.56 -18:56:38.6 0.2214± 0.0002 −244± 267

LOZ-8.1 11:05:13.88 -18:56:36.0 0.2191± 0.0006 −818± 303

LOZ-8.2 11:05:12.21 -18:58:12.1 0.2283± 0.0004 1441± 280

LOZ-8.3 11:05:11.45 -18:58:29.1 0.219± 0.001 −792± 414

LOZ-8.4 11:05:10.63 -18:57:17.8 0.22340± 0.00005 250± 262

LOZ-8.5 11:05:08.05 -18:57:49.7 0.2160± 0.0004 −1554± 282

LOZ-8.6 11:05:08.62 -18:57:50.6 0.226± 0.004 955± 1015

LOZ-8.7 11:05:05.87 -18:56:50.6 0.2241± 0.0004 433± 276

LOZ-8.8 11:05:03.78 -18:56:50.4 0.220± 0.001 −594± 356

LOZ-8.9 11:05:02.77 -18:56:39.4 0.2244± 0.0002 490± 268

LOZ-8.10 11:05:02.10 -18:56:43.8 0.2266± 0.0002 1032± 269

LOZ-8.11 11:04:58.81 -18:55:53.4 0.2199± 0.0004 −600± 279

LOZ-9.0 10:00:20.26 -15:23:43.5 0.2008± 0.0001 318± 263

LOZ-9.1 10:00:25.88 -15:23:55.4 0.1984± 0.0004 −261± 220

LOZ-9.2 10:00:22.30 -15:23:28.7 0.2018± 0.0001 583± 202

LOZ-9.3 10:00:17.2 -15:20:30.3 0.197± 0.002 −540± 490

LOZ-9.4 10:00:12.1 -15:24:33.9 0.1990± 0.0003 −100± 212

LOZ-10.0 03:16:27.78 -20:46:32.2 0.2369± 0.0004 −59± 199

LOZ-10.1 03:16:33.25 -20:48:20.4 0.2381± 0.0002 230± 186

LOZ-10.2 03:16:33.19 -20:46:20.9 0.2401± 0.0004 705± 204

LOZ-10.3 03:16:31.30 -20:45:48.3 0.2415± 0.0004 1051± 204

LOZ-10.4 03:16:30.46 -20:47:07.2 0.2412± 0.0003 986± 194

LOZ-10.5 03:16:29.46 -20:46:18.2 0.2394± 0.0003 554± 194

Continued on next page
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Table A.1 – Continued from previous page

Target ID RA DEC Redshift Peculiar velocity

LOZ-10.6 03:16:28.68 -20:46:26.9 0.2346± 0.0002 −616± 185

LOZ-10.7 03:16:27.02 -20:46:37.5 0.2347± 0.0009 −592± 284

LOZ-10.8 03:16:26.53 -20:46:57.1 0.2348± 0.0004 −555± 205

LOZ-10.9 03:16:25.90 -20:46:13.1 0.23939± 0.00008 542± 181

LOZ-10.10 03:16:24.97 -20:48:17.9 0.234± 0.001 −658± 319

LOZ-10.11 03:16:24.25 -20:46:08.7 0.234± 0.001 −736± 402

LOZ-10.12 03:16:22.39 -20:45:33.6 0.2368± 0.0003 −73± 193

LOZ-10.13 03:16:20.30 -20:48:11.0 0.2339± 0.0003 −778± 193

HIZ-1.0 02:00:16.37 -24:54:51.3 0.71808± 0.00007 1408± 177

HIZ-1.1 02:00:17.58 -24:54:28.9 0.7064± 0.0002 −639± 177

HIZ-1.2 02:00:16.93 -24:57:42.5 0.7062± 0.0003 −669± 183

HIZ-1.3 02:00:16.92 -24:57:42.2 0.70486± 0.00002 −909± 175

HIZ-1.4 02:00:16.81 -24:54:09.0 0.7095± 0.0002 −94± 178

HIZ-1.5 02:00:16.79 -24:54:40.4 0.7156± 0.0001 −965± 177

HIZ-1.6 02:00:16.77 -24:54:40.5 0.7153± 0.0003 923± 182

HIZ-1.7 02:00:14.71 -24:55:48.5 0.70835± 0.00006 −298± 175

HIZ-1.8 02:00:14.57 -24:55:23.1 0.7147± 0.0002 818± 180

HIZ-1.9 02:00:14.09 -24:58:05.9 0.71322± 0.00003 558± 176

HIZ-1.10 02:00:13.49 -24:55:45.8 0.7078± 0.0002 −402± 178

HIZ-1.11 02:00:13.02 -24:55:52.8 0.7121± 0.0002 376± 179

HIZ-1.12 02:00:12.79 -24:52:26.8 0.7181± 0.0002 1412± 179

HIZ-1.13 02:00:12.73 -24:53:53.6 0.7042± 0.0001 −1025± 176

HIZ-1.14 02:00:12.20 -24:54:06.7 0.7044± 0.0001 −994± 176

HIZ-1.15 02:00:11.64 -24:52:29.2 0.70686± 0.00006 −558± 175

HIZ-1.16 02:00:07.74 -24:56:00.1 0.70713± 0.00003 −512± 175

HIZ-1.17 02:00:06.06 -24:58:00.8 0.7070± 0.0002 −512± 175



Appendix B

B.1 Derivation of σM200

Here we present a derivation of the error on our cluster mass estimate, as given by Equa-

tion 5.2.2. We start with Equation 5.2.1, which provides an expression for our cluster masses:

M200 =
(
N200
20

)1.1
× 3z̄ 0.9 + 1. (B.1.1)

With the uncertainties on our mean cluster redshift z̄ and cluster richness N200 given by σz̄
and σN200 =

√
N200 respectively, we can obtain the error on our cluster masses using:

σM200 =

√(
∂M200
∂N200

)2
σ2
N200

+
(
∂M200
∂z̄

)2
σ2
z̄ , (B.1.2)

with a numerical solution given by:

σM200 =

√
0.015σ2

N200
N0.2

200z̄
1.8 + 0.01N2.2

200σ
2
z̄

z̄0.2 . (B.1.3)
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Appendix C

C.1 ATLAS / SDSS colour comparison

Figure C.1 shows a comparison of VST ATLAS Aperture 5 and SDSS model magnitude

colours. Upon removing 3σ outliers (as indicated by the dashed lines in the plots), we find a

rms scatter of 0.03, 0.04 and 0.13, with ATLAS-SDSS offsets of 0.01, -0.01 and 0.05 for g− r,

r − i and i − z colors respectively. Here we impose magnitude limits of g < 21.5, r < 19.5,

i < 20.5 and z < 20.0, corresponding to the range of magnitudes used in our LRG selection.

In each case we only impose the magnitude limits of the two bands used to obtain the colours

and restrict the sample to galaxies based on the ATLAS morphological classification in those

bands. Given the reasonably tight scatter and small systematic offsets, in this work we adopt

a photometric selection criteria based on SDSS magnitudes, when defining our LRG samples.

C.2 LRG contamination tests

Adopting a similar approach to Ross et al. (2017), we test for the impact of various sources

of survey systematics including airmass, seeing, galactic dust extinction and stellar contam-

ination on our z̄ = 0.35, 0.55 and 0.68 LRG samples. In the top panel of Figure C.2 we

show the four instances where systematic trends due to galactic extinction, seeing and stellar

contamination appear to be present in our LRG samples, finding no major systematic trends

in the remaining cases. As shown in the bottom panel of Figure C.2, the inclusion of weights

correcting for these observed systematics does not appear to have a significant impact on our

ISW measurements.
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Figure C.1: A comparison of the g-r, r-i and i-z colours based on VST ATLAS Aperture 5
and SDSS model magnitudes. Given the similarity between the colours, we use the SDSS
cuts in our LRG sample selections, described in Section 6.2.2. Here the dashed lines indicate
the 3σ outliers.
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Figure C.2: Top panel: Normalised projected LRG number density as a function of Galactic
extinction (in E(B-V)), seeing (in r-band for z̄ = 0.35 and i-band for z̄ = 0.68) and projected
stellar density (limited to 19.8 < i < 20.5 corresponding to the magnitude limits of the
z̄ = 0.68 LRG sample). Here the dot-dashed curves are the best-fit relationships used to
define the weights correcting for the observed systematic trends. Bottom panel: The impact
of including the E(B-V), seeing and stellar density weights from the top panel on our ISW
measurements. In all cases, the inclusion of weights do not appear to have a significant impact
on our ISW measurements.
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