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Abstract: We consider the application of the dimension-6 standard model effective
field theory (SMEFT) as a method to parameterize the effects of heavy new physics
in processes involving the Higgs boson. We calculate the full set of next-to-leading
order (NLO) corrections to the phenomenologically relevant Higgs decay into fermion
pairs, summarized as h → ff̄ , for f ∈ {b, c, τ, µ}. This work forms the basis of
precision studies of these decay modes in effective field theory, and is an important
constituent to the precision study of the Higgs in the SMEFT.

We address several technical issues relating to the dimension-6 SMEFT at NLO.
These issues include subtleties in the Higgs-Z boson mixing, development of a
physically consistent electric charge renormalization constant built from two-point
functions, our own implementation of gauge fixing, and the treatment of tadpoles in
the SMEFT. Additionally, we consider the role of decoupling relations as a method
of removing anomalously large tadpole corrections to the decay rate when using a
hybrid renormalization scheme, where some parameters are renormalized in the MS
scheme, while others are renormalized in the on-shell scheme.

The results are calculated fully analytically. We provide illustrative subsets of
analytical results, and full numerical results for the decay rates calculated here.
Furthermore, we study the convergence of the results, and estimate the size of
uncalculated higher-order corrections by considering scale variations. We also explore
the benefits of ratios of decay rates. In these ratios, full or partial cancellation of
universal counterterms reduce the Wilson coefficient dependence as compared with
decay rates alone. In some scenarios we find an enhanced sensitivity to operators
generating the effective hgg and hγγ couplings. In particular, we find that these
ratios present an interesting test of minimal flavor violation.
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Chapter 1

The Standard Model

In this chapter we introduce the Standard Model (SM) of particle physics. Although
this is a rich theory with a vast number of interesting aspects and nuances, in
this chapter we only review the features of the SM which are essential for the
understanding of the processes considered in Part II of this work. In particular,
in Section 1.1 we introduce the SM and consider the constituents and dynamics
of each term in detail. In Section 1.2 we describe renormalization, the necessary
framework for obtaining UV-finite, analytic results at next-to-leading order (NLO)
in perturbation theory, while in Section 1.3 we describe the treatment of infrared
(IR) divergences. In Section 1.4 we consider the renormalization group (RG) - a
consequence of considering perturbation theory at NLO. Finally we conclude with a
discussion of gauge fixing in Section 1.5.

1.1 Introduction to the Standard Model

A quantum field theory (QFT) is a framework in which we are able to unify the
laws of quantum mechanics (QM) and special relativity (SR), in which the particles
present in QM manifest as excitations of quantum fields. The SM is an example of
a QFT which is specifically constructed to describe the properties and interactions
of the currently observed fundamental particles and the fundamental forces, except
for gravity. Its development has a long history arguably beginning in the 1920s with
the initial formulations of Quantum Electrodynamics (QED) to describe the inter-
actions of photons and matter, and concluding in the 1970s with the developments
of Quantum Chromodynamics (QCD) as a description of the strong force [3–14].
Numerous texts are also dedicated to the study of the SM [15–20]. The properties
and interactions of the SM are encoded in the Lagrangian density of the SM. As is
typically the case, we drop the term Lagrangian density and use it interchangeably
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u c t γ h

d s b g

νe νµ ντ W

e µ τ Z

Table 1.1: The particle content of the SM. The first three columns are
the matter content of the SM, specifically comprising of
the fermions, with the top two rows containing the quark
content of the SM and the bottom two rows containing the
leptons of the SM. The fourth column comprises the force
mediating gauge bosons of the SM. Finally, the fifth column
contains only the Higgs boson. Each electrically charged
particle also has a corresponding anti-particle, each (anti-)
quark has three (anti-)colors, and there are eight distinct
gluons.

with simply Lagrangian throughout the rest of this work. Despite the complexity
and numerousness of the properties and interactions of the SM, the SM Lagrangian
can be written in a compact form as

LSM = −1
4F

µνFµν

+ |DµH|2 − V (H)
− YijΨ̄iHΨj + h.c.
+ iΨ̄ /DΨ . (1.1.1)

We shall explore each line of Eq. 1.1.1 in close detail in Sections 1.1.1 to 1.1.3. The
particle content of the SM is summarized in Table 1.1. The SM is a gauge theory –
specifically it exhibits a local gauge symmetry under the group

SU(3)c × SU(2)L × U(1)Y , (1.1.2)

with the subscripts c, L and Y referring to the charges color, left and hypercharge
respectively.1 All fields of the SM thus transform under this symmetry group and
leave the SM Lagrangian in Eq. 1.1.1 invariant. The covariant derivative, Dµ, in
Eq. 1.1.1 preserves this local gauge invariance2 and is given by

Dµ = ∂µ − ig1Y Bµ − ig2τ
IW I

µ − ig3T
AGA

µ , (1.1.3)

where g1, g2, g3 are coupling constants, Y , τa, TA are the generators and Bµ, W I
µ ,

GA
µ are the gauge fields of the gauge groups U(1), SU(2) and SU(3) respectively.

1Generally throughout the rest of this work, we will drop the subscripts on these gauge groups.
2Formally, the gauge group of the SM is a Lie group and thus is a manifold such that the

non-derivative terms of Eq. 1.1.3 are a connection on that manifold.
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Individually, we find that the generators of the groups SU(2) and SU(3) are non-
commuting and form a Lie algebra defined by

[ta, tb] = ifabctc , (1.1.4)

for some generator t, where the fabc are known as structure constants. This feature
leads to the non-commutability of gauge-transformation operations for the SU(2)
and SU(3) symmetries, and the associated gauge theories are non-abelian. The
commutability of gauge transformation operations for U(1) lead to an abelian gauge
theory. Further, we find that invariance under the gauge group SU(3) leads to a
description of the strong force in QCD, while the SU(2)× U(1) gauge group unifies
the weak and electromagnetic forces as electroweak (EW) theory.

1.1.1 The Gauge Lagrangian

The first line of Eq. 1.1.1 is known as the gauge part of the SM Lagrangian owing to it
being purely a function of gauge fields. It describes the dynamics and self-interactions
of the fields and corresponding gauge bosons of the strong and electroweak forces.
The gauge part of the SM Lagrangian is understood as a sum of three such terms,
built from field strength tensors, with one for each gauge group of the SM

Lgauge = −1
4F

µνFµν = −1
4B

µνBµν −
1
4W

I
µνW

I,µν − 1
4G

A
µνG

A,µν . (1.1.5)

The field strength tensors for each gauge group are given by

Bµν = ∂µBν − ∂νBµ ,

W I
µν = ∂µW

I
ν − ∂νW I

µ + g2ε
IJKW J

µW
K
ν ,

GA
µν = ∂µG

A
ν − ∂νGA

µ + g3f
ABCGB

µG
C
ν , (1.1.6)

where, as mentioned in Section 1.1, Bµ,W I
µ andGA

µ are the gauge fields of U(1), SU(2)
and SU(3) respectively and take the form of spin-1 Lorentz 4-vectors. As the indices,
i, for the gauge group SU(N) may take values i = 1, ..., N2 − 1 we see that this
corresponds to three bosons associated with the gauge group SU(2) and eight bosons
associated with the gauge group SU(3). In the case of SU(3), these gauge bosons
are the gluons of QCD. For all three symmetry groups of the SM, the Lagrangian
generates terms of the form

Lgauge ⊃ −
1
2∂µFν∂

νF µ , (1.1.7)

for some gauge field F . This term is the kinetic term and describes the propagation
of the gauge field. We see that it also carries a prefactor of 1

2 , a convention known
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as canonical normalization. Canonical normalization is only a convention, and
while other choices of normalization would describe the same physics, canonical
normalization is a convenient choice as it ensures that the residue of the corresponding
propagator is i. Under infinitesimal gauge transformations the gauge fields of the
standard model transform as

Bµ → Bµ −
1
g1
∂µα ,

W I
µ → W I

µ −
1
g2
∂µα

I + f IJKαJWK
µ ,

GA
µ → GA

µ −
1
g3
∂µα

A + fABCαBGC
µ , (1.1.8)

where α is a continuous parameter characterizing the gauge transformation, and
where f IJK and fABC are the structure constants of SU(2) and SU(3) respectively.

For the abelian gauge field Bµ this concludes the gauge part of the Lagrangian,
however, for the fields W I

µν and GA
µν we find that the gauge bosons also have self-

interactions – a unique feature of non-abelian gauge theories. These self-interactions
are a result of the non-derivative terms in Eq. 1.1.6, which exist to preserve the
gauge symmetry of the non-abelian symmetry groups of the SM.

1.1.2 The Higgs Lagrangian

Line 2 of Eq. 1.1.1 is known as the Higgs part of the SM Lagrangian and it summarizes
the kinetic terms of the Higgs boson, the interactions of the Higgs with the gauge
bosons, and self interactions. It also provides a mechanism for generating gauge
boson and chiral fermion masses via a process known as spontaneous symmetry
breaking (SSB) [8–10].

A symmetry is said to be spontaneously broken when the Lagrangian of the theory
possesses some symmetry which is absent in the ground state. The purpose of the
introduction of the Higgs sector in the SM is to spontaneously break the SU(2)×U(1)
gauge symmetry of the SM, allowing for the generation of gauge boson and chiral
fermion masses, a feature that is not possible in a gauge-invariant theory without
SSB. In Eq. 1.1.3 we refrained from specifying the form of the generators for each

Field SU(3) SU(2) U(1)

H 1 2 1
2

Table 1.2: Representation of the groups under which the Higgs doublet
H transforms. Here, 1 represents the trivial representation.
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of the gauge groups; this was because each field of the SM transforms in different
representations of each gauge group. We summarize the group representation which
the Higgs field transforms under in Table 1.2, where N 6= 1 represents the funda-
mental representation of an SU(N) group. We find that the Higgs sector consists of
an SU(2) doublet of complex, spin-0 scalars

H =
−iφ+

χ

 . (1.1.9)

To see how the generation of masses by SSB is achieved we consider the Higgs
potential, V (H), in Eq. 1.1.1

V (H) = λ(H†H)2 − µ2H†H + µ4

4λ , (1.1.10)

where both λ and µ are chosen to be positive such that the minima of this potential
occurs for a non-vanishing value of the Higgs doublet. Note that the constant term
in Eq. 1.1.10 does not in any way change the dynamics of the Higgs doublet, and is
simply included as a convenience such that the minima of the potential is at V = 0
after SSB. The minima of this potential is found at a non-zero value of the Higgs
field, H0, where H0 satisfies

H†0H0 = v2
0

2 , (1.1.11)

where

v0 =
√
µ2

λ
. (1.1.12)

The quantity v0 in Eqs. 1.1.11 and 1.1.12 is known as the vacuum expectation value
(vev). For reasons we will explore in Section 1.2.3, we refer to this vev as the
classical Higgs vev, or leading order (LO) vev. The condition in Eq. 1.1.11 represents
a continuum of possible minima defining an S3 surface. As a result of invariance
under SU(2) rotations we are free to choose that the minima occurs at

H0 = 1√
2

 0
v0

 . (1.1.13)

Considering small perturbations about this minima we may write the Higgs doublet
as

H = 1√
2

 −
√

2iφ+

v0 + h+ iφ0

 , (1.1.14)

where h and φ0 are scalar fields representing the real and imaginary components
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of χ in Eq. 1.1.9 respectively. It is the h field that we interpret to be the physical
Higgs boson,1 while φ0 and φ± are the Goldstone bosons. Using the form of the
potential in Eq. 1.1.10 we find that the Higgs is the only massive particle in this
doublet, with the Goldstone bosons being massless, as is guaranteed by Goldstone’s
theorem [21,22]. Using the expression in Eq. 1.1.12 we also find that we may write
the mass of the Higgs as

m2
H = 2λv2

0 . (1.1.15)

We can interpret this result in terms of the form of the Higgs potential in Eq. 1.1.10
as the Higgs mass being generated by the small radial perturbations about an
approximately quadratic potential, and the Goldstone bosons being perturbations
in the flat direction of the potential, orthogonal to the radial perturbations.

Another result of the Higgs Lagrangian’s gauge invariance is that we are able to
"rotate" the Higgs doublet in Eq. 1.1.14 until it takes the form

H = 1√
2

 0
v0 + h

 . (1.1.16)

Doing so constitutes a gauge choice, in this case the unitary gauge, which we will
explore in more detail in Section 1.5. In this gauge we have removed the Goldstone
bosons, emphasizing their non-physical nature.

The vev of the Higgs doublet in Eqs. 1.1.14 and 1.1.16 breaks the SU(2)L × U(1)Y
symmetry present in the SM Lagrangian to U(1)EM, where the subscript EM refers
to the residual symmetry of the electromagnetic interaction. As this pattern of
symmetry breaking (known as electroweak symmetry breaking (EWSB)) transitions
from four generators to one generator, we have three generators of broken symmetry
groups (which we call broken generators) and one generator of an unbroken symmetry
group (which we call unbroken generators). As we shall soon see, this pattern of
breaking of the generators results in the expectation of the theory containing three
massive and one massless gauge boson after SSB.

To see how mass is generated for the gauge bosons we consider the |DµH|2 term in
Eq. 1.1.1. A powerful notation which we will occasionally adopt throughout this
thesis is to write the SU(2)× U(1) covariant derivative as

Dµ = ∂µ − i(gτ)aAaµ , (1.1.17)

1For the remainder of this thesis we will refer to the physical Higgs boson simply as the Higgs
boson or the Higgs, and the doublet in Eq. 1.1.14 as the Higgs doublet.
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where

(gτ)a =


g2τ

1

g2τ
2

g2τ
3

g1Y

 , Aaµ =


W 1
µ

W 2
µ

W 3
µ

Bµ

 , (1.1.18)

such that the terms quadratic in the gauge boson fields from |DµH|2 are now given
by

|DµH|2 ⊃
1
2(gτ)aφ0(gτ)bφ0A

a
µA

b,µ , (1.1.19)

where φ0 = (0, v0/
√

2) is the vacuum state of the Higgs doublet. We also see that
Eq. 1.1.19 gives us the form of a mass matrix for the gauge bosons

(m2
A)ab = (gτ)aφ0(gτ)bφ0 . (1.1.20)

The form of Eq. 1.1.20 also makes it clear why broken generators produce massive
gauge bosons, while unbroken generators produce massless gauge bosons: unbroken
generators acting on the vacuum are vanishing, producing a vanishing element of
the mass matrix, while broken generators acting on the vacuum are not, producing
non-vanishing elements of the mass matrix in Eq. 1.1.20.

We may consider the explicit form of the terms quadratic in the gauge boson fields
from Eq. 1.1.19 by making a choice of SU(2)× U(1) generators. From Table 1.2 we
see that an appropriate choice is to use Y = 1

2 and τa = 1
2σ

a where σa are the Pauli
matrices. Keeping terms which are quadratic in the gauge boson fields we find

|DµH|2 ⊃ g2
2
v2

0

8

(W 1
µ)2 + (W 2

µ)2 +
(
g1

g2
Bµ −W 3

µ

)2
 . (1.1.21)

Here we see that the W 1
µ and W 2

µ fields are already mass-diagonal, however, the
Bµ and W 3

µ fields are not. From Eq. 1.1.21 we also see the requirement of a non-
vanishing vev for the generation of gauge boson masses. To diagonalize these terms
we rotate these fields according toW 3

µ

Bµ

 =
 cos (θw) sin (θw)
− sin (θw) cos (θw)

Zµ
Aµ

 , (1.1.22)

where θw is the weak mixing angle,1 and Zµ and Aµ are the physical Z-boson and

1In the remainder of this thesis we will use the abbreviations cos (θw) = cw and sin (θw) = sw.
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photon respectively. Specifically, the weak mixing angle is found to be

tan (θw) = g1

g2
. (1.1.23)

Further, to match the experimentally observed electric charges of the remaining
two bosons (±1) we recognize that the physically observed W bosons are a linear
combination of the W 1

µ and W 2
µ fieldsW 1
µ

W 2
µ

 = 1√
2

1 1
i −i

W+
µ

W−
µ

 . (1.1.24)

In total, we find that the mass spectrum for the gauge bosons is

MW = g2v0

2 , MZ = g2v0

2cw
, MA = 0 . (1.1.25)

These rotations and scalings from the weak basis gauge boson fields to the mass
basis can be summarized as

Âaµ = R̂abAbµ , (1.1.26)

where Aµ is given in Eq. 1.1.18 and

R̂ab =



1√
2

1√
2 0 0

i√
2
−i√

2 0 0
0 0 cw sw

0 0 −sw cw

 , Âaµ =


W+
µ

W−
µ

Zµ

Aµ

 , (1.1.27)

such that Âaµ contains the gauge fields in the mass basis. We also find that the mass
matrix, (m2

A), in Eq. 1.1.20 is now diagonalized by

(m2
D,A)ab = (R̂−1)ac(m2

A)cd(R̂−1)db , (1.1.28)

where (m2
D,A)ab = diag(MW , MW , MZ , 0) is the diagonalized gauge boson mass

matrix.

Returning to our explicit notation, we find that the electroweak covariant derivative
may be written

Dµ = ∂µ − ieQfAµ − i
e

cwsw
(τ 3 − s2

wQf )Zµ

− i e
sw

(τ+W+
µ + τ−W−

µ ) , (1.1.29)

where Qf = τ 3 + Y , τ± = (τ 1 ± iτ 2)/
√

2 and e is the electric charge.

With some manipulations we can also recover some useful relations between the
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electric charge, the vev, the weak mixing angle, and the gauge boson masses

cw = MW

MZ

, g1 = e

cw
,

v0 = 2MW sw
e

, g2 = e

sw
,

e = g1g2√
g2

1 + g2
2

. (1.1.30)

1.1.3 The Fermion Lagrangian

We now consider the final two lines of Eq. 1.1.1, which describe the dynamics of
fermions and their interactions with the bosons of the SM. Fermions can be classified
into two distinct categories, quarks and leptons depending on their charges under
the SM symmetry group. The most important of these distinctions is that leptons
transform in the trivial representation of SU(3), while quarks transform in the
fundamental representation of SU(3), the result of which is that leptons have no
coupling to gluons. A summary of the charges of the fermions under each gauge
group is given in Table 1.3. Each fermion can be described by a four-component
spin-1

2 spinor, which gives rise to fermionic statistics, although for the purposes of
this thesis we can consider these spinors as a whole rather than concern ourselves
with each component of a particular spinor.

Under SU(3) the quarks of the SM are arranged in triplets, such that for some
generic quark, q

q =


qr

qb

qg

 , (1.1.31)

where r, b, g represent the three "colors" of QCD: red, blue and green respectively.

Field SU(3)c SU(2)L U(1)Y
lL 1 2 −1

2

eR 1 1 −1
qL 3 2 1

6

uR 3 1 2
3

dR 3 1 −1
3

Table 1.3: Representation of the groups under which the fermionic field
content of the SM transforms. Again, here N 6= 1 denotes
the fundamental representation of the group SU(N).
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The chiral nature of the SM is apparent due to the different representations under
which the left- and right-handed components of the fermion fields transform. We
can project the handedness of a field, ψ, using the projection operators, PL,R as

ψL,R = PL,Rψ , PL = 1
2 (1− γ5) , PR = 1

2 (1 + γ5) . (1.1.32)

In the SM the left-handed fermionic fields are arranged in an SU(2) doublet, with
one doublet for each of the three fermion generations of the SM. These doublets
are denoted lL and qL1 for the left-handed lepton and quark fields respectively, and
explicitly are

liL =
 eiL
νieL

 , qiL =
uiL
diL

 , (1.1.33)

where the index i = 1, 2, 3 denotes the generation, and each of the components is a
left-handed projection of the corresponding field.

The problem of writing an explicit mass term in the SM Lagrangian is now apparent:
the chiral nature of fermions leads to two distinct particles of different handedness,
meaning an explicit mass term must be written as ∼ −mψ̄ψ = −mψ̄LψR −mψ̄RψL,
which breaks gauge symmetry. Clearly, we must use the SSB properties of the Higgs
field to ensure this symmetry is preserved before SSB, but have a mechanism to
generate masses after SSB.

The generation of fermion masses comes from the third line of Eq. 1.1.1, known as
the Yukawa interactions. This part of the Lagrangian can be written in full as

Lyuk. = −[Ye]ij l̄iHej − [Yu]ij q̄iH̃uj − [Yd]ij q̄iHdj + h.c. , (1.1.34)

where h.c. represents the hermitian conjugate of the terms already present, H̃ i =
εij(Hj)∗ where εij is the two-dimensional antisymmetric Levi-Civita tensor (defined
such that ε12 = +1), and Yf is the Yukawa matrix for fermions of flavor f . As we can
see, the Yukawa matrix defines the coupling between the various components of the
Higgs and fermionic fields. Importantly, Eq. 1.1.34 is invariant under the unbroken
symmetry group of the SM.

We now consider Eq. 1.1.34 in the broken phase of the theory, i.e. when the Higgs
doublet takes the form of that seen in Eq. 1.1.14. Substituting the form of the Higgs
doublet in Eq. 1.1.14 into Eq. 1.1.34 and looking only at terms linear in the Higgs

1These are often simply abbreviated to l and q with the handedness implicitly assumed. We
will also often suppress the R subscript on right-handed fermions. Throughout this work, fermion
singlets should be assumed to be right-handed, unless an L or R subscript denotes otherwise.
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and vev we find

Lyuk. ⊃−
1√
2

(v0 + h)[Ye]ij ēiLejR −
1√
2

(v0 + h)[Yu]ijūiLujR

− 1√
2

(v0 + h)[Yd]ij d̄iLdjR + h.c. . (1.1.35)

This equation describes the coupling between the Higgs and the fermionic fields of
the SM, as well as the mass terms of the SM fermions. We note here that the lack of
a leptonic term involving H̃ in Eq. 1.1.34 prevents the generation of neutrino masses.
Massless neutrinos are a feature of the SM, although this is in contention with the
experimentally measured non-zero neutrino masses. We have no way of knowing a
priori what form the Yukawa matrices may take, or any general properties which they
might have, however, assuming only that the Yukawa matrices are diagonalizable1

we know from the fundamentals of linear algebra that they may be diagonalized
by two unitary matrices, S and K. We therefore diagonalize the Yukawa matrices
according to

Me ≡ S†eYeKe = diag(ye, yµ, yτ ) ,
Mu ≡ S†uYuKu = diag(yu, yc, yt) ,
Md ≡ S†dYdKd = diag(yd, ys, yb) , (1.1.36)

where the form of the yf are yet to be determined. To bring the fermions into the
mass basis, we must correspondingly transform the fermion fields according to

eL → SeeL ,

eR → KeeR ,

uL → SuuL ,

uR → KuuR ,

dL → SddL ,

dR → KddR .
(1.1.37)

From the above notation we see that the matrices Si act on left-handed fermion
fields and Ki act on right-handed fermion fields. We now find that in the mass basis
Eq. 1.1.35 takes the form

Lyuk. ⊃− [me]ij ēiLejR − [mu]ijūiLujR − [md]ij d̄iLdjR

− [me]ij
h

v0
ēiLe

j
R − [mu]ij

h

v0
ūiLu

j
R − [md]ij

h

v0
d̄iLd

j
R + h.c. , (1.1.38)

where

[me]ij = v0√
2

[Me]ij = diag(me, mµ, mτ ) ,

[mu]ij = v0√
2

[Mu]ij = diag(mu, mc, mt) ,

[md]ij = v0√
2

[Md]ij = diag(md, ms, mb) , (1.1.39)

1The diagonalizability of the Yukawa matrices is a reasonable assumption due to the experi-
mentally measured non-zero masses of the SM fermions [23].
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such that we now see that the yf of Eq. 1.1.36 take the form yf =
√

2mf/v0. Again,
we see the importance of the non-vanishing vev for the generation of fermion masses.
We also note from the bottom line of Eq. 1.1.38 that the coupling of the Higgs to
SM fermions is proportional to the fermion mass.

Lastly, we consider the final line of Eq. 1.1.1. This term describes the dynamics and
interactions between the SM fermions and the gauge bosons. Here we will specifically
consider the interactions of the W bosons and the left-handed quarks1 which is given
by

Lfer. ⊃
e√
2sw

(
ūiLγ

µW+
µ d

i
L + d̄iLγ

µW−
µ u

i
L

)
. (1.1.40)

We note that the quark fields in Eq. 1.1.40 are in the weak basis, and so we must trans-
form this equation to the mass basis using the transformations listed in Eq. 1.1.37
in order to understand the physical behavior of this component of the Lagrangian.
Performing this transformation brings the terms in Eq. 1.1.40 into the form

Lfer. ⊃
e√
2sw

(
[S†u]ik[Sd]kjūiLγµW+

µ d
j
L + [S†d]ik[Su]kj d̄iLγµW−

µ u
j
L

)
, (1.1.41)

where the fermions are now in the mass basis. We also find the emergence of a
combination of the unitary matrices Su and Sd, which we denote as

V ≡ S†uSd =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 , (1.1.42)

and is known as the Cabibbo-Kobayashi-Maskawa (CKM) matrix [25,26]. While all
other interactions between fermions in the SM occur between fermions of the same
type and generation, the CKM matrix is the only source of interactions between
fermions of different generations and different flavors, so called flavor violating
interactions in the SM. While the components of the CKM matrix must be measured
experimentally we can use the fact that both Su and Sd are unitary to infer that V too
must be unitary and use residual symmetries of the SM to reduce the free parameters
of the CKM matrix to three angles and one phase. The experimental measurements
of these free parameters allows us to drop the numerically less significant components
of the CKM matrix and approximately write it in terms of a single parameter, λ,

1In the SM (and verified by experiments) theW bosons only couple to left-handed fermions [24].
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known as the Wolfenstein parameterization [27]

|V | ≈


1− λ

2

2 λ λ3

−λ 1− λ
2

2 λ2

λ3 λ2 1

 , (1.1.43)

where experimentally we find λ ' 0.22 [23].

1.2 Renormalization

While calculating beyond LO in QFT is desirable for the purposes of increasing the
precision of predictions within a theory, an additional complication that often arises
when performing calculations beyond LO is the emergence of loop diagrams. These
loops are often formally divergent, with the divergences classified as either ultraviolet
(UV) or infrared (IR) divergent. Naïvely, these divergences often lead to infinities
when calculating observables in perturbation theory. There are various methods
available to treat these divergences. The methods of removing the UV divergences
from a theory are discussed throughout this section, with these techniques known as
renormalization. The removal of IR divergences are instead discussed in Section 1.3.

Throughout this section we explore how these UV divergences are dealt with at
NLO. In Section 1.2.1 we explore how these divergences emerge in loop integrals,
and how they may be regularized. In Section 1.2.2 we discuss how we may remove UV
divergences by refining our interpretation of parameters appearing the the Lagrangian
of a theory. Finally, in Section 1.2.3 we present a consistent manner for renormalizing
the tadpoles that may emerge in a theory.

1.2.1 Loop Integrals

A common object to emerge from perturbation theory in QFTs is the loop integral.
A loop integral occurs in Feynman diagrams that feature a closed loop, and thus
have some unspecified momenta running through the loop, which we must integrate
over all possible values. Multiple loops may appear in a single diagram, where a
diagram containing N loop(s) is described as an N -loop diagram. In some commonly
studied processes, such as flavor changing neutral currents, loops first emerge at LO
in perturbation theory, however, in most cases and in the processes studied in this
work loops first emerge at NLO and so we often use the terms one-loop and NLO
interchangeably

One-loop diagrams can be entirely classified by the number of propagators in the
loop. We describe integrals with one propagator to be A-integrals, integrals with
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two propagators to be B-integrals, etc. Generally, we may write a loop integral with
N internal propagators as

∫ d4k

(2π)4
kµ1 ..kµP

D0D1...DN−1
, (1.2.1)

where

D0 = k2 −m2
0 + iε , Di = (k + pi)2 −m2

i + iε , i = 1, ..., N − 1 , (1.2.2)

and pi are the external momenta. We first consider the emergence of UV diver-
gences. For an integral with P powers of momenta in the numerator evaluated in
d-dimensions, a diagram is UV divergent if P + d − 2N ≥ 0, that is, the integral
diverges as the loop momenta variable, k, tends to infinity. We can however regular-
ize this divergence by deforming the number of spacetime dimensions of the theory.
Specifically, we may perform the integral in a non-integer number of dimensions, a
technique known as dimensional regularization. A common choice, and the choice
made for UV-divergent integrals throughout this work is d = 4 − 2ε dimensions,
where ε > 0. Dimensional regularization is by no means the only method of reg-
ularizing divergent loop integrals; another method is Pauli-Villars regularization,
where a cut-off is placed on the range of the integration to avoid the divergent region,
however, this method of regularization is not employed in this work.1

Choosing that our theory is now defined in d dimensions, we additionally find that
this has an implication for the mass dimensions of the coupling constants and field
content of our theory. Considering, for example, some parameters of the SM we find

[φ] = d− 2
2 , [ψ] = d− 1

2 , [A] = d− 2
2 , [g] = 4− d

2 , (1.2.3)

where φ, ψ, A, and g represent some scalar field, fermionic field, gauge field, and
gauge coupling constant respectively. We also find that masses and partial derivatives
retain their mass dimensions of 1. To avoid non-integer dimensional couplings we
factor out a parameter µ from the couplings, where [µ] = 1 as

g → µ
4−d

2 g . (1.2.4)

1In fact, Pauli-Villars regularization presents several disadvantages as compared to dimensional
regularization, the most prominent of which being that it breaks several important symmetries, such
as gauge symmetries. Additionally, Pauli-Villars regularization breaks the EFT power-counting,
with it being preserved only in renormalized quantities [28]. We can see how the power counting
(discussed further in Section 2.1.1) is affected by considering, for example, a quadratically divergent
loop diagram with either two dimension-5, or one dimension-6 operator insertions, which would
scale as ∼ Λ2/M2 for cut-off scale Λ and heavy-EFT scale M . The emergent ratio of Λ/M ∼ 1
thus spoils the EFT power counting at the level of unrenormalized quantities.
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Considering the integral in Eq. 1.2.1, we can write this generically in d dimensions
as [29]

TNµ1...µP (p1, ..., pN−1,m0, ...,mN−1) = (2πµ)4−d

iπ2

∫
ddk

kµ1 ..kµP
D0D1...DN−1

, (1.2.5)

where we have introduced some constant factors for convenience. The factor of
(2π)−d comes from the integral measure seen in Eq. 1.2.1, while the remaining factor
of (2π)4/(iπ2) = −i16π2 is introduced by hand to explicitly factor out this term
which always arises from such integrals. Finally, the factor of µ4−d is a result of
the shifts of the coupling constants seen in Eq. 1.2.4. When calculating a one-loop
amplitude in d dimensions, there is always an accompanying factor of µ to the power
of any potential function of d that may arise as a result of the shifts in the couplings
seen in Eq. 1.2.4. When accompanied by divergent loop integrals, these powers of
µ will produce terms proportional to ln(µ) when expanded around ε = 0. Although
the shifts in Eq. 1.2.4 sometimes result in an amplitude being a function of powers
of µ which differ from that seen in Eq. 1.2.5, we always include the factor of µ4−d

into the definition of the loop integrals. The reason for this it that this always leads
to logarithms of the dimensionless ratio of µ and some function of the scales of the
loop integral, as is discussed later in this section. While there may be remaining
powers of µ in the one-loop amplitude, these result in logarithms of dimensionful
scales which cancel at the level of observables, and are thus typically ignored in
intermediate steps [16]. In this way, for one-loop calculations the factors of µ arising
due to the shifts in Eq. 1.2.4 are entirely accounted for at the level of the observable
by only including them in the form seen in Eq. 1.2.5.

From Eq. 1.2.5 we also now see that T 1 = A, T 2 = B etc. using the notation discussed
earlier. From the 4-momenta in the numerator of Eq. 1.2.5 we see that, in general,
the result of such integrals are tensors. The work of Passarino and Veltman (amongst
others) [30–33] shows that by taking advantage of Lorentz covariance we may write
the result of any of these tensors as a finite set of scalar integrals multiplying some
tensoral quantities built from some combination of the external momenta and the
metric. Following the prior naming conventions, these scalar integrals are denoted
A0, B0, C0 etc. and any one-loop integral may be written as some combination of
these integrals multiplying the aforementioned tensoral structures. While we do not
report the generic results for these scalar integrals, they can be found throughout
the literature [29,34], and we later report specific examples of these integrals when
necessary.

When employing dimensional regularization to calculate integrals that are UV diver-
gent, we always find that the result of these calculations are a function of the scales
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present in the integral, with one term multiplying a function we denote ∆, where

∆(d) = 2
4− d − γE + ln(4π) + ln

(
µ2

f({m})

)
, (1.2.6)

such that with the choice of d = 4− 2ε

∆(4− 2ε) = 1
ε
− γE + ln(4π) + ln

(
µ2

f({m})

)
, (1.2.7)

where γE is Euler’s constant, and f({m}) is some function of the scales of the integral.
These f({m}) may be different for each integral and have the property [f({m})] = 2
such that the argument of the log is unitless. The 1/ε part of Eq. 1.2.7 is known as
a UV pole, and by examining these poles the divergent nature of these integrals in
d = 4 dimensions (the limit ε→ 0), becomes clear. In this way we see that we have
completely separated the UV-divergent part of the integral. Further, from Eq. 1.2.7
we see that the factor of 1/ε always comes accompanied by the constant factors γE
and ln(4π)1 and so it is common to combine these as a single quantity

1
ε̂
≡ 1
ε
− γE + ln(4π) . (1.2.8)

Throughout the remainder of this work, when referencing UV-divergences we will
use only ε̂, but drop the hat notation.

UV divergences are not the only type of divergences that can occur in loop integrals.
In loop integrals arising from Feynman diagrams with the exchange of a massless
particle, divergences can sometimes also occur when the loop momenta k → 0.
Divergences occurring in this way are IR divergences. Like UV divergences, there
are several ways in which to regularize such IR divergences. One common method
is to introduce a fictitious mass for the massless particles, however, in this work
we choose to again adopt dimensional regularization to explicitly separate out the
IR divergent components of such integrals. Unlike for UV divergences however, for
IR divergences we find we must instead set the number of spacetime dimensions
to d = 4 + 2ε. As with UV divergences, when regularizing IR divergences in this
way we again find that the IR divergences manifest as 1/ε poles. These IR poles
also come accompanied by the set of constant terms found in Eq. 1.2.8, except in
this instance the constant terms have relative minus signs compared to that seen
in Eq. 1.2.8, such that IR poles emerging from IR-divergent loop integrals always
appear in the combination 1/ε+ γE − ln(4π) [18].

1The factor of 1/ε also always comes accompanied by a factor of ln(µ2/f({m})), however, as
we will see, it is useful to keep this quantity separate from the rest of the constant terms in ∆.
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1.2.2 UV Divergence Renormalization

As we have seen in Section 1.2.1, UV divergences emerge in loop integrals which
tend to infinity as the unconstrained loop momenta tends to infinity. The divergent
nature of these integrals is apparent in the UV poles of the form 1/ε which emerge
in dimensional regularization. In order to remove these divergences as ε → 0 it
is therefore necessary to remove these UV poles, which also removes the theory’s
dependence on the regulator allowing us to safely take the limit ε→ 0 without any
part of our matrix element diverging.

At LO we can make predictions by identifying parameters in the Lagrangian (known
as bare parameters) with physical quantities (for example, the experimentally meas-
ured masses or charges). However, as we have seen at NLO, UV divergences spoil this
relation such that parameters appearing in the Lagrangian differ from the physical
counterparts by a divergent amount. To resolve this issue, the approach we take is
to separate these bare parameters into a finite physical parameter (also known as a
renormalized parameter) and a UV-divergent part (known as a counterterm). These
shifts are not just limited to masses and charges but to all independent physical
parameters of the Lagrangian, even extending to the normalization of the physical
fields themselves; with these normalizations not being observable quantities we are
free to shift any normalization factors by any amount. As an example we provide
a set of these shifts which are relevant to the processes explored in Part II of this
work. The shifts in the fields are

h(0) =
√
Zhh =

(
1 + 1

2δZh
)
h ,

f
(0)
L =

√
ZL
f fL =

(
1 + 1

2δZ
L
f

)
fL ,

f
(0)
R =

√
ZR
f fR =

(
1 + 1

2δZ
R
f

)
fR ,Z(0)

A(0)

 =
√ZZZ √ZZA√

ZAZ
√
ZAA

 =
1 + 1

2δZZZ
1
2δZZA

1
2δZAZ 1 + 1

2δZAA

Z
A

 , (1.2.9)

where fields with superscript (0) represent bare fields, fields without a superscript
represent renormalized fields, ZX are the renormalization constants, and δX repres-
ents the UV-divergent counterterm related to the field X. The apparent mixing of
the fields Z and A through counterterms is a consequence of these fields mixing into
each other at the one-loop level (when these fields are off-shell). Similarly, for the
masses and charges the subset relevant to our later calculations are

M (0) = ZMM = M + δM ,

e(0) = Zee = e+ δe , (1.2.10)
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where M is a generic mass and e is the electric charge. In Eq. 1.2.10 we are able to
write the mass renormalization constant as a multiplicative renormalization constant
in the on-shell scheme due the fact that δM ∼ M . This ensures that particles
which are massless at the level of the Lagrangian do not acquire a mass as a result
of renormalization. This is useful in ensuring that global symmetries (such as
chiral symmetries) which preserve particles being massless are not broken by this
renormalization scheme.

After substituting the bare parameters written in terms of renormalized parameters
and counterterms as in Eqs. 1.2.9 and 1.2.10 into the Lagrangian of our theory,
we may similarly split our Lagrangian into a part containing only bare fields and
parameters, and a part containing only counterterms as

L(0) = L+ δL , (1.2.11)

where L is simply equal to L(0) with bare parameters replaced by renormalized ones,
and δL contains all counterterms. As UV divergences first emerge at the one-loop
level, so too the counterterms are NLO corrections, and so it is possible to expand
δL to NLO in the coupling; doing so produces the counterterm Lagrangian at NLO.

There are several schemes available to us when deriving the form of the coun-
terterms. The simplest of these is the minimal subtraction (MS) scheme where
the counterterms are purely UV-divergent quantities such that the only function
of the counterterms is to exactly cancel the UV divergences appearing in the bare
NLO matrix element. A related, more common scheme is the modified minimal
subtraction (MS) scheme. This scheme functions in much the same way as the MS

scheme except that along with the UV pole we also remove the universal constants,
γE and ln(4π) which appear in Eq. 1.2.7. The advantages of this scheme are that it
is typically very simple to calculate renormalized matrix elements (allowing us to
calculate at NLO using bare quantities, and renormalize results by simply ignoring
the poles and corresponding constant factors) and allows us to sidestep needing to
define terms in the Lagrangian in terms of observables, which for some parameters
(such as quark masses) are not well defined. It also allows us to resum potentially
large logarithms that may appear in physical renormalization schemes such as the
one we shall discuss shortly. A downside is that any parameter renormalized in this
scheme does not have the additional ln(µ2) term removed from the bare NLO cor-
rections, resulting in this parameter being a function of µ, obscuring the connection
of the theory to the physical picture.

Another common scheme is the on-shell scheme. In the on-shell scheme we relate
quantities in the Lagrangian to observables. The result is that as well as contain-
ing identical UV pole structures to those found in the MS and MS scheme, the
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counterterms also contain finite parts to ensure a correspondence between the renor-
malized quantity and the observable. Once a counterterm is obtained in the on-shell
scheme it is easy to convert to the MS scheme by simply removing all finite parts
besides the constant −γE + ln(4π) factor. A consequence of relating the parameters
in the Lagrangian to observables is that parameters have a physical definition. As a
result, any dependence on the scale µ cancels between the NLO bare and counterterm
corrections. This cancellation of µ is a result of poles from the bare corrections and
the counterterm corrections both being generated by loop integrals so that in both
instances the poles are accompanied by ln(µ) terms according to Eq. 1.2.7. There-
fore, a cancellation between the poles necessarily also results in a cancellation of the
µ-dependent terms.

We continue our study of the on-shell scheme by writing the set of two-point functions
for the physical particles in our theory [29,35]. What follows is presented in Feynman
gauge, which we define in Section 1.5.1. Using the Lagrangian in Eq. 1.2.11, we
may write the renormalized two-point functions which are relevant to the processes
considered in this work at NLO in terms of scalar functions, Σa

b , and counterterms
as (where hatted quantities are renormalized, and where we have omitted fermion
mixing)

Γ̂Wµν(k2) = Wµ Wν→
k

= −igµν(k2 −M2
W )− i

(
gµν −

kµkν
k2

)(
ΣW
T (k2)− δM2

W − δZWW (M2
Z − k2)

)
− ikµkν

k2

(
ΣW
L (k2)− δM2

W − δZWW (M2
W − k2)

)
= −igµν(k2 −M2

W )− i
(
gµν −

kµkν
k2

)
Σ̂W
T (k2)− ikµkν

k2 Σ̂W
L (k2) ,

Γ̂ZZµν (k2) = Zµ Zν→
k

= −igµν(k2 −M2
Z)− i

(
gµν −

kµkν
k2

)(
ΣZZ
T (k2)− δM2

Z − δZZZ(M2
Z − k2)

)
− ikµkν

k2

(
ΣZZ
L (k2)− δM2

Z − δZZZ(M2
Z − k2)

)
= −igµν(k2 −M2

W )− i
(
gµν −

kµkν
k2

)
Σ̂ZZ
T (k2)− ikµkν

k2 Σ̂ZZ
L (k2) ,
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Γ̂AAµν (k2) = Aµ Aν→
k

= −igµνk2 − i
(
gµν −

kµkν
k2

)(
ΣAA
T (k2) + k2δZAA

)
− ikµkν

k2

(
ΣAA
L (k2) + k2δZAA

)
= −igµν(k2 −M2

W )− i
(
gµν −

kµν
k2

)
Σ̂AA
T (k2)− ikµkν

k2 Σ̂AA
L (k2) ,

Γ̂AZµν (k2) = Aµ Zν→
k

= −igµνk2 − i
(
gµν −

kµkν
k2

)(
ΣAZ
T (k2)− 1

2k
2δZAZ −

1
2δZZA(M2

Z − k2)
)

− ikµkν
k2

(
ΣAZ
L (k2)− 1

2k
2δZAZ −

1
2δZZA(M2

Z − k2)
)

= −igµν(k2 −M2
W )− i

(
gµν −

kµkν
k2

)
Σ̂AZ
T (k2)− ikµkν

k2 Σ̂AZ
L (k2) ,

Γ̂H(k2) = h h→
k

= i(k2 −m2
H) + i

(
ΣH(k2)− δm2

H − δZh(m2
H − k2)

)
= i(k2 −m2

H) + iΣ̂H(k2) ,

Γ̂f (k2) = f f→
k

= i(/k −mf ) + i
{
/kPL

(
ΣL
f (k2) + δZL

f

)
+ /kPR

(
ΣR
f (k2) + δZR

f

)
+mf

PL
(

ΣS
f (k2)− 1

2δZL −
1
2δZR −

δmf

mf

)

+ PR

(
ΣS∗
f (k2)− 1

2δZL −
1
2δZR −

δmf

mf

)
= i(/k −mf ) + i

{
/kPLΣ̂L

f (k2) + /kΣ̂R
f (k2) +mf

[
PLΣ̂S

f (k2) + PRΣ̂S∗
f (k2)

] }
.

(1.2.12)

As stated, in the on-shell scheme we may define the form of the renormalization
constants appearing in Eq. 1.2.12 by imposing a set of conditions that relate the
renormalized parameters to measurable quantities. Firstly we can impose that the
renormalized mass is equal to the observed mass; this condition is equivalent to
imposing that the real part of poles of the corresponding propagators (found from
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taking the inverse of the two-point functions in Eq. 1.2.12) appear at the propagator
momenta k2 = M2 for a particle of mass M . We can also fix the field normalization
counterterms by imposing that the residues of the renormalized propagators are
equal to one. These two conditions give us the set of renormalization conditions
for the renormalized scalar functions, Σ̂. The renormalization conditions given by
imposing the position of the pole for the SM bosons result in the expressions

R̃eΣ̂W
T (M2

W ) = 0 , ReΣ̂AZ
T (M2

Z) = 0 ,
R̃eΣ̂ZZ

T (M2
Z) = 0 , Σ̂AA

T (0) = 0 ,
Σ̂AZ
T (0) = 0 , ReΣ̂H(m2

H) = 0 , (1.2.13)

while imposing the form of the residue of the propagators for the SM bosons gives

R̃e∂Σ̂W
T (k2)
∂k2

∣∣∣∣
k

2=M2
W

= 0 , Re∂Σ̂AA
T (k2)
∂k2

∣∣∣∣
k

2=0
= 0 ,

Re∂Σ̂ZZ
T (k2)
∂k2

∣∣∣∣
k

2=M2
Z

= 0 , Re∂Σ̂H
T (k2)
∂k2

∣∣∣∣
k

2=m2
H

= 0 , (1.2.14)

where R̃e is defined as taking only the real part of the loop integrals. The renormal-
ization conditions for the SM fermions allow us to write

R̃eΣ̂L
f (m2

f ) + R̃eΣ̂S
f (m2

f ) = 0 ,
R̃eΣ̂R

f (m2
f ) + R̃eΣ̂S∗

f (m2
f ) = 0 ,

R̃eΣ̂L
f (m2

f ) + R̃eΣ̂R
f (m2

f )

+ 2m2
f

∂

∂k2

(
R̃eΣ̂L

f (k2) + R̃eΣ̂R
f (k2) + R̃eΣ̂S

f (k2) + R̃eΣ̂S∗
f (k2)

) ∣∣∣∣
k

2=m2
f

= 0 . (1.2.15)

The renormalization conditions in Eqs. 1.2.13 to 1.2.15 thus allow us to find that
the bosonic field normalization counterterms are

δZW = −Re∂ΣW
T (k2)
∂k2

∣∣∣∣
k

2=M2
W

, δZAZ = −2ReΣAZ
T (M2

Z)
M2

Z

,

δZZZ = −Re∂ΣZZ
T (k2)
∂k2

∣∣∣∣
k

2=M2
Z

, δZZA = −2ΣAZ
T (0)
M2

Z

,

δZAA = −Re∂ΣAA
T (k2)
∂k2

∣∣∣∣
k

2=M2
Z

, δZh = −Re∂ΣH(k2)
∂k2

∣∣∣∣
k

2=m2
H

, (1.2.16)

and the counterterms for the boson masses are

δM2
W = R̃eΣW

T (M2
W ) ,

δM2
Z = R̃eΣZZ

T (M2
Z) ,

δm2
H = ReΣH(m2

H) , (1.2.17)
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ū(p1)Γ̂ffγµ (p1, p2, p3)u(p2)εµ(p3) ≡ f

γ

f
→ →

↓

p1 p2

p3

Figure 1.1: The Feynman diagram of the ffγ interaction for generic
fermion flavor, f , defining the function Γ̂ffγµ . Here the
"blob" vertex represents bare one-loop corrections to the
vertex, as well as all contributions from counterterms, in-
cluding wavefunction counterterms.

while the fermionic mass and field normalization counterterms are

δmf = mf

2 R̃e
(
ΣL
f (m2

f ) + ΣR
f (m2

f ) + ΣS
f (m2

f ) + ΣS∗
f (m2

f )
)
,

δZL
f = R̃eΣL

f (m2
f ) + ΣS

f (m2
f )− ΣS∗

f (m2
f )

−m2
f

∂

∂k2

(
ΣL
f (m2

f ) + ΣR
f (m2

f ) + ΣS
f (m2

f ) + ΣS∗
f (m2

f )
)
,

δZR
f = R̃eΣR

f (m2
f )

−m2
f

∂

∂k2

(
ΣL
f (m2

f ) + ΣR
f (m2

f ) + ΣS
f (m2

f ) + ΣS∗
f (m2

f )
)
. (1.2.18)

We note here that throughout this work we often consider δM rather than δM2 for
boson mass counterterms. These quantities are related via the simple relation

δM = 1
2MδM2 , (1.2.19)

for some boson of mass M . We must also consider the counterterm for the electric
charge. The on-shell counterterm is derived by considering the three-point interaction
between a photon and two charged fermions in the Thompson limit, i.e. the limit
of vanishing photon momentum. The enforced condition is that in the Thompson
limit the one-loop renormalized coupling of charged fermions to the photon should
be equal to the measured electric charge. This condition may be written as

u(p)Γ̂ffγµ (p, p, 0)u(p)
∣∣∣∣∣
p

2=m2
f

= −iQfeū(p)γµu(p) , (1.2.20)

where the function Γ̂ffγµ is defined in Fig. 1.1. Making use of SM Ward identities
allows us to write the form of the electric charge counterterm in the SM in terms of
the two point functions defined in Eq. 1.2.12 as

δe

e
= 1

2
∂ΣAA

T (k2)
∂k2

∣∣∣∣∣
k

2=0
− vf − af

Qf

ΣAZ
T (0)
M2

Z

. (1.2.21)
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Physically, the γZ two-point function enters due to the ability of the photon to mix
into a Z-boson at the one-loop level before coupling to the fermion, and it is also for
this reason that we find the vector coupling, vf , and axial-vector coupling, af , of the
Z-boson enters the expression in Eq. 1.2.21. Charge universality guarantees that the
final form of the electric charge counterterm is independent of the fermion considered
in this derivation. In the SM we can make use of the relation vf − af = −Qfsw/cw

in Eq. 1.2.21, which explicitly shows the charge universality of the electric charge
counterterm.

With the result of Eq. 1.2.21 at hand, we find that in the SM the entirety of the
counterterm calculation procedure can be achieved by the calculation of a finite set
of bare two-point functions.

1.2.3 Tadpole Renormalization

We begin by considering the Higgs doublet after SSB such that it has acquired a vev,
which we now denote ṽ, where we have a priori made no claims about the form of ṽ

H = 1√
2

 0
ṽ + h

 , (1.2.22)

and where ṽ permits a perturbative expansion

ṽ = v0 + v1 + . . . . (1.2.23)

Importantly, we do not yet make any link between the value of ṽ and the parameters
of the Higgs potential, λ and µ, from Eq. 1.1.10. The linear terms in h arising from
the Higgs potential in Eq. 1.1.10 imply that at LO the vacuum may absorb the Higgs
as shown in Diagram (1) in Fig. 1.2 and given by

T0 ∼ 〈h|(−µ2v0 + λv3
0)h|0〉 , (1.2.24)

where we have utilized the expansion in Eq. 1.2.23, and where at LO we need not be
concerned with whether these are bare or renormalized quantities. The absorption
of Higgs by the vacuum is a feature that we do not desire in our theory, and so,
wishing to remove this LO absorption, we impose that the expression in Eq. 1.2.24
should vanish, i.e. T0 = 0. Imposing this relation simultaneously enforces that the
LO expansion of the Higgs vev, v0, takes the form

v0 =
√
µ2

λ
, (1.2.25)

which is the same as that seen in Eq. 1.1.12.
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h h

(1) (2)

Figure 1.2: Diagrams representing the one-point function, h→ 0, for
(1): the LO absorption of the Higgs by the vacuum, and (2):
the NLO absorption of the Higgs by the vacuum. These
are known as tadpole diagrams.

The procedure outlined above only ensures that tadpoles are eliminated from our
theory at LO. The tadpole function also receives corrections at NLO, represented
by Diagram (2) in Fig. 1.2. Due to the anomalously large corrections that tadpoles
introduce at NLO1 it is desirable to remove tadpoles at each order in perturbation
theory. In fact, the true position of the vev of the Higgs doublet (which we denote
v) receives perturbative quantum corrections, and any non-vanishing tadpole con-
tributions in our calculations are present due to the form of the vev in the Higgs
doublet differing from the true minima of the Higgs potential, v. To remove tadpoles
at NLO we write the linear term in h of Higgs potential as

V (H)lin. =
(
−
(
µ(0)

)2
ṽ(0) + λ(0)

(
ṽ(0)

)3
)
h,

= t(0)h ,

= (t+ δt)h , (1.2.26)

where in the second line of Eq. 1.2.26 we combined the bare terms into a single bare
term, t(0), and in the third line of Eq. 1.2.26 we have expanded this into the sum of
a renormalized quantity and a counterterm. Defining the bare tadpole function T (0)

to be the sum of all one-loop contributions to the Higgs one-point function, we can
define δt by imposing that that renormalized tadpole function T̂ is

T̂ = T (0) + δt = 0 . (1.2.27)

This condition is the on-shell tadpole renormalization condition, equivalent to simply
defining δt = −T (0). As the condition in Eq. 1.2.27 guarantees the absence of tadpoles
at NLO, and because t and ṽ are linked from Eq. 1.2.26, we can conclude that the
condition in Eq. 1.2.27 also places ṽ at the position of the true vev up to NLO,
i.e. ṽ = v. A consequence of tadpoles being entirely removed via Eq. 1.2.27 is
that, for the calculation of any matrix element, tadpoles do not need to be included

1For example, corrections to the Higgs one-point function arising due to top-quark loops scale
as m4

t/(m
2
Hv

2), inducing sizeable contributions.



1.2. Renormalization 39

in any contributing diagrams. Instead, the effects of these tadpole corrections are
included in the renormalization of bare parameters defined in terms of the bare
Higgs vev, such as M (0)

W = 1
2g

(0)
2 ṽ(0). However, we note here that tadpoles are

gauge-dependent quantities. We see from Eq. 1.2.26 that the counterterm of ṽ
(which with the condition in Eq. 1.2.27 we have established to be the true vev, v)
must be some function of δt and therefore gauge dependent due to the relation in
Eq. 1.2.27. When defined in this way, the particle masses of the theory are now
all a function of ṽ, resulting in all mass counterterms in the theory being gauge
dependent. In a physical renormalization scheme, such as a purely on-shell scheme,
the correspondence between parameters in our Lagrangian and observable quantities
guarantees that any gauge-dependence present in mass counterterms drops out in the
calculation of observables. However, in some scenarios it is beneficial to renormalize
some quantities in the on-shell scheme while others are renormalized in the MS
scheme. In this case, adopting the tadpole renormalization as described above would
produce gauge-dependent results when calculating observable quantities.

We wish to implement some scheme of tadpole renormalization that results in gauge-
independent counterterms for all parameters of the theory. Such a scheme was
introduced by Fleischer and Jegerlehner and is known as the Fleischer-Jegerlehner
(FJ) tadpole scheme [36–38]. This scheme allows us to preserve the definitions of
mH , MW , MZ , and mf as a function of the LO Higgs vev, v0, as defined throughout
Eqs. 1.1.15, 1.1.25 and 1.1.39, which allows for gauge-independent definitions of
the corresponding counterterms, while also renormalizing tadpoles in a consistent
manner. To begin, we split the combination ṽ+ h in the Higgs doublet of Eq. 1.2.22
as

ṽ + h = v0 + ∆v + h . (1.2.28)

We now insist that v0 plays no part in the tadpole renormalization, and that the
tadpoles should be entirely renormalized by the shift ∆v, such that this shift cancels
the tadpole contributions. As ∆v is simply some constant value and not defined by
the bare parameters of the theory, it consequently does not require a renormalization
counterterm. Next, we consider the terms in the Higgs potential of Eq. 1.1.10 which
are linear in h∆v

V (H)h∆v lin. = 2∆vλ(0)
(
v

(0)
0

)2
h(0) ,

≡ δt h(0) . (1.2.29)

where we have recast ∆v as a tadpole counterterm in the second line. We can then
implement our aforementioned desire that the tadpoles are entirely renormalized by
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∆v by solving Eq. 1.2.29 for ∆v and making use of
(
m

(0)
H

)2
= 2λ(0)

(
v

(0)
0

)2

∆v = δt(
m

(0)
H

)2 ,

= δt

m2
H

+ NNLO terms ,

= −T
(0)

m2
H

, (1.2.30)

where we have enforced the tadpole renormalization condition in Eq. 1.2.27. The
form of ∆v is therefore determined by the bare NLO tadpole function. We may
now replace ∆v in our Lagrangian according to Eq. 1.2.30 to construct terms in the
counterterm Lagrangian proportional to δt which allows us to remove the explicit
tadpole contributions.

We now recognize that we are able to shift the Higgs field by any constant quantity,
and in doing so we are guaranteed that the result of any S-matrix elements will not
change. We therefore shift the Higgs field according to

h→ h−∆v , (1.2.31)

where in doing so we have removed any explicit tadpole renormalization, but kept
the definitions of mH , MW , MZ and mf from Eqs. 1.1.15, 1.1.25 and 1.1.39. How-
ever, from the S-matrix invariance we must therefore conclude that this scheme
is equivalent to the scheme featuring the shift found in Eq. 1.2.28 where tadpoles
are explicitly renormalized. Therefore a scheme in which the Higgs vev takes the
LO value v0, and where particle masses are defined according to Eqs. 1.1.15, 1.1.25
and 1.1.39 but where tadpoles are not explicitly renormalized is equivalent to the FJ
tadpole scheme. This allows us to renormalize tadpoles in a consistent manner by
simply including them at the appropriate order in perturbation theory in diagrams
contributing to a particular process and setting the vev to v0 from Eq. 1.2.25.

While we have examined two particular tadpole renormalization schemes, we note
that there are a selection of schemes available, such as the βh and βt1 scheme [39],
and the scheme outlined in [40]. Throughout this work we will favor the FJ tadpole
scheme for its advantages in regards to producing gauge-independent counterterms.

1The βt scheme is equivalent to the FJ tadpole scheme.
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1.3 IR Divergences

In QFTs we may also encounter infinities that are not UV, but IR in origin. Such
divergences can be classified as either colinear or soft. For the calculations outlined
in Part II, colinear divergences will be of little concern, and so here we focus on
soft divergences. As discussed Section 1.2.1, conversely to UV divergences where
a divergence occurs in a loop integral as the loop momenta tends to infinity, soft
divergences may occur at the amplitude level in loop integrals which diverge as the
loop momenta tends to zero. As we have seen in Section 1.2.2, in the on-shell scheme
we can fully UV renormalize the SM by incorporating the UV poles from two-point
functions into our counterterms. However, we find that in the SM none of these
two-point functions contain poles which are IR in origin, and thus cannot be used to
cancel any IR poles which emerge in the bare matrix element for a given process.

The KLN theorem shows that perturbatively in any finite energy window the SM is
IR finite [41, 42]. Soft divergences are therefore removed by considering additional
processes that involve the emission of additional massless particles. In the soft
limit we recover a process which is indistinguishable from the original process under
consideration. At NLO we need only consider the additional emission of a single
massless particle. Such processes are often referred to as having final-state radiation.
The KLN theorem then guarantees that the soft IR divergences present in these final-
state-radiation diagrams cancel the soft IR divergences present in the loop integrals,
again removing the dependence on the regulator ε. The dependence on the IR
regulator for final-state-radiation diagrams emerges when performing the necessary
phase-space integration in d = 4 − 2ε dimensions, as described in Appendix B.
Again, the divergent nature of the integral over phase space is apparent due to the
emergence of 1/ε poles after the phase-space integration, and the cancellation of
such poles against the IR poles which emerge in IR-divergent loop integrals allows
us to safely take the limit ε→ 0 without any divergences. Therefore, an interesting
feature is that while UV divergences may be removed at the level of the amplitude,
IR divergences are instead removed only at the level of the observable. We also
note that the constant factors that accompany 1/ε arising from IR-divergent loop
integrals (as discussed at the end of Section 1.2.1) cancel against equivalent terms
arising from the IR-divergent phase-space integral.

1.4 The Renormalization Group

A feature of loop corrections in QFTs is the emergence of the running of parameters
renormalized in the MS scheme within the theory, that is, the observed values of
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parameters changing as we vary the renormalization scale, µ. Here we explore
how this running emerges, and the consequences of this running within the SM.
In Section 1.4.1 we explore the running of the SM couplings, α and αs, while in
Section 1.4.2 we explore the running of the SM fermion masses. Finally, in section
Section 1.4.3 we discuss the invariance of observables with respect to µ.

1.4.1 Running Gauge Couplings

Firstly, we consider the electromagnetic coupling constant, e. In the on-shell scheme
e is defined in correspondence with a physical observable, and therefore does not
vary with the renormalization scale µ. Consider, however, e renormalized in the MS
scheme, which as discussed in Section 1.2.2, causes e to become a function of, and
thus run with the varying of µ. We may write the bare electromagnetic coupling
constant and its corresponding counterterm in d = 4− 2ε dimensions as

e(0) = µεZe(µ)e(µ) , (1.4.1)

where µ is the renormalization scale first seen in Section 1.2.1, and Ze is the elec-
tric charge renormalization constant seen in Eq. 1.2.10. We recognize that the
bare Lagrangian, and the parameters thereof, are necessarily independent of the
renormalization scale, µ, a property which must be preserved when re-expressing
the Lagrangian in terms of renormalized parameters and renormalization constants.
Taking advantage of this property we may take the derivative of Eq. 1.4.1 with
respect to µ to get (where we drop the arguments of e and Ze)

µ
de(0)

dµ
= 0 = εµεZee+ µ1+εdZe

dµ
e+ µ1+εZe

de

dµ
. (1.4.2)

which we may rewrite as

0 = µεe
dZe

d ln(µ) + µεZe

[
εe+ de

d ln(µ)

]
,

⇒ 0 = α
dZe

d ln(µ) + Ze

[
αε+ 1

2
dα

d ln(µ)

]
, (1.4.3)

where in the second line of Eq. 1.4.3 we have re-expressed the first line in terms of
the fine-structure constant, α = e2/4π. We may rewrite Eq. 1.4.3 as

dα

d ln(µ) ≡ β(α) , (1.4.4)

where β(α) is the QED beta function and may be determined order-by-order in α by
calculating Ze to increasingly higher orders. Equations of the type seen in Eq. 1.4.4
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are known as renormalization-group (RG) equations. Written as an expansion in α
we may therefore generically write this beta function as

β(α) = −2α(µ)
 α

4πβ0(α) +
(
α(µ)
4π

)2

β1(α) + . . .

 . (1.4.5)

Here, β0(α) is the LO QED beta function. The decoupling theorem [43] guarantees
that for a theory defined in a physical renormalization scheme, heavy degrees of
freedom (that being with massM where µ .M) decouple from the theory. However,
the MS scheme is not a physical renormalization scheme, and so this decoupling
must be implemented "by hand". The result is that the LO QED beta function valid
for scales µ . mt is given by

β0(α) = −4
3
[
NgQ

2
l +Nc

(
(Ng − 1)Q2

u +NgQ
2
d

)]
, (1.4.6)

where Ng is the number of generations, Ql, Qu, and Qd are the charges of leptons,
up-type quarks, and down-type quarks respectively, and where the decoupling of the
heavy top quark is apparent from the (Ng − 1) term.

Solving Eq. 1.4.4 to LO in the expansion we find

α(µ) = α(µ0)
1− α(µ0)β0(α)

2π ln
(
µ0
µ

) , (1.4.7)

which allows us to calculate α at some scale, µ, given a measurement of α at some
reference scale, µ0. We could in principle have included higher-order corrections in
α to our expression in Eq. 1.4.7, thus making this solution only an approximate
solution, in this case known as the leading log approximation. An important feature
of this running is that for QED the LO beta function in Eq. 1.4.6 takes a negative
value; as a result we find that as we increase the scale µ, the value of α(µ) increases.
The processes considered in this work occur at a scale far below the breakdown of
perturbative QED and so this property is of no cause for concern.

Next, we consider the strong coupling constant, g3. The renormalization procedure
for this parameter was not included in Section 1.2 as the explicit renormalization
of this parameter does not play a role in the the processes considered in this thesis.
However, this parameter plays an important role in the calculations considered in
Part II of this thesis due to the evolution of this parameter with respect to the
renormalization scale. Similarly to what was seen for QED, we may write the bare
strong coupling constant as a function of the renormalized strong coupling constant
and its corresponding counterterm in d = 4− 2ε dimensions as

g
(0)
3 = µεZg(µ)g3(µ) , (1.4.8)
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where g3 is the renormalized strong coupling constant and Zg is the strong coupling
renormalization constant. Again, we recognize the µ-independence of Eq. 1.4.8,
and so take the derivative of this equation and rewrite this in terms of the strong
fine-structure constant using αs = g2

3/4π to define

dαs
d ln(µ) ≡ β(αs) , (1.4.9)

where β(αs) is the QCD beta function, again permitting an expansion as

β(αs) = −2αs(µ)
αs(µ)

4π β0(αs) +
(
αs(µ)

4π

)2

β1(αs) + . . .

 . (1.4.10)

We find from the calculation of Zg that β0(αs) takes the form

β0(αs) = 11
3 Nc −

2
3nl , (1.4.11)

where we have again implemented the decoupling by hand such that nl is the number
of light quarks, this being nl = 5 for µ . mt. Solving Eq. 1.4.10 for αs to leading
order gives

αs(µ) = αs(µ0)
1− αs(µ0)β0(αs)

2π ln
(
µ0
µ

) . (1.4.12)

An important property of the QCD beta function is that in the SM with nl = 5
the beta function takes a positive value, with the consequence being that αs(µ)
decreases with increasing µ, increasing the applicability of perturbation theory at
higher scales. Conversely, αs grows with decreasing µ, such that at low energies
perturbation theory breaks down and colored objects are highly confined. This
important property, known as asymptotic freedom, is unique to QCD within the SM
and allows for the binding of quarks into color-singlet objects such as hadrons [44,45].

1.4.2 Running Fermion Masses

A natural extension of the techniques explored in Section 1.4.1 is to apply them to
the MS renormalized masses of the SM. As an example, we consider the running of
a generic quark, denoted as q, the results of which are easily extended to the leptons
of the SM. Again we use the property of the µ-independence of the bare parameters
of the SM Lagrangian to write

µ
dm(0)

q

dµ
= 0 = µ

dZmq
dµ

mq + µZmq
dmq

dµ
, (1.4.13)
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where Zmq is the mass renormalization constant defined in Eq. 1.2.10. Similarly
to how we defined the beta functions of QED and QCD we may also define the
anomalous dimension of the quark mass as

γmq ≡
1
mq

dmq

d ln(µ) . (1.4.14)

Due to quarks allowing for QED and QCD corrections, γmq permits an expansion in
both α and αs

γmq = α(µ)γ0,γ
mq

+ αs(µ)γ0,g
mq

+ α2(µ)γ1,γ
mq

+ α2
s(µ)γ1,g

mq
+ . . . . (1.4.15)

At leading order we find

γ0,γ
mq

= − 3
2πQ

2
q , γ0,g

mq
= − 3

2πCF , (1.4.16)

where Qq is the electric charge of the quark. We are free to drop the subscript of
mq on γ0,g

mq
due to the coupling of gluons and quarks being independent of the quark

flavor. Neglecting QED corrections, we find that solving Eq. 1.4.14 with only the
leading QCD corrections (which in this case are by far the most dominant) gives

mq(µ) = mq(µ0)
(
αs(µ0)
αs(µ)

)2π γ
0,g

β0(αs)

, (1.4.17)

which is the running of the quark mass mq in leading-log QCD. Again, this equation
allows us to find the quark mass at some scale µ given a measurement of the mass
at some other scale µ0. We also find that Eq. 1.4.17 can be easily adapted to apply
to leptons of type ` (which only receive QED corrections to the running at LO) with
the replacements q → `, γ0,g → γ0,γ

m`
, αs → α, and β0(αs)→ β0(α).

1.4.3 Observable Invariance

Consider a observable, such as a decay rate or cross section, that is a function of the
fine structure constant, α, the QCD coupling constant, αs, and some mass, m. It
must be true that to all orders in perturbation theory this observable is unchanged
when we renormalize the aforementioned parameters in the on-shell scheme vs. when
we renormalize these parameters in the MS scheme [46], summarized as

O = Oo.s(α, αs,m, ...) = O (α(µ), αs(µ),m(µ), ...) , (1.4.18)

where O represents some observable, Oo.s represents that observable with all para-
meters renormalized in the on-shell scheme, and O represents the observable with
the parameters α, αs, and m renormalized in the MS scheme. As a result we may
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write

dO
d ln(µ) = dα(µ)

d ln(µ)
∂O
dα(µ) + dαs(µ)

d ln(µ)
∂O

dαs(µ) + dm(µ)
d ln(µ)

∂O
dm(µ) = 0 . (1.4.19)

The expression in Eq. 1.4.19 generalizes in an obvious way for additional observables
renormalized in the MS scheme. We will take advantage of relations such as that
in Eq. 1.4.19 in Section 4.6.2. We also note that, up to some some order, n, in
perturbation theory, the quantities Oo.s and O should be equal, with any differences
occurring at order n + 1. We are also able to take advantage of this property to
sidestep issues that we might find in some particular renormalization scheme. For
example, in the on-shell scheme we might find we have logarithms of two largely
separated scales, leading to an anomalously large correction from such logarithms. In
the MS scheme we may set our renormalization scale, µ, such that large logarithms
are removed, but with the equivalence of the two schemes at the level of the observable
we conclude that the large logarithms in the on-shell results are resummed in the
definition of the MS renormalized parameters.

1.5 Gauge Fixing and Ghosts

As we have seen throughout Sections 1.1.1 to 1.1.3, we have a freedom in choosing
a gauge in which to define our theory, with the result of such calculations of any
observable quantity necessarily being independent of any particular gauge choice.
As we shall see, however, this gauge freedom also amounts to a redundancy in our
description of physics. As a result, we must be careful to ensure that we do not
include multiple configurations of the same physical system (related by a gauge
transformation) in any prediction relating to an observable quantity.

In Section 1.5.1 we demonstrate the necessity of gauge fixing, and how this may be
implemented, while in Section 1.5.2 we demonstrate how the introduction of so-called
ghost fields allow us to simplify calculations when using a gauge-fixed Lagrangian.
While we keep the discussions in Sections 1.5.1 and 1.5.2 brief, a fully detailed version
of the topics explored here in the context of the dimension-6 SMEFT can be found
in Section 3.6, where the SM derivations are recovered in the limit ΛNP →∞.

1.5.1 Gauge Fixing

As an example, consider the generating functional, Z, for a free gauge theory

Z =
∫
DA exp

[
i
∫
d4x

(
−1

4F
a
µνF

µν,a
)]

, (1.5.1)
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with the gauge field invariant under the gauge transformations of Eq. 1.1.8. We
see from Eq. 1.1.8 that there are an infinite number of physically equivalent gauge
choices that exist for any particular gauge field. In performing the path integral
of this generating functional we are also integrating over this infinite number of
equivalent configurations. It should be of no surprise that as a consequence, due
to the integration over these infinite physically equivalent states, the generating
functional of Eq. 1.5.1 diverges. The solution to this problem is therefore that we
must implement a method to ensure that we are performing the integral having
made a particular choice of gauge. A method for implementing this was proposed
by Faddeev and Popov [47]. The gauge can be fixed by introducing a gauge-fixing
functional, G, and imposing that G = 0, similarly to the methods of a Lagrange
multiplier. This ultimately results in the gauge-fixed functional for a Lagrangian
with a gauge field taking the form

Z = C
∫
D{K} exp

[
i
∫
d4x

(
L({K})− 1

2(G)2
)]

det
(
δG

δα

)
, (1.5.2)

where α is the continuous parameter defining the gauge transformation of the set of
fields {K} in the theory defined by the Lagrangian L.

While an infinite set of gauge choices exists, we can take advantage of this freedom
to make a choice that produces a desirable effect on the interactions or particles
contained within a theory. Such choices are often made to make calculations easier,
or to highlight a particular aspect of the theory. A common choice is the set of Rξ

gauges in the SM, which comprises an infinite set of gauge choices parameterized by
the continuous parameter ξ and which is designed to remove the non-physical gauge-
and Goldstone-boson mixing terms which appear in a non-gauge-fixed Lagrangian.
These mixing terms take the form

LSM ⊃ (∂χi)Aaµ(gT )aijφ0j , (1.5.3)

where φ0 is given below Eq. 1.1.19, Aaµ is from Eq. 1.1.18, χi are the Goldstone
bosons parameterized in terms of the fields in Eq. 1.1.14 such that

χ1 = 1√
2

(φ+ + φ−) , χ2 = i√
2

(φ+ − φ−) , χ3 = φ0 , χ4 = h , (1.5.4)

and where T are the real antisymmetric representation matrices of the SU(2)×U(1)
gauge group, defined in terms of the matrices introduced in Section 1.1.2 as T a =
−iτa = −i1

2σ
a, where we now also introduce σ4 = 12×2 and where similarly to (gτ)a,

(gT )a is defined as

(gT )a = (g2T
1, g2T

2, g2T
3, g1T

4) . (1.5.5)
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The set of Rξ gauges are then defined by the gauge-fixing functional

Ga = 1√
ξ

(
∂µAaµ − ξ(gF )aiχi

)
, (1.5.6)

where we have additionally defined the commonly occurring quantity (gF )ai as

(gF )ai ≡ (gT )aijφ0j = v

2


g2 0 0 0
0 g2 0 0
0 0 g2 0
0 0 −g1 0

 . (1.5.7)

We can see that the (G)2 term in Eq. 1.5.2 exactly cancels the gauge- and Goldstone-
boson mixing term of Eq. 1.5.3 with the choice of ξ = 1, known as Feynman gauge.
Another consequence of the gauge choice defined by Eq. 1.5.6 is that the (G)2 term
in Eq. 1.5.2 also introduces a mass matrix for the Goldstone bosons, supplying mass
to these previously massless bosons. This mass matrix takes the form

(M2
G)ij = ξ(gF )ai(gF )aj , (1.5.8)

which we see gives the Goldstone bosons a linear dependence of the Rξ gauge
parameter, ξ, but for the choice ξ = 1 gives a mass matrix with eigenvalues identical
to that found for the gauge bosons in Eq. 1.1.20, and so gives an equivalence of
gauge- and Goldstone-boson masses.

While several common choices for the parameter ξ exist, we make use of the choices
ξ = 1, known a Feynman gauge, and ξ → ∞, known as unitary gauge, which
was introduced in Section 1.1.2. We note here that the G2 term in Eq. 1.5.2 also
introduces new kinetic terms for the gauge fields. This does not affect the canonical
normalization of these fields, but the propagators for these fields now become a
function of the parameter ξ. It is also clear that for the mass matrix in Eq. 1.5.8 in
the limit of ξ →∞ (unitary gauge), the Goldstone bosons become infinitely massive
and so decouple from the theory. We also note that we are free to not choose a
particular value of ξ and instead keep it as a free parameter in any calculation, with
the result being that the calculation of any physically observable quantity should be
independent of ξ.

1.5.2 The Ghost Lagrangian

One potential complication of the gauge-fixing procedure outlined in Section 1.5.1
is the calculation of the determinant of Eq. 1.5.2. We are able to simplify the
calculation of this determinant through the introduction of ghost fields. Using the
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identity

det(A) =
∫
DcDc̄ exp(−c̄Ac) , (1.5.9)

where c and c̄ are Grassmann variables, defined by the properties

cc̄ = −c̄c ,∫
dc(A+Bc) = B . (1.5.10)

We may then use the gauge transformations of the gauge and scalar fields to find
the form of the determinant in terms of an integral over Grassmann variables

det
(
δGa

δαb

)
=
∫
DcDc̄ exp

{
ic̄a

[
−(∂µDµ)ab − ξ(gF )ai

(
(gF )ai + (gT )aijχj

)]
cb
}
,

(1.5.11)

where we have also introduced a factor of i multiplying the argument of the exponen-
tial. This introduction of i is valid, having used the property det(cA) = cn det(A)
for an n× n matrix, A, and that δG/δα is a 4-dimensional matrix.

We see that with the interpretation of the fields c and c̄ as scalars under Lorentz
transformations, the argument of the exponential in Eq. 1.5.11 takes the form of a
Lagrangian for fermionic scalar fields, so-called ghost fields

Lghost = c̄a
[
−(∂µDµ)ab − ξ(gF )ai

(
(gF )ai + (gT )aijχj

)]
cb . (1.5.12)

We see from Eq. 1.5.12 that these fictitious ghost fields have a mass matrix of the
form

(m2
ghost)ab = ξ(gF )ai(gF )bi , (1.5.13)

which is identical to the form of the mass matrix found for gauge bosons in Eq. 1.1.20
with an additional linear factor of ξ. Clearly the choice of ξ = 1 gives the ghost fields
identical masses to those found for the gauge bosons, while again the gauge choice
ξ →∞ makes these fields infinitely massive and thus decouple from the theory. As
previously mentioned, an advantage of introducing this ghost Lagrangian is that it
allows us to account for the determinant in the gauge-fixed generating functional in
Eq. 1.5.2. Therefore, we can completely implement gauge fixing by simply including
terms generated by (G)2 in Eq. 1.5.2 and by including ghost and their interactions
on any internal lines as specified by Eq. 1.5.12.





Chapter 2

Effective Field Theories

In this chapter we introduce the notion of an effective field theory (EFT). This topic
is first introduced in a general way in Section 2.1 by means of two examples, and
then some general properties of EFTs are explored. In Section 2.2.1 we introduce the
Standard Model Effective Field Theory (SMEFT), while in Section 2.3 we show how
to transform this theory into the mass basis, as will be necessary for the calculations
performed in Part II.

2.1 Effective Field Theories

An EFT is some approximate description of a high-energy theory valid only below
a cut-off, where new heavy particles have been integrated out. The high-energy
physics is then captured by parameters known as Wilson coefficients (WC) which
describe some effective coupling. The problems present in the SM have broadly lead
to the belief that it is an EFT, that is, it is valid only up to some cut-off in energy
scale. Above this cut-off some new, currently unknown theory of particles and their
interactions would be the appropriate description of nature. We discuss this latter
point further in Part II.

2.1.1 Introduction to Effective Field Theories

To demonstrate the basic principles and properties of EFTs, we begin by borrowing
a simple example from [48]. We define a field theory in d = 0 dimensions which
couples two real fields, φ and χ, with masses m and M respectively with the action

S = m2

2 φ2 + M2

2 χ2 + λ

4φ
2χ2 , (2.1.1)
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which has no integration over spacetime due to the theory being defined in d = 0
dimensions. The generating functional of this theory is

Z =
∞∫
−∞

dφdχ exp {−S} . (2.1.2)

We see that we may easily compute the integral over one of the fields, with the
integral taking the form of a Gaussian integral. Choosing to integrate out χ1 we
find that the generating functional now takes the form

Z =
∞∫
−∞

dφ exp
{

ln
[
e−

m
2

2 φ
2
√

2π
M2 + λφ2/2

]}
≡

∞∫
−∞

dφ exp {−SEff.} , (2.1.3)

where we have now defined the effective action, SEff.. Working now in the limit
M � m we can expand this effective action as

SEff. = m2φ2

2 + λφ2

4M2 −
λ2φ4

16M4 + λ3φ6

48M6 + . . . . (2.1.4)

From Eq. 2.1.4 we can see the consequences of integrating over the heavy field,
χ, (a process known as integrating out the heavy field): the mass of φ has been
shifted by a finite amount and we have generated an action which now only results
in self interactions of the lighter field, φ. In fact, there is an infinite series of φ
self-interaction terms, each generating couplings between an increasing number of
φ fields, which are suppressed by increasing powers of the heavy mass, M . This is
a typical result of integrating out a heavy field in a theory to produce an EFT, a
tower of effective operators emerge, with increasingly smaller couplings. Often, one
reframes an effective action in terms of Wilson coefficients as

SEff. = m2
Eff.φ

2

2 + C1φ
4 + C2φ

6 + . . . ,

mEff. = m2 + λ

2M2 , C1 = − λ2

16M4 , C2 = λ3

48M6 , (2.1.5)

where we have written the mass term in terms of an effective mass, and where Ci
are the Wilson coefficients. Practically, for using an effective action to calculate
observables we must take only a finite number of the effective operators, i.e. we
must truncate the tower of effective operators at some power in the heavy scale.

An example that is more pertinent to the study of the fields of the SM in an
EFT context is that of the 4-Fermi theory of weak decays [49]. Here we consider
interactions occurring at scales far below the mass of the weak gauge bosons and

1A consequence of integrating over χ is that we are now restricted to calculating amplitudes
with only φ as the external field.
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µ

νµ

ν̄e

e
W−

µ

νµ

ν̄e

e

(1) (2)

Figure 2.1: LO diagrams of µ → eνµν̄e from the Lagrangians in
Eq. 2.1.6. Here, (1) is the LO diagram for this process
from the Lagrangian on the top line of Eq. 2.1.6, while (2)
is the LO diagram for this process from the Lagrangian
on the last line of Eq. 2.1.6. We see that the internal W
propagator in (1) is contracted to a point in (2) to form
and effective vertex, here represented by a dot.

can therefore integrate out the weak gauge bosons. The example of integrating out
the heavy fields in this instance is distinctly more complex than the d = 0 real
scalar field example at the beginning of Section 2.1.1, although the process is well
understood [50]. In this instance, after integrating out the heavy W - and Z-bosons
(and truncating the resulting tower of operators to include only the LO term) we can
replace the gauge boson-fermion interaction part of the weak Lagrangian (which we
denote LW) with an effective Lagrangian in which there are no weak gauge bosons

LW = − g2

2
√

2
(
JµWµ + J†µW †

µ

)
− g2

2cw
JµnZµ

→ −GF√
2
(
JµJ†µ + JµnJnµ

)
, (2.1.6)

where (considering only lepton interactions for simplicity)

Jµ = 2ν̄eγµPLe ,
Jµn = ν̄eγ

µνe − ē(PL − 2sw)e , (2.1.7)

and where GF is known as the Fermi constant and at LO is given by

GF√
2

= g2
2

8M2
W

. (2.1.8)

We see now that the effective Lagrangian in Eq. 2.1.6 is built up of terms of the
form ∼ GF (ψ̄ψ)(ψ̄ψ) for fermionic fields, ψ, and that the weak gauge bosons are
no longer present in the theory. These so-called four-fermion interactions do not
exist in the SM and constitute effective interactions, with the corresponding Wilson
coefficients being some function of GF . The LO diagrams for muon decay from both
Lagrangians in Eq. 2.1.6 are given in Fig. 2.1 as an example of the difference between
the "full" and effective Lagrangian at the same order in perturbation theory. The
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corresponding amplitudes are (in Feynman gauge)

iMFull = i

(
g2√

2

)2 (
ūeγµPLvνe

)( gµν

k2 −M2
W

)(
ūνµγνPLuµ

)
,

iM4-Fermi = −i4GF√
2
(
ūeγµPLvνe

) (
ūνµγ

µPLuµ
)
. (2.1.9)

Considering the W propagator in the top line of Eq. 2.1.9 to be occurring at low
momentum transfer compared to the mass of the W -boson we find we can expand
the propagator as

1
k2 −M2

W

= − 1
M2

W

(
1 + k2

M2
W

+ k4

M4
W

+ . . .

)
. (2.1.10)

Using the LO expansion of the W propagator in MFull we recover M4-Fermi. This
process of expansion in the small parameter and matching is equivalent to the
process of integrating out the heavy W fields and also demonstrates that the range
of applicability of 4-Fermi theory is at scales k2 �M2

W . We could, of course, choose
to keep terms beyond LO from the expansion in Eq. 2.1.10; choosing to keep n

terms in this expansion we find that 4-Fermi theory is accurate to the full theory
to an accuracy of (k2/M2

W )n. This ratio of k2/M2
W constitutes a power counting

parameter – that is a parameter that allows us to keep track of the accuracy of our
EFT calculation in relation to the full theory.

Further, we find that these effective operators are of mass dimension 6, a feature not
found in the SM where all terms are generated by operators of mass dimension 4
and lower. Examining Eq. 2.1.8, we also recover another feature of EFTs previously
discussed, that being that the Wilson coefficients are suppressed by the scale of the
heavy physics, in this case the W boson mass, MW . This also ensures that the
combination of the operator and the Wilson coefficient are of mass dimension 4 – a
requirement such that the action is dimensionless in 4-dimensional spacetime.

Presented in this way, the two examples here constitute top-down EFTs. In the case
of a top-down EFT the full theory is known at all scales and the effective theory is
derived from this by integrating out the heavy degrees of freedom. This generates
an effective Lagrangian which is valid up to scales below that of the heavy scale of
the full theory, and relations between the effective couplings and the couplings of the
full theory. Conversely, one may also consider the case of a bottom-up EFT, where
the full theory is not known, and the physics resulting from the unknown high-scale
theory is described by effective operators with Wilson coefficients of unknown values,
which must be measured experimentally. In fact, 4-Fermi theory was first proposed
as a bottom-up EFT, with the value of GF first being measured experimentally
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before the emergence of electroweak theory, which allowed the parameterization of
GF in terms of more fundamental parameters.

2.1.2 Operator Running and Mixing

A feature of an EFT with multiple operators is that we observe the mixing of these
operators between scales. This mixing can be understood from the perspective of
the operators themselves, or from the corresponding Wilson coefficients; we choose
the Wilson coefficient perspective. In this way, a Wilson coefficient at one scale
potentially mixes into multiple coefficients at a different scale. This behavior is
summarized as

Ċi ≡
dCi

d ln(µ) = 16π2γijCj , (2.1.11)

where γij is the anomalous dimension matrix.

In the renormalization of EFTs at NLO we observe that we must also renormalize
the Wilson coefficients themselves. In the MS scheme (as is appropriate for bottom-
up EFTs) we can therefore define our renormalization constants for the Wilson
coefficients according to

C
(0)
i = µ2ε[Zc(µ)]ijCj(µ) = µ2ε

(
δij + [δZc(µ)]ij

)
Cj(µ) = µ2ε (Ci(µ) + δCi(µ)) ,

(2.1.12)

where the renormalization constant matrix, Zc, (and its corresponding expansion)
accounts for the potential Wilson coefficient mixing. Similarly, δCi may be a function
of multiple Wilson coefficients. Using that the bare Wilson coefficient has no µ

dependence we may write (suppressing the µ-dependent arguments)

dC
(0)
i

d ln(µ) = 0 = d(µ2ε[Zc]ij)
d ln(µ) Cj + µ2ε[Zc]ijĊj , (2.1.13)

from which we may recover that

γij = 1
16π2µ

−2ε[Z−1
c ]ik

d(µ2ε[Zc]kj)
d ln(µ) . (2.1.14)

In the MS scheme, each term in the counterterms are accompanied by a UV pole,
allowing us to write

µ2ε[δZc]ij = Aij
ε

+ 2Aij ln(µ) +O(ε) , (2.1.15)

where Aij is some unspecified constant. From Eq. 2.1.15 it is clear that we may
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extract the form of the Aij piece as

Aij = 1
2
d(µ2ε[Zc]ij)
d ln(µ)

= 1
2[Z−1

c ]ik
d(µ2ε[Zc]kj)
d ln(µ) + NNLO terms

= 1
2µ

2εγij

= 1
2γij +O(ε) . (2.1.16)

We can therefore entirely reconstruct the pole structure of the Wilson coefficient
counterterm, δCi, from the Wilson coefficient anomalous dimension

δCi = 1
2εγijCj = 1

16π2
1
2εĊi . (2.1.17)

2.1.3 Minimal Flavor Violation

The SM Lagrangian explored throughout Chapter 1 has the fermion content of two
SU(2) doublets and three SU(2) singlets which (almost) exhibits a large global
symmetry under the group Gf = U(3)5, i.e. under the transformations

q → Uqq , u→ Uuu , d→ Udd ,

l→ Ull , e→ Uee . (2.1.18)

We state that the SM almost exhibits a symmetry under these transformations as the
Yukawa interactions in Eq. 1.1.34 break this symmetry. Applying the transformation
in Eq. 2.1.3, the Yukawa interactions of Eq. 1.1.34 become

Lyuk. → −U †l
mi
Y ij
e Ue

jnl̄mHen − U †q
mi
Y ij
d Ud

jnq̄mHdn

− U †q
mi
Y ij
u Uu

jnq̄mH̃un + h.c. , (2.1.19)

demonstrating the breaking of the symmetry under Gf . From Eq. 2.1.19 we see that
we can restore the Yukawa Lagrangian’s invariance under the symmetry group Gf
by treating the Yukawa matrices as spurions – constant fields that transform under
the group Gf as

Ye → UlYeU
†
e , Yd → UqYdU

†
d , Yu → UqYuU

†
u , (2.1.20)

such that the Lagrangian in 2.1.19 takes the same form as that seen in Eq. 1.1.34.
In the context of EFTs, the Minimal Flavor Violation (MFV) hypothesis is that the
source of symmetry breaking of the group Gf in any additional higher-dimensional
operators proceeds in the same way as for the Yukawa interaction, i.e. when treating
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the Yukawa matrices as spurions any additional higher-dimensional operators must
be invariant under the symmetry group Gf [51–53]. Of course, we are by no means
compelled to enforce MFV in effective operators, however, in EFTs with a large
number of operators, such as in the dimension-6 SMEFT, enforcing MFV can reduce
the total number of operators contributing to an observable, and as we shall see, can
also provide scenarios in which to test the MFV hypothesis.

In principle, one may enforce MFV when constructing operators of a bottom-up
EFT, incorporating the Yukawa matrices into the operators themselves. In some
scenarios however, such as that which we will explore in Section 2.2.2, where the
form of the operators are already defined, MFV can instead be imposed by placing
restrictions on the form of the corresponding Wilson coefficients.

2.2 The Standard Model Effective Field Theory

Following from our discussion of bottom-up EFTs in Section 2.1.1, we now turn to a
particular example of such an EFT, the SMEFT. In Section 2.2.1 we give a general
introduction to the SMEFT, and in Section 2.1.3 we discuss MFV, which was first
introduced in Section 2.1.3, but here discussed in the context of the SMEFT.

2.2.1 Introduction to the SMEFT

The SMEFT is a bottom-up EFT where higher dimensional operators are construc-
ted with few assumptions made about the physics above the cut-off, except that
any new particles have a mass of approximately the scale of the cut-off, ΛNP, or
above, and obey fundamental principles such as Poincaré invariance. Specifically, the
SMEFT consists of adding to the SM Lagrangian all possible operators that can be
built from SM fields obeying Poincaré and SM gauge symmetries. This guarantees
that the corresponding physics that the SMEFT aims to describe also respects these
symmetries or a larger symmetry group which is broken to the symmetry group
of the SM. The SMEFT also assumes that the Higgs and Goldstone bosons are
arranged into an SU(2) doublet, such as that introduced in Eq. 1.1.14. As a result,
the SMEFT describes all beyond Standard Model (BSM) physics compatible with
the aforementioned assumptions without any bias towards a particular UV comple-
tion of such physics. Drawing on the examples described throughout Section 2.1.1,
all Wilson coefficients must be suppressed by the correct power of the new physics
(NP) scale such that the combination of the operator and Wilson coefficient remains
dimensionless. Specifically, an operator of dimension n must have a correspond-
ing Wilson coefficient of dimensions 4 − n. We may therefore write our SMEFT
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Lagrangian as

LSMEFT = LSM +
∑
k=1
L(k+4) , (2.2.1)

where L(n) represents the Lagrangian comprising all operators of mass dimension
n > 4. We further split each L(n) into a sum of Wilson coefficients and operators as

L(n) =
∑
i

C
(n)
i Q

(n)
i =

∑
i

C̃
(n)
i

Λn−4
NP

Q
(n)
i , (2.2.2)

where on the right of Eq. 2.2.2 we have explicitly separated out the factor of ΛNP from
the Wilson coefficient such that the Wilson coefficient with the tilde is dimensionless.

With each L(n) of increasing n containing Wilson coefficients with increasing inverse
powers of ΛNP suppressing the effects of the corresponding operators, it is natural to
first consider the leading (and therefore potentially dominant) term in this expansion
in ΛNP, these being the operators within L(5). At this mass dimension for one fermion
generation there is only one operator, often referred to as the Weinberg operator [54]

Qνν
rs

= εijεmnH
iHmljr

T
lns
C . (2.2.3)

This lepton-number-violating operator can generate neutrino masses, however, pla-
cing experimental constraints from measured neutrino masses on ΛNP with Cνν ∼ 1
gives that ΛNP > 1013 TeV. Conversely, with ΛNP ∼ 1 TeV gives Cνν 6 10−13. From
an experimental standpoint, in the first scenario such an energy range is far beyond
the projected energy scales of any current or future collider, while in the latter
scenario the projected size of the Wilson coefficient is far beyond the precision of
any current or future collider.

Naturally, we next consider the dimension-6 SMEFT Lagrangian, L(6). Here, the
Wilson coefficients are suppressed by two inverse powers of the new physics scale ΛNP.
We could in principle write down a vast set of operators satisfying the assumptions
imposed by the SMEFT, however, it is found that many of these operators may be
related by the equations of motion (EoM) of the corresponding fields. The result is
that two apparently distinct operators are, in fact, equivalent. To illustrate this, we
consider the simple example of a real scalar field, h, with a 4-point self-interaction
augmented with the addition of two dimension-6 operators suppressed by the NP
scale. The Lagrangian for this theory is given by

L = 1
2(∂µh)(∂µh)− 1

2m
2h2 + λ

4h
4 +Q1 +Q2 , (2.2.4)
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where

Q1 = C̃1

Λ2
NP
h3∂2h ,

Q2 = C̃2

Λ2
NP
h6 . (2.2.5)

The corresponding EoM for h is thus given by

∂2h = −m2h+ λh3 +O(Λ−2
NP) , (2.2.6)

where terms in the EoM resulting from dimension-6 operators are contained within
O(Λ−2

NP). Using the EoM in Eq. 2.2.6 in the operator Q1 we find

Q1 = λ
C̃1

C̃2
Q2 −

C̃2

Λ2
NP
m2h4 +O(Λ−4

NP) . (2.2.7)

From the above equation we see that the operators Q1 and Q2 are related by the
EoM and are therefore not independent. Using this form of Q1 in the Lagrangian in
Eq. 2.2.4 we find that it now takes the form

L = 1
2(∂µh)(∂µh)− 1

2m
2h2 + λ′

4 h
4 + ηQ2 , (2.2.8)

where

λ′ = λ− 4m2 C̃2

Λ2
NP

,

η = 1 + λ
C̃1

C̃2
. (2.2.9)

Comparing the Lagrangians in Eq. 2.2.4 and Eq. 2.2.8 we see that they are equivalent
up to the removal of Q1 and a rescaling of the Wilson coefficient of Q2 and coupling
constant λ. As a result we see that the operator Q1 was entirely redundant to the
theory, such that including it in Eq. 2.2.4 constituted using an over-complete basis.
This example demonstrates the importance of a minimal basis of effective operators.
We also see that while keeping a consistent power counting in ΛNP, from Eq. 2.2.7 we
only need the EoM from the dimension-4 components of the Lagrangian in Eq. 2.2.4.
This is because using dimension-6 components of the EoM to transform a dimension-
6 operator leads to dimension-8 effects, which we drop. This effect clearly carries over
to the SMEFT, where we only require the SM EoMs to relate operators appearing
at dimension-6. Similar redundancies to those seen in the example above can in
general also be derived by performing integration by parts on operators involving
derivatives.

The first attempt to characterize a minimal basis for the dimension-6 SMEFT was
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performed by Buchmüller and Wyler in [55], who compiled a basis of 80 operators.
Over the next several years it was found that their proposed basis was overcomplete
and operators could be entirely removed using techniques similar to those outlined
in the previous example. The earliest successful characterization of the dimension-6
SMEFT operators in a minimal basis was first described in [56]. The basis proposed
here, now commonly referred to as the Warsaw basis is the basis of choice for the
calculations performed throughout this work, and the corresponding operators are
listed in Table A.1 in Appendix A. In total, this basis comprises of 59 independent
lepton- and baryon-number conserving operators (and an additional four lepton- and
baryon-number violating operators, which we do not consider) for a single fermion
generation. This number increases to 2499 independent operators when allowing
for full fermion flavor structure. This basis splits operators into groups according
to the field content of the operators, for example, class 1 contains operators built
entirely from field strength tensors (and dual tensors), class 2 contains operators
build solely from Higgs doublets, class 3 contains operators built from Higgs doublets
and covariant derivatives, etc. When compiling a basis of such operators, there is
a large degree of freedom when choosing a minimal basis, and the Warsaw basis
outlined here is by no means the only choice. Additional other basis choices also
exist, for example, the SILH basis [57] and the Higgs basis [58].

Beyond dimension-6 there is the set of lepton- and baryon-number violating dimension-
7 operators [59, 60], followed by the large set of dimension-8 operators1 [61, 62] and
beyond. Due to the increasing suppression of such operators by increasing powers of
ΛNP, we neglect the effects of operators beyond dimension-6 throughout this work.

2.2.2 Minimal Flavor Violation in the SMEFT

As stated, in an MFV scenario higher-dimensional operators must be invariant under
the symmetry group Gf when Yukawa matrices are treated as spurions. In principle,
this can be implemented by simply including the appropriate Yukawa matrices into
the form of a higher-dimensional operator. For the SMEFT, in particular in the
Warsaw basis where the form of the operators are already defined, we must be
more careful. The consequences of enforcing MFV in the context of the dimension-
6 SMEFT have been explored in [63]. Here, the SMEFT operators in Table A.1
have MFV imposed via restrictions placed on the form of the corresponding Wilson
coefficients. In particular, it is recognized that the Wilson coefficients of fermion
flavor independent operators of classes 1-4 can only be a function of the flavor

1Allowing for full flavor structure in a minimal basis, in total there are 36971 dimension-8
operators.
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invariants

Tr
[
f(YeY †e )

]
, Tr

[
f(YdY †d , YuY †u )

]
, (2.2.10)

where the function, f , may be different for each operator. Imposing MFV, the class-5
operators have Wilson coefficients which take the form

CeH
rs

=
[
YeGeH(YeY †e )

]
rs
,

CuH
rs

=
[
YuGuH(YdY †d , YuY †u )

]
rs
,

CdH
rs

=
[
YdGdH(YdY †d , YuY †u )

]
rs
, (2.2.11)

where the Gi are functions unique to each Wilson coefficient. Similarly, we see that
the class-6 operators have the same fermionic structure as the class-5 operators
(with the addition of σµν placed between the fermionic components) and so the
structures of the class-6 Wilson coefficients in MFV follow analogously to those seen
in Eq. 2.2.11. For class-7 operators, under MFV the Wilson coefficients must take
the following form

C
(1,3)
Hl
rs

=
[
G

(1,3)
Hl (YeY †e )

]
rs
,

CHe
rs

= HHeδrs +
[
Y †e GHe(YeY †e )Ye

]
rs
,

C
(1,3)
Hq
rs

=
[
G

(1,3)
Hq (YdY †d , YuY †u )

]
rs
,

CHu
rs

= HHuδrs +
[
Y †uGHu(YdY †d , YuY †u )Yu

]
rs
,

CHd
rs

= HHdδrs +
[
Y †dGHd(YdY †d , YuY †u )Yd

]
rs
,

CHud
rs

=
[
Y †uGHud(YdY †d , YuY †u )Yd

]
rs
, (2.2.12)

where the Hi are constants. Class 8 contains the entire set of four-fermion operators
within the SMEFT, where the fermionic structure of these operators can be built
entirely from the fermionic structure of the operators in the flavor-dependent lower
classes: classes 5, 6, and 7. For example, the class-8 operator Q(1)

quqd is built from the
fermion structure contained within the class-5 operators QuH and QdH . As a result,
the structure of the class-8 operator’s Wilson coefficients can also be built from a
combination of the structures contained throughout Eqs. 2.2.11 and 2.2.12.

2.3 The SMEFT in the Mass Basis

For the purposes of performing calculations within the SMEFT at energy scales
accessible to colliders in a way that allows us to make a connection between our
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Lagrangian and any observables, we must consider the SMEFT in the mass basis
after EWSB. Here we review the ways in which the additional dimension-6 operators
alter many of the tree-level relations of the SM, how we address these changes, and
how the dimension-6 SMEFT Lagrangian can be rewritten to more closely resemble
that of the SM. Of course, the latter of these changes is not strictly necessary, but
as we will see, this parity with the SM will be useful for calculational purposes. In
this section we closely follow the discussion of [63].

2.3.1 The Higgs Doublet, Vacuum Expectation Value, and
Mass

The class-2 operator QH is a function of only the gauge-invariant object H†H and
therefore shifts the position of the LO vev found in the SM. Including dimension-6
effects with the SM Higgs potential in Eq. 1.1.10, the Higgs potential now takes the
form

V (H) = λ

(
H†H − v2

0

2

)2

+ CH(H†H)3 , (2.3.1)

where we have rewritten the SM part of this potential in comparison with Eq. 1.1.10
to emphasize the position of the SM vev. Calculating the position of the Higgs vev
given the potential in Eq. 2.3.1 one finds that the LO vev is shifted by dimension-6
corrections from the SM value, v0, according to

〈H†0H0〉 ≡
1
2v

2
T = v2

0

2

(
1 + 3v0CH

4λ

)
. (2.3.2)

It is now the quantity vT which represents the LO vev of the Higgs doublet. The
quantity v0 is now simply some combination of SM parameters and no longer rep-
resents the position of the Higgs vev at LO.

As previously stated, class 3 introduces operators that involve combinations of
the gauge-invariant quantity H†H and derivative terms. As a result, these terms
contribute to the kinetic terms of fields found in the Higgs doublet, these being the
Higgs field for unitary gauge, and additionally for the neutral and charged Goldstone
bosons the Rξ gauges. Working in Rξ gauge, the kinetic terms for the fields in the
Higgs doublet in the dimension-6 SMEFT thus have the form

LD6 SMEFT
H,kin. = 1

2(∂µh)(∂µh) + 1
2(∂µφ0)(∂µφ0) + (∂µφ−)(∂µφ+)

− v2
TCH�(∂µh)(∂µh) + v2

T

4 CHD(∂µh)(∂µh) + v2
T

4 CHD(∂µφ0)(∂µφ0) .

(2.3.3)



2.3. The SMEFT in the Mass Basis 63

Firstly, we note that in Eq. 2.3.3 the charged Goldstone bosons, φ±, retain their
canonical normalization, and so no further changes need to be made. For the Higgs
field, h, and the neutral Goldstone boson, φ0, to retain canonical normalization, and
therefore retain the form of their propagators found in the SM, we must make the
following field redefinitions

h→
(

1 + v2
TCH� −

v2
T

4 CHD
)
h ,

φ0 →
(

1− v2
T

4 CHD
)
φ0 . (2.3.4)

As a result, the Higgs doublet is written in Rξ gauge as

H(x) = 1√
2

 −
√

2iφ+(x)[
1 + CH,kin

]
h(x) + i

[
1− v

2
T

4 CHD

]
φ0(x) + vT

 , (2.3.5)

where we have defined
CH,kin ≡

(
CH� −

1
4CHD

)
v2
T . (2.3.6)

As in the SM, the unitary gauge form of the Higgs doublet can be recovered from
Eq. 2.3.5 by performing a gauge transformation that removes the charged and neutral
Goldstone bosons, equivalent to setting these fields to zero in Eq. 2.3.5. We also note
here that as the fields in the Higgs doublet have been scaled by constant quantities
as specified by Eq. 2.3.4, these rescalings have no effect on the position of the vev of
the Higgs potential. As a result, the form of the vev in Eq. 2.3.2 is still valid.

Finally, using the form of the Higgs doublet in Eq. 2.3.5 in the dimension-6 SMEFT
Lagrangian, and considering terms proportional to h2 we may find that the Higgs
mass now takes the form

m2
H = 2λv2

T

(
1− 3v2

T

2λ CH + 2CH,kin

)
, (2.3.7)

and so receives shifts due to dimension-6 SMEFT Wilson coefficients as compared
to the SM result in Eq. 1.1.15.

2.3.2 Gauge Fields

In Section 1.1.2 we reviewed the process of defining the mass basis of the gauge bosons
in the SM. In the dimension-6 SMEFT, operators introduce additionalO(Λ−2

NP) effects
to this definition. Taking the notation for the SU(2) × U(1) covariant derivative
defined in Eq. 1.1.17 we extend this to include the full symmetry group of the SM,
i.e. we also include pieces related to the SU(3) gauge group so that the covariant
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derivative of the full SM now reads

Dµ = ∂µ − i(gτ)aAaµ − ig3T
AGA

µ , (2.3.8)

where again Aaµ = (W 1
µ ,W

2
µ ,W

3
µ , Bµ), and the generators are denoted (gτ)a =

(g2τ
1, g2τ

2, g2τ
3, g1Y ), where τ I = σI/2 with σI the Pauli matrices, TA the Gell-

Mann matrices, and Y the hypercharge. Examining the form of the class-4 operators
QHW , QHB, QHWB and QHG we find that they generate additional kinetic terms for
the gauge fields Bµ, W I

µ and GA
µ respectively. Considering such kinetic terms arising

from both the SM and the dimension-6 SMEFT we have

LGauge,kin. = −1
4BµνB

µν − 1
4W

I
µνW

I,µν − 1
4G

A
µνG

A,µν

+ v2
T

2 CHBBµνB
µν + v2

T

2 CHWW
I
µνW

I,µν + v2
T

2 CHGG
A
µνG

A,µν

− v2
T

2 CHWBW
3
µνB

µν , (2.3.9)

where clearly the canonical normalization of these terms present in the SM is no
longer apparent. We can begin to restore the canonical normalization by making
linear shifts in the gauge fields, which we choose to be

Bµ =
(
1 + v2

TCHB
)
Bµ ,

W I
µ =

(
1 + v2

TCHW
)
WI

µ ,

GA
µ =

(
1 + v2

TCHG
)
GAµ , (2.3.10)

which ensures the correct canonical normalization of the gluon fields. Clearly, these
shifts will also affect the form of the covariant derivative in Eq. 2.3.8. We note
however, that by defining new "barred" couplings as

ḡ1 = (1 + v2
TCHB)g1 ,

ḡ2 = (1 + v2
TCHW )g2 ,

ḡ3 = (1 + v2
TCHG)g3 , (2.3.11)

the combinations g1Bµ = ḡ1Bµ, g2W
I
µ = ḡ2WI

µ, and g3G
A
µ = ḡ3GAµ remain unchanged.

As stated, the shifts in the gauge fields defined in Eq. 2.3.10 are sufficient for
the canonical normalization of the gluon fields. This is apparent when we rewrite
Eq. 2.3.9 in terms of the "calligraphic" gauge fields

L = −1
4BµνB

µν − 1
2W

I
µνWI,µν − 1

4G
A
µνGA,µν −

v2
T

2 CHWBW3
µνBµν . (2.3.12)

In Eq. 2.3.12 we also see that there is a kinetic-type mixing term between Bµ andW3
µ.
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For canonical normalization of these fields, this mixing term must also be removed.
This term can be removed by a linear shift in these fields, which proceeds as

Aaµ = MabA′bµ , (2.3.13)

where A′aµ = (W ′1
µ ,W

′2
µ ,W

′3
µ , B

′
µ) and

M =
12×2 02×2

02×2 m

 , m =
 1 −1

2v
2
TCHWB

−1
2v

2
TCHWB 1

 , (2.3.14)

such that the new "primed" gauge fields have diagonal and canonically normalized
kinetic terms. Similarly to what we saw in Section 1.1.2, these gauge fields are not
the physically observed gauge fields after EWSB. Again, we must rotate the gauge
fields to the mass basis to recover the physically observed fields. In the dimension-6
SMEFT the mass terms of the primed gauge fields after making all of the above
shifts are given by

LGauge,mass = v2
T

8 ḡ2

[
(W ′1

µ )2 + (W ′2
µ )2

]
+
(
v2
T

8 + v4
T

16CHD
)(

ḡ2W
′3
µ − ḡ1B

′
µ

)2

+
(
ḡ2W

′3
µ − ḡ1B

′
µ

) (
v2
TCHWBW

′3,µ − v2
TCHWBB

′µ
)
. (2.3.15)

We can obtain the above expression in the mass basis with massiveW - and Z-bosons,
and a massless photon, where also the charged W± bosons have the correct electric
charges by the rotation

A′aµ = RabÃbµ , (2.3.16)

where Ãaµ comprises the physical gauge fields as Ãµ = (W+
µ ,W−µ ,Zµ,Aµ), and R is

given by

R =



1√
2

1√
2 0 0

i√
2 −

i√
2 0 0

0 0 cw sw

0 0 −sw cw

 , (2.3.17)

where

s̄w = ḡ1√
ḡ2

1 + ḡ2
2

[
1 + v2

T

2
ḡ2

ḡ1

ḡ2
2 − ḡ2

1

ḡ2
1 + ḡ2

2
CHWB

]
,

c̄w = ḡ2√
ḡ2

1 + ḡ2
2

[
1− v2

T

2
ḡ2

ḡ1

ḡ2
2 − ḡ2

1

ḡ2
1 + ḡ2

2
CHWB

]
. (2.3.18)

Additionally, we can now find that the gauge boson masses in the SMEFT are given
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by

M2
A = 0 ,

M2
W = ḡ2

2v
2
T

4 ,

M2
Z = v2

T

4 (ḡ2
1 + ḡ2

2) + v4
T

8 CHD(ḡ2
1 + ḡ2

2) + v4
T

4 ḡ1ḡ2CHWB . (2.3.19)

We find that in the limit of ΛNP → ∞ the form of the gauge boson masses in
Eq. 2.3.19 coincide with those in Eq. 1.1.25 after making use of the identities in
Eq. 1.1.30, as expected. With this notation, the relation between the weak-basis
fields Aaµ and the mass-basis fields Ãaµ is given by

Aaµ = MabRbcÃcµ . (2.3.20)

In total, the manipulations throughout this section allow us to write the covariant
derivative in the dimension-6 SMEFT as

Dµ = ∂µ − i
ḡw√

2
[
W+

µ τ
+ +W−µ τ−

]
− iḡZ

[
T 3
f − s̄2

wQf

]
Zµ − iēQfAµ − iḡ3T

AGAµ ,

(2.3.21)

where τ± = (τ 1 ± iτ 2)/
√

2, Qf = τ 3 + Y (the same definition as in the SM), and

ē = ḡ2s̄w −
1
2 c̄wḡ2v

2
TCHWB ,

ḡZ = ē

s̄wc̄w

[
1 + ḡ2

1 + ḡ2
2

2ḡ1 + ḡ2
v2
TCHWB

]
. (2.3.22)

2.3.3 Yukawa sector

Additional to the changes outlined throughout Sections 2.3.1 and 2.3.2 we find that
class-5 operators contribute to couplings between fermions and the fields in the Higgs
doublet. As a result, the form of the fermion mass matrices and Yukawa-interactions
terms are augmented by dimension-6 effects.

The relevant part of the SM+dimension-6 SMEFT Lagrangian is made up of the
terms found in Eq. 1.1.34 plus the class-5 operators in Table A.1

L ⊃− [Ye]rsl̄rHes − [Yu]rsq̄rH̃us − [Yd]rsq̄rHds

+ CeH
rs

(H†H)(l̄r,jesHj) + CuH
rs

(H†H)(q̄r,jusH̃j) + CdH
rs

(H†H)(q̄r,jdsHj) + h.c. .

(2.3.23)

Using the form of the Higgs doublet in Eq. 2.3.5 we first consider the fermion mass
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terms in Eq. 2.3.23, given as

Lfer. mass = − vT√
2
ērL

(
[Ye]rs −

v2
T

2 CeHrs

)
esR −

vT√
2
ūrL

(
[Yu]rs −

v2
T

2 CuHrs

)
usR

− vT√
2
d̄rL

(
[Yd]rs −

v2
T

2 CdHrs

)
dsR + h.c.

≡ − vT√
2
ērL[Me]rsesR −

vT√
2
ūrL[Mu]rsusR −

vT√
2
d̄rL[Md]rsdsR + h.c. , (2.3.24)

where we have defined the weak-basis fermion mass matrices, [Mf ], as

[Mf ]rs ≡ [Yf ]rs −
v2
T

2 CfHrs . (2.3.25)

From Eq. 2.3.23, we can also separate the Yukawa-interaction terms1

Lyuk. = − 1√
2
hērL

(
[Ye]rs

[
1 + CH,kin

]
− 3

2v
2
TCeH

rs

)
esR

− 1√
2
hūrL

(
[Yu]rs

[
1 + CH,kin

]
− 3

2v
2
TCuH

rs

)
usR

− 1√
2
hd̄rL

(
[Yd]rs

[
1 + CH,kin

]
− 3

2v
2
TCdH

rs

)
dsR + h.c.

≡ − 1√
2
ērL[Ye]rsesR −

1√
2
ūrL[Yu]rsusR −

1√
2
d̄rL[Yd]rsdsR + h.c. , (2.3.26)

where we have defined the effective Yukawa matrices

[Yf ]rs = [Yf ]rs
[
1 + CH,kin

]
− 3

2v
2
TCfH

rs
. (2.3.27)

Comparing the forms of Eq. 2.3.25 and Eq. 2.3.27 we see that, unlike as was seen
for the SM in Section 1.1.3, the fermion mass matrices and Yukawa couplings are no
longer proportional to each other, differing in the dimension-6 contribution. Upon
transforming to the mass basis, this non-linearity introduces a large set of flavor-
violating effects beyond those seen in the SM, such as hf1f2 couplings for f1 6= f2.

We may again use the unitary rotation matrices in Eq. 1.1.372 to rotate the weak-
basis fermion mass matrices, [Mf ], to the mass basis. We find that the fermion

1We define the Yukawa-interaction terms to be those involving the coupling between two
fermions (of any flavor) and one Higgs field.

2Note that, due to additional dimension-6 effects, the exact form of the unitary matrices in
Eq. 1.1.37 required to rotate the fermion fields to the mass basis would not be the same as in the SM
case. Instead, the rotation matrices Sf and Kf would be augmented with additional dimension-6
effects. As we do not report the exact form of Sf or Kf in Eq. 1.1.37 we do not change the notation
of the equivalent dimension-6 SMEFT matrices, with it understood that they differ from the forms
found in Eq. 1.1.37.
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masses are now defined according to

[me]rs ≡
vT√

2
[S†e ]ri[Me]ij[Ke]js = vT√

2

(
[Ne]rs −

v2
T

2 C
m
eH
rs

)
= diag(me, mµ, mτ ) ,

[mu]rs ≡
vT√

2
[S†u]ri[Mu]ij[Ku]js = vT√

2

(
[Nu]rs −

v2
T

2 C
m
uH
rs

)
= diag(mu, mc, mt) ,

[md]rs ≡
vT√

2
[S†d]ri[Md]ij[Kd]js = vT√

2

(
[Nd]rs −

v2
T

2 C
m
dH
rs

)
= diag(md, ms, mb) ,

(2.3.28)

where Nf = S†fMfKf , and where we have defined the mass-basis Wilson coefficients,
distinguished by the superscript, m, according to

Cm
fH ≡ S†fCfHKf . (2.3.29)

The topic of mass-basis Wilson coefficients is something we will return to in Sec-
tion 3.4.



Part II

Higgs Decay to Fermion Pairs at
NLO in the SMEFT





Chapter 3

Preliminaries

In this chapter we introduce the main focus of this thesis, that being the calculation
of the decay rate of h→ ff̄ for f ∈ {b, c, τ, µ} to NLO in the dimension-6 SMEFT.
We first motivate the need for such a result in Section 3.1 and then discuss a
number of general aspects of calculations in the dimension-6 SMEFT, these being
the choice of input scheme in Section 3.2, the digital implementation of the dimension-
6 SMEFT Lagrangian in Section 3.3, the chosen notation of the Wilson coefficients
in Section 3.4, imposing MFV in the small-mass limit in Section 3.5, and gauge fixing
in the dimension-6 SMEFT in Section 3.6. As the discussion of such topics are not
necessarily unique to the calculation of h→ ff̄ , these discussions are separated from
the discussion of the particulars of this calculation, which are given in Chapter 4.

3.1 Motivation

Over the past several decades, the SM has proven to be an incredibly powerful
theoretical tool for making predictions within particle physics. Some of its most
impressive contributions include the phenomenal precision of its prediction of the
anomalous magnetic dipole moment of the electron [64] and its remarkable accuracy
to the experimentally measured value [65], and the prediction of the top quark
[26] and its eventual discovery [66], amongst many others. Despite the numerous
successes, it is widely believed that the SM is incomplete due to its contention
with several observed phenomena. For example, besides the lack of incorporating
a quantum theory of gravity, the SM currently provides no explanation for the
nature of dark matter, about which very little is known, but is estimated to account
for approximately 24% of the energy density content of the universe, the existence
of which can be inferred, for instance, through the measured rotation velocities
of spiral galaxies. It also does not provide a mechanism for the experimentally
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measured non-zero neutrino masses, nor does it provide adequate sources of CP
violation necessary to create the observed matter-antimatter asymmetry, amongst
other observations. Over many years, specific models have been built, such as
supersymmetry, to try and explain some of these observations. Such models often
introduce additional particles and interactions into the SM, and as a consequence
usually generate experimentally verifiable predictions. Presently, none of these
models has been successful in producing a prediction that has been verified with the
necessary experimental precision to validate any of these models. This problem is
compounded by measurements at collider experiments being unable to expose many
significant deviations between experimental measurements and SM predictions.

In light of the lack of direct evidence supporting any particular BSM model, there
has been much recent interest in precision measurements in an attempt to expose
any potential discrepancies between experimental measurements and SM predictions.
As it is able to avoid any commitment to a particular UV complete BSM theory,
subject to the assumptions outlined in Section 2.2.1, the SMEFT, as introduced
in Section 2.2.1, has become a popular tool to parameterize any such discrepan-
cies. From the theory standpoint, calculations of observables in the dimension-6
SMEFT have received much recent interest [67–94]. In principle, this allows one to
constrain dimension-6 SMEFT Wilson coefficients by utilizing a set of experimental
measurements along with corresponding predictions in the dimension-6 SMEFT and
performing some variety of fit. Currently, there are many fits available, adopting
multiple methodologies, for some examples see [95–100], but such fits are not ex-
plored here. It is also possible to match the dimension-6 SMEFT to UV complete
theories such that the Wilson coefficients of the SMEFT are recast as fundamental
parameters of the UV complete theory. Such matching, along with constraints on
the SMEFT operators therefore presents a systematic way to simultaneous test a
spectrum of UV complete models.

In this work we focus on providing a set of predictions for observables within the
dimension-6 SMEFT, at NLO in perturbation theory. In particular, we focus on the
decay of the Higgs boson to fermion anti-fermion pairs. The predicted branching
fractions of the Higgs into its various decay products in the SM is found in Fig. 3.1.
Assuming that the measured branching fractions of the Higgs do not significantly
vary from the predictions in Fig. 3.1, we see from that figure that by far the largest
branching fraction of the Higgs is its decay into a bottom anti-bottom pair, at
∼ 58.2%. The decay into tau anti-tau pairs and charm anti-charm pairs then
contribute ∼ 6.3% and ∼ 2.9% respectively, while the decay to a muon anti-muon
pair constitutes ∼ 0.02% of the total decay width. Decays into the remaining SM
fermions are not shown in Fig. 3.1, and while they do constitute a theoretically
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Figure 3.1: The nine largest branching fractions predicted in the SM
for a SM Higgs of mass 125 GeV. The segment for h→ µµ̄
has been enlarged by a factor of 10 for visibility. Values
taken from [101].

possible decay channel of the Higgs, their branching fractions are small enough that
we may effectively consider them to be vanishing.

The discovery of the Higgs boson in 2012 was a triumph for the SM [102–104]. Since
then its decay into a bottom anti-bottom pair has been observed [105,106], as has
the decay to a tau anti-tau pair [107,108], both with an O(10%) precision. Limits
have also been placed on the decay into muon anti-muon pairs [109,110], and charm
anti-charm pairs [111,112]. The relatively low precision of these measurements (and
the infancy of Higgs measurements at the LHC in general) presently offers a great
deal of room for NP in Higgs measurements. This, along with the projected percent
level accuracy of measurements of the aforementioned decay modes (aside from de-
cay to muon anti-muon pairs, where projections suggest somewhat worse precision)
at future lepton colliders [113–117] serves as a great motivation to explore these
decay modes within the SMEFT. While a LO analysis would be sufficient given the
current precision of the measurements of these decay modes, the anticipated preci-
sion of future measurements necessitates a more precise calculation. Additionally,
at the aforementioned order in perturbation theory, not only do we increase the
precision of the predicted contributions from operators appearing at LO, but the
dimension-6 SMEFT also introduces a plethora of new Wilson coefficients that do
not appear at tree level, presenting an opportunity for the fitting of such coefficients.
Finally, matching to a UV complete theory requires the running of Wilson coeffi-
cients measured at the scale of the experiment to the UV scale, ΛUV, via the Wilson
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coefficient anomalous dimensions. These anomalous dimensions potentially mix the
Wilson coefficients at a particular scale into a number of coefficients at another scale,
however, this effect is entirely ignored in a purely LO analysis.

3.2 Input Scheme

When calculating predictions for observable quantities we wish to write any results
as a function of experimentally measurable parameters. For EW processes, one
has a freedom in the choice of input schemes – that is, a choice of parameters in
which a result may be expressed.1 This is due to an over-completeness in the basis
of potential input parameters. In the SM, at any particular order in perturbation
theory, different input schemes produce different analytical and numerical results.
These differences originate from the accuracy in experimental measurements of
non-independent parameters, and from the limitations of relating non-independent
parameters at all orders. In an ideal scenario where any parameter may be measured
with infinite precision, and where non-independent parameters may be related to
all orders in perturbation theory, these small differences in theoretical predictions
would vanish. Some typical EW input schemes are {α, MW , MZ}, {α, MZ , GF} and
{GF , MW , MZ}, where GF is the Fermi constant introduced in Eq. 2.1.8. The Fermi
constant and W -boson mass are not independent parameters, but are related at LO
by Eq. 2.1.8. As discussed, it is also possible to calculate perturbative corrections to
this relation. In this way it is clear how one may switch between the aforementioned
input schemes at a particular order in perturbation theory. Ideally, one would like
to choose an input scheme which minimizes NLO corrections; within the SM, such
scheme choices have been studied in a systematic way [118]. Such a systematic
study in the dimension-6 SMEFT is beyond the scope of this work. An example of a
scheme that reduces the size of corrections in a particular scenario would be the use
of GF as an input parameter in processes involvingW -bosons in the SM. In this case,
the choice of GF as an input parameter causes a cancellation of large-mt corrections
arising from the renormalization of sw in theW -boson coupling [118]. We investigate
the use of GF as an input parameter for reducing large mt-dependent corrections
further in the context of the calculations performed here in the dimension-6 SMEFT
in Section 4.4.2

In the case of the SMEFT, we induce a strong Wilson coefficient dependence in
any choice of input scheme. As an example we again consider the decay µ→ eνµν̄e

first explored in Section 2.1.1, but now in the context of the dimension-6 SMEFT.
1This scheme dependence is eliminated in QCD scenarios, where the only possible choice of

input parameters are the strong coupling constant and quark masses.
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Figure 3.2: LO diagrams of µ → eνµν̄e with effective operators (4-
Fermi and dimension-6 SMEFT) represented by a dotted
vertex. Diagram (1) contains the 4-Fermi contribution
and contributions from the operators Q ll
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, dia-

gram (2) contains contributions from Q
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Hl
22

and diagram (3)

contains contributions from Q
(3)
Hl
11
. Each diagram has at

most one dimension-6 effective operator insertion, consist-
ent with O(Λ−2

NP) calculations.

The LO diagrams for this process to O(Λ−2
NP) are shown in Fig. 3.2. Comparing

the amplitudes for this process calculated in 4-Fermi theory and in the dimension-6
SMEFT we find a new LO expression for the Fermi constant

GF = 1√
2v2

T

+ 1√
2

(
C

(3)
Hl
11

+ C
(3)
Hl
22

)
+ 1

2
√

2

(
C ll

2112
+ C ll

1221

)
. (3.2.1)

Clearly, from the form of MW in Eq. 2.3.19, we may use Eq. 3.2.1 to exchange
either MW ↔ GF or α ↔ GF as input parameters, thus linking the three input
schemes introduced at the start of this chapter. Unlike in the SM however, this
change of input parameters also changes an expression’s dependence on certain
Wilson coefficients – for example, a dependence on the Wilson coefficients present in
Eq. 3.2.1 may appear, where previously these coefficients were absent. Furthermore,
at NLO this Wilson coefficient dependence on input scheme expands to a larger set of
Wilson coefficients, although any new coefficients introduced at NLO are necessarily
suppressed by an additional power of α. The first full calculation of GF at NLO
in the dimension-6 SMEFT was performed in [72], building on the large-mt limit
calculation in [119]. While one may in principle use expressions such as those found
in Eq. 3.2.1 to convert between input schemes, often calculations are repeated from
scratch to generate results in multiple input schemes, for example in [73].

Along with the aforementioned advantages of using GF as an input parameter, histor-
ically, precision SM EW calculations were calculated with GF as an input parameter
due to the precision of the measurements of GF . Presently, the measurements ofMW

are sufficiently precise that usingMW as an input parameter in place of GF is not the
limiting factor it once was. While GF remains the more precisely measured quantity,
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the precision of the measurement of MW is sufficient for the purposes explored here.1

Throughout this work, we use the {α, MW , MZ} input scheme. The full set of input
parameters is

αs, α, mf , mH , MW , MZ , Vij, Ci . (3.2.2)

We find that the input scheme outlined in Eq. 3.2.2 is particularly advantageous in
the context of EW calculations within SMEFT – as we will see, this scheme minimizes
the number of Wilson coefficients entering the Lagrangian shifts. In particular, it
prevents four-fermion operators, such as those in Eq. 3.2.1 from appearing in the
LO Higgs decay rate.

In Section 2.3 we defined the dimension-6 SMEFT Lagrangian in the mass basis
where we introduced many quantities such as vT and ḡ. To write the results of our
calculations as a function of the input parameters in Eq. 3.2.2, it is therefore import-
ant to rewrite the dimension-6 Lagrangian as a function of the input parameters in
Eq. 3.2.2. Firstly, we recognize that ē in Eq. 2.3.22 is the value of the electric charge
that one would measure experimentally, and so in terms of our input parameter, α,
this is now given by

α = ē2

4π , (3.2.3)

and similarly for the strong coupling constant

αs = ḡ2
3

4π . (3.2.4)

For the remainder of this thesis, we drop the bars on e and g3 when discussing the
variables defined by Eqs. 2.3.11 and 2.3.22, with it understood that these are simply
the input parameters. We continue by defining a set of hatted variables

v̂T = 2MW ŝw
e

, ŝ2
w = 1− M2

W

M2
Z

, ĉ2
w = 1− ŝ2

w , (3.2.5)

such that these hatted quantities coincide with their SM definitions, in particular,
v̂T = v0. Manipulating the equations in Eqs. 2.3.18, 2.3.19 and 2.3.22 we can write
vT , defined in Eq. 2.3.2, as a function of our input parameters in Eq. 3.2.2 as

vT = v̂T

[
1− v̂2

T

(
CHWB + ĉw

4ŝw
CHD

)]
. (3.2.6)

Written in this way, in terms of the hatted counterpart, it is clear that in the limit
ΛNP → ∞ the expression for vT returns to the SM definition. A feature we also

1The current PDG values are GF = 1.1663787(6)−5 GeV−2 andMW = 80.379±0.012 GeV [23].
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highlight in Eq. 3.2.6 is that up to O(Λ−2
NP) Wilson coefficients can only multiply

input parameters from Eq. 3.2.2, or hatted quantities.

We continue by considering the expression in Eq. 2.3.7. We may use this equation
to express the Lagrangian parameter λ in terms of the parameters in Eq. 3.2.2 as

λ = m2
H

2v̂2
T

[
1− CH,kin1 + 2v̂2

T

ĉw
ŝw

(
CHWB + ĉw

4ŝw
CHD + 3v̂4

T

m2
H

CH

)]
. (3.2.7)

Next, we may also express the quantities ḡ1 and ḡ2 from Eq. 2.3.11 as

ḡ1 = e

ĉw

(
1− v̂2

T

4 CHD
)
,

ḡ2 = e

ŝw

(
1 + v̂2

T

ĉw
ŝw

[
CHWB + ĉw

4ŝw
CHD

])
. (3.2.8)

This further allows us to write the dimension-6 weak rotation angles, c̄w and s̄w,
from Eq. 2.3.18 as

c̄w = ĉw

(
1 + v̂2

T

4 CHD + ŝwv̂
2
T

2ĉw
CHWB

)
,

s̄w = ŝw

(
1− ĉ2

wv̂
2
T

4ŝ2
w

CHD −
ĉwv̂

2
T

2ŝw
CHWB

)
. (3.2.9)

The rotation in Eq. 2.3.20 thus takes the formW3
µ

Bµ

=
ĉw + 1

4 ĉwv̂
2
T

(
CHD + 4 ŝw

ĉw
CHWB

)
ŝw − ĉ

2
w v̂

2
T

4ŝw

(
CHD + 4 ŝw

ĉw
CHWB

)
−ŝw + ĉ

2
w v̂

2
T

4ŝw
CHD ĉw + ĉw v̂

2
T

4 CHD

Zµ
Aµ

 ,
(3.2.10)

and the dimension-6 SMEFT covariant derivative in Eq. 2.3.21 takes the form

Dµ = ∂µ−i
e

ŝw

[
1 + ĉ2

wv̂
2
T

4ŝ2
w

CHD + ĉwv̂
2
T

ŝw
CHWB

] (
W+

µ τ
+ +W−µ τ−

)
−i
[

e

ĉwŝw

(
1 + (2ĉ2

w − 1)v̂2
T

4ŝ2
w

CHD + ĉwv̂
2
T

ŝw
CHWB

)(
τ 3 − ŝ2

wQ
)

+ e

(
ĉwv̂

2
T

2ŝw
CHD + v̂2

TCHWB

)
Qf

]
Zµ − ieQfAµ . (3.2.11)

3.3 Lagrangian Implementation

The large set of operators of the dimension-6 SMEFT in Table A.1 introduces an
enormous number of possible interactions beyond those seen in the SM. For the
full set of possible interactions see [120]. A consequence of this is that at NLO
the already large number of diagrams contributing to the process h → ff̄ in the
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• Implement SMEFT Lagrangian.
• Generate SMEFT Feynman rules.
• Output FormCalc model files

(.gen, .mod).

FeynRules

• Add particles to FeynArt topolo-
gies according to SMEFT model
files.
• Calculate all necessary amplitud-

es up to one-loop.

FormCalc

• Generate all necessary topolo-
gies (1→ 1, 1→ 2 and 1→ 3
at various loop orders).

FeynArts

• UV renormalize amplitudes.
• Calculate squared matrix elemen-

ts, construct decay rates and re-
move IR divergences.

Mathematica

• Numerically evaluate results.

LoopTools
• Analytically evaluate scalar

loop integrals.

Package-X

Figure 3.3: A diagram demonstrating the workflow and implement-
ation of Mathematica and the packages FeynRules,
FormCalc, FeynArts, LoopTools, and Package-X used to
renormalize, and numerically and analytically evaluate the
processes considered in this work.
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SM is increased dramatically. We therefore implement the dimension-6 SMEFT
Lagrangian electronically and automate the calculation of the necessary diagrams. To
do this, we break the dimension-6 SMEFT Lagrangian into the 8 classes of Table A.1,
and implement the Lagrangian for each class using the Mathematica [121] package
FeynRules [122]. The only exception to this are the class-8 operators, the calculations
for which were performed by hand. FeynRules allows the user to write any valid1

Lagrangian, and automate the generation of Feynman rules, as well as generate
output files of these rules for use in other packages. We use FeynRules to output
FormCalc [123] model files. FormCalc is a Mathematica package which automates
the analytical calculation of amplitudes in d-dimensions up to and including the
one-loop level. At one-loop these amplitudes are written as a function of the tensoral
loop-integral functions introduced in Section 1.2.1, with the option of automatically
reducing these to the set of scalar loop integrals. To generate the necessary topologies
we use FeynArts [124]. After outputting the results for the necessary diagrams,
the calculations to produce UV- and IR-finite decay rates were then performed
in Mathematica notebooks. The output of these calculations were then evaluated
numerically using LoopTools [123], and the necessary scalar one-loop integrals were
generated using Package-X2 [125] which were then numerically cross-checked against
the LoopTools results. A flowchart demonstrating this sequence of automation is
seen in Fig. 3.3.

3.4 Wilson Coefficient Notation

The dimension-6 SMEFT operators in Table A.1 are defined in the weak basis,
however, the physical decay rates and on-shell renormalization conditions are defined
in the mass basis. Therefore, to connect calculations, such as those performed in
this work, to experimental measurements in a consistent manner, we must also be
able to connect the Wilson coefficients and corresponding operators of Table A.1 to
an equivalent mass basis. In this way, we wish to express such mass-basis operators
entirely from measurable parameters. For the operators of classes 1-4, which are
exclusively built from bosonic fields, this connection is trivial as the Higgs doublet can
simply be replaced by its post-SSB counterpart, and the rotation of the weak-basis
gauge fields to their mass-basis counterparts proceeds via experimentally measurable
quantities. As such, the Wilson coefficients in the mass basis and weak basis for

1By valid we mean Lagrangians which obey the usual mathematical constraints placed on
Lagrangians in QFT, e.g. that they should be scalar quantities etc.

2The exception to this are the derivative two-point scalar integrals, ∂

∂k
2B0(k2,m2

2,m
2
3)|

k
2→m2

1
≡

B′0(m2
1,m

2
2,m

2
3), which were calculated by hand.
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classes 1-4 are related by

Cw
(1−4) ≡ Cm

(1−4) , (3.4.1)

where the superscripts w and m denote the weak and mass basis respectively.

The operators throughout classes 5-8 of Table A.1 are functions of fermionic fields.
As seen throughout Section 1.1.3, the rotation of the weak-basis fields to the mass-
basis fields requires the rotation via unitary matrices, which are not individually
measurable quantities. As such, we must absorb these unitary matrices into the
definitions of the mass-basis Wilson coefficients themselves. As an example, we
consider the class-5 operator QuH , which is defined in the weak basis in Table A.1.
The explicit form of this term, which we denote by LuH , is

LuH = Cw
uH
rs

(H†H)(q̄wr uws H̃) , (3.4.2)

where we have also introduced a superscript, w, on the fermionic fields to distinguish
them from the mass basis fermions, which we will denote with an m superscript.
Applying the rotation of the fermion fields to the mass basis, according to the
transformations in Eq. 1.1.37, we find that the fields in Eq. 3.4.2 become

uwR = Kuu
m
R ,

qwL =
SuumL
Sdd

m
L

 , (3.4.3)

such that the operator in Eq. 3.4.2 becomes

LuH = Cw
uH
rs

(H†H)
(
(ūmL S†u, d̄mL S†d)r[Ku]siumRiH̃

)
. (3.4.4)

Here, we recognize that we have a freedom in defining the mass-basis Wilson coeffi-
cient. We may choose

Cm
uH
rs
≡ [S†u]riCw

uH
ij

[Ku]jr , (3.4.5)

such that Eq. 3.4.2 takes the form

LuH = Cm
uH
rs

(H†H)
(
(ūmL , d̄mL V †)rumRsH̃

)
, (3.4.6)

or we may choose

Cm
uH
rs
≡ [S†d]riCw

uH
ij

[Ku]jr , (3.4.7)

such that Eq. 3.4.2 takes the form

LuH = Cm
uH
rs

(H†H)
(
(ūmL V, d̄mL )rumRsH̃

)
. (3.4.8)
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In both choices outlined in Eq. 3.4.5 and Eq. 3.4.7 we have satisfied the requirement
that the mass-basis operator should be built from observable, mass-basis quantities,
however we have also identified a freedom in the definition of the mass basis. When
considering dimension-6 SMEFT in full generality, this choice is one which must be
specified.1 However, for the calculations considered here, we impose the approxim-
ation common to EW calculations of Vij ≈ δij. We will explore the implications of
this approximation within the context of the calculations outlined in this work in
Section 4.3.1, but for now we see that within this approximation the two possible
choices of mass-basis Wilson coefficients seen in Eq. 3.4.5 and Eq. 3.4.7 are equivalent
and would lead to an identical form of the mass-basis operator, specifically

LuH = Cm
uH
rs

(H†H)
(
q̄mr u

m
s H̃

)
. (3.4.9)

As such, with this approximation in place, we are able to specify a unique form of
the mass-basis operator without committing to a particular definition of the mass-
basis Wilson coefficient in terms of its weak-basis counterpart. Further, examining
the form of the mass-basis operator in Eq. 3.4.9, we see that it is analogous to its
weak-basis counterpart in Eq. 3.4.2, with the straightforward replacement of the
weak-basis Wilson coefficient and fermion fields with their mass-basis counterparts.
This pattern holds in general for the operators throughout classes 5-8: with the
diagonal CKM approximation, the mass-basis operators are identical to the weak-
basis operators upon the replacement of weak-basis Wilson coefficients and operators
by their mass-basis counterparts, without the need to specify the particular definition
of the mass-basis Wilson coefficients in terms of the weak-basis Wilson coefficients.

To check that our abstention from a particular choice of mass-basis Wilson coefficients
does not have any effects anywhere else in the full dimension-6 SMEFT Lagrangian,
we again briefly consider the Yukawa couplings in the dimension-6 SMEFT, first
discussed in Section 2.3.3. There, we defined our mass-basis Wilson coefficients
analogously to Eq. 3.4.5 to convert our Wilson coefficients to the mass basis. Had
we instead chosen to define the mass-basis Wilson coefficients similarly to Eq. 3.4.7
we would now find that, for example, the expression for [mu] in Eq. 2.3.28 would
now read

[mu]rs ≡
vT√

2
[S†u]ri[Mu]ij[Ku]js = vT√

2

(
[Mu]rs −

v2
T

2 VriC
m
uH
is

)
= diag(mu, mc, mt) ,

(3.4.10)

where there is an introduction of the CKM matrix where previously there was none.
Within the approximation of Vij ≈ δij the expression in Eq. 3.4.10 is the same as

1For an example of one particular choice, see [120].
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that found in Eq. 2.3.28, and so again we are free to not specify a particular choice
for the form of the mass-basis Wilson coefficients.

In quoting analytic and numerical results in the remainder of this thesis, we always
work with mass-basis quantities, and for simplicity drop the superscripts m on the
fields and Wilson coefficients. Moreover, within our approximations, h→ ff̄ decay is
sensitive to a group of generation-diagonal operators involving right-handed fermion
fields. For these, we use the shorthand notation where, e.g. CcH ≡ CuH

22
, thus

allowing us to suppress flavor indices. In fact, the only Wilson coefficients appearing
in our calculation which require explicit flavor indices are the class-7 quantities C(1,3)

Hl

and C(1,3)
Hq , in addition to the coefficients of the class-8 four-fermion operators.

3.5 MFV and the Small-Mass Limit

With the exception of the top quark, Higgs couplings to fermions in the SM are
suppressed by small and hierarchical Yukawa couplings, a feature not inherited
by generic SMEFT interactions. In order to avoid pushing the UV scale of the
effective theory to values far above the TeV scale to avoid flavor constraints, one
often considers the SMEFT Wilson coefficients to be constrained by MFV, which
we first outlined in general in Section 2.1.3, and in the context of the dimension-6
SMEFT in Section 2.2.2. In the calculation of the decay rate of h→ ff̄ presented
in Chapter 4, we often consider the small-mass limit. In this limit we keep leading
order terms in the expansion about the light-fermion masses, which we define as all
SM fermions except for the top quark. More details of this expansion may be found
in Section 4.1. It is in this small-mass limit that we study the MFV scenario.

As we saw in Section 2.1.3, imposing MFV in the SMEFT constrains the flavor
indices of the Wilson coefficients to be carried by certain combinations of Yukawa
matrices. Upon rotation to the mass basis, Yukawa couplings are converted to powers
of the fermion masses, which for light fermions can be expanded in the small-mass
limit. As an explicit example we consider this expansion for the class-5 Wilson
coefficients, starting with CuH . MFV implies that the weak-basis coefficient takes
the form seen in Eq. 2.2.11

Cw
uH
rs

=
[
YuGuH

(
YdY

†
d , YuY

†
u

)]
rs
, (3.5.1)

where the function GuH is regular in the limit that its arguments go to zero, but
otherwise arbitrary. In the approximation where the CKM matrix is the unit matrix,
the MFV scaling for the mass basis coefficient is obtained by making the replacement
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Yu →Mu, where Mu are the mass-basis Yukawas, defined as

[Mf ]ij =
√

2[mf ]ij
v̂T

, (3.5.2)

where the [mf ]ij were defined in Eq. 2.3.28. The mass-basis Yukawas are diagonal
matrices and their elements vanish in the small-mass limit, with the exception of
[Mu]33 which is proportional to the top-quark mass and thus order one in that limit.
Therefore, to leading order in the small-mass limit, we can write

[
GuH

(
YdY

†
d , YuY

†
u

)]
ks
≈ δksGuH(0, 0) + δk3δs3

∞∑
k=1

y2k
t

k!

 dk

(dy2
t )k

GuH(0, y2
t )
∣∣∣∣∣
yt→0

 ,

(3.5.3)

where y2
t = 2m2

t/v̂
2
T . It follows that the expansion of the mass-basis coefficient CuH

in the small-mass limit within MFV is given by

CuH
rs
≈ [Mu]rk

[
C1
uH
ks

+O
(
m2

v̂2
T

)]
, (3.5.4)

where the superscript j on the calligraphic Wilson coefficients Cji indicates that
they multiply j explicit powers of mass-basis Yukawa matrices and where m is any
light-fermion mass. The explicit expression for C1

uH can be read off by matching
Eq. 3.5.4 with Eq. 3.5.3. Similar statements hold for the MFV version of CdH in
the small-mass limit, which can be obtained from the CuH result by the replacement
u→ d.

For the corresponding leptonic operator the MFV expression is

Cw
eH
rs

=
[
YeGeH

(
YeY

†
e

)]
rs
. (3.5.5)

All elements of the mass-basis Yukawa coupling Me vanish in the small-mass limit,
so the mass-basis coefficient is given by

CeH
rs
≈ [Me]rs

[
C1
eH +O

(
m2

v̂2
T

)]
, (3.5.6)

where C1
eH = GeH(0) carries no flavor indices and is thus universal, in contrast to

the quark cases.

It is a straightforward exercise to obtain analogous results for the other Wilson
coefficients in MFV in the small-mass limit. For our analysis in Section 4.7, the
important point is whether, after factoring out j overall Yukawa factors, the calli-
graphic Wilson coefficients, Cji , are flavor universal (as in the case of i = eH), or
flavor non-universal due to contributions from top-quark Yukawas (as in the case of
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i = dH, uH). The flavor-universal cases used in Section 4.7 are

CeH
pr
≈ [Me]prC1

eH , CHd
pr
≈ δprC0

Hd ,

CeF
pr
≈ [Me]prC1

eF , CHe
pr
≈ δprC0

He ,

C
(1,3)
H`
pr
≈ δprC

(1,3),0
H` , C le

prst
≈ δprδstC0

le , (3.5.7)

where F is any gauge field appearing in the class-6 operators. The flavor non-
universal cases are

CuH
pr
≈ [Mu]prC1

uH
pr
, CHud

pr
≈ [Mu]pr[Md]prC2

Hud
pr
,

CdH
pr
≈ [Md]prC1

dH
pr
, C

(1,8)
qu
prst
≈ δprδstC

(1,8),0
qu
prst

,

CuF
pr
≈ [Mu]prC1

uF
pr
, C

(1,8)
qd
prst

≈ δstδprC
(1,8),0
qd
pr

,

CdF
pr
≈ [Md]prC1

dF
pr
, Cledq

prst
≈ [Me]pr[Md]stC2

ledq
st
,

C
(1,3)
Hq
pr
≈ δprC

(1,3),0
Hq
pr

, C
(1,8)
quqd
prst

≈ [Mu]pr[Md]stC(1,8),2
quqd
prst

,

CHu
pr
≈ δprC0

Hu
pr
, C

(1,3)
lequ
prst

≈ [Me]pr[Mu]stC(1,3),2
lequ
st

, (3.5.8)

where there is no implied summation on repeated indices on the right-hand side of
the approximations. The notation of Eq. 3.5.8 makes it clear that the calligraphic
coefficients are flavor diagonal in the pairs of indices pr and st. We note that
while the Wilson coefficients C(1,8)

qd , Cledq and C(1,3)
lequ carry four flavor indices, their

corresponding small-mass MFV expansion functions, Ci, are a function of (and
therefore only carry) two flavor indices.

An important aspect of the flavor non-universal Wilson coefficients in Eq. 3.5.8 is
that in several cases there is some redundancy in the notation such that two Wilson
coefficients carrying different flavor indices may indeed be the same. As an example,
we consider the Wilson coefficient C(1,3)

Hq . Following the procedure outlined earlier in
this section we find that in the small-mass limit after imposing MFV

C
(1,3)
Hq
pr
≈ δprG

(1,3)
Hq (0, 0) + δp3δr3

∞∑
k=1

y2k
t

k!

 dk

(dy2
t )k

G
(1,3)
Hq (0, y2

t )
∣∣∣∣∣
yt→0

 . (3.5.9)

Considering separately the cases of pr = {11, 22, 33} we therefore find

C
(1,3)
Hq
11
≈ G

(1,3)
Hq (0, 0) ≡ C(1,3),0

Hq
11

,

C
(1,3)
Hq
22
≈ G

(1,3)
Hq (0, 0) ≡ C(1,3),0

Hq
22

,

C
(1,3)
Hq
33
≈ G

(1,3)
Hq (0, 0) +

∞∑
k=1

y2k
t

k!

 dk

(dy2
t )k

G
(1,3)
Hq (0, y2

t )
∣∣∣∣∣
yt→0

 ≡ C(1,3),0
Hq
33

. (3.5.10)
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From Eq. 3.5.10, we see that the object C(1,3),0
Hq
ks

is flavor-diagonal, but non-universal

in the sense that C(1,3),0
Hq
11

= C(1,3),0
Hq
22

6= C(1,3),0
Hq
33

. This property carries over to a number
of other flavor-dependent Wilson coefficients, and we will indicate in this work where
such properties are used.

As discussed in Section 2.2.2, all the SMEFT coefficients can also depend on Yukawas
through functions of flavor invariants such as

Tr
(
YeY

†
e

)
, Tr

(
YdY

†
d

)
, Tr

(
YuY

†
u

)
. (3.5.11)

In the small-mass limit these are either constants, or functions of y2
t . They can thus

be absorbed into the definitions of the Cji above. For consistency of notation, we
make explicit that Wilson coefficients in classes 1-4 depend on the above invariants
and should also be expanded in the small-mass limit. Since those Wilson coefficients
carry no flavor indices, this amounts to a change of notation Ci → C0

i , where the
superscript indicates that the small-mass limit has been taken in the flavor invariants
on which the coefficients can depend.

3.6 Gauge Fixing in the Dimension-6 SMEFT

The techniques of gauge fixing, and the motivation for doing so in a QFT, specifically
the SM, were first presented in Section 1.5. This necessity of gauge fixing also
applies to the dimension-6 SMEFT. The topic of gauge fixing in the dimension-6
SMEFT has been previously discussed in [120,126,127]. Here, we present our own
implementation, which extends the techniques presented in Section 1.5 to include
dimension-6 corrections.

We begin by again considering the SM. We parameterize the Higgs doublet in terms
of real scalar fields as

H = 1√
2

−i(φ1 − iφ2)
φ4 + iφ3

 , (3.6.1)

and use the real representation of the generators, T a = −iτa, where the τa were
defined above Eq. 1.1.21. Following the notation of Section 1.5.1, we expand each
φi about its LO vacuum expectation value, denoted 〈φi〉 = φ0i as

φi = φ0i + χi , (3.6.2)

where χi 6=4 are the Goldstone bosons, χ4 is related to the physical Higgs boson, h,
and φ0i = δi4vT/

√
2 = (0, 1)TvT/

√
2. In Rξ gauge one aims to remove the Goldstone-
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gauge boson mixing terms, which in the SM take the form

L ⊃ (∂µχi)Aaµ(gT )aijφ0j , (3.6.3)

where (gT )a is defined in Eq. 1.5.5. The i = 4 component in Eq. 3.6.3 gives no
contribution to the Lagrangian.

We now consider the inclusion of the dimension-6 SMEFT. We begin by defining the
canonically-normalized fields of the Higgs doublet in Eq. 2.3.5 in terms of those in
Eq. 3.6.2 via the transformation

χi = Xijχ
′
j , X =


1 0 0 0
0 1 0 0
0 0 1− 1

4 v̂
2
TCHD 0

0 0 0 1 + CH,kin

 , (3.6.4)

such that the χ′i are related to the fields in Eq. 2.3.5 by

χ′1 = 1√
2

(φ+ + φ−) , χ′2 = i√
2

(φ+ − φ−) , χ′3 = φ0 , χ′4 = h . (3.6.5)

Moreover, we replace the gauge fields and couplings as in Eq. 2.3.10, Eq. 2.3.11 and
Eq. 2.3.13 such that all the Goldstone-gauge mixing terms of the SMEFT Lagrangian
may be written

L ⊃ (Xik∂
µχ′k)A′aµ (ḡT ′)aijφ0j + 1

2v
2
TCHD(∂µχ′3)A′aµ (ḡT ′)a3jφ0j

= (∂µχ′i)A′aµ (ḡF)ai , (3.6.6)

where the second term on the first line of Eq. 3.6.6 is the contribution arising from
the explicit presence of the CHDQHD term in the dimension-6 SMEFT Lagrangian.
In Eq. 3.6.6 we have also introduced the object (ḡT )a, which is defined similarly to
(gT )a in Eq. 1.5.5, but with all instances of the gauge couplings replaced as gi → ḡi,
and further defined "primed" generators

(ḡT ′)a = Mab(ḡT )b

=
(
ḡ2T

1, ḡ2T
2, ḡ2T

3 − 1
2 ḡ1v

2
TCHWBT

4, ḡ1T
4 − 1

2 ḡ2v
2
TCHWBT

3
)
, (3.6.7)

where Mab is given in Eq. 2.3.14. Eq. 3.6.6 also introduces the object

(ḡF)ai = Xij(ḡT ′)ajkφ0k + δi3
v2
T

2 CHD(ḡT ′)a3kφ0k

= (X−1)ij(ḡT ′)ajkφ0k , (3.6.8)

where in the final line we have used that X has only diagonal elements, X11 = X22 =
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(X−1)11 = (X−1)22 = 1, (1 + v̂
2
T

2 CHD)X33 = (X−1)33 and that the X44 component
gives no contribution. In order to calculate the matrix (ḡF)ai we use, for example,
that (ḡT ′)1φ0 equals ḡ2vT/2 times a unit vector in the φ1 direction. One finds

(ḡF)ai = vT
2


ḡ2 0 0 0
0 ḡ2 0 0
0 0 ḡ2(1 + v̂

2
T

4 CHD) + ḡ1
v̂

2
T

2 CHWB 0
0 0 −ḡ1(1 + v̂

2
T

4 CHD)− ḡ2
v̂

2
T

2 CHWB 0

 . (3.6.9)

We follow the Faddeev-Popov gauge-fixing procedure outlined in Section 1.5.2 such
that the SMEFT gauge-fixed generating functional Z takes the form

Z = C
∫
DA′Dχ′ exp

[
i
∫
d4x

(
L
[
A′, χ′, ...

]
− 1

2(G)2
)]

det
(

δG

δ(α′/ḡ)

)
, (3.6.10)

where Ga is the gauge-fixing functional and the object (α′/ḡ)b is defined later in this
section. Note that in comparison with Eq. 1.5.2, Eq. 3.6.10 the functional derivative
in the determinant is with respect to the object (α′/ḡ), rather than α, however this
change is valid due to the freedom in rescaling α. Given the form of the Goldstone-
gauge mixing terms in Eq. 3.6.6, we choose the gauge-fixing functional in Eq. 3.6.10
to be

Ga = 1√
ξ

(
∂µA′aµ − ξ(ḡF)aiχ′i

)
, (3.6.11)

which defines the Rξ gauges in the SMEFT.1 We see that the form of the gauge-fixing
functional in Eq. 3.6.11 resembles that of the Rξ gauges in the SM in Eq. 1.5.6 with
the gauge fields replaced by their primed counterparts and F replaced with F . The
Goldstone-gauge boson mixing terms in Eq. 3.6.6 are then removed by the −1

2(G)2

term in Eq. 3.6.10.

Interactions of SM particles with ghost fields arise through the functional determinant
in Eq. 3.6.10, for which we must determine the variation of Ga under arbitrary gauge
transformations. The gauge transformation of the scalar fields may be written

δφi = −αaT aijφj ≡ −
(
α

ḡ

)a
(ḡT )aijφj ≡ −

(
α′

ḡ

)a
(ḡT ′)aijφj , (3.6.12)

where the second relation defines the object (α/ḡ)a to be(
α

ḡ

)a
=
(
α1

ḡ2
,
α2

ḡ2
,
α3

ḡ2
,
α4

ḡ1

)
, (3.6.13)

1Note that in principle we can have a different ξ for each of the physical gauge fields.
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and the third relation in Eq. 3.6.12 defines the object (α′/ḡ)a as(
α

ḡ

)a
= Mab

(
α′

ḡ

)b
. (3.6.14)

We may use Eq. 3.6.4 and Eq. 3.6.12 to find the gauge transformation of χ′i:

δχ′i = (X−1)ijδχj = −
(
α′

ḡ

)a
(X−1)ij(ḡT ′)ajk(φ0k +Xklχ

′
l)

≡ −
(
α′

ḡ

)a (
(ḡF)ai + (ḡT )aijχ′j

)
, (3.6.15)

where we have defined the object (ḡT )aij ≡ (X−1)ik(ḡT ′)aklXlj . Explicitly (ḡT )aij acts
on χ′i as (for brevity and as no other terms enter our calculation in Chapter 4, we
give only the Higgs contributions to this term)

(ḡT )aijχ′j ⊃
h

2


ḡ2(1 + CH,kin) 0 0 0

0 ḡ2(1 + CH,kin) 0 0
0 0 ḡ2(1 + v̂2

TCH�) + ḡ1
v̂

2
T

2 CHWB 0
0 0 −ḡ1(1 + v̂2

TCH�)− ḡ2
v̂

2
T

2 CHWB 0

 .

(3.6.16)

We may similarly write the transformation of the unprimed gauge fields as

δAaµ = ∂µ

(
α

ḡ

)a
− fabcαbAcµ ≡ ∂µ

(
α

ḡ

)a
− ḡ2f

abc

(
α

ḡ

)b
Acµ . (3.6.17)

The object fabc = εabc if a, b, c ∈ 1, 2, 3 and vanishes otherwise, which we have used
to replace αb → ḡ2(α/ḡ)b in the above equation. The form of δA′aµ in terms of the
object (α′/ḡ)a is then found using Eq. 2.3.13, Eq. 3.6.14 and Eq. 3.6.17

δA′aµ = (M−1)abδAbµ = ∂µ

(
α′

ḡ

)a
− ḡ2(M−1)abf bcdM cc

′
(
α′

ḡ

)c′
Adµ . (3.6.18)

We can now calculate the functional derivatives needed to evaluate Eq. 3.6.10 using
the results in Eq. 3.6.15 and Eq. 3.6.18. First, one has

δA′aµ

δ(α′/ḡ)b
≡Mab

µ = δab∂µ − ḡ2(M−1)ab
′
f b
′
cdAdµM

cb , (3.6.19)

(note that the gauge fields here are the unprimed gauge fields), where the explicit
result is

Mab
µ = ḡ2



1
ḡ2
∂µ W 3

µ −W 2
µ

1
2 v̂

2
TCHWBW

2
µ

−W 3
µ

1
ḡ2
∂µ W 1

µ −1
2 v̂

2
TCHWBW

1
µ

W 2
µ −W 1

µ
1
ḡ2
∂µ 0

1
2 v̂

2
TCHWBW

2
µ −1

2 v̂
2
TCHWBW

1
µ 0 1

ḡ2
∂µ

 . (3.6.20)
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From Eq. 3.6.19 and Eq. 3.6.15, the variation of the gauge-fixing functional, Ga in
Eq. 3.6.11 is

δGa

δ(α′/ḡ)b
= 1√

ξ

(
∂µMab

µ + ξ(ḡF)ai
(
(ḡF)bi + (ḡT )bijχ′j

))
. (3.6.21)

Following the procedure outlined at the beginning of Section 1.5.2, the ghost Lag-
rangian is then

Lghost = ca
[
−
(
∂µMab

µ

)
− ξ(ḡF)ai

(
(ḡF)bi + (ḡT )bijχ′j

)]
cb . (3.6.22)

The ghost fields in Eq. 3.6.22 are given by ca = (c
W

1 , c
W

2 , c
W

3 , cB), and similarly for
the fields in ca. Comparing Eq. 3.6.22 with its equivalent form in the SM found in
Eq. 1.5.12, we recover the SM result in the limit ΛNP →∞, as expected. In fact, the
form of Eq. 3.6.22 is reminiscent of the SM form in Eq. 1.5.12, which is recovered
by the simple substitutions

Mab
µ → Dab

µ ,

(ḡT )aij → (gT )aij ,
χ′ → χ ,

(ḡF)ai → (gF )ai .
(3.6.23)

We must now find the form of the Lagrangian in Eq. 3.6.22 in the mass basis. The
form of the ghost mass matrix in Eq. 3.6.22 is

(m2
ghost)ab = ξ(ḡF)ai(ḡF)bi , (3.6.24)

which is diagonalized by the matrix R in Eq. 2.3.17 such that

(m2
D,ghost)ab ≡ (R−1)ac(m2

ghost)cdRdb = diag(MW ,MW ,MZ , 0) . (3.6.25)

The ghosts in the mass basis, denoted ua and ua, are thus related to those in the
weak basis by

ca = Rabub , ca = ub(R−1)ba , (3.6.26)

where ua = (u
W

+ , u
W
− , uZ , uA), and similarly for ua. With the gauge fields Aµ

written in terms of the mass basis as described in Eq. 2.3.20, the ghost Lagrangian
in the mass basis is therefore

Lghost = ua
[
−
(
(R−1)ac∂µMcd

µ R
db
)

− ξ
(
(m2

D,ghost)ab + (R−1)ac(ḡF)ci(ḡT )dijχ′jRdb
) ]
ub .

(3.6.27)

Although our derivation is rather different, we find that the Feynman rules produced
by the Lagrangian in Eq. 3.6.27 exactly match those found in [120], which were
instead derived by taking advantage of BRST invariance.





Chapter 4

h → ff̄ at NLO in the SMEFT

In this chapter we present the calculational techniques and results for the decay rate
of h→ ff̄ for f ∈ {b, c, τ, µ} up to NLO in the dimension-6 SMEFT. While aspects
of the calculation that apply generally to calculations in the dimension-6 SMEFT
have been discussed in Chapter 3, the topics discussed here are of particular relevance
to the aforementioned Higgs decay mode. The NLO SM result was first calculated
in [128], and partial results exist for the NLO dimension-6 SMEFT results. The
results in the large-mt limit, and a subset of the four-fermion operator results for the
decay modes h→ bb̄ and h→ τ τ̄ were calculated in [119] using the {GF ,MW ,MZ}
input scheme. The QCD corrections to h → bb̄ were calculated in [129]. In this
work we recover these results as a subset of the full corrections to the corresponding
decay modes. We begin by outlining the calculation and setting up the necessary
notation in Section 4.1, followed by the LO results in Section 4.2. This is followed
by discussions of the NLO calculation of this decay mode, including discussions of
some approximations made, and other topics of relevance throughout Sections 4.3.1
to 4.3.4. In Section 4.4 we present a subset of the analytic results that are relevant
to later discussions. In Section 4.5 we discuss sources of enhanced NLO corrections,
and how to avoid these, followed by the presentation and discussion of the numerical
results and scale uncertainties in Section 4.6. Finally, we present numerical results
for ratios of decay rates in Section 4.7 and discuss the advantages of considering
such ratios.

4.1 Outline of the Calculation

In this section we aim to outline the calculation of the decay rate h → ff̄ up to
NLO in the dimension-6 SMEFT. To this end, it is useful to break the decay rate
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up into LO and NLO components as

Γ(h→ ff̄) ≡ Γf = Γ(0)
f + Γ(1)

f , (4.1.1)

where the subscript f denotes the flavor of the final-state fermion pair, and where
the superscripts (0) and (1) denote the LO and NLO contributions to the decay rate
respectively. As we do not include contributions of O(v̂4

T/Λ4
NP) and above, we may

further split the decay rate up as

Γ(0)
f = Γ(4,0)

f + Γ(6,0)
f ,

Γ(1)
f = Γ(4,1)

f + Γ(6,1)
f . (4.1.2)

Here the superscript (i, j) refers to the dimension-i contribution at j-th order in
perturbation theory. As such, each term contributing to Γ(6,j)

f is a function of exactly
one Wilson coefficient.

It is useful to our later analysis to further break up the NLO corrections as

Γ(i,1)
f = Γ(i,1)

f,(g,γ) + Γ(i,1)
f,(weak) ,

= Γ(i,1)
f,(g,γ) + Γ(i,1)

f,(t) + Γ(i,1)
f,(rem.) . (4.1.3)

Here, Γ(i,1)
f,(g,γ) includes all diagrams with photon or gluon corrections, and real emission

of gluons and photons. Similarly, Γ(i,1)
f,(weak) includes the remaining weak corrections.

In the second line of Eq. 4.1.3 we have further broken Γ(i,1)
f,(weak) down into two pieces.

The first of these, Γ(i,1)
f,(t) contains the virtual weak corrections in the large-mt limit

(which we define further in Section 4.4.2), while Γ(i,1)
f,(rem.) contains the remaining

corrections that do not fall into either of the other categories.

To produce the decay rates outlined earlier in this section, we must calculate both
the UV-renormalized virtual corrections to the LO decay rate, as well as the decay
rate including the real emission of photons and gluons at the same order in α and αs.
Together, these components form a UV- and IR-finite decay rate. This is summarized
as

Γf =
∫ dφ2

2mH

∑
s

∣∣∣Mh→ff̄

∣∣∣2 +
∫ dφ3

2mH

∑
s,λ

∣∣∣Mh→ff̄(g,γ)

∣∣∣2 , (4.1.4)

where the summation is performed over final-state spins and polarizations (where
applicable) and where dφi is the differential Lorentz-invariant phase-space measure
for an i-body final-state process. Details on the evaluation of these integrals is given
in Appendix B. While both terms in Eq. 4.1.4 are individually UV-finite, it is only
in the sum of the two terms in Eq. 4.1.4 that we arrive at a fully UV- and IR-finite
decay rate. In this way, the calculation performed here really corresponds to the
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calculation of the decay rate h→ ff̄(A), for A = g, γ. For brevity, we will generally
refer to the decay mode simply as h→ ff̄ .

This work involves the calculation of a large number of 1 → 1, 1 → 2, and 1 → 3
diagrams at various loop orders. While calculating the renormalized matrix element,
we see that for some subsets of corrections, such as the QED-QCD corrections, the
results for h→ ff̄ may be inferred for all f after the calculation of this decay mode
for a particular process, as we shall see in Sections 4.4.1 and 4.4.2. However, for
most subsets of NLO corrections, owing to the differences in representations of the
SM symmetry group seen in Table 1.3 (aside from the pair τ and µ), we generally
find that the results for one particular process cannot be inferred from the results of
another. As a result, we calculate from scratch all the necessary one-loop amplitudes
for each process. As noted, the exception to this is the process h→ µµ̄, the results
for which may be inferred from the results of h→ τ τ̄ .

There are a small number of simplifying assumptions that we make throughout this
calculation. The first is the diagonal CKM approximation. This approximation states
that the form of the CKM matrix introduced in Section 1.1.3 is well approximated
by Vij ≈ δij. Such an approximation is standard in SM EW calculations, and the
consequences of this approximation in the context of the calculations performed here
are explored in Section 4.3.1. The second assumption is that the first generation
fermions (e, u and d) are massless.

In the calculation outlined throughout this chapter we have performed numerous
cross-checks. Firstly, we have performed all the calculations in both unitary and
Feynman gauge, and verified that the results in both gauges are equal. This confirms
that the results we obtain are gauge invariant, and helps verify that the form of the
result is correct. Further, we have verified the UV finiteness of our result. Finally,
we have verified that the IR poles present in both terms of Eq. 4.1.4 cancel in the
sum of the two-body and three-body final-state decay rates.

Throughout this work we will also often refer to what we call the small-mass limit,
which we have already touched on in Section 3.5. In this limit we suppose that all
fermions (besides the top quark) have masses much less than the EW bosons (besides
the photon), and in taking this limit we retain only LO terms in the expansion in
light-fermion masses. We find that not only does this limit produce far simpler
analytical results whilst maintaining a high degree of accuracy to the full result, but
also provides some theoretical advantages over the full-mass-dependent result when
we introduce decoupling constants in Section 4.5.2.
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4.2 LO Calculation

We begin by considering the process h→ ff̄ at LO within the dimension-6 SMEFT.
While throughout this chapter we typically consider f ∈ {b, c, τ, µ}, at LO in the
dimension-6 SMEFT the results for all fermions are analogous. For this reason, the
results presented in this section apply to all massive SM fermions (except for the top
quark), where the result for a specific fermion is achieved with the corresponding
replacement of f , where f represents a generic fermion.

For this process, the LO diagrams appear at zeroth loop order. As was outlined
in Section 1.2, we therefore currently need not be concerned with UV divergences.
There is only one diagram that contributes to h → ff̄ at LO, which is shown in
Fig. 4.1. We may write the amplitude of this process in the form

iM(0) = −iū(pf )
(
M(0)

L PL +M(0)∗
L PR

)
v(pf̄ ) , (4.2.1)

where, analogously to Eq. 4.1.1, the superscript (0) represents that this amplitude oc-
curs at zeroth loop order. We also note that for this process the left- and right-handed
components of the amplitude are related via complex conjugation, i.e. M(0)

R =M(0)∗
L ;

a relation we have already used in Eq. 4.2.1. In the SM this is due to the Higgs
coupling equally to left- and right-handed fermions. In the dimension-6 SMEFT it
is possible for the Higgs to couple differently to LH and RH fermions, for example,
via off-diagonal elements of the class-5 operators seen in Table A.1. This property
does not affect the LO results and we are free to use thatM(0)

R =M(0)∗
L for the LO

SMEFT amplitude. At NLO in the dimension-6 SMEFT we must be more careful
when using MR = ML, so we examine some operators that potentially spoil this
relation in Section 4.3.1. At LO however, this allows us to simplify the calculation
by only having to calculate the components of the amplitude proportional to PL.
We further split upM(0)

L into its SM and dimension-6 components analogously to
Eq. 4.1.2 as

M(0)
L =M(4,0)

L +M(6,0)
L . (4.2.2)

Adopting the input scheme outlined in Section 3.2 we find

M(4,0)
L = mf

v̂T
,

M(6,0)
L = mf v̂T

[
CH� −

CHD
4

(
1− ĉ2

w

ŝ2
w

)
+ ĉw
ŝw
CHWB −

v̂T
mf

C∗fH√
2

]
. (4.2.3)

Despite the fact that the only SMEFT operators that directly generates the hff
vertex in Fig. 4.1 are the set of class-5 operators CfH of Table A.1, we see the
emergence of three other Wilson coefficients in Eq. 4.2.3. These are a result of both
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h

f

f̄

Figure 4.1: The only Feynman diagram contributing to h → ff̄ at
LO. In this diagram there is no visual distinction in the
vertex to signify a SM or dimension-6 contribution, with it
understood that both contributions are included.

the shifts in the Higgs doublet required to ensure canonical normalization as outlined
in Section 2.3.1, and due to the replacement of vT according to Eq. 3.2.6 to satisfy
our choice of input scheme.

To complete our analysis of this decay mode at LO, we must also calculate the
squared amplitude and perform the integral over phase space to find the LO decay
rate. The squared matrix element takes the form

|M(0)
L |

2 = |M(4,0)
L |2 +M(4,0)

L M(6,0)∗
L +M(6,0)

L M(4,0)∗
L +O

(
v̂4
T

Λ4
NP

)
, (4.2.4)

where the first term contributes to the SM decay rate, the second and third terms
contribute to the dimension-6 decay rate, and where we have been careful to neglect
the cross term between dimension-6 amplitudes which contributes at O(v̂4

T/Λ4
NP)

(formally, a dimension-8 contribution) and is thus ignored here. Details of the phase-
space integral for a 1→ 2 process may be found in Appendix B.1. We find that the
component contributions to the LO decay rate are

Γ(4,0)
f = N f

cmHm
2
fβ

3
f

8πv̂2
T

,

Γ(6,0)
f = 2Γ(4,0)

f

[
CH� −

CHD
4

(
1− ĉ2

w

ŝ2
w

)
+ ĉw
ŝw
CHWB −

v̂T
mf

Re(CfH)√
2

]
v̂2
T , (4.2.5)

where N f
c is a color factor such that N f

c = Nc = 3 for quarks, and N f
c = 1 for

leptons, and where

βf =

√√√√1− 4m2
f

m2
H

, for f 6= t , (4.2.6)

is a kinematic function arising from the phase-space integration.1 Note that the
function in Eq. 4.2.6 applies only to the light fermions, and we later define a similar

1Specifically, this function is related to the absolute velocity of the outgoing fermion in the rest
frame of the decaying Higgs as vf = mHβf/2.
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term for top quarks. The dimension-6 result is proportional to the SM result; this
is a result of the cross terms of the SM and dimension-6 amplitudes, i.e. the second
and third terms of Eq. 4.2.4. Together, the equations in Eq. 4.2.5 constitute all the
results of this decay mode at LO up to and including O

(
v̂2
T/Λ2

NP

)
.

4.3 NLO Calculation

In this section we discuss several technical aspects of the calculation of h → ff̄

at NLO in the dimension-6 SMEFT. We begin by considering the appropriateness
of the diagonal CKM approximation for these decay modes in both the SM and
the dimension-6 SMEFT in Section 4.3.1, and then discuss the construction of
the one-loop counterterm for these processes in Section 4.3.2. We then consider
several technical complications for the renormalization of these decay modes in the
dimension-6 SMEFT throughout Sections 4.3.3 to 4.3.5. Finally, we discuss the
construction of the NLO decay rate in Section 4.3.6.

4.3.1 Diagonal CKM Approximation

Before proceeding further with our discussion of the calculation of the decay rate for
the process h→ ff̄ we consider an effect that first emerges at NLO for this process,
that being the introduction of CKM-matrix elements, first discussed in Section 1.1.3.

While the inclusion of CKM elements beyond the approximation Vij ≈ δij can be of
paramount importance, for example in flavor physics, we explore the consequences
of such an approximation within the processes considered here. We can observe
the accuracy of this approximation by considering the form of the Wolfenstein
parameterization seen in Eq. 1.1.43. Considering the process h→ ff̄ at NLO in the
SM, while the majority of contributing diagrams are not a function of CKM elements,
for those that are it is always the product of two CKM elements. Restricting this
to the processes considered here, f ∈ {b, c, τ, µ}, the minimum off-diagonal CKM
suppression in the SM at NLO with our approximation of vanishing first-generation
fermion masses is brought to λ4 ≈ 2× 10−3 for both h→ bb̄ and h→ cc̄. Therefore,
within the SM, applying the diagonal CKM approximation for this process only
neglects terms which are highly suppressed.

From the above discussion, we see that the diagonal CKM approximation is accurate
within the SM. Before proceeding further with the corresponding calculations in the
dimension-6 SMEFT it is important to check that this approximation is still accurate.
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Figure 4.2: The two diagrams with minimum off-diagonal CKM sup-
pression for the process h → bb̄. Here, the "blob" vertex
represents the effective vertex generated only by the oper-
ators QuH

32
, QuH

23
, and their hermitian conjugates.

We first consider h→ bb̄, and for simplicity we work in unitary gauge.1 Here we find
that the minimum possible CKM suppression would arise from the diagrams seen
in Fig. 4.2. As seen in these diagrams, unlike in the SM, the dimension-6 SMEFT
generates couplings between the Higgs and fermion pairs of different flavor, in this
case a htc coupling. In the case of the diagrams seen in Fig. 4.2, this allows for the
generation of amplitudes which are a function of only a single off-diagonal CKM
element (rather than two as required in the SM), in this case arising from the Wcb
vertex. We find that diagrams of the form seen in Fig. 4.2 would enter the decay
rate and scale as

Γb,CKM-min ∼ λ2
(

Re
(
CuH

23

)
+ Re

(
CuH

32

))
, (4.3.1)

where Γb,CKM-min represents contributions to the decay rate from diagrams which give
the minimum possible off-diagonal CKM suppression (i.e. the diagrams in Fig. 4.2).
We consider the factor of λ2 ≈ 0.05 to be an appreciably large enough suppression
that we adopt the diagonal CKM approximation when considering h→ bb̄.

We next turn our attention to the process h → cc̄. Similarly to the approach
taken above when considering h → bb̄, in unitary gauge we consider the diagrams
that would lead to the minimum off-diagonal CKM suppression, which are found in
Fig. 4.3. We again find that these diagrams are a function of only a single off-diagonal
CKM element, and enter the decay rate for this process as

Γc,CKM-min ∼ λ

(
1− λ2

2

)(
Re

(
CdH

12

)
+ Re

(
CdH

21

))
. (4.3.2)

Here, the off-diagonal CKM element results in a smaller suppression, and therefore a
larger overall correction than that seen in the h→ bb̄ case, being approximately given

1In Rξ gauge, along with the contributions in Figs. 4.2 and 4.3 we also get similar contributions
from diagrams where we replace W with the charged Goldstone boson, φ, in Figs. 4.2 and 4.3.
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Figure 4.3: The two diagrams with minimum off-diagonal CKM sup-
pression for the process h → cc̄. Here, the "blob" vertex
represents the effective vertex generated only by the oper-
ators QdH

12
, QdH

21
, and their hermitian conjugates.

by λ(1−λ2/2) ≈ 0.21. In this instance it is therefore possible that the diagonal CKM
approximation may not be appropriate. To estimate the size of the contributions
that would be neglected in the diagonal CKM approximation, we calculate in full the
contributions to the decay rate from the diagrams in Fig. 4.3, with all parameters
renormalized in the MS scheme. Using the inputs found in Table 4.21 we numerically
find at µ = mH

Γc,CKM-min

Γ(4,0)
c

= v̂2
T

Λ2 (−4× 10−5)|Vcd||Vcs|Re
(
CdH

12

)

= v̂2
T

Λ2 (9× 10−6) Re
(
CdH

12

)
, (4.3.3)

where we have normalized the results by the LO SM results. Looking ahead, compar-
ing the result in Eq. 4.3.3 to the results in Eq. 4.6.7 we see that the result in Eq. 4.3.3
constitutes a tiny NLO correction.2 With this in mind, and considering that we
expect this correction to be the largest of those that are a function of off-diagonal
CKM elements, we conclude that the diagonal CKM approximation is also suitable
for the process h→ cc̄. Furthermore, considering the analytic form of the expression
producing Eq. 4.3.3, we find that the decay rate scales at LO in the small-mass
limit as ∼ m2

cms.3 We find that every other term in the small-mass limit scales as
either ∼ mc or ∼ m2

c , and so Γc,CKM-min is suppressed by an additional power of
light-fermion mass, explaining its small numerical size.

Finally, considering Higgs decay to lepton anti-lepton pair, it is clear that at NLO
1The values in this table include on-shell parameter values. We note however that the numerical

differences between on-shell parameter values and MS parameter values at µ = 125 GeV are
sufficiently small enough that they do not affect the conclusions of this illustrative analysis.

2In fact, it is smaller than even the smallest corrections observed when using the diagonal CKM
approximation by approximately an order of magnitude.

3One factor of mc is from the tree-level h→ cc̄ amplitude, while the additional factors of mc

and ms are due to these fields requiring chirality flips to ensure the correct handedness to interact
with the W -boson, and the correct handedness of the final-state particles.
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there are no contributions from CKM elements to any diagrams contributing to the
decay rate, and so the diagonal CKM approximation may be applied without neglect-
ing any terms. Furthermore, analogous reasoning to that presented throughout this
section tells us that with the diagonal CKM approximation, only diagonal elements
of the non-class-8 operators in Table A.1 contribute to the processes considered here.
This allows us to use the relationMR =M∗

L, introduced in Section 4.2, at NLO in
the dimension-6 SMEFT.

4.3.2 The One-Loop Counterterm

We first described the principle of UV renormalization of one-loop amplitudes in
Section 1.2.2. The techniques described throughout that section carry over analog-
ously to the dimension-6 SMEFT, where we now must include dimension-6 operator
contributions such that our results are now a function of Wilson coefficients. In
summary, we are required to take the mass-basis dimension-6 SMEFT in our chosen
input scheme, described throughout Section 2.3 and Section 3.2, and replace the
bare input parameters with renormalized parameters and counterterms. These re-
placements, which also apply to the dimension-6 SMEFT, are given by Eqs. 1.2.9
and 1.2.10, and the Wilson coefficient replacements can be found in Eq. 2.1.12. We
must then calculate all resulting diagrams at NLO in perturbation theory, these
being the bare one-loop diagrams and tree-level counterterm diagrams, where the
counterterms are evaluated after calculating a set of two-point functions. The NLO
corrections may therefore be split as

M(1)
f =M(1),bare

f +MC.T.
f , (4.3.4)

where M(1),bare contains the set of bare one-loop diagrams, and MC.T. contains
all diagrams with counterterm insertions. The diagrams contributing to M(1),bare

f

are too numerous to report in this thesis in full, however, we give some subsets
of diagrams in Section 4.4.3 and Appendices C.1 and C.2. We also note that all
diagrams in unitary gauge also contribute in Feynman gauge (albeit with differing
analytical contributions), however, in Feynman gauge there are also contributions
from diagrams with ghost fields and Goldstone bosons on the internal lines. The
diagrams contributing toMC.T.

f can be found in Fig. 4.4. Analogously to Eq. 4.2.1,
we may split our counterterm amplitude into left- and right-handed components as

iMC.T.
f = −iū(pf )

(
δMf,LPL + δM∗

f,LPR
)
v(pf̄ ) , (4.3.5)

where we have carried over the property ofMR =M∗
L to the counterterms. Simil-

arly to what we saw in Section 4.2 we can actually describe all light fermion flavors
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Figure 4.4: The four counterterm diagrams contributing to the process
h → ff̄ at NLO. Here, a cross represents a counterterm
insertion. Diagrams (1-3) represent wavefunction renor-
malization counterterms, while Diagram (4) represents a
vertex counterterm. The counterterms include both SM
and dimension-6 SMEFT contributions.

simultaneously in the construction of the matrix element counterterm, again repres-
enting all light fermions flavors generically with f . Note however, that although all
fermions may be treated in this way generally, the specific form of each individual
counterterm, for example δmf , may differ. We split our matrix element counterterm
into a SM and dimension-6 component according to

δMf,L = 1
16π2

(
δM(4)

f,L + δM(6)
f,L

)
, (4.3.6)

and similarly for the constituent counterterms

δZ = 1
16π2

(
δZ(4) + δZ(6)

)
, (4.3.7)

where Z denotes any parameter requiring renormalization. Note that as the Wilson
coefficient counterterms, δCi, contain only dimension-6 contributions we do not dis-
tinguish these with a (6) superscript. We then find that the dimension-4 contribution
to the matrix element counterterm is

δM(4)
f,L = mf

v̂T

δm(4)
f

mf

− δv̂
(4)
T

v̂T
+ 1

2δZ
(4)
h + 1

2δZ
(4),L
f + 1

2δZ
(4),R∗
f

 , (4.3.8)

while the dimension-6 matrix element counterterm is given by

δM(6)
f,L =mf

v̂T

δm(6)
f

mf

− δv̂
(6)
T

v̂T
+ 1

2δZ
(6)
h + 1

2δZ
(6),L
f + 1

2δZ
(6),R∗
f


+M(6,0)

f,L

δm(4)
f

mf

+ δv̂
(4)
T

v̂T
+ 1

2δZ
(4)
h + 1

2δZ
(4),L
f + 1

2δZ
(4),R∗
f
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− v̂2
T√
2
C∗fH

δv̂(4)
T

v̂T
−
δm

(4)
f

mf

+mf v̂T

[
CHWB + ĉw

2ŝw
CHD

]
δ

(
ĉw
ŝw

)(4)

+mf v̂T

(
δCH� −

δCHD
4

(
1− ĉ2

w

ŝ2
w

)
+ ĉw
ŝw
δCHWB −

v̂T
mb

δC∗fH√
2

)
, (4.3.9)

where we have defined
δv̂T
v̂T
≡ δMW

MW

+ δŝw
ŝw
− δe

e
, (4.3.10)

and also made use of the definitions of ĉw and ŝw in Eq. 3.2.5 to find

δŝw
ŝw

= − ĉ
2
w

ŝ2
w

(
δMW

MW

− δMZ

MZ

)
, δ

(
ĉw
ŝw

)(4)

= − 1
ĉwŝw

(
δŝ(4)

w

ŝw

)
. (4.3.11)

As the Wilson coefficient counterterms in Eq. 4.3.9 are those of a bottom-up EFT
we are constrained to define these terms in the MS scheme only. As discussed
in Section 2.1.2 we can recover the Wilson coefficient counterterms according to
Eq. 2.1.17, which we rewrite here

δCi = 1
2εγijCj = 1

16π2
1
2εĊi . (4.3.12)

The form of γij were calculated in [63,130,131] and we make use of these results to
find the form of δCi.

Eqs. 4.3.8 and 4.3.9 are valid for counterterms defined in both the on-shell and MS
schemes. In the on-shell scheme, the constituent counterterms, such as δmf , are
determined by calculating the functions found in Eqs. 1.2.16 to 1.2.18 using the
appropriate two-point functions, as described throughout Section 1.2.2, which as
we have noted equally applies to the dimension-6 SMEFT. The only exception is
the electric charge counterterm which, in the form presented in Eq. 1.2.21, does not
apply to the dimension-6 SMEFT, a point which is addressed in Section 4.3.3.

We will find throughout this work that is is useful for us to be flexible with which
renormalization scheme we adopt for different parameters. Where necessary, we
distinguish parameters in the on-shell scheme from those in the MS scheme through
the notation

XO.S. = X(0) + δXO.S. ,

X(µ) = X(0) + δX(µ) , (4.3.13)

where O.S. indicates the on-shell scheme and we have made the µ dependence in
the MS parameterX(µ) explicit. As discussed in Section 1.2.2, the counterterms in
the two schemes have the same UV divergences, but differ in the finite parts: the
UV-finite part is set to zero in the MS scheme, making the counterterms purely
UV-divergent. We can therefore facilitate conversion between the MS and on-shell
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schemes by writing

X = X(0)
(

1 + δXdiv.

X
+ cX

δXO.S.,fin.

X

)
, (4.3.14)

where the notation splits the counterterm into UV-divergent (δXdiv.) and UV-finite
(δXfin.) pieces. Results in the on-shell scheme are picked out by setting cX = 1, while
cX = 0 picks out the MS scheme. This notation allows us to suppress the extra labels
in Eq. 4.3.13 and refer instead to a generic quantity X, with the understanding that
the renormalization scheme can be specified by adjusting the value of cX and the
numerical value of X appropriately.

4.3.3 Electric Charge Renormalization

The dimension-4 and dimension-6 one-loop counterterms found in Eq. 4.3.8 and
Eq. 4.3.9 respectively are functions of the electric charge counterterm through the
object δv̂T . We have seen the form of the electric charge counterterm in the SM in
Eq. 1.2.21. Adapting this equation to the notation adopted throughout this section
it takes the form

δe(4)

e
= 1

2
∂ΣAA(4)

T (k2)
∂k2

∣∣∣∣∣∣
k

2=0

−
(v(4)
f − a

(4)
f )

Qf

ΣAZ(4)
T (0)
M2

Z

, (4.3.15)

where again, the (4) superscript refers to dimension-4 contributions. As we saw
in Section 1.2.2, although the electric charge counterterm is a vertex counterterm,
we may express it as a function of two-point functions (as in Eq. 4.3.15) by taking
advantage of the Ward identities of the SM. We note again here that v(4)

f − a
(4)
f =

Qf ŝw/ĉw, such that Eq. 4.3.15 is independent of the fermion flavor used to derive
this expression.

To renormalize h→ ff̄ in the dimension-6 SMEFT we similarly need an expression
for the dimension-6 component of the electric charge counterterm, δe(6). We begin
by considering a naïve extension of Eq. 1.2.21 to O(v̂2

T/Λ2
NP). Such an expression

takes the form

δe(6)

e
= 1

2
∂ΣAA(6)

T (k2)
∂k2

∣∣∣∣∣∣
k

2=0

−
(v(4)
f − a

(4)
f )

Qf

ΣAZ(6)
T (0)
M2

Z

−
(v(6)
f − a

(6)
f )

Qf

ΣAZ(4)
T (0)
M2

Z

.

(4.3.16)

Next we consider the contributions to (v(6)
f − a

(6)
f ) from the class-7 operators CHf .
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For these operators we find

v
(6)
f,CHf

= −a(6)
f,CHf

= CHf
v̂2
T

4ĉwŝw
, (4.3.17)

such that (
v

(6)
f,CHf

− a(6)
f,CHf

)
= CHf

v̂2
T

2ĉwŝw
. (4.3.18)

The results in Eq. 4.3.17 are due to the class-7 operator CHf producing a coupling
between the Z-boson and right-handed fermions (without a similar such coupling
to left-handed fermions), producing vector and axial-vector couplings of equal mag-
nitude but opposite sign – a feature not observed in the SM. We also encounter a
problem due to these results, this being that Eq. 4.3.18 implies that the electric
charge counterterm is dependent on the fermion flavor used to calculate the coun-
terterm through the Wilson coefficient CHf . Such a result is clearly incompatible
with charge universality.

Instead, we may determine the correct form of the dimension-6 electric charge
counterterm by renormalizing the ffγ vertex directly. By explicit calculation, we
find that this counterterm, which is built from three-point functions, may also be
written similarly to the expression in Eq. 4.3.15, that is, as a sum of the A−A and
A− Z two-point functions

δe(6)

e
= 1

2
∂ΣAA(6)

T (k2)
∂k2

∣∣∣∣∣∣
k

2=0

+ 1
M2

Z

(
ŝw
ĉw

ΣAZ(6)
T (0)− v̂2

T

4ĉwŝw
CHDΣAZ(4)

T (0)
)
, (4.3.19)

such that in the dimension-6 SMEFT, like for the SM, all constituent counterterms
in the matrix element counterterm of Eq. 4.3.9 can be constructed by considering
only two-point functions. Fortunately, we find that the expression in Eq. 4.3.19 is
also independent of fermion flavor, f . An important check on this expression is
that the UV poles in the NLO decay amplitude cancel once it is used, which we
have verified. Rather than inferring the form of the electric charge counterterm in
Eq. 4.3.19 from three-point functions, as was done here, it should be possible to find
its form in a similar way to the expression in Eq. 4.3.15 by using the dimension-6
SMEFT EW Ward identities, which were recently described in [132], although such
a derivation is not the focus, and therefore not explored in this work.

4.3.4 Higgs-Z Mixing

A subset of the dimension-6 SMEFT operators of Table A.1 are associated with
complex Wilson coefficients, specifically, the operators of classes 5, 6 and select
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Figure 4.5: Diagrams contributing to h→ ff̄ from Higgs mixing to (1)
Z-boson (Rξ gauge and unitary gauge), and (2,3) neutral
Goldstone boson (Rξ gauge only). The loops get contri-
butions from all massive SM fermions, denoted by f ′ to
distinguish them from the final-state fermions, f .

operators of classes 7 and 8. While the imaginary components of these Wilson
coefficients are absent from the expressions for decay rates and other observables
(a necessity of measurable quantities), they appear at the amplitude level in NLO
calculations, and introduce complications to the renormalization process that are
absent in the SM. Of particular importance to the process h→ ff̄ considered here
is the mixing of the Higgs, h, with the longitudinal component of the Z-boson (in
both Rξ and unitary gauge), and with the neutral Goldstone boson, φ0, (only in
Rξ gauge) at the one-loop level. As we explored in Section 1.1.2, the Higgs, h,
and neutral Goldstone boson, φ0, are the real and imaginary parts of the neutral
component of the complex Higgs doublet respectively, after EWSB. As such, any
mixing between the two fields must be mediated by a complex coupling, a feature
which is absent in the mass-basis SM. In the dimension-6 SMEFT, however, such
a complex coupling exists due to the class-5 operators of Table A.1. As a result,
there is a purely imaginary contribution to the NLO amplitude of h→ ff̄ from the
diagrams shown in Fig. 4.5. The sum of these diagrams yields a gauge-invariant
result proportional to

η5 =
√

2
v̂T

Im
Nc

∑
di

mdi
CdiH −Nc

∑
ui

mui
CuiH +

∑
`i

m`i
C`iH

 , (4.3.20)

where the summations represent a sum over down-type, up-type and leptonic fermi-
ons. The loop integrals multiplying η5 contain UV divergences, which are exactly
canceled by a corresponding term also proportional to η5 in the Wilson coefficient
counterterm δCfH in Eq. 4.3.9. We note that although the diagrams in Fig. 4.5 are
essential to the UV renormalization of the process h → ff̄ at the amplitude level,
their purely-imaginary contribution ultimately results in their cancellation upon
squaring the full matrix elements, and therefore does not contribute to the decay
rate.

While in the unbroken phase it is unambiguous that the η5 term arises from mixing
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of real and imaginary parts of the complex Higgs doublet, in the broken phase the
exact origin (but not the result itself) depends on the gauge: in unitary gauge it
is due entirely to Higgs mixing with the longitudinal component of the Z-boson,
while in Rξ gauge it is due to the sum of graphs containing Z and neutral Goldstone
bosons.

4.3.5 Tadpoles

As discussed in Section 1.2.3, tadpole renormalization forms an important component
of NLO calculations, especially if one is concerned with gauge-invariant counterterms
and retaining gauge invariance in processes where not all parameters are renormalized
in the on-shell scheme – two properties which we wish to preserve in this work. To
summarize the results of Section 1.2.3, we can consistently renormalize tadpole
corrections, while also ensuring that counterterms relating to observable quantities
are gauge invariant by employing the FJ tadpole scheme. Additionally, we saw that
the FJ tadpole scheme was equivalent to a scheme where tadpoles are not explicitly
renormalized and where the real part of the lower component of the Higgs doublet
takes the form of the Higgs field plus the LO Higgs vev, which in the dimension-6
SMEFT is given by h + vT . Taking advantage of this equivalence means that we
can easily calculate amplitudes with consistently renormalized tadpoles and gauge-
invariant counterterms by simply including tadpole corrections in all diagrams at
the appropriate order in perturbation theory.
As discussed in Section 1.2.3, while tadpole corrections to individual terms cancel
between one another in a renormalized amplitude when employing a purely on-shell
scheme, in a scheme in which some parameters are renormalized in the MS scheme,
it is only the UV-divergent components of the tadpoles that cancel between terms.
Therefore, in a such a hybrid renormalization scheme, some finite components of
tadpoles remain and must be included in NLO corrections to arrive at a gauge-
invariant result.
As shown in [38], the FJ tadpole scheme applies to extensions of the SM without
any essential complications. We therefore use this scheme for our NLO calculations
within the dimension-6 SMEFT, specifically by applying the equivalent scheme in
which tadpoles are not renormalized. This latter approach is particularly convenient
as we do not need to explicitly include tadpole counterterms in the already lengthy
expression for the matrix element counterterms in Eqs. 4.3.8 and 4.3.9. We therefore
only need to include tadpole topologies in all n-point amplitudes that enter our
calculation up to mass dimension 6.
Within the SM, for the processes h → ff̄ , tadpole contributions appear only in
the two-point functions required for the calculation of counterterms, as seen in
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Figure 4.6: NLO tadpole diagrams which appear in our calculations.
The "blob" vertex represents all bare one-loop contribu-
tions. In addition to contributions to two-point func-
tions of (1) the fermion, f , (2) vector bosons, where
IJ = γγ, γZ,WW,ZZ, and (3) the Higgs, the contribu-
tions to the h → ff̄ matrix element shown in (4) appear
through the dimension-6 operator QfH and its hermitian
conjugate. In each case the diagram factorizes into the
product of the tadpole function in (5), a Higgs propag-
ator, a Higgs coupling to the tree-level diagram, and the
tree-level diagram itself.

Diagrams (1-3) of Fig. 4.6. In the dimension-6 SMEFT, tadpole contributions
enter not only in the two-point functions, but also in the bare matrix elements
through the diagram seen in Diagram (4) of Fig. 4.6. The tadpole function, shown
diagrammatically in Diagram (5) of Fig. 4.6 is the dimension-6 extension of the
tadpole function first explored in Section 1.2.3, such that it contains both SM and
dimension-6 contributions. Diagrams (1-4) of Fig. 4.6 may be written as a product
of the tadpole function in Diagram (5) of Fig. 4.6 and the corresponding tree-level
diagram, provided we also include the necessary Higgs coupling and propagator. We
may split the result of the tadpole function as

T = T (4) + T (6) , (4.3.21)

where the superscripts (4) and (6) represent the SM and dimension-6 contributions
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respectively. In unitary gauge we find

T (4)
un. = 1

32π2v̂T

6
(

1− 2ε
3

) [
2M2

WA0(M2
W ) +M2

ZA0(M2
Z)
]

+ 3m2
HA0(m2

H)− 8
∑
f

N f
cm

2
fA0(m2

f )
 , (4.3.22)

while in Feynman gauge

T
(4)
Feyn. = T (4)

un. + m2
H

32π2v̂T

[
2A0(M2

W ) + A0(M2
Z)
]
, (4.3.23)

where f refers to quarks (q) or charged leptons (l), where again N q
c = 3, N l

c = 1,
and where A0 is the scalar loop function introduced in Section 1.2.1

A0(M2) = M2
(

1
ε

+ ln
(
µ2

M2

)
+ 1

)
. (4.3.24)

For the dimension-6 contribution, in unitary gauge we find

T (6)
un. = v̂T

32π2


(
−6CH v̂2

T + 4CH,kin
m2
H

v̂2
T

)
A0(m2

H) + (24− 16ε)CHWM2
WA0(M2

W )

+ (3− 2ε)
[
CHD + 4(CHW ĉ2

w + CHB ŝ
2
w + ĉwŝwCHWB)

]
M2

ZA0(M2
Z)

+
∑
f

N f
c 2
√

2v̂Tmf (CfH + C∗fH)A0(m2
f )


+
[
CH,kin + v̂2

T

ĉw
ŝw

(
CHWB + ĉw

4ŝw
CHD

)]
T (4)

un. , (4.3.25)

and in Feynman gauge

T
(6)
Feyn. = T (6)

un. −
m2
H v̂T

16π2

(
2
v̂2
T

CH,kinA0(M2
W ) + CH�A0(M2

Z)
)

+
[
CH,kin + v̂2

T

ĉw
ŝw

(
CHWB + ĉw

4ŝw
CHD

)]
(T (4)

Feyn. − T
(4)
un.) , (4.3.26)

where CH,kin is defined in Eq. 2.3.6. The results throughout Eqs. 4.3.23 and 4.3.26
clearly demonstrate that tadpoles are gauge-dependent quantities in both the SM
and the dimension-6 SMEFT.

An interesting feature of the SMEFT is that, in contrast to the SM, tadpole diagrams
contribute to electric charge renormalization through the γγ two-point function.
These contributions are proportional to the hγγ coupling in the SMEFT, which is
induced by class-4 operators and involves the combination of Wilson coefficients

chγγ = CHB ĉ
2
w + CHW ŝ

2
w − CHWB ĉwŝw . (4.3.27)
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Direct calculation in unitary gauge of the piece of the electric charge counterterm
as described in section Section 4.3.3 yields the result

δe
(6)
4
e

= 1
16π2

[
chγγA0(m2

H) + 4ĉwŝwCHWB

(
4M2

W − 3A0(M2
W )
)]
− 2chγγ

v̂T
m2
H

T (4)
un. ,

(4.3.28)

where the subscript 4 indicates restriction to class-4 operators of Table A.1. The
term proportional to the SM tadpole function T (4)

un. arises through diagrams of the
type shown in Diagram (2) of Fig. 4.6 with IJ = γγ. In Feynman gauge the division
into tadpole and the remaining contributions instead reads

δe
(6)
4
e

= 1
16π2

[
chγγ

(
A0(m2

H) + 2A0(M2
W ) + A0(M2

Z)
)

+4ĉwŝwCHWB

(
4M2

W − 3A0(M2
W )
)]
− 2chγγ

v̂T
m2
H

T
(4)
Feyn. . (4.3.29)

Comparing Eq. 4.3.28 with Eq. 4.3.29 while making use of Eq. 4.3.23 shows that
these expressions are identical.

This example illustrates the general feature that parameter counterterms are gauge
invariant only after including tadpoles. The same is true of the sum of bare matrix
elements and wavefunction renormalization factors, which is also a gauge-invariant
object. The mechanism through which tadpoles ensure this gauge invariance is
non-trivial. For instance, in contrast to the SM, tadpoles contribute directly to bare
matrix elements through diagrams of the type shown in Diagram (4) of Fig. 4.6. They
also contribute to wavefunction renormalization of the fermion field, f . Evaluating
the tadpole contribution to the fermion self-energy shown in Diagram (1) of Fig. 4.6
and using it to extract the wavefunction renormalization factor using the form of
the expression for δZL

f in Eq. 1.2.9, we find

δZL
f,tad. = − i

√
2v̂2

T

m2
Hmf

Im(CfH)T (4) , (4.3.30)

where T is the tadpole function in the chosen gauge. While this purely-imaginary
contribution drops out of the NLO decay rate, it is needed to ensure gauge invariance
of the sum of the NLO matrix element and the wavefunction renormalization factors,
and also plays a role in the cancellation of tadpoles in the on-shell scheme.

These examples illustrate that while the treatment of tadpoles in the SMEFT is con-
ceptually the same as in the SM, the exact structure of tadpoles in the diagrammatic
calculations is more involved. We have calculated all tadpole contributions to the
bare matrix elements and counterterms appearing in the h→ ff̄ decay amplitude
at NLO in unitary gauge and in Feynman gauge, and confirmed that the gauge
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dependence in the tadpole functions cancels against that in other diagrams, such
that the counterterms for mass and electric charge renormalization, as well as the
sum of the bare matrix element and the wavefunction renormalization factors, are
separately gauge invariant. We have also confirmed that tadpoles completely cancel
when all parameters are renormalized in the on-shell scheme.

4.3.6 The NLO Decay Rate

In Section 4.1 we saw that the calculation of the decay rate at NLO involves the
squaring and integrating over phase space of the matrix elements of h → ff̄ and
h → ff̄(g, γ) calculated at the same order in perturbation theory. For the virtual
NLO corrections we again must first calculate the squared matrix element

|Mf,L|2,(1) =M(4,0)
f,L M

(4,1)∗
f,L +M(4,1)

f,L M
(4,0)∗
f,L

+M(4,0)
f,L M

(6,1)∗
f,L +M(4,1)

f,L M
(6,0)∗
f,L +M(6,0)

f,L M
(4,1)∗
f,L +M(6,1)

f,L M
(4,0)∗
f,L

+O
(
v̂4
T

Λ4
NP

)
, (4.3.31)

where |Mf,L|2,(1) represents only the NLO components of |Mf,L|2. In Eq. 4.3.31 we
have again been careful to only keep terms at NLO in the perturbative expansion
parameter, and of mass dimension 6, such that each term in Eq. 4.3.31 is a function
of exactly one Wilson coefficient.

Similarly we must find the squared matrix element of the corresponding process with
a real emission of a single photon or gluon

|Mh→ff̄(g,γ)|
2 =M(4,0)

h→ff̄(g,γ)M
(4,0)∗
h→ff̄(g,γ) +M(4,0)

h→ff̄(g,γ)M
(6,0)∗
h→ff̄(g,γ)

+M(4,0)∗
h→ff̄(g,γ)M

(6,0)
h→ff̄(g,γ) +O

(
v̂4
T

Λ4
NP

)
, (4.3.32)

where, like in the h → ff̄ case,M(i,j)
h→ff̄(g,γ) denotes dimension-i component at jth

order in perturbation theory. Note however, using QED as an example, that for
h→ ff̄ at LO in perturbation theory the matrix element is of order α1/2, and at NLO
in perturbation theory is of order α3/2, whereas for h → ff̄γ, LO in perturbation
theory is of order α. Therefore, the terms in Eq. 4.3.31 and Eq. 4.3.32 occur at the
same order in the expansion of α.

With these squared matrix elements now calculated, finally we must sum over final-
state spins and polarizations (where applicable) and calculate the corresponding 2-
body and 3-body phase-space integrals, details of which can be found in Appendix B.
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4.4 Select Analytic Results

In this section we examine a subset of the results of the NLO calculation. The results
for the LO calculation are reported in Eq. 4.2.5. The results presented in this section
are chosen to highlight theoretical aspects of the calculation that have not been
addressed thus far, and in the case of the results reported in Sections 4.4.1 and 4.4.2,
to examine sources of NLO enhancements, which we address in Section 4.5.1.

To simplify the results reported in this section we split the real, finite parts of the
on-shell counterterms related to fermion mass and electric charge renormalization
into contributions from QED-QCD corrections, large-mt corrections, and remaining
corrections (a split introduced in Section 4.1) according to

Re
(
δm

(i),O.S.,fin.
f

)
mf

= δf
(i)
(g,γ) + δf

(i)
(t) + δf

(i)
(rem.) ,

Re
(
δe(i),O.S.,fin.

)
e

= δe
(i)
(g,γ) + δe

(i)
(t) + δ

(i)
(rem.) , (4.4.1)

where the superscript i refers to dimension-i contributions. We note that contribu-
tions to the top line of Eq. 4.4.1 vary according to the fermion flavor, while charge
universality ensures that contributions to the bottom line of Eq. 4.4.1 are the same
for each process considered here.

Finally, the decay rates reported in this section are observable quantities and there-
fore are necessarily entirely real. To simplify notation, throughout this section, and
for the remainder of this work, all Wilson coefficients are assumed to be only the
real components, i.e. Ci = Re (Ci).

4.4.1 QED-QCD Results and IR Renormalization

In this section we report the QED-QCD results. As noted in Section 4.1, the QED-
QCD results are defined to be those originating from any virtual-correction diagram
with a photon or gluon on an internal line, or any real-emission diagram with a
photon or gluon in the final state. As we will see in Section 4.5.1, not only do these
results constitute large NLO corrections to processes involving final-state quarks
due to large QCD corrections, but large logarithmic corrections will motivate us to
carefully consider our choice of renormalization scheme in Section 4.5.1. Additionally,
IR poles emerge from some virtual-correction diagrams featuring the exchange of a
photon or gluon, and from diagrams with final-state radiation. In the latter case, IR
poles emerge specifically in the soft-radiation limit, that being when the momentum
of the final-state radiation particle approaches zero. In such a scenario the process
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with final-state radiation is indistinguishable from the corresponding process without
final-state radiation.

There is only a small set of diagrams contributing to this subset of the NLO cor-
rections; the diagrams are reported in Appendix C.1, where the QED diagrams can
be found in Fig. C.1, while the QCD diagrams can be found in Fig. C.2. Note
that corrections from photon and gluon two-point functions are not present due to
our definition of QED-QCD corresponding to diagrams with photons or gluons only
on internal lines. From direct calculation, we find that diagrams that lead to IR
poles are only those that are "SM like", by which we mean the diagrams take the
same form as the diagrams found in the SM, but with a single dimension-6 operator
insertion. For both QED and QCD this amounts to Diagrams (v1), (r1), and (r2)
in Figs. C.1 and C.2. The details of how to calculate the phase-space integrals for
3-body final-state diagrams is outlined in Appendix B.2.1, while details on how to
separate the IR pole in such calculations is outlined in Appendix B.2.2. An inter-
esting feature of computing phase-space integrals in d = 4 − 2ε dimensions is the
necessary shift in the definitions of the couplings, first seen in Eq. 1.2.4. This shift
results in additional O(ε) terms multiplying the 1/ε IR poles to produce numerically
significant additional finite terms. As UV poles only exist in the virtual corrections,
which are removed at the level of the amplitude, analogous finite pieces due to UV
poles do not exist.

Comparing the diagrams across Figs. C.1 and C.2, we observe a great deal of simil-
arity between the QED and QCD contributions. In fact, the QCD results may be
entirely inferred from a subset of the QED results by making the necessary changes
in coupling constants etc. There are, however, diagrams contributing to the QED
corrections which have no analogue in QCD, these being the diagrams containing a
hγZ vertex seen in Diagrams (v5), (v6) and (r5) of Fig. C.1.

We now report the QED-QCD results for the processes considered here. In fact,
besides the subset of processes h→ ff̄ where f ∈ {b, c, τ, µ}, these results extend
to all massive SM fermion flavors, except for f = t. We have additionally verified
the UV and IR finiteness of the results after summing all contributions from the
diagrams found in Figs. C.1 and C.2. Here, for brevity, and for reasons that will
become clear in Section 4.5.2, we report these results in the small-mass limit, while
keeping leading-order pieces in the light-fermion masses, mf , in this limit. The
QED-QCD results with full fermion mass dependence can be found in Appendix E.1.
As noted in Section 4.3.2 we are able to renormalize all input parameters except
the Wilson coefficients in the on-shell scheme, and the strong coupling constant is
necessarily the MS parameter. For brevity, we simply refer to decay rates calculated
in this way as the on-shell scheme decay rates. We write the results in such a way
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that it is easy for the reader to convert between this scheme, and a scheme in which
the light-fermion masses and electric charge are renormalized in the MS scheme. We
refer to this latter scheme where the electric charge and light-fermion masses (as
well as the Wilson coefficients) are renormalized in the MS scheme as the hybrid
renormalization scheme.

Before presenting these results we introduce some notation. For the decay rates we
distinguish between the on-shell scheme and the hybrid renormalization scheme as
follows: the decay rate without a bar, Γ, represents the on-shell scheme decay rate,
while the decay rate with a bar, Γ, represents the hybrid renormalization scheme
decay rate. As discussed at the end of Section 4.3.2, where the quantities α and
mf occur we suppress the explicit notation denoting whether these parameters are
on-shell or MS renormalized. For NLO corrections, the renormalization scheme of
these parameters is implied through the choice of cX . For the LO results, the choice
of Xo.s orX for X ∈ {mf , α} is implicit through the presence (or lack thereof) of a
bar on the corresponding decay rate.

The NLO QED-QCD corrections in the SM may be written

Γ(4,1)
f,(g,γ) = Γ(4,1)

f,(g,γ) + 2cmfΓ
(4,0)
f δf

(4)
(g,γ) , (4.4.2)

where here and throughout this section Γ(i,0)
f are the small-mass limit versions of

Eq. 4.2.5, found by replacing in βf → 1 in that equation. We also find the δf (4)
(g,γ) in

Eq. 4.4.2 takes the form

δf
(4)
(g,γ) =

(
δf,qCFαs +Q2

fα

π

)[
1 + 3

4 ln
(
µ2

m2
f

)]
, (4.4.3)

where δf,q = 1 if f is a quark, and δf,q = 0 if f is a lepton. Similarly, the dimension-6
SMEFT results take the form

Γ(6,1)
f,(g,γ) = Γ(6,1)

f,(g,γ) + 2cmfΓ
(4,0)
f δf

(4)
(g,γ)

CfH v̂2
T√

2
v̂T
mf

+
Γ(6,0)
f

Γ(4,0)
f

 , (4.4.4)

where we have also used that δf (6)
g,γ = 0 in the small-mass limit, contrary to what is

seen for full mass dependent results in Eq. E.1.4. The main results of this section
are then

Γ(4,1)
f,(g,γ) = Γ(4,0)

f

(
δf,qCFαs +Q2

fα

π

)[
17
4 + 3

2 ln
(
µ2

m2
H

)]
,
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Γ(6,1)
f,(g,γ) = Γ(6,0)

f

Γ(4,1)
f,(g,γ)

Γ(4,0)
f

+ v̂2
T

π
Γ(4,0)
f

×
{

m2
H√

2v̂Tmf

(
δf,q

CF
gs
αsCfG + Qf

e
α
(
CfB ĉw + 2T 3

fCfW ŝw
))

+
(
δf,qCFαsCHG +Q2

fα chγγ
) [

19− π2 + ln2
(
m2
f

m2
H

)
+ 6 ln

(
µ2

m2
H

)]

+ chγZ vfQfαFhγZ

(
M2

Z

m2
H

,
µ2

m2
H

,
m2
f

m2
H

)}
, (4.4.5)

where vf = (T 3
f − 2Qf ŝ

2
w)/(2ŝwĉw) is the vector coupling of f to the Z-boson, T 3

f is
the weak isospin of fermion,1 chγγ was defined in Eq. 4.3.27, and where

chγZ = 2 (CHB − CHW ) ĉwŝw + CHWB

(
ĉ2
w − ŝ2

w

)
, (4.4.6)

is the combination of Wilson coefficients entering the hγZ dimension-6 SMEFT
vertex, seen in Diagrams (v5), (v6) and (r5) of Fig. C.1. In Eq. 4.4.5 we also
introduce the function FhγZ which accompanies the vertex function chγZ and in the
small-mass limit is given by

FhγZ
(
z, µ̂2, 0

)
= −12 + 4z − 4

3π
2z̄2 +

(
3 + 2z + 2z̄2 ln(z̄)

)
ln(z)

+ 4z̄2Li2(z)− 6 ln(µ̂2) , (4.4.7)

where
z̄ = 1− z . (4.4.8)

An interesting feature of Eq. 4.4.5 is the double logarithm in the ratio m2
f/m

2
H

multiplying CHG and chγγ . In the SM, logarithms of this type first appear at NNLO,
and are related to diagrams where the Higgs couples to a top-quark loop which
in the large-mt limit can be shrunk to an effective hAA vertex, where A = γ, g,
multiplied by an mt-dependent matching coefficient. These SM corrections, not
only the logarithms but also the finite parts, are thus proportional to the SMEFT
corrections given above (see for instance Eq. (8) of [133]). As noted already in [134],
these double logarithms cancel against corresponding terms in the h → AA decay
rate, such that total Higgs decay width remains finite in the limit of vanishing
fermion masses. In a less inclusive quantity such as h→ ff , they introduce sizeable
flavor-dependent contributions to the decay rate, even though they multiply flavor-
universal Wilson coefficients. We return to this issue when studying ratios of decay
rates in Section 4.7.

1These weak isospins differ between up-type quarks, down-type quarks and leptons as T 3
u = 1

2 ,
T 3
d = T 3

` = − 1
2 .
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4.4.2 Large-mt Results and Input Scheme Revisited

In this section we report the results of the calculation in the large-mt limit. In this
limit we report the LO terms in mt. Like in the QED-QCD case in Section 4.4.1 we
may report these results in a single equation for all massive fermion flavors of the
SM, except for f = t.

As in the QED-QCD results in Section 4.4.1, we write these results in such a way that
it is simple to convert between the on-shell scheme and the hybrid renormalization
scheme. We also retain the general notation used throughout Section 4.4.1. To
emphasize the cancellation of tadpole corrections in the on shell scheme we write
the results in such a way that we give the full form of the on-shell results, rather
than the hybrid renormalization scheme results. We note that, again, throughout
this section we use that Γ(i,0)

f are the small-mass limit versions of Eq. 4.2.5. With
this in mind, the SM result may be written

Γ(4,1)
f,(t) = Γ(4,1)

f,(t) − 2c̄mf δf
(4)
t Γ(4,0)

f , (4.4.9)

where c̄X ≡ 1 − cX for X ∈ {mf , e}, such that the choice cX = 1 picks out the
hybrid renormalization scheme results. The dimension-6 SMEFT results are

Γ(6,1)
f,(t) = Γ(6,1)

f,(t) − 2Γ(4,0)
f

c̄mf
δf (6)

t + δf
(4)
t

(
CfH v̂

2
T√

2
v̂T
mf

)
+

Γ(6,0)
f

Γ(4,0)
f

+ c̄eδe
(6)
t

 .
(4.4.10)

The SM and dimension-6 SMEFT results in the on-shell scheme are then given by

Γ(4,1)
f,(t) = Γ(4,0)

f

(
−6δf,b +Nc

7− 10ĉ2
w

3ŝ2
w

)
m2
t

16π2v̂2
T

,

Γ(6,1)
f,(t) = Γ(6,0)

f

Γ(4,1)
f,(t)

Γ(4,0)
f

− 1
2Γ̇(6,0)

f,(t) ln
(
µ2

m2
t

)

+ Γ(4,0)
f

m2
t

16π2

{
CH�Nc

2 + 4ĉ2
w

3ŝ2
w

− CHD
(

3ĉ2
w

ŝ2
w

δf,b +Nc

1 + 2ĉ4
w

6ŝ4
w

)

+ CHWB

ĉw
ŝw

(
−12δf,b +Nc

5− 8ĉ2
w

3ŝ2
w

)
+ CfH√

2
v̂T
mb

(
−17

2 δf,b + 3Nc

1− 2ĉ2
w

ŝ2
w

)

+ 2C(3)
Hq

(
−δf,b +Nc

1− 2ĉ2
w

ŝ2
w

)}
. (4.4.11)

In Eq. 4.4.11 we have introduced δf,b, where δf,b = 1 for f = b and δf,b = 0 otherwise.
The presence of δf,b demonstrates the asymmetry that exists between results for
h → bb̄ and h → ff̄ for f being any of the remaining light fermions, in the large-
mt limit. The diagonal CKM matrix approximation, discussed in Section 4.3.1,
prevents coupling between quarks of different generations; this result therefore gives
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precedence to h→ bb̄ which now receives a greater number contributing diagrams in
the large-mt limit when compared to Higgs decay to other fermion pairs. This greater
number of diagrams contributing to h→ bb̄ extends to both the bare matrix elements,
and the two-point functions required for UV renormalization. For a diagram to
contribute in the large-mt limit it must feature a top-quark on an internal line.
All such diagrams for the processes considered here are found in Appendix C.2.
Diagrams that are unique to the process h→ bb̄ are found in Fig. C.3, while those
that apply to h→ ff̄ for all light fermions, f , including f = b, are found in Fig. C.4.
We see that all the diagrams in Fig. C.4 contain a closed top-quark loop, resulting
in all non-δf,b terms in Eq. 4.4.11 being proportional to Nc. We also see in Eq. 4.4.11
that the µ-dependence is governed by

Γ̇(6,0)
f,(t) ≡ Γ(6,0)

f

∣∣∣
Ci→Ċi,(t)

, Ċi,(t) ≡
dCi

d ln(µ)
∣∣∣
mt→∞

. (4.4.12)

We again note that although what we call the on-shell decay rates have all SM
parameters renormalized in the on-shell scheme, the Wilson coefficients are neces-
sarily renormalized in the MS scheme. It is for this reason that we have explicit
µ-dependent terms for the dimension-6 result in Eq. 4.4.11. The form of the Ċi,(t)
relevant to these results can be obtained from the results in [131] and read

ĊH�,(t) = 4m
2
t

v̂2
T
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33
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,
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√
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(
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ĊτH,(t) = 2m
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. (4.4.13)

We also here report the forms of δf (i)
(t) and δe(i)

(t) defined in Eq. 4.4.1. It is convenient
to further split these results into tadpole and non-tadpole contributions according
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to

δf
(i)
(t) = m2

t

16π2v̂2
T

(
δf̂

(i)
(t) + m2

t

m2
H
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,
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(
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δê
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)
. (4.4.14)

For the non-tadpole quantities we find
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while the tadpole contributions read

δf̂
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δê
(4)
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(t),tad. = 8Ncchγγ v̂
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(
1 + ln

(
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m2
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, (4.4.16)

where chγγ was defined in Eq. 4.3.27. We see in Eq. 4.4.16 that the general form of
δf(t),tad. is the same for all fermions, f , up to fermion masses and the flavor-dependent
Wilson coefficient CfH . From Fig. C.4 we see that this is a result of the form of the
large-mt tadpole corrections to the fermion mass counterterms being the same for
all fermions, with no unique contributions to h→ bb̄.

We conclude this section by revisiting the topic of input schemes, introduced in
Section 3.2. In that section, we stated that in the SM the choice of GF as an input
parameter leads to the cancellation of terms scaling like m2

t/M
2
W in some particular
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instances, and thus typically smaller NLO corrections. With the large-mt corrections
in our chosen input scheme, {α, MW , MZ}, (which we refer to as the α input scheme)
we investigate this feature in the dimension-6 SMEFT by comparing with the same
results using the input scheme {GF , MW , MZ} (which we refer to as the GF input
scheme). Large-mt results in the GF input scheme can be found in [119] for the
decay rates h → bb̄ and h → τ τ̄ . The same reference also gives NLO dimension-6
SMEFT corrections to the Fermi constant GF in the large-mt limit, allowing us
to cross-check the results found throughout this section, which we have performed.
Numerically, using the values in Table 4.2,1 GF = 1.17 × 10−5GeV −2, and setting
µ = mt we find in the SM for h→ bb̄ (and normalizing results to the LO SM decay
rate)

Γ(4,1),α
b,(t)

Γ(4,0),α
b,(t)

= −0.03 ,

Γ(4,1),GF
b,(t)

Γ(4,0),GF
b,(t)

= 0.0003 , (4.4.17)

where the superscripts α and GF denote results in the α and GF input schemes
respectively. For the remaining light fermions, f\b,2 we find

Γ(4,1),α
f\b,(t)

Γ(4,0),α
f\b,(t)

= −0.003 ,

Γ(4,1),GF
f\b,(t)

Γ(4,0),GF
f\b,(t)

= 0.007 , (4.4.18)

where we have used that the GF input scheme results for τ from [119] simply extend
to all remaining light fermions f\b. From Eq. 4.4.17 we see that indeed using the GF

input scheme reduces the size of the SM NLO corrections in the large-mt limit when
compared to the α input scheme for the decay mode h→ bb̄. However, the opposite
is true when we consider the Higgs decay to fermions pairs other than b-quarks,
where the corrections are generally of the same order of magnitude.

To perform an analogous analysis for the results in the dimension-6 SMEFT we first
define the dimensionless Wilson coefficients according to

C̃i(µ) ≡ Λ2
NPCi(µ) , (4.4.19)

1Similarly to the analysis performed in Section 4.3.1, the inputs in Table 4.2 are a mix of
on-shell and MS parameters. Again, the differences in results from using a parameter renormalized
in the incorrect scheme are small enough to ignore for the illustrative purposes of the analysis
performed here.

2Extending the discussion earlier in this section, we can consider that f\b actually applies to
all massive SM fermions except for the top and bottom quarks.
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so that we may write our results with a symbolic factor of v̂2
T/Λ2

NP ≈ 6% when
ΛNP = 1 TeV. Dropping the arguments of the Wilson coefficients, with it implicit
that they are evaluated at the scale µ = mt, we find for final state bb̄

Γ(6,1),α
b,(t)

Γ(4,0),α
b,(t)

= v̂2
T

Λ2
NP

{
− 0.05C̃(3)

Hq
33
− 0.03 v̂T

mb

C̃bH + 0.01C̃H� − 0.14C̃HD − 0.22C̃HWB

}
,

Γ(6,1),GF
b,(t)

Γ(4,0),GF
b,(t)

= v̂2
T

Λ2
NP

{
0.01C̃(3)

Hq
33
− 0.003 v̂T

mb

C̃bH + 0.01C̃H� − 0.003C̃HD − 0.0006C̃(3)
Hl
11

− 0.0006C̃(3)
Hl
22

+ 0.01C̃(3)
lq

1133
+ 0.01C̃(3)

lq
2233

+ 0.003C̃ ll
1221

+ 0.003C̃ ll
2112

}
,

(4.4.20)

while for the remaining light fermions, f\b, we find

Γ(6,1),α
f\b,(t)

Γ(4,0),α
f\b,(t)

= v̂2
T

Λ2
NP

{
− 0.04C̃(3)

Hq
33
− 0.01 v̂T

mf

C̃fH + 0.05C̃H� − 0.09C̃HD − 0.07C̃HWB

}
,

Γ(6,1),GF
f\b,(t)

Γ(4,0),GF
f\b,(t)

= v̂2
T

Λ2
NP

{
0.02C̃(3)

Hq
33
− 0.003 v̂T

mf

C̃fH + 0.05C̃H� − 0.01C̃HD − 0.05C̃(3)
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Hl
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lq

1133
+ 0.01C̃(3)

lq
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+ 0.02C̃ ll
1221

+ 0.02C̃ ll
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}
.

(4.4.21)

Note that in Eqs. 4.4.20 and 4.4.21 we have factored out the symbolic quantity
v̂T/mf from the coefficient of CfH , which we discuss further in Section 4.6.

From studying the results in Eqs. 4.4.20 and 4.4.21 we see that, in general, the GF

input scheme leads to smaller NLO corrections, however, it suffers from the problem
of introducing many more Wilson coefficients (10 in total in this example) than in
the α input scheme case (where there are 5 in total).

From this analysis, despite that in the α input scheme the large-mt NLO corrections
are larger than those found in the GF scheme, looking ahead to the LO numerical
results in Eq. 4.6.2 we see that these corrections are not anomalously large in either
renormalization scheme. Further, we see that the α input scheme also has the
advantage of introducing far fewer Wilson coefficients into the NLO corrections. For
these reasons we consider the α input scheme appropriate for the currently considered
decay modes and continue to use it throughout the rest of our analysis.

4.4.3 Four-Fermion Results

Unlike the results found in Sections 4.4.1 and 4.4.2, the four-fermion results are not
one of the subsets of results defined in Eq. 4.1.3, but are a subset of the results in
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h

f

f̄

f ′

f̄ ′

f f

f ′

(1) (2)

Figure 4.7: Diagrams showing (1) the virtual corrections to the h→ ff̄
matrix element due to four-fermion operators, and (2) the
corrections to the fermion two-point function from four-
fermion operators. Additionally f ′ can refer to any fermion,
including being the same type as the final state fermion, f .

Γ(1)
f,weak, and are also a combination of select results in Γ(1)

f,(t) and Γ(1)
f,(rem.). We list

these results to better understand the scaling of terms in the decay rates in terms of
powers of the fermion masses, which will become important to our numerical studies
in Section 4.6.1. The four-fermion contributions are from only a small number of
diagrams, which can be found in Fig. 4.7. As we see from this figure, there is only
one generic diagram topology that contributes to the bare matrix element, and only
one generic diagram topology that contributes to the fermion two-point function
required for renormalization of the fermion field normalization and mass.

Similarly to the large-mt results in Section 4.4.2, we write this decay rate as

Γ(6,1)
f,(4F) = Γ(6,1)

f,(4F) − 2Γ(4,0)
f cmf δf

(6)
(4F) , (4.4.22)

where the subscript (4F) indicates the four-fermion contributions, which in this
instance applies to the NLO decay rate and to δf defined in Eq. 4.4.1. As was
the case in Section 4.4.1, we report the results in the small-mass limit, for brevity,
and again for other reasons which will become clear in Section 4.5.2. Therefore,
throughout this section, Γ(i,0) from Eq. 4.2.5 are defined to be in the small-mass
limit also. For completeness, the four-fermion results while retaining full mass
dependence may be found in Appendix E.2.

The results for δf(4F) for each f under consideration here are
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. (4.4.23)
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Before presenting the decay rate we first introduce some functions used to simplify the
result. In cases where top-quark loops contribute, the results involve the functions

F8S

(
m2
t

m2
H

,
µ2

m2
H

)
= β2

t

(
2βtarccot (βt)− ln
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− 2

)
,
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,
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m2
H

)
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t

(
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t

)
+ 6

)
, (4.4.24)

where

βt ≡

√√√√4m2
t

m2
H

− 1 . (4.4.25)

Note that the form of βt in Eq. 4.4.25 differs from the form of βf for the light fermions
in Eq. 4.2.6. Contributions from other fermions involve the real part of the above
functions in the limit mt → 0, given by

F8S

(
0, µ

2

m2
H
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= 2 + ln
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m2
H

)
,

F8V

(
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= −6− 4 ln

(
µ2

m2
H

)
. (4.4.26)

The functions with subscripts 8V arise from four-fermion operators of the form
(L̄L)(R̄R) in Table A.1, whereas those with subscripts 8S arise from four-fermion
operators of the form (L̄R)(R̄L) or (L̄R)(L̄R) given in the last row of that table. In
terms of these functions, the result for h→ bb̄ reads
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For h→ cc̄ we find
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To simplify the results in Eqs. 4.4.27 and 4.4.28, we have used relations such as
C

(k)
qu

2332
= C

(k)†
qu

3223
(with k = 1, 8) which follow from the hermiticity of the SMEFT

Lagrangian. There are similar flavor-indices degeneracies for a large number of
flavor-dependent operators in Table A.1, and so we must choose a subset of Wilson
coefficients in which to express our results; in this work we choose to follow the
convention adopted by [135]. For h→ τ τ̄ we find
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Finally, for h→ µµ̄ we find
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Across the results in Eqs. 4.4.27 to 4.4.30, we find that contributions from top-quark
loops are enhanced by factors of mt/mf . If we impose MFV, the Wilson coefficients
multiplying these contributions scale with an additional factor of mf/v̂T , therefore
removing this large enhancement. Further, we see from the results in Eq. 3.5.8 that
for h→ cc̄ after imposing MFV the top-loop contributions are entirely removed.

4.5 Enhanced NLO Corrections and Decoupling
Relations

In this section we numerically examine some subsets of the results reported thus far.
In particular, we have not yet committed to any particular renormalization scheme,
instead choosing to write results in a way that allows us to easily switch between
schemes for a subset of parameters appearing in the LO decay rate. The size of
NLO perturbative corrections depend on the particular renormalization scheme one
employs, and it is important to reduce the size of NLO corrections to ensure good
convergence of the perturbative expansion. This makes the choice of renormaliza-
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tion scheme an important one. In Section 4.5.1 we asses two sources of enhanced
NLO corrections to the decay rate, while in Section 4.5.2 we introduce decoupling
relations as a way to combine QCD and EW NLO corrections to the processes
under consideration here while simultaneously removing parametrically-enhanced
corrections.

4.5.1 Structure of the NLO Decay Rate

Thus far, our results have been reported with some degree of flexibility regarding
the renormalization scheme – the results have been written such that it is easy for
the reader to convert between the on-shell and MS schemes for the electric charge
and final-state-pair masses. Here, we consider two sources of parametrically-large
NLO corrections to the LO decay rate and how the choice of renormalization scheme
affects these corrections.

We first consider the QED-QCD corrections reported in Section 4.4.1. It is easy to
identify that the logarithm (and in particular the double logarithm) of the small
ratio mf/mH in Eq. 4.4.5 could potentially lead to large NLO corrections. Keeping
only these logarithmic corrections we have
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π
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)
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H
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2
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)]
, (4.5.1)

which upon evaluating numerically using the parameter values listed in Table 4.2
and using µ = mH we find generically takes the form1
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)]
,

(4.5.2)

1The values in Table 4.2 include the light-fermion masses and electromagnetic fine structure
constant defined in the MS scheme, while the expression in Eq. 4.5.1 allows us to choose between
the on-shell scheme and MS scheme for these quantities. Similarly to the analyses performed in
Sections 4.3.1 and 4.4.2, the differences between the on-shell and MS inputs for these parameters
is small enough that using the MS input values from Table 4.2 does not significantly affect the
analysis performed here.
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Final state, f N f
HG N f

hγγ N f
O.S.

b 2.4 0.02 −0.5
c 4.6 0.11 −0.7
τ 0 0.18 −0.03
µ 0 0.51 −0.05

Table 4.1: The numerical values of Nf
HG, N

f
hγγ and Nf

O.S. defined in
Eq. 4.5.2 for final state fermions f ∈ {b, c, τ, µ}.

where the N f
i are numerical values which differ for each final state, and are reported

in Table 4.1.

Examining the values found in Table 4.1, we see that for processes involving final-state
quarks, the NLO QED-QCD corrections are dominated by the double logarithmic
term on the first line of Eq. 4.5.1, especially for the QCD component. As noted in
Section 4.4.1 this term does not appear at NLO in the SM, and in the dimension-6
SMEFT is of IR origin and cannot be removed through a choice of renormalization
scheme.1 It would need to be treated with QCD resummation techniques which we
do not explore here. For processes involving final-state leptons, we see from Table 4.1
that although the absence of QCD corrections reduces the overall size of contributions
related to the double logarithmic term, the small fermion masses (particularly for
the muon) still results in sizeable QED corrections. The single logarithmic term
in the second and third lines of (4.5.1) arises from the finite part of the fermion
mass renormalization counterterm in the on-shell scheme. For processes involving
final-state quarks, although this correction is not as large as the double logarithmic
term, it still contributes a sizeable correction of −50% and −70% to the LO result
for b-quark and c-quark final states respectively. For processes involving final-state
leptons, while these corrections are significantly smaller due to the absence of QCD,
the NLO corrections of −3% and −5% for final-state tau anti-tau pair and muon anti-
muon pair respectively are still large for QED corrections. These single logarithmic
corrections can be removed from the explicit NLO correction and resummed by
renormalizing the fermion masses in the MS scheme. We therefore conclude that to
best avoid enhanced NLO corrections of QED-QCD origin, we should renormalize
the fermion masses in the MS scheme, as is standard for SM calculations.

The second source of potentially large NLO corrections to the decay rate are weak
corrections enhanced by powers of m2

t/v̂
2
T , which appear in the object Γ(1)

f,(t), intro-

1This contribution arises from the interference of the SM amplitude with dimension-6 amplitudes
involving Hgg and Hγγ vertices. These vertices do not contain a Yukawa coupling, so the fact that
the contribution to the decay rate scales as m2

f is due to a chirality flip in the fermion propagator.
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duced in Eq. 4.1.3. We have reported explicit SM and dimension-6 results for Γ(1)
f,(t) in

Section 4.4.2, written in such a way that we may easily switch between the on-shell
scheme, and the hybrid renormalization scheme in which the fermion mass, mf , and
the electric charge, e, are renormalized in the MS scheme. The results in Section 4.4.2
show that in the hybrid renormalization scheme the dominant contributions are due
to tadpole corrections which scale as m4

t/(v̂2
Tm

2
H). As discussed throughout Sec-

tions 1.2.3 and 4.3.5, tadpole corrections cancel in a purely on-shell scheme, and so
the dominant results in the on-shell scheme instead scale as m2

t/v̂
2
T . We now consider

both the on-shell scheme, and the hybrid renormalization scheme numerically to
examine the size of these dominant large-mt NLO corrections. Keeping only leading
order terms in the large-mt limit, the hybrid renormalization scheme gives

Γ(4,1)
f,(t)

Γ(4,0)
f

≈ − Nc

2π2
m4
t

m2
H v̂

2
T

≈ −0.15 , (4.5.3)

which is valid for all light fermions due to this term arising from universal tadpole
corrections, and where we have used µ = mt. In the on-shell scheme we instead find

Γ(4,1)
b,(t)

Γ(4,0)
b

≈ m2
t

16π2v̂2
T

(
−6 +Nc

7− 10ĉ2
w

3ŝ2
w

)
≈ −0.03 ,

Γ(4,1)
f\b,(t)

Γ(4,0)
f\b

≈ m2
t

16π2v̂2
T

(
Nc

7− 10ĉ2
w

3ŝ2
w

)
≈ −0.01 . (4.5.4)

In the SM, from Eqs. 4.5.3 and 4.5.4 we see that in the hybrid renormalization
scheme, the large-mt corrections constitute an approximately −15% correction to
the LO decay rate, and thus anomalously large for a weak correction, while the
purely on-shell result gives an approximately −3% correction for h → bb̄ and an
approximately −1% correction for Higgs decay to all other light fermion pairs, in
line with what one typically expects from weak corrections.

For the dimension-6 SMEFT, the equivalent contributions in the hybrid renormaliz-
ation scheme read

Γ(6,1)
f,(t)

Γ(4,0)
f

≈ Ncv̂
2
T

2π2
m4
t

m2
H v̂

2
T

(
− 4CH� + CHD

(
1− ĉ2

w

ŝ2
w

)
− 2CHWB

ĉw
ŝw

(2− ŝ2
w)

− 2ĉ2
wCHB − 2ŝ2

wCHW +
√

2 v̂T
mf

CfH

)

≈ v̂2
T

Λ2
NP

(
− 0.59CH� − 0.37CHD − 0.99CHWB − 0.23CHB

− 0.07CHW + 0.21mf

v̂T
CfH

)
, (4.5.5)
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which again applies to all light-fermion final states. The result in the on-shell scheme
differs for a final-state b-quark pair compared to all other final-state light-fermion
pairs, and these results may be found in the first lines of Eq. 4.4.20 and Eq. 4.4.21
respectively. Comparing the results across Eqs. 4.4.20, 4.4.21 and 4.5.5 we see that,
like in the SM, the on-shell scheme results are significantly smaller, typically by
around a factor of between 2 and 10, depending on the Wilson coefficient. We
therefore conclude that in the dimension-6 SMEFT, like in the SM, the large-mt

NLO corrections are relatively smaller in the on-shell renormalization scheme.

While we have not explicitly demonstrated so here, it is clear that the on-shell
electric charge would result in large corrections also arising from logarithms involving
the light-fermion masses. It is possible to remove these contributions at NLO via
the choice of the effective on-shell fine structure constant, α(M2

Z),1 as an input
parameter [118]. However, for our purposes these corrections are also removed with
the choice of renormalizing this parameter in the MS scheme.

The conclusion we draw from the analysis seen throughout this section is that while
QED-QCD corrections (and terms arising from the electric charge renormalization)
are best behaved in the hybrid renormalization scheme, the EW corrections are best
behaved in a purely on-shell scheme, where sizeable tadpole corrections from heavy
particles, such as the top quark, completely cancel at the level of the renormalized
amplitude. At least in the SM, an apparent compromise would be to use the MS
scheme for all parameters appearing in the tree-level result, be it fermion masses,
the electric charge, MW or MZ . This is however an imperfect solution, for although
in that case no explicit tadpoles appear in the NLO corrections, they reappear in
the RG equations. Moreover, in the SMEFT it is not possible to remove all explicit
tadpole contributions in this manner, since in contrast to the SM they can also
appear in the bare matrix element through contributions such as that shown in
Diagram (4) of Fig. 4.6.

The resolution to this dilemma would be to renormalize the light-fermion masses and
electric charge such that the QCD-QED corrections are treated in the MS scheme
while weak corrections involving the top quark and heavy electroweak bosons are
treated in the on-shell scheme. In that way contributions from potentially large
tadpole corrections cancel, but logarithms of mf/mH can still be resummed in the
MS scheme. At the technical level, the simplest way to implement such a scheme is
to make use of so-called decoupling relations.

1The effective on-shell coupling, α(M2
Z), is found from running the on-shell value of α(k2 = 0)

from k2 = 0 to k2 = M2
Z [118].
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4.5.2 Decoupling Relations

In this section we describe decoupling relations which allow us to connect parameters
renormalized in the MS scheme to those defined in a low-energy theory where the
top quark and EW bosons are integrated out. A detailed discussion of this in the
SM for the b-quark mass defined in the MS scheme can be found in [136]. Our low
energy theory is therefore one in which the constituent particles are the leptons,
five flavors of quark, photons and gluons. We hereafter refer to this theory simply
as QED×QCD. Specifically, we wish to consider only SM effects, which we find is
equivalent to neglecting terms that scale as m2

f/M
2
W , where f is all fermions except

for the top quark. This also offers the additional advantage of the RG running of
these parameters being entirely due to the simpler SM anomalous dimensions.

We can write the decoupling relations between the MS renormalized parameters in
our hybrid renormalization scheme with those defined in QED×QCD by

mf (µ) = ζf (µ,mt,mH ,MW ,MZ)m(`)
f (µ) ,

e(µ) = ζe(µ,mt,mH ,MW ,MZ)e(`)(µ) , (4.5.6)

where the parameters on the left-hand side are defined in the SM+dimension-
6 SMEFT, while those on the right-hand side with superscript ` are defined in
QED×QCD. As previously stated, the QED×QCD parameters have the advantage
of obeying the usual SM RG equations

dm
(`)
f (µ)

d ln(µ) = γf (µ)m(`)
f (µ) ,

de(`)(µ)
d ln(µ) = γe(µ)e(`)(µ) , (4.5.7)

where γf (µ) was given to LO in QED and QCD separately in Eq. 1.4.16, while the
form of γe(µ) can be derived from the expressions found in Eqs. 1.4.4 to 1.4.6. In
total, these expressions take the form

γf (µ) = − 3
2π

[
δf,qαs(µ)CF + α(`)(µ)Q2

f

]
,

γe(µ) = α(`)

3π
[
NgQ

2
` +Nc

(
(Ng − 1)Q2

u +NgQ
2
d

)]
, (4.5.8)

where in the top line we have again included a factor of δf,q to emphasize that at
LO only quarks receive QCD contributions to the RG running, and where α(`)(µ) =
[e(`)(µ)]2/(4π).
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The ζi in Eq. 4.5.6 are decoupling constants and can be determined by the relations
between the MS and on-shell parameters in the two theories. These take the form

mf = z−1
f (µ,mf ,mt,mH ,MW ,MZ)mf (µ) =

[
z

(`)
f (µ,mf )

]−1
m

(`)
f (µ) ,

e = z−1
e (µ,mb,mt,mH ,MW ,MZ)e(µ) =

[
z(`)
e (µ,mb)

]−1
e(`)(µ) , (4.5.9)

where we have used that the on-shell parameters, mf and e, are defined through
non-perturbative renormalization conditions, and therefore do not depend of the
Lagrangian or particle content of each theory. The zi and z

(`)
i in Eq. 4.5.9 are

constants connecting the MS parameters in each theory to the on-shell parameters
and can be calculated at each order in perturbation theory. Using the fermion
mass as an example, we begin by noting that in the full SM+dimension-6 SMEFT
theory, these two parameters are related by (where for clarity of notation we drop
the arguments of these functions)

m
(0)
f = mf + δmf = mf + δmf . (4.5.10)

We therefore find

mf =
(

1 + δmf

mf

)(
1− δmf

mf

)
mf ,

=
(

1 + δmf − δmf

mf

)
mf , (4.5.11)

where in the second line we have substituted the equation from the first line into
itself to remove the factor of mf on the right-hand side, and kept terms up to and
including NLO. Considering the quantity δmf − δmf , we note that each counterterm
necessarily contains the same pole structure, which cancels between these two terms,
leaving only the finite pieces of the on-shell counterterm

mf =
(

1− δmfin.
f

mf

)
mf , (4.5.12)

where δmfin.
f contains the finite pieces of the on-shell counterterm of the full theory.

We therefore find

zf = 1 + δmfin.
f

mf

. (4.5.13)

Similarly, we can relate the on-shell fermion mass to the MS renormalized mass in
the five-flavor QED×QCD theory

mf =
1 +

δm
(`)
f − δm

(`)
f

m
(`)
f

m(`)
f . (4.5.14)
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Now considering the quantity δm
(`)
f − δm

(`)
f , again each counterterm necessarily

contains the same pole structure, but note that the remaining finite pieces only come
from corrections in the five-flavor QED×QCD theory. This difference in counterterms
is therefore equal to the finite parts of the QED×QCD pieces of the full theory, which
we denote δmfin.

f

∣∣∣
QED×QCD

. Therefore, we have the relation

mf =

1−
δmfin.

f

∣∣∣
QED×QCD

m
(`)
f

m(`)
f , (4.5.15)

such that z(`)
f takes the form

z
(`)
f = 1 +

δmfin.
f

∣∣∣
QED×QCD

m
(`)
f

. (4.5.16)

Analogously, the forms of ze and z(`)
e are given by

ze = 1 + δefin.

e
,

z(`)
e = 1 +

δefin.
∣∣∣
QED×QCD

e(`) . (4.5.17)

Making use of Eqs. 4.5.6 and 4.5.9 we see that the decoupling constants may be
written in terms of zi and z(`)

i as (restoring the arguments of these functions)

ζi(µ,mt,mH ,MW ,MZ) = zi(µ,mf ,mt,mH ,MW ,MZ)
z

(`)
i (µ,mf )

∣∣∣∣∣
mf→0

, (4.5.18)

where i = e, f , and where we have now enforced the small mass limit, mf → 0 in
accordance with the description of QED×QCD at the beginning of this section. In
terms of the renormalization constants, the decoupling constant for the fermion mass
may be written

ζf =
(

1 + δmfin.
f

mf

)1−
δmfin.

f

∣∣∣
QED×QCD

m
(`)
f


∣∣∣∣∣∣
mf→0

,

= 1 +
δmfin.

f − δmfin.
f

∣∣∣
QED×QCD

mf

∣∣∣∣∣
mf→0

, (4.5.19)

where in the second line we have made use of the fact that neglecting NNLO and
higher order terms allows us to exchange both mf and m

(`)
f for mf . We see from

Eq. 4.5.19 that the decoupling constant for the fermion mass is a function of the
finite part of the corresponding renormalization constant, with the QED×QCD
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contributions factored out. Similarly for the electric charge

ζe = 1 +
δefin. − δefin.

∣∣∣
QED×QCD

e

∣∣∣∣∣
mf→0

. (4.5.20)

We may now write the decoupling constants, ζi, as a perturbative expansion as

ζi = 1 + ζ
(4,1)
i + ζ

(6,1)
i , (4.5.21)

where the superscript (i, j) refers to the dimension-i contribution at jth order in
perturbation theory.

The expression for ζe is compact, and the SM contribution is

ζ(4,1)
e = α

π

[
− 1

12 −
7
8 ln

(
µ2

M2
W

)
+ Nc

6 Q2
t ln

(
µ2

m2
t

)]
, (4.5.22)

while the dimension-6 SMEFT contribution is

ζ(6,1)
e =α

π

[√
2v̂TmtNcQt

(
ĉw
CtB
e

+ ŝw
CtW
e

)
ln
(
µ2

m2
t

)

+ 9CW
e
ŝwM

2
W ln

(
µ2

M2
W

)]
+ δe

(6)
4
e

∣∣∣∣∣
fin.,mf→0

, (4.5.23)

where the final term is the UV-finite part of the class-4 electric charge counterterm
from Eq. 4.3.29 in the small-mass limit. Decoupling constants for the final state
fermion masses, mf , for f ∈ {b, c, τ, µ} are lengthy, and can be found in Appendix F.

As previously concluded, we wish to write our decay rate in terms of the QED×QCD
renormalized parameters m(`)

f and e(`) in the MS scheme, while making use of de-
coupling constants to restore the finite top-quark and massive boson contributions
such that we may resum the large QED-QCD corrections while simultaneously avoid-
ing large tadpole corrections. In this way, we effectively renormalize QED-QCD
corrections to m(`)

f and e(`) in the MS scheme, while renormalizing the remaining
contributions in the on-shell scheme. We refer to this scheme as the decoupled hybrid
renormalization scheme, where the aforementioned choice of input parameters is im-
plied by this scheme choice. With this as our chosen scheme, it is simple to rewrite
the form of our decay rates at each mass dimension and order in perturbation theory
by making use of the decoupling constants. We denote the decay rate as Γ(`) in
the decoupled hybrid renormalization scheme. These decay rates may be written in
terms of the decay rates with parameters mf and e of the full theory by simply using
the expression in Eq. 4.5.6 in the decay rate, Γ, and expanding up to NLO. As the
decoupling constants contribute at the one-loop level, at LO the decay rates are the
same up to a simple replacement of the full theory parameters with the QED×QCD
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parameters. At NLO we find

Γ(4,1),(`)
f =

Γ(4,1)
f + 2Γ(4,0)

f

(
ζ

(4,1)
f + ζ(4,1)

e

)
∣∣∣∣∣∣
P→P (`)

,

Γ(6,1),(`)
f =

Γ(6,1)
f + 2Γ(4,0)

f

(
ζ

(6,1)
f + ζ(6,1)

e

)
+ 2Γ(6,0)

f ζ
(4,1)
f

+
√

2CfH
(v(`))3

m
(`)
f

Γ(4,0)
f

(
ζ

(4,1)
f + ζ(4,1)

e

)
∣∣∣∣∣∣
P→P (`)

, (4.5.24)

where we have suppressed the dependence on the MS renormalization scale, µ, and
where we have introduced

P = {mf , α} , P
(`) = {m(`)

f , α
(`)} , (4.5.25)

for f 6= t. The replacement in Eq. 4.5.24 makes it clear that (unlike in the on-shell
scheme or hybrid renormalization scheme cases) in the decoupled hybrid renor-
malization scheme we intend to keep the explicit superscripts on the QED×QCD
renormalized input parameters m(`)

f and α(`). In Eq. 4.5.24 we have also introduced

v(`)(µ) ≡ 2MW ŝw

e(`)(µ)
. (4.5.26)

Interestingly, the same results of Eq. 4.5.24 can be obtained by the replacements of
the UV counterterms found in Eqs. 4.3.8 and 4.3.9 according to

δmf

mf

→ δmf

mf

+ ζf ,

δe

e
→ δe

e
+ ζf . (4.5.27)

From this it is clear that evaluating the decay rate according to Eq. 4.5.24 is equivalent
to using a new renormalization scheme.

As was seen in Eq. 4.1.3, we can again split our decay rate in the decoupled hybrid
renormalization scheme into various contributions

Γ(1),(`)
f = Γ(1),(`)

f,(g,γ) + Γ(1),(`)
f,(t) + Γ(1),(`)

f,(rem.) , (4.5.28)

which again denote the QED-QCD, large-mt, and remainder corrections. Fortu-
nately, it is a simple process to convert the QED-QCD, large-mt and four-fermion
results already reported from their forms found in Sections 4.4.1, 4.4.2, and 4.4.3
respectively. For the QED-QCD results we can recover the results in the decoupled
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hybrid renormalization scheme as

Γ(1),(`)
f,(g,γ) = Γ(1)

f,(g,γ)

∣∣∣∣∣
P→P (`)

, (4.5.29)

where Γ(1)
f,(g,γ) was defined in Eq. 4.4.5. The large-mt results can be converted to the

decoupled hybrid renormalization scheme using

Γ(1),(`)
f,(t) = Γ(1)

f,(t)

∣∣∣∣∣
P→P (`)

, (4.5.30)

where Γ(1)
f,(t) is found in Eq. 4.4.11. We can also apply this conversion to the four-

fermion operator results in Section 4.4.3 by

Γ(6,1),(`)
f,(4F) = Γ(6,1)

f,(4F)

∣∣∣∣∣
P→P (`)

, (4.5.31)

where Γ(6,1)
f,(4F) are found throughout Eqs. 4.4.27 to 4.4.30.

4.6 Numerical Results

The full analytic results of the calculations performed here are lengthy, and so are
not reported analytically in this work, but can be found in electronic form in the
computer files of the arXiv submissions on which this thesis is based [1, 2]. In
this section we report the numerical results of the full NLO dimension-6 SMEFT
decay rate in the decoupled hybrid renormalization scheme defined in Eq. 4.5.24
for h → ff̄ where f ∈ {b, c, τ, µ}. We report these results in the small-mass limit,
mf → 0, while keeping leading order terms in mf . We report results in this limit due
to the decoupling constants in Eqs. 4.5.19 and 4.5.20 being defined in the small-mass
limit, and therefore only completely cancel against the large tadpole corrections of
the decay rate in this same limit. We note, however, that in the full mass dependent
results with the decoupling constants defined according to Eqs. 4.5.19 and 4.5.20
that the large tadpole corrections mostly cancel, with the remaining uncanceled
tadpoles being suppressed by powers of light-fermion masses and are numerically
negligible. For the process h→ bb̄ (the most massive final-state fermion pair), the
numerical difference between the full mass dependent result and the small-mass limit
result is small. Terms in the small-mass limit result that scale as m2

b are highly
accurate, differing from the full-mass results by only around 0.6%. Terms in the
small-mass limit result that scale as mb (which correspond to operators with non-
trivial MFV scalings proportional to the b-quark Yukawa, such as CbH) are accurate
within approximately 1% − 3%. For the general process h → ff̄ , the dominant
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αs 0.1 MW 80.4 GeV
e(`)(mH)

√
4π/128 m

(`)
b (mH) 3.0 GeV

v(`)(mH) 240 GeV m(`)
τ (mH) 1.7 GeV

mt 173 GeV m(`)
c (mH) 0.7 GeV

mH 125 GeV m(`)
µ (mH) 0.1 GeV

MZ 91.2 GeV – –

Table 4.2: Input parameters employed throughout the numerical ana-
lysis, where we have also listed the derived quantity
v(`)(mH) ≡ 2MW ŝw/e

(`)(mH) for convenience. The origins
of these values can be found in the body of the text.

corrections to this limit scale as m2
f/M

2
W , so for processes producing less massive

final-state fermions, the difference between the small-mass limit results and the full
mass dependent results are even smaller.

In Section 4.6.1 we report the values at the default choice of µ = mH , and then
perform a study of perturbative uncertainties due to scale variations in Section 4.6.2.
The input parameters needed in these analyses are listed in Table 4.2.

4.6.1 Results at µ = mH

It is convenient to normalize all results to the LO decay rate at µ = mH , and
therefore define the ratios

∆(i,j)
f (µ) ≡ Γ(i,j),(`)(µ)

Γ(4,0),(`)
f (mH)

, (4.6.1)

where in analogy with Eq. 4.1.2 the superscript (i, j) denotes the dimension-i con-
tribution at jth order in perturbation theory. We extend such definitions to the
complete LO and NLO corrections as

∆LO
f (µ) ≡ ∆(4,0)

f (µ) + ∆(6,0)
f (µ) ,

∆NLO
f (µ) ≡ ∆LO

f (µ) + ∆(4,1)
f (µ) + ∆(6,1)

f (µ) . (4.6.2)

We also make use of the dimensionless Wilson coefficients defined in Eq. 4.4.19.

The input values used throughout this analysis are found in Table 4.2. For the
on-shell masses, mt, mH , MZ , and MW , we take the PDG values listed in [23]. For
αs(mH) we take the "world average" value of αs(MZ) = 0.11 from [23] and use the
result of Eq. 1.4.7 to run this value to µ = mH where we find that within the accuracy
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we provide this value does not change. For α(`)(mH) we note that this is related to
the effective on-shell coupling α(M2

Z) introduced in Section 4.5.1 according to

α(`)(M2
Z)

α(M2
Z)

= 1 + 100α
27π , (4.6.3)

where α(M2
Z) ≈ 1/129 and α ≈ 1/137 [23]. This allows us to recover a value for

α(`)(M2
Z) which we can then RG evolve to µ = mH . For m(`)

b (mH) we take the PDG
value of mb(mb) = 4.18 GeV and use Eq. 1.4.17 to run this value to µ = mH . For
m(`)
c we do not take the PDG value as this quantity is reported at mc(mc), a low

enough scale that we risk inaccurate results trying to apply perturbatively calculated
RG equations at a potentially non-perturbative scale. Instead we take the value
in [101] of mc(3GeV) = 0.986, and again RG evolve this value to µ = mH using
Eq. 1.4.17. Finally, for m(`)

τ (mH) and m(`)
µ (mH) we take the on-shell PDG values

of mτ = 1.78 GeV and mµ = 0.106 GeV and convert these to the QED×QCD MS
scheme according to

m(`)
τ (mτ ) = mτ + δmfin.

τ (mτ )
∣∣∣
QED

= 1.77GeV ,

m(`)
µ (mτ ) = mµ + δmfin.

µ (mµ)
∣∣∣
QED

= 0.105GeV , (4.6.4)

and then RG evolve these values in the same way as for m(`)
b and m(`)

c to µ = mH .
Note that, unlike for the quark masses, we can RG evolve values of the lepton masses
measured at arbitrarily low scales. This is because at NLO lepton masses receive
only QED corrections, which are perturbative at low scales; see Section 1.4.

We now report the numerical values of the decay rates, suppressing the arguments
of the MS renormalized quantities, m(`)

f (mH), e(`)(mH) and C̃i(mH).1 We find the
LO result

∆LO
f (mH) = 1 + (v(`))2

Λ2
NP

3.74C̃HWB + 2.00C̃H� − 1.41 v
(`)

m
(`)
f

C̃fH + 1.24C̃HD

 .
(4.6.5)

Firstly we note that the result in Eq. 4.6.5 applies to all processes considered here
(and also for all massive fermions of the SM, except the top quark) with the simple
replacement of f with the fermion flavor of choice. We find in Eq. 4.6.5 (as we also
saw in Eqs. 4.4.20 and 4.4.21) that the contribution from C̃fH is enhanced by a
factor of v(`)/m

(`)
f compared to the other contributions, which we choose to factor

out symbolically. We do this to highlight that this contribution to the decay rate
scales as mf rather than as m2

f as in the SM, and so that the numerical factor

1We also suppress the argument of the derived quantity v(`)(mH).
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multiplying this Wilson coefficient is finite in the limit mf → 0. In a theory that
respects MFV, this enhancement factor would be compensated for by an implicit
scaling of the Wilson coefficient itself (which for this particular example can be seen
from Eq. 2.2.11) such that the overall contribution scales as m2

f . While we do not
necessarily advocate MFV, we choose to write our results in such a way that they
are free from large numerical factors multiplying dimension-6 Wilson coefficients.
At NLO this effect additionally affects a number of coefficients. For the class-6
coefficients Cf(B,W ) and CfG we also factor out 1/e(`) and 1/g3 respectively. This is
because in these operators, gauge bosons couple through the field strength tensor
rather than through covariant derivatives, so separating these factors ensures that
the numerical prefactors to these Wilson coefficients scale with the same powers of
α(`) and αs as in the SM.

The NLO corrections depend on the fermion flavor, f , therefore all results cannot be
reported in a single equation, like for the LO results in Eq. 4.6.5. For f = b we find

∆NLO
b (mH) = 1.13 + (v̄(`))2

Λ2
NP

4.16C̃HWB + 2.75C̃HG + 2.40C̃H� − 1.73 v̄
(`)

m
(`)
b

C̃bH

+ 1.33C̃HD − 0.12C̃(3)
Hq
33

+
− 7.9C̃Ht + 5.8C̃(1)

Hq
33

+ 4.4 mt

m
(`)
b

C̃
(1)
quqd
3333
− 3.1C̃tH

+ 2.7C̃HW + 2.4C̃H + 2.0m
(`)
c

m
(`)
b

C̃
(1)
quqd
2233
− 1.9 v̄(`)

e(`) m
(`)
b

C̃bW − 1.3
(
C̃

(8)
qd

3333

+ m(`)
s

m
(`)
b

C̃
(8)
qd

2332

)
− 1.3C̃tW

e(`) − 1.0
(
C̃

(1)
qd

3333
+ m(`)

s

m
(`)
b

C̃
(1)
qd

2332

)× 10−2 +
− 9

(
C̃tB

e(`)

+ C̃
(3)
Hq
22

+ C̃
(3)
Hq
11
− C̃HB + C̃Hu + C̃Hc

)
+ 8 v̄(`)

g3m
(`)
b

C̃bG + 8 mt

m
(`)
b

C̃
(8)
quqd
3333

+ 7
(
m(`)
τ

m
(`)
b

C̃ ledq
3333

+ m(`)
µ

m
(`)
b

C̃ ledq
2233

)
− 7C̃W + 4

(
C̃

(1)
Hl
33

+ C̃
(1)
Hl
22
− C̃(1)

Hq
22

+ C̃
(1)
Hl
11
− C̃(1)

Hq
11

+ C̃Hτ + C̃Hµ + C̃He + C̃Hs + C̃Hd −
v̄(`)

m
(`)
b

C̃Htb + 4m
(`)
c

m
(`)
b

C̃
(8)
quqd
3223

)
− 3

(
C̃

(3)
Hl
33

+ C̃
(3)
Hl
22

+ C̃
(3)
Hl
11
− m(`)

c

m
(`)
b

C̃
(1)
quqd
3223

)
+ 2C̃Hb

× 10−3 − 4× 10−5 v̄(`)

e(`) m
(`)
b

C̃bB

 .
(4.6.6)

While the (in general) unknown size of the Wilson coefficients means we can’t know
the exact size of each contribution we can make some general statements. Firstly,
with v(`)/m

(`)
b ≈ 80 we see that by far the coefficients potentially offering the largest

contributions are from those that carry a non-trivial scaling with m(`)
b in MFV. Higgs

decays therefore offer an interesting test of MFV, a topic which we will explore further



4.6. Numerical Results 135

in Section 4.7. This aside, we see from Eq. 4.6.6 that by far the next largest NLO
contribution is from the operator QHG. This operator contributes QCD corrections
seen in Eq. 4.4.5 and is enhanced by the double logarithm of the small ratio m(`)

b /mH ,
as described in Section 4.5.1. For operators not appearing at LO, only C̃(1)

Hq
33
, C̃(3)

Hq
33

and

C̃Ht contribute at the O(10%) level,1 primarily due to these operators permitting
the large-mt corrections seen throughout Section 4.4.2, which scale as m2

t/(v(`))2.
There are 19 operators that contribute at the greater than 1% level, 15 of which first
appear at NLO. In total, there are 44 new operators that first contribute at NLO.

For f = c we have

∆NLO
c (mH) = 1.16 + (v(`))2

Λ2
NP

4.95C̃HG + 4.31C̃HWB + 2.46C̃H� − 1.75 v
(`)
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c

C̃cH

+ 1.41C̃HD +
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(8)
qu
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(
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+ C̃Hu
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µ

m(`)
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C̃
(1)
lequ
2222
− 7C̃W − 5C̃Hc

+ 4
(
m
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b

m(`)
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(8)
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+ m(`)
s

m(`)
c

C̃
(8)
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+ C̃
(1)
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(1)
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22
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− 3

(
− m
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m(`)
c

C̃
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quqd
3223
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11

+ C̃
(3)
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22
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e

 . (4.6.7)

The results in Eq. 4.6.7 broadly follow that which was seen in Eq. 4.6.6. Again, we find
that the operator QHG generates the largest NLO contribution from operators with
trivial MFV scalings inm(`)

c . This is again due primarily to the double logarithm seen
in Eq. 4.4.5 of the small ratio m(`)

c /mH from QCD corrections. With this ratio being
even smaller than the corresponding ratio in the h→ bb̄ results in Eq. 4.6.7, we now
see that the NLO contribution from QHG is larger even than the contributions from
Wilson coefficients that first appear at LO. The analogous QED double logarithm is
also correspondingly larger such that the operators generating this logarithm, QHWB,
QHB, and QHW now all contribute at the O(10%) level, unlike in the h → bb̄ case.

1By O(10%) corrections we mean in units of (v(`))2/Λ2
NP. For the remainder of this work we

will not specify this explicitly.
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In this case we also have 20 Wilson coefficients contributing at the greater than
1% level, with 16 of these first appearing at NLO, and 43 new Wilson coefficients
appearing at NLO.

For f = τ we have

∆NLO
τ (mH) = 0.98 + (v(`))2

Λ2
NP

3.63C̃HWB + 2.11C̃H� − 1.50 v
(`)

m(`)
τ

C̃τH + 1.20C̃HD

+ 0.16C̃HB +
− 9.0C̃(3)

Hq
33
− 7.9C̃Ht + 6.8C̃HW + 5.2C̃(1)
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3333
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33
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− 7C̃W + 4

(
C̃
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Hl
11

+ C̃
(1)
Hl
22
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11
− C̃(1)
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22

+ C̃Hd + C̃Hs + C̃Hb
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− 3

(
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(3)
Hl
11

+ C̃
(3)
Hq
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+ 2C̃tW
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× 10−3

+ (4× 10−4)
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C̃τB
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) . (4.6.8)

Without QCD, the corrections to h → τ τ̄ in Eq. 4.6.8 are generally milder, the
largest of which (aside from operators with non-trivial MFV scalings in m(`)

τ ) being
generated by QHB. This is again due to the double logarithm in Eq. 4.4.5, this time
of the ratio m(`)

τ /mH . Here, there are fewer operators contributing at the greater
than 1% level (in this case 18) compared to both h → bb̄ and h → cc̄, and 36
operators contribute for the first time at NLO.

The results for f = µ are very similar to those for f = τ . For this reason, while
the results for h → µµ̄ will form an important part of Section 4.7, they do little
to serve the forthcoming discussion of the above results, and so we relegate the
numerical results for h → µµ̄ to Appendix D.1. The only feature we point out is
that the QED double logarithm is now in the ratio m(`)

µ /mH . As m(`)
µ is the smallest

final-state mass in Table 4.2, it correspondingly produces the largest QED NLO
corrections to the LO decay rate from the Wilson coefficients contributing to this
double logarithmic term. This changes the numerical coefficients to C̃HWB, C̃HW
and C̃HB to 3.49, 0.14 and 0.41 respectively.

Considering this set of results generally, besides operators with non-trivial MFV scal-
ings in m(`)

f , an operator generally only gives a significant contribution to the decay
rate if involves QCD or large-mt corrections. To illustrate the relative importance
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h→ bb̄ SM C̃HWB C̃H�
v

(`)

m
(`)
f

C̃fH C̃HD

NLO QED-QCD 18.2% 17.9 % 18.2% 18.2% 18.2%
NLO large-mt -3.1% -4.6% 3.2% 3.3% -9.0%
NLO remainder -2.2% -1.9% -1.2% 0.6% -2.0%
NLO correction 12.9% 11.3% 20.2% 22.3% 7.1%
h→ cc̄
NLO QED-QCD 18.5% 17.0 % 18.5% 18.5% 18.5%
NLO large-mt -1.1% -0.7% 5.1% 4.4% -4.4%
NLO remainder -1.7% -1.0% -0.7% 0.9% -0.8 %
NLO correction 15.7% 15.3 % 22.9 % 23.8% 13.3%
h→ τ τ̄
NLO QED 1.1% -1.3 % 1.1% 1.1% 1.1%
NLO large-mt -1.1% -0.7% 5.1% 4.4% -4.4%
NLO remainder -1.7% -0.9% -0.7% 0.8% -0.6%
NLO correction -1.7% -2.9% 5.5% 6.3% -3.9%

Table 4.3: Size of NLO corrections to different terms in LO decay rate,
split into QED(-QCD), large-mt, and remainder corrections
define in Eq. 4.1.3 for h → bb̄ (top), h → cc̄ (middle) and
h→ τ τ̄ (bottom). Equivalent results for h→ µµ̄ are found
in Table D.1 in Appendix D.1. Weak corrections, defined
in Eq. 4.1.3 are the sum of the large-mt and remainder
corrections.

of these two effects we show in Table 4.3 the contributions of these two subsets of
corrections to the corresponding contributions to the LO decay rate, as well as the
contribution of the remaining corrections, according to the split defined in Eq. 4.1.3.
Specifically, for the dimension-6 operators, the numbers in Table 4.3 show the NLO
correction from C̃i to Γ(1),(`)

f divided by its contribution to Γ(0),(`)
f .

There are two interesting effects to highlight in Table 4.3 which apply to all processes
considered here. Firstly, we see that, aside from CHWB, the QED-QCD corrections
are of the same size for all Wilson coefficients appearing in the LO decay rate. This
is a result of the cross terms of the LO SMEFT amplitude and NLO QED-QCD
SM amplitude, and the fact that in QED-QCD these coefficients only contribute to
the hff vertex in the "SM-like" diagrams seen in Diagrams (v1,r1-3) of Figs. C.1
and C.2. The result of these two effects can be seen in Eq. 4.4.5 where the LO
SMEFT decay rate multiplies the NLO SM QED-QCD decay rate, leading to the
pattern seen in Table 4.3. Conversely, CHWB also contributes to Diagrams (v4-6,r4-5)
of Fig. C.1, giving additional contributions and this explaining why it does not fit
the trend seen for the other Wilson coefficients appearing at LO. We also observe
that there is a distinct lack of correlation for the large-mt corrections in Table 4.3,
with the corrections for each coefficient varying both in size and magnitude. There
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are two sources for this lack of correlation. Firstly, considering the form of the LO
SMEFT result in Eq. 4.2.5, we see that each Wilson coefficient is multiplied by a
unique prefactor, each of which is some function of ĉw, ŝw, and v̂T , which get NLO
corrections of various sizes and magnitudes. For example, in Feynman gauge and
ignoring tadpoles (which as discussed in Section 4.3.5 cancel in the NLO decay rate)
we find these terms get finite large-mt corrections in the SM given by1

ŝw → ŝw + δŝ
(4)
w,(t) = ŝw(1− 0.020) ,

ĉw → ĉw + δĉ
(4)
w,(t) = ĉw(1 + 0.0057) ,

v̂T → v̂T + δv̂
(4)
T,(t) = v̂T (1− 0.028) , (4.6.9)

where δX(4)
(t) are the finite large-mt NLO corrections to X in the SM. The second

source producing a lack of correlation of the large-mt results is from the fact that,
unlike the QED-QCD case, each of the Wilson coefficients appearing at LO do
not enter a shared set of NLO diagrams. For example, of the Wilson coefficients
appearing at LO, Diagram (sf1) of Fig. C.4 gets contributions from only CHWB and
CHD. Together, these two effects account for the lack of correlation found in the
large-mt results of Table 4.3.

For Higgs decay to quark pairs, we see that while QCD effects are dominant, the large-
mt corrections are non-negligible and in some cases even the remaining corrections
are not necessarily negligible, and have a strong dependence on the Wilson coefficient.
Therefore, for Higgs decay to quark pairs, approximating the NLO corrections in
the dimension-6 SMEFT by multiplying the tree-level result by a universal K-factor
derived from the SM QCD corrections would be a poor estimate of the full calculation
performed here. Furthermore, while it is true that the large-mt corrections generally
make up the bulk of the EW corrections, in some cases the remainder corrections
are larger than the large-mt ones.

For Higgs decay to leptons, in the absence of QCD corrections we see that the large-
mt corrections are generally the most significant, although there is again a strong
Wilson coefficient dependence on this. In terms of the size of their relative correction
to the NLO decay rate, Table 4.3 shows that the EW remainder corrections are more
important for Higgs decay to leptons than for Higgs decay to quarks. For example,
considering C̃HWB, the EW remainder corrections to h→ bb̄ constitute −17% of the
overall correction for h→ bb̄, but +31% to the overall correction for h→ τ τ̄ .

The conclusions we can draw from this are, firstly, for Higgs decay to quarks it is not
enough to only calculate the QED-QCD corrections to obtain accurate predictions,

1Note that, as discussed in Section 4.3.5, when ignoring tadpole contributions the results in
Eq. 4.6.9 are gauge dependent.
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and in many cases the addition of large-mt corrections are not sufficient. As we
do not know a priori which Wilson coefficients in particular will be most affected
by this previous statement, we believe it is therefore necessary to calculate the full
set of strong and EW corrections to obtain accurate results. For Higgs decay to
lepton pairs, despite the overall corrections being milder, the remainder corrections
constitute a larger contribution to the NLO corrections as a whole, and so the
necessity of calculating the full set of corrections is only amplified.

4.6.2 Scale Uncertainties

From our analyses thus far, there are two obvious questions to address: can the
size of the NLO corrections be reliably estimated through the scale variations of
the LO result, and what is the residual uncertainty beyond NLO? In this section
we address these questions through studies involving the variation of the unphysical
renormalization scale, µ.

Typically in perturbation theory these questions are addressed by considering varying
the unphysical renormalization scale, µ, up and down by a factor of two, and
considering the change in the decay rate to be a measure of the uncertainty due
to uncalculated, higher order corrections. While in the SM most parameters are
measured with a high degree of precision, in the dimension-6 SMEFT the study
of measurements of Wilson coefficients are still in their infancy, and as such, most
Wilson coefficients are not measured with a high precision. Consequently, we give
the results of this section as a function of the Wilson coefficients measured at a
fixed scale, which we choose to be µ = mH . We therefore need to relate the Wilson
coefficients at some scale, Ci(µ), to those at Ci(mH). This is achieved with the RG
equations for the dimension-6 SMEFT Wilson coefficients in [63, 130, 131]. In this
section we make use of the electronic implementation of the anomalous dimensions
in DsixTools [135].

For the analysis performed here, we must make use of the RG equations for all MS
renormalized parameters in this calculation, these being the light-fermion masses,
m

(`)
f , the electromagnetic fine-structure constant, α(`), the Wilson coefficients, Ci,

and the strong coupling constant, αs, which although is not renormalized in this
calculation, has no on-shell definition and thus also varies with renormalization scale.
We can simplify the analysis here by taking advantage of the fact that when varying
the unphysical renormalization scale, µ, by factors of 2 we have µ ∼ mH and so
we may use fixed-order results for the RG equations, rather than the exact results
in Eqs. 1.4.7, 1.4.12 and 1.4.17. The anomalous dimensions for the dimension-6
SMEFT Wilson coefficients are known only to the one-loop level, and so we also
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use only the one-loop results for the running of the necessary SM parameters. The
solutions of the RG equations to NLO at fixed order are

Ci(µC) = Ci(mH) + ln
(
µC
mH

)
Ċi(mH) ,

m
(`)
f (µR) = m

(`)
f (mH)

[
1 + γf (mH) ln

(
µR
mH

)]
,

α(`)(µR) = α(`)(mH)
[
1 + 2γe(mH) ln

(
µR
mH

)]
,

αs(µR) = αs(mH)
[
1− 2γg(mH) ln

(
µR
mH

)]
, (4.6.10)

where γe and γf were reported in Eq. 4.5.8 and the form of γg may be deduced from
the relations in Eqs. 1.4.11 and 1.4.12 and is

γg(µR) = αs(µR)
4π

(11
3 Nc −

2
3nl

)
, (4.6.11)

where again, nl is the number of light quarks, i.e. those with mass approximately
less than the scale under consideration, which for our purposes is nl = 5.

We have written Eq. 4.6.10 in such a way as to emphasize that we may have different
renormalization scales, µC and µR, for the Wilson coefficients and SM parameters,
respectively. In fact, we could introduce a separate renormalization scale for each
MS parameter, but that option is not explored here. Until this point we have
used µ = µC = µR, but in our scale variation analysis it will be informative to
separate these scales and vary them independently. In the SM, the absence of
Wilson coefficients results in all renormalization scales being µ = µR. For the LO
SMEFT result it is simple to construct the dependence on µR and µC by simply
making all SM parameters a function of µR and all Wilson coefficients a function of
µC

Γ(6,0),(`)
f (µR, µC) = Γ(6,0),(`)

` (µC)
∣∣∣∣∣
p(µC)→p(µR)

, (4.6.12)

where p(µ) ∈ {α(`)(µ), m(`)
f (µ), αs(µ)} are the MS renormalized parameters appear-

ing in the calculation and where we have defined Γ(6,i),(`)
f (µ) ≡ Γ(6,i),(`)

f (µ, µ). For the
NLO SMEFT results however, the calculation of loop integrals introduces additional
µ terms, where it is not immediately obvious if these µ are µR or µC . Fortunately
we can reconstruct this dependence. We can write our NLO SMEFT results with
the correct dependence on these two scales generically as

Γ(6,1),(`)
f (µR, µC) = A(µR, µC) ln(µR) +B(µR, µC) ln(µC) + C(µR, µC) , (4.6.13)
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where A, B, and C are some generic functions of the parameters of the calculation.
Setting all scales in the NLO SMEFT result to µC in Eq. 4.6.13 this expression takes
the form

Γ(6,1),(`)
f (µC) =

[
A(µC , µC) +B(µC , µC)

]
ln(µC) + C(µC , µC) . (4.6.14)

We see that we can restore the explicit µR dependence in Eq. 4.6.14 by subtracting
out the the A(µC , µC) piece, and adding it back in with the correct µR dependence

Γ(6,1),(`)
f (µR, µC) =

Γ(6,1),(`)
f (µC)

− A(µC , µC)
 ln

(
µC
mH

)
− ln

(
µR
mH

)
∣∣∣∣∣∣
p(µC)→p(µR)

.(4.6.15)

We can construct the form of A(µR, µC) by taking advantage of observable invariance,
discussed in Section 1.4.3. Using that our LO+NLO decay rate should be independent
of both renormalization scales, µC and µR, up to terms of NNLO and higher we may
write (ignoring SM terms)

d

d ln(µR)Γ(6,0),(`)
f (µR, µC) + d

d ln(µR)Γ(6,1),(`)
f (µR, µC) = 0 , (4.6.16)

which, keeping only NLO terms, gives

A(µR, µC) = − d

d ln(µR)Γ(6,0),(`)
f (µR, µC) . (4.6.17)

Using the expressions in Eq. 4.5.7 and the LO SMEFT result in Eq. 4.2.5 it is simple
to calculate the form of A(µR, µC). Therefore, from Eq. 4.6.15 we find the NLO
SMEFT results is a function of the two scales, µC and µR, according to

Γ(6,1),(`)
f (µR, µC) =

{
Γ(6,1),(`)
f (µC) + 2

[
ln
(
µC
mH

)
− ln

(
µR
mH

)](
γf (µC)Γ(6,0),(`)

f (µC)

+ CfH(µC)√
2

(v(`)(µC))3

m
(`)
f (µC)

Γ(4,0),(`)
f (µC)

[
γf (µC) + γe(µC)

])}∣∣∣∣∣
p(µC)→p(µR)

.

(4.6.18)

There are many methods we might apply to obtain estimates for the residual un-
certainties, some of which are discussed at the end of this section. In the method
adopted here we vary one scale, for example µC , up and down about its default value
of mH by a factor of 2 while holding the the other scale fixed at µR = mH . We
then vary µR up and down by a factor of 2 while holding µC fixed. For the upper
uncertainty we add the maximum of the results of the procedure just outlined in
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quadrature, while for the lower uncertainty we add the minimum of the results of this
procedure in quadrature. In summary, writing the decay rate including uncertainty

bands as Γ(i,j)
f

+δ(i,j)
+

−δ(i,j)
−

, we can obtain the values of these upper and lower uncertainty
limits by first defining

D
(i,j)
f (µR, µC) = Γ(i,j)

f (µC , µR)− Γ(i,j)
f (mH) , (4.6.19)

such that δ(i,j)
± are given by

δ
(i,j)
+ =


[
max
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D

(i,j)
f

(
mH

2 ,mH

)
, D

(i,j)
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where the max and min functions return the largest and smallest value of their
arguments respectively. Each of these functions also carries 0 as an argument; this
allows us to avoid scenarios in which, for example, the scale variations only serve to
reduce the size of the decay rate such that the max functions simply pick out the
least negative result of these variations which then erroneously result in a non-zero
upper uncertainty.

We write the results of this analysis similarly to the form of the results found in
Section 4.6.1, that is, making use of the expressions in Eq. 4.6.2 to give the upper
and lower uncertainty bands normalized to the SM LO result. In this way we may
define ∆f (µR, µC) in analogy with Eq. 4.6.18. We report the results for each process
considered here separately. For f = b we find the LO uncertainties
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{
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(1)
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3333

+ . . .

}
, (4.6.21)
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while at NLO we find
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, (4.6.22)

where the ellipses in the final lines of Eqs. 4.6.21 and 4.6.22 indicate terms that
in total contribute less than a 5% correction when on the extreme values of the
uncertainties. By this, we mean that for a term of the form x+y

−z we neglect terms
where both |x+ y| and |x− z| give a less than 5% contribution. We follow this same
convention for the remaining scale uncertainties we report. For f = c we find the
LO results
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while at NLO we have
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The features of the scale uncertainties for h→ bb̄ and h→ cc̄ are generally similar
and so we discuss both of these here. We see in both cases that the scale uncertainties
associated with NLO corrections are much smaller than those associated with the LO
result, indicating a good convergence of the perturbative series. We also observe that
the size of the NLO corrections due to a particular dimension-6 operator generally
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sit between the uncertainty bands of the LO result, showing that the size of the
NLO corrections are well estimated by the variation of the LO result. There are
two clear exceptions to this. The first are the Wilson coefficients appearing at
LO, and the SM, where the NLO corrections generally sit outside the uncertainty
bands of the LO result. This is primarily a result of the NLO QCD corrections
in the SM being larger than what one obtains from the scale variation of m(`)

b and
m(`)
c . This effect is therefore transferred to the Wilson coefficients that appear at

LO in the dimension-6 SMEFT through the interference of the NLO SM and LO
SMEFT amplitudes. The second exception is from C̃HG, where the variation of
the LO result badly estimates the size of the NLO correction, where we even find
that the uncertainty in the NLO results is larger than that found in the LO case.
This, however, is unsurprising as the size of the NLO correction is a result of the
double logarithm ∼ ln2(m(`)

f /v
(`)) (for f = b, c) in Eq. 4.4.5, and is unrelated to

the RG running. We also find that the RG running of C̃HG in the NLO result
produces scale uncertainties for the operator C̃tG that are larger than the size of
most NLO corrections. This is because the running of C̃HG in the NLO result
produces terms proportional to α2

s ln2(m(`)
f /v

(`)), which are numerically comparable
to most NLO corrections for other Wilson coefficients. Considering that for both
h→ bb̄ and h→ cc̄, C̃HG receives large NNLO corrections ∼ α2

s ln4(m(`)
f /v

(`)), a more
reliable prediction of these processes would involve a resummation of the logarithmic
terms. While techniques for such a resummation exist for the virtual h → AA for
A = g, γ [137–140], it is not clear how to translate them to the inclusive h → ff̄

decay rate, which receives double-logarithmic corrections from both real and virtual
contributions.

The results for f = τ at LO are

∆LO
τ (mH ,mH) = (1+0.002

−0.003) + (v(`))2

Λ2
NP

{

(3.74± 0.14)C̃HWB + (2.00± 0.12)C̃H� − (1.41± 0.06) v
(`)

m(`)
τ

C̃τH

+ (1.24± 0.09)C̃HD ± 0.19C̃(1)
Hq
33
± 0.18C̃Ht ± 0.09 mt

m(`)
τ

C̃
(1)
lequ
3333

± 0.05C̃tH ± 0.05C̃(3)
Hq
33

+ . . .
}
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while at NLO we find
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+ (0.16+0.00
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The results for f = µ are very similar for the results for f = τ in Eqs. 4.6.25
and 4.6.26 and so are instead reported in Appendix D.2. Again, the results in
Eqs. 4.6.25 and 4.6.26 show that, in general, the uncertainties are significantly
reduced in the NLO result, and that the NLO results are within the uncertainty
estimates of the LO result, again indicating excellent convergence of the perturbative
series. There are two exceptions to this. The first of these is the SM result where
we see that the uncertainty bands of the LO and NLO results show no overlap.
Unlike in the Higgs decay to quarks instance, where this was caused by large NLO
QCD corrections to the decay rate, the effect here is primarily due to the small
size of the uncertainty bands for both the LO and NLO results. The small size of
these uncertainty bands is primarily a result of correlations between the running of
m(`)
τ and v(`) which results in the ratio m(`)

τ (µR)/v(`)(µR) being more stable under
scale variations than either the numerator or denominator alone. We could help to
alleviate this problem by introducing separate renormalization scales for both m(`)

τ

and α(`) separately, as discussed at the beginning of this section, but this option is
not explored here. The second instance where NLO corrections are not accurately
estimated through variation of the LO results are for the coefficients C̃HW and C̃HB.
Like in the previously discussed case of C̃HG for the Higgs decay to quark anti-
quark pair, the size of these NLO corrections are due to the large double logarithm
∼ ln2(m(`)

τ /mH) from Eq. 4.4.5 and is therefore again inaccessible to an RG analysis.

The uncertainties obtained throughout this section are only estimates, and as stated
above Eq. 4.6.19, there are many methods of obtaining such estimates that one
might choose to apply. We now briefly consider a second, simpler such method and
compare it to the method adopted above. In this second method we let µR = µC = µ,
and again vary the unphysical renormalization scale about µ = mH by factors of two.
We first consider the LO results, where analytic expressions for the uncertainties
obtained in this way are simple. Denoting the uncertainty in the LO results as
δΓ(i,0),(`)

f we find for the LO SM and dimension-6 SMEFT

δΓ(4,0),(`)
f = ±2 ln(2)Γ(4,0),(`)

f

(
γf + γe

)
,

δΓ(6,0),(`)
f = ±2 ln(2)

γfΓ(6,0),(`)
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√
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Γ(4,0),(`)
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(
γf + γe

)

+ 1
2Γ(6,0),(`)

f

∣∣∣∣∣∣
Ci→Ċi

 , (4.6.27)
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where we have dropped the arguments of all scale-dependent quantities, with the
understanding that these are all evaluated at µ = mH . As they lack any µC depend-
ence, the SM scale uncertainties found with this method match those found using
the quadrature method. Additionally, compared to the results found in Eq. 4.6.21,
4.6.23, and 4.6.25, this method only changes the uncertainties for Wilson coefficients
already appearing at LO. With this in mind we find
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Λ2
NP

± 0.20C̃HWB ± 0.06C̃H� ± 0.08 v
(`)

m
(`)
b

C̃bH ± 0.02C̃HD + . . .

 .
δΓ(6,0),(`)

c = (v(`))2

Λ2
NP

± 0.20C̃HWB ± 0.07C̃H� ± 0.08 v
(`)

m(`)
c

C̃cH ± 0.02C̃HD + . . .

 ,
δΓ(6,0),(`)

τ = (v(`))2

Λ2
NP

± 0.12C̃HWB ± 0.10C̃H� ± 0.05 v
(`)

m(`)
τ

C̃τH ± 0.08C̃HD + . . .

 ,
δΓ(6,0),(`)

µ = (v(`))2

Λ2
NP

± 0.12C̃HWB ± 0.004C̃H� ± 0.05 v
(`)

m(`)
µ

C̃µH ± 0.08C̃HD + . . .

 ,
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where the ellipses represent coefficients not appearing in the LO result which are
unaffected by this alternative analysis. We see that for all processes, the uncertainties
obtained in this way for the operator C̃fH closely match the values obtained using
the quadrature method, and for processes involving decay into final state lepton
anti-lepton pair, this is also true for C̃HWB. However, we see that for the majority
of cases the uncertainties are artificially small to assign to LO process, with the
smallest of these being 0.4% for the coefficient C̃H� for the process h → µµ̄. We
conclude that such a method of obtaining uncertainties, while reliable for the SM and
some dimension-6 SMEFT Wilson coefficients, can also lead to unreliable estimates.
Therefore, we do not consider pursuing this method of uncertainty estimates any
further.

4.7 Ratios of Decay Rates

As discussed in Section 3.1, while measurements of the decay of the Higgs into all
four processes considered here exist, these measurements are very limited, especially
in the cases of h→ cc̄ and h→ µµ̄. However, at future lepton colliders it is expected
that all four processes considered here will be measured with good precision. This
motivates us to consider not only the predictions for the decay rates themselves, but
also to look at calculating ratios of decay rates.

In the SM it is clear that the ratio of decay rates of Higgs to fermion anti-fermion
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pairs causes the (either partial or exact) cancellation of flavor universal counterterms.
To illustrate this, consider the ratio of the left-handed component of the renormalized
NLO SM amplitude for the Higgs decay to distinct fermion pairs, f1 and f2, in the
small-mass limit
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+ 1
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 , (4.7.1)

where we have used the expression for the SM one-loop counterterm from Eq. 4.3.8
and where we have defined

δZf ≡ δZL
f + δZR∗

f . (4.7.2)

From Eq. 4.7.1 we find that the terms in the curved parenthesis (...) contain the
difference of terms that are potentially similar in size. In fact, in the small-mass
limit, for final states of the same charges under the SM symmetry group the terms
in curved parenthesis exactly cancel. This is because in this instance we find

M(4,1),bare
L,f1

M(4,1),bare
L,f2

=
mf1

mf2

,

δmf1

mf1

=
δmf2

mf2

,

δZf1 = δZf2 . (4.7.3)

As a result we also find

m2
f2

m2
f1

Γ(4,1)
f1

Γ(4,1)
f2

= 1 . (4.7.4)

Alternatively, if the two final-state fermion pairs under consideration do not have the
same charges under the SM symmetry group this cancellation is only approximate
and we instead find that the ratio in Eq. 4.7.4 would be only approximately equal to
1. Given these cancellations, the ratios of the decay rate in the SM are more stable
under perturbative corrections than the decay rates themselves.

The arguments outlined in this section also carry over to the SMEFT where we find
the cancellation of many flavor-universal dimension-6 Wilson coefficients in these
ratios. To a large extent, these ratios also cause the cancellation of input-scheme-



148 Chapter 4. h → ff̄ at NLO in the SMEFT

dependent terms, overall reducing the input scheme dependence when considering
ratios of decay rates. Finally, as we shall shortly see, the ratios of decay rates offer
stringent tests of MFV, as well as probes of the hgg and hγγ couplings found in the
dimension-6 SMEFT.

As established, the ratios in which we find the greatest cancellation of terms in the
ratios of decay rates are those where the final-state fermion pairs of the two processes
have the same charges under the SM symmetry group. Lepton colliders should be
able to measure the tau to muon decay rate ratio, and so we focus on this as a
concrete possibility. First we define the ratio of these decay rates as

Rτ/µ = (m(`)
µ )2

(m(`)
τ )2
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τ

Γ(`)
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. (4.7.5)

As established earlier in this section, in the SM we find in the small-mass limit, and
ignoring terms suppressed by powers of (m(`)

` )2/m2
H that Rτ/µ = 1. In the SMEFT,

keeping up to and including O((v(`))2/Λ2
NP) terms we find at the scale µ = mH
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where in the top line of Eq. 4.7.6 we have used that ∆(4,1)
τ = ∆(4,1)

µ to simplify this
expression. While the sum Γ(`)

τ +Γ(`)
µ is a function of 48 Wilson coefficients, the above

ratio, Rτ/µ, is a function of only 26, a reduction of 22. This is a result of almost
all coefficients whose corresponding operator is not a function of a fermion field
canceling in this ratio. The only exception to this are the flavor universal coefficients
CHW , CHB and CHWB, the coefficients to which are a function of fermion masses
and thus do not cancel in the ratio Rτ/µ.
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The ratio in Eq. 4.7.6 is simplified further if some universality is assumed for the
generation-dependent Wilson coefficients. As an example we study the ratio Rτ/µ

while also implementing MFV, which we first discussed in general in Section 2.1.3
and in the context of the SMEFT in Section 2.2.2. Specifically, in correspondence
with the results here being presented in the small-mass limit, we use the same limit
for the MFV Wilson coefficients, which we developed in Section 3.5. As discussed
in Section 3.5, the flavor-space indices of the Wilson coefficients are then carried
by powers of the Yukawa matrices, which are expanded in the small-mass limit to
produce the equations found in Eqs. 3.5.7 and 3.5.8. After taking the MFV limit,
and dropping terms suppressed by powers of m(`)

f /mH we find
[
Rτ/µ − 1

]
MFV

= α(`)(v(`))2

π
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(
ln2
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HW

)
, (4.7.7)

where the form of Chγγ is found by replacing the Wilson coefficients in chγγ from
Eq. 4.3.27 with the small-mass limit MFV counterparts to give

Chγγ = C0
HB ĉ

2
w + C0

HW ŝ
2
w − C0

HWB ĉwŝw . (4.7.8)

In Eq. 4.7.7 we have also given the analytic form of the ratio Rτ/µ to demonstrate
that the remaining terms are a result of the double logarithms arising from the hγγ
coupling found in Eq. 4.4.5. It is clear that imposing MFV brings the number of
Wilson coefficients in the ratio Rτ/µ down to only three. Comparing Eq. 4.7.6 and
Eq. 4.7.7 we see that with a generic flavor structure it is possible to have a significant
deviation from the SM result in Γ(`)

τ , Γ(`)
µ , and Rτ/µ simultaneously, while in an MFV

scenario any deviations from the SM due to modified fermion couplings in the decay
rates would not propagate to the ratio Rτ/µ. From this we see that measuring the
ratio Rτ/µ offers an interesting test of MFV, and an independent constraint on the
Wilson coefficients in Eq. 4.7.7. As an estimate, we take the values for the Wilson
coefficients appearing in Eq. 4.7.7 from a recent global fit [100]. We take the 95%
confidence level limits for the relevant coefficients from this reference where a global
fit over 19 Wilson coefficients is performed, marginalized over all coefficients which
finds CHB ≈ [−0.5, 0.5], CHW ≈ [−1.5, 1.5], and CHWB ≈ [−0.125,+0.125]. Using
these values in such a way as to maximize Eq. 4.7.7 we find[

Rτ/µ − 1
]

MFV
≈ [−0.25,+0.25](v

(`))2

Λ2
NP

. (4.7.9)

Using the estimate stated in Section 4.6.1 of (v(`))2/Λ2 ≈ 6%, we see that this



150 Chapter 4. h → ff̄ at NLO in the SMEFT

corresponds to a ∼ 1.4% possible deviation from the SM result.

As a second example, we consider the ratio of decay rate of h → cc̄ and h → bb̄

defined as
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. (4.7.10)

As discussed at the beginning of this section, due to the differences in charges under
the SM gauge group leading to different couplings of these fermions to gauge bosons,
we do not expect the cancellation between terms in this ratio to be as exact as was
seen for Rτ/µ. However, we do find that QCD corrections to the SM result (and
therefore also flavor-universal contributions from "SM-like" QCD diagrams) cancel
in the ratio, so deviations from unitary in the SM component of Rc/b are due to SM
EW effects. The ratio in Eq. 4.7.10 for generic flavor structure takes the form
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2233

+ 1.9C̃(3)
Hq
22

+ 1.9 v
(`)

m
(`)
b

C̃bW

e(`) − 1.5C̃tH + 1.5C̃tW
e(`) − 1.3

C̃(8)
qu

2222
− C̃(8)

qd
3333
− m(`)

s

m
(`)
b

C̃
(8)
qd

2332


− 1.0

C̃(1)
qu

2222
− C̃(1)

qd
3333
− m(`)

s

m
(`)
b

C̃
(1)
qd

2332

× 10−2 +
8
(
v(`)

m(`)
c

C̃cG
g3
− v(`)

m
(`)
b

C̃bG
g3

)

− 8 mt

m
(`)
b

C̃
(8)
quqd
3333
− 7

m(`)
τ

m(`)
c

C̃
(1)
lequ
3322

+ m(`)
τ

m
(`)
b

C ledq
3333

+ m(`)
µ

m(`)
c

C̃
(1)
lequ
2222

+ m(`)
µ

m
(`)
b

C ledq
2233


− 6C̃(1)

Hq
33
− 5C̃(1)

Hq
22

+ 4
m(`)

b

m(`)
c

− m(`)
c

m
(`)
b

 C̃(8)
quqd
3223

+ 4m
(`)
s

m(`)
c

C̃
(8)
quqd
2222

+ 4 v
(`)

m
(`)
b

C̃Htb

+ 3
m(`)

b

m(`)
c

− m(`)
c

m
(`)
b

 C̃(1)
quqd
3223

+ 3C̃Hc + 2C̃Hb + v(`)

m(`)
c

C̃cW
e

× 10−3

+ (2× 10−4) v
(`)

m(`)
c

C̃cB

e(`) + (4× 10−5) v
(`)

m
(`)
b

C̃bB

e(`)

 . (4.7.11)

From the second line in Eq. 4.7.11 we see that the deviation from unity in the SM
result is only 3%. We find that Γ(`)

c +Γ(`)
b is a function of 60 Wilson coefficients, while

the ratio Rc/b in Eq. 4.7.11 is a function of 40 Wilson coefficients. This demonstrates
again that we generally find the cancellation of flavor-universal Wilson coefficients
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in this ratio. Again, imposing MFV we find this ratio becomes
[
Rc/b − 1

]
MFV

= 0.03 + (v(`))2

Λ2
NP

2.24C̃1
bH − 2.22C̃1

cH + 2.20C̃0
HG +

8.5C̃0
HB

− 4.5C̃(1),2
quqd
3333

+ 4.4C̃0
HWB + 4.2C̃0

HD + 2.7 C̃
1
bW

e(`) + 2.7C̃0
HW + 2.6C̃(3),0

Hq
33

+ 1.9C̃(3),0
Hq
22
− 1.6C̃1

tH + 1.5 C̃
1
tW

e(`) − 1.3
(
C̃(8),0
qu

2222
− C̃(8),0

qd
33

)

+ 1.1
(
C̃1
cG

g3
− C̃

1
bG

g3

)
− 1.0

(
C̃(1),0
qu

2222
− C̃(1),0

qd
33

)× 10−2 +
− 9C̃(8),2

quqd
3333

− 6C̃(1),0
Hq
33
− 5C̃(1),0

Hq
22

+ 5C̃2
Htb + 3C̃0

Hc + 2C̃0
Hb + 2 C̃

1
cW

e(`)

× 10−3

+ (3× 10−4) C̃
1
cB

e(`) + (6× 10−5) C̃
1
bB

e(`)

 , (4.7.12)

where we have used that C(1,3),0
Hq
11

= C(1,3),0
Hq
22

, a property we described in Section 3.5.
This result is a function of 28 Wilson coefficients, far larger than the 3 Wilson
coefficients present in the equivalent result for Rτ/µ. This number may be reduced
further with additional assumptions, such as assuming some flavor universality for
up- and down-type quarks, but such possibilities are not explored here. Studying
Eq. 4.7.12 we see that by far the largest contributions are from the coefficients C̃1

bH ,
C̃1
cH and C̃0

HG. We further find that the remaining operators that appear at LO in
the individual processes, C̃0

H�, C̃0
HD, and C̃0

HWB first contribute at NLO in the ratio
Rc/b, and in particular the dependence on the coefficient C̃0

H� cancels entirely. The
contribution from C̃0

HG is due to terms of the form αs ln2(m(`)
f /mH), so as remarked

earlier in this section it would be desirable to resum such terms to obtain a more
reliable prediction. We would wish to construct the analogue of Eq. 4.7.9 for Rc/b.
Consider the three operators with the largest numerical contributions, C̃1

bH , C̃1
cH ,

and C̃0
HG. We find that while C̃0

HG is generally well constrained, the infancy of
measurements of h→ bb̄ and h→ cc̄ means that the constraints on C̃1

bH and C̃1
cH are

sufficiently large that it is not constructive to consider the potential size of deviations
from the SM as a result of these Wilson coefficients at this time [95].





Chapter 5

Conclusions

In this thesis we have calculated the complete set of NLO dimension-6 SMEFT
contributions to the decay h → ff̄ for the phenomenologically viable final states
f ∈ {b, c, τ, µ}. We began by introducing the aspects of the SM which are relevant
to this calculation, including a discussion of renormalization at the one-loop level,
throughout Chapter 1. In Chapter 2 we introduced the concept of EFTs, paying par-
ticular attention to the dimension-6 SMEFT. We saw that the dimension-6 SMEFT
(under certain assumptions) provides a systematic way to parameterize the effects of
heavy NP in a consistent manner in terms of Wilson coefficients. In turn, this enables
us to describe any experimental deviations from SM predictions in terms of these
Wilson coefficients, and opens the possibility for these deviations to be understood
in terms of UV-complete theories. This provides a means to simultaneously test a
large number of UV-complete theories.

In Chapter 3 we introduced the focus of this thesis, and motivated that the decay
modes explored here are a viable avenue for constraining Wilson coefficients, with
the current experimental status leaving ample room for NP. In this chapter we also
introduced general aspects of calculations within the dimension-6 SMEFT beyond
the specific decay modes considered, such as gauge fixing in the dimension-6 SMEFT
and MFV in the small-mass limit. In Chapter 4 we introduced the main calculations
of this thesis in full. We began by exploring the appropriateness of the diagonal
CKM approximation in this calculation. This approximation is widely used in
EW calculations in the SM, and we found that despite some technical differences
when applying this approximation to the SMEFT (stemming from the possibility of
amplitudes being a function of one CKM element rather than two), in practice for this
particular calculation the diagonal CKM approximation remains viable. We also saw
in Sections 4.3.3 and 4.3.4 that despite the renormalization of one-loop calculations
in the dimension-6 SMEFT being broadly similar to those in the SM, it was also
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necessary to implement several technical differences regarding the electric charge
renormalization and the mixing of the Higgs with the Z- and neutral Goldstone
bosons. We also saw that the mechanism of tadpole correction cancellation in the
on-shell renormalization scheme in the SMEFT is more intricate than seen in the
SM due to the introduction of tadpole corrections to the bare matrix elements and
the electric charge – features not found in the SM.

Our calculation involved both EW and QCD corrections. We presented illustrative
subsets of the full results in Sections 4.4.1 to 4.4.3. From our brief numerical
analysis in Section 4.5 we saw that large NLO corrections arise from the QED-QCD
corrections due to large logarithms from the on-shell renormalization of fermion
masses, motivating that the renormalization of the fermion masses should be in the
MS scheme. Despite this, we also found that a scheme in which some parameters are
renormalized in the on-shell scheme while others are renormalized in the MS scheme
results in the non-cancellation of tadpoles, leading to enhanced tadpole corrections,
with the largest of these scaling as m4

t/(v̂2
Tm

2
H). This motivated the introduction

of decoupling constants for the fermion mass and electric charge, linking the full
theory with a five-flavor QED×QCD theory. This essentially allowed for a consistent
way to renormalize the QED×QCD components of the fermion mass and electric
charge in the MS scheme, while renormalizing the remaining components of the
fermion mass and electric charge in the on-shell scheme. We found that decoupling
these parameters in this way was equivalent to a new renormalization scheme. This
renormalization scheme therefore allowed us to avoid enhanced corrections of both
a QED×QCD and tadpole origin.

In Section 4.6 we presented the numerical results for the decay rates in the decoupled
hybrid renormalization scheme. We first presented the results at the scale µ = mH .
We found at NLO h→ bb̄ receives contributions from 48 operators, h→ cc̄ receives
contributions from 47 operators, while h → τ τ̄ and h → µµ̄ receive contributions
from 40 operators. We also estimated the perturbative uncertainties to the LO
and NLO results through scale variations. We advocated the introduction of two
renormalization scales, µC for the Wilson coefficients, and µR for the remaining
parameters, and adding the resulting uncertainties in quadrature. A brief analysis
of the LO case showed that such a method was favorable to one in which both scales
are varied simultaneously. From our analysis we found that while NLO corrections
reduce the scale dependence of the decay rate, genuine NLO effects inaccessible to
an RG analysis based on scale variations can be significant.

Finally, in Section 4.7 we considered the ratios of several of the calculated decay
rates. We saw that, depending on the ratio in question, many flavor-universal
Wilson coefficients either approximately, or exactly cancel in these ratios. This in
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turn reduces the Wilson coefficient dependence of such ratios. We saw the example
of Rτ/µ which is a function of 26 Wilson coefficients, while Γ(`)

τ + Γ(`)
µ is a function

of 48. Similarly, Rc/b is a function of 40 Wilson coefficients, while Γ(`)
c + Γ(`)

b is
a function of 60. We also explored the form of these ratios while imposing MFV.
We found that in the case where the ratio is of decay rates where the final state
fermion pairs have different charges under the SM symmetry group that imposing
MFV results in another modest reduction of the number of contributing Wilson
coefficients. Specifically in the ratio Rc/b, we find that imposing MFV reduces the
number of Wilson coefficients to 28. However, in the case where the ratio involves
final-state fermions with the same charge under the SM symmetry group, imposing
MFV enormously reduces the Wilson coefficient dependence. We see in the case of
Rτ/µ that imposing MFV makes this ratio a function of only three Wilson coefficients.
In this way, the ratio Rτ/µ offers a potential test of MFV.

The analytic results for the decay rates calculated here are lengthy, therefore only a
subset of the analytic results were provided. The full expressions for the decay rates
calculated here may be found in the computer files of the arXiv submissions on which
the work in this thesis is based [1,2]. We believe that the renormalization procedure,
and the uncertainty analysis performed here can serve as a template for future NLO
SMEFT calculations which aim to bring EW and QCD corrections into a single
framework. The full analytic results may also serve to be useful for future global fits
of Wilson coefficients to precision data, as well as for benchmarking all-purpose tools
for automated NLO dimension-6 SMEFT calculations as they become available.





Appendix A

Dimension-6 SMEFT Operators in
the Warsaw Basis

1 : X3

QG fABCGAνµ GBρν GCµρ

Q
G̃

fABCG̃Aνµ GBρν GCµρ

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH� (H†H)�(H†H)

QHD
(
H†DµH

)∗ (
H†DµH

)

4 : X2H2

QHG H†H GAµνG
Aµν

Q
HG̃

H†H G̃AµνG
Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνB
µν

Q
HB̃

H†H B̃µνB
µν

QHWB H†σIHW I
µνB

µν

Q
HW̃B

H†σIH W̃ I
µνB

µν

5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

6 : ψ2XH + h.c.

QeW (l̄pσ
µνer)σ

IHW I
µν

QeB (l̄pσ
µνer)HBµν

QuG (q̄pσ
µνTAur)H̃ GAµν

QuW (q̄pσ
µνur)σ

IH̃ W I
µν

QuB (q̄pσ
µνur)H̃ Bµν

QdG (q̄pσ
µνTAdr)H GAµν

QdW (q̄pσ
µνdr)σ

IHW I
µν

QdB (q̄pσ
µνdr)H Bµν

Continued next page.
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7 : ψ2H2D

Q
(1)
Hl (H†i←→D µH)(l̄pγµlr)

Q
(3)
Hl (H†i←→D I

µH)(l̄pσIγµlr)

QHe (H†i←→D µH)(ēpγµer)

Q
(1)
Hq (H†i←→D µH)(q̄pγµqr)

Q
(3)
Hq (H†i←→D I

µH)(q̄pσIγµqr)

QHu (H†i←→D µH)(ūpγµur)

QHd (H†i←→D µH)(d̄pγµdr)

QHud + h.c. i(H̃†DµH)(ūpγµdr)

8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q(1)
qq (q̄pγµqr)(q̄sγµqt)

Q(3)
qq (q̄pγµσIqr)(q̄sγµσIqt)

Q
(1)
lq (l̄pγµlr)(q̄sγµqt)

Q
(3)
lq (l̄pγµσI lr)(q̄sγµσIqt)

8 : (R̄R)(R̄R)

Qee (ēpγµer)(ēsγµet)

Quu (ūpγµur)(ūsγµut)

Qdd (d̄pγµdr)(d̄sγµdt)

Qeu (ēpγµer)(ūsγµut)

Qed (ēpγµer)(d̄sγµdt)

Q
(1)
ud (ūpγµur)(d̄sγµdt)

Q
(8)
ud (ūpγµTAur)(d̄sγµTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγµet)

Qlu (l̄pγµlr)(ūsγµut)

Qld (l̄pγµlr)(d̄sγµdt)

Qqe (q̄pγµqr)(ēsγµet)

Q(1)
qu (q̄pγµqr)(ūsγµut)

Q(8)
qu (q̄pγµTAqr)(ūsγµTAut)

Q
(1)
qd (q̄pγµqr)(d̄sγµdt)

Q
(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q
(1)
quqd (q̄jpur)εjk(q̄ksdt)

Q
(8)
quqd (q̄jpTAur)εjk(q̄ksTAdt)

Q
(1)
lequ (l̄jper)εjk(q̄ksut)

Q
(3)
lequ (l̄jpσµνer)εjk(q̄ksσµνut)

Table A.1: The 59 independent baryon number conserving dimension-6
operators built from Standard Model fields, in the notation
of [130]. Classes 1-4 constitute the flavor-universal oper-
ators, while classes 5-8 are the flavor-dependent operators.
The subscripts p, r, s, t are flavor indices, and σI are Pauli
matrices. For particular operators, not all combinations of
flavor indices are independent, see [135].



Appendix B

Phase Space Integrals

As outlined in Section 4.1, the process of producing a decay rate from the corres-
ponding amplitude requires the calculation of phase-space integrals. Specifically, the
processes h → ff̄ at both LO and NLO requires the calculation of 2-body phase-
space integrals, while the process h → ff̄(g, γ) requires the calculation of 3-body
final state integrals. Generically, an n-body phase-space integral measure takes the
form

dφn(pin; {ki}) =


n∏
i=1

dd−1~ki

(2π)d−1
1

2k0
i

(2π)dδ(d)
(
pin −

n∑
i=1

ki

)
, (B.0.1)

where the first argument specifies the ingoing momenta, while the second argument
specifies the set out outgoing momenta. A semicolon is used to separate these
momenta of two different types, and where p is used for incoming momenta, while
k is used for outgoing momenta to further emphasize this distinction. While the
2-body phase-space integral is somewhat trivial to calculate, the 3-body phase-space
integral requires a little more attention. While several numerical integrators exist to
numerically calculate such integrals, often utilizing Monte-Carlo methods, we aim
to calculate such integrals in an entirely analytic way.

In this section, in the context of the processes considered in this thesis, we first
introduce the 2-body phase-space integral, and then introduce the 3-body phase-
space integral, paying particular attention to the methods employed to regularize
any IR poles.

B.1 2-Body Phase Space

Considering the process h(pH)→ f(kf ) + f̄(kf̄ ), we may use the 2-body instance of
Eq. B.0.1, in d dimensions, such that the 2-body phase-space integral measure takes
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the form

dφ2(pH ; kf , kf̄ ) = dd−1~kf

(2π)d−1
1

2k0
f

dd−1~kf̄

(2π)d−1
1

2k0
f̄

(2π)dδ(d)
(
pH − kf − kf̄

)
, (B.1.1)

such that we may define the 2-body phase space integral over the corresponding
matrix element to be

I2 =
∫
dφ2(pH ; kf , kf̄ )|Mh→ff̄ |

2 , (B.1.2)

where the bar over the matrix element, Mh→ff̄ , denotes that this matrix element
has been summed over final-state spins.

We begin by considering the rest frame of the Higgs. In this frame the particles
participating in this process have d-momentum vectors specified by

pH = (mH , ~0) ,
kf = (k0

f , ~kf ) ,
kf̄ = (k0

f̄ ,
~kf̄ ) . (B.1.3)

Recognizing that we may split the momentum-conserving delta function in Eq. B.1.1
into a product of temporal and spatial components as

δ(d)
(
pin −

∑
i

ki

)
= δ(mH − k0

f − k0
f̄ )δ

(d−1)(−~kf − ~kf̄ ) , (B.1.4)

we see we can immediately perform the integral over either d~kf or d~kf̄ . Choosing to
perform the integral over d~kf̄ brings Eq. B.1.2 into the form

I2 = π2

(2π)d
+∞∫
−∞

dd−1~kf
(k0
f )2 δ(mH − 2k0

f )|Mh→ff̄ |
2 . (B.1.5)

We now find that it is simplest to perform the integral over dd−1~kf by converting this
to an integral over the magnitude of ~kf and a d − 1 dimensional spherical surface
integral as

dd−1~k = d|~k|dΩd−1|~k|d−2 , (B.1.6)

where

dΩd = sind−2(φd−1) sind−3(φd−2)... sin(φ1)dφ1...dφd−1 , (B.1.7)

where φ1 is defined over the range [0, 2π], and the remaining angles are defined over
the range [0, π]. The h → ff̄ matrix element, and thus also the matrix element
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squared, has no angular dependence,1 and so we may immediately integrate over all
angles and use

Ωd−1 = 2π
d−1

2

Γ
(
d−1

2

) , (B.1.8)

such that Eq. B.1.5 now takes the form

I2 = 21−dπ
3−d

2

Γ
(
d−1

2

) ∞∫
0

d|~kf |
|~kf |d−2

|~kf |2 +m2
f

δ
(
mH − 2

√
|~kf |2 +m2

f

)
|Mh→ff̄ |

2 . (B.1.9)

We may then perform the integral over the delta function by applying the identity

δ(f(x)) =
∑
xi

δ(x− xi)
|f ′(xi)|

, (B.1.10)

where xi are the zeros of f(x). Applying Eq. B.1.10 brings I2 into the form

I2 = 21−dπ
3−d

2

Γ
(
d−1

2

) ∞∫
0

d|~kf |
|~kf |d−2

|~kf |2 +m2
f

{∑
±

1
2βf

δ
(
|~kf | ±

mH

2 βf

)}
|Mh→ff̄ |

2 , (B.1.11)

where βf is the function seen in Eq. 4.2.6, and where now its kinematic origins
become clear. Performing the final integral over d|~kf | gives

I2 = 24−2dπ
3−d

2 md−4
H βd−3

Γ
(
d−1

2

) |Mh→ff̄ | . (B.1.12)

In the instance of two massive final-state particles, as is considered here, the phase-
space integral results in no IR divergences, and so we are free to simply replace
d→ 4 in Eq. B.1.12 to produce the simple result

I2 = βf
8π |Mh→ff̄ | . (B.1.13)

B.2 3-Body Phase Space

B.2.1 General Phase Space Calculation

We now turn our attention to the 3-body final-state processes also considered in this
work, these being h(pH)→ f(kf )+ f̄(kf̄ )+γ(kγ) and h(pH)→ f(kf )+ f̄(kf̄ )+g(kg).
For simplicity of notation, in this section we will consider only the former of these two
processes, with it understood that the techniques applied here are exactly analogous
between the two cases.

1A feature which extends to all 1→ 2 processes.
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To begin, we consider splitting the 3-body phase-space integral as a product of two
2-body phase-space integrals

dφ3 = dQ2

2π dφ2(pH ; Q, kγ)dφ2(Q; kf , kf̄ ) . (B.2.1)

In this way, the fermion anti-fermion pair is considered as an independent 2-body
final state system, the energy delivered to which is parameterized by the d-momenta,
Q, over which we must integrate over all values. There is also a separate 2-body final
state system where we consider the fermion anti-fermion pair as a single component
with d-momenta Q, alongside the final-state photon. In total, we write the integral
over the 3-body phase space considered here as

I3 =
∫ dQ2

2π dφ2(pH ; Q, kγ)dφ2(Q; kf , kf̄ )|Mh→ff̄γ|
2

=
∫ dQ2

2π I3.2 I3.1 , (B.2.2)

where

I3.1 =
∫
dφ2(Q; kf , kf̄ )|Mh→ff̄γ|

2 ,

I3.2 =
∫
dφ2(pH ; Q, kγ)I3.1 . (B.2.3)

We begin by computing I3.1 where we are free to choose the reference frame in which
to perform the integral. We choose the frame in which Q = (Q0, ~Q = ~0), where the
fermion anti-fermion pair are emitted back to back. There are an infinite number
of d-momenta configurations which satisfy this condition, of which we are free to
choose, and so we use

pH = (p−H , 0, ..., | ~pH |),
kf = (p0

f , 0, ..., |~kf | sin θ, |~kf | cos θ),
kf̄ = (k0

f̄ , 0, ...,−|~kf̄ | sin θ,−|~kf̄ | cos θ),
kγ = (k0

γ, 0, ..., 0, Eγ) , (B.2.4)

such that θ is the angle between the fermion, f , and the final-state photon. In this
reference frame we may write

I3.1 = π2

(2π)d
∫
dd−1~kfd

d−1~kf̄
1

k0
fk

0
f̄

δ(Q0 − k0
f − k0

f̄ )δ
(d−1)(−~kf − ~kf̄ )|Mh→ff̄γ|

2

= π2

(2π)d
∫
dd−1~kf

1
(k0
f )2 δ(Q

0 − 2k0
f )|Mh→ff̄γ|

2 , (B.2.5)

where in the second line we have performed the integral over d~kf̄ to set ~kf̄ = −~kf .
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Similarly to as was seen in Eq. B.1.6 we may write this integral over dd−1~kf as a
product of an integral over the magnitude of the momenta and an integral over the
surface of a (d− 1)-sphere. However, unlike the case explored in Appendix B.1, in
general, the matrix elementMh→ff̄γ is a function of the θ introduced in Eq. B.2.4.
As such we can perform the integral over all but one of the angles in dΩd−1. In
particular we use the identity

Ωd−1 =
π∫

0

2π(d−2)/2

Γ(d−2
2 )

sind−3 θdθ . (B.2.6)

Changing variables as prescribed above, and again making use of the identity in
Eq. B.1.10 brings I3.1 into the form

I3.1 = 21−dπ
2−d

2

Γ(d−2
2 )

∞∫
0

d|~kf |
| ~kf |d−2

|~kf |2 +m2
f

∑
±

δ
(
|~kf | ±

√
Q

2

2 βQ

)
2βQ


×

π∫
0

dθ sind−3 θ|Mh→ff̄γ|
2 , (B.2.7)

where we have used that in this frame (Q0)2 = Q2 and where

βQ =

√√√√1− 4m2
f

Q2 . (B.2.8)

Performing this final integral over |~kf | in I3.1 gives

I3.1 = 24−2dπ
2−d

2

Γ(d−2
2 )

(Q2)
d−4

2 βd−3
Q

π∫
0

dθ sind−3 θ|Mh→ff̄γ|
2 . (B.2.9)

We now turn to computing I3.2 from Eq. B.2.3. This integral takes the form

I3.2 = 24−2dπ
2−d

2

Γ(d−2
2 )

(Q2)
d−4

2 βd−3
Q

∫ dd−1 ~Q

(2π)d−1
dd−1~kγ

(2π)d−1
1

2Q0

1
2k0

γ

(2π)d

× δ(d)(pH −Q− kγ)
π∫

0

dθ sind−3 θ|Mh→ff̄γ|
2 . (B.2.10)

Performing the integral in Eq. B.2.10 introduces no new conceptual difficulties and
we may follow the procedure laid out in Appendix B.1 and the previous parts of
Appendix B.2.1: we perform the integral over either dd−1 ~Q or dd−1~kγ, change to
spherical coordinates according to Eq. B.1.6, and apply the identity in Eq. B.1.10 to
perform the remaining integral. We note however, that the only angular dependency
in |Mh→ff̄γ| was already integrated over in I3.1 and so we can immediately integrate
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over all angles of the (d− 1)-sphere to find

I3.2 = 25−3dπ2−dm2−d
H

Γ(d− 2) (Q2)
d−4

2 βd−3
Q (m2

H −Q2)d−3
π∫

0

dθ sind−3 θ|Mh→ff̄γ|
2 . (B.2.11)

Finally, as we interpret Q2 as the (squared) energy imparted to the fermion anti-
fermion pair, the minimum amount of energy they can receive is enough to produce
them stationary such that Q2 = 4m2

f , and the maximum amount of energy the
fermion pair can receive is when the final-state photon receives no energy from the
decaying Higgs (soft-photon limit), such that Q2 = m2

H . With this we can finally
write this 3-body phase-space integral as

I3 = 24−3dπ1−dm2−d
H

Γ(d− 2)

m
2
H∫

4m2
f

dQ2
π∫

0

dθ(Q2)
d−4

2 βd−3
Q (m2

H −Q2)d−3 sind−3 θ|Mh→ff̄γ|
2 .

(B.2.12)

B.2.2 Phase Space Slicing

Some momentum structures present in the squared amplitude |Mh→ff̄γ|
2 result in

IR-poles when computing the 3-body phase-space integral as in Eq. B.2.12. As
stated, these IR poles manifest in the soft-photon limit, equivalent to Q2 → m2

H in
the context of Eq. B.2.12. In order to regulate these poles, like as was adopted in
Section 1.2.2, we deform the number of dimensions so d = 4 − 2ε, such that the
integral is regularized by a 1/ε pole. While computationally different, the techniques
presented throughout this section are conceptually similar to those outlined in [141],
and produce identical results, as found by our agreement with the results in [128]
which applies the same methods.

The momentum structures leading to IR-divergences originate from a subset of
real-emission diagrams. For such momentum structures, after integrating over θ in
Eq. B.2.12, this integral takes the form

I =
βf∫
0

dβQ
1

(βf − βQ)1+2εf(βQ) , (B.2.13)

where we have changed variable such that the integration variable is now βQ defined
in Eq. B.2.8, where the IR-divergent nature of the squared amplitude is present in
the (βf − βQ)−1−2ε term (which we call the divergent component), and where f(βQ)
is some generic function which is finite over the limits of integration. We call f(βQ)
the non-divergent component. To compute this integral we split the integration
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range into a soft and hard region according to

Hard: 0 ≤ βQ ≤ βC ,

Soft: βC ≤ βQ ≤ βf , (B.2.14)

where βC is a parameter separating the soft and hard regions. We further impose
that βC should be very close to the soft limit, βf . As such, we may write the integral
in Eq. B.2.13 as

I =
βf∫
βC

dβQ
1

(βf − βQ)1+2εf(βQ) +
βC∫
0

dβQ
1

(βf − βQ)1+2εf(βQ)

=


βf∫
βC

dβQ
1

(βf − βQ)1+2ε


f(βQ)

∣∣∣∣∣
βQ→βf

+
βC∫
0

dβQ
1

(βf − βQ)1+2εf(βQ) .

(B.2.15)

For the hard region, identified as the second term in both lines of Eq. B.2.15,
analytical solutions exist for all f(βQ) that emerge in the process h→ ff̄(g, γ). We
identify the soft region to be the first term on both lines of Eq. B.2.15. From the
first line of Eq. B.2.15, we find that in this small region of integration the divergent
component formally diverges while the non-divergent component remains static in
the limit βC → βf , hence we recover the form of the soft region of integration in the
second line of Eq. B.2.15. Computing the integral in the soft region we find

I = −(βf − βC)−2ε

2ε

f(βQ)
∣∣∣∣∣
βQ→βf

+
βC∫
0

dβQ
1

(βf − βQ)1+2εf(βQ) , (B.2.16)

where the IR pole is now explicitly separated. As I should not be a function of the
exact position of the split between the soft and hard regions, parameterized by βC ,
we find that the βC dependence in the soft and hard regions cancels between the
sum of these two regions.





Appendix C

Feynman Diagram Subsets

C.1 QED-QCD Diagrams

In this section we present the subset of QED-QCD diagrams contributing to the
processes considered in this work. Analytic results for these corrections are found in
Section 4.4.1. In Fig. C.1 we give the QED corrections, while in Fig. C.2 we give the
QCD corrections. As for the QED-QCD analytic results, we need not distinguish
between the final-state fermion pairs in these diagrams, except to note that the QCD
diagrams in Fig. C.2 only apply to final-state quark pairs. We report the first of
these sets of diagrams overleaf.
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Figure C.1: Diagrams showing the virtual (vi), real (ri), and self-
energy (si) corrections from photons to the process h →
ff̄(γ). There is no visual distinction in these diagrams
between SM vertices and dimension-6 effective vertices.
Each diagram contains at most one dimension-6 SMEFT
operator insertion. For the virtual corrections, (v1) re-
ceives SM contributions, as well as contributions from op-
erators appearing in the LO decay rate, (v1-3) has QfB,
QfW and their hermitian conjugate operator insertions,
and (v4-6) receives contributions from the class-4 oper-
ators QHB, QHW , and QHWB. For the real corrections,
(r1-2) receives SM contributions and contributions from
operators appearing in the LO decay rate, (r1-3) has oper-
ator insertions from QfB, QfW , and their hermitian con-
jugates, and (r4-5) also has contributions from the class-4
operators listed above. The only QED self-energy diagram
is shown in (s1), which receives SM as well as QfB, QfW
and their hermitian conjugate contributions.
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Figure C.2: Diagrams showing the virtual (vi), real (ri), and self-
energy (si) corrections from photons to the process h →
ff̄(g). There is no visual distinction in these diagrams
between SM vertices and dimension-6 effective vertices.
Each diagram contains at most one dimension-6 SMEFT
operator insertion. For the virtual corrections, (v1) re-
ceives SM contributions, as well as contributions from op-
erators appear in the LO decay rate, (v1-3) has QfG and
its hermitian conjugate operator insertions, and (v4) re-
ceives contributions from the class-4 operators QHG. For
the real corrections, (r1-2) receives SM contributions and
contributions from operators appearing in the LO decay
rate, (r1-3) has operator insertions from QfG and its her-
mitian conjugate, and (r4) also has contributions from the
class-4 operator CHG. The only contributing QCD self-
energy diagram is shown in (s1), which receives SM as well
as QfG and its hermitian conjugate contributions.
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C.2 Large mt-Limit Diagrams

In this section we present the subset of diagrams contributing to the large-mt limit
subset of results, the analytical results for which are reported in Section 4.4.2. In
Fig. C.3 we report the diagrams that contribute only to the process h→ bb̄, while
in Fig. C.4 we report the diagrams that contribute to h→ ff̄ for all light fermions,
including f = b.
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Figure C.3: Diagrams unique to the process h→ bb̄ contributing to the
large-mt from (vb1-9): the virtual corrections and (sb1-2):
the two-point functions necessary for UV renormalization.
Additional contributing diagrams that are not unique to
h→ bb̄ can be found in Fig. C.4. There is no distinction
in the diagrams between a SM vertex and a dimension-6
effective vertex, but each diagram contains at most one
dimension-6 SMEFT operator insertion.
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Figure C.4: Diagrams contributing to the large-mt corrections of
the process h → ff̄ for all light fermions (including
f = b) from (vf1-2): the virtual corrections and (sf1-
7): the two-point functions necessary for UV renormal-
ization. In these diagrams KL = {γγ, ZZ, γZ} and
IJ = {γγ, ZZ, γZ,WW}. There is no distinction in the
diagrams between a SM vertex and a dimension-6 effective
vertex, but each diagram contains at most one dimension-6
SMEFT operator insertion.





Appendix D

Numerical Results for h → µµ̄

In this section we report the numerical results for h→ µµ, including the analysis of
scale uncertainties, which were omitted from the body of this work.

D.1 Results at µ = mH

For h→ µµ̄, using the values reported in Table 4.2 and setting µ = mH we find that
the LO expression in Eq. 4.6.2 takes the form seen in Eq. 4.6.5 with appropriate
replacements, while the NLO expression in Eq. 4.6.2 evaluates to

∆NLO
µ (mH) = 0.98 + (v(`))2
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) . (D.1.1)

In Table D.1 we also report the analogous results to those for in Table 4.3 for the
process h→ µµ̄.
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h→ µµ̄ SM C̃HWB C̃H�
v

(`)

m
(`)
µ

C̃µH C̃HD

NLO QED 1.1% -4.9 % 1.1% 1.1% 1.1%
NLO large-mt -1.1% -0.7% 5.1% 4.4% -4.4%
NLO remainder -1.7% -0.8% -0.7% 0.8% -0.6%
NLO correction -1.7% -6.4% 5.5% 6.3% -3.9%

Table D.1: Size of the NLO corrections for the process h → µµ̄ split
into QED, large-mt and remainder corrections for the SM
and the coefficients appearing in the LO decay rate.

D.2 Scale Uncertainties

Here we report the scale uncertainties related to the process h → µµ̄, using the
quadrature method outlined in Section 4.6.2. Keeping only terms that contribute at
the 5% level or more on the extreme values of their uncertainties, at LO we find
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while at NLO we find
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µ (mH ,mH) = (0.98+0.0001

−0.0002) + (v(`))2

Λ2
NP

{
(3.49+0.00

−0.01)C̃HWB + (2.11+0.00
−0.02)C̃H� + (−1.50+0.01

−0.00) v

m(`)
µ

C̃µH + (1.20+0.00
−0.01)C̃HD

+ (0.41+0.01
−0.01)C̃HB + (0.14+0.00

−0.00)C̃HW + (−0.09+0.02
−0.00)C̃(3)

Hq
33

+ (−0.08+0.03
−0.00)C̃Ht

+ (0.05+0.00
−0.03)C̃(1)

Hq
33

+ (−0.05+0.01
−0.00)C̃tH + . . .

}
. (D.2.2)



Appendix E

Select Full Mass Dependent
Results

In this section we report the QED-QCD and four-fermion operator subsets of results,
while retaining full mass dependence, which were reported in Sections 4.4.1 and 4.4.3
in the small-mass limit.

E.1 QED-QCD

Here, we report the full mass dependent results for the QED-QCD corrections. The
small-mass limit results are listed in Section 4.4.1. We closely follow the presentation
of the results Section 4.4.1, again allowing the reader to switch between the on-shell
scheme and the hybrid renormalization scheme by setting cmf = 0 or cmf = 1 as
defined in Eq. 4.3.14. We also make use of the expressions in Eq. 4.4.1, where these
quantities now retain their full mass dependence. The reader may also recover the
results in the recommended decoupled hybrid renormalization scheme by making use
of the expression in Eq. 4.5.29. In order to simplify the results as much as possible,
we will make use of the functions

βf =

√√√√1− 4m2
f

m2
H

, xf = 1− βf
1 + βf

, yf = 1− β2
f

4 = m2
f

m2
H

,

z = M2
Z

m2
H

, µ̂ = µ

mH

. (E.1.1)

In the SM, the on-shell scheme result may be written as a function of the hybrid
renormalization scheme results in the exact same way as for the small-mass results
seen in Eq. 4.4.2, with δf (4)

(g,γ) taking the same form as in Eq. 4.4.3. The NLO SM
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result in the hybrid renormalization scheme is
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(E.1.2)

The dimension-6 contribution differs from the form found in Eq. 4.4.4 and is instead
given by

Γ(6,1)
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where
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The dimension-6 NLO corrections in the hybrid renormalization scheme are given
by
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, (E.1.5)

where chγγ was reported in Eq. 4.3.27, chγZ was reported in Eq. 4.4.6 and where vf is
the vector coupling of fermions to the Z-boson. The function FhγZ was fist reported
in the small-mass limit in Eq. 4.4.7; here we report its full mass dependent form,
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given by
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where

βz =
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, xβz = βf − βz
βf + βz
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Taking the small-mass limit of the results reported throughout this section we recover
the results found throughout Section 4.4.1, as expected.

E.2 Four-Fermion Results

Here we present the full mass dependent dimension-6 SMEFT decay rate arising
from the four-fermion operators, found in class 8 of Table A.1. The form of these
results in the small-mass limit may be found in Section 4.4.3. We again present
results without reference to any particular renormalization scheme, but allow the
reader to choose a renormalization scheme through the choice of cmf , defined below
Eq. 4.4.10. The conversion to the recommended decoupled hybrid renormalization
scheme, defined in Eq. 4.5.24 and equivalently in Eq. 4.5.27, may be performed using
the simple conversion in Eq. 4.5.31.

We again split the result as

Γ(6,1)
f,(4F) = Γ(6,1)

f,(4F) − 2Γ(4,0)
f cmf δf

(6)
(4F) . (E.2.1)
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Keeping full mass dependence, the functions δf (6)
(4F) defined in Eq. 4.4.1 now read
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We again introduce notation to simplify the results via the functions
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where βf , xf and yf are found in Eqs. 4.2.6 and E.1.1. In presenting these results
we also use the forms of F(8S) and F(8V ) found in Eq. 4.4.24. Importantly, in the
small-mass limit we recover the expressions
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. (E.2.4)

We also note that the functions G(8S) and G(8V ) in Eq. E.2.3 are distinct from F(8S)

and F(8V ) in Eq. 4.4.24, despite converging to the same result in the small-mass limit.
For h→ bb̄ we find
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For h→ cc̄ we find
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For h→ τ τ̄ we find
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For h→ µµ̄ we find
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Appendix F

Decoupling Constants

In this section we report the form of the fermion mass decoupling constants intro-
duced in Section 4.5.2. The form of the electric charge decoupling constants are
also listed in Section 4.5.2 in Eqs. 4.5.22 and 4.5.23. In reporting these results we
write them in terms of the five-flavor QED×QCD theory parameters m(`)

f and e(`)

to emphasize that we advocate the use of decoupling constants when adopting the
decoupled hybrid renormalization scheme defined by Eq. 4.5.27. The decoupling
constants are gauge-independent quantities which receive contributions from tad-
pole corrections. It is therefore convenient to split the decoupling constants into
tadpole and non-tadpole contributions. As noted in Section 1.2.3, tadpoles are gauge-
dependent quantities, and so this split into tadpole and non-tadpole contributions
is gauge-dependent, although the sum of the tadpole and non-tadpole terms are
necessarily gauge invariant. When reporting these results, we choose to write them
with the tadpoles defined in Feynman gauge. The results are not simply a function of
the tadpole functions defined in Eqs. 4.3.23 and 4.3.26, but rather of the finite parts
of these tadpole functions in the small-mass limit. For convenience, we here list the
finite part of the SM and dimension-6 SMEFT tadpole functions in the small-mass
limit as
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2
w + CHWB ĉwŝw
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where the tilde represents that the tadpole functions are the finite parts of the
tadpole functions of Eqs. 4.3.23 and 4.3.26 in the small-mass limit, the superscript
represents a contribution at mass dimension i, and Â0 represents the finite part of
the corresponding A0 scalar loop function

Â0(m2) = m2 +m2 ln
(
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)
. (F.0.2)

In the SM, we find that the decoupling constants for the final-state fermions relevant
to the processes considered in this work, b, c, τ , and µ are
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We split the dimension-6 SMEFT corrections according to
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where the term not proportional to tadpoles ("no-tad") is split further according to
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For f = b one finds
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For f = c one finds
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3
w

+ 6
√

2e
(`)v(`)

m(`)
c

M6
Z ŝ
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For f = τ we find

ζ
(6,1)
mτ ,NL = − 1

128π2MWM
3
Z ŝ
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The dimension-6 results for f = µ are similar to those for f = τ , but are listed here
for completeness
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