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ABSTRACT 
Identification and analysis of tephra preserved in paleoenvironmental sequences can 

provide key insights into the characteristics and consequences of explosive volcanism. 

Notable evidence gaps in the Quaternary eruption record confounds the ability to link 

volcanism to impacts on climate and terrestrial environments, yet studies suggest that 

geochemical analysis of high-resolution stalagmite records can address these gaps, through 

detection of transient enrichments associated with incorporation of volcanogenic trace 

elements, and perturbation of regional hydroclimate by volcanic forcing. However, the 

mechanisms controlling deposition and preservation of eruption signals in stalagmites are 

poorly understood.  Here, Principal Component Analysis (PCA) is applied to two stalagmite 

trace element datasets: the first (NIED08-05 – 0-3 ka BP) from Niedźwiedzia Cave (SW 

Poland) to detect volcanic ash fall  events; and the second (DIM-3 – 70-90 ka BP) from Dim 

Cave (South Turkey) to assess the climatological impact of super-volcanism during the Last 

Glacial Period.  Results suggest that volcanic eruptions do have the capacity to influence 

stalagmite geochemistry, however notable limitations are evident. Discrepancies in the 

NIED05-05 record appear linked to regional climate, karst hydrology, sequence growth rate, 

depth, and cave ventilation - all impeding direct incorporation of volcanic material into the 

stalagmite. Conversely, poor chronological control of eruption dates and complexities 

associated with the pacing, duration, and characteristics of stadial-interstadial transitions in 

the Eastern Mediterranean restricts interpretation of the DIM-3-A record. Effective use of 

stalagmites in paleo-volcanology requires further work to constrain the absolute timing of 

individual eruption events, and better understand the expression of volcanic-induced 

climate change during the late Pleistocene. By quantifying the environmental processes 

acting to either enhance or attenuate the preservation of volcanic signals, we can gain a 

better indication of which karst conditions most effectively preserve the signals generated 

by explosive volcanism. Ultimately, rioritizing analysis of these stalagmites in paleo-

volcanology may consequently provide an interpretive framework for linking the timing of 

eruption events with other global paleo-environmental archives to construct robust regional 

tephrochronologies, improve Holocene eruption dating, and constrain regional climate 

transitions using volcanic events as time-stratigraphic markers. 
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1.0. INTRODUCTION 

Volcanic eruptions substantially affect the Earth system, and their effects can be spatially and 

temporally extensive (Guillet et al. 2020; Kobashi et al. 2017; Sigl et al. 2015; Stoffel et al. 2015). 

Distal transmission of tephra can cause inter-continental social, political and economic disruption 

(Birtchnell & Büscher, 2011), and atmospheric injection of volcanic gases can cause global 

climatological perturbation on annual-to-centennial timescales (e.g. Baldini et al. 2018; Zanchettin et 

al. 2014, 2013; Miller et al. 2012; Zhong et al. 2011). Therefore, studying the frequency and impact 

of past volcanism is critically important to prepare for future events. 

Historical records of volcanic eruptions are limited in spatial and temporal scope (Rougier et al. 

2018), but can be augmented through interrogation of paleo-environmental archives. Ice cores are 

the primary source of such additional information, through detection of acidity spikes in annual 

layers at a high degree of precision (Zielinski et al. 1996). Exceptionally large eruptions such as 

Laacher See (12.9 ± 0.040 ka BP, Germany – Bronk Ramsey et al. 2015), Aniakchak (3.595 ± 0.001 ka 

BP, Alaska – Blackford et al. 2014), Samalas (1257 CE, Indonesia), and Tambora (1815 CE, Indonesia) 

are all synchronous with sulfate spikes in ice core records from Greenland and Antarctica. However, 

in many cases, tracing the volcanic source of such enrichments is more difficult, because the ice 

sulfate concentration is not always proportional to estimated eruption size (Rasmussen et al. 2014). 

Part of the complexity here may arise because adequately resolved polar ice cores reflect a 

preservation bias toward high-latitude eruptions (Hildreth & Fierstein, 2012), and non-polar ice 

records are limited to high-altitude environments (Frisia et al. 2008), where volcanic aerosols are 

poorly preserved within the ice (Wantanabe et al. 2004). Delay between the atmospheric injection of 

sulfur species during the eruption and the subsequent incorporation in ice as well as uncertainties in 

annual ice-layer counting and absence of tephra deposits (Cole-Dai et al. 2009) can all compound 

chronological uncertainty of ice cores of volcanism. Consequently, there are apparent gaps in the 

Holocene volcanic ice core record, which hinders assessment of synchronicity between volcanism 

and associated environmental impacts. These gaps can be filled by (1) a more complete and more 

accurate record of pre-historic volcanism globally, and (2) additional paleoclimate records sourced 

from lower latitudes than the poles that may also contain evidence for volcanism.    

The global record of volcanism often relies on direct tephrochronology from well-preserved deposits 

proximal to a given volcano. However, the preservation potential is not always high (Dugmore et al. 

2020), and so this is supplemented by distal tephra records such as ombrotrophic peat, marine and 

lacustrine sequences (Lowe et al. 2011), within which tephra particles can be preserved as complete 

layers, or microscopic shards (e.g. cryptotephras; Lane et al. 2014). High-resolution particle analysis 
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of tephra in such sequences can, in ideal cases, aid characterisation of eruption source, magnitude 

(M) and magma composition (Ponomareva et al. 2015). Effective characterisation of ash layers 

consequently relies on a combination of physical, mineralogical, and geochemical observations from 

laboratory and field studies (Lane et al. 2017). However, ash layers in peatlands can experience 

particle migration and alteration due to structural (Payne & Gehrels, 2010), hydrological (Watson et 

al. 2015) and anthropogenic (Swindles et al. 2013) disturbance. These can alter, remove, or obscure 

tephra records of an eruption, and therefore hinder robust chronological correlations between 

tephra records in different locations. These disturbances are less prevalent in lacustrine and marine 

environments (Watson et al. 2016), however a larger depositional catchment, dynamic 

sedimentation, and secondary transport processes in the water column (Griggs et al. 2014) increase 

the difficulty of clear tephra detection (Scudder et al. 2016; Schacht et al. 2008). Evidently, novel, 

high-resolution archives are required.   

The application of stalagmite records to climatological (e.g. Cheng et al. 2019; Wong & Breecker, 

2015) and hydrological (e.g. Hartmann & Baker, 2017; Denniston & Luetscher, 2017) investigations is 

well established.  Stalagmite growth initiates due to interaction of weakly acidic infiltrating surface 

water with calcium carbonate (CaCO3) bedrock. This infiltrating water becomes supersaturated with 

respect to calcite and, once it reaches the cave atmosphere, degasses CO2 and deposits CaCO3 

speleothems (e.g., stalactites and stalagmites). Stalagmite geochemistry reflects atmospheric (e.g. 

temperature, precipitation, air composition, atmospheric circulation) and environmental conditions 

(e.g. soil bioproductivity, vegetation dynamics) at the surface at the time the stalagmite was growing 

(Fairchild & Treble, 2009). Their tendency for continuous growth, and low affinity for diagenetic 

modification (Frisia & Borsato, 2010) means stalagmites provide geographically ubiquitous, high-

resolution isotope and trace element concentration records  that can be used to reconstruct a range 

of external environmental conditions (Baldini, 2010).  

Three key mechanisms allow entry of volcanic material (tephra or aerosols) into caves (Figure 1).  

The first (1) is aeolian transport and dry deposition of solid tephra particles (Pashchenko et al. 1993). 

Fine ash from eruption plumes is dispersed widely by atmospheric circulation (Rose & Durant, 2009), 

transported into caves by ventilation, deposited on the stalagmite growth surface , and integrated 

into the stalagmite mineral fabric as it grows (Badertscher et al. 2014). One way periods of increased 

aeolian transport into the cave are detected is by δ13C and δ18O concentrations, which reflect 

enhanced disequilibrium fractionation due to ventilation (Ünal-İmer et al. 2020). Direct 

incorporation of volcanic particles into calcite can thus reflect regional ash deposition, and variations 

in atmospheric composition after major eruptive events (Dredge et al. 2013). The second (2)  

mechanism is the deposition of solid tephra on the Earth’s surface above the cave, and subsequent 
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groundwater leaching of incompatible elements from the solid tephra into groundwater, which 

percolates through the rocks comprising the cave roof system and supplies volcanogenic elements to 

the speleothem growth surface (e.g. Jamieson et al. 2015; Badertscher et al. 2014). The third (3) 

mechanism is groundwater leaching. Volcanoes emit sulfur dioxide (SO2), which oxidises into sulfuric 

acid (H2SO4) in the atmosphere where it resides for days to years (Robock, 2000). Sulfate (SO4) is 

removed from the atmosphere by either wet deposition via meteoric precipitation (Loosmore & 

Cederwall, 2004; Mather et al. 2003), or by dry (wind) deposition (Petroff et al. 2008) – for which 

airborne tephra particles provide a nucleation surface.  Sulfate is highly soluble, showing rapid 

dissolution upon contact with ground and/or rainwater (Jones, 2015; Jones & Gislason, 2008). This 

results in the release and accumulation of volcanic aerosols and trace elements into soils, as 

dissolved ions or colloidal particles (Martin et al. 2009), which can consequently enter the aquifer 

and are transported to the stalagmite through karst fractures and interconnected pore spaces 

(Wynn et al. 2013; Fairchild & Treble, 2009). Of these three mechanisms, (3) is likely to provide 

sulfate to the speleothem, whereas (1) and (2) may provide sulfate but also REEs and other trace 

elements indicative of volcanic eruptions. Herein, we therefore focus on (1) and (2) as mechanisms 

for REE enrichment. 

 

Figure 1: A conceptual diagram illustrating the modes of direct deposition of volcanic tephra into a cave. Shown here 

are aeolian transport and dry deposition of solid tephra particles, and groundwater leaching of both solid tephra and 

aerosols deposited above the cave. This is schematic and not drawn to scale.  
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Intra-cave deposition of tephra is influenced by karst geomorphology, depth, soil/bedrock thickness, 

surface vegetation (Borsato et al. 2015), and biogeochemical cycling (Wynn et al. 2013). However, 

the extent to which this varies according to cave location is poorly understood. Analysis of 

stalagmites sourced from different sites, at different latitudes, will strengthen understanding of how 

the abovementioned processes affect stalagmite geochemistry, and consequently how regional 

climatic and environmental change controls volcanic deposition into caves. 

2.0. BACKGROUND 

2.1. The Holocene  

2.1.1. Volcanic History of the Holocene  

The Holocene volcanic record identifies 832 known high magnitude (>M4.0) explosive volcanic 

eruptions, from 11.65 ka BP to present.  However, very few have been observed directly. Eruption 

recording probability decreases as a function of time (Figure 2: Brown et al. 2014; Siebert et al. 

2010) and environment (Pyle, 2016), so contemporary volcanology strives to develop the temporal 

resolution and spatial diversity of eruption records (Cooper et al. 2018), using diverse techniques 

and archives. This section evaluates how geological and historical evidence has been used to 

uncover the volcanic history of the Holocene, and understand key events attributed to substantial 

environmental and climatic change.  
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. 
Figure 2: The global occurrence of volcanic eruptions exceeding M4.0 from 11.65ka BP to present, presented as a function of 

latitude. Marker size is proportional to eruption magnitude. Eruptions ≥7.0 are labelled. Eruption number decreases as a 

function of time and latitude, with greater scarcity evident in the Southern Hemisphere (data sourced from LaMEVE: 

Crosweller et al. 2012).  

2.1.1.1. Geological Records 

The geological record is invaluable in acquisition and global integration of knowledge regarding key 

locations, driving mechanisms and environmental impacts of prehistoric eruptions (Watt et al. 2013; 

Rampino, 1991), as only 11% of known Holocene eruptions ≥M6.0 have occurred since 1500 CE.  

Holocene deposits have not been subject to the erosion and degradation associated with aridity, ice 

sheet advance, eustatic change, and land modification due to dynamic geomorphological processes 

occurring in stadial intervals (Lowe & Walker, 1997), and pioneering geochemical techniques have 

enabled detection of fine-ash (Tomlinson et al. 2015), trace metals (Witt et al. 2008), and ignimbrite 

deposits in environmental archives and sequences across the world.  

Calderas represent the largest visible manifestations of explosive eruptions (de Silva & Lindsay, 

2015). 77% of known >M7.0 Holocene eruptions are associated with creation of a caldera, as mass 

ignimbrite emplacement from a subsurface magma reservoir (Branney & Acocella, 2015) can create 

a topographic depression often kilometres in diameter (Cole et al. 2005). Calderas forming on land 

often manifest as lakes such as Kurile (Kamchatka - 8.387 ± 0.023 ka BP), Ilopango (El Salvador - 1.5 ± 

0.03 ka BP; Pedrazzi et al. 2019), Mount Mazama (USA - 7.627 ± 0.150 ka BP; Buckland et al. 2020; 
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Bacon & Lanphere, 2006; Young, 1990), and Dakataua (Papua New Guinea - 0.998 ± 0.063 ka BP; 

Silver et al. 2009) – all formed since 11 ka BP. The huge volumes of tephra and rock ejected by 

caldera-forming eruptions subsequently become incorporated into surrounding sediments, which 

can also provide key indications of eruption features. Marine sediments, in cases whereby calderas 

are located amongst, or even concealed by ocean, provide the best archives for large Holocene 

events. For example, the Minoan (3.560 ± 0.014 ka BP:  Johnston et al. 2014) eruption chronology 

was advanced through study of ignimbrite deposits on the Aegean Sea floor surrounding Santorini 

caldera, Greece (e.g. Nomikou et al. 2016; Sigurdsson et al. 2006). Similarly, study of the submarine 

Kikai Caldera, Japan (formed at 7.280 ka BP: M7.3), has primarily been conducted by analysis of 

submarine pyroclastic flow deposits (Maeno & Taniguchi, 2007) and signatures of tsunami 

propagation across the East China sea (Nanayama & Maeno, 2018; Tatsumi et al. 2018., Geshi et al. 

2017). However, observable calderas are not always attributed to a Holocene event. For example, 

the Taupo eruption of 1.720 ± 0.016 ka BP (New Zealand - Wilson et al. 2009) did not form the 

present day caldera lake: instead this is attributed to the prior Oruanui super-eruption of 27.1 ± 0.96 

ka BP (Vandergoes et al. 2013). Disentangling observable structures from their respective formation 

events can be difficult, so in such cases, more evidence is required. 

Analysis of proximal deposits has facilitated study of smaller eruptions, not associated with caldera-

scale geomorphological features (Burden et al. 2013; Fierstein & Nathenson, 1992). Geochemical 

analysis of deposits from compositionally unique volcanic systems has enabled characterisation of 

erupted volume, column height, erupted mass, duration and intensity of eruptions occurring in 

geographical proximity (Sparks et al. 1997). One key example is Somma-Vesuvius, Italy, with 13 

eruptions >M4.0 since 10 ka BP (e.g. Santacroce et al. 2008; Cioni et al. 2008; Bertagnini et al. 1998) 

– all characterised by unique tephra geochemistries (De Vivo et al. 2001).  

Similar methods are employed to identify the sources of Icelandic tephra layers, along with 

understanding the mechanisms of tephra emplacement and distribution (Moles et al. 2019; Carey et 

al. 2009a). For example, analysis of proximal deposits and PDC sub-units from the Askja 1875 CE 

eruption (Carey et al. 2009a, 2009b), has improved understanding of ash dispersal associated with 

different eruptive phases (Stivrins et al. 2016., Watson et al. 2016). Similarly, geochemical 

characterisation of proximal deposits from Katla (Oladottír et al. 2008; Larsen, 2010) has indicated 

glacial meltwater availability as a controlling factor in eruption frequency and character (Schmith et 

al. 2018; Elíasson, 2014), raising concerns regarding the potential impact of increased meltwater flux 

due to global warming (Swindles et al. 2018; Sparks & Cashman, 2017; Compton et al. 2015). 

Proximal organic matter engulfed by ash can also aid constraint of ambiguous eruption dates. For 

example, the Kurile Lake eruption age was calculated through radiocarbon dating of soils overlying 
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proximal tephra horizons (Ponomareva et al. 2004; Braitseva et al. 1993), and the Changbaishan 

(China/North Korea - 1.008 ka BP) eruption date was constrained using dendrochronological 

fragments (Oppenheimer et al. 2017). Furthermore, buried vegetation (Friedrich et al. 2006), grains 

(Manning et al. 2014), and tree rings (Pearson et al. 2018) helped to constrain ambiguity surrounding 

the Minoan (3.629 ± 0.014 ka BP) eruption date.  

. 
Figure 3: A conceptual diagram showing the proximal & distal impacts of explosive volcanism, most notably the dispersal 

of solid pyroclastic material and volcanogenic aerosols (adapted from Robock, 2000, not to scale). 

Unfortunately, proximal deposits can experience reworking as a product of erosion, sea level 

change, and/or further eruptions (Lane et al. 2017; Ponomareva et al. 2015; Brown et al. 2015; 

Rawson et al. 2015). In such cases, cryptotephra layers can provide information of known eruption 

frequency, intensity (e.g. Plunkett & Pilcher, 2018; Watson et al. 2017; Gale, 2009), plume trajectory 

(Dugmore et al. 2020; Davies et al. 2010), and environmental impacts (Dugmore et al. 2020), for 

both documented and undocumented (Martin-Jones et al. 2017) eruptions.  Well-dated layers can 

also become event-stratigraphic markers, synchronous with other sedimentary sequences featuring 

the same layer (Lowe, 2011; Blockley et al. 2008; Payne et al. 2008) and thus can be applied to 

define significant environmental changes (e.g. Sun et al. 2017; Chen et al. 2017; McLean et al. 2016; 

Jensen et al. 2014; Wei et al. 2013; Davies et al. 2012). Certain regions have proved hugely valuable 

for such work. Kamchatka, Russia, hosts a large number of peatlands, and also 37 large volcanic 
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centres (Ponomareva et al. 2007) responsible for nine >M6.0 eruptions since 11.65 ka BP (Crosweller 

et al. 2012). In the absence of regional glacial advance since the late Pleistocene (Barr & Solomina, 

2014), peat sequences have preserved distinct tephra layers distinguishable by major and trace-

element geochemistry (Kyle et al. 2011). Iceland has also been very volcanically active during the 

Holocene (Crosweller et al. 2012; Thordarson & Larsen, 2007), and as a result hosts a significantly 

comprehensive tephrostratigraphic record (Swindles et al. 2013., Larsen, 2000) which has greatly 

improved empirical understanding of ambient tephra flux (Ponomareva et al. 2015) and the 

ecological effects of surface ash loading (Cutler et al. 2018, 2016a). Tephrochronology is thus a 

unique tool showing huge potential for future applications in novel locations for further 

development of the Holocene volcanic record.  

For some Holocene eruptions, signatures of their occurrence are best preserved in paleoclimate 

archives, such as tree rings, ice cores, sedimentary sequences, and speleothems (e.g. Sigl et al. 2015; 

Stoffel et al. 2015; Badertscher et al. 2014; Zielinski et al. 1996). For example, transient atmospheric 

perturbation associated with the Huaynaputina (1600 CE: M6.1) eruption, Peru, due to due to 

exceptional tephra (Prival et al. 2020; Thouret et al. 2002; Adams et al. 2001) and aerosol (Costa et 

al. 2003) emission are recorded in dendroclimatological (Briffa et al. 1998) and polar (Budner & Cole-

Dai, 2003) records. Further observations of summer cooling of -0.8oC renders the eruption’s impact 

equivocal to other high-magnitude eruptions such as Kuwae (0.520 ka BP, Vanuatu) and Ilopango 

(1.5 ka BP, El Salvador) (Stoffel et al. 2015). Similarly, the presence of a cataclysmic eruption at 

1257CE was initially identified by a sulphur enrichment in Greenland and Antarctica (Oppenheimer, 

2003), supported by environmental (Stothers, 2000) and anthropogenic (Connell et al. 2012) 

evidence for climatic anomalies in 1258 CE (Guillet et al. 2017; Whelley et al. 2015). However, it was 

not until 2013 that the source of these perturbations was confirmed as Mount Samalas, Indonesia 

(Lavigne et al. 2013). Since identification, geochemical analysis of deposit major and trace element 

composition suggests exceptional volatile degassing (Vidal et al. 2016, 2015), resulting in cooling 

between -0.6oC and -5.6oC for 4-5 years post-eruption and fortifying Samalas as a significant driver of 

the Little Ice Age cooling interval (Kobashi et al. 2017).  

The Holocene-age geological record benefits from minimal reworking due to glaciation, eustatic, and 

geomorphological change, thus providing excellent archives for contemporary volcanology. Where 

direct event observation has not been possible, robust integration of proximal, distal, and 

climatological volcanic records can allow us to define eruptive successions, understand the 

mechanisms underpinning eruptions of varied magnitudes, and assess the relative environmental 

impacts of individual events.  
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2.1.1.2. Human Records 

Cultural perceptions of volcanoes and their eruptions have profoundly evolved through historical 

time. Volcanoes were initially recognized as symbolic entities in religious, philosophical, and artistic 

works (Chester, 2005) prior to the Scientific Revolution.  Mount Vesuvius, Italy (e.g. Macedonio et al. 

2008; Scandone et al. 1993) and Changbaishan, China/North Korea (Kwon & Kim, 2019), are two 

examples of volcanoes rich in symbolic significance – with a profound place in ancient human 

history. The 1700’s first saw the multi-national, quantitative documentation of volcanic activity, 

global articulation of trade, society, and economy in the Common Era has since enabled synchronous 

use of geological, and historical, archives to unravel the impacts of volcanism on society and 

environment (Pyle & Barclay, 2020). However, volcanic hazards such as pyroclastic flows, landslides, 

tsunamis, and lahars initially proved fatal for those close enough to observe eruptions in detail 

(Brown et al. 2017). Instead, the indirect effects of many eruptions are recorded in historical 

literature (Chester et al. 2018; Fisher, 1997) as perturbations to geochemical cycles (Jones, 2015), 

and sources of pollution (Schmidt et al. 2012) and radiative change (Stoffel et al. 2015) - all 

intrinsically linked to national-scale production of organic product, and consequently society 

(Oppenheimer & Donovan, 2015). For example, ≤5 months of severe atmospheric pollution due to 

the sulfur-rich Lakagígar (Iceland – 1783/4) eruption plume (e.g. Sonnek et al. 2017; Schmidt et al. 

2012; Oman et al. 2006a; Thordarson et al. 1996; Thordarson & Self, 1993) is detectable in mortality, 

food price, and weather records (Oman et al. 2006b; Witham & Oppenheimer, 2004).  

Records of the Indonesian Mount Tambora (1815 CE: M7.0) and Krakatau (1883 CE: M6.5) eruptions 

also refer to indirect environmental perturbations (Self & Gertisser, 2015; Self, 1991). For Tambora, 

information can be sourced from memoirs and writings of Western scholars such as Lord Byron, who 

describes how “the icy earth swung blind and blackening in the moonless air” (McGann & Weller, 

1980-92). This is now understood to be a product of atmospheric pollution by tephra and gas 

(Kandlbauer & Sparks, 2014), and such observations appear simultaneous with global records of 

widespread crop failures and social conflict (Post, 1977), discernible in record capital prices, disease 

outbreaks and mass migration (Oppenheimer, 2003a). Conversely, the Royal Society’s pioneering 

study of Krakatau in 1883 (Symons, 1888) represents the first real-time, comprehensive study of 

volcanic perturbation of local diurnal cycles and global optical effects (Prata et al. 2018; Wohletz, 

2000; Symons, 1888), and facilitated the initial discovery of the Polar Jet Stream (Winchester, 2003). 

However, these eruptions occurred in Western-occupied territories, and prior to the satellite era 

remote eruptions often went undetected. The Novarupta eruption of 1912 CE is the largest recorded 

in the 20th Century (Adams et al. 2006; Hildreth, 1987), however its isolated location in 
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Southwestern Alaska has complicated attempts to constrain the eruption’s distal effects using 

historical records, shifting emphasis onto geological deposits. Similarly, the 1902 eruption of Santa 

María, Guatemala, appears less commonly in human literature despite an exceptional magnitude 

(Metzner et al. 2014; Williams & Self, 1983): ambiguity potentially due to socio-economic factors 

contributing to delayed volcanological research in Guatemala (Rougier et al. 2018). Proximal 

eruption effects are primarily recorded by survivor accounts (Aragón, 2013), however scientists of 

Europe had no knowledge that the eruption ever occurred prior to the 21st Century, and often 

prioritised volcanological study in colonial territories such as Martinique and St. Vincent (Williams & 

Self, 1983). The Novarupta event of 1912, and Santa María in 1902, therefore, demonstrate the 

difficulties associated with studying eruptions occurring in remote regions utilising anthropogenic 

records. 

By the late 20th Century, volcanic recording probability reached 100% (Newhall, 2018., Rougier et al. 

2016; Furlan, 2010), and research focus shifted to the histories of contemporaneously active 

volcanoes. The eruption of Mount Pinatubo (1991) in the Phillippines was a pioneering event for 

synchronous use of land and satellite-based volcano monitoring systems (Tupper, 2005; Guo et al. 

2004), and amalgamation of geological and instrumental techniques could further identify an 

episodic Quaternary eruption pattern (Newhall & Solidum, 2018; Newhall et al. 1996). Satellite-

derived data can, alongside seismometers, tiltmeters and the Global Positioning System (GPS) 

(Ebmeier et al. 2018), can also provide indicators of pre-eruption geodetic deformation and magma 

emplacement, for example at Merapi, Indonesia, in 2010 CE (Pallister, 2013), Reyjkanes, Iceland, in 

2020 CE (Global Volcanism Programme, 2020) and the 1995-1999 eruptive episode at Soufriére Hills, 

Montserrat (Wadge et al. 1999). Advances in instrumental monitoring have significantly benefitted 

human society, however eruptions still pose a substantial risk to infrastructure due to increased 

globalisation, increased infrastructural complexity, and a novel reliance on inter-continental trade 

(Mattsson & Jenelius, 2015). This risk was highlighted during the eruption of Eyjafjallajökull, Iceland, 

in 2010 CE, when disruption to 80% of the European aviation network incurred a cost of >£4 billion 

by halting key supply chains (Oxford Economics, 2010).  The extent of damage was not measured by 

lives lost nor environmental perturbation, but by economic loss (Birtchnell & Büscher, 2011) – 

denoting a shift in concepts of volcanic hazard in a developing, transnational society (Reinchardt et 

al. 2017; Lund & Benediktsson, 2011). Modern understanding of high-magnitude volcanism is largely 

extrapolated from observations of smaller eruptions (Engwell et al. 2014), as most volcanic systems 

are often characterised by prolonged quiescence (Papale, 2018), and punctuated by rare, ephemeral 

episodes of activity (Pyle, 2018., Siebert et al. 2015). However, urbanization continues to drive 

development into volcanic landscapes, so millions now live under the threat of volcanism (Donovan 
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& Oppenheimer, 2018; Skinner, 2008), which can permeate global political, social and economic 

infrastructures (Donovan & Oppenheimer, 2019; Reichardt et al. 2018). Evidently, eruption 

magnitude is becoming less proportional to economic impact, and volcanic risk has exponentially 

increased in line with the spatial influence of anthropogenic substructure (Fearnley et al. 2018; 

Birtchnell & Büscher, 2011).  

2.1.2. Holocene Climate: Patterns & Events 

The Holocene marks the stratigraphic end of the Pleistocene (Gibbard & van Kolfschoten, 2004), and 

is often considered the more climatologically ‘stable’ epoch of the Quaternary (Agenbroad & 

Fairbridge, 2018; Rasmussen et al. 2014), with no prolonged glaciations and a warmer interstadial 

regime (Roberts, 2014). However, the Holocene has been interspersed by rapid cooling events 

(Wanner et al. 2011; Mayewski et al. 2004) which appear geographically diverse across meridional 

temperature gradients, in turn causing variable changes in Earth Surface conditions (Roberts et al. 

2011) across different environments (e.g. Rehfeld et al. 2018; Zhang et al. 2015; Laepple et al. 2014., 

Kobashi et al. 2011). This section discusses the characteristics, and catalysts, of Holocene climate 

variability, and how, in certain cases, stalagmite records have enhanced their study.   

Three, abrupt onset Holocene cooling intervals have been meticulously studied. One of which is the 

8.2 ka BP event (herein referred to as the 8.2k event), as the similarity between present boundary 

conditions (Alley & Ágústsdóttir, 2005), and those prior to the 8.2k event (Renssen et al. 2009) 

enables study of rapid environmental change under interstadial conditions, and thus calibration of 

contemporaneous climate models (Weijer et al. 2019; Liu et al. 2017; Ahn et al. 2014). The 8.2k 

event is defined as a 0.4-0.6kyr interval characterised by rapid global temperature decrease of 3.3oC 

± 1.1oC (Harning et al. 2018), and arid conditions across multiple continents (Peckover et al. 2019., 

Alley et al. 1997), most prominently in the North-Atlantic (Ahn et al. 2014; Wanner et al. 2011) and 

Europe (e.g. Fohlmeister et al. 2012).  Minimum temperatures were reached ~20 years after cooling 

(Kobashi et al. 2007), and this rapid onset is commonly attributed to a freshwater outburst from 

Lake Agassiz (fed by the Laurentide Ice Sheet) into the Labrador Sea (Wagner et al. 2013; Kleiven et 

al. 2008). Such an outburst could have abruptly perturbed the thermohaline circulation of the North 

Atlantic (Clark et al. 2001) and reduced of Atlantic Meridional Overturning Circulation (AMOC) 

strength (Hoffman et al. 2012; Carlson et al. 2009), consequently prompting cessation of the North-

Atlantic-Deep-Water (NADW) conveyor belt (Teller, 1995). Asian and South American stalagmite 

δ18O monsoon records suggest an antiphased response concurrent with North Atlantic meltwater 

pulses (Cheng et al. 2009; LeGrande & Schmidt, 2008), supported by further identification of 0-8-

2.2m eustatic sea level rise in temporal propinquity to the supposed outburst event (Törnqvist and 
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Hijma, 2012). However, the Agassiz-outburst hypothesis for 8.470 ± 0.3 ka BP as the cause of the 

8.2k event is falsifiable, with alternative theories suggesting the mass freshwater flux acted as the 

‘final push’ toward instability in an already unbalanced thermohaline regime in the North Atlantic 

due to deglaciation (Teller et al. 2002). This would render the Agassiz outburst as one of several 

compounding factors instigating rapid cooling (Rohling & Pälike, 2005). 

The recurrence of high-magnitude volcanic eruptions directly before prior to the 8.2k event, such as 

Kurile Lake (Kamchatka - 8.387 ± 0.023 ka BP) and Tao-Rusyr Caldera (Kuril Islands - 8.290 ± 0.076 ka 

BP) (Bazanova et al. 2016) alternatively propose volcanism as a catalyst of the 8.2k event; due to 

previously-suggested associations between volcanic forcing, and changes in internal modes of 

ocean-atmosphere variability. The antiphase relationship between Chinese and South Asian (Cheng 

et al. 2009) speleothem δ18O records show monsoon perturbations coincident with δ18O excursions 

in Greenland dated to ~8.2 ka BP (Vinther et al. 2006) - suggesting atmosphere-ocean circulation 

weakening potentially caused by Inter-Tropical Convergence Zone (ITCZ) migration. Research 

suggests this migration can occur following volcanogenic aerosol injection (Pausata et al. 2020; 

Baldini et al. 2015; Ridley et al. 2015) which, alongside decreased solar receipt due to atmospheric 

dust-veil propagation (Robock, 2000), may further act to amplify ice sheet growth and instigate 

cooling. The attribution of equivocally large volcanic eruptions to notable Holocene cooling 

excursions further support this connection (Kobashi et al. 2017; Sigl et al. 2015; Haywood et al. 

2013), and the widespread nature of the 8.2k event signal hints toward a common catalyst capable 

of affecting oceanic circulation and associated climatic regimes (Porinchu et al. 2019) - to which 

explosive volcanism adheres. Furthermore, intermediate ice conditions (Baldini et al. 2018; Zhang et 

al. 2014) at the 8.2ka boundary may have contributed to an amplified impact of sulfur-rich 

volcanism. However, volcanic forcing as a driver of the 8.2k event lacks robust empirical support as 

the eruptions in question are sparsely studied. Hence, understanding of the mechanisms driving this 

global climatological excursion remains ambiguous.  

The second of the three best-known Holocene climate excursions is the 4.2 ka event (referred to 

herein as the 4.2k event). Globally visible in paleoenvironmental archives (Weiss, 2016; Head & 

Gibbard, 2015) as a prolonged interval of cooler, drier conditions (Berkelhammer et al. 2012; Roland 

et al. 2012; Drysdale et al. 2006), anthropological studies have attributed the event to the 

transformation and/or decline of major civilisations in Egypt, Mesopotamia and China (Ran & Chen, 

2019; Wang, 2004). However, the event manifests in a non-linear fashion across the world (Railsback 

et al. 2018), thus it is unclear what caused the transition to cooling (Carter et al. 2018). Mayewski et 

al. (2004) identify a peak in 10Be records coincident with the event, but not in ∆14C records - 

suggesting no orbital influence. Additionally, research in the Mediterranean indicates that 
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pronounced hydrological changes at ~4.2 ka appear unrelated to the North Atlantic Oscillation (Bini 

et al. 2019) and no notable change is observed in Northern Europe/Atlantic regions (Roland et al. 

2014), providing minimal evidence for oceanic circulation change as a catalyst (Bradley & Bakke, 

2019). Arguably, such evidence implies a cause related to direct radiative forcing, for example 

volcanic or dust aerosols. Low-latitude aridity combined with increased North Atlantic wind strength 

and advance of North American glaciers would affect the Asian and African monsoon (Liu & Feng, 

2012), and evidence for ‘wetting’ at high-latitudes (Jordan et al. 2017; Menounos et al. 2008) is also 

consistent with southward ITCZ migration and consequent elongation of the Polar front (Olsen et al. 

2012). Interestingly, the eruption date of Mount Veniaminof (4.131 ± 0.654 ka BP), Alaska, 

corresponds with the onset of the 4.2k event (Waythomas, 2015). Furthermore, Kobashi et al. (2017) 

propose that ice-core temperature reconstructions may not fully capture sharp climatological 

transitions such as the 4.2k event, due to smoothing caused by ice sheet diffusion of heat. Thus, the 

absence of a notable signature in the ice lends support to the theory of a transient catalyst, such as a 

volcanic eruption. However, confirming a volcanic cause is complicated by complex atmospheric 

responses following aerosol injection (Hudson, 2012), and some suggest the observed decline in 

summer insolation at ~4.2 ka BP is simply part of a long-term cooling trend (Weiss, 2017), which 

increased ENSO activity and declined tropical SST during the mid-Holocene (Liu & Feng, 2012; 

Wanner et al. 2008). 

The Little Ice Age (LIA) is the most recent example of abrupt cooling (Grove, 2004) characterised by 

advance of continental, high-latitude Arctic, and Alpine glaciers (Matthews & Briffa, 2005), followed 

by rapid recession at the beginning of the 20th century (Miller et al. 2010; Mann et al. 2009). This 

interval also witnessed a significant fall in Northern Hemispheric summer temperatures in relation to 

prior boundary conditions (Briffa et al. 2001), rendering the LIA as the coldest multi-centennial 

climate interval since the 8.2ka event (Wanner et al. 2011) and identifiable in proxies across the 

world. Despite its widespread manifestation (Mann et al. 2008), the controls on LIA expression and 

onset remain perplexing. Some initially hypothesised the event was caused by decreased solar flux 

associated with the Maunder and Spörer Minima (Crowley, 2000; Eddy, 1976), and modelling studies 

have indeed identified a prolonged period of diminished solar irradiance within temporal 

coincidence of the LIA (Schmidt et al. 2011) – proposed to have resulted in perturbations to 

thermohaline circulation cells (Renssen et al. 2007; Weber et al. 2004), and weakening of the North-

Atlantic Oscillation (NAO) (Trouet et al. 2009; Emile-Geay et al. 2007). However, interrogation of 

GISP2 sulfate records has indicated that high-magnitude, tropical eruptions frequently appear prior 

to and during the LIA period (Kobashi et al. 2017; Sigl et al. 2015; Kobashi et al. 2013; Mayewski et al. 

1997), consequently suggesting that volcanic forcing could both catalyse and sustain widespread 
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cooling, due to sea-ice and ocean interactions (Miller et al. 2012). Poleward transmission of volcanic 

aerosols from the tropics is also associated with generation of stronger stratospheric winds, 

increased activation of halogens and subsequent loss of ozone: further increasing the temperature 

gradient (Barnes et al. 2016; Muthers et al. 2014). Therefore, the hypothesized link between latitude 

and climatological impact (Baldini et al. 2015; Timmreck et al. 2012) provides a compelling case for 

volcanism as a catalyst for the LIA, synchronous with solar insolation minima (Wanner et al. 2011). 

However, as the extent of atmospheric perturbation by volcanism appears conditional on season 

(Toohey et al. 2016, 2011), and rate/magnitude of gaseous emission (Oppenheimer et al. 2018), 

coupled with an inherently dynamic relationship between sulphur yield and associated cooling 

(Kravitz & Robock, 2011), volcanically induced cooling at the LIA interval is spatially diverse and 

results in often ambiguous effects across different environmental archives (Guillet et al. 2017; Emile-

Geay et al. 2008).  

Bond Events (BEs) are an enigmatic, recurring feature of Holocene climate. BEs are named from 0-8 

(Bond et al. 1997), defined as instances of increased ocean ice-rafting in temporal coincidence with 

global cold intervals (Thompson et al. 2009; Debret et al. 2007) at a mean return interval of 1.470 ± 

0.5ka. The sporadic nature of these events, similar to Dansgaard-Oeschger (D-O) events, thus do not 

appear forced by orbital variability. BEs also appear coupled to cold intervals recorded in global 

stalagmite archives (Wanner & Bütikofer, 2008). δ18O data from China and Southern Oman indicate 

an antiphased seasonal response to change in glacial boundary conditions at BEs 0-5 (Wang et al. 

2005) and 2-6 (Fleitmann et al. 2003) respectively, and in India δ18O records show monsoon 

weakening in antiphase with the South American Monsoon (Strikis et al. 2011), concurrent with 2 of 

the 8 BEs (Band et al. 2018).  In Europe and the Arctic, notable excursions in winter precipitation 

(stalagmite δ18O) are concurrent with 5 of the 8 BEs and significant hydrological change in the North 

Atlantic (Mangini et al. 2007), suggesting solar forcing as an influence on North Atlantic climate 

(Broecker, 2004). BE signatures also appear at low latitudes, with drying coincident with 6 of the 8 

BEs observed in the Caribbean (Fensterer et al. 2013). However, no speleothem record has yet 

clearly recorded all 8 BEs, suggesting a multitude of causal factors (Wanner & Bütikofer, 2008) such 

as solar variability (Viau et al. 2006; Yu et al. 2003), deep-ocean circulation (Oppo et al. 2003), ITCZ 

migration (Russell & Johnson, 2005) and cumulative volcanism (Wanner et al. 2008) - all amassing to 

sustain a feedback loop favouring cooler temperatures. Therefore, it is unlikely that BEs have one 

sole cause, and they are likely the product of intricate connections between ocean, atmosphere, 

tectonic regimes and cryospheric change.   

Continued observation of increased anthropogenic forcing in the late Holocene (IPCC, 2014., Collins 

et al. 2013; Osborn & Briffa, 2006) demonstrates a dominant warming trend disparate from the 
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anticipated cooling paced by cyclic orbital forcing (Tzedakis et al. 2012), and attributed to increased 

human activity in the post-industrial era (Martin et al. 2019; Miller et al. 2012).  Quantifying the 

relative influences of natural forcings such as ice sheet recession, volcanism, and solar minima, will 

further aid understanding of the Earth as a system, and consequently how it may change in the 

future (Liu & Feng, 2012; Eriksson et al. 2012). 

2.2. The Last Glacial Period 

2.2.1. High-Magnitude Volcanism: Mechanics & Distribution 

2.2.1.1. Contemporary Issues & Debates 

The Last Glacial Period has witnessed explosive volcanism unrivalled in historical time (Costa & 

Marti, 2016., Miller & Wark, 2008). 67% of known Pleistocene eruptions >M7.0 are associated with a 

remnant caldera structure (Crosweller et al. 2012; Geyer & Marti, 2008) created by either stratocone 

destruction (e.g. Mount Mazama, Santorini, Krakatau) or structural collapse; the latter often linked 

to large systems such as Toba (Indonesia), Cerro Galán (Argentina), Taupo (New Zealand), and 

Yellowstone (USA) (Cole et al. 2005). An understanding of eruptive frequencies and characteristics 

associated with these volcanoes is crucial for future hazard evaluation and management (Cooper & 

Kent, 2014). For example, Toba shows episodicity similar to other caldera systems across the world 

(Forni et al. 2018; Barker et al. 2015; Till et al. 2015; Wilcock et al. 2013) alongside geophysical and 

petrological consanguinity with Sinabung ~40km to the north (Mucek et al. 2017; Jaxybulatov et al. 

2014). Sinabung erupted in 2013 CE (M4.0) and has been magmatically active since (Gunawan et al. 

2019); prompting re-evaluation of contemporary hazards posed by the Toba magmatic system, and 

subsequently all ‘dormant’ large volcanic networks (Andersen et al. 2019; Townsend et al. 2019; 

Sparks et al. 2008).  By seeking to address prevailing uncertainties associated with catalysts, 

consequences, and frequencies of high-magnitude volcanism, we can study the histories and 

anticipate the potential futures (Parker, 2015) of Earth’s most volcanically active regions. This 

section discusses the three key uncertainties associated with exceptionally large volcanic eruptions: 

(1) magmatic system anatomy, (2) eruptive frequency, (3) climatological implications. 

The first uncertainty (1) concerns the rheological, petrological, and structural catalysts of eruptive 

activity. Caldera size and structure links to total erupted magma volume (Kennedy et al. 2018), 

however understanding of this relationship is constantly evolving (Aspinall & Woo, 2019) and the 

extent to which the processes driving large eruptions differ from small ones is ambiguous (Andersen 

et al. 2019; Wotzlaw et al. 2015; de Silva & Gregg, 2014; Gualda et al. 2012; Wilson, 2008). These 
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differences must be clarified in order to gain a deeper understanding of magma lifetimes, timescales 

of quiescence, and ultimately eruptive triggers (Myers et al. 2016; Caricchi et al. 2014) for 

assessment of future risk. However, the paradigm of a petrologically coherent, single-chamber 

magmatic system below the volcanic edifice (Gualda & Ghiorso, 2013) is now contentious following 

geophysical studies at large systems such as Yellowstone (USA - Huang et al. 2015) and Altiplano-

Puna (Peru/Argentina - Ward et al. 2014) and geochemical analyses of volcanic deposits (Rubin et al. 

2017; Szymanowski et al. 2017). The mush reservoir hypothesis (MRH) represents a novel framework 

for study of large volcanic systems – describing a culmination of heterogenous igneous processes 

occurring in vertically extensive networks (Jackson et al. 2018; Cashman et al. 2017; Bachmann & 

Bergantz, 2008) whereby melt co-exists alongside igneous ‘mushes’ (Sparks et al. 2019) 

characterised by gradual accumulation (Sparks & Cashman, 2017) and rapid expulsion (Carrasco-

Núñez et al. 2017) of magma. Reactive upward flow of buoyant melt (Jackson et al. 2018) prompts 

systemic instability, as crystalline interactions promote changes in bulk composition and melt 

fraction (Hepworth et al. 2020; Solano et al. 2014, 2012), giving rise to overpressure (Tramontano et 

al. 2017; Bachmann & Huber, 2016) and/or mobilization of near-eruptible mush to form eruptible, 

volatile-rich magma in the upper crust (Cashman et al. 2017).  This trans-crustal complexity is 

supported by observations of crystalline diversity in igneous minerals (e.g. plagioclase - Cashman & 

Blundy, 2013) and rocks erupted during one event, suggesting assembly at different depths (Pearce 

et al. 2020; Lucci et al. 2020; Swallow et al. 2019, 2018; Andrews et al. 2008) and suggesting that 

transient magmatic processes act as primary drivers of eruptive variability.  

However, two key components of MRH remain puzzling. Firstly, systemic longevity: what dictates the 

timescales and rates of magma production? Processes of fractional crystallisation and assimilation 

appear supressed in regions of thick, low density crust whereby ascent of less-viscous magma is 

inhibited (Bachmann & Bergantz, 2008), however differences in tectonic regimes and magma type 

are also significant (Karlstrom et al. 2010). Secondly, timescales of shallow accumulation: what 

influences the residence time of shallow, melt-dominated magma within the crustal domain before 

eruption? This question is particularly elusive as rates of growth and recharge (Townsend et al. 2019) 

in large magma systems operate diachronously (Tavazzani et al. 2020; Oppenheimer & Donovan, 

2015). Shorter timescales are generally associated with magmatic instability, rejuvenation and 

amalgamation (influenced by viscosity - Costa et al. 2009), yet there is seemingly no correlation 

between crystal age and emplaced magma volume (Reid, 2008) suggesting large spatio-temporal 

variability between systems (Rubin et al. 2017; Barboni et al. 2016). Furthermore, the extent to 

which crustal stress-driven segregation influences shallow melt extraction is unclear. Volcanism and 

tectonic deformation exist synchronously (Allan et al. 2017; Kohlstedt & Holtzmann, 2009), and 
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geophysical observations of Pleistocene-active systems (Allan et al. 2013; Hildreth, 2004) together 

with subduction zones (Schaen et al. 2017) indicate an influence of active deformation on crystal 

fractions and magma viscosity (Caricchi et al. 2007). However, quantifying timescales of segregation 

in deforming mushes remain contingent on: (i) extrapolation of experimental/theoretical studies to 

real-world conditions (Kohlstedt & Holtzmann, 2009), and (ii) disentangling the true impact of 

external stress, based on available field and experimental evidence, from other geophysical factors 

(Holness, 2018; Rosenberg & Handy, 2005) – both remain a challenge (Schoene et al. 2012). An 

improved understanding of melt generation, segregation, and flux in the Earth’s crust will 

undoubtedly provide crucial insights into past drivers of high-magnitude eruptive episodes, 

transitions from visible ‘dormancy’ to ‘activity’, and causes for variability between different volcanic 

systems (Laumonier et al. 2019; Gelman et al. 2013).  

The second (2) uncertainty relates to eruption frequency (Sheldrake & Caricchi, 2017; Deligne et al. 

2010), which can be studied on systemic or global scales. System-scale research focusses on 

mechanisms governing observable episodicity of individual volcanic systems, to understand 

precursors of imminent or future eruptive activity (Wadsworth et al. 2017). Contemporary 

instrumental observations suggest no link between eruption size and the magnitude of multi-

parametric unrest (Papale, 2018), with unpredictable, ephemeral activity at smaller volcanoes 

(Aiuppa et al. 2010) reinforcing a capacity for notable variance in pre and syn-eruptive behaviour 

(Tierz et al. 2019). This is problematic, as the lack of modern analogues for larger events means 

extrapolation of observational data lacks context (Andersen et al. 2019). Complexity further arises as 

timescales of true dormancy are poorly defined (Connor et al. 2006) due to unknown precursory 

indicators for large eruptions, and volcanic records that reflect a distorted and imperfect view of 

global eruptive frequency (e.g. Siebert et al. 2015; Compton et al. 2015; Mead & Magill, 2014; Brown 

et al. 2014; Swindles et al. 2011; Deligne et al. 2010). Mathematical assessments have attempted to 

assimilate these uncertainties for applications to contemporary hazard management (Wang et al. 

2019; Rougier et al. 2016; Kiyosugi et al. 2015; Wang & Bebbington, 2012), however gaps in the 

eruptive histories of volcanoes in Indonesia, Australasia, South America, Kamchatka and the Kurile 

Islands occur simply due to fewer paleo-volcanic studies being conducted in these regions. This 

reflects spatial dissimilarity in evidence provision (Kiyosugi et al. 2015), and increases the difficult in 

separating variations in eruptive frequency due to environmental change (e.g. Cooper et al. 2020., 

Smith et al. 2019; Swindles et al. 2018; Rawson et al. 2016; Watt et al. 2013) from improvements in 

evidence acquisition (Watt et al. 2013). The issue of imperfect eruptive recording is therefore one of 

global significance, with profound implications for knowledge of recurrence, characteristics, and 

timescales of high-magnitude volcanism. 
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. 
Figure 4:  The global occurrence of volcanic eruptions exceeding M4.0 from 11.65-100ka BP (Last Glacial Period), presented as 

a function of latitude. Marker size is proportional to eruption magnitude. Eruptions discussed later in this section are labelled. 

Recording probability appears to increase with magnitude, however eruption number decreases as a function of time and 

latitude; with greater scarcity evident in the Southern Hemisphere 

The final uncertainty (3) concerns the impact of explosive volcanism on millennial-scale climate 

variability. Climate variability is defined as variations in the mean state of the climate system yet 

results from complex interconnections between components (e.g. atmosphere, hydrosphere, 

geosphere, cryosphere, and biosphere) (Hernández et al. 2020). Discerning the magnitude to which 

the Last Glacial Period climate differed from the Holocene is thus a challenge (Rasmussen et al. 

2014), and the occurrence of rapid climate oscillations such as Dansgaard-Oeschger (D-O) events 

(Dansgaard et al. 1993) in Greenland (Andersen et al. 2004) anti-phased with Antarctic Isotopic 

Maxima (Pedro et al. 2018; EPICA Community Members, 2006) suggest the presence of intricate, 

inter-hemispheric global teleconnections with large spatio-temporal variability in their modes, 

interactions and impacts. Quantifying the role of volcanism in these variabilities is confounded by 

two obstacles: (a) eruption date uncertainty, and (b) poorly constrained eruptive parameters. 

Beyond the radiocarbon limit, dating of older eruptions is conducted through orbital tuning to polar 

δ18O ice core records (Storey et al. 2012), or alternative isotopic dating techniques (e.g. 40Ar/39Ar - 

Mark et al. 2017). However, accurate dating relies on deposit quality which, for many 

volcanoes/calderas, become increasingly poorer with age due to periglacial processes, eustatic 
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changes, and active erosion (Baldini et al. 2015; Arnalds, 2013; Watt et al. 2013). These problems 

also influence (b), as determination of volatile gas ejection is largely contingent on the quality and 

quantity of residual deposits. Ascertaining sulfur ejection is particularly important when assessing an 

eruption’s climatic impact, as atmospheric oxidation and condensation allow a ‘sulphate haze’ to 

encircle the globe and disturb the Earth’s radiative budget (Timmreck et al. 2012; Oppenheimer, 

2002; Robock, 2000). Other volatile gases and halogens, however, can also contribute to the post-

eruptive climatic response (McConnell et al. 2017; Vidal et al. 2016; Cadoux et al. 2015) which can 

include perturbation of oceanic thermohaline circulation (Pausata et al. 2015), sea ice flux 

(Zanchettin et al. 2014; Miller et al. 2012), modes of climatic variability (Maher et al. 2015), and ITCZ 

position (Baldini et al. 2015; Ridley et al. 2015). However, this can vary on several orders of 

magnitude depending on eruption (e.g. Carn et al. 2016) and plume dynamics for high-magnitude 

eruptions remain poorly understood (Costa et al. 2018), as current understanding is extrapolated 

from results of simple integral models – not designed for eruptions with such large ejecta quantities 

(Costa et al. 2016; Jessop et al. 2016; Engwell et al. 2016). Similarly, models aiming to quantify the 

extent of volcanically forced climate variability are conducted under Holocene baseline climate 

conditions (e.g. Brenna et al. 2020; Toohey et al. 2019; Stoffel et al. 2015; Robock et al. 2009; Jones 

et al. 2005), and recurrently fail to capture the dynamic circulatory responses to volcanic aerosol 

injection (Driscoll et al. 2012). Evaluating the impact of high-magnitude volcanogenic forcing on 

climate variability consequently relies on accurate synchronization of high-resolution 

paleoenvironmental archives, containing both volcanogenic and climatic signals.  

Unlike Large-Igneous-Province (LIP) volcanism (Bryan et al. 2010), large explosive eruptions are not 

defined by distinct, prolonged episodes, thus represent a more geologically imminent threat 

(Thordarson et al. 2009) and so acquisition of such knowledge has profound societal implications. 

Contemporary study of high-magnitude volcanism continues to reinforce the complexity associated 

with generation, and emplacement, of large magma bodies, however the complexities associated 

with the drivers of high-magnitude volcanism render understanding and identifying their pre and 

syn-eruptive characteristics (Biggs & Pritchard, 2017), and intra-crustal evolution, a notable 

challenge. Paucity in eruption records also limit understanding of how high-magnitude eruptions can 

be differentiated from smaller events, which in turn complicates assessment of how these eruptions 

can perturb the Earth system.  

2.2.1.2. Measuring Eruption Size 

Volcanic eruptions are diverse by size and impact. Magnitude scales are used to effectively measure 

and catalogue these events, enabling effective and clear communication of eruption size across 
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empirical disciplines and geohazard management (Plag et al. 2015). The Volcanic Explosivity Index 

(VEI) (Newhall & Self, 1982) is the most frequently employed, yet although this scale allows 

comparison between modern and ancient eruptive events (Pyle, 2015), the two parameters used in 

calculation are problematic for study of bigger events. First is plume height, which is effective for 

moderate smaller eruptions, but ejecta from large eruptions are predominantly ignimbrites 

associated with laterally spreading pyroclastic flows (Brown & Andrews, 2015), which are difficult to 

quantitatively constrain and yield large margins for error (Costa et al. 2018; Bursik & Woods, 1996). 

Second is bulk volume, which does not account for deposit density (Mason et al. 2004) and is notably 

affected by poor preservation of smaller (Houghton et al. 2013) or older (Ponomareva et al. 2015) 

eruption deposits. Furthermore, the VEI is ordinal so cannot simultaneously reflect intra-eruptive 

variation in magnitude and intensity (Rougier et al. 2018), thus applications to continuously erupting 

systems and/or long-lasting discrete events, such as Lakagígar, Iceland, in 1763-64 (Thordarson & 

Self, 2003) and Kīlauea, Hawai’i, in 2018 (Gansecki et al. 2019) are contentious.  

To accurately quantify the geological significance of exceptionally large eruptions, two size measures 

can be employed: a) Magnitude –the total ejecta volume (i) and b) Intensity – the mass eruption rate 

(ii) 

i) 𝑀 =  𝑙𝑜𝑔10(𝑚𝑎𝑠𝑠 𝑜𝑓 𝑒𝑟𝑢𝑝𝑡𝑒𝑑 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙, 𝑘𝑔) − 7 

ii) 𝐼 =  𝑙𝑜𝑔10(𝑚𝑎𝑠𝑠 𝑒𝑟𝑢𝑝𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒, 𝑘𝑔 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑) + 3 

Magnitude and intensity are not independent variables (Pyle, 1995) as both are a product of mass 

erupted, showing logarithmic increase with overall eruption size. Large errors estimation of mass 

flux and/or mass eruption rate are also not reflected in large errors as the scales are continuous, 

accounting for inevitable uncertainties associated with study of eruptions on pre-Holocene 

timescales (Pyle, 2015). Therefore, using magnitude and intensity autonomously allows for robust 

comparison of volcanic events across the effusive-explosive spectrum, and on a range of temporal 

scales where volatility may oscillate throughout an eruptive episode (Houghton et al. 2013).  

Defining the magnitude and intensity of past volcanic eruptions requires integration of numerical 

and field data (Buckland et al. 2020). Proximal deposits facilitate magnitude calculations by 

quantification of grain-size distributions and bulk ejection, while distal dispersal trajectories provide 

key insights into eruptive intensity through airborne ash flux and atmospheric transmission. 

Isopach/dispersal maps based on proximal deposit identification (Bonadonna & Costa, 2012) can 

quantify primary dispersal axes, and semi-empirical descriptive modelling can be used to derive 

eruptive volume estimates from such data (Engwell et al. 2015). However, a reliance on quantitative 

analyses creates unique challenges related to the dynamic nature of volcanic landscapes (Dugmore 
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et al. 2020; Pyle, 2016; Fontjin et al. 2016; Brown et al. 2015), and topographical accessibility can 

also limit effective characterisation of proximal volcanic deposits and stratigraphies (Watt et al. 

2013). In such cases, distal tephra deposits in conjunction with sophisticated modelling (Costa et al. 

2014) can supplement volume estimates. However, as measured deposit thicknesses only represent 

a minimum estimate (Ponomareva et al. 2015) and where distal records are incomplete, appraisals 

are based on extrapolation beyond known limits of tephra fallout – which runs the risk of 

over/under estimation of eruption size. Therefore, incorporating low-concentration tephra layers 

into ash-distribution models is persistently difficult. The resolution of tephra records will likely 

improve as a function of time with investigation of novel sites and repeated sampling (Watson et al. 

2016), increasing the chance of discovering well-preserved tephra layers in locations whereby 

degrading processes are less influential (Cook et al. 2018).   

2.2.1.3. Super-Volcanism 

In volcanology, the term “super-eruption” describes the largest explosive volcanic events on Earth. 

There are 47 known super-volcanoes (Mason et al. 2004) denoting the most productive magmatic 

systems on the planet capable of simultaneously emplacing >1015 kg magma (equating to >1000kg3 

bulk tephra volume; Sparks et al.  2005), huge volumes of volatile gases, and invoking environmental 

disturbance on inter-continental scales (Self & Blake, 2008). This section describes the two super-

eruptions occurring within the DIM-3 interval: Youngest Toba Tuff and Los Chocoyos. Inclusion and 

classification of Los Chocoyos as a super-eruption is based on new erupted volume estimates by 

Kutterolf et al. (2016), which yield a magnitude estimate of 8.0.  

2.2.1.3.1. Los Chocoyos (LCY) 

Atitlán is the largest volcanic centre in Guatemala. The formation of three overlapping calderas since 

~14 Ma (Figure 5) has created a southerly track of land subsidence (Rose et al. 1987., Newhall, 

1987), with Lake Atitlán marking the third and most recent stage of caldera-forming activity ~84ka 

BP. The lake measures 18 km × 8 km (11.2 mi × 5.0 mi) in area and houses ~20 km3 of water, with an 

average depth of 220m. The caldera system is situated at the northern tip of the Central American 

Volcanic Arc (CAVA), which extends 1400km from the Mexico-Guatemala border to Central Costa 

Rica near parallel to (150-200km to the West of) the Middle America deep-sea trench (Carr et al., 

2007). Formed during the Late Cretaceous (Elming, 1998) volcanic activity commenced during the 

Tertiary (Donnelly et al. 1990) with the formation of large stratovolcanoes both at, and behind, the 

volcanic front. At present, the CAVA is one of the most volcanically active arcs on Earth, and 

explosive volcanism accounts for 65% of total magma output (Kutterolf et al. 2008). 
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Prior to ~158 ka BP, activity at Atitlán was largely mafic (Rose et al. 1987). A period of silicic 

volcanism during the Mid-Pleistocene is initially marked by the emplacement of the widespread W-

Pumice Fall (158 ± 3 ka BP), attributed to a M7.1 eruption with an estimated volume of ~23.3 km3 

(Kutterolf et al. 2016). A transition back to mafic volcanism is observed following the Los Chocoyos 

eruption (~84 ka BP), with the resurgent formation of basaltic/andesitic stratovolcanoes Atitlán, 

Tolimán and San Pedro (Rose et al. 1987; Newhall, 1987; Williams, 1960). An unusually prolonged, 

bimodal eruptive lifetime (Newhall, 1987) in concurrence with periods of intensified CAVA volcanism 

(Schindlbeck et al. 2018; McBirney, 1976) suggests the eruptive regime of Atitlán is a function of 

large-scale subsurface magma differentiation and storage conditions, which in turn paces eruptive 

frequency in the northern CAVA region (Rose et al. 1999). However, the major/minor element 

geochemistry of CAVA magmas reflect non-linear conditions of subduction (e.g. Freundt et al. 2014; 

Bolge et al. 2009; Hoernle et al. 2008; Syracuse & Abers, 2006; Vogel et al. 2006; Feigenson et al., 

2004; Abers et al. 2003; Barckhausen et al. 2001; Patino et al. 2000; Carr, 1984) and variable degrees 

of magma differentiation (Heydolph et al. 2012; Kutterolf et al. 2008), crystallization and extraction 

(Vogel et al. 2006), influenced by state of hydration, slab angle, crustal thickness, sediment cover 

composition and upper-plate characteristics of the Cocos plate. This results in significant along-arc 

variation in erupted tephra geochemistry (Carr et al. 2007, 2003; Feigenson et al. 2004; Hoernle et 

al. 2002; Patino et al. 2000), which has facilitated accurate geochemical fingerprinting of detected 

tephras and construction of a robust offshore tephrostratigraphy for Central America (e.g. 

Schindlbeck et al. 2018; Kutterolf et al. 2008a, b). Stratigraphies for calderas Ilopango, Coatepeque, 

Ayarza, Amatitlán, and Atitlán are all relatively well defined (Table 1), and have been used for kyr-

scale analyses of global eruption frequency (Kutterolf et al. 2018, 2013), study of Central American 

Mayan civilisation (Lohse et al. 2018; Anselmetti et al. 2007), and characterization of stadial-

interstadial transitions in the Neotropics (Kutterolf et al. 2016; Hodell et al. 2008).   
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Figure 5: (TOP) Map of Atitlán caldera, with caldera boundaries (stages I-III) marked as red, orange, and yellow circles 

respectively, and proximal volcanoes marked by green circles. VSP – Volcan San Pedro, VT – Volcan Tolimán; VA – Volcan 

Atitlán. Adapted from Rose et al. (1987). Base image sourced from GoogleTM Earth Pro. 

(BOTTOM) Map of sites with identified LCY tephra and/or tephra (featuring data from Bowles et al. 1973; Drexler et al. 

1980; Ledbetter, 1985; Kutterolf et al. 2008, 2016; Schindlbeck et al. 2016, 2018), with Atitlán caldera marked as a red 

triangle. Non-filled circles depict marine core sites, filled circles indicate terrestrial sites. Created in ArcGIS Pro (v2.5) 

The Los Chocoyos (LCY) eruption (84 ± 0.5 ka BP) is the third largest known Quaternary eruption 

(Crosweller et al. 2012) and largest of the CAVA by magnitude and ejecta volume (Rose et al. 1999), 

yet the characteristics and impacts of the event are relatively ambiguous/understudied (Brenna et 

al. 2020). Analysis of proximal deposits suggest LCY released 420 km3 (280 km3 DRE) of rhyolitic 

tephra (Rose et al. 1987), and ash covered a minimum ~6 x 106 km2 area from the Pacific to the Gulf 

of Mexico and Florida (Kutterolf et al. 2008; Drexler et al. 1980; Rose et al. 1999, 1987). These 

proximal deposits can be divided into three stratigraphic categories: fall, flow and surge (Rose et al. 

1987). Flow units are characterised by ~200m thick ignimbrites spread across western Guatemala 

(Koch & McLean, 1975), and the H-fall unit is the largest known Plinian fall deposit in Central 

America erupted during the Quaternary (Table 1), with a distinctly high K2O and SiO2 content. H-fall 

ash was primarily transmitted to the South West over the Pacific Ocean due to easterly stratospheric 

winds, however a multi-directional dispersion lobe is also implied by marine evidence – potentially 

indicating a prolonged and/or phased eruptive episode due to seasonally variable winds over Central 

America (Sáenz & Durán-Quesada, 2015). The LCY isochron is documented in >100 submarine 

stratigraphies from the East Pacific and Caribbean (e.g. Marcantonio et al. 2020; Kutterolf et al. 

2016; Mueller et al. 2010; Hodell et al. 2008; Kutterolf et al. 2008; Rose et al. 1999; Ledbetter, 1985; 

Drexler et al. 1980), and provides a robust time-stratigraphic marker during Greenland Interstadial 

21 (Correa-Metrio et al. 2012; Dubois et al. 2011). Since the 1970’s, layers attributable to LCY have 

been found to extend to off-shore Florida and Ecuador (Schindlbeck et al. 2018; Kutterolf et al. 

2008), and stratigraphic correlations improved by analysis of LCY whole-rock composition (e.g. Vogel 

et al. 2006; Rose et al. 1999, 1987; Newhall, 1987).  

Table 1: Major Quaternary tephrostratigraphic markers for each CAVA region, ordered by Proximal Fallout Volume (km3) 

(based on data from Kutterolf et al. 2016, 2008a, b; Schindlbeck et al. 2016). Ages sourced from LaMEVE (Crosweller et al. 

2012), those highlighted in grey represent ‘best-estimates’ based on stratigraphic placement. The LCY isochron is 

highlighted in yellow. 

Unit Name Volcano Source Region Age (ka BP) Proximal Fallout 

Volume (km3) 

Los Chocoyos Atitlán Guatemala 84 ± 5 266.2 
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W-fall Atitlán Guatemala 158 ± 3 41.5 

Tierra Blanca Joven Ilopango El Salvador 1.5 ± 0.03 32 

Terra Blanca 4 Ilopango El Salvador ~36 25.9 

L-fall Amatitlán Guatemala ~191 19.6 

Arce Coatepeque El Salvador 70 ± 2 11.6 

Upper Apoyo Apoyo Nicaragua 29468 ± 126 7.2 

Congo Coatepeque El Salvador 56.9 ± 2.8 6.3 

E-fall Amatitlán Guatemala ~51 5.0 

Masaya Tuff Masaya Nicaragua ~1.8 4.8 

Chiltepe Chiltepe Nicaragua 2 ± 0.1 3.9 

Lower Apoyo Apoyo Nicaragua 28762 ± 338 3 

Mixta Ayarza Guatemala 32.255 ± 1.763 2.9 

Upper Ometepe Concepción Nicaragua ~19 2.9 

Upper Apoyeque Chiltepe Nicaragua 14.462 ± 0.317 2.2 

Blanca Rosa Berlin-Chinameca El Salvador 75 ± 10 1.9 

Mafic Cosigüina Tephras Cosigüina Nicaragua ~ 21-23 

 (multiple layers) 

1.5 

Fontana Masaya Nicaragua ~60 1.3 

Twins/A-Fall Berlin-Chinameca El Salvador 61 ± 7.32 1 

Masaya Triple Layer Masaya Nicaragua 2.129 ± 0.178 0.8 

Lower Apoyeque Chiltepe Nicaragua 20.455 ± 2.467 0.8 

San Antonio Masaya Nicaragua 6 ± 0.1 0.5 

Concaste Coatepeque El Salvador ~51 N/A 

Pinos Altos Ayarza Guatemala ~23 N/A 

Older Pumice Ilopango El Salvador ~75-84 N/A 

 

The terrestrial prevalence of LCY tephra, however, remains sparse. Lake Petén Itzá in north-east 

Guatemala currently represents the only distal onshore record containing an LCY layer (Kutterolf et 

al. 2016), and marine studies have primarily focussed on visible ash beds. Dominantly silicic, 

vesicular shards (Kutterolf et al. 2016; Rose et al. 1987) and plume height of ~45 km (Metzner et al. 

2014) suggests that LCY fine ash was incorporated into global stratospheric flow, and detection of 

Central American tephra in Northern European sediments >8000 km away (Plunkett & Pilcher, 2018; 

Wulf et al. 2016) suggests such distal dispersal is possible. Therefore, it is likely terrestrial factors 

hinder more frequent detection of LCY fine ash. An eruption age of ~84 ka BP limits effective 

preservation to sites characterised by high sedimentation, and low bioturbation/reworking. 

Research suggests high-altitude regions in Central America were glaciated during the LGM (Palacios 

et al. 2020), so the advance and retreat of mountain/valley glaciers would have perturbed, and 

potentially increased, the rigour of hydrological and geomorphological processes in the Sierra Madre 

mountains. Evidence also suggests the eruption plume exhibited a multi-directional dispersal axis, 
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potentially enhancing particle diffusion and reducing LCY deposit concentrations below the 

detection threshold, potentially exacerbated as Guatemala is surrounded by ocean, so primary 

fallout would have occurred over water whereby the preservation, transport, and deposition of ash 

could be further affected by bathymetric currents or gravitational flows (Engwell et al. 2014; Cassidy 

et al. 2014; Scudder et al. 2014). Nonetheless, it is hard to disentangle poor preservation from 

research paucity to explain sparse terrestrial occurrences of LCY tephra. High-resolution analysis of 

distal tephras from onshore sediments has thus far focussed on regions such as Northern Europe, 

North America, Kamchatka, Patagonia, New Zealand, Alaska, the Mediterranean and Japan (Lane et 

al. 2017), so many potentially viable Central America sites remain unstudied. Work is underway to 

develop a similar tephrostratigraphic lattice for this region (e.g. Schindlbeck et al. 2018; Kutterolf et 

al. 2016), as Central America hosts several densely populated countries and cities (e.g. Mexico City, 

Bogotá, Guadalajara). Atitlán volcano alone has 6 cities with >1 million inhabitants within the 

estimated LCY fallout zone (Kutterolf et al. 2016), which is concerning for the future given 

tendencies for long-lived, composite super-volcanic systems to display eruptive activity following the 

caldera-forming event (e.g. Barker et al. 2019). Studies in Central/South America have thus far 

yielded promising results (Smith et al. 2019; Del Carlo et al. 2018; Watson et al. 2015), so the 

terrestrial prevalence of the LCY isochron is likely to increase as the number of Central American 

sites studied increases, and geochemical techniques for identifying distal ashes become more 

refined.  

2.2.1.3.2. Youngest Toba Tuff (YTT) 

Toba is the largest Quaternary caldera on Earth. Located on Sumatra, Indonesia, the caldera is 100 x 

30 km in area, housing Lake Toba and a central resurgent dome (Samosir Island) which formed 

within ~1,500 years of the Youngest Toba Tuff (YTT) super-eruption (Mucek et al. 2017; de Silva et al. 

2015; Chesner, 2012). The volcano lies 300 km NE of the Sunda subduction trench (Barber et al. 

2005): a region known for intense seismic activity, including the devastating 2004 Indian Ocean 

earthquake (Lay et al. 2005). The Toba system produced three >M7.0 eruptions prior to ~74 ka BP: 

Haranggoal Dacite Tuff (~1200 ± 160 ka BP), Oldest Toba Tuff (~850 ± 2.2 ka BP), Middle Toba Tuff 

(~501 ± 5 ka BP) (Chesner, 2012), yet the YTT represents the largest both within the Toba system, 

and the entire Quaternary period (Oppenheimer, 2011; Chesner et al., 1991) with a magnitude of 8.8 

(Crosweller et al. 2012). The eruption ejected ~5300 km3 DRE of magma and 800 km3 of tephra over 

multiple days (Costa et al. 2014), for which geochemical characterisation has identified five distinct 

compositions (Pearce et al. 2020) - suggesting complex (Reid & Vasquez, 2017), trans-crustal magma 

petrogenesis comparable to other known supervolcanic systems (Gualda et al. 2019; Swallow et al. 

2018). Alongside thick ignimbrite deposits across Sumatra (Rose & Chesner, 1987), an easterly jet 
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stream (Bühring & Sarnthein, 2000) facilitated coignimbrite plume entrainment to the west, lending 

to discovery of distal YTT ash in the Indian Ocean (Ninkovich, 1979). Tephrochronological methods 

have also permitted identification of ~5 cm YTT ash layers in mainland India (Pearce et al. 2014., 

Matthews et al. 2012) and the South China Sea (Liang et al. 2001) and cryptotephra deposits in East 

Africa (Smith et al. 2018., Lane et al. 2013) and Malaysia (Smith et al. 2011), rendering the YTT one of 

9 inter-continental key Quaternary stratigraphic markers (Lane et al. 2017). Bipolar sulphate 

enrichments in Greenland and Antarctic ice have tentatively been correlated to the eruption, 

however an absence of YTT tephra within the ice prevents designation of the eruption to any given 

sulphate signal (Svensson et al. 2013; Zielinski et al. 1996). 
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Figure 6: (TOP) Map of Toba caldera, with caldera boundaries marked as red, orange, and yellow circles respectively, 

and proximal volcanoes marked by green circles. YTT - Youngest Toba Tuff; OTT - Oldest Toba Tuff; HDT – Haranggoal 

Dacite Tuff; MTT – Middle Toba Tuff; MS- Mount Sinabung, PV - Pusikbukit Volcano. Adapted from Chesner (2012) and 

Oppenheimer (2002). Base image sourced from GoogleTM Earth Pro. 

(BOTTOM) Map of sites with identified YTT tephra and/or tephra (adapted from Lane et al. 2013., Matthews et al. 2012., 

Liu et al. 2006), with Toba caldera marked as a red triangle. Non-filled circles depict marine core sites, filled circles 

indicate terrestrial sites. Created in ArcGIS Pro (v2.5) 

The YTT is central to ongoing debate concerning its environmental and anthropogenic repercussions. 

These range from catastrophic (Williams et al. 2009; Rampino & Ambrose, 2000; Ambrose, 1998; 

Rampino & Self, 1993) to negligible (Yost et al. 2018; Smith et al. 2018; Jackson et al. 2015; Lane et 

al. 2013; Petraglia et al. 2007), and have been extensively studied across a range of academic 

disciplines. Through extrapolation of instrumental data from Pinatubo (1991) and Tambora (1815), in 

conjunction with pioneering computer models, early hypotheses suggested that drastic reductions in 

global temperatures following a YTT-induced dust-veil event was capable of causing a ‘volcanic 

winter’ with catastrophic effects on the biosphere (Rampino & Self, 1993, 1992) and early human 

population diversity (Ambrose, 1998). However, many now reject this ‘catastrophe theory’. From an 

archaeological perspective, it is difficult to establish YTT as cause for near extinction of early humans 

due to the recurrence of other environmental stressors throughout the Pleistocene (Oppenheimer, 

2002), and difficulty establishing true population numbers solely based on archaeological evidence. 

Environmental impacts would have also likely been heterogeneous due to geographically variable 

ash-fall concentrations, and variable atmospheric circulation (Costa et al. 2014). Evidence from 

Africa (Smith et al. 2018; Jackson et al., 2015; Lane et al., 2013) and continental India (Petraglia et al. 

2007) suggests Homo populations prevailed in the absence of extreme climatic change; resilience 

supported by the fact the Homo lineage survived following 20 other high-magnitude eruptions 

(Oppenheimer, 2002). Evidently, more evidence is needed (Williams et al. 2012) to provide robust 

support for the YTT as a catalyst of notable anthropogenic disturbance, and the assumption that 

eruption magnitude is directly proportional to anthropogenic impact is notably deterministic.   

Quantifying the climatological effect of the YTT is complex. Computational modelling of radiative 

forcing in the eruption aftermath (e.g. Timmreck et al. 2012; Robock et al. 2009; Jones et al. 2005., 

Oppenheimer, 2002) largely relies on parameter estimation, due to ambiguity surrounding the 

eruption’s plume height, eruption intensity and sulfur yield. Values for YTT aerosol flux are often 

derived from notably smaller historical eruptions (e.g. Pinatubo, 1991 - Timmreck et al. 2012) which, 

when extrapolated as a function of magnitude, increase the risk of overestimation for the YTT. 

Sulphur flux is fundamental in the climatic impact of volcanism but can notably differ between 

eruptions of the same magnitude (Carn et al. 2016; Sun et al. 2014; Oppenheimer et al. 2003). The 
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YTT is described as an explosive coignimbrite eruption (Costa et al. 2018) characterised by 

substantial ejection of fine-ash and potent gases (Woods & Wohletz, 1991). However, intra-

atmospheric processes may have spatio-temporally attenuated the magnitude of radiative forcing 

(English et al. 2013; Timmreck et al. 2010). Enhanced volatile interactions and increased net particle 

size could result in shorter aerosol residence times in the atmosphere, and the radiative effect of SO2 

(GHG) comparable to sulphate aerosol may have reduced the magnitude of climatological 

perturbation by inhibiting ozone photolysis, offsetting the effects of sulphate aerosols (Osipov et al. 

2020; Bindeman et al. 2007). Furthermore, partial (~25%) syn-eruption exsolution (Chesner & Luhr, 

2010) of SO2 suggests greater petrological comparability to Tambora (1815 CE: M7.0) – one order of 

magnitude smaller with a relatively modest climatic effect. A growing number of studies suggest no 

ubiquitous long-term cooling effect consistent with a prolonged ‘global winter’ (Haslam & Petraglia, 

2010), however climatic perturbation following the YTT could have instead manifested in a 

hemispherically-asymmetrical manner (Baldini et al. 2015) by means of an antipodal teleconnection 

between both hemispheres (Svensson et al. 2013; Stocker & Johnsen, 2003) – meaning 

reorganisation of major atmospheric systems (e.g. the ITCZ – Colose et al. 2016; Ridley et al. 2015) 

could ensue following volcanic-derived aerosol injection and resultant cooling in the NH. This 

hypothesis supported by proxy evidence suggesting cooling in the Northern Hemisphere (Polyak et 

al. 2017; Baldini et al. 2015; Carolin et al. 2013) and warming/no change in the Southern Hemisphere 

(Yost et al. 2018; Smith et al. 2018; Cheng et al. 2013; Lane et al. 2013). Climatological disequilibrium 

resulting from intermediate NH ice volume may have further exacerbated this asymmetrical effect 

(Baldini et al. 2018; Bintanja and van de Wal, 2008), however the initial state of the tropical Pacific 

largely influences global distribution of temperature anomalies and is principally unknown at ~74 ka 

BP (Timmreck et al. 2012). Further quantification of baseline climate sensitivity during the 

Pleistocene is required to constrain climatological states preceding and following the YTT eruption, 

yet current evidence suggests the stratospheric loading effects of the YTT were surpassed by 

feedback-driven responses over several centuries (Robock et al. 2009; Zielinski et al. 1996), 

consequently sustaining millennial-scale atmospheric reorganisation, and manifesting as climate 

change contingent on hemisphere.  

Despite a growing body of evidence suggesting heterogenous global impacts of the YTT, a more 

comprehensive understanding of mechanisms and timescales behind accumulation/ejection of the 

Toba magmatic system is required. Evidence is intermittent and often of low quality, so the existing 

Toba stratigraphy requires further mapping (Mark et al. 2017) to better characterise the YTT 

eruption chronology, sulphur yield, intensity, and plume dynamics for applications in climatological 

and anthropogenic research fields. However, the Middle East and Asia remains one of the most 
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volcanologically under-studied regions in the world (Brown et al. 2014), meaning many sites 

containing YTT deposits and evidence of impact are yet to be examined.  

2.2.2. Climate Variability 

The most recent glaciation on Earth is referred to as the Last Glacial Period (LGP: since ~120 ka BP). 

This period saw the progressive advance of ice sheets in North America/Canada, Antarctica, 

Fennoscandia, and Greenland (Mix et al. 2001) to their most southward extent between 26.5 and 19 

ka BP (Clark et al. 2009), and the climate was characterised by dynamic and abrupt transitions 

between stadial and interstadial conditions, characterised by global-scale reorganizations of the 

Earth’s atmosphere-ocean circulation known as: (i) Dansgaard-Oeschger (Dansgaard et al. 1982) 

events, and (ii) Heinrich (Heinrich, 1988) events. However, their respective causes are equally as 

complex as their expression. This section discusses contemporary understanding of the mechanisms 

underpinning Dansgaard-Oeschger and Heinrich events and, specifically, how these events manifest 

within the paleoenvironmental record.  

2.2.2.1. Dansgaard-Oeschger Events 

During the LGP, 25 distinct climate cycles are detected in the North Greenland Ice Core Project 

(NGRIP) record (Rasmussen et al. 2014). These are referred to as Dansgaard-Oeschger (D-O) events 

(Dansgaard et al. 1982): characterised by an initial, rapid transition to warming (up to 16oC rise: 

Kindler et al. 2014) in mere decades (Erhardt et al. 2019), followed by prolonged, gradual cooling in 

the NH. D-O events show bipolar synchrony (Gottschalk et al. 2015), although changes to the 

Antarctic Circumpolar Current and subsequently air temperature in the South (Pedro et al. 2018) lag 

~200 ± 100 years behind Greenland (Buizert et al. 2015) – suggesting these climatic signals 

propagate in a north-south manner (Cheng et al. 2020). D-O events embody the strongest form of 

climate variability by instigating major changes in global temperature, hydroclimate, and 

atmospheric circulation (Thomas et al. 2009; Steffensen et al. 2008), measurable in δ18O, Ca2+, and 

CH4 ice core records from Greenland (Rasmussen et al. 2014; Blockley et al. 2012., Lowe et al. 2008., 

Alley, 2000) and Antarctica (Markle et al. 2016; EPICA Project Members, 2007; Wantanabe et al. 

2003). These polar archives have been synchronized with each other (Svensson et al. 2020) and also 

other marine, and terrestrial, sediment sequences using age-transfer methods such as 

tephrochronology (e.g. Berben et al. 2020; Timms et al. 2019; Abbott et al. 2018; Bourne et al. 2015., 

Davies. 2015; Blockley et al. 2012) in order to better constrain regional differences in D-O event 

amplitude, and how these correlate with leads, lags, and teleconnections in the Earth system.  
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Speleothems are valuable records for study of D-O event signals at the mid/low-latitudes (Figure 7) 

(Corrick et al. 2020). δ18O ratios derive directly from dripwater and thus meteoric precipitation, so 

speleothem isotope geochemistry can reflect external hydroclimatic conditions (Baldini, 2010). For 

example, Asian speleothem δ18O demonstrate reductions in monsoon convective intensity in 

concurrence with North Atlantic cooling (e.g. Pausata et al. 2011; Wang et al. 2008; Zhou et al. 2008) 

associated with D-O events (Wang et al. 2001) – suggesting a teleconnection between North Atlantic 

temperature and atmosphere-ocean interactions in Asia (Cheng et al. 2019; Du et al. 2019; Cheng et 

al. 2016). The high chronological resolution provided by speleothem records (Cheng et al. 2013) also 

permits study of regional variabilities in D-O expression, with links to sea-surface temperature (SST) 

and precipitation sources (Dumitru et al. 2018; Ünal-İmer et al. 2015). For example, precipitation 

regimes interpreted from Mediterranean (Budsky et al. 2019), Iberian (Denniston et al. 2018), North 

African (Hoffman et al. 2016), and West European (Genty et al. 2010) stalagmite δ18O records are 

matched by European model outputs (Merz et al. 2015), lake sediment archives (Brauer et al. 2007) 

and pollen records (Camuera et al. 2019; Sánchez Goñi et al. 2013) – which predominantly suggest 

that SST change during D-O intervals caused prolonged oscillations in the ocean energy budget, 

evaporation rates, atmospheric water vapour (Budsky et al. 2019), dominant air masses (Ünal-İmer 

et al. 2015), and precipitation composition/quantity (Bosmans et al. 2015).  
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Figure 7: Map showing the locations of stalagmites preserving evidence of millennial-scale climate variability associated with single 

or multiple D-O oscillations*, marked as blue circles. Ice extent of the Last Glacial Maximum (LGM) 27-21ka BP is also marked in light 

blue (Ehlers et al. 2011). ‘Eurasian Ice Sheets’ denotes the collective name for the Svalbard–Barents–Kara Ice Sheet, Scandinavian 

Ice Sheet, and British–Irish Ice Sheet respectively (Hughes et al. 2016).  

* Oster et al. (2020); Du et al. (2019); Cheng et al. (2019, 2016, 2009); Budsky et al. (2019); Dumitru et al. (2018); Denniston et al. (2018); Regatteri et al. (2018); 

Mehterian et al. (2017); Kathayat et al. (2016); Ünal-İmer et al. (2016, 2015); Hoffman et al. (2016); Martin-Puertas et al. (2014); Stoll et al. (2013); Kanner et al. (2012); 

Rowe et al. (2012); Stríkis et al. (2011); Fleitmann et al. (2011, 2009); Pausata et al. (2011); Moreno et al. (2010); Asmerom et al. (2010); Wagner et al. (2010); Vaks et al. 

(2010); Genty et al. (2010, 2003); Allen et al. (2009); Cruz et al. (2009, 2006); Wang et al. (2008, 2006, 2001); Zhou et al. (2008); van Breukelen et al. (2008); Partin et al. 

(2007); Shakun et al. (2007); Sinha et al. (2005); Burns et al. (2003); Bar-Matthews et al. (2003); Kaufman et al. (1998).  

 

Perturbation to the atmosphere-ocean system is widely accepted as the driving force behind D-O 

event initiation (Lynch-Stieglitz, 2017; Henry et al. 2016; Ganopolski & Rahmstorf, 2001), however 

the causes of perturbation are poorly constrained. D-O events appear concurrent with variability in 

the Atlantic Meridional Overturning Circulation (AMOC) (e.g. Pedro et al. 2018; Henry et al. 2016; 

Gottschalk et al. 2015; Piotrowski et al. 2005; Rahmstorf, 2002; Clark et al. 2002; Broecker et al. 

1990) – the mechanism regulating oceanic heat transfer between the NH and SH (Pedro et al. 2018). 

In principle, a weakened AMOC would reduce the northward advection of heat resulting in a 

southward shift of the ITCZ (Kageyama et al. 2013), consequently weakening the equatorial south 

easterlies and deepening the equatorial and subtropical thermocline (Pedro et al. 2018); a process 

amplified by ice-albedo feedbacks in the NH. However, the question prevails: what would initially 

cause the AMOC to weaken? The influx of large ‘freshwater’ volumes, originating from proglacial 

lakes (Broecker et al. 2010), and/or continental ice rafts (during periods of enhanced ice calving from 

ocean-terminating glaciers - Menviel et al. 2014), into the Atlantic is a widely-cited source of this 

deterioration (Klockmann et al. 2018), yet fails to satisfy existing proxy evidence. One crucial 

instance is that not all D-O events are consistent with mass calving events (Lynch-Stieglitz, 2017), 

suggesting D-O variabilities are forced by factor of differing magnitudes and scales. Furthermore, 

hypothesis attributing freshwater pulses to pro-glacial outbursts have become contentious due to 

dubious geomorphological evidence (e.g. Baldini et al. 2018; Leydet et al. 2018).  Modelling studies 

have also suggested changes in ice sheet topography (Zhang et al. 2014), atmospheric CO2, meteoric 

moisture transfer (Zhang et al. 2017), and ocean convection (Sadatzki et al. 2019; Petersen et al. 

2013; Li et al. 2005) as catalysts for AMOC deterioration, yet these often disproportionately 

represent the contemporary atmosphere-ocean state (Ortega et al. 2017), and thus their 

applicability to D-O events is questionable. It is possible that D-O event initiation instead results from 

multiple catalysts (Lohnmann & Ditlevsen, 2019; Kleppin et al. 2015) – cumulatively acting to send 

the climate system over an instability threshold (Ganopolski & Rahmstorf, 2001) or ‘tipping point’ 

(Lenton et al. 2008). This hypothesis could justify the inconsistency in D-O event frequency as 

thresholds may be reached faster than others, however quantifying and deconvoluting the 
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respective influence of different forcing mechanisms is a challenge, due to often poor record 

resolution and inherent complexities in the climate system not yet fully understood.   

Explosive volcanism represents another potential catalyst for D-O events (Baldini et al. 2015). 

Findings from composite paleoenvironmental records (e.g. Kobashi et al. 2017; Sigl et al. 2015), 

historical archives (McConnell et al. 2020; Büntgen et al. 2016), and modelling studies (Pausata et al. 

2020, 2016; Miller et al. 2012) spanning the past 2.5 kyr suggest volcanic eruptions are linked to 

large-scale reorganisations of the atmosphere (Ridley et al. 2015; Zanchettin et al. 2014., Haywood 

et al. 2013), perturbation to ocean circulation, and instigation of self-sustaining positive feedbacks - 

the magnitude of such influenced by eruption location and stratospheric circulation differences 

associated with the Brewer-Dobson effect (Butchart, 2014; Toohey et al. 2011; Holton et al. 1995). 

Theoretically, the same effect could have ensued on a greater scale during the Pleistocene - as 40 

known eruptions exceeded the magnitude of the largest Holocene event (Changbaishan: 1.008 ± 

0.004 ka BP, M7.4). Using a multi-proxy approach, Baldini et al. (2015) identify how all five known, 

radiometrically-dated Southern Hemispheric eruptions (>M6.0) occur within chronological 

uncertainty of a D-O event. This proposed link between explosive volcanism and abrupt climate 

variability is supported by further proxy (Baldini et al. 2018; Polyak et al. 2017; Carolin et al. 2013) 

and modelling (Brenna et al. 2020; Metzner et al. 2014; Timmreck et al. 2012) studies conducted for 

the same geological period. The strength of this correlation appears greater for periods of 

intermediate global ice volume (Baldini et al. 2018) during which the climate system shows increased 

sensitivity to perturbation (Zhang et al. 2017), which also justifies why not all known high-magnitude 

eruptions appear coincident with abrupt climate change (Baldini et al. 2015). Nonetheless, eruption 

record paucity in the Southern Hemisphere (Rougier et al. 2018; Brown et al. 2014) hampers the 

ability to quantify the impact of volcanic forcing on D-O event initiation and propagation. The validity 

of experimental modelling is substantially influenced by the quality of input data, which is inherently 

poorer and scarcer for pre-Holocene eruptions whereby parameters such as aerosol/volatile/particle 

flux, SO2 yield, eruption type and plume height are often unknown (Timmreck, 2012).  Tephra layers 

in annually resolved paleoenvironmental sequences present an alternative proxy for assessing 

eruption timing relative to observed environmental changes (Berben et al. 2020; Abbott et al. 2018; 

Bourne et al. 2015). However, this is contingent on whether tephra layers appear unanimously 

across multiple archives (Davies et al. 2015), and whether the stratigraphic placement of tephra 

layers accurately represent the time of deposition. For pre-Holocene deposits, there is greater 

potential for particle dissemination due to sedimentary reworking associated with periglacial 

processes (Davies et al. 2007; Ballantyne, 2002) and problems can arise if tephra quantities fall 

below the detection threshold, or the layer lacks a unique geochemical signature (Davies et al. 2015., 
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Bourne et al. 2013; Lane et al. 2012). In such cases, a discrete eruption event may be misinterpreted 

as secondary reworked material (Lowe, 2011). Dating uncertainties associated with Last Glacial 

Period paleoclimate (Lane et al. 2013) and volcanic (Brown et al. 2014) events are often multi-

centennial in scale, and so establishing robust correlations between climate change and volcanism 

are challenging. Evidently, improvements in the spatial and temporal resolution of eruption records 

are needed to confidently establish a link between volcanism, and initiation of D-O events.  

There is still much to learn about the initiation and drivers of D-O oscillations. Variabilities between 

high-latitude and tropical climate systems add further complexity to an already intricate network of 

systems and feedbacks (Cvijanovic & Chiang, 2013). For example, a D-O signal recorded at a tropical 

site may be the product of either i) fast teleconnections from the high latitudes (annual timescales); 

or ii) secondary teleconnections due to slowly-evolving change (decadal to centennial timescales) 

(Rasmussen et al. 2014). Hence, D-O signals can appear different yet be related to the same large-

scale atmospheric reorganisation. Establishing causality remains a challenge (Barker et al. 2015; 

Álvarez-Solas et al. 2013, 2011), further exacerbated by spatial gaps in available records which 

disproportionately favour the NH, and consequently limit comparison of natural proxies and global 

atmospheric circulation models (Wong & Breecker, 2015). The AMOC hypothesis appears strong for 

longer-lasting events, yet difficulties in identifying direct evidence for AMOC disturbance during 

shorter events suggests other driving mechanisms may have influenced their initiation (Lynch-

Stieglitz, 2017). Proposed causal mechanisms must account for the rapidity and hemispheric-scale of 

D-O events (Baldini et al. 2015), and evidence from the NH (high latitudes) suggests that D-O 

initiation involved coupled ocean-climate systemic feedbacks (Sadatzki et al. 2019). Until evidence 

emerges that all D-O events can be attributed to changes in the AMOC, it is questionable whether 

these changes are the initial forcing underlying D-O events, or just a response/feedback to another 

driver. Equally, evidence for hemispherically distinct responses to climate change suggests that 

evidence from the opposing hemisphere must also be considered, if we are to better understand 

millennial-scale variabilities in the global climate system.  

2.2.2.2. Heinrich Events 

Of >20 D-O events during the Last Glacial Period, 6 correspond with Heinrich Events (HEs). HEs are 

defined as the discharge and deposition of ice-rafted debris (IRD) into the North Atlantic Ocean, are 

synchronous with hemisphere-wide climate variability (Broecker, 1994), and also appear concurrent 

with ice sheet and mountain glacier maxima in North America, Europe, and South America (Hulbe et 

al. 2004). IRD layers in marine sediments appear to have originated mainly from (although not 

limited to) the Laurentide Ice Sheet (LIS) via the Hudson Strait (Stokes et al. 2005; Hemming et al. 
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2004; Henirich, 1988). However, the driving mechanisms behind HEs are enigmatic due to their 

occurrence during periods of climatic cooling. Several mechanisms have been proposed to explain 

their occurrence; however, none have been confirmed nor widely accepted. Current working 

hypotheses for HE initiation can be grouped into 2 broad categories: internal and external.  

One key hypothesis is the Binge-Purge model, which suggests HEs are triggered internally. First 

developed in the early 1990’s (MacAyeal, 1993), the model suggests that ice sheets would grow to 

maximum extent (binge), then release (purge) large numbers of icebergs due to basal 

destabilization. In contemporary marine-terminating glaciers, basal destabilization occurs due to 

melting (e.g. Lemos et al. 2018; Armstrong et al. 2016; Bartholomaus et al. 2008) and is associated 

with solar insolation and seasonality (Cavanagh et al. 2017; Joughin et al. 2008), as warmer 

temperatures facilitate the formation and drainage of supra-glacial lakes (Zwally et al. 2002) through 

hydrologically assisted fractures in the ice (Catania et al. 2008). Basal melt occurs due to friction, 

entrapment of geothermal heat, and gravitational force – all of which reduce the pressure melting 

point of ice (Verbitsky & Saltzman, 1995), increase pore water pressure within unconsolidated basal 

sediments (Boulton et al. 2001), lubricate the bedrock and ultimately reduce the contact between 

glacier and bed (Clarke, 2005). For ice sheets, accelerated ice flux primarily occurs due to subsole 

deformation of multiple outlet glaciers (King et al. 2020), and evidence suggests this process was 

also influential for large ice sheets (Figure 7) such as the LIS (Roberts et al. 2016). However, flux and 

calving rates are not a direct function of basal meltwater volume, and contemporary analogues (e.g. 

Greenland: Stevens et al. 2015; Van de Wal et al. 2008) have highlighted how contesting effects of 

sliding, variations in meltwater input, and evolution of the subglacial drainage system can all cause 

variations in ice speed (Chu et al. 2016). The binge purge model opposes this, by suggesting climate 

exerted only a peripheral role on ice-sheet calving. Furthermore, the robustness of the binge-purge 

hypothesis depends on inclusion of HEs 3 and 6 (Bigg et al. 2010; Hemming et al. 2004; Sarnthein et 

al. 2001) which, if omitted, weakens the argument that common glaciological processes can solely 

provide an explanation for HE occurrence. Repetitive glacial outburst flooding (jökulhlaups) from 

lakes in the Hudson Strait have also been suggested as an internal HE catalyst (Hemming, 2004; 

Johnson & Lauritzen, 1995). Jökulhlaups are large floods that occur when the water contained in a 

pro-glacial lake exceeds the height of the dam, due to rising lake levels or reduced flow of glacial ice. 

This theory currently lacks robust evidence which would support the presence of an ice-dammed 

lake in Hudson Bay throughout the last Glacial Period, yet some argue this scarcity is a function of 

research bias (Andrews & Voelker, 2018). This is hard to confirm until further evidence is gained.   

The size and varying growth conditions of ice sheets responsible for HEs have prompted generation 

of other theories which suggest an external influence on HE instigation. Hulbe (1997) proposed that 
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IRD transmission and deposition resulted from rapid disintegrations of ice shelves, as a product of 

climatic warming. Ice sheet expansion would occur during the cold intervals of D-O oscillations, as 

cooler air and sea surface temperature would promote increased grounding line ice volume (Hulbe 

et al. 2004). Conversely, sheet disintegration would occur when surface meltwater directly 

propagated through ice fractures, saturating basal sediments and causing rapid disintegration of 

fringing ice shelves. This would reduce the amount of ice stream buttressing – causing ice stream 

instability, acceleration, and increased calving (Gudmundsson, 2013). Debris would be protected by 

basal underplating by marine ice which, alongside small, capsized icebergs (debris on top) would be 

transported East across the North Atlantic and deposit IRD once the iceberg melted entirely (Meyer 

et al. 2019). This also suggests HEs are predominantly modulated by solar insolation variability 

(Heinrich, 1988; Bond et al. 1993), however, proxy evidence highlights multiple problems with this 

hypothesis. For example, evidence for open, mild oceans during the LGM alludes that a vast ice 

shelves may not have existed (de Vernal et al. 2000, 2005). Equally, HEs seemingly correlate more 

strongly with changes to ocean circulatory systems rather than solar insolation (e.g. Barker et al. 

2015; Álvarez-Solas et al. 2013, 2011; Marcott et al. 2011). Subsequent hypotheses propose this 

process links to isostasy: by generating a cycle of ice sheet retreat due to warm subsurface waters, 

sill elevation due to isostatic rebound, and consequent regrowth of the ice sheet when these warm 

waters became blocked by the sill (Bassis et al. 2017). In this cycle, enhanced calving would occur 

during the period of rapid retreat. The extent to which these modern analogues can be used to study 

ice sheet variability is contentious, as these structures were much larger (Batchelor et al. 2019) and 

timescales upon which HEs operated far surpass timescales of instrumental observation of modern-

day ice sheets. However, contemporary work suggests the mechanisms responsible for ice sheet 

calving during the Last Glacial Period may be more similar to modern-day marine-terminating 

glaciers than previously believed.  

Not one theory fully accounts for why HEs appear inconsistently during D-O events, with the 

complete absence of IRD deposition during some (Ziemen et al. 2019; Alley et al. 2005). This is 

notably due to ambiguous causality: it is unclear whether HEs caused ocean circulation changes, or 

whether they are a product of prolonged change to the ocean-climate system in response to another 

forcing agent. Research suggests that HEs are temporally coincident with perturbations to the 

Atlantic Meridional Overturning Circulation (AMOC) (Clark et al. 2007), defined as “the zonally and 

vertically integrated northward volume transport” of the ocean (Buckley & Marshall, 2016: p. 9) 

which drives the equator-ward transport of cool, dense water formed in the North Atlantic – a 

system which disproportionately affects NH climate due to its role in heat and carbon transport from 

the surface to the deep ocean. Research has suggested the AMOC is sensitive to changes in deep 
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ocean convection (Medhaug et al. 2012) and thus could be weakened by large freshwater flux into 

the ocean (Clement & Peterson, 2008). On one hand, some suggest that HEs could have provided 

adequate quantities of freshwater to perturb North Atlantic Deep Water (NADW) formation (He et 

al. 2020; Rahmstorf, 2002), and thus HEs represent the driving mechanism underpinning AMOC 

disturbance. Conversely, others argue that HEs are the result of AMOC perturbation, as there is 

evidence that a weaker AMOC may trigger ice-sheet instability and input of glacier melt to the North 

Atlantic, rather than be caused by it (Lynch-Stieglitz, 2017; Álvarez-Solas et al. 2013, 2011; Marcott 

et al. 2011; Gutjahr & Lippold, 2011). Instead, the melting of icebergs into the Atlantic may have 

provided a positive feedback favouring persistently cool conditions (Barker et al. 2015; Álvarez-Solas 

et al. 2013), causing a hemispherically asymmetrical response by suppressing the AMOC and 

allowing large amounts of heat to build up in the Southern Ocean (Buizert et al. 2015). This implies 

the existence of a threshold beyond which, after a period of gradual cooling, the transition to a 

stadial state becomes inevitable – as interstadial duration is a function of interstadial cooling rate 

(Schulz, 2002).  

HE signatures do appear global in propagation and impact (Kageyama et al. 2013), however more 

evidence is needed to fully capture and constrain the nature, scale and drivers of these events. 

Certain HEs appear strongly correlated to changes in oceanic circulation and temperature, however 

in this case cause and effect remain notoriously challenging to quantify. For example, many high-

resolution benthic carbon isotope records have been generated looking for signatures of deep water 

change associated with the HEs, yet findings are inconsistent among locations, and hampered by 

poor time resolution and noisy data (Lynch-Stieglitz, 2017). Furthermore, research of Southern 

Hemispheric records of HE propagation (Clement & Peterson, 2008; Voelker, 2002) are scarce, and 

currently lack sufficient resolution to robustly establish cause and effect between ocean-atmosphere 

perturbations and the occurrence of HEs, and how these link to ice sheet dynamics. 

3.0. RATIONALE 

The study of Earth’s volcanic history relies on geological evidence; however, the current eruption 

record is incomplete, and uncertainty increases as a function of time (Rougier et al. 2018; Brown et 

al. 2014). Ice core sequences provide annually resolved, chronologically robust archives of past 

climate (Rasmussen et al. 2014) and volcanic activity (Svensson et al. 2020; Zielinski et al. 1996), yet 

show significant geographical bias. For example, as signal clarity decreases as a function of distance, 

tropical eruption signatures are more likely to experience attenuation before reaching the polar 

regions, disproportionately favouring higher latitude eruptions (Svensson et al. 2020). This paucity 
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has profound implications for quantifying the frequency (Papale, 2018) and relative influence of 

volcanic activity on the pacing and timescales of abrupt environmental change (Davies, 2015).  

Unlike ice-core, lacustrine, peat, and marine sequences, stalagmites are found across a large 

latitudinal gradient and can provide similarly precise records of changes to temperature, local 

precipitation, atmospheric circulation, and composition (Wong & Breecker, 2015). Moreover, they 

are diverse paleo-volcanic records with potential for preservation and detection of volcanic-derived 

ash fall (Ünal-İmer et al. 2020; Jamieson et al. 2015; Badertscher et al. 2014; Frisia et al. 2008) 

alongside millennial-scale perturbation to climate by volcanic forcing – the latter through use of 

stable isotopes (e.g. δ13C and δ18O) and climate-responsive trace elements (e.g. Mg, U) (Ünal-İmer et 

al. 2020; Du et al. 2019; Polyak et al. 2017; Baldini et al. 2015; Carolin et al. 2013). If stalagmite 

chronologies and eruption dates are well constrained, post-volcanic climate change can be detected 

in the absence of a tephra horizon. There are likely many volcanic signals preserved in stalagmite 

sequences, however the number of studies searching for these signals are limited, and the spatio-

temporal distribution of stalagmites used in a volcanological context is inconsistent - limiting 

knowledge of how volcanic signals may manifest within these records.  

This thesis studies two new trace element datasets from two separate stalagmites. Chapter I 

presents the analysis of NIED08-05, a stalagmite grown between 0 – 3 ka BP (Lechleitner et al. 2016) 

and sourced from Niedźwiedzia Cave, south-west Poland. Previous application of PCA to a tropical 

stalagmite dataset successfully detected ash fall associated with explosive volcanism, through 

identification of transient trace element enrichments concurrent with ash transport over Actun 

Tunichil Muknal cave, Belize, between 1979-2001 (Jamieson et al. 2015). By replicating this 

technique on a temperate Polish stalagmite, the suitability of PCA for detection of volcanic-derived 

geochemical deposition in a non-tropical, prehistoric archive is tested. Chapter II presents the 

analysis of DIM-3-A (south Turkey) – a sample extracted from the base of stalagmite DIM-3 (Ünal-

İmer et al. 2015), which grew between 70 and 90 ka BP (Ünal-İmer et al. 2015) and is sourced from 

Dim Cave, southern Turkey.  Stalagmite dripwater composition is heavily influenced by regional 

climate and dominated by seasonal flow, meaning colluvial throughput could cause entrainment and 

deposition of tephra onto the stalagmite. Over centennial-to-millennial timescales, cumulative 

changes to the Dim Cave dripwater supply and composition also reflect changes in both East 

Mediterranean moisture availability (Rowe et al. 2020; Ünal-İmer et al. 2016; Baykara, 2014) and 

storm track displacement (Ünal-İmer et al. 2015). Thus, this sample shows potential for detection of 

both short (e.g. ash fall) and long (e.g. climate) term volcanic impacts.  

Continuing development of global speleochronologies can address key questions regarding the link 

between volcanism, environmental change, and long-term climate variability. The primary aim of 
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this thesis is, therefore, to evaluate the suitability of stalagmite trace element sequences as records 

of explosive volcanism. The outcomes of this work will not only quantify the mechanisms controlling 

incorporation of volcanic-derived material into stalagmites, but also advocate which karst systems 

produce records most valuable for future research integrating speleology and paleo-volcanology.  

4.0. METHODOLOGIES  

4.1. LA-ICP-MS 

Laser-Ablation Inductively-Coupled-Plasma Mass Spectrometry (LA-ICP-MS) is a modern analytical 

technique for in-situ TE and isotope analysis (Ubide et al. 2015; Lin et al. 2013), widely used due to 

the high analytical resolution achievable per sample, in conjunction with reduced sample 

preparation, increased speed of analysis, and low cost (Limbeck et al. 2015; Günther & Hattendorf, 

2005; Eggins, 2003). The technique involves use of a laser to generate and extract (ablate) fine 

particles from a solid sample, which is transported to a secondary ionisation source. Ions are 

extracted by a quadrupole and introduced to a mass spectrometer, to extract isotope and trace-

elemental data. The relative abundance of each element within a sample is determined through 

separation of ions based on their mass-to-charge ratio, and the signal detected by the ICP-MS is 

directly proportional to this concentration. The researcher can maintain a high level of control 

throughout the process, as parameters such as beam diameter, laser repetition rate, and raster 

speed, can be changed in accordance with the sample being analysed (Petrelli et al. 2016; 

Sigmarsson et al. 2011; Pearce et al. 2011). 

LA-ICP-MS is used within two primary areas of paleoenvironmental research: Geochemistry and 

Chronology (Müller & Fietzke, 2016). Since the late 1990’s (Jeffries et al. 1998; Sinclair et al. 1998), 

advances in mass spectrometry have facilitated the extraction of geochemical data from 

heterogeneous archives, in order to study Earth-system interactions and changes throughout 

geological time (Gothmann et al. 2015). For naturally occurring archives, the magnitude of post-

depositional alteration is proportional to time, so vigorous rates of erosion associated with climatic, 

tectonic, and weathering processes (Ganti et al. 2016) can obscure key geochemical signatures. 

However, further improvements in precision of the laser and mass spectrometer (Russo et al. 2002) 

means LA-ICP-MS can accurately deconvolute important geochemical changes across a sequence 

(Müller & Fietzke, 2016), from signals of degradation. This information can consequently be used to 

reconstruct climatic and environmental conditions at the time of sequence growth/accretion. For 

example, measurement of isotope and trace element ratios preserved in benthic archives such as 

corals (Deng et al. 2010), and molluscs (Elliot et al. 2009) can derive ocean composition (Mertz-Kraus 
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et al. 2009) and temperature (Evans et al. 2015; Griffiths et al. 2013), while analysis of other stable 

isotopes (e.g. lithium) can measure ocean dissolved-organic-carbon and pH (Vigier et al. 2015). 

Atmospheric temperature, composition, and precipitation can be derived from terrestrial, land-

based archives such ice cores (Sneed et al. 2015), speleothems (Orland et al. 2014; Jochum et al. 

2012; Fairchild & Treble, 2009; Desmarchelier et al. 2006), and tree rings (Monticelli et al. 2008).  

High instrumental sensitivity and low detection limits have also permitted the discovery of transient 

natural events, which can manifest as discrete enrichments of trace elements, which have become 

integrated into the archive sequence. These events include dust storms (Sneed et al. 2015), 

volcanism (Jamieson et al. 2015), and seasonal variations in effective precipitation (Hartland et al. 

2012). If the occurrence date is well constrained, geochemical data obtained through LA-ICP-MS can 

help to characterise the former two events as chronological markers - allowing synchronisation of 

geographically diverse records featuring the same, distinct isochron (Lowe et al. 2017).  

Accurate dating of paleoenvironmental archives requires a robust chronological framework. For this 

purpose, isotopic analyses by LA-ICP-MS can be hugely beneficial. LA-ICP-MS was initially used to 

assign zircon ages using U-Pb isotopes (Jackson et al. 1996), however since then, LA-ICP-MS has been 

used in development and application of Uranium (U)-series and strontium isotope stratigraphy (SIS) 

techniques. More recently, 14C dating of paleoenvironmental archives has become possible with 

coupling of gas-source accelerator mass spectrometers to laser ablation instruments (Rosenheim et 

al. 2008). However, this dating technique is limited by the radiocarbon limit, and thus samples <104 

years in age. U-series dating by LA-ICP-MS is commonly used to date continuously growing, 

carbonate-based samples, such as speleothems and corals (Eggins et al. 2005), whereby high U-

Pb/Th regions are often sub-mm in scale. U-Th disequilibrium dating can date samples up to 105 

years old, while U-Pb dating can acquire dates for carbonate samples >107 years in age with 

remarkable precision (Macdonald et al. 2019; Li et al. 2014).  

LA-ICP-MS has played a significant role in creation of robust paleoenvironmental archive networks, 

for study of paleoclimate and environmental change. However, certain issues remain to be 

addressed (Figure 8), as the effectiveness of conducted analyses largely rely on the stability of the 

laser system, effective calibration of reference materials, and the homogeneity/size of the reference 

material (Limbeck et al. 2015). Future work will inevitably focus on the expansion of LA-ICP-MS 

applications to a wider range of geological samples, while striving for a better understanding of 

common analytical issues, and development of matrix-matched reference materials (Müller & 

Fietzke, 2016). Furthermore, the establishment of robust protocols for data processing, uncertainty 

assessment, reference material selection, and fractionation correction (if a sample has been ablated 

for a prolonged period) will allow for data sets obtained from different laboratories to be easily 
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compared (Sylvester & Jackson, 2016). This will broaden the scope of LA-ICP-MS applications across 

paleoenvironmental archives, and differing fields of expertise.   

. 

Figure 8: A series of flow diagrams, illustrating the common problems associated with use of LA-ICP-MS in trace-element 

analyses of geological samples. 

1 Lin et al. (2016); 2 Chew et al. (2014); 3 El Hadri et al. (2016); 4 Liu et al. (2013); 5 Agatemor & Beauchemin (2011); 6 Günther & Hattendorf (2005); 7 Hare et 

al. (2012); 8 Limbeck et al. (2015); 9 Uerlings et al. (2016); 10 Zhu et al. (2013); 11 Hu et al. (2011); 12 Kroslakova & Günther, D. (2007)  

4.2. Principal Component Analysis  

Principal Component Analysis (PCA) is a dimension-reduction method of data analysis and 

exploration, used to examine relatedness between variables. It combines the intra-variable 

association (covariance matrix), the data dispersion direction (eigenvectors), and the relative 

importance of these directions (eigenvalues) to assess which Principal Component (PC) explains the 

largest sum of variability in a sizable multivariate dataset. Put simply, it transforms the data based 

on a new coordinate system, whereby the largest variance is projected onto the first coordinate, 

known as PC1, the second largest onto the PC2 coordinate, and so forth (Abdi & Williams, 2010). 

This technique is particularly well suited for applications in geochemistry. Modern analytical 
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instruments have such precision that tens of variables (e.g. trace elements) can be measured on one 

sample, however this can create extremely large, multi-variate datasets. PCA not only improves the 

ability to visualise and interpret these datasets, but can also detect the sources and characteristics of 

transient changes in measured components through time. Applications of PCA are temporally 

extensive. In recent decades it has been used to characterise the modes and timescales of 

anthropogenic particulate concentrations in urban areas (Đuričić-Milanković et al. 2018), however 

applications are also valuable for analysis of paleoenvironmental data. For example, Mayewski et al. 

(1994) used PCA to identify transient changes in atmospheric composition, resulting from sea ice 

aerosols and atmospheric dust measured in ice cores from the Last Glacial Period.  

In volcanology, use of PCA has primarily been within igneous petrology (Unglert et al. 2016) and 

tephrochronology (e.g. van der Bilt et al. 2017; Pouget et al. 2014), thus applications to assess 

volcanic frequency through time, through detection of volcanic trace element signals, is novel. 

Jamieson et al. (2015) identified short-lived trace element enrichments temporally coincident with 

dispersal of volcanic ash, raising the possibility for stalagmite chemistry to reflect periods of 

explosive volcanism. This study builds upon the work conducted by Jamieson et al. (2015), by using 

PCA as a tool for detection of volcanic eruptions in two stalagmites, each grown in different 

locations and during different periods of the Quaternary. Undertaking this study aims to aid 

understanding of which karst conditions favour effective preservation of volcanic signals, and in turn 

quantify the mechanisms controlling deposition, and preservation, of volcanic material in stalagmite 

sequences. 
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5.0. NIEDŹWIEDZIA CAVE – Results Chapter I 

5.1. Site Description  

5.1.1. Regional Climate  

Wrocław Global Historical Climatology Network (GHCN) station is located 100km to the north of the 

study site (Jaskinia Niedźwiedzia or Bear Cave, near Kletno, SW Poland).  Wrocław holds the longest 

continuous records of precipitation and air temperature in Poland, beginning in 1791 (Bryś & Bryś, 

2010). For the period 1981-2010, annual mean temperature in Wrocław averaged 6.4oC (± 3.0oC). 

Based on a 30-year Industrial Era dataset from Wrocław (1980 – 2010) the climate in SW Poland is 

highly seasonal, with precipitation ranging from 27.2 mm (in February) to 84.4 mm (in July) and 

temperature ranging from -1.4°C (in January) to 18.7°C (in July) (Figure 5B). Precipitation in SW 

Poland typically results from the interaction of cold, continental air masses from Eastern Europe and 

warm, maritime air masses from the Atlantic (Piotrowski & Jędruszkiewicz, 2013). The climatic 

conditions of the Kleśnica valley in the Eastern Sudetes, where the Niedźwiedzia Cave is located, are 

harsh with a mean annual air temperature of 5.5 °C for 1992–2003 (Piasecki & Sawiński, 2009). The 

modern cave entrance is located ~670 m higher than Wrocław meteorological station, and the area 

is characterized by the absence of a climatic summer. The local air circulation in the valley and 

common air temperature inversions throughout the year are associated with foehn phenomena 

(Piasecki & Szymanowski 1995). 
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Figure 9: A - Map of Poland showing the location of the Niedźwiedzia Cave site (red circle). Blue circles denote sites with 

previously identified tephra deposits (Watson et al. 2017; Wulf et al. 2016). Map created in ArcGISPro v. 2.4.2. with precipitation 

data sourced from Szwed (2019); B - Wrocław mean monthly temperature (red line) and precipitation amount (blue bars) for the 

period 1980-2010 (GHCN Wrocław data). At this central European site, precipitation covaries with temperature with a minimum 

in winter (between December and March) and maximum in summer (between June and August). Data were obtained from the 

National Oceanographic and Atmospheric Administration (NOAA)’s Global Historical Climatology Network (GHCN); C - 

Topographic map of the Niedźwiedzia Cave site within Śnieżnik Landscape Park (orange shading) and location of Wrocław 

WGHCN station (orange circle). Map created in ArcGIS Pro (v. 2.4.2.) 

5.1.2. Cave Monitoring 

This study utilises stalagmite NIED08-05, extracted in 2008 from the upper cave level of Jaskinia 

Niedźwiedzia (50°14,068'N, 16°50,558'E; 790 m a.s.l. elevation), 10m below the surface. Jaskinia 

Niedźwiedzia is one of the largest cave systems in the Sudetes Mountains (Gąsiorowski et al. 2015), 

with a depth of >100 m, and a known passage length exceeding 4000 m (Kostka, 2014). Formed 

primarily within metamorphic carbonate rocks, the karst network is comprised of three chamber 

levels connected by fissures (Kasprzak & Sobczyk, 2017; Sobczyk et al. 2016). The cave is overlain by 

a mixture of soils and organic debris, weathered rock, and beech-spruce forest punctuated by 

exposed marble outcrops (Piasecki & Sawinski, 2009). The cave environment is stable with a mean 

cave air temperature (6oC) that reflects the multi-annual mean external temperature and a relative 

humidity of 96-98% (Piasecki & Sawiński, 2009). 
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. 
Figure 10: A – Plan view diagram of the Niedźwiedzia Cave including “old” and “new” parts and position of analysed area 

(modified after Kostka 2014); B - Plan-view diagram of the Niedźwiedzia Cave old parts and Maurycy’s Aven (closest to the 

surface), depicting mean annual air temperature and the relative location of the NIED08-05 stalagmite. Black outline marks the 

upper/middle level of the cave (adapted from Lechleitner et al. 2016., Temperature data after Piasecki & Sawiński, 2009). 

Modern-day monitoring of the stalagmite feeder drip hydrology and hydrochemistry provides 

important constraints on the transmission of surface conditions through the karst, and subsequent 

climate signal preservation in the stalagmite. Prior to stalagmite collection, the NIED08-05 feeder 

drip and contemporaneous surface precipitation was monitored between April and June 2008 - to 

determine the stalagmite’s sensitivity to seasonal rather than multi-annual surface conditions. 

Monitoring data revealed a rapid response of drip rate to surface rainfall (within 48 hours) followed 

by an asymptotic decline in drip rate over several days (Figure 12A); a pattern characteristic of 

seasonal drip sites (Baldini et al., in review). Closer inspection of the data reveals that not all rain 

events invoke a drip rate response at this fracture fed drip site (e.g. 2nd June) (Figure 12A). For 

example, the largest increase in drip rate occurred on the 19th of May after a 31.3 mm increase in 
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cumulative rainfall (Figure 12A) whereas, a 2.9 mm increase in cumulative rainfall on 2 June 2008, 

was insufficient to elicit a drip rate response. Thus, a minimum accumulation of rainfall at the 

surface is required before meteoric water will infiltrate down through the soil and through the 

fracture feeding NIED08-05. 

Whilst drip rate monitoring can be used to classify the drip site (Baldini et al., in review), oxygen 

isotope (δ18O) monitoring of drip water and contemporaneous surface  rainfall  provides constraints 

on climate signal transmission through, and buffering by, the karst and soil overburden (Baldini et 

al., 2019; Baldini et al., 2015). Between May 2009 and June 2010, monthly-integrated NIED08-05 

feeder dripwater and contemporaneous surface rainwater were collected and analysed for δ18O. 

Surface precipitation δ18O over this period ranged from -3.71 and -11.06 ‰ VSMOW (mean = -8.42 

‰ VSMOW). Drip water δ18O monitored at two sites along the same fracture (the NIED08-05 feeder 

drip and adjacent ‘drip site 4’: Figure 11) exhibited muted variability, ranging from -10.45 to -11.04 

‰ VSMOW with a mean of -10.98 ‰ VSMOW; the lower end of the rainwater isotope range (Figure 

12B).  Therefore, based on available data, the NIED08-05 feeder drip preserves a low δ18O 

autumn/winter precipitation signal. In SW Poland, the temperature effect on precipitation δ18O is 

dominant - so summer rainfall is characterised by higher δ18O values, whereas winter δ18O values are 

lower (Appendix Figure S1). The winter δ18O bias of NIED08-05 drip water, despite the bulk of 

precipitation falling during summer (Figure 12B, Appendix Figure S1), reflects the role of 

evapotranspiration from the overlying deciduous forest that significantly limits summer rainfall 

infiltration. In contrast, winter precipitation is able to infiltrate unimpeded (either immediately or as 

spring meltwater) leading to a strong winter bias of drip water δ18O. 
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Figure 11:  Two drip sites: the NIED08-05 feeder drip and Dripsite 4 (located ~1 m apart along the same fracture) were 

monitored in Jaskinia Niedźwiedzia, using a Stalagmate drip counter (Collister & Mattey, 2008) between May 2009 and June 

2010. Note the well-developed fracture on the ceiling and clear lineation in stalactite and stalagmite deposition. 

 

Figure 12 - A: High resolution drip rate (red) data for the stalagmite NIED08-05 feeder drip monitored between April and June 

2008. Contemporaneous hourly (blue) rainfall monitored at the surface above the cave is also shown for comparison. Cumulative 

rainfall is shown in black. B: Monthly-integrated dripwater (blue lines), rainwater (black line) oxygen isotopes (18O), and surface 
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precipitation (red bars) monitored at Niedźwiedzia cave between May 2009 and June 2010. No precipitation 18O data are 

available between November 2009 and February 2010 when precipitation primarily fell as snow. 

5.1.3. Volcanic Signal Emplacement 

Based on 1 year of monthly drip water sampling, the NIED08-05 feeder drip never ceases completely 

(Figure 12B), yet groundwater at the site primarily reflects a winter signal. During summer (when 

evaporation rates are high), and between November and March (when temperatures are typically 

below freezing and precipitation falls in the form of snow; Figure 12B), colloidal material 

accumulates at the surface – which could include volcanic ash and sulfate. Tephra deposits traceable 

to Holocene eruptions of Askja, Churchill, Snæfellsjökull (all Iceland), and Furnas (Azores) have been 

documented in Polish peat and lake sediments (Kinder et al. 2020; Watson et al. 2017; Wulf et al. 

2016; Housley et al. 2014). Thus, Niedźwiedzia cave, and stalagmite NIED08-05, have considerable 

potential for preserving a long-term record of volcanic activity.   

Infiltrating surface water and subsequent leaching is not the only way that volcanic ash could have 

reached stalagmite NIED08-05 - airborne ash may have infiltrated via natural entrances. 

Geomorphological evidence suggests alternative points of entry may have existed during the 

Holocene (Sobczyk et al. 2016) through Maurycy’s Aven (Figure 10B), and the small Miniaturka Cave 

just above the Niedźwiedzia exit. Radio wave measurements (Kasprzak & Sobczyk, 2017) suggest 

these cave sections possessed open voids which allowed further access into the cave, reinforced by 

paleontological identification of Pleistocene mammal remains (Sobczyk et al. 2016; Stefaniak, 2015; 

Baca et al. 2014) on the level from which NIED08-05 was extracted. Therefore, tephra may have 

been directly deposited onto the stalagmite tip.  

5.2. Methods 

5.2.1. NIED08-05 

Despite the cave’s proximity to economically viable Uranium deposits that prompted Russian mining 

operations, and the cave’s discovery in 1966, stalagmite NIED08-05 is characterised by very low 

uranium concentrations (Lechleitner et al. 2016).  As a result, large uncertainties were associated 

with the uranium-thorium chronology and an alternative 14C chronological dating technique was 

established for the stalagmite (full detail in Lechleitner et al. 2016).  The NIED08-05 14C chronology is 

in stratigraphic order and suggests a near-consistent calcite accretion rate, with one significant 

growth hiatus present at 51.2 mm from the top (Figure 13). Dating uncertainty systematically 

increases with calcite age, with larger uncertainties in the pre-hiatus interval. To reduce 
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uncertainties and allow for more precise correlations, only the interval 0-3 ka BP positioned above 

the hiatus, was utilised in this study.  We follow Lechleitner et al. (2016) and fit an age-depth trend 

based on the corrections and model therein (Figure 13).                  

.  

Figure 13: Age-depth 14C-derived chronology for NIED08-05 accounting for Dead Carbon Fraction (DCF), adapted from 

Lechleitner et al. (2016). Red bars show the measured 14C ages with an anchor point given at the 2008 year of sample 

collection. The black curve shows the best-fit age-depth trend based on the corrections and model provided in Lechleitner 

et al. (2016; details therein). The orange shaded region shows the 95% confidence intervals for the model age-depth trend. 

Based on the large errors after the growth hiatus observed, we restrict our analysis to the quantitative portion of the 

speleothem at <40 mm from the top, equivalent to calculated ages from 0 to 3 ka BP.  

Laser-Ablation Inductively-Coupled-Plasma Mass Spectrometry (LA-ICP-MS) is an analytical 

technique for in-situ trace element and isotope analysis (Petrelli et al. 2016; Ubide et al. 2015). The 

trace element profile for NIED08-05 was produced at Royal Holloway University, utilising a prototype 

RESO-lution M-50 excimer laser-ablation system (193nm), in conjunction with a two-volume laser-

ablation cell. This cell was coupled to an Agilent 7500ce/cs quadrupole ICP-MS, and measurement of 

the speleothem profile was measured using a 140 x 10μm laser slit, a 10μm/s-1 scan speed and a 15 

Hz repetition rate (90 mJ laser spot). The full analytical set-up is described by Müller et al. (2009). 

Calcium-43 was measured throughout all runs as an internal standard. The Iolite software package 

was used for data reduction, using NIST 612, 619 and MACS3 standards of quantification (Paton et 

al. 2011). One issue associated with LA-ICP-MS is instrumental drift (Lin et al. 2016), which can cause 

matrix differences and thus difficulty in disentangling environmental signals from analytical noise (El 

Hadri et al. 2016). Stable isotopes 24Mg and 25Mg were both measured in NIED08-05, however 

anomalous values (> 100ppm difference) were eliminated, as this would suggest such instrumental 
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error. The LA-ICP-MS results were collected at a higher spatial resolution than the 14C data (Figure 

13). As such, we use the model constant deposition rate model from Lechleitner et al. (2016) in 

order to continuously convert geochemical data profiles into time-series data. 

5.2.2. Principal Component Analysis  

Principal Component Analysis (PCA) is a dimension-reduction data analysis method which combines 

the intra-variable association, data dispersion direction and relative importance of these directions 

in order to assess which Principal Component (PC) explains the largest sum of variability in a 

multivariate dataset: PC1 and PC2 being the greatest (Abdi & Williams, 2010). Prior use of PCA in 

volcanology is mostly limited to igneous petrology (Unglert et al. 2016), and geochemical 

characterisation of tephra extracted from sedimentary sequences (e.g. van der Bilt et al. 2017; 

Pouget et al. 2014). Therefore, use of PCA to detect volcanic trace element signals in speleothems is 

novel. Jamieson et al. (2015) plotted PC1 scores as a time series, and found short-lived trace element 

enrichments temporally coincident with dispersal of volcanic ash over the cave site, suggesting 

stalagmite chemistry reflected periods of explosive volcanism. To test whether the technique could 

be used to detect volcanic eruptions whose ash affected Poland, PCA was applied to the NIED08-05 

trace element data, obtained by LA-ICP-MS. Z-scores were calculated prior to analysis to lessen 

analysis sensitivity to individual variables. The MATLAB pca function (MathWorks, 2019) was used to 

extract coefficients, t-squared values, percentage-variance and PC scores from the dataset. Scores 

were then plotted as a time-series, to identify discrete trace element enrichments.  

5.2.3. Volcanic Eruptions 

 Data coinciding with the time window for which the LA-ICP-MS traverse of NIED08-05 was 

downloaded from the Large Magnitude Explosive Volcanic Eruptions (LaMEVE: Crosweller et al. 

2012) database, and the Smithsonian Institution’s open-access record of Holocene volcanism (Global 

Volcanism Programme (GVP): Venzke, 2013).  

To assess the presence of volcanic signals within the NIED08-05 chronology, exclusion criteria were 

applied to eliminate unsuitable eruptions, and allow objective comparison. Niedźwiedzia Cave is not 

within 100km of an active (since 3 ka BP) volcanic system, so it is reasonable to assume deposition of 

volcanic material at the cave site would be limited to fine-grained, airborne material (Cashman & 

Rust, 2020). Eruption magnitude is directly proportional to pyroclastic ejecta volume (Pyle, 2015), 

and trans-continental identification of tephra linked to high-magnitude eruptions is becoming more 

common (e.g. Pyne O’Donnell & Jensen, 2020; Timms et al. 2019; Lane et al. 2017; Jensen et al. 

2014). Therefore, it is unnecessary to eliminate non-European ≥M6.0 eruptions, so long as they 
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satisfied all other inclusion criteria.  Conversely, lower magnitude eruptions are less likely to produce 

enough material for ultra-distal transport, reducing the chances of a clear signature in the NIED08-05 

speleothem sequence. Consequently, only >M4.5 European explosive eruptions were included in the 

analysis. Another step in the elimination process relates to dating uncertainty, as large uncertainties 

associated with eruptions would negatively affect any conclusions drawn, and render them 

inaccurate (Baldini et al. 2015). Therefore, only eruptions with robust dates (uncertainties <100 

years) of a ‘high’ or ‘medium’ quality (as stated by LaMEVE) were included. 

The NOAA Air Resources Laboratory HYSPLIT Ash Dispersion Model (Stein et al. 2015; Draxler & 

Rolph, 2013) was also used to assess the potential for ash dispersion over Poland from different 

volcanically active regions. Using a GDAS 1-degree meteorology, one simulation per month (12 in 

total, per region) was run for the year 2018 to account for annual wind variabilities and events 

where eruption season is unknown.  Simulations were run assuming a 24-hour ash injection period, 

and plume altitude of 18 km (tropopause). This represents a ‘minimum’ injection height for all 

eruptions and was chosen to avoid overestimating outputs for smaller eruptions (<M6.0). We 

acknowledge that dispersion of volcanic ash is a highly stochastic process and that individual 

eruptions exhibit a unique combination of parameters (including variable plume heights), however 

use of a single source term here allows for inter-comparative simplicity regarding ash dispersal 

directions.  

5.3. Results & Discussion  

Qualitative analysis of PCA outputs for the NIED08-05 trace element data suggest that, although 

volcanic signals are potentially present, there are significant uncertainties. As a result, robust links 

are difficult to define. This section outlines the primary findings of the analysis, potential 

correlations, and the main challenges facing use of temperate speleothems as archives of explosive 

volcanism. 

5.3.1. Initial PCA Results   

Principal Component Analysis revealed that the greatest (16%) trace element variability in NIED08-

05 is represented by PC1. Within the PC1 time-series, the background variability is high when 

compared with short-lived spikes, making it only possible to hand-select with confidence the largest 

spikes in the series. By contrast, PC2 represents 11% of total dataset variation, but the short-lived, 

high-amplitude signal spikes are visually clear compared with low background variability in the series 

(Figure 14). Given that the deposition of volcanic material is impulsive on the timescale of this time-
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series, we posit that PC2 potentially reflects the signals associated with short-lived events such as 

storms and volcanism, rather than sustained variability in climate and stochastic low-frequency 

processes in the cave and karst system.  This is supported by the observation that PC2 incorporates 

the REEs (Y, Nd, La), which are atypically included in calcite during standard background speleothem 

growth. Prior studies of REE enrichment in speleothems have focused on terrestrial groundwater 

input tracing (Noack et al. 2014) and characterisation of prolonged climate events (Drysdale et al. 

2019; Zhou et al. 2008b) such as the Bølling-Allerød and Younger Dryas (Drugat et al. 2019), as REEs 

are commonly found in soils (Ramos et al. 2016). Increased weathering of surficial sediments, 

combined with vigorous hydrological regimes associated with increased humidity appear to expedite 

REE mobilization in particulate phase (Zhou et al. 2012, 2008a), entering the cave through leaching 

of groundwater from surface to karst (Fernandez-Cortes et al. 2011; Richter et al. 2004). REEs are 

also present in volcanic products (Rogers, 2015), and eruptions result in their ejection and distal 

dispersal. Therefore, observed PC2 spikes and REE enrichments could be a product of volcanic 

material incorporation into NIED08-05, through processes of (1) tephra particle dissolution into 

groundwater supplied to the speleothem growth surface, and/or (2) aeolian transport of ash directly 

into the cave and to the stalagmite.  

PCA results also show weak correlations between Mg and Sr (-0.406), and Mg and Ba (-0.335). 

Lechleitner et al. (2016) find similarly weak correlations, with a low-amplitude Mg/Ca vs. δ13C signal 

suggesting slow degassing of CO2 from dripwater and subsequently low amounts of prior calcite 

precipitation (PCP) in NIED08-05. PCP involves prior scavenging of calcite from dripwater prior to 

deposition, and simultaneous elevation of Mg/Ca, Sr/Ca, and Ba/Ca due to the preferential exclusion 

 

Figure 14: A comparison of PC1 (black, upper panel) and PC2 (red, lower panel) outputs for NIED08-05 since 3ka BP. 
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of Mg/Sr, and Ba from the calcite lattice (Fairchild et al. 2000). PCP is enhanced when descending 

waters can degas more thoroughly, and this is often achieved when there is less recharge (Jamieson 

et al. 2016., Fairchild & Treble, 2009., Karmann et al. 2007). Low PCP influence on the NIED08-05 

geochemistry is likely to reflect the combination of a relatively direct (fracture-fed) and short (< 10 

m) water flow path consistent with the findings of Sherwin & Baldini (2011), and a drip regime that is 

both responsive and continuous (Figure 12). 

Table 2: Table of descriptive statistics for 7574 measurements of 20 trace elements taken from NIED08-05, and Principal 

Component 2 coefficients. Elements with positive coefficients are highlighted in grey.  

Element PC2 Max. (ppm) Min. (ppm) Median (ppm) Standard Deviation (ppm) Mean (ppm) %RSD 

Magnesium (Mg) 0.00 2355 293.93 776.1118 216.40 809.08 26.74 

Strontium (Sr) 0.00 98.46 8.29 16.47 3.26 16.79 19.40 

Cerium (Ce) 0.032 20.87 0.00 0.02 0.44 0.06 781.54 

Aluminium (Al) 0.00 3689.79 0.00 14.08 109.12 31.55 345.78 

Phosphorus (P) 0.045 1368.55 0.00 9.04 24.73 11.99 206.27 

Vanadium (V) 0.00 32.70 0.00 0.04 0.63 0.12 501.95 

Manganese (Mn) 0.00 121.20 0.00 0.72 3.09 1.20 257.18 

Iron (Fe) 0.00 42025.89 89.51 158.03 526.81 178.28 295.47 

Cobalt (Co) 0.00 11.70 0.00 0.10 0.24 0.12 205.11 

Copper (Cu) 0.00 4316.57 0.14 3.31 74.76 7.26 1029.27 

Zinc (Zn) 0.00 420.21 1.41 7.57 9.92 9.31 106.60 

Rubidium (Rb) 0.00 14.66 0.00 0.03 0.29 0.05 546.07 

Yttrium (Y) 0.47 11.29 0.00 0.02 0.98 0.29 339.58 

Iodine (I) 0.00 70680.09 0.00 4047.31 2555.66 4050.24 63.09 

Barium (Ba) 0.00 73.11 1.14 3.92 1.91 4.16 45.91 

Lanthanum (La) 0.42 6.74 0.00 0.02 0.20 0.06 336.52 

Neodymium (Nd) 0.46 3.43 0.00 0.002 0.21 0.07 285.63 

Lead (Pb) 0.00 336.18 0.014 0.55 6.76 1.17 575.51 

Thorium (Th) 0.10 5.23 0.00 0.00 0.10 0.01 1447.39 

Uranium (U) 0.045 6.15 0.00 0.01 0.08 0.01 727.62 

        

5.3.2. Volcanic eruptions 

From 458 recorded Holocene explosive eruptions between 0 and 3 ka BP, 26 satisfied the inclusion 

requirements of this study (Table 3). Eruptions of Askja (1875 CE, Iceland) and Churchill (1.103 ± 

0.001 ka BP, Alaska) both satisfied all criteria and represent the two key eruptions with confirmed 

identification in Polish sediments (Kinder et al. 2020; Watson et al. 2017). Eruptions from Vesuvius, 
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Italy adhered most frequently to the selection criteria, as recurrent Holocene activity (Santacroce et 

al. 2008) and significant socio-cultural importance (Chester et al. 2018) has promoted extensive 

study. Eruptions from Hekla and Katla volcanoes, Iceland, also feature multiple times - both  

 demonstrating high eruptive frequency (Thordarson & Höskuldsson, 2008).  

Table 3: Table displaying global eruptions ≥M6.0 and European eruptions ≥M4.5 (highlighted in grey) utilised in this study. Dates and 

uncertainty are sourced from LaMEVE and appropriate literature: eruptions in bold have been dated utilising historical records. 

Icelandic Volcanic Zones are abbreviated: EVZ: Eastern Volcanic Zone, NVZ: Northern Volcanic Zone, ÖVB: Öræfi Volcanic Belt. 

VOLCANO COUNTRY ERUPTION AGE  

(ka BP) 

ERUPTION 

MAGNITUDE 

PLUME 

HEIGHT  

(km) 

DOMINANT BULK 

MAGMA 

COMPOSITION 

REFERENCE(S) 

Agua de Pau Azores  0.387 5.0 <19 Trachyte 1 

Askja* Iceland (NVZ) 0.075 4.9 <26 Rhyolite 2 

Changbaishan** North 

Korea/China 

1.008  7.4 > 25 Rhyolite-Trachyte 3, 4 

Churchill Alaska 1.837 ± 0.08 6.2 - Dacite 5 

Alaska 1.103 ± 0.001 6.1 <45 Rhyolite 6 

Furnas Azores 0.32 5.0 <13 Trachyte 7 

Grímsvötn 

(Lakagígar) 

Iceland (EVZ) 0.167 5.0 <12 - 8 

Huaynaputina Peru 0.350 6.1 <40 Dacite 9 

Ilopango El Salvador  1.5 ± 0.03 6.7 >29 Rhyolite 10 

Katla Iceland (EVZ) 0.229 5.0 - Rhyolite 7 

 Iceland (EVZ) 0.325 5.0 - Rhyolite 7 

Krakatau Indonesia 0.067 6.5 <50 Dacite 7 

Ksudach Russia 1.71 ± 0.1 6.2 <30 Andesite 11 

Novarupta Alaska 0.038 6.5 < 26 Dacite-Rhyolite 12 

Okataina New Zealand 0.640 ± 0.012 6.3 <28 Rhyolite 13 

Okmok Alaska 2.026 ± 0.079 6.7 - Andesite-Dacite 14 

Opala Russia 1.340 ± 0.05 6.0 <20 Rhyolite 15 

Öræfajökull Iceland (ÖVB) 0.588 5.7 <30 Rhyolite 16,17 

Pinatubo The Philippines -0.041 6.1 44.8 Dacite 1 

Rabaul New Britain 1.267 ± 0.003 6.0 - Dacite 18 

Rinjani** Indonesia 0.693 6.4 <43 - 19, 20  

Santa María Guatemala 0.048 6.3 23.7 Dacite 7 

Tambora Indonesia 0.138 7.0 <43 Dacite 21 

 

Vesuvius 

Italy 1.871 5.8 <32 Phonotephrite 21 

Italy 0.319 5.1 <28 Phonotephrite 22 

Italy 1.478 5.1 <25 Phonotephrite 23 
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Comparison of well-dated volcanic eruptions and the NIED08-05 PC2/REE time series suggests that 

volcanic-derived material may have been incorporated into the sequence, but if so, the signal is not 

strong (Figure 15). In certain cases, enhanced REE concentrations are coincident with periods of 

recurrent volcanism. For example, between 0 and 0.2ka BP, increased REE enrichment in the 

stalagmite appears coincident with seven explosive eruptions, and between 0.5 and 0.7 ka BP, three 

transient enrichments occurring in conjunction with three volcanic eruptions. Individual eruptions 

also show concurrence with transient REE spikes, such as Öræfajökull (1362CE), Vesuvius (472CE), 

Ksudach (1.71 ± 0.1 ka BP), Churchill (1.837 ± 0.08 ka BP), and Okmok (2.026 ± 0.079 ka BP). 

However, there are multiple REE enrichments which do not coincide with an eruption, and vice 

versa. 

.  
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Figure 15: A comparison of REE and PC2 scores for NIED08-05, and Global >M6.0 and European M4.5 eruptions (LaMEVE database). 

Green highlight indicates eruption events with confirmed tephra dispersal in Poland. Orange highlight indicates other potential 

Northern Hemisphere eruption signals (discussed below). 

In total, 68% of eruptions coinciding with REE enrichments in NIED08-05 can be qualitatively linked 

to Northern Hemispheric volcanoes (Figure 15), and results of HYSPLIT modelling suggests ash from 

Campania, Southern Iceland, and the Azores could have been deposited over Niedźwiedzia Cave, 

following an explosive eruption, at multiple points in the year under favourable atmospheric 

conditions (Figure 16). Ash clouds from SE Alaska reach their 72-hour maximum extent only so far as 

France, and this trajectory appears limited to autumn and winter. However, outputs do not account 

for fine-ash and aerosol transmission on >72-hour timescales, a phenomenon observed in the 

aftermath of Pinatubo in 1991 (Holasek et al. 1996). So, it is possible that ash from trans-Atlantic 

eruptions could be deposited in Central Europe >72 hours after ejection. Indeed, confirmed 

identification of Alaskan ash in Poland (Watson et al. 2017), and potentially Ireland (Pyne O’Donnell 

et al. 2012; Plunkett, 1999) suggest deposition in traceable quantities could occur much further East, 

>3 days following eruption.  
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Figure 16: Maps showing ash dispersion for 72 hours post-eruption, for volcanoes with potential links to REE enrichments 

in NIED08-05. Niedźwiedzia Cave is marked as a white circle. Hekla, Katla and Öræfajökull are grouped under Iceland; 

Campi Flegrei and Vesuvius under Campanian Region; Agua de Pau and Furnas under Azores; Novarupta and Churchill 

under NE Alaska. 

(calculated using the HYSPLIT Dispersion Model for volcanic ash (Stein et al. 2015; Draxler & Rolph, 2013) with GDAS 1-degree 2018 

meteorology) 

5.3.2.1 Potential eruption signals in NIED08-05 

Geographical proximity, and frequent occurrence of explosive (events whereby >95% of magma is 

tephra - Thordarson & Larsen, 2007), has caused recurrent deposition of Icelandic ash over Europe 

since 3 ka BP (Swindles et al. 2017). In Poland, tephra from Askja volcano is most common, and has 

been detected at two of three tephrochronological sites (Watson et al. 2017., Wulf et al. 2016) as 

two distinct isochrons: Askja1875 (1875 CE - Carey et al. 2010) and Askja-S (10.83 ± 0.057 ka BP -  

Lilja et al. 2013). The 1875 CE event ejected of 0.3 km3 (DRE) rhyolitic ash (Carey et al. 2009; Sparks 

et al. 1981) along an extended south-eastern dispersal axis (Watson et al. 2016; Davies et al. 2007), 

resulting in widespread transmission of ash into mainland Europe and Fennoscandia (Kalliokoski et 

al. 2020). Concurrence between the 1875 CE event, and a REE enrichment in NIED08-05, may reflect 

ash deposition over Niedźwiedzia Cave and preservation in the stalagmite. If this eruption impacted 

Niedźwiedzia Cave, there is potential that larger Icelandic events could have also deposited ash over 

this site. The Lakagígar (Lakí: 1783 CE) eruption occurs at the onset of REE enrichment at ~0.2ka BP – 

an event characterised by prolonged and distal dispersal of volcanogenic aerosol and tephra 

(Thordarson & Self, 1993), detected in mainland Europe (Thordarson & Larsen 2007; Thordarson & 

Self, 2003), and Svalbard (Kekonen et al. 2005). Tephra attributed to Öræfajökull (1392 CE) appears 

comparably widespread, with extended, multi-directional dispersal axes (Sharma et al. 2008) which 

deposited fine-ash over Greenland (Coulter et al. 2012; Palais et al. 1991), Ireland (Hall & Pilcher, 

2002) and Norway (Pilcher et al. 2005).   

The 79CE Vesuvius (M5.8: 79 CE) eruption represents one of three Mediterranean events concurrent 

with an REE spike (also Pollena and 1631 CE - Zanchetta et al. 2011). Geochemically distinct tephra 

(Tomlinson et al. 2015) and aerosols (Barbante et al. 2013) produced by the Plinian eruption plume 

were widely dispersed over Europe (Rolandi, 1998). However, like Öræfajökull and Lakí, tephra 

deposits produced by this eruption remain as yet unidentified in Poland, despite meteorological 

evidence and HYSPLIT modelling (Figure 16) suggesting south-easterly winds may facilitate 

deposition of Vesuvian tephra over Central/Eastern Europe (Rolandi et al. 2008), and similarly that 

dominant westerly winds increase the probability of Icelandic ash deposition in this region. 

Therefore, the absence of these tephras could be an artefact of spatial gaps in the European 
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tephrochronological record (Timms et al. 2019; Plunkett & Pilcher, 2018). Nonetheless, the small 

magnitude of concurrent REE enrichments, and lack of recurring links between these and large 

eruptions in Campania, the Azores, Iceland, place greater value on tephrochronological evidence. At 

present, this evidence is unavailable in Poland.  

5.3.2.2. Missing/ambiguous eruptions 

The link between NIED08-05 REE and PC2 spikes, and the well-dated eruption record, is largely 

inconsistent, with many large geochemical excursions not concurrent with an eruption event. This 

could be due to attenuation of eruption signals by environmental factors, uncertainties in the 

stalagmite chronology (Lechleitner et al. 2016), and/or spatial and temporal variations in 

atmospheric and eruptive dynamics, affecting how ash is transported, deposited, and preserved in 

the Niedźwiedzia Cave system. 

Tephra geochemistry could explain the apparent distribution of Icelandic tephra in Europe, and 

absence of certain eruption signatures in NIED08-05.  The composition of tephra varies according to 

source volcano and eruptive episode (Pearce et al. 2020) and can directly affect atmospheric 

suspension time (Schindlbeck et al. 2018; Wolff-Boernish et al. 2004), alongside dispersal distance. 

Within the NIED08-05 study interval, two explosive eruptions of Katla (1625 CE and 1721 CE) are 

noted, however neither correspond to a stalagmite REE enrichment. Both associated tephra units 

remain unidentified outside Iceland (Óladóttir et al. 2008), which is surprising as Katla is located <30 

km from Hekla, with well-documented tephra dispersion across Europe (Kalliokoski et al. 2020; 

Janebo et al. 2016). The scarcity of Katla tephra layers in NIED08-05, and furthermore the European 

tephrochronological record, may be due to its mafic composition (Schmith et al. 2018; Thordarson & 

Larsen, 2007). Mafic magmas generally result in less powerful eruptions that inject tephra to lower 

altitudes (Lowe et al. 2017) and may deposit more rapidly due to greater particle density (Stevenson 

et al. 2015; Thorarinsdottír & Arnalds, 2012), which can cause low surface tephra concentrations – 

particularly at sites distal from the erupting volcano. Moreover, studies of peat and lacustrine 

sediments indicate that mafic particles are subject to post-depositional geochemical alteration 

(Blockley et al. 2005); resulting in progressive degradation of particles with time, and consequently a 

scarcity of mafic layers within the European tephrochronological record (Cooper et al. 2019). The 

chemical stability of tephra in the karstic environment remains poorly studied, so the extent that 

tephra chemistry could have influenced and/or negated their preservation in NIED08-05 remains 

unclear.  

For ultra-distal eruptions, atmospheric circulation also exerts a significant control on ash 

distribution. Pyroclasts and gases within an eruption plume separate as a function of height in the 
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atmosphere (Prata et al. 2017), and advection allows incorporation of tephra particles into 

stratospheric flow once equal density is reached (Carey & Bursik, 2015). From this point, plume 

transport and ash distribution are strongly influenced by dominant modes of circulation (Schumann 

et al. 2011., Holton et al. 1995), producing unique dispersion trajectories for individual eruptions. 

Such ultra-distal dispersal could be possible if eruption plumes exhibit linear fallout axes associated 

with strong, unidirectional winds, such as Atlantic westerlies in the Northern Hemisphere (NH). 

Concentrated dispersal axes from high-latitude eruptions may be further facilitated by jet streams 

(Bursik et al. 2009), and this mechanism has previously been attributed to deposition of Alaskan 

tephra in Central Europe (Jensen et al. 2014), including Poland (Watson et al. 2017). However, this is 

not always consistent, and seasonal oscillations in jet stream strength may limit tephra dispersal. For 

example, contemporary tephrochronology has identified that both Ksudach (1.71 ± 0.1 ka BP: van 

der Bilt et al. 2017; Mackay et al. 2016; Braitseva et al. 1996) and Okmok (2.026 ± 0.079 ka BP: 

Ponomareva et al. 2015a; Burgisser, 2005) exhibited multi-directional lobes of tephra dispersal, and 

ash from Novarupta (1912CE) appears limited to North America (Payne & Symeonakis, 2012) – 

dispersal trajectories seemingly independent from the polar jet. Recognizing this intricacy, hence, 

reduces confidence in attribution of NIED08-05 REE enrichments to concurrent eruptions in Alaska 

and Kamchatka. 

The absence of a REE enrichment in concurrence with the Alaskan Mount Churchill (1.103 ± 0.001 ka 

BP) eruption is surprising, but also suggests karstic processes could significantly have affected tephra 

deposition and preservation. The AD860B isochron associated with this eruption, and the White 

River Ash eastern (WRAe) tephra unit (Jensen et al. 2014; Lerbekmo, 2008),  is a key chronological 

marker in Europe - one of four key layers in the contemporary Polish tephrochronological record 

(alongside Askja-S, Askja1875 and Hässeldalen - Watson et al. 2017; Wulf et al. 2016). Tephra 

deposition over Poland from an eruption in Alaska would be sparse (Rose & Durant, 2009). Although 

the relative impact of karst hydrology on colloidal tephra transport and deposition remain to be 

constrained, the depth of stalagmite NIED08-05 below the surface combined with the dense forest 

and leaf litter above the cave may prevent the effective preservation of sparse ash deposits. Indeed, 

conditions at this temperate cave site are markedly different to those at low-latitude and/or more 

arid cave sites, where previous studies present encouraging evidence that speleothems can retain 

geochemical evidence of volcanism (Jamieson et al., 2015; Badertscher et al., 2014). Previous work 

suggests only exceptionally large eruptions produce sufficient ash to result in meaningful 

preservation >7000 km away (Lane et al. 2017), and this also reduces the likelihood for Southern 

Hemispheric eruption signals to manifest in the NIED08-05 geochemical record. Although the plumes 

of Mount Tambora (1815 CE), Krakatau (1883 CE) and Mount Samalas (1257 CE) exceeded 43km 
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altitude and reflect multi-directional axes of dispersal (Bouvet de Maisonneuve & Bergal-Kuvikas, 

2020), the distance between Indonesia and Niedźwiedzia Cave is >10,000 km. Equally, Okataina 

(0.640 ± 0.012 ka BP), Taupo (3.410 ± 0.04 ka BP), Opala (1.340 ± 0.05 ka BP), Rabaul (1.267 ± 0.003 

ka BP), Huayaputina (0.350 ka BP), Santa María (0.048 ka BP) and Ilopango (1.5 ± 0.03 ka BP) tephra 

remains unidentified in Europe, despite eruption magnitudes exceeding 6.0.  

Evidently, only specific eruptive and atmospheric conditions facilitate widespread ash dispersal. 

Plume height (Prata et al. 2017; Bonadonna & Costa, 2013), mass eruption rate, aggregation (Brown 

et al. 2012), and atmospheric turbulence can all hinder effective preservation of tephra (Cashman & 

Rust, 2020), and thus attribution of geochemical excursions in stalagmite records to ephemeral 

eruption events. Contemporary research continues to evaluate the capacity for tephra fallout 

associated with Mediterranean (Jones et al. 2020; Vakhrameeva et al. 2019) and North American 

(Plunkett & Pilcher, 2018) volcanoes in Europe, however existing tephrochronological evidence is not 

yet strong enough to confidently link REE excursions in Niedźwiedzia Cave to large, distal Northern 

Hemispheric eruptions solely based on projections of ash dispersion. 

5.3.3. Further Uncertainties  

5.3.3.1. Chronological Error 

Uncertainties within the NIED08-05 chronology may further confound detection of transient 

eruption events. The 14C chronology used to date trace element enrichments in this study was 

developed assuming a constant rate of calcite accretion, however this does not account for growth 

rate variabilities in response to environmental change (Fairchild & Treble, 2009), which may manifest 

in the NIED08-05 record as distinct strata and/or Mg/Ca excursions (Lechleitner et al. 2016). For a 

temperate cave such as Niedźwiedzia, changes in stalagmite growth rate may occur due to 

oscillations in temperature and precipitation, linked to the dynamic atmospheric interactions 

controlling Central European climate. Resulting fluctuations in stalagmite growth could decrease the 

resolution of the age-depth model, and lead to over/under estimation of REE enrichment depth. This 

can be particularly problematic when attempting to detect geologically instantaneous events, such 

as volcanic eruptions, which can be dated to sub-decadal accuracy. Furthermore, uncertainties 

associated with dating of the NIED08-05 stalagmite increase with time, which in conjunction with 

reduced accuracy in dating of older eruptions, hinders accurate correlations between volcanism and 

trace element variability.  

5.3.3.2. Environmental Factors  
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Local climate (Wassenburg et al. 2020; Day & Henderson, 2013; Huang & Fairchild, 2001) and 

seasonality (Stoll et al. 2012) can significantly affect trace element incorporation into calcite, making 

speleothem geochemical composition a key palaeoclimate indicator. The temperate climate at 

Niedźwiedzia cave and dense forest cover favour nutrient rich soils, however these likely affect 

preservation of tephra deposited in the region.  Research conducted in provinces with low 

vegetation to ash deposit ratios, such as Iceland (Bonatotzky et al. 2019; Dugmore et al. 2018), the 

Patagonian steppe (Panebianco et al. 2017) and the Arctic (Cutler et al. 2016b) suggest tephra 

remobilization is directly proportional to wind strength, whereas dense vegetation matrices appear 

to intercept suspension of volcanic deposits (Dugmore et al. 2020; Cutler et al. 2018). Although 

greater vegetation abundance could be beneficial for incorporation of tephra into NIED08-05 by 

reducing solifluction, cryoturbation (Cutler et al. 2016a), and biological disturbances, it could also be 

detrimental. Remobilization of tephra by local winds is important for aeolian tephra transfer into the 

karst system, and this pathway is arguably the most direct and thus chronologically accurate 

(Badertscher et al. 2014). Dense vegetation in the Kleśnica Valley, typical of the temperate biome, 

could therefore hinder effective aeolian transfer of tephra into Niedźwiedzia Cave by preventing 

aeolian remobilization of deposits. However, airborne deposit concentration (Green et al. 2016) 

could also influence volcanic trace element incorporation into NIED08-05. Ash particle 

concentrations decrease as a function of distance from the source volcano (Bonadonna & Houghton, 

2005), and wind turbulence, precipitation, and groundcover (Liu et al. 2014) can all increase the 

stochasticity of deposition. Lower particle concentrations may thus be more susceptible to loss 

through wind turbulence, resulting from surface reworking due to surface bioturbation, or 

mountainous terrain.  Furthermore, the steep topography (> 30°) surrounding Niedźwiedzia cave is 

covered by rock debris (Kasprzak & Sobczyk, 2017), masking clear evidence for the size and locations 

of alternative cave entrances. This uncertainty, consequently, hinders our ability to quantify the 

influence of dry tephra deposition on the NIED08-05 geochemistry.  

For tephra deposited at the surface, high rainfall would reduce the residence time of tephra in 

terrestrial soils (Jones, 2015), increasing the speed of surface-karst transfer. However, this may also 

cause greater particle spread, increased colloidal trace element flux through the cave hydrological 

network (Zhou et al. 2012), and reduced clarity of volcanic trace element deposits. Persistent 

infiltration of surface water into Niedźwiedzia Cave (albeit reduced by evapotranspiration in 

summer) and dense leaf litter appears to preclude unambiguous detection of transient volcanic 

episodes in Niedźwiedzia stalagmites. This is despite the presence of a pronounced Spring flush at 

Niedźwiedzia Cave, which is analogous to the flushing that occurs at low-latitude sites with the onset 

of the wet season. At these caves, tephra that has accumulated both at the surface and within the 
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cave during the dry season is flushed into the karst aquifer solely with the arrival of wet season 

rains. Therefore, successful tracing of volcanic-derived deposits in stalagmite records appear limited 

to low-latitude regions, characterised by pronounced seasonal variations in effective rainfall 

(Hartland et al. 2012) and thin overlying soil and vegetation cover. 

Karst geology could further reduce the clarity of volcanic signals in NIED08-05, due to interactions 

between the bedrock and groundwater feeding the drip aquifer. Periods whereby water is in contact 

with bedrock for extended periods heightens the potential for congruent and incongruent 

dissolution (Rutlidge et al. 2014), resulting in mixing between seepage and dripwater (Stoll et al. 

2012). The extent of hydrological mixing varies in relation to cave setting (Wong et al. 2011), and 

aquifer residence time (McDonald & Drysdale, 2007). Studies investigating the impact of these 

interactions on colloidal tephra transport appear limited to investigations of volcanic whole-rock 

weathering (Griffiths et al. 2010), intra-karst transport of Mg, Sr and Ba (Lead & Wilkinson, 2006) or 

sulphur signals (Frisia et al. 2008) rather than tephra deposits. Discriminating between REE signals 

originating from bedrock weathering and/or clastic components of the soil (Richter et al. 2004), and 

those originating from tephra deposition requires quantification of trace element partitioning during 

elevated and reduced water flux events (Fairchild et al. 2006). For Niedźwiedzia Cave this 

information is currently unavailable, so the extent to which intra-karstic processes affect the 

dissolution and transport of bedrock and soil trace elements into the NIED08-05 stalagmite is 

unclear.  

5.3.3.3. Incomplete Eruption and Tephra Record  

We have thus far discussed potential links between significant volcanic eruptions with reliable dates 

and trace element enrichments in the NIED08-05 chronology. However, there are notable absences 

of other exceptionally large Holocene eruption signals occurring since 3ka BP, but for whom low 

dating quality (Crosweller et al. 2012) caused their omission from the primary eruption list. Of 3130 

volcanoes within the LaMEVE database, 85% are not associated with a known eruption (Brown et al. 

2014) - reflecting the extended return intervals associated with explosive volcanism, and a global 

recording shortfall (Kiyosugi et al. 2015; Deligne et al. 2010) most prominent in regions such as 

Australasia, Indonesia, Alaska, South America and the Kuril Islands (Brown et al. 2014). The absence 

of high-quality dates for many large eruptions in these regions is arguably due to spatial dissimilarity 

in provision of evidence (Kiyosugi et al. 2015), limiting the application of high-resolution dating 

techniques. Furthermore, these regions reached the 100% global volcanic recording threshold 

considerably later (Newhall & Solidum, 2018; Rougier et al. 2016), limiting the number of studies 

conducted. 
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 Tephra deposit preservation also influences eruption identification. For example, ejecta from 

eruptions such as Dakataua (0.998 ± 0.063 ka BP) and Ambrym (1.76 ± 0.135 ka BP) are scarcely 

documented, yet it is highly likely large quantities of fine ash were produced due to their exceptional 

magnitude. If primary tephra fallout occurred over ocean, detection becomes conditional on 

extraction and analysis of marine sediment cores – within which tephra horizons can become 

confounded by local remobilization, sea floor turbidity and bioturbation (Scudder et al. 2016; 

Schindlbeck et al. 2013). This could lead to misinterpretation and incorrect reconstruction of volcanic 

successions (Cassidy et al. 2014), causing a knock-on effect for identifying past eruptions in distal 

sequences. Terrestrial archives are also subject to similar uncertainty due to geographical variability 

in preservation of deposits. If primary fallout occurs proximal to the erupting volcano, erosion, 

degradation, and reworking can all reduce the clear stratification of discrete tephra layers (Kataoka 

& Nagahashi, 2019), and consequently cause difficulty establishing robust Holocene chronologies for 

individual volcanoes. This inevitably affects volcanic tracing in stalagmite chronologies. Links 

between trace element enrichment and volcanism are only robust if supported by evidence for a 

confirmed eruption, yet many prehistoric eruptions remain unknown (Watt et al. 2013).  

Table 4: Eruptions exceeding M6.0 omitted from this study, due to low dating quality (grey shading) or a lack of ash fall 

evidence (white shading), since 3ka BP. 

 

The European tephrochronological record is also punctuated by layers unassigned to a source 

eruption. Key unidentified isochrons include GB4-182a, MOR-T4, Borge tephras 1-15 (Plunkett & 

Pilcher, 2018), and Glen Garry (GG) – the latter recently identified in north-east (Kinder et al. 2020) 

and western (Housley et al. 2014) Poland. GG shows geochemical similarity to deposits originating 

from Askja (Gudmundsdóttir et al. 2016), however intra-site geochemical variation (Barber et al. 

2008), stochastic European distribution (Lawson et al. 2012), and a poorly constrained eruption date 

VOLCANO REGION DATE (KA BP) MAGNITUDE 

DAKATAUA Australasia 0.998 ± 0.063  7.4 

AMBRYM Australasia 1.76 ± 0.135 6.8 

QUILOTOA South America 0.951 ± 0.322 6.4 

APOYEQUE Central America 2.0 ± 0.1 6.3 

LONG ISLAND Australasia 0.304 ± 0.012  6.3 

OSHIMA-OSHIMA Japan 0.709 ± 0.054 6.0 

RAOUL ISLAND New Zealand to Fiji 2.143 ± 0.328 6.0 

FURNAS Atlantic Ocean 1.3 ± 0.5 6.0 

BILLY MITCHELL Australasia 0.409 ± 0.134 6.0 
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confounds GG source confirmation. Further difficulties with assigning sources to unique tephra 

layers can result from missing eruptions, unique shard geochemistry, uncertainty over whether the 

ash represents a primary or secondary deposit, and/or spatial gaps in tephrochronological research. 

In this study, we define volcanic eruptions as those recorded by LaMEVE, however the presence of 

‘unknown’ tephra layers suggests other, unrecorded discrete ash fall events may have occurred 

between 0-3ka BP. Thus, the eruption record used in this study represents a minimum ash fall event 

estimate, and the NIED08-05 trace element enrichments not corresponding to a known eruption 

could reflect these knowledge gaps.  

  



Page | 77  
 

6.0. DIM CAVE – Results Chapter II 

6.1. Site Description 

6.1.1. Regional Climate  

The climate of Southern Turkey is characterised by persistently high temperatures which, on 

average, only drop below 10oC in January (Beck et al. 2018). However, the complex orography of the 

Taurus Mountains and complex meteorological interactions over Turkey (Unal et al. 2012; Deniz et 

al. 2010; Turkeş et al. 2008) generate high spatiotemporal precipitation variability (Tongal, 2019., 

Sensoy et al., 2008). Based on a 20-year Industrial Era dataset from the Global Historical Climatology 

Network (GHCN), precipitation ranges from 274.7 mm in December to 1.3 mm in July (Figure 18B), 

as depressions from the Atlantic travel east over Western Mediterranean basin and regenerate in 

prominent cyclogenesis centres around the southern Turkish coast (Turkeş et al. 2008). Climatic 

teleconnections such as the North Atlantic Oscillation (NAO: Dunzeli et al. 2018), the Arctic 

Oscillation (AO) Index and North Sea-Caspian Pattern (NSCP) (Türkeş & Erlat, 2018, 2005; Baltacı et 

al. 2017) all dictate intensities and trajectories of annual storm tracks, and thus the strength and 

quantity of winter precipitation.  

6.1.2. Cave Monitoring 

This study utilises a sample from stalagmite DIM-3, obtained from Dim (Gavurini) Cave (36°32’N, 

32°06’E), approximately 6 km west of the Antalya coast, Turkey. Dim Cave is simple in morphology 

(Figure 18C), with a single main, horizontal passage ~360 m long and 10-15 m wide, terminating at a 

small subterranean lake on a bed of impermeable schist (Ünal-İmer et al. 2015). At 232m a.s.l. the 

cave is situated in the Southern Dim River Valley within the upper Alanya geological unit (Yumrudağ 

Nappe), which is constructed from Permian crystalline limestone (Bozkaya & Yalçın, 2004., Oktay & 

Ozgul, 1984). The cave was initially formed by phreatic speleogenesis, however tectonic uplift during 

the Plio-Pleistocene has rendered the hydrological system scarcely active, with the Dim River carved 

several hundred metres below the cave entrance. Aragonite speleothems grow in Dim Cave at 

present (Wickens et al. 2011; Gündalı et al. 1989), yet prior to 8 ka BP these speleothems show a 

primarily calcite composition (Rowe et al. 2020; Ünal-İmer et al. 2016, 2015). The solid rock epikarst 

is overlain by thin leptosol soils, characterised by poor nutrient density and water deficiency (Aksoy 

et al. 2010; Özden et al. 2001). Although ground vegetation cover is minimal (Rowe, 2020), a 
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coniferous Pinus brutia (Turkish Pine) woodland and shrub-dominated understory cover the valley 

(Kurt et al. 2015).  

The cave possesses a mean annual temperature of 18-19oC with 90% humidity (Baykara, 2014), 

which is near identical to a recorded annual mean temperature of 18.8oC (1988-2018) at Antalya 

GHCN station (36°70′N, 30°73′E, 57 m a.s.l., 130km WNW). Drip data from six sites was collected 

over several months in 2009-2010 (Wickens, 2011), and pool water samples analysed by Ünal-İmer 

et al. (2015). Although the cave hitherto lacks a high-resolution drip-series, isotope composition of 

water samples suggests Eastern Mediterranean winter precipitation as the dominant source of 

moisture. Drip data shows close similarity to the Mediterranean Meteoric Water Line (Rowe, 2020), 

alongside consanguinity between December-February δ18O and δD measurements for Dim Cave pool 

waters (-6.3, -6.2 and -29.0‰ VSMOW), and Antalya winter precipitation (-6.12 and -31.3‰ 

VSMOW) (Ünal-İmer et al. 2015). This water enters the karst via major fractures in the overlying 

limestone, feeding the drip aquifer by mechanisms of hydrological routing – a process common in 

crystalline, fractured limestone caves (Fairchild & Treble, 2009). Therefore, seepage flow is the 

primary mode of intra-karst moisture transfer (Rowe et al. 2020; Ünal-İmer et al. 2016, 2015; 

Baykara, 2014). 

. 

Figure 17: A -  Map of mean annual precipitation in the Antalya Basin, adapted from Tongal (2019) and Irvem & Ozbuldu (2019);  

B - Mean monthly temperature and precipitation in Antalya during the period 1980-2010 (data sourced from KNMI Climate 

Explorer: https://climexp.knmi.nl ) ; C - Plan-view diagram of Dim Cave, and the location at which stalagmite DIM-3 grew 

(adapted from Ünal-İmer et al. 2015) 

 

https://climexp.knmi.nl/selectstation.cgi?id=someone@somewhere
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6.1.3. Volcanic Signal Emplacement 

The location and morphology of Dim Cave means preservation of volcanic signals within the DIM-3 

sequence could occur by three mechanisms. The first is by pluvial entrainment of colloidal material, 

as thin soils and steep topography in the Dim River valley results in excess overland flow during 

heavy winter precipitation events associated with flash flooding (Koç & Thieken, 2018; Yilmaz, 2015) 

and soil erosion (Bryan, 2000). This may cause the mobilization and flushing (Zhou et al. 2012) of 

unconsolidated colloidal particles (including volcanic-derived material) into the drip aquifer during 

high flow events. The second is by cave ventilation. Dim Cave is shallow with a large entrance, so 

there is potential for deposition of atmospheric dust particulates originating from Central European 

(Újvári et al. 2010) and/or North African (Vaks et al. 2013; Prospero et al. 2002) dust storms (Ünal-

İmer et al. 2016). The vesicular morphology of rhyolitic volcanic ash renders it highly aerodynamic 

(Stevenson et al. 2015) and similarly susceptible to distal transport by wind – meaning ash may 

become incorporated into the DIM-3 growth axis by impaction (directly falling onto the tip – Dredge 

et al. 2013; Petroff et al. 2008).   

The third is by changes to karst hydrology and seepage rates. The Dim Cave aquifers are 

precipitation-fed and thus stalagmite records show responsivity to changes in external moisture 

variability (Rowe et al. 2020; Ünal-İmer et al. 2016), and modes of air flow in the East Mediterranean 

(Ünal-İmer et al. 2015) throughout the LGP. Evidence suggests the stratospheric conversion of 

erupted sulfur into sulphate aerosols (Robock, 2000) has the capacity to perturb atmospheric heat 

and moisture transfer; favouring cooler and drier conditions across broad geographical domains (e.g. 

Guillet et al. 2020; Jacobson et al. 2020; Pausata & Carmargo, 2019; Ridley et al. 2015; Stoffel et al. 

2015; Sigl et al. 2015; Haywood et al. 2013). Thus, existing evidence suggests both modes of 

hydrological variability affecting Dim Cave may become susceptible to volcanic-induced 

perturbation, and so DIM-3 may capture signatures of volcanic-induced changes to Eastern 

Mediterranean hydrology.  

6.2. Methods 

6.2.1. DIM-3 

Stalagmite DIM-3 was collected from Dim Cave in June 2012, approximately 125m from the modern 

cave entrance (Figure 17C). While predominantly calcite, the stalagmite also possesses clearly 

defined aragonite layers (Ünal-İmer et al. 2015).  Micromorphological analysis suggests its growth 
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predominantly reflects water availability in Dim Cave, with open/elongated columnar fabric 

indicating fast water flow and high seepage rates (Ünal-İmer et al. 2016).  

DIM-3 was micro-sampled along the growth axis along intervals of 2.5-36 mm (variable according to 

growth rate), and U-series dating performed on powder samples (50–100 mg) by Ünal-İmer et al. 

(2015) using Nu Plasma multi-collector ICP-MS (Zhou et al. 2011; full procedure detailed therein) at 

the University of Queensland (UQ). Generation of a linear chronology based on these discrete U-Th 

dated anchors reveals relatively consistent stalagmite growth between 89.7 ± 0.41 ka BP and 13 ± 

0.31 ka BP. Three distinct periods of slow accumulation are defined, exhibiting fluctuations between 

11.9 mm/kyr and 0.8 mm/kyr in response to external climate and aridity (Ünal-İmer et al. 2016). For 

this study, the COPRA (Breitenbach et al. 2012) chronology generated by SISAL (Comas-Bru et al. 

2020) for DIM-3 was utilised for this study (Figure 18A). This chronology was chosen due to the 

variable growth rate and presence of aragonite layers identified in DIM-3 (Ünal-İmer et al. 2015), for 

which COPRA could account for and thus provide greater chronological precision; particularly 

important when considering transient environmental events with decadal-scale precision, as this 

study does. Using linear interpolation, COPRA outputs were used to construct a model best 

applicable to DIM-3-A. 

The trace element profile utilised in this study was obtained from the lower 90 mm of the DIM-3 

sample (320-230mm from the tip: Figure 18B), corresponding to a 20 kyr interval between 70 to 90 

ka BP (herein referred to as DIM-3-A). This section was chosen due to the YTT event occurrence at 

~74 ka BP, as tephrochronological evidence suggests the eruption plume was dispersed to the west 

of Sumatra toward Africa (Lane et al. 2013) and the Middle East (Schulz et al. 2002., Bühring & 

Sarnthein, 2000). Therefore, analysing the DIM-3 geochemical profile presents a good test of this 

archive’s sensitivity to volcanism, and a unique opportunity for study of the eruption’s impact in the 

Eastern Mediterranean. The slab was analysed at Goethe Universität, Germany, utilising a prototype 

RESO-lution M-50 excimer laser-ablation system (193nm), in conjunction with a two-volume laser-

ablation cell. This cell was coupled to an Agilent 7500ce/cs quadrupole ICP-MS, and measurement of 

the speleothem profile was measured using a 140 x 10μm laser slit, a 10μm/s-1 scan speed and a 15 

Hz repetition rate (90 mJ laser spot) (Müller et al. 2009). Calcium-43 was measured as an internal 

standard and the Iolite software package was used for data reduction, using NIST 612, 619 and 

MACS3 quantification standards (Paton et al. 2011). 
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Figure 18A: A comparison of chronology outputs for DIM-3. Red circles mark U-Th dated anchors (Ünal-İmer et al. 2015; 

details therein). Red shading marks 95% confidence intervals for the LINEAR model age-depth trend (Ünal-İmer et al. 

2015); orange shading marks 95% confidence intervals for the COPRA model age-depth trend (Comas-Bru et al. 2020); B: 

Diagram showing the petrographic location of the DIM-3-A slab analysed in this study (320-230mm from the sample 

base), equivalent to calculated ages from 70 to 90 ka BP.  

  

6.2.2. PCA 

Once trace element data had been checked for anomalies, PCA was conducted to identify any 

geochemical correlations and/or enrichments occurring across the 70-90 ka BP interval. Z-scores 

were calculated prior to analysis conduction to lessen analysis sensitivity to individual variables, and 

the MATLAB pca function (MathWorks, 2019) was used to extract coefficients, t-squared values, 

percentage-variance and principal component scores from the dataset. Scores were then plotted as 
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a time-series, using the COPRA chronology previously discussed (based on U-series chronology dates 

from Ünal-İmer et al. 2015). 

6.2.3. Volcanic Eruptions  

Eruption data (between 70 and 90 ka BP) was downloaded from the Large Magnitude Explosive 

Volcanic Eruptions (LaMEVE: Crosweller et al. 2012) database. To assess the presence of volcanic 

signals, exclusion criteria were applied to eliminate unsuitable eruptions and allow objective 

comparison. Dim Cave is not within 200 km of a Quaternary-active volcanic system. The closest 

volcano is Hasan Daği ~240 km to the northeast (Aydar & Gourgaud, 1998), which has exhibited 

episodic explosive activity since the Miocene (6.316 ± 0.20 Ma (40Ar/39Ar dating – Deniel et al. 1998). 

Other Mediterranean/Middle Eastern volcanic systems of West and East Turkey (Heineke et al. 2016; 

Aydar, 1998), Greece, and Italy with known activity all >500 km away. Therefore, aerial transmission 

is the mechanism by which fine-grained volcanic material is most likely to reach the cave site. 

Evidence suggests that ultra-distal stalagmites, within the same hemisphere, can also preserve 

climatological signals potentially attributed to high-magnitude volcanism (e.g. Du et al. 2019; Polyak 

et al. 2017; Carolin et al. 2013). Thus, the distance of Dim Cave from an active volcanic centre 

permits a test of the sensitivity of the DIM-3 record to not only ash fall directly associated with large 

eruption events, but also their large-scale repercussions.  

The first criterion for eruption selection is dating uncertainty. This is particularly important - 

comparing volcanism to climate system perturbations significantly rely on objectivity and precision 

(Baldini et al. 2015) due to the transient nature of both events. For the Last Glacial Period, the 

number of eruptions with robust dates are notably low (Brown et al. 2014), however, to include a 

greater number of poorly dated eruptions would notably compromise any conclusions made. 

Therefore, eruptions with >5000-year dating uncertainties, an Unknown dating technique, and/or a 

Poor dating quality were removed. The aim to select eruptions as objectively as possible also 

influenced the decision to omit <M7.0 eruptions, as the uncertainty associated with magnitude 

estimates for these events is often greater due to: i) greater chance of evidence degradation and 

consequently underestimation, and ii) large differences in eruption style (e.g. a basaltic and a 

rhyolitic eruption measured at M4.0 may respectively emit very different ash/gas quantities). Larger 

eruptions also show a greater capacity for high ash yields and are more completely preserved in the 

geological record, as ultra-distal transport facilitates preservation of ash deposits in environments 

minimally affected by glaciation, eustatic change and rigorous terrestrial processes (Pyle et al. 2016). 

For this reason, these larger eruptions have hitherto attracted significant research interest.  
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For certain events, recent literature does not match the parameters given in LaMEVE, due to 

constantly evolving knowledge of these eruptions with refinement of new techniques and 

investigation of new sites/proxies. For example, in LaMEVE the LCY eruption of Atitlán is listed as 7.9, 

however new erupted mass estimates by Kutterolf et al. (2016) raise this estimate to 8.0. Therefore, 

independent literature checks were conducted on the dates, magnitudes, dating uncertainties, and 

dating techniques of eruptions remaining.  

For this study, it was not deemed appropriate to use HYSPLIT modelling to quantify the potential for 

ash dispersion over Turkey. The extent to which the direction, and relative strength, of atmospheric 

circulatory systems differed compared to the Holocene is highly uncertain – reflected by the 

repeated occurrence of abrupt climate variabilities (such as D-O and Heinrich events) marking major 

scale reorganisations of the atmosphere (e.g. Rach et al. 2014., Menviel et al. 2014., Konecky et al. 

2011). Therefore, conclusions are drawn using current knowledge of ash dispersion trajectories, 

based on tephrochronological evidence. 

6.3. Results & Discussion  

6.3.1. Volcanic Eruptions 

Out of 63 known eruptions between 70 and 90 ka BP, only two satisfied all criteria for inclusion in 

this study (Table 5). Interestingly, these two eruptions are both located within the NH, and there are 

no comparably sized known eruptions in the Southern Hemisphere between 70 and 90 ka BP. This is 

potentially a function of natural coincidence (Papale, 2018), however, the incompleteness of the SH 

eruption record likely also influenced this discrepancy as greater ocean extent in the Southern 

Hemisphere (SH) means fewer continental volcanoes, and less land to suitably preserve erupted 

deposits. Unfavourable terrain and harsh climates in volcanically active southern regions (e.g. The 

Andes - Smith et al. 2019; Fontijn et al. 2016) also promote the removal/reworking of tephra 

deposits, erosion of geological evidence, and increased difficulty in fieldwork conduction (Fontijn et 

al 2014). As the accuracy of dating is contingent on the quality and quantity of sampled material 

(Baldini et al. 2015), these limitations have largely prevented constraint of SH eruption dates beyond 

multi-millennial uncertainties (Brown et al. 2014). The robustness of our study relied on 

chronological accuracy, so no SH eruptions were suitable. However, future work may allow for 

inclusion of more eruptions in such analyses as radiometric techniques become applicable to newly 

detected deposits.  

Table 5: Table displaying the eruptions utilised in this study. Dates and uncertainty are sourced from LaMEVE and/or 

appropriate literature. 
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VOLCANO REGION UNIT  DATE  

(ka BP) 

MAGNITUDE DOMINANT BULK 

MAGMA 

COMPOSITION 

REFERENCE(S) 

Toba Indonesia Youngest 

Toba Tuff 

73.88 ± 0.32 8.8 Dacite-Rhyolite 1, 2, 3 

Atitlán Mexico/Central 

America 

Los 

Chocoyos(H) 

84.0 ± 0.5 8.1 Dacite-Rhyolite 4, 5, 6 

 
      

1 Mark et al. (2017); 2 Storey et al. (2012); 3 Svensson et al. (2013); 4 Kutterolf et al. (2016); 5 Drexler et al. (1980); 6 Rose et 

al. (1999) 

The YTT date utilised herein is that calculated by Storey et al. (2012). Relative to the AICC2012 

chronology, NGRIP (Greenland) and EDML (Antarctica) ice core records suggest a radiometric date of 

73.75 ka BP if interpreting ‘NGRIP-T2’ as the YTT: one of nine NGRIP, and four bipolar sulphate 

enrichments between 74-76 ka (Svensson et al. 2013). However, it is not clear which enrichment 

corresponds to Toba, and emplacement of different magma bodies over a protracted eruptive 

episode (Pearce et al. 2020) may have caused multiple Plinian phases. Toba’s low-latitude location 

further lends to disadvantageous preservation of both aerosols (Rasmussen et al. 2014) and tephra 

(Abbott et al. 2012) in Greenland and Antarctic (Cole-Dai et al. 2009) ice sheet laminae, preventing 

complete establishment of the YTT’s stratigraphic position (Costa et al. 2014). Nonetheless, the 

NGRIP eruption date defined by Svensson et al. (2013) is near indistinguishable from a recalculation 

of the YTT absolute eruption date to 73.7 ± 0.3/0.4 ka BP (Mark et al. 2017), based on novel 

applications of an 40Ar/39Ar optimisation model (Niespolo et al. 2016) to Indian Ocean marine core 

samples of YTT tephra. This date is 180 years younger than the astronomically calibrated age by 

Storey et al. (2012) (73.88 ± 0.32 ka BP), the latter representing the most precise date for the YTT 

currently proposed.  

6.3.2. PCA 

Principal Component Analysis reveals that 13% of trace element variability in DIM-3-A is explained 

by PC1, and this principal component is dominated by correlations between Sr, Ba and U (Table 6). 

Alkali earth elements are seemingly the primary mode of variation picked up by PC2, exhibiting an 

abrupt decrease with similar amplitude and timing as increases in Sr, Ba and U in PC1. This suggests 

the presence of aragonite layers – an interpretation supported by petrographic observations of 

clear, light-coloured layering ~70mm from the sample base (Figure 19).  

Table 6: Table of descriptive statistics for 7849 measurements of 26 trace elements taken from DIM-3, and Principal 

Component 1 coefficients. Elements with positive coefficients are highlighted in grey. 
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Two common processes are linked to the occurrence of calcite-aragonite transitions in stalagmites 

(Fairchild & Treble, 2009). First is prior calcite precipitation (PCP), whereby low water availability and 

high evaporation increases the space within the karst aquifer occupied by gas, meaning water 

encounters a lower pCO2 gas phase. This promotes CO2 degassing, and elevation of the dripwater 

CaCO3 saturation index (Sherwin & Baldini, 2011; Fairchild & McMillan, 2007; McDermott, 2004) in 

turn increasing the preferential removal of Ca2+ along the flow path. Second is incongruent calcite 

Element PC1 Max. (ppm) Min. (ppm) Median (ppm) Standard 

Deviation (ppm) 

Mean (ppm) 

Magnesium (Mg) -0.056 29888.91 42.51 7527.60 2517.3 8002.50 

Aluminium (Al) 0.0089 13328 0.00 0.94 150.81 3.45 

Phosphorus (P) 0.00 739.61 0.00 66.85 61.60 81.53 

Sulfur (S) 0.00 1102.50 167.33 308.38 18.24 307.14 

Titanium (Ti) 0.0090 42.26 0.00 0.38 0.83 0.43 

Vanadium (V) 0.058 10.95 0.00 0.016 0.14 0.021 

Manganese (Mn) 0.00 68.42 0.00 0.00 8.60 0.56 

Cobalt (Co) 0.00 8.94 0.00 1.07 0.77 0.86 

Copper (Cu) 0.00 427.07 0.00 1.08 4.89 1.33 

Zinc (Zn) 0.21 52.38 0.00 2.0045 4.061 3.48 

Bromine (Br) 0.00 13308 0.00 2768.90 3102.50 2695.60 

Rubidium (Rb) 0.00 1.1735 0.00 0.026 0.039 0.028 

Strontium (Sr) 0.43 849.11 15.60 40.37 87.90 57.54 

Yttrium (Y) 0.00 4.22 0.00 0.007 0.15 0.041 

Zirconium (Zr) 0.00 709.51 0.022 0.33 8.15 0.48 

Cadmium (Cd) 0.00 20.81 0.00 0.00 0.26 0.022 

Barium (Ba) 0.44 41.64 1.13 4.35 3.71 5.069 

Lanthanum (La) 0.023 20.31 0.00 0.0018 0.24 0.013 

Cerium (Ce) 0.023 6.20 0.00 0.00 0.092 0.0043 

Neodymium (Nd) 0.069 5.20 0.00 0.00 0.080 0.0091 

Ytterbium (Yb) 0.00 4.31 0.00 0.00 0.051 0.0046 

Platinum (Pt) 0.0034 1.31 0.00 0.00 0.017 0.0014 

Mercury (Hg) 0.00 15671 0.00 3274.32 4308.70 3015.70 

Lead (Pb) 0.18 2.05 0.00 0.0276 0.072 0.043 

Thorium (Th) 0.038 0.45 0.00 0.00 0.0087 0.007 

Uranium (U) 0.42 32.78 0.016 0.24 3.0033 0.78 
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dissolution (ICD), whereby prolonged interactions between the host rock and seepage waters 

elevate dissolution rates and release of trace elements (Wassenburg et al. 2020., McDonald et al. 

2007; Fairchild et al. 2000). ICD and PCP instigate similar changes to dripwater geochemistry (Sinclair 

et al. 2012) and are detectable through observations of covariant change in Mg, Sr, U, and Ba 

concentrations (Wassenburg et al. 2012; Stoll et al. 2012; Wong et al. 2011; Baldini et al. 2006), as 

crystallographic differences between aragonite and calcite (Wassenburg et al. 2016) mean larger 

cations (e.g. Sr, Ba, and U) are preferentially incorporated into aragonite, whereas smaller cations 

such as Mg are preferentially incorporated into calcite (Swart, 2015). Such changes appear reflected 

in the DIM-3-A record, as aragonite layers are marked by abrupt elevation of Sr and Ba 

concentrations synchronous with sharp decreases in Mg.  

. 

Figure 19: A comparison of the DIM-3-A petrography and geochemistry, focussing on aragonite layers at the top of the sample, 

alongside time-resolved PCA outputs. Grey shading highlights three aragonite layers, all ~0.2mm in length.  

Correlations between trace elements involved in PCP, ICD, and formation of aragonite in DIM-3-A 

are interpreted here as signs of reduced moisture availability in Dim Cave. Prior studies have utilised 

aragonite formation (e.g. Martín-García et al. 2019; Domínguez-Villar et al. 2017; Wassenburg et al. 

2012; Csoma et al. 2006; McMillan et al. 2005; Frisia et al. 2002), and related changes to trace 

elements such as U (e.g. Chen et al. 2020; Wassenburg et al. 2016; Jamieson et al. 2016; Chen et al. 
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2016; Bourdin et al. 2011) as proxies for paleo-aridity, on the basis that reduced effective 

precipitation (meteoric precipitation minus evapotranspiration) results in decreased water supply to 

dripwater aquifers, enhancing saturation with respect to CaCO3 (Wassenburg et al. 2016). This 

interpretation is consistent with DIM-3-A geochemistry for multiple reasons. Firstly, Mg shows 

significant enrichment prior to aragonite formation (McMillan et al. 2005) suggesting dripwater 

became super-saturated, potentially due to increased seepage flow path length and/or greater 

aquifer residence times – both of which can link to arid external conditions. Less negative δ18O and 

δ13C from ~73.6 ka BP (Figure 20) also suggest reductions in surface vegetation and soil activity 

(Ünal-İmer et al. 2016), which have been interpreted as indicators of reduced ambient temperature 

and/or effective rainfall. In principle, such conditions would promote increased water-rock 

interactions and longer recharge, thus greater release of trace elements into dripwater supply. 

Therefore, the presence of aragonite layers within DIM-3-A suggest the stalagmite was subject to 

low moisture conditions during GI-19.2, and subsequently a drier external climate.  

. 
Figure 20: δ13C and δ18O values for DIM-3 (Ünal-İmer et al. 2015) plotted against 232U and 25Mg concentrations measured 

in DIM-3-A. Data is plotted in relation to the COPRA chronology generated for this study. Red squares on the x-axis mark 

the two major eruptions featured in this study: the Youngest Toba Tuff (~74 ka BP) and Los Chocoyos (~84 ka BP). A 

notable increase in Mg concentration is visible in concurrence with the YTT, and is followed by geochemical perturbations 

suggesting increasingly dry conditions.  

PC1 also shows significant correlations between Zn and Pb. A small enrichment is visible at ~83 ka 

BP, however the highest concentrations are seen following ~74 ka BP (Figure 21). Both represent 

deviations from typical calcite composition; but their respective sources are unclear and could have 

resulted from either (1) enhanced bedrock weathering, or (2) increased atmospheric dust 

deposition.  
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For stalagmites fed by seepage flow, rates of (1) are enhanced by reduced water flux and relative 

leaching efficiency (Fairchild & Treble, 2009), both of which favour enhanced dissolution of bedrock 

constituents. Onset of Zn enrichment appears concurrent with an abrupt enrichment in Mg at ~73.5 

ka BP, suggesting this trace element may derive from increased dissolution of the quartzofeldspathic 

bedrock forming Dim Cave (Bozkaya and Yalçın, 2004) by reductions in surface water infiltration. As 

these changes occur ~1.6 kyr prior to aragonite layers, Zn may mark the onset of dripwater 

saturation due to drier conditions, from which aragonite formation begun once a threshold had 

been surpassed (Wassenburg et al. 2012). This interpretation is supported by concurrent enrichment 

of δ18O, suggesting a northward shift of westerly wind trajectories over the Eastern Mediterranean 

(Ünal-İmer et al. 2015). Although such a track may result in lower humidity and decreases in total 

effective rainfall, interpretations linking isotope variability in DIM-3-A to changes in paleo-rainfall 

should be approached with caution. Karst moisture balance, drip rate, and rainfall quantity are often 

mutually exclusive (Fairchild & Treble, 2009) and thus rates of bedrock dissolution are not always 

directly proportional to surface rainfall. Changes in effective rainfall may not impact drip rate, and 

instead exert a dominant effect on stalagmite geochemistry by drip water saturation (by the 

mechanisms discussed above). Moreover, the interpretation presented here contradicts prior 

evidence for ‘wetter’ stadials in the East Mediterranean (e.g. Rowe et al. 2020; Ünal-İmer et al. 2015; 

Frumkin et al. 2011; Sorin et al. 2010) resulting from southward westerly shifts due to increased 

polar ice volume, and increased surface elevation/pressure due to large ice sheets (Kwiecien et al. 

2009) – emphasising the notable complexity associated with paleoenvironmental reconstruction in 

this region. The simultaneous onset of Zn, Mg, δ18O enrichment in DIM-3-A does support the notion 

of abruptly reduced moisture availability in Dim Cave following ~74 ka BP, although it is unclear 

whether this directly reflects change in effective rainfall over Turkey. 

Increased atmospheric dust deposition (2) can also influence the trace element geochemistry of 

stalagmites. Deposition of exotic elements (such as Pb) can occur by percolation in groundwater 

through the host rock or direct aeolian deposition onto the stalagmite growth tip (Vaks et al. 2013, 

2010; Wassenberg et al. 2012; Goede et al. 1998), yet the relative influence of these processes will 

be contingent on cave morphology and location.  Evidence suggesting Pb in DIM-3-A is dust-derived 

is seen by concurrence between spikes in Pb and 232Th concentration. 232Th (Rowland et al. 2017) and 

Pb (Jamieson et al. 2015) are both atypically incorporated into calcite, thus justifying their use as 

markers of transient deposition of particulates originating beyond the cave site. Furthermore, 

increased enrichment of these trace elements occur at the same time as other aridity indicators (e.g. 

aragonite). High atmospheric dust concentration is characteristic of arid conditions (Simonsen et al. 

2019., Liu et al. 2013., Újvári et al. 2010; Petit and Delmonte, 2009; Ruth et al. 2003), and for Dim 
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Cave these particulates would most likely originate from North Africa (Allen et al. 2020; Vaks et al. 

2013; Prospero et al. 2002) or Central Europe (Újvári et al. 2010) – mobilized during a period of low 

atmospheric humidity and active westerly winds. It is unlikely Zn was also derived from atmospheric 

dust deposited at the surface. Zn enrichment occurs alongside increased δ13C (Ünal-İmer et al. 2015) 

– interpreted to infer cooler temperatures and reduced CO2 availability (Ahn & Brook, 2008), which 

favour thinner soils and lower vegetation abundance. Yet, research suggests colloidal Zn transport is 

associated with periods of high fluid flow into the karst, resulting in faster percolation of particles 

deposited at the surface through bedrock (e.g. Oster et al. 2020, 2017; Rutlidge et al. 2014; Hartland 

et al. 2012). This undermines the aridity inferred from variabilities in DIM-3-A Mg, δ18O, Sr, Ba, and 

U. Although the partitioning of Zn in stalagmites is poorly understood (Borsato et al. 2007; Reeder et 

al. 1996), evidence presented here suggests that Zn was not deposited into this record by soil-

derived colloidal transport. However, this does not rule out the potential for Pb to be deposited in 

this manner.  

Quantifying the magnitude and duration of climate change in the Mediterranean is challenging, as 

the defining features of a given perturbation vary depending on region (e.g. Dumitru et al. 2018; 

Mori et al. 2018; Carolin et al. 2016; Springer et al. 2014). For example, archives from the west 

Mediterranean document increases in effective precipitation during interstadial periods resulting 

from a strengthened hydrological cycle (e.g. Pérez-Mejías et al. 2019; Budsky et al. 2019; Denniston 

et al. 2018; Stoll et al. 2013; Vaks et al. 2010; Bar-Matthews et al. 2003). Whereas in the east 

Mediterranean, complex meteorological regimes lead to differing interpretations of δ18O 

depletion/enrichment meaning rainfall amount is hard to quantify (e.g. Corrick et al. 2020; Ünal-İmer 

et al. 2015; Rowe et al. 2012; Bar-Matthews et al. 2003). The trace element geochemistry of DIM-3-A 

seems responsive to moisture availability, showing hydrochemical and trace element shifts 

indicative of reduced water provision to the stalagmite following ~74 ka BP. Enrichments of Zn and 

Pb suggest incorporation of extraneous material and, although these potentially derive from 

different sources, the positive correlation between them (PCA) suggests they both derive from a 

common process; suggested here to be aridity. 
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Figure 21: A comparison of selected trace elements, isotope data (Ünal-İmer et al. 2015 – reported as per mil (‰) relative to the 

Vienna Peedee Belemnite (VPDB) standard), and PC1 scores for DIM-3-A. Uncertainties with the COPRA chronology for DIM-3 

(SISAL: Comas-Bru et al. 2020) are marked as orange circles. The dates of the Youngest Toba Tuff (derived from 40Ar/39Ar – 

Storey et al. 2012) and Los Chocoyos (derived from oxygen isotope stratigraphy - Kutterolf et al. 2016) eruptions are marked as a 

dashed black line, with uncertainties highlighted in yellow. Blue highlight marks the timing and duration of Greenland Stadials, 

based on the INTIMATE stratigraphy (Rasmussen et al. 2014). The amplitude and frequency of trace element enrichments 

increase following the Youngest Toba Tuff, and Mg, Sr, and Ba denote the formation of aragonite layers during GI-19.2.  

6.3.3. Volcanic Signals   

6.3.3.1. Atitlán  

The date of Los Chocoyos super-eruption of Atitlán, Guatemala has been constrained to 84 ± 0.5 ka 

BP based on oxygen-isotope anomalies in ocean-sediments (Drexler et al. 1980., Koch & McLean, 

1975). Short-lived enrichment of Zn and Pb at ~83.8 ka BP occurs in DIM-3-A alongside a transient 

depletion of δ18O (Ünal-İmer et al. 2015), ~200 years following the LCY eruption. However, this signal 

is extremely subtle, suggesting the LCY ash plume likely did not reach Turkey, nor did the eruption 

have a profound, long-term impact on Eastern Mediterranean climate.  

The magnitude of the LCY event is exceptional, and the low-latitude location of Atitlán volcano 

renders a meridional spread of aerosols by Brewer-Dobson circulation more likely (Svensson et al. 

2020., Baldini et al. 2015). Yet there are two factors which could explain a negligible impact of the 

eruption on NH climate: (1) baseline ice/climate conditions, and (2) exceptionally high volatile gas 

emission. The first factor (1) is influenced by eruption timing. A definitive ice core signal for the 

eruption is yet to be determined, as Zielinski et al. (1996) identify 5 SO2
-4 spikes in the GISP 2 record 

between 83-85ka BP. However, stratigraphic evidence suggests the LCY occurred during Greenland 

Interstadial (GI)-21.1 - one of the longest millennial-scale warm periods documented for the 

Quaternary (Zhang et al. 2020) during which atmospheric CO2 and CH4 (Griffiths et al. 2013) rose 

significantly (Figure 22), due to southward shift of the ITCZ and SH westerlies, and subsequent 

increases in Southern Ocean upwelling (Griffiths et al. 2013). Studies suggest intermediate ice 

volume associated with sea levels 68 – 71 m lower than present are those most likely to amplify the 

climatological impact of volcanism (Baldini et al. 2018, 2015), yet at ~84 ka BP atmospheric CO2 was 

~250ppm (Ahn & Brook, 2008) and sea level 20-50 m lower than present (Waelbroeck et al. 2002). 

This implies not only warmer surface temperatures and low ice volume conditions, but also a climate 

system more resilient to abrupt changes in temperature (Barker et al. 2019; Zhang et al. 2017, 2014) 

caused by the propagation of volcanic aerosols.  
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Greater climatic stability may have acted alongside (2): exceptionally high volatile gas emission, to 

further attenuate the climatological impact of LCY. Petrological estimates for LCY sulfur emission 

currently stand at 523 ± 94 Mt (Brenna et al. 2020), which is 10 times greater than estimates for 

other >M6.0 eruptions such as Tambora (53-58 Mt: Stenchikov et al. 2009; Self et al. 2004), Samalas 

(158 ± 12 Mt: Vidal et al. 2016), and Laacher See (~83Mt : Baldini et al. 2018). This evidence suggests 

LCY was exceptionally sulfur-rich, and modelling studies have suggested that timescales of radiative 

forcing induced by a sulfur-rich eruption may reduce if SO2 concentrations exceed a ‘maximum 

potency’ threshold; by causing an enhanced greenhouse effect (Osipov et al. 2020) and rapid fallout 

of sulfate aerosols from the atmosphere (Timmreck et al. 2010). Less severe NH cooling, by 

extrapolation, may therefore have reduced the hemispheric temperature gradient and thus 

attenuated a millennial-scale climatic signal. Furthermore, if LCY generated a coignimbrite plume 

similar to the YTT (Costa et al. 2018; Matthews et al. 2012; Chesner & Rose, 1991), entrainment of 

water vapour by pyroclastic flows (Joshi & Jones, 2009) across the Caribbean and Eastern Pacific 

oceans surrounding Guatemala may have further attenuated the cooling associated with 

atmospheric injection of sulphate aerosol. However unlike (1), (2) possesses much less empirical 

support and existing studies are underpinned by analogue scaling – with uncertainties exacerbated 

by poorly constrained LCY eruptive parameters. For example, sulfur ejection estimates rely upon 

known ejecta volumes, which are continuously changing. Metzner et al. (2014) estimated a 686.59 

Mt SO2 yield, however recent expansion of known tephra limits (Kutterolf et al. 2016) incorporated 

into estimates by Brenna et al. (2020) prompted a reduction of 163 Mt; not accounting for 

uncertainties in aerosol conversion ratios, size and atmospheric lifetime, halogen content (Brenna et 

al. 2019., Klobas et al. 2017., Cadoux et al. 2015), altitude of volatile gas injection (Sheng et al. 2015., 

Shinohara et al. 2008., Scaillet et al. 2004), and scavenging of halogens by water in the eruption 

column (Brenna et al. 2019). Furthermore, magnitude is not directly proportional to sulfur emission 

(McCormick-Kilbride et al. 2016., Carn et al. 2016., Pyle, 2012) and magma degassing shows large 

geographical variability depending on tectonic setting (e.g. the CAVA - Schindlbeck et al. 2018., Bolge 

et al. 2009), and so analogue scaling increases the risk of over/underestimation of volatile yield, and 

the associated climatological implications.  

The intricacy of mechanisms governing super-volcanism (e.g. Swallow et al. 2019; Andersen et al. 

2019; Allan et al. 2017; de Silva & Gregg, 2014) causes great diversity in eruption petrology, and thus 

huge variance in gas ejection between events of a similar magnitude. This has significant 

implications for the climate response (Timmreck et al. 2012), and results in mixed model outputs for 

eruptions whereby parameters must be estimated (Timmreck et al. 2010; Robock et al. 2009; Jones 

et al. 2005) – such as those occurring prior to the Holocene. Due to the exceptional magnitude of 
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LCY, the cumulative effect of aerosol and tephra loading likely did disturb radiative forcing and 

diurnal cycles in the years following eruption (Brenna et al. 2020; Kutterolf et al. 2016; Metzner et al. 

2014). However, evidence from DIM-3 and other speleothem records between 80 and 90ka BP 

(Figure 22) suggest the eruption’s climatological impact was limited and did not cause widespread 

perturbation to Northern Hemispheric climate. This could result from interstadial conditions at the 

time of eruption, favouring climate system stability and less susceptibility to perturbation by 

volcanism. However, LCY is a notably understudied eruption, and so prevailing uncertainties in 

ejected tephra and gas volumes thwart the ability to make robust correlations between this 

exceptional eruption and NH climate during GI-21.1. 
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Figure 22: A stacked comparison of cave isotope records between 80 and 90 ka BP. Uncertainty in the Los Chocoyos (LCY) 

eruption date (based on Kutterolf et al. 2016) is marked by yellow highlight, and blue highlight marks stadial intervals as 

defined by Rasmussen et al. (2014). δ18O data is reported as per mil (‰) relative to the Vienna Peedee Belemnite (VPDB) 

standard. Stalagmite isotope data was downloaded from SISAL (Comas-Bru et al. 2020), data sources include: Dim Cave – 

Ünal-İmer et al. (2015), Secret Cave – Carolin et al. (2013), Robinson Cave – Polyak et al. (2017), and Yongxing Cave  - Chen 

et al. (2016). Appendix Table 1 provides more information on all caves featured. Cave sites are presented in order of 

latitude, and circles with error bars mark chronological uncertainties associated with each stalagmite record. Atmospheric 

CO2 data sourced from the Byrd Station, Antarctica (Ahn & Brook, 2008 – shading represents uncertainty in CO2 

estimates) and insolation data from (Berger & Loutre, 1991) are also presented. 

6.3.3.2. Toba 

With an estimated date of 73.88 ± 0.32 ka BP (40Ar/39Ar derived - Storey et al. 2012), the Youngest 

Toba Tuff (YTT) eruption of Toba volcano, Indonesia, occurred within uncertainties of significant 

geochemical variability in DIM-3-A (shown in Figure 21). There are two ways these observed 

geochemical shifts could be linked to the YTT, yet three discrete interpretations: (1) simply no causal 

link (2) direct ash fall, or (3) forcing of climate resulting from aerosol loading by the YTT plume. 

These interpretations are discussed individually herein. 

6.3.3.2.1. No Link 

There is a chance that geochemical variability observed in DIM-3-A may not have been caused by the 

YTT at all, and instead reflect natural variabilities in karst conditions unrelated to volcanic-derived 

processes. For example, it is difficult to quantify ‘background’ input of volcanic trace elements into 

the soils resulting from intermittent, low-magnitude volcanic activity, due to disparities in eruption 

records between 70 and 90 ka BP. Deposits are often lost to erosion associated with recurrent 

glaciation, isostatic change, and progressive degradation (Baldini et al. 2015), and a lack of research 

can exacerbate this problem. Turkey is a key example of the latter, with a limited number of 

volcanological investigations (Bilim et al. 2018) despite the presence of several volcanic fields of 

Quaternary age in Anatolia (Aydar, 1998).   

More research is also needed to better characterise the sensitivity and spatial diversity of climate 

regimes at ~74 ka BP before changes observed within DIM-3-A can be exclusively attributed to 

volcanism. Frameworks attempting to model the mechanisms underpinning atmospheric variability 

on stadial-interstadial timescales are notably limited in scope (Atwood et al. 2020), so disentangling 

the relative effects of volcanism and ice sheet growth on air mass trajectories and atmospheric 

teleconnections is complex; especially whereby the eruption in question occurs during a period of 

orbitally induced cooling, as the YTT does (Baldini et al. 2018, 2015; Berger & Loutre, 1999). Regional 

complexities associated with the Eastern Mediterranean climate system may have attenuated the 
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effects of, for example, volcanically forced ITCZ migration and thus variability of air mass trajectories 

recorded by the DIM-3 geochemical record. However, this is difficult to confirm while the respective 

long-term influence of eruption chemistry, intensity, and plume height on atmospheric circulation is 

ambiguous. Particularly for exceptionally large events such as the YTT; whereby all aforementioned 

parameters remain poorly constrained due to uncertainties in paleoenvironmental archive 

resolution (e.g. Du et al. 2019; Baldini et al. 2015), absolute eruption dates (e.g. Mark et al. 2017, 

2014; Storey et al. 2012; Chesner, 1991), and eruption chronologies (Svensson et al. 2013).   

6.3.3.2.2. Direct Ash Fall 

Increased concentrations of Zn and Pb in DIM-3-A occur well within dating uncertainties of the YTT 

eruption, which could be interpreted as an indicator of volcanic ash deposition. If stratospheric 

injection of tephra is achieved during an eruption, deposition can occur >1000 kilometres from the 

eruptive centre (Lane et al. 2017; Matthews et al. 2012). Volcanic ash deposited in the soils overlying 

a karst system may subsequently be washed into a karst system by periods of high fluid flow and 

infiltration rates (Borsato et al. 2007). This would enable transport of surface colloids through the 

aquifer to the drip site (Hartland et al. 2012), which is a process upon which integration of Zn and Pb 

into stalagmites shows significant dependence. Based on tephrochronology it is unclear whether the 

YTT co-ignimbrite plume did reach the East Mediterranean, however modelling of the YTT plume 

dynamics suggest the eruption’s exceptional (mass) eruption rate (1.75 x 1011kg/s: Costa et al. 2018, 

2014; Costa & Martí, 2016) likely resulted in rapid generation of a huge gravity current in the 

stratosphere. Generation of such a large current would facilitate a volumetric flow rate capable of 

dispersing ash over a huge area –  which is supported by proxy evidence for YTT fallout in East/South 

Africa (Yost et al. 2018; Smith et al. 2018; Lane et al. 2013), India (Matthews et al. 2012), Malaysia 

(Smith et al. 2011), and the South China Sea (Liang et al. 2001; Song et al. 2000). YTT glasses also 

appear rich in Pb (e.g. Pearce et al. 2020) and elevated concentrations of this trace element have 

been previously interpreted as a volcanic indicator in stalagmites (Jamieson et al. 2015). Therefore, 

deposition of YTT ash over the East Mediterranean is not out of the question, under favourable 

atmospheric conditions. 

However, it is unlikely the Zn and Pb excursions here result from fallout of coignimbrite generated by 

the YTT eruption, due to the duration of trace element enrichment (~2 kyr). Irrespective of eruption 

magnitude, the removal of tephra particles from the atmosphere typically occurs in <1 year (Costa et 

al. 2014; Lowe, 2011) and as a result discrete ash-fall events appear in stalagmites as spikes <50 

years in duration (e.g. Jamieson et al. 2015; Badertscher et al. 2014; Frisia et al. 2008). The duration 

of volcanic-derived material deposition within a stalagmite (resulting from a single eruption) may be 
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prolonged if: (1) long-term changes to regional hydrology (favouring increased effective rainfall) 

caused remobilization of older deposits, and increased colloidal transport into the karst aquifer, (2) 

winds were persistently strong enough to disperse particulates across a large catchment, such as 

during stadial intervals (Simonsen et al. 2019), (3) the eruption exhibited multiple explosive/ash-

producing phases. Scenarios (1) and (2) rely on accurate constraint of sedimentary processes 

occurring at the time of deposition, such as compaction, bioturbation, and eluviation (Cutler et al. 

2020; Matthews et al. 2012) in order to discriminate between volcanic signals and biogeochemical 

cycling. However, insufficient temporal resolution of paleoenvironmental records from this period 

render the relative influence of these processes difficult to quantify. Identification of multiple sulfate 

peaks in Greenland ice-core records across the YTT boundary thus lends support to scenario (3), by 

suggesting that Toba could have exhibited multiple explosive phases across a single eruptive episode 

(Savarino et al. 2020; Svensson et al. 2013) and thus caused prolonged ash dispersion. Evidence for a 

multi-vent system (Costa et al. 2014) and tapping of petrologically-discrete magma reservoirs 

(Pearce et al. 2020) also backs this hypothesis. Yet, the four sulfate enrichments tentatively 

attributed to Toba are separated by <400 years, and the distance between Sumatra and Turkey 

raises the potential for attenuation of YTT signals by other, potentially unknown, more proximal 

eruptions. In either case, it would be near impossible to confidently differentiate YTT signals from 

other ash fall events within the DIM-3-A geochemical sequence.  

6.3.3.2.2. Cooling/Aridity 

The Zn and Pb enrichments observed here are interpreted as indicators of significant environmental 

change marking a transition to more arid conditions. This interpretation is supported by the 

presence of a distinct Mg enrichment at ~74 ka BP, which is indicative of reductions in karst moisture 

availability and thus increased dripwater saturation as due to increased bedrock-water interactions. 

Two observations also suggest the geochemical changes seen in DIM-3-A are not the product of 

‘typical’ interstadial-stadial variability from the transition into GS-20 at 74.1 ± 0.06 ka BP (1σ). Trace 

elements showing mutually significant PCA coefficients (notably Zn and Pb) do not appear in such 

high concentrations during any other stadial periods between 70 and 90 ka BP, such as GS-21 (77.76 

± 0.1 ka BP (1σ)) or 22 (87.6 ± 0.04 ka BP (1σ)). Secondly, calcite-aragonite transitions are only 

observed during GI-19.2, and enrichment of trace elements such as Zn and Pb also continue during 

this interval. Interpreted here as indicators of low moisture availability, aragonite formation during 

GI-19.2 suggests this interstadial was significantly drier than those prior to 74 ka BP (Figure 23); such 

as GI-20 (76.44 ± 0.02 ka BP (1σ)) and GI-19.2 (72.34 ± 0.02 ka BP (1σ)). This suggests the presence of 

an additional forcing mechanism driving millennial-scale NH climate across the GS-20/GI-19.2 

transition, for which the YTT seems a plausible candidate.  
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Figure 23: A scatterplot showing the relationship between δ18O and Mg concentration in DIM-3-A, with mean values 

calculated for each Greenland stadial/interstadial event (based on the INTIMATE stratigraphy: Rasmussen et al. 2014). The 

stadial interval prior to which the YTT eruption occurred (GS-20), and first interstadial following the eruption (GI-19.2), are 

highlighted in orange, with both showing the highest average Mg concentration across the DIM-3-A interval. Due to the 

relationship between Mg and aridity, this could provide an indication that GS-20 and GI-19.2 were particularly dry in 

Turkey – resulting in supersaturation of dripwater feeding the stalagmite.  

If DIM-3-A geochemical variability immediately after 74 ka BP are interpreted as indicators of aridity 

resulting from the YTT, the duration of their occurrence (>2 kyr) suggests they are not the result of 

direct, volcanic-induced radiative forcing effects.  Historical observations show that mass 

stratospheric injection of volcanogenic material can reflect solar radiation back into space, and 

briefly cool the Earth’s surface (e.g. Pinatubo – Diallo et al. 2017), however this effect appears short 

lived (Robock, 2000). Modelling studies have identified that, for a ‘YTT-sized’ eruption, radiative 

forcing would have returned to background levels in <10 years (Osipov et al. 2020; Timmreck et al. 

2012; Robock et al. 2009). However, if aridity-driven variability in DIM-3-A’s geochemistry was 

caused by the YTT, these findings would support a millennial-scale impact of the YTT on NH climate. 

Increasing evidence suggests that volcanism has the capacity to induce significant hemispheric 

asymmetry by preferentially cooling the eruption hemisphere and result in displacement of large-

scale circulatory systems such as the ITCZ (Pausata et al. 2020; Baldini et al. 2015; Ridley et al. 2015). 

Following these observations, Baldini et al. (2015) suggest the same would occur following the YTT. 

Mass volcanogenic aerosol loading would invoke a southward ITCZ shift, resulting in elongation of 

the polar front (Schneider et al. 2014; Hudson et al. 2012) and a transition to cooler/more arid 

conditions in the NH (Baldini et al. 2015) – change amplified by ice/albedo and ocean circulation 

feedbacks manifesting as millennial-scale reductions in global mean surface temperature (Zanchettin 

et al. 2017; Boucher et al. 2013). Although the key processes driving inter-hemispheric responses to 
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volcanism are poorly understood (Zanchettin et al. 2014), it is plausible to assume the time taken for 

the NH climate system to return to a ‘stable’ state, either by natural regulation or an antagonistic 

forcing mechanism, would take hundreds-to-thousands of years. This is also supported by the DIM-

3-A record, as the aforementioned indicators of aridity persist until ~71.5 ka BP.  

Studying the climatological implications of the YTT eruption are nonetheless challenging, particularly 

in the EM. Not only are interpretations of isotope records across the region ambiguous (e.g. Corrick 

et al. 2020; Ünal-İmer et al. 2015; Rowe et al. 2012; Bar-Matthews et al. 2003), but significant 

uncertainties prevail concerning spatial and temporal differences in atmospheric composition and 

circulation so far back in time (Roberts et al. 2017). Both confound attempts to constrain the relative 

influence of volcanism on the DIM-3-A record, and consequently regional climate variability. For 

example, lesser δ18O depletion of rainfall in SW Turkey (Ünal-İmer et al. 2015) is linked to increased 

influence from NW-SE European westerly tracks (Türkeş & Erlat, 2009), and northward migration of 

the ITCZ. Such depletion is seen in DIM-3-A following the YTT, however this is inconsistent with 

modelling studies (e.g.  Pausata et al. 2020, 2015; Atwood et al. 2020; Pausata & Carmargo, 2019; 

McGee et al. 2014) suggesting that southward ITCZ migration would ensue following aerosol loading 

by a NH eruption. Initially, this suggests the YTT exerted a negligible effect on atmospheric 

circulation. However, modelling studies also suggest the direction and magnitude of ITCZ migration 

is longitudinally heterogenous (Atwood et al. 2020; McGee et al. 2014), and millennial-scale changes 

to the ITCZ’s annual mean location (Roberts et al. 2017) is notably reduced compared to seasonal 

cyclicity (Donohoe et al. 2014). Moreover, the Mediterranean response to climate change differs 

from the averaged behaviour of regions at the same latitude (D’Agostino & Lionello, 2020) – thus the 

absence of a pronounced southward shift of the westerlies over SW Turkey may also result from a 

less pronounced ITCZ shift in this region. Despite this, a mean zonal southward shift across the entire 

NH, consequent elongation of the Polar Cell, and reductions in ambient temperature would likely 

still exert a significant cooling effect in regions north of the equator. Therefore, aridity induced by 

the YTT in SW Turkey may have been sustained by complex atmospheric feedbacks independent 

from air mass trajectories; with the latter exerting a dominant effect on rainfall composition rather 

than quantity. This mechanism would justify the hemisphere-wide aridity as observed not only in 

DIM-3-A’s geochemistry, but across the NH (Figure 24). Robust assessment of whether the YTT did 

invoke climatological perturbation will greatly benefit from ongoing analyses of high-resolution, 

well-dated stalagmite sequences across a broad geographical domain - by attenuating regional 

variabilities in atmospheric circulation/composition, and defining the refined sequence of events and 

synchronicity of change occurring across the YTT interval. 
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Figure 24: A stacked comparison of time-resolved Zn and Pb concentrations in DIM-3-A, δ18O measured in DIM-3 by 

Ünal-İmer et al. (2015), and δ18O records from other high-resolution, independently dated (U-series) Northern 

Hemisphere stalagmite archives (Secret – Carolin et al. 2013; Yangkou – Du et al. 2019., Zhang et al. 2017; Robinson – 

Polyak et al. 2017; Dim – Ünal-İmer et al. 2015. Appendix Table 1 provides more information on all caves featured. δ18O 

data is reported as per mil (‰) relative to the Vienna Peedee Belemnite (VPDB) standard. Circles with error bars at the 

top mark relative uncertainties for each stalagmite (colour coded according to record). YTT eruption timing (73.88 ± 

0.32 ka BP) estimated by Storey et al. (2012), based on 40Ar/39Ar dating. Red circles mark reduced depletion in δ18O 

observed following ~74 ka BP. 
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7.0. KEY IMPLICATIONS 

This thesis aimed to explore the applicability of speleothem trace element datasets for detection of 

explosive volcanism. Stalagmites NIED08-05 and DIM-3 were independently assessed for the 

presence of volcanic-derived signals within their geochemical sequence resulting from either direct 

ash deposition or sustained climate perturbation, respectively, which presented raise three key 

considerations for future study. 

Firstly, a comprehensive knowledge of karst structure and hydrology is required. Existing evidence 

from low-latitude records (e.g. Ünal-İmer et al. 2020; Jamieson et al. 2015; Badertscher et al. 2014; 

Frisia et al. 2008) combined with analyses presented here (Chapter I) suggest that shallow 

stalagmites grown in caves overlain by thin vegetation and soil cover, and modulated by a seasonally 

distinct hydrological cycle, may preserve volcanic ash fall signatures with greater success that those 

grown in temperate environments. However, it is unclear whether such findings are applicable at 

higher latitude sites, nor whether these hydrological characteristics would preserve longer-term 

impacts of volcanism with similar efficacy. Existing studies have also thus far focussed on 

characterisation of discrete ash fall events, rather than sustained perturbation of climate resulting 

from volcanic forcing. New evidence (Chapter II) tentatively suggests stalagmites grown under 

seepage flow regimes could retain evidence for millennial-scale, volcanic-induced climate change, 

yet robust assessment of these cause-effect relationships requires further evidence – sourced from 

annually resolved archives from a variety of latitudes, alongside well constrained eruption records. It 

seems not all stalagmites are suitable for paleo-volcanology, and environmental processes can 

attenuate the preservation of volcanic signatures within a stalagmite sequence. Continued research 

in this domain will ultimately allow for better constraint of karst systems yielding the most useful 

records for tephrochronological development. 

Secondly, use of PCA to trace discrete eruption events appears ineffective for millennial-scale 

sequences. From a geochemical perspective, coefficient outputs were successful in identification of 

incorporated exotic material, by highlighting correlations between individual elements such as Zn, 

Pb (DIM-3-A), and REEs (NIED08-05). However, individual eruption events could not be identified 

using PC scores alone. For NIED08-05, a large number of known eruptions between 0 – 3 ka BP 

combined with Niedźwiedzia Cave’s dynamic hydrological regime increased the ‘noise’ in the record. 

Subsequently, this increased the risk of volcanic signal attenuation by detrital particles, and so 

rendered distinguishing trace element enrichments caused by volcanic ash fall more challenging. 

Transient enrichments are also visible across the DIM-3-A time series, however, do not appear linked 
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to any known, well-dated volcanic eruptions. Research suggests stalagmites can record eruptions 

≤M6.0 (Jamieson et al. 2015) so it is possible enrichments in DIM-3-A result from ash fall produced 

by unknown, smaller eruptions; however this is difficult to assess given the largely incomplete 

nature of the pre-Holocene volcanic record. PCA outputs were also dominated by variabilities 

resulting from calcite-aragonite transitions following ~74 ka BP, potentially muting the visibility of 

transient enrichments resulting from ash fall.  Future studies should consider other dimension-

reduction data analysis methods for detection of volcanic-derived geochemical variabilities in pre-

Holocene sequences, because for these records eruption recording probability is < 100%, 

instrumental data is not available to confirm whether ash fall trajectories, and eruption dating 

uncertainties hinder robust attribution of these events to short-lived geochemical oscillations.  

Thirdly, this research reinforces the need to address prevailing gaps in eruption records – which 

serve as limitations for both stalagmites analysed in this study. Most notably in pre-Holocene 

records such as DIM-3-A, for whom only two eruptions satisfied all filter criteria/possessed robust 

dates with < 500-year uncertainties. This is most likely an artefact of poor preservation of smaller 

events, however even known eruptions are subject to ambiguities. For example, the YTT is one of 

the most studied eruptions of the Quaternary, yet its absolute date, sulfur yield, and plume 

dynamics, remain enigmatic (e.g. Costa et al. 2018, 2014; Baldini et al. 2015; Chesner, 2012); further 

complicating our ability to attribute the eruption to observed climatological oscillations. Eruption 

record incompleteness also affects analysis of Holocene archives such as NIED08-05, whose growth 

interval precedes the historical era of volcanic observation by >2000 years. Parameters such as 

plume height, tephra chemistry, particle morphology, and eruption timing all exert a substantial, 

independent influence on tephra preservation, so robust detection of transient ash fall relies on 

volcanological knowledge of ash fall trajectories whereby instrumental/satellite data is unavailable, 

sourced from tephrochronology and modelling studies.  

Despite the aforementioned limitations, there are evident benefits for utilising stalagmites in 

volcanology. Principally they can achieve similar chronological resolution to ice cores, and so provide 

a method for precisely constraining the timing and impacts of volcanic eruptions. By refining the 

techniques and analyses used to detect volcanic signals from complex geochemical datasets 

obtained from these records, we can gain distal evidence and thus key insights for 

undiscovered/lesser-known eruptions for which evidence may have degraded or become more 

difficult to find, and thus the volcano’s eruptive history has been hitherto ambiguous (Cook et al. 

2018). Such developments are also directly relevant to two other disciplines. The first is 

paleoclimatology. The high-chronological precision of stalagmite records means that, if volcanic 

signals are detected, these can act as time-stratigraphic markers for synchronization of marine and 
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terrestrial archives to better evaluate the environmental impact of volcanic forcing on decadal-to-

millennial timescales. In turn, this could supplement our understanding of regional ‘leads’ and ‘lags’ 

in the Earth’s climate system (e.g. Berben et al. 2020; Svensson et al. 2020; Timms et al. 2019; Lane 

et al. 2017), drivers of climate oscillations, global systems of atmospheric circulation and feedbacks, 

and synchronicity between climate events in the Northern and Southern hemispheres (Svensson et 

al. 2020, 2013; Sigl et al. 2015). The second discipline is natural hazard assessment. Diversifying the 

number of archives suitable for paleo-volcanic research will help to not only refine eruption 

chronologies, but also quantify patterns in volcanic system-specific eruptive tendencies and impacts 

– highlighting regions whereby volcanic hazards represent a poignant threat. Yet, these hazards are 

not strictly limited to direct eruption products (e.g. ash fall, gas emission), as climatological 

perturbation following exceptionally large eruptions may result in catastrophic alterations to ice 

extent (Zanchettin et al. 2014), sea level (Baldini et al. 2015), and biological cycles (Self & Blake, 

2008). Such possibilities prompt consideration of the risk volcanism poses on an intercontinental 

scale. Continued interrogation of paleoenvironmental archives in contemporary Earth Science can 

help prepare for when, unescapably, quiescent volcanoes stir, and in turn improve the efficacy of 

natural hazard management in a rapidly-developing world. 

Use of stalagmites in paleo volcanology is an evolving field, and the issues raised in this thesis mainly 

relate to knowledge gaps and chronological uncertainties – both of which have potential for 

improvement as new and existing stalagmite chronologies are refined. Future integration of studies 

investigating stalagmite geochemistry, regional climate, eruption records, and key environmental 

processes, will help to better deconvolute trace element enrichments caused by volcanic eruptions 

from karst-specific variabilities, and help to answer prevailing questions such as: 

o To what extent does tephra particle geochemistry influence their entrainment, 

deposition, and preservation within a karst system? 

o What are the timescales of ash transfer from surface to stalagmite? 

o How can we use stalagmites to define the causes of abrupt, volcanically-forced 

climate change?  

8.0. CONCLUSIONS  

 Stalagmites can provide insights into the characteristics and consequences of explosive volcanic 

eruptions. Records from Belize (Jamieson et al. 2015), Turkey (Badertscher et al. 2014), and Italy 

(Frisia et al. 2008) present encouraging geochemical evidence for preservation of Holocene ash 

fall events, and millennial-scale records from Borneo (Carolin et al. 2013), China (Du et al. 2019), 
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New Mexico (Polyak et al. 2017), and Peru (Cheng et al. 2013) highlight potential for constraint 

of climatological perturbation resulting from high-magnitude volcanism of the Last Glacial 

Period.  

 This study presents interpretations of two stalagmite trace element datasets grown under 

spatially and temporally discrete climate regimes, with the aim testing the sensitivity of the 

stalagmite volcanic archive and ultimately addressing the question: can stalagmite trace element 

geochemistry preserve evidence of explosive volcanism? 

 Stalagmite NIED08-05 (Niedźwiedzia Cave, SW Poland) shows discrete REE enrichments with a 

potential volcanic source, however links between these enrichments and the Holocene eruption 

record are inconsistent. A constant supply of dripwater combined with a dense forest and 

soil/debris cover likely obfuscates signal preservation which, coupled with uncertainties relating 

to the presence of paleo-entrances to the cave, confounds any attempt to differentiate the 

influence of dry and/or wet volcanic ash deposition on the calcite sequence. For detection of 

transient ash fall events, shallow stalagmites modulated by seasonally pronounced rainfall may 

preserve volcanic signatures with greater success that those grown in temperate environments 

overlain by a thick organic debris horizon and dense vegetative cover.  

 The DIM-3-A (Dim Cave, south Turkey) record shows enrichment of trace elements associated 

with increased bedrock dissolution (e.g. Zn), atmospheric dust flux (e.g. Pb, Th), supersaturation 

of dripwater (e.g. Mg), and formation of aragonite - evidence for a distinct reduction in karst 

moisture availability following ~74 ka BP. Indicative of paleo-aridity, the onset occurs in 

concurrence with the Youngest Toba Tuff super-eruption, Indonesia. It is possible that millennial-

scale reorganization of major atmospheric systems in the NH resulting from volcanogenic 

aerosol injection promoted more arid conditions, explaining the abrupt and sustained (~2 kyr) 

changes seen in DIM-3-A. Chronological uncertainties coupled with incomplete knowledge of 

Eastern Mediterranean climate dynamics hinders confident attribution of these changes to 

volcanic-induced forcing by the YTT. However, the temporal coincidence between significant 

enrichments of extraneous, aridity-indicative trace elements in the DIM-3-A record, widespread 

records of drying following ~74 ka BP in the NH, and the largest known eruption of the 

Quaternary, is certainly worth further study. No geochemical variability is observed following the 

Los Chocoyos eruption, Guatemala, suggesting this event did not significantly impact East 

Mediterranean climate.  

 Principal Component Analysis is a promising technique for analysis of multi-variate, high-

resolution speleothem datasets. However, it appears best utilised as part of a ‘forensic’ 

approach – combining analyses of stalagmite geochemistry, regional climate, and key 
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environmental processes to successfully deconvolute trace element enrichments caused by 

volcanic eruptions from seasonal climate oscillations and/or local processes. In this study, PCA 

appears most valuable for identifying correlations between trace elements originating from 

outside the karst system.  

 This study raises key considerations for future use of stalagmites in recording the direct and/or 

indirect effects of distal volcanism which include cave location, hydrology, chronological control, 

and constraint of eruption dates/parameters. Nonetheless, continuing to test the limits of 

discrete stalagmite archives in a volcanological context will ultimately allow construction of 

robust, low-latitude, and high-resolution tephrochronologies. Integrating these records into 

regional networks of sedimentary, lacustrine, marine, and archaeological archives, will not only 

help to improve eruption dating, but also constrain climatic transitions using volcanic events as 

time-stratigraphic markers.  
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Appendices 

. 
Figure S1: Wrocław mean monthly event precipitation 18O values from Gorka et al. (2008) ranged from -1.95 per mil 

VSMOW in June 2004 to -13.9 per mil VSMOW in March 2005. These data suggest a strong positive temperature effect 

on precipitation 18O in this region of SW Poland (r2 = 0.61;  p < 0.01) whilst the amount effect is not significant (r2 = 

0.16; p = 0.2).  Precipitation samples collected at Niedźwiedzia cave for the present study ranged from -3.7 and -11.1 per 

mil VSMOW (black arrows). 
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CAVE LOCATION LATITUDE 
(N) 

LONGITUDE 
(E) 

DATING 
TECHNIQUE 

CHRONOLOGY 
CALCULATION 

REFERENCE 

DIM  Turkey 36.3 32.06 U-series COPRA Ünal-İmer et al. 
(2015) 

SANBAO  China 31.7 110.4 230Th COPRA Wang et al. 
2008) 

YONGXING  China 31.6 111.2 230Th Not stated  Chen et al. 
(2016) 

YANGKOU  China 29 107.2 U-Th Oxcal Du et al. (2019), 
Zhang et al. 
(2017) 

SECRET  Borneo 4 115 U-Th Linear interpolation Carolin et al. 
(2013) 

ROBINSON  USA (New 
Mexico) 

33 
 

-108 U-series COPRA Polyak et al. 
(2017) 

 

  

Table S1: Further information on stalagmite records utilised in Chapter II, Figures 25 and 27 
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