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Abstract

Health monitoring of large pipeline networks is of great importance for any country

or industry. The malfunctioning of these networks may produce economic losses

as well as environmental crisis. Non-Destructive Evaluation (NDE) techniques are

implemented to ensure proper monitoring of pipeline networks without interfering

with their operation. The Magnetic Flux Leakage (MFL) method utilises magnetic

fields to detect cracks and corrosion defects on the surface of a pipe, MFL signals

are then processed to characterise the detected defects. Recent research has fo-

cused on using monopolar Hall-Effect sensors to collect MFL data in order to detect

regular-shaped defects. This thesis proposes a method that uses image-processing

techniques for defect detection and size estimation. An experimental setup is de-

signed in order to collect MFL signals using 3D GMR sensors and reconstruct 2D

images. The approach is then replicated in a simulated environment and is tested

with irregular-shaped defects in order to evaluate its accuracy with non-standard

defects and attempt depth estimation by designing a novel mathematical depth

function that uses the average strength of MFL signals.
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Chapter 1

Introduction

Health monitoring of structures is a commonly addressed challenge in engineering in

order to develop techniques that can accurately predict potential risks and help in

the decision making of carrying out pertinent maintenance. Pipeline networks are an

example of large structures with a high level of importance since they can be found

in a variety of locations such as in industries, hospitals, and houses in a smaller scale,

as well as the larger pipeline networks of an entire city or country. Furthermore,

most of hydrocarbon transportation is made via pipelines due to the reliability and

viability of this method in terms of the economy of a country. According to a report

published in 2019, the United Kingdom has a vast pipeline network that covers over

38000 km, which mainly consists of gathering, transmission, and distribution lines

of oil, gas, and refined products [1]. Moreover, the United Kingdom’s oil and gas

revenues produced 316 million pounds for the 2016-17 fiscal year [2], and recent

reports indicate that these revenues increased to 1.1 billion pounds for the 2017-18

fiscal year [3, 4]. Consequently, failure in pipeline systems can be costly not only

through direct losses (repair or replacement costs), but also through indirect losses

such as public safety and environmental impact, e.g. the Buncefield Incident [5].

The size and economic importance of this infrastructure makes imperative the need

for proper health monitoring techniques in order to ensure its integrity and optimal

operation.

The development of such monitoring techniques represents a challenge for en-

gineering researchers and is the motivation of this thesis. Furthermore, this task

1



1.1. Research Aims 2

becomes more complex since the majority of oil and gas pipelines are either under-

ground or under water, thus special tools and techniques must be applied for their

inspection without affecting the operation of the system. This thesis investigates

Non-Destructive Evaluation (NDE) or Non-Destructive Testing (NDT) techniques

and concentrates on the Magnetic Flux Leakage (MFL) method in order to develop

a methodology for the detection and size estimation of metal loss defects on the pipe

surface. These defects are produced by corrosion on the pipe wall, and accurate de-

tection and quantification is needed in order to avoid leakage of the products being

transported (e.g. oil, gas, petrol).

In order to develop a methodology to detect and estimate the size of metal loss de-

fects, simulated and experimental work was conducted. The proposed methodology

implements image processing techniques such as edge detectors and morphological

operations to carry out defect detection and characterisation of irregular-shaped de-

fects. The three orthogonal components of MFL signals are investigated in order

to reconstruct 2D images. Initially, these signals are generated using the Finite

Element Method (FEM) in a simulated environment. This approach is then tested

with an experimental setup in which MFL signals are collected using an array of 3D

Giant Magnetoresistive (GMR) sensors in order to validate the methodology. The

work presented in this thesis has been conducted pursuing the objectives described

in the following section.

1.1 Research Aims

The MFL method has been utilised for research on pipeline monitoring techniques

under numerous approaches that include computational perspectives, experimental

work as well as signal processing techniques. However, some of said previous re-

search have only focused on one aspect to study the MFL method, either by only

exploring numerical simulations, MFL signals processing and analysis, or experimen-

tal approaches. Moreover, the focus has mainly been on regular-shaped defects (i.e.

rectangular, ellipsoidal) as well as on measuring only one of the MFL components.

The present thesis will look into the MFL method with a combination of simulated

June, 2020
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and experimental modelling. The experimental model will work as the foundations

of this study in order to design, implement and test a measuring tool that uses

3D GMR sensors and collect relevant data. The simulated model will be used to

validate de experimentation and compare the generated data in order to develop

an image-processing based method to carry out defect detection and quantification.

For this reason, three main objectives are pursued here:

1) The use of 3D GMR sensors to collect MFL data for each of the three MFL

components.

2) Detection of defects of irregular shape on the surface of a pipe by analysing

the three MFL components to reconstruct 2D images.

3) Accurate size estimation of irregular defects by applying image processing

techniques.

Additionally, a brief description of the activities conducted in this thesis is listed

below:

1. A general review of previous work related to corrosion defects detection and

characterisation using the MFL method.

2. An FEM simulation in which MFL data is generated using the software COM-

SOL Multiphysics is presented.

(a) A modification of the magnetiser system is proposed to adhere to the con-

ditions of the real pipe used for the experiments in this research project.

(b) Different types of defects will be studied to provide a comparison of the

generated signals based on the geometry of defects. Regular and irregular

shaped defects will be explored.

(c) Collection of simulated MFL signals as well as their decomposition in

three orthogonal components Bx, By, and Bz.

(d) The effect of the sizes of the pipe and defect over the MFL signals is

explored.

3. A methodology to analyse and process the simulated MFL signals.

June, 2020



1.2. Thesis Layout 4

(a) The simulated MFL signals will be used to reconstruct 2D images from

which defects can be detected with an algorithm written in Matlab.

(b) A combination of image processing techniques such as edge detectors and

morphological operations is implemented to carry out defect detection.

(c) Size estimation of the detected defects is achieved by geometrical and

numerical approximations.

(d) A novel function that describes the relationship between the average MFL

signals strength and defect’s depth is described.

4. An experimental model to validate the results drawn from the simulations.

(a) Design and modelling of the experimental set-up in which a steel pipe is

magnetised in order to carry out MFL inspection.

(b) Design and modelling of the modified magnetiser used to magnetise the

steel pipe from outside.

(c) Design and modelling of the sensor system applied to collect MFL data

using 3D GMR sensors.

(d) Design and modelling of the motor system to move the magnetiser and

sensor system along the pipe surface.

5. A methodology to analyse experimental MFL signals.

(a) Iterative readings, collecting data from several points until a predefined

scan surface is covered.

(b) De-noising and signal filtering to remove parasite signals.

(c) Image reconstruction using real MFL signals in order to test the proposed

defect detection methodology.

1.2 Thesis Layout

This thesis is grouped into 7 chapters which include the theoretical, simulated and

experimental aspects of irregular-shaped defects detection on a steel pipe with the

utilisation of GMR sensors applying the MFL method.

June, 2020
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Chapter 1 establishes the importance of health monitoring through NDE tech-

niques in order to ensure the optimal operation of product transmission pipelines.

The scope, motivation and structure of this thesis is also addressed here.

Chapter 2 includes a brief summary of pipeline health monitoring as well as

NDE methods. The theory behind the MFL method is also presented. A general

review of previous work regarding the MFL method is also included, and research

gaps are identified as well.

Chapter 3 details the design and construction of the proposed experimental

model. Design of the needed circuitry for this model is also included. The operation

of the proposed experimental setup is described here. Data collection, organisation

and storage is also addressed.

Chapter 4 addresses the processing, analysis and denoising of data generated in

the experimentation. The principle of the proposed image-processing based method

is described here.

Chapter 5 contains a detailed description of the proposed simulated system

to detect defects on the surface of a pipe. A brief review of the software used to

carry out the simulations is also given here. The algorithm proposed to analyse the

simulated MFL data is described here. Width and length estimation of the detected

defects is addressed here. A new mathematical function to estimate defect’s depth

is described in this chapter.

Chapter 6 discusses the results obtained from both the simulations and the

experiments. The challenges of both aspects are also addressed here.

Chapter 7 summarises the present research and provides the conclusions derived

from it as well as its contributions to the field. Suggestions for further work are given.

June, 2020



Chapter 2

Literature Review

2.1 Pipeline Health Monitoring

Pipeline health monitoring is achieved by the utilisation of NDE methods to detect

anomalies that may be caused by long time deterioration or other external factors

such as humidity or pressure. Depending on the nature of the specimen, there

is a wide variety of NDE techniques available that can be used to determine its

health state, ranging from simple methods such as Eye Inspection or Leak Testing

[6] to more complex and specialised techniques such as Eddy Current Inspection,

Radiographic Testing, Ultrasonic Testing, and Magnetic Flux Leakage, to name

but a few. The common applications, advantages and limitations of each of these

methods are shown in Table 2.1 [6–8].

Since pipelines are mostly buried or underwater, some of the aforementioned

NDE methods may not be easy to implement for pipeline health monitoring. How-

ever, the MFL method has been widely applied using special tools and techniques

called In-Line Inspection (ILI) [9]. These tools are also named Smart Pipeline In-

spection Gauges (Smart PIGs), and their operation consists of travelling inside the

pipe while gathering relevant data. Fig. 2.1 shows an example of a PIG tool [10].

Industrial PIG tools combine several types of sensors and techniques in order to

acquire as much information as possible so that the accuracy of flaw detection in-

creases. The focus of this thesis is on the PIG tools in which the main inspection

technique is the Magnetic Flux Leakage (MFL) method for metal loss defects on the

6



2.2. Theory of the MFL Method 7

surface of a pipe due to corrosion. The theory behind the MFL method is described

in the following section.

Table 2.1: Comparison between NDT techniques

Figure 2.1: PIG tool

2.2 Theory of the MFL Method

The MFL method has been evolving since the 1960s and is one of the NDE techniques

most commonly used for the inspection of oil and gas pipelines in the search for

June, 2020



2.2. Theory of the MFL Method 8

metal loss defects due to its high accuracy [11]. The principle of the MFL method

relies on the high-permeability property of ferromagnetic materials. This property

allows the material to be magnetised by an external uniform magnetic field produced

by a permanent magnet or a coil. When a ferromagnetic material (e.g. a steel

pipe) is magnetised, a magnetic circuit is created in which the magnetic field lines

are constrained in the material and flow through it. Contrarily, when there is a

discontinuity on the material due to a metal loss defect, the magnetic field lines

will leak out of the surface. This magnetic leakage can be measured by magnetic

sensors such as Hall-effect sensors or GMR sensors [11–16]. The principle of the

MFL method is summarised in Fig. 2.2.

Figure 2.2: Magnetic Flux Leakage Principle

The MFL method is governed by Maxwell’s equations for static magnetic fields,

which establish the relationship between the magnetic flux density and the magnetic

field intensity. Maxwell’s equations are shown below:

∇× ~H = ~J (2.2.1)

∇ · ~B = 0 (2.2.2)

where ~B, ~H and ~J are the magnetic flux density, the magnetic field intensity, and the

current density, respectively. Furthermore, the aforementioned relationship between

the magnetic flux density ~B and the magnetic field intensity ~H is given by

~B = µ ~H (2.2.3)

where µ is the relative permeability of the material in which the magnetic fields flow,

and is defined as the ability of a given material to be magnetised by an external

June, 2020



2.3. Influencing factors in MFL Inspection 9

magnetic field. This relationship indicates that ~B depends on the changes of ~H as

well as the variation in the relative permeability µ. Additionally, this relationship

is affected when ferromagnetic materials are magnetised by an external magnetic

field (e.g. permanent magnets, coils) [12,17,18], consequently (2.2.3) is modified as

follows

~B = µ
(
~H + ~M

)
(2.2.4)

where ~M is the magnetisation vector. According to the MFL principle previously

described, when a magnetic field is applied to a ferromagnetic material with a certain

µ value and there is a discontinuity on the material’s surface, µ will vary at this

location due to the different medium in which the magnetic flux is passing through

(e.g. gas, oil, air), making the magnetic flux leak to this other medium and thus

detectable by a magnetic sensor.

2.3 Influencing factors in MFL Inspection

The MFL inspection method is not exempt from being influenced by external factors.

Examples of these influencing factors that affect the efficiency of the monitoring

method include the thickness of the material, the distance between the magnetic

poles, the magnetic remanence, variations in the liftoff of the sensors (i.e. the

distance between the specimen and the sensors), and the scanning speed, but also the

sensitivity of the sensors, the magnetising field, and noise have to be considered [11].

Furthermore, the probability of detection of pitting defects using MFL inspection

can also be affected by unmaintained equipment, untrained operators and also the

cleanliness of the scanning surfaces has an impact on the accuracy of the method.

“With well-maintained equipment, trained and conscientious operators working on

clean unpitted scanning surfaces on material thicknesses up to 10mm thick losses of

20 %(sometimes as low as 10%) can be reliably detected.” [19]

To this extent, attempts to enhance the signal-to-noise ratio (SNR), which is

the ratio between relevant signals with respect to noise signals, have been explored

in [13]. In their approach, they collected MFL data from a seamless steel pipe,

implemented a normalised least mean squared (NLMS) adaptive filter, and finally
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2.3. Influencing factors in MFL Inspection 10

applied wavelet denoising techniques to remove the remaining noise. Similarly, a

signal compensation methodology was presented in [14] under the argument that

the movement of the PIG induces parasite magnetisation on the pipe wall. Their

approach uses a combination of neural networks, LMS adaptive filters and wavelet

shrinkage denoising in order to clean the signals. Another research that analyses

MFL signals from seamless pipes is presented in [20]. Here, signals from individual

sensors are compared with a prediction of said signals in order to estimate the error

and detect defects with it.

Furthermore, regarding the sensing speed, reference [21] mentions that the sen-

sors’ optimal location for high speed applications had been overlooked and for that

reason proposed a 2D FEM simulated study which explored the effect of different

moving speeds and found that the MFL signals distort due to the induced mag-

netisation. Additionally, these influencing factors are mentioned in [22] but the

emphasis is on the scanning speed. Here, a spherical defect was analysed in a 2D

simulated environment in order to compare the average magnetic flux in both static

and moving scenarios. Moreover, the influence of the orientation of defects over the

MFL signals was explored under the argument that this orientation hinders defect

detection.

As stated in [23], because the intensity of MFL signals is strongly dependent on

the liftoff of the sensors, the variations in this parameter produce distortion on MFL

signals. For that reason, they proposed a liftoff compensation method with which

they attempted to improve the SNR considering the influence of the defect region

and non-defect region over the MFL signals. Alternatively, the research presented

in [24] looked into the effect of different magnetisation strength over the generated

MFL signals. To achieve this, they considered the MFL signals as a function of the

defect’s depth, arguing that this feature is strongly related to these signals. In their

approach, they proposed a magnetiser with multiple stacked rectangular permanent

magnets. The gap between each magnet was varied, and also the distance between

the poles and the liftoff were modified. However, their measurements were limited

to only one of the three MFL components.

As described in this section, most of the cited publications studied the impact of
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2.4. Defects Detection Through MFL 11

different influencing factors over the MFL signals, and looked at this from a signal

processing perspective, making evident the importance of signal denoising. The

experiments conducted in the present research considered the sensing speed and the

liftoff of the sensors to evaluate their effect over the MFL signals.

2.4 Defects Detection Through MFL

The MFL method has been investigated from different perspectives, focusing on

various aspects. An example of this is the Magnetic Dipolar Method (MDM) used

in [25], where a multiple neighbouring defects case was explored since past work

had been limited to the study of individual simple defect geometries. Here, the

interaction of the neighbouring defects and their effect over the MFL signals was

explored, and accurate length estimation of defects was achieved. However, since

this work concentrated on 2D defects, the study was expanded in [26] to predict the

three orthogonal components of 3D defects. Here, a circular defect was examined and

the results were used to conclude that the pattern of the MFL signal components

can be used to predict the shape of the detected defects. In order to validate

their conclusions, this work was extended in [27] to include simulations as well as

looking into the effect of different lift-off values over the definition of the signals.

Furthermore, arguing that the focus had been only on the Bx and Bz components

of the MFL signals, they also investigated the contribution of the By to predict

the location of defects as well as facilitate the characterisation of irregular defects.

Finally, in order to study defects of irregular shape, they improved their model

in [28] and validated their results with simulations.

The MDM was also applied in [29], and the MFL response obtained with this

method was compared to that of the Finite Element Method (FEM) in order to test

the efficiency of the proposed Basic Signal Combination Method (BSCM). This re-

search focused on individual line scans (basic signal) and studied rectangular defects

to find the relationship between the basic signal and the geometry of the defects. As

the authors mention in their publication, their contribution could be used to create

a database of common defects with their basic signals. However, their method is
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2.4. Defects Detection Through MFL 12

limited to signal processing and, according to [30], the robustness of systems that

rely on signal processing techniques is affected by noise in the measurements, and

for this reason they applied image processing techniques such as edge detectors and

convolutional neural networks (CNN) (i.e. a type of neural network specialised in

extracting features from images). Furthermore, their work pursued a differentiation

of injurious defects (i.e. crackline anomalies and metal losses) from non injurious

defects (i.e. noise events, pipe deformations and manufacture irregularities) arguing

that an incorrect identification of the detected defects in a pipe could result in a

waste of time and resources, in the best case scenario, or hydrocarbon leakage in

the worst case. The CNN approach was tested later in [31] in order to compare

it against a new visual transformation CNN, which showed improvements in defect

size estimation but limited to a specific size range. Finally, this work was expanded

in [32] in order to classify the different MFL responses after inspection is completed.

Similarly, the work presented in [33] concentrated on identifying two types of

defects: bump defects and concave defects. They followed this approach under

the idea that bump defects had been overlooked and all the inspection equipment

is calibrated for concave defects. Among their findings is that the bump defects

produce negative magnetic leakage, i.e. the basic signal for this type of defect is the

inverse of that of concave defects. They studied scenarios with rectangular concave

defects, rectangular bump defects, and a combination of a rectangular bump defect

with a rectangular concave defect on it, and proposed a methodology for obtaining

the overall MFL signals for these scenarios.

Moreover, another MFL imaging method is presented in [34] in order to study

the three components of MFL signals. According to this research, most present

MFL inspections consist of 1D MFL measurement, which is simpler than 3D MFL

measurement since the latter needs more sensors, making the MFL tool more com-

plicated. However, they also state that it is crucial to measure the 3D signals since

they contain information about the detected defects. For this reason, they proposed

a methodology in which only one component is measured (Bz ) and the other two are

calculated by applying partial derivatives to the measured signal. They tested their

method by predicting the 3D MFL signals of a rectangular defect using the MDM
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2.5. Defects Characterisation Through MFL 13

approach and compared this with the components that were calculated with partial

derivatives. After the three components are obtained, image processing techniques

(image binarisation) are used to carry out defect detection.

From the previously cited studies, the importance of decomposing MFL signals

into their three components is crucial in order to develop accurate and efficient

monitoring techniques. Additionally, most of the research reviewed in this section

concentrated on regular-shaped defects and overlooked irregular-shaped defects. Fi-

nally, it can be concluded that MFL imaging methods have been taking over MFL

signal processing methods.

2.5 Defects Characterisation Through MFL

The most important aspect of MFL inspection is to determine the size and depth of

the detected defects. To that extent, the work presented in [35] and [36] proposed

a methodology to estimate the Maximum Safe Operating Pressure (MAOP) of a

pipe. As they mention in their publications, this parameter can be calculated by

analysing the geometry of the detected defects, in other words by estimating their

length, width and depth. Additionally, they state that the emphasis should be on

the depth of defects since this feature has a greater impact on the safe operation

of pipes. They proposed a methodology that provides a 2D representation of the

measured signals by applying Haar wavelets and the Discrete Wavelet Transform.

Furthermore, they also used Radial Basis Function Neural Networks to predict MFL

signals for a given depth profile. They concluded that the results of their research

can increase the accuracy of MAOP estimation.

A different experimental investigation presented in [37] used a simulated MFL

model in order to design an image-based detection algorithm and validate it with

MFL data collected from a real pipe using a PIG tool with a combination of Hall-

effect sensors and coils. Moreover, different types of standardised defects were stud-

ied here: General, Pitting, Axial Grooving, and Circumferential Grooving, according

to the definitions provided by [38]. Later, this research was extended in [39] with

a width estimation method that was tested with both simulated and experimental
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MFL data. Although the same types of defects were studied here, the main focus

was on ellipsoidal defects. Defect detection was achieved in both the simulated and

experimental models and the proposed width estimation algorithm produced accu-

rate results. Finally, continuing this line of research, a length and depth estimation

methodology was proposed in [40]. Once more, the same defect categories were ex-

amined, but mostly ellipsoidal defects were studied. Defect length was estimated

by examining the contour plots of the MFL signals. Depth estimation was achieved

with the use of a Gaussian Radial Basis Function Neural Network with the estimated

width and length, and the signal peak values as inputs.

Moreover, a similar methodology was followed in [41], where the quadratic re-

lationship between the defect’s depth and the peak amplitude of the MFL signals

was explored in order to design an equation with which the depth of defects could

be estimated depending on the estimated width and length. Later, this depth esti-

mation method was improved in [42], adding data normalisation and data averaging

steps. However, both the original and enhanced methods depend on a lookup table

from where the shape factors of standard defects are taken as the coefficients of the

proposed Depth Equation and modified iteratively by polynomial surface fitting.

Analogous to this, an almost linear relationship between the average strength of

the MFL signals and the defect depth was explored in [43]. With this finding, the

depth of defects could be accurately estimated via linear fitting. However, this study

focused on flat surfaces and square defects of regular depths.

Finally, another experimental method is presented in [44] following an imaging

approach in order to quantify defects of complex shapes and irregular depths. They

used four different orientations for the magnetisation of the specimen and obtained

images from MFL signals. However, these images are not created from MFL signals.

They explain that these images are captured using a CCD camera, which is triggered

when a magnetic sensor detects magnetic leakage.

With the reviewed publications in this section it can be concluded that imaging

methods have been popular in MFL research to characterise corrosion defects. Ad-

ditionally, approaches that use artificial intelligence techniques have been followed

in those experimental research that obtained large amounts of MFL data. However,
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2.6. Measurement of MFL Signals 15

most of the publications cited here concentrated on regular and standardised defects.

2.6 Measurement of MFL Signals

As previously stated, the experimental publications cited in the previous sections

have used industrial-size PIG tools with large sensor arrays, allowing them to col-

lect huge amounts of samples, which explains why these approaches utilised neural

network techniques. Different types of magnetisation techniques were also explored,

as shown in [45], which comments on the effects of axial and circumferential mag-

netisation over metal loss defects.

Furthermore, the majority of these experimental investigations have in common

the use of Hall-effect sensors to carry out their measurements. According to [46], this

type of sensor is cheap and reliable under tough temperature conditions. However,

he also mentions that, apart from the Hall-effect, there are several other meth-

ods to measure the MFL signals. Examples are electromagnetic induction and the

magnetoresistive effect, as well as magnetic resonance imaging and magneto opti-

cal methods. Although Hall-effect sensors are the most commonly used, they also

have a high noise level and low sensitivity, thus requiring amplification circuitry.

Additionally, the magnetic fields should be perpendicular to the device so several

sensor arrangements have to be used in order to detect the three orthogonal compo-

nents [47,48]. An example of these specific sensor arrangements can be seen in [49]

where a combination of the MFL method with the Pulsed Eddy Current method is

proposed for high speed inspection applications.

For these reasons, the use of Giant Magneto Resistive (GMR) sensors was ex-

plored in [48]. Here, this type of sensor is described as a multilayer structure con-

taining magnetic and nonmagnetic thin layers arranged in a specific way so that

there is a unipolar response to the applied magnetic field. A similar approach was

followed in [50], where a GMR probe was used to detect MFL signals of a ferrous

plate that was axially magnetised, under the idea that defects cannot be detected

when they are aligned with the magnetic flux. However, they focused their research

on detecting regular-shaped defects using monopolar GMR sensors. Furthermore,
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monopolar GMR sensors were also used in [51] in order to perform MFL inspection

on a steel pipe in a similar manner as the publications cited before. With the ad-

vancement and the improvement of nanotechnology techniques, smaller layers are

achieved, hence smaller GMR chips are manufactured with the ability of measuring

the three components of magnetic fields such as the experiment performed in [52].

Here, 3D GMR sensors were used to study their possible advantages in MFL inspec-

tion. However, this study concentrated on cracked rail heads with long rectangular

cracklines.

As described in this section, most of MFL inspection is conducted by using Hall-

effect sensors although they are unipolar and the importance of measuring the three

MFL components has been addressed.

2.7 Research Gaps

The previous general review of past MFL research makes evident that the focus has

mainly been on the study of regular-shaped defects such as rectangular or ellipsoidal

defects. These studies have been conducted by collecting MFL data using arrays of

Hall-effect sensors. Signal processing techniques have been implemented in order to

find the key features that define the presence of defects on the specimen’s surface.

However, most of these signals were obtained using unipolar magnetic sensors, de-

spite the need for analysing the three MFL components. Attempts to measure the

three MFL components have been made by combining Hall-effect sensors in specific

arrangements so that they are perpendicular to each of the components, however

this implies the use of one sensor chip for each magnetic axis, which leads to huge

amounts of sensors in one PIG tool. Additionally, although 3D GMR sensors have

been used before in MFL inspection to measure the three components with a single

chip, this research has concentrated on detection of regular-shaped defects as well

as their orientation [50].

For these reasons, this thesis presents a method in which 3D GMR sensors are

used for MFL inspection in order to find irregular-shaped defects and estimate their

size. Signal processing techniques will be used to clean the measured signals but
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afterwards imaging techniques will be applied to detect and characterise the afore-

mentioned defects. Moreover, it should be noted here that the conditions of the

studied specimen in this thesis are different than those of the pipes analysed in the

cited publications, where large pipeline structures were scanned. Conversely, the

pipe used to carry out this investigation is sufficiently small to implement a PIG

tool similar to those shown before in this chapter. Therefore, a modification of the

regular MFL inspection tool will be designed in order to determine whether the

MFL method can be effectively applied from the outside of the pipe, having more

control over the sensing speed and liftoff value.

The following chapter describes the design of the proposed 3D-sensor based sys-

tem as well as its implementation in an experimental setup with a steel pipe.
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Chapter 3

Design and Implementation of a

3D-Sensor Based System

An experimental model is proposed which is based on the idea of measuring the

three components of the magnetic fields with the use of 3D GMR sensors. This

experimental model includes a steel pipe that is magnetised by a pair of permanent

magnets joined by a steel bar. The magnetiser is mounted on a threaded rod and

moves along the pipe with the help of a motor coupled to the rod, while a set of

GMR sensors collects the generated MFL signals. These signals are logged into a

PC using an Arduino UNO board via serial communication. The following sections

will describe the construction process of the aforementioned experimental model

including a description of the parameters used for it and the parts that it contains.

A description of the operation of the model is also given in this chapter. The design

and construction of the model presented in this chapter was conducted entirely by

the author of this thesis, unless otherwise stated.

3.1 Construction Process

3.1.1 Steel Pipe

The studied specimen in this experimentation is a carbon steel pipe that can be seen

in Fig. 3.1. The pipe is 1 m long and has an outer diameter of 101.6 mm with a
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3.1. Construction Process 19

wall thickness of 2.5 mm. Moreover, this pipe has a rectangular crack that will be

used for the initial test. The crack is shown in Fig 3.2.

Figure 3.1: Steel Pipe. a) Length of pipe. b) Diameter of pipe.

Figure 3.2: Rectangular crack on pipe

3.1.2 Magnetiser System

In order to magnetise the pipe described in the previous section, a magnetiser sys-

tem was modelled using Solidworks. This magnetiser includes a pair of permanent

magnets joined by a steel yoke and two steel pieces that work as the steel brushes in

the regular MFL principle described in Chapter 2. The magnets used here are N52

NdFeB magnets with a pull force of 15.1 kg, which means they are strong enough

to magnetise the pipe near saturation. The magnetiser system was constructed de-

pending on the dimensions of the magnets, which are 40 mm × 20 mm × 5 mm.

These magnets were attached to each end of a 92 mm × 40 mm × 12 mm steel bar,

and the steel brushes are attached on the other face of each magnet. Since the pipe

used for this study is small, construction of a PIG system similar to those found in
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the literature was difficult and for this reason these brushes were modelled in such

a way that the circular section on them has the same radius than the pipe, meaning

that the magnetiser will move on top of the pipe in the axial direction. This mod-

ification was used in order to investigate the efficiency and reliability of the MFL

method applied from the outside of a pipe. The modified magnetiser previously

described is shown in Fig. 3.3.

Figure 3.3: Magnetiser System

Furthermore, in order to achieve the axial movement of the magnetiser system

on top of the pipe, a special holder was designed for it. This magnetiser holder is

shown in Fig. 3.4.

Figure 3.4: Magnetiser Holder

3.1.3 Magnetiser Driver and Pipe holder

As mentioned before in this thesis, the MFL method is applied in the industry using

PIG tools. However, due to the conditions of the pipe used in this study, the method

had to be modified as described in the previous section with the magnetiser moving

on top of the pipe. To achieve this movement, a driving system was created, which

consists of a motor coupled to an M10 threaded rod so that the rotational move-

ment is translated into linear movement, following the endless screw simple machine

principle. The magnetiser holder previously shown is clamped to the threaded rod,

whereas the pipe rests in its own holder. This setup is shown in Fig. 3.5, including

the pipe, the threaded rod, the magnetiser system on its holder, and the motor

coupled to the rod and fixed with a clamp.
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Figure 3.5: Complete experimental model

3.1.4 Model Assembly

Once the CAD model was finished, the materials were purchased and the assembly

was conducted in the Mechanical Workshop by the technicians in charge. Fig. 3.6

shows the various components of the experimental model, including the freshly cut

wooden pieces that support the pipe and the magnetiser holder in Fig. 3.6(a), the

magnetiser holder with the threaded plastic bushes that fix it to the threaded rod in

Fig. 3.6(b), the magnetiser system in Fig. 3.6(c), and the right end of the threaded

rod clamped with two M10 hex nuts in Fig. 3.6(d). Moreover, as it can be seen

in Fig. 3.6(e), there is a difference with the pieces that support the pipe from the

original design, this was changed in order to modify the height of the pipe and thus

vary the distance between the pipe and the sensors, i.e. the lift-off value.

3.1.5 Sensor System and PCB Design

As previously stated, past MFL research has concentrated on the use of Hall-effect

sensors, although they are monopolar and need to be arranged in different config-

urations so that they can measure the three components of the MFL signals. For

this reason, 3D GMR sensors are used here since they can measure the three MFL

components with a single chip.

The sensors used here are the LSM9DS1, manufactured by ST Microelectronics,

which are embedded in the MIKROE-1996 Inertial Measurement Unit (IMU) made

by MikroElektronika. The chip on this board contains a combination of three types
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Figure 3.6: Experimental Model Assembly. a) Wooden cut out pieces. b) Magnetiser on holder with bushes. c)

Magnetiser. d) Clamped threaded rod. e) Complete model

of sensors, including a 3-axis gyroscope, a 3-axis accelerometer, and a 3-axis mag-

netometer. This combination of sensors allows the board to be used in navigation

applications, smart user interfaces or virtual reality input devices. However, for the

purposes of this thesis, only the 3D magnetometer will be used. The MIKROE-1996

IMU operates within a supply voltage range of 1.9 V and 3.6 V, has I2C serial com-

munication capabilities, and allows the user to enable the three sensors separately.

The magnetometer’s full scale sensitivity ranges from ±4 to ±16 gauss. The board

also includes internal amplifiers and a 16-bit A/D Converter, as shown in the block

diagram contained in Fig. 3.7. Here, the three GMR sensors can be seen on the left

hand side in a Wheatstone Bridge configuration [53].

Two IMU boards are used in the proposed experimental model, they can be seen

in Fig. 3.8 mounted on a special board that fits on top of an Arduino board. This

setup was used for the initial tests with the sensors. A short code was written in the

Arduino IDE to drive the sensors and verify their correct operation. The voltage

supply for these two boards comes from the 3.3 V output of the Arduino board. Once

the initial tests were concluded, a different printed circuit board (PCB) was designed

using Livewire so that the sensors could be located below the magnetiser, separated
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Figure 3.7: Magnetometer Block Diagram

by 10 cm so that the sensor right below the magnets collected direct MFL data

whereas the sensor on the far side collected MFL from the residual magnetisation.

This board only contains connectors arranged in a way that the sensors are separated

so they can measure different parts of the pipe’s surface.

Figure 3.8: Sensors mounted on Arduino board

The motor used in this experimental model is a 919D DC motor that works within

a voltage supply range of 4.5 V to 15 V, has a power rating of 11 W, and has a max

output speed of 5216 rpm. However, the motor has a gearbox to reduce this speed

in a 148:1 ratio [54], which will allow the magnetiser to move at a sufficiently low

speed so that the sensors take enough samples of the MFL signals. In order to drive

this motor, a second PCB was designed using ISIS Proteus. This board contained

the needed circuitry to control the motor’s rotation, using an L293D chip that can

drive the unidirectional rotation of up to 4 motors, or the bidirectional rotation of 2

motors, with only two logical inputs. The chip needs two voltage sources, Vcc and
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Vs, with the former being used for the chip’s operation and the latter to power the

motor [55]. For the chip to operate correctly, Vcc should be within the voltage range

of 4.5 V to 7 V, whereas the voltage for Vs should be between the Vcc value and

36 V. The Vcc supply is taken from the 5 V output of the Arduino board, whereas

the Vs supply was set to 15 V and is provided by the Digimess SM3040 DC power

supply.

Additionally, two reed switches are implemented to indicate the location of the

start and end points of the scanned area. These switches activate (close) when they

are near a magnetic field, when this happens a specific instruction is sent from the

Arduino to the motor driver. A more detailed description of the operation of the

proposed experimental model is given in the following section. Furthermore, other

passive elements were used such as resistors and capacitors, and an LED was used

to indicate that the motor driver board was ON. This circuitry can be seen in Fig.

3.9, including the schematic diagrams, the PCB diagrams, a 3D model for the motor

driver PCB, and the completed PCBs.

Figure 3.9: Circuitry modelling process. a) Motor driver schematic diagram. b) Motor driver PCB diagram. c)

Motor driver 3D PCB. d) Sensors’ connector schematic diagram. e) Sensors’ connector PCB diagram. f) Completed

PCBs

The PCB layouts were sent to the technicians at the Electronics Workshop for
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their printing, and the assembly and soldering of components were conducted by

the author of this thesis. Once this process was completed, the circuits were tested

to ensure their correct operation, and were mounted on the experimental setup

afterwards, as shown in Fig. 3.10, which includes the PCB with the two sensors

separated by 10 cm below the magnets, the Arduino board connected to a PC, and

the motor driver connected to both the Arduino and the power supply.

Figure 3.10: PCBs mounted on experimental rig. a) Sensors PCB under magnetiser system. b) Arduino board

connected to Matlab. c) Motor driver PCB connected to Arduino and DC power supply

3.2 Basic Operation

The overall operation of the proposed MFL inspection system is controlled by an

Arduino UNO board. This device controls the rotation of the motor by sending two

control bits to the L293D motor driver board. It also receives the raw measurements

made by the GMR sensors, as well as the state of the two reed switches. A serial

communication interface between the Arduino device and a PC is created with Mat-

lab. This interface allows the magnetic measurements to be sent from the Arduino

device to the PC as well as other useful information for the correct operation of the

system. Fig. 3.11 shows a block diagram of the proposed system and how these

elements are interconnected.
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Figure 3.11: Block diagram of sensors and motor system

The proposed inspection system was programmed in a Finite State Machine

(FSM) manner, which means that the system runs continuously in a loop changing

from one state to another following certain conditions. Three states were defined

for the operation of this setup as listed below:

• State 0: The motor is OFF until the Arduino device receives a predefined

command through the serial port. When this condition is met, the current

state changes to 1.

• State 1: The motor is ON, moving forward. The sensors are activated and

readings are sent to the serial port. The state of the reed switch located at

the end of the scan surface is checked. When the reed switch closes, the motor

stops and changes its rotation to move backward to the initial position, and

the current state changes to 2.

• State 2: The motor is ON, moving backwards. The sensors are deactivated.

The state of the reed switch located at the start of the scan surface is checked.

When the reed switch closes, the motor stops and the current state changes

to 0. The cycle starts again.

The cycle described above is run repeatedly until the entirety of a predefined sur-

face is scanned by the proposed monitoring system. The following section describes

how data is collected as well as how the surface to be scanned is defined.
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3.2.1 MFL Data Collection

As mentioned before, a pair of GMR sensors is used here in order to measure the

MFL signals. These sensors detect the three components of the magnetic field. As

the monitoring system moves along the pipe performing a line scan, the detected

raw signals are sent to the Arduino where they are converted to numerical values

given in Gauss (magnetic flux density unit). These measured signals are arranged in

six columns, where each set of three corresponds to the Bx, By and Bz components

for each of the two sensors. Finally, these signals are sent from the Arduino to

Matlab via the serial port. Matlab receives the signals and stores them in a matrix.

This principle is applied to collect all the MFL signals detected by the sensors

coming from the predefined scan surface. This scan surface is a rectangular section

projected on the surface of the pipe with a length of 20.5 cm and a width of 10.2

cm. Furthermore, the short side of this rectangular section is subdivided into 36

smaller sections from which a line scan will be conducted, with every line scan

having around 3500 samples. The number of samples depends on the sensing speed

(which depends on the supply voltage of the motor) and the delay between readings

performed by the sensors. Once the scan is completed, the cycle described in the

previous section finishes and the collected readings are stored in matrices ready for

further processing, which is described in the following chapter.

3.2.2 Summary

In this chapter the design and implementation of an experimental setup was de-

scribed. This test rig consisted of a set of 3D GMR sensors mounted over the top

of a steel pipe and below a pair of magnets joined by a steel bar. The sensors and

magnets traversed along the steel pipe with the help of a threaded rod coupled to

a motor whose rotation direction was constrained by two magnetic switches that

closed in the presence of a magnetic field. The whole sensing system and motor

were controlled by an Arduino UNO board, which was connected to a PC where

all the generated data was logged into a matrix within Matlab, ready for further

analysis.
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Chapter 4

Data Processing and Analysis

Based on the common behaviour of MFL signals as presented by [11,12], an image-

processing approach is followed here. The basic idea is to use all the collected signals

and arrange every measurement in parallel in a 3D space, thus creating a surface

in which the peaks and valleys of the signals would represent the contours of any

detected defect. A visual example of this is shown in Fig. 4.1. By examining

these surfaces from the top view, a 2D image is obtained, thus image-processing

techniques can be implemented. This chapter describes how the acquired MFL data

is processed before it can be used for defect detection.

Figure 4.1: Signals parallel arrangement
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4.1 Raw Measurements and Signal Filtering

Every project that uses sensors to detect and measure physical parameters is subject

to parasite signals, and the MFL method is not exempt from this. Examples of the

raw measurements made in the experimental part of this study are shown in Fig.

4.2 and Fig. 4.3. These signals correspond to a single line scan and show that there

is a parasite low frequency attached to the signals. This can be seen in the plots of

both the Bx and By components. Moreover, the Bz component does not show any

variation along the entire reading, which indicates that this component is saturated

on both sensors by the magnetic fields. This behaviour is consistent on all of the 36

line scans that were conducted, and for that reason, this component is going to be

ignored for the rest of the data processing since its contribution to the overall MFL

signals is null.
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Figure 4.2: Raw measurements from Sensor 1
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Figure 4.3: Raw measurements from Sensor 2
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In order to find and eliminate the parasite low frequency, the frequency spectrum

of the signals was obtained with the Fourier Transform. This technique allows the

identification of all the frequencies that compose any given signal. Fig. 4.4 shows

the frequency spectrum of one of the several signals. It can be seen here that there is

a peak of 0.6 dB at the frequency of 0.09 π radians/sample (normalised frequency),

which represents the parasite low frequency described before. By attenuating this

peak, the parasite low frequency will be removed from the original signal. This is

achieved by applying a Band Stop filter to the signals, which is a type of filter that

combines both a low-pass and a high-pass filter in order attenuate the frequencies

within the low and high cut-off frequencies. Examples of the cleaned signals are

shown in Fig. 4.5 and Fig. 4.6. These graphs show that the low frequency was

removed from the signals and that they kept their shape. Moreover, the remaining

higher frequency noise shown in these images is due to harmonics of the previously

identified low frequency noise, also shown in Fig. 4.4. However, these harmonics

were ignored since they did not represent any major problem for the rest of the

signal processing.

Figure 4.4: Frequency Spectrum
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Figure 4.5: Filtered signals from Sensor 1
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Figure 4.6: Filtered signals from Sensor 2
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As mentioned before, one of the main objectives of the present thesis is to use

MFL signals to reconstruct 2D images using the three components of the magnetic

fields. However, having that the measurements described in this chapter showed no

readings for the Bz component, simulations were conducted using COMSOL Multi-

physics to produce the necessary data in order to determine whether the proposed

method is adequate for defect detection.
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Chapter 5

Simulated MFL Inspection

A simulated model is presented in this chapter, where a steel pipe is magnetised

by a pair of permanent magnets joined with a steel yoke and MFL signals are

collected from a predefined area below the magnetiser, similar to what was done in

the experiments. The collected data is then used to recreate 2D images from which

defects can be detected. This method will then be applied to the experimental data

previously gathered in order to validate the results. The simulations were conducted

using COMSOL Multiphysics and the process is detailed in the following sections.

The proposed algorithm to create the 2D images was written in Matlab and is also

described in this chapter.

5.1 COMSOL Multiphysics

COMSOL Multiphysics is a simulation platform that provides engineers and scien-

tists with total control over all the steps in a modelling workflow, this is from the

design of geometries in a CAD environment, materials assignation, and the defini-

tion of the governing physics that describe the specific phenomena of interest. It also

provides the user with tools for the post-processing of results for a better and easier

visualisation. Moreover, previously designed geometries can be imported into COM-

SOL easily since it is compatible with all standard CAD files [56]. Moreover, model

solving is carried out in COMSOL by a combination of methods such as the finite

element method (FEM), adaptive meshing and a variety of numerical solvers [57].
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COMSOL is capable of simulating multiple real-life scenarios where various par-

tial differential equations (PDEs) have to be solved. These scenarios include acous-

tics, chemical reactions, electrochemistry, electromagnetics, fluid dynamics, heat

transfer, semiconductor devices, and many more [57]. These different areas are inte-

grated in modules within the software and can be combined to create multiphysics

systems. Additionally, COMSOL can solve the simulated systems under different

studies such as stationary state and time-dependent studies, linear and nonlinear

studies, as well as eigenfrequency, modal and frequency response studies [57]. An-

other useful tool provided by this software is the ability to perform Parametric Sweep

type studies, which allow the simulated system to be solved with a combination of

parameters that might be of interest, such as the size of a given object and the tem-

perature around the system, including the assignation of different materials [56].

There is also an interface called Application Builder where the user can write short

scripts of code in the Java programming language with which geometries can also

be created and parameterised.

For the purposes of this study, the AC/DC Module is utilised since it provides

the tools for simulating electromagnetic fields in 2D and 3D scenarios. The AC/DC

Module itself is also divided in multiple sub modules that focus on specific areas

of the electromagnetics field of study, such as Electric Currents, Electrical Circuits,

Electrostatics, Magnetic Fields, Magnetic Fields (No Currents), and Magnetic and

Electric Fields, to name but a few [57]. The following section will describe how the

geometries, parameters and physics were set up to create the simulation environment

relevant to this study.

5.2 Simulated MFL System Modelling

All the geometries used for the simulation are based on the dimensions of the real

components (i.e. magnets, pipe). Furthermore, this reference steel pipe has a rectan-

gular crack which was used to run the initial tests and simulations. Afterwards, the

results obtained from this configuration will be compared with the results obtained

from the experimentation. After that, different defects will be simulated including
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ellipsoidal and circular defects, but emphasising on the irregular-shaped defects in

adherence to the objectives of this thesis. The irregular defects will be modelled

using a combination of ellipsoidal objects since this type of defects usually takes a

coarse, circular shape.

5.2.1 System Definitions and Parameter Initialisation

In order to create a simulated MFL system, three main definitions must be prede-

fined in COMSOL. These include the Space Dimension, the Physics to be solved,

and the Study to perform. The space dimension was set to 3D, whereas the selected

physics was the Magnetic Fields (No Currents) interface since permanent magnets

will be simulated here and this interface solves the Gauss’ Law for static magnetic

fields. Finally, a stationary type of study was chosen for this system. Fig. 5.1 shows

the previously described steps for the definition of the three initial settings discussed

in this section, including a brief description of the purposes of the selected physics

and type of study as provided by the software itself.

Figure 5.1: Steps for system settings definition

Once the space, physics and type of study have been properly defined, the soft-

ware’s interface changes to show a different window where the model can be designed.

COMSOL has a user-friendly interface that facilitates progression of the modelling
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that uses a ribbon on top of the window with buttons for each of the steps of the

simulation process. As mentioned before, different parameters can be set in order

to define the size or location of the geometries in the simulation. Here, several pa-

rameters were defined, including the dimensions for the magnets, the brushes and

the steel yoke, as well as the diameter, thickness, and length of the pipe. These

parameters will be used to build the different components of the simulated MFL

method described in this chapter.

5.2.2 Steel Pipe

In order to model a pipe in COMSOL is by creating two cylindrical objects oriented

towards the positive X-axis and subtracting the smaller cylinder to create a hollow

tube. The steel pipe simulated for this study has a radius of 50.8 mm, a thickness

of 2.5 mm and a length of 1 m, based on the dimensions of the real pipe that was

used in the experimentation. The simulated defects are much smaller than the pipe

and are modelled in a predefined area smaller than the pipe that corresponds to the

area below the magnetiser and sensor system. All the information generated in the

simulation will be extracted from this scan surface. The simulated pipe can be seen

in Fig. 5.2

Figure 5.2: Simulated Pipe

5.2.3 Magnetiser System

As mentioned before, the magnetiser used here is a modification of the usual con-

figuration used in the MFL method, due to the characteristics of the pipe that will

be used in the experiments. This magnetiser consists of two permanent magnets,

joined by a rectangular steel yoke, and attached to the magnets are two other steel
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pieces that bring the magnetic field lines closer to the specimen. These brushes were

designed in a way so that they have a circular section with the same radius as the

pipe to ensure that both pieces have the same liftoff from the pipe. Furthermore,

due to the size of the pipe, the magnetiser is located outside and on top of the pipe.

The dimensions with which these geometries were modelled are shown in Table 5.1,

whereas Fig. 5.3 shows the magnetiser on top of the pipe.

Object Width Length Height

Magnets 20 mm 40 mm 5 mm

Brushes 20 mm 40 mm 35 mm

Yoke 40 mm 90 mm 12 mm

Table 5.1: Magnetiser dimensions

Figure 5.3: Magnetiser on top of pipe

The area below this magnetiser is defined as the aforementioned scan surface.

The idea behind this partition is to simulate the area covered by either an array

of several sensors or multiple line scans made by one sensor until the whole area

is scanned. The simulated defects are modelled in this section of the pipe and the

simulated MFL signals are collected from this surface. Additionally, it should be

noted that the resolution of this defined surface is much higher than the resolution

that could be achieved in a multi sensors or multi line scans scenario since the

simulation was solved using an extra fine mesh for better results. The following
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section describes how defects were modelled to adhere to the conditions mentioned

before.

5.2.4 Simulated Defects

As previously stated, a rectangular crack similar to that on the reference steel pipe

was modelled. This crack is 15 mm long, 2 mm wide, and its depth is 2.5 mm,

equal to the thickness of the pipe. However, since one of the main objectives of this

thesis is to study irregular defects, the emphasis is on them. In order to create these

irregular shapes, the Application Builder interface in COMSOL was used. This

interface allows the user to write short scripts of code in the Java programming

language, which are internally called Sequences. Here, several operations can be

performed with lines of code ranging from simple tasks such as defining the physics

of the simulated system to more complex tasks such as automatically running a

simulation with changing parameters and exporting the generated data.

In order to create the desired irregular defects, a sequence was written to ran-

domly create 10 ellipsoidal objects within the range of 1 mm to 10 mm for the

length and width, and the depth was set within a range of 10 % to 80 % of the

pipe thickness. The position of the multiple ellipsoidal objects was delimited to

the boundaries of the predefined area below the magnets. After these shapes were

completed, adjustments were made to their orientation and position in the Z-axis so

that they were in contact with the pipe’s surface. Moreover, although 10 individual

ellipsoidal shapes were built, the random generation of these multiple shapes made

several new shapes, comprised of the overlapping of various ellipsoidal objects. This

combination of objects created new asymmetric and irregular shapes with different

widths, lengths and depths. These new shapes will be referred to as irregular de-

fects for the rest of this thesis. This process was repeated if no irregular shapes

were constructed. Finally, to simplify the simulation and reduce computation time,

some of the ellipsoidal objects were removed from the model. The predefined smaller

pipe section with the rectangular crack and the ellipsoidal objects are shown in Fig.

5.4. The magnetiser was removed from the image for better visualisation. It can be

seen here that the rectangular crack is much larger than the ellipsoidal and irregular
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defects. The difference in size and shape of these defects will be used to test the

efficiency and robustness of the proposed methodology.

Figure 5.4: Simulated Defects. a) Rectangular Crack. b) Ellipsoidal Objects

5.2.5 Data Visualisation and Exporting

The simulation results can be visualised in COMSOL using a variety of plotting

options, which include 3D, 2D and 1D plot groups. Using a Surface Plot within the

3D plot group, the three components of the MFL signals can be visualised. This

is shown in Fig. 5.5, which includes surface plots of the scan surface described

before. Here, the simulated rectangular crack and its influence on the magnetic

fields can be seen. The colour code represents the intensity of the magnetic flux

density ( ~B) measured in Tesla. The plot for the Bx component in Fig. 5.6(a) shows

the expected peaks and valleys of the MFL signal on the corners of the simulated

rectangular defect. Furthermore, Fig. 5.6(b) shows similar results as those of the

literature, having a pair of peaks on both of the long ends of the defect and a valley

in the centre of the defect. Finally, Fig. 5.6(c) shows that the Bz component has

little contribution to the overall MFL signals. However, the expected behaviour is

present here, having two opposite peaks on both of the longer sides of the rectangular

crack. Furthermore, the surface plots of the multiple ellipsoidal defects are shown

in Fig. 5.6. These plots show a different response of the three components, and

this indicates that the shape of the simulated defects affect the behaviour of the

signals. Furthermore, these plots do not show peaks and valleys that are easy to

identify such as those of the rectangular crack. However, rather than using these
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surface plots to conduct defect detection, only their numerical representation will

be exported into a single text file organised in the form of a matrix. The processing

made to the data obtained from the simulation is described in the following sections.

Figure 5.5: Surface Plots of Crack Defect MFL Components. a) Bx b) By c) Bz

Figure 5.6: Surface Plots of Ellipsoidal Defects MFL Components. a) Bx b) By c) Bz

5.3 Simulated MFL Data Processing with Matlab

The main contribution of this thesis is detailed in this section, which describes how

the MFL data is processed in order to reconstruct 2D images and the use of image

processing techniques to detect and characterise defects. The algorithms developed

to carry out image reconstruction and defect detection are described here.
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5.3.1 Importing Data and Image Reconstruction

As previously mentioned, the data extracted from the simulation in COMSOL is

organised in a matrix containing six columns with several rows. The first three

columns correspond to the coordinates from which MFL data is taken, whereas

the last three columns contain each of the three MFL components. Consequently,

each row gives the spatial coordinates as defined in the simulation from which one

measurement was made for each of the three components of the MFL signals. An

example of this can be seen in Fig. 5.7. The matrix has as many rows as the

simulation software needed to solve the system depending on the resolution of the

mesh used in the FEM model.

Figure 5.7: Exported MFL data

These numerical values are then imported into Matlab and are rearranged in a

3000 × 3000 pixels grid in order to reconstruct a 2D image. Each pixel of this grid

corresponds to each pair of values in the X and Y columns. The values in the Bx,

By and Bz columns are used to create an intensity map by associating each of these

numbers to their corresponding X-Y pair. Since the images are reconstructed using

the same numerical values internally used by COMSOL, the output images created

by the presented approach are similar to the surface plots created in COMSOL, as

shown in Fig. 5.8 and Fig. 5.9 with the MFL response of the crack defect and

the multiple ellipsoidal defects, respectively. This indicates that the image recon-
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struction process was accurately achieved and that there is no loss of information.

Moreover, the resolution of these reconstructed images can be increased if the size

of the grid is increased, although this will also have an impact on the computing

time.

Figure 5.8: Reconstructed MFL Components of Crack Defect. a) Bx. b) By. c) Bz.

Figure 5.9: Reconstructed MFL Components of Ellipsoidal Defects. a) Bx. b) By. c) Bz.

5.3.2 Contrast Enhancement

Once the MFL images are reconstructed, they are converted into grayscale images

before contrast enhancement is performed. This is applied in order to ensure true

whites and blacks in the image, thus facilitating edge detection. This process is

achieved by obtaining the histogram of the input image to determine the distribution

of the pixels that compose the image, and then modifying said distribution so that

it is centred in the histogram, thus increasing the contrast of the original image.

The upper and lower limits of the input image are obtained with the Central Limit
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Theorem (CLT), which states that for any given dataset with random population and

distribution, if sufficient samples are taken from that population and the means of

those smaller samples are calculated, their distribution will become approximately

normally distributed [58, 59]. The upper and lower thresholds are calculated as

follows

Min = µi − (n · σ) (5.3.1)

Max = µi + (n · σ) (5.3.2)

where µi is the mean of the grayscaled image, and (n · σ) is the number of stan-

dard deviations in which the histogram will be stretched. With this approach, the

brightest and darkest parts of the grayscale image (Min and Max, respectively)

are obtained and used as the input values for a Matlab function for contrast en-

hancement. From this point, only one of the reconstructed images will be used to

illustrate the methodology presented in this thesis. A thorough discussion of the

results obtained with it is included in Chapter 6. The images in Fig. 5.10 show

the histograms of the input image and the contrast-enhanced image, corresponding

to the By component of the rectangular crack simulation. It can be seen here that

the distribution of pixels for the original image is biased to the right-hand side of

the histogram, which makes the image brighter. Once the histogram is modified as

described above, the histogram of the output image is centred. The X-axis of the

histogram plots correspond to the grayscale colormap, which ranges from 0 to 255.

The Y-axis is the count of pixels in a specific grayscale value.

5.3.3 Edge Detection and Morphological Operations

Once contrast enhancement is completed, Gaussian blur is applied to the image in

order to make it smoother and eliminate possible noise. Afterwards, the Canny algo-

rithm is implemented in order to find edges in the image. The Canny edge detector

calculates the derivative of a Gaussian function searching for the intensity of the gra-

dients of any given image [60]. The Canny edge detector output is a binarised image

containing a black background and the detected contours in white. An example of
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Figure 5.10: Contrast Enhancement. a) Input image. b) Output image.

this is shown in Fig. 5.11 with the colours inverted for better visualisation.

Figure 5.11: Detected Contours (zoomed, inverted colours)

After the contours have been detected, morphological operations are imple-

mented in order to remove any irrelevant information in the image and emphasise

the detected contours. Morphological operations relate to the shape of the features

within an image, and are mostly implemented in binary images. These operations

need a “structural element”, which is probed and positioned in all possible locations

in the image to compare it with the neighbouring pixels [61]. In this study, dilation,
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erosion and opening operations are performed on the input image using disk and

line structural elements. The specific parameters for these operations are dependent

on the MFL component to which they are being applied. The flowchart in Fig. 5.12

briefly describes how the three components are processed.

Figure 5.12: Basic processing of MFL images

Dilation is applied in order to thicken the detected contours so that the neigh-

bouring pixels connect and create a closed shape. Once this is achieved, the filling

operation is performed to fill the inner area of the closed shape (hole) and create a

“solid shape”. The opening operation is a combination of two other operations, an

erosion followed by a dilation (erosion is the opposite of dilation). This operation

is applied in order to eliminate those smaller shapes that may surround the bigger

shapes. Here, more erosion operations could be applied to the resulting image to

eliminate more noise, but this could also have a negative impact on the relevant

shapes. The output image of each of the dilation, filling and opening operations

included in the previous flowchart are shown in Fig. 5.13

After these morphological operations are completed, the border of the overall

image is cleared so that any residual noise around it is deleted. Sometimes, small

shapes are still present in the image and, in order to remove them, a size filter

is used so that only those shapes with the largest area are included in the image.

Here, a limit of six shapes per image was set. This process is conducted for each of

the MFL images (i.e. MFL components) and the output binary images are stored

individually before they are merged to create a unique map of the detected shapes.

A final erosion operation is performed on the image containing all the detected

shapes in order to remove any noise produced by the merging. Fig. 5.14 includes

the individual output edges of the three components and the cleaned merged image.
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Figure 5.13: Morphological Operations Output (zoomed, inverted colours). a) Dilation. b) Filling. c) Opening

Figure 5.14: Detected Shapes (zoomed, inverted colours). a) Bx. b) By. c) Bz. d) Merged
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5.3.4 Image Segmentation with the Watershed Transform

Once the final binary image is obtained, the watershed transform is used to carry

out image segmentation in order to produce visual labelling of the detected shapes

for the final output of the present method. Furthermore, this algorithm allows the

extraction of the geometrical features associated to those blobs such as their centroid,

area, orientation, to name but a few. These features will be used to carry out the

size estimation of the detected shapes. The watershed transform is an emulation

of a real-life watershed, where a ridge separates two areas that can be filled with

water. This analogy is used in image segmentation so that the bright parts of a

binary image are considered peaks or mountains, whereas the dark areas are valleys

or basins, as shown in Fig. 5.15 [62].

Figure 5.15: The Watershed Transform

In order to implement the watershed transform, the complement of the original

grayscale image is obtained. The output is an image where the dark areas become

brighter and vice versa. After this, a mask that contains only the perimeter of the

blobs is created in order to calculate the local minima in the complement grayscale

image, thus generating the ridges and valleys. Once this is completed, the output

image is colour labelled and the geometrical features of the shapes are extracted.

The output image of the watershed is shown in Fig. 5.16, which includes the colour-

labelled image containing the detected shapes and the original MFL grayscaled

images with the perimeter of the detected shapes overlayed on them.
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Figure 5.16: Watershed Transform Output. a) Bx. b) By. c)Bz.

5.4 Defect Characterisation

5.4.1 Width and Length Estimation

As previously stated, the geometrical features of the detected shapes in the MFL

images will be utilised to carry out size estimation. To achieve this, the main feature

to use is the bounding box, which is an imaginary square that encloses any given

shape in an image. The image in Fig. 5.17 shows the total number of detected

shapes in the reconstructed image with their respective bounding box.

The width and length of such a box are given by a number of pixels so the

length in millimetres of such pixels has to be calculated. Since the analysed MFL

data come from a predefined area in the simulation with known dimensions, such

pixel-millimetre conversion can be calculated using the following expression

Pl =
Sw

Iw
(5.4.3)

where Pl is the length of a pixel given in millimetres, Sw is the width of the scanned

surface in the simulation given in millimetres, and Iw is the width of the recon-

structed image given in pixels. Since pixels are always square, their width and

length are always the same. For the simulations presented in this chapter, the width
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Figure 5.17: Detected Shapes with Bounding Box

of the scanned area is 30 mm and the reconstructed images have 3000 pixels on each

side, as seen in Fig. 5.17. Consequently, Pl = 0.01 mm as obtained from 5.4.3.

5.4.2 Depth Estimation

As previously stated in this thesis, the investigation presented in [43] found a linear

relationship between the average strength of MFL signals and the depth of defects.

Their finding allowed them to estimate the depth of defects with low error rate.

However, this relationship was studied with defects of regular shape and uniform

depth on the bottom of a tank floor. This thesis will attempt to find the same

relationship on the curved surface of the studied pipe with a rectangular crack.

To achieve this, a special simulation in which the defect’s depth was iterated 32

times in a range between 10% and 80% of the pipe wall thickness (t = 2.5 mm)

was performed. The images contained in Fig. 5.18 are the surface plots of the

Bx component of three different steps of the aforementioned iterative simulation.

Furthermore, it can also be seen here how MFL signals are affected by the changing

depth of the defect. Fig. 5.18(a) shows the MFL response of the rectangular crack

with a depth of 10% of wall thickness (10% t). Similarly, Fig. 5.18(b) shows the

MFL response of a defect with 50% t, and Fig. 5.18(c) shows the response of a defect
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with 80% t. Moreover, the increase of the intensity of the signals as the depth of

the defect increases confirms that there is a connection between the defect’s depth

and the strength of MFL signals.

Figure 5.18: Crack defect with different depths. a) 10% t b) 50% t c) 80% t

Therefore, the relationship between these parameters can be described as a math-

ematical function D = f(B), where D is the depth of the defect and B is the average

strength of MFL signals over the 32 iterations. The average strength of the simulated

MFL signals was obtained with the following expression

B =

√
B2

x +B2
y +B2

z

M ×N
(5.4.4)

where Bx, By and Bz are each of the MFL components and M × N is the size of

the scanned area. The results of this approach are discussed later in Chapter 6.

5.4.3 Summary

In this chapter, a simulated model was designed in in order to replicate the exper-

iments previously conducted. The simulations were run in COMSOL Multiphysics

where a similar pipe, defects and magnetiser were modelled using the same param-

eters as in the experimentation setup. Initially, a crack defect was simulated, since

the real pipe has an identical crack. This first simulation was made to visualise

the three components of the signals as expected from the experiments. After that,

irregular shapes were modelled with the help of a short code written in the Appli-

cation Builder within COMSOL that created said irregular shapes using ellipsoidal
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objects with random sizes and locations within a range of values. This code was run

several times until the ellipsoidal objects overlapped and created irregular-shaped

defects. Once they were created, adjustments were made so that the new shapes

were adequately located inside the scan surface.

After the simulations were completed, the newly generated data could be vi-

sualised using the several plotting options that COMSOL offers. Afterwards, this

information was exported to a text file before it was sent to Matlab, where it was

stored and arranged in different matrices. Here the data was manipulated in order

to reconstruct 2D images for each component of the magnetic signals, obtaining

similar images as those shown by COMSOL. Having that the signals contain peaks

and valleys in strategic points of the images that correspond to the borders of the

defects, an image-processing approach was followed, where the Canny edge detector

was implemented to identify those contours that are not easily visible in the original

images. To achieve this, the images were converted to grayscale images and then

contrast enhancement was conducted in order to emphasise the darker and brighter

parts of the images. Once the contours were identified, morphological operations

were applied to them in order to create a blob (i.e. irregular object in an image) for

each detected shape in the image. This principle was applied to every reconstructed

image (one per MFL component) and the three resulting images were then merged

to create a fourth image in which the three components were contributing to the

mapping of the detected shapes. After that, image segmentation techniques were

applied to achieve a better labelling and visualisation of the detected shapes.

After all the reconstructed images were analysed with the previously described

process, size estimation was carried out. Having that the simulated measurements

were made over a predefined area with known dimensions, the size of the recon-

structed images could be inferred by dividing the width of the scan surface (in mm)

by the width of the image (in pixels). With this, the size of the bounding box con-

taining all the detected shapes could be calculated, giving as a result the length and

width of the detected defects. For the estimation of the defects depth, a different

approach was followed, where a linear relationship between the average strength of

the MFL signals and the depth of defects was explored with more simulations.
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Chapter 6

Discussion

6.1 Simulation Results

The MFL imaging method proposed here shows promising results for both defect

detection and size estimation. This methodology was implemented to detect a rect-

angular crack, similar to that of the experimentation, and irregular defects composed

of a combination of ellipsoidal shapes. Results of these simulated MFL models are

described below.

6.1.1 Defect Detection, Length and Width Estimation

The proposed MFL imaging methodology has proven accurate for both for regular

defects and irregular defects detection. This approach was tested with the initial

rectangular crack and with a multiple neighbouring irregular defects scenario. After-

wards, the sizes of the detected shapes were estimated. The results of both processes

are discussed below.

Rectangular Crack

The images contained in Fig. 6.1 show the simulated rectangular crack on the left

and its corresponding detected blob on the right. Moreover, it can be seen here that

the shape labelled with the number 1 has a coarse rectangular shape in the centre

of the image with a similar size than the rectangular crack. Furthermore, there are
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smaller irregular shapes in this image that correspond to the residual contours (i.e.

noise) detected by the technique presented in this thesis. Finally, the residual noise

also affects the main object in the image, and this is due to the harsh changes on the

MFL signals that are interpreted as contours by the Canny edge detector applied

here.

Figure 6.1: Simulated rectangular crack (left) and Detected shapes in MFL image (right)

The dimensions of the simulated rectangular crack, taken from the reference

rectangular crack on the experimental pipe, and the estimated width and length

of the detected defect are both shown in Table 6.1. The high relative error shown

here is, as described before, due to the residual noise in the images. However, when

scanning irregular defects, the relative error mostly decreases.

Dimension Real Value Estimated Value Relative Error

Length 15 mm 17.18 mm 14.53 %

Width 2 mm 2.33 mm 16.50 %

Table 6.1: Size estimation for rectangular crack

Irregular Defects

Similarly, defect detection was achieved accurately for irregular shapes. In this

thesis, a case with multiple neighbouring defects was designed, which included two
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irregular defects and two simple, ellipsoidal defects. As mentioned before, the width,

length, and location of these four defects were generated randomly within the simu-

lation software and small adjustments were performed so that these random shapes

were in contact with the surface to be scanned and to analyse several combinations

of parameters. This can be seen in Fig. 6.2, where the simulated irregular defects are

shown on the left, whereas the defected shapes are on the right. It can be seen here

that the overall shape of the defects was contained in the MFL signals and therefore

they could be detected by the proposed imaging method. No major residual noise

is present in this image.

Figure 6.2: Simulated irregular defects (left) and Detected defects in MFL image (right)

Once these multiple shapes were identified, their dimensions were estimated.

These parameters are contained in Table 6.2, which also includes their real dimen-

sions and their corresponding relative error. It can be seen here that accurate length

estimation was achieved up to 6.44 % and width estimation up to 13.35 %. However,

this table also shows some high relative error values.

The proposed MFL imaging method shows promising results regarding defect

detection, producing accurate identification of the simulated defects. Furthermore,

the accuracy and reliability of the size estimation algorithm is dependent on the size

of the defects as described below. It was also confirmed that analysing the three

MFL components is needed and useful for better defect quantification. However, the

highly varying relative error shown in Table 6.2 suggests that the size of the small
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Defect Real Values Estimated Values Relative Error

A
L = 5.9 mm L = 6.28 mm 6.44 %

W = 1.81 mm W = 1.37 mm 24.30 %

B
L = 10.92 mm L = 12 mm 9.89 %

W = 2.9 mm W = 2.21 mm 23.79 %

C
L = 7.56 mm L = 8.18 mm 8.2 %

W = 2.62 mm W = 2.27 mm 13.35 %

D
L = 3.78 mm L = 2.54 mm 32.80 %

W = 1.48 mm W = 1.94 mm 31.08 %

Table 6.2: Dimensions of Irregular Defects

size of defects has a negative effect on the accuracy of the proposed methodology.

It should be emphasised here that these simulated irregular defects are mostly be-

low the 10 mm size range. Furthermore, the MFL method is applied for corrosion

defects detection and this type of defects is usually big in shape due to the combi-

nation of several neighbouring defects. Literature has focused on studying defects

of standardised shape and size, which are proportional to the thickness of the pipe

(t), as referenced by [42], where a 9.5 mm thick pipe was examined and the length

and width of all the studied defects depended on this parameter of the pipe. For

example, a 1t × 1t defect is a circular defect with a diameter as long as the thick-

ness of the pipe. Following this idea, the dimensions of the defects analysed in this

thesis should not be smaller than the thickness of the examined pipe (t = 2.5 mm).

However, as shown in Tables 6.1 and 6.2, some of the simulated defects did not meet

this condition and coincidentally the estimation of these smaller sizes present the

higher relative error values.

In order to verify that the previous results are caused by the small size of the

simulated irregular defects, a new simulation was conducted in which only standard

ellipsoidal defects were modelled. The rest of the parameters are identical to those

of the previous simulations presented in this thesis. Fig. 6.3 shows 9 new ellipsoidal

defects with their dimensions given in terms of the pipe wall thickness (t = 2.5 mm),

the depth of these defects ranges from 10% t to 80% t. Furthermore, Fig. 6.4 shows
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the MFL response of these new defects. These plots confirm that the MFL response

is dependent on the size and depth of defect since the intensity of the MFL signals

is higher on the bigger defects.

Figure 6.3: Standard ellipsoidal defects

Figure 6.4: MFL response of standard ellipsoidal defects. a) Bx Component. b) By Component. c) Bz Component

Once the simulation was completed, the proposed MFL imaging method was

tested with the simulated results. Defect detection was achieved accurately as shown

in Fig. 6.5, whereas the estimated width and length of the detected shapes are

shown in Table 6.3. The accuracy achieved by studying standardised defects is

much higher than that of the irregular defects. These results suggest that both the

complex geometry and size of the defects have an important influence over the MFL

signals, and could explain why literature has focused on studying defects of regular

shapes and standard sizes.
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Figure 6.5: Detected Standard Ellipsoidal Defects

Defect Real Values Estimated Values Relative Error

A
L = 2.5 mm L = 2.65 mm 6 %

W = 2.5 mm W = 2.54 mm 1.6 %

B
L = 5 mm L = 5.23 mm 4.6 %

W = 2.5 mm W = 2.83 mm 13.2 %

C
L = 2.5 mm L = 2.39 mm 4.4 %

W = 5 mm W = 5.09 mm 1.8 %

D
L = 5 mm L = 5.16 mm 3.2 %

W = 5 mm W = 5.08 mm 1.6 %

E
L = 7.5 mm L = 7.62 mm 1.6 %

W = 5 mm W = 5.06 mm 1.2 %

F
L = 5 mm L = 5.04 mm 0.8 %

W = 7.5 mm W = 7.61 mm 1.46 %

G
L = 10 mm L = 10.26 mm 2.6 %

W = 10 mm W = 10.47 mm 4.7 %

H
L = 7.5 mm L = 7.82 mm 4.26 %

W = 10 mm W = 10.11 mm 1.1 %

I
L = 7.5 mm L = 7.66 mm 2.13 %

W = 10 mm W = 10.31 mm 3.1 %

Table 6.3: Dimensions of Standard Defects
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6.1.2 Depth Estimation

As mentioned before, estimating the depth of the detected defects is the most im-

portant aspect of the MFL method since this parameter is crucial for the correct

operation of a given pipe. Furthermore, it was also stated that this parameter can

be calculated by obtaining the linear relationship between the average strength of

MFL signals and the depth of a defect. This operation can be performed within

COMSOL by iterating the depth of the defect. The output is a table and its corre-

sponding graph, as shown in Fig. 6.6 containing the 32 iterations of this simulation.

However, this graph shows that the calculated relationship is not linear as expected.

Figure 6.6: Relationship between defect’s depth and average MFL signal strength

This approach was originally tested on the flat surface of a tank floor that was

also thicker than the pipe being studied in this thesis. Moreover, the publication

that investigated this approach focused on a single rectangular defect with uniform

depth. This could explain why the results are different. Furthermore, in order to

explore if the thickness of the specimen influences on these results, an additional

simulation was performed. The original model was re-scaled to have a new, bigger

pipe with a diameter of 406 mm and a thickness of 12.7 mm. This new thickness is
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similar to that of the tank floor from which this approach is being replicated. The

dimensions of the simulated crack were also modified so that they were similar to

those of the crack studied in the aforementioned study. The new rectangular crack

is 48 mm long and 24 mm wide. Its depth was iterated 32 times within a range

of 10-80% of the pipe’s thickness. The scanned surface was a 110 mm × 100 mm

rectangular area. The result of this new simulation is shown in Fig. 6.7

Figure 6.7: Relationship between defect’s depth and average MFL signal strength

This graph confirms that the size and thickness of the specimen does have an

influence over the aforementioned relationship since the new graph has smoother

changes. Furthermore, it could also be confirmed that the curvature of the scanned

surface affects this relationship since, once more, the linear relationship could not

be found. After implementing curve fitting techniques, it was determined that the

previous graph describes a more complicated function, which is given by the following

expression:

f(x) =
p1x+ p2

x4 + q1x3 + q2x2 + q3x+ q4

(6.1.1)
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where x is the input average MFL strength, f(x) is the depth of the defect (D), and

having p1 = 3812, p2 = −589.8, q1 = 174.7, q2 = −1509, q3 = 515.7 and q4 = −44.24

as coefficients.

This newly found expression was used to estimate the depth of a rectangular

defect with the same dimensions used before, except for the depth, which was set to

a different value than those used to find the previous function. Afterwards, another

simulation was conducted in order to test this approach with a single ellipsoidal

defect, and one more simulating an irregular defect. The length of the ellipsoidal

defect was 80 mm and its width 24 mm. The length of the irregular defect was

set to 59.88 mm and its width to 32.79 mm. The three shapes that compose this

irregular defect have different depths, and only the maximum depth is considered

for this test. These three defects can be seen in Fig. 6.8, whereas the results from

these simulations are shown in Table 6.4 and are marked in Fig. 6.9.

Figure 6.8: Test Defects for Depth Estimation

Defect Real Depth (Max) Estimated Depth Relative Error

Rectangular 5.33 mm 5.24 mm 1.68 %

Ellipsoidal 5.33 mm 5.69 mm 6.75 %

Irregular 6.3 mm 5.34 mm 15.23 %

Table 6.4: Real Depth vs. Estimated Depths

These results suggest that the approach discussed in this section is reliable when

working with simple defects such as rectangular and ellipsoidal shapes. However,

when a defect composed of several shapes with different widths, lengths, depths

and orientations is quantified, the method can not correctly estimate the maximum
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Figure 6.9: Estimated Depth of the Tested Defects

depth of said defect. Hence, a different method should be investigated in order to

accurately estimate the depth of irregular defects. Finally, this approach should also

be applied in a multiple defects scenario.

6.2 Experimentation Results

The proposed imaging method was implemented on the MFL signals collected from

the experimentation. 2D images were successfully reconstructed containing the sev-

eral measurements that were performed. As mentioned before, the experiments in

this thesis consisted of performing 36 line scans with around 3500 samples, covering

a predefined area to be scanned. These multiple scans were used to create a surface

plot for each of the MFL components (excluding the Bz component due to the null

information obtained from it, as explained before), which are shown in Fig. 6.10,

including the Bx and By components of both sensors. These plots correspond to the

multiple measurements made to the pipe having a rectangular crack. The colour

code on these plots indicates the intensity of the signals. The X-axis of these plots

correspond to the number of samples, whereas the Y-axis contains every individual

line scan. Each XY pair represents a specific point of the predefined scan surface

on the real steel pipe.
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Figure 6.10: Surface plots of experimental data

The previous plots indicate that the modified MFL monitoring tool proposed

in this thesis effectively detected the magnetic signals coming from the steel pipe.

The variations on the intensity of the magnetisation of the pipe are evident, which

also indicates that the utilised 3D GMR sensors are suitable for MFL measuring

applications. However, based on the results of the simulations shown in 5, the plots

above should show the MFL response of the rectangular crack and the different

peaks and valleys should be easily visible and identifiable with eye inspection. These

results suggest that applying the MFL imaging methodology proposed in this thesis

to the reconstructed MFL images would not produce the expected defect detection

as that achieved with the simulations. This result would limit one of the objectives

of this thesis, which is to explore the MFL method using the three components

of the magnetic signals. Additionally, as stated before, the reconstructed images
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for the Bx and By components of both sensors did not show the expected results

compared to those of the simulations, neither with the raw signals nor when they

were filtered. Other investigations showed that defects are easily identifiable to the

human eye even in the raw signals, and better visualisation was achieved after signal

de-noising [13,22,30].

These results might be caused because of the small diameter and thickness of

the pipe being inspected here, as well as the size of the crack defect itself. The

reviewed literature mostly focused on much larger and thicker pipes, also studying

longer, wider and deeper defects. The diameter of the pipe studied in this thesis is

at least 4 times smaller than that of the reviewed literature and the standard pipes

used in real life contexts, and the thickness is at least 5 times thinner. Moreover, the

area of the defect examined in this investigation is at least 38 times smaller. These

differences also indicate that the size of the specimen and the size of the defects

should be taken into account for the MFL method, and that these parameters could

pose as the limiting factors of this inspection technique. Furthermore, these ideas

could be validated by the last simulation presented in the previous section, where a

larger, thicker pipe with bigger defects was studied. The results of said simulation

showed that the relationship between the average MFL strength and the depth of

defect is affected by both the size of the pipe and defect. This could also explain

why the literature has mostly concentrated on the aforementioned larger pipeline

networks and fuel containers (i.e. tanks).

Although the entire proposed methodology could not be tested with experimental

data due to these limitations, some aspects of it were proven correct. Examples of

this are that 3D GMR sensors are reliable enough to be used in the MFL method,

and that MFL images can also be reconstructed from the measured signals. Larger

arrays of this type of sensors could be implemented in the larger MFL inspection

tools in order to generate bigger images with much better resolution, which would

also have a positive impact on the result of the proposed MFL imaging method.

Finally, the newly found depth function described in the previous section could also

be implemented to estimate the depth of experimental defects detected on the larger

pipes.
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Conclusions

The main objective of this thesis was to investigate the MFL method and its appli-

cation as an NDT technique for defect detection on product transmission pipelines.

In order to achieve this, the use of 3D GMR sensors was addressed to study the

influence of the three orthogonal components of the magnetic signals. Furthermore,

since previous work has mostly concentrated on regular-shaped defects, this study

focused on analysing defects of irregular shapes and non-uniform depths. In order

to detect these defects, both an FEM simulated model and an experimental model

were designed.

The simulated model was used to develop the proposed methodology which uses

imaging techniques in order to reconstruct 2D images from the simulated MFL sig-

nals. Defect detection was conducted by implementing image processing techniques

such as edge detectors and morphological operations. Width and length estima-

tion was performed by geometrical approximation, calculating the dimensions of the

bounding box that encloses the detected defects, and converting these parameters

from pixels to millimetres. Defect depth was estimated by obtaining a novel, mod-

ified depth function by calculating the average MFL strength and its relationship

with the depth of defects.

The experimental model was constructed in order to replicate the results from

the simulations and validate the methodology presented in this thesis. A modified

MFL monitoring system proposed here was tested to determine whether the MFL

method is applicable to smaller pipelines from the outer surface. Although the
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results were not as expected, the use of 3D GMR sensors was proven accurate and

reliable for measuring the three components of the MFL signals, and the collected

measurements were successfully used to reconstruct 2D images. The entirety of the

methodology described in this thesis could not be tested due to some limiting factors

that were encountered.

One of the factors that negatively affected the results was the small size of the

simulated irregular defects since, according to standards referenced in the litera-

ture, defects should not be smaller than the thickness of the pipe. The accuracy of

the proposed methodology increased when it was tested with standardised defects.

Moreover, the small size and thin thickness of the pipe being studied in the exper-

imental model also affected the results. This was confirmed when an attempt of

replicating a previously cited depth estimation approach was being conducted. In

said approach, a depth function was defined by the linear relationship of the average

strength of MFL signals and the depth of a given defect. This linear relationship

could not be found with the parameters used in the elaboration of this study, and

instead a more complex function was defined after running a new simulation where

a larger, thicker pipe with an also bigger defect was run. This new depth function

yielded accurate results in estimating the depth of three types of defects (rectangu-

lar, ellipsoidal, irregular), but became less precise as the complexity of the defect

increased.

Furthermore, the results obtained by the multiple measurements that were con-

ducted in the experimentation did not show any relevant information. This could

also be due to the size and thickness of the pipe, but also the strength of the magnets

could have affected the measurements since the Bz was saturated in every readings.

Another possible explanation could be that the sensor used in these experiments

was not entirely suitable for the purposes of this thesis.

Further investigation is needed in order to determine if the novel depth function

can accurately estimate the depth of a defect found on the surface of a larger and

thicker pipe with experimental MFL data. A revision of the strength of magnets and

the number of 3D GMR sensors should also be considered in order to confirm that

the size and thickness of the specimen has the negative effect on the MFL method
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described before, which would also revalidate that 3D GMR sensors are reliable

enough to be used in this inspection technique. Moreover, the proposed MFL imag-

ing technique for defect detection and quantification has yet to be tested with real

irregular defects, which could not be investigated here since relevant results were

not acquired. The novel depth function could also be applied to the experimental

MFL signals from a larger pipe with multiple irregular defects in future investiga-

tions. Finally, if sufficient data can be gathered, machine learning techniques could

be applied in order to create a more robust methodology.
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Appendix A

Publications

The following is a one-page digest that was submitted and accepted for the Con-

ference on Electromagnetic Field Computation (CEFC 2020), which includes the

simulation part of this thesis. A full paper is being written to be submitted for the

IEEE Transactions on Magnetics journal.
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Abstract—To ensure the optimal state and performance
of hydrocarbon transportation pipelines, a Non-destructive
Evaluation (NDE) methodology that uses the Magnetic Flux
Leakage (MFL) method is proposed. A simulated model is
tested to generate MFL data that is used to produce 2D images
and detect and quantify corrosion defects on a steel pipe. An
experimental model using magnetoresistive (GMR) sensors is
being constructed in order to validate the simulated results.

Index Terms—Magnetic Flux Leakage, Magnetoresistive
devices, Non Destructive Testing

I. INTRODUCTION

The malfunctioning of hydrocarbon transportation pipelines
can be costly and dangerous both for the environment and the
population. Non-Destructive Evaluation (NDE) techniques are
applied to ensure their optimal state and performance.

The MFL method is widely used for pipeline inspection,
and relies on the high permeability of ferromagnetic materials.
This method consists of magnetizing the pipe-wall so that
magnetic field lines flow inside it but leak out in the presence
of a discontinuity in the material [1]. Defects can be detected
and quantified from MFL signals by examining their three
orthogonal components (Bx, By, Bz). Previous work has
concentrated on the use of Hall-effect sensors to measure MFL
signals and on the study of regular-shaped defects. [2], [3].

In this paper, a methodology is proposed in which simulated
MFL data is generated and then analyzed in order to produce
2D images from which defects can be detected and quantified.
An experimental model is being constructed in which 3D
magnetoresistive (GMR) sensors are used to collect the three
MFL components in order to validate the simulated results.

II. METHODOLOGY

A simulated environment was modelled in COMSOL
Multiphysics, in which the surface of a pipe with
four ellipsoidal shapes representing corrosion defects was
magnetised. For this study, the magnetiser is located on top
of the pipe. Simulated MFL signals are collected from the
area below the magnetiser for each of the three components.
These signals are then used to reconstruct 2D images from
where defects can be detected. These images are treated with
image processing techniques such as the Canny edge detector,
and image segmentation algorithms are applied to these
images. Once the defect is detected and properly labelled, size
estimation is carried out. The simulated results are promising
but the method has yet to be validated with experimental
data, which will be obtained in a similar form using 3D
GMR sensors in order to collect MFL signals for the three
components.

III. RESULTS AND DISCUSSION

The simulated pipe is shown in Fig. 1(a). Here, two
defects have been modelled with ellipsoidal shapes whereas
the third defect is a combination of three ellipsoidal shapes. As
previously stated, images are generated for each component of
the MFL signals. These are shown in Fig. 1(b). The proposed
algorithm applies edge detectors and image segmentation
techniques to these images and outputs a color-labelled image
with the detected objects. by comparing Fig.1(a) and (c), it
can be seen that these objects correspond to the simulated
ellipsoidal defects and the irregular-shaped defect. These
results suggest that the proposed methodology can accurately
detect irregular-shaped defects. A size estimation algorithm is
currently being tested for the detected shapes.

Finally, this methodology is being validated with
experimentation in which GMR sensors will collect MFL data
and 2D images will be generated from the scanned surface.

Fig. 1. Proposed methodology. a) Simulated pipe and defects. b) Images
from MFL Components (Bx, By, Bz respectively). c) Color-labelled detected
shapes
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Appendix B

Programming codes

B.1 Matlab Code

The Matlab coding performed for the modelling of the algorithms presented in this

thesis is separated in various programmes that interact with each other as described

as follows.

B.1.1 Main Code

This short code initialises important variables and calls on other codes and functions

to carry out image reconstruction as well as defect detection and quantification.

1 %% Importing data from "filedir" location

2 %Calling ’importMFL ’ function to read data

3 [nFiles ,nMtx ,simData ]= importMFL(filedir);

4 % nFiles = Number of text files found in folder (number of

simulations)

5 % nMtx = Number of matrices to create (number of iterations per

6 % simulation)

7 % simData = Cell structure where MFL data is stored

8 surfW = 30; % Known width of scanned surface (mm)

9 meshSz = [3000 ,3000]; % Size of grid to create (image size)

10 % Output text file for size estimations

11 fid = fopen(’sizeEstimations.txt’,’wt’);

12 % Initializing 4-D matrix the size of 3000*3000*3* nMtx

13 Z = zeros(meshSz (1),meshSz (2) ,3,nMtx);
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14

15 % Loop to reconstruct MFL images per interation per simulation

16 for nSim =1: nFiles

17 for nStep =1: nMtx

18 % Creating mesh to reconstruct images

19 Z(:,:,:,nStep)=createMesh(nStep ,nSim ,meshSz ,simData);

20 plotMFL % Shows the reconstructed images

21 findDef % Implements image processing to find and quantify

defects

22 end

23 end

B.1.2 Importing Data

This function reads the text file(s) available in a specific location, scans the infor-

mation and reorganises it in various matrices for further handling.

1 function [nF,nM,out] = importMFL(str)

2 % Reads a text file containing simulated MFL data generated in

COMSOL Multiphysics

3

4 % INPUT

5 % str = location of the text file(s) to read

6

7 % OUTPUT

8 % nF = number of read files (simulations)

9 % nM = number of steps per simulation (iterations)

10 % out = Cell storing matrices with MFL data

11

12 cd(str); % Go to text file(s) location

13 txtFiles=dir(’*.txt’); % Obtaining text file(s) names

14 nF=length(txtFiles); % Obtaining number of parametric sweeps

15 aux1=cell(nF ,1); % Creating auxiliar variables

16 aux2=cell(nF ,1); % to store read data

17

18 % Reading text files to obtain number of iterations per

simulation , each text file is scanned looking for text

characters
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19 for i=1:nF

20 tmp=fopen(txtFiles(i).name ,’r’);

21 aux1{i,1}= textscan(tmp ,’%s’,’Delimiter ’,’\n’);

22 aux2{i,1}= aux1{i,1}{1 ,1};

23 fclose(tmp);

24 % Storing appearances of the word "Nodes"

25 idx1(:,i) = find(contains(aux2{i,1},’Nodes’));

26 end

27 nM = length(idx1); % This length determines the number of

iterations

28

29 % Each iteration has a different number of nodes (lines), this

is determined by

30 % Comsol ’s solver. So a matrix is created which contains the

number of

31 % nodes for each iteration

32 nLines = zeros(nF*nM ,1); % Initialising matrix to store the

different number of nodes (lines) per iteration

33 p=1; % Counter

34 for j=1:nF

35 for i=1:nM

36 tmp = string(aux2{j,1}( idx1(i,j)));

37 nLines(p,1) = str2double(regexp(tmp ,’[\d.]+’,’match’));

38 p=p+1;

39 end

40 end

41

42 % Reading text files to collect MFL data per simulation , text

43 % files are scanned again to store them as number cells rather

than

44 % string cells

45 for i=1:nF

46 tmp = fopen(txtFiles(i).name ,’r’);

47 aux1{i,1} = textscan(tmp , ’%f %f %f %f %f %f’, ...

48 ’CommentStyle ’, ’%’, ’CollectOutput ’,true);

49 fclose(tmp);

50 aux2{i,1}= aux1{i,1}{1 ,1};
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51 end

52

53 p=1; % Counter

54 out = cell(size(idx1)); % Creating output cell structure

55 % Storing MFL data in output matrices

56 % A vector is created for each MFL component

57 % The length of each vector is determined by the number of

nodes of

58 % each iteration

59 for k=1:nF

60 nLn =1; % Start of new vector

61 endLn=nLines(p,1); % End of new vector

62 for j=1:nM

63 tmp=zeros(nLines(p,1) ,6,nM);

64 n=1;

65 for i=nLn:endLn

66 tmp(n,:,j) = aux2{k,1}(i,:);

67 n=n+1;

68 end

69 out{j,k} = tmp(:,:,j);

70 if p== length(nLines)

71 break

72 end

73 nLn=endLn +1;

74 p=p+1;

75 endLn=endLn+nLines(p,1);

76 end

77 end

78 end

June, 2020



B.1. Matlab Code 84

B.1.3 Reconstructing Images

3

This function uses the previously rearranged information to create a grid where

the MFL data is organised to reconstruct an image.

1 function out = createMesh(step ,sim ,sz,mtx)

2 % Creates a mesh by interpolating data in a 2D matrix

3 %INPUT

4 % step = current iteration number

5 % sim = current simulation number

6 % sz = size of the grid to create

7 % mtx = matrix from which data will be interpolated

8

9 % the columns of mtx are organized as follows

10 % col 1 col 2 col 3 col 4 col 5 col 6

11 % X coord Y coord Z coord Bx By Bz

12

13 % OUTPUT

14 % out = grid that can be shown as an image

15

16 tmp = mtx{step ,sim}; % Reading matrices iteratively

17 % Creating grid

18 xlin = linspace(min(tmp(:,1)),max(tmp(:,1)),sz(1));

19 ylin = linspace(min(tmp(:,2)),max(tmp(:,2)),sz(2));

20 [X,Y] = meshgrid(xlin ,ylin);

21

22 % Initializing output 3D matrix

23 out = zeros(sz(1),sz(2) ,3);

24

25 % Scattering MFL data of each component

26 x=griddata(tmp(:,1) ,-tmp(:,2),tmp(:,4),X,Y); %MFL Bx

27 y=griddata(tmp(:,1) ,-tmp(:,2),tmp(:,5),X,Y); %MFL By

28 z=griddata(tmp(:,1) ,-tmp(:,2),tmp(:,6),X,Y); %MFL Bz

29 out(:,:,1) = x(:,:);

30 out(:,:,2) = y(:,:);

31 out(:,:,3) = z(:,:);

32 end
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B.1.4 Defect Detection

This code analyses the previously generated images and implements image-processing

techniques in order to find defects and quantify them.

1 % Printing to output text file

2 fprintf(fid ,’** Simulation %d Step %d**\n’, nSim , nStep);

3 str1 = [’MFL Components | Detected Defects | Simulation: ’, num2str

(nSim),’ Step: ’, num2str(nStep)];

4

5 %%% Defect Detection %%%

6

7 % Iterating per MFL component

8 for c=1:3

9 switch c % Creating name for separators

10 case 1

11 str = ’Bx Comp’;

12 case 2

13 str = ’By Comp’;

14 case 3

15 str = ’Bz Comp’;

16 end

17 % Converting image to grayscale

18 tmp = mat2gray(Z(:,:,c));

19

20 % Enhancing contrast

21 n=4; avg = mean2(tmp);

22 sigma = std2(tmp);

23 Min=avg -n*sigma;

24 Max=avg+n*sigma;

25 if (Min <0), Min = 0; end

26 if (Max >1), Max = 1; end

27 imEq = imadjust(tmp ,[Min Max],[]);

28

29 % Detecting edges (Canny Algorithm)

30 imBlur = imgaussfilt(imEq ,3); % Gaussian filter

31 imEdg = edge(imBlur ,’Canny ’); % Canny edge detector

32
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33 % Implementing different morphological operations to each MFL

component

34 switch c

35 case 1 %Bx comp

36 bw = imdilate(imEdg ,strel(’disk’ ,3)); % Dilation

37 % Dilation and clearing border

38 bw = imclearborder(imdilate(bw ,strel(’line’ ,8,45)));

39 bw = bwareaopen(bw ,80); % Removing small objects

40 bw2 = imfill(bw ,’holes’); % Filling holes

41 % Opening and removing small objects

42 bw3 = bwareaopen(imopen(bw2 ,strel(’disk’ ,10)) ,50);

43 bxEdges = bwareafilt(bw3 ,6); % Size filter

44 bwLabel = logical(bxEdges); % Labelling image

45 % Extracting properties of detected shapes

46 bxProps = regionprops(bwLabel ,’Centroid ’, ’Area’);

47

48 case 2 %By comp

49 bw = imdilate(imEdg ,strel(’disk’ ,2));

50 bw = imdilate(bw ,strel(’line’ ,3,45));

51 bw = imclearborder(imdilate(bw ,strel(’line’ ,3,90)));

52 bw = bwareaopen(bw ,50);

53 bw2 = imfill(bw ,’holes’);

54 bw3 = imopen(bw2 ,strel(’disk’ ,10));

55 byEdges = bwareafilt(bw3 ,6);

56 bwLabel = logical(byEdges);

57 byProps = regionprops(bwLabel ,’Centroid ’, ’Area’);

58

59 case 3 %Bz comp

60 bw = imdilate(imEdg ,strel(’disk’ ,3));

61 bw = imclearborder(imdilate(bw ,strel(’line’ ,3,45)));

62 bw = bwareaopen(bw ,80);

63 bw2 = imfill(bw ,’holes’);

64 bw3 = imopen(bw2 ,strel(’disk’ ,10));

65 bzEdges = imclearborder(bwareafilt(bw3 ,7));

66 bwLabel = logical(bzEdges);

67 bzProps = regionprops(bwLabel ,’Centroid ’, ’Area’);

68 end
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69 end

70

71 % Merging all the detected shapes in a single image

72 totalEdges = (bxEdges|byEdges|bzEdges);

73 % Erotion and removing small objects

74 bw4 = bwareaopen(imerode(totalEdges ,strel(’disk’ ,5)) ,80);

75 % Obtaining image complement

76 imComp = imcomplement(tmp);

77 % Finding local minima

78 imMod = imimposemin(imComp , ~totalEdges | bw4);

79 % Applying watershed transform for image segmentation

80 def = watershed(imMod);

81 % Color labelling of detected shapes

82 Lrgb = label2rgb(def ,’jet’,’w’);

83 % Showing output image

84 figure , imshowpair(imEq ,Lrgb ,’montage ’),hold on

85 % Showing boundaries of detected shapes on original image

86 imBnd = bwboundaries(bw4);

87 boundCount = size(imBnd ,1);

88 visboundaries(imBnd)

89

90

91 %%%% Size estimation %%%

92

93 % Getting properties of defects

94 stats = regionprops(’struct ’,def ,’Area’,’Centroid ’ ,...

95 ’MajorAxisLength ’,’MinorAxisLength ’,’Orientation ’ ,...

96 ’Eccentricity ’,’BoundingBox ’);

97 stats (1,:) =[];

98

99 if ~isempty(stats) % If there are detected defects

100 defCount = length(stats); % Number of detected defects

101 pixW = surfW/size(tmp ,2); % Pixel length in mm

102 % Iterating per detected defects

103 for r = 1: defCount

104 % Obtaining bounding box of current defect

105 thisBB = stats(r).BoundingBox;
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106 % Drawing bounding box

107 plot(thisBB (1),thisBB (2),’r’)

108 rectangle(’Position ’,[thisBB (1),thisBB (2),thisBB (3),thisBB

(4)],...

109 ’EdgeColor ’,’r’,’LineWidth ’ ,2)

110 % Obtaining width and length of current bounding box

111 thisLen = thisBB (3);

112 thisWid = thisBB (4);

113 % Calculating current defect ’s width and length

114 if (thisLen < thisWid)

115 % Converting pixels into milimeters

116 defLength = round(thisWid*pixL ,4,’significant ’);

117 defWidth = round(thisLen*pixW ,4,’significant ’);

118 else

119 % Converting pixels into milimeters

120 defLength = round(thisLen*pixW ,4,’significant ’);

121 defWidth = round(thisWid*pixL ,4,’significant ’);

122 end

123 % Printing to output text file

124 sprintf(’Estimated Dimensions of Defect %d: \n Length: %f

mm \n Width: %f mm \n\n’,r,defLength ,defWidth)

125 str3 = sprintf(’%d’, r); % Labelling defects in plot

126 text(stats(r).Centroid (1), stats(r).Centroid (2), num2str(r)

, ’Color’, ’k’, ’FontSize ’, 12, ’FontWeight ’, ’Bold’, ’

Interpreter ’, ’None’);

127 fprintf(fid ,’\t Defect No. %d\n\t Length: %.2f mm\n\n’, r

, defLength , defWidth);

128 end

129 hold off

130 else

131 defCount = 0;

132 end
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B.1.5 PC - Arduino Interface

This code creates a communication interface to send commands to the Arduino

board and then receive the measurements made by the sensors. This is achieved by

working in conjunction with the programme shown in B.2

1 %% Serial Communication Matlab - Arduino

2 clearvars s % Clearing variables

3 % Initializing serial port

4 s = serialport ("COM3 " ,74880," Timeout ",25);

5 configureTerminator(s,"CR/LF");

6 disp(’Initializing ...’) % Print to screen

7 loopCnt = 0; % Scans counter

8 % Iterating per number of line scans

9 while (loopCnt <= 36)

10 i = 0; % Sample counter

11 disp(’Reading ...’)

12 % Reading current state from serial port

13 inputData = str2double(read(s,1,"char"));

14 if(inputData >= 0)

15 currState = inputData;

16 if (currState == 0) % If State 0, write ’f’ to serial port

17 write(s,102 ," char")

18 flush(s); % Clearing port

19 end

20 if(currState == 1)

21 disp (’FWD’)

22 end

23 while(currState == 1)

24 inputData = readline(s); % Reading measurements

25 inputData = str2num(inputData)

26 if(~ isempty(inputData))

27 if(inputData ==2) % Checking if state changed

28 inputData = str2double(read(s,1,"char"));

29 currState = inputData;

30 break;

31 end

32 if(inputData ==0) % Checking if arduino reset
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33 pause (0.5);

34 write(s,102," char") % Write ’f’

35 flush(s);

36 i = i - 1;

37 continue

38 end

39 currData(i,:) = inputData; % Storing readings to

matrix

40 i = i + 1; % Increasing sample counter

41

42 else

43 disp(’Empty ’) % Print to screen if empty

44 inputData % Printing content of ’inputData ’ to

screen

45 currData(i,:) = NaN;

46 i = i + 1;

47 end

48 end

49 if(currState == 2) %If State 2, return to initial position

50 disp(’BWD’)

51 end

52 while(currState == 2) % Storing last reading to cell

structure

53 inputData = cell2mat(textscan(readline(s),’%f’,’

Delimiter ’,’CR/LF’));

54 if(inputData ==0)

55 MFL_Data{loopCnt ,1} = currData;

56 % Saving to file

57 save(’filename.mat’,’MFL_Data ’,’-append ’)

58 loopCnt = loopCnt + 1; % Increasing counter

59 disp(’Ready for next scan?’)

60 pause (); % Waiting for user keypress

61 disp([’Starting iteration ’,num2str(loopCnt)])

62 pause (1); % Starting next loop

63 write(s,102," char") % Write an f

64 flush(s);

65 currData = zeros (3400 ,6); % Clearing last readings
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66 break;

67 end

68 end

69 end

70 end

B.2 Arduino Code

The following code creates an interface between the Arduino board and a PC with

which the motor and sensors are controlled with a series of instructions sent from

the PC to the Arduino.

1 // Importing needed libraries

2 #include <Wire.h> // Libraries for

3 #include <SPI.h> // Serial Communication

4 #include <SparkFunLSM9DS1.h> // Library for driving the sensors

5 #include <avr/wdt.h> // Library for CPU’s watchdog timer

6

7 // Initializing variables

8 int motor_pins [] = {10, 11}; // Motor control pins

9 int LED = 13; // ON -OFF monitoring LED pin

10 int ledloopState = LOW; // Current LED loopState

11 int REED_START = 5; // Start reed switch pin

12 int REED_END = 6; // End reed switch pin

13 int ON_switch = 2; // General ON switch pin

14 int loopMaster; // Control variable

15 int loopCnt = 0; // Iterations Counter

16 unsigned int timeCnt = 0; // Time counter

17 int loopState; // Current loop state

18 static unsigned long lastPrint = 0; // Keeping track of print time

19 LSM9DS1 sensor1; // Creating LSM9DS1 objects

20 LSM9DS1 sensor2; // to initialize sensors

21

22 // Defining I2C addresses for each sensor

23

24 #define LSM9DS1_M_1 0x1C // Magnetometer Sensor 1

25 #define LSM9DS1_AG_1 0x6A // Accelerometer and Gyroscope Sensor 1
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26 #define LSM9DS1_M_2 0x1E // Magnetometer Sensor 2

27 #define LSM9DS1_AG_2 0x6B // Accelerometer and Gyroscope Sensor 2

28

29 // Output settings

30

31 #define PRINT_CALCULATED // Print measurements in Gauss

32 #define PRINT_RAW // Print raw measurements (binary)

33 #define PRINT_SPEED 100 // 100 ms between prints

34 // Earth’s magnetic field compensation

35 #define DECLINATION 1.1166 // Declination (degrees) in Durham , UK.

36

37 // Functions definition

38 void printMag (); // Print readings

39 void motor_stop (); // Stops motor

40 void motor_forward (); // Motor moves clockwise

41 void motor_backward (); // Motor moves counter clockwise

42 void setup_sensors (); // Setting up sensors

43

44 // Setting up Arduino board. This code runs only once

45 void setup() {

46 wdt_enable(WDTO_2S); // Enabling watchdog timer count (2 sec)

47 // Setting up OUTPUT pins

48 pinMode(LED , OUTPUT);

49 pinMode(motor_pins [0], OUTPUT);

50 pinMode(motor_pins [1], OUTPUT);

51 // Setting up INPUT pins

52 pinMode(REED_END , INPUT_PULLUP);

53 pinMode(REED_START , INPUT_PULLUP);

54 pinMode(ON_switch , INPUT_PULLUP);

55 // Setting up Serial port and Baudrate

56 Serial.begin (74880);

57 while (! Serial); // Waiting for serial to be ready

58 // Setting up sensors

59 setup_sensors ();

60 // Changing current state

61 if (digitalRead(REED_START) == HIGH) loopState = 0;

62 }
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63

64 // Main code. Runs continuously

65 void loop() {

66 loopMaster = !digitalRead(ON_switch); // Is main switch on?

67 if (loopMaster == LOW) loopState = 0; // Setting initial state

68 char readData = 0; // Initializing serial input variable

69

70 // Finite State Machine

71 switch (loopState) {

72 case 0: // Initial State: Standby

73 motor_stop ();

74 // Send current state to serial port

75 Serial.println(loopState);

76 // Reading serial port

77 while (readData != ’f’) {

78 if (Serial.available ()) {

79 readData = Serial.read();

80 // Changing current state

81 if (readData == ’f’) { // Change to State 1

82 loopState = 1;

83 }

84 if (readData == ’b’) { // Change to State 2

85 loopState = 2;

86 break;

87 }

88 }

89 }

90 break;

91

92 // ///////////////////////////////////////////////////////

93

94 case 1: // State 1: Motor moves clockwise

95 // Send current state to serial port

96 Serial.println(loopState); // Printing current state

97 delay (100); // Delay 100 ms

98 // Motor keeps rotating until REED_END changes its state ,

99 // this means that the magnetizer reached the end of the
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100 // scan surface

101 while (digitalRead(REED_END) == HIGH && !digitalRead(

ON_switch) == HIGH) {

102 if (timeCnt < 20000) wdt_reset (); // Reset watchdog timer

103 // Update sensor values when new data available

104 if ( sensor1.magAvailable () || sensor2.magAvailable ()) {

105 sensor1.readMag (); // Reading magnetometer measurements

106 sensor2.readMag (); // in both sensors

107 }

108 // Printing last readings

109 if (( millis () - lastPrint) >= PRINT_SPEED) {

110 printMag (); // Prints six comma -separated values

111 motor_forward ();

112 lastPrint = millis (); // Update last print time

113 // Change state of monitoring LED

114 ledloopState = !ledloopState;

115 digitalWrite(LED , ledloopState ? HIGH : LOW);

116 }

117 Serial.flush(); // Clearing serial port

118 timeCnt ++; // Increase time counter

119 }

120 // Change to State 2

121 if (digitalRead(REED_END) == LOW) loopState = 2;

122 break;

123

124 // //////////////////////////////////////////////////////////

125

126 case 2: // State 2: Motor stops , then moves counter clockwise

127 motor_stop ();

128 delay (1000);

129 // Motor keeps rotating until REED_START changes its state ,

130 // this means that the magnetizer reached its original

position

131 while (digitalRead(REED_START) == HIGH && !digitalRead(

ON_switch) == HIGH) {

132 motor_backward ();

133 Serial.println(loopState); // Printing current state
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134 delay (60);

135 wdt_reset (); // Reset watchdog timer

136 }

137 Serial.flush(); // Clearing serial port

138 if (digitalRead(REED_START) == LOW) { // Change to initial

state

139 loopState = 0;

140 }

141 timeCnt = 0; // Reset timer count

142 loopCnt ++; // Increase iterations counter

143 break;

144 }

145 }

146

147 // Implementing predefined functions

148

149 // Sending motor’s control bits

150 void motor_stop () {

151 digitalWrite(motor_pins [0], LOW);

152 digitalWrite(motor_pins [1], LOW);

153 }

154 void motor_forward () { // Clockwise

155 digitalWrite(motor_pins [0], HIGH);

156 digitalWrite(motor_pins [1], LOW);

157 }

158 void motor_backward () { // Counter clockwise

159 digitalWrite(motor_pins [0], LOW);

160 digitalWrite(motor_pins [1], HIGH);

161 }

162

163

164

165 // Setting up sensors ’ parameters

166 void setup_sensors () {

167 sensor1.settings.device.commInterface = IMU_MODE_I2C; // Setting

up I2C interface
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168 sensor1.settings.device.mAddress = LSM9DS1_M_1; // Assigning

I2C

169 sensor1.settings.device.agAddress = LSM9DS1_AG_1; // addresses

170 // Setting magnetometer ’s scale can be 4, 8, 12, or 16

171 sensor1.settings.mag.scale = 16;

172 // Setting magnetometer ’s data sample rate can be 0-7

173 // 0 = 0.625 Hz 4 = 10 Hz

174 // 1 = 1.25 Hz 5 = 20 Hz

175 // 2 = 2.5 Hz 6 = 40 Hz

176 // 3 = 5 Hz 7 = 80 Hz

177 sensor1.settings.mag.sampleRate = 7;

178 // Setting magnetometer ’s performance can be any value between

0-3

179 // 0 = Low power mode 2 = high performance

180 // 1 = medium performance 3 = ultra -high performance

181 sensor1.settings.mag.XYPerformance = 3;

182 sensor1.settings.mag.ZPerformance = 3;

183 sensor1.settings.mag.lowPowerEnable = false;

184 // Setting operatingMode can be 0-2

185 // 0 = continuous conversion

186 // 1 = single -conversion

187 // 2 = power down

188 sensor1.settings.mag.operatingMode = 0;

189 sensor1.begin(); // initializing sensor 1

190

191 // ///////////////////////////////////////////////

192

193 sensor2.settings.device.commInterface = IMU_MODE_I2C;

194 sensor2.settings.device.mAddress = LSM9DS1_M_2;

195 sensor2.settings.device.agAddress = LSM9DS1_AG_2;

196 // mag scale can be 4, 8, 12, or 16

197 sensor2.settings.mag.scale = 16;

198 // mag readData rate can be 0-7

199 // 0 = 0.625 Hz 4 = 10 Hz

200 // 1 = 1.25 Hz 5 = 20 Hz

201 // 2 = 2.5 Hz 6 = 40 Hz

202 // 3 = 5 Hz 7 = 80 Hz
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203 sensor2.settings.mag.sampleRate = 7;

204 // magPerformance can be any value between 0-3

205 // 0 = Low power mode 2 = high performance

206 // 1 = medium performance 3 = ultra -high performance

207 sensor2.settings.mag.XYPerformance = 3;

208 sensor2.settings.mag.ZPerformance = 3;

209 sensor2.settings.mag.lowPowerEnable = false;

210 // magOperatingMode can be 0-2

211 // 0 = continuous conversion

212 // 1 = single -conversion

213 // 2 = power down

214 sensor2.settings.mag.operatingMode = 0;

215 sensor2.begin();

216 }

217

218 void printMag () {

219 // Now we can use the mx , my , and mz variables as we please.

220 // Either print them as raw ADC values , or calculated in Gauss.

221

222 #ifdef PRINT_CALCULATED

223 // If you want to print calculated values , you can use the

224 // calcMag helper function to convert a raw ADC value to

225 // Gauss. Give the function the value that you want to convert.

226

227 // Printing Sensor 1 readings

228 Serial.print(sensor1.calcMag(sensor1.mx), 4);

229 Serial.print(F(",")); // Bx

230

231 Serial.print(sensor1.calcMag(sensor1.my), 4);

232 Serial.print(F(",")); // By

233

234 Serial.print(sensor1.calcMag(sensor1.mz), 4);

235 Serial.print(F(",")); // Bz

236

237 // Printing Sensor 2 readings

238 Serial.print(sensor2.calcMag(sensor2.mx), 4);

239 Serial.print(F(","));
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240

241 Serial.print(sensor2.calcMag(sensor2.my), 4);

242 Serial.print(F(","));

243

244 Serial.print(sensor2.calcMag(sensor2.mz), 4);

245 Serial.println(F(","));

246 #endif

247 }
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