
Durham E-Theses

Optimisation of Resilient Satellite Communications

for Sustainable Digital Connectivity in Remote Rural

Africa

BISU, ANAS,ABUBAKAR

How to cite:

BISU, ANAS,ABUBAKAR (2020) Optimisation of Resilient Satellite Communications for Sustainable

Digital Connectivity in Remote Rural Africa, Durham theses, Durham University. Available at Durham
E-Theses Online: http://etheses.dur.ac.uk/13862/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/13862/
 http://etheses.dur.ac.uk/13862/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


Optimisation of Resilient Satellite
Communications for Sustainable
Digital Connectivity in Remote

Rural Africa

Anas Abubakar Bisu
BSc., MSc., MSc., FHEA

A Thesis presented for the degree of

Doctor of Philosophy

Department of Engineering

Ustinov College

The University of Durham

June, 2020



Abstract

Digital connectivity using telecommunications network infrastructure has be-

come indispensable for the socio-economic development of todays modern society.

This digital connectivity is being achieved using terrestrial, satellite or the integra-

tion of both to form a more realistic heterogeneous communications network char-

acterise by wireless/wireline, long/short latency, and high/low bandwidth. Satellite

and Integrated Satellite-Terrestrial Networks (ISTNs) exhibit unique characteristics

such as large bandwidth/capacity and global coverage capabilities, which is being

exploited to connect even the remotest and poorest communities in the world in an

optimally cost-effective and efficient way.

This thesis investigated the optimum, cost-effective, efficient and sustainable way

to help bridge the digital divide between the mainly terrestrially connected developed

cities and unconnected remote rural villages, particularly in the isolated remote rural

African communities. This was achieved by optimised data transmission using the

most widely used (de facto) standard transport protocol over the Internet in a pure

satellite or hybrid ISTN environment that is characterised by large Bandwidth Delay

Product (BDP). Transmission Control Protocol (TCP) accounts for 8090% Internet

data traffic and applications over Internet Protocol (IP) nowadays, which makes it

one of the most important protocols for data transmission over the Internet.

Experiments were carried out to measure the practical and simulated End-to-

End (E2E) latencies of Satellite and ISTN environments from which a framework

for E2E latency of ISTN environments was developed for quantifying practical E2E

latency of pure satellite and ISTN environments. The practical E2E latency was

measured by a passive measurement method using two testbeds of Geostationary

satellite network providers that transmit and receive voice over IP signals while

the active method was used by the simulation experiments, in which File Transfer

Protocol (FTP) traffic over TCP enabled within the designed ISTN topology was

created. The measured E2E latencies were used to investigate the impact of long

Round-Trip Time (RTT) of Satellite and ISTN environments on large BDP and the

standard TCP schemes.

Following the successful E2E measurements and framework development, this
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thesis also developed and propose an enhanced congestion control algorithm called

TCP HYBIC for long RTT and high-speed networks such as ISTN and pure satellite

environments. HYBIC is based on large BDP CUBIC and HYBLA TCP algorithms.

HYBIC performance analysis and evaluation in comparison to these large BDP

schemes were conducted using numerical and simulation methods. The performance

analysis and evaluation of HYBIC in comparison to a standard, CUBIC, and HYBLA

TCP schemes showed that HYBIC achieves performance in terms of packet delivery

ratio of up to 99.96%, jitter of 34 µs, and efficient capacity utilisation of up to 67%.

These have overcome the challenges of standard TCP over long RTT and large BDP

paths, which form part of the realistic communications network nowadays and the

future by improving the utilisation and packet delivery rate.

Finally, as part of future work, this thesis recommended exploring the effect of

background traffic on fairness and the effect of more complex network topologies

could also be interesting. Experiments with more queue management schemes such

as Active Queue Management (AQM) where packets are dropped from the queue

before the queue overflows could also be an interesting work for the future. Po-

tential areas of applications such as Tele-medicine and Tele-agriculture could be

tested with network topologies designed for resilient and sustainable Satellite and

ISTN communications. These would be useful for Telecommunications services and

application in remote rural areas, and for emergency/disaster management when

terrestrial communications infrastructure failed in the event of a disaster.
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Chapter 1

Introduction

1.1 An Overview

Satellite Communications (SatComs) have unique features such as global cover-

age, high availability anywhere/anytime, high bandwidth capacity and resilience

for ubiquitous digital connectivity [1–4]. These features could be exploited and ex-

plored to potentially bridge the digital divide that exists due to lack of access to

the telecommunications network infrastructure in remotely isolated rural areas for

digital connectivity and services, particularly rural communities in Africa. How-

ever, SatComs also exhibit the undesirable attributes of high latency due to long

propagation delays, particularly the Geostationary Earth Orbit (GEO) satellites

covering large footprints of multiple continents. Intermittent connectivity in lower

orbit satellite links with low latency such as Medium/Lower orbit (MEO/LEO)

satellites and generally high wireless link errors in satellite networks contribute sig-

nificant performance degradation when using SatComs for data communications.

These key characteristics of SatComs lead to performance degradation and capac-

ity underutilisation in data communications, especially using Transmission Control

over the Internet Protocols (TCP/IP) [5–12], which account for 80-90% of the inter-

net traffic nowadays [13–15]. For effective and efficient use of SatComs to connect

the isolated remote rural communities in Africa, and beyond, the negative impact of

long communication delays need to be investigated and addressed to achieve optimal

performance of TCP over satellite channels and sustainable connectivity.

1
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Optimised, resilient and sustainable SatComs networks could be an effective so-

lution for closing the digital gap in the near future. This thesis investigates the

impact of SatComs long latency on data communications performance over the In-

ternet using the TCP over high capacity and high delay GEO satellite channels with

Fixed Satellite Service (FSS) and an Integrated Satellite-Terrestrial Network (ISTN)

environment for real-time voice and Internet applications in remote isolated areas.

The key goals were to identify and find how to optimise the performance of this

protocol over SatComs or hybrid network environments for better utilisation of the

huge available satellite capacity. This has applications in remote rural areas, par-

ticularly in Africa for socio-economic development and growth of the communities

using an improved digital connectivity.

Mitigating the negative impacts of long latency on TCP transmission rate (Through-

put) could optimise the data communications performance and provide good quality

of service (QoS) while providing optimum and efficient utilisation of expensive band-

width/capacity as shown in Fig. 1.1.

Internet Packet Delay
Variation 

Jitter(IPDV) = σLat_dev

Throughput (bps)

 

R = W(t)/RTT

Bandwidth Efficiency

 

η = %
R

C

Bandwidth-Delay
Product(bits) 

BDP = C ∗ RTT

Latency

Communications
Performance/QoS

Keys:
C: Capacity of the Channel 
W(t): Congestion Window Rate 
QoS: Quality of Service
RTT: Round-Trip Time
 

Figure 1.1: Latency Dependent TCP Performance and QoS Parameters

On the other hand, the sustainability of communications could be improved

using cheaper and widely available powering options in order to maintain long term

sustainable connectivity. Satellite provides resiliency, but more options and use cases

scenarios will be investigated by this research to improve resilience and sustainability.
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1.2 Motivation

The lack of terrestrial communications infrastructure, poor availability and services

in remote rural areas keep about 67% of 1.3 billion Africans digitally disconnected

to the rest of the world [16]. About 62% of the African population live in sparse

remote villages with extremely low population density and difficult terrain (rocks,

mountains, forest, landslides/erosions, rivers etc.), unfriendly climate (extremely

hot and rainy) and poverty without much economic activities [17]. These and other

factors make deployment and maintenance of terrestrial communications infrastruc-

ture near impossible, or not economically feasible, subjecting at least 340 million

people to travel at least 50 km to access the Internet in sub-saharan Africa [18].

This digital isolation in most African communities contributed immensely to their

underdevelopment with a consequence on socio-economic development opportuni-

ties such as e-health, e-learning, e-agriculture, emergency and disaster management

enabled by digital services [17].

Careful performance optimisation of Internet data communications over satellite

channels and exploration of the unique features of SatComs such as global cover-

age (anywhere), high capacity, fast/easy deployment, high availability (anytime) of

about 99.999%, accessibility and with highly resilience could potentially be utilised

to digitally connect the unconnected areas in Africa, and beyond, for socio-economic

developments. These include improved healthcare delivery using Telemedicine, Agri-

culture using Tele-Agriculture and quality education using Tele-Education.

However, the de-facto standard TCP algorithm currently being used by the IP

networks penalises wireless and long distance network links with high wireless link

errors or Packet Error Rate (PER) and long Round-Trip Time (RTT). These degrade

performance, underutilise the available capacity and give an unfair share of available

bandwidth in a heterogeneous network environment involving short distance wired

or wireless and satellite channels. The performance degradation of TCP due to these

attributes of the satellite link needs to be investigated. Moreover, better solutions

are needed that could be optimum and efficient over GEO satellite channels which

have high capacity and global coverage advantages, and the potential to bridge the

digital gap even in the remotest rural areas of the world, except the polar regions.
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1.3 Aim

The aim of this thesis is to investigates the practical performance of data commu-

nication, particularly IP traffic applications using the TCP/IP over heterogeneous

networks involving at least a satellite link. This investigates a way to improve the

performance of TCP algorithms based on schemes such as HYBLA, CUBIC and

NewReno for better performance and efficient utilisation of the available capacity

of satellite systems, rather than using a de-factor standard of TCP algorithms in

most operating systems nowadays, which often results in degraded performance and

under-utilisation of capacity over satellite channels due to the attributes mentioned

earlier. The research also exploits the advantages such as high capacity and global

coverage of satellite networks for bridging the digital divide, which could be achieved

using the objectives in the subsequent section.

1.4 Contributions

Standard TCP algorithm implementations depend largely on acknowledgements

(ACKs) and RTT of transmitted data packets with blind tagging of any lack of

acknowledgement from the packets receiver as a loss event due to network con-

gestion. These assumptions might be wrong and highly penalise and degrade the

performance of realistic heterogeneous networks incorporating wireless links with

high PER and satellite links with additionally long RTT. Alternative TCP algo-

rithms that remove dependencies or reduced the negative impact of long RTT of

satellites links and high PER are investigated for enhanced performance of TCP

over heterogeneous networks such as ISTNs. The contributions of this thesis are

listed as follows;

1. Study and explore the existing TCP algorithms for Satellite such as HYBLA

and CUBIC and develop a new scheme for enhanced performance of TCP over

satellite or hybrid networks in terms of throughput, capacity utilisation, Jitter

and packet delivery ratio.

2. Develop model and framework for E2E latency measurement in a real satellite
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testbed. This was achieved by developing different case study scenarios for

pure and hybrid satellite (ISTN) environments. Conduct performance analysis

and evaluation of the actual E2E latency measured using the the testbed and

investigated its impacts on the standard TCP.

3. Enhanced TCP algorithm for heterogeneous networks incorporating GEO satel-

lite links. My new improved algorithm combines the modifications of slow start

and congestion avoidance phases of both HYBLA and CUBIC algorithms while

integrating them to benefit from their unique advantages such as stability and

RTT-fairness and friendliness to other schemes. This aimed to achieve bet-

ter throughput and packet delivery performance of TCP over heterogeneous

and large BDP networks with efficient utilisation of huge available capacity of

GEO satellite links as compared with previous TCP schemes.

4. Designed and developed resilient and sustaible network scenarios for the po-

tential applications in remote rural areas, particularly digitally unconnected

African remote rural communities.

1.5 Thesis Structure

Chapter 1: This chapter introduces the thesis background, the motivation, aims,

objectives and contributions, and the thesis structure.

Chapter 2: Reviews the potential and unique characteristics of SatelliteComs,

which provides an insight as to why this research focused on use of SatComs in-

stead of its terrestrial counterpart. The chapter also highlights the research and

development frontiers of the satellite industry, as well as future of SatComs for

emerging technologies and how these could be effectively applied in isolated remote

rural areas that are digitally disconnected to the rest of the world for socio-economic

development of these areas and communities.

Chapter 3: The chapter presents an overview of transport protocol, particularly

the standard TCP/IP, TCP over SatComs channels and the User Datagram Proto-

col (UDP). This chapter discusses the original (de-facto) standard TCP algorithms
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and relevant schemes of TCP aimed at solving performance disparity for different

network environments such as GEO satellite link in a more realistic heterogeneous

networks nowadays and also called ISTNs environment.

Chapter 4: In this chapter, the experiments for channel Measurements, Simula-

tions, Emulation, Performance Evaluation and Analysis using the results obtained is

presented. The chapter discusses real-world testbeds and use cases scenarios used for

the practical measurements of the performance of realistic heterogeneous networks.

The scenarios developed for the channel measurement and framework proposed for

End-to-End (E2E) latency measurement in a satellite network environments are also

presented and discussed in relation to performance of real heterogeneous networks

(ISTNs) incorporating at least a leg of GEO satellite channel.

Chapter 5: The chapter presents the mathematical modelling for an optimised

TCP algorithm over heterogeneous (IST) networks called TCP HYBIC, numerical

analysis of performance, and simulated implementation, testing and evaluation of

the new HYBIC proposal. This chapter also compared the performance of the new

improved proposal (HYBIC) with HYBLA and CUBIC schemes, these formed the

basis of HYBIC proposal for improving performance of TCP over satellite commu-

nications channels.

Chapter 6: This chapter draws the conclusions, recommendations and direc-

tions for future work.
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Chapter 2

Satellite Communications and

Potentials in Remote Rural Africa

2.1 Satellite Communications

Telecommunications has become indispensable for the socio-economic development

of humankind. This has being the key enabler of the Information and Commu-

nications Technology (ICT) that drive the digital information age. Developments

in electronics led to the discovery of effective terrestrial and satellite telecommu-

nication systems with vast applications in almost all areas of life nowadays. As

mentioned in chapter 1, satellite communications (SatComs) features like global

coverage, rapid/cheaper deployment, high availability, scalability, reliability, broad-

cast and multicast support [1–4], can be exploited to provide connectivity and enable

services even in the remotest rural areas of the world and help bridge the digital

divide between the connected and unconnected communities for making the world a

truly global village. However, terrestrial networks have advanced faster [5] in recent

years, offering cheaper solutions in developed, and accessible in urban environments

of the developing nations. This is not economically feasible in remote areas with

extremely difficult harsh terrain and not reliable during natural disasters that cause

damage to the ground infrastructures [2]. In the past, SatComs technologies did

not advance at the same pace as terrestrial communications due to the service cost

and interoperability challenges [6]. However, the potential of SatComs and hetero-

10
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geneous ISTNs in the socio-economic growth of isolated rural areas and the future

generation of communications networks such as 5G New Radio (NR) led to the full

commitment of key industry players to revamp SatComs technologies [5]. In recent

years, significant research efforts are being made to increase the capacity of satellite

systems using High Throughput Satellites (HTS), low-cost Nano/Micro satellites,

flexible payload, portable and cheaper ground terminals to prepare for the antici-

pated new services opportunities as an integral part of next generation networks like

ISTNs shown in Fig. 2.1 [1, 6, 7].

PSTN / ISDN

SS

Internet

Main Station

KEYS 
RAN: Radio Access Network 
RF: Radio Frequency 
IF: Intermediate Frequency 
SS: Satellite (Space) Segment 

GWS: Gateway (Ground) Station 
PSTN: Public Switched Telephone Network 
ISDN: Integrated Services Digital Network 
PLMN: Public Land Mobile Network

Network Operations & Control 

Network Operations Centre

Business Support System (BSS)

Satellite Control Centre (SCC) CORE NETWORK (CN)

PLMN

SAS/GWS

CORE NETWORK (CN)

CN

RANs 
RF/IF 

SAS/GWS

CN

RANs 
RF/IF 

Satellite  Access Station (SAS)
Satellite  Access Station (SAS)

High Speed (Cable Backbone) Data Communication Link

Terrestrial Networks

Figure 2.1: A Typical Topology of Integrated Satellite-Terrestrial Network

High availability (99.999%) of SatComs everywhere at anytime including during

natural disasters is an advantage to explore for solving the digital divide in the

African remote villages [8, 9]. We proposed an optimised Internet data transmission

using pure SatComs and hybrid ISTN as the best candidate that could provide

the novel solution. The key challenges for the optimum performance of SatComs
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include the negative effect of long latency, degraded achievable throughput and

underutilisation of the satellite high capacity.

Digital services value chain includes climate corporations using satellite data for

agricultural projections, which can be a means to pay for sustained connectivity

in remote poor rural communities [10]. Terrestrial communications networks closed

the digital divide between developed countries and urban areas in African, but not

in remotely isolated rural Africa, where satellite and ISTNs will play a vital role.

Africa’s vastness, resources and sector strengths are poised to reap more benefits

from SatComs with its 45% mobile penetration projected to reach 54% by 2020

with SatComs help to mobile operators achieve this goal [10].

2.2 Recent Development in SatComs

In recent years, SatComs witnessed a remarkable increase in research and industrial

efforts to improve technologies at a global scale due to ever-increasing demands of

SatComs services and applications to complement terrestrial communication net-

works. The renewed research and industrial efforts towards advancing SatComs

technology focused on equipment cost reduction (in ground, launch and space seg-

ments), size, capacity improvement, quality of service, and protocol performance

enhancement in an heterogeneous network environment with hybrid satellite, ter-

restrial, wired and wireless channels such as ISTNs shown in Fig. 2.1. These also

help in the effective integration, performance, and coverage expansion for the fu-

ture 5G networks [7, 11, 12]. These developments have been summarised in the

subsequent sub-sections.

2.2.1 Capacity Expansion: High Throughput Satellites

The recent demand for high data rate, wider coverage and advanced capacity com-

munication systems led to the development of a new generation of satellites in K-

Bands at 10-18 GHz/18-30 GHz (Ku/Ka) [9], most prominent are KA-SAT and High

Throughput Satellites (HTS). Developed to offer broadband access services compa-

rable to terrestrial Asymmetric Digital Subscriber Line (ADSL 2+) at the same cost
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to millions of users globally using smaller terminals [13]. The KA-SAT and HTS

can offer data rate up to 90 Gbps and expected to increase tremendously in the near

future to rival the capacity and quality of Fibre-To-The-Home (FTTH) terrestrial

systems [13, 14].

By 2020, the next generation operational satellites are envisioned to have up to

1 Tbps capacity with reduced cost per MB using higher frequency Q, V and W bands

(40-110 GHz), and smart MIMO antennas, larger beams and transponders [13–15].

The capacity provided by the 1st and 2nd generations of Ka-band like iPSTAR,

WildBlue I, SpaceWay 3, KA-SAT, ViaSat1 and other HTS is about 20-to-100 Gbps

[16, 17]. HTS/KA-SAT experienced variable attenuation due to rain and employ

Adaptive Coding and Modulation (ACM) as a Fade Mitigation Technique (FMT)

[16]. Spectral efficiency is achieved by multiple narrow antenna beams (multi-Spot

beams of up 82-spots) that allow a higher (x 20) Frequency Re-use (FR) factor

[13, 16, 18].

The quest for more capacity in the future requires more available satellite band-

width; this needs exploitation of higher bands beyond Ka-band. Recent research

efforts have focused on exploiting Q/V-Band (40-75 GHz), E-band (71-86 GHz) and

W-band (75-110 GHz) for higher capacity in the next generation satellites for 5G

network applications [19, 20]. Key research focus in the future on high-capacity satel-

lites systems will be on the effects of weather and power efficiency at Q/V/E/W-

bands. The use of Medium Earth Orbit (MEO) Ka-band HTS systems reduces

the long latency problems of Geostationary Earth Orbit (GEO) in L-band sys-

tems [9]. Further research is needed to expand the capacity and portability of

satellite user/ground terminals to avoid bottlenecks and ease of use in communica-

tions to compete with terrestrial systems. Design of future high-capacity satellite

systems require critical considerations of dependent parameters like capacity, data

rate; channel bandwidth, spectrum efficiencies and power. Interdependence of these

design parameters are given by Eqns. (2.2.1) to (2.2.5) [13, 21].

C = Bwlog2(1 +
S

N
) (2.2.1)

where C (in bps) is the Shannon’s theoretical maximum capacity limit of the
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system, Bw is the channel Bandwidth (in Hz), and S
N

is the dimensionless Signal-

to-Noise Ratio (SNR in dB). The achievable bit rate (throughput) Rb ≤ C can be

computed from Shannon-Hartley theorems in Eqn. (2.2.2) and spectral efficiency η

(in b/Hz) determined by (2.2.3) below.

Rb ≤ Bwlog2(1 +
S

N
) (2.2.2)

η =
Rb

Bw

≤ log2(1 +
S

N
) (2.2.3)

Therefore, η is inversely proportional to the BW and directly proportional to the

SNR of the transmission system give by:

SNR =
PEIRP
FSL

XG/T (2.2.4)

Simplifying 2.2.4 gives SNR as:

SNR =
PtGtGr

(4πD
λ

)KTsBw

(2.2.5)

where PEIRP is an effective isotropic radiated power in watts (W), FSL is the

free space loss, G/T is the figure of merit, D signal path length ( in km), λ is the

wavelength, k is the Boltzmann constant, Ts system temperature (in kelvin), Gt and

Gr are dimensionless transmitter and receiver antenna gains respectively.

The theoretical maximum channel capacity C and transmission rate, Rb (achiev-

able throughput) directly depend on the channel bandwidth, Bw and SNR as shown

in Eqn. (2.2.1) and (2.2.2). On the other hand, the channel efficient utilisation,

η (efficiency) depends on capacity and throughput as given in Eqn. (2.2.3) or the

SNR, which is derived using Eqn. (2.2.4) and (2.2.5).

Therefore, HTS will revolutionise communications by offering the needed high

capacity systems to serve the accelerating growth in high data rate demands of the

era by the end of decade for the next decades. These will provide cost effective

high-speed/throughput Internet access and connectivity anywhere in the world, be

it isolated remote areas, at sea or in the air. This is a key potential for 5G and

Internet of Things (IoT) connected devices as discussed in the subsequent sections.
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2.2.2 Size, Weight and Cost Reduction

Research in miniaturisation of SatComs technologies (space and ground segments)

has gained much interest in recent years due to the institutional and individual user

demands for smaller, portable and cheaper satellite systems [22, 23].

Satellites (spacecraft) are classified as: large, medium or small (mini to femto

classes) based on the in-orbit wet mass (payloads and fuel) [23]. Miniature or Small

Satellites (SmallSats) have launch weight (or wet mass) of less than 500 kg with dif-

ferent weight categories as mini or SmallSat (100-500 kg), MicroSat (10-100 kg),

NanoSat (1-10kg), PicoSat (0.1-1 kg) and FemtoSat (less than 0.1 kg) [23–25].

NanoSats and PicoSats (1-1.33 kg and 10 cm3 or “1U” Units form factor) assem-

bled using commercial-off-the-shelf (COTS) components are called CubeSats. These

could be standalone with limited functionality or as a block for a larger NanoSat such

as “3U” NanoSat contains three CubeSats shown in Fig. 2.2 and other SmallSats

family characteristics [23, 26, 27].

Figure 2.2: SmallSat Family Dimensions and Weights (adapted from [26])

The major benefit of SmallSats is cost reduction in both development and de-

ployment, which makes them attractive for future satellite applications, designed

and developed by educational/research institutions and small companies [25]. To

save the launch cost, SmallSats can be launched in multiple numbers (swarm) and

as piggybacks by sharing a ride (ride-sharing) on larger launch vehicles and from
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international space stations (ISS) [27–29]. Low manufacturing cost, easy mass pro-

duction and faster building times makes SmallSats a testbed for new technologies

in mainstream space science and education.

The research and development of SmallSats was more pronounced in early 2000s,

researchers and industries considered NanoSats (CubeSats) more attractive and has

become famous due to the developed standard by California Polytechnic State Uni-

versity and Stanford University in 2001 [24, 28]. Over a thousand SmallSats were

developed/launched by Universities and non-US space agencies from 1998 to 2018

(Fig. 2.3), with rapid increase of design and development over 2000 expected to be

deployed/launch by 2023 [23].

Figure 2.3: SmallSats Development and Launch 1998-2023 (adapted from [30])

SmallSats missions are typically launched into Low Earth Orbit (LEO) [31, 32],

operating with low power and frequency bands. There is a growing interest in small

spacecraft for missions beyond LEO and at higher frequency bands [25, 26]. The

key challenges of SmallSats are limited payload, operation in LEO, high failure

rate (historically 50%), short lifetime and low performance due to size and power

constrains [26, 33]. These limit the functionality of SmallSats and footprint coverage,

which can only be extended by using satellites constellation.
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The SmallGEO platforms initiated by ESA will use smaller (reduced weight)

satellites on GEO with capabilities and functions of traditional GEO satellites while

using some features of SmallSats such as low power and weight [34]. This will

deliver wider coverage and functionality at Ku/Ka-band beyond that of SmallSats.

The first flight mission of this platform is Hispasat 36W-1, launched in first quarter

of 2017 [34]. Launched into GEO with launch weight of 3200 kg, chemical/electrical

propulsion, up to 3 kW payload power and 15 years lifetime [34].

The SmallGEO mission is to deliver a telecommunications satellite platform

capable of accommodating multiple band commercial payloads and missions such

as TV broadcasting to multimedia applications, Internet access and mobile/fixed

services in Ku/Ka-Bands. This was the first telecommunications satellite to use

the SmallGEO platform, part of ESA Advanced Research in Telecommunication

Systems (ARTES) program and will cover Europe, the Canary Islands and South

America with faster multimedia services, better signal quality and flexible land cov-

erage [34].

SmallSats is characterised by small size, lower development cost and time, low

energy consumption and limited on-board transponders. These characteristics limit

the SmallSats lifespan, functionality and applications [35]. New ways to improve

the functionality and applicability are evolving from the research and industry such

as exploring the new concepts of Small satellite in geostationary orbit (SmallGEO)

at higher frequency bands (Ku/Ka-bands) and using satellites constellation in the

form of network of satellites with Inter Satellite Link (ISL) for wider coverage and

performance. Recent research efforts to improve the modulation scheme using soft-

ware define radio (SDR) for small satellites in next generation 5G systems is also

proposed in [31]. Further research efforts are required to bridge the gaps and open

more potential benefits and competitive rapid development in SatComs and related

technologies.

2.2.3 Satellite and Next Generation of New Radio Networks

Communications systems and technologies experience dramatic changes in recent

years with sophisticated features which continue to evolve by exploring higher band-
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width, increased capacity, ubiquity with access coverage everywhere and availability

every time. Substantial growth in demand for more data and coverage by different

applications and services posed a challenge to communications researchers and the

industry. The report by ESA COSAT project [36], predicted the explosion in data

traffic in which the volume of digital video traffic grow by over x4 in 2018 (see Fig

2.4) with mobile video traffic contributing 69% followed by 12% web and 11% audio

traffics [36, 37].

Figure 2.4: Data Traffic Growth Evolution 2013-2018 (adapted from [36])

The growth of global mobile data traffic is expected to reach 50-petabytes (1015)

per month by 2021 [38], therefore research to improve system capacity is ongoing to

cope with the projected increase in data traffic and users demands. However, using

terrestrial networks alone for Enhanced Mobile Broadband (eMBB), Massive Ma-

chine Type Communications (MMTC), and Ultra-Reliable and Low Latency Com-

munications (URLLC) usage scenarios of the future networks as shown in Fig. 2.5

would be very expensive and unrealistic, thus more research is required to explore

the potential benefits of SatComs systems falling costs to complement the terrestrial

networks of the future.
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Figure 2.5: NR (5G) IMT Usage Scenarios for 2020 & Beyond (adapted from [41])

The key advantages to explore in hybrid integration of Satellite and Terrestrial

(ISTN) for supporting the key requirements and capabilities of the future commu-

nication networks shown in Fig. 2.6 includes global coverage, spectrum efficiency,

enhance capacity, backhaul link, and resilience.

Figure 2.6: Key Capabilities Enhancements from IMT-Advanced (4/4.5G) to IMT-

2020 (adapted from [41])
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Next generation communications networks known as New Radio (NR) or Fifth

Generation (5G) networks are more than just a cellular mobile, but instead a wire-

less network, combining new technologies and capabilities, working side-by-side with

advanced existing technologies. For several, if not all of the 5G objectives, SatComs

will play a vital role in 5G networks as shown in Fig. 2.7 with its unique features.

Satellite and Terrestrial networks for 5G (SaT5G) is one of the European Commis-

sion Horizon 2020 (EC H2020) through its 5G Public Private Partnership (5G PPP)

phase 2 project initiated to explicitly address the hybrid integration of SatComs and

5G systems [39].

Figure 2.7: SatCom Roles and Use cases Scenarios in 5G Networks [39]

The vision and ambition of SaT5G phase 2 project initiative is to develop cost

effective “plug and play” SatCom solutions for 5G that will enable service providers

and operators to speed up 5G deployment everywhere (see Fig. 2.7), make Sat-

Com technologies ready for integration in 5G and create new and growing market

opportunities for the SatCom industry with a primary focus on backhaul via satel-

lite [39]. The different use cases are: edge delivery and media content offload, 5G

fixed backhaul, 5G premises, and 5G moving platform backhaul, more details of

several architecture options can be found in [40].
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Nowadays, SatComs delivers mobile backhaul, converged media, linear/non-

linear TV broadcast, broadband and Machine-to-Machine (M2M) services that will

become part of the 5G ecosystem. SatComs can provide indispensable redundancy

to terrestrial networks and improve resilience of the overall 5G networks in a hyper-

connected world of Internet of Everything (IoE), Smart Cities and Transport Sys-

tems of the future using high bandwidth/capacity satellite bands to deliver current

and planned next generation 5G services. The key features of the 5G eco-system are

Resilience and Ubiquity, which are known characteristics of SatComs. Therefore,

to achieve 5G vision of “Internet Everywhere”, at the heart of 5G services deploy-

ment that will enable connecting everyone and everything anywhere/anytime, 5G

eco-system needs satellite connectivity using over 100 GEO and non-GEO HTS by

2020 to contribute Terabits of data connectivity worldwide [42, 43].

Researchers and Industry identified challenges of current communication net-

works required to be addressed effectively by future 5G networks; are higher capacity

(x1000), higher data rate (x10-100 or 1-10 Gbps of throughput), lower end-to-end

latency (1-5 ms), massive device connectivity (x10-100), reduced cost (sustainable),

increase availability (99.999%), coverage (100%), efficient energy consumption (90%

reduction) and consistent Quality of Experience (QoE) [44, 45].

A critical study of these challenges leads to conclusions that; SatComs must

be part of 5G networks to meet the availability and coverage requirements cost-

affordably [6]. This will provide connectivity to difficult areas not covered by terres-

trial infrastructure, as a cost-effective backup connection, multimedia distribution

(Content Delivery Networks) and backhauling. Part of ARTES 1 studies conducted

recently by the European Space Agency (ESA) [7, 36], identified key roles of satellites

in the future 5G networks. The study optimised the roles in the support of terres-

trial networks and maximises the likelihood of take-up, through identifying synergies

where satellite could enhance terrestrial networks. This also analysed and forecasted

the development of terrestrial mobile market, outlined lessons from past satellite ini-

tiatives, developed four scenarios of increasing harmonisation and convergence for

analysis, calculated the coverage and examined the costs of adding satellite Comple-

mentary Ground Components (CGC) to existing terrestrial infrastructure [7]. Four
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scenarios proposed by ESA ARTES 1 reported to successfully achieve ISTNs ob-

jectives are; 1) Terrestrial only access complemented by satellite based backhaul 2)

Hybrid terrestrial and satellite optimised access 3) Partial harmonised terrestrial

and satellite access 4) Converged terrestrial and satellite access [7].

A key enabling technology trend in the next generation networks (ISTN and 5G)

is software define networks (SDN) that reference the service delivery architecture

that translates into selected satellite-terrestrial integration scenarios. Lack of preva-

lent standards exists today and much functionality is mainly deployed on vendor-

specific network appliances, which execute specific functions in satellite ground seg-

ment network architectures. Research in SDNs and Content Defined Networks

(CDNs) is required to ensure the north-bound (uplink) interface of satellite net-

work management system conforms to future 5G standards. This will also bridge

the developmental lag between satellite and terrestrial networks [6, 46]. SDNs tech-

nology consistency with the trends and developments in terrestrial networks should

allow overcoming several existing limitations in operational flexibility, evolvability,

interoperability and end-to-end QoS over ISTNs to form the key architecture of

heterogeneous ISTN [1, 6].

Resilient Backhaul will provide 5G connection to remote Radio Area Networks

(RANs) in special and emergency situations due to human or natural disasters,

improve availability and bandwidth at peak demand using high capacity and low

cost future GEO and non-GEO HTS [1, 42, 43, 46].

Finally, the cost of communications coverage using only 5G terrestrial infras-

tructure might become unbearable with increasing capacity needs, particularly for

isolated rural, remote, and even urban areas. SatCom will be key player in 5G

as a complementary solution for ubiquitous coverage, broadcast/multicast provi-

sion, and emergency/disaster recovery as shown in Fig. 2.7 [47, 48]. Satellites will

have unique opportunities for providing 5G services in rural areas, support MMTC

and eMBB that will enable new applications such as smart agriculture, smart grid,

telemedicine (e-health) environmental protection, and transportation. These will be

achieved and supported using more than 100 GEO HTS and mega-constellations of

LEO satellites systems (see Fig. 2.8) delivering ubiquitous connectivity of terabits
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per second (Tbps) capacity accessible anytime by 2020-2025 [47]. The evolving Sat-

Com systems, satellite RANs integrated into the 5G system and other terrestrial

wireless technologies will provide seamless connectivity and simultaneous radio ac-

cess technologies among heterogeneous network environment to improve availability,

capacity and reliability [47].

Figure 2.8: SatCom RAN Architecture using eMBB Scenario (adapted from [47])

2.3 Potential Features for Remote Rural Areas

SatComs applications and services span almost all aspects of human socio-economic

development through distinctive features like global coverage, high bandwidth/capacity,

broadcast ability, multiple access capability, availability and resilience even in the

remotest rural areas of the world excluding the south and north poles of the globe.

These can be exploited to provide global digital connectivity capabilities in the

form of internet access, high-quality (HD, Ultra HD, 4K etc.) entertainment, earth

observations/mapping, Smart Grid data communications, and emergency response

communications in difficult terrain or remote rural areas [9].
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SatComs bridges the digital communication gap using over 1450 satellites orbit-

ing the earth as of 2017 [49], that cannot be met by the terrestrial communications

infrastructure due to terrain difficulties or harsh environment that makes it impos-

sible or not economically feasible to deploy and maintain such as optical fibre and

public land mobile infrastructure.

2.3.1 Smart Grid Communications Networks

The current electric grid is being transformed into a more dynamic, resilient and

adaptable Smart Grid (SG) of the evolving future electric utilities [50]. The chal-

lenge of transforming the electric utilities and units involved in the generation,

transmission, distribution and consumption of electricity to a smarter grid is

enormous and requires understanding of evolving communications technology re-

quirements and development due to inherent complexity [51]. Incorporating ad-

vanced communications and network technologies in the future electric power sys-

tems to form Smart Grid Communications (SGC) is the key to achieving smarter

grid networks that will make the information and data exchange reliable, secure, and

sustainable. In addition, ubiquitous connectivity is vital for connecting intelligent

electronics in both urban and remote rural locations. Stable duplex communica-

tions of data, control and monitoring instructions to utilities central control centres

of SGC networks are required. This will revolutionise electricity generation, delivery

and use by integrating two-way flow of both electricity and information capable of

monitoring and responding to changes from power generation plants to consumer

preferences and appliances with potential benefits of increase reliability and energy

efficiency, better harnessing/integrating renewable energy, reduces CO2 emissions,

better consumer control to electricity demand/usage and cost-effective energy sys-

tem from generation to consumption [50–53]. Therefore, the goal of SGC is to allow

utility companies to generate and distribute energy efficiently and also allow con-

sumers to optimise energy consumption will only be enabled by SGC networks and

technologies, which rely on successful design and implementation of reliable, secure,

robust, and cost-effective communications infrastructure.

This is challenging since SGC need integration of different network elements for
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maintaining the communications among expansive number of homogeneous indus-

trial devices scattered over large geographical locations (see Fig. 2.9) and diverse

applications needing highest availability of data communications with different QoS

constraints [52, 53].

Figure 2.9: Layered Architecture of SG and SGC (a) Power System Hierarchy (b)

Communications System Hierarchy (adapted from [52])

The typical layered architecture of SG networks, consist of two layers; (1) the

power system layer (Fig. 2.9a) that integrates different power generation, transmis-

sion grid, distribution grid, substations and customers and (2) the communication

system layer (Fig. 2.9b). This is the unique feature that formed the SGC networks

responsible for intelligent monitoring, controlling and automating the grid compared

to the traditional electrical grid, [52]. The focus here is on SGC networks, the com-

munication system layer represented in three segments, namely Home Area Network

(HAN), Neighbour Area Network (NAN) and Wide Area Network (WAN) as shown
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in Fig. 2.9b, which can only be realised by integrated technologies such as SatComs,

wireless, wired and optical communications systems technologies [52, 54, 55].

SatComs among other terrestrial communication technologies like WiMAX, Zig-

Bee, WiFi, cellular and optical fibre networks will play an indispensable role in

achieving the SGC networks of the future. SatComs, in particular, has unique

features of high capacity, global (ubiquitous) coverage, availability, and resilience.

These will provide high bandwidth, high data rate and extended coverage using

its ubiquitous connectivity to remote isolated substations and customer locations,

which are beyond the reach of terrestrial networks to help ensure 100% network

availability. Utilities in SG applications require high availability communications

that are cost-effective and highly redundant connections at critical sites where ter-

restrial communications might not cope or be impossible due to severe man made

disruptions or damage on both fixed and wireless infrastructure due to natural disas-

ter, SatCom could be the preferred candidate in these cases [53]. SatCom providers

already provide more services exclusive to Machine-to-Machine (M2M) communica-

tions that are essential to core SG applications/ (unctionalities) such as Substation

Automation (SA) with Supervisory Control and Data Acquisition (SCADA), teleme-

try, Advanced Metering Infrastructure (AMI) backhaul and Distribution Automa-

tion (DA) among others, which covers Generation, Transmission and Distribution

(T&D), and Distributed Energy Resources (DER) domains [50, 56] as shown in Fig

2.10 and 2.11.
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Figure 2.10: Smart Grid Applications and Domain for SatCom (adapted from [56])

Figure 2.11: SatCom Support for SG (adapted from [54])

The key SG applications including AMI/Smart Meter (SM), Distribution Grid

Management (DGM), Demand Response (DR), DER and storage, Wide-Area Situ-

ational Awareness (WASA), electric vehicles/transportation, and Distribution Grid
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Management (DGM) have different levels of communications QoS requirements

(low/loose (L), medium (M), and high/tight (H/T)) in terms of Bandwidth, La-

tency/Jitter (uses loose and tight levels), Reliability, Security, Cost and Backup

Power network parameters as given in the Table 2.1 and Fig. 2.12 [50, 56].

Table 2.1: SG Applications and Communications QoS Requirements

Key Applications and QoS Requirement

Net Parameter AMI/SM DR DERS EV WASA DGM

Bandwidth (kbps) 10-500 14-100 9-56 9-100 600-1500 9-100

Latency 2-15 s ≥ 500 ms 20 ms-15s 2s-5 min 20-200 ms 100 ms-2 s

Reliability(%) 99-99.99 99-99.99 99-99.99 99-99.99 ≥ 99.999 99-99.99

Security H H H Rel. H H H

Cost L M-H

Redundancy(hrs) NN NN 1 NN 24 24-72

Figure 2.12: QoS Requirements Map for Key SG Applications (adapted from [56])

The DGM consisted of sub-applications like DA, SA, Video Surveillance (VS)

and fleet management by Automatic Vehicle Location (AVL). Levels (L, M and

H/T) of communications QoS requirement for SG applications can be described as
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below and map as shown in Fig. 2.12 [56].

1. Bandwidth: L is 10 kbps to 250 kbps, M is 250 kbps - 1 Mbps and H is ≥

1 Mbps

2. Latency/Jitter: Loose latency and high jitter tolerant applications used L,

application’s operation impacted, but unlikely loss of service during connec-

tivity lost for significant time (minutes to few hours) such as those assigned

M, there is some limits to E2E latency, and T/H means strict requirements

for amount of E2E latency and significant harm is likely during connectivity

lost for significant time.

3. Reliability: L is no significant operational harm would results if connectivity

lost for significant time, M operations impacted, unlikely to results in loss of

service if connectivity is lost for significant time, and H means significant harm

is likely if connectivity is lost for significant time.

4. Security: L means no significant operational harm if link were compromised

by spoofing or data intercepted, M significant, but limited harm were link

is compromised, and H means highly visible and widespread harm when link

were compromised.

5. Cost: L is relatively low infrastructure and operational cost, M relatively

moderate operational and infrastructure costs, and H means high operational

cost and/or infrastructure.

Therefore, looking at the SG applications communications QoS requirement in

Table 2.1, and descriptions above, SatCom will be an excellent candidate for realising

the next generation of power grid using intelligent SG aim of achieving more effi-

cient, reliable, secure, intelligent, and cost-effective power system from generation

to consumption phases. SatCom has the capabilities to provide extensive cover-

age, fast deployment, high bandwidth and capacity, and high availability of up to

99.999% for reliable communications where terrestrial communications infrastruc-

tures are not economically viable, inadequate for the domain-specific requirements

or completely not feasible [56].
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2.3.2 Emergency and Disaster Response Communications

In the event of natural disaster, essential communications services and applications

using terrestrial infrastructure breakdown and are interrupted due to damage and

power supply disrupted in the terrestrial communications infrastructure. Significant

communication outages occur in a wide area for hierarchical networks such as Public

Land Mobile Networks (PLMN) infrastructure that become congested or completely

damaged. A fast deployment of alternative communications and recovery is vital

to any emergency and disaster management in order to provide the first response

team, rescue team and command centres with the required network to coordinate

relief efforts across wide areas. SatCom is an ideal candidate for emergency and

disaster management that can provide communications capabilities for the wide area

regardless of terrestrial communications network availability. The disaster recovery

phase of any natural disaster required faster communications to support applications

and services such as email, Internet access and voice communications.

For Instance, during the great Tohoku Earthquake and Tsunami in Japan, out-

ages in communications using PLMN occurred in wide area although the Base Sta-

tions (BS) were not damaged, the core networks were congested due to the explo-

sion in user traffic, PLMN operators experienced over fifty times (x50) more call

attempts than normal, while many BS stopped functioning due to the power supply

outage [2]. Satellite operators allocated 500MHz of additional bandwidth to disaster

areas as a response to communication demand explosion for disaster management

and recovery [2].

Features such as wider coverage and resilience made SatCom an ideal candidate

and backbone to provide quick and effective communication relief in the event of

natural disaster that caused damage to terrestrial communications network infras-

tructure [2]. Additionally, the extreme capacity (Gbps/Tbps system throughput)

and multi-beam/steerable antenna ability of recently developed HTS can provide so-

lutions to the huge traffic demands in the event of disaster and emergency response

using resilient network access to public networks over satellite as a backbone [2, 9].
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Chapter 3

Transport Protocols Over Satellite

Channels

This chapter presents an overview of transport protocols including Transmission

Control Protocol (TCP) and User Datagram Protocol (UDP) for data communica-

tions over the Internet Protocol (IP), with focus on TCP due to its wider use over the

Internet. The chapter discusses the standard TCP algorithms and other modified

schemes that aimed to address performance issues for different network environ-

ments, in particular, GEO satellite links as part of a more realistic heterogeneous

network environment.

3.1 Transmission Control and Internet Protocols

The Transmission Control Protocol and Internet Protocol (TCP/IP) suite is one

of the network standards and technologies for the global internet that was devel-

oped and funded under the Defence Advanced Research Projects Agency (DARPA)

within the Department of Defence (DoD) of the US government in the early years

of the Internet, which help to specify how computers communicate, set conventions

for interconnecting networks and forwarding traffic [1–3]. As the Internet evolve

and grow with new unique technologies, services and applications, the protocols

also needed to be enhanced to accommodate new changes for efficient and effective

performance of data communications over high capacity and long distance networks

38
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of today and the future.

Protocols such as TCP/IP provide the syntactic and semantic rules for commu-

nication and form the basis for the internet data communications by over 80− 90%

of 4 billion connected machines and things today. The standard TCP carries the de-

tails of the message formats, how machines respond to message reception in the form

of acknowledgement to ensure reliability, and specifies how errors, link congestions

and other abnormalities are handled. TCP allows computer communication to be

discussed independently of a vendor’s network hardware, while the IP was designed

for interconnected systems of packet-switched communication networks that trans-

mit blocks of data known as datagrams or packets from sources (Tx) to destinations

(Rx) hosts of fixed length IP addresses, and if necessary, fragment and reassemble

long datagrams for transmission via small packet networks [1, 2, 4].

3.1.1 Standard TCP Scheme

The original TCP was designed based on [4], as a highly reliable E2E protocol

to support information and resource sharing in different packet-switched networks.

This provides packet sizes, transmission failures, sequencing, flow control, E2E

error checking, and the creation/destruction of logical process-to-process connec-

tions [1, 4]. The high E2E reliability of TCP enhances robustness in the presence

of unreliable data communication and improves the availability in the presence of

congestion in packet-switched communication networks and interconnected systems

of these networks [1]. This connection-oriented protocol is intended to fit into lay-

ered hierarchical protocols that support many host-to-host (E2E) packet switching

network applications reliably. The standard TCP is an acknowledgement (ACK)

based protocol. This (ACK) determines the success or failure of data transmission,

and strongly impacted by the time delay (latency) in accepting, delivering, and

transporting the data. Therefore, there is a need for careful development of timing

procedures in order to achieve successful data delivery with improved performance

in different network environments.

Ideally, TCP should be able to operate over a wide spectrum of communica-

tion systems from hard-wired connections to packet-switched or circuit-switched
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networks and use basic IP to send and receive variable-length segments of data

encapsulated in envelopes of Internet datagrams [1]. The IP datagram provides

a way for addressing the TCP connection’s source and destination, and the frag-

mentation/reassembly of segments needed to accomplish transport and delivery via

different multiple networks and interconnected gateway systems. Security, prece-

dence, and TCP segment compartmentalisation is encapsulated within the IP packet

(datagram) for E2E communication of information over multiple networks [1, 2]. In

the layering of the Open System Interconnection (OSI) model of the TCP/IP suite,

TCP interfaces with high level user application (layer) processes and lower level IP

layer.

The high reliability of TCP allows it to recover from lost, duplicated, damaged,

and out of order data delivered over the Internet. This is accomplished by using a

sequence number (used to correct segment ordering, to eliminate duplicates segments

and for flow control) and ACK (use for data retransmission within the timeout

interval) from the receiver while damaged data are found using a checksum on each

transmitted segment. However, standard TCP assumed wired networks like Local

Area Networks (LAN or Ethernet) or large ARPANET networks based on packet

switching technology [1]. This assumption limits the performance of standard TCP

in other network environments such as wireless and SatCom networks as will be

discussed in the following sections.

3.1.2 Mathematical Models of the Algorithms

The key parameters in the implementation and evaluation of the performance of

TCP are the Congestion Window (CWND/CWND or simply W), window growth

rate (evolution) W (t), Initial CWND (IW), Slow Start Threshold (ssth or γ), time to

reach the threshold value (tγ), transmission elapsed time (t), and Round-Trip-Time

(RTT). These parameters are required to implement the TCP scheme algorithm

and performance can be measured by evaluating parameters such as Instantaneous

Transmission Rate (R(t)), total segment (data) transmitted (TD), and goodput (Gp).

Establishing a TCP connection starts with the three-way handshake procedure,

which is initialised by the TCP source and replied to by the destination node or ini-
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tialised simultaneously by two TCP connections where each of the two TCP nodes

receives a Synchronise (SYN) segment that carries no ACK. The arrival of an old

duplicate SYN segment helps the receiver note that a simultaneous connection ini-

tiation is in progress. The algorithm is implemented in two phases; Slow Start (SS)

and Congestion Avoidance (CA) using standard mathematical model of CWND

growth rate function, W(t) given by (3.1.1), CWND update rule, W (3.1.2), In-

stantaneous transmission rate, R(t) (3.1.3) and total data segments transmitted, TD

(3.1.4). Equations (3.1.2) and (3.1.3) were derived from (3.1.1) while (3.1.4) was

derived by integrating (3.1.3).

W S(t) =

 2
t

RTT 0 ≤ t < tγ SS (Exponent)

t−tγ
RTT

+ γ t ≥ tγ CA (Linear)
(3.1.1)

where tγ = RTT log2(γ), is the time that the Slow Start Threshold (ssthresh)

value γ is reached with RTT . The standard TCP window is updated according to

the rule in (3.1.2) below.

W S
i+1 =

 W S
i + 1 SS

W S
i + 1

WS
i

CA
(3.1.2)

The TCP instantaneous transmission rate R(t) = W (t)/RTT can now be derived

from (3.1.1) and simplified in (3.1.3) below:

RS(t) =

 2t/RTT

RTT
; 0 ≤ t < tγ SS

1
RTT

( t−tγ
RTT

+ γ); t ≥ tγ CA
(3.1.3)

Total data segments transmitted throughout the duration of the TCP flow, TD is

determined by
∫ 1

0
R(τ)dτ and the simplified version given by (3.1.4).

T SD(t) =

 2t/RTT−1
ln(2)

0 ≤ t < tγ
γ−1
ln(2)

+ (t−tγ)2
2RTT 2 + γ(t−tγ)

RTT
t ≥ tγ

(3.1.4)

3.1.3 Retransmission Timer Computations Algorithm

The TCP sender employs a standard algorithm to compute and manage an impor-

tant retransmission time to ensure data delivery in the absence of any feedback from

the TCP remote receiver, as a mechanism for detection and recovering from loss.
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The duration of this timer is known as Retransmission Timeout (RTO) [5–8]. The

algorithm used by the TCP sender to calculate the RTO of an established and active

connection is based on two state variables; the Smoothed RTT (SRTT) and RTT

Variation (RTTVAR), in addition to the assumed variable called the Clock Gran-

ularity (G) in unit of seconds. The order and procedure of computing the SRTT,

RTTVAR and RTO itself is as follows using the given equations [5–8].

1. Before any measurement of the actual RTT made for a segment sent between

TCP source and destination, the TCP source sets the value of the initial

RTOInitial = 1− 3 sec, TCP implementations may use any RTO ≥ 1 sec, but

any value of RTO < 1 sec is approximated to 1 sec.

2. After the first RTT measurement (RTTi) is made the TCP sender should the

set the other variables as follows. SRTTi = RTTi and RTTV ARi = RTTi/2,

which then used to compute the current RTOi value as:

RTOi = SRTT +max(G,KXRTTV AR);K = 4 and i = 1. (3.1.5)

3. Subsequently, when the RTTi+1 measurement is made, the sender must set

the new RTOi+1 value strictly in the following order.

RTTV ARi+1 = (1− β)X(RTTV ARi + β)X|(SRTTi −RTTi+1)| (3.1.6)

SRTTi+1 = (1− α)X(SRTTi + α)XRTTi+1 (3.1.7)

Where α = 1/8 and β = 1/4 should be used in the above equations as in most

implementations [8]. Therefore, more generalised and up to date form of RTO

value can be derived from Eq. (3.1.5) above.

RTOi+1 = SRTTi+1 +max(G,KXRTTV ARi+1) (3.1.8)

As mentioned earlier, any updated RTO value computed and found to be less

than 1 sec should be approximated to 1 sec.

Conservatively, TCP implementations employ coarse grain clocks to measure

the RTT and to activate the RTO. This imposes a large minimum amount on the

RTO, which is required to keep TCP conservative and avoid bogus retransmissions,

although this still needs further research [5–8]. Finer G values of≤ 100 msec perform

better than more coarse granularities [8].
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3.1.4 Algorithms and Mechanisms Implementations

The implementations of standard TCP includes four intertwined algorithms and

mechanisms namely; Slow Start (SS), Congestion Avoidance (CA), Fast Retransmit

(FRet), and Fast Recovery (FRec). These four algorithms are fully documented

in [9], for the Internet as standards. Key algorithms and mechanisms implemented

have been highlighted and explained below:

1. Slow Start (SS) Algorithm: The standard TCP connection starts with the

sender transmitting segments to the receiver’s advertised window (RWND)

size into the network. This is fine for hosts (sender/receiver) on the same

Local Area Network (LAN). However, problems may arise when there are

slower links and routers (bottlenecks) between the source and the destination,

because some intermediate nodes such as routers need to queue the packets,

and it is likely that router space (buffer) is filled and runs out of space to

accept more packets [9]. This implementation decreases the throughput of

a TCP flow significantly. Therefore, SS is employed as the more effective

algorithm to prevent this performance degradation in TCP.

SS phase of the algorithm is implemented by ensuring the rate at which new

packets should be injected into the network is the rate at which acknowledge-

ments are returned to the sender by the receiver. This is achieved by adding a

new congestion window (CWND) to the sender’s TCP packet and is initialised

to one segment (size announced by the receiver) or set to the default Maximum

Segment Size (MSS) value of 1024, 536 or 512 bytes if a new connection is es-

tablished with the host on a different network. The CWND is then increased

by one MSS on every ACK received by the sending host. This is referred to

as Additive Increase (AI) as expressed mathematically by Eqn. (3.1.2). The

TCP sender can transmit up to the minimum of the CWND and RWND, i.e

min(CWND,RWND), where the flow control is imposed by the sender using

CWND based on the perceived assessment of network congestion, while the

receiver uses RWND to impose flow control based on the available buffer space

at the receiver for that connection [9].
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The key objective of the SS algorithm phase is to probe the network for the

available capacity in order to prevent network congestion [10]. In some al-

gorithm implementations, the initial CWND (IW) value, must be ≤ 2MSS

bytes, while other non-standard TCP algorithms allow larger value limited by

Eq. (3.1.9).

IW = min(4MSS,max(2MSS, 4380 bytes)) (3.1.9)

Usually, the TCP sender begins by sending one data segment and waits for

ACK from the TCP receiver. When the sender receives an ACK, the CWND

is increased from one to two, and now two segments can be sent. When each

of the segments is ACKed, the CWND is incremented from two to four. This

implementation doubles the CWND (AI) when ACK is received by the senders,

which leads to exponential window growth as shown by Eq. (3.1.1). Delayed

ACKs from the receiver side and one ACK for every two segments received can

break the exponential growth of the CWND. The maximum capacity of the

network may be reached and the intermediate router start to discard packets,

which informs the sender that the CWND become too large relative to the

network/link capacity.

Most TCP schemes implemented, execute SS algorithm phase when CWND

¡ ssthresh (γ) by randomly selecting high initial value of ssthresh and de-

creasing that value in response to congestion SS phase is exited when CWND

≥ ssthresh(γ) or congestion is detected [9, 10]. Prior TCP algorithm imple-

mentations executed the SS phase only when the sender and receiver are on

different networks [9].

2. Congestion Avoidance (CA) Algorithm: In standard TCP, congestion

events occur when there is a bottleneck with data arriving in a larger pipe

(faster link) and exiting in a smaller pipe (slower link) or when multiple input

data streams arrive at a router with an output capacity less than the sum of

the inputs to the router [9]. During the congestion event, TCP assumes packet

is lost and trigger the CA algorithm phase. The standard TCP algorithm as-
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sumed the packet loss by corrupt or damage packet is very small (� 1%), thus

packet loss only indicated congestion somewhere along the network connecting

the source and destination and the CA algorithm is implemented to deal with

TCP flow lost packet situations [9].

The two key indicator parameters for packet loss are a timeout event and

duplicate ACKs (dupACKs) received. The CA slows down transmission rate

of packets in the network using Multiplicative Decrease (MD) of halving the

current window (0.5CWND), and then triggers SS again, but has different

objectives and is independent of the SS phase, although the two algorithms

(SS and CA) are practically implemented together as in Eqs. (3.1.1) and

(3.1.2) [9]. Like SS, the CA needs to maintain two state variables for each

connection; ssthresh size and CWND. The CA algorithm is employed by the

TCP sender when CWND > ssthresh until congestion is detected, while either

of the CA or SS could be employed when CWND = ssthresh [10].

During the CA algorithm phase, as mathematically expressed by Eqs. (3.1.1)

and (3.1.2), CWND (Wi+1 or W(t)) is incremented by one full-sized segment

after receiving multiple ACKs equivalent to the value of CWND/MSS, that is;

each (CWND/MSS) ACKs is updated to a new value of CWND = CWND +

MSS. To update CWND for each non-dupACK (segment arrived the receiver

in order of their sequence number) received during the CA phase Eq. (3.1.10)

is usually used, which indicates a linear growth rate of W(t) as in Eqns. (3.1.1)

and (3.1.2) [9, 10].

CWNDnew = CWNDprior + (MSSXMSS)/CWNDprior (3.1.10)

The general principle for CA algorithm implementation is to increase the

CWND by one full-sized segment segment per RTT and not after receiving

number of ACKs. Implementations that maintained CWND in full-sized seg-

ment have difficulty using Eq. (3.1.10), therefore employ the general principle

of CWND = CWND + MSS as an alternative [10]. In the event of detecting

packet loss by the source using RTO, the size of γ must be set to a value less
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than or equivalent to Eq. (3.1.11) [10].

γ = max(FlightSize/2, 2XMSS) (3.1.11)

The Flight Size (FS) is the quantity of UnACKed data in the network, which

is a vital parameter to use here instead of CWND as was mistakenly used in

some TCP scheme implementations. Additionally, during RTO, the CWND

value must not be set to be greater than the window at the loss event (one full-

sized segment) regardless of the size of IW, which indicates switching back to

SS phase. Thus, after the retransmission of the lost/dropped packet, the TCP

source employs the SS algorithm to increment the CWND from one full-sized

segment to the new value of γ where the CA algorithm phase starts again.

Generally, the combined implementation of SS and CA algorithms in standard

TCP connection operates as given below:

• Initialise a TCP connection by setting CWND to one or two MSS and

γ to 65535 bytes or 128 seg (MSS = 512 bytes/segments; 65535/512 =

128).

• The TCP flow output procedure must not send data above the minimum

of CWND and RWND

• At the event of congestion, indicated by timeout or arrival of dupACKs,

halve the current window, CWND/2 (MD), the min((CWND,RWND),

2MSS) value is then set as new ssthresh. The congestion event resulting

from a timeout executes the SS phase again by setting the CWND =

MSS.

• New ACK is received by the sender, increment CWND based on the

algorithm (SS or CA) being executed by the TCP at that time according

to mathematical expression in Eqns. (3.1.1) and (3.1.2).

The SS algorithm is executed when CWND ≤ γ, otherwise the CA algorithm is

executed, if CWND ¿ γ. The SS phase continues until CWND is updated and

reaches halfway to when congestion event happened, because it already started
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recording from half of the CWND size that led to the congestion. Therefore,

the key differences of the SS and CA algorithm implementations can be sum-

marised as follows; SS increases the CWND exponentially (AI) by the amount

of ACKs received within each RTT, whereas the CA increments the CWND

at most (≤) one full-sized segment each RTT regardless the amount of ACKs

(can be multiple ACKs) received within that single RTT. The mistake made

by many TCP implementations is the incorrect addition of a small fraction of

the segment size (usually MSS/8) in the CA phase, and this should be avoided

in the future proposals for better stability [9].

The early version of TCP (Tahoe), implemented only the SS and CA algo-

rithms and employed the timeout (RTO) and retransmission mechanisms for

loss detection and recovery respectively [3, 9, 10]. Tahoe waits for the timer

(RTO) to expire to indicate loss before retransmitting the missing segment.

This scheme continued until 1990 when heuristic Fast Retransmit and Fast

Recovery algorithms were introduced in TCP Reno as another implicit mech-

anism to detect loss and congestion using duplicate ACKs (dupACKs) instead

of waiting for the timer (RTO) to expire. These implicit techniques, that is

utilising timeout (Tahoe) and dupACKs (Reno) to detect loss, and variations

in RTT to detect congestion formed the basis of earlier versions of standard

TCP described in subsequent sections.

3. Fast Retransmit Mechanism: The Fast Retransmit (FRet) algorithm is a

mechanism employed by the TCP sender to detect and fix data (packet/segment)

loss based on the receiving at least three dupACKs that indicate the segment

was lost before reaching the receiver instead of out-of-order segments at the re-

ceiver end [9, 10]. The TCP sender retransmits the lost segment after receiving

the 3 dupACKs from the TCP receiver before the retransmission timer expires,

i.e without waiting for the RTO to occur [9, 10]. Prior to the modification of

CA algorithm in 1990s and introduction of FRet/FRec [9, 11, 17], dupACK is

immediately generated when an out-of-order segment is received at the TCP

receiver end for the purpose of experimenting with the FRet algorithm and to

notify the TCP sender that an out-of-order segment was received, and what
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sequence number is expected, this dupACK should not be delayed [9]. The

TCP sender distinguishes between out-of-order and loss events by the num-

ber of dupACKs it receives. The assumption is there will be only one or two

dupACKs before the reordered segment is processed at the receiver, which

generates a new non-dupACK, thus the out-of-order segments are considered,

whereas receiving at least three dupACKs in a succession strongly indicates

segment was lost and the retransmission of the lost segment is performed be-

fore the expiry of the retransmission timer. The sender uses dupACKs to

detect network problems such as reordering, replication and dropped/lost of

segments along the network path [9, 10, 17].

4. Fast Recovery Mechanism: After retransmission of lost segment using the

FRet algorithm, CA phase is performed by using Fast Recovery (FRec) algo-

rithm as a mechanism to govern the continuous transmission of the new data

until a non-dupACK arrives at the sender end. This enhancement provides

high throughput under moderate congestion for large windows in particular.

The reception of dupACKs not only indicates network problems like lost seg-

ments, but also that other segments, at least three (if 3 dupACKs are received),

most likely arrived at the destination, since the receiver can only generate the

dupACKs when segments were received (n dupACKs, imply n segments re-

ceived), which indicates that such segments have left the network and are now

in the receiver’s buffer [9, 10]. Therefore, dupACKs also tell the TCP sender

that, there is still flow of data (network not congestion) to the TCP receiver

and should not reduce the flow abruptly by performing the SS phase, thus

this is the reason CA/FRec are used instead of going back to SS phase [9, 10].

Usually, the FRet and FRec algorithms are implemented together as given

below, just like CA and SS algorithms are implemented together as mentioned

above [9, 10]:

• After receiving the third dupACK in a sequence, the TCP sender sets the

new value of ssthresh to one-half the current CWND (i.e the FlightSize),

but at least two segments (2MSS) as expressed by Eq. (3.1.11).
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• After the lost/missing segment is retransmitted, set the new value of the

CWND = ssthresh + 3MSS. This fills up the CWND by the amount of

segments that already left the network and are stored in the receiver’s

buffer.

• For each dupACK received in addition to the previous, increase the

CWND by one MSS (CWND = CWND + MSS). This inflates the CWND

for the added segment that left the network. If allowed by the new value

of CWND/RWND, a segment is transmitted.

• On the arrival of next ACK (non-dupACK) for the new data segment, set

CWND = ssthresh; this value is determined by Eq.(3.1.11). This ACK

should be for the start of retransmission (step 1 above), one RTT after

the retransmission. The ACK should also acknowledge all the interme-

diate segments sent between the lost segment and the reception of first

dupACK. TCP CWND is now down to one-half (CWND = ssthresh) the

rate it was when the segment lost occurred, thus it is now in CA phase.

These two implicit mechanism (FRet and FRec) enhancements for loss detec-

tion and recovery were implemented for the first time in the standard TCP

schemes Tahoe 4.3BSD (FRet) followed by the SS, and Reno 4.3BSD (FRec)

releases. However, these mechanisms considered the network as a black-box

and packet/segment loss as an indication of congestion in the network with

little or no regards to delay and multiple packet losses in a single RTT. The

techniques may work effectively for purely best-effort TCP data communica-

tion with less or no sensitivity to delay or loss of individual packets, but are

not effective or aimed to help applications and interactive traffic like audio,

video, telnet, and web-surfing that are sensitive to the multiple packet losses or

increasing delay (latency) due to retransmissions of lost packets [12]. The net-

work as a black-box notion of some TCP schemes, the state of the congestion

is determined by the sender’s probing for the network state, through progres-

sive load (CWND, outstanding/unACKed data) increment until the network

become loaded or congested indicated by segment loss, which is ineffective



3.1. Transmission Control and Internet Protocols 50

for some networks. Therefore, other explicit feedback (detection and recov-

ery) mechanisms like Selective Acknowledgement (SACK) option and Explicit

Congestion Notification (ECN) that provide information explicitly to detect

loss and congestion by specifying the exact sequence number of the lost seg-

ment or marking packets by the routers as notification to indicate network

congestion instead of packet drops were proposed in the newer TCP schemes

as described below.

Selective Acknowledgement Option

Performance degradation also arises when TCP connections experience multiple seg-

ment loses/drops within one window (CWND) of data with catastrophic consequence

on throughput due to the lost of ACK-based clock in a cumulative ACK scheme,

which leads to multiple packet losses [13, 18]. FRet/FRec feedback mechanisms use

cumulative ACKs, which do not ACK the received segments not at the left edge

of the receive window. This implicit information is limited and only allows TCP

sender to detect single lost segment per RTT using FRet/FRec mechanisms [3, 13].

The sender is also forced to wait one RTT in order to learn about each missing seg-

ment, or an aggressive TCP source retransmit segments unnecessarily, which may

have already been delivered successfully to the receiver. To help overcome these

limitations of the cumulative ACKs based schemes, the Selective Acknowledgement

(SACK) mechanism option integrated with Selective Repeat Transmission policy

were proposed [3, 13]. The receiver sends SACK packets to the source with explicit

information about the received data segments, which the source can rely on for

retransmitting the lost data segments only.

Nowadays, many TCP schemes including CUBIC, HYBLA and other LFN char-

actarised by high BDP used SACK options in their implementations with evidence

on improved and better performance than disabling SACK option [13, 18]. The

SACK is usually implemented/enabled in two simple steps, firstly by enabling a

SACK-permitted option, which may be included as two-bytes in a SYN segment to

show that the SACK option is possible when connection is established [18]. Secondly,

employing the SACK option by the TCP receiver when sending ACKs with explicit
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information over an established connection to inform the sender of the segment

received and queued after permission has been granted from SACK-permitted [18].

SACK is optional in TCP implementations and enabled when the SACK-permitted

option is received for that connection in the SYN segment. This enables TCP data

receiver to use SACK option in an ACK segment whenever it has queued an un-

ACKed data in its buffer. The SACK option includes additional explicit information

from the receiver, which the sender uses to optimise retransmissions [18]. The SACK

is an optional alternative to TCP’s cumulative ACK mechanism. It does not com-

pletely replace the cumulative ACK-based mechanism neither is it mandatory. The

explicit information for each data block contains the first sequence number in a block

called the left-edge and the sequence number immediately behind that block is called

the right-edge, more details on Implementation can be found in [13, 18]. Unfortu-

nately, SACK has never been used in the Internet due to the debate about how it

should be employed concurrently with the window shift option of the TCP [13, 18],

and precisely how the TCP sender responds to SACK was not specified in the SACK

documentation, which made most implementations to retransmit all lost packets

blocks [3].

Explicit Congestion Notification

Explicit Congestion Notification (ECN) is another explicit feedback mechanism or

technique proposed to solve the limitations of the implicit measurement aimed at

tackling congestion in a network with established TCP connection. This mechanism

needs routers all through the Internet to notify TCP/IP connections as congestion

occurs [3]. The ECN mechanism helps the Internet provide a congestion indication

for an incipient congestion as congestion starts to develop through packet marking

instead of dropping them to notify TCP about the developing congestion [12]. The

concept of ECN is as simple as marking a TCP segment as it flows over the internet

through the routers along the flow path. These routers use a pair of bits in the IP

header to register congestion status to help notify the TCP receiver if the segment

experienced congestion at any point along the network path. The TCP receiver

then uses next ACK to inform the TCP source about the congestion event that
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occurred, which the sender responds by decreasing its CWND accordingly. The

ECN mechanism uses a two bit IP header to record congestion at the routers and

two bits in the TCP header from the reserved area to allow the sender and receiver

to communicate. One of the two bits of the TCP header is used by the receiver

to notify the sender about the congestion events while the other bit is used by the

sender to inform the receiver that congestion notification has been received. The two

IP header bits, called Congestion Experienced (CE) code-point taken from the type

of service field of an ECN-capable TCP are used for making the ECN mechanism

more robust and a router can use any of the two bits to inform the sender that

congestion occurred [3, 12].

The ECN field in the IP header of ECN-Capable Transport (ECT) protocol with

two bits, making four ECN codepoints combination from 00 to 11 (decimal 0 to 3).

The sender sets ECT codepoints of 10 and 01 to indicate that the end-points are

ECT called; ECT(0) for 10 and ECT(1) for 01 and routers treat both codepoints as

equal, senders could use either codepoints to indicate ECT, on a packet-by-packet

basis. Packets not using ECN are indicated by not-ECT codepoint of 00 while

routers use CE codepoint of 11 to indicate congestion to the end nodes (receivers)

more details on ECN can be found in [12]. Unlike SACK, ECN has been deployed

over the Internet and non-compatible IP tunnels would have to be upgraded to

conform to it [12].

3.1.5 Establishing and Closing TCP Connection

The TCP connection between sender and receiver is established using a procedure

called three-way handshake initiated by the TCP sender. This is achieved by send-

ing and receiving three segments containing Synchronisation (SYN), ACKs and Se-

quence Number (Seqn) data. The first handshake segment sent by the TCP sender

to the TCP receiver is identified by the SYN bit set in the code field. The second

segment sent back by the TCP receiver to the sender contains SYN and ACK bits

set to acknowledge the first SYN received, and another SYN from the TCP receiver

for completing the handshake procedure as shown in Fig. 3.1. The final handshake

segment sent by the TCP sender is only an ACK of the previous SYN + ACK reply
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to inform the destination that TCP connection is agreed and established between

the end systems [3].

TCP Sender TCP Receiver

SYN + SeqnX

SYN + SeqnY + ACKX+1

ACKY+1

Communication Link

Figure 3.1: A Typical TCP Three-Way Handshake Procedure

TCP software on the end system usually waits passively for the Three-Way Hand-

shake (3WH) initiated by the TCP software of another end system. The procedure

was carefully designed to work effectively even when both end systems attempt to

initiate the handshake concurrently such that the TCP connection can be established

from either or both ends at the same time. Data flows in both directions equally

without priority of being master or slave once the connection has been established.

The 3WH procedure is necessary and sufficient for accurate SYN between the

two TCP connection points, since segments can be delayed, lost/dropped, duplicated

or arrive out-of-order. Therefore, TCP has a rule of ignoring additional connection

requests after a connection has been established [3].

The handshake procedure achieves two vital functions; first it guarantees both

end nodes agreed and ready to exchange data with both ends knowing their readi-

ness, secondly it provides both end points to choose and agree on initial Seqns with

each end system randomly selecting initial Seqn that will be use to identify bytes in

the data stream it is sending, which is vital.
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Terminating TCP Connection

The end systems using TCP flow to communicate data ends the conversation using

a close operation procedure. This is a modified version of the 3WH procedure

to terminate TCP connections. The connections are full duplex that contain two

independent data stream transfers on each direction, thus, the application program

on the sender’s side informs the receiver to terminate the connection in one direction

when it has no more data to send. The other half of the connection is terminated

when the sender finishes transmitting the final data, waits for that to be ACKed by

the receiver and then sends a segment containing Finish (FIN) bit set. The TCP

receiver ACK the FIN segment and then notifies its application software through

OS’s end-of-file mechanism that no more data to be received as shown in Fig. 3.2.

TCP Sender TCP Receiver

FIN + SeqnX

ACKX+1

ACKY+1

Communication Link

FIN + SeqnY +ACKX+1

Figure 3.2: A Typical TCP Close Operation Procedure

After closure of a connection in a specified direction, the TCP receiver will not

accept any more data stream from that direction, but data flow with ACKs from

receiver can continue in the opposite (sender) direction until the sender closes the

conversation in its direction. The TCP software on each end system deletes record

of its connection when conversations on both directions are closed.
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The difference between the 3WH for establishing the connection and its modified

version for connection closing operation (terminate the conversations) is the recep-

tion of the initial FIN segment. After the FIN is received, the receiver sends back

only an ACK to inform the application program to terminate without generating

another FIN segment instantly. The ACK prevents retransmission of the initial FIN

segment by the sender during the waiting period. Finally, the application software

instructs TCP to terminate connection completely and sends the second FIN seg-

ment to the TCP sender, which will then reply with the third ACK segment to

conclude the process as shown in Fig. 3.2.

3.1.6 Standard TCP Variants

TCP/IP and the Internet technologies are evolving and growing exponentially, with

new modified proposals and old being revised to cope with the demands and dy-

namics of communications technologies. The significant demand is connectivity that

brings additional traffic, new Internet uses bring new applications and dynamics in

traffic patterns. Internet data traffic is expected to grow dramatically with the de-

ployment of 5G networks, new applications and requirements are also expected which

requires the use of different network and communications technologies. Therefore,

TCP implementations need to be revisited and redesigned for better performance

and to accommodate future heterogeneous networks and communications technolo-

gies.

TCP is the most widely used transport protocol in the Internet nowadays, and

accounts for 80 − 90% of the Internet data traffic. This has caught the attention

of many researchers investigating the performance of TCP over different commu-

nications channels and heterogeneous network environments. This has resulted in

different TCP variants being proposed, here we review three key standard TCP vari-

ants schemes, which include Tahoe, Reno and New Reno because of their relevance

to how the standard TCP evolved.
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Tahoe

Tahoe is the first standard TCP version to implement the congestion control algo-

rithm proposed by Van Jacobson [5], which is based on the CWND regulating the

number of segments sent (transmission rate) over the network, and the TCP sender

estimation of losses as a mechanism for controlling congestion [19]. The CWND

increment in Tahoe follows the SS exponential increment phase and CA linear in-

crement phase as described earlier.

TCP Tahoe uses Go-back-N error-recovery and timeout loss detection/recovery

mechanisms. These mechanisms are inefficient and suffer from quite a few drawbacks

including the limitation of Go-back-N error-recovery that it can only retransmit

packets already received by the TCP receiver because it uses cumulated ACKs.

Another drawback of Tahoe is its loss detection and recovery mechanism using a

timer that is triggered for every packet and remains active until the reception of a

corresponding ACK or FRet. occurs. Therefore, at every packet loss, it waits for

timeout and the pipeline to be emptied, which is costly in high BDP links. After

loss detection, Tahoe goes back to SS phase with a value ssthresh (γ) = CWND/2 to

recover from the loss. New mechanisms were proposed to overcome these drawbacks;

including selective repeat mechanism to solve the limitations of error-recovery, while

FRec. and FRet. mechanism for loss detection and recovery issues in Tahoe [19].

These modifications and many more were implemented in the other TCP versions

such as Reno as discussed below.

Reno

TCP Reno is an improved version of Tahoe, which includes a modification of the

FRet. algorithm to integrate FRec. algorithm and employs selective repeat mecha-

nism for the packet loss recovery [19]. These enhancements bring some level of intel-

ligence in Reno that helps to detect packet loss earlier while the pipeline (buffer/link)

is not emptied. The modification of FRet. to incorporate FRec. halves the CWND

(set CWND and ssthresh to CWNDloss/2) without going back to SS phase. During

the FRet. period, CWND is incremented by the number of dupACKs not the usual

ACKs. The TCP sender using Reno needs an immediate ACK whenever a segment
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is received, and the sender then assumes that receiving a dupACK indicates the next

segment in the sequence has been delayed in the network and some segments arrived

at the receiver out-of-order or lost due to network congestion. Therefore, when the

sender receives three dupACKs, it assumes the segment was lost and activates the

FRet. mechanism so that the segment is re-transmitted before the timeout timer

expires and the pipe is still almost full. After the packet loss, returning to the SS

algorithm phase like in Tahoe, it empties the pipe and that is the drawback solved

by integrating FRet., FRec. and selective repeat mechanisms instead of returning

to the SS algorithm.

Nonetheless, the Reno version also has some limitations that required improve-

ments for better performance, which include successive FRet. or the false FRet.

followed by a false-recovery problems. Another drawback is performance degrada-

tion in the presence of multiple packet drops within the same transmission window

or single RTT. This makes Reno performance the same as Tahoe under high packet

losses since it can only detect one packet loss. To solve these limitations, modifica-

tions were proposed and implemented in other TCP versions such as NewReno as

discussed below.

NewReno

TCP NewReno scheme is a proposed enhancement to the behaviour of Reno that

limits performance at the event of multiple packets loss in one window. In New Reno,

a modification was made in FRec. algorithm, which used partial ACKs (pACKs) to

indicate multiple losses in one window [19]. This modified FRec. and changes that

followed have been described in [14–16], and found to be adequately efficient for

wired networks with low to moderate BDP, but inefficient with poor performance

over high BDP and high link error wireless network environments. NewReno per-

forms poorly in wireless network environment, because it assumes and interprets

packet loss as a result of network congestion [16, 19]. These losses could be due to

wireless link error or bad transmission due to corruption. In the absence of SACK,

the sender has little implicit information available to make retransmission decisions

during FRec., thus NewReno algorithm responds to pACKs, which are ACKs that
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cover new data, but not all of the data outstanding when the loss was detected [16].

In the NewReno FRet/FRec algorithm modification, the sender can infer, from

the received dupACKs, whether multiple losses in one window of data likely oc-

curred, and avoid retransmission time-out or making multiple CWND reductions

due to such event. The NewReno applies to the FRec. mechanism, starting when

three dupACKs arrive at the TCP sender and finishes when either retransmission

timeout occurs or ACK that acknowledges all of the data including the outstanding

data when the FRec. started is received [14–16].

NewReno attempted to solve the problem of multiple packet losses in one window

by responding to pACKs in the absence of SACK due to either the SACK option

is not locally supported or TCP connection at the other end is unwilling to use the

explicit SACK option [14–16]. Moreover, as mentioned earlier, NewReno perfor-

mance becomes degraded over high BDP and wireless network environments such

as SatCom and hybrid ISTNs environments. This poor performance over particular

network environments motivated new and improved TCP schemes presented in the

following sections and this thesis.

3.1.7 TCP Performance Over Heterogeneous Networks

The performance of standard TCP depends on link capacity and transfer rate

(achievable throughput), RTT and their product, known as BDP. This product

measures the data segments/packet that would fill the pipe (link/buffer) needed at

the source and destination for maximum transfer rate on the TCP connection over

the network path. This is simply the amount of unACKed that must be accommo-

dated by TCP to keep the pipe full [17]. The performance of TCP becomes degraded

with large BDP value network environments such as SatCom, Fibre Optic and het-

erogeneous networks environment incorporating one or all of them. Nowadays, real

communication networks are heterogeneous. The Internet communication path with

a large BDP is called Long, Fat Pipe and networks containing such a path is referred

to as LFN, pronounced elephan(t).

High latency and high capacity satellite channels, particularly the next gener-

ation and current GEO-HTS exhibit very large BDP and are categorised as LFN.
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Another category of LFN are terrestrial fibre-optical paths, which have low delay

of about 30 ms, and exhibit very high capacity [17]. These LFN environments are

attributed to very high outstanding unACKed (BDP) segments of at least MSS,

usually 1024 bytes each.

The three fundamental issues of standard TCP leading to performance degrada-

tion over LFN paths and some heterogeneous network networks environments are

window size limit, multiple losses recovery and RTT measurement (RTTM) [17].

Attempts were made to propose solutions to some of these performance problems

and research is still going on to identify other problems and solutions.

1. Window Size Limit: Standard TCP uses a sixteen (16) bit header field for

its receive window (RWND) to the sender, which specifies the largest window

(CWND) allowed as 216 = 65536 bytes ≈ 65 KB containing 64 segments with

MSS=1024 B, 128 segments with MSS=512 B in each CWND. TCP window

scale option was proposed as a solution to this limitation [17], this allows

CWND to be larger than 65 KB and defines an implicit scale factor used

to multiply the window size in a TCP header to compute the true CWND

size value [17]. The window scale option extends the TCP window from 16

to 32 bits and employs a scale factor to convey this new 32 bit value in the

standard TCP header of 16 bits window, more details can be found in [17].

2. RTT Measurement: Reliable data delivery in TCP is implemented by re-

transmission of unACKed segments within a specified retransmission timeout

(RTO) period. Accurate dynamic computation of RTO is crucial to TCP

performance and it is computed by estimating the mean and variance of the

measured RTT, the time interval between sending and receiving ACK a data

segment. To solve the problem and determine the RTT accurately for achieving

high performance, TCP options such as Timestamps and RTTM mechanism

were proposed [17]. Mnemonic RTTM was used for the mechanism to dif-

ferentiate it from other uses of the Timestamps option, RTTM mechanism is

another option that utilised Timestamps, which allows almost every segment

including retransmissions to be timed at insignificant computational cost.
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3. Loss Recovery: Prior to recent modifications of standard TCP, the previous

implementations drained the data pipeline with every segment loss, and acti-

vated the SS phase for the loss recovery. The modifications using algorithms

such as FRet and FRec. were made to recover from single packet loss in one

window without draining the data pipeline. In an event of more than one

packet loss per window, retransmission timeout occurs with resulting pipeline

drain and activation of SS phase [17].

Inflating the size of the CWND to equalise the capacity of an LFN leads to in-

crease of the likelihood of more than one packet dropped in one window, which

could have a catastrophic impact on the achievable throughput of TCP over

LFN such as Satellite and 5G networks environment of the future. Explicit

feedback mechanisms for detection and recovery from multiple losses/drops per

window such as SACK and ECN options were then introduced. These modi-

fications provide the TCP sender with explicit information on which packets

are queued at the receiver buffer and which are yet to arrive at the receiver

site. However, in the non-LFN environments, these explicit mechanisms such

as SACK reduce the amount of segments retransmitted, but do not improve

the performance. Although there are technical issues in both format and se-

mantics of the SACK option questioning the complexity, it has become vital

option in the LFN environment [13, 17].

3.2 TCP Over Satellite Channel

Over the years, standard TCP was effective, efficient and robust over terrestrial

networks especially wireline [24], but as mentioned in the previous sections, TCP

performance becomes degraded and inefficient over heterogeneous networks involving

satellite and wireless networks characterised with high link error rate, long latency

and larger BDP (LFN) [17, 18, 36]. Performance of standard TCP protocol vari-

ants like Tahoe, Reno, and NewReno were designed to depend largely on network

latencies (delays) and ACKs for congestion control and management with little or

no regards to the peculiar characteristics of satellite and wireless radio links such
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as long/variable RTT, large BDP, and high Bit/Packet Error Rate (BER/PER)

that may contribute to high segment losses and inefficient utilisation of available

bandwidth through a catastrophic effect on achievable throughput. These made

the original TCP algorithm design not fit for SatCom and wireless radio chan-

nels [17, 22, 23, 25, 36]. The standard TCP congestion control mechanism was

designed to increase congestion window (CWND) and segment transmission rate

based on RTT. These mechanisms degrade the performance of TCP connections

over satellite channel, characterised by long RTT, large BDP, and variable RTT

that lead to high Packet Delay Variation (PDV) or jitter [22, 24, 36]. Moreover,

the original TCP algorithm attributed all the segment losses as due to congestion.

This is reasonable for wired connections with considerably limited errors [23, 25, 36],

but indirectly degrade performance in the presence of satellite channels with signif-

icantly higher BER and Intermittent link in the case of MEO and LEO satellite

links [22, 27, 28, 36]. In the presence of link losses, the original TCP algorithm

reduced the size of the CWND by half persistently, which has devastating effects

on Satellite link performance with high RTT, BDP and high BER, which hindered

fast re-opening of the CWND [22, 26, 36]. Other characteristics of satellite channels

that have significant impacts on the performance of standard TCP are Asymmetry

of down/up links (due to ground equipment cost) and intermittency of non Geosta-

tionary Earth Orbit (GEO) satellite links [22].

Because of these unique attributes of SatCom channels, that impact the per-

formance of transport protocol like TCP, recommendations [27, 28] and propos-

als [13, 18, 20, 22, 23, 27–29, 36] were made to enhance TCP over networks with at

least one satellite link in order to achieve better performance and efficiently utilise

the huge available capacity of satellite systems [21, 35, 37]. Some of the key TCP

enhancements proposals relevant to the satellite and other large BDP or hybrid

network environments are discussed in the following sections.

3.2.1 TCP BIC

Binary Increase Congestion Control (BIC) was proposed to solve a very vital con-

straint of many TCP enhancement algorithms proposed in the past, this constraint
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is RTT unfairness where competing TCP flows, with different RTT (low and high),

take an unfair share of the available bandwidth [29, 30]. This action limits high

RTT flows such as LFN and satellite paths, because many previous TCP enhance-

ments proposals focused on scalability by making CWND increase rate, W (t) larger

as CWND size, Wi+i grows and ironically that is what makes them scalable while

severely having RTT unfairness problem [29]. The TCP BIC proposed a congestion

control algorithm that reduces unfairness due to different RTT while maintaining the

bandwidth scalability and friendliness of the TCP flows by using two CWND control

policies known as additive and binary search window increase function [29]. In TCP

BIC, additive increase with a large window increment is employed when CWND is

large to ensure RTT fairness and good scalability, while binary search increase is

used when the CWND is small in order to support TCP friendliness [29, 39]. As

mentioned, network environments with high-speed and large delays such as satellite

present a unique environment in which the original TCP suffers from capacity or

bandwidth underutilisation problem, many congestion control suggested to alleviate

this problem consider mainly bandwidth scalability and TCP friendliness properties

at the expense of RTT fairness property tackled by BIC proposal [18, 22, 23, 29].

The RTT unfairness (RTTUFS) of two flows with different RTTs given by RTTi

and RTTj such that RTTi ≤ RTTj is the ratio of their average throughputs, Ravg

computed from average window size, Wavg as follows.

Wavg = (RTT/(tX d
√
c))d/d−1 (3.2.1)

where c and d (0.5 ≤ d ≤ 1) are protocol-dependent constants, t is the time interval

between two consecutive loss events of a flow during steady state. The constant

d values for AIMD, HSTCP, and STCP are 0.5, 0.82 and 1 respectively and the

average sending rate (throughput), Ravg is given by Eq. (3.2.2).

R(w)avg =
Wavg

RTT
⇔ R(p)avg =

c

RTTX(pd)
(3.2.2)

Thus, RTTUFS is computed by substitution and simplification of Equations (3.2.1)

and (3.2.2) in the Ravg ratio of two flows with different RTTs as in (3.2.3) and

(3.2.4).
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RTTUFS =
R(w)avgi
R(w)avgj

=

(
WiXRTTj
WjXRTTi

)
(3.2.3)

The simplified version of RTT unfairness is given by;

RTTUFS =

(
RTTj
RTTi

)1/(1−d)

(3.2.4)

TCP BIC proposal achieves better and improved performance compared with

High Speed TCP (HSTCP), Scalable TCP (STCP) and AIMD based TCP like

NewReno considering the three properties namely bandwidth scalability, TCP friend-

liness and RTT fairness [29]. Although designing congestion control algorithms to

support all the three properties for LFN environment is challenging, BIC satisfied

these criteria better than other TCP schemes mentioned [29]. For instance, HSTCP

and STCP are extremely scalable in low-loss rates and TCP friendly under high-loss

rate, but are not RTT fair to other flows with different RTT, the RTTUFS of two

flows were found to be (RTT2/RTT1)
5.56 for HSTCP flows and (RTT2/RTT1)

∞ for

STCP flows using Equation (3.2.4) and substituting different values of d as given

above. Moreover, AIMD TCP schemes with square RTTUFS = (RTT2/RTT1)
2

achieve scalability by increasing its additive increase factor, which is not friendly

with other TCP flows [29]. The two phases of the BIC algorithm are binary search

and additive increase as shown in Fig. 3.3 and explain below.



3.2. TCP Over Satellite Channel 64

Figure 3.3: BIC-TCP Window Growth Function WB(t) [29]

• Binary Search Increase: In this phase, congestion control is viewed as

searching problem where the system provides an explicit Yes/No feedback

response at the event of packet loss, explicit to whether the current sending rate

(average achievable throughput), Ravg is greater than the network capacity, C,

i.e Ravg > C. The search problem starts with current minimum window size

Wmin, a window size just after the FRec phase (i.e a window size just after

reduction at the event of loss) and maximum Wmax, a window size just before

the last FRec. phase (a window size just before reduction) where the last

packet loss event took place [29, 31].

The BIC binary search algorithm calculates frequently the midpoint Wmid be-

tween Wmin and Wmax and sets the current window size Wcurrent = Wmid value

and checks for feedback in the form of packet losses. The Wmid is considered

the new Wmax (Wnew max) when packet loss is detected through the feedback

received, or set to new Wmin (Wnew min) when packet loss is not detected.

This search process is repeated until the difference between Wmax and Wmin
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drops to a value less than the preset threshold, known as minimum increment

Smin [29]. The search ended when Wmax −Wmin < Smin.

The binary search method allows more aggressive bandwidth probing at the

start when the difference from the Wcurrent to the target window size Wtarget is

large, and less aggressive as the Wcurrent approaches the target Wtarget. This

gives the protocol a distinctive feature of a logarithmic increase function, which

reduces its increase rate as window size approaches the threshold or saturation

point. Protocols that are scalable increase their rates at the saturation point

to achieve maximum increment between two successive loss event (epoch).

Usually, the amount of loss packets is proportional to the size of the last

increment before the loss event. Therefore, binary search increase can decrease

packet loss with key benefit of concave response that connects well with that

of additive increase [29].

• Additive Increase: The combination of an additive increase strategy and

the binary search increase guarantees fast convergence and RTT-fairness of the

BIC. If the distance to the Wmid from the current Wmin is too large, increasing

the window size directly to Wmid may add too much load to the network.

When the distance from the Wcurrent to the Wtarget in binary search increase

is greater than a preset maximum step known as maximum increment Smax,

window size is incremented by Smax until the distance becomes less than Smax

where the window increases directly to the Wtarget. Therefore, after a large

window decrease, the strategy initially starts with linear window increase,

and then a logarithmic window increase [29]. The combination of additive

and binary search increase is called binary increase, and when combined with

multiplicative decrease strategy, the binary increase tends to a pure additive

increase under large window values. Larger window values lead to a larger

decrease in multiplicative decrease and a longer additive increase duration [29].

However, small window size tends to a pure binary search increase and a

shorter additive increase duration [29].

The uniqueness of TCP BIC from other high-speed (high bandwidth) TCP al-
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gorithm proposals is its stability property that is achieved by employing the binary

search algorithm described earlier, in which the CWND grows to the midpoint Wmid

between the last window size (i.e Wmax) where packet loss occurred and last win-

dow size (i.e Wmin) without packet loss for one RTT duration. The search into the

midpoint is intuitive and an ingenious technique of finding the current capacity of

the path, which must be somewhere between the Wmin and Wmax values provided

the network conditions remains the same since the last congestion detected through

the last packet loss. This window growth by midpoint (Wmid) found through the

search is more effective and efficient than the previous method used by other TCP

algorithms like Reno, NewReno and SACK to grow their CWND one per RTT. Af-

ter the BIC window grows to Wmid without detection of packet loss in the network,

which indicates the network can handle even more data traffic, BIC sets the new

Wmin = Wmid and performs another search to obtain new Wmid. This helps to grow

the CWND really fast when the Wcurrent size is much less than the available capacity

of the network, and slowly reduces the window increment when Wcurrent size gets

closer to the available capacity, i.e where previous packet loss occurred [20, 29, 39].

The entire window growth function of BIC-TCP is a logarithmic concave function

that keeps the CWND much longer at the saturation point (equilibrium) than con-

vex or linear functions that have the largest CWND increment at the saturation

point and therefore have the largest overshoot in the event of packet losses. These

unique features made BIC highly scalable and very stable [20, 29].

Although BIC was found to have better performance in terms of scalability,

stability and RTT unfairness properties, it still has some dependence on RTT to es-

timate the appropriate CWND by probing the available capacity and also to measure

the RTT unfairness as in (3.2.3) [29, 31]. Moreover, BIC window growth function

can be aggressive under short RTT or low speed networks and the multiple different

phases of window control added extra complexity in the protocol analysis [31]. The

TCP CUBIC described below attempted to solve these issues, improve fairness, TCP

friendliness and simplify the window growth function of the BIC at the same time

retaining its scalability and stability properties for better performance and capacity

utilisation for high BDP network paths such as a satellite network environment.
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3.2.2 TCP CUBIC

CUBIC is another TCP scheme for large BDP network environments, which is based

on BIC described in the previous section. This is an enhancement to the sender’s

side congestion control algorithm, which simplifies the original BIC window control,

enhances TCP-friendliness and RTT-fairness while maintaining the stability and

scalability properties of BIC [31–33]. CUBIC as the name implies, replaced the slow

linear window growth after congestion/loss events with a CUBIC function in terms of

the elapsed time t since the last loss event occurred and is independent of RTT. The

modification of window growth to a CUBIC function improved the scalability, and

stability over high BDP network paths and also achieved better RTT-fairness with

fair bandwidth sharing among competing connections with different RTT since the

window growth is independent of RTT and all flows in the same bottleneck network

paths grow their CWND at the same rate [31, 32].

Tackling RTT-fairness has been the most challenging issues of many versions

of TCP protocols, because the issue involved friendliness to existing TCP flows

(TCP-friendliness) and the fair share of bandwidth among the competing flows with

different RTT values, which include both inter and intra protocol fairness [31, 32].

Protocol friendliness property determines whether a protocol is being fair to standard

TCP, which is crucial to the safety of the protocol by making sure that its use does

not unfairly affect the most common network flows using standard TCP. Some of

the famous large BDP TCP proposals such as BIC, HSTCP, and STCP achieve

TCP-friendliness using TCP-modes or regions where they behave as standard TCP.

These algorithms normally enter TCP-mode when their CWND is below a small

cutoff constant of around 30 pkts typically, i.e CWND ¡ 30 pkts [31, 32].

The CUBIC algorithm observed that the TCP-region as the regime where TCP

performs well should be defined by the congestion epoch time called epoch start

(the real-time period between two successive losses) and not by the CWND

size. Although BDP means the available network capacity by CWND size or packet

count, CWND size is not sufficient to characterise the performance of TCP since its

growth rate depends on RTT. Therefore, it is appropriate and better to define the

TCP-region in real-time to keep the window growth rate independent of RTT, this
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is the main attribute that makes CUBIC TCP-friendly under both short and long

RTT network paths [31, 32]. The CUBIC congestion epoch period (epoch start) and

throughput are determined by packet loss rate only. Therefore, CUBIC can operate

in a TCP-mode during high loss rate, and short or high RTT with guaranteed

RTT-fairness [31, 32]. However, since the CWND grow is fixed and independent of

the RTTs, shorter RTT CUBIC flows could experience slower window growth rate

compared to standard TCP flows. This is overcome by the use of TCP-mode since

TCP like SACK work well under short RTTs [32].

TCP CUBIC was designed to be less aggressive and fairer to standard TCP in

bandwidth allocation than BIC-TCP while maintaining its strong properties of sta-

bility, window scalability and RTT-fairness. This new congestion control algorithm

(CUBIC) has already been implemented and since replaced BIC-TCP as the de-

fault TCP algorithm in Linux and has also been deployed globally [32–34]. Through

extensive testing in different Internet scenarios, CUBIC is believed to be safe for

testing and deployment in the global Internet [33, 34]. The window growth function

of CUBIC starts at Wmax considered as origin point as shown in Fig. 3.4 with the

window growing very fast on window reduction and slows down when it gets closer

to Wmax, the window increase becomes almost zero around Wmax giving a concave

profile of a cubic function, see Fig. 3.4 [31, 32]. When the window size grows above

the Wmax, CUBIC starts probing (see Fig. 3.4) for more bandwidth with slow win-

dow growth at the start and grows faster as the window moves away from Wmax to

a convex profile of a cubic function. The slow growth around Wmax (concave region)

improves the stability and increases the network capacity utilisation while the fast

growth away from Wmax (convex region) guarantees the scalability of CUBIC [31].
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Figure 3.4: TCP CUBIC Window Growth Function WC(t) [31, 32]

As mentioned, CUBIC was designed to simplify and enhanced the window control

of BIC, the congestion window function, independent of the RTT , can be obtained

by Eqn (3.2.5) [31, 32].

WC(t) = C(t−K)3 +Wmax (3.2.5)

K =
3

√
βWmax

C
(3.2.6)

where C is scaling factor set to determined the aggressiveness of window increase

in large BDP network environments, t is elapsed time from the last window reduction

at the event of packet loss (the beginning of the current CA), Wmax is window

size just before the last window reduction, β is a constant Multiplicative Decrease

(MD) factor for window reduction at the time of loss event (replaced the halving

window in original TCP), and K computed using equation (3.2.6) is the window

growth rate function constant which determine how slow or fast the window size

increases or decreases, i.e the time interval that window function in (3.2.5) takes to
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increase WC to Wmax (origin-point) when no further loss event occurred within that

period [31, 32, 34].

At the time of last window reduction following a loss event, CUBIC registers

Wmax as the window size at which the segment/packet loss event occurred and then

reduces the CWND by a factor of β i.e the new window size CWND = βWmax.

This makes the competing connections on the same E2E path converge to the same

window size and a fair share since they decrease by the same multiplicative factor β.

This property is controlled by K value in Eq. (3.2.6) that is proportional to Wmax,

and connections with largerWmax increase more slowly (reduce more), makes CUBIC

ensure intra-protocol fairness among competing flows of the same protocol [32]. After

the window reduction, regular FRet and FRec. is performed and then enters CA

in which CUBIC starts a window increase using the concave profile by setting its

plateau to Wmax so that the concave growth is maintained until the window value

reach Wmax after which the window growth turns to a convex profile [31, 32]. The

concave and then convex window growth style of CUBIC enhances the protocol and

network stability at the same time maintaining high network utilisation, because the

window size remains nearly constant, creating a plateau around Wmax where network

utilisation is considered to highest and under steady state [31, 32]. Most window

sizes of CUBIC are near the Wmax, which promote high network utilisation and

protocol stability. However, protocols with convex growth functions like CUBIC,

tend to have the largest window increase around the saturation point that lead to

large burst of packet losses [32].

Moreover, the window increment per second was fixed to be at most Smax to

improve stability and fairness. This attribute also keeps the growth rate linear

when far larger than Wmax and makes it much in harmony with BIC’s additive

window increment per RTT as it becomes larger than some constant [32]. Although

the linear increment per RTT is smaller in CUBIC, it remains constant in real time,

making sure the CUBIC’s linear window is real-time dependent to enhance its TCP

friendliness, particularly for short RTT connections, which makes standard TCP

less friendly and more aggressive [32].

CUBIC’s window growth is slower than standard TCP in short RTT channels and
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emulate the TCP window adjustment after a loss event to maintain equal growth

rate as that of standard TCP [20]. The average sending rate, Φ of an Additive

Increase Multiplicative Decrease (AIMD) protocol is given by (3.2.7).

ΦAIMD =
1

RTT

√
α

2P

(1 + β)

(1− β)
(3.2.7)

α = 3
(1− β)

(1 + β)
(3.2.8)

where P is packet loss rate, α as given by (3.2.8) is the TCP-fair additive in-

crement per RTT since the CUBIC window decreases by factor of β after a packet

loss event. For standard TCP with α = 1 and β = 1/2 the average transmission

(sending) rate is given by (3.2.9).

ΦTCP =
1

RTT

√
3

2P
(3.2.9)

The same results for TCP in (3.2.9) could also be derived by using α value (3.2.8)

in (3.2.7) with random β [32]. The window size of emulated TCP at time t after the

last epoch (elapsed) is given by (3.2.10) [32].

WTCP = βWmax + 3
(1− β)

(1 + β)

t

RTT
(3.2.10)

When the ACK is received during the CA phase, the CUBIC algorithm calculates

the window growth rate WC(t) during the next RTT using Eq. (3.2.5) by setting

WC(t+RTT ) as the candidate target value of CWND, where RTT is the weighted

average computed by standard TCP algorithm. Based on the value of the current

CWND size Wcurrent, CUBIC is implemented in three different mode regions. The

three regions (described below) of the window growth in CUBIC algorithm imple-

mentation are; TCP, concave and convex regions of the cubic function.

1. TCP-Friendly Region: Upon receiving an ACK during CA phase, CUBIC

first checks whether the protocol is within the TCP region or not using the

procedure described earlier and details contained in [31, 32, 34]. The standard

TCP window size in terms of elapsed time t, WTCP (t) can be analysed [31],

and the average window size of AIMD is determined with an Additive Increase
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(AI) factor α in (3.2.8) and Multiplicative Decrease (MD) β = 0.5 of the

standard TCP leading to (3.2.9). Now, to achieve the same average sending

rate as standard TCP using a random β, α must be equal to 3 (1−β)
(1+β)

, thus

when β = 0.5, we get α = 1, which are the same AIMD(αaimd, βaimd) factors

in standard TCP AIMD(1, 0.5). Therefore, the window size of emulated TCP

at time t after the last epoch is obtained using Eq. (3.2.10) [31, 32, 34].

When the CWND WC given by Eq. (3.2.5) is less than WTCP given by Eq.

(3.2.10) (WC < WTCP ), then window size is set to WTCP and CUBIC is in

TCP mode (i.e WTCP ≤ Wmax), and WC is set as the current CWND size on

each successful ACK received [32].

Based on other analysis [32], CUBIC is TCP-friendly when the congestion

elapsed (epoch) time, t and Packet Loss Rate (PLR) are:

t <
1√

CRTT
(3.2.11)

PLR > 0.36CRTT 3 (3.2.12)

Thus, when C = 0.4 and RTT = 100 ms [32], if PLR ¿ 0.000144 CUBIC is TCP

friendly with larger friendly region compared to High Speed TCP (HSTCP)

with PLR ¿ 0.001. It is also more TCP friendly than HSTCP regardless of

PLR when the RTT is extremely small [32].

2. Concave Region: After receiving an ACK in CA phase, if the check made

above found that the protocol is not in the TCP mode (WC < Wmax and then

CUBIC is said to be in the concave region as shown in Fig. 3.4. In the concave

region, CWND must be increased by WC(t+RTT )−CWND
CWND

for each ACK received

and the new target, WC(t+RTT ) is computed using (3.2.5) [32, 34].

3. Convex Region: CUBIC enters a convex region when its window size is

greater than the previous saturation point Wmax and beyond the plateau, i.e

WC > Wmax. This shows that the network conditions might have been upset

since the last loss event, probably indicating more available bandwidth after

some connection quitting. This is due to highly asynchronous nature of the

Internet where fluctuations in available bandwidth exist at all times. The
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convex region is also referred to as maximum probing phase where CUBIC

searches for new Wmax. The convex profile ensures the CWND is incremented

very slowly at the start, then gradually increases its growth rate. The window

growth function for the convex region is the same as that of concave region,

which is outside the TCP mode and is incremented by the same value of

WC(t+RTT )−CWND
CWND

[31, 34].

The CUBIC congestion control algorithm is triggered when packet loss event

is detected using the standard TCP implicit or explicit feedback with FRet. and

FRec. mechanisms by setting β = 0.7, CWND = Wmax, ssthresh(γ) = βWmax,

γ = max(γ, 2MSS) and new CWND WC = βWmax [33, 34]. When a packet loss

event occurs, CUBIC decreases its CWND by a factor of β, which should not be

smaller than 0.5, that could lead to slower convergence. Although higher and more

adaptive values (i.e β > 0.5), which result in high convergence can also make pro-

tocol analysis harder and impact its stability [32, 34]. Adaptive adjustment of β

is an issue under research, but values like 0.2 [32], 0.7 [33, 34] and 0.8 [32] are

used to evaluate and analyse the protocol with the latest recommended value of

β = 0.7 [33, 34]. A heuristic approach was added to CUBIC in order to improve

the fast convergence speed when the network adds new TCP connections. Existing

connections are required to release their bandwidth share to allow new connec-

tions room for growth, this release of bandwidth by existing flows is increased using

the fast convergence mechanism in CUBIC [32, 34]. In the event of loss with fast

convergence, CUBIC stores the value of the last maximum window as Wlast max be-

fore the window reduction and updates to Wmax for the current loss event. When

a loss event occurs and the two windows values are registered by CUBIC, if the

updated Wmax < Wlast max, this means the saturation point experienced by the

connection decreased due to the change in the network available bandwidth, thus,

allowing this flow to release more bandwidth by decreasing Wmax further by setting

Wlast max = Wmax and Wmax = (1 + β)Wmax [33, 34].
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3.2.3 TCP HYBLA

Long RTT channels such as satellites or heterogeneous network environments with

at least one satellite leg are severely disadvantage and under perform compared to

their short RTT links competing on the same network connection with TCP/IP

Internet traffic [35–38]. This performance degradation in a long RTT network en-

vironment is a direct consequence of the intrinsic behaviour of the original TCP

algorithm, designed to be a window-based transmission algorithm that relied on the

ACK reception at the sender side. The arrival of an ACK from the TCP receiver

to the sender depends on the network RTT in which the network environment with

long RTT is penalised with reduced CWND growth W (t) that leads to significant

achievable throughput degradation and unfair sharing of the achievable bandwidth

(RTT-unfairness) among the competing flows sharing the same bottleneck. This per-

formance disparity can be resolved with proper modifications of the standard TCP

algorithm [35]. Therefore, a new TCP modification proposal, called HYBLA was

designed to cope with these problems and optimise performance over long RTT con-

nections by modifying only the end point without undermining the E2E semantics

of standard TCP at the same time removing the dependence of TCP performance

on RTT [35]. This serves as an effective mechanism for both high losses due to con-

gestion on links and RTT channels through adopting SACK, use of timestamps and

modified CWND increment rule of standard TCP [35, 36]. The additional advan-

tage was the implementation of packet spacing techniques, which remove the bursty

transmissions to reduce the probability of buffer overflow at intermediate hops [35].

Performance of Long RTT connections like satellite channels especially GEO,

suffer severely by achieving a low instantaneous transmission rate, R(t) even when

the CWND evolution, W(t) in time remain constant as given in (3.1.1) and (3.1.3)

using standard TCP algorithm, which also experienced longer/slower time scale

CWND increase W(t). To make R(t) independent of RTT, HYBLA overcompen-

sates the CWND evolutions, W(t) leading to R(t) dependence on RTT values [35].

Like CUBIC, HYBLA has good TCP-friendliness and RTT-fairness properties with

compatibility to other promising TCP enhancement without changing E2E seman-

tics of the standard TCP [35].
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Moreover, HYBLA retained the main features of TCP NewReno such as loss

recovery phase with necessary implementation of a few additional features [14, 35].

The new proposals in HYBLA included modification of congestion control algo-

rithm based on analytical study of congestion window evolution or growth rate,

adoption of SACK option, use of timestamps against inappropriate timeouts and

packet spacing against packet burst to minimise the impact of multiple losses [35].

This implementation, substantially alleviates the performance disparity in satellite

and heterogeneous networks, especially disparity against satellite and wireless links

exhibiting long RTT and high link error rate. This also presents another advantage

over standard TCP variants in the presence of congestion and link errors [35]. The

modified mathematical model for congestion window growth rate in HYBLA is given

by (3.2.13) [35].

WH(t) =

 ρ2( ρt
RTT

) 0 ≤ t < tγ SS (Exponent)

ρ( t−tγ
RTT

+ γ) t ≥ tγ CA (Linear)
(3.2.13)

where ρ is the normalised RTT for the longer path relative/comparative to fast

reference (e.g wired) RTT0 = 25 ms TCP connection given by (3.2.14).

ρ =
RTT

RTT0
(3.2.14)

When ρ ≤ 1 for faster connections making RTT ≤ RTT0, TCP HYBLA behaves

like standard TCP [35] as could be deduced also from (3.2.13) and (3.2.16) especially

when ρ = 1. The time at which the ssthresh value γ = 32 (in HYBLA proposal, but

is relatively low value for real links) is reached given by (3.2.15).

tγ = RTT log2(γ) (3.2.15)

The expression in (3.2.15) indicates that high RTT values will reach the value

of γ in a longer time which results in lower congestion window increase rate W (t)

in standard TCP algorithm implementation [35]. Now, based on the standard TCP

congestion window update rule in Eq. (3.1.2), HYBLA modification has been rewrit-

ten in Eq. (3.2.16).

WH
i+1 =

 WH
i + 2ρ − 1 SS

WH
i + ρ2

WH
i

CA
(3.2.16)



3.2. TCP Over Satellite Channel 76

The segment transmission rate (Instantaneous Transmission Rate) for HYBLA

is determined from the standard TCP and given by (3.2.18).

RH(t) =
W S(t)

RTT
=
WH(t)

RTT0
(3.2.17)

Therefore, the final objective of HYBLA to achieve maximum data transmission

rate (achievable Throughput) independent of long RTT of channels such as satellite

becomes;

RH(t) =

 2(t/RTT0)

RTT0
0 ≤ t < tγ SS

1
RTT0

( t−tγ
RTT0

+ γ) t ≥ tγ CA
(3.2.18)

The amount of segments (data) transmitted from the beginning of the HYBLA

connection could be determined from (3.2.18) and given in analytical form as:

THS (t) =

∫ t

0

RH(τ)dτ =

 2(t/RTT0)−1
ln(2)

0 ≤ t < tγ SS

γ−1
ln(2)

+ (t−tγ)2
2RTT 2

0
+ γ(t−tγ)

RTT0
t ≥ tγ CA

(3.2.19)

The main goal of HYBLA was to provide a solution to performance degradation

due the RTT disparity by modification of the standard CWND evolution W (t) as

in (3.2.16) from an analytical study of the CWND dynamics. The key enhancement

in HYBLA is the extension of the constant-rate additive increase (AI) policy, it

also benefits from adoption of a SACK option and the use of timestamps in the

presence of loss events due to congestion or link errors, but this has limited benefit

to connections over satellite paths competing with standard TCP flows [35, 36].

However, the key implementation issues of HYBLA are that the topology did not

consider the additional RTT of gateway station, absence of wireless link in the

network to test heavy error rate link performance in the presence of long RTT of

satellite last leg [35].

HYBLA lacks the congestion control mechanism to mitigate packet losses due

to high wireless link errors, as a result the algorithm attempts to drastically reduce

the congestion window due to its inability to differentiate between link congestion

losses and link error losses in high error rate wireless links such as satellite [40].

The window size could grow too aggressive for faster (RTT0 ≥ 25 ms) reference

connections
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3.2.4 Performance Enhancement Proxies

The Performance Enhancement or Enhancing Proxies (PEPs), is one of the mech-

anisms proposed to enhance the degradation in TCP performance due to the at-

tribute of particular communication channels and network environments such as

satellite, wireless and realistic heterogeneous communications network environment.

The PEP performance mitigation technique is normally implemented and functions

at one or two protocol layers such as application and/or transport layers but, in

principle, the PEP implementation may function at any protocol layer and below

the network layer, that is, link layer [41]. However, this thesis focuses on transport

layer protocol enhancement, thus the review on PEP implementations that operates

at the transport layer and interact with TCP, called TCP PEP.

In network environments with large BDP and where ACKs may be bunched to-

gether leading to an unwanted data segment burst, TCP PEP modifies the ACK

spacing and the behaviour of the TCP flow by producing local ACKs of TCP seg-

ments to enhanced the throughput of the flow and to improve the overall performance

in network environments such as hybrid ISTN and SatComs networks [41–43]. The

TCP spoofing is used synonymously for TCP PEP functionality, but it accurately

describes an attribute of intercepting a TCP flow at the middle and terminating the

flow pretending to be the intended destination.

PEP Implementations

PEPs are implemented as applications running on communication nodes to enhance

the performance of transport layer protocol which degraded due to characteristics

of communication links such as satellite. The implementation can be described as

Distributed, Integrated, Symmetric, and Asymmetric [41–43].

1. Integrated and Distributed Implementations: The integrated imple-

mentation of PEP consists of a single PEP component in a single node as

shown in Fig. 3.5, usually incorporating one PEP application at the satellite

gateway station or user terminal, which represent a single point where per-

formance enhancement is required, a point where satellite and terrestrial link
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meet (see Fig. 3.5).

Wired IP Network

Sat IP Network

Sat TCP Sender Integrated PEP Sat TCP Receiver

TCP1 TCP Sat (TCP2)

Figure 3.5: Integrated PEP Architecture in ISTN Environment

This provides an impedance matching of the heterogeneous networks. On the

other hand, Distributed PEP implementation consists of two or more PEP

components or applications running on multiple nodes at the edges (gateway

and user terminal) of satellite link on the network as demonstrated in Fig.

3.6, this is the most frequently use PEP implementation. These two imple-

mentations normally split TCP (TCP-Splitting) connections as standard and

modified PEP connections. For instance, integrated PEP comprises of two

TCP connections (see Fig. 3.5) while distributed PEP consists of three TCP

connections as in Fig. 3.6 [41–44].



3.2. TCP Over Satellite Channel 79

Wired IP Network

Sat IP Network

Sat TCP Sender Sat Gateway PEP Sat User Terminal PEP Sat TCP Receiver

TCP1 TCP Sat (TCP3) TCP2

Figure 3.6: Distributed PEP Architecture in ISTN Environment

2. Symmetric and Asymmetric Implementation: Apart from being dis-

tributed or integrated implementation, PEP may be Symmetric or Asymmet-

ric implementation. Symmetric PEPs employ similar behaviour in both direc-

tions in which the actions taken by the PEP is independent of the interface

from which segment is received. While the Asymmetric PEP have different

behaviour in each direction, its implementation is normally employed at the

point where the attributes of the links on each side of the PEP is unique or

with asymmetric protocol traffic. The direction can be described in terms of

the link such as from central to remote location or in terms of protocol traffic

like the direction of TCP data flow (TCP data channel), or the direction of

TCP ACK flow (TCP ACK channel). An asymmetric PEP may be located

at the intersection of satellite and terrestrial or wired and wireless networks.

However, PEP implementation may be both symmetric and asymmetric si-

multaneously with respect to unique mechanisms it uses, and whether a PEP

implementation is symmetric or asymmetric is independent of being integrated
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or distributed implementation. For instant, a distributed PEP might function

as symmetric at each end of a link with two PEPs identical operations, or

asymmetric with different PEP implementations at each end of the link [41].

Moreover, PEP employs TCP splitting and TCP spoofing as the main mecha-

nisms for its implementation. The TCP splitting is employed by PEP to administer

each TCP connections for each host via correspondence and buffering, splitting

TCP connection allow all kinds of modifications to be deployed on the satellite

segment [41, 44]. On the other hand, TCP spoofing involves sending back ACKs

for TCP segments, which gives the TCP sender the illusion of a shorter RTT that

rapidly increases the amount of data in flight (CWND), this means data buffering

at spoofing PEP level. However, TCP splitting is commonly used (see Figs. 3.5

and 3.6) since TCP spoofing is not always sufficient [41, 44]. The PEP implemen-

tation using a split TCP connection terminates the TCP connection received from

an end system with different TCP connection (e.g standard TCP) and establishes

a corresponding TCP connection (e.g satellite TCP like HYBLA or CUBIC) to the

other end system. A distributed PEP implementation as shown in Fig. 3.6, allows

a third TCP connection between two PEPs optimised for the link. Several inte-

grated PEP implementation also employ TCP splitting mechanism implementation

for addressing a mismatch in TCP capabilities between two end systems [41].

However, PEP implementation can effectively leverage TCP performance im-

provements that are optimum for a specific link like satellites, but cannot necessarily

be used safely over the global Internet since the E2E semantics of the widely de-

ployed TCP/IP connections is infringed upon, which may add to complexity of the

protocol implementation and recommendation for general use over the Internet [41].

Additionally, breaking E2E semantics of the TCP/IP connections have detrimental

negative security implications by disabling the E2E utilisation of IPsec, which a user

or network administrator have to trade-off for using PEPs [41].
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3.3 User Datagram Protocol

Another important data transport protocol used by the Internet (IP) nowadays is

User Datagram Protocol (UDP), which is defined to make available a datagram

mode of packet-switched communication in interconnected communication environ-

ments. UDP provides a procedure for applications to exchange messages with other

programs using minimum protocol mechanisms. Unlike TCP, UDP is transaction

oriented, therefore, reliable delivery and duplicate protection for congestion control

and loss recovery are not guaranteed. Thus, applications and services needing or-

dered reliable delivery and congestion/loss control of data streams should not employ

UDP [45].

3.3.1 Standard User Datagram Protocol

The Standard User Datagram Protocol (UDP) is the pioneer connectionless proto-

col designed to maintained message boundaries, with no connection setup or feature

negotiation [45, 46]. This protocol employs independent messages referred to as

datagrams and offers minimum transport service using non-guaranteed datagram

delivery and allows direct access to the datagram service of the IP layer by the

applications that do not need the level of reliable and guaranteed service of TCP

and applications that require the use of communications service such as multicast

or broadcast delivery that may not be offered by TCP [6, 45, 46]. Standard UDP

is nearly a null protocol, which provides checksumming of data and multiplexing

using port number over the IP. These are the services provided by standard UDP,

therefore, an application program running over it must deal directly with E2E com-

munications issues like retransmission for reliable delivery, flow control, congestion

avoidance, packetisation and reassembly that a connection-oriented protocol such as

TCP would have dealt with [6]. However, fairly complex coupling between IP and

TCP will be reflected in the coupling between UDP and most applications utilising

it. Well-known ports are used by UDP to exchange datagram and follow the same

rule like TCP well-known ports, when datagram with UDP port address arrived and

there is no pending LISTEN call, UDP sends an Internet Control Message Protocol
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(ICMP) port unreachable message. UDP must pass any IP option received from

the IP layer transparently to the application layer, and an application must be able

to specify IP options to be sent in its UDP datagrams, which must be pass to the

IP layer [6, 45]. The transmission of data in UDP is carried out by encapsulating

each datagram into a single IP packet or several IP packet fragments, which al-

lows a datagram to be larger than the effective path Maximum Transmission Unit

(MTU), the fragments are reassembled before delivery to the UDP receiver to make

it transparent to the user of the transport service [46]. Larger messages may be sent

without fragmentation if jumbograms are supported. The standard UDP header

format consists of fields of 16-bit each that include, source port, destination port,

message length, checksum and data octets or payload as shown in Fig. 3.7 [45].

Source Port  Destination Port 

Message Length Checksum

Data Octets (Payload)

.......

0 15 16 31

32-bit

16-bit 16-bit

Figure 3.7: Standard UDP Header Format [45, 46]

Standard UDP does not have the capabilities for the providing congestion con-

trol, flow control or error correction, but has capabilities for datagrams broadcast,

multicast, unicast and any-cast [46]. The protocol is widely utilised by some appli-

cations such as Domain Name Services (DNS) and streaming services that do not
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require guaranteed data delivery and retransmissions of lost data. UDP only de-

tects datagrams/payload errors and delivered packets to an unintended destination,

which leads to discard of received datagrams without notifying the end-user (sender)

of the service [46]. Lack of flow control in UDP results in missing messages by a

receiving application that is not able to run sufficiently fast, or frequently. While

the lack of congestion control handling may causes UDP traffic to experience loss

when utilising an overloaded path and may also result in loss messages from other

protocols like TCP when utilising the same network path [46].

3.3.2 Lightweight User Datagram Protocol

The Lightweight User Datagram Protocol (UDP-Lite or UDPLite) is a new protocol

that is identical to the standard UDP [45, 46], but useful for the application programs

in error-prone network environments in which partially damaged data payloads are

preferably been delivered than discarded by the network. When partially damaged

data payloads is preferred to be delivered rather than discarded as in standard UDP,

then UDP-Lite is semantically similar to UDP [49]. The UDP-Lite is based on three

observations about the behaviour of standard UDP as follows [49]:

1. Certain classes of applications like audio and video codecs benefit from having

damaged data payloads being delivered rather than discarded by the network.

These codecs (voice and video) applications include speech codec, the Internet

Low Bit Rate Codec (ILBRC), error resilient codecs (H.263+ and H.264) and

MPEG-4 video codecs. These codecs application programs were designed to

better handle errors in the data payload than loose the entire packets [47–49].

2. Data transportation links utilising IP employs a strong link layer integrity

or error checking like Cyclic Redundancy Check 32 (CRC-32), which must be

used by default by any IP data traffic [49]. Traffic using UDP-Lite may benefit

from a unique link behaviour that allows partially damaged IP packets to be

forwarded when requested and the under-lying support through link layer error

checking [49]. Many radio technologies support this unique behaviour when

operating at a point where cost and delay are sufficiently low, and when error-
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prone links are aware of error sensitive part of the packet, the physical link

has a chance of providing high protection that reduce the likelihood of error

sensitive bytes corruption by employing unequal Forward Error Correction

(FEC) [49].

3. The intermediate layers like transport and IP layers should not impede error-

tolerant applications from flowing well in the presence of error-prone links.

IP layer header has no checksum that blankets the IP data payload, thus

IP layer protocol is not the issue here, and the normally available transport

layer protocol best fit for these kinds of applications is UDP, which require

no overhead for retransmissions of erroneous/loss packets, in-order delivery, or

error correction [49].

A more efficient transport protocol is required [48], that matches the properties

of link layers and applications as mentioned, and the error-control mechanisms of

the transport layer must provide protection to significant information like headers,

but optionally ignore errors that are best handled by the applications. The key

difference between standard UDP and UDP-Lite, is the checksum with optional

partial coverage (Checksum Coverage filed) shown in Fig. 3.8. This replaces the

UDP’s message length field (see Fig. 3.7), and the sender divides the packet into a

sensitive part covered by the checksum, and an insensitive part that is not covered

by the checksum [48–50].
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Source Port  Destination Port 

Checksum Coverage Checksum

Data Octets (Payload)

.......

32-bit

16-bit 16-bit

0 15 16 31

Figure 3.8: UDP-Lite Header Format [47, 49]

When UDP-Lite option is used, errors in the insensitive part of the packet will

not result in the packet being discarded by the transport layer at the receiver side,

while errors in the sensitive part (entire packet covered by the checksum) normally as

default lead to UDP-Lite that is semantically similar to standard UDP [49]. There-

fore, UDP-Lite sender’s partial checksum provides additional flexibility compared to

standard UDP [47–49], particularly for applications that want to classify the data

payload as partially insensitive to bit errors [49].

However, both UDP-Lite and standard UDP are unreliable transport protocols,

utilising the same set of port numbers assigned by the Internet Assigned Numbers

Association (IANA) for use by the UDP, with no congestion and flow control mecha-

nisms available. Thus, any application that require reliable E2E connection-oriented

transport protocol still need to employ TCP.

The standard TCP schemes such as Tahoe, Reno and NewReno discussed in this

chapter are heavily dependent on RTT and designed to assume packet losses are due

to the congestion on the link. These dependence on the RTT and attributing all
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loss event are due the link becoming congested lead to performance degradation and

disparity when using standard TCP over heterogeneous networks. Heterogeneous

networks incorporate satellites and wireless links characterised with high latency

(RTT), high capacity/bandwidth and high wireless link errors that can affect the

performance of standard TCP in terms of capacity utilisation, fairness, scalability,

and stability.

TCP schemes such as BIC, CUBIC, and HYBLA were proposed to mitigate

the performance disparity due to the high RTT and/or high bandwidth network

links such as satellites. However, each of these schemes considered the performance

improvement of large BDP networks based on either high RTT or high capacity

networks. Pure satellite and ISTN links have characteristics of high RTT, high

capacity, and high link errors.

This thesis studied and investigated how the congestion control algorithms of

the heterogeneous TCP schemes such as CUBIC and HYBLA can be improved

through integration of their best features for better performance in terms of capacity

utilisation, packet delivery rate, and fairness in a realistic heterogeneous network

environment such as ISTN with both high RTT and high capacity leading to a

larger BDP network path. The design, implementation, testing, and results obtained

from the enhanced algorithm proposal is discussed in the subsequent chapters of this

thesis. This improved algorithm is aimed at optimum and efficient utilisation of large

BDP heterogeneous network environment incorporating at least a GEO satellite link

and ISTN of the future networks such as Satellite and Terrestrial networks for 5G

(SaT5G).
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Chapter 4

Experiments: Satellite Channel

Measurements and Modelling

This chapter presents the channel measurements, numerical simulations and emu-

lation of latency in pure satellite and hybrid satellite-terrestrial channels, followed

by performance evaluation of the impact of latency on communications. The chap-

ter also discusses the real-world practical and emulation scenarios used to measure

the performance of ISTN environments and the scenarios developed for the channel

measurement experiments. Our developed framework for End-to-End (E2E) latency

measurement in relation to performance of realistic heterogeneous network (ISTN)

environments incorporating GEO satellite channels is presented and discussed.

4.1 Theoretical Model of Latency

One of the most significant performance parameters used for measuring the quality

of communication networks is the average latency (delay) [1], for delivering messages

from the transmitter (source) to the receiver (sink) on the network. This parameter

strongly influences the choice and performance of communications network algo-

rithms such as congestion control, flow control and routing [2–4]. Therefore, it is

vital to measure, study, and understand the nature and mechanism of communica-

tions latency, particularly when using TCP over satellite channels to deliver internet

data. Internet Protocol (IP) based communications networks employing TCP domi-
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nate all kinds of today’s communication services and are envisaged to form the basis

of all future communication services and applications such as data transfer, voice

telephony, television, Virtual Reality (VR), Augmented Reality (AR), etc. Internet

end users expect some level of quality of services and experience. Therefore, there

is a need for Quality of Service (QoS) and Quality of Experience (QoE) support

for IP networks, especially at the transport layer [2–4]. The measure of the abil-

ity of a communication network and computing systems to provide unique levels

of services to specific applications and associated network flows is called the QoS

while the quality experienced by the end user is the QoE [5, 6]. Although, com-

munication network performance can be measured by several parameters or metrics

called QoS parameters (metrics) like latency, jitter, bandwidth and packet loss rate,

the key and most significant of them is latency (delay) as it has direct or indirect

impacts on the other performance and QoS metrics (see Fig. 4.1), especially at the

transport layer level of the TCP/IP internet model [2–4]. The following sections

and subsections described the framework, scenarios, models, results of the latency

measurement experiments and performance evaluation and analysis of the impacts

of latency measured on the QoS and on the performance of data communication

under realistic network environments.

Internet Packet Delay
Variation 

Jitter(IPDV) = σLat_dev

Throughput (bps)

 

R = W(t)/RTT

Bandwidth Efficiency

 

η = %
R

C

Bandwidth-Delay
Product(bits) 

BDP = C ∗ RTT

Latency

Communications
Performance/QoS

Keys:
C: Capacity of the Channel 
W(t): Congestion Window Rate 
QoS: Quality of Service
RTT: Round-Trip Time
 

Figure 4.1: Latency Dependent Performance and QoS Parameters
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4.1.1 Satellite and User Terminal Locations Modelling

The location of ground segments (Satellite User Terminal SUT, and Gateway Station

GWS) with respect to the Satellite Space Segment (SSS) contributed to the changes

in propagation and E2E latency. The sources of these variabilities were investigated

analytically and discussed in this section. Changes in the distance from the user

terminal to a satellite to gateway station might change the propagation latency

components were evaluated analytically with a user terminal location in Europe

(Durham, England) and Africa (Zamfara, Nigeria). The graphical representation

of the space and ground segments of the satellite communication network is shown

in Fig. 4.2. Analytical expressions were derived by careful analysis of the earth to

satellite distance. The distance DPS (in km), from the ground terminal or gateway,

located at a particular point P on earth, to the satellite, located somewhere at a

point S in space relative to the centre of the earth with radius RE and sub-satellite

point distance, the satellite altitude from the centre of the earth, hS (in km) to the

satellite is determined by Eq. (4.1.1) [7].
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Figure 4.2: Earth to Satellite Distance Geometry
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DTS =
√
R2
E + r2 − 2REr cos(φP − φS) cos(θS) cos(θP ) + sin(θS) sin(θP ) (4.1.1)

where DTS is the link distance from ground segment (SUT or GWS) to SSS, r =

RE + hS (km) is the distance from the earth centre to the SSS, RE = 6, 378.388 km

is the radius of the earth, hS = 35, 805 km is the GEO satellite altitude from the

earth surface, while φS, φP , θS, θP are longitudes (φ) and latitudes (θ) of satellite

and terminal locations respectively. Equation (4.1.1) can be simplified to (4.1.2).

DTS =
√
R2
E + r2 − 2REr cos(φ) (4.1.2)

The analytical expression of the distance (altitude) between the terminal loca-

tion and the satellite, DTS (km) could also be derived using a 3-Dimensional (3D)

cartesian and spherical coordinate systems conversion, as shown by Eq. (4.1.3) and

graphically represented in Fig. 4.2.

DTS =
√

(xs − xp)2 + (ys − yp)2 + (zs − zp)2 (4.1.3)

where x, y and z are cartesian coordinates of satellite S(xs, ys, zs) and terminal

P (xp, yp, zp). The values are determined by coordinate transformation from cartesian

to spherical coordinates (x, y, z) ⇐⇒ (r, θ, φ) = (Altitude, Latitude, Longitude) as:

x = r cosφ cos θ , y = r sinφ cos θ ,z = r sin θ, and r = RE+h, where h is the altitude

of the satellite or terminal location. Thus, the coordinate transformation from

cartesian to spherical is given by: (x, y, z) ⇐⇒ (r cosφ cos θ, r sinφ cos θ, r sin θ),

which yields Eq. (4.1.1) after trigonometric simplifications and substitutions.

Although, equations (4.1.1) and (4.1.3) give slightly different DTS results, the

resulting propagation latency differences are very negligible. Therefore, either of the

equations could be used for analysis of latency changes due to the terminal location

on earth. For GEO satellites without an Inter-Satellite Link (ISL), the minimum

distanceDTS(Min) is obtained when the terminal is located at the sub-satellite point

(i.e directly under the satellite on earth), while the maximum distance DTS(Max)

is when the terminal is located at the edge of coverage footprint with 0o elevation

angle and considering the radius of the earth, RE from the centre of the earth [7].
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DTS(Min) = h = 35, 786 km (4.1.4)

DTS(Max) = (RE + h) = r (4.1.5)

Equations (4.1.4) and (4.1.5) were used to calculate minimum (sub-satellite

point) and maximum (from the earth centre) satellite hop delay, while other SUT

and GWS location distances were also computed using Eqn.(4.1.2) by transformation

from spherical coordinates. Different propagation latencies such as One-Way-Delay

(OWDprop) from each of the ground segment locations to the satellite space segment,

shown in Fig. 4.3, were determined using Eq. (4.1.8)) and summarised in Table 4.1.

The same latency is determined for the terrestrial propagation delay from the GWS

to the different locations where the experiments were conducted using the developed

scenarios described in the following sections, the minimum and maximum values are

given in the subsequent section.

Figure 4.3: Ground Segment Sites Distances and Locations Mapping

Although the results from service providers were different, an analytical study of

the distances to the satellite was conducted and the resulting changes as SUT and
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Table 4.1: Ground Segment Location and Distance to Satellite

Location θ(lat0) φ(lon0) h(km) DTS(km) OWDprop(ms)

Zamfara, Nigeria 12.2N 6.3E 0.450 35,805 119.35

Durham, England 54.8N 1.6W 0.097 35,805 119.35

Burum, Netherlands (PGWSI) 53.27N 6.23E 0 40,499 134.997

Fucino, Italy (SGWSI) 41.99N 13.55E 0.661 39,475 131.583

Sharjah, UAE (GWST) 25.36N 55.39E 0.024 36,529 121.763

Sub-Sat Point(θs, φs) 0.9N 64E 0 35,786 119.29

Earth-Centre P(0, 0) 0 0 6,378.388 42,164.39 140.55

GWS move from point to point on earth are given in Table 4.1. The testbed for the

analysis is based on Inmarsat I-4 satellites located at S(0.90N, 640E) at an altitude

of 35,786 km above the Earth’s surface with primary GWS at Burum Netherlands

and Fucino, Italy as the secondary GWS, and its Broadband Global Area Network

(BGAN) terminals located in Nigeria and England, as shown in Fig. 4.4.

PSTN / ISDN

SSS (I-4 F1 ~64E )

Internet

Main Station (London)

KEYS 
RAN: Radio Access Network 
RF: Radio Frequency 
IF: Intermediate Frequency 
SSS: Satellite Space Segment 
UE: User Equipment 

SUT: Satellite User Terminal  
GWS: Gateway (Ground) Station 
PSTN: Public Switched Telephone Network 
ISDN: Integrated Services Digital Network 
PLMN: Public Land Mobile Network 
 

Network Operations & Control 

Network Operations Centre

Business Support System (BSS)

Satellite Control Centre (SCC) CORE NETWORK (CN)

PLMN

SAS/GWS-BURUM-NLD

CORE NETWORK (CN)

CN

RANs 
RF/IF 

SAS/GWS-FUCINO-ITL

CN

RANs 
RF/IF 

Satellite  Access Station (SAS) Satellite  Access Station (SAS)

High Speed (Cable Backbone) Data Communication Link

Terrestrial Networks

End-UE SUT (BGAN)

Figure 4.4: Inmarsat Satellite BGAN Architecture [8]

The results summary in Table 4.1, indicate the minimum changes in the distances
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and latencies. The propagation latency component has quite a high contribution to

the E2E latency as measured and is discussed in the following sections. The results

presented in Table 4.1 did not include ground (terrestrial) network propagation

delays such as signal propagation from the Satellite Access Station (SAS) or Radio

Access Network (RAN) to the Network Operations Centre (NOC) and Satellite

Control Centre (SCC) being part of the satellite network. The results (see Table

4.1) are for hops from SUT or GWS point to the SSS point.

4.1.2 E2E Latency Framework in a Satellite Environment

Revisiting the mathematical framework for computing different components of E2E

latency in communication networks is required in order to develop a model frame-

work for the measurements of the actual E2E latency in a network environment

incorporating at least one satellite hop. This helped to investigate and evaluate

the impacts of the delay accumulated from transmitter to the receiver site on E2E

connection-oriented data transport TCP protocol. The general latency model in

data communications was used as a basis from which our new model framework was

derived and proposed [9]. Latency model can be categorised in terms of Fixed or

Variable components [10] in the form of the four key components contributing to the

total latency in any communication network, these components are Propagation

(TPG), Processing (TP ), Transmission (TTX) and Queuing (TQ), the gener-

alised mathematical model of the total OWD latency ΦE2E is given by Eqs. (4.1.6).

These components and what gives rise to them, are discussed in the next section

with a graphical model representation shown in Fig. 4.5.

ΦE2E =
n∑
i=1

T iPG +
n∑
j=1

T jP +
n∑
k=1

T kTX +
n∑
l=1

T lQ (4.1.6)

Where, ΦE2E is the total E2E OWD latency, and i,j,k,l = 1,2,...,n are numbers

of nodes (vertices) and links (edges) along the E2E path. The E2E RTT is given by

Eq. (4.1.7) below:

RTTE2E = 2 ∗ ΦE2E (4.1.7)
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Figure 4.5: Generic End-to-End Latency Graphical Model

where β is serialisation/switching part of transmission delay, TTx, packetisation,

ϕ and CODEC, α are parts of processing delay, TP , and queuing delay, TQ is repre-

sented by χ in Fig. 4.5.

Fixed and Variable Delays in Communication Networks

The fixed and variable latency components directly add to the overall E2E latency

of the connection. Fixed latency usually depends on the physical link character-

istics and the message or packet size, but is independent of the amount of traffic

on the node and link, on which the variable latency normally depends. The fixed

latency components in communication networks include; Propagation, Processing,

and Transmission delays, while the variable component is contributed by Queu-

ing/Buffering delay as described as follows.

1. Propagation Delay: This is fixed, and depends on the type of channel with

speed v [kms−1] and path length d [km]

TPG =
d

v
(4.1.8)
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2. Transmission Delay: This is fixed comprising Serialisation and Network

Switching delays, depending on the link speed C [Kbps], Frame/Packet/Message

size Ms [bytes/bits].

TTX =
Ms

C
(4.1.9)

Network switching latency δ are the most difficult to quantify, but depend on

the switching mechanism employed by network providers.

3. Processing Delay: This is fixed comprising packetisation and CODEC (Com-

pression/Decompression) delays, depends on the type of Codec with speed

(rate) Sc [Kbps], Packet size Ps [bytes/bits], Codec block sample and Com-

pression algorithm. The CODEC α and Packetisation ϕ delays are given by

(4.1.10) below.

TP =
Ps
Sc

(4.1.10)

α = CT +DT.N + AD (4.1.11)

Where; CT/DT: Compression/De-Compression Time per block, N: Number

of blocks in frame and AD: Algorithm Delay.

4. Queuing (Buffering) Delay: Variable delay depends on the line speed (C)

and the state of the queue (how much traffic, λ already in the buffer).This is

variable component contribution from queuing in the egress (out-going) trunk

buffers on the E2E communication path connecting the source and destination.

This generates variable latencies giving rise to Queuing delay and Internet

Packet Delay Variation (IPDV) or Jitter. This latency depends on the amount

of traffic on the system as expressed mathematically by Eq. (4.1.12).

TQ =
λ

C
(4.1.12)
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4.2 Practical End-to-End Latency Measurement

This section, describes the experimental activities conducted to measure practical

E2E latency under heterogeneous network environment incorporating at least one

satellite hop link. The measurement experiments were conducted with a real satel-

lite testbed using practical experiments as discussed in this section, simulation and

emulation as discussed in the next section. Performance of the TCP over satellite

communication link was evaluated and analysed based on the achieved throughput

from the measured latency in this experiment.

4.2.1 Measurement Procedure

The Explorer 510 SUT connected to BGAN from Inmarsat SatCom company and

SatSleeve+ SUT connected to Thuraya SatCom Company, were used through out

the measurement experiments. Both network service providers use networks of GEO

satellites. Each of these terminals is portable with capabilities such as access point,

routing, water and dust protection (IP66), while end UE connected to the SUT

via WiFi link. The four ground segment equipment involved in the measurement

testbed; were a mobile smart device with an application (SatSleeve+ Hotspot or Ex-

plorer Connect) for connecting a computer with the software (Audacity program)

for capturing transmit/receive signals, and the SUT for transmitting (uplink) and

receiving (downlink) to and from the the Inmarsat or Thuraya GEO Satellite net-

work. The Inmarsat network testbed is shown in Fig. 4.6 while that of Thuraya is

shown in Fig. 4.7.

The measurement procedure starts with the transmission of an audio signal from

the source UE which is connected to either SUT or Public Land Mobile Network

(PLMN) depending on the scenario employed as described in the following sub-

section. The audio signal is picked and recorded using Audacity- an audio signal

processing software at the highest sample rate of 384 kHz for better data resolution.
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ZamFara, NigeriaDurham, England

Computer

Explorer 510 (SUT)

Smartphone/Computer

Laboratory

Figure 4.6: Inmarsat SatCom Network Testbed

Durham, England Zamfara, Nigeria

Smartphone (UE) Computer/Audacity Software SatSleeve+ (SUT)

Tx Rx

Figure 4.7: Thuraya SatCom Network Testbed
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Table 4.2 summarised the technical specifications of the testbeds hardware used.

Table 4.2: Testbed Hardware Technical Specifications

Terminal Dimensions(mm) Weight Mobility Data Rate Interfaces Service

Explorer 510 202 x 202 x 51.8 1.4 kg P/R 32-464 kbps W/U/E V/D

SatSleeve+ 138 x 69 x 42 0.256 kg P/R 15-60 kbps W V/D

Computer 281 x 13 x 197 0.92 kg P/R 1.3 Gbps W/U/E V/D

Smartphone 72.5 x 142 x 8.1 0.145 kg P/R 4G LTE W/U V/D

P: Portable, R: Rechargeable, W: WiFi, U: USB, E: Ethernet V: Voice (4-64kbps), D: Data

The transmitted signal traverses either a pure satellite or hybrid satellite-terrestrial

network depending on the scenario employed as described in the subsequent sections,

which was received at the destination UE and the same signal is picked and recorded

by the audacity software. These signals (transmitted and received) recorded and

stored as audio signals were then processed using MATLAB programming to deter-

mined OWD through correlation function of the signals.

A correlation function for discrete time was used to compute the delay between

the pair of signals (Tx and Rx) to find the maximum similarity of the signals [11].The

peak value can be achieved when the two signals are exactly the same [12]. This

peak is then used to compute the time shift between two signals. Eq. (??) forms the

basis for the computation of the actual E2E latency measured using the proposed

scenarios in our framework [13, 14]. The flowchart of the practical E2E latency

measurement procedure is given by Fig. 4.8.
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Figure 4.8: Latency Measurement and Data Acquisition Flow Diagram

4.2.2 Experiments Setup and Scenarios

The experimental setup for the measurements used the testbeds in Fig. 4.6 and

4.7 with two developed case study scenarios for pure satellite and hybrid satellite-

terrestrial network links. These scenarios were referred to as Sateliite-Satellite Net-

work Link (SSNL) as shown graphically by Fig. 4.9 and Satellite-Terrestrial Network

Link (STNL) that represents a realistic hybrid ISTN communication network envi-

ronments that are heterogeneous in nature as shown in Fig. 4.10.
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These scenarios can also be interchangeably called Satellite-Satellite Link (SSL)

and Satellite Terrestrial Link (STL) to indicate the existence of at least one leg

that connects the end user to the satellite. Latency performance was measured and

evaluated based on these unique study scenarios developed by this thesis.

Satellite-Satellite Link

This scenario, SSL was developed to establish connectivity between two remote end-

users both linked to the satellite network via satellite ground user terminals (SUT)

as the last legs as shown in graphical model Fig. 4.9 and single hop configuration

model in Fig. 4.11. This case study scenario was used to measure and study the per-

formance of a purely satellite network environment for connecting remotely isolated

rural end users. This scenario depicts two remote rural locations without terrestrial

communications infrastructure, not economically feasible, or not reliable where it

exists such as remote isolated rural areas. The SSL established E2E connectivity

between two semi-fixed Inmarsat or Thuraya SUTs shown in the testbeds of Fig. 4.6

and 4.7, the two SUTs were set to point to the satellite using a Line-of-Sight (LOS)

link. Adjustments (see Appendix B) were made until satisfactory signal strength

for communication was obtained within 70− 90% after the LOS pointing. The end

user UE and SUTs were connected using Wi-Fi link 1-20 m apart as shown in Fig.

4.9 of the graphical model.

SAS/GWS

Sat-Link
Sat-Link

SUT-R1 SUT-R2
UE

UE

C[xbps] C[xbps]

Single-Hop Connection Configuration

Packet Flow

End User Equipment End User Equipment

Figure 4.11: Single-Hop SSL Model Configuration of E2E Latency
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Satellite-Terrestrial Link

The STL scenario represents hybrid of ISTN) links that connect end users on a

heterogeneous (Satellite and Terrestrial) network infrastructure. This case study

scenario setup is the most realistic for the hybrid channels found in today’s com-

munication networks and in future 5G New Radio (NR) networks. The scenario as

shown in Fig. 4.10 depicts a network connecting users in an isolated remote rural lo-

cation via satellite network infrastructure and another end user in developed urban

area utilising available terrestrial network infrastructure such as PLMN. This was

developed to evaluate the performance of heterogeneous ISTN environments. The

STL E2E connection was achieved through a heterogeneous network including satel-

lite, Wi-Fi and PLMN links. The UE on the satellite leg in the remotely isolated

rural area connected to the satellite-pointed SUT via Wi-Fi, while the UE on the

terrestrial leg connected to PLMN via the nearest 3/4 G Base Transceiver Station

(BTS) in the urban area. This scenario was developed to measure E2E latency of

heterogeneous network testbeds shown in Fig. 4.6 and 4.7 with graphical model in

Fig. 4.10 and configured as dual-hop model as in Fig. 4.12.

SAS/GWS

Sat-Link Terrestrial-Link

SUT-R1

UE

PLMN / ISDN / PSTN

C[xbps] 

E1/T1

STL: Dual-Hop Connection Configuration

Packet Flow

UE

End User Equipment

UE

End User Equipment

C[xbps]

Figure 4.12: Dual-Hop STL Model Configuration of E2E Latency

4.2.3 E2E Latency Model for Satellite Environment

Following the successful design described in the previous sections, development and

measurement using the SSL and STL scenarios, three mathematical models were
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established as a framework for the evaluation and analysis of the actual E2E latency

in a heterogeneous ISTN environment using the scenarios and network topology

developed by this thesis. A more general model is given by Eq. (4.2.13) as a linear

summation of OWD consisting of propagation, processing, queuing and transmission

components along the communication network path with at least a satellite leg [9].

ΦE2E = KTProp +
n∑
i=1

Ti (4.2.13)

Where ΦE2E is the total OWD (latency) in milliseconds (ms), K is the number of

link(s) traversed by the traffic from source to the destination and sum of Ti represents

other delay components (non-propagation latency components) within the satellite

network such as queuing, processing and transmission delays in GWS NOC. The

other two models as described by Eq. (4.2.14) and (4.2.15) were developed from the

SSL and STL scenarios respectively considering their E2E signal path topologies.

ΦSSL = KSLTPropS +
n∑
i=1

Ti +KTLTPropT (4.2.14)

ΦSTL = KSLTPropS +
n∑
i=1

Ti +KTLTPropT +
m∑
j=1

Tj (4.2.15)

Considering our two study scenarios, KSL in (4.2.14) and (4.2.15) would assume a

constant value of 4 and 2, respectively, while KTL can take values from 1, 2, ...l in

both Eq. (4.2.14) and (4.2.15), since there is at least one terrestrial link in the form

of wireless (WiFi) or wireline and from/to ground network component such as GWS.

Tj represents non-propagation delay components within the terrestrial network such

as queuing, processing and transmission delays in BTS and MSC.

Moreover, careful observation of the STL scenario topology given in Fig. 4.10

led to identification of an additional propagation delay, KTPropT contributed by the

geographical distance separating the GWS and the PLMN connecting the UE on

the terrestrial leg end. The geographical site locations of the testbed and network

providers GWS were shown in Fig. 4.3. A summarised computation of the propa-

gation latency using wireless link (c = 3x108 ms−1), or wired link (2c/3 ms−1) as

minimum and maximum OWDprop (Φ) respectively as shown in Table 4.3.
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Table 4.3: Ground Segment (GWS) Propagation Delays to PLMN

Location-Link Distance(km) Φmin prop(ms) Φmax prop(ms) Φavg prop(ms)

Burum ↔ Durham 1,113 5.57 3.72 4.65

Burum ↔ Zamfara 6,396 31.98 21.32 26.65

Sharjah ↔ Durham 7,556 37.78 25.19 31.49

Burum ↔ Zamfara 8,495 42.48 28.32 35.40

4.2.4 Experimental Results and Analysis

Latency of a realistic hybrid satellite terrestrial network environment with random

traffic can be quite stochastic, due to the autonomous nature of the network elements

enabling the data communication from source to destination. This led to wide

variations in results at any point in time. Therefore, we computed the OWD latency

performance three times a day over the period of seventeen days using the two

scenarios (SSL and STL), these were developed using the two Satellite Network

Providers (SNPs) ground terminals (SUTs) and satellites, namely Inmarsat (SNP1)

and Thuraya (SNP2). The results for scenarios using SNP1 is given by Fig. 4.13

and scenarios using SNP2 is given by Fig. 4.14 shown that of STL scenario.
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Figure 4.14: Daytime Latency Performance for Satellite Network Provider 2

The SSL scenario performance comparison between the two SNPs is given by

Fig. 4.15 while STL Fig. 4.16. The statistical summary of the latency performance

measured using both the SNPs are given in Tables 4.4 and 4.5 for SSL and STL

scenarios respectively. Independent daytime measurements were conducted such

that the sample standard deviation (σstd) of each connection’s Latency was within

5% of its sample mean (Φavg) , this generally required around 17 data points. These

statistical summaries of the data points were then used to determine the overall

performance in terms of maximum, minimum, and average latency of a given scenario

topology.
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Figure 4.15: SSL Performance Comparison for Satellite Network Providers
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Table 4.4: Daytime SSL Latency Performance Summary

Scenario Φmax(ms) Φmin(ms) Φavg(ms) σstd(ms)

MSSL1 1452 1318 1407 39.45

ASSL1 1472 1313 1410 38.87

ESSL1 1458 1320 1407 41.49

MSSL2 995 880 939 36.71

ASSL2 1101 900 947 44.01

ESSL2 1243 893 964 80

Overall 1472 880 1179

Table 4.5: Daytime STL Latency Performance Summary

Scenario Φmax(ms) Φmin(ms) Φavg(ms) σstd(ms)

MSTL1 1035 866 971 36.33

ASTL1 1025 898 966 33

ESTL1 1021 906 964 34

MSTL2 1336 1157 1270 51

ASTL2 1293 1132 1246 45

ESTL2 1290 922 1230 84

Overall 1336 866 1108

Figure 4.13 shows the results obtained with both SSL and STL study scenarios

using SNP1 for different times of the day that include morning (M), afternoon (A)

and in the evening (E). Latency measurements corresponding to the three daytimes

mentioned for a period of seventeen (17) days, were carried out using the testbed

and method described in subsection 4.2.1. For instance, the daytimes of the first

day of the experiment is represented by M01 (morning of day 1), A01 (afternoon

of day 1), and E01 (evening of day 1), while day 2 is represented by M02, A02,

and E02. The resulting latency by SSL scenario using SNP1 shown in the upper

part of Fig. 4.13 appeared to be higher in each daytime compared to STL scenario

shown in the lower part of Fig. 4.13. The statistical summary of the performance

of SSL scenario using SNP1 given as SSL1 in Table 4.4 showed that the maximum

latency value, Φmax was 1472 ms and minimum value Φmin of 1310 ms obtained in
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the afternoon daytime while the average is between 1407 ms and 1410 ms, which is

about 1408 ms.

Although the measured latencies were stochastic in nature, the standard devia-

tion, σstd (variation from the average value Φavg) is still small as shown in Table 4.4.

The values of the standard deviation σstd (see Table 4.4) for the daytime measure-

ments were 39.45 ms (2.80% of 1407 ms), 38.87 ms (2.76% of 1410 ms), and 41.49 ms

(2.95% of 1407 ms), in the morning, afternoon and evening respectively. These gave

less than 3% deviation from the average values of the measured latencies. The STL

scenario using SNP1 (STL1) given in Table 4.5 showed similar stochastic nature,

but resulted to lower latency values with maximum (Φmax) of 1035 ms, minimum of

866 ms in the morning daytime, and the average value between 964 ms and 971 ms,

which is about 967 ms. The deviation σstd values were about the same ( ¡ 5%) with

that of SSL1 with values of 36.33 ms (3.74% of 971 ms), 33 ms (3.42% of 966 ms),

and 34 ms (3.53% of 964 ms) as shown in Table 4.5.

Considering both SSL1 and STL1 scenarios, the overall latency performance

measured had a maximum value of 1472 ms obtained in the afternoon using SSL1

scenario with an average of 1410 ms, minimum value of 866 ms in the morning

using STL1 scenario with an average of 971 ms. The minimum RTT = 2*Φ that

was obtained by using SNP1 testbed is 1942 ms while the maximum was 2944 ms

with the implication of degrading the performance of standard TCP as discussed in

chapter 3 and analysed using the achievable throughput in the following subsection.

The smaller value of less than 4% of the average σstd, throughout the measured values

using the two scenarios, will reduce the impact on jitter in data communications over

the heterogeneous internet environment.

Moreover, measurements were also carried out using SNP2 with both SSL2 and

STL2 scenarios that resulted in Fig. 4.14. The statistical summary of the measure-

ment results for SSL2 provided in Table 4.4 and STL2 given by Table 4.5. However,

the STL2 scenario was found to have higher latency values compared to SSL2, which

is the complete opposite to what was obtained using SNP1 results described ealier.

The SSL2 resulted in highest maximum (Φmax) of 1243 ms obtained in the evening

daytime of the measurements, lowest minimum (Φmin) of 880 ms in the morning, and
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an overall average (Φavg) between 939 ms and 964 ms is 949 ms as shown in Table

4.4. The STL2 maximum latency in the morning with value of 1336 ms, minimum

of 922 ms, and average of 1249 ms that is between 1230 ms and 1270 ms averages.

The performance comparison of SNP1 and SNP2 using the developed scenarios,

SSL and STL were given in Fig. 4.15 and Fig. 4.16 respectively. The high values

obtained with STL2 could be due to the location of the SNP’s primary GWS, PLMN

and the location of SUT during the measurement experiment as discussed in section

4.1.1, and shown in Fig. 4.3. Additional terrestrial propagation (see Table 4.3) and

processing delays contributed to higher values in the case of STL2 as compared to

STL1, this is due to the proximity of the GWS to the SUTs in the United Kingdom

and Nigeria. Another reason may be that, SNP1 SUTs were optimised for data

services using BGAN while SNP2 is optimised mainly for voice services with less

sophisticated network compared to BGAN.

Generally, the overall latency performance using both SNPs indicated that the

highest latency (Φmax) value of 1472 ms (see Table 4.4) was obtained from SSL

scenario while the lowest (Φmin) value of 866 ms (see Table 4.5) was obtained from

STL scenario. The lowest overall average latency (Φavg) value of 1108 ms was also

obtained using the STL scenario as given in Table 4.5. These indicate better latency

(RTT ) performance with the STL scenario as shown in Table 4.6, which represents

the more realistic heterogeneous communication network environments of today and

the future networks such as ISTNs that have a key role in the next generation 5G

networks.

Table 4.6: Overall RTT Performance Summary

Scenario RTTmax(ms) RTTmin(ms) RTTavg(ms)

SSL 2944 1760 2358

STL 2672 1732 2216

Overall 2944 1760 2287
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4.3 Emulation and Simulation Measurements

The emulation/profiling and simulation experiments were designed and conducted

to measure the E2E latency of the heterogeneous network environment using the

scenarios developed and discussed earlier. The results obtained from both the emu-

lation and simulation experiments are then compared with the real practical results

obtained. The emulation experiment testbed shown in Fig. 4.17 is described in the

following subsection.

TX Node (Source)
Rx Node (Sink)

Explorer 510

Mirroring Switch

Ethernet Link to the Switch

Ethernet Link from the Switch

Emulator/Profiler

Profiler/Emulator Software

Figure 4.17: Emulation and Profiling Testbed Network

4.3.1 Materials and Method

The equipment used for the emulation and profiling experiment are an NE-ONE

network emulator and profiler appliance, a data GS108T smart switch for port mir-

roring, explorer 510, an end user device for data Tx/Rx, and an ethernet cables

for communication and networking as shown in Fig. 4.17. The NE-ONE appliance

is unique in offering two powerful, complementary network and application per-

formance capabilities like network emulation (Virtual Test Network) and network
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performance profiling [16, 17]. This appliance or instrument has four ethernet ports

(0,1,2 and 3) [16, 17], on the front panel (see Fig. 4.18) of which only ports 0 and

1 are used for network performance profiling [17], while all the four can be used for

network emulation [16].

Emulator/Profiler

Front View

Rear View

ProSAFE+ Smart Switch 

Explorer 510

Mirroring Ports

Emulator/Profiler GUI

P0

P1

MGT Port

Router/Internet Access

SSS

Device Tx/Rx Device Tx/Rx

SAS/GWS

Figure 4.18: Network Emulation and Profiling Topology

An additional ethernet port for profiler management (MGT) at the rear panel of

the appliance is used for device configuration and monitoring via the ethernet cable

interface, Fig. 4.18 gives the network topology and setup configuration used for the

performance profiling and emulation using NE-ONE and testbed equipment listed

above with technical specifications of the key hardware given in Table 4.7.

Among the key device in the testbed is the smart switch, which enabled port

mirroring of the data traffic. This switch functionality allowed mirroring of the

incoming (ingress) and outgoing (egress) traffic of one or more ports (the source

ports) to a single predefined and configured destination port [19]. This predefined

port was then tapped and fed to port 0 of the NE-ONE for network performance

profiling as shown in the testbed (Fig. 4.17) and the physical topology in Fig. 4.18.
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Table 4.7: Testbed Hardware Technical Specifications [18, 19]

Feature NE-ONE Appliance Smart Switch Cable Link

Model Desktop M10 ProSAFE GS108Ev3 Category 5e (UTP)

Dimensions(WxDxH mm3) 204 x 324 x 77 158 x 101 x 29 24-AWG

Weight(kg) 5 kg 0.508 kg

Power (V/A/W) 100-230(AC)/4-2/180 12(DC)/0.5/4.45 30(DC)/0.577

Operating Temperature (0C) -5 to 35 0 to 40 -55 to 60

Operating Rel. Humidity (%) 8 to 90 10 to 90 N/A

Data Rate(Gbps) 1 1 1

Interfaces/Ports 5 x Gigabit Ethernet 8 x Gigabit Ethernet Gigabit Ethernet
UTP: Unshielded Twisted Pair, WxDxH: Width x Depth x Height, V: Voltage, A: Ampere, W: Watts

The Explorer 510 SUT provides a link to the satellite network (see Fig. 4.18) from

which the performance was measured by the testbed.

Moreover, simulations were carried out using Network Simulator 2 (NS-2) version

2.35 installed on Linux operating system (Ubuntu 14.04.5). Before the simulation

experiments started, a network topology was designed and implemented using Tool

Command Language (TCL) a programming language within the in NS-2 and Net-

work Animator (Nam) tools for visualising network simulations and data trace for

analysis. Nam is a Tcl/Tk based animation tool that supports topology layout,

packet level animation and data inspection tools.

The simulation topology shown in Fig. 4.19 consisted of the designated nodes

(in green) for transmitting and receiving TCP or UDP packets over the period of

simulation. The simulation data was recorded in a trace file (contains informa-

tion about nodes, links, packet traces, timestamps, events, and protocols), which

was then processed using AWK and PERL programming languages to extract the

E2E latency from the transmission node to the receiving node over the duration

of the simulation of about two hours for three days. The terrestrial network part

of the simulation topology consisted of a 3m ethernet cable link of 100 Mbps, 15 ns

propagation latency to connect Tx/Rx nodes and 4G PLMN of 10 Mbps and 100 ms

latency. File Transfer Protocol (ftp) traffic over TCP was used with 552 bytes (MSS)

and DropTail queue management enabled.
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Figure 4.19: Benchmark Network Topology and Simulation Setup

Latency Measurements using both the network profiler and simulator employed a

passive method of measurement as against the active correlation method used in the

experimental measurement in section 4.2.1 above. The passive method monitored

the current data traffic flow on the network to measure latency metric using network

monitoring capabilities of the NE-ONE Profiler appliance and the NS2 tool.

4.3.2 Emulator Profiled and Simulation Results Discussions

The results obtained by network profiling within the period of two hours daily (2hrs)

for three days are shown in Fig. 4.20, indicate the stochastic nature of latency as

observed from the practical results discussed in the previous section. The profiled

latency results showed correlation with the experimental results, but lower values

were obtained statistically and summarised in Table 4.8.
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Figure 4.20: Profiled Network Latency Performance

Table 4.8: Latency Performance Profiled Summary

Day Φmx(ms) Φmn(ms) Φav(ms) σsd(ms) RTTmx(ms) RTTmn(ms) RTTav(ms)

1 1383 636 1067 147.48 2766 1272 2134

2 1383 636 1068 147.62 2766 1272 2136

3 1414 554 963 186.23 2828 1108 1926

Overall 1414 963 1033 2828 1108 2066

The statistical analysis of latency measured in the first and second day (Day

1 and 2)) gave a maximum value of 1383 ms, minimum of 636 ms, the averages

and deviation for these days were about the same as shown in Table 4.8. However,

the deviations from the average values were large compared to the experimental

results, these varied from 147.48 ms (13.82% of 1067 ms) obtained in the first day

to 186.23 ms (19.34% of 963 ms) in the third day of the profiling.

The overall network performance profiled using the NE-ONE emulator were very

close to the overall performance measured by practical testbed using active exper-

iment method and within similar bounds with the overall minimum value of Φmin
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= 963 ms, maximum value of Φmax = 1414 ms, and an average of Φavg = 1033 ms.

The main disparity occurred in the the large deviation, which might be caused by

the differences in the data sample resolution, equipments and the different method

employed.

Figure 4.21 showed the latency performance results obtained from the simula-

tion experiments described in the previous section. The results from the simulated

scenarios (SSL and STL) are compared in Fig. 4.21 and statistically summarised

in Table 4.9. The overall simulated values of the latency (OWD) obtained using

these scenarios with SSL (red points) having the highest latency value of 767 ms

as compared with the lowest of 266 ms STLS (blue points) as given by the overall

values of Table 4.9. The average latencies were 536 ms, 271 ms and 404 ms for SSLS,

STLS and overall average respectively. Compared to the results obtained by prac-

tical and emulator profiled measurements, simulation gave the lowest latencies and

standard deviations of 16.78 ms (3.13% of 536 ms) and 6.01 ms (2.22% of 271 ms),

which indicates better performance compared to the other measurement methods.

However, practical and emulator profiled results are closer to a real communication

environment than the simulated environment. The RTT of the simulation results

were also determined by 2 ∗ Φ (2xOWD) and summarised in Table 4.9.
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Figure 4.21: Network Simulation Latency Performance

Table 4.9: Simulated Latency Performance Summary

Scenario Φmx(ms) Φmn(ms) Φav(ms) σsd(ms) RTTmx(ms) RTTmn(ms) RTTav(ms)

SSLS 767 524 536 16.78 1534 1048 1072

STLS 387 266 271 6.01 774 532 542

Overall 767 266 404 1534 532 807

4.4 Throughput Analysis

The results obtained from the measurements and discussed in the previous sections

were used to analyse the achievable throughput (R) using the standard TCP algo-

rithm scheme. The analysis is based on an ideal channel (i.e PER = 0) and the set

values of the TCP parameters that include initial cwnd (IW) of 10 segs, ssthresh

(γ) of 128 segs, and maximum segment size (MSS) of 1448 bytes.

The results in Fig. 4.22, 4.23, and 4.24 for practical, emulator profiled and

simulation measurements showed how the RTT degraded the performance of com-
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munication by decreasing the instantaneous transmission rate (throughput) as the

E2E latency increases. Three different overall RTT values namely; maximum, mini-

mum and average were used to analyse the performance of TCP due to the increased

latency. The summary of the performance were obtained for practical, profiled, and

simulated E2E latencies and shown in Table 4.10, 4.11, and 4.12 respectively.
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Figure 4.22: Instantaneous Transmission Rate (Throughput) of Practical RTT
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Table 4.10: Throughput Performance Summary by Overall Practical RTT

RTT Rmax(kbps) Rmin(kbps) Ravg(kbps)

Maximum 717 4 552

Minimum 1470 7 1088

Average 1012 5 768

Overall 1470 4 803

Table 4.11: Throughput Performance Summary by Overall Profiled RTT

RTT Rmax(kbps) Rmin(kbps) Ravg(kbps)

Maximum 756 4 582

Minimum 2964 11 2069

Average 1167 6 878

Overall 2964 4 1176

Table 4.12: Throughput Performance Summary of the Overall Simulation RTT

RTT Rmax(kbps) Rmin(kbps) Ravg(kbps)

Maximum 1800 8 1312

Minimum 10002 22 6273

Average 4939 14 3293

Overall 10002 8 3626

Figure 4.22 and Table 4.10 showed the performance for practically measured la-

tency with 1470 kbps the overall highest throughput achieved, an average of 803 kbps,

and lowest value of 4 kbps using standard TCP like NewReno. The maximum

throughput was achieved from the minimum delay RTTmin while the lowest was

from the maximum delay, RTTmax. This clearly show (see Fig. 4.22) the negative

impact of long latency in hybrid satellite network environments on the throughput

and capacity efficient utilisation.

The same features were observed for profiled and simulated results in Fig. 4.23,

and 4.24 respectively. Although better throughput performance was achieved with

overall highest value of up to 10002 kbps (about 10 Mbps) with RTTmin = 532 ms

from simulation as compared with the highest of 2964 kbps (about 3 Mbps) with

RTTmin = 1108 ms from the profiling that is closer to the reality than simulation.
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These results showed how much impact latency could have on the throughput perfor-

mance and capacity utilisation of the next generation of High Throughput Satellites

(HTS) and 5G communications networks with extremely high capacity.

The key similarities among all the results from practical to simulation are the

overall lowest (Rmin) values were between 4-8 kbps obtained from RTTmax values

and the overall highest (Rmax) between 1470 kbps (practical) and 10 Mbps (simu-

lation) derived from RTTmin. The overall average throughput (Ravg) values were

between 803 kbps (practical) and 3.6 Mbps (simulation). Compared with overall

values obtained from the practical measurements (see Table 4.10), simulation re-

sults (see Table 4.12) were too high to be obtained in real heterogenous network

environments involving at least a satellite leg.

Moreover, most satellite network environment latency values of 500-600 ms found

in most literature were more closer to simulated values than the realistically practical

values as measured and described in this thesis. In most cases, the E2E latency com-

ponent contributed by communications between satellite space segment and gate-

way stations are among the most critical propagation latencies and operations like

network operation, satellite control and satellite access carried out contributed an

additional processing and switching delays.
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Chapter 5

TCP Optimisation: Modelling,

Implementation and Testing

This chapter presents modelling, implementation and testing of the optimum TCP

over heterogeneous (IST) networks involving GEO satellite links using numerical

simulations and protocol implementation for the analysis and evaluation of the per-

formance of our improved algorithm proposal. This was and compared with other

optimised TCP algorithms designed to solve the performance degradation issue of

TCP over pure satellite and heterogeneous network environments such as ISTN that

incorporate at least a satellite leg.

5.1 Mathematical Model

The mathematical model described and proposed in this thesis is based on the

standard, HYBLA and CUBIC TCP congestion algorithms. These were to improve

the performance of TCP over long RTT and large BDP networks such as a hybrid

SatCom network environment. The key aim of this model is to mitigate the impact

of long RTT and large BDP environment involving at least one satellite link.

To achieve optimum performance with TCP over long RTT channels like satellite

with the focus on improving the congestion window (evolution) growth rate W (t),

which has negative impact on the throughput performance with increase RTT. The

TCP instantaneous transmission rate (throughput) R(t) is given by Eq. (5.1.1).

129



5.1. Mathematical Model 130

R(t) =
W (t)

RTT
(5.1.1)

where W (t) is window evolution for SS and CA phases of the standard TCP

algorithm is given by Eq. (5.1.2) as detailed in chapter 3.

W (t) =

 2
t

RTT 0 ≤ t < tγ SS (Exponent)

t−tγ
RTT

+ γ t ≥ tγ CA (Linear)
(5.1.2)

Where t is the elapsed time since the data transmission started and tγ is the time

that the ssthresh value, γ is reached in a given RTT , computed from Eq. (5.1.3).

tγ = RTT log2(γ) (5.1.3)

The instantaneous throughput R(t) given by Eq. (5.1.4) for standard TCP was

derived by substituting W (t) given by Eq. (5.1.2) in Eq. (5.1.1).

R(t) =

 2t/RTT

RTT
; 0 ≤ t < tγ SS

1
RTT

( t−tγ
RTT

+ γ); t ≥ tγ CA
(5.1.4)

However, to achieve optimum TCP performance and efficient utilisation of the

capacity (bandwidth) C over a long RTT and large BDP channel, R(t) needs to be

maximised by making W (t) independent of the RTT , particularly in a heterogeneous

network environment where longer RTT connection are penalised and disadvantaged

by competing shorter RTT flows [1–4, 6–11, 13].

The constraints of achieving maximum throughput in TCP is the connection

RTT and the channel available capacity C [2, 9–11, 13, 16, 17]. The optimum

solution obtained by careful maximisation of W (t) through minimisation of RTT

impact, as shown by Eqs. 5.1.5, 5.1.6 and 5.1.7 [12, 14]. Figure 5.1 is an ITU

reference star topology model adopted for the TCP performance optimisation by

this thesis.

max

R ≥ 0
N∑
i=0

Wi(Ri) (5.1.5)

Subject to constraints given by (5.1.6) and (5.1.7)

W ≤ cwnd (5.1.6)
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R ≤ C (5.1.7)

where R is the aggregate throughput achieved and Ri is the average throughput

(instantaneous transmission rate) of the ith flow of the TCP source, t is the latency,

W is the current window growth rate obtained from the measured congestion win-

dow, cwnd of the flow path and the receiver advertised window, rawnd, usually

derived from W = min(cwnd, rawnd) in algorithms such as TCP Reno, and C is

the capacity/bandwidth of ith link Li, along the TCP connection path as shown in

Fig. 5.1. Li is the bottleneck link capacity in a heterogeneous network path for

obtaining the optimum value of Ri subject to the constraints in Eq. (5.1.6), at the

transport layer. Considering the physical layer, R is also is limited by the channel

capacity C as expressed by (5.1.7). However, the optimum transmission rate of

TCP source considered in this thesis considered the constraints in Eq. (5.1.6).The

channel utilisation efficiency is computed using Eq. (5.1.8).

η(%) =
Ri

Ci
100 (5.1.8)

The original HYBLA and CUBIC algorithms discussed in chapter 4 were modi-

fied and integrated to achieve optimum TCP performance with minimised impacts

of RTT on both the W (t) and R(t). A normalised RTT , ρ given by Eq. (5.1.9) was

used as in original HYBLA with modified and realistic reference value of RTTref

of at least 100 ms such as realistic 4G network. This was aimed at achieving the

same R(t) for both longer RTTsat and short RTTref = 100 ms by making W (t)

independent of the RTTsat through elapsed time scale, t modification with ρt in Eq.

(5.1.2) and compensating the effect of the RTTsat by multiplying by ρ the resulting

W (t) from time scaling just like the steps in HYBLA [10, 11].
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Figure 5.1: Reference Model Star topology (adopted from [16, 17])

Therefore, using the first step (elapsed time scaling) for the original HYBLA

SS phase and modification of the CA phase using CUBIC function without time

scaling, since CUBIC was originally independent of RTT and scaled by a factor of

C. This yielded an improved congestion control algorithm with Wmt given in Eq.

(5.1.10) with modified SS and CA algorithms. Moreover, compensating the effect of

RTT in the next step resulted to Rm(t) independent of the RTTsat as given in Eq.

(5.1.11), which was derived by substituting resulting Wm(t) in Eq.(5.1.1).

ρ =
RTTsat
RTTref

(5.1.9)

Wm(t) =

 ρ ∗ 2
( t
RTTref

)
, 0 ≤ t < tγ, SS (HY BLA)

C(t− 3

√
βWmax

C
)3 +Wmax, t ≥ tγ, CA (CUBIC)

(5.1.10)

Rm(t) =

 2
(t/RTTref )

RTTref
, 0 ≤ t < tγ,ref , SS

1
RTTref

(C(t− 3

√
βWmax

C
)3 +Wmax), t ≥ tγ,ref , CA

(5.1.11)

where C is a constant (usually 0.4) scaling factor that determines the aggressive-

ness of window increase in large BDP network environments like hybrid satellite
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networks, t is elapsed time from the last window reduction at the event of packet

loss (the beginning of the current CA) or since the data transmission start under

ideal conditions without packet loss, Wmax (origin point) is window size just before

the last window reduction at the event of loss or the maximum at the end of the SS

phase (t ≥ tγ,ref ), β is a constant Multiplicative Decrease (MD) factor for window

reduction at the time of loss, which replaced the halving window in the standard

TCP algorithms [13, 20].

The factor 3

√
βWmax

C
(K in CUBIC) is a constant that determines how slow or fast

the cwnd size increases or decreases, i.e the time interval CUBIC window function

takes to increase Wi to Wmax when no further loss event occurred within that period

as described in chapter 3 [13, 20]. However, the cwnd update rule, Wi+1 remains

the same as in original HYBLA for SS phase and CUBIC for CA phase as detailed

in chapter 3 of this thesis.

As a result of the modifications shown in Eqs (5.1.10) and (5.1.11), the time

at which cwnd (W) reaches the ssthresh, γ given by Eq. (5.1.3), which serves as

switching time, tγ,ref between modified SS and CA algorithms is redefined as the

time at which W reaches the value ργ and rewritten as Eq. (5.1.12) to reflect the

compensation of the effect of division by RTT and also include an error merging of

RTTref log2(ρ) compared to HYBLA and other algorithms.

tγ,ref = RTTref log2(ργ) = RTTref log2(ρ) +RTTref log2(γ) (5.1.12)

This switching time, tγ,ref is different for differentRTTsat contrary to the HYBLA

algorithm where it is the same for every RTT value [10]. In this case, as the

RTTsat increases the switching time increases additively by a factor of tρ,ref =

RTTref log2(ρ) as shown in Eq. (5.1.12).

5.2 Numerical Simulation and Analysis

The numerical simulations and analysis of the modified mathematical model in Eqs.

(5.1.10), (5.1.11) and (5.1.12)were conducted by implementing the modified SS and

CA algorithms in MATLAB under ideal (error free) channel connection. This new
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implementation called HYBIC was compared with both HYBLA and CUBIC algo-

rithms under the same channel conditions to evaluate throughput performance and

capacity utilisation.

5.2.1 HYBIC Implementation and Analysis

HYBIC is the new modification derived from both TCP HYBLA and CUBIC algo-

rithms to enhance the performance of TCP over long RTT channels such as satellite.

The implementation was analysed using numerical simulation under ideal channel

conditions, different values of long RTTsat measured in chapter 4, realistic fast ref-

erence RTTref and varied TCP parameters such as ssthresh (γ), initial cwnd (IW),

maximum segment size (MSS) and elapsed time, t were used for the simulation.

The results shown in this section were obtained with realistic values of RTTref

from 25-100 ms in step of 25 ms and three worst case scenario practical values of

RTTsat (maximum, minimum and average) measured experimentally and discussed

in chapter 4. Moreover, IW is set to 10 seg, γ of 128 seg, MSS of 1448 bytes and

elapsed time t starting at 0 s with step of 200 ms.

The window evolution, Wm(t) shown in Fig. 5.2 was the result of the numerical

implementation of the modified algorithm called HYBIC Eq. (5.1.10) of the previous

section) using a fast reference RTTref =25 ms. The implementation was subjected

to three high RTTsat measured practically as maximum (RTTmax = 2944 ms), min-

imum (RTTmin = 1760 ms) and average (RTTavg = 2287 ms) as shown in Fig. 5.2.

The window rate, W (t) under RTTmin reached the ssthresh (γ = 128 seg) faster

compared to RTTmax and RTTavg values, but high window evolution, W (t) values

were achieved at these high RTT values. These high values of W (t) led to a higher

instantaneous transmission rate, Rm(t) as described by the algorithm of Eq. (5.1.11)

and shown by the results of Fig. 5.3.
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Figure 5.2: TCP HYBIC Window Evolution, Wm(t) at RTTref = 25 ms
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Figure 5.3: TCP HYBIC Transmission Rate, Rm(t) at RTTref = 25 ms
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However, similar growth in both window and transmission rates were observed

when the fast reference path (RTTref ) is increased from 25 ms to 100 ms as shown

in Fig. 5.4 and 5.5 in step of a 25 ms. These results also show that the negative

impact of high satellite latency (RTTsat) is removed as the algorithm is almost

independent of the high RTT satellite path when the RTTref increases from 25 ms

to 100 ms. Moreover, both the SS and CA algorithm phases of Wm(t) and Rm(t)

tend to converge with the increase in RTTref as shown in Fig. 5.4 and 5.5.
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Figure 5.4: TCP HYBIC Window Evolution, Wm(t) at RTTref = 100 ms
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Figure 5.5: TCP HYBIC Transmission Rate, Rm(t) at RTTref = 100 ms

High performance was achieved with HYBIC by removing the dependence of

Wm(t) and Rm(t) on long RTTsat as shown in Fig. 5.4 and 5.5. A statistical

summary of the HYBIC performance based on the lower (25 ms) and upper (100 ms)

bounds considered is given in Table 5.1 and 5.2. Overall, HYBIC achieved up to

Wm
max(t) = 117 kseg with RTTref = 25 ms and the lowest was of Wm

min = 18 seg with

RTTref = 100 ms and an average between Wm
avg = 23-46 kseg for RTTref between

25-100 ms.

Table 5.1: HYBIC Window Evolution at RTTref of 25 ms and 100 ms

RTTsat(ms) Wm
max(kseg) Wm

min(seg) Wm
avg(kseg) Wm

max(kseg) Wm
min(seg) Wm

avg(kseg)

2944 117 118 52 88.2 29 24

1760 104 70 40 87.5 18 23

2287 110 92 45 87.9 23 23

Overall 117 70 46 88.2 18 23

The improvement of cwnd rate replicated with the high achievable throughput

or transmission rate Rm(t) shown in Fig. 5.3 and 5.5 for RTTref values of 25 ms and
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Table 5.2: HYBIC Transmission Rate at RTTref of 25 ms and 100 ms

RTTsat(ms) Rmmax(Gbps) Rmmin(Mbps) Rmavg(Gbps) Rmmax(Gbps) Rmmin(Mbps) Rmavg(Gbps)

2944 54 55 24 10 3 3

1760 48 33 18 10 2 3

2287 51 42 21 10 3 3

Overall 54 33 21 10 2 3

100 ms respectively. The statistical summary of achieved throughput with HYBIC

is given in Table 5.2, with highest achieved transmission rate of up to Rm
max(t) =

54 Gbps at RTTref = 25 ms and RTTmax = 2944 ms, while the lowest achieved

was Rm
min(t) = 2 Mbps at RTTref = 100 ms and RTTmin = 1760 ms, the average

transmission rate Rm
avg(t) achieved was between 3 Gbps at RTTref = 25 ms and

21 Gbps at RTTref = 100 ms as shown in Table 5.2.

Figures 5.6 and 5.7 showed the changes and convergence of Wm(t) and Rm(t) by

changing the RTTref from 25 ms (see Fig. 5.6 (a) and (b)) to 50 ms (see Fig. 5.6

(c) and (d)), while 75 ms and 100 ms is given by Fig. 5.7.
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Figure 5.6: TCP HYBIC Wm(t) and Rm(t),, at RTTref of 25 ms and 50 ms
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Figure 5.7: TCP HYBIC Wm(t) and Rm(t), at RTTref of 75 ms and 100 ms

When the RTTref exceeded 25 ms, the convergence of different RTTsat curves

become eminent and confirms the independence of both Wm(t) and Rm(t) on it.

The overall values given in Tables 5.1 and 5.2 showed that increasing the value of

RTTref from 25 ms to 100 ms has a negative impact on both the window growth

and transmission rates. However, HYBIC still achieved by far better performance

than the best performance achieved with standard TCP, HYBLA and CUBIC as

discussed in the following sections.

5.2.2 HYBIC and HYBLA

The performance of HYBIC compared to HYBLA was observed by changing the

values of RTTref with both algorithms almost independent of the RTTsat as shown

in Fig. 5.8 to 5.13. Careful observation of these figures of changing RTTref , window

growth and transmission rates showed HYBIC has better performance and is more

stable in both SS and CA phases with an increase in RTTref and RTTsat, while

HYBLA performance and stability reduced with increase in the values of these
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RTTs as shown by the green curves of the figures.
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Figure 5.8: HYBIC and HYBLA W (t) and R(t) at RTTref of 25 ms and 50 ms
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Figure 5.9: HYBIC and HYBLA W (t) and R(t), at RTTref of 25 ms and 50 ms
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Figure 5.10: HYBIC and HYBLA W (t) and R(t),, at RTTref of 25 ms and 50 ms
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Figure 5.11: HYBIC and HYBLA W (t) and R(t), at RTTref of 75 ms and 100 ms
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Figure 5.12: HYBIC and HYBLA W (t) and R(t), at RTTref of 75 ms and 100 ms
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Figure 5.13: HYBIC and HYBLA W (t) and R(t), at RTTref of 75 ms and 100 ms

The performance of HYBLA degraded with the increase in the RTT values while

HYBIC performance improved under the same conditions. These show that HYBIC

performance had less dependency on all the RTT values. Moreover, HYBLA spent

more time in SS phase than HYBIC (less than 1 s in all cases) and cwnd growth was

dominated by the CA phase and HYBIC growth is not as aggressive as in HYBLA.

Tables 5.3 and 5.4 showed a statistical summary of the HYBLA performance

for values of RTTsat and RTTref of 25 ms (smallest) and 100 ms (highest) values.

The overall performance obtained by numerical simulation and summarised in these

tables showed W h
max=297 kseg compared to HYBIC Wm

max=117 kseg ( see Table

5.1) that correspond to Rh
max = 138 Gbps and Rm

max = 54 Gbps at 25 ms as shown

in Table 5.2. The highest averages at this RTTref were W h
avg=123 kseg compared

to Wm
avg=46 kseg that correspond to Rh

avg = 57 Gbps and Rm
avg = 21 Gbps, these

confirmed the better performance of HYBLA at RTTref = 25 ms.

However, increasing the value of RTTref = 100 ms showed decrease performance

in HYBLA while HYBIC performance improved with W h
max=21 kseg compared to



5.2. Numerical Simulation and Analysis 144

Table 5.3: HYBLA Window Evolution at RTTref of 25 ms and 100 ms

RTTsat(ms) W h
max(kseg) W h

min(seg) W h
avg(kseg) W h

max(kseg) W h
min(seg) W h

avg(kseg)

2944 297 118 156 21 29 12

1760 178 70 93 13 18 7

2287 231 92 121 17 23 10

Overall 297 70 123 21 18 10

Table 5.4: HYBLA Transmission Rate at RTTref of 25 ms and 100 ms

RTTsat(ms) Rhmax(Gbps) Rhmin(Mbps) Rhavg(Gbps) Rhmax(Gbps) Rhmin(Mbps) Rhavg(Gbps)

2944 138 55 72 3 3 1.4

1760 82 33 43 2 2 1

2287 107 42 56 2 3 1.1

Overall 138 33 57 3 2 1.2

Wm
max=88 kseg that correspond to Rh

max = 3 Gbps and Rm
max = 10 Gbps.The high-

est averages at this RTTref were W h
avg=10 kseg compared to HYBIC Wm

avg=23 kseg

that correspond to Rh
avg = 1.2 Gbps and Rm

avg = 3 Gbps. Table 5.5 gave the over-

all performance comparison and percentage improvement (when RTTref=100 ms)

summary of HYBLA and HYBIC.

Table 5.5: HYBLA and HYBIC Overall R(t) Comparison at RTTref of 25 ms and

100 ms

Algorithm Rmax(Gbps) Rmin(Mbps) Ravg(Gbps) Rmax(Gbps) Rmin(Mbps) Ravg(Gbps)

HYBLA 138 33 57 3 2 1.2

HYBIC 54 33 21 10 2 3

Diff 84 0 36 7 0 1.8

Improvement(%) −61 0 −63 233 0 150

5.2.3 HYBIC and CUBIC

The performance of newly proposed HYBIC and the existing TCP CUBIC were also

compared in Fig. 5.14 to 5.19 and summarised in Tables 5.6 through 5.8. The cwnd

growth rate of HYBIC and CUBIC converged more quickly especially at RTTref
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above 25 ms with fast exit of SS phase by HYBIC as shown in Fig. 5.14 to 5.16. In-

creasing the RTTref (from 50 ms) and RTTsat made the two curves, W (t) of HYBIC

(red) and CUBIC (blue) to converged more, particularly in the CA phase, while the

instantaneous transmission rate of HYBIC (Rm(t)) remained highest compared to

that of CUBIC (Rc(t)). The CUBIC window growth rate, WC(t) was independent

of RTT and depends largely on the elapsed time, t, maximum window at the end

of the SS phase and other constants (C, K, and β) values described in chapter 4.

The performance of HYBIC in terms of window growth and transmission rates were

better than that of CUBIC as summarised in Tables 5.6 and 5.7 respectively.
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Figure 5.14: HYBIC and CUBIC W (t) and R(t),, at RTTref of 25 ms and 50 ms
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Figure 5.15: HYBIC and CUBIC W (t) and R(t), at RTTref of 25 ms and 50 ms
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Figure 5.16: HYBIC and CUBIC W (t) and R(t),, at RTTref of 25 ms and 50 ms
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Figure 5.17: HYBIC and CUBIC W (t) and R(t), at RTTref of 75 ms and 100 ms
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Figure 5.18: HYBIC and CUBIC W (t) and R(t),, at RTTref of 75 ms and 100 ms
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Figure 5.19: HYBIC and CUBIC W (t) and R(t), at RTTref of 75 ms and 100 ms

Table 5.6 summarises the cwnd evolution, W c(t) performance for all RTTsat

values considered and RTTref of 25 ms and 100 ms, while Table 5.7 gives the per-

formance summary of the instantaneous transmission rate, Rc(t) under the same

parameter values. These summaries showed that CUBIC is independent of the

RTTref changes in window growth and transmission rates algorithms under an error

free or ideal channel conditions.

Table 5.6: CUBIC Window Evolution at RTTref of 25 ms and 100 ms

RTTsat(ms) W c
max(kseg) W c

min(seg) W c
avg(kseg) W c

max(kseg) W c
min(seg) W c

avg(kseg)

2944 87 1000 22 87 1000 22

1760 87 1000 22 87 1000 22

2287 87 1000 221 87 1000 22

Overall 87 1000 22 87 1000 22

Table 5.8 summarises the performance improvements from CUBIC to HYBIC us-

ing the difference that represents the increase in transmission rate, R(t) by HYBIC.

The transmission rate performance of TCP CUBIC was lower compared to HYBIC
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Table 5.7: CUBIC Transmission Rate at RTTref of 25 ms and 100 ms

RTTsat(ms) Rcmax(Mbps) Rcmin(bps) Rcavg(Mbps) Rcmax(Mbps) Rcmin(bps) Rcavg(Mbps)

2944 341 3935 84 341 3935 84

1760 570 6582 143 570 6582 143

2287 438 5065 110 438 5065 110

Overall 570 3935 112 570 3935 112

with overall Rc
max = 341 Mbps and Rc

avg = 84 Mbps for all RTT values compared

to HYBIC overall Rm
max = 54 Gbps and Rm

avg = 21 Gbps at RTTref =25 ms. More-

over, the performance obtained at high RTT values with HYBIC were much better

compared to the best performance obtained with CUBIC as shown in Table 5.8. Al-

though, CUBIC is RTT independent and stable under ideal channel conditions, it

was out-performed by the new HYBIC proposal in terms of achievable throughput

that improves available capacity utilisation.

Table 5.8: CUBIC and HYBIC Overall R(t) Comparison at RTTref of 25 ms and

100 ms

Algorithm Rmax(Gbps) Rmin(Mbps) Ravg(Gbps) Rmax(Gbps) Rmin(Mbps) Ravg(Gbps)

CUBIC 0.341 3.935 0.084 0.341 0.3935 0.084

HYBIC 54 33 21 10 2 3

Diff 53.659 32.996 20.916 9.659 1.996 2.916

5.3 HYBIC Implementation and Simulation

The proposed HYBIC algorithm was implemented using the C language and and

tested as a new protocol module with other high BDP TCP schemes implementa-

tions in Linux such as CUBIC and HYBLA. This also enabled simulations at the

transport layer level to be carried out using Network Simulator version 2.35 (NS

2.35) installed on Ubuntu (Linux) operating system. Network simulations are re-

quired or become necessary in the process of designing and developing new and

modified communication protocols like TCP.

NS (or ns) is a discrete event object oriented simulator written in C++ with an
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Object oriented Tool Command Language (OTcl) frontend interpreter as a command

and configuration interface [21]. This is one of the most effective communications

network research tools that provides vital support for protocol simulation over wired

and wireless (Terrestrial and Satellite) networks and has become a popular simula-

tor in the scientific research environment. NS is useful for protocol design, traffic

studies, protocol comparisons, performance analysis and evaluation and also help

researchers increase results confidence. Generally, simulations are required to test,

analyse, evaluate and optimise communications protocol and algorithms before be-

ing accepted as standards and added in the communication systems. The directory

structure of NS-2.35 used for the HYBIC protocol module is shown in Fig. 5.20. The

source code (hybic.c) and header (hybic.h) files most follow this directory structure

for successful addition of the HYBIC protocol module among other TCP modules

in Linux.

ns-allinone-2.35
NS Main Directory

ns-2.35

Makefile.in

tcp_hybic.c tcp_hybic.o

Others
.cc, .h, .o

linux.h

tcl8.5 tk8.5
lib nam-1.15otcl

tcp
tcl

linux

src

Others
.c, .h, .o

......

Figure 5.20: NS-2.35 and HYBIC Directory Structure

After the addition of all relevant files in the appropriate directory shown in Fig.

5.20, the simulation, testing and data (pre/post) processing are carried out in the
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hierarchy shown in Fig. 5.21. The simulation returns errors if the appropriate code

and header files are not found in the correct directory.

Network Simulator
NS

C/C++ Codes
.c/.cc/.h

OTcl
.tcl

Binary (bin) file
.o

Network Animator
.nam

Makefile.in
changes then

Compile/make

Simulation
.c, .cc, .h, .o, .tclPre-Processing

Data
.tr

Post-Processing
Data

awk, perl, tcl,
gnuplot, xgraph

Figure 5.21: Simulation and Data Processing Hierarchy Flowchart

A number of simulation runs were carried out in order to analyse and evaluate the

performance of HYBIC as a single TCP flow over a heterogeneous network (ISTN)

environment and as a competing flow among other TCP flows such as NewReno,

HYBLA, and CUBIC. These results were compared, and analysed in the subsequent

sections of this chapter for evaluating the performance of HYBIC against the two

high BDP schemes, CUBIC and HYBLA, already implemented as modules in NS

with CUBIC being the default TCP in Linux. The ISTN topology used to test

and simulate the new HYBIC proposal against other TCP schemes was designed

using Tool Command Language (TCL), which was then linked to the C language

implementation by the NS. The Network Animator (NAM or nam) integrated in

NS was used for topology and traffic flow visualisation as discuss and shown in the

following simulation and testing section.
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5.3.1 HYBIC Protocol Implementation

Before the simulations of the TCP HYBIC proposal, a typical software design and

development cycle was carried out. These steps include the HYBIC 1) Software

Coding (programming) using C language 2) Debugging errors using Gnu Debugger

(GDB) in Ubuntu Linux 3) Implementation and addition as TCP Linux protocol

module in NS-2.35 4) Testing using the designed and TCL coded network topology.

These processes shown in Fig. 5.22 are part of the well known Software Development

Life Cycle (SDLC) with some of the phases already carried out before the numerical

implementation and analysis.

Figure 5.22: HYBIC Development, Implementation, Test and Simulation Cycle

The step by step execution of HYBIC algorithm is shown by the flowchart in

Fig. 5.23. These processes execute multiple functions written and compiled in C

Language, which formed part of the NS kernel to implement the kernel architecture

of the HYBIC protocol. The simulator (NS-2.35) supports a class hierarchy in

C/C++ called the compiled hierarchy and similar class hierarchy within the OTcl

interpreter called the interpreted hierarchy. These two hierarchies are closely related

to each other with a one-to-one correspondence between a class in the interpreted

hierarchy and one in the compiled hierarchy from the users perspective [21]. The

complete C codes are given in the Appendix A.3.
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Figure 5.23: HYBIC Algorithm Execution Flowchart
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Finally, implementation of the key Congestion Control Algorithm (CCA) func-

tions defined in struct tcp congestion ops added a constant record for HYBIC CCA

as static record of struct tcp congestion ops tcp HYBIC that stored the key function

calls and the new algorithm’s name as shown and explained below.

static struct tcp_congestion_ops tcp_HYBIC = {

.init = HYBIC_init,

.ssthresh = bictcp_recalc_ssthresh,

.cong_avoid = HYBIC_cong_avoid,

.set_state = HYBIC_state,

.pkts_acked = bictcp_acked,

.owner = THIS_MODULE,

.name = "HYBIC"

};

1. HYBIC init(): Function called after the first ACK received and before the

CCA is called for the first time. The private data (parameters and variables

initialisation) of HYBIC CCA is also initialised by this function. Function

implementation for CCA interface void (*init)(struct tcp sock *sk);.

2. bictcp recalc ssthresh(): Function that returns the slow-start threshold

(ssthresh or γ) after a loss event. implementation for CCA interface u32

(*ssthresh)(struct sock *sk);.

3. HYBIC cong avoid : This function executes the main routine of the TCP

HYBIC CCA, which increases the congestion window (cwnd) for each ACK

received, performs new cwnd calculation and selects whether to be in SS or CA

phase based on the comparison of current cwnd and ssthresh value. Function

implementation for CCA interface void (*cong avoid)(struct sock *sk,

u32 ack, u32 rtt, u32 in flight, int good ack);.

4. HYBIC state(): This function is called before or when the congestion state

(ca state) of the HYBIC is changing/changed using new state or ca state vari-

able, used as the state code to notify the HYBIC CCA the state it is going
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to be in. This is also used by some algorithms to turn off special control dur-

ing loss recovery. The possible states are TCP CA Open for normal state or

TCP CA Loss for Loss Recovery after a Timeout other states can be found

in the data structure interface of TCP. Function implementation for CCA

interface void (*set state)(struct sock *sk, u8 new state);.

5. bictcp acked : This function is called when there is an ACK that acknowl-

edges some new packets using num acked ; as the number of packets that are

ACKed by this acknowledgments. This serves as a hook for packet ACK ac-

counting and for CCA interface void (*pkts acked)(struct sock *sk, u32

num acked, ktime t last);.

6. .name = ”HYBIC” : Assigned name of the TCP CCA, HYBIC in this

case. This will be the name for ”select ca” command in the tcl script for

selecting the protocol to simulate. implementation for CCA interface char

name[16];.

The above implemented functions identified HYBIC as CCA in Linux and inter-

faced according to the Linux TCP struct tcp congestion ops. The HYBIC algorithm

execution flowchart is shown in Fig. 5.23 and the reference structure of function call

pointers in Linux TCP are defined below:

struct tcp_congestion_ops {

void (*init)(struct sock *sk);

u32 (*ssthresh)(struct sock *sk);

void (*cong_avoid)(struct tcp_sock *sk,u32 ack,u32 rtt,u32 in_flght,int gd_ack);

u32 (*ssthresh)(struct tcp_sock *sk);

u32 (*undo_cwnd)(struct tcp_sock *sk);

void (*set_state)(struct tcp_sock *sk, unsigned int newstate);

void (*pkts_acked)(struct tcp_sock *sk, unsigned int num_acked, ktime_t last);

char name[TCP_CA_NAME_MAX];

struct module *owner;

};
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5.3.2 HYBIC Simulation and Testing

Simulation experiments and testing were conducted using the designed and OTCL

coded ISTN topology and visualised using NAM as shown in Fig. 5.24. Object TCL

(OTcl) is an extension to TCL for object oriented programming used for building

network structure and topology, which serves as the surface of network simulations.

Unlike C/C++, OTcl is slow to run/execute, but easy to code/change that is why

it is not used for protocol architecture and implementation. As mentioned earlier,

class hierarchy within the OTcl interpreter is the interpreted hierarchy by which new

simulator objects are created through the interpreter. These objects are instantiated

within the interpreter, and are closely mirrored by a corresponding object in the

compiled hierarchy [21].

Figure 5.24: Simulator Network Animator ISTN Topology
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Moreover, the two hierarchies using two languages (C/C++ and OTcl) are re-

quired because the simulator has two goals needed to be achieved. Firstly, is the

detailed simulations of protocols that requires a systems level programming language

which can efficiently manipulate bytes, packet headers, and implement algorithms

that run over large data sets. For the algorithm implementation tasks, run-time

speed is important and turn-around time (running simulation, finding/fixing bugs,

recompile, re-run) is less important.

Second, a large part of network research involves varying parameters or config-

urations, or fast exploring a number of scenarios. In these cases, iteration time (i.e.

reconfigure the model and re-run) is more important. Since configuration runs once

(at the beginning of the simulation), run-time of the task is less important. The

simulator (NS ) satisfied and achieved these goals with the two languages, C/C++

and OTcl. C/C++ is fast to run but slower to change, making it suitable for de-

tailed protocol implementation while OTcl runs much slower but can be changed

very quickly (and interactively), making it ideal for simulation configuration. The

simulator via tclcl provides linkage to make objects and variables appear on both

languages [21].

The network topology consists of wired/wireless terrestrial and satellite nodes

and links with two routers creating the bottleneck link of capacity, CBNL as shown

by Fig. 5.24. Wired nodes, serving as transmit (Tx) and receive (Rx) nodes have the

same capacity C. TCP traffic was generated using a File Transfer Protocol (FTP)

agent/applications and UDP traffic was generated by a Constant Bit Rate (CBR)

application. These FTP and CBR applications generate packets of certain sizes by

the application layer of the sender throughout the simulation period.

Moreover, the topology consisted of five satellite nodes (two ground SUT for

Tx/Rx, one bent-pipe GEO SSS and two GWS for access to NOC/NCC), eight wired

nodes (four each on the Tx and Rx ends) and three wireless nodes (for WiFi Tx/Rx)

the link parameters are shown in Fig. 5.24. Table 5.9 provides the simulation

parameters set in the oTcl code for the simulation and testing the HYBIC and

other TCP schemes such as CUBIC and HYBLA using the same topology (see Fig.

5.24) that represent heterogeneous ISTN environment.
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Table 5.9: Simulation Parameters

Parameter Satellite Terrestrial Bottleneck

OWD (ms) 120 2.5 7.5

Queue DropTail DropTail DropTail

Bandwidth (Mbps) 10 100 10

BDP (pkt) 289 60 18

MSS/Pkt Sz (bytes) 1040/1000 1040/1000 1040/1000

PTR (pps) 1201/1250 12019/12500 1201/1250

Traffic/Application ftp/cbr ftp/cbr ftp/cbr

The Bandwidth Delay Product (BDP in packets) and Packet Transmission Rate

(PTR in packet per seconds) were computed using Eqn. (5.3.1) and (5.3.2) respec-

tively.

BDP =
BWRTT

8PSZ
(5.3.1)

where; BW is the bandwidth (capacity) of the link (in bps), RTT is the link

round-trip-time (in sec) and PSZ is the packet size (in bytes)

PTR =
BW

8PSZ
(5.3.2)

BDP is the maximum amount of data packets (in bytes or bits) that can be on the

network circuit (pipe) at any given time before receiving an ACK, as mentioned in

the previous chapter, BDP is a rule of thumb for sizing router buffers in conjunction

with congestion avoidance algorithm, noticed that the satellite leg has higher value

of BDP making it an LFN. The PTR on the other hand is the packet that can be

sent over the link in each second based on the link capacity. BDP and PTR can be

calculated in bytes by multiplying each by an MSS or set PSZ in the OTcl codes.

The complete OTcl codes is given in the Appendix A.2.

The simulation and testing were carried out by enabling HYBIC, CUBIC, and

HYBLA individually as single TCP connections with FTP traffic generated and

sent over by the TCP sender while the CBR traffic was sent over UDP. Simula-

tions were also run by enabling multiple TCP schemes such as HYBIC/HYBLA and
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HYBIC/CUBIC with different sources sending FTP traffic over these TCP connec-

tions. The simulations were run multiple times (at least three times) with duration

of 349 s simulation, which required about 2 hrs of computing time on a MacBook Pro

Computer with Intel Core i5 (2.3 GHz) processor, 4GB RAM, and running Ubuntu

14.04.5 (64-bit) on Oracle VM VirtualBox. The simulation data is recorded in a

trace file that was processed after the simulation. Results were extracted from the

data, usually using AWK, PERL and OTcl languagesfor analysis and evaluation.

5.4 Results and Performance Evaluation

This section presents and discusses the results of different simulation scenarios from

which the performance of HYBIC is being analysed and evaluated. The performance

comparison with HYBLA and CUBIC is also presented, CUBIC is considered as the

standard for high BDP (LFN) and the default CCA implemented in Linux. The key

parameters of interest for the analysis and evaluation of the CCA are the cwnd (W ),

transmission rate (R), packet delivery ratio (PDR), E2E latency (OWD/RTT ), and

Internet packet delay variation (IPDV ) also called jitter.

5.4.1 HYBIC Analysis and Evaluation

The TCP HYBIC algorithm implementation was tested by simulation using the pa-

rameters in Table 5.9 and the simulation run for 349 s. The simulation scenario

was created as single E2E TCP HYBIC connection was established between a single

sender (Tx, labelled node 7) connected on the Terrestrial part of the topology (see

Fig. 5.24) sending through a router (node 5) that create a bottleneck Link (BNL)

with another router (node 6). The single TCP HYBIC receiver (Rx, labelled node

11) is connected to the satellite via SUT (node 2), which creates a heterogeneous

ISTN topology with one GEO satellite leg on the receiver site. This scenario and

topology allowed us to analyse and evaluate the performance of HYBIC algorithm

as a single TCP flow over a heterogeneous network environment with wired/wireless

and long/short RTT. The simulations were run at least three times for each refer-

ence RTT0 and the results in the trace file were inspected to make sure they were
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consistent when using the same simulation setup and scenario.

The cwnd (in packets) evolution for different RTT0 shown in Fig. 5.25 were

measured by tracing the traffic for each RTT0 value for the same duration of the

simulation given as Elapsed Time in seconds (s). The traced packet size, PSZ or MSS

was 1040 bytes which can be multiplied with cwnd (pkts) to get its value in bytes

units. From the inspection of Fig. 5.25, it was observed that the cwnd growth is

steady, stable and follow the mathematical model of the algorithm proposed, which

exhibit an exponential SS phase and CUBIC function CA phase as shown by Fig.

5.25. For all the values of RTT0 the SS phase of the HYBIC algorithm did lasted

for less than 5 s of the simulation time and then entered the CA phase with CUBIC

increase until packet loss was detected at about 100 s of the transmission.

Figure 5.25: HYBIC Window Growth Rate, W (t) at Varied RTT and Reference

RTT0

After the packet loss detection, HYBIC employs the CUBIC function by execut-

ing the TCP friendly, concave and convex regions instead of halving the cwnd and

returning to the SS phase, this continued until the end of the transmission as shown

by Fig. 5.25. This stable cwnd growth rate of HYBIC allowed it to grow to about

900 pkts (900 kbytes) after 100 s of data transmission, which then led to throughput
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performance improvement as shown in Fig. 5.26.

The Instantaneous Transmission Rate (ITR), or the throughput performance

within the duration of the simulation is shown by Fig. 5.26. The maximum through-

put achieved by HYBIC as a single flow, is about the capacity of the BNL (10 Mbps)

as shown in Fig. 5.26. This indicates efficient capacity utilisation of the HYBIC

implementation. The ITR performance of HYBIC was also consistent with the cwnd

evolution that showed how the rates vary with respect to the change in RTT0 from

25 ms to 125 ms. Although, the performance was not influenced so much with the

different RTT0, especially after the SS phase at about 100 s, it was observed that in-

creasing RTT0 led to a small decrease in both cwnd and the achievable throughput,

R as shown in Fig. 5.25 and 5.26.

Figure 5.26: HYBIC Transmission Rate, R(t) at Varied RTT and Reference RTT0

Other parameters measured in real time during the single flow scenario of TCP

HYBIC simulations are E2E OWD/RTT and jitter as shown in Fig. 5.27 and

5.28. Two different network topology configurations were considered on the Satellite

leg of the ISTN; 1) Point-to-Point (P2P) topology configuration between the two

SUT’s and 2) Star topology between the SUT’s and the GWS. The second topology

configuration considered is more realistic and practical, because most of the satellites
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(SS) are signal reflectors (bent-pipe) without routing and other data processing

functions such as signalling, billing and user location functions. Therefore, such

functions are expected to be carried out at the ground segment of the satellite

network, usually the Network Operation/Control Centre (NOC/NCC). This Star

topology configuration considered the additional latency (OWD/RTT) component

contributions to and from the GWS, which was not considered by the P2P topology.

Fig. 5.27 shows the latency results of P2P OWD/RTT (in red/green) and Star

OWDGW/RTTGW (in blue/purple) topologies. The realistic star topology results

were higher than the P2P configuration. This was expected since latency to/from

the GWS was added to the E2E OWDGW (blue) and RTTGW (purple) as shown

in 5.28.

Figure 5.27: Measured E2E Latency During HYBIC Traffic Flows
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Figure 5.28: Measured jitter During HYBIC Traffic Flows at Varied Reference RTT0

The key observation was that, most E2E latencies for a GEO satellite network

being reported [4, 9, 10] do not include these additional components due to GWS.

Moreover, the packet delay variation (jitter) was also measured in real time during

the simulation of HYBIC as a single flow scenario. The results shown in Fig. 5.28 in-

dicate a very low jitter achieved by the HYBIC algorithm compared to the HYBLA

and standard TCP algorithms, which is good for jitter sensitive applications such

as real-time applications. The highest jitter in HYBIC was less than 1.5 ms (see

Fig. 5.28) and within less than 10 s of transmission time for all RTT0 values consid-

ered. Even at this highest jitter value, the real-time applications over TCP HYBIC

would be stable and provide meaningful data communications without congestion

or breakdown.

The summary of the overall results obtained with a single TCP HYBIC con-

nection at variable RTT0 given in Table 5.10. The summary indicates an average

performance from each parameter measured during the simulation against different

reference RTT0. HYBIC was observed to have an average capacity utilisation of

68% of the 10 Mbps capacity of the BNL for all the implemented values of RTT0

considering the average throughput (Ravg) values achieved, this shows little or no
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influence of RTT on the performance of HYBIC. Another key performance indica-

tor of HYBIC is the low average jitter of 0.035 ms (35 µs) and high average cwnd

(Wavg) of at least 513 kbytes in all the RTT0 implementations.

Table 5.10: HYBIC Overall Simulated Performance at Varied Reference RTT0

RTT0(ms) Wavg(pkts) Ravg(kbps) OWDavg(ms) RTTavg(ms) Jittavg(ms)

25 522 6800 328 656 0.035

75 520 6776 329 657 0.033

125 513 6663 328 657 0.035

Overall Avg 518 6746 328 657 0.034

The performance of HYBIC was also analysed and evaluated based on packet

delivery, which includes packets transmitted (Tx), Received (Rx), Dropped (Dropd)

and packet delivery ratio (PDR = Rx/Tx). Table 5.11 summarised the packet

delivery performance statistics in terms of packets sent (Tx), received (Rx) and

dropped. These indicated an impressive performance of HYBIC with at least 99%

of the packets sent were received (DR) over the network using HYBIC flow and

≤ 1% of the packets dropped.

Table 5.11: HYBIC Simulated Packet Delivery Performance Summary

RTT0(ms) TX(pkts) RX(pkts) DP (pkts) DR(%) η(%)

25 1420789 1420243 546 99.96 68

75 1415602 1415141 461 99.97 67.76

125 1394000 1393456 544 99.96 66.63

Overall Avg 1410130 1409613 517 99.96 67.46

Moreover, the performance of HYBIC in terms of capacity utilisation, η(%) =

Ravg/CBNL was derived from average throughput (Ravg) achieved by each RTT0

implementation in Table 5.10 and the capacity of the BNL (CBNL). This showed

that HYBIC was able to achieve an efficient capacity utilisation of 68%, as given in

Table 5.11.

Considering the heterogeneous and LFN nature of the topology used for the

simulation and testing of the new TCP HYBIC proposal, as described in the previous
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sections, the bandwidth (capacity) of the network path was set to 10 Mbps (BNL),

the measured average RTT = 657 ms and packet size of 1040 bytes for the HYBIC

flow network path (see Table 5.9 and 5.10), which gave the network path BDP of

about 790 pkts computed using Eq. (5.3.1). HYBIC grows its cwnd to this BDP

value at about 100 s (see Fig. 5.25), this would have taken the standard TCP about

519 s (790 RTTs = 790∗657x10−3 s) to grow its cwnd to the same value by which the

flow has finished (simulation time was 350 s), severely under-utilising the capacity

of the path. The fast cwnd growth of HYBIC to reach the network path BDP (the

amount of packets needed in flight while keeping the bandwidth fully utilised) makes

it a faster data transport protocol with efficiently high network utilisation as shown

in Table 5.11.

Therefore, the new proposal of TCP HYBIC achieved an improved performance

in terms of fast stable cwnd growth, packet losses (PDR), capacity utilisation (η),

and stability in the execution of both SS and CA phases. In the next sections

we will see how the HYBIC performance was compared to the other TCP schemes

implemented for high BDP (LFN) such as HYBLA and CUBIC in terms of fairness,

friendliness and packet losses.

5.4.2 HYBIC and HYBLA

Performance of TCP HYBIC was analysed and evaluated when subjected to being

part of the three flows from three sources (Tx) using different schemes of data trans-

port protocols. In this section, a scenario of a HYBIC connection sharing the BNL

with HYBLA, and CBR traffic of 10 kbps over UDP connection of PSZ=1000 byte

was setup and simulated. These multiple connections of high BDP protocols (HY-

BIC and HYBLA) sharing a 10 Mbps BNL allowed investigating, analysis and eval-

uation of how fair and friendly TCP HYBIC would be in terms of bandwidth sharing

and congestion avoidance due to packet losses and link congestions in the presence

of multiple flows/connections over single BNL.

Figure 5.29 showed the cwnd growth rate, W (t) for HYBIC and HYBLA over

the time of packet data transmission. The same simulation parameters (see Table

5.9) at RTT0 = 25 ms and 125 ms as described in the previous simulation section
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were used for this simulation.

Figure 5.29: HYBIC Vs HYBLA Window Growth Rate, W (t) at Varied RTTs

Various RTT0 implementations were simulated with this scenario and it was

observed that, the rate at which cwnd of HYBIC (Hbc) and HYBLA (Hbl) grow

vary according to the RTT0 used for the implementation. These variations were

more noticeable in HYBIC as HYBLA maintained almost the same growth in all

cases. HYBIC cwnd was observed to have similar steady and stable growth for all

RTT0, but grows faster when RTT0 =25 ms (in red colour) after the CA phase.

However, HYBIC cwnd growth increases with the elapsed time unlike the HYBLA

which tends to decrease with the elapsed time and did not reach the BDP value

before the flow (transmission) finishes. Severe under-utilisation may arise when the

flow finishes before the time it takes to grow the cwnd to al least midpoint of the

path BDP, which is about 395 pkts in this case.

Although HYBLA (blue and purple colour) exited the SS phase faster than HY-

BIC (red and green colour), it was observed that HYBLA experienced more frequent

losses and reductions of cwnd to a specific ssthresh value below 150 pkts whenever

loss events occurred (see Fig. 5.29) unlike HYBIC which has less packet losses and

handled the event without too much reduction of its current cwnd, as shown in Fig.
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5.29. This consistent growth and stability contributed to more achievable through-

put (see Fig. 5.30) and efficient capacity utilisation, even when it competes for

bandwidth with other traffic flows such as HYBLA and UDP as shown in Fig. 5.30.

Figure 5.30: HYBIC Vs HYBLA Transmission Rate, R(t) at Varied RTTs

Figure 5.31: Measured Jitter During HYBIC and HYBLA Flows at Varied RTT0
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At RTT0 values set to 25 ms and 125 ms, the instantaneous throughput of HY-

BIC (green and red colour) increases as the transmission (simulation) time increases,

unlike HYBLA (blue and purple colour), which began to fall with the transmission

time as shown in Fig 5.30. Moreover, jitter performance was observed to be less than

5 ms and decreases to less than 0.5 ms in HYBIC within the first 30 s of data trans-

mission as shown in Fig. 5.31. Although, both HYBIC and HYBLA have excellent

jitter performance, HYBIC achieved an overall better performance as summarised

in Table 5.12.

Table 5.12: HYBIC Vs HYBLA Overall Simulated Performance at Varied RTT0

RTT0(ms) WHC
avg (pkts) WH

avg(pkts) RHCavg (kbps) RHavg(kbps) JittHCavg (ms) JittHavg(ms)

25 386 259 5025 2698 0.0886 0.4681

75 358 263 4672 2783 0.0895 0.4712

125 376 260 4920 2678 0.0828 0.4523

Overall Avg 373 261 4872 2720 0.0870 0.4639

The overall average performance (see Table 5.12) of HYBIC as compared to

HYBLA sharing the same BNL in the multiple flows scenario showed that, HYBIC

achieved better performance in all the metrics measured.

Performance of HYBIC and HYBLA was also compared under multiple flow

scenario in terms of the packet delivery performance (PDP) and capacity utilisation

as given by Fig. 5.32 and Table 5.13.

HYBIC transferred successfully over a million packets (see Fig. 5.32) with ex-

tremely low packet drops/losses of an overall average of 371 pkts as compared to

HYBLA with more packet drops/losses of 27128 pkts as shown in Table 5.13. This

showed that, HYBIC achieved better overall performance including the cwnd evolu-

tion, transmission rate (throughput) packet delivery ratio (PDR) and better capacity

utilisation of 21.52% more than HYBLA, as given in Table 5.13.
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Figure 5.32: HYBIC Vs HYBLA Packet Delivery Performance at Varied RTT0

Table 5.13: HYBIC Vs HYBLA Overall PDP at Varied RTT0

RTT0(ms) DrpdHC(pkts) DrpdH(pkts) PDRHC(%) PDRH(%) ηHC(%) ηH(%)

25 471 26898 99.96 95.57 50.25 26.98

75 273 26721 99.97 95.71 46.72 27.83

125 370 27764 99.96 95.40 49.20 26.78

Overall Avg 371 27128 99.96 95.56 48.72 27.20

5.4.3 HYBIC and CUBIC

HYBIC performance was evaluated and compared with CUBIC under multiple flows

scenarios with CBR traffic over UDP connection similar to the setup discussed in the

previous section. CUBIC is an accepted large BDP (LFN) protocol, set as default

TCP on Linux and recently published by IETF as an RFC 8312 [20].

Figure 5.33 shows the cwnd evolution function of HYBIC compared to CUBIC

under a scenario of multiple competing flows. As observed from the cwnd growth

functions, both HYBIC and CUBIC used the cubic function of the elapsed time

from the last congestion or loss event and CA phase, but each of the protocols used
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different algorithms for the SS phase. Although, the CUBIC algorithm exits the

SS phase faster (in ≤ 5 s) compared to HYBIC (about 50 s in SS), CUBIC cwnd

started decreasing with both increasing RTT0 and elapsed time as shown in Fig

5.33. This was not the case for HYBIC in which the cwnd increases steadily with

the transmission (elapsed) time except when packet loss occurred as shown by Fig

5.33.

Figure 5.33: HYBIC Vs CUBIC Window Growth Rate, W (t) at Varied RTTs

Under the competing flow scenarios, the two algorithms were observed to started

converging after 100 s of data transmission, when HYBIC cwnd growth increases

while CUBIC cwnd growth decreases. The effect of changing RTT0 in the imple-

mentation was noticeable without much negative impact on the cwd growth of both

algorithms, since the difference was less than 30 pkts between all the RTT0 imple-

mentations used in this scenario.

The instantaneous throughput performance of HYBIC and CUBIC given by

Fig. 5.34 showed a steady increase in performance of HYBIC as the elapsed time

increased. This is an indication of efficient utilisation of HYBIC while competing

with well established protocols such as CUBIC and UDP flows. Similar observations

made about the cwnd growth of CUBIC and HYBIC decreasing and increasing
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respectively (see Fig. 5.34) with the increase in the elapsed time. This indicated

that CUBIC was aggressive at the start of the transmission of competing flows, but

falls as more packets are transmitted over the period of time to a point of convergence

where HYBIC achieved more throughput.

Figure 5.34: HYBIC Vs CUBIC Transmission Rate, R(t) at Varied RTTs

Another performance metric measured under multiple competing flows scenario

is the realtime jitter (IPDV) of the competing TCP flows shown in Fig. 5.35. The

jitter of both algorithms were below 5 ms with CUBIC experiencing the highest

jitter between 4-5 ms for both RTT0 implemented during the first 5 s and decreased

to about 0 ms afterward. The highest jitter recorded for HYBIC was less than 2 ms

in all the RTT0 implementations as given in Fig. 5.35.
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Figure 5.35: Measured jitter During HYBIC and CUBIC Flows at Varied RTT0

The overall summary of the performance and its metrics are given in Table

5.14 for comparison between HYBIC and CUBIC schemes. Although, the overall

summary indicates high performance metric values for CUBIC, it was observed that

HYBIC is more consistent and stable with increased performance throughout the

duration of the data transmission, as observed form Figs. 5.33, 5.34, and 5.35.

These indicated improved fairness, friendliness and stability of HYBIC among the

competing flows of high-speed TCP schemes such as CUBIC.

Table 5.14: HYBIC Vs CUBIC Overall Simulated Performance at Varied RTT0

RTT0(ms) WHC
avg (pkts) WC

avg(pkts) RHCavg (kbps) RCavg(kbps) JittHCavg (ms) JittCavg(ms)

25 262 436 3379 5643 0.0868 0.0799

75 289 416 3713 5366 0.0797 0.0790

125 291 415 3743 5357 0.0805 0.0811

Overall Avg 281 422 3612 5455 0.0823 0.0800

Keys: HC: HYBIC, C: CUBIC

Finally, the packet delivery performance (PDP) of these two high-speed schemes

were also measured and compared. The dropped packets were extremely low com-

pared to the sent (Tx) and received (Rx) packets as given in Table 5.15. These were
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for comparison between HYBIC and CUBIC performance in terms of packet drops

and delivery ratio. Although, HYBIC is not standardised protocol like CUBIC, it

showed an impressive level of performance under competing flows with accepted

standards such as CUBIC.

Table 5.15: HYBIC Vs CUBIC Overall Packet Delivery Performance at Varied RTT0

RTT0(ms) DrpdHC(pkts) DrpdC(pkts) PDRHC(%) PDRC(%) ηHC(%) ηC(%)

25 449 351 99.94 99.97 33.79 56.43

75 412 466 99.95 99.96 37.13 53.66

125 326 480 99.96 99.96 37.43 53.57

Overall Avg 396 432 99.95 99.96 36.12 54.55

By careful inspection of Table 5.15, HYBIC was observed to have fewer packet

drops during the data transmission period, while CUBIC was able to deliver more

packets within that time. This may be due to priority given to the CUBIC as

the default algorithm on Linux or the lack of fairness and friendliness with other

competing flows considering the capacity utilisation. The PDR of HYBIC was about

the same as that of CUBIC, achieving an excellent overall average value of up to

99.95% (see Table 5.15) from all RTT0 implementations.
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Chapter 6

Conclusions and Recommendation

for Future Work

6.1 Conclusions

The high demand for digital connectivity is increasing exponentially due to the

emergence of various and potential applications such as improved healthcare, agri-

culture, education, commerce and industry for the wellbeing and socio-economic de-

velopment of today’s modern society. No doubt, digital connectedness has become

indispensable for achieving the SDGs and making the world a global village regard-

less of where you live as human. However, those who live in urban areas enjoy more

digital connectivity than those in isolated remote rural areas, especially in Africa

where about 66% [1], of the population are digitally unconnected/disconnected due

to economic or terrain difficulties with about 60% rural dwellers [2, 3]. Moreover,

recent studies showed that about 4 billion of the 7.593 billion world’s population are

disconnected digitally without internet access [1, 4].

Optimised data transmission over SatComms and heterogeneous networks char-

acterised by high bandwidth/capacity and global coverage is an excellent candidate

for most if not all of these applications and help in bridging the digital divide be-

tween the connected and unconnected world. Additionally, these characteristics

(high capacity and global coverage) of SatComms makes it one of the key require-

ments that enable and support the use cases for the next 5th generation new radio

177



6.1. Conclusions 178

(NR) communications network in proving enhanced mobile broadband (eMBB) and

massive machine type communications (mMTC) services. Therefore, optimised data

transmission over SatComms networks such as GEO and non-GEO HTS designed

to provide both high capacity, efficient bandwidth utilisation and global coverage

using smart beam forming/steering to priority areas become vital in achieving these

goals.

However, the major challenge of using satellite channels for data transportation

especially the famous and most widely used transport protocol, TCP over GEO

satellite links are capacity under utilisation and other performance degradation such

as packet losses/drops due the inherent large BDP and higher PER of SatComms

and wireless network environment compared to short RTT and low PER terrestrial

counterparts. This performance degradation resulted due to the in ability of the

standard TCP to distinguish and resolved congestions problems due to link errors

or congested link since it was designed based on RTT/ACK to perform effectively

for short RTT and low PER networks like wired terrestrial networks.

There are different enhanced TCP algorithm schemes proposed to solve the draw-

backs of the standard TCP, but these proposals mainly focused on either solving the

negative impact of long RTT or high capacity or PER of the wireless links. Since

satellite links exhibit all these characteristics, this thesis focused on the combined

effects of long RTT and high capacity that led to large BDP of purely satellite

or a more realistic hybrid satellite-terrestrial network (ISTN) environments that

described practical communications network nowadays. The practically realistic

communication networks consisted of wireless, wired, satellite, terrestrial, different

RTTs (short and long), and different (high and low) capacity/bandwidth. These

led to heterogeneous network environment with combination of different BDP and

PER, which in turn lead to performance degradation of standard TCP such as se-

vere capacity under utilisation, congestion problems, packet losses/drops, unwanted

packets retransmissions, and unfair share of available bandwidth among competing

flows of different network characteristics.

Methods proposed that attempted to solve the problems of large BDP due to

either long RTT or high capacity, such as HYBLA (reduced the impacts of long
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RTT) and CUBIC (reduced the impacts of high capacity), often targeted one of the

parameters (RTT or high capacity) and sometimes resulted to aggressive transmis-

sions starts, drastic decrease with increasing transmission time and unfair to other

competing connections.

In order to mitigate and overcome these performance degradation problems of

TCP over satellite or ISTN environment and provide a sustainable and resilient

SatComms that can help in bridging the digital gap, particularly in isolated remote

rural communities in Africa, the research work presented in this thesis investigated:

1. The actual (practical), emulated and simulated E2E latency of pure Satellite

and hybrid ISTN environment, detailed in Chapter 4.

2. An effective Framework for E2E latency measurements in a pure Satellite

and IST network environments. Developed for effective measurements of the

practical E2E latency in a satellite IP network environment as described in

Chapter 4.

3. The impacts of the practical E2E latency on performance of HYBLA, CUBIC

and standard TCP over ISTN environment. Actual E2E latency was used as

an input parameter in the numerical analysis and evaluation of different TCP

schemes in Chapter 4 and 5.

4. Design and development of an improved transport protocol, called HYBIC for

better performance of data transmission using TCP/IP over a pure satellite

or heterogeneous IST network environment. Simulations and numerical eval-

uation of HYBIC performance and comparison with other high-speed TCP

schemes were also conducted as discussed in Chapter 5 of this thesis.

The TCP HYBIC scheme developed by this thesis and proposed for high-speed

and long RTT networks achieved improved performance as single flow and among

multiple competing flows over simulated heterogeneous IST network scenario. Sim-

ulated as a single flow, HYBIC achieved up to 99.96% PDR, 30µs IPDV (jitter) and

efficient capacity utilisation of 67.46%. While subjected to competing multiple flows

of other high-speed and long RTT TCP schemes [5, 6] and CUBIC [7, 8], HYBIC
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showed a more stable and steady cwnd and transmission rates with increase elapsed

time. Competing flows of HYBIC and CUBIC achieved up to 99.95% PDR, 82µ s

and capacity utilisation of 36.12%, while competing HYBIC with HYBLA achieved

99.96% PDR, 87µs and capacity utilisation of 48.72%, which is about 22% more

than HYBLA capacity utilisation. The PDR and IPDV performance of HYBIC are

almost the same with that of CUBIC, which is the standard and default TCP in

Linux OS, but out performed HYBLA in both cases. Therefore, the developed TCP

HYBIC was able to achieved better and effective performance in terms of PDR, jit-

ter, and capacity utilisation under long RTT, high bandwidth and competing flows

network environments.

There are many areas of applications for this work as mentioned ealier, include

but not limited to Tele-medicine, Tele-agriculture, emergency and disaster manage-

ment communications as described in Chapter 6 of this thesis.
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6.2 Recommendations for Future Work

Based on the experience acquired in the cause of this research work and discussed

in this thesis, due to time and funding constraints, the following recommendations

can provide ways for improvements in the future;

The E2E practical latency measured with two satellite network providers (SNPs),

namely Inmarsat and Thuraya could be extended to include more satellite providers

such as Eutelsat and Avanti using GEO Satellites. This process could take longer

experimental time and very expensive considering the financial commitments, but

could potentially further validate and improved the confidence in results of the

practical E2E latency incurred by satellite IP networks environment. Moreover,

more high data resolution could be obtained when a software is developed and

integrated with the SUTs to transmit (Tx) and receive (Rx) latency measurement

signals in almost real time as obtained by emulation and simulation. This will involve

development and interfacing Hardware and software on the SUTs from different

SNPs used in the testbed, which could also help to further investigate the impact

of geographical location of both SUT and GWS.

More WiFi nodes as TCP HYBIC connections could be added on the ISTN

topology and simulate single and multiple flows scenarios to further investigate the

impacts of terrestrial wireless link errors as part of heterogeneous ISTN environment.

This topology modifications can be tested with more high-speed and wireless TCP

schemes such as HTCP, Vegas and Westwood with variable high BDP, BNL capacity,

different types of Queue management and error models.

More performance analysis and evaluation using simulations of HYBIC in com-

parison with HYBLA and CUBIC with more realistic/practical values of large BDP

based on longer RTT and higher bandwidth. Performance analysis, evaluation and

comparison can be extended to include more TCP schemes designed for high wire-

less link error networks. This will take long experimental time and required more

computing resources in terms of memory, processing and storage.

The performance of HYBIC in comparison to CUBIC can be further improved

by simulation with longer duration of the data transmission (increase elapsed time

above 350 s), this can be conducted using the recommended changes in both topol-
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ogy and implementation. This may require more computing resources as it will

provide large traced data, the simulation will take longer time and need much more

computing power.

As part of future work, we intend to explore the effect of background traffic on

fairness and the effect of more complex network topologies could also be interesting.

Experiments with more queue management schemes such as Active Queue Manage-

ment (AQM) where packets are dropped from the queue before the queue overflows

could also be an interesting work for the future. Many of the AQM schemes in-

corporate fairness enforcement schemes where they drop packets belonging to the

larger flows. Behaviour of the high-speed TCPs in such an environment should be

fairer. It would be interesting to see how much effect this has on their performance.

Other things include more number of flows over the BNL at the same time and also

inter-protocol fairness with many and different RTT flows. Potential areas of ap-

plications such as Tele-medicine and Tele-agriculture could be tested with network

topologies designed for resilient and sustainable Satellite and ISTN communications.

These would be useful for Telecommunications services and application in remote ru-

ral areas, and for emergency/disaster management when terrestrial communications

infrastructure failed in the event of disaster.
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Appendix A

Software: Codes

A.1 MATLAB Codes

%The following codes were written as a program that numerically implement

%and compare various TCP schemes for high BDP/LFN environments.

%the start of the main function called tcpnum19()

function tcpnum19()

%Note: K=10^3 and k=2^10 =1024-bytees

% menu to select functions to run

a=menu(’Run’,’Algorithms’,’Data Processes’);

if a==1

%input the different RTT values

x= inputdlg({’RTT_{max}’,’RTT_{min}’,’RTT_{avg}’,’RTT_{ref}’},

’Round-Trip-Time (ms)’,1);

%input the initial cwnd (IW) = 10segs, slow start threshold (ssth = 128segs),

%& TCP max segment size(MSS) 1024

y = inputdlg({’Initial CWND, IW (segs)’,’SS Threshold (Segs)’,’MSS (bytes)’},

’TCP Parameters’,1);

%Initial window size in segments

185
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IW =str2double(y{1});

% Return slow start threshold (ssth) for the TCP algorithm

ssth =str2double(y{2});

%Maximum Segment Size (MSS)in bytes, 1448 or 1024 in hybla

MSS =str2double(y{3});

%Start &Elapsed times since transmission started, t = t_min:dt:t_max;

z = inputdlg({’Initial (Start) Time (s)’,’Time Step(s)’,’Elapsed Time (s)’},

’Elapsed Time (secs)’,1);

%start time for data transmission

t_min =str2double(z{1});

%Time step

dt =str2double(z{2});

% elapse time

t_max =str2double(z{3});

else

end

%create empty 0x0 table to store data

SHT19 =table;

ST19 =table;

%%%---------------select option (function) to execute----------%%%

exit_loop = 1;

while (exit_loop)

A = menu(’Choose Parameter to Compute’,’Standard TCP’, ’Hybla’,’Mod-Hybla’,
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’Cubic’,’Hybic’,’Mod-Hybic’,’Plot’,’Stats’, ’Done’);

switch(A)

case{1}

%tcp

[SHT19] = stcp(x,t_min, dt, t_max,ssth, MSS, SHT19);

%break; it terminates the execution of next case/while

case{2}

%Hybla

[SHT19] = hybla(x,t_min, dt, t_max,ssth, MSS, SHT19);

case{3}

[SHT19] = mhybla(x,t_min, dt, t_max,ssth, MSS, SHT19);

case{4}

%Cubic

[SHT19] = cubic(x,t_min, dt, t_max,ssth, MSS, SHT19);

case{5}

%Hybic

[SHT19] = hybic(x,t_min, dt, t_max,ssth, MSS, SHT19);

case{6}

%modified hybic

[SHT19] = mhybic(x,t_min, dt, t_max,ssth, MSS, SHT19);

case{7}

%data plots

[SHT19] = plotprm(SHT19);

case{8}

% statisitcs

[ST19] = statsd();

case{9}

exit_loop = 0;

otherwise

errordlg(’Invalid Parameter input’,’Check’);

end
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end

%%%---------------standard tcp function to execute----------%%%

function [SHT19] = stcp(x,t_min,dt,t_max,ssth,MSS,SHT19)

for i=1:3

% Time when ssth is reached

t_sst = (str2double(x{i})* 10^-3) * log2(ssth);

j=1;

for t = t_min:dt:t_max

if (t < t_sst)

%slow start phase

% parameters in segments unit

% W (cwnd) in segs

ws = 2^(t/(str2double(x{i})* 10^-3));

%Instantaneous segment transmissio rate (STR/B) segs/sec

str_s = ws/(str2double(x{i})* 10^-3);

%Total segments/data transmitted (segs) since TX starts

tst_s = ((2^(t/(str2double(x{i})* 10^-3)) - 1)/log(2));

% parameters in bytes unit

ws_B = ws * MSS;

str_sB = str_s * MSS;

tst_sB =tst_s * MSS;

% parameters in bits unit

ws_b = ws * MSS * 8;

str_sb = str_s * MSS * 8;

tst_sb =tst_s * MSS * 8;

elseif (t >= t_sst)

% Congestion Avoidance phase

% parameters in segments unit

ws = (((t-t_sst)/(str2double(x{i})* 10^-3)) +ssth);

str_s = ws/(str2double(x{i})* 10^-3);
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tst_s = (((ssth-1)/log(2)) +

((t-t_sst)^2/(2*(str2double(x{i})*10^-3)^2)) +

(ssth*(t-t_sst)/(str2double(x{i})* 10^-3)));

% parameters in bytes unit

ws_B = ws * MSS;

str_sB = str_s * MSS;

tst_sB =tst_s * MSS;

% parameters in bits unit

ws_b = ws * MSS * 8;

str_sb = str_s * MSS * 8;

tst_sb =tst_s * MSS * 8;

else

end

WS(j)= ws;

WS_B(j) = ws_B;

WS_b(j) = ws_b;

STR_s(j)= str_s;

STR_sB(j) = str_sB;

STR_sb(j) = str_sb;

TST_s(j) = tst_s;

TST_sB(j) = tst_sB;

TST_sb(j) = tst_sb;

tet(j) = t;

j = j + 1;

end

b = menu(’RTT Used’, ’RTT_(Max)’, ’RTT_(Min)’, ’RTT_(Avg)’);

if b == 1

SHT19.TTE = tet’;

SHT19.WS_mxS = WS’;

SHT19.WS_mxB = WS_B’;
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SHT19.WS_mxb = WS_b’;

SHT19.ITR_mxS = STR_s’;

SHT19.ITR_mxB = STR_sB’;

SHT19.ITR_mxb = STR_sb’;

SHT19.TST_mxS = TST_s’;

SHT19.TST_mxB = TST_sB’;

SHT19.TST_mxb = TST_sb’;

elseif b==2

SHT19.WS_mnS = WS’;

SHT19.WS_mnB = WS_B’;

SHT19.WS_mnb = WS_b’;

SHT19.ITR_mnS = STR_s’;

SHT19.ITR_mnB = STR_sB’;

SHT19.ITR_mnb = STR_sb’;

SHT19.TST_mnS = TST_s’;

SHT19.TST_mnB = TST_sB’;

SHT19.TST_mnb = TST_sb’;

else

SHT19.WS_avS = WS’;

SHT19.WS_avB = WS_B’;

SHT19.WS_avb = WS_b’;

SHT19.ITR_avS = STR_s’;

SHT19.ITR_avB = STR_sB’;

SHT19.ITR_avb = STR_sb’;

SHT19.TST_avS = TST_s’;
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SHT19.TST_avB = TST_sB’;

SHT19.TST_avb = TST_sb’;

end

i = i + 1;

writetable(SHT19,’iwcmc19SHTCP25.xlsx’);

end

%%%---------------Hybla Algorithm function to execute----------%%%

function [SHT19] = hybla(x,t_min, dt, t_max,ssth, MSS, SHT19)

% Time when ssth is reached in hybla

t_ssto = (str2double(x{4})* 10^-3) * log2(ssth);

%l=1;

for l=1:3

a = menu(’RTT/Rho for Hybla’, ’RTT_(Max)’, ’RTT_(Min)’,

’RTT_(Avg)’);

%a= 1,2 & 3

if a==1

rho = (str2double(x{1})* 10^-3) / (str2double(x{4})* 10^-3);

elseif a==2

rho = (str2double(x{2})* 10^-3) / (str2double(x{4})* 10^-3);

else

rho = (str2double(x{3})* 10^-3) / (str2double(x{4})* 10^-3);

end

k=1;

%wh(k)=0;

for t = t_min:dt:t_max

if (t < t_ssto)

%slow start phase

%Segments unit

% W (cwnd)Ksegs

wh = rho*(2^(t/(str2double(x{4})* 10^-3)));

str_h = wh/(str2double(x{4})* 10^-3);
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tst_h = ((2^((str2double(x{4})* 10^-3)) - 1)/log(2));

%Bytes unit

wh_B = wh * MSS; %Kbytes

str_hB = str_h * MSS; %Kbytes/sec

tst_hB = tst_h * MSS;

%Bits unit

wh_b = wh * MSS * 8; %Kbytes

str_hb = str_h * MSS * 8; %Kbytes/sec

tst_hb = tst_h * MSS * 8;

elseif (t >= t_ssto)

% Congestion Avoidance phase

%Segments unit

wh = rho*(((t-t_ssto)/(str2double(x{4})* 10^-3)) +ssth);

str_h = wh/(str2double(x{4})* 10^-3);

tst_h = ((ssth-1)/log(2) +

((t-t_ssto)^2)/2*(str2double(x{4})* 10^-3)^2 +

ssth*(t-t_ssto)/(str2double(x{4})* 10^-3));

%in bytes unit

wh_B = wh * MSS;

str_hB = str_h * MSS;

tst_hB = tst_h * MSS;

%Bits unit

wh_b = wh * MSS * 8;

str_hb = str_h * MSS * 8;

tst_hb = tst_h * MSS * 8;

else

end

%kilos (10^-3)
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WH(k)= wh * 10^-3;

WH_B(k) = wh_B * 10^-3;

WH_b(k) = wh_b * 10^-3;

STR_hs(k)= str_h * 10^-3;

TST_hs(k) = tst_h * 10^-3;

STR_hB(k) = str_hB * 10^-3;

TST_hB(k) = tst_hB * 10^-3;

STR_hb(k) = str_hb * 10^-3;

TST_hb(k) = tst_hb * 10^-3;

tet(k) =t;

k = k+1;

end

if a==1

SHT19.TTE = tet’;

SHT19.WH_mxS = WH’;

SHT19.WH_mxB = WH_B’;

SHT19.WH_mxb = WH_b’;

SHT19.ITR_mxHS = STR_hs’;

SHT19.ITR_mxHB = STR_hB’;

SHT19.ITR_mxHb = STR_hb’;

SHT19.TST_mxHS = TST_hs’;

SHT19.TST_mxHB = TST_hB’;

SHT19.TST_mxHb = TST_hb’;

elseif a==2

SHT19.WH_mnS = WH’;

SHT19.WH_mnB = WH_B’;

SHT19.WH_mnb = WH_b’;

SHT19.ITR_mnHS = STR_hs’;

SHT19.ITR_mnHB = STR_hB’;

SHT19.ITR_mnHb = STR_hb’;
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SHT19.TST_mnHS = TST_hs’;

SHT19.TST_mnHB = TST_hB’;

SHT19.TST_mnHb = TST_hb’;

else

SHT19.WH_avS = WH’;

SHT19.WH_avB = WH_B’;

SHT19.WH_avb = WH_b’;

SHT19.ITR_avHS = STR_hs’;

SHT19.ITR_avHB = STR_hB’;

SHT19.ITR_avHb = STR_hb’;

SHT19.TST_avHS = TST_hs’;

SHT19.TST_avHB = TST_hB’;

SHT19.TST_avHb = TST_hb’;

end

l = l+1;

writetable(SHT19,’iwcmc19SHTCP25.xlsx’);

end

%%%--------------- modified (rho) Hybla Algorithm function to execute----------%%%

function [SHT19] = mhybla(x,t_min, dt, t_max,ssth, MSS, SHT19)

for l=1:3

a = menu(’RTT/Rho for MHybla’, ’RTT_(Max)’, ’RTT_(Min)’,

’RTT_(Avg)’);

%a= 1,2 & 3

if a==1

rho = (str2double(x{1})* 10^-3) / (str2double(x{4})* 10^-3);

t_sstor = (str2double(x{4})* 10^-3) * log2(rho*ssth);

elseif a==2

rho = (str2double(x{2})* 10^-3) / (str2double(x{4})* 10^-3);

t_sstor = (str2double(x{4})* 10^-3) * log2(rho*ssth);

else
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rho = (str2double(x{3})* 10^-3) / (str2double(x{4})* 10^-3);

t_sstor = (str2double(x{4})* 10^-3) * log2(rho*ssth);

end

k=1;

for t = t_min:dt:t_max

if (t < t_sstor)

%slow start phase

%Segments unit

% W (cwnd)Ksegs

whm = rho*(2^(t/(str2double(x{4})* 10^-3)));

% Tx rate (Ksegs/sec)

str_hm = ((2^(t/(str2double(x{4})* 10^-3)))/(str2double(x{4})* 10^-3));

% Transmitted data since Tx started

tst_hm = ((2^((str2double(x{4})* 10^-3)) - 1)/log(2));

%Bytes unit

whm_B = whm * MSS;

str_hmB = str_hm * MSS;

tst_hmB = tst_hm * MSS;

%Bits unit

whm_b = whm * MSS * 8;

str_hmb = str_hm * MSS * 8;

tst_hmb = tst_hm * MSS * 8;

elseif (t >= t_sstor)

% Congestion Avoidance phase

%Segments unit

whm = rho*(((t-t_sstor)/(str2double(x{4})* 10^-3)) +ssth);

str_hm = (1/(str2double(x{4})* 10^-3))*(((t-t_sstor)/(str2double(x{4})* 10^-3)) +ssth);

tst_hm = ((ssth-1)/log(2) +

((t-t_sstor)^2)/2*(str2double(x{4})* 10^-3)^2 +

ssth*(t-t_sstor)/(str2double(x{4})* 10^-3));
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%in bytes unit

whm_B = whm * MSS; %Kbytes

str_hmB = str_hm * MSS;

tst_hmB = tst_hm * MSS;

%Bits unit

whm_b = whm * MSS * 8;

str_hmb = str_hm * MSS * 8;

tst_hmb = tst_hm * MSS * 8;

else

end

WHM(k)= whm * 10^-3;

WHM_B(k) = whm_B * 10^-3;

WHM_b(k) = whm_b * 10^-3;

STR_hms(k)= str_hm * 10^-3;

TST_hms(k) = tst_hm * 10^-3;

STR_hmB(k) = str_hmB * 10^-3;

TST_hmB(k) = tst_hmB * 10^-3;

STR_hmb(k) = str_hmb * 10^-3;

TST_hmb(k) = tst_hmb * 10^-3;

tet(k) =t;

k = k+1;

end

if a==1

SHT19.TTE = tet’;

SHT19.WHM_mxS = WHM’;

SHT19.WHM_mxB = WHM_B’;

SHT19.WHM_mxb = WHM_b’;

SHT19.ITR_mxHMS = STR_hms’;

SHT19.ITR_mxHMB = STR_hmB’;
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SHT19.ITR_mxHMb = STR_hmb’;

SHT19.TST_mxHMS = TST_hms’;

SHT19.TST_mxHMB = TST_hmB’;

SHT19.TST_mxHMb = TST_hmb’;

elseif a==2

SHT19.WHM_mnS = WHM’;

SHT19.WHM_mnB = WHM_B’;

SHT19.WHM_mnb = WHM_b’;

SHT19.ITR_mnHMS = STR_hms’;

SHT19.ITR_mnHMB = STR_hmB’;

SHT19.ITR_mnHMb = STR_hmb’;

SHT19.TST_mnHMS = TST_hms’;

SHT19.TST_mnHMB = TST_hmB’;

SHT19.TST_mnHMb = TST_hmb’;

else

SHT19.WHM_avS = WHM’;

SHT19.WHM_avB = WHM_B’;

SHT19.WHM_avb = WHM_b’;

SHT19.ITR_avHMS = STR_hms’;

SHT19.ITR_avHMB = STR_hmB’;

SHT19.ITR_avHMb = STR_hmb’;

SHT19.TST_avHMS = TST_hms’;

SHT19.TST_avHMB = TST_hmB’;

SHT19.TST_avHMb = TST_hmb’;

end

l = l+1;

end

%%%---------------cubic algorithm function to execute----------%%%

function [SHT19] = cubic(x,t_min, dt, t_max,ssth, MSS, SHT19)

C=0.4;

beta = 0.2;
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K=0;

for i=1:3

% Time when ssth is reached

t_sst = (str2double(x{i})* 10^-3) * log2(ssth);

j=1;

for t = t_min:dt:t_max

if (t < t_sst)

%slow start phase

% parameters in segments unit

% W (cwnd) in segs

wc = 2^(t/(str2double(x{i})* 10^-3));

%Instantaneous segment transmissio rate (STR/B) segs/sec

str_c = wc/(str2double(x{i})* 10^-3);

%Total segments/data transmitted (segs) since TX starts

tst_c = ((2^(t/(str2double(x{i})* 10^-3)) - 1)/log(2));

% parameters in bytes unit

wc_B = wc * MSS;

str_cB = str_c * MSS;

tst_cB =tst_c * MSS;

% parameters in bits unit

wc_b = wc * MSS * 8;

str_cb = str_c * MSS * 8;

tst_cb =tst_c * MSS * 8;

W_max_c =wc;

elseif (t >= t_sst)

% Congestion Avoidance phase

% parameters in segments unit

wc = C*(t-K)^3 + W_max_c;

str_c = wc/(str2double(x{i})* 10^-3);
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tst_c = (((ssth-1)/log(2)) +

((t-t_sst)^2/(2*(str2double(x{i})* 10^-3)^2)) +

(ssth*(t-t_sst)/(str2double(x{i})* 10^-3)));

% parameters in bytes unit

wc_B = wc * MSS;

str_cB = str_c * MSS;

tst_cB =tst_c * MSS;

% parameters in bits unit

wc_b = wc * MSS * 8;

str_cb = str_c * MSS * 8;

tst_cb =tst_c * MSS * 8;

else

end

WC(j)= wc * 10^(-3); %Ksegs

WC_B(j) = wc_B * 10^(-3);

WC_b(j) = wc_b * 10^(-3);

STR_c(j)= str_c* 10^(-3);

STR_cB(j) = str_cB * 10^(-3);

STR_cb(j) = str_cb * 10^(-3);

TST_c(j) = tst_c * 10^(-3);

TST_cB(j) = tst_cB * 10^(-3);

TST_cb(j) = tst_cb * 10^(-3);

tet(j) =t;

j = j + 1;

end

b = menu(’RTT Used’, ’RTT_(Max)’, ’RTT_(Min)’, ’RTT_(Avg)’);

if b == 1

SHT19.TTE = tet’;

SHT19.WC_mxS = WC’;
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SHT19.WC_mxB = WC_B’;

SHT19.WC_mxb = WC_b’;

SHT19.ITR_mxC = STR_c’;

SHT19.ITR_mxCB = STR_cB’;

SHT19.ITR_mxCb = STR_cb’;

SHT19.TST_mxCS = TST_c’;

SHT19.TST_mxCB = TST_cB’;

SHT19.TST_mxCb = TST_cb’;

elseif b==2

SHT19.WC_mnS = WC’;

SHT19.WC_mnB = WC_B’;

SHT19.WC_mnb = WC_b’;

SHT19.ITR_mnCS = STR_c’;

SHT19.ITR_mnCB = STR_cB’;

SHT19.ITR_mnCb = STR_cb’;

SHT19.TST_mnCS = TST_c’;

SHT19.TST_mnCB = TST_cB’;

SHT19.TST_mnCb = TST_cb’;

else

SHT19.WC_avS = WC’;

SHT19.WC_avB = WC_B’;

SHT19.WC_avb = WC_b’;

SHT19.ITR_avCS = STR_c’;

SHT19.ITR_avCB = STR_cB’;

SHT19.ITR_avCb = STR_cb’;
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SHT19.TST_avCS = TST_c’;

SHT19.TST_avCB = TST_cB’;

SHT19.TST_avCb = TST_cb’;

end

i = i + 1;

end

%%%---------------hybic algorithm function to execute----------%%%

function [SHT19] = hybic(x,t_min, dt, t_max,ssth, MSS, SHT19)

% Time when ssth is reached in hybla

t_sst = (str2double(x{4})* 10^-3) * log2(ssth);

C=0.4;

beta = 0.2;

K=0;

for l=1:3

a = menu(’RTT/Rho for Hybla’, ’RTT_(Max)’, ’RTT_(Min)’, ’RTT_(Avg)’);

%a= 1,2 & 3

if a==1

rho = (str2double(x{1})* 10^-3) / (str2double(x{4})* 10^-3);

elseif a==2

rho = (str2double(x{2})* 10^-3) / (str2double(x{4})* 10^-3);

else

rho = (str2double(x{3})* 10^-3) / (str2double(x{4})* 10^-3);

end

k=1;

whc=0;

for t = t_min:dt:t_max

if (t < t_sst || whc <= ssth)

%slow start phase

%Segments unit

whc = rho*(2^(t/(str2double(x{4})* 10^-3)));
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str_hc = whc/(str2double(x{4})* 10^-3);

tst_hc = ((2^((str2double(x{4})* 10^-3)) - 1)/log(2)* 10^(-3));

%Bytes unit

whc_B = whc * MSS;

str_hcB = str_hc * MSS;

tst_hcB = tst_hc * MSS;

%Bits unit

whc_b = whc * MSS * 8;

str_hcb = str_hc * MSS * 8;

tst_hcb = tst_hc * MSS* 8;

W_max_hc =whc;

elseif (t >= t_sst || whc > ssth)

% Congestion Avoidance phase

% parameters in segments unit

whc = C *(t-K)^3 + W_max_hc;

str_hc = whc/(str2double(x{4})* 10^-3);

tst_hc = (((ssth-1)/log(2)) +

((t-t_sst)^2/(2*(str2double(x{4})* 10^-3)^2)) +

(ssth*(t-t_sst)/(str2double(x{4})* 10^-3)));

% parameters in bytes unit

whc_B = whc * MSS;

str_hcB = str_hc * MSS;

tst_hcB =tst_hc * MSS;

% parameters in bits unit

whc_b = whc * MSS * 8;

str_hcb = str_hc * MSS * 8;

tst_hcb =tst_hc * MSS * 8;

else
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end

WHC(k)= whc * 10^(-3); %Kseg

WHC_B(k) = whc_B * 10^(-3);

WHC_b(k) = whc_b * 10^(-3);

STR_hcs(k)= str_hc * 10^-3;

TST_hcs(k) = tst_hc * 10^-3;

STR_hcB(k) = str_hcB * 10^-3;

TST_hcB(k) = tst_hcB * 10^-3;

STR_hcb(k) = str_hcb * 10^-3;

TST_hcb(k) = tst_hcb * 10^-3;

tet(k) =t;

k = k+1;

end

if a==1

SHT19.TTE = tet’;

SHT19.WHC_mxS = WHC’;

SHT19.WHC_mxB = WHC_B’;

SHT19.WHC_mxb = WHC_b’;

SHT19.ITR_mxHCS = STR_hcs’;

SHT19.ITR_mxHCB = STR_hcB’;

SHT19.ITR_mxHCb = STR_hcb’;

SHT19.TST_mxHCS = TST_hcs’;

SHT19.TST_mxHCB = TST_hcB’;

SHT19.TST_mxHCb = TST_hcb’;

elseif a==2

SHT19.WHC_mnS = WHC’;

SHT19.WHC_mnB = WHC_B’;

SHT19.WHC_mnb = WHC_b’;

SHT19.ITR_mnHCS = STR_hcs’;

SHT19.ITR_mnHCB = STR_hcB’;
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SHT19.ITR_mnHCb = STR_hcb’;

SHT19.TST_mnHCS = TST_hcs’;

SHT19.TST_mnHCB = TST_hcB’;

SHT19.TST_mnHCb = TST_hcb’;

else

SHT19.WHC_avS = WHC’;

SHT19.WHC_avB = WHC_B’;

SHT19.WHC_avb = WHC_b’;

SHT19.ITR_avHCS = STR_hcs’;

SHT19.ITR_avHCB = STR_hcB’;

SHT19.ITR_avHCb = STR_hcb’;

SHT19.TST_avHCS = TST_hcs’;

SHT19.TST_avHCB = TST_hcB’;

SHT19.TST_avHCb = TST_hcb’;

end

l = l+1;

%Raw data from algorithms implemented table sth19 to xlsx

%writetable(SHT19,’TCPData19.xlsx’,’Sheet’,5);

%writetable(SHT19,’TCPHCData19all50e.xlsx’);

%writetable(SHT19,’HCTCPData19H25fe.xlsx’);

end

%%%%------------------Modified Hybic function--------------------%%%%

function [SHT19] = mhybic(x,t_min, dt, t_max,ssth, MSS, SHT19)

t_sst = (str2double(x{4})* 10^-3) * log2(ssth);

C=0.4;

beta = 0.2;

K=0;

for l=1:3

a = menu(’Rho for RTTsat’, ’RTT_(Max)’, ’RTT_(Min)’, ’RTT_(Avg)’);

%a= 1,2 & 3
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if a==1

rho = (str2double(x{1})* 10^-3) / (str2double(x{4})* 10^-3);

elseif a==2

rho = (str2double(x{2})* 10^-3) / (str2double(x{4})* 10^-3);

else

rho = (str2double(x{3})* 10^-3) / (str2double(x{4})* 10^-3);

end

k=1;

whcm=0;

for t = t_min:dt:t_max

if (t < t_sst || whcm <= ssth)

%slow start phase

%Segments unit

%W (cwnd)Ksegs

whcm = rho*(2^(t/(str2double(x{4})* 10^-3)));

str_hcm = whcm/(str2double(x{4})* 10^-3);

%Transmitted data since Tx started

tst_hcm = ((2^((str2double(x{4})* 10^-3)) - 1)/log(2)* 10^(-3));

%Bytes unit

%Kbytes (kB), Kbytes/sec

whcm_B = whcm * MSS;

str_hcmB = str_hcm * MSS;

tst_hcmB = tst_hcm * MSS;

%Bits unit

whcm_b = whcm * MSS * 8; %Kbits (kb)

str_hcmb = str_hcm * MSS * 8; %Kbps

tst_hcmb = tst_hcm * MSS* 8;

W_max_hcm =whcm;

elseif (t >= t_sst || whcm > ssth)

% Congestion Avoidance phase
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% parameters in segments unit

whcm = rho * (C * (t-K)^3 + W_max_hcm);

str_hcm = whcm/(str2double(x{4})* 10^-3);

tst_hc = (((ssth-1)/log(2)) +

((t-t_sst)^2/(2*(str2double(x{4})* 10^-3)^2)) +

(ssth*(t-t_sst)/(str2double(x{4})* 10^-3)));

% parameters in bytes unit

whcm_B = whcm * MSS;

str_hcmB = str_hcm * MSS;

tst_hcmB =tst_hcm * MSS;

% parameters in bits unit

whcm_b = whcm * MSS * 8;

str_hcmb = str_hcm * MSS * 8;

tst_hcmb =tst_hcm * MSS * 8;

else

end

WHCM(k)= whcm * 10^(-3); %Kseg

WHCM_B(k) = whcm_B * 10^(-3);

WHCM_b(k) = whcm_b * 10^(-3);

STR_hcms(k)= str_hcm * 10^-3;

TST_hcms(k) = tst_hcm * 10^-3;

STR_hcmB(k) = str_hcmB * 10^-3;

TST_hcmB(k) = tst_hcmB * 10^-3;

STR_hcmb(k) = str_hcmb * 10^-3;

TST_hcmb(k) = tst_hcmb * 10^-3;

tet(k) =t;

k = k+1;

end
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if a==1

SHT19.TTE = tet’;

SHT19.WHCM_mxS = WHCM’;

SHT19.WHCM_mxB = WHCM_B’;

SHT19.WHCM_mxb = WHCM_b’;

SHT19.ITR_mxHCMS = STR_hcms’;

SHT19.ITR_mxHCMB = STR_hcmB’;

SHT19.ITR_mxHCMb = STR_hcmb’;

SHT19.TST_mxHCMS = TST_hcms’;

SHT19.TST_mxHCMB = TST_hcmB’;

SHT19.TST_mxHCMb = TST_hcmb’;

elseif a==2

SHT19.WHCM_mnS = WHCM’;

SHT19.WHCM_mnB = WHCM_B’;

SHT19.WHCM_mnb = WHCM_b’;

SHT19.ITR_mnHCMS = STR_hcms’;

SHT19.ITR_mnHCMB = STR_hcmB’;

SHT19.ITR_mnHCMb = STR_hcmb’;

SHT19.TST_mnHCMS = TST_hcms’;

SHT19.TST_mnHCMB = TST_hcmB’;

SHT19.TST_mnHCMb = TST_hcmb’;

else

SHT19.WHCM_avS = WHCM’;

SHT19.WHCM_avB = WHCM_B’;

SHT19.WHCM_avb = WHCM_b’;

SHT19.ITR_avHCMS = STR_hcms’;

SHT19.ITR_avHCMB = STR_hcmB’;

SHT19.ITR_avHCMb = STR_hcmb’;

SHT19.TST_avHCMS = TST_hcms’;

SHT19.TST_avHCMB = TST_hcmB’;

SHT19.TST_avHCMb = TST_hcmb’;
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end

l = l+1;

end

%%%%----------Data Plots and statistic functions------------%%%%%

%comparison plots

function [SHT19] = plotprm(SHT19)

end

%statistics table (ST)

function [ST19] = statsd()

end

A.2 TCL Codes

#A codes for ISTN topology designed to run TCP over ISTN environment

global ns

set ns [new Simulator]

#Data packets flow color definition for NAM

$ns color 1 Blue

$ns color 2 Blue

$ns color 3 Blue

$ns color 4 Blue

$ns color 5 Red

$ns color 6 black

$ns color 7 black

# Global configuration parameters
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# set these global options for the satellite terminals

global opt

set opt(chan) Channel/Sat

set opt(bw_up) 10Mb

set opt(bw_down) 10Mb

set opt(phy) Phy/Sat

set opt(mac) Mac/Sat

set opt(ifq) Queue/DropTail

set opt(qlim) 50

set opt(ll) LL/Sat

set opt(wiredRouting) ON

# This tracing enabling must precede link and node creation

set outfile [open hbcub25100mb.tr w]

set winfile [open Cwnd25 w]

$ns trace-all $outfile

#Create NAM trace file

set ntf1 [open hbc125.nam w]

$ns namtrace-all $ntf1

#Create thirty six nodes

#for {set i 0} {$i < 13} {incr i} {

# set n($i) [$ns node]

#}

# Set up satellite and terrestrial nodes

# Configure the node generator for bent-pipe satellite

# geo-repeater uses type Phy/Repeater
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$ns node-config -satNodeType geo-repeater \

-phyType Phy/Repeater \

-channelType $opt(chan) \

-downlinkBW $opt(bw_down) \

-wiredRouting $opt(wiredRouting)

# GEO satellite at 100 degrees longitude West

set n(0) [$ns node]

$n(0) set-position -100

$n(0) color red

$n(0) shape hexagon

# Configure the node generator for satellite terminals

$ns node-config -satNodeType terminal \

-llType $opt(ll) \

-ifqType $opt(ifq) \

-ifqLen $opt(qlim) \

-macType $opt(mac) \

-phyType $opt(phy) \

-channelType $opt(chan) \

-downlinkBW $opt(bw_down) \

-wiredRouting $opt(wiredRouting)

# SU Terminals in Nigeria

#create two SUTs and add locations

set n(1) [$ns node]; set n(2) [$ns node]

$n(1) color blue

$n(1) shape box

$n(2) color blue

$n(2) shape box

# Kanoma Village, Maru (lat, Lon, alt)
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$n(1) set-position 11.4 6.2;

#Gusau

$n(2) set-position 12.1 6.4;

#Add SUT GSLs to GEO satellite n(0)

$n(1) add-gsl geo $opt(ll) $opt(ifq) $opt(qlim) $opt(mac) $opt(bw_up) \

$opt(phy) [$n(0) set downlink_] [$n(0) set uplink_]

$n(2) add-gsl geo $opt(ll) $opt(ifq) $opt(qlim) $opt(mac) $opt(bw_up) \

$opt(phy) [$n(0) set downlink_] [$n(0) set uplink_]

#Topology script creation with nodes & links with config

#GWS Terminals in EU

$ns node-config -satNodeType terminal

set n(3) [$ns node]; set n(4) [$ns node]

$n(3) set-position 53.2 6.14; #Burum, NLD- Prim SAS

$n(4) set-position 41.59 13.33; # Fucino, ITL-Sec SAS

$n(3) color red

$n(3) shape box

$n(4) color red

$n(4) shape box

#Create wired terrestrial nodes

$ns unset satNodeType_

set n(5) [$ns node]

set n(6) [$ns node]

set n(7) [$ns node]

set n(8) [$ns node]

set n(9) [$ns node]

set n(10) [$ns node]

set n(11) [$ns node]

set n(12) [$ns node]
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set n(13) [$ns node]

set n(14) [$ns node]

set n(15) [$ns node]

set n(16) [$ns node]

set n(17) [$ns node]

set n(18) [$ns node]

set n(19) [$ns node]

set n(20) [$ns node]

set n(21) [$ns node]

set n(22) [$ns node]

#TCP Tx/Rx node color code

$n(7) color green

$n(12) color green

#Nodes Label

$ns at 0.0 "$n(0) label \"Sat\""

$ns at 0.0 "$n(1) label \"SUT1\""

$ns at 0.0 "$n(2) label \"SUT2\""

$ns at 0.0 "$n(7) label \"Tx1\""

$ns at 0.0 "$n(12) label \"Rx1\""

$ns at 0.0 "$n(3) label \"GWSP\""

$ns at 0.0 "$n(4) label \"GWSS\""

#Create links between nodes

$ns duplex-link $n(7) $n(5) 100mb 2.5ms DropTail

$ns duplex-link $n(8) $n(5) 100mb 2.5ms DropTail

$ns duplex-link $n(9) $n(5) 100mb 2.5ms DropTail

$ns duplex-link $n(5) $n(6) 10Mb 7.5ms DropTail #bottleneck link

$ns duplex-link $n(6) $n(1) 100Mb 2.5ms DropTail

$ns duplex-link $n(5) $n(10) 100Mb 2.5ms DropTail
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$ns duplex-link $n(6) $n(15) 100mb 2.5ms DropTail

#$ns duplex-link $n(6) $n(16) 10mb 2.5ms DropTail

#$ns duplex-link $n(6) $n(17) 10mb 2.5ms DropTail

#$ns duplex-link $n(6) $n(18) 10mb 2.5ms DropTail

$ns duplex-link $n(2) $n(12) 100mb 2.5ms DropTail

$ns duplex-link $n(2) $n(13) 100mb 2.5ms DropTail

$ns duplex-link $n(2) $n(14) 100mb 2.5ms DropTail

$ns duplex-link $n(2) $n(11) 100mb 2.5ms DropTail

# Add GSLs to geo satellite and Gateway stations

$n(3) add-gsl geo $opt(ll) $opt(ifq) $opt(qlim) $opt(mac) $opt(bw_up) \

$opt(phy) [$n(0) set downlink_] [$n(0) set uplink_]

$n(4) add-gsl geo $opt(ll) $opt(ifq) $opt(qlim) $opt(mac) $opt(bw_up) \

$opt(phy) [$n(0) set downlink_] [$n(0) set uplink_]

# Bottleneck Link color

$ns duplex-link-op $n(5) $n(6) color "red"

#Describe the indices of the nodes and locations.

set indexLayout {

{8 9}

{7 5 10}

{15 6 17 11}

{16 1 2 12}

{4 0 3 14 13}

}

#Describe the space and layout

set originX 0

set originY 0

set width 100
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set height 100

#Do the layout

set nRows [llength $indexLayout]

set rowsize [expr {$height / $nRows}]

set rowY [expr {$originY + $rowsize / 2}]

foreach row $indexLayout {

set nCols [llength $row]

set colsize [expr {$width / $nCols}]

set rowX [expr {$originX + $colsize / 2}]

foreach index $row {

$n($index) set X_ $rowX

$n($index) set Y_ $rowY

set rowX [expr {$rowX + $colsize}]

}

set rowY [expr {$rowY + $rowsize}]

}

$ns trace-all-satlinks $outfile

#We use centralized routing

set satrouteobject_ [new SatRouteObject]

$satrouteobject_ compute_routes

proc finish {} {

global ns outfile ntf1 winfile

$ns flush-trace

close $outfile

close $ntf1

close $winfile
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#graphs with gnuplot

set plo [open plotta.out w]

puts $plo "set xlabel \"Time(s)\""

puts $plo "set ylabel \"Packets\""

puts $plo "set title \"Title \""

puts $plo "set output \"hbcwnd25100.eps\""

puts $plo "set terminal postscript eps"

puts $plo "plot \"Cwnd25\" with lines"

close $plo

exec gnuplot plotta.out

#exec awk -f avgStats.awk src=7 dst flow=1 pkt=1040 hbc19.tr > hbc19avgd

#exec awk -f instantThroughput.awk tic=1.0 src dst flow pkt cub19.tr > cub19Thp2C

#exec awk -f e2eowdrttgw19.awk hbc19.tr > hbc19eedgws2

#exec awk -f e2elat19bisu.awk hbc19.tr > hbc19eedgws

#exec awk -f instantJitter.awk tic=1.0 src dst flow pkt hbc19.tr > hbc19ij

#exec awk -f pdrd19.awk hbc19.tr > hbc19pdrd

#puts "running nam..."

exec nam hbc125.nam &

exit 0

}

#Insert a ’recv’ function for the class ’Agent/Ping’

Agent/Ping instproc recv {from rtt} {

$self instvar node_

puts "node [$node_ id] received ping answer from \

$from with roun-trip-time $rtt ms."

}
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#create 2 ping agents and attach them to n0 and n3

set p0 [new Agent/Ping]

$ns attach-agent $n(9) $p0

set p1 [new Agent/Ping]

$ns attach-agent $n(14) $p1

#connect 2 agents

$ns connect $p0 $p1

$p0 set fid_ 6

$p1 set fid_ 7

$ns at 0.1 "$p0 send"

$ns at 0.5 "$p1 send"

$ns at 1.0 "$p0 send"

$ns at 1.5 "$p1 send"

#---TCP agents (hybic, hybla, cubic and newreno) added below.....

#Set protocols (agents) and application (ftp/cbr) traffic flows

#setup TCP schemes as agents

#WARNING: set "window_" option in tcp to be large enough to see the performance difference.

#"window_" is the upper-bound of cwnd in a TCP, 20 by default.

#hybic

set tcp [new Agent/TCP/Linux]

#$tcp set timestamps_ true

$ns at 0 "$tcp select_ca hybic"

$ns attach-agent $n(7) $tcp

set sink [new Agent/TCPSink/Sack1]

$sink set ts_echo_rfc1323_ true



A.2. TCL Codes 217

$ns attach-agent $n(11) $sink

$ns connect $tcp $sink

#tcp traffic color 1 (blue as above)

$tcp set fid_ 1

#disabled pktSz

#$tcp set packetSize_ 1024

#setup FTP traffic over TCP connection

set ftp [new Application/FTP]

$ftp attach-agent $tcp

#traffic type is ftp

$ftp set type_ FTP

#hybla

#set tcph [new Agent/TCP/Linux]

#$tcp set timestamps_ true

#$ns at 0 "$tcph select_ca hybla"

#$ns attach-agent $n(8) $tcph

#set sinkh [new Agent/TCPSink/Sack1]

#$sinkh set ts_echo_rfc1323_ true

#$ns attach-agent $n(12) $sinkh

#$ns connect $tcph $sinkh

#tcp traffic color 3 (as above)

#$tcph set fid_ 2

#disabled pktSz

#$tcph set packetSize_ 1024

#setup FTP traffic over TCP connection
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#set ftph [new Application/FTP]

#$ftph attach-agent $tcph

#traffic type is ftp

#$ftph set type_ FTP

#cubic

set tcpc [new Agent/TCP/Linux]

#$tcp set timestamps_ true

$tcpc set window_ 100000

$ns at 0 "$tcpc select_ca cubic"

$ns attach-agent $n(9) $tcpc

set sinkc [new Agent/TCPSink/Sack1]

$sinkc set ts_echo_rfc1323_ true

$ns attach-agent $n(13) $sinkc

$ns connect $tcpc $sinkc

#tcp traffic color as above

$tcpc set fid_ 3

#disabled pktSz

#$tcpc set packetSize_ 1024

#setup FTP traffic over TCP connection

set ftpc [new Application/FTP]

$ftpc attach-agent $tcpc

#traffic type is ftp

$ftpc set type_ FTP
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#Newreno

#set tcpn [new Agent/TCP/Newreno]

#$tcpn set timestamps_ true

#$tcpn set window_ 100000

#$ns attach-agent $n(9) $tcpn

#set sinkn [new Agent/TCPSink/DelAck]

#$ns attach-agent $n(13) $sinkn

#$ns connect $tcpn $sinkn

#tcp traffic color 1 (red as above)

#$tcpn set fid_ 4

#$tcpn set window_ 100000

#$tcpn set packetSize_ 1024

#$tcpn set ssthres_ 1

#set FTP traffic over TCP connection

#set ftpn [new Application/FTP]

#$ftpn attach-agent $tcpn

#traffic type is ftp

#$ftpn set type_ FTP

##..........end of tcp schemes and start of udp agent..........

#Set UDP connection

set udp [new Agent/UDP]

$ns attach-agent $n(10) $udp

#sink for udp source traffic

set null [new Agent/Null]

$ns attach-agent $n(14) $null

$ns connect $udp $null

$udp set fid_ 5
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#Set CBR traffic over UDP connection

set cbr [new Application/Traffic/CBR]

$cbr attach-agent $udp

$cbr set type_ CBR #cbr traffic type

$cbr set packet_size_ 1000

$cbr set rate_ 0.01mb

$cbr set random_ false #traffic generation parameter

##..................end of the protocol declarations..............

#protocols start

$ns at 1.0 "$ftp start"

#$ns at 1.0 "$ftph start"

$ns at 1.0 "$ftpc start"

#$ns at 1.0 "$ftpn start"

$ns at 1.1 "$cbr start"

#protocols stop

$ns at 348.0 "$ftp stop"

#$ns at 348.0 "$ftph stop"

$ns at 348.0 "$ftpc stop"

#$ns at 348.0 "$ftpn stop"

$ns at 348.5 "$cbr stop"

#Window plot procedure

proc plotwindow {tcpSource file} {

global ns

set time 1.0
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set now [$ns now]

set cwnd [$tcpSource set cwnd_]

set wnd [$tcpSource set window_]

puts $file "$now $cwnd"

$ns at [expr $now + $time] "plotwindow $tcpSource $file" }

$ns at 1.0 "plotwindow $tcp $winfile"

#Stop Simulation at Time 349 sec

$ns at 349.0 "finish"

#--------------simulation ready to run.........

$ns run

A.3 C Codes

//Parameters define for cubic implementation

//Scale factor beta calculation max_cwnd = snd_cwnd * beta

#define BICTCP_BETA_SCALE 1024

//In binary search,* go to point (max+min)/N

#define BICTCP_B 4

//BIC HZ 2^10 = 1024

#define BICTCP_HZ 10

#define ACK_RATIO_SHIFT 4

/*Define parameters for the algorithm; parameters have to be defined static

different modules might have different parameters with the same variable names */

static int fast_convergence __read_mostly = 1;

static int max_increment __read_mostly = 16;

static int beta __read_mostly = 819; /* = 819/1024 (BICTCP_BETA_SCALE) */

static int initial_ssthresh __read_mostly;

static int bic_scale __read_mostly = 41;



A.3. C Codes 222

static int tcp_friendliness __read_mostly = 1;

//Parameters defined for precompute scale factors,not declared like previous

static u32 cube_rtt_scale __read_mostly;

static u32 beta_scale __read_mostly;

static u64 cube_factor __read_mostly;

/* Declare the following as parameters using module_param() */

/* Declare the explanation for parameters using MODULE_PARM_DESC()*/

//Note parameters that are used for precomputing scale factors are read-only

module_param(fast_convergence, int, 0644);

MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence");

module_param(max_increment, int, 0644);

MODULE_PARM_DESC(max_increment, "Lim increment allowed during binary search");

module_param(beta, int, 0444);

MODULE_PARM_DESC(beta, "beta for multiplicative increase");

module_param(initial_ssthresh, int, 0644);

MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold");

module_param(bic_scale, int, 0444);

MODULE_PARM_DESC(bic_scale,"scale(by1024) value for bic func(bic_scale/1024)");

module_param(tcp_friendliness, int, 0644);

MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness");

/* Hybla reference round trip time (default= 1/40 sec = 25 ms),

expressed in jiffies, changed: 25ms to 125 */

static int rtt0 = 25;

module_param(rtt0, int, 0644);

MODULE_PARM_DESC(rtt0, "reference rout trip time (ms)");

//global parameters defined
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/* time when updated last_cwnd */

static u32 last_time;

//static u8 hybla_en;

/* Tcp Hybic structure/parameters*/

/* HYBIC Parameters as a struct hybic used *ca pointers */

struct hybic {

u32 snd_cwnd_cents; /* Hybla Keeps increment values when it is <1, <<7 */

u32 rho; /* Rho parameter, integer part */

u32 rho2; /* Rho * Rho, integer part */

u32 rho_3ls; /* Rho parameter, <<3 */

u32 rho2_7ls; /* Rho^2, <<7 */

u32 minrtt; /* Minimum smoothed round trip time value seen */

u32 cnt; /* Cubic increase cwnd by 1 after ACKs */

u32 last_max_cwnd; /* last maximum snd_cwnd */

u32 loss_cwnd; /* congestion window at last loss */

u32 last_cwnd; /* the last snd_cwnd */

u32 bic_origin_point;/* origin point of bic function */

u32 bic_K; /* time to origin point from the beginning of the current epoch */

u32 delay_min; /* min delay */

u32 epoch_start; /* beginning of an epoch */

u32 ack_cnt; /* number of acks */

u32 tcp_cwnd; /* estimated tcp cwnd */

u32 delayed_ack; /* estimate the ratio of Packets/ACKs << 4 */

};

static inline void hybla_recalc_param (struct sock *sk)

{

struct hybic *ca = inet_csk_ca(sk); //change from hybla *ca to hubic *ca

ca->rho_3ls = max_t(u32, tcp_sk(sk)->srtt / msecs_to_jiffies(rtt0), 8);

ca->rho = ca->rho_3ls >> 3;
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ca->rho2_7ls = (ca->rho_3ls * ca->rho_3ls) << 1;

ca->rho2 = ca->rho2_7ls >>7;

}

static inline void bictcp_reset(struct hybic *ca)

{

ca->cnt = 0;

ca->last_max_cwnd = 0;

ca->loss_cwnd = 0;

ca->last_cwnd = 0;

last_time = 0;

ca->bic_origin_point = 0;

ca->bic_K = 0;

ca->delay_min = 0;

ca->epoch_start = 0;

ca->delayed_ack = 2 << ACK_RATIO_SHIFT;

ca->ack_cnt = 0;

ca->tcp_cwnd = 0;

}

/*CA has private data, should initialises its private date here.*/

/*hybic parameters/variables initialisation */

static void hybic_init(struct sock *sk)

{

struct tcp_sock *tp = tcp_sk(sk);

struct hybic *ca = inet_csk_ca(sk);

/* hybla param reset*/

ca->rho = 0;

ca->rho2 = 0;

ca->rho_3ls = 0;

ca->rho2_7ls = 0;

ca->snd_cwnd_cents = 0;

//hybla_en = 1;
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tp->snd_cwnd = 2;

tp->snd_cwnd_clamp = 65535;

/* 1st rho measurement based on initial srtt */

hybla_recalc_param(sk);

/* set minimum rtt as this is the 1st ever seen */

ca->minrtt = tp->srtt;

tp->snd_cwnd = ca->rho;

/*merger with static void bictcp_init(struct sock *sk) */

bictcp_reset(inet_csk_ca(sk));

if (initial_ssthresh)

tcp_sk(sk)->snd_ssthresh = initial_ssthresh;

}

static void hybic_state(struct sock *sk, u8 ca_state)

{

if (ca_state == TCP_CA_Loss)

bictcp_reset(inet_csk_ca(sk));

}

static inline u32 hybla_fraction(u32 odds)

{

static const u32 fractions[] = {

128, 139, 152, 165, 181, 197, 215, 234,

};

return (odds < ARRAY_SIZE(fractions)) ? fractions[odds] : 128;

}

static u32 cubic_root(u64 a)
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{

u32 x, b, shift;

/*

* cbrt(x) MSB values for x MSB values in [0..63].

* Precomputed then refined by hand - Willy Tarreau

*

* For x in [0..63],

* v = cbrt(x << 18) - 1

* cbrt(x) = (v[x] + 10) >> 6

*/

static const u8 v[] = {

/* 0x00 */ 0, 54, 54, 54, 118, 118, 118, 118,

/* 0x08 */ 123, 129, 134, 138, 143, 147, 151, 156,

/* 0x10 */ 157, 161, 164, 168, 170, 173, 176, 179,

/* 0x18 */ 181, 185, 187, 190, 192, 194, 197, 199,

/* 0x20 */ 200, 202, 204, 206, 209, 211, 213, 215,

/* 0x28 */ 217, 219, 221, 222, 224, 225, 227, 229,

/* 0x30 */ 231, 232, 234, 236, 237, 239, 240, 242,

/* 0x38 */ 244, 245, 246, 248, 250, 251, 252, 254,

};

b = fls64(a);

if (b < 7) {

/* a in [0..63] */

return ((u32)v[(u32)a] + 35) >> 6;

}

b = ((b * 84) >> 8) - 1;

shift = (a >> (b * 3));

x = ((u32)(((u32)v[shift] + 10) << b)) >> 6;
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* Newton-Raphson iteration

* 2

* x = ( 2 * x + a / x ) / 3

* k+1 k k

*/

x = (2 * x + (u32)div64_64(a, (u64)x * (u64)(x - 1)));

x = ((x * 341) >> 10);

return x;

}

//............Cubic parameters calculations routine...............

//Compute congestion window to use.

static inline void bictcp_update(struct hybic *ca, u32 cwnd)

{

u64 offs;

u32 delta, t, bic_target, min_cnt, max_cnt;

ca->ack_cnt++; /* count the number of ACKs */

if (ca->last_cwnd == cwnd &&

(s32)(tcp_time_stamp - last_time) <= HZ / 32)

return;

ca->last_cwnd = cwnd;

last_time = tcp_time_stamp;

if (ca->epoch_start == 0) {

ca->epoch_start = tcp_time_stamp; /* record beginning of an epoch */

ca->ack_cnt = 1; /* start counting */

ca->tcp_cwnd = cwnd; /* syn with cubic */
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if (ca->last_max_cwnd <= cwnd) {

ca->bic_K = 0;

ca->bic_origin_point = cwnd;

} else {

// Compute new K based on (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ)

ca->bic_K = cubic_root(cube_factor * (ca->last_max_cwnd - cwnd));

ca->bic_origin_point = ca->last_max_cwnd;

}

}

/* cubic function - calc*/

/* calculate c * time^3 / rtt,

* while considering overflow in calculation of time^3

* (so time^3 is done by using 64 bit)

* and without the support of division of 64bit numbers

* (so all divisions are done by using 32 bit)

* also NOTE the unit of those veriables

* time = (t - K) / 2^bictcp_HZ

* c = bic_scale >> 10

* rtt = (srtt >> 3) / HZ

* !!! The following code does not have overflow problems,

* if the cwnd < 1 million packets !!!*/

/* change the unit from HZ to bictcp_HZ */

t = ((tcp_time_stamp + (ca->delay_min>>3) - ca->epoch_start)

<< BICTCP_HZ) / HZ;

if (t < ca->bic_K) /* t - K */

offs = ca->bic_K - t;

else
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offs = t - ca->bic_K;

/* c/rtt * (t-K)^3 */

delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ);

if (t < ca->bic_K) /* below origin*/

bic_target = ca->bic_origin_point - delta;

else /* above origin*/

bic_target = ca->bic_origin_point + delta;

/* cubic function - calc bictcp_cnt*/

if (bic_target > cwnd) {

ca->cnt = cwnd / (bic_target - cwnd);

} else {

ca->cnt = 100 * cwnd; /* very small increment*/

}

if (ca->delay_min > 0) {

/* max increment = Smax * rtt / 0.1 */

min_cnt = (cwnd * HZ * 8)/(10 * max_increment * ca->delay_min);

/* use concave growth when the target is above the origin */

if (ca->cnt < min_cnt && t >= ca->bic_K)

ca->cnt = min_cnt;

}

/* slow start and low utilization */

if (ca->loss_cwnd == 0) /* could be aggressive in slow start */

ca->cnt = 50;

/* TCP Friendly */

if (tcp_friendliness) {
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u32 scale = beta_scale;

delta = (cwnd * scale) >> 3;

while (ca->ack_cnt > delta) {/* update tcp cwnd */

ca->ack_cnt -= delta;

ca->tcp_cwnd++;

}

if (ca->tcp_cwnd > cwnd){ /* if bic is slower than tcp */

delta = ca->tcp_cwnd - cwnd;

max_cnt = cwnd / delta;

if (ca->cnt > max_cnt)

ca->cnt = max_cnt;

}

}

ca->cnt = (ca->cnt << ACK_RATIO_SHIFT) / ca->delayed_ack;

if (ca->cnt == 0) /* cannot be zero */

ca->cnt = 1;

}

/*Keep track of minimum rtt */

static inline void measure_delay(struct sock *sk)

{

const struct tcp_sock *tp = tcp_sk(sk);

struct hybic *ca = inet_csk_ca(sk);

u32 delay;

/* No time stamp */

if (!(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) ||

/* Discard delay samples right after fast recovery */

(s32)(tcp_time_stamp - ca->epoch_start) < HZ)
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return;

delay = (tcp_time_stamp - tp->rx_opt.rcv_tsecr)<<3;

if (delay == 0)

delay = 1;

/* first time call or link delay decreases */

if (ca->delay_min == 0 || ca->delay_min > delay)

ca->delay_min = delay;

}

/*.....................Hybic CCA........................*/

/* TCP Hybic main routine.

* This is the algorithm behavior:

* o Recalc Hybla parameters if min_rtt has changed

* o Give cwnd a new value

the function is the main CCA that increase cwnd for each ack*/

static void hybic_cong_avoid(struct sock *sk, u32 ack, u32 rtt,

u32 in_flight, int flag)

{

struct tcp_sock *tp = tcp_sk(sk);

struct hybic *ca = inet_csk_ca(sk);

u32 increment, odd, rho_fractions;

int is_slowstart = 0;

if (!tcp_is_cwnd_limited(sk, in_flight))

return;

if (tp->snd_cwnd < tp->snd_ssthresh) {
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/* Recalculate rho only if this srtt is the lowest */

if (tp->srtt < ca->minrtt){

hybla_recalc_param(sk);

ca->minrtt = tp->srtt;

}

if (ca->rho == 0)

hybla_recalc_param(sk);

rho_fractions = ca->rho_3ls - (ca->rho << 3);

/* slow start

* INC = 2^RHO - 1

* This is done by splitting the rho parameter

* into 2 parts: an integer part and a fraction part.

* Inrement<<7 is estimated by doing:

* [2^(int+fract)]<<7

* that is equal to:

* (2^int) * [(2^fract) <<7]

* 2^int is straightly computed as 1<<int,

* while we will use hybla_slowstart_fraction_increment() to

* calculate 2^fract in a <<7 value.*/

is_slowstart = 1;

increment = ((1 << ca->rho) * hybla_fraction(rho_fractions))

- 128;

odd = increment % 128;

tp->snd_cwnd += increment >> 7;

ca->snd_cwnd_cents += odd;
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/* check when fractions goes >=128 and increase cwnd by 1. */

while (ca->snd_cwnd_cents >= 128) {

tp->snd_cwnd++;

ca->snd_cwnd_cents -= 128;

tp->snd_cwnd_cnt = 0;

}

/* clamp down slowstart cwnd to ssthresh value. */

if (is_slowstart)

tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);

tp->snd_cwnd = min_t(u32, tp->snd_cwnd, tp->snd_cwnd_clamp);

} else {

/*cubic congestion avoidance*/

ack = ack;

if (flag)

measure_delay(sk);

bictcp_update(ca, tp->snd_cwnd);

/* In dangerous area, increase slowly, In theory tp->snd_cwnd += 1 / tp->snd_cwnd*/

if (tp->snd_cwnd_cnt >= ca->cnt) {

if (tp->snd_cwnd < tp->snd_cwnd_clamp)

tp->snd_cwnd++;

tp->snd_cwnd_cnt = 0;

} else

tp->snd_cwnd_cnt++;

}

}
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/*..................Other cubic routines............*/

/* .ssthresh function returns the slow-start threshold after a loss.*/

static u32 bictcp_recalc_ssthresh(struct sock *sk)

{

const struct tcp_sock *tp = tcp_sk(sk);

struct hybic *ca = inet_csk_ca(sk);

ca->epoch_start = 0; /* end of epoch */

/* Wmax and fast convergence */

if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence)

ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta))

/ (2 * BICTCP_BETA_SCALE);

else

ca->last_max_cwnd = tp->snd_cwnd;

ca->loss_cwnd = tp->snd_cwnd;

return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U);

}

static u32 bictcp_undo_cwnd(struct sock *sk)

{

struct hybic *ca = inet_csk_ca(sk);

return max(tcp_sk(sk)->snd_cwnd, ca->last_max_cwnd);

}
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/* Track delayed ack ratio using sliding window

* ratio = (15*ratio + sample) / 16

*/

/*function is called when there is an ack that acknowledges new packets.

num_acked is the number of packets that are acked by this acks.*/

static void bictcp_acked(struct sock *sk, u32 cnt, ktime_t last)

{

last = last;

const struct inet_connection_sock *icsk = inet_csk(sk);

if (cnt > 0 && icsk->icsk_ca_state == TCP_CA_Open) {

struct hybic *ca = inet_csk_ca(sk);

cnt -= ca->delayed_ack >> ACK_RATIO_SHIFT;

ca->delayed_ack += cnt;

}

}

/*.................End of hybic CCA..........................*/

/*constant record for the hybic CCA

as static record of struct tcp_congestion_ops

to store the function calls and algorithm’s name

Implement at least cong_avoid, ssthresh & min_cwnd;*/

static struct tcp_congestion_ops tcp_hybic = {

.init = hybic_init,

.ssthresh = bictcp_recalc_ssthresh,

.cong_avoid = hybic_cong_avoid,
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.set_state = hybic_state,

.undo_cwnd = bictcp_undo_cwnd,

.pkts_acked = bictcp_acked,

.owner = THIS_MODULE,

.name = "hybic"

};

static int __init hybic_register(void)

{

BUILD_BUG_ON(sizeof(struct hybic) > ICSK_CA_PRIV_SIZE);

/* Precompute a bunch of the scaling factors that are used

per-packet based on SRTT of 100ms*/

beta_scale = 8*(BICTCP_BETA_SCALE+beta)/ 3 / (BICTCP_BETA_SCALE - beta);

cube_rtt_scale = (bic_scale * 10); /* 1024*c/rtt */

/* calculate the "K" for (wmax-cwnd) = c/rtt * K^3

* so K = cubic_root( (wmax-cwnd)*rtt/c )

* the unit of K is bictcp_HZ=2^10, not HZ

* c = bic_scale >> 10

* rtt = 100ms

* the following code has been designed and tested for

* cwnd < 1 million packets

* RTT < 100 seconds

* HZ < 1,000,00 (corresponding to 10 nano-second) */

/* 1/c * 2^2*bictcp_HZ * srtt */

cube_factor = 1ull << (10+3*BICTCP_HZ); /* 2^40 */

/* divide by bic_scale and by constant Srtt (100ms) */

do_div(cube_factor, bic_scale * 10);
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return tcp_register_congestion_control(&tcp_hybic);

}

static void __exit hybic_unregister(void)

{

tcp_unregister_congestion_control(&tcp_hybic);

}

module_init(hybic_register);

module_exit(hybic_unregister);

MODULE_AUTHOR("Anas A. Bisu");

MODULE_LICENSE("GPL");

MODULE_DESCRIPTION("TCP Hybic");

MODULE_VERSION("7.2");

#undef NS_PROTOCOL



Appendix B

Hardware: Configurations and

Data Sheets

B.1 Satellite Terminals

Two satellite network and service providers were used in the testbed designed for

the practical measurements in this thesis. The two providers are Inmarsat and

Thuraya both operating GEO Satellite position at different coordinates in space

and maintained different ground segments (GWS) in different continents with In-

marsat in Europe and Thuraya in the middle. However, both network providers

have footprint covering Africa and Europe, which are the locations of our practical

measurement experiments detailed in this thesis.

B.1.1 Inmarsat Terminal: BGAN Explorer 510

The Explorer 510 is a compact satellite user terminal (SUT) with transceiver and

antenna as unit that connect to any of the Inmarsat BGAN satellites constellations

as shown in Fig. B.1. Explorer 510 is the smallest of the EXPLORER BGAN

terminals that integrate performance and portability with simultaneous high quality

voice and broadband access services.

238
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Figure B.1: BGAN Satellite Coverage Map

This is perfect choice for ruggedness, durability, and reliable connection anywhere

at anytime (see Fig. B.2) with durable magnesium casing, dust and water resistance

design.
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Figure B.2: Explorer 510 Pointing to BGAN Satellite at a Remote Location in

Nigeria

The end user equipment (UE) such as Tablet, Smartphone, or Computer can con-

nect to the EXPLORER 510 SUT using wired or wireless LAN interface through

the EXPLORER connect App (available for iOS and Android devices) or Web In-

terface (for Laptops and PCs) using the terminal IP address. Features and technical

specifications of the EXPLORER 510 are summarised in Table B.1, details on con-

figuration and BGAN satellite pointing can be found in BGAN User Manual [1].

Figure B.3 showed the rear and side views of the EXPLORER 510 indicating

the location of available buttons, antennas and communications interfaces.
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Table B.1: EXPLORER 510 Features and Technical Specifications.

Feature Specification

Model Class EXPLORER 510, BGAN Class 2 Terminal

Standard IP Data Rate Tx/Rx 464 kbps both Up and Down Links

Streaming Data Rates (kbps) 32, 64, and 128

Voice Rate 4 kbps (Standard), 3.1kHz/64 kbps (Premium)

Dimensions (L x H x B mm) 197x197x40

Weight (kg) 1.4 Incl. Battery

Operating Temp. (oC) -25 to 55

Water and Dust Resistance IP66

Interfaces WLAN, USB, DC Input, USB to LAN, and SIM card

User Connectivity/Interface App (iOS and Android) and Web Browser

AC Power (VAC) 100-240 V Mains via AC/DC Adapter

DC Power (VDC) 10-32 V

Solar Power (Panel) Min. 65 W, 10-32 VDC

Antenna GNSS (GPS, GLONASS, BelDou), WLAN, BGAN

Wireless Router DHCP and NAT

Battery Rechargeable Lith. Ion, 300-500 CC, 2-24hrs usage,

Power Consumption 2.8W (standby), 19W(Tx), 38W (charging)

Communications Full duplex, Single/Multi-user, PPPoE, PBX/SIP Voice Server

Figure B.3: Explorer 510 Rear and Side View
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EXPLORER 510 Terminal User Interfaces

The web interface is a built-in web interface for easy configuration and daily use.

The web interface is accessed from a computer, smartphone or tablet connected

to the EXPLORER 510, using an Internet browser. No installation of software is

needed. For further information on the web interface, see The web interface [1].

Moreover, a smartphone app, EXPLORER Connect, is also available for iOS and

Android devices. This includes a satellite phone function that enables making and

receiving calls with a smartphone over the satellite network using the EXPLORER

510 terminal. It also includes the complete feature set from the built-in web interface

of the terminal, allowing you to set up and use the terminal with your smartphone.

B.1.2 Thuraya SatSleeve+ Terminal

The Thuraya SatSleeve+ SUT transforms a smartphone into a satellite phone through

connectivity to the Thuraya 2 and 3 GEO satellites with footprint covering Europe,

Africa, Asia, and Australia as shown in Fig. B.4. This is an excellent choice that

provides portable and fastest way for mobile communications via satellites anywhere

at anytime with immediate need for voice and data communications via smartphone

transformed into a satellite phone as shown in Fig. B.5.

The terminal configurations is easy and fast using a user Interface Hotspot App

for iOS and Android devices through the WLAN interfacing the UE and the SUT

as summarised below, more details found in [2].
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Figure B.4: Thuraya SatSleeve+ Satellite 2 & 3 Coverage Map

Figure B.5: Thuraya SatSleeve+ Terminals and SmartPhones
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Table B.2: Thuraya SatSleeve+ Features and Technical Specifications.

Feature Specification

Model Class SatSleeve+

Data Rate Tx/Rx 60 kbps Download (DL), 15 kbps Upload (UL) GmPRS

Weight (g) 256 Incl. Battery

Dimensions (mm) 138x69x42

Operating Temp. (oC) -10 to 55

Interfaces WLAN, Micro USB (charge/upgrade), DC Input,

3.5mm Jack (headset) and SIM card

User Connectivity/Interface Hotspot App for iOS and Android

AC Power (VAC) 100-240 V Mains via AC/DC Adapter

DC Power 5VDC, 2.0A

Battery Rechargeable Li-ion, 3.7V, 2440mAh, 3-9hrs usage

Communications Full duplex

SatSleeve+ Configuration and Setup

Configurations of SatSleeve+ SUT and Connecting the terminal to the Smart-

phone (as Satellite phone) and Thuraya Satellite can be achieved quickly and easily

by the following steps;

1. Go to the App Store (iOS) or Google Play (Android) on your Smartphone and

download the Thuraya SatSleeve+ Hotspot app.

2. Fully Charge the Thuraya SatSleeve+ SUT

3. Insert the SIM card into the SatSleeve+ terminal and turn it on.

4. Go to Wi-Fi settings on your smartphone and connect to the SatSleeve+ unit

named SATxxxxxxx.

5. Enter a default password of 12345678 on prompt, this can be changed in the

SatSleeve+ Wi-Fi app settings.

6. Go to an area with an unobstructed view of the sky and direct line of sight to

the satellite
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7. Extend the SatSleeve+ unit antenna fully.

8. Open the SatSleeve+ Hotspot app on your smartphone.

9. The name ”Thuraya” appears on the app home screen.

10. Smartphone now Satphone is connected to the Thuraya satellite network and

ready for communications.

B.2 Emulator and Profiler Appliance

Emulation and Profiling experiments in this thesis were conducted using the NE-

ONE Appliance, which is a unique piece of equipment offering two powerful and

complementary network and application performance capabilities. The NE-ONE

appliance combines the network emulation (virtualisation) and Profiling functions

on the same appliance unit. These functions can be carried out by the emulator

unit or connected with the other equipment such as SUTs and Switches for profiling

as highlighted in chapter 4 of this thesis, more details below.

Figure B.6: NE-ONE Emulator and Profiler Appliance Unit

Figure B.7: Rear View NE-ONE Emulator and Profiler Appliance Unit
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B.2.1 Emulation

The Emulator supports three types of emulation namely 1) Point to point with Single

or multiple link configurations 2) Dual-Hop with Dual or multiple link configurations

3) Profiled Emulation created with the Profiler. These emulations are achieved using

the two pairs of the four emulation ports on the front of the NE-ONE appliance,

more details on emulation and scenario building found in [3].

B.2.2 Profiling

The Profiling experiment were carried out using the Profiler component of the NE-

ONE Profiler appliance, which performs sophisticated network traffic analysis. Pro-

filer performs full-stream reassembly and full content analysis of network traffic to

extract, analyse and store valuable application and network performance metrics

such as throughput and latency. Two of the front ports (0 & 1) are used and the

connection for profiling are were made using a network tap (from SUT or LAN) and

smart mirror switch that access network traffic data as copies of the traffic traversing

the monitored network link(s) as shown in Fig B.8 [4].
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TX Node (Source)
Rx Node (Sink)

Explorer 510

Mirroring Switch

Ethernet Link to the Switch

Ethernet Link from the Switch

Emulator/Profiler

Profiler/Emulator Software

Figure B.8: Testbed for Emulation and Profiling Experiments

Appliance ports 2 & 3 are NOT used when running Profiler mode, these are for

Network Emulation mode use. Although the appliance combines the two functions

of emulation and profiling in one equipment unit, the Emulator and Profiler cannot

be run simultaneously as they utilise the same Appliance resources. Therefore,

you must switch between Emulation and Profiling modes based on the experiment

requirements [3].

The NE-ONE Appliance has an LCD panel on the front of the unit which provides

all the day to day configuration and management of the Appliance in both Emulator

and Profiler modes and the LCD panel allows you to switch between Emulator and

Profiler modes. More details found in [3, 4], and summary of features and technical

specification is given in Table below.



B.2. Emulator and Profiler Appliance 248

Table B.3: NE-ONE Emulator Features and Technical Specifications [5, 6]

Feature Specification

Platform Model Class NE-ONE Model 10, Desktop Hardware Appliance

Data Rate Tx/Rx 200 Mbps, 1Gbps (MGMT) Ports

Licensed Emulation Ports 2

Weight (kg) 5 Excl. case

Network Impairment Creation Latency, Jitter, Loss, BER, Dup/Out-of-Order Pkts, Fragment

Dimensions (HxWxD) 77x204x324 mm

Operating Temp. (oC) -5-35, -40-60 (no operation)

Built-in Database ≥100 predefined networks, properties, types & conditions

Interfaces USB, HDMI, Display, AC Input, Ethernet, Audio Jack

User Connectivity/Interface Multi-User Web Browser GUI, Control Panel & LCD Setup

AC Power Input 100-230 V, 50/60 Hz, 2-4A, 180W

Link Type Support P2P, Dual-Hop (Single or multiple link), Multiple Link

Communication Link Support LAN, WLAN, ADSL, 2G, 3G, 4G/LTE, 5G, Sat, Custom

Maximum Link Support 10

Network Scenario Builder Parameters change; Gradual, Variable, Outage (increase loss & outage)

Operating Rel. Humidity (%) 8-90
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