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Abstract

Natural Language Inference (NLI) is fundamental to natural language understand-
ing. The task summarises the natural language understanding capabilities within
a simple formulation of determining whether a natural language hypothesis can be
inferred from a given natural language premise. NLI requires an inference system to
address the full complexity of linguistic as well as real-world commonsense knowl-
edge and, hence, the inferencing and reasoning capabilities of an NLI system are
utilised in other complex language applications such as summarisation and machine
comprehension. Consequently, NLI has received significant recent attention from
both academia and industry. Despite extensive research, contemporary neural NLI
models face challenges arising from the sole reliance on training data to comprehend
all the linguistic and real-world commonsense knowledge. Further, different atten-
tion mechanisms, crucial to the success of neural NLI models, present the prospects
of better utilisation when employed in combination. In addition, the NLI research
field lacks a coherent set of guidelines for the application of one of the most crucial
regularisation hyper-parameters in the RNN-based NLI models – dropout.

In this thesis, we present neural models capable of leveraging the attention mech-
anisms and the models that utilise external knowledge to reason about inference.
First, a combined attention model to leverage different attention mechanisms is pro-
posed. Experimentation demonstrates that the proposed model is capable of better
modelling the semantics of long and complex sentences. Second, to address the
limitation of the sole reliance on the training data, two novel neural frameworks
utilising real-world commonsense and domain-specific external knowledge are intro-
duced. Employing the rule-based external knowledge retrieval from the knowledge
graphs, the first model takes advantage of the convolutional encoders and factorised
bilinear pooling to augment the reasoning capabilities of the state-of-the-art NLI
models. Utilising the significant advances in the research of contextual word repre-
sentations, the second model, addresses the existing crucial challenges of external
knowledge retrieval, learning the encoding of the retrieved knowledge and the fusion
of the learned encodings to the NLI representations, in unique ways. Experimenta-
tion demonstrates the efficacy and superiority of the proposed models over previous
state-of-the-art approaches. Third, for the limitation on dropout investigations,
formulated on exhaustive evaluation, analysis and validation on the proposed RNN-
based NLI models, a coherent set of guidelines is introduced.
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CHAPTER 1

Introduction

“. . . inferential ability is not only central manifestation of semantic competence but

it is in fact centrally constitutive of it, it shouldn’t be a surprise that we regard

inferencing tasks as the best way of testing an NLP system’s semantic capacity.”

— Cooper et al., The FRaCaS Consortium, Ch. 3, 1996

Language is fundamental to communication. Since the advent of modern com-

puters, one of the crucial research questions has been - Can computers learn, under-

stand, and produce human language? However, with some initial success of com-

puter programs that can understand simple natural language instructions to solve

algebra word problems [6] or undertake superficial dialogues [7], it turned out that

making computers understand human language is a difficult task because of the in-

herent ambiguities in natural language, the variability of semantic expressions and

the context-dependent interpretations of natural languages [8]. The research and

development of theory-motivated automatic computational techniques that explores

how computers can be made to learn, understand, and produce human languages

is called Natural Language Processing (NLP) [9]. NLP is an umbrella term encom-

passing various theories and technologies for analysing natural language in written

1



or spoken form. The focus of this research work is in the written form of natural

language i.e. text sequences, to reason and understand the inference between the

input sequences.

In text-based NLP, the text can be analysed at different levels to understand and

extract the meaning [8]. At the lexical level, the NLP system interprets the meaning

of individual words. At the syntactic level, the goal is to identify the structure of

the input sentences and ascertain the validity according to the grammatical rules of

the language. The semantic level is concerned with interpreting or understanding

the (literal) meanings of the sentence by focussing on the interactions among the

word-level meanings in the sentence. The discourse level works at the inter-sentence

level and concentrates on the properties of the text as a whole that convey meaning

by making connections between the interrelated sentences. Finally, at the highest

level, the text can be analysed at the pragmatic level where the goal is to explain

the text over and above the contents of the text. The analysis of the text at this

level requires significant world knowledge, including the understanding of intentions,

plans and goals [8]. NLP systems involved in the pragmatic analysis of text may

utilise real-world knowledge sources such as Knowledge Graphs (KGs) to enrich the

context of the analysed text.

The goal of the NLP is to achieve true natural language understanding by means

of analysing the linguistic data at the aforementioned levels [8]. Over the last decade,

the availability of a large amount of linguistic data, development of sophisticated

machine learning methods, a vast increase in computing power, and a richer un-

derstanding of the structure of human language has contributed exceedingly to the

advancement of the NLP field [10], however natural language understanding still

remains the goal of NLP.

This thesis contributes to the field of natural language understanding on the

task of Natural Language Inference − also called Recognising Textual

Entailment, through the development of deep-learning–based sequence models.

Natural Language Inference (NLI) task encapsulates natural language under-

standing capabilities within very simple formulation − determining whether a nat-

ural language hypothesis can be inferred from a given premise [11]. The example
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in Table 1.1, presents a premise and hypothesis from the first recognising textual

entailment challenge [2], where the hypothesis is regarded to be entailed from the

premise.

Premise: Norway’s most famous painting, “The Scream” by Edvard Munch, was
recovered Saturday, almost three months after it was stolen from an Oslo museum.

Hypothesis: Edvard Munch painted “The Scream”.

Table 1.1: Inference: Premise and Hypothesis sentences from the first recognising
textual entailment challenge [2].

1.1 NLI Definitions

The inference is generally defined as deriving a conclusion on the basis of evidence

and reasoning. For example, the Oxford1 dictionary defines the first sense of “infer”

as, “to reach an opinion or decide that something is true on the basis of information

that is available”. More formally, the inference can be defined as “the act of passing

from one proposition, statement, or judgement considered as true to another whose

truth is believed to follow from that of the former” [11].

In NLP, the inference can be defined as the process of concluding the truth value

of a textual statement based on (the truth of) another given piece of text [11]. NLI

captures this language-oriented view of the inference. Dagan et al. [12] refer to NLI

as Recognizing Textual Entailment (RTE) formulates the task as follows:

Definition 1.1: Textual entailment is defined as a directional relationship be-

tween pairs of text expressions, denoted by T (the entailing “Text”) and H (the en-

tailed “Hypothesis”). We say that T entails H if humans reading T would typically

infer that H is most likely true.

The NLI task definition relies on common human understanding of language and

the real-world commonsense knowledge on which the (human) entailment judgement

1https://www.oxfordlearnersdictionaries.com/ – As on August 9, 2020
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relies [11]. Thus, for an NLI system to succeed on this task, it must address the

full complexity of compositional semantics at all levels of language analysis (lexical,

syntactic, semantic, discourse, and pragmatic) as well as learn, remember and apply

the real-world commonsense knowledge from the training data.

For example, consider the simplistic premise-hypothesis pair in Table 1.2 from

the popular NLI dataset, Stanford Natural Language Inference (SNLI) [3].

Premise: A man inspects the uniform of a figure in some East Asian country.

Hypothesis: The man is sleeping.

Table 1.2: Inference: Premise and Hypothesis sentences from the SNLI dataset [3].

For an inference system to successfully classify that the hypothesis is not entailed

from the premise, ideally the system must learn the commonsense fact that when

humans inspect something their eyes are open and they can not be asleep (and

humans can not do conscious activities like inspection while asleep). However, this

commonsense knowledge may or may not be available to the inference system.

Machine learning has been a dominant approach to solving NLI [13]. However,

the machine learning research for NLI is severely limited in performance by the

lack of gold-standard premise-hypothesis pairs [3, 13]. In the year 2015, the field

has renewed prosperity by the introduction of a large human-annotated corpus —

SNLI [3]. The public availability of this big dataset has allowed the application of

a class of machine learning algorithm called - deep learning.

Deep learning method learns multiple levels of representations from the raw input

data and composes the representations learnt at the lower levels into a representa-

tion that is more abstract than the lower-level representations [14]. To learn these

representations, deep learning employs neural networks with multiple layers and re-

quires a large amount of raw input data [15]. The public availability of the large

SNLI dataset has considerably advanced the case of deep learning for NLI. In fact,

in the NLI literature, deep-learning-based models are the dominant approach to NLI

and claim the state-of-the-art results [16–18]. Our research in the thesis focuses on

the development and evaluation of deep-learning-based NLI architectures that are
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robust, generalisable and are grounded in real-world knowledge.

In the recent deep-learning-based literature, NLI is predominantly [19–21] de-

fined as

Definintion 1.2: Given a premise and hypothesis sentence, NLI aims to de-

termine whether the logical relationship between premise and hypothesis sentences is

among entailment (if the premise is true, then the hypothesis must be true), contra-

diction (if the premise is true, then the hypothesis must be false) and neutral (neither

entailment nor contradiction).

The formulation of NLI as a simple decision problem over sentence pairs conve-

niently place the NLI into the standard classification task in the machine learning

field [22] while capturing the essence of the definition by Dagan et al. [11].

1.2 Motivation

NLI is crucial to natural language understanding. The task attests the natural lan-

guage understanding capabilities of a system. As pointed out by Cooper et al. [23]

that inferential ability of a system is the best way to evaluate its language under-

standing competency. The argument is further emphasised by MacCartney and

Manning [24], and they state — “Any system which can reliably identify implica-

tions of natural language sentences must have a good understanding of how language

works: it must be able to deal with all manner of linguistic phenomena and broad

variability of semantic expression.”.

As discussed in the context of NLI Definition 1.1, that for an NLI system to

succeed, it must address the full complexity of lexical and compositional semantics

at all levels of language analysis (lexical, syntactic, semantic, discourse, and prag-

matic), developing such systems considerably advances the developments towards

true natural language understanding in NLP.

In addition to advancing the research area of natural language understanding, the

inferencing and reasoning abilities of NLI systems are also employed in other complex

neural natural language understanding tasks. For example, NLI is used to generate
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short and accurate abstractive summaries in the summarisation task [25, 26], the

machine comprehension [27] task employs NLI to rank the candidate answers, in

neural machine translation, NLI is utilised to investigate the quality of sentence

representations encoded by the translation models [28].

Another important area where NLI has been particularly effective is in learn-

ing the supervised universal sentence representations [29–31]. Universal sentence

representations are trained on a particular task and are subsequently used in other

NLP tasks. For example, InferSent [29], the model trained on the SNLI dataset

in a supervised manner have outperformed the established unsupervised method,

SkipThought [32], on a wide range of transfer tasks such as sentiment classification,

paraphrase detection and caption-image retrieval.

As a consequence of its significance to natural language understanding, a broad

range of applications and the availability of large corpora amenable to train deep

neural networks, NLI has received considerable attention from both academia and

industry. A substantial amount of neural NLI literature (Chapter 2) is accumulated

in a considerable short time span of half a decade (since the public availability of

the SNLI dataset). The attention mechanism [33], which allows a neural model

to identify and selectively focus on the important parts of the input, has been a

crucial component of this vast NLI literature. Consequently, the research literature

can be categorised into two broad categories of - sentence encoding-based models

and joint sentence encoding-based models, depending on whether the models em-

ploy, intra-attention (when the attention mechanism is applied to the individual

premise or hypothesis sentence) [34, 35] or inter-attention mechanisms (when the

attention mechanism is applied across the premise and hypothesis sentence) [36,37]

respectively.

Although the models in both the categories utilise the attention mechanism

individually, the combination of intra-attention and inter-attention mechanisms is

understudied. There are two main challenges. First, the identification of the atten-

tion mechanisms that works in synergy and achieve higher performance than the

individual attention mechanisms. Second, the investigation of an effective deep neu-

ral architecture that can accommodate the combination of the identified attention
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mechanisms.

As noted in the NLI task Definition 1.1, learning linguistic as well as real-world

commonsense knowledge is central to the success of an NLI system. However, a vast

majority of neural NLI models discussed in Chapter 2, bank solely on the training

data to learn the full ranges of the linguistic as well as real-world commonsense

knowledge required for reasoning inference between the premise and hypothesis.

Consequently, the models fail to generalise [38–40]. Particularly, the shortcoming

intensifies on the domain-specific datasets, such as SciTail [5], on which the per-

formance of the state-of-the-art models, for example, ESIM [41] and Decomposable

Attention Model [42] declines by 18.0% and 14.5% respectively. The state-of-the-art

models lack robustness across NLI datasets.

The shortcoming is attributed to the assumption that all the linguistic and com-

monsense knowledge required for inference is learnable from the provided training

data. The assumptions may not be valid, especially for smaller and domain-specific

NLI datasets such as SciTail [5] and MedNLI [43]. Particularly, the assumption is

not valid, first, because humans (and the NLI datasets annotators) do not express

the implicit [44] linguistic and commonsense knowledge, however, they use it all the

time. For example, when humans judge the relationship of the premise-hypothesis

illustrated in Table 1.2, they intuitively utilise the full range of linguistic and real-

world commonsense knowledge and do not just rely on the premise and hypothesis

context [45]. Second, Grasser [46] estimates the ratio of explicit:implicit informa-

tion is up to 1 : 8.22, which implies that a vast majority of information is not

mentioned in texts [47]; and hence automated dataset generation techniques utilis-

ing Web texts also do not have the implicit linguistic and commonsense knowledge

required for reasoning and inference.

As the significant amount of linguistic and commonsense knowledge required for

reasoning and inference is not explicitly expressed in the datasets from which the

deep neural networks learn, it is unreasonable to expect the neural networks to per-

form well on the commonsense reasoning tasks such as NLI. The solution is to supply

the neural networks with the external linguistic and real-word commonsense knowl-

edge required for reasoning and inference. However, incorporating external knowl-
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edge into the neural NLI models is challenging. The main challenges are, first, the

Structured Knowledge Retrieval: Given a premise-hypothesis pair how to effec-

tively retrieve specific and relevant external knowledge from the massive amounts of

data in external knowledge sources such as KGs. Existing models [5, 39–41, 48, 49],

use heuristics and word surface forms of the premises and hypothesis, which may be

biased and may not be contextually relevant for reasoning over premise and hypoth-

esis. Second, Encoding Retrieved Knowledge: Learning the representations

of the retrieved external knowledge amenable to be fused with the learned repre-

sentations of the premise and hypothesis. Various KG embedding techniques [50]

are employed to learn these representations. However, while learning the KG em-

beddings, the embeddings are required to be valid within the individual KG fact

and hence might not be predictive enough for the downstream tasks [50]. Third,

Feature Fusion: How to fuse the learned external knowledge representations with

the premise-hypothesis representations. This feature fusion requires substantial NLI

model adaptations with marginal performance gains [41].

Hyper-parameter optimisation is highly significant to the performance of Recur-

rent Neural Network (RNN) based NLI models [51, 52], however, it is surprisingly

overlooked in the NLI literature. RNNs (Long Short-Term Memory (LSTM) [53]

and Bidirectional Long Short-Term Memory (BiLSTM) [54] networks) owing to their

large number of parameters are susceptible to overfitting [55] — the case when the

neural network learns the exact patterns present in the training data but fails to

generalise to unseen data [56]. One of the crucial hyper-parameters utilised to pre-

vent overfitting in RNNs [55] is dropout [56]. However, the location of dropout

applications in the RNN-based NLI models varies considerably and is based on the

trial-and-error experiments. The dropout rates are also crucial to the use of dropout

regularisation [57]. However, the RNN-based NLI models [58, 59] that apply the

dropout at the same layers, for example at the embedding and to the final classifier

(refer Section 2.2), also differs in the dropout rates. There is a considerable ambigu-

ity with regards to the application of the crucial regularisation parameter dropout

in RNN-based NLI models and the research field lacks a set of coherent guidelines

for the dropout application.
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The work presented in this thesis addresses the above-mentioned challenges and

limitations representing advances in deep neural models for NLI.

1.3 Thesis Contributions

The main contributions of the thesis are as follows:

• We introduce a generic neural architecture that encompasses the contemporary

layered neural NLI architectures and present a comprehensive review of the

existing literature in the field of deep learning for NLI. (Chapter 2)

• To leverage the benefits of intra-attention and inter-attention mechanisms, we

propose a new combined attention model which employs the intra-attention

in conjunction with the inter-attention mechanism. Exhaustive evaluation on

the SNLI and SciTail datasets show that intra-attention and inter-attention

mechanisms work in synergy and achieve higher accuracy when they are com-

bined together in the same model than using them independently. Further,

the accuracy analysis for the varying premise-hypothesis lengths shows the

model’s effectiveness on longer inputs. (Chapter 3)

• To address the limitation of learning the required linguistic commonsense

knowledge solely from the training data, we investigate a bilinear feature

fusion-based neural NLI model which incorporates real-world commonsense

knowledge in the NLI models. Combined with convolutional feature detec-

tors and bilinear feature fusion, the proposed model provides a conceptually

simple mechanism that generalizes well and achieves significant performance

gains compared to contemporary external knowledge-based models. (Chapter

4)

• We investigate the RNN-based NLI models proposed in Chapter 3 and Chapter

4 for the application of the dropout at different locations in the models with

varying dropout rates. As a result, we develop an empirically guided and

validated set of guidelines for the application of the dropout regularisation to

the deep neural RNN-based NLI models. (Chapter 5)
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• A unique method to enrich the contextual representations of the recently pro-

posed pre-training based BERT [16] model with the external knowledge to

improve BERT’s grounding in the real-world knowledge and reinforce its rea-

soning and inference capabilities for NLI. Based on the state-of-the-art devel-

opments in the field of contextual word representations [16,60,61], the proposed

model overcomes the three main challenges of the external knowledge incorpo-

ration discussed in Section 1.2, in unique ways and addresses the limitations

of the models proposed in Chapter 4. Extensive experiments on the challeng-

ing SciTail and SNLI datasets demonstrate the effectiveness of the proposed

model: in comparison to the previous state-of-the-art, our model obtain an

accuracy of 95.9% on the SciTail dataset and 91.5% on the SNLI dataset.

(Chapter 6)

1.4 Publications

The work contained within this thesis has been previously published or is in com-

munication in the following peer-review publications, and is used in the chapters as

indicated below:

• CAM: A Combined Attention Model for Natural Language Infer-

ence, Amit Gajbhiye, Sardar Jaf, Noura Al Moubayed, Steven Bradley, and

A. Stephen McGough, In IEEE International Conference on Big Data (Big

Data). IEEE, 2018. (Published, Contributing to Chapter 3) [62]

• Bilinear Fusion of Commonsense Knowledge with Attention-Based

NLI Models, Amit Gajbhiye, Thomas Winterbottom, Noura Al Moubayed,

and Steven Bradley, In 29th International Conference on Artificial Neural Net-

works, Springer, Cham, 2020. (Accepted for publication, Contributing to

Chapter 4)

• An Exploration of Dropout with RNNs for Natural Language In-

ference, Amit Gajbhiye, Sardar Jaf, Noura Al Moubayed, Steven Bradley,
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and A. Stephen McGough, In International Conference on Artificial Neural

Networks. Springer, Cham, 2018. (Published, Contributing to Chapter 5) [63]

• ExBERT: An External Knowledge Enhanced BERT for Natural Lan-

guage Inference, Amit Gajbhiye, Noura Al Moubayed, and Steven Bradley,

In Proceedings of COLING 2020, the 28th International Conference on Compu-

tational Linguistics: Technical Papers, 2020 (In communication, Contributing

to Chapter 6)

1.5 Thesis Scope and Structure

Development of new neural architectures and their empirical evaluation on the NLI

data constitute the primary mode of research of this thesis. The goal is to propose

and implement robust, generalisable and knowledge-grounded neural architectures

for NLI via the incorporation of external knowledge and attention mechanisms.

Towards this goal, the thesis presents the research work structured into the following

chapters.

Chapter 2 sets the background knowledge required for the thesis by introduc-

ing a generic architecture for the existing deep neural NLI models in the literature.

The chapter tabulates the available NLI and external knowledge sources and elabo-

rates on the SNLI and SciTail NLI datasets and the external knowledge sources the

ConceptNet [64] and Aristo Tuple [65] KGs.

The chapter, then thoroughly reviews the deep neural NLI literature by categoris-

ing the field into sentence encoding-based models and joint sentence encoding-based

models. The deep learning models are further divided and discussed according to

the structure of the encoder the models employ.

Chapter 3 explores the use of combined attention mechanisms in a neural NLI

model. Exploiting the benefits of the intra-attention and inter-attention mecha-

nisms, the experimental result on the SNLI and SciTail datasets demonstrate that

the two attention mechanisms work in synergy. The chapter further investigates

ablation, premise-hypothesis lengths and the qualitative analysis showing that our

model effectively learns to reason between the premise and hypothesis and does not

11



depend on the word overlap between them. The research presented in this chapter

is published in a peer-reviewed conference [62].

Chapter 4 addresses the limitation of inadequate learning of the linguistic and

commonsense knowledge from the training dataset by incorporating linguistic as

well as real-world commonsense knowledge into the NLI models. The chapter further

presents the quantitative and qualitative results using the SNLI and SciTail datasets

in combination with a general real-world commonsense knowledge KG ConceptNet

and (science) domain-specific KG Aristo Tuple. The research presented in this

chapter is accepted for publication in a peer-reviewed conference2.

Chapter 5 presents the empirical evaluations, analysis and discussions on the

RNN-based NLI models presented in Chapter 3 and Chapter 4. The chapter first

formulates the different locations of dropout application for the model proposed in

Chapter 3 and then based on the formulations evaluates the model with varying

dropout rates at each location. The evaluation results are analysed to observe dis-

tinct patterns. The observations are then validated on the RNN-based NLI model

proposed in Chapter 4. Finally, the validated observations are established as the

guidelines for the application of the dropout in RNN-based NLI models. The re-

search presented in this chapter is the part of the publication [63].

Chapter 6 investigates enriching the contextual representations of the pre-trained

BERT model with the real-world commonsense knowledge from the external knowl-

edge sources to enhance its grounding in real-world knowledge and augment the

reasoning capabilities for NLI.

The chapter proposes a novel external knowledge retrieval mechanism utilising

contextual representations to retrieve relevant external knowledge. The retrieved

external knowledge is incorporated in the BERT model via a unique approach.

The experimental results on the SNLI and SciTail datasets in conjunction with

the ConceptNet and Aristo Tuple KGs show that the proposed approach achieves

significant performance improvements over the previous state-of-the-art methods,

including those which are enhanced by the BERTLARGE model. The proposed model

2https://e-nns.org/icann2020/ – As on August 9, 2020
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also outperforms all our previous approaches to NLI. The research work presented

in this chapter is in communication with a peer-reviewed conference3.

Finally, Chapter 7 concludes and lays out promising directions for future work.

3https://coling2020.org/ – As on August 9, 2020
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CHAPTER 2

Deep Learning for NLI - Generic Model & Literature Review

2.1 Introduction

In this chapter, we introduce a generic neural NLI model from which most of the

existing neural NLI models can be derived (Section 2.2). This model sets the stage

for the discussions about the NLI models discussed subsequently. We tabulate the

available NLI datasets for the model evaluation. We elaborate on the NLI datasets

and the external knowledge sources that are utilised in the NLI model evaluations

presented in this thesis (Section 2.3). Further, we discuss the performance metric

used to evaluate deep neural NLI models (Section 2.4).

We present a taxonomy and review the current neural NLI literature by cate-

gorising the field into sentence encoding- and joint sentence encoding-based models

(Section 2.5). We further classify the literature based on the structure of the en-

coders the NLI model employs to encode the context of the premise and hypothesis.

Finally, we present the conclusions of the chapter (Section 2.6).
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2.2 Neural NLI Models: A Generic Architecture

In this section, we present a generic architecture for neural NLI models. The ar-

chitecture is depicted in Fig.2.1. The layered architecture consists of the embed-

ding, encoding, intra-attention, inter-attention, enhancement, composition, pooling,

matching and output layers and an external knowledge source component. We elab-

orate on each of the layers in the following sections.

2.2.1 Embedding Layer

The embedding layer, also known as word representation layer, maps each word/token

in the premise and hypothesis to a d-dimensional vector representation. In the

model, the embedding layer can represent words as vectors using pre-trained word

embeddings/representations such as Word2Vec [66], GloVe [67], FastText [68], Con-

ceptNet Numberbatch [64] or contextual word embeddings [69] such as CoVE [70],

ELMo [60], or the BERT [16] embeddings.

The representation capabilities of the word embeddings can be augmented with

the character embeddings of words (word’s embedding learned from its individual

characters), part-of-speech, semantic role, named-entity recognition tag embeddings,

and with the parsing information of the individual words to incorporate more lexical,

syntactical and semantic information [52,71,72]. Further, word embeddings are also

fine-tuned dynamically with external knowledge such as Wikipedia1, to incorporate

commonsense and background knowledge into the NLI models [73]. The pre-trained

word embeddings may or may not be fine-tuned jointly with the other parameters

of the model while training.

Let us represent the NLI task as a triple (P,H, y), where P = {p1, p2, . . . , pn} is

the premise sentence with length n, H = {h1, h2, . . . , hm} is the hypothesis sentence

with length m, and y ∈ Y is the label, for example, in (entailment, contradiction,

neutral), representing the relationship between the premise and hypothesis. The

1http://wiki.dbpedia.org/downloads-2016-10 – As on August 9, 2020
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Figure 2.1: The generic architecture of neural NLI models. The connecting coloured
arrows join a layer to the other possible layers to which the arrow emanating layer
can be connected to. The layers and the emanating arrows are coded in the same
colour. The dotted lines from the external knowledge source show the layers at
which the external knowledge is incorporated in the literature.

embedding layer can be defined as

P emb = (pemb
1 ,pemb

2 , . . . ,pemb
n ) = Embedding(p1, p2, . . . , pn) (2.1)

Hemb = (hemb
1 ,hemb

2 , . . . ,hemb
m ) = Embedding(h1, h2, . . . , hm) (2.2)

where P emb ∈ Rn×demb
and Hemb ∈ Rm×demb

are the matrices representing each
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of the premise word embeddings (pemb
1 ,pemb

2 , . . . ,pemb
n ) and the hypothesis word

embeddings (hemb
1 ,hemb

2 , . . . ,hemb
m ) respectively. demb is the dimension of the pre-

trained embedding.

2.2.2 Encoding Layer

The encoding layer accepts the sequence of word embeddings as input and encodes

them by incorporating the context information from the word embeddings in the

surrounding context. Different encoders such as chain- and tree-structured RNNs

[74] (LSTMs [53], BiLSTMs [54] and GRUs [75]), Convolutional Neural Networks

(CNNs) [76], highway networks [77], encoders without RNN and CNN [16,78] have

been employed in various models proposed in the NLI literature. Different techniques

such as stacking of encoding layers [78,79], short-cut connections from the preceding

layers [80], external memory augmentation [81] and infusing external knowledge [82]

are applied to enhance the representation capabilities of the sentence encodings.

Recently, Pre-Trained Language Model (PTLM) based encoders such as ULMFiT

[83], OpenAI GPTs [61, 84, 85], and the BERT [16] model have become popular

encoders for natural language understanding tasks including the NLI. Formally, the

encoding process can be defined as

P enc = (penc
1 ,penc

2 , . . . ,penc
n ) = Encoding(pemb

1 ,pemb
2 , . . . ,pemb

n ) (2.3)

Henc = (henc
1 ,henc

2 , . . . ,henc
m ) = Encoding(hemb

1 ,hemb
2 , . . . ,hemb

m ) (2.4)

where P enc ∈ Rn×denc
and Henc ∈ Rm×denc

are the matrices representing context-

aware representation of each of the tokens in the premise and hypothesis respectively.

denc is the dimension of the hidden states of the encoding layer.

2.2.3 Interaction Layers

NLI models utilise the interactions between the words of the individual premise and

hypothesis or across the two sentences to learn the dependencies between words

and to link and fuse the local features. Intra-attention (self-attention) [34] and

inter-attention (cross-sentence) [36] mechanisms facilitate these interactions. In the
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following sections, we elaborate on the intra-attention and inter-attention layers.

Intra-Attention Layer

The intra-attention (self-attention) layer models the dependencies between the words

from the same sequence. The layer learns the relevance and similarity of each word

with respect to the entire sequence, capturing long-distance dependencies and the

global context of the entire sequence. The relevance and similarity of the words

are measured by an attention score between the words at different positions in the

sequence by computing an attention function (also called compatibility function or

similarity function) between each pair of words. Different attention functions such

as additive [34], gated [86] and dot-product [20] have been utilised in intra-attention

layer.

The intra-attention layer can be applied to the output of the encoding layer

[20, 34, 86] or to the output of the embedding layer bypassing the encoding layers

[78,87,88].

For the sake of brevity, let Ṕ and H́ represent either of the embedded premise

(P emb) and embedded hypothesis (Hemb) or the encoded premise (P enc) and encoded

hypothesis (Henc) respectively.

Cp intra atten, Ap intra atten = IntraAttention(Ṕ ) (2.5)

Ch intra atten, Ah intra atten = IntraAttention(H́) (2.6)

where Cp intra atten ∈ Rn×d́ is the context-aware encoding obtained by linear

combination (weighted sum) of each representation in Ṕ and attention probabili-

ties Ap intra attn ∈ Rn×n. Similarly, the context-aware encodings (Ch intra atten) and

attention probabilities (Ah intra atten) are obtained for the hypothesis sentence. d́

is the hidden state dimension depending on whether the embedding or encoding

representations are used in intra-attention layer.

Although the RNNs dominate the class of encoders in NLI literature, RNNs

process the input sequence sequentially, word-by-word and hence preclude paral-

lelisation at training time. Recently, a class of RNN-/CNN-free models such as
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Transformers [78], DiSAN [87], ReSAN [88] and distance-based intra-attention net-

works [89] have been proposed that utilise solely the intra-attention mechanism to

encode the input sequence. These models benefit from the parallelisable computa-

tion, reduced training time, and flexibility in modelling long-distance dependencies

in the input sequence [90].

Inter-Attention Layer

The inter-attention layer is set-up on the intra-attention layer or the encoding layer

and it learns the alignment between the relevant words of the premise and hypoth-

esis. The alignment provides the local relevance and dependencies between the

words of the premise and the hypothesis. Different attention functions such as addi-

tive [34,36], dot-product [21,91], scaled dot-product [78] and bilinear [92] attentions

are employed at inter-attention layer. The dot product and recently, the scaled

dot-product attention is dominantly used in NLI models due to its fast computation

speed and better results. Let us consider when the inter-attention layer is applied

after the encoding layer as

Cp inter atten, Ch inter atten, Ap inter atten, Ah inter atten = InterAttention(P enc, Henc)

(2.7)

where Cp inter atten ∈ Rn×denc
is the attention probability (Ah inter atten ∈ Rn×m)

weighted summation of the encoded hypothesis representations (Henc). Intuitively,

Cp inter atten represents the contents in Henc which are relevant to premise. Similarly,

Ch inter atten ∈ Rm×denc
is the attention probability weighted (Ap inter atten ∈ Rm×n)

summation of P enc, highlights the representations relevant to hypothesis.

2.2.4 Enhancement Layer

The enhancement layer further captures a variety of similarities between the learned

attentional information from the inter-attention layer and the encoded representa-

tions from the encoding layer or the intra-attention layer with the intention of better

identifying the entailments and contradictions [21, 91, 93]. For example, the differ-

ence and element-wise product of the attentional information with the corresponding
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encoded representations are used to calculate the similarity and closeness between

the two representations [21]. The layer generally generates a feature vector by the

concatenation of the outputs from the different similarity measures employed, the

corresponding encoded representations and the representations from the attention

layers (intra-attention layer or inter-attention layer). Let us consider the case when

the encoded representations are enhanced with the attentional information from the

inter-attention layer. The layer, in this case, can be represented as

P enhance = Enhancement(P enc, Cp inter atten) (2.8)

Henhance = Enhancement(Henc, Ch inter atten) (2.9)

where P enhance ∈ Rn×num sim∗denc
and Henhance ∈ Rm×num sim∗denc

and num sim is

the number of similarity measures. A feed-forward neural network may be employed

in this layer to lower the dimensionality of the output feature vectors in order to

reduce model complexity and prevent overfitting [21, 91] (refer Chapter 5). The

output of the layer is fed to the composition layer as discussed below.

2.2.5 Composition Layer

The composition layer learns and aggregates the local alignment information learned

through the inter-attention layer. The layer essentially determines the overall in-

ference information between the premise and the hypothesis. The majority of NLI

models [20, 21, 91] uses RNNs (BiLSTMs and LSTMs) for aggregation to avoid los-

ing any information that might rely on the sequence of local inference vectors. The

models such as DIIN [19] employ a CNN architecture to aggregate the local inference

information. The composition layer is also known as aggregation layer in the NLI

literature.

P comp = Composition(P enhance) (2.10)

Hcomp = Composition(Henhance) (2.11)

where P comp ∈ Rn×dcomp
and Hcomp ∈ Rm×dcomp

are the matrices representing the
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overall inference information in the premise and hypothesis respectively and dcomp

is the dimensionality of the composition layer hidden states.

2.2.6 Pooling Layer

The pooling layer computes a fixed-length sentence representation (sentence em-

bedding) from the output of the composition layer. Standard maximum, minimum,

and mean pooling operations are used to generate the fixed-length sentence em-

bedding [21,29,70,94]. Special pooling strategies such as attention pooling [86,92],

weighted pooling [41] and generalised pooling [72] are also proposed in the literature.

ppool = Pooling(P comp) (2.12)

hpool = Pooling(Hcomp) (2.13)

where ppool ∈ Rdpool and hpool ∈ Rdpool are the fixed-length sentence embeddings

of premise and hypothesis.

2.2.7 Matching Layer

The matching layer defines how the individual sentence embeddings created in the

pooling layer are combined to capture the relationship between the premise and

hypothesis. Most of the NLI models concatenate the maximum- and mean-pooled

outputs of the premise and hypothesis representation created in the pooling layer

[20, 21, 70, 91]. However, different matching heuristics such as the concatenation

of premise sentence embedding, hypothesis sentence embedding, their element-wise

subtraction and their element-wise multiplication are also evaluated in the literature

[95].

f final = Matching(ppool,hpool) (2.14)

where f final ∈ Rdfinal
is the final joint sentence representation of the premise and

hypothesis that is input to the classification layer for NLI class prediction.
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2.2.8 Classification Layer

The classification layer employs a multilayer perceptron (MLP) classifier composed

of multiple hidden layers, usually with tanh activation and a final softmax layer

outputting the probabilities (yprob) of each NLI class as

yprob = softmax(MLP(f final)) (2.15)

The NLI models are trained using the following standard cross-entropy objective.

L = −
C∑
i=1

yi log yprobi (2.16)

where yi denotes the true class label and C is the number of classes in NLI.

NLI can be a binary or multi-class (three) classification depending on the available

classes in the dataset.

2.3 Datasets

This section discusses NLI datasets and KGs. We first tabulate the different NLI

datasets and elaborate on two well-established – SNLI [3] and SciTail [5] NLI

datasets. We use these datasets to evaluate the NLI models that are presented

in the thesis. Similarly, we tabulate various KGs and elaborate on the two KGs –

ConceptNet [64] and Aristo Tuple [65] KGs employed in the presented models to

retrieved external knowledge.

2.3.1 NLI Datasets

Recently, a large number of specialised datasets focussing on evaluating the partic-

ular abilities, such as generalisation capability [38], cross-lingual language under-

standing [96] and the quantitative reasoning abilities [97] of the NLI models have

been proposed. Table 2.1 presents the available NLI datasets.
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NLI

Dataset

Description Size NLI

Classes

FraCaS [23] Dataset targeted for logical entailment. 346 3 (YES, NO,

UNK)

RTE-n [2] Different RTE challenge2 datasets. ≈ 1000 2 (E, NE),

3 (E, C,

UNK)

SICK [98] Dataset aimed at evaluating the lexical,

syntactic and semantic phenomena that a

neural model should handle for modelling

natural language sentence.

9,800 3 (E, C, N)

SNLI [3] The most evaluated dataset, publicly re-

leased to advance the case of neural mod-

els research in NLI. Created from the im-

age description of Flickr30K [99] image

captions. The reasoning in SNLI is tied

to specific situations of image caption de-

scriptions.

570,000 3 (E, C, N)

MPE [100] NLI task dataset that requires inference

over multiple premise sentences.

10,000 3 (E, C, N)

SPR, FN+,

DPR [101]

Leverage existing Semantic Proto-Roles

(SPR) [102], FrameNet Plus (FN+) [103]

and Definite Pronoun Resolution (DPR)

[104] datasets as a source of inference ex-

amples.

312,873 2 (E, NE)

2https://aclweb.org/aclwiki/Textual_Entailment_Resource_Pool – As on August 9,
2020.
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MultiNLI

[105]

Dataset designed to increase the cover-

age and difficulty of NLI datasets. The

premise and hypothesis are derived from

ten different genres of written and spo-

ken English to capture complex phenom-

ena such as belief and temporal reasoning.

433,000 3 (E, N, C)

SciTail [5] Science domain targeted dataset. The

premises and hypotheses are derived

from the end task of science question-

answering.

27,000 2 (N, E)

Adversarial

NLI [38]

Adversarial SNLI test set aimed at evalu-

ating the generalisation capability of NLI

models. The test set contains sentences

that differ by at most one word from the

sentences in the training set.

8,193 3 (E, C, N)

DNC [106] DNC recasts 13 existing datasets from 7

NLP tasks into NLI examples.

570,459 2 (N, NE)

GLUE

Diagnostic

Dataset

[107]

Test set to analyse the types of knowledge

(such as lexical semantics, logic, common-

sense, etc.) learned by the models evalu-

ated on GLUE benchmark.

1100 3 (E, C N)

XNLI [96] XNLI extends the development and test

sets of MultiNLI to 15 languages to evalu-

ate the cross-lingual language understand-

ing of the NLI models.

112,500 3 (E, C, N)

e-SNLI [108] e-SNLI annotates the SNLI dataset with

human explanations.

570,000 3 (E, C, N)

MedNLI [43] NLI dataset in clinical domain annotated

by doctors.

14, 049 3 (E, C, N)

24



HANS [109] Test set concentrating on evaluating the

learned syntactic heuristics in NLI mod-

els.

4827 2 (E, NE)

SherLic

[110]

Test set focussed on testing the lexical in-

ference in context in NLI models.

3985 2 (E, NE)

EQUATE

[97]

Test set to evaluate quantitative reasoning

of NLI models.

9606 2 (E, NE), 3

(E, C, N)

IMPPRES

[111]

Dataset to investigate two pragmatic in-

ference types - scalar implicatures and

presuppositions.

32,000 3 (E, C, N)

Table 2.1: NLI Datasets. For the NLI classes, the label E stands for the Entailment,
C for Contradiction, N for Neutral, UNK for Unknown, NE for Not Entailed.

In the following sections, we elaborate on the — SNLI and SciTail datasets, that

are employed to evaluate the models presented in this thseis.

Stanford Natural Language Inference Dataset (SNLI)

The Stanford Natural Language Inference (SNLI) dataset [3], publicly released in

the year 2015, is the most popular dataset that is utilised to train and evaluate deep

neural NLI models. Almost all the state-of-the-art NLI models are trained on the

SNLI dataset and the performance of a model on this dataset is a yardstick3 for the

effectiveness of the model. Before SNLI dataset, the PASCAL Recognising Textual

Entailment (RTE) challenges [2] was the primary source of annotated NLI data4.

Although these hand-labelled datasets were of high-quality, the small dataset size

limits their utility for learning the semantic representations via deep neural models.

Inspired by these limitations, Bowman et al. [3] created the SNLI dataset to facilitate

the learning and evaluation of deep learning approaches to NLI.

3SNLI dataset Leaderboard: https://nlp.stanford.edu/projects/snli/ – As on July 15,
2020

4https://aclweb.org/aclwiki/Textual_Entailment_Resource_Pool – As on July 15, 2020
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Data Creation Rules and Collection The authors collected 570,152 premise-

hypothesis pairs through Amazon Mechanical Turk5, a widely used crowdsourcing

marketplace to outsource processes and jobs to a distributed workforce. The workers

were presented with premise sentences and were asked to supply hypotheses for each

of the NLI classes. For the premise sentence, the captions from the Flicker30K [99]

corpus, a collection of approximately 160,000 captions, were used. To provide the

hypotheses for each of the entailment, neutral, and contradiction class respectively,

the workers were instructed as follows.

• Write one alternate caption that is definitely a true description of the photo.

• Write one alternate caption that might be a true description of the photo.

• Write one alternate caption that is definitely a false description of the photo.

Table 2.2 illustrates the hypotheses corresponding to a premise written by the

workers according to each instruction enlisted above.

Premise

A senior is waiting at the window of a restaurant that serves sandwiches.

Hypotheses Written by Workers for Each Instruction

Entailment A person waits to be served his food.

Neutral A man is looking to order a grilled cheese sandwich.

Contradiction A man is waiting in line for the bus.

Table 2.2: SNLI dev set premise with the hypotheses written by Amazon Mechanical
Turk workers for each inference class according to the instructions provided.

The SNLI dataset is balanced among the three NLI classes and is available with

a prespecified train/development/test splits of 549, 367/9, 842/9, 824 examples re-

spectively. The dataset is publicly available6 under Creative Commons Attribution-

ShareAlike license7.

5https://www.mturk.com/ – As on August 9, 2020.
6https://nlp.stanford.edu/projects/snli/ – As on August 9, 2020.
7https://creativecommons.org/licenses/by-sa/4.0/ – As on August 9, 2020.
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Textual Entailment Dataset from Science Question Answering (SciTail)

The SciTail [5] dataset consists of science domain-specific premise-hypothesis pairs.

Khot et al. [5] argue that NLI datasets should be created in conjunction with an

end task to capture the kind of entailment queries that naturally arises in the task.

The authors created the SciTail dataset, derived from the task of multiple-choice

science question answering and that consists of naturally occurring premises and

hypotheses which are not authored specifically for the NLI task.

Data Creation Rules and Collection Given a multiple-choice question and

the correct answer, the hypothesis in the SciTail dataset was created by converting

the question and the answer into an assertive statements. The premise sentence was

retrieved from a large text corpus using the words from the question and the answer.

Consider the following multiple-choice question with correct answer (C) from the

4th grade science test [5].

Which of the following best explains how stems transport water to other parts of

the plant?

(A) through a chemical called chlorophyll.

(B) by using photosynthesis.

(C) through a system of tubes.

(D) by converting water to food.

The assertive sentence for the hypothesis is then manually created as - “Stems

transport water to other parts of the plant through a system of tubes”. The premise

retrieved from the text corpus, for example can be - “Water and other materials

necessary for biological activity in trees are transported throughout the stem and

branches in thin, hollow tubes in the xylem, or wood tissue.”.

The authors used the aforementioned annotation scheme to create the SciTail

premise-hypothesis pairs. For the multiple-choice questions the authors used the

publicly released 4th grade and 8th grade exams8 and the crowd-sourced questions

8Using AI2 Science Questions v1 from http://allenai.org/data/science-exam-questions.

html – As on August 9, 2020

27

http://allenai.org/data/science-exam-questions.html
http://allenai.org/data/science-exam-questions.html


from SciQ dataset [112]. For premise sentence, a set of K probable sentences were

retrieved from the Web Corpus [4], containing 280 GB of plain text, using the

question and answer choice as query [113].

To collect the NLI class labels for the premise-hypothesis pair the authors utilised

Amazon Mechanical Turk. For each question and correct answer a batch of 10

retrieved premises were shown to the workers who were instructed as follows to

classify each premise into one of the three categories.

• Complete Support, if the premise fully supports the answer choice.

• Unrelated, if the premise is unrelated to the question; or

• Partial support, if the premise is related to the question but only provides

partial support for the answer.

Table 2.3 shows a hypothesis and the retrieved premises which are labelled ac-

cording to the instructions enlisted above.

Hypotheis

One way to change water from a liquid to a solid is to decrease the temperature.

Retrieved Premises with Annotator Label

Complete
Support

A liquid becomes a solid if its temperature decreases.

Unrelated At one temperature and pressure, called the Triple Point , all
three phases of water (liquid), water vapor (gas), and ice (solid)
coexist at equilibrium.

Partial
support

In particular, if the temperature of a sample of materials is
changed, the material may change from one state to another
(liquid to solid, liquid to gas, and so on).

Table 2.3: SciTail development set hypothesis with the retrieved premises from the
Web Corpus [4] and the corresponding Amazon Mechanical Turk annotator labels
according to the provided instructions.

The examples with Complete Support label are used to create entailment class

and Unrelated label creates neutral class examples in the dataset. The Partial

Support examples were ignored.

The SciTail dataset contains a total of 27, 026 premise-hypothesis pairs with
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10, 101 examples of entailment class and 16, 925 of neutral class. The train/development/test

splits is prespecified and contains 23, 596/1, 304/2, 126 examples respectively. The

dataset is publicly available9.

On the Use of SNLI and SciTail Datasets

We utilise the SNLI and SciTail datasets to train and evaluate the NLI models pre-

sented in this thesis. The following are the major considerations for these datasets:

• Established Benchmarks The SNLI and SciTail datasets are well-established

and are widely employed in the neural NLI literature for training and evalua-

tion. This facilitates model performance comparisons and helps in putting the

model performance into perspective.

• Dataset Heterogeneity The SNLI and SciTail datasets differs significantly

in sizes (SNLI is approximately twice the order of magnitude than SciTail),

genres (SNLI contains general descriptive premise-hypothesis pairs whereas Sc-

iTail has science domain specialised premise-hypothesis pairs), sentence lengths

and complexity (SNLI premise-hypothesis pairs are semantically simpler and

are shorter in token length than the long and the semantically complex premise-

hypothesis pairs of SciTail [5]). Training and evaluation on such diverse

datasets provide an excellent indication of the model generalisability and learn-

ing capabilities.

Enhancing the language understanding and reasoning capabilities of NLI models

trained on the aforementioned datasets via incorporating external lexical, common-

sense and domain-specific knowledge is a significant theme of the presented thesis.

Thus, in addition to NLI datasets, external knowledge sources are crucial to the

models developed as a part of the thesis. The following section discusses the exter-

nal knowledge sources utilised.

9https://allenai.org/data/scitail – As on August 9, 2020.
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2.3.2 External Knowledge Sources

The external knowledge sources utilised in NLI literature are presented in Table

2.4. Most openly available external knowledge sources are organised in the form of

KGs [114].

Knowledge
Source

Description

WordNet [115] A is a lexical database, where English words are grouped
into different sets (synsets), each expressing a distinct con-
cept. The 117, 000 WordNet synsets are linked to other
synsets by means of a small number of lexical relations
such as hypernyms, hyponyms and meronym.

DbPedia [116] DBPedia extracts knowledge from Wikipedia, providing a
large number of facts (≈ 1.95M), mainly focussed on named
entities (for example, persons, places, music albums and
films) that have Wikipedia articles.

FreeBase [117] Freebase is contains general human knowledge mainly fo-
cussed on named entities (people, palces and things). Free-
base contains ≈ 4.9M facts [82].

UMLS [118] The largest publicly available database focussed on
biomedical domain containing ≈ 12M biomedical concepts.

ConceptNet [64] ConceptNet is a multilingual KG that relates words and
phrases through lexical as well as commonsense knowledge
used in real-world. The KG consists of ≈ 21M lexical and
commonsense facts about real-world. (refer Section 2.3.2)

Aristo Tuple [65] Aristo Tuple is domain-targeted KG containing facts rele-
vant to elementary science. The KG contains 283K science
facts. (refer Section 2.3.2)

Table 2.4: External knowledge sources utillised in neural NLI models.

A KG models the real-world to represent factual knowledge that connects real-

world objects, events and abstract concepts. It is organised as a multi-relational

graph that is composed of entities (nodes) and relations (different types of edges)

representing the knowledge as (head relation tail) triples [119]. The relation specifies

that the head and tail entities are associated by the relation, for example, the triple

from ConceptNet [64] KG - employee partof company, represents the fact that an

employee is a part of a company.
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KGs are used widely in modern deep-learning approach to create knowledge-

grounded natural language understanding applications such as conversational agents

[120,121], reading comprehension systems [49], question answering systems [122] and

inference systems [123].

KGs are the source of external linguistic, commonsense and domain-specific

knowledge for the models presented in the thesis. In the following sections, we

discuss two widely used KGs - ConceptNet 5.5 [64] and Aristo Tuple v4 [122]. We

will utilise these KGs to incorporate linguistic, general commonsense knowledge

and science domain-specific knowledge into the deep neural NLI models that are

proposed in this thesis.

ConceptNet 5.5

ConceptNet10 [64] is a multilingual KG that includes linguistic and real-world com-

monsense knowledge. Figure 2.2 depicts an extract from the ConceptNet KG. It

connects words and phrases of natural language with the lexical and common-

sense relationship between them. For example, performing synonym acting, liquid

antonym solid, shirt UsedFor wearing, car IsA vehicle or umbrella AtLocation closet.

Natural language applications such as reading comprehension [48], conversational

systems [124] and commonsense question answering [125], leverage ConceptNet to

incorporate rich real-world knowledge into the deep neural models.

Data Collection ConceptNet 5.5 acquires knowledge from the following sources:

• Open Mind Common Sense (OMCS) [126] and sister projects in other lan-

guages [127].

• Parsed information from Wiktionary11.

• “Games with a purpose”, designed to collect common knowledge [128] [129].

• Linked-data representation of WordNet [115] - the Open Multilingual WordNet

[130].

• A Japanese-multilingual dictionary - JMDict [131].

10http://conceptnet.io/ – As on August 9, 2020.
11https://en.wiktionary.org/wiki/Wiktionary:Main_Page – As on August 9, 2020.

31

http://conceptnet.io/
https://en.wiktionary.org/wiki/Wiktionary:Main_Page


Figure 2.2: An extract of the commonsense knowledge in ConceptNet. ConceptNet
relates real-world entities and abstract concepts with lexical as well as commonsense
knowledge relations. Adopted from [1].

• A system that represents commonsense knowledge in predicate logic - OpenCyc

provided by Cyc [132].

• A network of facts extracted from Wikipedia information boxes - a subset of

DBPedia [133].

Combining these sources, ConceptNet contains over 21 million edges and over

8 million nodes. The total number of unique relations in ConceptNet 5.5 is 47.

The relations can be symmetric, such as Antonym and DistinctFrom where the

directionality of edges is not important, as well as Asymmetric, such as AtLocation

and CreatedBy, where the directionality of relationships is crucial.

Aristo Tuple v4

Aristo Tuple [65] is a science domain-targeted KG containing facts in (head relation

tail) triple form relevant to elementary science. Some of the science related facts

in Aristo Tuple are air Have refraction, amino acid MakeUp protein, blood glucose

LeadTo disease and zygote HasPart chromatin.
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Data Collection Aristo Tuple is collected from the Web following a unique data

extraction pipeline that includes text filtering, open information extraction, Ama-

zon Mechanical Turk annotations, and precision prediction to generate high pre-

cision triples. The elementary science domain-targeted vocabulary of a 4th grader

(≈ 10 year old child) augmented with additional science terms from 4th grade sci-

ence text is used to search Web via the Bing12 search engine to provide sentences

for knowledge extraction. OpenIE [134, 135], an open information extraction sys-

tem, is applied to the extracted sentences to generate an initial set of tuples. The

tuples are then processed to generate a single head word, refined and scored using

workers from Amazon Mechanical Turk, and are used to generate phrasal head and

tail entities. The tuples are then applied with the schema mapping rules to make

generalisations among seemingly disparate tuples explicit in the KB. The final ver-

sion of Aristo Tuple v4 contains 294,000 domain-targeted tuples connected with 955

unique relations.

On the Use of ConceptNet and Aristo Tuple KGs

Our aim in this thesis is to develop the NLI models that are robust, generalisable

and grounded in real-world knowledge. One way to achieve this aim is to augment

the natural language understanding and reasoning capabilities of NLI models via

the incorporation of external knowledge. Further, as discussed in the context of NLI

Definition 1.1 in the Chapter 1, that for an NLI system to succeed, it must address

the full complexity of linguistic as well as real-world commonsense knowledge.

As ConceptNet contains linguistic relations such as Synonym, Antonym, IsA

(hyponym), Partof (meronym) as well as commonsense relations such as UsedFor,

CapableOf, MotivatedByGoal (refer Section 2.3.2), it is an ideal external knowledge

source to be utilised to incorporate external knowledge. The ConceptNet KG in ad-

dition to fulfilling the linguistic and commonsense knowledge requirement of NLI also

suits our aim of developing NLI models that are grounded in real-world knowledge.

The other external knowledge sources highlighted in Table 2.4 are either focussed

12https://www.bing.com/ – As on August 9, 2020.
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on lexical knowledge (WordNet) or concentrates more on the named entities records

(DBPedia) [64].

For the SciTail dataset, in addition to ConceptNet, we employ science domain-

specific KG Aristo Tuple to enrich the NLI model with domain-specific knowledge.

To the best of our knowledge, Aristo Tuple is the only domain-targeted KG that con-

tains science domain-specific facts relevant to the premise-hypothesis of the SciTail

dataset; and hence is the preferred option for domain-specific external knowledge.

In the next section, we discuss the performance metric used to evaluate the deep

neural NLI models.

2.4 Evaluation Criteria

Accuracy (ACC) As the datasets in the NLI domain are nearly balanced, accu-

racy is the performance metric used to evaluate the deep-learning-based NLI models.

The accuracy is defined as the number of correctly predicted samples over the total

number of predictions, which can be calculated in terms of positives and negatives

as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

where TP are True Positives, TN are True Negatives, FP are False Positives and

FN are False Negatives samples in the in the model predictions. In the next section,

we present a taxonomy of deep neural NLI models and comprehensively review the

existing literature under the presented taxonomy.

2.5 Deep Learning Models for NLI

This section reviews the current deep learning-based NLI literature by taxonomis-

ing the field into sentence encoding-based and joint sentence encoding-based models.

The taxonomy is presented in the Figure 2.3. The models are further classified ac-

cording to the encoder architectures. The model architectures of sentence encoding-

based and joint sentence encoding-based models can be derived from the generic

34



Deep Neural
NLI Models

Sentence
Encoding-Based

Chain-Based

[3, 29,34,136]

Tree-Based

[58, 59,95,137,138]

Stack-Based

[72, 79,139,140]

RNN-/CNN-Free

[87–89]

Joint Sentence
Encoding-Based

Chain-Based

[20, 21,36]
[52,92,141,142]
[71,91,143,144]

Tree-Based

[91, 137,145]

Stack-Based

[37, 51,60,70,146]

Memory
Augmented

[81, 146,147]

RNN-/CNN-Free

[19, 42,61]
[16,18,85,148]

External Knowledge

[123,149,150]
[5, 39,41,82]

[40,73,114,151]
[17,151–153]

Figure 2.3: Taxonomy of Deep Neural NLI Models.
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NLI model discussed in Section 2.2. Individual layers perform the designated func-

tion as detailed in the generic NLI model architecture (Section 2.2), however, the

layers differ in the manner the specific function is performed. For example, in each

of the NLI model, the encoding layer (Section 2.2.2) learns the word representation

with respect to other words in context, however to learn the representations various

encoders such as LSTMs [154], BiLSTMs [54], GRUs [75], or CNNs [76] are used.

We further categorise the literature based on the structural organisation of en-

coders (refer Figure 2.3). The encoders in NLI literature can be organised in different

structures, namely chain, tree, stack, RNN-/CNN-free (attention based), memory

augmented and encoders incorporating external knowledge. Note that the deep

neural models share a high degree of commonality, it is not feasible to outline a mu-

tually exclusive classification. We place and discuss the models based on their most

salient features. For example, the shortcut-stacked encoder [79] proposed by Nie and

Bansal, uses chain-structured BiLSTMs encoders stacked on top of each other with

shortcut connections. We place and discuss this model under stack-based encoders

as stacking the BiLSTMs with shortcut connection is the distinguishing feature of

the model. Following, we discuss sentence encoding-based (Section 2.5.1) and joint

sentence encoding-based models (Section 2.5.2) sub-categorised according to their

encoder structures.

2.5.1 Sentence Encoding-based Models

The sentence encoding-based models follow the “Siamese” [155] architecture of neu-

ral networks. A Siamese neural network shares the layer weights while training on

different input vectors to compute comparable output vectors. Each of the corre-

sponding output feature vectors captures the important characteristics of the input

and can be used to classify the relationship between the inputs.

Figure 2.4 illustrates the layered architecture of the sentence encoding-based

model. The layers in this category of the model share the weights while process-

ing the premise and hypothesis. The individually generated sentence embeddings

are matched (refer Section 2.2.7), and input to the classifier layer for relationship

identification. We discuss the various sentence encoding-based models below.

36



Embedding

Matching

Classification

Pooling

Encoding Encoding

Embedding

Intra-Attention Intra-Attention

Pooling

Figure 2.4: The layered architecture of the sentence encoding-based NLI models.

Chain-based Encoder Architectures

The LSTM RNN based sequential deep neural network model for machine trans-

lation in [156] has successfully demonstrated the ability of sequential architectures

to learn effective sentence embeddings. The sentence encoding-based NLI mod-

els widely employ RNNs (LSTMs, BiLSTMs and GRUs) for generating sentence

embedding because of their ability to maintain an internal memory to remember

information from previous time steps [157].

Bowman et.al. [3] were the first to apply the LSTM RNN encoders for embedding

premise and hypothesis and have achieved comparable results with the state-of-the-

art feature-based classifier model (ACC: LSTM RNN: 77.6%, Feature-based Classi-

fier: 78.2%). A smaller difference (7.2%) between the model’s training and testing

accuracy indicates the ability of LSTMs to learn the semantic meaning of the input

sequence rather than memorising the training examples. This pioneering work led

the way for RNNs to be used as encoders in NLI models and set the baseline for

NLI models.

LSTMs process the input sequence left to right (i.e. forward direction), meaning

that they consider only the previous context and completely avoid the future context
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[158]. Bidirectional LSTMs [54] use the previous and future contexts by processing

the sequence in the forward as well as reverse (right to left) direction.

To exploit this advantage of BiLSTMs, authors in [34] have used BiLSTMs to

generate sentence embeddings for premise and hypothesis. A two-stage process was

used to generate the sentence embedding. First, the sequence is input to the BiL-

STM encoding layer. The output of the BiLSTM layer is averaged to generate a

sentence embedding. Second, the sentence embedding, generated in the first stage is

used to self-attend (Section 2.2.3) the words of the same input sequence to generate

a more representative final sentence embedding. The authors referred to the self-

attention mechanisms as “inner-attention” as it is applied within the sentence. The

visualizations of inner-attention weights show that the attention mechanism helped

the model in generating accurate sentence representation by placing more emphasis

on the content words (nouns, verbs and adjectives) than the function words (preposi-

tions, auxiliary verbs, conjunctions, grammatical articles). The model outperformed

the previous [3, 58,95] sentence encoding-based models by achieving an accuracy of

84.2% on the SNLI dataset.

A universal/general-purpose sentence encoder is trained on a large text corpus

and subsequently used as an encoder for other related tasks with no or minimal

task-specific fine-tuning. Most universal sentence encoders, such as BERT [16],

SkipThought [32] or FastSent [159] consider learning in an unsupervised manner

which is computationally expensive and parameter intensive. Conneau et al. [29]

explore the use of the supervised NLI task to learn universal sentence embeddings

trained on the SNLI dataset [3]. The authors empirically evaluate multiple dif-

ferent sentence embedding architectures ranging from standard LSTMs and GRUs

with mean and max pooling, self-attention based networks to hierarchical CNNs.

The results show that among these models, the BiLSTM architecture with max

pooling, trained on the SNLI dataset (ACC: 84.5%) outperforms the SkipThought

and FastSent on a group of complex transfer tasks such as binary and multi-class

classification, NLI and semantic relatedness, and semantic textual similarity.

Kiela et al. [136] explore the supervised learning of task-specific, Dynamic Meta-

Embeddings (DME), and apply the technique to the BiLSTM-Max sentence encoder
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proposed by Conneau et al. [29]. Meta-embeddings aim to combine diverse pre-

trained embeddings each trained using different methods and resources, to yield an

embedding set with improved overall quality [160,161].

In DME, the network learns which embedding to prefer from the available mul-

tiple types of embeddings by learning a weight for each type of the embedding.

DME achieves this by projecting different embeddings for a word into a common

dl-dimensional embedding space with a liner projection layer. The projected em-

beddings are combined as a weighted sum of their attention weights. The atten-

tion weights are learned as a dot product of a learnable parameter (a) and pro-

jected embeddings. The dot product is normalised with softmax function. Authors

train the BiLSTM-Max encoder [29] with DME using two embedding types: Fast-

Text [162] [68] and GloVe [67]. The results on the SNLI dataset demonstrate that

the BiLSTM-Max encoder with DME (ACC: 86.7%) outperforms encoders that have

only FastText (ACC: 85.4%) or GloVe embedding (ACC: 85.5%). Further, the ex-

periment with six different embedding types has shown to improve performance.

Tree-based Encoder Architectures

Tree-structured neural networks (also known as recursive neural networks) learn

the sentence representation incrementally following the hierarchical structure (for

example parse tree) of the input sentence. The learned representation captures the

syntactic and compositional-semantic information of the input sentence [163].

Chain-structured RNNs, when compared to tree-structured neural networks,

have poor generalisation capabilities over the unseen natural language texts [164].

Further, the meaning of linguistic expressions is known to be constructed recur-

sively according to a tree structure [165]. Hence, the tree-structured neural network

is a natural candidate for generating the sentence embeddings as it can exploit the

hierarchical structure of linguistic expressions [166,167].

Mou et al. [95] explore a Tree-Based CNN (TBCNN) [168] sentence encoder to

leverage the benefits of tree-structured neural networks. The authors further pro-

pose various matching heuristics (refer Section 2.2.7) such as concatenation and

element-wise product/difference. The basic idea of the TBCNN sentence encoder is
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to learn feature maps by sliding subtree feature detectors individually over the de-

pendency parse tree of the premise and hypothesis. A max-pooling layer generates

the sentence embedding by aggregating the information from different feature maps

learned along the tree. Finally, the sentence embeddings of the premise and hypoth-

esis are combined by the matching layer employing the proposed heuristics, and the

matched vector is input to an MLP classifier. The ablation analysis of matching

heuristics on the SNLI dataset suggests that TBCNN achieves the maximum accu-

racy of 82.1%, when the concatenation of all the proposed matching heuristics is

input to the classification layer.

A disadvantage of tree-structured neural networks is that they require a unique

parsing structure for each sentence, and hence are not suitable for batched computa-

tion [58]. Moreover, the tree-structured neural network relies on external syntactic

parsers to produce a parse tree to operate upon. The inability to be batch pro-

cessed and dependency on external parsers slows and complicates the processing of

tree-structured models during training and testing [58].

Bowman et al. [58] proposed a novel Stack-augmented Parser-Interpreter Neural

Network (SPINN) architecture to overcome the aforementioned limitations of tree-

structured neural networks. The SPINN model linearises the shift-reduce parsing

formalism of a tree-structured model. Reading the input sequence left to right,

the shift-reduce parsing builds the parse tree of the input sequence in a bottom-up

fashion. In contrast to the standard shift-reduce parsing which outputs the parse

tree of the input sequence, the SPINN model generates the sentence embedding of

the input sentence.

The evaluation of SPINN [58] on the SNLI dataset shows that the model out-

performs the LSTM RNN model [3] by 2.6% (ACC: 83.2% vs 80.6%). The authors

attributed the high accuracy of tree-structured SPINN model to the better a gen-

eralisation to the natural language expressions achieved by leveraging the syntactic

and semantic structure of natural language in the parse tree.

Although the SPINN model has linearised the shift-reduce parsing formalism, it

still requires a syntactic parse tree as its input which increases the complexity of

processing and reduces its practical applicability. With all the added complexity
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in linearising the parsing mechanism, the SPINN model performed only marginally

better (+1.1%) than the previous TBCNN model (ACC: 82.1%) [95].

To mitigate the limitations of SPINN model [58], Munkhdalai and Yu [137]

proposed Neural Tree Indexers (NTI). Unlike SPINN [58], that generates the repre-

sentation of the input sequences with the help of a syntactic parse tree, NTI creates

the input sequence representation by constructing a full n-ary tree of the input se-

quence in a bottom-up fashion. To effectively capture the long-term dependencies

in premise-hypothesis pairs, the NTI model introduced a tree attention mechanism.

This attention mechanism allows a parent node in the tree to visit over its children

representations, assign importance weights to those representations and create an

attention-weighted representation to be passed towards the root. The NTI model is

evaluated for binary trees. Experimental results on the SNLI dataset demonstrate

that NTI models achieve competitive performance (ACC: 83.4%) to SPINN model

(ACC: 83.2%) without needing to parse input sequence.

Another work, Gumbel Tree-LSTM [59] focuses on dispensing with the parse-

tree requirement of SPINN [58]. Gumbel Tree-LSTM is a tree-structured LSTM

that learns to compose task-specific tree structure from the plain text. The model

uses a composition query vector that measures the validity of a composition (set of

words in the input sequence). The model recursively selects compositions until a

single composition remains that represents the sentence embedding of the input se-

quence. Gumbel Tree-LSTM utilises the Gumbel-Softmax estimator [169] to sample

compositions in the training phase. The Gumbel-Softmax estimator transforms the

discrete sampling operation to be continuous and thus the model can be trained via

the standard backpropagation algorithm. Evaluation results on the SNLI dataset

shows that the Gumbel Tree-LSTM has fewer model parameters, trains in consider-

ably less time and achieves (+2.8%) higher accuracy than SPINN model [58] (ACC:

86.0% vs 83.2%).

Yoon et al. [138] propose a new Dynamic Self-Attention mechanism (DSA) which

in contrast to traditional self-attention mechanisms, allows the attention weights to

be generated with a dynamic weight vector during inference. The dynamic attention

weights allow the network to adapt to each input sentence and hence is more flexible
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in adapting to inputs even after training. The DSA mechanism stacked on the CNN-

based DenseNet [170] encoder, at the time of writing13, holds the current state-of-

the-art results14 on the SNLI dataset for sentence encoding-based models with 87.4%

accuracy.

Stack-based Encoder Architectures

Stack-based encoder architectures use multiple encoding layers stacked vertically,

and generally with connections from the preceding encoding layers with the aim of

preserving learned features from all the encoding layers.

Chen et al. [139] proposed a Gated-Attention based BiLSTM model (Gated-Att

BiLSTM) with several improvements - First, they augmented the GloVe word em-

beddings [67] with the character composition embedding. The character composition

embedding of a word is learned by feeding all characters of the word to a CNN with

max-pooling [171]. Second, the authors used the stacked BiLSTMs with shortcut

connections as an encoder. The shortcut connections concatenate word embeddings

and input hidden states at each layer in the stacked BiLSTM except for the bot-

tom layer. Third, they introduced the intra-sentence gated-attention, which at each

time step learns the attention weight to enhance the hidden state of the top BiLSTM

layer. The attention weight is learned from the l2-norm normalised output of input,

forget or output gates, hence the attention is called the gated-attention. Experi-

mental results on the SNLI dataset shows that the model achieves the maximum

accuracy of 85.5%, when the input gate is used for attention weight calculation.

Nie and Bansal [79] also utilise the stacked BiLSTMs and shortcut connections in

their shortcut-stacked encoder. In contrast to the Gated-Att BiLSTM [139] which

concatenates word embeddings to the hidden sates of each stacked BiLSTM, the

shortcut-stacked encoder concatenates outputs of all previous layers, plus the origi-

nal word embedding. The model uses pre-trained GloVe vectors [67] to initialize the

word embeddings which are fine-tuned end-to-end via the NLI supervision. Similar

to the BiLSTM architecture with max-pooling of [29], the model applies max-pooling

13As on August 9, 2020.
14SNLI leaderboard: https://nlp.stanford.edu/projects/snli/ – As on August 9, 2020.
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to the output of the final BiLSTM layer to generate the fixed-length sentence em-

bedding of the premise and hypothesis. Experimental results with the SNLI dataset

shows that the shortcut-stacked encoder model performs better than gated-attention

BiLSTM [139] (ACC: 86.1% vs 85.5%).

Talman et al. [140] extend the BiLSTM-Max architecture introduced by Con-

neau et al. [29] with three BiLSTM layers. The BiLSTM layers are separate (i.e. do

not share parameters) and are initialised with the hidden and memory states of the

previous BiLSTM layer. To improve the BiLSTM layer’s ability to remember input

words, each layer is also fed with the input word embeddings. Due to such initial-

isation, the model acts as an iterative refinement architecture that reconsiders the

input in each BiLSTM layer while being cognizant of the features learned from the

previous layer. A max-pooling layer generates a fixed-length vector from the hidden

state of each BiLSTM layer. The final sentence embedding is the concatenation of

the vectors from each BiLSTM layer. The model on the SNLI dataset improves the

test accuracy of BiLSTM-Max architecture of Conneau et al. [29] by 1.1% (ACC:

86.6% vs 84.5%).

Chen and Ling [72] highlight that pooling is a crucial component of a wide

variety of sentence encoding-based models. The authors combine all the established

high-performance yielding techniques from the previous literature to build a sentence

encoder. First, similar to [139], concatenating the pre-trained word embeddings with

the character composition embedding. Second, stacking BiLSTMs with shortcut

connections to upper layers as is done in previous studies [139, 140]. Third, the

multi-head self-attention similar to [78], and finally the fourth, creating the final

input to classifier as using the matching heuristics of [95].

The salient feature of Chen and Ling’s proposed model is the generalized pooling

to transform the output of stacked BiLSTMs to a fixed-length sentence embedding.

Specifically, the idea of generalised pooling is to generate the sentence embedding

as a weighted sum of the BiLSTM hidden states and attention weight vectors rather

than a single attention weight scalar. The attention weight vectors allow the model

to control each feature point of the BiLSTM hidden states. To capture different

aspects of the input sentence multiple sentence embeddings are learned. The final
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sentence embedding is the concatenation of all the learned sentence embeddings. To

encourage diversity across different learned aspects of the sentence embedding, the

model use different penalization terms at every stage of generalised pooling. The

model outperforms all the sentence encoding-based models it adopts the various

techniques from by attaining an accuracy of 86.6%.

RNN-/CNN-Free Encoder Architectures

Although RNN and CNN architectures are firmly established as state of the art

approaches for sequence modelling tasks, Vaswani et al. [78] argue that attention

mechanisms are sufficient to model the long- and short-term dependencies of the

sequential data. They argue that the inherent sequential nature of RNNs pre-

cludes parallelisation within training examples. The problem compounds at longer

sequence lengths, as memory constraints limit batching across training examples.

CNNs relax the sequential computation requirement however they struggle to model

long-term dependencies in the sequential data [172].

To alleviate these shortcomings of RNN/CNN architectures, Vaswani et al. [78]

proposed the Transformer model based solely on attention mechanisms, dispensing

the recurrence and convolutions entirely. The Transformer model established new

state-of-the-art15 results for the WMT 2014 English-to-German and WMT 2014

English-to-French machine translation tasks [78].

Motivated by the success of the Transformer model, Shen et al. [87] designed

a Directional Self-Attention Network (DiSAN), based solely on the proposed direc-

tional self-attention and multi-dimensional attention mechanisms. The light-weight

RNN-/CNN-free network has more flexibility in modelling sequence lengths than

RNNs/CNNs, and its computation is easily and significantly more parallelisable on

existing GPU hardware frameworks. DiSAN applies the proposed, forward- and

backward-directional self-attention mechanisms to the word embeddings of the in-

put sequence, and concatenate the two outputs. The multi-dimensional attention

generates the sentence embedding from the concatenated output of directional self-

15As on December 6, 2017.
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attention mechanisms. Visualizations of attention weights of the input sequence

show that the semantically important words such as nouns and verbs get high at-

tention but stop words (am, is, are, etc.) do not, and, the words important to the

semantics of the whole sequence globally receive high attention. DiSAN attains an

accuracy of 85.6% on the SNLI dataset [87].

In the follow-up work, Shen et al. [88] study soft and hard attention mechanisms.

Soft attention learns a probability distribution over all the input words of the se-

quence. The resulting probabilities reflect the importance of each word and are

used as weights to generate the context-aware embeddings of the input sequence.

Different to soft attention, hard attention focuses on selecting some of the most

important input words, and entirely discarding others. The authors proposed a

Reinforced Self-Attention (ReSA) [88] integrating soft and hard attention mecha-

nisms. ReSA improved the accuracy on SNLI dataset by 0.7% compared to DiSAN

model [87] (ACC: 86.3% vs 85.6%).

Im and Cho [89] argue that when learning the local dependencies, the distance

between the words is an important feature, to help understand the context of the

input sequence and; the DiSAN model [87] only considers directional information

ignoring the distance between the words. Hence, the local dependency in DiSAN

is not properly modelled, and the model fails to capture contextual information

in long sentences. Inspired by this limitation, the authors incorporate a distance

mask along with a directional mask (introduced by Shen et al. [87]) to the multi-head

dot-product attention of Transformer model [78]. Visualization of the distance mask

matrix on the longest sequence (length 57 words) of the SNLI dataset demonstrates

that the distance mask helps the model to concentrate on local words around the

reference word and hence learn the local dependency without losing the ability to

capture global dependency. Evaluation result on the SNLI dataset shows that the

model outperforms DiSAN [87] by 0.7% (ACC: 86.3% vs 85.6%).

2.5.2 Joint Sentence Encoding-Based Models

The generic architecture of joint sentence encoding-based models is illustrated in

Figure 2.5. Unlike the sentence encoding-based models, the joint sentence encoding-
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based models do not learn the sentence embedding in isolation from the other input

sentence. There are interactions while learning the sentence embedding. Various

attention mechanisms are proposed for interactions between the premise and hy-

pothesis. The main idea is to reason over the individual words and phrases of

the input premise-hypothesis pairs. These models benefit from not squeezing the

whole semantics into a single vector which is inefficient due to loss of information

during the encoding process [33]. This category of models is also know as “match-

ing encoding-based”, “matching-aggregation framework”, “co-attention based”, and

“inter-sentence attention-based” models.

Embedding

Composition

Matching

Classification

Composition

Pooling

Encoding Encoding

Embedding

Intra-Attention Intra-Attention

Inter-Attention

Enhancement Enhancement

Pooling

Figure 2.5: The layered architecture of joint sentence encoding-based NLI models.

We refer to them as joint sentence encoding-based models to emphasise that the

sentence encoding is created by jointly considering the information from the premise

and hypothesis. In the following sections, we discuss the joint sentence encoding-
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based models in accordance with the proposed taxonomic structure of Section 2.5.

Chain-based Encoder Architectures

The pioneering work of Rocktäschel et al. [36] established the usefulness of atten-

tion mechanisms for NLI. Motivated by the success of attention mechanisms in

machine translation [33] and reading comprehension [173] tasks, the authors pro-

pose to utilise word-by-word attention mechanisms in NLI. The model consists of

two LSTMs which takes as input the premise and hypothesis. At each time step, the

word-by-word attention mechanism allows the LSTM processing the hypothesis to

attend to the hidden states of the premise LSTM to learn a sentence-pair represen-

tation. This word-by-word attention model is the first end-to-end neural model that

outperformed the state-of-the-art hand-engineered feature-based model [3] without

requiring any feature engineering on the input premise and hypothesis (ACC: 83.5%

vs 78.2%).

Liu et al. [143] introduced Deep Fusion LSTMs (DF-LSTMs) to explore attention

mechanism at word, phrase and sentence level to model the interactions between the

premise and hypothesis pair. The interactions among the premise and hypothesis

at the word, phrase and sentence level are referred to as the strong interaction. The

strong interactions facilitated by the attention mechanism are employed to produce

a highly intermingled sentence encoding by conditionally encoding the subsequences

of different premise and hypothesis lengths. To cater to the need of remembering

the subsequence interactions of different lengths, an external memory is used. Ex-

periments demonstrate that DF-LSTMs yield an accuracy of 84.6% on the SNLI

dataset.

Inspired by the word-by-word attention model of Rocktäschel et al. [36], Wang

and Jiang [142] design a match-LSTM (mLSTM) to create a tightly coupled repre-

sentation of premise-hypothesis. Similar to the word-by-word attention model [36],

the model first creates an attention-weighted vector representation of the premise

while processing the hypothesis word by word. Unlike [36], which considers only

the attention-weighted representation of the premise, mLSTM creates the match-

ing representation by also inputting the current hidden state of the hypothesis and
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the attention-weighted representation of the premise. With this slight modification

in producing the matching vector, mLSTM improves the performance of word-by-

word attention model of Rocktäschel et al. [36] by 2.6% (ACC: 86.1% vs 83.5%).

The qualitative analysis of word alignment of the premise and hypothesis suggests

that the model can identify contradictions by remembering the mismatch in the

content words of the premise and hypothesis.

Sha et al. [144] proposed a new variant of LSTM called re-read LSTM(rLSTM),

which takes attention vector of first sentence as an rLSTM inner state, at the time

of processing the second sentence. When applied to NLI, the rLSTM model uses

the standard BiLSTM to read the premise and the proposed bidirectional rLSTM

layer to read the hypothesis. To maintain the interaction between the premise

and hypothesis, the rLSTM takes as its input the full hidden state vectors of the

premise BiLSTM, the attention-weighted representation of the premise for each word

of the hypothesis, and the hidden state and the memory cell state of the previous

rLSTM time step. The average of bidirectional rLSTM outputs is used to predict the

premise-hypothesis relationship. Experimental results show that rLSTM improves

the performance on the SNLI dataset by an absolute improvement of 1.4% over the

mLSTM model [142] (ACC: 87.5% vs 86.1%).

Wang et al. [52] introduced a Bilateral Multi-Perspective Matching (BiMPM)

mechanism to match every time-step of the premise against all the time-steps of

the hypothesis and vice versa. The authors design four matching strategies, namely

full, max-pooling, attentive, and max-attentive strategies, to compare each time-

step of one sentence against all the time-steps of the other sentence. Similarly,

Ghaeini et al. [21] propose a Dependent Reading BiLSTM (DR-BiLSM) network

to dependently read the premise and hypothesis at the time of BiLSTM encoding.

The dependent reading mechanism, for example, when dependently encoding the

premise, first encodes the hypothesis using a BiLSTM and then encodes the premise

through a BiLSTM that is initialised with the hidden and memory cell state of the

BiLSTM encoding the hypothesis. DR-BiLSTM improves the performance on the

SNLI dataset by 1% when compared to BiMPM model (ACC: 88.5% vs 87.5%).

Tay et al. [141] also highlight the importance of attention directionality in the
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designed Hermitian Co-Attention Recurrent Network (HCRN), which exploits the

property of complex vector space where the complex-valued dot product is non-

commutative and hence maintains the directionality in the attention dot product.

Experimental result on the SciTail dataset shows that the model achieves an accu-

racy of 80.0%.

To utilise the effectiveness of different word-level attention mechanisms, Tan et

al [92] introduced a Multiway Attention Network (MwAN) which employs multi-

ple attention mechanisms to model premise-hypothesis pairs. Specifically, they use

the word-by-word attention mechanism of Rocktäschel et al. [36], bilinear attention

from Chen et al. [174], element-wise dot product attention, and element-wise dif-

ference attention mechanisms [142, 147]. The model achieves an accuracy of 88.3%

demonstrating a significant improvement over the models employing single attention

mechanism. Ablation results further show that removing any attention mechanism

from MwAN decreases the model accuracy.

Tay et al. [20] presents a new ComProp Alignment-Factorised Encoder (CAFE)

neural model by introducing the compare, compress, and propagate (ComProp)

architecture for NLI. The key idea of the ComProp architecture is to learn a com-

pressed alignment feature vector (i.e. an attention vector) for each word in the

premise and hypothesis, concatenate it with the word embedding and propagate

it to the upper encoding layers such as an RNN. Concatenation of the alignment

feature vector enhances the representation ability of the words in the premise and

hypothesis. The model yields an accuracy of 88.5% on the SNLI dataset.

Pan et al. [71] suggest that discourse markers such as “but” and “and” have deep

connections with the intrinsic relation between the two sentences. These markers

can be utilised to improve the performance of NLI models. They study a Discourse

Marker Augmented Network (DMAN) which employs a pre-trained BiLSTM en-

coder. The BiLSTM encoders are first trained from scratch on the Discourse Marker

Prediction (DMP) task [175]. The idea is to transfer knowledge learned from the

DMP task to NLI to benefit from discourse markers. Transferring discourse markers

knowledge to NLI yields 89.6% accuracy on the SNLI dataset.

Chen et al. [91] argue that the sequential inference models based on chain LSTM
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architectures can achieve higher performance as compared to the previous top-

performing models with complex architectures [137, 165]. They empirically demon-

strated that the chain LSTMs with careful design can achieve high performance. In

the first step, the model uses BiLSTM to encode the premise and hypothesis. In

the second step, the network applies dot-product attention over the bidirectional

sequential encoding of the premise and hypothesis. The model further enhances

the local inference learned via attention mechanism by difference and element-wise

product of corresponding hidden states learned in the first and second step. Finally,

in the third step, the composition layer sequentially composes the local inference

information using a BiLSTM layer. The model is called Enhanced Sequential Infer-

ence Model (ESIM). ESIM with an accuracy score of 88.0% is one of the established

model in NLI research domain. ESIM is used as an underlying model in a number

of subsequent NLI researches [38,43,60,109]. We also utilise the ESIM as one of the

underlying model for the models proposed in Chapter 4.

Tree-based Encoder Architectures

Chen et al. [91] investigate the effect of incorporating syntax over the syntactic parse

tree structure of the premise and hypothesis. The Hybrid Inference Model (HIM)

applies the Tree LSTMs [176] recursively to encode the premise and hypothesis over

the parse tree produced by the Stanford PCFG parser [177]. Empirical results on

the SNLI dataset suggest that incorporating syntactic information contributes to

model performance. The model improved the performance of the ESIM [91] model

by 0.6%. (ACC: 88.6% vs 88.0%).

Neural Tree Indexers (NTI) [137] (discussed in Section 2.5.1) proposed a global

and tree attention mechanisms over the full n-ary tree of the premise and hypothesis.

The global attention mechanisms, at every time step of encoding the hypothesis, at-

tends over all the premise tree nodes whereas the tree attention mechanism attends

only to the final learned representation of the premise. The authors study various

models with different combination of tree composition function and attention mech-

anism. The model using the S-LSTM composition function with the global attention

achieved the maximum accuracy (87.3%). In comparison to the to the well-known

50



tree-based SPINN model [58], the main advantage of the NTI model is that it does

not require a syntactic parse tree as input. This reduces the model’s complexity of

operation and increases the practical applicability in natural language applications.

Yin et al. [145] proposed a DEISTE (Deep Explorations of Inter-Sentence inter-

actions for Textual Entailment) model for the SciTail dataset, that learns to assign

higher attention weights to the differentiating words in the output representation of

a CNN encoder. The model also encode the position of the best aligned words in

premise and hypothesis via a learned positional embedding. DEISTE achieves an

accuracy of 84.7% on th SciTail dataset outperforming the ESIM [91], decomposable

attention [42], and DGEM [5] models.

Stack-based Encoder Architectures

Extending the idea of strong interaction of Deep Fusion LSTMs [143] (refer Section

2.5.2), Liu et al. [37] proposed two deep neural network architecture with parallel but

interdependent LSTMs: Loosely coupled-LSTMs (LC-LSTMs) and Tightly coupled-

LSTMs (TC-LSTMs). LC-LSTM model explores the idea of creating a sentence

representation by conditionally encoding sentences over one another. The TC-LSTM

model further combines the hidden states and the memory cell states of two LSTMs

for a stronger interaction. TC-LSTM model has achieved a better performance

than LC-LSTMs (ACC: 85.1% vs 84.3%), suggesting that greater interaction among

sentence pairs and more memory for understanding long-term dependencies can

augment the reasoning power of deep neural networks.

Liu et al. [146] state that NLI is challenging since it requires the model to fully

understand the lexical and compositional semantics and that the previous models

suffer from using only a single-step inference process. To address the limitation, the

authors present a Stochastic Answer Network (SAN) with stacked BiLSTM encoding

layers to iteratively refine predictions over multiple reading passes of the premise and

hypothesis. SAN utilises the scaled dot-product attention [78] at the inter-attention

layer and maintains a memory state of the premise and hypothesis information via

a BiLSTM composition layer. The answer module predicts the NLI class over the

memory states of the premise and hypothesis. The prediction is refined iteratively
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considering the previous time step prediction and the memory states. The iterative

refining strategy of SAN achieves an accuracy of 88.5% on the SNLI dataset.

McCann et al. [70] train MT-LSTM (Machine Translation LSTM), a two-layer

standard BiLSTM network with attention mechanism on the machine translation

task with the aim of transferring the learned knowledge to downstream NLP tasks.

Context Vectors (CoVe), the output of pre-trained MT-LSTM, transfers the learned

knowledge to downstream NLP tasks. The authors further design a Biattentive

Classification Network (BCN) to test the efficacy of CoVe to transfer. The input to

the BCN is the concatenation of GloVe embeddings and CoVe vectors of each word

in the input sequence. A BiLSTM layer with biattention [178] encodes the sequence.

Biattention conditions each representation of the input sequences on the another to

compute interdependent representations. The evaluation result of BCN with Cove

on the SNLI development set shows that CoVe with GloVe achieves (ACC: 88.1%)

higher performance than models that use only GloVe (ACC: 87.7%). The model

attains 88.1% accuracy on the SNLI test set.

Peters et al. [60] further explore the use of pre-trained models for downstream

NLP tasks by introducing deep contextualised word vectors. The deep contextu-

alised word vectors are a linear combination of the intermediate layer representa-

tions of a BiLSTM trained with a bidirectional language model (biLM) objective

on approximately 30 million sentences [179]. The learned word vectors are called

Embeddings from Language Model (ELMo). Contextualised ELMo, representations

when incorporated with the ESIM model of Chen et al. [91], improved the accuracy

of the ESIM model by 0.7% on SNLI dataset (ACC: 88.7% vs 88.0%).

Kim et al. [51] study a Densely-connected Recurrent Co-attentive neural Network

(DRCN), which consists of 5 recurrent layers to utilise the increased representational

power of deep recurrent layers. DRCN utilizes shortcut-connections [170] to prop-

agate the concatenated hidden states and the learned attentive features from all

the preceding recurrent layers. To alleviate the problem of increasing feature vector

dimensions, due to concatenation operation, an autoencoder is used to propagate

only a fixed-length feature vector to the higher recurrent layers. Testing the model

on the SNLI dataset yields 88.9% accuracy.
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Memory Augmented Encoder Architectures

Memory augmented neural networks are an interesting prospect for developing mod-

els for natural language inference task because unlike RNNs (LSTMs, BiLSTMs, and

GRUs) they are not limited for storing long-term dependencies of the input sequence

and hence can generalise well on natural language understanding tasks. Memory

Augmented Neural Turing Machines (NTM) [180], the deep neural network with a

controller and a fixed-sized random-access memory have shown promising perfor-

mance on copying and sorting the sequential data.

Neural Semantic Encoders [81] are an extension of NTM [180] with variable

memory. NSE uses an attention mechanism to access readable and writable exter-

nal shared memory. It can also address multiple shared memories simultaneously.

NSE transforms the memory through the read, write and compose operations. The

compose operation is a composition function which takes as input the memory slot

read by the read operation. The write operation writes back the result of com-

position function to the appropriate memory location. Read, compose and write

operations are neural networks and are fine-tuned during training.

NSE is evaluated on a wide variety of challenging natural language understanding

tasks, for example, NLI, question answering, machine translation, document senti-

ment analysis and sentence classification. The NSE encoder model outperformed

the previous sentence encoding-based models [3, 58,95] by achieving an accuracy of

85.4% on the SNLI dataset.

Long Short-Term Memory-Networks (LSTMN) [147] model augments the LSTM

unit with an internal memory tape. The memory tape stores the memory cell output

for all the previous words of the input sequence read by the LSTMN. Like [36], two

LSTMNs are used to read the premise and hypothesis separately. The matching

vector is created by employing the word-by-word attention mechanism [36] over the

contents of the memory tape of the LSTMN reading the premise. The memory tape

improved the generalisation power of LSTMN while modelling long sequences. The

experimental result demonstrates that LSTMN marginally outperforms NSE (ACC:

86.3% vs 85.4%).

Similar to the Stochastic Answer Network (SAN) [146], Liu et al. [181] propose to
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use multi-turn inference over premise and hypothesis. To match the sentences from

various perspectives, the designed Multi-turn Inference Matching Network (MIMN),

matches the premise and hypothesis contextual representations to the corresponding

aligned vectors using three neural matching functions - concatenation, subtraction,

and multiplication. MIMN uses a memory component to store the inference infor-

mation of the previous turns. At each turn, MIMN matches one matching feature

with the historical inference information stored in the memory component. Ablation

experiments on the SNLI dataset demonstrate that the memory component is cru-

cial to MIMN performance and the maximum attained accuracy of 88.3% degrades

when memory component is removed. The model achieves an accuracy of 84.0% on

the SciTail dataset.

RNN-/CNN-Free Encoder Architectures

Before the advent of the Transformer [78] model (refer Section 2.5.1), the de-

compsable attention model introduced by Parikh et al. [42] demonstrated that at-

tention mechanism can be effectively employed to overcome the disadvantages of

sequential processing of RNNs.

Parikh et al. [42] introduced a decomposable attention model which relies solely

on the attention mechanism [33], preventing the need of RNN/CNN encoding lay-

ers. The model is a simple three-step model consisting of the attend, compare and

aggregate steps. The attend step aligns premise-hypothesis words by means of the

attention mechanism and decomposes the aligned word-pairs into smaller problems

for comparison. The compare step compares each aligned word-pairs identified in

the attend step. The comparison is done by running the concatenated vector rep-

resentations of the aligned word-pairs through a feed-forward neural network. The

network outputs comparison vectors which are a non-linear combination of aligned

word-pairs. The final aggregate step sums up the comparison vectors and produces

the final classification label with another feed-forward neural network.

The high performance (ACC: 86.8%) of the decomposable attention model in

comparison to previous complex recurrence based sentence encoding-based [34, 58,

137] and joint sentence encoding-based models [36,143] demonstrated that attention
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mechanism can be effectively employed to overcome the disadvantages of sequential

processing of RNNs.

Gong et al. [19] introduce a general framework, Interactive Inference Network

(IIN) of modelling the sentence pair by hierarchically extracting the semantic fea-

tures from interaction space (joint representation of the premise and hypothesis).

The authors study a Densely Interactive Inference Network (DIIN), an instantiation

of IIN, which contains highway network [77] with self-attention as sentence encoder,

a dot product cross-attention mechanism to create the joint representation of the

premise and hypothesis (interaction space), and DenseNet [170] as a feature extrac-

tor from the joint representation. Experimental result shows that DINN achieves

an accuracy of 88.0% on the SNLI dataset.

Guo et al. [148] argue that the self attention mechanism of the Transformer

model treats the words at various distances to a central word equally which hinders

the capacity of the Transformer model to capture local structures in input sequence.

To mitigate this shortcoming of the Transformer model, the authors proposed a

Gaussian Transformer which introduces a Gaussian prior to self attention mechanism

of the Transformer model which emphasises words adjacent to a central word more

than the distant words. The Gaussian Transformer achieved an accuracy of 89.2%

on the SNLI dataset.

Radford et al. [61] pre-trains the Transformer model [78] on BooksCorpus [182]

with the language modelling task in an unsupervised manner. The pre-trained

Transformer is then fine-tuned on different downstream supervised tasks such as

NLI, question answering, commonsense reasoning, and semantic similarity, improv-

ing the state-of-the-art on 9 of the 12 datasets the authors study. On the SNLI

and SciTail datasets the model achieved the accuracies of 89.9% 88.3% respectively.

This model developed by OpenAI16 utilises the generative pre-training of the lan-

guage model is popularly known as OpenAI GPT17 model for Generative Pre-trained

Transformer. OpenAI further released the GPT-218 [84] and GPT-3 [85] by scaling-

16https://openai.com/ – As on August 9, 2020.
17https://openai.com/blog/language-unsupervised/ – As on August 9, 2020.
18https://openai.com/blog/better-language-models/ – As on August 9, 2020.
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up the Transformer encoding layers in the original GPT model.

Liu et al. [18] present a Multi-Task Deep Neural Network (MT-DNN) for mod-

elling sequences across multiple natural language understanding tasks. MT-DNN

incorporates bidirectional Transformer model as a shared encoder in a multi-task

learning framework [183]. Experimental results show that MT-DNN achieve the

accuracies of 91.5% and 98.7% on the SNLI and SciTail datasets. The representa-

tions learned by MT-DNN have exceptional generalisation capability attributed to

multi-task learning.

Devlin et al. [16] introduced the state-of-the-art Bidirectional Encoder Represen-

tations from Transformers (BERT), which unlike Peters et al. [60] and Radford et

al. [61], pre-train deep bidirectional representations from unlabelled text by jointly

conditioning on both left and right context in all layers. During pre-training the

underlying Transformer model [78] is trained on two unsupervised tasks, masked

language model and next sentence prediction with BooksCorpus (800M words) [182]

and English Wikipedia (2,500M words).

Recently, BERT has become the model of choice for complex natural language

understanding tasks such as, question answering [184], NLI [17, 18, 152], sentiment

classification [185], and the tasks in GLUE [186] and Super GLUE [187] benchmarks.

The pre-trained BERT models are publicly available19 in various sizes, including the

original BERTBASE and BERTLARGE to be use as encoders or to be fine-tuned for

downstream NLP tasks.

External Knowledge Augumented Encoder Architectures

Leveraging external knowledge in natural language inference systems has long been

proposed [188], however, neural NLI models have only recently started utilising

external knowledge to augment the generalisation and reasoning capabilities of the

NLI models. The pioneering work of Annervaz et al. [82] infuse real-world knowledge

into the deep neural NLI model. The CNN-based model learns the features from

the entities and relations of the WordNet [115] and Freebase [117] databases. The

19https://github.com/google-research/bert – As on August 9, 2020.
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learned features are concatenated with the context representations of the input

sequences obtained using an LSTM layer. Experimental results demonstrate that the

external knowledge augmented LSTM model is able to outperform the vanilla LSTM

trained on the full data, with training on only 70% of the data. This suggests that

the NLI model gains information valuable for reasoning inference from the external

knowledge. The NLI model achieved the maximum accuracy of 73.10% on the SNLI

dataset when the external knowledge is incorporated from the WordNet KG.

Chen et al. [41], introduce a Knowledge-based Inference Model (KIM), that in-

corporates lexical-level semantic knowledge into the attention and composition com-

ponents of the model. Specifically, small number of external lexical features (such as

synonym and antonym) extracted from the lexical database, WordNet [115] is used

to form relation embeddings between the premise and hypothesis words. The KIM

model requires substantial NLI model adaptations to incorporate external knowledge

with marginal performance improvements 0.1% (ACC: 88.6%) over state-of-the-art

CAFE model (ACC: 88.5%) [20]. Further, the model is inflexible to incorporate

different external knowledge sources and NLI models.

Kang et al. [39] design AdvEntuRe, a framework to train the decomposable

attention model [42] with adversarial training examples generated by incorporat-

ing knowledge from linguistic resources such as WordNet, and with a sequence-to-

sequence neural generator. The experimental result on the SNLI (ACC: 84.7%) and

SciTail (ACC: 79.0%) shows that the decomposable attention model is more robust

and achieves better performance when trained with knowledge-guided adversarial

examples.

The follow-up work, NSnet [40] is a neural-symbolic NLI model, that integrates

deep learning approach with the symbolic approach. The model decomposes each

of the hypotheses into various facts and verifies each sub-fact against the premises

using the decomposable attention model [42] and against the Aristo Tuple KB using

a structured scorer. An aggregator network then combines the predictions from

the two models to get the final inference class. The qualitative analysis of the

SNLI test set examples suggest that the symbolic model assists the neural model

in identifying the correct inference class. NSnet achieves an overall accuracy of
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77.9% on the SciTail dataset. Weissenborn et al. [73] refine word embeddings by

dynamically incorporating relevant background knowledge from the ConceptNet KG

[1] and Wikipedia abstracts20. For NLI, when the word embeddings are refined from

the additional ConceptNet background knowledge the BiLSTM-based NLI model

showed an improved accuracy of 86.5% when compared to unrefined BiLSTM model

(ACC: 84.4%).

Wang et al. [114] present ConSeqNet, a system of a text-based and graph-based

models for the SciTail dataset. The outputs of the two models are concatenated

and are fed to the MLP layer for classification. For the text-based model, the

authors employ mLSTM model proposed by Wang and Jiang [142] (refer Section

2.5.2). The graph-based model is constructed by mapping the premise-hypothesis

phrases to the KGs. The sentence embeddings generated by the two models are

concatenated, and input to the MLP layer (refer Section 2.2.8) for the inference

class predictions. ConSeqNet achieves an accuracy of 85.2% on the SciTail dataset

in conjunction with ConceptNet. Further, experiments on the development set of

the SciTail dataset with the WordNet, DBpedia, and ConceptNet KGs achieved the

accuracies of 87.6%, 87.3%, and 88.6% respectively. The results suggest the effec-

tiveness of ConceptNet knowledge for the inference task. However, the model does

not evaluate the model efficacy on the science domain-specific external knowledge

from the science knowledge-based KG Aristo Tuple (refer Section 2.3.2). Further,

the model do not generalise well to SNLI dataset and demonstrates a low accuracy

of 83.3% with the ConceptNet KG [189].

KG-Augmented Entailment System (KES) [189] augment the NLI models with

external knowledge encoded using graph convolutional networks. The knowledge

subgraph is selected by mapping the premise and hypothesis words to the Con-

ceptNet KG by max-substring match. KES achieved an accuracy of 85.56% on the

SNLI dataset with decomposable attention model [42]. Khot et al. [5] proposed a

Decomposed Graph Entailment Model (DGEM) for the SciTail dataset. The model

validates the hypothesis graph with the tokens in the premise. Authors use the open

20Downloaded from https://wiki.dbpedia.org/downloads-2016-10 – As on August 9, 2020.
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information extraction tuples [113] for hypothesis graph representations. DGEM cal-

culates the hypothesis graph node and edge probability of being supported by the

words of premises. The final NLI class is predicted by the average of node and edge

probabilities. On the SciTail dataset, DGEM attained an accuracy of 77.3%, sig-

nificantly outperforming the ESIM [91] (ACC: 70.6%) and decomposable attention

models [42] (ACC: 72.3%).

Li and Sethy [123] incorporate the external lexical knowledge from the WordNet

[115] into the multi-head attention function of the BERT. The WordNnet’s lexical

knowledge is shown to improve the robustness of the BERT model on NLI, achieving

an accuracy of 90.1% on the SNLI dataset. Yang et al. [150] also utilise the WordNet

lexical knowledge to enhance the BERT representation. The external knowledge

(hypernymy, hyponymy, co-hyponyms, antonymy, and synonymy) feature vector

learned via a CNN and concatenated to the hidden BERT representations, improved

the BERT performance.

Pang et al. [149] incorporate the syntactic information from the neural depen-

dency parser in [190] to decomposable attention [42], ESIM [91], BERT [16] and

MT-DNN [18] models. For both the SNLI and SciTail datasets, the decomposable

attention (ACC: SNLI - 84.8%, SciTail - 78.2%), the ESIM (ACC: SNLI - 88.1%, Sc-

iTail - 81.3%), BERT (ACC: SNLI - 90.5%, SciTail - 92.8%), MT-DNN (ACC: SNLI

- 91.1%, SciTail - 94.3) have shown performance improvements. Similarly, Wang et

al. [153] proposed StructBERT, which extends the pre-training of the BERT model

by introducing two auxiliary training objectives to leverage the language structure in

contextualised representations. The first, word structural objective, which demands

the model to reconstruct the right order of a certain number of intentionally shuffled

words. Second, sentence structural objective, that requires the model to predict the

correct order of two sentences. StructBERT marginally improved (by 0.2%) the

performance of the model proposed by Pang et al. [149] on the SNLI dataset (ACC:

91.7% vs 91.5%).

Li et al. [151] conduct experiments on several state-of-the-art NLI models includ-

ing BERT [16], OpenAI GPT [61] and have demonstrated that unsupervised pre-

training and incorporating knowledge from external sources such as WordNet [115]
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are complementary and enhance the performance of pre-trained NLI models. Zhang

et al. [152] utilise the explicit semantic cues from the semantic role labelling tasks

to help the NLI model better understand natural language. The learned seman-

tic role (who did what to whome, when and why) embeddings are concatenated

to the embedding of the each input word of the downstream task. For NLI, the

added semantic role labels improve the performance of the ESIM model from Peters

et al. [60] (ACC: 89.1% vs 88.4%), BERTBASE [16] (ACC: 89.6% vs 89.2%) and

BERTLARGE [16] (ACC: 91.3% vs 90.4%) models. Further, the authors extend the

idea to BERT model and study a Semantics-aware BERT (SemBERT) [17] model.

SemBERT appends the semantic role label embeddings learned from out-of-shelf

semantic role labeler [60] to each input word to generate a semantic aware sentence

embedding. Incorporating semantic role labels into the contextual word representa-

tions improved the performance of the BERTBASE model from 90.7% to 91.0% and

BERTLARGE model performance from 91.1% to 91.6% on the SNLI dataset.

2.6 Conclusions

In this chapter, we introduced a generic neural NLI architecture. The layered ar-

chitecture consists of the embedding, encoding, intra-attention, inter-attention, en-

hancement, composition, pooling, matching, and output MLP layers and an exter-

nal knowledge source component. Different deep neural NLI models proposed in

the research literature can be derived from the presented generic architecture. We

highlighted the different datasets available for NLI model evaluation and elaborate

on the SNLI and SciTail datasets that we utilise to evaluate the NLI models we

develop in this thesis. Further, we tabulate the different external knowledge sources

utilised in the NLI domain, and, elaborated on the the ConceptNet and Aristo Tuple

KGs. We employ ConceptNet and Aristo Tuple KGs to incorporate linguistic, gen-

eral commonsense knowledge and science domain-specific knowledge into the deep

neural NLI models that we propose in this thesis.

We presented a taxonomy of the existing NLI literature by categorising the field

into sentence encoding-based models and joint sentence encoding-based models. The
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models are further categorised based on the architecture of the encoders they employ.

Consequently, we comprehensively reviewed the NLI literature under the presented

taxonomic structure.

In the following chapters, we present several neural NLI models to address the

limitations of the existing literature discussed in Section 1.2. The next chapter

focuses on combining the intra-attention and inter-attention mechanisms in a com-

bined attention model to maximally utilise the two attention mechanisms.
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CHAPTER 3

CAM: A Combined Attention Model for Natural Language

Inference

3.1 Introduction

Traditional approaches to NLI range from machine learning-based [191], lexical and

semantic similarity-based [192, 193], to the methods that extracts structured infor-

mation such as discourse commitments [194] and predicate-argument [195]. Formal

reasoning [196] and natural logic [24] methods are also applied to NLI. However,

traditional approaches require extensive feature engineering. Moreover, these ap-

proaches do not generalise well because of the complexity and domain dependence

nature of the feature engineering task [95,144].

Machine learning has been a dominant approach to NLI [13]. However, the ma-

chine learning research for NLI is severely limited in performance by the lack of

gold-standard premise-hypothesis pairs [3]. The field has renewed prosperity by the

recent introduction of big datasets such as SNLI [3] and SciTail [5]. The public

availability of these big datasets has made it feasible to train complex neural net-

work models for NLI. Recurrent Neural Networks (RNNs), particularly bidirectional

LSTMs (BiLSTMs) [53] in combination with attention mechanisms [33] have shown
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state-of-the-art results on the SNLI dataset [91].

Attention mechanisms have shown promising performance for complex natural

language understanding sequence modelling tasks such as machine translation [78,

197], dialogue generation [198], machine comprehension [199] and natural language

inference [200]. Attention mechanisms allow the RNNs to automatically search for

the most relevant parts of an input sequence and assign importance weights to those

parts. These weights are used for creating the attention-weighted representation of

the input sequence [33].

As mentioned in the context of Interaction Layer (Section 2.2.3), the two broad

categories of attention mechanisms in the research literature are intra-attention and

inter-attention.

The intra-attention mechanism, also known as self-attention [35], involves ap-

plying attention to the input sentence itself. During training, the model learns to

assign a higher weight to those parts of the input sentence which are important to

its semantics. The attention-weighted sentence representations thus generated also

capture the global context of the sentence [34].

In inter-attention mechanism, attention is applied between the input sentences.

The attention-weighted sentence representation of one sentence is generated based

on the contents of another sentence. In the sentence representation, the information

that is important with respect to other sentences is assigned higher weights.

As discussed in Chapter 2, the attention mechanism is an essential component of

the models achieving state-of-the-art performance on the NLI task [200]. However,

the current models that employ intra-attention [34, 87] do not utilize information

from another sentence. The models utilizing inter-attention [36, 37] do not exploit

the contexts in the individual sentences.

This chapter presents a Combined Attention Model (CAM), which employs intra-

attention in conjunction with inter-attention to utilise the benefits of both the mech-

anisms. The model first captures the semantics of the individual input premise and

hypothesis with intra-attention and then aligns the premise and hypothesis with

inter-sentence attention to learn cross sentence dependencies.

The rest of this chapter is organised as follows. In Section 3.2, we present the
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layer-by-layer description of the proposed, CAM model. In Section 3.3, we explore

different experiments on CAM and discuss the results. In Sections 3.3.3 and 3.3.4,

we discuss the quantitative results on the SNLI and SciTail datasets respectively.

In Section 3.3.5, we investigate the ablation analysis on CAM, followed by the fine-

grained accuracy analysis of the CAM and the ablated models in Section 3.3.6.

In Section 3.3.7, we discuss the efficacy of the model on the varying lengths of

premise-hypothesis pair. Qualitative analysis is studied in Section 3.4. Finally, the

conclusions of the chapter is presented in Section 3.5.

3.2 Proposed Model: CAM

The proposed model combines intra-attention and inter-attention for modelling the

interactions between the premise and hypothesis. Figure 3.1 illustrate the high-

level view of the proposed CAM model. The layered architecture is composed of

the following main layers: input embedding, encoding, intra-attention, projection,

inter-attention, enhancement, pooling, matching and classification.

Given a sequence of premise P emb = (p1, . . . ,pn) and hypothesisHemb = (h1, . . . , bm)

with lengths n and m respectively. Each pi, hj ∈ Rd, is a word embedding of d-

dimensional, which can be initialized with pre-trained embedding vectors, such as

Glove [67] or Word2Vec [201] (refer Section 2.2.1).

3.2.1 Input Encoding Layer

We utilize BiLSTMs [54] to encode the input premise and hypothesis sentences.

The BiLSTM processes the input sequence in the forward and backward directions

to incorporate contextual information at each time step of processing the input

sequence. The hidden state output at any time step is the concatenation of forward

and backward hidden states. The representations p̄ ∈ Rn×k and h̄ ∈ Rm×k in

the Equations (3.1) and (3.2) respectively, represents the k-dimensional encoded

representation for each word in the premise and hypothesis respectively. Where k
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Figure 3.1: A high level view of our Combined Attention Model (CAM).

is the dimension of hidden states of the BiLSTM layer.

p̄i = BiLSTM(p, i), ∀i ∈ [1, . . . , n] (3.1)

h̄j = BiLSTM(h, j), ∀j ∈ [1, . . . ,m] (3.2)

3.2.2 Intra-Attention Layer

This layer applies intra-attention [34] to the premise and hypothesis sentences indi-

vidually. Through attention weights, the intra-attention layer emphasizes the words

important to the semantics of the input sentence. The attention-weighted sentence

representation thus generated represents a more accurate and focused sentence rep-

resentation of the input sentence. The attention-weighted sentence representation
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is generated as follows:

M = tanh(W yY +W hravg ⊗ eL) (3.3)

α = softmax(wTM) (3.4)

r = Y αT (3.5)

where W y,W h ∈ Rk×k are trained projection matrices, Y ∈ Rk×L is the matrix of

hidden output vectors of the BiLSTM layer, ravg ∈ Rk is obtained from the average

pooling of Y , eL ∈ RL is a vector of 1s, w ∈ Rk is a learned parameter vector and

wT is its transpose, α ∈ RL is a vector of attention weights and r is the attention-

weighted sentence representation. The attention-weighted sentence representation

is generated for the premise and hypothesis and is projected with a standard pro-

jection layer with ReLU activation to generate P intra atten and H intra atten matrices

respectively.

3.2.3 Inter-Attention Layer

The inter-attention layer uses the soft attention [88, 91] mechanism to associate

the relevant sub-components between the attention-weighted representations of the

premise and hypothesis. The inter-attention layer, first, computes the unnormalized

attention weights as the similarity of hidden states of the intra-attention-weighted

representations premise and hypothesis following the Equation (3.6).

eij = p̃T
i h̃j (3.6)

where eij ∈ E ∈ Rn×m and p̃i ∈ P intra atten and h̃j ∈ H intra atten are the intra-

attention-weighted representation of the i-th and j-th word of the premise and hy-

pothesis respectively.

Next, for each word in the intra-attention-weighted representation of the premise,

P intra atten, the relevant semantics in intra-attention-weighted representation of the

hypothesis is identified and composed using eij, more specifically the Equation (3.7)

details this procedure.
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p̂i =
m∑
j=1

exp(eij)∑m
k=1 exp(eik)

h̃j, ∀i ∈ [1, . . . , n] (3.7)

ĥj =
n∑

i=1

exp(eij)∑n
k=1 exp(eik)

p̃i, ∀j ∈ [1, . . . ,m] (3.8)

where p̂i is a weighted summation of the representations in H intra atten. In-

tuitively, the representations in H intra atten that is relevant to p̃i is selected and

represented as p̂i. Similarly, the same is carried out for each of the intra-attention-

weighted representation, (h̃j), of the hypothesis following the Equation (3.8). We

further enhance the similarities [93] between the intra-attention-weighted represen-

tation of the premise and hypothesis and the local inference information learned by

inter-attention, through the element-wise multiplication of the corresponding repre-

sentations of intra-attention and inter-attention layer as

fp = p̃� p̂ fh = h̃� ĥ (3.9)

For the enhancement, we also considered the element-wise difference [91, 93],

however that did not further improved the model performance.

3.2.4 Pooling Layer

To facilitate the classification of the relationship between the premise and hypothe-

sis, a relation vector is formed from the average and max pooling of the encoding of

the premise and hypothesis representations generated previously by inter-attention

layer in the Equations (3.9). Pooling is performed following the Equations (3.10)

and (3.11).

vp,avg = average{fp, i}ni=1 vp,max = max {fp, i}ni=1 (3.10)

vh,avg = average{fh, j}mj=1 vh,max = max{fh, j}mj=1 (3.11)

where vp,avg and vp,max represents the fixed length vector for premise sentences

resulting from the average and max pooling over {fp, i}ni=1. Similarly, the fixed
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length representations is generated for hypothesis according to Equation (3.11).

3.2.5 Matching and Classification Layer

To classify the relationship between the premise and hypothesis, we create a match-

ing vector by the concatenation of max- and average-pooled vectors obtained from

the Equations (3.10) and (3.11). Specifically, the matching vector is composed as in

Equation (3.12).

f relation = [vp,avg; vp,max; vh,avg; vh,max] (3.12)

The matching vector is input to the a Multilayer Perceptron (MLP) classifier.

The MLP classifier consists of a hidden layer with tanh activation and a softmax

output layer. The network is then trained in an end-to-end manner with the standard

cross-entropy loss (refer Section 2.2.8).

3.3 Results and Discussion

3.3.1 Data

The datasets used for evaluating the CAM model are SNLI [3] and SciTail [5]. For

both the datasets, we used the standard train/development/test splits (refer Section

2.3.1).

3.3.2 Parameters

We use pre-trained 300-D Glove 840B vectors [67] to initialize the word embed-

dings. The out-of-vocabulary (OOV) words are initialized with the uniform dis-

tribution in [−0.05, 0.05]. The hidden states of all the layers for the SciTail and

SNLI datasets are set to 100 and 300 (refer Chapter 5, Section 5.4.1). We use

Adam optimizer [202] for optimisation with first momentum coefficient of 0.9 and

second momentum coefficient of 0.999. To find best hyper-parameter for the model,

we use grid search over the combination of L2 regularisation in [1e-4, 1e-5, 1e-6],

batch size in [32, 64, 128, 256], learning rate in [0.001, 0.0003, 0.0004] and dropout
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rate in [0.2, 0.3, 0.4, 0.5]. Each model is optimized on the development set for the

best performance.

3.3.3 Results on SNLI

Table 3.1 shows the performances of the different models on the SNLI dataset. The

first row presents the lexical classifier by Bowman et al. [3]. Sentence encoding based

models are shown in the second group of Table 3.1. Bowman et al. [3] used LSTMs

to generate sentence encoding of the premise and hypothesis. The sentence encod-

ings are then fed to an MLP to identify the relationship between the premise and

hypothesis. As discussed in Section 2.5.1, following this strategy various sentence

encoding-based models are proposed in the NLI literature. These models are shown

in the second group in Table 3.1.

Models Accuracy

Train Test

Lexical Classifier [3] 99.7 78.2

100D LSTM [3] 84.8 77.6

300D LSTM [58] 83.9 80.6

1024D GRU [203] 98.8 81.4

300D Tree-based CNN [95] 83.3 82.1

600D BiLSTM (intra-attention) [34] 84.5 84.2

300D Directional self-attention network [87] 91.1 85.6

600D Gumbel TreeLSTM [59] 93.1 86.0

600D Residual stacked encoders [79] 91.0 86.0

100D LSTMs word-by-word attention [36] 85.3 83.5

100D Deep Fusion LSTM [143] 85.2 84.6

600D BiLSTM (intra-attention with diversing input) [34] 85.9 85.0

50D Stacked TC-LSTMs [37] 86.7 85.1

300D MMA-NSE (attention) [137] 86.9 85.4

300D LSTMN (deep attention fusion) [147] 87.3 85.7

200D Decomposable attention (intra-attention) [42] 90.5 86.8

600D ESIM + 300D TreeLSTM [91] 93.5 88.6

ESIM + ELMo [60] 91.6 88.7

300D Combined attention mechanism (CAM, our approach) 90.5 86.1

Table 3.1: Accuracies of the sentence encoding- and joint sentence encoding-based
models compared to the proposed CAM model on the SNLI dataset.
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The third group of models are the joint sentence encoding-based models described

in Section 2.5.2, utilising the inter-attention mechanism to align the sub-phrases

between the premise and hypothesis. Peters et al. [60] holds the current state-of-

the-art1 performance on the SNLI dataset among the inter-attention, non-ensemble

models. Embeddings from Language Models (ELMo) word embeddings of Peters et

al. [60], when used with ESIM model of Chen et al. [91] improved the accuracy from

88.0% to 88.7%.

Among the models employing inter-sentence attention, our model, CAM, achieves

a competitive accuracy of 86.1% on the SNLI dataset. Our model outperforms the

previous models proposed by Rocktäschel et al. [36], Liu et al. [143], Liu et al. [34],

Liu et al. [37], Munkhdalai and Yu [137], and Cheng et al. [147]. In CAM, we aug-

ment the intra-attention mechnaism of Liu et al. [34] by the inter-attention mecha-

nism and our model significantly outperforms both the sentence encoding-based (in

Table 3.1 model – 600D BiLSTM (intra-attention) [34], by 1.9) and joint sentence

encoding-based (in Table 3.1 model – 600D BiLSTM (intra-attention with diversing

input) [34], 1.1) variants. This evaluation result highlights the benefits of utilising

the two attention mechanisms in a combined manner.

3.3.4 Results on SciTail

The SciTail dataset contains labelled data for the NLI classes of – neutral and en-

tailment. NLI thus transforms into a binary classification task. Table 3.2 shows the

results on the SciTail dataset. The low accuracies of the state-of-the-art ESIM [91]

and decomposable attention model [42] suggest that SciTail is a difficult dataset to

model. Our model considerably outperforms the ESIM and decomposable attention

model, improving the accuracy by 6.6% and 4.9% respectively. The high accuracy

of CAM on the SciTail dataset demonstrates that it can effectively model long and

complex sentences.

1As on March 24, 2018
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Models Test Accuracy

Majority class 60.3

NGram 70.6

ESIM 70.6

DGEM w/o edges 70.8

Decomposable attention 72.3

DGEM 77.3

CAM (our approach) 77.23

Table 3.2: Accuracies of the NLI models [5] compared to the proposed CAM model
on the SciTail dataset.

3.3.5 Ablation Analysis

We evaluate the effectiveness of the individual components of our model on the

SciTail and SNLI datasets. Table 3.3 depicts the results.

Models Test Accuracy(%)

SciTail SNLI

Combined Attention 77.23 86.14

Intra-attention-only 75.49 80.27

Inter-attention-only 76.06 85.04

Table 3.3: Ablation analysis results for the SciTail and SNLI datasets.

For both the SciTail and SNLI datasets, none of the attention mechanisms in-

dividually achieved the accuracy higher than their combination. The results of the

ablation analysis further demonstrate that the intra-attention and inter-attention

mechanisms work constructively and achieve high accuracy when they are combined.

We discuss the results for each of the datasets as follows.

For the SciTail dataset, both of our intra-attention-only and inter-attention-only

models outperform the models of Parikh et al. [42] and Chen et al. [91] by a large

margin. When we remove inter-attention mechanism from CAM, the intra-attention-

only model has an accuracy of 75.49% and outperforms the decomposable attention

model of Parikh et al. [42] and ESIM model of Chen et al. [91] (please refer Table

3.2 for the model accuracy of Parikh et al. [42] and Chen et al. [91]) by 3.1% and

4.9% respectively.
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When we remove the intra-attention mechanism from CAM, the inter-attention-

only model achieves an accuracy of 76.06%. The inter-attention-only model improves

over the accuracy of decomposable attention of Parikh et al. [42] by 3.76% and by

5.46% over the ESIM model of Chen et al. [91].

For the SNLI dataset, the intra-attention-only model does not perform well and

it achieves an accuracy of 80.27%. However, the inter-attention-only model achieves

an accuracy of 85.04%, which is higher than the word-by-word attention model of

Rocktäschel et al. [36] by 1.5% and deep fusion LSTM model of Liu et al. [143]

by 0.4%. The inter-attention-only model performs competitively with the intra-

attention with diversing input model of Liu et al. [34].

It is worth noting that the SciTail dataset contains longer premises and hypothe-

ses than the SNLI dataset [5]. The results of the ablation analysis for the SciTail

dataset suggest that for long sentences, it is crucial to first capture the semantics of

the input sentence by the intra-attention mechanism.

3.3.6 Fine-grained Accuracy Analysis

To investigate the effectiveness of each attention mechanism individually and in

combination with each other, we further analyse the performance of each model in

Table 3.3. The result of the analysis is shown in Fig. 3.2.

For the SNLI dataset, the results are shown in the Venn diagram of Figure

3.2(a). The three models, that is, the intra-attention-only, the inter-attention-only,

and the combined attention model, correctly classified 74% the test samples (central

region (e)). Combined attention model outperforms each of the individual attention

mechanisms by correctly classifying 2.2% of test cases individually (region(c)) as

compared to 1.8% of intra-attention-only (shown in region (a)) and 2.1% of inter-

attention-only model (shown in region (g)). The inter-attention model and the

combined attention model correctly classify 7.0% of test samples (shown in region

(f)) whereas intra-attention and combined attention correctly classify 3.0% of test

samples (shown in region (b)). This suggests that inter-attention is crucial for the

high performance on the SNLI dataset. The intra-attention and inter-attention

correctly classifies 2.0% of test samples. There are 7.9% test samples which cannot
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(a) SNLI (b) SciTail

Figure 3.2: Venn diagram showing the percent of test samples correctly classified
by each model in Table 3.3. The central overlapped region depicts the percent of
correctly classified test samples by all the three models. The label adjoining each
attention model shows the percent of test cases incorrectly classified by the individual
model. The label at the left bottom shows the percent of test samples incorrectly
classified by all the models. For instance, for the SNLI dataset (Fig. (a)) the
three models classified 74.0% of test cases correctly. The combined attention model
individually misclassified 5.9% of test cases and all the three models misclassified
7.9% of test cases.

be classified correctly by any of the three models.

For the SciTail dataset, the results are depicted in Figure 3.2(b). The three

models correctly classified 64% of the test cases (central region (e)). Similar to

the SNLI dataset, the combined attention model gets the highest (3.3%) percent of

test samples classified correctly. Unlike for the SNLI dataset, the intra-attention-

only and combined attention models agree on a larger number of test cases (5.1%,

region (b)) than the inter-attention-only and combined attention model, which agree

on 4.6% (region (f)) of the test cases. Given the fact that the SciTail dataset is

difficult to model [200], the result suggest that capturing the semantics of individual

sequence first with intra-sentence attention is crucial for modelling complex datasets.

Moreover, a significant number of test samples (13.4%) are not classified correctly by

any of the model. This further indicates the high complexity of the SciTail dataset.

Linguistic analysis of the test samples in each region of Figure 3.2 is an inter-

esting investigation to understand the behaviour of each model. Particularly, it is

interesting to analyze syntax and semantics of the premise-hypothesis pairs, which
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are incorrectly classified by the intra-attention-only and inter-attention-only models

but correctly classified by combined attention model. Region (c) in Fig. 3.2 depicts

these test cases. A preliminary linguistic observation on the syntactic structure of

the premise-hypothesis pairs in this region suggest that for longer premises (word

count > 20) the combined attention model predicts the test classes correctly more

often than the intra-attention-only and inter-attention-only models.

3.3.7 Length Analysis

To understand the effectiveness of CAM for the premise and hypothesis sentences of

varying lengths (word count), we evaluate the model accuracy when the hypothesis

and premise lengths vary in the intervals 0-5, 10-15, 15-20, 20-25, 25-30 and greater

than 30 words. The results are reported in Fig. 3.3. For both the SNLI and SciTail

datasets, the result suggests that for all the premise length intervals, the model is

very effective for hypothesis lengths greater than 10 words. The accuracy of 0%

shows that no test case exists in that interval of premise-hypothesis length.

(a) SNLI (b) SciTail

Figure 3.3: The CAM model accuracies for the varying premise and hypothesis
lengths of the SNLI and SciTail datasets.
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3.4 Qualitative Analysis

We semantically and syntactically analysed the premise-hypothesis pairs of the Sc-

iTail test set that are correctly classified and the pairs that are misclassified by our

model. The semantic analysis suggests that our model effectively learns to reason be-

tween the premise and hypothesis and do not depend on the word overlap between

them. Table 3.4 and Table 3.5 illustrates some of the correctly and misclassified

examples from the SciTail dataset.

S.No Premise\Hypothesis Pair Correct Test Label

1. Helium is the second most abundant element
in the known universe, after hydrogen.\The el-
ement hydrogen is the most abundant in the
universe.

Entailment

2. The reality is that plasmas make up over 98%
of the matter in the universe.\Plasma matter
makes up most of the universe.

Entailment

3. A convex lens is a lens that is thicker in the
middle than at its edges.\A concave lens is
thicker at the edges than it is in the middle.

Neutral

Table 3.4: Correctly classified test cases by the CAM model from the SciTail test
set.

S.No Premise\Hypothesis Pair Correct Test Label

1. In the terminology of engineering mechanics,
statics is the study of forces on structures, and
dynamics is the study of forces on structures in
motion.\Dynamics is the study of how forces
affect the motion of objects.

Entailment

2. Our digestive system requires that our food
is chewed by teeth, go through the esopha-
gus, stomach, intestine and many associate or-
gans.\Esophagus, stomach, intestines are the
structures that make up the digestive system
in the human body.

Entailment

Table 3.5: Misclassified test cases by the CAM model from the SciTail test set.

The test case 1 in Table 3.4, suggests that the model correctly learns to reason
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that hydrogen is the most abundant element in the universe without this being

explicitly stated in the premise sentence. Similarly, for the text case 2, for the

premise-hypothesis pair to be correctly classified, the model must learn the numerical

reasoning by which it can conclude that - “98 percent of the matter” is – the “most”

of the universe. Text case 3 is an interesting example where our model excels.

The test case has a high degree of word overlap, however, the model does not get

confused and correctly identifies that hypothesis is neutral to the premise. For the

misclassified text cases of Table 3.5, we observed that premise-hypothesis pairs are

generally syntactically and semantically intricate and contain ambiguous words. We

believe that it is essential to embed external linguistic and real-world knowledge in

the NLI model to correctly classify these text cases. Chapter 4 and Chapter 6 present

the linguistic and real-world knowledge enhanced NLI models that demonstrates

superior performances on such premise-hypothesis pairs.

3.5 Conclusions

In this chapter, we proposed a natural language inference model called the Com-

bined Attention Model (CAM), that leverage the intra-attention and inter-attention

mechanisms to learn the accurate semantic representations of the premise and hy-

pothesis. The model first captures the semantics of the individual premise and

hypothesis inputs with intra-attention and then aligns the premise and hypothesis

with the inter-sentence attention mechanism to learn cross sentence dependencies.

Qualitative and quantitative evaluations on two datasets – SNLI and SciTail,

demonstrate that the proposed Combined Attention Model is capable of modelling

the semantics of long and complex sentences. CAM performs particularly effectively

on the hard to model SciTail dataset, achieving 77.23% accuracy and outperforming

the state-of-the-art ESIM by 6.6% and decomposable attention models by 4.9%.

Further, the results of ablation analysis show that the intra-attention and inter-

attention mechanisms work constructively and achieve higher accuracy when they

are combined together in the same model than when they are used individually.

Despite the superior performance of CAM and the other state-of-the-art NLI
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models on the SNLI and SciTails datasets, the NLI models suffer from the lack

of lexical and commonsense knowledge that is present and learnable from these

datasets. As discussed in the NLI task definition (Section 1.1), NLI relies on common

human understanding of language and the real-world commonsense knowledge on

which the (human) entailment judgement relies. Thus, it is crucial to investigate

the effect of incorporating external linguistic and commonsense knowledge into the

NLI models. In the next chapter, we explore the effect of incorporating external

knowledge into the NLI models.
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CHAPTER 4

Bilinear Fusion of Commonsense Knowledge with

Attention-Based NLI Models

“In order for an intelligent creature to act sensibly in the real world, it must

know about that world and be able to use its knowledge effectively. The common

knowledge about the world that is possessed by every schoolchild and the methods

for making obvious inferences from this knowledge are called commonsense . . . How

to endow a computer program with commonsense has been recognized as one of the

central problems of artificial intelligence since the inception of the field.”

— Ernest Davis, Representations of Commonsense Knowledge, Ch. 1, 2014

One of the major limitations of the contemporary neural NLI models is the sole

reliance on the training data to learn the linguistic knowledge (word meaning, syn-

tactic structure and semantic interpretation) and also the commonsense knowledge

about real-world. Given the challenging nature of human judgement centric NLI

task, the models can not depend solely on training data to acquire all this knowl-

edge. Primarily, because as discussed in Section 1.2, humans do not express the

implicit knowledge and a vast majority of real-world commonsense knowledge is not
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mentioned in the texts. Hence, we consider the task of incorporating real-world

commonsense knowledge into the deep neural NLI models.

In the context of artificial intelligence, commonsense knowledge is the set of

background information about the everyday world, that an individual is expected to

know or assume, and the ability to use it when appropriate [188]. The importance of

commonsense or factual background knowledge in natural language understanding

applications has long been recognised [188]. Many complex NLU applications such as

question-answering [204] and machine reading [205] achieved improved performance

when supplied with commonsense knowledge.

Premise: Two young girls hang tinsel on a Christmas tree in a room with blue
curtains. tinsel IsA christmas tree decoration

Hypothesis: Two girls are decorating their Christmas tree. tree RelatedTo christ-
mas

Premise: People sit and watch as a street performer is singing. people Antonym
person

Hypothesis: A person is performing on the street. performing HasSubevent
singing, person Antonym people

Table 4.1: The SNLI datset examples with commonsense triples (in red) from the
ConceptNet KG. Commonsense knowledge helps the NLI model to reason over the
premises and hypotheses.

Thus far, NLI research has not fully leveraged the additional information avail-

able via the use of commonsense knowledge. For example, state-of-the-art NLI mod-

els [39,41] are limited to incorporating only lexical-level external knowledge, such as

synonym and hypernymy. However, NLI is a complex reasoning task, in addition to

lexical-level external knowledge, the task requires real-world commonsense knowl-

edge to reason about inference. Table 4.1 shows examples from the SNLI dataset [3],

where the commonsense knowledge is retrieved from the ConceptNet KG [206]. The

common knowledge that, tinsel IsA Christmas tree decoration and tree RelatedTo

christmas is useful to ascertain the inference relationship of entailment. Similarly,

for the second pair, the information that performing HasSubevent singing and per-

son Antonym people enrich the contexts of the premise and hypothesis respectively

which is crucial to reason the relationship of premise-hypothesis.
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Due to the lack of such common knowledge, state-of-the-art NLI models per-

form substantially worse for the premise-hypothesis pairs that require real-world

commonsense knowledge for reasoning inference [38].

Effectively incorporating the external commonsense knowledge in deep neural

NLI models is challenging. The main challenges are:

• Structured Knowledge Retrieval: Given a premise-hypothesis pair, how

to effectively retrieve the specific and relevant commonsense knowledge from

the massive amounts of data in KGs.

• Encoding Retrieved Knowledge: Learning the representations of the re-

trieved external knowledge amenable to be fused with representations of premise-

hypothesis is challenging.

• Feature Fusion: How to fuse the learned external knowledge encoding with

the premise-hypothesis. This feature fusion requires substantial NLI model

adaptations with marginal performance gains [40, 41,114].

In this chapter, we propose a novel framework, BiCAM (acronym for Bilinear fu-

sion of Commonsense knowledge with Attention-based NLI Models), to address the

abovementioned challenges. The BiCAM framework approach the stated challenges

in the follwing unique ways.

• Structured Knowledge Retrieval: We formulate an effective set of heuris-

tics to retrieve commonsense knowledge from the KGs (refer Section 4.1.1 for

knowledge retrieval heuristics and Section 4.3.5 for the quality analysis of the

retrieved knowledge).

• Encoding Retrieved Knowledge: We first embed the retrieved knowledge

with Holographic Embeddings (HolE) [207], a KG embedding method to learn

the embeddings of entities and relations in the KG and then encode the re-

trieved knowledge over the HolE embeddings via a CNN-based encoder.

The HolE embedding technique learns expressive KG triple representations

and is simple and efficient to train [50]. CNN-based commonsense knowledge
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encoder learns the features from the input in a bag-of-words manner providing

the accuracy and convenience in feature learning from the part sequential,

triple-based KG data [171] (refer Section 4.1.2 for embedding and encoding of

retrieved knowledge).

• Feature Fusion: Finally, we use a state-of-the-art feature fusion technique,

factorized bilinear pooling [208], to learn the fused feature representation of

the learned commonsense encoding and the sentence encoding from the NLI

model. Bilinear pooling allows each feature point in the fusing feature vec-

tors to interact and captures complex associations between them. The joint

representations created in such a manner are more expressive than the rep-

resentations created through the concatenation or element-wise summation

or multiplication of fusing vectors (refer Section 4.1.2 for details on bilinear

pooling and the ablation analysis Section 4.3.3 for the effectiveness of bilinear

pooling).

The salient feature of the proposed, BiCAM, framework is that it is an NLI

model-independent framework that generalises across NLI models, datasets and

commonsense knowledge sources and does so without any architectural changes to

the underlying NLI model. In summary, the main contributions of this chapter are:

• We introduce an NLI model-independent neural framework, BiCAM, to incor-

porate external commonsense knowledge into the NLI models. The experimen-

tal result demonstrates that BiCAM generalizes across NLI models, datasets,

and commonsense knowledge sources.

• To the best of our knowledge, we are the first to use the nonlinear feature

fusion technique – factorized bilinear pooling, to fuse premise-hypothesis and

commonsense knowledge features in the NLI models.

• An extensive evaluation of the proposed approach with two established NLI

baselines, ESIM [91] and decomposable attention model [42] in combination

with a general commonsense KG, ConceptNet and a (science) domain-specific

KG, Aristo Tuple on two NLI datasets, SNLI and SciTail.
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Figure 4.1: A high-level view of the proposed BiCAM architecture. The data
(premise, hypothesis and the corresponding commonsense triples) flows from bot-
tom to top. Premise and the corresponding triples are depicted in green, hypothesis
and the corresponding triples are shown in purple.

4.1 Methods

A high-level view of our proposed BiCAM framework is illustrated in Figure 4.1.

In this section, we discuss the individual BiCAM components and the uniquely

structured framework. We catalogue the heuristics to retrieve relevant commonsense

knowledge from KGs in the “Commonsense Knowledge Retrieval” section (4.1.1).

Embedding and encoding of commonsense knowledge and NLI premise-hypothesis

are discussed in the “Encoders” section (4.1.2). The “Feature Fusion” section (4.1.2)

discusses factorized bilinear pooling.

4.1.1 Commonsense Knowledge Retrieval

To extract external commonsense knowledge, we consider two KGs: ConceptNet, for

general real-world commonsense knowledge and Aristo Tuple, for (science) domain-

82



specific knowledge (refer Sections 2.3.2). To reiterate, the knowledge in these KGs is

represented as a triple (head, relation, tail), where head and tail are the real-world

entities and the relation, is a specific set of associations, describing the relation-

ship between the entities. Examples of triples in ConceptNet KG are (employ-

ees AtLocation work), (shirt UsedFor wearing).

Retrieval and preparation of contextually specific and relevant information from

the KGs are complex and challenging tasks and are the crucial steps in our model.

Several heuristics, statistical and neural approaches have been proposed in the field

[209]. For this research work, we use a heuristic retrieval mechanism. The retrieved

triples are ranked as per the order of retrieval. To retrieve contextually specific and

relevant KG triples, we successively formulate the proposed heuristics. Specifically,

we started with the individual heuristic, qualitatively analysed the retrieved KG

knowledge for relevance to the context of premise and hypothesis and alter the

current heuristic or formulate a new heuristic.

Further, we find empirically that non-specific commonsense knowledge from the

KGs degrades the model performance. Below we catalogue the heuristics and illus-

trate the triples retrieved by the application of each heuristic in Table 4.2.

1. Stop words are removed from the premise and hypothesis.

2. To identify the relations between the words within the premise or hypothesis,

we retrieve all triples involving each pair of words as head and tail.

3. To identify the relations from premise words to hypothesis words, we retrieve

the triples with premise words as head and the words of the hypothesis as the

tail. For the hypothesis, we extract the relations from the hypothesis words

to premise words.

4. The relation RelatedTo has the largest number of triples in the ConceptNet

KG. Although the relation communicates that the head and tail are related,

it does not specify the specific relationship between them. To eschew the

extracted commonsense knowledge from non-specific information and a higher

number of triples with RelatedTo relation, we randomly select one triplet with

RelatedTo relation, if multiple such triples are extracted. Additionally, we

removed any duplicated triples from the final set of retrieved triples.
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Step Premise Hypothesis

Input A white horse is pulling a cart while
a man stands and watches.

An animal is walking outside.

1. ‘white’, ‘horse’, ‘pulling’, ‘cart’,
‘man’, ‘stands’, ‘watches’

‘animal’, ‘walking’, ‘outside’

2.
horse HasProperty white,
cart RelatedTo horse

animal AtLocation outside

3.
horse IsA animal,
horse RelatedTo animal,
horse AtLocation outside

animal RelatedTo horse
animal antonym man
animal DistinctFrom man

4.

horse HasProperty white,
cart RelatedTo horse
horse IsA animal,
horse AtLocation outside

animal AtLocation outside,
animal RelatedTo horse,
animal antonym man

Table 4.2: A step by step illustration of commonsense knowledge retrieval for a
SNLI premise-hypothesis pair from the ConceptNet KG. Each step in the table
corresponds to the heuristic detailed in the Section 4.1.1 – Commonsense Knowl-
edge Retrieval. Step 4 shows the final set of retrieved triples for the premise and
hypothesis.

5. Finally, if the words of the premise and the hypothesis do not extract any

commonsense knowledge by the application of above heuristics, we randomly

select a word from them and extract a triple from one of the relations in entails,

synonym, antonym.

4.1.2 Model Architecture

Commonsense Encoding Model. The commonsense encoding model learns the

features from the retrieved commonsense triples. We provide a layer-by-layer de-

scription (refer Figure 4.1).

Embedding Layer. To represent the retrieved commonsense triples, we learn the

Holographic Embeddings (HolE) [207] of KG triples. HolE embedding technique

learns expressive representations and is simple and efficient to train [50].

Given a commonsense triple (h, r, t), HolE represents both the entities and

relations as vectors in Rd. First, HolE compose the head and tail into h ? t ∈ Rd
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using the circular correlation:

[h ? t]i =
d−1∑
k=0

[h]k � [t(k+i)mod d] (4.1)

where h, t ∈ Rd are the head and tail entities embedding, ? and � respectively

denotes circular correlation and the Hadamard product. The compositional vector

obtained is then matched with the continuous representation of relation to score the

commonsense triple using the scoring function defined as:

fr(h, t) = rT(h ? t) =
d−1∑
i=0

[r]i

d−1∑
k=0

[h]k � [t](k+i)mod i (4.2)

where r ∈ Rd is the relation embedding. The score measures the plausibility of the

commonsense triple. We train the HolE embeddings (Θ) using the pairwise ranking

loss computed as:

min
Θ

∑
i∈Γ+

∑
j∈Γ−

max(0, γ + σ(ηj)− σ(ηi)) (4.3)

where Γ+ denotes the set of triples in the KG, Γ− denotes the “negative” triples

that are not observed in KG and γ > 0 specifies the width of margin, σ(.) denotes

the logistic function and η is the value of the scoring function.

For ConceptNet and Aristo Tuple, we train the HolE embeddings for the triples

retrieved from the SNLI and SciTail vocabulary. Table 4.3 shows the train/development

/test splits used to learn the embeddings.

NLI KG (#rel) Train Set Dev Set Test Set

SNLI ConceptNet (47) 560,718 62,302 69,224

SciTail
ConceptNet (47) 467,362 51,929 57,699

Aristo
Tuple (1605)

232, 109 27,346 30,385

Table 4.3: Number of data triples from the ConceptNet and Aristo Tuple KGs for
learning the HolE Embeddings. (#rel) is the number of relations in the KG.

For all the three pairs of NLI/KG data in Table 4.3, we use AdaGrad [210]
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to optimize the objective in Equation (4.3), via an extensive grid search over an

initial learning rate of (0.001, 0.01, 0.1), a margin of (0.2, 1, 2, 10), mini-batch size

(50, 100, 150, 200) and entity embedding dimensions of (50, 100, 150, 200). At each

gradient step, we randomly generate 5 negative tail entities with respect to a positive

triple.

We evaluate the learned HolE embeddings on the triplet classification task. For

SNLI/ConceptNet pair, the model achieves the highest accuracy of 64.0% with an

embedding dimension of 150. For SciTail/ConceptNet and SciTail/Aristo Tuple

pairs, HolE reported the top accuracy of 62.8% and 69.4% respectively at embedding

dimension 100.

Encoding Layer. To learn the features over the pre-trained HolE embeddings,

we employ a CNN-based neural model [171].

For each premise/hypothesis, let T = (τ1, τ2, . . . , τm) be a sequence of length n

created by joining the m retrieved triples from the KG. Each τ is of the form (h, r, t)

and, hence, n = 3m. The sequence T, padded where necessary, and represented as:

T = (x1, x2, , x3), (x4, x5, , x6), . . . , (xn−2, xn−1, xn) (4.4)

where xi is the i -th word in the sequence and the (x1, x2, , x3) are the words from

the triple τ1. Let xi ∈ Rd be the d-dimensional HolE embedding corresponding to

the i-th word. A sequence of length n is represented as a matrix X ∈ Rd×n, by

concatenating its word’s HolE embedding as columns, i.e., xi is the i−th column

of X. We apply a convolution operation with filter W ∈ Rd×h, to a window of h

words. The convolution operation learns a new feature map from the set of h words

with the operation:

c = f(X ∗W + b) ∈ R(n−h
s

)+1 (4.5)

where c is a feature map, b ∈ R(n−h
s

)+1 is the bias term, s is the stride of

convolution filter, and f(·) is the activation function, rectified linear unit in our

experiments and ∗ denote convolution operation. The filter convolve over each

window (xih+1: (i+1)h) where 0 ≤ i ≤ n− 1 in X to produce a feature map (c). We
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set the h and s to 3 for the commonsense triples. Convolving the same filter with

the 3-gram beginning at every 3rd position in the triple sequence allows the features

to be extracted from every triplet in the sequence. We then apply a max-over-time

pooling operation over the feature map and take the maximum value ĉ = max{c}

as a feature corresponding to this filter. Max pooling operation captures the most

important feature for each feature map.

Above we detailed the process of extracting one feature from one filter. Multi-

ple filters (with fixed window size and stride of 3) are employed to obtain multiple

features. Each filter is considered as a linguistic feature detector that learns to recog-

nize a specific feature from the commonsense triple. The output of the commonsense

encoder is a l-dimensional vector to represent commonsense.

NLI Encoders. We incorporate BiCAM with two established NLI baselines: ESIM

[91] (refer Section 2.5.2) and decomposable attention model [42] (refer Section 2.5.2).

Feature Fusion. We apply factorized bilinear pooling [208] to fuse the common-

sense features and NLI sentence features. Let p,h ∈ Rdenc
be the NLI model gen-

erated encoding of premise and hypothesis respectively. Also, let pcs,hcs ∈ Rlenc

denote the corresponding commonsense encoding generated by commonsense en-

coder for premise and hypothesis respectively. We apply the factorized bilinear

pooling defined as:

zp = SumPooling(UT p� V T pcs, k) (4.6)

zh = SumPooling(UT h� V T hcs, k) (4.7)

where zp, zh ∈ Ro are the NLI and the corresponding commonsense feature-

fused representations of the premise and hypothesis respectively and U ∈ Rdenc×ko,

V ∈ Rlenc×ko are projection matrices learned during training. The k and o, the

factor and the output dimensionality, respectively, are the hyper-parameters of the

factorised bilinear pooling method. SumPooling(x, k) denote a sum pooling over

x with a one-dimensional non-overlapped window of size k and � represents the

Hadamard product.

To prevent overfitting, we also added a dropout layer [63] after the element-wise
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multiplication of the projection matrices. Further, to allow the model to converge

to a satisfactory local minimum, we append power normalization (z← sign(z)|z|0.5)

and l2 normalization layers (z← z/‖z‖) after SumPooling layer [208].

The factorized bilinear pooling captures the complex association between the

features from premise-hypothesis and the corresponding commonsense features. The

pooling method is implemented as a feed-forward neural network.

Classification Layer. We classify the relationship between the premise and hy-

pothesis using a Multilayer Perceptron (MLP) classifier. The input to the MLP is

the concatenation of sentence embeddings (p and h) obtained from the NLI model

and their corresponding commonsense feature-fused representations (zp and zh) ob-

tained from the factorised bilinear pooling layer. The input is represented as

f final = [p; zp; h; zh] (4.8)

The MLP consists of two hidden layers with tanh activation and a softmax output

layer to obtain the probability distribution for each class. The network is trained in

an end-to-end manner using multi-class cross-entropy loss.

4.2 Experiments and Results

Our aim is to incorporate commonsense knowledge into NLI models in order to aug-

ment its reasoning capabilities. The method to do so should generalise across dif-

ferent NLI models, datasets, and KGs. To test BiCAM’s efficacy and investigate its

generalisability, we evaluate the BiCAM framework using two attention-based NLI

baselines on two benchmark datasets in combination with two KGs. We compare

our models with both external knowledge-based and attention-based NLI models.

We refer to BiCAM as BiDCAM, when the decomposable attention model is used as

NLI baseline and BiECAM, when ESIM is used (see Figure 4.1). We next introduce

the general evaluation setting of our BiCAMs (BiDCAM and BiECAM).

88



Experimental Settings For the NLI encoders, in our BiECAM and BiDCAM

models, we follow the experimental settings such as dropout locations, word embed-

ding initialisation with 300 dimensional Glove 840B embeddings [67] and the hidden

layer sizes as suggested originally in the ESIM [91] and decomposable attention [42]

models respectively.

For the commonsense encoding model, ConceptNet and Aristo Tuple KG triples

are initialised with 150 and 100 dimensional pre-trained HolE embeddings [207].

These embeddings are trained and selected as discussed in Section 4.1.2 for the

embedding layer of commonsense encoding model. The number of filter are fine-

tuned from [50, 100, 120, 150]. The max pooling layer of the commonsense encoding

model is regularised with dropout regularisation.

For the factorised bilinear pooling, dropout is applied after the element-wise

multiplication of the projection matrices [208] (refer Section 4.1.2) and to the output

of the layer. The factor number and output dimensions are fine-tuned from [5, 6, 7]

and [500, 600, 700] respectively.

For the overall BiCAM framework, to find the best hyper-parameter, along

with the specific hyper-parameters for the individual BiCAM components discussed

above, we use a grid search over the combination of L2 regularisation in [1e-4, 1e-5,

1e-6], batch size in [32, 64, 128, 256], initial learning rate in [0.001, 0.0003, 0.0004]

and dropout rate in [0.2, 0.3, 0.4, 0.5]. Each model is optimized on the development

set for the best performance.

Datasets. We assess BiCAMs on the SNLI [3] and SciTail [5] benchmark datasets

(refer Section 2.3.1). We consider ConceptNet KG for general commonsense knowl-

edge and Aristo Tuple KG for domain-specific knowledge (refer Section 2.3.2).

Results on SNLI. Table 6.1 shows the results of the state-of-the-art external

knowledge-based and attention-based NLI models in comparison to BiCAMs. We

evaluate ConceptNet KG for commonsense knowledge for the SNLI dataset. The

models, BiDCAM and BiECAM, improve the performance of their respective attention-

based baselines (decomposable attention and ESIM models) by +0.4% and +0.8%.

BiCAMs also perform consistently better among the external knowledge-based
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NLI Model Test Acc(%)

Attention-based Baselines
CAM [62] 86.1
Decomposable Attention [42] 86.3
ESIM [91] 88.0
External Knowledge-based Baselines
CNN-based KG [82] 73.1
AdvEntuRe [39] 84.6
BiLSTM (E3) [73] 86.5
ESIM (E3) [73] 87.3
Char+CoVe-L [70] 88.1
ESIM + Syntactic TreeLSTM [91] 88.6
KIM [41] 88.6
Our Models
BiDCAM + ConceptNet 86.7
BiECAM + ConceptNet 88.8

Table 4.4: Accuracies of the state-of-the-art attention-based and external knowledge-
based NLI models as compared to BiCAMs on the SNLI dataset. BiCAMs enhance
the NLI models with the external knowledge retrieved from the ConceptNet KG.

and attention-based NLI models. BiECAM model achieves an accuracy of 88.8%

outperforming (+0.2% accuracy improvement)1 the state-of-art external knowledge-

based NLI models, ESIM+Syntactic Tree LSTM [91] and KIM [41].

Results on SciTail. The test accuracy of different NLI models on the SciTail

benchmark dataset is summarised in Table 6.2. For the SciTail dataset, we study

the performance of BiCAMs on the general commonsense ConceptNet KG as well

as the (science) domain-targeted Aristo Tuple KG.

All our models significantly outperform the incorporated baselines across both

the KGs, achieving absolute improvements of up to 4.5% (BiDCAM + Concept-

Net), 5% (BiDCAM + Aristo Tuple) on decomposable attention baseline and 7%

(BiECAM + ConceptNet), 8% (BiECAM + Aristo Tuple) on ESIM baseline. This

demonstrates our framework’s ability to generalize well across a number of NLI

models and different KGs.

The BiECAM + Aristo Tuple model achieves an improvement of 0.7% over the

1SNLI is a highly competitive dataset. Models differ very slightly in accuracy. Leaderboard as
on July 18, 2020 – https://nlp.stanford.edu/projects/snli/
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NLI Model Test Acc(%)

Attention-based Baseline
ESIM [91] 70.6
Decomposable Attention [42] 72.3
CAM [62] 77.0
External Knowledge-based Baseline
Majority classifier [40] 60.3
AdvEntuRe(seq2seq generator) [39] 76.9
DGEM [5] 77.3
NSnet [40] 77.9
AdvEntuRe(seq2seq + rule generator) [39] 78.6
AdvEntuRe (rule generator) [39] 79.0
Our Models
BiDCAM + ConceptNet 76.8
BiDCAM + Aristo Tuple 77.3
BiECAM + ConceptNet 77.6
BiECAM + Aristo Tuple 78.6

Table 4.5: Accuracies of the state-of-the-art attention-based and external knowledge-
based NLI models as compared to BiCAMs on the SciTail dataset. BiCAMs enhance
the NLI models with the external knowledge retrieved from the ConceptNet and
Aristo Tuple KGs.

NSnet model, which is an established baseline developed for the SciTail dataset,

demonstrating the effectiveness of BiCAM. All our models perform competitively

on attention-based baselines, CAM and DGEM. BiECAM + Aristo Tuple observes

an accuracy improvement of 1.3% over previous state-of-the-art DGEM model.

4.3 Analysis

4.3.1 Number of Commonsense Features

To investigate the effect of incorporating various numbers of commonsense features,

we vary the number of triples input to the commonsense encoding model. Particu-

larly, we are interested in answering the question: How many commonsense features

are required for the optimal model performance? For the experiment we follow the

order of retrieval of triples and do not rank them. The results are depicted in Figure

6.2.
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Figure 4.2: Accuracy of the BiCAMs with the varying number of commonsense
triples. (*) denotes the SNLI and (#) the SciTail datasets.

For SNLI The model BiECAM + ConceptNet achieves the highest accuracy

(88.8%) using 7 triples. We observe a decrease in accuracy with increasing the

number of triples. BiDCAM + ConceptNet follow the same trend, however, it at-

tains the highest accuracy (86.7%) with the fewer number (5) of triples. The fewer

number of triples required for BiCAMs to achieve their maximum accuracies on

the SNLI dataset, is attributed to the limited linguistic variation and short average

length of stop-word filtered premise (7.35 for entails and neutral class) and hypoth-

esis (3.61 for entails and 4.45 for neutral class) [5] of the SNLI dataset, which limit

its ability to fully extract and exploit KG knowledge.

For SciTail The BiCAMs, when evaluated using the general commonsense knowl-

edge source ConceptNet, require a relatively high number of triplets (11 and 15 resp.)

to achieve their maximum accuracy. This is due to the higher syntactic and seman-

tic complexity of the SciTail dataset, that needs more knowledge to reason about

inference. However, when evaluated with the domain-specific Aristo Tuple KG, the

models achieve the highest accuracies with fewer (BiDCAM at 7 and BiECAM at
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11) triples. The specialised scientific knowledge in Aristo Tuple improves the model

performance with less external knowledge.

We observe that the BiCAMs, when trained on the SciTail dataset, require a

higher number of triples to attain maximum accuracy relative to when trained on

the SNLI dataset. This can be attributed to the small training size of the SciTail

dataset, which thus requires a higher number of triples to compensate for missing

knowledge. We conclude that:

• The commonsense features, when incorporated in the correct number, help

reason the relationship between premise and hypothesis.

• The number of commonsense features required depends on the syntax, seman-

tics and size of the target dataset, as well as the domain of source KG.

4.3.2 Fine-grained Accuracy Analysis

To investigate the effectiveness of BiCAMs, we perform a fine-grained analysis of

the BiECAM performance in conjunction with ESIM baseline. Figure 4.3 shows

the Venn diagram of the analysis on the SNLI and SciTail datasets. For the SNLI

dataset, both the baseline ESIM and BiECAM models classify 83.44% of test cases

accurately. The models incorrectly classified 7.65% (label f) of test cases. Label c

depicts the region for the test case percentage when only BiECAM correctly classi-

fies. This region label shows that BiECAM significantly outperforms ESIM on the

number of test cases (shown by label a) that it classifies correctly. Label e depicts the

percentages of test case BiECAM, classifies incorrectly which is consistently lower

than ESIM (label d) across both the datasets. We further utilise the test cases in

different regions of the Venn diagram in the model error analysis in Section 4.3.5.

4.3.3 Ablation Study

To evaluate the impact of factorized bilinear feature fusion, we perform an ablation

study on BiECAM + Aristo Tuple, our best performing model on the SciTail dataset.

Table 4.6 demonstrates the performance of various non-bilinear and bilinear pooling

methods. We observe that factorized bilinear pooling significantly outperforms all
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Figure 4.3: Fine-gain accuracy analysis on the ESIM and BiECAM models. Different
labels (such as, a and b), orange for SciTail and green for SNLI, depicts model
accuracy. For example, region marked (b) depicts the percent of correctly classified
test cases by both the models. Labels (d) and (e) show the percent of test cases
incorrectly classified by individual models. The label f, shows the percent of test
samples incorrectly classified by both the models.

the non-bilinear pooling methods. To ascertain that the performance gain is not due

to the higher number of parameters in bilinear method, we stack fully connected

layers (with 1200 units per layer, ReLU activation and dropout) to increase the

parameters in non-bilinear methods. We observe that increasing the number of

parameters does not increase the model accuracy. The high accuracy of factorized

bilinear pooling may be attributed to the outer product between the NLI sentence

and the commonsense feature vectors. Outer product allows each feature point in

the two feature vectors to interact and capture associations between them. The joint

representations created in such manner are more expressive than the representations

created through concatenation or element-wise summation or multiplication.

4.3.4 On the use of CNNs for Commonsense Encoder

For the commonsense encoder, our experiments with RNNs (LSTMs and BiLSTMs),

considerably degraded the performance of the BiCAMs. This may be attributed

to the inherent nature of RNNs, which learns the representations of words in the
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Feature Fusion Method Acc(%)

Concatenation 74.6
FC + Concatenation 75.5
FC + FC + Concatenation 74.3
FC + Element-wise Sum 72.5
FC + FC + Element-wise Sum 73.3
FC + Element-wise Product 76.4
FC + FC + Element-wise Product 76.8
FC + Element-wise Difference ⊕
FC + Element-wise Product

77.6

Factorized Bilinear Pooling 78.6

Table 4.6: Comparison of different pooling methods for the BiECAM + Aristo Tuple
model on the SciTail dataset. FC is a fully connected layer with 1200 neural units
and ReLU activation.

context of all previous words in the sequence. However, the set of triples input to

the commonsense encoder is sequential within an individual triple. For example,

in the set of triples – outside Antonym inside and table RelatedTo eating, the word

inside is associated with the words in its own triple, outside and Antonym, but not

with the words table, RelatedTo, and eating of the second triple. RNNs, due to their

inherent recurrent nature, learn the incorrect features from the part-sequential input

of set of triples. In contrast, CNNs learns features independently of the position of

words in the sequence. In the commonsense encoder, learning the features over the

window of three words with a stride of three, allows the correct features to be learnt

from the part-sequential set of input triples.

4.3.5 Qualitative Analysis

Retrieved Commonsense Knowledge

To investigate the quality of commonsense knowledge retrieved from the proposed

knowledge retrieval heuristics (refer Section 4.1.1), we inspect the retrieved com-

monsense knowledge for the premise and hypothesis. Table 4.7 presents some SNLI

premise-hypothesis pairs with the retrieved ConceptNet triples. The retrieved com-

monsense knowledge shows that the heuristics are effective in retrieving the knowl-

edge beneficial to reason inference.
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p: A group of people are walking through a city street. people IsA group, people
AtLocation city, street UsedFor walking

h: People are walking the street. street UsedFor walking, people IsA group,
people AtLocation city

p: A woman ironing a delicate blue fabric. ironing RelatedTo clothes

h: A woman ironing clothes. clothes RelatedTo fabric

p: A group of people sitting at a conference table. people IsA group, peo-
ple AtLocation conference, table AtLocation conference, conference IsA
meeting, table AtLocation meeting

h: Coworkers are having a meeting. meeting RelatedTo conference

p: A woman in shorts and sandals is being pulled by a small child as a subway train
goes by. small RelatedTo child

h: The train excites the toddler. toddler IsA child

p: A dog leaping to catch a Frisbee in the yard. dog AtLocation outside, yard
AtLocation outside
h:The dog is outside. dog AtLocation outside

p: A girl catches a baseball. baseball UsedFor catching

h: The girl is catching something. catching HasContext baseball

p: People sit and watch as a street performer is singing. people Antonym person

h: A person is performing on the street. performing HasSubevent singing,
person Antonym people

p: A little girl and boy sit while reading books. girl Antonym boy, books
UsedFor reading

h: Two people sit while looking at books. books UsedFor reading

Table 4.7: The SNLI dataset premise-hypothesis pairs with the corresponding com-
monsense knowledge from the ConceptNet KG (in bold) retrieved with the pro-
posed retrieval mechanism in Section 4.1.1. The retrieved commonsense knowledge
enriches the contexts of the premise and hypothesis and helps the NLI model to
reason over premise and hypothesis.

Error Analysis

Table 4.8 highlights selected sentences from the SNLI test set showing correct and

incorrect inference prediction example for both BiECAM and the baseline ESIM.

For the first example, BiECAM has additional context for premise and hypothesis

from the knowledge that wave RelatedTo crash and crash IsA hit, which helps the

model to correctly predict the inference class. However, the specific knowledge,

about the wave and the crash is not available to the baseline ESIM model and

hence, it incorrectly predicts the inference class. Similarly, for the second example,
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the implicit common knowledge performing HasPrerequisite skill and skill RelatedTo

good available to BiECAM helps identify the correct inference class, whereas ESIM

fails.

BiECAM Correct ESIM Incorrect

P/G Sentence with Retrieved Commonsense Knowledge

n/e p: Four boys are about to be hit by an approaching wave. wave RelatedTo
crash
h: A giant wave is about to crash on some boys. crash IsA hit

n/e p: Young man performing a skateboard trick on a sidewalk in a city. performing
HasPrerequisite skill
h: A young man is performing a good skill on a skateboard on the sidewalk in a
metropolitan area. skill RelatedTo good

BiECAM Incorrect ESIM Correct

n/c p: A red truck is parked next to a burning blue building while a man in a green vest
runs toward it. red Antonym blue, blue Antonym green, green Antonym
red
h: The burning blue building smells of smoke. blue Antonym red, blue
Antonym green

Table 4.8: Accurately and inaccurately predicted test cases from the SNLI test set.
Retrieved commonsense knowledge is shown in bold. P is the predicted and G is
the gold label. n: neutral, e: entailment, c: contradiction are the three inference
classes of the SNLI dataset.

We observe that BiECAM fails to predict the correct inference class when noisy

and irrelevant knowledge is retrieved from the KGs. For example, the last test case

in Table 4.8, only retrieves the information that colors (such as red and blue) are

antonyms of each other. The retrieved knowledge is irrelevant and is not completely

correct, which does not help BiECAM.

4.4 Conclusions

In this chapter, we introduced an NLI model-independent neural framework, Bi-

CAM, that incorporates commonsense knowledge to augment the reasoning capabil-

ities of the NLI models. Combined with convolutional feature detectors and bilinear

feature fusion, BiCAM provides a conceptually simple mechanism that generalises

across NLI models, datasets and KGs. Moreover, BiCAM can be easily applied to

different NLI model and KG combinations. Evaluation results show that our BiCAM
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considerably improves the performance of all the NLI baselines it incorporates, across

all the NLI datasets and the KGs and does so without any architectural change to

the incorporated NLI model. Particularly for the smaller, syntactically and seman-

tically complex SciTail dataset, commonsense knowledge incorporation via BiCAM

achieves performance improvements of 7.0% with ConceptNet and 8.0% with Aristo

Tuple KG. In addition, the fine-grained accuracy analysis of our BiECAM model in

combination with the established ESIM baseline demonstrates the effectiveness of

our model on both the SNLI and SciTail datasets.

Experimentation to investigate the effect of incorporating various numbers of

commonsense features demonstrates that commonsense features when incorporated

in the correct number, help reason the relationship between the premise and hy-

pothesis. Further, the number of commonsense features required depends on the

syntactic and semantic complexities, as well as the domain of external knowledge

sources. Ablation analysis on BiECAM in combination with the SciTail dataset and

Aristo Tuple KG shows that fusing NLI and commonsense features by the factor-

ized bilinear pooling method is more effective than the traditional techniques such

as concatenation, element-wise product and summation.

We observe that retrieval and selection of commonsense knowledge relevant for

reasoning over the premise and hypothesis are challenging. Although heuristics are

effective in retrieving the external knowledge, the challenge remains to retrieve con-

textually relevant external knowledge from the massive amounts of data in the KGs.

Moreover, the high performance of the BiCAMs on SciTail with the contextually rel-

evant external knowledge from the Aristo Tuple KG, emphasises that NLI models

benefit more from the contextually relevant external knowledge. Further, although

KG embeddings perform well they might not be expressive enough for the complex

NLI task. Finally, the feature fusion also requires substantial effort to learn an

expressive joint representation.

In Chapter 6, in light of the state-of-the-art developments in the field of contex-

tual word representations and PTLMs, we address the abovementioned limitations

of the proposed framework by exploiting the pre-trained language model, BERT [16]

for the utilisation of external knowledge in the NLI task. However, in the next chap-
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ter, we explore an area of high empirical significance for RNN-based NLI models —

the application of regularisation technique dropout.

During the evaluations of the model, CAM, proposed in Chapter 3, we observed

that the RNN-based neural networks are highly sensitive to model hyper-parameters,

especially the dropout locations in the model and dropout rates notably affects

model’s performance. This observation led us to investigate an unaddressed chal-

lenge in the RNN-based NLI models — the lack of a coherent set of dropout appli-

cation guidelines in the RNN-based NLI models.

In order to address this challenge, we exhaustively evaluated the proposed, CAM

model for various locations of the dropout application with the varying dropout rates

and analysed the results to gain insights for the application of dropout in RNN-based

NLI models. Further, we validate the insights on our another RNN-based NLI model,

BiECAM, proposed in this chapter.

In the next chapter, we present the study on dropout applications in the RNN-

based NLI models, before returning to improve the utilisation of the external knowl-

edge for the NLI task in Chapter 6.
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CHAPTER 5

An Exploration of Dropout with RNNs for Natural Language

Inference

As reviewed in Chapter 2, neural networks based on RNN encoders are the dominant

class of neural NLI models. Hyper-parameter optimisation is highly significant to

the performance of these RNN-based NLI models [51,52], however, it is surprisingly

overlooked in the NLI literature. RNNs (LSTMs [53] and BiLSTMs [54]) owing to

a large number of parameters are susceptible to overfitting [55] — the case when

neural networks learn the exact patterns present in the training data but fails to

generalise to unseen data [56].

In RNN-based NLI models, regularisation techniques such as early stopping [41],

L2 regularisation [37] and dropout [200] are used to prevent overfitting.

Among these techniques, dropout is the most effective regularisation technique

[55, 211]. The idea of dropout is to randomly omit the computing units (neurons)

in a neural network during training but keeping all of them for testing. This is

achieved by the element-wise multiplication of the neural network layer activations

with a zero-one mask (rj) during training. Each element of this zero-one mask is

drawn independently from the Bernoulli(p) distribution, where p is the probability

with which the units are retained in the network. During testing, activations of the
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layer are multiplied by p [56]. Dropout injected uncertainty for the presence of the

nodes in the neural network during training enforces the network not to depend on

some specific nodes to learn and produce the desired final result.

Due to the effectiveness of dropout in regularising the RNNs [55,212,213], nearly

all the RNN-based NLI models discussed in the literature review of Chapter 2, apply

dropout to one or more layers. However, the location of dropout applications in

these RNN-based NLI models varies considerably and is based on the trial-and-error

experiments. For example, Bowman et al. [3] apply dropout only to the input and

output of the sentence embedding models. Ghaeini et al. [21] for their DR-BiLSTM,

Tay et al. [200] in the CAFE and Chen et al. [91] in the ESIM models apply dropout

to each feed-forward layer in the model whereas others, for example, Liu et al. [34] in

the inner-attention model and Nie and Bansal [79] in their shortcut-stacked model

use dropout only in the final MLP classifier (refer Section 2.2).

The SPINN model proposed by Bowman et al. [58] and the Gumbel Tree-LSTM

model of Choi et al. [59] applied dropout to the output of the embedding layer and

to the inputs and outputs of the MLP classifier (refer Section 2.2.8). In the BiMPM

model, Wang et al. [52] applied dropout at every model layer.

The dropout rates are also crucial to the use of dropout regularisation [57]. How-

ever, even the models [58,59] that apply the dropout at the same layers, for example

at the embedding and at the final MLP classifier layers (refer Section 2.2), use dif-

ferent dropout rates. Munkhdalai and Yu proposed NTI model [137] (refer Section

2.5.1) and explore nine different NTI variants with marginally varying complexities,

however, use a different dropout rate for each model variant.

Therefore, there is a considerable ambiguity with regards to the application of

the crucial regularisation parameter dropout in RNN-based NLI models and the

research field lacks a set of coherent set of guidelines for the dropout application.

Motivated by the lack of consensus and a clear set of guidelines for the application

of dropout, in this chapter, we investigate the effect of applying dropout at different

locations in RNN-based NLI models. We first comprehensively investigate the CAM

model (Chapter 3) with several locations of dropout application. At each dropout

location, we also investigate the effect of varying the dropout rates. Based on the
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CAM’s empirical evaluations and analysis of the evaluation results, we draw certain

findings for regularising RNN-based NLI models. To recommend the findings as

the set of guidelines for regularising RNN-based NLI models, we further validate

the findings on another RNN-based NLI model, BiECAM, proposed in Chapter

4. Finally, the validated set of findings are recommended as the guidelines for

regularising RNN-based NLI models.

The CAM model utilising the embedding, encoding (recurrent), intra-attention,

inter-attention, enhancement, pooling, matching, and the MLP classifier layers rep-

resents the generic architecture of neural NLI models introduced in Chapter 2, very

closely (refer Section 2.2). Consequently, we believe that the guidelines empirically

evaluated on the CAM model and validated on the BiECAM model will be relevant

for other RNN-based NLI models.

To the best of our knowledge, this research is the first exploratory analysis of

the dropout for RNN-based NLI models. The main contributions of this research

work are:

• An exhaustive evaluation and comparative analysis of different locations of

dropout application with varying dropout rates in the RNN-based NLI model,

CAM.

• A comprehensive validation of the findings of the CAM model evaluations on

another RNN-based NLI model, BiECAM.

• An empirically evaluated and validated set of guidelines for the application of

dropout and dropout rates in the RNN-based NLI models.

• An investigation into the effectiveness of dropout in preventing the overfitting

with an analysis of dropout rates on the performance of the RNN-based NLI

model and on the dropout locations.

5.1 Related Research

Regularisation via dropout in RNNs lacks coherency and hence a number of studies

on the application of dropout in the RNNs have been conducted in different fields
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such as handwriting recognition [213] and speech recognition [55].

Dropout research by Pachitariu and Sahani [212] on language models, Pham

et.al [213] on handwriting recognition and Zaremba et al. [55] on a number of tasks

such as machine translation and image caption generation via RNNs have established

that the recurrent connection dropout should not be applied as it affects the long-

term dependencies in the sequential data.

Bluche et al. [57] studied dropout at different locations with respect to the LSTM

layer in the handwriting recognition network of Pham et.al [213]. The results show

that significant performance difference is observed when dropout is applied to dis-

tinct places. They concluded that applying dropout only after recurrent layers as

applied by Pham et al. [213] or between every feed-forward layer, as done by Zaremba

et al. [55], does not always yield good results. Cheng et al. [214], investigated the

effect of applying dropout in LSTMs. They randomly switch off the outputs of

various gates of LSTM, achieving an optimal word error rate on speech recognition

task, when dropout is applied to output, forget and input gates of the LSTM.

Our work differs from previous studies in several aspects. First, by the size of

the datasets used to evaluate the RNN models in previous studies. Evaluations in

the previous research were conducted on datasets with fewer samples. We evaluate

the RNN model on a larger, SNLI dataset (570,000 data samples) as well as on

a smaller, SciTail dataset (27,000 data samples) (refer Section 2.3.1). Second, the

previous studies concentrated only on the locations of dropout in the model with

a fixed dropout rate. We further investigate the effect of varying dropout rates

at each dropout application location. Third, we validate our findings on another

RNN-based NLI model, which to the best of our knowledge, is lacking from all the

previous studies.

In this work, we focus on the application of widely used conventional dropout [56]

to the non-recurrent connections in the RNN-based NLI models.
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5.2 Methodology

To evaluate the efficacy of dropout at different locations in the RNN-based NLI

model, we selected the locations of the dropout application prevalent in the NLI

literature. In addition, we consider other probable locations in the CAM model.

Figure 5.1 depicts these locations. Table 5.1 illustrates the different combinations

of these locations where the dropout is evaluated. At each location, we evaluate

the model varying the dropout rate ranging from 0.1 to 0.5 with a granularity of

0.1. For each of the models in Table 5.1, the hyper-parameters are fine-tuned via

grid search on the development set of the evaluation datasets (Section 5.3.1) from

the parameters specified in Section 5.3.2. We report the best performance of each

model from the grid search.

Embedding

Matching

MLP

Encoding Encoding

Embedding

Intra-Attention Intra-Attention

Inter-Attention

Projection

EnhancementEnhancement

Projection

PoolingPooling

Dropout Location 1 

Dropout Location 3 

Dropout Location 4 

Softmax
Dropout Location 5 

Embedding 
Dropout

Dropout Location 2  Recurrent 
Dropout
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Inter-Attention 
Dropout

MLP 
Dropout

Figure 5.1: The Combined Attention Model (CAM) with the identifed dropout
locations for the evaluation.
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Model Layer

Model 1 No Dropout (Baseline)

Model 2 Embedding

Model 3 Recurrent

Model 4 Embedding and Recurrent

Model 5 Recurrent and Intra-Attention

Model 6 Inter-Attention and MLP

Model 7 Recurrent, Inter-Attention and MLP

Model 8 Embedding, Inter-Attention and MLP

Model 9 Embedding, Recurrent, Inter-Attention and MLP

Model 10 Recurrent, Intra-Attention, Inter-Attention and MLP

Model 11 Embedding, Intra-Attention, Inter-Attention and MLP

Model 12 Embedding, Recurrent, Intra-Attention, Inter-Attention and MLP

Model 13 Embedding, Recurrent, Inter-Attention and MLP

Table 5.1: CAM model with different combination of layers to the output of which
the dropout is applied.

5.3 Experimental Setup

5.3.1 Datasets

In order to investigate the effect of dropout on dataset sizes in combination with

dropout locations and dropout rates, we evaluate all the models depicted in Table

5.1 on two diverse datasets (refer Section 2.3.1) — SNLI and SciTail. We utilise the

standard train/development/test splits of the datasets to train the models.

5.3.2 Hyper-parameters

The hyper-parameters for the model are selected separately for the SNLI and SciTail

datasets by a grid search from the combination of L2 regularisation in [1e-4, 1e-5,

1e-6], batch size in [32, 64, 128, 256] and learning rate in [0.001, 0.0003, 0.0004]. The

Adam [202] method is used as an optimizer. The first momentum is set to 0.9 and

the second to 0.999. The word embeddings are initialized with pre-trained 300-D

Glove 840B vectors [67] and are not fine-tuned with the model. The model is trained
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with early stopping based on the development set accuracy with the patience of 15.

These hyper-parameter settings allow the efficacy of dropout to be evaluated in the

realistic scenarios as employed by the NLI models in the literature. We report the

best accuracy for each of the model in Table 5.1.

5.4 Results and Discussion

The evaluation results of dropout application for each model in Table 5.1 are pre-

sented in Table 5.2. The non-regularised model, Model 1, is our baseline model. We

discuss the results for individual and multiple layers in the following sections.

Dropout at Individual Layers We first applied dropout at each layer including

the embedding layer. Although the embedding layer is highly parameter intensive

(and, hence susceptible to overfitting), it is often not regularised for many language

applications [215]. However, we observe the benefit of regularising it. For the SNLI

dataset, the highest accuracy is achieved when the embedding layer is regularised

(Model 2, DR 0.4).

For the SciTail dataset, the highest accuracy is attained when the recurrent layer

is regularised (Model 3, DR 0.1). The dropout injected noise at lower layers prevents

the higher fully connected layers from overfitting. We further experimented regu-

larising higher layers (Intra-Attention, Inter-Attention, MLP) individually, however,

no significant performance gains were observed1.

Dropout at Multiple Layers We next explore the effect of applying dropout

at multiple layers. For SNLI and SciTail, the models achieve higher performance

when dropout is applied to embedding and recurrent layer (Model 4, DR 0.2). This

supports the importance of regularising embedding and recurrent layer as seen for

the individual layers.

It is interesting to note that regularising the recurrent layer helps the SciTail

dataset (Model 7, DR 0.2), whereas regularising the embedding layer helps the

1results are not shown in Table 5.2
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Models Dataset Dropout Rate (DR)

0.1 0.2 0.3 0.4 0.5

Model 1 SNLI 84.45

SciTail 74.18

Model 2 SNLI 84.56 84.59 84.42 86.14 84.85

SciTail 75.45 75.12 74.22 73.10 74.08

Model 3 SNLI 84.12 84.21 83.76 81.04 79.63

SciTail 76.15 75.78 73.50 73.19 75.26

Model 4 SNLI 83.83 85.22 84.34 80.82 79.92

SciTail 74.65 76.08 74.22 74.46 73.19

Model 5 SNLI 84.72 83.43 72.89 70.49 62.13

SciTail 75.87 75.13 75.26 73.71 72.25

Model 6 SNLI 84.17 84.32 83.71 82.79 81.68

SciTail 73.85 75.68 75.26 73.95 73.28

Model 7 SNLI 84.33 82.97 82.00 81.15 79.25

SciTail 73.75 75.02 74.37 73.37 73.42

Model 8 SNLI 84.67 85.82 84.60 84.14 83.94

SciTail 73.80 73.52 69.29 75.82 73.89

Model 9 SNLI 84.44 83.05 82.09 81.64 79.62

SciTail 75.68 76.11 75.96 70.84 74.55

Model 10 SNLI 84.45 80.95 75.31 70.81 69.34

SciTail 73.30 75.21 74.98 74.65 71.59

Model 11 SNLI 84.31 82.43 78.94 74.93 70.54

SciTail 75.63 73.47 74.93 74.93 70.32

Model 12 SNLI 84.32 82.60 73.36 71.53 66.67

SciTail 73.47 75.63 74.74 73.42 74.40

Table 5.2: CAM model accuracies on different dropout locations with varying
dropout rates for the SNLI and SciTail datasets. Bold numbers shows the high-
est accuracy for the model within the dropout range.

SNLI dataset (Model 8, DR 0.2). A possible explanation to this is that for the

smaller SciTail dataset, the model can not afford to lose information in the input,

whereas for the larger SNLI dataset, the model has a chance to learn even with the

loss of information in the input. Further, the bigger datasets like SNLI have a larger

vocabulary, and hence a large number of parameters. Due to high parametrisation,
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the embedding layer is extremely susceptible to overfitting and is a suitable layer

to be regularised with dropout. The results from the models 7 and 8 suggests that

applying dropout at a single lower layer (Embedding or Recurrent; depending on

the amount of training data) and to the inputs and outputs of MLP layer improves

performance.

We can infer from models 9, 10, 11, 12 that applying dropout to each feed-

forward connection helps to prevent the model overfitting for the SciTail dataset

(DR 0.1 and 0.2). However, for both the datasets with different dropout locations

the performance of the model decreases as the dropout rate increases (refer Section

5.4.2).

5.4.1 The Effectiveness of Dropout for Overfitting

We investigate the efficacy of dropout on overfitting. The main results are shown

in Figure 5.2. For SNLI, Figure 5.2 (a) - (b), shows the convergence curves for the

baseline model and the model achieving the highest accuracy (Model 2, DR 0.4).

The convergence curve shows that dropout is very effective in preventing over-

fitting. However, for the smaller SciTail dataset when regularising multiple layers,

we observe that the highest accuracy achieving model (Model 9, DP 0.2), overfits

significantly (Figure 5.2(d)). This overfitting is due to the large model size. With

limited training data of the SciTail dataset, our model with a higher number of

hidden units learns the relationship between the premise and the hypothesis most

accurately (Figure 5.2(d)). However, these relationships are not representative of

the validation set data and thus the model does not generalize well.

When we reduced the model size (50, 100 and 200 hidden units), we achieved the

best accuracy for SciTail at 100 hidden units (Table 5.3). The convergence curve

(Figure 5.2(c)) shows that dropout effectively prevents overfitting in the model with

100 hidden units in comparison to 300 units.
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Figure 5.2: Convergence Curves: (a) Baseline Model for SNLI, (b) Best Model for
SNLI, (c) 100 Unit Model for SciTail, (d) 300 Unit Model for SciTail.

Models Dataset Dropout Rate (DR)

0.1 0.2 0.3 0.4 0.5

Model 13 SciTail 76.72 76.25 72.58 77.05 74.22

Table 5.3: Accuracy for 100 unit model for the SciTail dataset.

5.4.2 Dropout Rate Effect on Accuracy and Dropout Loca-

tion

We next explore the effect of varying dropout rates on the accuracy of the models

and on different dropout locations identified in Table 5.1. Figure 5.3 illustrates

varying dropout rates and the corresponding test accuracy for the SNLI dataset.

We observe some distinct trends from the plot. First, the dropout rate and location

do not significantly affect the accuracy of the Model 2, over the baseline model

(Model 1), for the dropout rates of 0.1, 0.2, 0.3 and 0.5. Model 8 shows the same

pattern for the dropout rates of 0.1, 0.3, 0.4 and 0.5. Second, in the dropout range

[0.2 - 0.5], the dropout locations affect the accuracy of the models significantly.

Increasing the dropout rate from 0.2 to 0.5 the accuracy of the Models 5 and 12

decreases significantly by 21.3% and 15.9% respectively. For most of the models,

(3, 4, 6, 7, 9 and 10) the dropout rate of 0.5 decreases accuracy.
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Figure 5.3: Plot showing the variation of accuracies for the CAM models identified
in Table 5.1 across the dropout range for the SNLI dataset.

From the experiments on the SciTail dataset (Figure 5.4), we can see that model

performance does not vary significantly by the location of dropout application and

the variation in dropout rates, with the exception of Models 8 and 9.
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Figure 5.4: Plot showing the variation of accuracies for the CAM models identified
in Table 5.1 across the dropout range for the SciTail dataset.

Finally, for almost all the experiments a large dropout rate (0.5) decreases the

accuracy of the model. The dropout rate of 0.5 works for a wide rang of neural
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networks and tasks [56]. However, our results show that this is not desirable for

RNN-based NLI models. Based on our evaluations a dropout rate ranging from

[0.2− 0.4] is advised.

5.5 Findings

Based on the CAM’s empirical evaluations and analysis of the evaluation results, we

draw the following observations for regularising RNN-based NLI models:

1. Embedding layer should be regularised for large datasets such as SNLI. For

smaller datasets like SciTail regularising recurrent layer is an efficient option.

The dropout injected noise at these layers prevents the higher fully connected

layers from overfitting.

2. When regularising multiple layers, regularising a lower layer (embedding or

recurrent; depending on the amount of data) with the inputs and outputs

of the MLP layer should be considered. Regularising intermediate projection

layers with a large number of parameters helps to prevent overfitting.

3. When dropout is applied at multiple feed-forward connections, it is almost

always better to apply it at a lower rate within the range — [0.2− 0.4].

4. Given the high learning capacity of RNNs, an appropriate model size selection

according to the amount of training data is essential. Dropout may indepen-

dently be insufficient to prevent overfitting in the scenarios otherwise.

5.6 Finding’s Validation

In this section, we validate the regularisation findings on another RNN-based NLI

model, BiECAM (refer Chapter 4), by evaluating it with different dropout locations

with varying dropout rates on the SNLI and SciTail datasets. We utilise our best

performing BiECAM variant i.e. BiECAM + Aristo Tuple (refer Section 4.2), for

the validation.
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The BiECAM model utilises the ESIM model [91] (refer Section 2.5.2) as an

underlying NLI model in the BiCAM framework. The BiECAM model consists of

embedding, encoding, inter-attention, projection, composition, poolingnli, poolingcs,

Factorised Bilinear Pooling (FBP), matching and the MLP layers (refer Section

2.2). The underlying ESIM model utilises the projection layer to prevent the model

overfitting that may arise due to the increased number of parameters at the inference

enhancement stage [91]. The poolingnli represents the standard max and mean

pooling layers of the ESIM model and the poolingcs represents the standard max

pooling layer of the commonsense encoding model.

To validate the regularisation findings on the BiECAM model in a simplified and

effective manner, we identify the locations of dropout application in the BiECAM

as illustrated in Table 5.4. To achieve the maximum accuracy for each of the reg-

ularisation settings depicted in the Table 5.4, we perform a grid search over the

hyper-parameter combinations of the BiECAM model as detailed in Section 4.2.

Note that BiECAM is a complex model with multiple layers and there are a large

number of permutations of dropout application locations, however, exploring all

these permutations is computationally infeasible. We believe the locations identi-

fied in Table 5.4 represent the best combinations of layers to validate the findings

from the CAM model.

Model Layer

Model 1 No Dropout (Baseline)

Model 2 Embedding

Model 3 Recurrent

Model 4 Embedding and MLP

Model 5 Recurrent and MLP

Model 6 Embedding, Projection, Matching and MLP

Model 7 Embedding, Projection, Poolingcs, FBP, Matching and MLP

Model 8 Recurrent, Projection, Poolingcs, FBP, Matching and MLP

Table 5.4: BiECAM model variants with the corresponding layers to the outputs of
which dropout is applied.
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5.7 Results and Discussion

Evaluation results of the different dropout application locations for the SNLI and

SciTal datasets are shown in Table 5.5. Each model identified in Table 5.4 is eval-

uated with the dropout rates ranging from 0.1 to 0.5 with a granularity of 0.1. We

consider the Model 1, with no dropout regularisation, as the baseline model.

Models Dataset Dropout Rate (DR)

0.1 0.2 0.3 0.4 0.5

Model 1 SNLI 87.10

SciTail 74.23

Model 2 SNLI 87.14 87.30 87.36 87.20 86.90

SciTail 74.25 74.39 74.54 74.10 74.26

Model 3 SNLI 86.90 86.75 86.23 85.88 83.14

SciTail 74.90 75.91 75.45 74.62 74.26

Model 4 SNLI 87.20 87.34 87.48 87.21 86.61

SciTail 74.98 75.42 75.55 74.11 73.76

Model 5 SNLI 86.21 86.33 86.88 86.29 85.66

SciTail 74.80 75.68 75.75 75.43 74.73

Model 6 SNLI 87.48 87.54 87.88 86.14 85.23

SciTail 75.33 75.76 76.11 75.65 75.02

Model 7 SNLI 87.88 88.23 88.80 87.77 86.10

SciTail 75.26 75.90 76.41 78.64 76.23

Model 8 SNLI 86.76 86.29 85.84 84.20 83.12

SciTail 75.21 75.47 75.87 77.21 75.21

Table 5.5: BiECAM model accuracies for different dropout locations with varying
dropout rates for the SNLI and SciTail datasets. Bold numbers shows the highest
accuracy for the model within the dropout range.

Dropout at Individual Layers Model 2 and 3 shows the results of the dropout

application at the individual embedding and recurrent layers respectively. Although

the performance of Model 2 does not significantly improve over the base model

(Model 1), regularising the embedding layer for the SNLI dataset in Model 2 demon-

strates a clear benefit when compared to regularising the recurrent layer in the Model
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3. The performance of the model consistently degraded across the dropout rate range

when the recurrent layer in Model 3 is regularised.

For the SciTail dataset, on the contrary, the model accuracies across the dropout

rate range demonstrate that regularising the recurrent layer in the Model 3 is ad-

vantageous (especially for the lower dropout rates of 0.2 and 0.3) as compared to

regularising the embedding layer in the Model 2. Further, among the Models, 2 and

3, the highest accuracy of 75.91% is attained when the recurrent layer is regularised

at the dropout rate of 0.2.

As in the case of the CAM model, regularising individual embedding and re-

current layers did not achieve the overall highest accuracy, however, the evaluation

results of Model 2 and Model 3 demonstrates the Finding 1 that regularising em-

bedding layer is favourable for the larger datasets such as SNLI and regularising the

recurrent layer is beneficial for the smaller dataset such as SciTail.

Dropout at Multiple Layers Models 4 through 8 in Table 5.5 shows the results

when multiple layers are regularised. Figure 5.5 and 5.6 depicts the accuracies of

the models in Table 5.5 against the dropout rates for the SNLI and SciTail datasets

respectively.
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Figure 5.5: Plot showing the variation of accuracies for the BiECAM models iden-
tified in Table 5.4 across the dropout range for the SNLI dataset.
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Figure 5.6: Plot showing the variation of accuracies for the BiECAM models iden-
tified in Table 5.4 across the dropout range for the SciTail dataset.

For both the SNLI and SciTail datasets, our model achieved the highest accuracy

when regularising multiple layers in the regularisation setting of Model 7. The SNLI

datasets attained the highest accuracy of 88.80% at the dropout rate 0.3 whereas

the SciTail dataset attained the highest accuracy of 78.64% at the dropout rate of

0.4. Note that the Model 6, the dropout setting of the original ESIM model did not

achieve the highest accuracy for our model. However, the highest accuracy attaining

regularisation setting (Model 7), in addition to Poolingcs and FBP layers, consists

of all the layers originally regularised in the ESIM model (Model 6). Given that the

Poolingcs and FBP layers consists of a large number of parameters (refer Section

4.2), the achievement of the highest model accuracy in the regularisation setting of

Model 7, demonstrates the significance of regularising the intermediate parameter

intensive layers. This empirical result is consistent with the Finding 2 observed for

the CAM.

For the smaller SciTail dataset, it is worth noting that all the studied regularisa-

tion settings improve the model performance. The model achieves higher accuracy

than the baseline model, Model 1, in all of these settings. This highlights the sig-

nificance of dropout regularisation in smaller datasets.

Regarding to the Finding 3, it can be viewed in the Figures 5.5 and 5.6 that the
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performance of all the models on both the datasets did not remarkably improve with

the dropout rate of 0.1 and the performance of all the models degraded significantly

with the dropout rate of 0.5. Especially, in Models 3, when only the recurrent layer

is regularised at the higher drop rate of 0.5, the model on the SNLI dataset achieved

one of lowest accuracy of 83.14% among all the studied regularisation settings. The

inadequacy of dropout rate 0.1 to prevent overfitting and the degradation of per-

formance with the high dropout rate of 0.5, indeed suggests that the dropout rate

range of [0.2 - 0.4] is advisable for the RNN-based NLI models.

Models Dataset Dropout Rate (DR)

0.1 0.2 0.3 0.4 0.5

Model 9 SciTail 74.41 74.29 75.38 76.19 73.48

Table 5.6: Accuracy for 200 unit model for the SciTail dataset.

To validate Finding 4, we evaluate our model, BiECAM, with a reduced hidden

dimension size of 200 with the best performing regularisation setting of Model 7

on the SciTail dataset. The results are presented in the Table 5.6. Different to

the observation for the CAM model, the performance of the BiECAM model did

not improve due to the reduction in the model hidden states. We conjecture that

the already optimised regularisation setting of the underlying ESIM model with

the projection layer to reduce the model overfitting, the BiECAM model does not

depend on the model size to prevent overfitting. Nonetheless, the ESIM model

also employs different means (for example, the projection layer) to prevent model

overfitting and does not solely depend on the dropout.

5.8 Guidelines for Dropout Application

We validated the findings observed from the analysis of the evaluation results of the

CAM model on the BiECAM model. The evaluation results on the BiECAM model

validate all the observed findings. Finally, we recommend the following guidelines

for regularising the RNN-based NLI models via dropout:

• Embedding layer should be regularised for the big datasets like SNLI. For
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the smaller datasets such as SciTail, regularising recurrent layer is an efficient

option. The large number of parameters at the embedding layer owing to the

large vocabulary of big datasets, causes the embedding layer to overfit. The

dropout injected noise at the embedding or recurrent layers prevent the higher

fully connected layers from overfitting.

• In the complex RNN-based NLI models, regularising the single embedding or

recurrent layer is insufficient to prevent overfitting. When regularising multiple

layers, regularising a lower layer (embedding or recurrent; depending on the

amount of data) with the inputs and outputs of the MLP layer should be

considered. Regularising intermediate projection layers with a large number

of parameters helps to prevent overfitting.

• The higher dropout rates are not advisable for RNN-based NLI models, es-

pecially for the recurrent layer in the model. The dropout when applied to

multiple feed-forward connections, it is almost always better to apply it at a

lower rate within the range – [0.2− 0.4].

• RNNs have high learning capacity [216]. Dropout may independently be insuf-

ficient to prevent overfitting of the RNN-based NLI models. Different crucial

factors such as reducing the dimensionality of the hidden layers or employing

intermediate projection layers should be considered to prevent overfitting.

5.9 Conclusions

In this chapter, we explored an understudied area of high empirical significance —

the application of the dropout regularisation in the RNN-based NLI models. We

exhaustively evaluated the different locations for the dropout application in our

RNN-based NLI model, CAM. Further at each location, we evaluated the dropout

rate in the range of [0.1− 0.5] with a granularity of 0.1.

Based on the analysis of the empirical evaluations, we highlighted the findings

for the suitable dropout locations and an appropriate range of the dropout rates in

the model. Additionally, we validated the findings on our another RNN-based NLI
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model, BiECAM. Finally, the validated findings are recommended for the application

of the dropout in RNN-based NLI models.

Our guidelines highlight the significance of regularising the parameter intensive

embedding layer for larger datasets such as SNLI and regularising the recurrent layer

for the smaller datasets such as SciTail. Further, in complex models, when regular-

ising multiple layers, regularising a lower layer (embedding or recurrent; depending

on the amount of data) with the inputs and outputs of the MLP layer should be

considered. Also, regularising intermediate projection layers with a large number of

parameters helps to prevent overfitting.

The dropout rates are also crucial to the use of dropout regularisation. Our

empirical evaluations suggest that higher dropout rates are not suitable for the

high performance of RNN-based NLI models. The dropout rates in the range of

[0.1 − 0.4] are advisable for RNN-based NLI models. Further, owing to the high

learning capacities of the RNNs, the sole reliance on the dropout regularisation is

not recommended to prevent the overfitting in the RNN-based NLI models.

As the CAM model is a close representation of the RNN-based models in the NLI

literature, we believe that the empirically evaluated and validated set of guidelines

proposed in this chapter will also benefit other RNN-based NLI models.

In the next chapter, we focus on utilising the external knowledge to augment the

grounding of NLI models in real-world knowledge. Specifically, we address the short-

comings of the BiCAM framework, proposed in Chapter 4, by the use of contextual

word representations from the state-of-the-art RNN-/CNN-free, BERT model [16].
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CHAPTER 6

ExBERT: An External Knowledge Enhanced BERT for Natural

Language Inference

The BiCAM framework proposed in Chapter 4 demonstrated an improved reasoning

and inferencing capabilities as a result of external knowledge incorporation. Further,

the experimental results demonstrated that when the SciTail dataset is supplied

with the contextually relevant external knowledge from the Aristo Tuple KG, the

models attained superior performance. Motivated by the results and the recent

developments in the field of learning the contextual word representations [16,61,84,

85], in this chapter, we propose several improvements to the BiCAM framework as

well as to the existing models [5,39–41,82] utilising the external knowledge. Further,

we apply the proposed improvements to the state-of-the-art BERT model to address

its limitation of lack of grounding in real-world knowledge.

As discussed in Section 2.2.2, recently, PTLMs such as ELMO [60], OpenAI

GPTs [61, 84, 85] and BERT [16] has achieved impressive performance improve-

ments on a wide range of NLP tasks. These models are trained on large amounts

of raw texts using a self-supervised language modelling objective. However, they

lack grounding in real-world knowledge and are often unable to remember real-

world facts when required [217, 218]. Investigations into the learning capabilities
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of PTLMs reveal that the models fail to recall facts learned at training time, and

do not generalise to rare/unseen entities [219]. Knowledge probing tests [218] on

the commonsense knowledge of ConceptNet reveals that PTLMs such as BERT

have critical limitations when solving problems involving commonsense knowledge.

Hence, infusing the external real-world commonsense knowledge can enhance the

language understanding capabilities of PTLMs and subsequently the performance

on the complex reasoning tasks such as NLI.

In Chapter 4, we highlighted three main challenges for the incorporation of ex-

ternal knowledge into the NLI models. We reiterate the challenges for the ease of

reading and highlight the shortcomings of the current literature in addressing these

challenges.

• Structured Knowledge Retrieval: Given a premise-hypothesis pair how

to effectively retrieve specific and relevant external knowledge from the mas-

sive amounts of data in KGs [220]. Existing models [5, 39–41], including our

BiCAMs, use heuristics and word surface forms of the premises and hypoth-

esis which may be biased and the retrieved knowledge may not always be

contextually relevant for reasoning over premise-hypothesis pair.

• Encoding Retrieved Knowledge: Learning the representations of the re-

trieved external knowledge amenable to be fused with the representations of

premise-hypothesis is challenging. Various KG embedding techniques [50],

such as HolE [207] in BiCAMs, TransE [221] in KIM [41] and DKRL [222]

in Convolution-based KG [82] models are employed to learn these represen-

tations. However, while learning these embeddings, the embeddings are only

required to be valid within the individual KG fact and hence might not be

predictive enough for the downstream tasks [50]. Moreover, the inexpressive

KG embeddings may produce a cascading error effect during the training of

the downstream task.

• Feature Fusion: How to fuse the learned external knowledge features with

the premise-hypothesis embeddings. This feature fusion requires considerable

efforts in learning the fused representation via special techniques such fac-
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torised bilinear pooling in BiCAMs or requires substantial NLI model adapta-

tions as in NSnet [40], ConSeqNet [114] and KIM [41] models with marginal

performance gains (see Section 2.5.2).

To overcome the abovementioned shortcomings in addressing the challenges of

external knowledge incorporation in NLI models and to improve the grounding of

BERT model in the real-world knowledge, we propose, ExBERT – an External

knowledge enhanced BERT model.

The ExBERT utilises the contextual word representations from the BERT model

to retrieve external knowledge that is contextually relevant to the premise and hy-

pothesis. Further, it incorporates the retrieved external knowledge to the BERT

model to improve BERT’s grounding in the real-world knowledge and reinforce its

reasoning and inference capabilities for NLI. Thus, ExBERT utilises BERT for re-

trieving the contextually relevant external knowledge as well as to reason over the

premise and hypothesis. The aim here is to take full advantage of the contextual

word representations obtained from the PTLMs, the state-of-the-art pre-trained

BERT encoder and the real-world commonsense knowledge from KGs.

Our approach has several benefits.

• First, for structured knowledge retrieval, we utilise contextual word rep-

resentations from the BERT model to retrieve the most contextually similar

external knowledge from the KGs. Further, we retrieve the external knowl-

edge based on the bigrams, trigrams, fourgrams and the average of the whole

of contextual BERT representation of the premise and hypothesis. Different

from word-based knowledge retrieval this approach retrieves fine-grained con-

textually similar external, knowledge, avoids any biases of heuristic knowledge

retrieval and requires no feature engineering.

• Second, in contrast to previous approaches, for encoding the retrieved

knowledge, we again employ the BERT encoder to learn the contextual rep-

resentations of the external knowledge. This BERT encoder shares parameters

with premise-hypothesis BERT encoder and learns the contextual embeddings

of external knowledge in the same embedding space.

121



Knowledge Integration

BERT Encoding

Pooling

Classifier

Premise + Hypothesis
&

External Knowledge Set

Mixture Model

Ext Know BERT
Encodings

PH BERT 
Encodings

PH BERT 
Encodings

PH CLS 
Encodings

Composition
External Knowledge 

Context Matrix 
Premise-Hypothesis 

Context Matrix 

Knowledge Aware Representations

Multi-Head Attention Multi-Head Attention

Figure 6.1: A high-level view of the ExBERT architecture.

• Third, the parameter sharing facilitates the feature fusion as the premise-

hypothesis and the external knowledge representations are in the same em-

bedding space, the representations can be fused via simple techniques such as

summation or concatenation, eschewing the need for complex feature fusion

techniques.

As depicted in Figure 6.1, given a premise-hypothesis pair and the set of re-

trieved external knowledge, first the “BERT Encoding layer” learns the deep con-

textual representations of the premise-hypothesis and each retrieved external knowl-

edge using the BERT encoder. The “Knowledge Integration Layer” then adaptively

learns to incorporate the external knowledge into the learned premise-hypothesis

representations via a mixture model. The “Composition Layer” fuses the output

of knowledge integration layer with the original premise-hypothesis contextual rep-

resentations to create knowledge enhanced representations. The “Pooling Layer”

creates fixed-length representations from the original premise-hypothesis contextual

representations and knowledge enhanced representations. Finally, the “Classifier

Layer” predicts the final inference class.

The main contributions of this chapter are:
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• We propose a new approach, ExBERT, to incorporate external knowledge in

contextual word representations. ExBERT outperforms the state-of-the-art

NLI models.

• We investigate and demonstrate the feasibility of using contextual word repre-

sentations for encoding external knowledge obviating learning specialised KG

embeddings such as TransE or HolE. To the best of our knowledge, this is the

first study of its kind, indicating a potential future research direction.

• We introduce a new external knowledge retrieval mechanism capable of re-

trieving fine-grained contextually relevant external knowledge from KGs.

6.1 Methodology

ExBERT architecture is depicted in Figure 6.1. In this section, we describe the

key components of ExBERT and their detailed implementation including the model

architecture in Section 6.1.2. We start by describing the contextual representation

based external knowledge retrieval procedure in Section 6.1.1.

6.1.1 External Knowledge Retrieval: Selection and Ranking

Retrieval and preparation of contextually specific and relevant information from

knowledge graphs are complex and challenging tasks. Different from the previous

approaches that use word surface forms to retrieve external knowledge, we use the

cosine similarity between the contextual representations of the premise-hypothesis

words and external knowledge. The external knowledge for the premise and hypoth-

esis is retrieved individually and is merged to create a final set of retrieved knowledge

at the end of ranking step as described below. Below we explain the procedure for the

premise. The same procedure is applied to the hypothesis. The output of external

knowledge retrieval is the set of contextually relevant external knowledge sentences

for the premise and hypothesis. We divide the external knowledge retrieval process

into two parts: Selection and Ranking.
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Selection We first filter the stop words from the premise. Then we retrieve all the

KB triples that contain the tokens of the premise as one of the words in the head

entity of KG triples. For example, for the token “speaking” one of the retrieved KG

fact is “public speaking IsA speaking”. The retrieved triples are converted to exter-

nal knowledge sentences. For example, the previous triple is transformed into the

sentence – “public speaking is a speaking”. During the conversion some of the triples

may produce incomplete sentences. For example, the triple “hammer UsedFor flat-

ten metal on anvil”, produces “hammer used for flatten metal on anvil” instead of

“hammer is used for flattening metal on anvil”. Recent research [223,224] on assess-

ing the syntactic abilities of pre-trained language models such as BERT, suggests

that these models are robust to ungrammatical sentences due to pre-training on large

text corpus. Moreover, in general, the best practices of stemming, lemmatisation

and stop-word removal further systematically turns the input text ungrammatical

without any performance degradation. Hence, the conversion of triples to ungram-

matical sentences does not significantly impact the model performance.

The selection process retrieves a large number of external knowledge sentences,

which are not all relevant to the context of the premise. We filter the selected

external knowledge sentences in the ranking step.

Ranking The ranking step ranks the selected external knowledge sentences ac-

cording to the contextual similarity to the fine-grained context of the premise.

Specifically, given the BERT generated context-aware representation of the premise

tokens, we group all the bigrams of the representations. Each group of the bigram

representation is averaged, and the cosine similarity is calculated with the average

of the BERT representation of each of the selected external knowledge sentence

(retrieved in selection step). For each bigram, we choose the external knowledge

sentence with the highest cosine similarity score.

To capture the fine-grained context of the premise, we repeat the ranking step

with the trigrams, fourgrams, and the average of the whole premise contextual BERT

representations and retrieve the external knowledge sentence with the highest cosine

similarity for each of the grams. The final set of retrieved external knowledge is
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created by merging the external knowledge sentences retrieved for the premise and

hypothesis by removing duplicates.

6.1.2 Model Architecture

BERT Encoding Layer This layer uses the BERT encoder to learn the context-

aware representations of the premise-hypothesis pair and the set of retrieved external

knowledge.

Specifically, given the sentences, premise Ṕ = {pi}ni=1, hypothesis H́ = {hj}mj=1,

and the set of external knowledge EXT = {{er}lr=1}tv=1, where r is the number of

tokens in the external knowledge sentence and t is the number of retrieved external

knowledge sentences. For encoding the premise and hypothesis, we input Ṕ and H́

to BERT in the following form

Sph = [〈CLS〉, Ṕ , 〈SEP〉, H́, 〈SEP〉] (6.1)

H = BERT(Sph) ∈ R(n+m+3)×h (6.2)

where 〈SEP〉 is the token separating Ṕ and H́, 〈CLS〉 is the classification token,

and h is the dimension of the hidden states (768 for the BERT model we employ).

When the BERT model is fine-tuned for the downstream task, the fine-tuned hidden

state vector (hcls) corresponding to the classification token is used as the aggregate

representation for the sequence.

For each of the external knowledge sentence in the set EXT , we generate the

context-aware representations using the same BERT encoder as used for premise-

hypothesis above as follows

Sext know = [〈CLS〉, e1, . . . , el, 〈SEP〉] (6.3)

Eext know = BERT(Sext know) (6.4)

e = MeanPooling(Eext know) (6.5)

where Sext know is the sequence created by inserting external knowledge sentence

between the 〈CLS〉 and 〈SEP〉 tokens as required by the BERT model, Eext know is
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the matrix of contextual word representations for the external knowledge sequence

Sext know. The averaged contextual word representation (e ∈ Rh) generated for each

of the (t) retrieved external knowledge sentence are stacked to create the context-

aware matrix, E ∈ Rt×h.

Knowledge Integration Layer This layer integrates external knowledge into the

premise-hypothesis contextual representations by means of multi-head dot product

attention. The layer uses a mixture model [205] to allow a better trade-off between

the context from external knowledge and the premise-hypothesis context. The mix-

ture model learns two parameter matrices, A and B, that weigh the importance of

premise-hypothesis context and the context from external knowledge.

Muliti-head Attentions To measure the importance of external knowledge to

each context-aware premise-hypothesis representation, we apply multi-head dot prod-

uct attention [78] between the context-aware representations of external knowledge

and that of premise-hypothesis.

In multi-head dot product attention, the context-aware representations are pro-

jected linearly to generate the queries, keys and values. As we use the multi-head

attention to highlight the external knowledge important to premise-hypothesis con-

text, premise-hypothesis representation (H) generates the query matrix (Hq) via

linear projection and the two linear projections of external knowledge representa-

tion (E) generate the keys (Ek) and values (Ev). The attention function is defined

as

Attention(Hq, Ek, Ev) = softmax(
HqEkT

√
hk

)Ev (6.6)

Then the multi-head attention is

Cext
ph = MH(Hq, Ek, Ev) = Concat(head1, . . . , headh)W o (6.7)

where headi = Attention(HqW q
i , E

kW k
i , E

vW v
i ) and W q

i ,W
k
i ,W

v
i , and W o are

projection matrices and i is the number of attention heads (12 in our case). The

output of multi-head attention, Cext
ph ∈ R(m+n+3)×h is an attention-weighted context

matrix measuring the importance of the external knowledge context to each of the
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context-aware premise-hypothesis representation.

Similarly, to measure the importance of each premise-hypothesis BERT repre-

sentation (H) to the aggregate premise-hypothesis representation (hidden represen-

tation hcls corresponding to CLS token), we apply the multi-head attention between

hcls token representation and H as

Attention(Cq
cls, H

k, Hv) = softmax(
Cq

clsH
kT

√
hk

)Hv (6.8)

where Cq
cls ∈ R(m+n+3)×h is a matrix obtained by repeating hcls hidden state

(n+m+ 3) number of times. The multi-head attention is calculated similar to (Eq.

6.7) that outputs a context matrix Ccls
ph ∈ R(m+n+3)×h. The output matrix Ccls

ph is an

attention-weighted context matrix measuring the importance of each of the premise-

hypothesis representation to the aggregate premise-hypothesis representation.

Mixture Model The mixture model learns a trade-off between the premise-

hypothesis context and the context from external knowledge and is defined as

M = ACext
ph +BCcls

ph (6.9)

where A and B are the parameter metrices, learned with a single layer neural

network and A + B = J ∈ R(n+m+3)×1, J is a matrix of all ones. The parameters

A and B learn to balance the proportion of incorporating the premise-hypothesis

context and the context from external knowledge. Each of the representations in

M ∈ R(m+n+3)×h can be regarded as a knowledge aware state representation that

encodes external knowledge context information with respect to the context of each

of the premise-hypothesis representation.

Composition Layer We compose the knowledge state representation (M) to the

corresponding premise-hypothesis representation to obtain knowledge-aware matrix

Ĥ as

Ĥ = H +M (6.10)
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Pooling Layer The pooling layer creates a fixed-length representation from premise-

hypothesis representations H and the knowledge-aware representations Ĥ (refer Sec-

tion 2.2.6). We apply the standard mean and max polling mechanisms as

hmean = MeanPooling(H) hmax = MaxPooling(H) (6.11)

ĥmean = MeanPooling(Ĥ) ĥmax = MaxPoolling(Ĥ) (6.12)

Classification Layer We classify the relationship between premise and hypothesis

using a MLP classifier (refer Section 2.2.8). The matching input (refer Section 2.2.7)

to the MLP is the concatenation of pooled representations as

f final = [hmean; ĥmean; hmax; ĥmax] (6.13)

The MLP consists of two hidden layers with tanh activation and a softmax output

layer to obtain the probability distribution for each class. The network is trained in

an end-to-end manner using multi-class cross-entropy loss.

6.2 Experiments

6.2.1 Datasets

NLI & KGs The key contribution of this chapter is the unique method to incor-

porate external knowledge into the pre-trained BERT representations. ExBERT is

capable of incorporating knowledge from any external knowledge source that allows

the knowledge to be retrieved, given an entity as input. This includes KBs with

(head, relation, tail) graph structure, KBs that contain only entity metadata with-

out a graph structure and those that combine both a graph and entity metadata.

In this work, we retrieve external commonsense knowledge from ConceptNet [206]

for evaluating ExBERT on the SNLI [3] and SciTail [5] benchmark datasets, and

from the science domain-targeted KG, Aristo Tuple [65] for evaluation on science

domain SciTail dataset (refer Section 2.3).

ConceptNet is a multilingual KG comprising of 83 languages. We pre-process
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the ConceptNet data to retrieve the facts with head and tail entities in the English

language. The final pre-processed ConceptNet that we retrieve the external knowl-

edge from contains 3, 098, 816 (≈ 3M) commonsense facts connected by 47 relations.

Aristo Tuple is an English language KG that contains 294, 000 science domain facts

connected with 955 unique relations. We search the whole Aristo Tuple KG to

retrieve relevant external knowledge.

6.2.2 Experimental Setup

Following our external knowledge retrieval mechanism discussed in Section 6.1.1,

we first retrieve the external knowledge from ConceptNet and Aristo Tuple KGs for

the SNLI and SciTail datasets via selection and ranking steps. In the ranking step,

the English uncased BERTBASE [16] model is employed in feature extraction mode

(i.e. without fine-tuning) to learn the contextual representations of the premise,

the hypothesis and to each of the selected KG triple sentences. We then use the

retrieved external knowledge to train the following three variants of ExBERT.

Models We used the English uncased BERTBASE to train three variants of

ExBERT: Two ExBERT+ConceptNet models on SNLI and SciTail respectively and

one ExBERT+AristoTuple model on SciTail. The models utilise the external knowl-

edge from the KG their name is suffixed.

Comparison Setting ExBERT is compared with the state-of-the-art pre-trained

models on the leaderboards of the SNLI and SciTail datasets that utilise external

knowledge. The baselines vary from the original BERTBASE model to the mod-

els exploiting any external supervision. For example, the baseline SemBERT [17]

enhances the BERT contextual representations with explicit contextual semantics

clues from an external pre-trained semantic role labeler [60] (refer Section 2.5.2).

Training Details ExBERT is implemented in PyTorch using the base imple-

mentation of BERT1. The underlying BERT is initialised with the pre-trained BERT

parameters and follows the same fine-tuning procedure as the original BERT. During

training, the pre-trained BERT parameters are fine-tuned with the other ExBERT

1https://github.com/huggingface/transformers – As on July 1, 2020.
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parameters. We use the Adam optimiser [202] with the initial learning rate fine-

tuned from {8e-6, 2e-5, 3e-5, 5e-5} and warm-up rate of 0.1. The batch size is se-

lected from {16, 24, 32}. The maximum number of epochs is chosen from {2, 3, 4, 5}.

Texts are tokenised using word pieces, with a maximum length of 40 for SNLI, 60

for SciTail, and 15 for external knowledge. The hyper-parameters are fine-tuned on

the development set of each NLI dataset.

6.3 Results

The results of top-performing models on the SNLI2 and SciTail3 dataset leaderboards

are summarised in Table 6.1 and Table 6.2 respectively.

Models with BERTBASE as Base Model

NLI Model Test Acc(%)

BERTBASE + SRL [152] 89.6

OpenAI GPT [61] 89.9

BERTBASE [123] 90.5

BERTBASE [18] 90.8

BERT+LF [149] 90.5

SemBERTBASE [17] 91.0

MT−DNNBASE [18] 91.1

MT-DNN+LF [149] 91.1

Models with BERTLARGE as Base Model

BERTLARGE [18] 91.0

BERTLARGE + SRL [152] 91.3

SemBERTLARGE [17] 91.6

MT−DNNLARGE [18] 91.6

ExBERT+ConceptNet (Ours) 91.5

Table 6.1: Results on SNLI dataset. State-of-the-art NLI models accuracy compared
to the proposed ExBERT model. ExBERT utilises ConceptNet KG for external
knowledge.

2https://nlp.stanford.edu/projects/snli/ – As on July 1, 2020.
3https://leaderboard.allenai.org/scitail/submissions/public – As on July 1, 2020.
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Models with BERTBASE as Base Model

NLI Model Test Acc(%)

OpenAI GPT [61] 88.3

BERTBASE [18] 92.5

BERT+LF [149] 92.8

MT−DNNBASE [18] 94.1

MT-DNN+LF [149] 94.3

Models with BERTLARGE as Base Model

BERTLARGE [18]. 94.4

MT−DNNLARGE [18] 95.0

ExBERT+ConceptNet (Ours) 95.2

ExBERT+AristoTuple (Ours) 95.9

Table 6.2: Results on SciTail dataset: State-of-the-art NLI models accuracy com-
pared to the proposed ExBERT model. ExBERT uses ConceptNet and AristoTuple
KGs for external knowledge.

Results on SNLI On the SNLI dataset, as shown in Table 6.1, the performance

of the state-of-the-art models is highly competitive. We observe that ExBERT out-

performs all the existing baselines creating a new state-of-the-art result on the SNLI

dataset and pushing the benchmark to 91.5% within the models using BERTBASE as

the base model. ExBERT achieves a maximum performance improvement of +1.9%

over the previous state-of-the-art BERTBASE + SRL [152] baseline.

Among the models built on BERTLARGE with more than 340M million parame-

ters [16], our ExBERT with BERTBASE (110M parameter) remarkably outperforms

the BERTLARGE and BERTLARGE + SRL [152] models with the absolute improve-

ments of 0.5% and 0.2% respectively, and is able to match the performance of

SemBERTLARGE [17] and MT−DNNLARGE [18] models.

Results on SciTail On the SciTail dataset (Table 6.2), ExBERT outperforms

all the existing models including the models built on BERTLARGE model. Our

best performing model, ExBERT+AristoTuple demonstrate an absolute improve-

ment of 7.6% over the established baseline of OpenAI GPT [61]. Moreover, using

only BERTBASE as the underlying model, our ExBERT+AristoTuple outperforms
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BERTLARGE based MT−DNNLARGE [18] model by 1.9%.

We observe higher performance improvements on the smaller SciTail dataset

which demonstrates that incorporating external knowledge helps the model with

small training data. Further, we observe that ExBERT attains higher accuracy when

external knowledge is incorporated from the science domain-specific KG, Aristo

Tuple as compared to when external knowledge is added from the commonsense KG,

ConceptNet. The specialised scientific knowledge in Aristo Tuple is more beneficial

to the SciTail dataset.

6.4 Analysis

6.4.1 Number of External Features

To investigate the effect of incorporating various numbers of external knowledge

features, we vary the number of external knowledge sentences input to ExBERT.

Particularly, we are interested in answering the question: How many commonsense

features are required for the optimal model performance? Figure 6.2 illustrates the

results of the experiment.

For SNLI ExBERT achieves the highest accuracy (91.5%) using 11 external knowl-

edge sentences. We observe a decrease in accuracy when increasing the number of

external knowledge sentences after 11. The fewer number of external knowledge sen-

tences required, compared to the SciTail dataset, to achieve the maximum accuracy

on the SNLI dataset, is attributed to the limited linguistic and semantic variation

and the short average length of stop-word filtered premise (7.35 for entailment and

neutral class) and hypothesis (3.61 for entailment and 4.45 for neutral class) [5] of

the SNLI dataset, which limits its ability to fully extract and exploit external KG

knowledge.

For SciTail ExBERT when evaluated using the general commonsense knowledge

source ConceptNet, requires a relatively high number of external knowledge sen-

tences (13) to achieve the maximum accuracy. This is due to the higher syntactic

132



0 3 5 7 9 11 13 15 17
Number of External Knowledge Sentences

89

90

91

92

93

94

95

96

Ac
cu

ra
cy

 (%
)

SciTail + AristoTuple
SciTail + ConceptNet
SNLI + ConceptNet

Figure 6.2: ExBERT accuracy with the varying number of external knowledge sen-
tences from the ConceptNet and Aristo Tuple KGs.

and semantic complexity of the SciTail dataset, that needs more knowledge to rea-

son. However, when evaluated with the domain-specific Aristo Tuple KG, the model

achieve the highest accuracy with fewer (7) external knowledge sentences. To reit-

erate, domain specific knowledge in Aristo Tuple improves the model performance

with less external knowledge.

6.4.2 Qualitative Analysis

Case Study

This section provides the case study of different premise-hypothesis pairs and the

corresponding external knowledge, to vividly show the effectiveness of ExBERT in

adaptively identifying the relevant features from the supplied external knowledge.

Recall that given a context-aware representation of premise-hypothesis token, the

relevance of the retrieved external knowledge in E is measured by the multi-head

attention defined in Equation (6.6). We average the attention weights of all the

heads and plot a heat map, visualising these attention weights.

Figure 6.3 presents the heat map showing the attention of premise-hypothesis to-

kens to the retrieved external knowledge sentences from ConceptNet. In Figure 6.3,
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<CLS> the
older

woman
smiles as

she
holds up a

hammer .
<SEP> a
woman is
holding a

tool .
<SEP>

(a)

hammer used for flatten metal on anvil
hammer at location carpenter's toolbox

smiles capable of give happiness to people
hammer capable of strike with great force

tool used for multiple task manipulation of other objects
tool etymologically related to taw

<CLS> a
closeup of an

older
man
with

glasses
speaking .

<SEP> an
older
man is

talking .
<SEP>

(b)

speaking is a talking
glasses used for correcting vision

closeup is a picture
talking has subevent speak
talking is a human activity

<CLS> a
man

playing an
electric
guitar on
stage

<SEP> a
man is

performing for
cash .

<SEP>

(c)

electric guitar is a guitar
guitar used for play and sing to others

stage used for performing a musical
performing used for earning

cash related to money

<CLS> a kid
slides
down a

yellow
slide
into a

swimming
pool .

<SEP> the kid is
riding a
bike .

<SEP>

(d)

pool is a place where people may swim
slide is a sport action

swimming used for moving in the water
bike is a another word for bicycle

bike at location street
riding is a transport

Figure 6.3: Case Study. Visualisation of ExBERT’s attention between external
knowledge from ConceptNet (y axis) and SNLI premise-hypothesis pair tokens (x
axis).

we can see, these attention distribution is quite meaningful. For example, in atten-

tion heat map (a), the external knowledge smiles capable of give happiness to people

for the phrase older woman smiles in the premise. Similarly, the external knowledge

with the word hammer is attended to whenever the word tool appears in the premise

and hypothesis. In Figure 6.3(b), the attention distribution is also explanatory, with
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the “speaking” and “talking” attending mainly to the retrieved external knowledge

“speaking is talking”. Similarly, the tokens “speaking” “talking” and “man” attends

to “talking is a human activity”. In Figure 6.3(c) among the other attentions, the

most prominent can be observed between the tokens “performing for cash” and the

external knowledge sentence “performing used for earning”.

Attending to the relevant external knowledge demonstrates the ExBERT’s ability

to effectively utilise the retrieved external knowledge based on the context from the

premise and hypothesis. In the next section, we study the efficacy and quality of

retrieved external knowledge.

Retrieved External Knowledge: Efficacy and Quality

We investigate the effectiveness and quality of the retrieved external knowledge.

Table 6.3 presents the SNLI and SciTail test set premise-hypothesis pairs which

the baseline BERTBASE model predicted incorrectly. In ExBERT, these premise-

hypothesis pairs when supplied with the external knowledge (EXT ) retrieved from

our contextual similarity-based knowledge retrieval mechanism (Section 6.1.1), the

pairs were predicted correctly. ExBERT enriches the premise-hypothesis contexts

with retrieved external knowledge and augments the reasoning capabilities of the

baseline BERTBASE model. Further, Table 6.3 illustrates the retrieved external

knowledge (EXT ) for the premise-hypothesis pair, we observe that most of the

retrieved external knowledge sentences are contextually relevant to the premise-

hypothesis and our knowledge retrieval mechanism is effective in retrieving the ex-

ternal knowledge beneficial to reason about inference.

6.5 Conclusions

In this chapter, we introduced ExBERT to enrich the contextual representation

of BERT with real-world commonsense knowledge from external knowledge sources

and to enhance its language understanding and reasoning capabilities for NLI. Over-

coming the shortcomings of – biased and non-contextual knowledge retrieval, inade-

quate external knowledge representation and complexities of feature fusion, ExBERT
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True Label SNLI + ConceptNet

Entailment P : six dogs swimming in a river. H: six dogs are outdoors. EXT : dogs is a pets,
swimming is a outdoor activity, dogs desires chase frisbees in fields.

Contradiction P : a man in an army uniform speaks into a microphone. H: a woman soldier speaks
into the microphone. EXT : man antonym woman, army receives action made up
of many troops, woman is a female, microphone used for turn sounds into electrical
signals, soldier used for protect citizens of country.

True Label SciTail + Aristo Tuple

Entailment P : the duodenum is the first part of the small intestine and most of the chemical
digestion occurs here. H: in the body, chemical digestion mainly takes place in the
small intestine. EXT : digestion occur in small intestine, duodenum is a intestine,
intestine become large intestine, digestion lead to lower calorie intake

Neutral P : Hydrocarbon a compound containing only the elements carbon and hydrogen.
H: Compounds containing the element carbon are the basis of all known life. EXT :
carbon has property essential to all known biological life, hydrocarbon is a inanimate
object, hydrogen defined as cleanest fuel for fuel cells.

Table 6.3: SNLI and SciTail Test Set Premise (P ), Hypothesis (H) and the re-
trieved External Knowledge (EXT ). The retrieved external knowledge augments
the reasoning capability of BERTBASE model.

presents an elegant solution to augment the reasoning capabilities of BERT model

via the incorporation of external knowledge. The objective of the overall approach

is to take the full advantage of the expressive contextual word representations, the

state-of-the-art pre-trained BERT encoder and the external knowledge from the

KGs.

Utilizing the contextual word representations, ExBERT can incorporate exter-

nal knowledge from any external knowledge source that allows the knowledge to

be retrieved, given an entity. Further, we demonstrated the feasibility of utilising

contextual representations for encoding the external knowledge from KGs, which

indicates a potential direction for future research. The independence of ExBERT

from the KG embedding techniques makes the overall framework simple, robust and

efficient.

Quantitative and qualitative evaluations on the SNLI and SciTail datasets in

conjunction with ConceptNet and Aristo Tuple KGs demonstrate that ExBERT

outperforms the competing contemporary NLI models [18,61,123,149,152], including

those which are enhanced by BERTLARGE. Among the models presented previously

within this thesis, ExBERT achieving the accuracy of 91.5% on the SNLI dataset in

combination of the external knowledge source ConceptNet KG and the accuracies

of 95.2% and 95.9% on the SciTail dataset, respectively, with the ConceptNet and
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Aristo Tuple KGs is also our best-performing NLI model in terms of accuracy. In

the next chapter, we summarise the research work presented in the thesis, highlight

our contributions and outline the direction of future research.
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CHAPTER 7

Conclusion

NLI is a crucial task in the domain of natural language understanding. The task

relies on common human understanding of language and the real-world common-

sense knowledge on which the (human) entailment judgement relies. It encapsulates

natural language understanding capabilities within a very simple formulation —

determining whether a natural language hypothesis can be inferred from a given

premise. For an NLI system to succeed, it must address the full complexity of lexi-

cal and compositional semantics at all levels of language analysis (lexical, syntactic,

semantic, discourse, and pragmatic) as well as real-world commonsense knowledge.

Consequently, developing such systems considerably advances the developments to-

wards true natural language understanding in NLP. Attributed to its significance

to natural language understanding, NLI has received considerable recent attention

from both academia and industry.

Despite the considerable literature that has arisen, the contemporary deep neu-

ral NLI models face the challenges arising from the sole reliance on the training

data to comprehend all the linguistic and real-world commonsense knowledge and

the underutilisation of the crucial attention mechanism. Further, the field lacks a

coherent set of guidelines for the application of one of the most crucial regularisation
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hyper-parameter — dropout in the RNN-based NLI models.

To address the aforementioned limitations and challenges, the central aim of

this thesis has been to propose and implement robust, generalisable and knowledge-

grounded neural architectures for NLI via the incorporation of external knowledge

and maximising the utilisation of attention mechanisms. Towards achieving this

aim, Chapter 3 present a combined attention model by integrating intra-attention

and inter-attention mechanisms to maximally utilise the benefits of both the mecha-

nisms. Chapters 4 and 6 introduces BiCAM and ExBERT frameworks respectively,

to address the limitation of the inadequate knowledge learning form the training data

for the complex reasoning required for NLI. Chapter 5 formulates a set of guidelines

for the application of the crucial regularisation hyper-parameter — dropout for the

RNN-based NLI models.

The following sections outline the main contributions of the thesis and identify

future work.

7.1 Contributions

In Chapter 2, we introduce a generic neural architecture that encompasses the con-

temporary layered neural NLI architectures and presented a comprehensive review

of the existing literature in the field of deep learning for NLI.

In Chapter 3, we focus on leveraging the attention mechanisms to learn the

accurate and focussed semantic representations of the premise and hypothesis. We

propose [62] a natural language inference model that uniquely utilises the intra-

attention and inter-attention mechanisms. The model first captures the semantics

of the individual premise and hypothesis inputs with intra-attention and then aligns

the premise and hypothesis with the inter-sentence attention mechanism to learn

cross sentence dependencies.

The unique combination of intra-attention and inter-attention mechanisms demon-

strates the superior capabilities of modelling the semantics of the long and complex

sentences. The detailed qualitative and quantitative evaluations on the SNLI and

SciTail datasets, shows that in the proposed model the intra-attention and inter-
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attention mechanisms work constructively and achieve higher accuracy when they

are combined together in the same model than when they are used individually. Our

model also outperformes the contemporary competing models [3,58,87,95,143,203]

on the SNLI dataset and the models [5,42,91,200] on the SciTail dataset. The pro-

posed model performs particularly effectively on the hard to model SciTail dataset,

achieving an accuracy of 77.23% and outperforming the state-of-the-art ESIM by

6.6% and decomposable attention models by 4.9%.

Addressing the difficulties of learning the required linguistic and commonsense

knowledge solely from the training data, in Chapter 4, we consider the task of

incorporating real-world commonsense knowledge into deep neural NLI models. We

introduce an NLI model-independent framework, which unlike the state-of-the-art

models [39, 41], incorporates both external linguistic and commonsense knowledge

into the NLI model and does so without any architectural changes to the underlying

NLI model. Combined with convolutional feature detectors and bilinear feature

fusion, the framework provides a conceptually simple mechanism that generalises

across NLI models, datasets and KGs. Moreover, the framework can be easily

applied to different NLI model and KG combinations.

Evaluation results of the proposed model demonstrates that the framework con-

siderably improves the performance of the incorporated NLI baselines [42,91] as well

as the state-of-the-art models [39, 41, 70, 82] on the SNLI and the SciTail [5, 39, 40]

datasets. Particularly for the smaller, syntactically and semantically complex Sci-

Tail dataset, the framework (BiECAM) achieves performance improvements of 7.0%

(BiECAM accuracy 77.6%) with ConceptNet and 8.0% (BiECAM accuracy 78.6%)

with Aristo Tuple KG. However, despite the superior performance of the proposed

approach, the utilisation of the external knowledge can be improved by the use of

recently proposed pre-trained language models such as BERT [16]. Based on the

state-of-the-art developments in the NLP field, we introduce a novel approach ex-

ploiting the pre-trained language models for the utilisation of external knowledge in

NLI task in Chapter 6 of the thesis.

During the evaluations of the models proposed in Chapter 3 and Chapter 4,

we observed that the RNN-based neural networks are highly sensitive to model
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hyper-parameters, especially the dropout locations in the model and dropout rates

notably affects its performance. This observation led us to an unaddressed challenge

in the RNN-based NLI models — the lack of a coherent set of dropout application

guidelines in the RNN-based NLI models. Our exhaustive empirical evaluations

and analysis in Chapter 5 [63], result in a set of validated guidelines applicable

to a broad range of RNN-based NLI models. Among the other findings, the study

establishes that the higher dropout rates are not conducive for the high performance

of the RNN-based NLI models and regularising embedding layer for larger datasets

and regularising recurrent layers for the smaller dataset is productive. After the

excursion to dropout applications in RNNs, we return to improve the utilisation of

the external knowledge in NLI following the state-of-the-art developments in the

field of contextual word representations.

Although the models proposed in Chapter 4 are effective, the external knowl-

edge is retrieved using engineered heuristics which can be biased and the retrieved

knowledge may not be contextually relevant to the reasoning of the premise and

hypothesis. Further, learning the representation of external knowledge and feature

fusion with premise-hypothesis representation requires specialised techniques which

may not be predictive for the NLI task and may produce a cascading error effect in

the whole model.

Based on the state-of-the-art developments in the field of contextual word rep-

resentations and PTLMs, in Chapter 6, we propose a novel model to overcome the

abovementioned shortcomings. The proposed model overcomes the challenges of ex-

ternal knowledge incorporation at the crucial steps of external knowledge retrieval,

the encoding of the retrieved knowledge and the fusion of the encoded knowledge

with the premise-hypothesis representation in novel ways. The model utilises the

contextual word representations to retrieve contextually relevant external knowledge

and also to encode the retrieved knowledge. Further, we enhance the contextual rep-

resentations of the BERT model with the retrieved external knowledge to improve

its grounding in real-world knowledge and reinforce the reasoning and inference

capabilities for NLI.

Quantitative and qualitative evaluations on the SNLI and SciTail datasets in con-
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junction with the ConceptNet and Aristo Tuple KGs demonstrate that the proposed

model outperforms the competing contemporary NLI models [18, 61, 123, 149, 152],

including those which are enhanced by BERTLARGE. The proposed model, achieving

the accuracies of 91.5% on the SNLI dataset with ConceptNet KG and 95.2% and

95.9% on the SciTail dataset, respectively, with ConceptNet and Aristo Tuple KGs,

is also our best-performing NLI model (in terms of accuracy) presented previously

within this thesis.

7.2 Future Work

The field of NLP has been fast progressing, especially in the last few years ground-

breaking research such as Transformer model [78] and the Transformer based PTLMs

[16, 61, 84, 85] have enjoyed increased popularity. In light of the recent research de-

velopments, the models and the findings presented in this thesis suggest a number

of possible improvements and the directions of interesting future research. In par-

ticular, we aim to pursue the following research in the future.

7.2.1 Experiments with Latest Attention Mechanisms

A number of novel attention mechanisms [87–89, 225] are introduced in the NLP

research. In Chapter 3, we introduced a combined attention model benefiting from

the intra-attention and inter-attention mechanisms. While this approach is efficient,

further studies evaluating the efficacy of the overall framework with the recently

proposed attention mechanisms [87–89,225] will need to be undertaken.

7.2.2 Enhancing Models on Specialised Datasets

As discussed in Chapter 2, recently there has been a number of new specialised

datasets focussing on evaluating the particular abilities such as cross-lingual lan-

guage understanding [96] and scalar implicatures and presuppositions [111] have

been proposed. Table 2.1 illustrates these datasets. As a part of future work, mod-

els presented in this thesis, especially external knowledge enhanced models proposed

in Chapters 4 and 6 can be evaluated and enhanced on these datasets. We believe
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that the incorporated external knowledge will also benefit the specialised reasoning

required for these datasets.

7.2.3 Deploying models in natural language understanding

tasks

As discussed in Chapter 1, the inferencing and reasoning abilities of NLI systems

are employed in other complex neural natural language understanding tasks such as

abstractive summarisation and machine comprehension. As further research work,

the efficacy of the CAM, BiCAM and ExBERT models proposed in Chapters 3, 4 and

6 can be evaluated in association with other complex natural language understanding

tasks such as summarisation and question answering. We believe that deploying

these models in complex natural language understanding systems will increase the

overall effectiveness of the system.

7.2.4 Experiments with knowledge reterival mechanisms

For external knowledge retrieval, we proposed retrieval heuristics (Section 4.1.1)

in association with the BiCAM models proposed in Chapter 4 and the enhanced

contextual similarity-based, selection and ranking mechanisms (Section 6.1.1) for

the ExBERT model proposed in Chapter 6. Another interesting direction of future

research is to explore the use of external knowledge retrieved via heuristics with

ExBERT model and the external knowledge retrieved via contextual similarity-

based mechanism with BiCAM models. The switching of external knowledge re-

trieval mechanisms between the BiCAM and ExBERT models will further enhance

the understanding of the efficacies of the knowledge retrieval mechanisms and the

proposed models.

7.2.5 Exploring PTLMs and External Knowledge Sources

As discussed in Chapter 6, although PTLMs have significantly improved the state-

of-the-art on many complex natural language understanding tasks, they lack ground-

ing to real-world knowledge and are often unable to remember facts when re-
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quired [217, 218]. Knowledge probing tests [218] on the commonsense knowledge

of ConceptNet [206] reveal that PTLMs have critical limitations when solving prob-

lems involving commonsense knowledge. In Chapter 6, we have demonstrated that

external knowledge is beneficial to one of the PTLM, BERT [16], further work is

required to investigate other PTLMs [61,84,85].

External knowledge sources are crucial for grounding the NLI models in real-

world knowledge. We have explored ConceptNet for general commonsense knowl-

edge and Aristo Tuple for domain-specific external knowledge. However, as KGs are

noisy and incomplete [220], hence incorporating external knowledge from the com-

bination of different KGs might further improve the reasoning capabilities of NLI

models. In Chapter 2, Table 2.4, we illustrated different external knowledge sources.

Further work is required to investigate ways to combine these external knowledge

sources and utilise the knowledge from them.

7.2.6 Training Dataset - Indic Languages

English is currently the dominant language for the NLI task mainly due to the

availability of large datasets in the English language. The XNLI dataset [96] extends

the development and test sets of the MultiNLI [105] dataset to different languages,

however, there are no dedicated NLI datasets for Hindi and other Indic languages

such as Marathi and Punjabi. As part of future work, we are highly interested in

gathering a dataset and releasing it publicly to advance the case of NLI in these

languages and multilingual NLI.
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[47] Z. Neverilová, “Paraphrase and textual entailment generation in czech,” Com-
putación y Sistemas, vol. 18, no. 3, 2014.

[48] T. Mihaylov and A. Frank, “Knowledgeable reader: Enhancing cloze-style
reading comprehension with external commonsense knowledge,” in Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), (Melbourne, Australia), pp. 821–832, Association
for Computational Linguistics, July 2018.

[49] A. Yang, Q. Wang, J. Liu, K. Liu, Y. Lyu, H. Wu, Q. She, and S. Li, “En-
hancing pre-trained language representations with rich knowledge for machine
reading comprehension,” in Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, (Florence, Italy), pp. 2346–2357,
Association for Computational Linguistics, July 2019.

[50] Q. Wang, Z. Mao, B. Wang, and L. Guo, “Knowledge graph embedding: A
survey of approaches and applications,” IEEE Transactions on Knowledge and
Data Engineering, vol. 29, pp. 2724–2743, Dec 2017.

149



[51] S. Kim, I. Kang, and N. Kwak, “Semantic sentence matching with densely-
connected recurrent and co-attentive information,” in The Thirty-Third AAAI
Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innova-
tive Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth
AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI
2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pp. 6586–6593,
AAAI Press, 2019.

[52] Z. Wang, W. Hamza, and R. Florian, “Bilateral multi-perspective matching for
natural language sentences,” in Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI-17, pp. 4144–4150, 2017.

[53] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural com-
putation, vol. 9, no. 8, pp. 1735–1780, 1997.

[54] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,”
IEEE Trans. Signal Process., vol. 45, no. 11, pp. 2673–2681, 1997.

[55] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural network regu-
larization,” arXiv preprint arXiv:1409.2329, 2014.

[56] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” The
Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[57] T. Bluche, C. Kermorvant, and J. Louradour, “Where to apply dropout in re-
current neural networks for handwriting recognition?,” in Document Analysis
and Recognition (ICDAR), 2015 13th International Conference on, pp. 681–
685, IEEE, 2015.

[58] S. R. Bowman, J. Gauthier, A. Rastogi, R. Gupta, C. D. Manning, and
C. Potts, “A fast unified model for parsing and sentence understanding,” in
Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), vol. 1, pp. 1466–1477, 2016.

[59] J. Choi, K. M. Yoo, and S. Lee, “Learning to compose task-specific tree struc-
tures,” in Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intel-
ligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances
in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February
2-7, 2018 (S. A. McIlraith and K. Q. Weinberger, eds.), pp. 5094–5101, AAAI
Press, 2018.

[60] M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer, “Deep contextualized word representations,” in Proceedings
of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers), (New Orleans, Louisiana), pp. 2227–2237, Association for Computa-
tional Linguistics, June 2018.

150



[61] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever,
“Improving language understanding by generative pre-
training,” URL https://s3-us-west-2. amazonaws. com/openai-
assets/researchcovers/languageunsupervised/language understanding paper.
pdf, 2018.

[62] A. Gajbhiye, S. Jaf, N. A. Moubayed, S. Bradley, and A. S. McGough, “Cam:
A combined attention model for natural language inference,” in 2018 IEEE
International Conference on Big Data (Big Data), pp. 1009–1014, Dec 2018.

[63] A. Gajbhiye, S. Jaf, N. A. Moubayed, A. S. McGough, and S. Bradley, “An
exploration of dropout with rnns for natural language inference,” in Artifi-
cial Neural Networks and Machine Learning – ICANN 2018 (V. Kůrková,
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[140] A. Talman, A. Yli-Jyrä, and J. Tiedemann, “Sentence embeddings in NLI with
iterative refinement encoders,” Nat. Lang. Eng., vol. 25, no. 4, pp. 467–482,
2019.

[141] Y. Tay, A. T. Luu, and S. C. Hui, “Hermitian co-attention networks for text
matching in asymmetrical domains,” in Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI 2018, July
13-19, 2018, Stockholm, Sweden (J. Lang, ed.), pp. 4425–4431, ijcai.org, 2018.

[142] S. Wang and J. Jiang, “Learning natural language inference with LSTM,” in
Proceedings of the 2016 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies, (San
Diego, California), pp. 1442–1451, Association for Computational Linguistics,
June 2016.

159



[143] P. Liu, X. Qiu, J. Chen, and X. Huang, “Deep fusion LSTMs for text seman-
tic matching,” in Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), (Berlin, Germany),
pp. 1034–1043, Association for Computational Linguistics, Aug. 2016.

[144] L. Sha, B. Chang, Z. Sui, and S. Li, “Reading and thinking: Re-read LSTM
unit for textual entailment recognition,” in Proceedings of COLING 2016,
the 26th International Conference on Computational Linguistics: Technical
Papers, (Osaka, Japan), pp. 2870–2879, The COLING 2016 Organizing Com-
mittee, Dec. 2016.

[145] W. Yin, D. Roth, and H. Schütze, “End-task oriented textual entailment via
deep explorations of inter-sentence interactions,” in Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 2:
Short Papers), (Melbourne, Australia), pp. 540–545, Association for Compu-
tational Linguistics, July 2018.

[146] X. Liu, Y. Shen, K. Duh, and J. Gao, “Stochastic answer networks for ma-
chine reading comprehension,” in Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), (Mel-
bourne, Australia), pp. 1694–1704, Association for Computational Linguistics,
July 2018.

[147] J. Cheng, L. Dong, and M. Lapata, “Long short-term memory-networks for
machine reading,” in Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, (Austin, Texas), pp. 551–561, Association for
Computational Linguistics, Nov. 2016.

[148] M. Guo, Y. Zhang, and T. Liu, “Gaussian transformer: A lightweight approach
for natural language inference,” in The Thirty-Third AAAI Conference on Ar-
tificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of
Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii,
USA, January 27 - February 1, 2019, pp. 6489–6496, AAAI Press, 2019.

[149] D. Pang, L. H. Lin, and N. A. Smith, “Improving natural language inference
with a pretrained parser,” CoRR, vol. abs/1909.08217, 2019.

[150] X. Yang, X. Zhu, H. Zhao, Q. Zhang, and Y. Feng, “Enhancing unsupervised
pretraining with external knowledge for natural language inference,” in Ad-
vances in Artificial Intelligence (M.-J. Meurs and F. Rudzicz, eds.), (Cham),
pp. 413–419, Springer International Publishing, 2019.

[151] T. Li, X. Zhu, Q. Liu, Q. Chen, Z. Chen, and S. Wei, “Several experiments on
investigating pretraining and knowledge-enhanced models for natural language
inference,” arXiv preprint arXiv:1904.12104, 2019.

[152] Z. Zhang, Y. Wu, Z. Li, and H. Zhao, “Explicit contextual semantics for text
comprehension,” 2019.

160



[153] W. Wang, B. Bi, M. Yan, C. Wu, J. Xia, Z. Bao, L. Peng, and L. Si, “Struct-
bert: Incorporating language structures into pre-training for deep language
understanding,” in 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020, OpenReview.net, 2020.

[154] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Com-
put., vol. 9, p. 1735–1780, Nov. 1997.

[155] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature veri-
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