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Twitter Analysis to Predict the Satisfaction of Saudi Telecommunication Companies’ 

Customers 

Submitted for the degree of Doctor of Philosophy 2021 

Abstract 

The flexibility in mobile communications allows customers to quickly switch from one service provider to 

another, making customer churn one of the most critical challenges for the data and voice telecommunication 

service industry. In 2019, the percentage of post-paid telecommunication customers in Saudi Arabia 

decreased; this represents a great deal of customer dissatisfaction and subsequent corporate fiscal losses. 

Many studies correlate customer satisfaction with customer churn. The Telecom companies have depended 

on historical customer data to measure customer churn. However, historical data does not reveal current 

customer satisfaction or future likeliness to switch between telecom companies. Current methods of analysing 

churn rates are inadequate and faced some issues, particularly in the Saudi market.  

This research was conducted to realize the relationship between customer satisfaction and customer churn 

and how to use social media mining to measure customer satisfaction and predict customer churn. 

This research conducted a systematic review to address the churn prediction models problems and their 

relation to Arabic Sentiment Analysis. The findings show that the current churn models lack integrating 

structural data frameworks with real-time analytics to target customers in real-time. In addition, the findings 

show that the specific issues in the existing churn prediction models in Saudi Arabia relate to the Arabic 

language itself, its complexity, and lack of resources. 

As a result, I have constructed the first gold standard corpus of Saudi tweets related to telecom companies, 

comprising 20,000 manually annotated tweets. It has been generated as a dialect sentiment lexicon extracted 

from a larger Twitter dataset collected by me to capture text characteristics in social media. I developed a 

new ASA prediction model for telecommunication that fills the detected gaps in the ASA literature and fits 

the telecommunication field. The proposed model proved its effectiveness for Arabic sentiment analysis and 

churn prediction.  This is the first work using Twitter mining to predict potential customer loss (churn) in 

Saudi telecom companies, which has not been attempted before. Different fields, such as education, have 

different features, making applying the proposed model is interesting because it based on text-mining. 
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Chapter 1: Introduction 

1.1 Introduction, Rationale and Research Problems 

Global competition for telecommunication services drives companies to enhance their customers’ 

satisfaction. Customer satisfaction defined as customer’s response to the expectation level [5].  

Customer satisfaction is having been measured using customer interviews and questionnaires, but these 

methods cannot measure customer satisfaction in real-time [6]. In addition, these methods can be problematic 

as typically low respond to questionnaires, creating a self-selection bias [7]. Moreover, the time for a 

turnaround, even for those who respond, creates significant time delays. Many research [8], [9] and [10] has 

used social media mining to measure customer satisfaction. However, there are currently lacking tools for 

doing this in Arabic. Measuring customer satisfaction is critical for customer retention [11]. 

Customer churn is defined within the telecommunication field as customer movement from one telecom 

company to another [12].  Extensive research indicates that customer satisfaction is positively correlated with 

customer loyalty and negatively correlated with customer churn [11, 13, 14]. Customer satisfaction and 

customer churn can be used to optimize industry success: customer churn is reduced when customers are 

happy.  Satisfied customers increase company profits by reducing the costs associated with attracting new 

customers. It costs five to ten times more to attract a new customer than to retain one, [15], [11], [14], so 

companies are more concerned with keeping customers than ever before.  

Deng et al. [16] assert that keeping customers satisfied is crucial for long term customer relationships.  Ranjan 

et al. [13] has found that positive customer sentiment ‘feeling’ to be a good predictor for creating new 

customers.  In addition, Li et al. [14] found that a single unsatisfied customer can result in a company loss of 

25 additional customers. A churner will influence his social community causing more churning [17].   

Avoiding customer dissatisfaction is critical to customer churn. Customer churn prediction requires a 

thorough customer behaviour analysis [18]. Churn management provides a vital tool for Customer 

Relationship Management (CRM) in the telecommunication industry [19], [20]. Churn management, keeping 

the existing customer, is vital [21], [22].  
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Telecom companies have depended on historical customer data to measure customer churn. However, 

historical data does not reveal current customer satisfaction or future likeliness to switch between telecom 

companies. 

The literature review presented in Chapter 2 reveals that many studies have been done focusing on 

developing churner prediction models- based on historical data. These models face delay issues and lack 

timelines for targeting customers in real-time [23]. Also, these models lack the ability to tap into Arabic 

language social media for real-time analysis. As a result, the design of a customer churn model based 

on real-time analytics is needed. 

 Using real-time methods could help solve problems of delayed data collection - and allow for customer 

feedback analysis and the creation of effective retention plans. Conversely, delays may cause a drop-in 

market position, especially for large consumer populations across multiple time zones where daily 

monitoring data is complex. However, again, the lack of an Arabic language tool limits the usability of 

this data. 

This research addresses the following problems related to customer churn prediction models:  

• Time sensitivity: The current churn prediction models have a relatively short life because as they 

rely on historical customer data, where the data becomes less valuable over time. [20]  

• Language-specific issues: The current churn prediction models exclude location and language 

factors, and that causes a miss important information [24]. 

• Real-time analytics: A lack of research integrates structural data frameworks with real-time 

analytics for targeting customers in real-time [23]. 

Significantly, the reviewed literature indicated that social mining is a powerful tool for predicting customer 

churn. However, a knowledge gap exists as to how social mining predict customer churn in various industries: 

how this technique can be used to assess customer behaviour in other industries such as education or 

marketing.  

Social media is a key part of many people’s lives today; 85.1% of active internet users are social network 

platform users [25]. Social media is a communication tool that allows people to share their sentiments, 

thoughts, opinions and moods [26]. Social media mining can offer rich and diverse data that might be used 
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to measure customer satisfaction without having to perform surveys [13].  Mining social media data can be 

considered a real-time technique and involves less time and effort to recap a conclusion [13].  

Sentiment analysis or ‘opinion mining’ refers to the computational processing of opinions, feelings and 

attitudes towards a particular event or issue [27], [28].  Sentiment analysis of social media platforms 

can be used by company management to take timely actions to improve customers' experience, avoid 

customer churn, and create positive customer attitudes about the brands' customers prefer [13]. 

Sentiment analysis can help organisations support decision-makers in predicting stock markets by identifying 

the feelings of social network users about financial matters [29]. 

With seven telecom companies in Saudi Arabia, the three largest are STC, Mobily and Zain [30]. Together, 

the seven have 41.63 million subscribers who use mobile voice communication services. The prevalence of 

mobile voice service among the population is 124,6% [31], indicating that many individuals subscribe to 

more than one mobile service. Over 31% of customers registered complaints in 2018 alone.  Saudi 

Information Technology Commission [31] representing over 13,103M complaints. The percentage of mobile 

internet subscribers in 2019 in Saudi Arabia is 80% of the total population [32]. In Saudi Arabia, 11 M used 

Twitter in 2018 [33].  

The percentage of post-paid telecommunication customers in Saudi Arabia decreased in 2019 [2]- this 

represents a great deal of customer dissatisfaction and subsequent corporate fiscal losses. Obviously, these 

companies need to add more customers while retaining their existing customers. To do this, they 

urgently need a new method to assess customer satisfaction and predict customer churn. This helps in 

developing effective customer retention programmes for the company. 

 Current methods of analysing churn rates are inadequate, particularly so in the Saudi market. The specific 

issues with current churn models in Saudi Arabia relate to the Arabic language itself. Arabic is a rich 

morphological language [34], [35], written from right to left and using different forms. There are different 

forms of the Arabic language: Classical Arabic (CA), as in the book of Islam’s Holy Quran, Modern Standard 

Arabic (MSA) used in newspapers, education and formal speaking, Dialectical Arabic (DA) used in informal 

everyday spoken language and found in chat rooms and social media platforms. Arabic is actually a group 

of dialects. Mubarak and Darwish [36] identified six distinct Arabic dialects: Gulf, Yemeni, Iraqi, 
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Egyptian, Levantine and Maghrebi. Every dialect has its own grammar and vocab [37], complicating any 

attempt to build an Arabic lexicon [38], [34], [39].  

It has been shown in the literature that the sentiment analysis of the Arabic language is quite challenging [40] 

for the reasons mentioned earlier. Although ASA is of growing importance, it is still in the early stages of 

research [41], [42], [43]. 

 Compared Arabic to other languages, Arabic lacks a large corpus [44], [45], [39], [46], [43].  Fewer Saudi 

dialect corpus and lexicon resources exist than other Arabic dialects, such as the Egyptian dialect, which had 

a lot of attention; one of the earliest Egyptian corpus is CALLHOME corpus [47]. In addition, Levantine 

Arabic received much attention, such as the Levantine Arabic Treebank (LATB) [48]. 

Regarding the Arabic dialects, this is not the case with the Gulf dialect, especially the Saudi dialect.  

Unfortunately, there are shortcomings to the existing corpora and their availability. This is due partly to the 

strict procedures for gaining permission to reuse aggregated data, with most existing corpora not offering 

free access. Saudi lexicon is needed in order to analyse real-time customer positive and negative attitudes 

toward telecom services. 

For that, this research efforts to fill this gap by creating golden standard Saudi corpus AraCust and Saudi 

lexicon AraSTw for use in data mining - specific to the telecom industry. While some Arabic lexicon 

resources currently exist, there is no specific Arabic telecom lexicon. Using the lexicon in the data mining 

tool is the key to tool accuracy. No Saudi dialect lexicon has ever been developed for the telecom industry, 

even though 467 M Arabic speakers [49]. Future work can include expanding the lexicon to include more 

regional dialects. 

1.2 Initial Hypotheses 

The research hypotheses originated from the conflicting findings of the reviewed studies and the gaps 

identified in the literature in terms of the relationships between customer satisfaction, social media sentiment 

and customer churn prediction. Each hypothesis addresses one research question (RQ), as listed below. 
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1. If measurable criteria for customer satisfaction are defined, they could extract services that do not 

meet the expectations of customers (RQ1 and RQ3). 

2. Customer satisfaction with telecom companies in Saudi Arabia can be monitored by analysing 

microblogging sites (RQ2). 

3. The customer churn of telecom companies in Saudi Arabia can be predicted by analysing 

microblogging sites (RQ4). 

1.3 Research Objectives, Questions and Techniques 

As a result, I have defined the following umbrella research question: 

RQ0: Can Twitter be used to automatically monitor and compute customers’ satisfaction with telecom 

companies in Saudi Arabia and predict customer churn? 

This research question is further divided into sub-questions in Table 1.1 below, leading to specific Research 

Objectives. This research tries to answer RQ0 by answering the sub-questions.  

In the same table, I further mention the main research techniques used to reply to that particular research 

question and target a specific objective.  
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Research Questions Research Objectives Research Techniques Chapters 

What are the traceable, measurable metrics 

for customers’ satisfaction with telecom 

companies in Saudi Arabia, and how can 

they be combined for visualisation? 

1. To create a framework of 

measurable, weighted metrics for 

customers’ satisfaction with Saudi 

telecom companies. 

Review the literature, a communications 

and information technology commission 

report, and a questionnaire to define the 

traceable measurable metrics taxonomy. 

Chapter four 

What types of services for customers of 

telecom companies in Saudi Arabia are 

mentioned in tweets, and what is the 

customer sentiment about these services? 

Sub-question: Are there services not 

discussed in tweets that could be relevant 

to the sentiments of customers? 

2. To propose recommendations to 

improve the services of Saudi 

telecom companies. 

Results from step 1 and an annotation 

process to define the services. Using 

multi-way sentiment analysis toward the 

services and visualize the satisfaction and 

services of the service importance to set 

the recommendations. 

Chapter five and 

Chapter six 

Can we automatically measure and make 

automatic predictions about customers’ 

satisfaction with telecom companies in 

Saudi Arabia using Twitter? 

 

3. To identify based on Twitter 

mining Saudi telecom companies’ 

customers’ satisfaction. 

 

Data was taken from Twitter, was 

processed using a Python Script, 

manually annotated. Using the developed 

lexicon to estimate which tweets 

expressed positive or negative values 

about which telecom company.   

Chapter five 

Is it possible to predict the customer churn 

of telecom companies in Saudi Arabia by 

analysing customers’ tweets? 

 

4. To predict the potential ratio of 

customer churn. 

 

 

 

 

Feed the churn prediction model with the 

historical customer data, and the results 

from step 3. 

Chapter seven 

Table 1.1: Research questions, objectives and techniques. 
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1.4 Research Methodology 

To accomplish the aim of this study, a deductive approach will be used. Deductive research involves adopting 

hypotheses and testing them in a causality manner [50] to explore the relationships among the research 

variables. A review of the literature determined that there are distinct gaps in social media analysis to measure 

customer satisfaction and predict customer churn. Accordingly, this study will address the relationship among 

the variables of a Twitter sentiment analysis, customer satisfaction and customer churn. In addition, this study 

plans to use multiple approaches, such as a supervised approach for an Arabic SA, deep learning, and 

transformer networks, to develop a model for capturing customer satisfaction and predict customer churn. 

There is a strong correlation between SA and marketing because customers tend to express their feelings 

towards products on social media. This provides an opportunity to analyse these feelings or sentiments to 

measure customer satisfaction. 

1.5 Study Aims, Originality and Outcomes 

In this study, I used real-time Twitter mining methods in tandem with historical data to predict customer 

churn. This is a new method not previously used. Subsequent to my publication [51], another researcher [13] 

mirrored my methods to predict customer base growth. The present study proposes a novel model for the 

telecom industry that fits the telecom data. The model also takes into consideration language and location 

factors. In addition, the present study intends to introduce a notion of customer interaction for Saudi 

telecommunication companies based on the prediction model of the ‘lost customer’ phenomenon (or 

customer churn).  
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In addition, this study contributes to the ASA research community by developing three Arabic resources: 

corpus, lexicon, and Arabic sentiment tool. The corpus and lexicon are in the Saudi dialect. Other sectors 

will use my Arabic tool to measure customer satisfaction and customer churn, including education and 

business. Both of these sectors rely on data mining and depend on Arabic text analysis. In the digitized world, 

especially in the current situation, during Covid-19, using social media to express feelings among the 

customers or students has dramatically increased [52]- Likewise, increasing the need for a useful SA tool.  

This study is unique because: 

• It is the first work using Twitter mining to predict potential customer loss (churn) in Saudi telecom 

companies, which has not been attempted before (Chapter 7), and 

• It develops the ASA model by combining both transfer language model and deep learning model 

(Chapter 5), and 

• It creates Saudi resources to solve the lack of Saudi resources issue (Chapter 3). 

The outcomes of this study will be: 

1.      Assessing ASA's current situation, the main approaches contributing to ASA and the challenges that 

faced ASA using a systematic review.  

2.      AraCust Corpus: Constructing a first golden standard corpus of Saudi tweets related to telecom 

companies from this dataset comprising 20,000 manually annotated. 

3.   AraSTw Lexicon: Generating a Saudi dialect sentiment lexicon extracted from Twitter data sets to capture 

the texts' characteristics in social media. It comprises 34,755 words. It outperformed another state-of-the-art 

Arabic lexicon.  

4.   Contributing to the Arabic Sentiment Analysis (ASA) research community by developing a new model 

combining deep learning and transfer language models. 

5.   Identifying and evaluating the main gaps in the current churn prediction models. 
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6. Propose and evaluate a novel design of a churn prediction model to address the gaps in current churn 

prediction models by providing a real-time method that suits the telecom data. 

7.    Providing recommendations for telecom companies based on monitoring real-time customers' satisfaction 

through Twitter. 

1.6 List of Publications 

Work conducted in this thesis has contributed in the following ways. 

Conference Papers 

• Almuqren, L. and Cristea, A.I., 2016, July. Framework for Sentiment Analysis of Arabic Text. In 

HT (pp. 315-317). Core A. 

• Almuqren, L. and Cristea, A.I., 2016, July. Twitter Analysis to Predict the Satisfaction of Telecom 

Company Customers. In HT (Extended Proceedings). Core A. 

• Almuqren, L., Alzammam, A., Alotaibi, S., Cristea, A. and Alhumoud, S., 2017, July. A review on 

corpus annotation for Arabic sentiment analysis. In International Conference on Social Computing 

and Social Media (pp. 215-225). Springer, Cham. 

• Almuqren, L. A. R., Qasem, M. M. & Cristea, A. I. (2019). Using Deep Learning Networks to 

Predict Telecom Company Customer Satisfaction Based on Arabic Tweets. In Information 

Systems Development: Information Systems Beyond 2020 (ISD2019 Proceedings). Toulon, 

France: ISEN Yncréa Méditerranée. Core A 

• Almuqren, L. & Cristea, A. I. (2021). COVID-19’s Impact on the Telecommunications 

Companies. In WorldCist'21 - 9th World Conference on Information Systems and Technologies.  

Core C. 

Journal Papers 

• Almuqren, L., & Cristea, A. (2021). AraCust: a Saudi Telecom Tweets corpus for sentiment 

analysis. PeerJ Computer Science, 7, e510. 
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• Almuqren, L., Alrayes, F. S., & Cristea, A. I. (2021). An Empirical Study on Customer Churn 

Behaviours Prediction Using Arabic Twitter Mining Approach. Future Internet, 13(7), 175. 

Papers under review 

• Predicting STC Customers’ Satisfaction using Twitter Mining for IEEE Transactions on 

Computational Social Systems. 

• Multi-Way Arabic Sentiment Analysis for Information & Management Process Journal. 

• AraBERT-GRU Model for Arabic Sentiment Analysis for UMUAI Journal. 

• Arabic Text Sentiment Analysis: Reinforcing Human-Performed Surveys with Wider Topic 

Analysis for IEEE Access Journal. 

Participatory 

• I have participated in a conference with a poster of this work in Princess Nourah University, King 

Saud, Saudi Arabia. 

• I attended a lot of conferences and seminars about Sentiment Analysis in Saudi Arabia. 

• I have participate in the Women’s ACM with a poster of this work. 

1.7 Research Framework 

 Figure1.1 shows the research steps that will be followed to achieve the aim of this study.  
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1.8 Mapping of Research Questions, Objectives and Methodology Across the Thesis 

Chapters 

Figure 1.2 shows a map of the work to be carried out across the chapters of this thesis. 

  

 

1.Twitter Corpus 

Chapter3 

2.Annotate 

Corpus 

Chapter 3 

3.Clean and pre-

processing the corpus 

Chapter 3 

4. Cleaned 

Twitter Corpus 

5.Classifying tweets 

Chapter 5 

6. Customer 

satisfaction 

(CC) 

percentage 

Chapter 5 

8. Customer 

data warehouse 

9. Customer 

data warehouse 

+CC 

10.Predict Customer 

churn 

Chapter 7 

11. Customer 

churn ratio 

Chapter 7 

12.Validate the results 

Chapter 7 

7.Validate the results 

Chapter 5 

Unlabeled data set 

Labeled data set 

Labeled tweets 

Figure 1.1: Research framework maps. 
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The rest of the thesis chapters, Chapter two, a systematic review to assess the current churn models and the 

current stage of Arabic sentiment analysis and highlight the challenges that faced ASA. While Chapter three 

explained the construction of the golden annotation corpus and sentiment lexicon.

 

Literature 

Review 

Questionnaire 

Chapter Four 

Python 

script. 

Chapter Five Chapter Six 

Results from RQ1   

annotation process 

and multi-class 

sentiment analysis 

toward the   

services. 

Chapter Seven 

Questionnaire 

Historical data 

Results from 

RQ3 

 

 
  Figure 1.2: Mapping of research questions, objectives, and methodology across the thesis chapters. 
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 Chapter 2: Literature Review  

2.1 Introduction  

The literature review is an essential phase as it enables the researcher to understand the topic and include key 

concepts. This Chapter investigates the literature and background related to the main areas of this research, 

which are customer satisfaction, customer churn and Twitter mining on the road, in order to build up 

knowledge of these key concepts. In addition, this Chapter systematically reviews all the Arabic sentiment 

analysis models and resources in order to highlight the issues facing the Arabic sentiment analysis approach. 

This will allow the researcher to build a model commensurate with the nature of the Arabic language and its 

structure and characteristics. The systematic approach was evaluated using an epistemological engine. 

Furthermore, this Chapter critically reviews the state-of-the-art churn prediction models to identify   gaps in 

the existing models.  

Consequently, this Chapter provides a vital foundation and theoretical basis for the research. The output of 

this chapter answers RQ1. The scope of this literature review is examining Arabic sentiment analysis models, 

churn prediction models and their issues. 

2.2 Literature Review 

2.2.1 Customer Satisfaction and Customer Churn Definitions  

Enhancing customer satisfaction (CS) is a popular topic in the marketing literature. Extensive research 

correlates customer satisfaction with customer churn [11, 13, 14].  Customer satisfaction and customer churn 

have been identified as two factors that contribute to success in several industries, such as telecommunication 

[53], medicine [54] and tourism [55].   

Customer satisfaction is defined as the outcome of using a service, resulting from the comparisons that the 

buyer makes with other similar providers in terms of the rewards and costs of the service [56, 57]. Similarly, 

[58], [59] and [60] define customer satisfaction as an evaluation of the expectations and the actual execution 
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of the service.  Correspondingly, [5] consider customer satisfaction as the customer’s response to their 

satisfaction level. 

Meanwhile, customer churn with respect to the telecommunication industry is defined as the turning away of 

customers from one telecom provider to another [61-63], [18, 21], [64] – e.g., the number of customers 

switching to another mobile provider.  

Both definitions can be linked to one another in the search for an optimum strategy to improve industry 

success. In other words, customer churn can be stopped by making customers happy. Customers who are 

satisfied with a company’s services make a company more profitable because the cost of attracting new 

customers is five to ten times greater than the cost of retaining existing customers [15], [11, 14]. Therefore, 

companies are more concerned with keeping customers than ever before. Ali et al. [11] stated that customer 

satisfaction is essential for customer retention. Similarly, [16] asserted that keeping a customer satisfied is 

crucial for a long customer-supplier relationship. Ranjan et al. [13] confirmed that positive customer 

sentiment can be a good indicator of the possibility of gaining new customers. In addition, [14] claimed that 

unsatisfied customers can lose the company 25 customers. Hence the importance of customer satisfaction is 

that it plays a role in avoiding customer churn. 

A study states that customer churn prediction requires customer behaviour analysis [18]. Churn management 

plays a vital role in Customer Relationship Management (CRM) in the telecommunication industry [19, 20]. 

Churn management has been identified as the processes of keeping existing customers [21], [22].  

There are two types of customer churning: voluntary and involuntary. The decision by a customer to move 

to another telecom company of his own will is called voluntary, while forcing a customer to stop using a 

telecom company’s services for any reason such as death or changing jobs is called involuntary [65]. Usually, 

scholars are interested in voluntary customer churning because it describes the relationship between a 

customer and a company.  There are two types of customer scheme, post-paid or pre-paid. Post-paid 

customers receive a monthly bill for the company’s services while pre-paid customers are charged in advance 

for the company’s services.  
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I define customer churn in our study as a post-paid customer who voluntary leaves the company and stops 

using their services within our time window. In contrast, a non-churner in our study is a post-paid customer 

who remains with the company within our time window. 

2.2.2  Social Media Mining 

Big data is the term used to refer to extensive data sets. In this study, big data refers to the enormous data 

generated from social media platforms and users’ activities on these platforms. Social media data can be 

tweets, reviews, posts, etc. [66]. Social media encompasses various platforms that allow people to share and 

exchange information, producing an abundance of valuable data.  Some social media platforms are Twitter, 

Facebook, Yelp, Linked In, YouTube. The social media data on these platforms graduate from structured 

data to unstructured data such as news or microblogging. Mining these data would provide a wealth of 

knowledge and useful information on many levels. Using different data mining techniques to analyse social 

media data is nevertheless a dynamic domain of research. There are various social media mining techniques, 

such as sentiment analysis, opinion mining, or social media analysis. Social media mining can offer rich and 

diverse data that could be used to measure customer satisfaction without having to perform a survey [67]. 

Mining social media data is a real-time technique, and a conclusion can be drawn with less time and effort 

than with some other methods [13]. 

Several studies have highlighted the benefits of social media analysis, especially SA, for organisations [68, 

69], [70], [71], [72], [73], [74], [75], [13, 76]. According to [68], social media analysis can help organisational 

decision-makers predict the stock market by identifying financial and social network users' feelings. Other 

researchers have stated that mining social media data is important for marketers and customers for several 

reasons. For example, it produces an abundance of useful data, which provides a wealth of information about 

customers for the company [77]; it helps to develop a recommendation system to maintain existing customers 

or gain new ones; it helps organisations to change  customers’ decisions about their services as they can 

access customers’ opinions; it is also effective for building confidence among customers and stakeholders 

[67]; it helps to prevent customer churn [78]. 
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Regarding the reasons why social media is preferable for users, [13] explained that users might be more 

comfortable expressing their opinions on social media platforms than traditional methods. In addition, users 

tend to express their true feelings towards a brand and its services through social media platforms rather than 

filling in a questionnaire [13]. 

2.2.2.1 Why Twitter? 

Twitter is a popular, widely used messaging service categorised as a microblogging website [26]. It was 

launched in July 2006. Messages on Twitter are embedded into so-called ‘tweets’, which are individual, 

unstructured text messages with a limit of 140 characters, recently raised to 280 characters.   

Twitter has been selected for this research because millions of users post their opinions, sentiments and 

moods daily. It is an easy platform to use on many devices. Twitter offers available access to tweets for 

developers, using Application Programming Interface (API) and Open Authentication (OAuth) for API [79]. 

The developer can retrieve the last seven days’ tweets, while prior than seven days seeing as a historical 

tweet. The collected data include the tweet text, the tweet author id, the tweet date, the tweet location, etc.   

Across the world, Saudi Arabia ranks seventh in terms of the number of personal accounts on social media 

[49]. In 2020, Twitter users in Saudi Arabia reached 12 million [80]. Unsurprisingly, Twitter is one of the 

most visited sites in Saudi Arabia, and the number of Twitter users continues to rise rapidly. Al-Jenaibi [81] 

explained why Saudi people prefer Twitter over other social media websites, including the fact that Twitter 

allows Saudi people to freely express their views about certain prohibited subjects, thus changing the nature 

of this once closed, conservative community. 

2.2.3  Providing Customer Satisfaction with social media 

This review aims to define how to measure customer satisfaction using social media mining, specifically 

Twitter mining. Firstly, I reviewed several case studies on the applications and methods used in relation to 

customer satisfaction. Four classification methods were identified. These methods, listed in Table 2.1, which 

also provides a general description of each method, include advantage, disadvantage, the purpose of 

application and example of application in case studies. 
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No. Tools Advantages Disadvantages Applications 
Example of 

Case Study 

1 

Face-to-

face survey 

 

Captures verbal and 

non-verbal queries. 

Ability to hold and 

keep respondents’ 

focus longer. 

Effective for 

responding to open-

ended questions. 

Queries can be 

answered. 

Supports 

quantitative survey 

design. 

Expensive (e.g., 

travel). 

Time consuming. 

 

Complicated or 

lengthy subjects. 

Focused on key 

customers. 

Customers are 

geographically 

grouped. 

 

[60] 

 

2 

In-app or 

postal 

survey 

Can be developed and 

administered by the 

researcher. 

Low cost. 

Suitable for high 

numbers of 

respondents. 

Flexibility for the 

respondent to 

complete the survey 

at a suitable time. 

Poor response rates. 

Poor response to 

open-ended 

questions. 

Tendency to 

misunderstand (the 

questions). 

Attracts either 

unsatisfied or very 

satisfied 

customers. 

Strong 

relationship with 

a company (e.g., 

surveying 

employee 

attitude), subject 

(e.g., homebuyer 

survey). 

Focused on 

respondents that 

are obligated to 

complete it. 

[82] [83] 

 

3 

Telephone 

survey 

Low cost. 

Ability to control the 

interviewer standards 

and the number of 

samples. 

High cost (if 

outsourced). 

Time consuming. 

Difficult to reach 

respondents who 

lack phone access. 

Widely used in 

business-to-

business (b2b) 

customer 

surveys. 

[84] 
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Simple to collect 

rating answers using 

scales. 

Tendency to 

misunderstand (no 

visual 

representation). 

4 

Data 

Mining 

Suitable for large 

numbers of 

respondents. 

High cost (using a 

sophisticated tool). 

Widely used for 

predicting the 

level of customer 

satisfaction. 

[85] [86] 

Table 2.1: Findings Related to the Methods Used to Review Customer Satisfaction. 

The review results show that the most popular means of gathering and measuring customer satisfaction is 

through surveys [67]. Most studies examined data mining techniques to measure customer satisfaction and 

predict customer churn in the telecommunication industry. However, few studies have measured customer 

satisfaction, particularly in the telecommunication industry, using social media mining. Table 2.2 shows the 

various studies reviewed in relation to customer satisfaction and social media mining and the findings 

reported in those studies.  

Variable Reference(s) Summary of Findings 

Sentiment  [69] 

 

- Measured public transport rider satisfaction 

towards transit system services using the 

riders’ tweets.  

- This helped to improve their service quality 

and safety monitoring. 

- The findings showed that sentiment analysis 

(SA) can successfully detect rider sentiments 

in real time towards a transport organisation. 

[71] - The researchers used SA to propose a tool 

for evaluating customer satisfaction in a job 

search company. 

- The results showed that over 42% of the 

company’s clients had positive impressions 
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about the provided services and 34% did not 

express any feelings in their remarks.  

[73] - Sought to predict the 2014 European 

elections based on Twitter use and opinion 

polls using a lexicon-based classifier for SA. 

- The researchers achieved better results than 

several baselines, including polls, prediction 

websites and replication of old works. 

[72] - Mining random tweets on Twitter to 

determine consumer's sentiments towards 

certain brands through SA. 

- The findings proved that there is positive 

consumer sentiment towards famous brands. 

 [87] - Measured customer satisfaction for two 

online transportation service providers in 

Indonesia.SA using support vector machines 

(SVM), NB and Decision tree (DT). 

- Their data set includes 9,191 tweets. 

- They found that the customers preferred to 

express bad sentiments on the companies’ 

Twitter accounts, instead of positive; SVM 

and DT had the highest performance. 

- They did not use features for pre-processing 

and classifying the data, which could have 

given better classifier results. 

 [88] - This paper used SA and customer satisfaction 

to measure brand reputation. 

- They used Naïve Bayes, SVM and DT 

classifier methods. 

- Their data set included 10,000 tweets. 

- Their results proved that the best algorithm is 

the Support Vector Machine algorithm. 
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Mood [75] 

 

- Examined the influence of the public mood 

on the closing value of the Dow Jones 

Industrial Average (DJIA).   

- Analysed the texts of daily tweets using 

mood tracking tools: Opinion Finder and 

Google-Profile of Mood States (GPOMS).  

- The outcomes indicated that not all changes 

in the public mood matched the DJIA value 

shifts but that some of the public moods, 

categorised as ‘calm’, can predict the DJIA 

values. 

Opinion, Attitude and 

Sentiment 

[70] - Analysed consumers’ behaviour with regard 

to food products, using their micro blogging 

messages (i.e., tweets) to monitor and analyse 

consumer opinion, attitude and sentiments 

expressed in shared posts and comments. 

- The results showed that the success of 

branding required sentiments to be monitored 

for a long period of time, because these 

sentiments do not change quickly. 

Table 2.2: Summary of the Literature that Links Customer Satisfaction, Social Media Mining and 

Twitter Features. 

From the analysis of studies that analysed customer satisfaction through Twitter mining, it appears that a few 

studies used ‘mood’ as a Twitter feature when measuring CS, e.g. [75], who examined the influence of public 

mood on the closing value of the Dow Jones Industrial Average (DJIA). In addition, a few studies used 

‘opinion’ or ‘attitude’ as a Twitter feature to measure CS. For example, [70] analysed consumers’ behaviour 

regarding food products by using their microblogging messages (i.e., tweets) to monitor and analyse 

consumers’ opinions, attitudes and sentiments expressed in shared posts and comments. However, most 

studies used the sentiment as a Twitter feature to measure CS, such as [69] and [72].  

Figure 2.1 shows our customer satisfaction model, which contains all the variables that resulted from the 

literature analysis linking Twitter features, customer satisfaction and customer churn.  
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Figure 2.1: Customer satisfaction model. 

Subsequently, studies that linked customer satisfaction with social media mining in the telecommunication 

industry were reviewed to find the gaps in research that this study could fill (see Table 2-3). Studies that 

reviewed techniques other than data or social mining (e.g., surveys) were excluded because this research aims 

to understand social mining techniques. Hence, reviewing other techniques would not be beneficial for this 

aim. In addition, studies that reviewed social mining applications for other purposes, i.e., other than for 

assessing CS, were excluded. As this study focuses on applying of social mining for assessing CS, selecting 

other application fields would not contribute towards its aim. 

Reference Aim Technology Data Set Findings Gap Identified 

[8] 

 

Measured customer 

satisfaction towards 

telecommunication 

companies in Saudi 

Arabia using 

different 

algorithms.   

Sentiment 

Analysis (SA) 

using KNN, 

NB and ANN. 

  

  

1,331 

tweets 

KNN was superior 

to the other 

algorithms with 

75.6% for F-

measure.  

The data set included only 

English tweets, although the 

majority of customer tweets 

about Saudi 

telecommunication 

companies are in Arabic. 

This limited the capture of 

customers’ real sentiments. 

[9] Analysed Jordanian 

telecommunication 

companies’ 

customer comments 

on Facebook. 

SA using 

KNN, SVM, 

NB, and DT 

14,332 

customer 

posts on 

Facebook  

SVM classifier 

outperformed the 

other three 

classifiers with 95% 

accuracy. 

They classified the 

comments into positive, 

negative, other, or question, 

considered the negative and 

positive comments and 

discarded the ‘other’ and 

‘question’ classifications.  
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[89] Combined the SA 

ViseKriterijumsa 

Optimizacija I 

Kompromisno 

Resenje (VIKOR) 

[90], which is a 

ranking and 

optimization 

approach to 

developing a 

framework for 

predicting customer 

satisfaction with 

mobile services  

Text mining 

using a 

developed 

dictionary. 

The result was 

evaluated with 

VIKOR. 

Customer 

reviews 

on the 

web. 

 First, not validating the 

results by comparing them 

with actual results for 

customer satisfaction. 

Second, using a basic 

method for SA. 

 

[10] Proposed an 

approach for 

measuring customer 

satisfaction with 

mobile companies  

Naïve Bayes 

(NB) 

Classifier  

8,000 

Indonesia 

tweets 

from 

Twitter 

The approach 

obtained a F1-score 

of 93.5% and 

accuracy of 99.09%. 

This research depends on 

one technique. It neglected 

to use other more advanced 

techniques. 

Table 2.3: Gap analysis. 

Table 2.3 illustrates that although several studies are using social media to measure customer satisfaction, 

few studies measure customer satisfaction through social media mining in the telecommunication industry. 

Most studies measured customer satisfaction in the telecommunication field using English tweets. 

Consequently, there is a need to mine Arabic tweets in the telecommunication industry.  

Therefore, our study plans to use Sentiment Analysis for Arabic tweets to measure CS and use the CS results 

and historical customer data to predict CC. It will use advanced techniques, including deep learning and 

transformer network models. In addition, it will validate the customer satisfaction results from Twitter mining 

with actual results using statistical methods. 

2.2.4 Customer Churn Prediction and Social media mining  

This section aims to critically evaluate the literature and discuss the themes and gaps discovered in the churn 

prediction models that would allow the arguments for this PhD research to be appropriately framed. The 
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review included a full-text assessment of the studies, and Table 2.4 presents the data sets and algorithms used 

and the results of the reviewed studies. 

Due to the lack of studies using social media mining to develop a churning prediction model, this section will 

discuss the studies that adopted different state-of-the-art techniques for developing churn prediction models 

based on historical data or other parameters. By analysing the reviewed studies, I was able to identify the 

different techniques used to develop the existing churn prediction models and their frequency –Table 2.5. 

The following paragraphs analyse some of the research listed in Table 2.4 in more detail. 

Olle and Cai [91] investigated hybrid models that build on data mining techniques to explain churn 

behaviours. Their data set was a telecom data set from an Asian mobile operator. They applied a logistic 

regression used in parallel with the voted perceptron for classification purposes and then combined this with 

clustering for churn prediction packaging in Waikato Environment for Knowledge Analysis (WEKA). The 

results showed that the new hybrid model was more accurate than single methods with a 0.721 ROC value. 

In addition, [92] proposed a hybrid approach for customer churn prediction based on neural networks. Their 

data set was from an American telecommunication company. They combined a self-organised map (SOM) 

and an artificial neural network (ANN). Their proposed approach started with data reduction for the 

unrepresentative training set using ANN. Then, the output was fed into SOM to develop the churn prediction 

model. The results showed that the hybrid approach enhanced the prediction accuracy more than using a 

single neural network. This work addressed a limitation, which is that data reduction causes loss in the 

training set. 

Many researchers have compared different classification techniques for the customer churn problem. Ali et 

al. [11] predicted customer churn behaviour by using various data mining techniques. Their data set was an 

online customer data set available at Kaggle (https://www.kaggle.com/). They used different classifiers 

implemented in WEKA, i.e. support vector machine (SVM), bagging, stacking, C50/J48, PART, naïve Bayes, 

Baysen Net and Adaboost. They summed up their findings to conclude that bagging and the Sequential 

minimal optimization (SMO) algorithm outperform the others with an accuracy of 99.8% using 14 attributes. 

Hassouna et al. [20] empirically compared two techniques for customer churn: decision tree (DT) and logistic 

regression models with 15,519 and 19,919 customers, respectively, from a UK mobile telecommunication 
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provider. They stressed the need for more advanced methods of churn modelling. Additionally, [93] proposed 

a model for churn prediction for telecommunication companies using logistic regression and DT in R. Their 

data set was the historical records extracted from the telecom industry. They concluded that data mining 

techniques could be a promising solution for customer churn management.  

Some researchers, such as [94], argue that a DT is the best classification model. Based on their result from a 

churning prediction experiment, the DT model surpasses the neural network model in predicting churn using 

a PAKDD – 2006 data mining competition data set [95]. The same result was obtained by [96]. They applied 

DT, neural network and regression techniques to develop a churn prediction model. They stated that the DT 

outperformed some of the existing data mining techniques. 

Another study by [97] argued that random forest achieved better results than other prediction classifiers based 

on a comparison between different classification models. However, to overcome the random forest model 

issue, they planned to use deep learning models. In connection with this, [98] recommended applying random 

forest to develop a customer churn prediction model. However, some researchers have argued that random 

forest is not appropriate for customer churn prediction [18] because it is complicated in to understand [55].  

On the other hand, [99] claim that an SVM is the best model for churning prediction. They used data sets 

gathered from the machine learning UCI database, University of California. The data were related to home 

telecommunication. They concluded that SVM has a better performance in terms of accuracy than other 

classifiers such as Logistic Regression and Naïve Bayes. The same result was obtained by [100]. They used 

different data mining techniques to predict customer churn: SVM, Neural Network, DT and NB. The data set 

included employee and customer information for a year and a half. They concluded that the SVM is the best 

classifier to develop an accurate churn prediction model.  

Some studies attribute the superior performance of SVM to its ability to handle the random curve [101]. In 

addition, [102] stated that the disadvantages of using SVM might be overcome by predicting the boundaries 

between true positive and true negative. However, [103] confirmed that SVM has the main disadvantage: it 

produces a black box, which causes an illusion. 
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To overcome the disadvantages of SVM, some researchers have proposed using a neural network model to 

predict customer churning. Clark et al. [104] used an ANN in SPSS on 2,427 customer records from the UCI 

Repository, University of California. Their proposed approach predicts customer churn with 92% accuracy. 

Similarly, [18] analysed the meaning of churn management in the mobile telecommunication industry, and 

they designed a new prediction model to predict churn. They used two data sets: one was original data, and 

the other was statistical data. They found that the neural network was superior as a scoring model by the 

overall instance of lift.  

Moreover, [105] proposed a novel model for churn prediction in the field of insurance using deep and shallow 

models such as long short-term memory (LSTM), convolutional neural network (CNN), random forest and 

AdaBoost. They concluded that the combination of deep and shallow models enhanced performance more 

than a deep model and shallow model independently. 

To enhance the classification performance, researchers have proposed combining one technique with another 

technique. Ahmad et al. [106] predicted which customers were most likely to churn using data provided by 

the Syriatel telecom company. They used DT, random forest, gradient boosted tree, and extreme gradient 

boosting (XGBOOST). The best results were obtained by applying the XGBOOST algorithm with 93.3% 

area under the curve (AUC) value. 

 In addition, [107] compared different classification methods for the customer churn problem with the 

boosting versions. The churn data set utilised was from the UCI Machine Learning Repository, California 

University1. They applied DT, ANN, SVM, boosting, NB and regression analysis. SVM-POLY with 

AdaBoost achieved the best performance with 97% accuracy.  

Furthermore, [108] used rotation forest and Rotboost. The Rotboost method is utilised in the rotation forest 

and AdaBoost combining. The authors concluded that the Rotboost outperformed rotation forests in terms of 

accuracy. Comparably, [109] developed a churn prediction model using 50,000 pieces of customer 

information from telecom data publicly available for Orange large & Cell2Cell. They compared different 

ensembles such as RotBoost (RB), Random Forest, Rotation Forest and Decorate (DEC) with minimum 

 
1 https://archive.ics.uci.edu/ml/index.php 

 

https://archive.ics.uci.edu/ml/index.php
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redundancy and maximum relevance (mRMR) packaged in WEKA and MATLAB. They found that the 

approach using the mRMR method combined with RotBoost achieved the best implementation in terms of 

accuracy with 0.761% AUC.  

In addition, [110] assessed data preparation (transformation of the categorical and continuous data) in the 

prediction of model performance. Their data set was obtained from 30,104 customers from a large European 

telecommunication company. They applied logistic regression and found that data preparation enhanced the 

prediction model's performance by 14.5%, as measured by AUC.  Some of the subjects related to developing 

a churn prediction model, uncertainty sample.  

Amin et al. [111] considered the uncertainty of the samples in the churn prediction model performance. They 

found a positive relationship between the size of the sample and the lower distance test set (LDT) sample 

performance. The LDT has a better performance than the upper distance test set (UDT) samples when the 

uncertainty sample is raised.  Another aspect examined in the literature is the impact of social network 

analysis on churning model performance.  

Dasgupta et al. [112] used 60 GB of data from the largest telecom company, including voice call details, 

SMS details, etc.  They applied the J48 Decision Tree and other classifiers packaged in WEKA. They 

concluded that social network analysis increases the accuracy of customer churn predictions. Similarly, [24] 

proposed using customers’ social network information and their call log details to predict user churn using 

the Pokec 2social network data. They generated synthetic call log details of the social network users (25,000 

users of the Pokec data set). They used influence maximisation, calculated by considering a user’s topic of 

interest from the users’ social network data and call duration (CLD), together with message length from the 

user call log data.  Future analysis should factor in both location and language to avoid geographical and 

cultural sampling errors. 

In the literature, some researchers study growth, and although churn is the opposite of growth, they are quite 

related. Ranjan et al. [13] developed a prediction model for the growth rate of new subscribers for telecom 

subscribers by using sentiment score. A total of 153,651 distinct tweets for the Twitter handles of five popular 

 
2 http://snap.stanford.edu/data/soc-pokec.html 

 

http://snap.stanford.edu/data/soc-pokec.html
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telecom brands in India were analysed with semantic analysis. The authors proved that SA could manage the 

high growth rate of new subscribers added to the brand in the study period. 

There is only one study that followed our study [113] found a relationship between the sentiment of Twitter 

feeds related to Telcom’s broadband internet service and the customer churn rate. They applied LSTM for 

SA. Their results showed that churn prediction could be improved by monitoring the negative sentiment by 

around 1.47% Mean Average Percentage Error (MAPE). However, their study did not use social media 

mining to develop the churn prediction model. Related research mainly uses company-provided data for 

churn prediction. Whilst this is a useful source, this is not always available. 

After critically reviewing previous studies, I have concluded that this current study is a pioneering work in 

using Twitter mining to develop the churn prediction model [51]. 

A significant finding from the literature review that investigated churn prediction models is that social mining 

is a powerful tool for predicting customer churn. However, the fact that only one study was found in this 

review that used social media mining shows a knowledge gap in how social mining can predict customer 

churn in various industries.  The following problems related to existing customer churn prediction models 

were found in the literature:  

• The current churn prediction models have a relatively short life as they rely on customers’ historical 

data. The data become less valuable over time for making [20], which may not provide telecom companies 

with the best churn prediction experience. 

• There is a lack of research that integrates a structural data framework with real-time analytics to 

target customers in real time [23]. 

• The current churn prediction models exclude location and language factors and that causes 

geographical and cultural sampling errors [24]. 

Therefore, this study will use real-time Twitter mining methods and a data warehouse to develop a churn 

prediction model to prevent customers from turning to other companies, thus enhancing competitiveness. 

The model will also take into consideration language, time and location factors. The present study intends to 
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introduce a notion of customer interaction for Saudi telecommunication companies based on the prediction 

model of the ‘lost customer’ phenomenon (or customer churn). 
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Ref Data set Algorithms  Results  

[106]   Spark environment (https://spark.apache.org/) by working on a large 

data set created by transforming big raw data provided by the Syriatel 

telecom company. 

DT, random forest, gradient boosted 

machine tree and extreme gradient 

boosting (XGBOOST). 

The best results were obtained by applying 

the XGBOOST algorithm with 93.3% AUC 

value. 

[23] Structured data and unstructured data. 

The unstructured data included: 

1) Call centre interaction: details of customer complaints and 

feedback.  

2) Data records captured, such as data regarding purchase, download 

of apps, etc.  

RFM technique, which identifies the 

customers who will churn by 

examining how recent customers have 

made purchases (Recency), how often 

they made purchases (Frequency) and 

how much they spent on their 

purchases (Monetary). 

They recommended the integration of the 

structural data framework with real-time 

analytics to target customers in real time on 

the basis of location, time, etc. 

[107] Churn data set from the UCI Machine Learning Repository, California 

University. (https://archive.ics.uci.edu/ml/index.php). 

DT, ANN, SVM, boosting, NB and 

Regression analysis. 

SVM-POLY with AdaBoost achieved the 

best performance with 97% accuracy. 

[114] Data obtained from 30,104 customers from a large European 

telecommunication company.  

Logistic regression. 

 

They found that data preparation enhanced 

the performance of the prediction model 

by14.5%, as measured by the AUC. 

[20] Details of 15,519 and 19,919 customers, respectively, from a UK 

mobile telecommunication provider.  

DT and logistic regression models They stressed the need for more advanced 

methods of churn modelling.  

 

[93] Available historical records extracted from the telecom industry. Logistic regression and DTs in R. The data mining techniques could be a 

promising solution for customer churn 

management. 

https://spark.apache.org/
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[91] Telecom data set from an Asian mobile operator. Model was built using WEKA. A 

logistic regression was used in parallel 

with the voted perceptron, which is 

ANN sole node for classification 

purposes and then combined with 

clustering for churn prediction. 

The results showed that the new hybrid 

model is more accurate than single methods 

with 0.721 ROC value. 

[94] Their data set was from a PAKDD – 2006 datamining competitio [95]. Used DT and neural network for churn 

prediction. 

They observed that the DT model surpassed 

the neural network model in predicting 

churn. 

[64] Two telecom industry data sets were considered. Type-1 contained 

3,333 records, and Type-2 contained 20,468 records. Both provided 

telecom customer details but used different attribute sets. 

Axiomatic fuzzy set theory and 

parallel density-based spatial 

clustering of application with noise – a 

data clustering algorithm on the 

Hadoop MapReduce framework.  

 

The proposed model was more efficient 

than the existing system in terms of time 

and performance.  

In the future, new methodologies for churn 

analysis should be explored by integrating 

different data mining techniques and 

machine learning algorithms to achieve 

better and more efficient results. 

[115] Telecom company’s billing data set. Rule-based classification. The result obtained is not promising 

because their data set was incomplete.  

 

[11] Online customer data set available at Kaggle. Used different classifiers implemented 

in WEKA, i.e., SVM, bagging, 

stacking, C50/J48, PART, naïve 

Bayes, Baysen Net and Adaboost. 

Concluded that bagging and the SMO 

algorithm outperform other techniques with 

an accuracy of 99.8% using 14 attributes. 
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[14] Telecom customer churn in UCI (Machine Learning Repository) and 

Orange Telecom. 

Cluster stratified sampling logistic 

regression model. 

Showed that their prediction method 

performs satisfactorily and can be effective 

in forecasting telecom customer churn. 

[18] There were two data sets: one was original data and the other was 

statistical data.  

SAS Enterprise Miner. Found that the neural network was superior 

as a scoring model by overall instance of 

lift. 

 

[116] 

 

The data set was taken from the Indian telecommunication service 

industry. 

Counter propagation neural networks, 

classification, regression trees 

(CART), J48 and fuzzy ART MAP. 

To predict churning in telecommunication, 

the authors suggested the use of fuzzy ART 

MAP and CART instead of other 

techniques. 

[117] Historical customer data. Open-source software framework 

Apache Hadoop, along with Map 

Reduce sub-framework and the help of 

NB algorithm. 

Found that the Apache PIG has some 

disadvantages.  

[13] A total of 153,651 distinct tweets for the Twitter handles of five 

popular telecom brands in India. 

Sentiment analysis. Proved that SA can manage the high growth 

rate of new subscribers who were added to 

the brand in the study period. 

[113] Tweets related to Telkom’s broadband Internet service and customer 

churn rate data history from the company’s data warehouse. 

Applied SA using recurrent neural 

network LSTM.  

 

Results indicated that the accuracy of churn 

rate predictions that occur three months 

correlated with negative mood. 

[24] Used the Pokec social network (http://snap.stanford.edu/data/soc-

pokec.html) data and generated synthetic call log details of the social 

network users (25,000 users of the Pokec data set). 

Used influence maximisation, 

calculated by taking into account a 

user’s topic of interest from the users’ 

Future analysis should factor in both 

location and language to avoid geographical 

and cultural sampling errors. 
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social network data and call duration 

(CLD), together with message length 

from the user call log data.  

[118] 

 

Customer data. 

 

Data mining; spreading activation, 

threshold-based and decision tree-

based clustering; K-Ties heuristic; J48 

classifier in the WEKA tool. 

Proved that social relationships play an 

influential role in affecting churn in an 

operator’s network. 

 

[119] Telecom data set containing 3,333 pieces of customer data. 

 

 

 

The authors made a comparison 

between various rules and algorithms 

such as Covering, Exhaustive, Genetic 

and LEM2 rule-generation Algorithms. 

This study used rough set theory (RST) 

to predict customer churn. 

 

 

Their approach of using rough set theory 

with Genetic Algorithm achieved high 

performance – 98.1% accuracy. 

Their data set has some drawbacks: 

1. Unbalanced data set, which would 

affect classifier performance. 

2. Did not consider influence of 

customer profile on churning 

predictions and that would affect 

the decision makers’ decisions 

about keeping a customer. 

[102] 5,000 pieces of customer data from telecom provider.  K-means collective with Naïve Bayes. Their proposed approach achieved high 

accuracy. 

Using other methods like SVM, DT and 

NB may overcome the boundaries between 

true positive and true negative. 
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[120] 5,000 customers’ data provided by wireless network 

telecommunication company. 

Random Forest, DT, C4.5 and 

AntMiner+. 

Their proposed approach achieved better 

performance in terms of specificity than 

DT, C4.5 and AntMiner+. 

[121]  Bank data set. SVM, NBTree and SVM AdaBoost Their approach achieved high result. 

[100] Data set of employee and customer information for a year and a half. SVM, Neural Network, DT and NB  Their conclusion was to use the SVM to 

develop an accurate churn prediction 

model. 

[122] 600,000 customer records from South Asian telecom company. Comparison between different 

methods such as Linear regression, 

SVM and DT with fuzzy classifiers 

such as VQNN, FuzzyNN, 

FuzzyRoughNN and OWANN  

Their conclusion was in favour of using a 

Fuzzy classifier to predict customer 

churning.  

[123] Customer data including real phone call records from China Mobile 

Communications Corporations (CMCC). 

Different classifications based on PB, 

e.g., Particle Swam Intelligence 

PBCCP, BP and PSOBP algorithms 

The PBCCP algorithm performed better 

than other algorithms to predict customer 

churn.   

[124] 100,000 pieces of customer data provided by a South Asian telecom 

operator. 

Used brute force to find features that 

could be used as an prediction input 

for supervised learning algorithms. 

Their approach achieved high accuracy 

with 90%. 

[97] The data set was gathered from the web repository 

http://www.ics.uci.edu~mlearn/MLRepository.html. 

Random Forest, Naïve Bayes, SVM, 

C4.5, LIBSVM, ANN, and Probability 

and Gaussian Weighted Integration. 

Random forest performed better than other 

classifiers. 

They plan to use deep learning networks in 

future. 
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[105] Data from New China Life Insurance Company LTD. Deep and Shallow Models such as 

LSTM, CNN, Random Forest and 

AdaBoost. 

They concluded that combining deep and 

shallow models enhances performance 

more than deep model and shallow model 

on their own. 

In the future they will use different 

shallow and deep models. 

[125] 6,000 pieces of user data from an E-Commerce platform. Logistic regression with EBURM 

model 

 

The results show the accurate performance 

of the model. 

[99] The data sets were gathered from the machine learning UCI database, 

University of California. The data is about home telecommunication. 

SVM SVM has a better performance in terms of 

accuracy than other classifiers such as 

Logistic Regression and Naïve Bayes. 

[126]   100,000 pieces of customer data from Malaysian telecom companies. Data mining by evolutionary learning 

(DMEL) 

The result proved that DMEL effectively 

predicted customer churn in the telecom 

industry. 

[62] 160,000 pieces of customer data from Taiwan telecom company. Neural Network back propagation 

(BPN) and DT.  

BPN achieved a higher performance than 

DT.  

[112] 60 GB of data of the largest telecom company that include detail 

about voice call details, SMS details, etc.  

J48 Decision Tree, and other classifiers 

packaged in WEKA. 

Using social network analysis, the authors 

accurately predicted customer churn. 

[127]  65,000 pieces of customer information, Duke University. SVM-RFE in MATLAB Their results showed that SVM-RFE 

predicted customer churn acceptably.  

[128]  Different data sets from bank, supermarket, telecom company, TV, 

and newspaper. 

100,205 pieces of customer data in the Telecom Data Set. 

Logistic Regression and Random 

Forests packaged in WEKA 

Their results showed that using the under-

sampling technique enhanced the 

performance of the prediction model. 
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[129] 895 pieces of call record data from a telecom company. Data mining using Back Propagation 

Neural Network algorithm in 

MATLAB 

Predicted customers at risk of possibly 

churning. 

[104] 2,427 customer records from UCI Repository, University of 

California, Irvine. 

 

Data mining using ANN in SPSS Their proposed approach predicts customer 

churn with 92% accuracy. 

[130]  5,000 customer records from UCI Repository, University of 

California, Irvine. 

 

C4.5, AntMiner+ and Ripper packaged 

in WEKA 

The results showed that C4.5 and Ripper 

achieved highest accuracy. 

[131] 5,000 pieces of customer data from UCI Repository, University of 

California, Irvine. 

Adaptive Neuro-fuzzy Inference 

system (ANFIS), C4.5, and Ripper 

packaged in MATLAB 

Neuro-Fuzzy performance outperformed 

C4.5 and Ripper 

 [132]  5,000 pieces of customer data from mobile service provider. SVM, DT, and neural network 

packaged in WEKA. 

The Neural Network and SVM achieved the 

same accuracy with 83.7%.  

 [109] 50,000 pieces of customer information in telecom data publicly 

available for Orange large & Cell2Cell 

Random Forest, Rotation Forest, 

RotBoost and Decorate ensembles, 

concurrently with minimum 

redundancy and maximum relevance 

(mRMR), Fisher’s ratio and F-score. 

MRMR proved that it has more suitable 

features than Fisher's ratio and f-score.  

MRMR with RotBoost accuracy performed 

best with 0.761% AUC. 

[133]  3,333 pieces of customer data from UCI Repository, University of 

California, Irvine  

SVM packaged in IBM SPSS SVM achieved 88.56% for accuracy. 
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[134]  89,412 pieces of customer information including personal information 

and call data record  

Logistic regression and multilayer 

perceptron neural networks packaged 

in MATLAB 

Using SPA method as the propagation 

process to generate more input variables 

enhances the performance of the traditional 

machine learning model, which depends on 

the historical data of a customer in the 

company data base. 

  Their data set was from an American telecommunication company.  

 

They combined a self-organized map 

(SOM) and an artificial neural network 

(ANN). 

The results showed that the hybrid approach 

enhanced the prediction accuracy more than 

using a single neural network. This study 

addressed a limitation, which is that data 

reduction causes loss in the training set. 

Table 2.4: Synthesis of the Included Studies related customer churn and social media mining. 
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Table 2.5: Most common techniques used for customer churn prediction models. 

As elaborated above, different techniques and approaches are used for customer churn prediction. However, I cannot conclude which technique 

is the best to address the customer churn prediction problem. For the research community, this is still an open question. 

References Technique 

[96], [135], [106], [136], [94], [18], [20], [107], [93], [137], [138], [139], [132], [140], [138], [141], [85] DT 

[20], [107], [93], [91], [140], [139], [85], [135], [142], [114], [96], [138], [14], [143] 

Logistic regression 

 

[113], [107], [96], [91], [94], [116], [138], [132], [140], [139], [85], [133], [144] Neural network 

[107], [11], [132], [133], [99], [145], [146] SVM 

[11], [116] J48 

[116], [11] CART 

[117], [107], [11], [138], [140], [133], [138] NB 

[116] Fuzzy Classification 

[115] Rule-based classification. 

[132], [139] k-means algorithm 

[106], [147] Random Forest 
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2.2.5 Saudi Telecom Companies 

With the emergence of new technologies, the telecom field has changed accordingly. This is the case with 

the telecom market in the KSA, which expanded in 2003 by attracting new investors. As a result, the Saudi 

telecom market became a viable market [148]. The current Saudi telecom market is dominated by three 

telecom companies: the Saudi Telecom Company (STC), the Etihad Etisalat Company (Mobily), and Zain 

KSA. In addition, the market also hosts other internet service providers and mobile virtual network operators.  

During 2019, STC performed well, and it became the leading provider of digital services in Saudi Arabia:  

STC revenues increased by 4.63%, equivalent to SR 54,368 million [149]. Mobily was launched in 2004. It 

covers a wide area in Saudi Arabia and is one of the biggest wireless networks in terms of coverage in the 

country [150]. Additionally, its data centre system is one of the largest worldwide [150].  The third telecom 

company in Saudi Arabia is Zain. It had a strong enrolment in the Saudi market and by 26 August 2008, just 

four months after its launch, it had more than 2,000,000 customers [151]. 

2.2.6 Sentiment Analysis 

This section reviews significant research on Arabic Sentiment Analysis, but it starts with English language 

Sentiment Analysis studies. Research on SA in English texts began in 2002 [152], [153] using different 

learning methods and focusing on reviews as data sets. With the emergence of social media, studies on Twitter 

SA began in 2009 by exploiting of supervised machine learning classifiers. 

Go et al. [154] conducted one of the earliest Twitter SA studies. They used emoticons to collect tweets, 

classified as 177 negative tweets and 182 positive tweets. They applied three machine classifiers: NB, SVM 

and maximum entropy. The accuracy ranged between 80% and 83%. Subsequently, [155] conducted a similar 

study but with a larger corpus (30,000 tweets) and with the addition of a neutral label to the classification 

labels. They searched for emoticons in tweets and then classified the tweets based on them. They used three 

machine learning classifiers – NB, SVM and conditional random fields – and their best result was achieved 

using the NB classifier. These studies relate to this research study on using Twitter as a data set with NB and 

SVM as classifiers. 

Similarly, [156] collected their data by utilising 15 emoticons and 50 hashtags to label tweets. They 

performed a k-nearest neighbours (k-NN) classification, where the F-score was 86. Paltoglou and Thelwall 
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[157] and [158] proposed the SentiStrength approach, which depends on lexicon-based methods. It deals with 

informal language use on Twitter, such as negation, capitalisation and emoticons, by applying linguistic rules. 

It works by ranking the strength of tweets from 1 (not positive/negative) to 5 (extremely positive/negative). 

They achieved an F-score of 86.5 for the classification of the data set obtained from Twitter. 

Two years after the development of the SentiStrength approach, [159] and [160] produced SentiCircles, a 

platform for SA that considers the contextual and conceptual semantics of words. The platform’s novelty lay 

in its consideration of a term within its context. The approach used in SentiCircles outperforms that used in 

SentiStrength and the average F-measure for SentiCircles was 65.98.  

SemEval is an international shared-task workshop on semantic evaluation. It holds an annual competition to 

encourage participants from around the world to evaluate semantic analysis systems as well as to release a 

sentiment lexicon and annotated data sets. Its proceedings synchronise with one of the Association for 

Computational Linguistics conferences. Some of the SA research studies on Twitter tasks conducted from 

2013 to 2020 are reviewed below. 

Since SemEval 2013, SA research has focused on English, [161] created two classifiers to detect sentiments 

on Twitter using two tasks: message-level and term-level tasks. The team won first place out of 44 teams 

during the SemEval 2013 Task 2 competition. They used three lexicons: the Multi-Perspective Question 

Answering (MPQA) lexicon [162], the Bing Liu lexicon [163] and the National Research Council (NRC) 

emotion lexicon [164] [165]. They automatically generated two lexicons from Twitter, one with sentiment-

word hashtags and the other with emoticons. Their F-scores were 69.02 for the message-level task and 88.93 

for the term-level task. Their observations indicated that the sentiment-lexicon features were the best. 

Similarly, SemEval 2014 replicated the work performed in SemEval 2013, [166] presented a state-of-the-art 

SVM classifier for a Twitter SA, which was placed first in the SemEval 2014 competition for Twitter SA 

tasks. The highest F-scores achieved were 70.45 for the message-level task and 89.50 for the term-level task. 

SemEval 2015 Task 10 was used for determining Twitter SA [167]. This task focused only on single English 

words and negated two-word expressions. There were 41 teams across five subtasks. In the SemEval 2015 

Twitter SA task competition, [168] were placed first on the phrase level and second on the message level. 
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Their system was based on neural networks, and they achieved scores of 84.49 for the phrase-level subtask 

and 64.59 for the message-level subtask. 

SemEval 2016 Task 7 [169] and SemEval 2017 Task 4 [170] have focused on English and Arabic Twitter 

SAs. Refaee and Rieser [171] were the winning team for the Arabic task. the winning team for the Arabic 

task. They observed that Arabic Twitter data set results were lower than those for a similar English Twitter 

data set in 2015. Moreover, the results for single words were higher than those for phrases, especially for the 

Arabic Twitter data set. They produced a publicly available SA tool for Arabic tweets, which collects tweets 

from Twitter under certain queries and then classifies them according to three sentiment labels: positive, 

negative and neutral. 

Regarding SemEval 2018 Task 1 [172], the task includes five subtasks. The third and fourth subtasks are for 

Valence Regression (V-reg) and Valence Classification (V-oc). The data sets for these two subtasks included 

2,600 English tweets and 900 Arabic tweets. Seventy-two teams participated in for the two subtasks for the 

English data set and 26 teams for the Arabic data set. The winning team for both tasks using the English data 

set was [173], while the winning team for both tasks using the Arabic data sets was EiTAKA [174]. 

SemEval 2019 Task 3 [175] concerned classifying the sentiment of a text into four emotion classes, while 

SemEval 2020 Task 9 [176] concerned the SA of Code-Mixed Tweets. The released corpora were for the 

Hindi-English and Spanish English Languages.  

With the advent of big data and the proliferation of social media (e.g., Facebook, Twitter), SA has observed 

an increase in academic research over the past decade.  SA or ‘opinion mining’ refers to the computational 

processing of opinions, feelings and attitudes towards a particular event or issue [27], [28]. To identify 

subjective opinions in sources, SA applies natural language processing (NLP) and textual analytics 

techniques [177] [178]. SA helps to reveal the polarity of texts by identifying whether a fragment of the text 

indicates a positive, negative or neutral impression [179, 180].  

Subjective Analysis can classify the text into subjective or objective, where subjective text has opinions and 

sentiment, and objective text has facts [162]. Sentiment analysis can classify the text based on many ways, 

many-way classification, i.e., binary classification (positive or negative), or three-way classification 
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(positive, neutral or negative) [181, 182]. It can be employed through two approaches, flat classification or 

hierarchal classification. In flat classification, the classifier classifies the text in many-way classification on 

one level. In hierarchical classification, many classification layers used, usually in the first layer, then the 

text is classified as objective or subjective, and the subjective text is classified according to its polarity.  

SA has been investigated at three levels: document level, sentence level, and entity and aspect level [183]. 

Document-level considers the whole text as one unit that holds opinions, such as product reviews, while 

sentence level deals with each sentence as one unit that holds sentiment. Usually, sentence-level classification 

is applied to short texts in social media such as Twitter [184], [185]. On the aspect level, SA is carried out on 

an entity.  

Sentiment analysis has been, and is still, a thriving research area. However, the task of Arabic sentiment 

analysis is less represented by the body of research [44], [45], [39], [46]. This section offers an in-depth 

analysis of existing ASA studies of textual content and, it identifies their common themes, domains of 

application, methods, approaches, technologies, and algorithms used. A total of 133 ASA papers published 

in the English language between 2002 and 2020 were identified in four academic databases and one other 

source. The papers were screened and analysed, with the results identifying 133 papers related to Arabic text 

SA. Their contents were carefully analysed, and our study presents the different approaches used to conduct 

this analysis.  

Social media sites have become popular in recent years, and since then, the SA approach has grown to become 

prominent for capturing public opinion. Doing so can improve the effectiveness and efficiency of decision-

making by using textual analytics to make better-informed decisions [179], [186]. SA has been adopted in a 

wide range of fields, including marketing and e-commerce, customer relationship management, market 

intelligence, strategic planning, political polls, employment, sociology, health care, education and scientific 

research, and humanitarian assistance and disaster relief [28], [187]. SA plays a vital role in obtaining realistic 

information related to public opinion. For example, SA helps to determine customers' preferences and 

evaluate their satisfaction with products on e-commerce sites like Amazon, thus improving quality and 

standards based on the actual needs of customers [75]. 



57 | P a g e  
 

SA has been applied from different perspectives, either for general [177], [188], [189] or specific challenges 

[28, 190], [191] techniques [178], [179], [187] and languages [191], [192], [193]. In the context of language, 

the majority of the research pertains to English rather than Arabic SA [194], [41]. Both languages differ in 

their expressive power of sentiments, which makes the detection of sentiment polarity considerably more 

complex [188]. This issue is particularly challenging given that natural languages are unstructured, making 

the interpretation of sentiment a tiresome task [195]. There are important studies that have handled this 

problem in the English language [28], [189], [196], but it remains largely unexplored concerning Arabic 

[188]. 

Arabic differs from English in several key aspects. Arabic is a rich morphological language [34], [35], written 

from right to left, using different forms, thus presenting researchers with specific challenges. Arabic has 

many forms, which are Classical Arabic, as in the book of Islam’s Holy Quran, Modern Standard Arabic used 

in newspapers, education and formal speaking, and Dialectical Arabic, which is the informal everyday spoken 

language, found in chat rooms and social media platforms. The Arabic language consists of 28 Arabic 

alphabet letters. Additionally, there are 10 letters with a second form [46], Table 2.6. To represent the 

meaning of an Arabic word, diacritics are used, which are small signs over or under letters positioned to 

reflect the vocals. The absence of these Arabic diacritics in the DA text makes text interpretation more 

complicated. Moreover, DA forms differ from one Arab country to another, making understanding a specific 

DA difficult for the people not speaking that DA. Mubarak and Darwish [36] have defined six Arabic dialects: 

Gulf, Yemeni, Iraqi, Egyptian, Levantine and Maghrebi. This makes the SA process more complex, for 

instance when attempting to build an Arabic lexicon [34], [38], [197], [198]. In addition, the mix of Modern 

Standard Arabic and DA employed by Internet users [199], [40] presents challenges which have resulted in 

limited research on ASA [200], [201].  

 

 

 

 

 

 

28Arabic 

alphabet letters 

 أ,ب,ت,ث,ج,ح,خ,د,ذ,ر,ز,س,ش,ص,ض,ط,ظ,ع,غ,ف,ق,ك,ل,م,ن,ه,و,ي 

10 letters with a 

second form 

)أ,إ,ء,ى,ئ,ؤ( ء  

)ه,ة(  هـ  

 ا)ى,آ( 

Basic diacritics َ ,  ُْ,  ,   

Table 2.6: Arabic Letters. 
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Some studies have identified the need to create a comprehensive resource for the various Arabic dialects that 

exist, combining their morphological analysis and tokenisation into one process. Doing so may resolve the 

Arabic tokenisation issue and also improve the processes when conducting SA and opinion mining [28], [34] 

[40]. Although ASA is of growing importance, it is still in the early stages of research [41], [202], [43]. 

Early ASA research addressed SA of newswires [203], [204], whereas the most recent studies focus more on 

ASA of social media [43],[205], [206], [170]. Although many survey studies extensively address SA in the 

English language [207], [208], [209], [210], [196], ASA survey research is still relatively modest [202]. Some 

ASA research addresses specific issues, such as creating an Arabic lexicon [211, 212], while others focus 

only on specific SA techniques [213], [214], [215], [180]. However, these studies provide narrow insights 

into ASA; they do not comprehensively address ASA in general [202]. Thus, ASA remains largely 

unexplored [170].  

In this systematic review, the contributions are categorized as:  providing a comprehensive review of ASA 

studies published in the current literature; capturing a holistic view of the most significant approaches, tools 

and resources used in ASA research; and assessing the most significant challenges identified in the reviewed 

studies and proposing suggestions to overcome the challenges. 

 

Identifying the review questions is the first step in a systematic review. The research questions of this study 

are as follows: 

RQ1. What is the current stage of research related to ASA? 

RQ2. What are the most effective approaches, tools and resources used in ASA? 

RQ3. Which are the most significant challenges identified in the reviewed studies?  

RQ4. What are the suggestions for overcoming the challenges? 
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2.2.6.1 Literature searches 

To identify relevant studies, a systematic review of the literature (as recommended by [216]) was conducted 

in four different academic databases (SAGE, IEEE, Springer, WILEY) and on Google Scholar up to June 

2020. I applied the following keywords in our search strategies within the database searches: ‘Arabic 

semantic analysis’, ‘Arabic subjective analysis’, ‘Arabic emotion detection’, ‘Arabic text categorization’, 

‘Arabic opinion mining’, ‘Arabic lexicon’, ‘Arabic corpora’, ‘Arabic sentiment analysis’, ‘Arabic sentiment 

classification’, and ‘Arabic Opinion Mining’. Some terms were excluded, such as ‘Arabic indexing’, 

‘information retrieval’ and ‘code-switching’. 

2.2.6.2 Study selection  

I applied the following manual, careful search, and review strategy:  

1. I reviewed the studies at the title and abstract level, after eliminating the duplicates.  

2. The remaining articles were evaluated in detail at full-text level and were included if the reviewer 

identified them as relevant. The appraisal was carried out using the following inclusion criteria: 

selected studies: 

(a) reported the application of text ASA, and  

(b) were written in the English language. Studies were excluded if they reviewed something other 

than text ASA, such as speech, voice or images. 

2.2.6.3 Data extraction and analysis 

Data extraction was performed as follows during the review of the included studies and ASA methods. The 

extracted data are synthesised and presented in Subsection 2.2.6.4. The information gathered from these 

syntheses was used to find the common themes in this review. 

2.2.6.4 Searches and sifting results 

702 potential candidate studies were identified via the search strategies, with 687 studies remaining following 

removal of duplicates.  Step 1 of the search and review strategy was conducted through the screening of titles, 

abstracts and methodologies of the included studies. A total of 554 studies were thus excluded, as these did 

not meet inclusion criteria. The second level of the review consisted of a detailed assessment of the remaining 

133 studies. No studies were excluded at this stage, as all met the inclusion criteria set for this review. The 

result from the two stages of sifting is presented in a Transparent Reporting of Systematic Reviews and Meta-
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Analysis (PRISMA) diagram [3] (the reporting components most used for systematic reviews) in Figure 2.2. 

In order to enhance readability and reduce diagram complexity,  guidelines [3] were referred to when 

designing the diagram. 

 

 

 

Figure 2.2: PRISMA diagram [3] of the ASA Literature Filtering Process. 

The most frequent terms related to the topics examined in our first stage (Step 1) of screening were, 

unsurprisingly, ‘Arabic’, ‘sentiment’, ‘mining’, and ‘opinion’ (Figure 2.3). Meanwhile, more informative 

terms appear in the second stage (Step 2), as these showcase the languages correlated with Arabic, vis-a-vi 

English and Urdu. This analysis further indicates the domains involving ASA research, i.e., finance and news, 

and the topics of concern in these papers, which were linguistics, corpora and lexicons (Figure 2.3A, 2.3B) 

and other topics not further discussed in this survey, such as feature engineering. 
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2.2.6.5 Overview of the included studies  

 

The outcomes of our review of selected studies are presented in this section to highlight the similarities and 

differences between state-of-the-art ASA studies. Our findings indicate that ASA is applied to a range of various 

domains, including health services [217], [218],  [219], telecommunication services [51], [9], [139], customers’ 

satisfaction with e-products [220] , government services [221], security [222], volunteer work [223], politics  

[224], [225] and finance [226].  

Findings also indicate that common approaches used to implement ASA (2002 to 2020) include machine 

learning approach (Figure 2.4). It is noted that the hybrid approach (mixing machine learning with the 

unsupervised learning) first emerged in 2010 and was frequently used until the year 2019. From 2005 to 2020, 

there was a prevalence of machine learning approaches, specifically supervised learning. Between the years 

2017 and 2019, the application of machine learning rose drastically, more than other approaches. The use of 

deep learning has increased rapidly in the research community since 2017. It is evident here that transfer learning 

is still new to the ASA field, with only one study found in 2019 and one study found in 2020. 

 

A 

 

B 

Figure 2.3: Word cloud depicting the most frequent words appearing in step one (A) of the ASA screening. 
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 The following sub-sections provide a detailed analysis of the different approaches identified for ASA.  

2.2.6.4.1 Supervised learning approaches 

There are several learning algorithms applied based upon a supervised learning approach [227] and [228], 

which are: naïve bayes (NB), support vector machines (SVMs), decision trees (DTs), logistic linear 

regression, random forest, neural networks and the k-nearest neighbours (K-NN) algorithms. These 

algorithms were employed as the base classifiers for ASA [194].  

A number of experimental studies [194], [43], [218], [229], [211] a have used different machine learning 

algorithms for standard Arabic datasets and dialectal Arabic. For example,  [229] evaluated the application 

of NB and DTs using a multi-dataset in MSA and dialectal Arabic. This dataset consisted of 658 comments 

from Facebook written in English, 2648 reviews from Aly and Atiya [230] written in MSA, and 409 reviews 

used by [231]. Sentiment analysis was performed using RapidMiner for a two-way classification (positive, 

or negative). Evaluation was conducted based on two parameters (accuracy and runtime) with results 

demonstrating some significance. The two classifiers performed poorly on dialectical Arabic, with 50.76% 

accuracy for DT and 54.43% for NB. Regarding MSA, the performance was raised to 97.16% with DT and 

89.52% with NB. In addition, the performance of both classifiers was enhanced on the English corpus, with 

84.25% for NB and 83.87% for DT. They concluded that NB performance is higher on the English corpus, 

when comparing with dialectical Arabic.  
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Figure 2.4: The most common approaches found in ASA literature. 
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Gamal et al. [43] applied different machine learning algorithms NB, AdaBoost, SVM, Ridge Regression 

(RR), and Maximum Entropy (ME). Their dataset consisted of 151,000 tweets written in the MSA and 

Egyptian dialect, balanced between positive and negative tweets. Their main finding indicated that RR with 

Term Frequency -Inverse Document frequency (TF-IDF) as the feature extraction method and 10-fold cross-

validation achieved the best result, with 99.90% accuracy, precision, recall and F-measure. 

Following this work, [232] compared different algorithms, which are NB, SVM, BNB, Multinomial NB 

(MNB), Stochastic Gradient Decent (SGD), Logistic Regression (LR), Maximum Entropy (ME), RR, Passive 

Aggressive (PA), and Adaptive Boosting (Ada-Boost), with different n-gram features using 10-fold cross 

validation on their dataset [43]. Results favoured the unigram feature set, with PA achieving 99.96% for 

precision, recall, accuracy and F-measure. 

In the work of [233], a comparison of linguistic and statistical features was compared between SVM, KNN 

and ME. Linguistic features included stemming and part-of-speech (POS) tagging, whilst statistical features 

included TF-IDF. Their dataset consisted of 10,006 tweets labelled with (positive, negative, neutral and 

objective); where ‘objective’ means a tweet without opinion and ‘neutral’ is a tweet with positive and 

negative opinion in the same tweet.  They concluded that SVM outperformed the other classifiers by 

obtaining 75.21% for precision, 72.15% F-score and 69.33% recall. This implied the suitability of using the 

suggested features with SVM. 

Farha and Magdy [234] compared between SVM and NB on 6,921 reviews and comments collected from 

Yahoo and Maktoob social networks using 10-fold cross validation and the TF-IDF scheme. They classified 

comments and reviews into four categories (social, technology, science and arts) then labelled these 

comments and reviews using three sentiment labels (positive, negative or neutral). Much of the dataset was 

written in MSA and different Arabic dialects (Egyptian, Khaliji, Levantine, and Arabizi - which is a 

combination between MSA and English). They concluded that SVM was superior to NB for their unbalanced 

dataset, obtaining 64.1% for accuracy and recall and 63.8% for precision. 

SVM emerged superior to other algorithms on different datasets, such as that of [235], who proposed the 

largest offensive words Arabic dataset extracted from Twitter, based on different Arabic dialects. Their 

dataset contained 10000 tweets labelled with four labels (clean, hate speech, vulgar or offensive). The dataset 
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was evaluated using the different algorithms; DT, RF, Gaussian NB, Perceptron, AdaBoost, Gradient 

Boosting, Logistic Regression and SVM with different pre-trained embedding. They achieved the best F1 

79.7%, 88.6 recall with SVM using the Mazajak embedding [234].  

In addition, [217] proposed a health services dataset written in Arabic, comprising 2026 tweets classified as 

positive or negative. This area of research applied different Deep and Convolutional Neural Networks and 

Machine Learning algorithms, such as Logistic Regression, SVM and NB. In addition, they applied the uni-

gram and bi-gram as a feature-selection technique and TF-IDF as a weight scheme, with the best accuracy of 

91% being achieved by an SVM with Linear Support Vector Classification (LSVC).  

Bahassine et al. [236] assessed the Improved chi-square feature selection (ImpCHI), by using SVM and DT on 

5070 documents classified into six classes (Business, Entertainment, Middle East, SciTech, Sport and World). 

SVM with ImpCHI outperformed ImpCHI with DT, obtaining 84.93%, 85.17% and 85.29% for average F-

measure, recall and precision. They concluded that when the feature number was between 40 to 900 features, 

the ImpCHI feature selection outperformed the other feature selections, which were Information gain, Mutual 

information, and Chi-square.  

The same feature algorithm was used by [237] who proposed an approach using a Chi-Square algorithm for 

feature selection and KNN for classification. They used a Twitter dataset for Arabic Sentiment Analysis [238]. 

It included a perfectly balanced dataset of 2000 tweets, classified as 1000 positive tweets and 1000 negative 

tweets. They obtained 65.00% using Chi-Square as feature selection and KNN for classification when K=3.  

 

Another study proved the effectiveness of using KNN with ASA [239].  This work proposed an improved K-

NN Arabic text classifier using word-level n-grams (unigrams and bigrams) in document indexing and 

compared this to document indexing based on a single term. They applied their experiment on an Arabic corpus 

constructed by [240] from online websites and newspapers, with the corpus being placed into the Computer, 

Economic, Education or Engineering categories. Their approach obtained 87%, 64% and 74% for average 

precision, recall and F-measure. The study demonstrated that the average accuracy from using n-grams was 

74%, while the accuracy from single-term indexing was 67%, thus indicating that the use of n-grams to represent 

each document provides a higher level of performance compared to using a single term. In comparison, an 
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alternative study proved that KNN has a poor performance because of their supposition that a tweet of the same 

meaning would lead to the same classification [233]. 

Thus far, I have identified both SVM and NB as being competitively effective at supervised sentiment 

classification in the context of Arabic, [241], [235], and they are widely accepted [242]. Some studies have 

proved the superiority of using NB with Arabic text classifiers, considering it a well-performing algorithm for 

data mining [243], [244], with a demonstrated accuracy of 82% and 86.5% respectively for a macro-averaged 

precision, and 84.5% for macro-averaged F-score using the NB classifier. The dataset was 815 comments 

written in colloquial Arabic, sourced from two online Saudi newspapers. They manually classified the data 

using four labels (strongly positive, positive, negative, and strongly negative). This finding is consistent with 

that of [155], who concluded that NB provides a higher degree of accuracy than SVM.  

 

On other hand, there exist many studies proving the high accuracy of the SVM [245], [245], [242], [246]. This 

is especially true for sentiment analysis where SVM was considered not only the best classifier [247] [152] for 

supervised learning, but also most efficient [248].  Aldahawi [249] demonstrated that for text classification the 

best results were obtained using an SVM, as this does not require parameter tuning. The architecture of SVM - 

inserting a hyperplane to separate between classified data is explained as being behind its effective performance 

[248]. In addition, [250] claimed that an SVM was superior to NB regarding accuracy, as there is no reliance 

upon probabilities and is suitable for high-dimension text.  This success has even been reflected in graphical 

languages such as Chinese [6]. This presents the possibility of success in other graphical languages, such as 

Japanese and Arabic. In addition, some studies have stated the reason for the superior SVM performance to be 

the ability of SVM to handle many classes, and the vectorisation architecture of SVM, which represents the text 

via a good quality representation [251] and [233]. 

As a result, SVMs have been abundantly applied to movie reviews, while NB has been used within web 

discourse sites [233, 249]. Furthermore, some studies affirmed that the performance differences between NB 

and SVM algorithms are based on textual characteristics  . Finally, some studies even claimed that SVM is hard 

to interpret [236]. 

file:///C:/Users/lolo/Desktop/write%20the%20dessertation/chapters/Chapter%20Two.docx%23_blank
file:///C:/Users/lolo/Desktop/write%20the%20dessertation/chapters/Chapter%20Two.docx%23_blank


66 | P a g e  
 

It has been noticed that the supervised learning approach (particularly machine learning) is the most popular 

approach for ASA [44] due to the high accuracy that it provides using supervised learning [44] and [252]. 

However, there are some challenges which come together with this approach:  

• It requires labelled training data, which is time-consuming and costly [253] and [254]; 

• Due to the need of labelled training data, which requires humans for the annotation, this makes the 

availability of high-quality datasets slight [253]; 

• It is domain-dependent because the model performance that was trained on a specific dataset will 

decrease when trained on a different dataset with a different domain [253] and [44]; 

• It requires a lot of features to differentiate between sentiments [233]. 

Some studies applied other machine learning techniques (i.e., the unsupervised approach) to identify groups, 

as is further described in the next section.  

2.2.6.4.2 Unsupervised learning approaches 

Although the supervised approach has been proven to be superior to the lexicon-based approach [183] and [255], 

it requires for data to be labelled, which is hard to construct.  Many studies have attempted to apply a lexicon-

based approach with the aim of building an Arabic version [199], [201], [42], [205], [211], [256], [257], [258], 

[259], [260], [261], [262].     

The use of lexicon-based approaches differed in the literature for ASA. El-Beltagy et al. [263] combined the 

lexicon-based approach and rule-based approach to propose an Arabic Aspect-based Sentiment Analysis. 

This dataset consisted of 2071 Arabic reviews from government apps. The approach achieved an accuracy 

and F-measure of 96.57% and 92.50% respectively. In addition, [262] improved the unsupervised approach 

based on Arabic sentiment analysis through the use of valence shifter rules. They applied available lexicons, 

such as the lexicon proposed by [264], and proposed by [263], AraSenti-PMI by [45], and Arabic Senti-

Lexicon by [211], etc. The research concluded that the proposed rule enhanced the classification performance 

by 5%. Moreover, [44] proposed a weighted lexicon-based algorithm (WLBA) of SA for Saudi dialect. The 

WLBA concept is to learn from the corpus and not depend upon the lexicon to calculate the weight. The 

algorithm subtracts the associations between sentiment-bearing and non-sentiment-bearing words, and then 

based on the association it calculates the weights for the word. The researchers applied WLBA to their Saudi 

dataset for Sentiment Analysis consisting of 4700 tweets. They compared between their proposed approach 
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and two different lexicon-based approaches, the double-polarity approach [265] and the simple algorithm 

[254]. The simple algorithm method relies on counting in each sentence the positive words and negative ones, 

whilst double polarity depends on the frequency of sentiment words in the sentence. The researchers 

concluded that WLBA performed better than the double-polarity approach, however worse than the simple 

method. They counted some features to enhance the performance, such as supplication (Do’aa), to capture 

the linguistic complications of the Arabic language. This provided a performance increased to 85.4% for the 

average accuracy. Results demonstrated that consideration of linguistic features in ASA is important, and not 

widely covered within the literature. In addition, the Saudi dataset contained a large amount of Do’aa, 

therefore presenting its importance of being included within a corpus. Moreover, they proved that there is a 

strong relation between the sentiment-bearing words and the non-sentiment-bearing words in the Saudi 

dialect corpus. The same result was obtained by [45] the importance of considering linguistic features, such 

as negation, for ASA. This research compared a lexicon-based method, a supervised method and a hybrid 

method. 

The lexicon-based method relied on counting the positive and negative words. Their proposed approach 

achieved an accuracy of 91.75%. The same was performed by [257], who compared corpus-based and lexicon-

based approaches for ASA. They constructed a lexicon for ASA from a seed of 300 words. Then, they added 

synonyms to expand the lexicon. After that, they summed all the weights for the word polarity, including the 

negation to the weights. They concluded that the lexicon-based method performed inadequately when the 

lexicon is small.  

As you can see, the lexicon-based approach depends on the creation of a lexicon of good quality [44]. The major 

advantage of the lexicon-based approach is domain-independence, when constructing a comprehensive lexicon. 

However, it is hard to construct a comprehensive lexicon [182]. 

For building a lexicon there are two approaches in the literature [183]: manually [266] or automatically [159]. 

The automatic approach includes corpus-based and translation-based approaches [254], [183].  

Many researchers applied a manual approach, since the manual approach provided a more accurate lexicon [44], 

[254], [258]. Abdul-Mageed & Diab [267] constructed manually the Sifaat, which is an Arabic lexicon with 

3325 adjectives. They subsequently extended it to the Multidialectal Arabic Sentiment Lexicon (SANA). In 
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addition, they proved that the lexicon manually constructed was more accurate than one automatically built; 

however, researchers are limited in the size of lexicon they may construct [254]. 

A dictionary-based approach depends on using a dictionary to find the synonyms and antonyms of seeds of 

positive and negative words, until no word is found anymore [45]. One of the drawbacks of using the popular 

lexicon for translation is this approach is not accurate, due to errors in translation, or cultural variations [268], 

[269], [45].  Table 2.7 shows some sources and dictionaries that were used in previous studies to construct 

Arabic lexicons. The corpus-based approach depends upon the corpus to generate the polarity words, then 

uses different approaches to find the synonyms and antonyms of these words to generate the lexicon [254]. 

Some scholars have utilised specific algorithms to construct an automatic lexicon, such as the pointwise 

mutual information (PMI) statistical method [264]. Following their steps, [212] offered two sentiment 

lexicons, AraSenTi -Trans and AraSenTi-PMI, built from the Twitter dataset AraSenTi-Tweet [39]. They 

used two automatic approaches for generating the lexicon and used a simple lexicon-based approach to 

evaluate the two lexicons. To generate the first lexicon AraSenTi-Trans, they applied the MADAMIRA tool 

[270] for pre-processing the dataset. Then, they employed two sentiment lexicons: the Liu lexicon [163] and 

the MPQA lexicon [162]. 

The second lexicon was generated using PMI [271], which calculates the association between two terms, in 

terms of the sentiment analysis, i.e., the frequency of a word in a positive text compared to the frequency of the 

same word in negative text. AraSenti-Trans includes 131,342 words and AraSenti-PMI includes 93,961 words 

classified as negative and positive words. They applied a simple lexicon-based approach for evaluating the 

lexicons on three datasets RR [272], Arasenti-tweet [39], and ASTD [273]. The results showed that the 

AraSenti-PMI lexicon outperformed the other lexicon. The best F-avg of 88.92% was obtained by the AraSenti-

PMI lexicon on the AraSenti-Tweet dataset. Regarding the AraSenti-Trans lexicon, the best F-avg of 59.8% 

was achieved on ASTD [273]. Compared to the manual building of a lexicon, the automatic approach requires 

a considerable reduction in the effort required and ensures that significantly larger lexicons may be produced 

[254].  

Many studies have attempted to apply a lexicon-based approach with the aim of building an Arabic version 

[199], [201], [42], [205], [6], [211], [257], [258], [259]. A large portion of these studies used manual 

construction, though lexicon-based approaches, which provided highly accurate sentiment classification. Some 
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researchers have used available resources including Arabic WordNet [274] to build MSA lexicons [275], [276].  

[277] applied a semi-supervised approach with Arabic WordNet [274] to build a MSA lexicon and achieved 

96% classification accuracy.  Other researchers have focused on the building of an Arabic dialect lexicon using 

different approaches (i.e., manual or automatic) to generate lexicons [278], [257], [265], [212], [43], [229], 

[256]. Although lexicon components have been used successfully for Arabic, a large Saudi dialect lexicon has 

not yet been fully applied to ASA [44]. 

I further critically reviewed the construction of Saudi lexicons, since they are within the scope of this research. 

[253] constructed a Saudi dialect sentiment lexicon (SauDiSenti) that consisted of 4431 words and phrases 

written in MSA and Saudi dialect. It is available online3.  It is manually constructed from a Saudi dialect twitter 

corpus (SDTC) [279]. They yielded two annotators to extract the positive and negative terms from the corpus. 

They extracted 1079 positive terms and 3351 negative terms.  For evaluation of the lexicon, they compared it 

to one of the biggest Arabic lexicons, AraSenTi [212]. The result showed that SauDiSenti outperformed 

AraSenTi when accounting for the neutral tweets, together with the positive and negative tweets, with 0.437% 

for the average F-measure. In addition, the AraSenTi outperformed the SauDiSenti, when considering positive 

and negative tweets, with 0.760 for average F-measure. Assiri et al. [44] provided a Saudi dialect lexicon. The 

lexicon includes 14,000 terms. The lexicon was constructed through three steps: first, the lexicon was expanded 

using seed words and a learning algorithm [265].  Secondly, the lexicon was built by [280]. In the third step, 

they added new words manually. Moreover, Adayel and Azmi [281] built a Saudi dialect lexicon including 1500 

words (500 positive words and 1000 negative words) as a part of the hybrid approach of ASA. They employed 

SentiWordNet [282] to translate some words to Arabic and assign the sentiment to them. Furthermore, [283] 

provides a domain-dependent Saudi Stock Market lexicon (SSML). SSML contains 3,861 terms and their 

sentiment polarities (positive and negative) with two levels of strengths. They constructed the lexicon manually 

from Twitter and Saudi shares forum4. 

 

 

 

 
3

 http://corpus.kacst.edu.sa/more_info.jsp 
4 www.saudishares.net/vb/. 

http://corpus.kacst.edu.sa/more_info.jsp
http://www.saudishares.net/vb/
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Table 2.7: Sources used to construct Arabic lexicons. 

  

 

Label Source for Arabic lexicon Creator of the source ASA works using the sources 

S1 SentiWordNet (SWN)  [282] [258] 

S2 General Inquirer (GI) [284] [258], [267] 

S3 Twitter N/A [265] 

S4 MPQA Lexicon [162] [198] 

S5 Liu Lexicon [163] [198] 

S6 SentiStrength [285] [286], [254] 

S7 Penn Arabic Treebank [287] [199], [246], [267] 

S8 Arabic WordNet   [274] [277] 

S9 SWN3- SentiWordNet [288] [267] 

S10 Affect Control Theory 

Lexicon  

[289] [258] 
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Lexicon Lexicon Size 
Construction 

Approach 
Source Reference 

Arabic Senti-lexicon 3,880 terms 
A term translation process 

was revised manually 
S4 [290] 

NileULex 

5,953 Egyptian 

dialectical words 

and phrases 

Manually [265] and [291] [292] 

Saudi Dialect 

Sentiment Lexicon 

(SauDiSenti) 

4,431 words and 

phrases 
Manually 

Saudi dialect 

Twitter corpus 

(SDTC)[279] 

[253] 

Large-scale Standard 

Arabic Sentiment 

Lexicon (SLSA) 

35,000 lemmas 

Machine learning models, 

with limited use of 

heuristics 

A morphological 

analyser for 

Standard 

ArabicAraMorph  

[293] and S1 

[294] 

Large-scale Standard 

Arabic Sentiment 

Lexicon (ArSenL) 

157,969 words 

Combination of Arabic 

WordNet and English-

based dictionary. 

S8, the Standard 

Arabic 

Morphological 

Analyzer 

(SAMA) [295], 

English Senti 

Wordnet 

(ESWN) [282] 

and 

English 

WordNet (EWN) 

[296] 

[280] 

Sifaat 3,325 adjectives Manual S7 [267] 

Arabic lexicon 
1.8 million 

phrases 

Arabic similarity graph 

and Manual 

Business reviews 

from web 
[259] 

Polarity lexicon 3,982 adjectives Manual S7 [258] 

Egyptian dialect 

lexicon 
4,392 terms Manual S3 [265] 

Lexicon that transfers 

the Jordanian dialect to 

MSA 

300 words 

Manual 

Social websites, 

Internet and chat 

logs 

[6] 
Lexicon that transfers 

Arabizi to MSA 
N/A 

Lexicon that transfers 

emoticons to MSA 
N/A 
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Table 2.8: Comparison between Arabic Lexicons. 

 

The lexicon-based approach presents some disadvantages that have been summarised as follows: For aspect-

level sentiment analysis, it causes a minimum recall [211]. The lack of training in using the lexicon-based 

approach is not as effective as the supervised approach for sentiment analysis [266]. Due to that, the lexicon-

based approach depends on the database used; this causes a lack of extensibility [258]. 

Due to the variety of Arabic dialects, each dialect needs a special lexicon, because of the uniqueness of its lexical 

information. Therefore, the lexicon-based approach is dialect-dependent, and domain-dependent with the claim 

that for sentiment analysis a domain-dependent lexicon outperforms general lexicons [299], [300]. 

However, there are some advantages from using the lexicon-based approach: No need for model training, which 

makes it simple [211] and [253]. Providing background information via a lexicon with the machine learning 

training could be optimal [211]. A lexicon-based approach provides the understanding of the impact of the 

theoretical framework [301]. 

Ara-SenTi-Trans 
2.2 million tweets Automatic S3 [212] 

Ara-SenTi-PMI 

Arabic lexicon 
16,800 lexical 

items 

Integration between 

manual and automatic 
S6 [256]  

Arabic lexicon N/A Manual S7 [246] 

Arabic subjectivity 

word 

2,600 human-

classified 

comments 

Integration between 

manual and automatic 

S6 and online 

dictionary 
[286] 

Arabic sentiment 

lexicon 
7,500 words Semi-supervised learning S8 [277] 

SANA a dialect Arabic 

sentiment lexicon 
224,564 entries Automatic S1, S2, and S10 [258] 

Dialect/slang 

subjectivity lexicon 

2,000 subjective 

terms 
Automatic S3 [297] 

Idioms/proverbs 

lexicon for the 

Egyptian dialect 

32,785 

idioms/proverbs 
Manual Arabic websites [260] 

Arabic version of 

SentiStrength 

 

N/A Automatic S1 [298] 
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2.2.6.5.3 Hybrid approaches 

The hybrid approach is a combination between supervised learning and unsupervised learning [45], [211] and 

[286]. Several studies have found a hybrid approach to be the most suitable technique for SA [199], [211], [286], 

[302], [45], [303], [304]. 

 Hybrid approaches can contribute to solving the shortcomings of both supervised learning and lexicon-based 

approaches [305]. The combination of the high accuracy from supervised learning approaches and the legibility 

(clear to understand and read) from unsupervised approaches makes hybrid approaches perform the best with 

SA [211]. Furthermore, some studies proved that the hybrid approach outperforms the supervised approach in 

accuracy [211].  

The hybrid approach is common within the ASA research; for example,  [302] applied a lexicon-based approach 

using SentiWordNet for ASA, alongside with a machine learning classifier. They used SentiWordNet as a 

feature for SVM. They concluded that using SentiWordNet as a feature for the SVM algorithm improved the 

term counting method by 7 times and raised the accuracy from 65.85% to 69.35%. The same lexicon 

SentiWordNet was used by [281] to label the tweets; then they used supervised learning, SVM, with n-grams, 

to classify the text. The results validated the effectiveness of the hybrid approach with 84% and 84.01% for F-

measure. Additionally, the accuracy was raised using the hybrid approach over the individual lexicon-based or 

machine learning approaches. 

In another work, [199]  proposed SAMAR (a sentence-level ASA for Arabic social media genres).  They utilised 

a polarity lexicon (PL) manually composed of 3982 adjectives labelled with (positive, negative, or neutral) on 

the DARDASHA and TAGHREED datasets to investigate the task of sentence-level construction with MSA 

and Arabic dialects.  TAGREED includes 3015 MSA and dialectal Arabic tweets, while DARDASHA (DAR) 

includes 2798 Egyptian dialect Arabic chats from the Maktoob website http://chat.mymaktoob.com. They 

applied PL as a binary feature, to check chat or tweet whether they have a positive adjective or negative one that 

existed in the PL. The work concluded that the accuracy of the sentiment analysis was raised after applying the 

polarity lexicon. The best F-score obtained was 95.52%.  

Some studies proposed the hybrid approach for Arabic sentiment analysis by using an Arabic lexicon to find 

the sentiment score of the words in a sentence, for example: [45] used rule-based knowledge to be included in 

a statistical method as a feature. They utilised the AraSenti lexicon [212] as a tweet-score feature for the SVM 

file:///C:/AppData/Local/Temp/lu17008ax6kj.tmp/0.odt/C:/Users/lolo/Desktop/write%20the%20dessertation/chapters/Chapter%20Two.docx%23_ENREF_105
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and NB classifiers. This feature was applied using the AraSenti lexicon. They confirmed the superiority of a 

hybrid approach with two and three-way classifications. The same hybrid approach was used by [198] for binary 

ASA, three-way ASA and four-way ASA. The best model performance was 69.9% F-score for binary 

classification, 61.63% F-score for three-way classification, and 55.07% F-score four-way classification.  

Another study used a hybrid approach [250], with a manually built lexicon to define the sentiment scores. They 

applied the hybrid approach on an Egyptian tweets’ dataset. They validated their approach on 4800 tweets 

annotated as positive, negative, or neutral. The results showed that integrating lexical-based features into 

machine learning enhanced ASA. In addition, [211] proposed an Arabic senti-lexicon including 3880 terms 

classified as positive or negative. They utilised the Arabic senti-lexicon to extract the features for machine 

learning algorithms NB, k-NN, SVMs, logistic linear regression and neural networks. The results demonstrated 

that feature vectors extracted from Arabic sentiment lexicon enhanced the classifier performance, with the best 

macro-F-score of 97.8% favouring logistic linear regression. Similarly, [263] integrated features derived from 

the NileULex sentiment lexicon [292] into machine learning algorithms. The datasets used were obtained from 

social media written in MSA and different Arabic dialectics, such as Saudi, Egyptian, and Levantine. It has been 

used with Complement Naïve Bayes (CNB) [306]. The results showed that used the lexical-based features raised 

the accuracy of the model.  

An interesting concept considered for the hybrid approach was introduced by [286], who presented the hybrid 

approach as a combined approach, which applied different methods sequentially, to classify the sentiment of a 

text. It applied two methods to classify Arabic documents, i.e., a lexicon-based one, and a machine learning 

method using the maximum entropy followed by a K-NN algorithm on the 8793 Arabic statements found in 

1143 posts. The research constructed a lexicon by translating the wordlist from the SentiStrength software [158] 

from English to Arabic.  As Figure 2.5 shows, the accuracy was raised from 50% to 80% using a combined 

approach. This hybrid approach was applied later in [286], to examine students’ opinion changing in two 

consecutive semesters. 

Alhumoud et al. [305] proved the outperformance of a hybrid approach over supervised and unsupervised 

approaches. The research applied a lexicon-based approach to label the dataset of 3000 Saudi dialect tweets. 

Then, they trained the SVM classifier on the labelled dataset. The hybrid learning results were 96% for precision, 

97% for recall and 90.3% for average accuracy. In addition, [307] used the hybrid approach on the same dataset 
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[305] labelled with the same sentiment lexicon using two machine learning approaches, SVM and K-NN. The 

results demonstrated the advantage of the hybrid approach over the supervised approach with 90.5% average 

accuracy using K-NN and 90% average accuracy using SVM. 

A similar improvement was demonstrated in another study by [308], who depended on the hybrid approach to 

switch the sentiment-bearing words with their consistent label in the text. The results showed that the hybrid 

approach surpassed the corpus-based approach, and the best accuracy (96.34%) was obtained by utilising 

random forest. 

In recent studies, [233] presented the hybrid method as combining linguistic features and statistical features for 

Arabic sentiment analysis. POS and stemming were considered as linguistic features, while (TF) and (IDF) were 

considered as statistical features. They applied SVM, K-NN and ME. The results proved the effectiveness of 

the hybrid method, additionally, the superiority of SVM over other algorithms, with 72.15% as F-score.  

Alternatively, [277] applied semi-supervised learning to evaluate the Arabic lexicon (Arabic SSL). They 

incorporated Arabic SSL into NB and SVM. They applied their experiment on the OCA corpus [309] and a 

book review corpus manually collected and annotated.  They applied the lexicons to calculate the scores and 

feed it as features for ASA classifiers. Results demonstrate the superiority of NB over SVM with 97% accuracy. 

In addition, they concluded that the classification accuracy did not improve using the semi-supervised learning, 

due to ignoring other factors rather than the sentiment score, such as the order of words within a text. 
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Figure 2.5: Comparison between the performances of the three methods. 
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2.2.6.5.4 Deep learning and transfer learning  

Artificial neural networks (ANNs) are used to mimic human neurons in the brain. They hold many pieces of 

information, as do artificial neurons when processing a lot of information [310]. A neural network processes 

a large amount of information stored in the artificial neurons and ordered in layers. ANNs can be feedforward 

or recurrent/recursive neural networks.  

The architecture of feedforward ANNs, the simplest ones, consists of three layers: the input layer L1, the 

hidden layer L2 and the output layer L3 (Figure 2.6). Other more complicated ANNs depend on this 

architecture. The input layer has many input vectors Xi and an intercept value +1. The hidden layer and 

output layer have neurons, each of which has an activation function – these are the computation components 

of ANNs. Every vector in the input layer connects with a neuron in the hidden layer using weight; it is a 

controlling value between two neurons, controlling the learning process by changing it. The learning process 

starts in the neuron by reading the output from the preceding layer, processing the data, and producing an 

output that is sent to succeeding neurons in the next layer. The output layer uses a SoftMax function for the 

last classification. There are various activation functions such as the sigmoid function, the rectified linear 

function (ReLU) and the hyperbolic tangent function (tanh). Lately, the ReLU function has become more 

widely used because it is easy to calculate. It has a quick uniting in training, and it improves the performance 

of ANNs [311]. It is necessary to mention backpropagation [312]; training the ANNs causes a loss of SoftMax 

function called cross-entropy loss. To minimize it, backpropagation should be used to make a gradient 

descent. One example of a feedforward ANN is a CNN [313]. 

 

 

 

 

 

 

O1 

Figure 2.6: Feed forward neural network. 
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In the late 1990s, interest in the use of ANNs waned because the research community focused on simple 

ANNs with a maximum of two layers. This was due to the difficulty and high cost of training a neural network 

with more layers, i.e., a “deep” neural network. However, in recent years with the accessibility of computing 

power, especially graphics processing units (GPUs), the use of deep learning models became state of the art 

[314] in many tasks such as speech recognition [315], computer vision [316] and NLP [317], [318], and, in 

recent years, for SA tasks [313]. Deep learning models used feature extraction in the sequential multiple 

layers, starting with the lower layer for simple features and progressing to higher layers for more complex 

features. The lowest layer is the word count vector while the highest layer is the binary classification of the 

learning process.  

Today, deep learning becomes a widespread approach in the NLP community [319]. The deep learning 

mechanism depends upon multiple hidden layers to represent the data, especially with large datasets. 

Examples of deep learning networks include Convolutional neural networks [320], and Recurrent neural 

networks (RNNs) [312]. CNN is a feed-forward network mostly applied in computer vision [321]. While, 

RNNs are applied with sequential data [321]. 

Using deep learning algorithms means that the changes in the input data are constant because the algorithms 

use an abstract interpretation. The advantage of deep learning models is that they use an uncomplicated model 

to achieve complicated functions, as they extract the deep learning models as a nonlinear feature, which is 

used as input into a linear model [29]. Furthermore, they use a huge volume of data (Big Data) effectively, 

dealing with the variety of data formats by using abstract data. This reduces the demand for feature extraction 

and the deep learning model can learn complex features by itself, whereas other simple machine leaning 

algorithms such as SVM and DT cannot extract complicated features [313]. 

A Recurrent Neural Network (RNN) [322] is another type of ANN. It is employed for processing sequential 

information because it has a memory that can process a long sequence of inputs, unlike feedforward ANNs. 

The memory allows RNN to do the same process for each component in the sequence, so the output depends 
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on all the prior calculations. RNN remembers the information that has been processed before (see Figure 

2.7). 

 

 

 

 

 

Every term in a sentence being processed in RNN is considered to be one time-step (layer). For example, 

RNN processes a sentence with four words through four layers. One of the advantages of using RNN is that 

there are fewer parameters than with a feedforward ANN because it uses the same parameters in each layer 

with different inputs. On the other hand, the most important drawback of RNNs is the vanishing gradient 

problem [323], which is caused because the RNNs practically cannot handle really long sequences of 

information [313].  

To overcome the shortcomings of RNNs, special types of RNNs have been developed: the long short-term 

memory network (LSTM) [324], the bidirectional RNN [325] and deep bidirectional RNN. Bidirectional 

RNN considers the output element depends on the previous element and next element to predict. Deep 

bidirectional RNNs apply the same idea as bidirectional RNNs except that for every time-step they use a 

multiple layer, which needs more training data.  LSTM [324] is usually utilised in sequential data [313]. 

LSTM is more complicated than simple RNNs because instead of one layer for each word in a sentence it 

has four layers interacting with each other. In addition, there are two states: hidden and cell. At time-step/layer 

(t), LSTM decides which information it will forget based on a forget gate (ft), which is a sigmoid function σ. 

The function takes the previous hidden layer output, ht−1 and the present input, xt. The output will be [0 or 

1], where 0 means “forget”, and 1 means “keep”.  

Two steps are carried out by LSTM to update the cell state Ct−1. In the first step, the input gate (layer), which 

is a sigmoid function, decides the values to update. The second step produces a vector for a new value Ct 

Figure 2.7: Unfolded recurrent neural networks. 
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using the tanh function/layer. The new value Ct will append to the cell state. The output of LSTM depends 

on the cell state; first, LSTM decides which information to pass to the output gate based on a sigmoid layer. 

Second, the cell state passes to the tanh function and multiplies with the sigmoid gate output. 

It is worth mentioning that LSTM can overcome the vanishing gradient through the forget gate, which lets 

the memory update and removes. The gated recurrent unit (GRU) [326], [327] is the same as the LSTM 

architecture except it combines the two gates “forget” and “input” into one “update” gate. It is less 

complicated than the LSTM model and widely used [313]. 

In the area of sentiment analysis, many scholars proved the deep learning models efficiency [328], [329] 

[330], [331].  Recently, a number of studies  have investigated the use of deep learning models for ASA [217] 

[218], [332], [333], [205], [334], [335], [336], [337] ,[338], [339], [340, 341], [342], [343], [344], [345], 

[346], [347], [348]. 

CNNs proved good results in many NLP researches [219], due to the structural attributes of CNNs. In the 

literature, [349] combined CNN with word-embeddings to classify tweets, with results demonstrating the 

success of this approach. A number of researches applied this method, such as [350], [218], [340], [341] and 

[345]. CNNs capability in choosing excellent features was lauded [218]. In addition, CNN was shown to 

decrease the number of weights within a model and accordingly decrease complexity [321].  

The traditional RNN was seen to struggle during processing of long sequential data [351]. The proposing 

solution was using the Long Short Memory (LSTM) and Gated Recurrent Unit (GRU) [352, 353] because of 

the capabilities of the LSTM and GRU in processing long sequential data  [218] and in their  abilities of  

inclusiveness in  learning – i.e., including the previous output [354]. Thus, the most common RNN models 

used are Long Short Term Memory LSTM and Gated Recurrent Unit (GRU)    [336], [333], [332], [29], [338] 

[337], [334], [217, 340], [341], [345].   

One of oldest works using deep learning models for ASA [355], applied a CNN for  aspect-based sentiment 

analysis for multilingual analysis, as a part of SemEval-2016 Task. The work obtained an accuracy of 82.72% 

for ASA. Alayba et al.  [217] presented a health dataset written in Arabic, which included 2026 tweets classified 

as positive and negative labels. Different Deep and Convolutional Neural Networks DNNs and CNNs and 
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Machine Learning algorithms were used, such as Logistic Regression, SVM and NB. Within this research, the 

best accuracy was obtained by an SVM with 91%, closely followed by 90% achieved by a CNN. The same 

dataset was used later by [218]. They examined the integration of a CNN and LSTM approach to ASA. The 

study aimed to improve the ASA accuracy using their dataset of Arabic health service, with results proving that 

an integrated approach improved the sentiment classification with 94% for accuracy.  

Alwehaibi and Roy [333] applied Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) to 

ASA using three different Arabic word2Vec: AvaVec, ArabicNews and AraFT. The greatest accuracy was 

achieved by AraFT (93.5%), followed by ArabicNews (91%) and AraVec (88%). The results also 

demonstrated that a pre-trained word-embedding approach enhanced the performance of the model. 

The same method was applied by [356], who employed GRU and CNN on tweets written in MSA and Arabic 

dialect. In addition, they used word embedding. Mohammad et al. [172] focused on the third task in Semeval-

2018, which is about defining the intensity of the sentment. Their data came from Twitter in three different 

languages including Arabic. They used word embedding as a feature. The best results were achieved by CNN, 

LSTM and Bi-LSTM. 

Al-Smadi et al. [338] carried out the application of an LSTM for an aspect-based SA using Arabic reviews of 

hotels, outperforming the state-of-the-art method. The same steps were followed later by [357], who applied 

LSTM on aspect-sentiment analysis with two different settings. The first model is a bidirectional LSTM with a 

character level and conditional random field (Bi-LSTMCRF). The second one is an aspect-based LSTM. Their 

dataset contained hotel reviews written in Arabic. They employed two embedding features: character- and word-

level. Their results outperformed prior research to theirs.  

Recently, pre-trained language models have achieved good results with different NLP target tasks, due 

to the ability of these models to learn with few parameters [358], unlike the previous approaches that 

depended on features [359]. The advantage of these pre-trained models is that they can be trained on a 

large general domain data set to acquire the language characteristics, and then fine-tuned on a small data 

set. They therefore do not depend on large data sets. 

The whole idea of transfer learning is to transfer the parameters [360]. The simplest transfer model, 

word embedding (WE), is word2vec [361]. WE deal with each word as vector, and it is a valuable 
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technique to obtain a numeric feature from words. It maps neighbouring and analogous words in the 

high-dimensional space. The most popular WEs are Word2Vec [361], Global Vector for word 

representation (GloVe) [362] and FastText [363]. Word2Vec is a neural network that comprises one 

input and hidden and output layers. It concentrates on the distance of words, and it represents sentiment 

analogy between words. Training these WEs entails a massive corpus, and it takes a long time. However, 

there are few publicly available pre-trained WEs for Arabic NLP. There are two Arabic pre-trained WEs 

in [364]: AraFT [365] and Arabic_news [366]. In addition, there is AraVec [367], which depends on 

different models of Word2Vec: continuous bag of words (CBOW) and skip-gram models. CBOW 

model is a bi-gram model that predicts one word that is most likely to be the following word [361], 

while the skip-gram model [368] is the reverse of CBOW – it finds the possibility window of words for 

each word. 

AraVec and Arabic_news used Word2Vec with CBOW to train on an Arabic Wikipedia corpus for AraVec 

and various Arabic corpora for the Arabic_news model. AraFT used FastText with skip-gram. The literature 

proves that CBOW performs better than skip-gram [361]. Usually, WE is the first layer of a transfer learning 

model [360]. 

The most important transfer learning model is OpenAIGPT [369], which is a language model that has 

achieved the state of the art in textual entailment and question answering [370]. The ULMFiT pre-

trained language model [359], which is composed of three “AWDLSTM” layers [371], is very accurate 

on different NLP tasks. ULMFiT performed very well with different NLP tasks. The newest language 

model is Pre-training of Deep Bidirectional Transformers for Language Understanding (BERT) [372]. 

It uses a transformer network [373]. BERT outperformed the other pre-trained language models, due to 

its ability to manipulate context from both directions. Another pre-trained language model is RoBERTa 

[374], which is an enhanced version of the BERT model [372].  

In the parameter-transfer method applied to the NLP field, Word2Vec [29], which is a simple transfer 

technology only for the first layer of the model, has many applications. It has a great impact in practice 

and can be used in many advanced technologies. 
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The use of transfer language models is still new for ASA studies. Only a few studies that have been published 

so far [375], [358], [376]. Al-Twairesh & Al-Negheimish [375] used the BERT model [372] on an Arabic 

tweet data set. Their generic and sentiment-specific word-embedding model outperformed the BERT model. 

They explained that this was because the BERT model was trained on Wikipedia, which is written in MSA, 

whereas dialects are used on Twitter. Other research studies have used Arabic word embedding. Zahran et 

al.  [377] using a Word2Vec model on the AraVec data set [333], [356], [172], while [314] used LSTM and 

CNN with doc2vec to enhance the performance of SA for a financial site (i.e., Stock Twits). The results found 

that a deep learning approach helped to improve the accuracy of the financial SA. 

HULMonA [358] is the first Arabic universal language model. It is based on ULMFiT [359]. It was pre-

trained on a large Arabic corpus and fine-tuned to many tasks. It consists of three stages: 1) training an AWD-

LSTM model [371] on an Arabic Wikipedia corpus; 2) fine-tuning the model on a destination corpus; and 3) 

including a classification layer for text classification. The results showed that hULMonA achieved state of 

the art in ASA.  

The most recent Arabic universal language model is AraBert [376]. It is a BERT-based model trained on 

different Arabic data sets. It used the BERT basic configuration [372] except it added a special pre-training 

phase prior to the experiment specific to the Arabic language. It tried to find the solution for the lexical 

sparsity in Arabic [350] by using “ال“ “  Al” before the word (a prefix without meaning) and by using a Fast 

and Accurate Arabic Segmenter (Farasa) [378] to segment the word.  

2.2.6.5.5 Corpora 

Compared to other languages, Arabic lacks a large corpus [44], [45], [39], [46], [43].  A number of scholars 

depended on the translation from one language to another to construct their corpus, for example for the 

Opinion Corpus for Arabic (OCA). It is one of the oldest corpora for ASA by [379], comprising more than 

500 Arabic movie reviews. The reviews were translated using automatic machine translation, and the results 

compared to both Arabic and English versions. Subsequently, most research efforts have focused on 

enhancing classification accuracy with the OCA dataset [380]. In addition, the MADAR corpus was proposed 

by [381]. It included 12,000 sentences from Basic Traveling Expression Corpus (BTEC) [382] translated to 

French, MSA, and 25 Arabic dialects. This corpus for Dialect Identification and Machine Translation is 
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available online5. One of the earliest Arabic datasets created as MSA Resource was the Penn Arabic Treebank 

(PATB) [287]. It consisted of 350,000 words of newswire text. It had 12 parts. This dataset  has been a main 

resource for some state-of-the-art systems and  tools such as MADA [383], and it’s successor MADAMIRA 

[270], YAMAMA [384], and the tool by [385]. It is available for a fee6. 

Regarding the Arabic dialects, the Egyptian dialect had a lot of attention; one of the earliest Egyptian corpora is 

the CALLHOME corpus [47]. In addition, Levantine Arabic was well-studied, leading to the Levantine Arabic 

Treebank (LATB)  [48]. It includes 27,000 words in Jordanian Arabic. Some efforts were made for Tunisian  

[34], [386], and Algerian [387]. Regarding the Gulf Arabic corpus, there is the Gumar corpus [388]. It consisted 

of 1,200 documents written in Gulf Arabic dialects from different forum novels. It is available online7. Using 

the Gumar corpus, a Morphological Corpus of Emirati dialect has been created. Khalifa et al. [389] consisted 

of 200,000 Emirati Arabic dialect words and is freely available8. More details about the Arabic corpora are 

summarized in Table 2.9. However, there are shortcomings to the existing corpora and their availability. This is 

due in part to the strict procedures for gaining permission to reuse aggregated data, with most existing corpora 

not offering free access. Furthermore, it is clear from Table 2.10 that the most frequently applied source for 

Saudi corpora is Twitter. Unfortunately, all Saudi corpora that were found in the literature are not available. In 

addition, some of them did not mention details about the annotation, which may cause a limitation for using 

these corpora. Finally, Figure 2.8 illustrates the percentage of different Arabic corpus types. Interestingly, since 

2017, I found that dialectal Arabic has been used in more corpora than MSA. 

 

 
5 http://nlp.qatar.cmu.edu/madar/ 

 
6 https://catalog.ldc.upenn.edu/LDC2005T20 
7https://nyuad.nyu.edu/en/research/centers-labs-and-projects/computational-approaches-to-modeling-language-

lab/resources.html 
8https://nyuad.nyu.edu/en/research/centers-labs-and-projects/computational-approaches-to-modeling-language-

lab/resources.html 

http://nlp.qatar.cmu.edu/madar/
https://catalog.ldc.upenn.edu/LDC2005T20
https://nyuad.nyu.edu/en/research/centers-labs-and-projects/computational-approaches-to-modeling-language-lab/resources.html
https://nyuad.nyu.edu/en/research/centers-labs-and-projects/computational-approaches-to-modeling-language-lab/resources.html
https://nyuad.nyu.edu/en/research/centers-labs-and-projects/computational-approaches-to-modeling-language-lab/resources.html
https://nyuad.nyu.edu/en/research/centers-labs-and-projects/computational-approaches-to-modeling-language-lab/resources.html
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Corpus Name Ref. Source Size Type Online Availability 

Twitter Benchmark Data Set for 

Arabic Sentiment Analysis 
[43] Twitter 

151,000 sentences 

classified as 

positive or negative 

MSA/ Egyptian dialect Not Available 

SUAR (Saudi corpus for NLP 

Applications and Resources) 
[278] 

Different social media 

sources such as 

Twitter, YouTube, 

Instagram and 

WhatsApp 

 

104,079 words Saudi dialect Not Available 

Health data set [217] Twitter 

2,026 tweets 

classified as 

positive or negative 

Arabic dialect Not Available 

DARDASHA 

[199] 

Chat Maktoob 

(Egyptian website) 
2,798 Arabic dialect 

Not Available 
TAGREED Twitter 3,015 MSA/Dialect 

TAHRIR Wikipedia Talk pages 3,008 MSA 

MONTADA Forums 3,097 MSA/Dialect 

Hotel Reviews (HTL) 

 

 

 

 

[291] 

TripAdvisor.com 15,572 MSA/Dialect 

Not Available 

Restaurant Reviews (RES) 

Restaurant Reviews 

(RES) from 

Qaym.com 

10,970 MSA/Dialect 

Movie Reviews (MOV) 

Movie Reviews 

(MOV) from 

Elcinemas.com 

1,524 MSA/Dialect 

Product Reviews (PROD) 

Product Reviews 

(PROD) from 

Souq.com 

 

4,272 MSA/Dialect 

MIKA [390] 

Twitter and different 

forum websites for 

TV shows, product 

and hotel reservation. 

4,000 topics 

classified as 

positive, negative 

or neutral 

MSA and Egyptian 

dialect 
Not Available 
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Arabic Sentiment Tweets 

Dataset (ASTD) 
[273] Twitter 

10,000 Egyptian 

dialect tweets 
Egyptian dialect 

Freely available at 

https://github.com/

mahmoudnabil/AST

D 

Arabic Twitter Corpus [391] Twitter 

8,868 tweets 

classified as 

positive, negative, 

neutral or mixed 

Arabic dialect 
Available via the 

ELRA repository. 

Large Arabic Book Review 

Corpus (LABR) 
[230] 

Book reviews from 

GoodReads.com 

 

63,257 book 

reviews 
MSA/Dialect 

Freely available at 

www.mohamedaly.i

nfo/datasets 

Al-Hayat Corpus [392] 
Al-Hayat newspaper 

articles 
42,591 MSA 

Available for a fee 

http://catalogue.elra.

info/en-

us/repository/brows

e/ELRA-W0030/ 

An-Nahar Corpus [393] Newspaper text  MSA 

Available for a fee 

https://catalog.elra.i

nfo/en-

us/repository/brows

e/ELRA-W0027/ 

AWATIF (a multi-genre corpus 

of Modern Standard Arabic) 
[394] 

Wikipedia Talk Pages 

(WTP), The Web 

forum (WF) 

and Part 1 V 3.0 

(ATB1V3) of the 

Penn Arabic Treebank 

(PATB) 

2855 sentences 

from PATB, 

5,342 sentences 

from WTP and 

2,532 sentences 

from WF 

MSA/Dialect Not Available 

The Arabic Opinion Holder 

Corpus 
[204] News articles 

1 MB news 

documents 
MSA 

Available at 

http://altec-

center.org/ 

Arabic Lexicon for Business 

Reviews 
[259] Reviews 2,000 URLs MSA Not Available 

Tunisian Arabic Railway 

Interaction Corpus (TARIC) 
[34] 

Dialogues in the 

Tunisian Railway 

Transport Network 

4,662 Tunisian dialect Not Available 

 Table 2.9: Comparison between different Arabic corpora. 

 

https://github.com/mahmoudnabil/ASTD
https://github.com/mahmoudnabil/ASTD
https://github.com/mahmoudnabil/ASTD
http://www.mohamedaly.info/datasets
http://www.mohamedaly.info/datasets
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Figure 2.8: Percentage of Arabic corpora over time based on the type of corpora. 

 

 

 

 

Corpus Name Ref. Source Size Classification 
Online 

Availability 

AraSenti-Tweet Corpus of 

Arabic SA 
[39] 

Twitter 17,573 

tweets 

Positive, negative, neutral, or mixed labels. Not Available 

Saudi Dialects Twitter 

Corpus (SDTC) 
[279] 

Twitter 5,400 

tweets  

Positive, negative, neutral, objective, spam, 

or not sure. 

Not Available 

Sentiment corpus for Saudi 

dialect 
[395]  

Twitter 4000 

tweets 

Positive or negative. Not Available 

Corpus for SA  
[396] 

Twitter 4700 

tweets 

 
Not Available 

Saudi public opinion 
[244] 

Two Saudi 

newspapers  

815comme

nts 

Strongly positive, positive, negative, or 

strongly negative 

Available upon 

request 

Saudi corpus  
[397] 

Twitter 5,500 

tweets  

Positive, negative, or neutral 
Not Available 

Saudi corpus 
[398] 

Twitter 1,331 

tweets   

Positive, negative, or neutral 
Not Available 
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Table 2.10: Comparison between different Saudi dialect corpora for ASA. 
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2.2.6.5.6 Systems and Tools 

Many systems and tools that support Arabic are for Morphological Analysis (MA)  [399], [383], [270]. The 

oldest and pioneering system in this field is the Buckwalter Arabic Morphological Analyzer (BAMA) [399]. 

It depended on an Arabic dictionary. This dictionary included prefixes, stems and suffixes. Pasha et al. [270] 

proposed MADAMIRA based on two systems: MADA [383] and AMIRA [400]. A lot of Arabic works were 

based on BAMA, for example, SAMA 3.1 [401] and MADA + TOKAN [383].   

It is worth emphasising other important works, such as AMIRA  [400], an Arabic online tool for POS-tagging, 

tokenization, and lemmatization. Another Arabic system is Khoja’s Stemmer [402]. It eliminates the prefixes 

and suffixes from the word and takes out the root.  

Named Entity Recognition (NER) tools are considered important for extracting semantic features of the text 

[403].  However, works applying (NER) to Arabic are few [404]. One of the very recent works on NER is by 

AL-Jumaili and Tayyeh [233] who proposed a real-time named entity recognition system using news from 

Internet. The F-score for person, location, organization, noun, and verb was 72.61%, 68.69%, 55.25%, 77.62%, 

and 65.96%, respectively. 

The review of the ASA literature confirmed the effectiveness of techniques (e.g., data mining) for analysing 

abundant data (i.e., Arabic text) and for projecting patterns for further discussion and analysis (e.g., forecasting). 

Our review revealed that, although there is an increasing interest in the use of ASA tools, unfortunately, there 

is no clear recommendation on a reliable enough tool to perform this analysis within a real-world context. In 

addition, the tools that are widely used in the SA field don’t support ASA, such as Tableau [405], and Power 

BI9. For this, tech giants like the Saudi Telecom Company are translating Arabic tweets into English and then 

using Tableau type software to perform SA.  

One of the tools that are used for ASA, [406] compared between a created Opinions Polarity Identification 

(AOPI) tool and two free online SA tools supporting ASA, which are SentiStrength [298] and Social-

Mention10. They applied them on a corpus including 3,015 opinions written in MSA and different Arabic 

dialects. The results proved the efficiency of AOPI over the other tools. 

 
9 Data Visualization | Microsoft Power BI 
10 Real Time Search - Social Mention 

https://powerbi.microsoft.com/en-us/
http://socialmention.com/
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The reviewed studies have covered a number of techniques enabling opinion-oriented information-seeking 

systems. These highlight the intellectual richness and breadth of the research area. In addition, numerous studies 

have also proposed many data-mining systems for MSA. Some systems were designed for dialectal Arabic, 

while others were designed for both MSA and dialects. Table 2.11 illustrates and compares the features of these 

systems within the ASA literature. 

The findings of our review indicate that the majority of existing systems for Arabic text used SVM, KNN and 

NB classifiers, which have proven to be effective with Arabic. However, future research in ASA is expected to 

adopt other techniques, such as deep learning and neural networks, which has showed already early promise. 
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System 
Pre-

processing 
Algorithms Data Source Evaluation 

Standard Arabic 

sentiment analyzer 

(SentiArabic) 

[407] 

Yes Lexicon-based 

combined with a 

decision tree 

SentiTest contained 

online news and a 

PATB sentiment 

annotated by [203].  

F-score of 76.5% on a 

blind test set. 

[408] Yes Unsupervised 

technique 

Restaurant reviews 60.5% accuracy 

Aara [244] 

 
 

Yes NB classifier Newspaper comments 

(Alriyadh and 

Aljazirah) 

F-score was 84.5%. 

The accuracy of the 

system is 82% 
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[409] 
 

Yes DT, SVM, and 

NB 

Users’ comments in 

Facebook 

73.4% accuracy 

[410] 

 
Yes DT, SVM, and 

NB 

28,300 reviews from 

YouTube 

www.youtube.com 

94.5% accuracy 

Mazajak/[234] 

 
  Yes CNN followed 

by an LST 

SemEval ([411] 

ASTD [273], ArSAS 

[412] 

92.0% accuracy 
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 [410] Yes DT, SVM, and 

Naïve Bayes 

28300 reviews from 

YouTube 

www.youtube.com 

94.5% accuracy 
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Colloquial non-

standard 

Arabic-Modern 

Standard Arabic 

Sentiment 

Analysis (CNSA-

MSA-SAT)/ [413]  

Yes IBK (KNN) 

Classifier 

 

Arabic reviews and 

comments from online 

social website 

The accuracy was 90% 

SAMAR/ [199] 

 

Yes SVM light  Chat websites, social 

media, web forum and 

Wikipedia talk pages 

The highest accuracy 

for sentiment 

classification was for 

web forum at 71.82% 

 

Table 2.11: Data mining tools used in ASA. 

2.3 Summary 

This chapter reviewed all the studies related to the variables of customer satisfaction, customer churn and 

Twitter. As a result, this review has identified the current churn prediction model issues, the customer churn 

variables and the measurable metrics for customer satisfaction. In addition, this chapter reviewed research 

on ASA to provide a holistic view of the approaches, tools and resources used in this field. This review aims 

to identify the different approaches used for ASA: machine learning, lexicon-based and hybrid approaches. 

This chapter offers insight into the issues and challenges associated with ASA research, and it provides 

suggestions for ways to move the field forward. For example, even now, there are many gaps and deficiencies 

in the studies on ASA. Specifically, Arabic tweets, corpora and data sets for SA are currently only moderately 

sized. 

Moreover, Arabic lexicons with high coverage contain only MSA words, and those with Arabic dialects are 

quite small. New corpora need to be created. Additionally, there is a need to develop ASA tools that can be 

used in industry and academia for Arabic text SA.   
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 Chapter 3: Sentiment Resources for Saudi Dialect   

3.1 Introduction 

With the growing use of social media sites worldwide over the last ten years, Sentiment Analysis has recently 

become a prominent and useful technique for capturing public opinion in many different disciplines.  

However, sentiment polarity detection is a challenging task due to the limitations of sentiment resources in 

different languages. Whilst a substantial body of research exists for English [44], [45] it remains a largely 

unexplored research area for the Arabic language [44], [45], [39], [46]. This is due chiefly to the complexity 

of Arabic [46], [45], [278]. Hence, Dialectal Arabic (DA) analysis, targeted here, is complicated, requiring a 

native speaker. Moreover, DA datasets and lexicons, especially freely available Gold Standard Corpora 

(GSC), Saudi dataset are lacking [44], most resources being for Egyptian and Levantine [45], and current 

effort has concentrated on and the Gulf Dialect [388] and the Palestinian Dialect [414].  

Nevertheless, there is still a need for DA for Arabic corpora [415]; for Saudi Dialectical Arabic, this need is 

stringent [45]. Therefore, I attempt to alleviate this matter by focusing on Arabic Sentiment Analysis and 

provide solutions to one of the challenges that face Arabic SA by creating a Saudi GSC and Saudi Sentiment 

lexicon and AraSTw lexicon. These resources are based on data extracted from Twitter. This chapter presents 

how I have constructed, cleaned, pre-processed, and annotated the 20,0000 Gold Standard Corpus (GSC) 

AraCust, the first Telecom GSC  for ASA for Dialectal Arabic (DA). AraCust contains Saudi dialect tweets, 

processed from a self-collected Arabic tweets dataset and annotated for sentiment analysis, i.e., manually 

labelled (k=0.60). In addition, I have illustrated AraCust’s power, by performing an exploratory data analysis 

to analyse the features that were sourced from the nature of the AraCust corpus, to assist with choosing the 

suitable ASA methods for it. The AraCust corpus released11 for the research community.    

3.2 Data Collection 

 
11 AraCust: a Saudi Telecom Tweets corpus for sentiment analysis [PeerJ] 

 

https://peerj.com/articles/cs-510/
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To build the dataset, I used Python to interact with Twitter’s search application programming interface 

(API)12 to fetch Arabic tweets based on certain search keys. The Python language and its libraries are one of 

the most flexible and popular approaches used in data analytics, especially for machine learning. To ensure 

pertinence to our target application, I started with hashtags related to the three largest Saudi telecom 

companies: the Saudi Telecom Company (STC), the Etihad Etisalat Company (Mobily), and Zain KSA, 

which dominate the market. As a result, I extracted the relevant top hashtags, as follows: #STC, #Mobily, 

#Zain, #الاتصالات_السعوديه, #موبايلي and #,زين_السعودية which were used for the search. These initial seed terms 

were extracted based on the following Python function:  

tags = API.trends. place ()   

From the tweepy library. Additionally, I used the Twitter accounts of these companies as search keywords. 

As the aim of this collection was to allow for a longitudinal, continuous study of telecom customers’ 

sentiments, I gathered data continuously from January to June 2017, mainly because this period includes 

customers’ reactions to the Saudi Communications and Information Technology Commission’s new index, 

which refers to complaints submitted to the authorities [416]. While seemingly a short period, it in fact 

generated the largest Arabic Telecom Twitter dataset for ASA. I was aware that I needed to account for the 

dataset subsequently reducing in size after spam and retweets were eliminated. The initial result obtained 

comprised 3.5 million tweets. After filtering and cleaning (based on location and time-zone and stratified 

random sampling), the dataset was reduced to 795,500 Saudi tweets, which comprise the large AraCust 

dataset.  

For our own further experimentations, in order to reduce computational costs and time in constructing our 

working AraCust corpus, I chose a sub-sample of Saudi tweets randomly from the dataset to prevent bias 

[417]. The principal notion behind the size reduction of the corpus was that the annotation process is manual, 

time-consuming, and costly. Specifically, to avoid bias in the sample, I applied the following steps: identify 

the population, specify the sample frame, and choose the right sample technique. As stated, the population in 

this study is STC, Mobily and Zain customer tweets. The sample frame is a Saudi tweet that describes the 

 
12 Twitter Inc.  Twitter Inc. obtained Gnip, and it became the official tweets provider. 
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tweet author’s point of view regarding one of these companies. The probability sample technique is Simple 

Random Sample (SRS), applied stratified over the three sets (STC, Mobily, and Zain). The advantage of SRS 

is that all of the population has the same chance of being selected [418]. In addition, scholars have proven 

the efficiency of the random sampling technique for social media, because items that are repeated multiple 

times in the data set are likely to appear frequently in the sample as well [419], [420]. 

The sample size decision was based on a pattern-extraction experiment using Network Overview, Discovery, 

and Exploration Node XL [421]. Node XL is an add-in tool for Microsoft Excel used in social media analysis 

and visualization. Up to 2000 Arabic tweets were retrieved using the previously mentioned hashtags. Based 

on the findings of another study that 110 tweets per day are enough to capture customer sentiment [44], I 

needed 20,000 tweets over 6 months. In addition, I found that the services provided by Saudi 

telecommunication companies most frequently mentioned in the customers’ tweets were: Internet speed, 

signal coverage, after-sales service, call centres, and fibre communication.  

The size of our AraCust corpus of 20,000 Saudi tweets (Table 3.1) is in line with that of previous studies, 

which showed that datasets over 20,000 tweets are sufficient to produce state-of-the-art systems for Twitter 

Sentiment Analysis (SA) [166], [161].  

As the companies I targeted were from Saudi Arabia, I further filtered the tweets based on user location and 

time zone to identify Saudi tweets. Saudi Arabia ranks seventh in the world in the number of personal 

accounts on social media [49]. I found that many tweets do not have a location field set in the profile of the 

users who posted them. To resolve this issue, I used a list of city names, landmark names, city nicknames, 

etc., for Saudi Arabia, as additional labels for the user location of tweets, following [36]. Also following 

Mubarak and Darwish, I used a list from the GeoNames website,13 a geographical database that includes 8 

million place names for each country, which includes 25,253 place names for Saudi Arabia.  

Finally, in the context of our data collection process from Twitter, it is worth mentioning that ethical concerns 

of using social media data have stirred an ongoing controversy in research communities in terms of 

confidentiality and privacy. The availability of social media data is thought to potentially expose social media 

 
13 https://www.geonames.org/ 
 

https://www.geonames.org/
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users to risks. Although social media data is prominently public still, the emergence of profiling by business 

owners for business purposes has led to criticism and apprehension. Regarding our own study, on Twitter, 

users’ phone numbers and addresses are not made public, to provide some level of privacy. Additionally, in 

our current research, I further deleted any phone numbers or names that were included in the tweets 

themselves, for additional privacy. Finally, I collected only the tweet texts, time, and location, without 

collecting any other user-related information from them. 

 

 

 

 

 

 

Table 3.1: Companies and the total number of unique tweets from each in AraCust. 

3.3 Corpus Cleaning and Pre-Processing 

To avoid noise in the corpus, cleaning was performed on the dataset. One way of cleaning is removing spam, 

thus any tweet with a Uniform Resource Locator (URL) was excluded, as in [45] and [217], because most 

tweets in the dataset with a URL were news or spam. In addition, I excluded repetitive information, such as 

retweets, as recommended by [422] and [217]. Moreover, non-Arabic tweets were excluded from the data set 

by filtering for Arabic language (lang: AR), because translation damages the classifier efficiency. Pre-

processing was completed on the corpus using a Python script to remove unnecessary features in the tweets 

that might lower accuracy from the tweet corpus before applying classifiers, such as user mentions (@user), 

numbers, characters (such as + = ~ $) and stop words (such as “,”, “.”, “;”), as suggested by [391] and [45]. 

The tweet corpus was processed using the Natural Language Toolkit (NLTK) library in Python for 

normalization and tokenization. Although emoticons could arguably express sentiment, they were deleted, 

because prior research reported a classifier misunderstanding between the parentheses in the quote and in the 

emoticon [45]. In addition, importantly, as I dealt with Arabic tweets, [391] showed that retaining emoticons 

Company  Twitter Handle and hashtags # of Unique 

Tweets 

STC @STC_KSA, @STCcare, @STCLive 7,590 

Mobily 
@Mobily, @Mobily1100, 

@MobilyBusiness 
6460 

Zain @ZainKSA, @ZainHelpSA 5950 

Total  20,000 
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in classification decreased the performance of the classifier; they stated that this was due to the way Arabic 

sentences are written from right-to-left, which is reversed in emoticons. 

Next, the words in the tweets were tokenized, which means that sentences were segmented into words for 

easier analysis, as in [45] and [423]. Finally, the tweets were normalized. For Arab text, normalization entails 

the unification of certain types of Arabic letters of different shapes, as in [39], i.e.: 

• Replacing the Arabic letters “إ”, “أ”, and “آ” with bare alif “ا “.  

• Replacing the letter “ئ “,” ى” and “ىء” with bare ya “ي “.  

• Replacing the final “ة” with” ه “.  

• If a word starts with “ء”, replacing it with “ا “.  

• Replacing “ؤ” with “و “.  

As stemming algorithms do not perform well with Dialectal Arabic (DA) words [158], they were not applied. 

The data collection, filtering, cleaning, and pre-processing steps are illustrated in Figure 3.1.   The subset 

before and after the pre-processing is illustrated in Table 3.2. 

  

 

 

 

 

 

 

 

 

 

 

AraCust 

Twitter  

 

Search the hashtags that 
mentioned the companies. 

 

Search the companies’ 
official Twitter accounts. 

 

Filter retweets, non-Arabic 
tweets, URLs, user 

mentions, non-letters and 
stop words. 

Letter normalisation 
       Word tokenisation 

 

 
Figure 3.1: AraCust corpus collection, filtering, and pre-processing. 
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3.4 Exploratory Data Analysis 

Before doing the sentiment analysis task, it is important to analyse the corpus. This includes the data types 

that I will deal with in the classification and prediction experiments, as well as the features that originate 

from the nature of the corpus, which may affect the model’s performance. Our data analysis involved many 

features set analyses, from character-based to dictionary-based, and syntactic features [424]. This exploratory 

data analysis was accomplished using character-based, sentence-based, and word-based features, to allow for 

processing at a variety of levels. The exploratory data analysis was completed using the NLTK library via a 

Python script. 

From the exploratory data analysis, I observed first that there were more negative tweets than positive tweets 

for all three companies (see Table 3.3 and Figure 3.2). I interpret this result as being due to all Arab countries 

having suffered difficult economic circumstances in the past few years; this result is in line with the findings 

by [425] and [268].  

 

 

 

 

 

 

Table 3.3: Companies and the total number of positive and negative tweets. 

 

 

 

 

Tweet in Arabic Label Company 
Tweet in 

English 

Tweet After 

pre-processing 

  @So2019So @STCcare  غيري

 الشركه 
Negative STC 

Change the 

Company 
 غيري شركه

@alrakoo @mmshibani 

@GOclub @Mobily اشكرك 😊 
Positive 

Mobily 
Thank you اشكرك 

Company Negative Positive Total 

STC 5,065 2,525 7590 

Mobily 4530 1930 6460 

Zain 3972 1978 5,950 

Total 13,567 6433 20000 

Table 3.2: Subset of the corpus before and after pre-processing. 
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Figure 3.2: Distribution of Negative and Positive Sentiment. 

Next, I analysed the differences between the tweet length distribution across the sentiment to determine 

whether there was some potential correlation there and because prior research used the tweet-length feature 

as input to a machine learning classifier in SA research [185], [198] (Figure 3.3). I observed that tweets tend 

to be longer when customers express a negative sentiment. In addition, interestingly, I found that STC 

customers had longer tweets overall than other companies’ customers (Figure 3.4). These results guided us 

to use the All-Tweet Length feature in the classification task to estimate the impact of tweet length on the 

classifier’s performance. 

13,567

6433

Distribution of Sentiments 

Negative Positive
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Figure 3.3: Tweet length distribution across sentiment. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Tweet length distribution across companies. 

 

The ten most frequent words in the corpus and their number of appearances in the corpus are given in Table 

3.4. It appears from the table that there is a repeated use of the word “God,” but just from this information I 

do not know whether it was repeated in a negative or positive way. In addition, there was just one positive 

A 

B 
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expression among these frequent words: “thank you” (which is one word in Arabic, Table 3.4). The highest 

frequency was, naturally, for the word “Internet,” which potentially indicates the importance of this service; 

but likewise, I cannot tell at this stage if the reason for having “internet” among the most frequent words is 

positive or negative. To better understand the way these words are used, I first studied the context of usage 

by using the “most frequent” bigram to provide a more comprehensive view of the data. 

 

 

 

 

 

 

Table 3.4: Most Frequent Words in the AraCust corpus. 

The most frequent bigram on the corpus, as shown in Figure 3.5, is “pray” (note that this is expressed as two 

words in Arabic); this is mainly used in a negative way, as explained below. Greetings are next in frequency, 

followed by “data sim card,” which I thought may to be due to a frequent problem source. I observed that 

internet service is described as slow, so most of the tweets that mentioned the internet are complaints, as 

shown below. Additionally, “customer service” is one of the most frequent bigrams in the corpus.  

Word in 

Arabic 

Frequency Word in English 

 Internet 1770 نت 

 God 1760 الله

 Hello 1363 سلام

 Swear God 1179 والله

 Private 1315 خاص 

 Pray 637 حسبي 

 Customers 599 عملاء

 Thank you 560 شكرا

 Problem 549 مشكلة

 Sim card 515 شريحة 
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Figure 3.5: Most Frequent Bigrams in the AraCust corpus. 

Next, I calculated the positive and negative rate for each word in the most frequent word chart to determine 

whether the word was used with a positive or negative sentiment. I calculated the positive rate pr(t) and 

negative rate nr(t) for the most frequent words (term t) in the corpus as follows (Table 3.5): 

𝑝𝑟(𝑡)  =   
𝑡𝑒𝑟𝑚_𝑓𝑟𝑒𝑞_𝑑𝑓[𝑡,′𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒′]

𝑡𝑒𝑟𝑚_𝑓𝑟𝑒𝑞_𝑑𝑓[𝑡]
    (3.1) 

𝑛𝑟(𝑡)  =   
𝑡𝑒𝑟𝑚_𝑓𝑟𝑒𝑞_𝑑𝑓[𝑡,′𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒′]

𝑡𝑒𝑟𝑚_𝑓𝑟𝑒𝑞_𝑑𝑓[𝑡]
    (3.2) 

Where term_freq_df [t, val]; val ; is the frequency of the word t as a word with 

valence (sentiment) val in the corpus: 

𝑡𝑒𝑟𝑚_𝑓𝑟𝑒𝑞_𝑑𝑓[𝑡, 𝑣𝑎𝑙] = ∑ bool1(tw, t, val)
𝑛

𝑡𝑤 ∈𝐶
  (3.3) 

Where tw is a tweet in corpus C; and bool1() is a Boolean function: 

𝑏𝑜𝑜𝑙1(𝑡𝑤, 𝑡, 𝑣𝑎𝑙) = {
1, 𝑣𝑎𝑙𝑒𝑛𝑐𝑒(𝑡𝑤, 𝑡) = 𝑣𝑎𝑙
0,  𝑟𝑒𝑠𝑡

  (3.4) 

With valence(tw,t) a function returning the sentiment of a word t in a tweet tw and term_freq_df [t] is the 

total frequency of the word t as both a positive and negative word in the corpus: 

𝑡𝑒𝑟𝑚_𝑓𝑟𝑒𝑞_𝑑𝑓[𝑡] = ∑ bool2(tw, t)
𝑛

𝑡𝑤 ∈𝐶
  (3.5) 
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Where bool2() is a Boolean function: 

𝑏𝑜𝑜𝑙2(𝑡𝑤, 𝑡) = {
1,  𝑡𝑡𝑤
0,  𝑡𝑡𝑤

  (3.6) 

I found that “internet” is used as a negative word more than a positive word, as mentioned before. In addition, 

possibly surprisingly, the word “God” is used in negative tweets more than in positive ones. The words 

“Hello”, “Swear to God”, “private”, “sim card” and “thank you” are used as positive words more than as 

negative words. This solved my initial misconception about ‘sim card’ being a problem. Moreover, I found 

the word ‘customers’ used as a negative word more than a positive word. 

These results led us to use the Has Prayer feature in the classification task; this feature allows us to evaluate 

whether the existence of a prayer in a tweet increases the classifier’s performance.  

 

 

 

 

 

 

 

 

Table 3.5: Most Frequent Words in the AraCust corpus and their sentiment probability. 

The feature set analysis is illustrated in Tables 3.6, 3.7and 3.8.  The character-based features (Table 3.6) 

reflect the existence of symbols, such as a minus sign, punctuation marks such as a comma, and numbers. 

The ratio was measured between the number of characters in a tweet and the number of characters overall. 

Word-based features (Table 3.7) include word standard deviation, which was calculated using the standard 

deviation of word length, word range (the difference between the longest and shortest word), characters per 

words calculated by the mean number of characters for each word, and vocabulary richness, which is the 

count of various words. 

Term 

in 

Arabic 

Term in 

English 
Negative Positive Total Pos_rate Neg_rate 

 Internet 975 795 1770 0.44 0.55 نت

 God 977 783 1760 0.44 0.55 الله

 Hello 765 895 1363 0.65 0.56 سلام 

 والله 
Swear 

God 
567 704 1179 0.59 0.48 

 Private 656 659 1315 0.50 0.49 خاص 

 Pray 425 212 637 0.33 0.66 حسبي 

 عملاء 
Customer

s 
413 186 599 0.31 0.68 

 Sim card 271 289 560 0.51 0.48 شريحه 

 Problem 279 270 549 0.49 0.50 مشكله 

 شكرا 
Thank 

you 
235 280 515 0.54 0.45 



101 | P a g e  
 

Sentence-based features include the mean number of words for each sentence, the standard deviation of 

sentence length, and range, the latter expressing the difference between the longest and shortest sentence 

(Table 3.8). 

  

 

Table 3.6: Character-based Features.          

            

 

 

 

Table 3.7: Word-based Features.                                             

 

 

 

 

Table 3.8: Sentence-based Features. 

 

3.5 Annotation 

Before the SA, I needed to train the classifier and create a readable version for the machine using corpus 

annotation. Annotation is the process of assigning interpretative information to a document collection for 

mining use [65]. Hinze et al., [426] defined the annotation as using a predefine classes to mark the text, 

sentence, or words. Salmeh et al. [268] defined annotation as providing the opinions and sentiments towards 

the target. There are different levels of corpus annotation. For example, sentiment annotation and syntactic 

Character-based 

Feature 

Ratio 

Punctuation marks   8.0 

Numbers   6.03 

Symbol 1.0 

Word-based 

Feature 

Ratio 

Word standard 

deviation 

6.51 

Word range 30 

Chars per word      5.22 

Vocabulary 

richness    

1.0 

Stop words   0.0 

Proper nouns       0.11 

Sentence-based 

Feature 

Ratio 

Words per 

sentence    

16.23 

Sentence standard 

deviation 

7.17 

Range    30 
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annotation is the process of parsing every sentence in the corpus and labelling it with its structure, grammar 

and part-of-speech (POS) – that is, labelling every word in the corpus with a corresponding appropriate POS 

label.  

Several approaches used to annotate the corpus, including the manual approach, which depends on human 

labour, and the automatic approach, which uses an annotation tool.  

Gold Standard Corpora (GSC) are an important requirement for the development of machine learning 

classifiers for natural language processing with efficiency; however, they are costly and time consuming and 

this is the reason for the rare existence of GSC, especially in Arabic [427]. 

The process of construction of the GSC is based on manual annotation by different experts who review the 

data individually, then the inter-annotator agreement is computed to confirm the quality [427]. 

For sentiment annotation, several studies used three-way classification labels (positive, negative and neutral) 

to express the sentiment orientation [428], [391], [171], [45]. The output from the classification is based on 

the labels used in the annotation.  

In this research, I classified the corpora using five-way classification and binary classification for two 

different experiments. I classified the text using a five-way sentiment classification (Strongly Positive, 

Positive, Neutral, Negative, Strongly Negative), which is consistent with the SemEval 2017 Task 4 for Arabic 

tweets [170]. In addition, I followed some of the studies that used SA to predict customer satisfaction or 

consumer sentiment, which rated the strength of the sentiment [69], [72]. This is compatible with user 

behaviours in rating sentiments towards a product or restaurant in the business world [429]. Each sentiment 

label is considered as a degree of customer satisfaction towards specific telecom services. The annotator 

should assign one label to represent the strongest emotion expressed per tweet, as noted in many studies [45], 

[171], [391], [170]. 

Mixed class refers to cases in which the text expresses both positive and negative sentiments simultaneously, 

making it difficult to decide which is the strongest sentiment expressed. In some SA studies, the mixed class 

is ignored, based on the assumption that it is uncommon to find texts conveying more than one sentiment 

[252]. Meanwhile, other studies considered a text with mixed sentiments as neutral sentiment [247]. 
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Therefore, to be as comprehensive as possible, I decided to follow the latter and considered the mixed class 

to be a neutral label in the five-way classification. While in binary classification, the mixed class considered 

as Indeterminate. 

 

In addition to the five-way classification mention above, I also, additionally, used a binary classification 

(Negative vs Positive)  in this research, to predict the customer satisfaction toward the telecom company, 

following many studies that used binary sentiment classification with Arabic text [430], [171], [45], [199]. 

Several prior studies proved that binary classification is more accurate than other classifications [171], [45]. 

Each sentiment label is considered as a degree of customer satisfaction: satisfied and unsatisfied.  

Sarcasm is defined as a form of speech in which a person says something positive while he/she really means 

something negative or vice versa [181]. Sarcasm is notoriously hard to detect; in English, there are only a 

few studies on sarcasm detection using supervised and semi-supervised learning approaches [181]. In ASA, 

no study was found that takes on sarcasm detection. Therefore, I asked the annotators, optionally, to also 

label tweets with sarcasm - according to the sentiment they conveyed. This allowed us to be able to use 

sarcasm as a feature for machine learning classifier, following [171]. I thus opened the way for the first 

sarcasm-detection Arabic NLP work. 

The corpora were divided into three corpora, based on the telecom company as the keyword (STC, Mobily, 

Zain).  The manual approach was adopted. To ensure the high quality of the manual annotation process, the 

annotation process needs clear guidelines to maintain consistency between annotators [45]. 

As recommended by [217], [45], three annotators were hired in this research to annotate the corpus. The 

annotators called A1, A2, and A3 were all Computer Science graduates, native speakers of the Saudi dialect 

and had experience in the annotation process. The reason for choosing three annotators instead of the usual, 

and simpler, two, was to increase the quality of the resulting corpus by alleviating conflicts that could arise 

from discrepancies between only two annotators. Hence, if two annotators disagreed with respect to one tweet 

classification, I took a vote between all three annotators. In addition, [431] stated that more than two 

annotators are more preferably.   
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To encourage a thorough examination of the tweets and high-quality results, the annotators were paid. 

Moreover, to ensure fair pay, in order to determine the annotators’ wages, I conducted a pilot study to 

calculate the average time they needed to annotate the tweets, as recommended by [45]. I provide the 

annotators with 110 tweets [44] and the annotation guideline, and then calculated the average time that they 

needed for annotation. They took 33 minutes, 20 minutes, and 35 minutes to annotate 110 tweets. Thus, the 

average time that they needed was 30 minutes to annotate 110 tweets. I then paid them to annotate the 20,000 

tweets over the course of 2.5 months, two hours per day for five workdays per week.  

Before I began the annotation process, the annotators were provided with annotation guidelines in both 

Arabic and English in one-hour session; some of the annotation guidelines are shown in Table 3.9. I stored 

the annotations in an Excel file. The annotation guidelines were also included in the Excel file in case the 

annotator needed to read it (Figure 3.6) and the full guideline in Appendix A.   

As suggested by [431], I build an easy interface in the Excel file which has the tweets, an automatic list box 

of labels to avoid typing errors, , the sentiment-bearing words, and the telecom services mentioned in the 

tweet, if found (Figure 3.7). 

To build a gold standard Arabic corpus, three rotations were used to annotate the corpus.  As mentioned 

before, I divided the corpora into three corpora based on the Telecom companies, STC, Mobily and Zain. 

They started the first rotation by annotating the STC corpus, then the Mobily corpus, followed by the Zain 

corpus. After the first rotation, I reviewed the annotators' choices and discussed with them before the new 

rotation started. After the second rotation, I calculated the similarity percentage between A1, and A2, A2 and 

A3 and A1 and A3 for three corpora. At the third rotation, I asked the annotators to revise the labels for the 

corpus that have low similarity percentage. After the three rotations, the author revised the three annotation 

labels done by the annotators and compared their choices, using vote to make decisions. I found that 83% of 

the tweets were labelled with the same label by the A1 and A3, 75% of the tweets were classified with the 

same labels by A2 and A3, while 74% of the tweets were classified by A1 and A2 with the same labels.  
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اه الخدمات  هذه الدراسة تهدف الى قياس رضاء المستخدمين اتج

في   العملاء  أراء  تحليل  طريق  عن  الاتصال  شركات  من  المقدمة 

 .تويتر وتصنيفها حسب الجدول الموضح بالاسفل

The aim of this study is to predict customer 

satisfaction with telecommunication company 

and telecommunication services by analysing 

customer tweets on Twitter according to the 

Table shown below. 

. المنظور: اختيار نوع الرأي ايجابي او سلبي يجب أن يكون كما  1

أراد كاتب التغريدة التعبير عنه لا كما يراه الواسم. أي من منظور 

 الكاتب وليس من منظور القاريء.

1. Standpoint: The Sentiment should be 

considered from the tweet author’s point of view, 

not the annotator point of view. 

. المحتوى: اختيار نوع الرأي يجب أن يكون كما يظهر في محتوى 2

 التغريدة وليس حسب معلومات سابقة للقاريء.

2. Background: The choosing of the sentiment 

label should be made according to the tweet 

content, not the annotator’s background. 

تحتوي  3 التغريده  تكون  عندما  )محايد(  اختيار  الرجاء  كلاهما:   .

وسلبيه ايجابيه  مختلطه  في  مشاعر  القوه  نفس  لها  المشاعر  وكلا 

 او كانت التغريدة بلا رأي. التغريدة

3. Neutral: A tweet that has mixed negative and 

positive sentiments and within which both polarity 

sentiments have the same strength, or, if the tweet 

does not include sentiment.  

 .If the service is unclear, please leave it empty .4 . عند عدم وضوح الخدمة التي يصفها المغرد تترك فارغه.4

عند عدم وجود كلمة مؤثره ولكن التغريدة تدل دلالة إيجابيه أو  .  5

 سلبية تترك الكلمة المؤثره فارغه. 

5. If the sentiment-bearing word is unclear, please 

leave it empty. 

 The polarity of a sentiment-bearing word is .6 : تصنيف الكلمة المؤثرة أما يكون أيجابي أو سلبي. 6

either positive or negative. 

   Table 3.9: Annotation Guidelines. 
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Figure 3.6: The included annotation guidelines in the Excel file. 

 

 

 

Figure 3.7: The annotation file. 

3.6 Annotation Challenges 

The annotators faced some challenges in the annotation process, similar to those experienced in prior research 

[432], such as:  

• Quoting and supplications: It is difficult to define the sentiment of a tweet author whose tweet 

includes a quote or supplication, and to determine whether the author agrees with the sentiment of 

the quoted author. The annotators chose the sentiment that was expressed in the quote or in the 
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supplication. Then, I checked the sentiment that they allocated. I did not ignore or remove the tweets 

with quotes or supplications, because the quotes/supplications were a form of expression of author 

sentiment. 

• Sarcasm: It is extremely hard to detect sarcasm in a tweet, because the explicit sentiment is different 

from the implicit sentiment. Nevertheless, as people are better at this than machines, annotation of 

tweets with this label is invaluable due to the difficulty of the sarcasm detection task [433]. For that, 

I asked them to label a tweet accordingly if they could detect sarcasm in it.  

• Defining the telecom services on the tweet: The annotators indicated that not all of the tweets 

mentioned telecom services. This may be associated with the nature of the tweet, which is short. For 

this reason, I asked annotators to define the telecom services if they found them in the tweet.  

• Absence of diacritics: this makes the pronunciation of a word difficult, because without diacritical 

marks, some words have two possible meanings. For these, I asked the annotators to interpret the 

word in the context of its sentence. 

3.7 Inter-annotator Agreement 

To identify the reliability of the annotation scheme, the inter-annotator agreement (IAA) was used. I used the 

similarity index as an early indicator of the annotators’ agreement. Fleiss’ Kappa [434] was used to measure 

the consistency for the 5-way classification (Strongly Positive, Positive, Neutral, Negative, Strongly 

Negative) and for the binary classification (Positive, Negative), because there were more than two annotators 

[434], [435].  

The kappa k Fleiss [435] is defined as:             

𝑘 = �̅�−𝑃𝑒̅̅ ̅̅

1−𝑝𝑒̅̅ ̅̅
  (3.1) 

 

Where Pe̅̅ ̅ expresses the normalization of the agreement that is attainable randomly and P ̅gives the 

normalized probability of agreement achieved by chance. If the annotators are in complete agreement, then 

k = 1. If there is no agreement among the annotators, then k < 0. The value I obtained was of 0.50 for 5-way 
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classification and 0.60 for binary classification for the three annotators, which is a moderate level based on 

the level of acceptance [1], Figure 3.8.  In addition, I checked for agreement two-by-two between A1, A2 

and A1, A3, and A2, A3 and I took the average A, Table 3.10.  

 

 

 

 

 

 

 

 

Table 3.10: Two-by-two agreement for binary classification between the three annotators. 

 

3.8 Evaluation the corpus 

To evaluate AraCust corpus, I applied a simple experiment using a supervised classifier to offer benchmark 

outcomes for forthcoming works. In addition, I applied the same supervised classifier on a publicly available 

Arabic dataset created from Twitter, ASTD [273], to compare the results of AraCuat and ASTD; the details 

of these datasets are provided in Table 3.11.   I used an SVM, which has been used in Arabic sentiment 

analysis in recent research with high accuracy  [235], [217], [236]. I used a binary classification (Positive, 

Negative) and eliminated tweets with different classification labels from the ASTD data set. I used a linear 

kernel with an SVM classifier, as some studies have stated that this is the best kernel for text classification 

[161], [39], [171].  The AraCust and ASTD corpora were split into a training set and test set; additionally, 

10-fold cross-validation was performed for both to obtain the best error estimate [436]. The findings are in 

the test set, Table 3.12.  For oversampling due to the dataset being biased towards negative tweets, I used the 

popular Synthetic Minority Over-Sampling Technique (SMOTE).  

Annotators k 

A1& A2 0.7 

A2 & A3 0.74 

A1 & A3 0.87 

Avg A 0.77 

Figure 3.8: The acceptance level of k  [1]. 
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I analysed the features term presence, term frequency (TF) (the frequency of each term within the document) 

and term frequency–inverse document frequency (TF–IDF) (the frequency of each word based on all records’ 

frequencies).  I found that term presence is the best feature to use with binary classification, in line with what 

was found by [198], which is that term presence is best feature for binary classification due to a lack of term 

repetition within a short text, such as a tweet. In addition, [437] stated that a term presence model can provide 

information such as term frequency for short texts. Pang [247] noted that using term presence leads to better 

performance than using term frequency. The results in Table 3.12 show that our dataset AraCust outperforms 

the ASTD result. Further research may also investigate using deep learning algorithms on our newly created 

GSC AraCust dataset. 

 

 

 

 

Table 3.11: Datasets used in the evaluation. 

 

 

 

 

Table 3.12: Evaluation results of the SVM on the datasets. 

3.8 Building the AraSTw Lexicon 

Liu [183] mentioned two techniques to build a lexicon: automatic and manual techniques. Automatic 

techniques include two approaches: dictionary-based approach and corpus-based approach [183]. The 

manual approach is time- and labour-consuming but is more accurate than the automatic approach [45].  The 

dictionary-based approach depends on using a dictionary to find the synonyms and antonyms of seeds of 

positive and negative words, recursively, until no word is found anymore [45]. Oppositely, the corpus-based 

approach depends on the corpus to generate the polarity words, then using different approaches to find the 

synonyms and antonyms of these words to generate the lexicon [254].  

Data Set Positive 

tweets 

Negative 

tweets 

Total 

Aracust 6433 13,567 20000 

ASTD 797 1,682 2,479 

Data 

Set 

Positive Negative Total 

Aracust Precision Recall F1 Precision Recall F1 F1-avg Accuracy 

93.0 76.0 83.6 91.0 98.0 94.4 89.0 91.0 

ASTD 79.0 65.0 71.3 76.0 96.0 84.4 77.9 85.0 
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I used the corpus-based approach to build my Arabic Sentiment Lexicon (AraSTw) from (AraCust) corpus, 

the golden annotated corpus created from Arabic tweets, due to the fact that all the data came from the 

AraCust corpus [254]. In the first phase, annotators who annotated the AraCust corpus were asked to extract 

the sentiment-bearing word from each tweet and classify the word as a positive or negative word. Then, I 

checked the words manually and gave a +1 score to positive words and -1 score to negative ones. In the 

second phase, I used two publicly available Arabic sentiment lexicons: AraSenTi [212], consisting of Saudi 

dialectical and MSA words and phrases and SauDiSenti [253], comprising also MSA and Saudi dialectical 

words and phrases. The third phase was filtering words and phrases that were positive or negative in the two 

lexicons, to keep only the Saudi dialectical words and phrases and eliminate the MSA ones. The proposed 

AraSTw lexicon statistics is shown in Table 3.13. Finally, I used the AraSTw lexicon with the classifier as a 

feature that will be further explained in Chapter 5 and used to predict the customer satisfaction. 

 

 

Table 3.13: AraSTw -lexicon statistics. 

 

3.9 Evaluating the AraSTw Lexicon 

To evaluate the AraSTw lexicon, I performed a simple lexicon-based approach, where I implemented an 

automatic count of negative and positive words, to define the sentiment of a tweet. I used one internal data 

set, which is the AraCust corpus, and one publicly available Arabic dataset that was created from Twitter, 

ASTD [273]; the details of these datasets are listed in Table 3-14. I have used a binary classification (positive, 

negative) and eliminated the neutral tweets from the data sets. Moreover, I compared the performance of 

AraSenTi [212] and my lexicon AraSTw on the same external dataset, Table 3.15 and 3.16. AraSenTi [212] 

created from Twitter, has Saudi dialectical words. 

 

 

 

Label Number of words 

Negative 28358 

Positive 6397 

Total      34,755 
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Table 3.14: Datasets used in the evaluation of the AraSTw and AraSenTi lexicons. 

 

 

Table 3.15: Evaluation results of the AraSTw lexicon on the datasets. 

Table 3.16: Evaluation results of the AraSenTi lexicon on the data sets. 

 

As shown from Tables 3.15 and 3.16 that AraSTw lexicon outperformed the results of AraSenTi lexicon 

[212] on the same data sets. AraSTw lexicon outperformed the AraSenti lexicon by 44.7% accuracy on 

ASTD. In addition, AraSTw outperformed the AraSenTi lexicon by 1.11% accuracy on AraCust.  

In order to find out whether there is a statistical significance between ‘the two lexicons AraSTw and 

AraSenTi’ on ‘ASTD corpus’, I conducted a correlation test analysis. I calculated p-value. It has been found 

that there is a statistical significance at the level of significance α = 0.05, where p-value = 0.0285. Therefore, 

the null hypothesis (H0) was rejected, and the alternative hypothesis (H1) was accepted: 

• H0: There is not statistically significant between the two lexicons. 

Data Set Positive Negative Total 

AraCust 6433 13,567 20000 

ASTD 797 1,682 2,479 

Data 

Set 

Positive Negative Total 

AraCust Precision Recall F1 Precision Recall F1 F1 avg Accuracy 

93.0 76.0 83.6 91.0 98.0 94.4 89.0 91.0 

ASTD 79.0 65.0 71.3 76.0 96.0 84.4 77.9 85.0 

Data Set Positive Negative Total 

AraCust Precision Recall F1 Precision Recall F1 F1 avg Accuracy 

0.90 0.60 0.72 90.0 0.98 0.94 0.83 90.0 

ASTD 42.83 84.69 56.89 86.49 46.43 60.42 58.65 58.73 
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• H1: There is a statistically significant between the two lexicons in favour to AraSTw lexicon.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.10 Summary 

This paper attempts to fill the gap found in the literature by proposing the largest GSC of Saudi tweets corpus 

created for ASA. It is freely available to the research community. This paper describes in detail the creation 

and pre-processing of AraCust. In addition, this paper has explained the annotation steps that adopting for 

annotating the AraCust.  It has described some features that were sourced from the nature of the corpus. The 

corpus consists of 20,000 Saudi tweets. A baseline experiment was applied on AraCust to offer benchmark 

results for forthcoming works. Additionally, A baseline experiment was applied on ASTD to comparing the 

results with AraCust. The results show that AraCust superior to ASTD. In addition, this chapter explained 

the details about the creation, annotation, and evaluation of the AraSTw lexicon. 

  

 

AraCust 

Corpus 

Chapter3 

 

Extract 

sentiment 

words 

Add  AraSTw lexicon 

Chapter3 

 

No 

Yes 

Yes 

ASTD Corpus 

(external) 

 

Evaluate on  

Evaluate on  

Figure 3.9: AraSTw lexicon creation and evaluation. 
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Chapter 4: Metrics to Measure Customer Satisfaction and Churn 

4.1 Introduction 

This chapter provides the answer to RQ1 concerning the traceable, measurable criteria for customers’ 

satisfaction with telecom companies in Saudi Arabia and how to combine them for visualisation. 

Furthermore, the chapter achieves RO1 by creating a framework of measurable weighted criteria for 

customers’ satisfaction with Saudi telecom companies and determining a means for companies to visualise 

this framework through real-time graphs. Furthermore, it contributes to achieving RO2- namely, proposing 

the recommendations to improve the services of Saudi telecom companies.  

I use a questionnaire to present an evaluation of metrics for measuring customer satisfaction and the possible 

variables that can differentiate between the behaviour of churners and non-churners. This assessment was 

based on a thorough review of metrics and variables used in previous works, which led to a preliminary 

exclusion of variables due to both the difficulty of obtaining them from telecom companies and privacy. 

Following this analysis, I created a taxonomy of metrics and then evaluated it based on questionnaires with 

telecom customers to test the metrics and the relationship between the collected variables and churning 

behaviour from a customer’s point of view. Finally, I conducted an informal interview with a Saudi telecom 

expert (a telecom business consultant) to show her the collected variables and question her about other 

variable suggestions from the company’s point of view. 

The metrics are used in Chapter 6 to visualise the customers’ satisfaction toward the services provided by the 

selected telecom companies and extract the recommendation. The collected characteristics and churn 

behaviours are used in Chapter 7, to predict the customer churn percentage.  

4.2 Related Research 

The business criteria used to develop the questionnaire were based on the telecom performance indicators 

specified by the Saudi Communications and Information Technology Commission [438 ] , data annotation 

process and other related research (Table 4.1).  Specifically, [439] found that price perceptions positively 

affect overall customer satisfaction, whereas [440] examined the behaviour of mobile telecommunication 
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customers in Hong Kong and found that transmission quality and network coverage are the most important 

factors driving customer satisfaction. Athanassopoulos and Iliakopoulos [441] considered positive 

recommendations to be the most useful loyalty indicator in European telecommunication companies and 

defined measures affecting customer satisfaction, such as the quality of voice transmission, access at peak 

time, speed of service and correct operation.  

Hung et al. [62] applied data mining techniques to predict customer churn in a Taiwanese wireless 

telecommunication company – namely, k-means segmentation with the decision tree method followed by a 

neural network approach. The company provided the researchers with data on 160,000 customers. 

Subsequently, they conducted interviews with telecom experts, such as telecom business consultants, 

marketing analysts and mobile sales personnel, to determine the symptoms preceding customer churn and 

found that the age of customers, the length of tenure and the number of overdue payments all affected the 

churn probability. Moreover, customers who did not often make phone calls to others within the same 

operator’s mobile network were found to be more likely to churn. The authors concluded that the performance 

of the neural network approach is better than that of the decision tree model.  

Furthermore, [112] analysed call records (basic factors such as call duration and churner properties) using 

data mining – spreading activation and threshold-based and decision tree-based clustering. The authors 

proved that social relationships play an influential role in affecting the churn within an operator’s network. 

Similar findings were obtained by Nguyen [442] using the data mining technique and machine learning 

algorithms (i.e. C4.5 decision tree, alternating decision tree, Naïve Bayes and logistic regression) to predict 

customer churn in mobile operators. Specifically, they used data belonging to five different categories: 

demographics, billing data, refill history, calling patterns and network features. Nguyen [442]  found that all 

classifiers achieved above 60% overall accuracy [443]. 
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Ref Study’s Aim(s) Customer Churn Variables 

[23] Providing a framework to telecom 

companies for identifying potential churn 

customers. 

Name, age, sex, income, number of minutes used, total duration of 

calls, number of messages, total duration of international calls and 

internet data usage (structure data). 

[444] Identifying a relational learner, determining 

the rank of the relational classifiers and 

investigating the collective inference 

methods to improve the performance of 

customer churn prediction models in 

telecommunications companies. 

Seven distinct call records (DCRs) from across the world. 

[20]  Empirically comparing two techniques for 

customer churn: decision tree and logistic 

regression models.  

Seventeen variables categorised into five groups: demographics 

(subscribers’ age, gender and postcode), cost, features/marketing, 

services usages and customer services. 

[93] Providing a model for churn prediction for 

telecommunication companies. 

Dataset attributes such as state, area code, phone, day minutes, 

night minutes and churn-status. 

[115] Building a predicative churn analysis model.  The data set included telecom customer complaint data and call 

quality data. 

[11] Predicting the churn behaviour of customers 

through various data mining techniques. 

Nominal and class attributes, such as phone number, international 

plan, voice mail plan, number of e-mail messages, total day 

minutes, total international calls, customer service calls and churn. 

[18] Analysing meaning of churn management in 

a mobile telecommunication industry and 

designing a new model for churn prediction. 

 

 

 

 

Name, age, gender, and area; contract data, including the time the 

user signed in the network; call data, including call time length, 

roam time length and call time length among the carriers; charging 

data, including ARPU and complaint information; and quantitative 

information to describe user level. 

 [116] Suggesting counter-propagation neural 

networks (CPNN), classification, regression 

trees (CART), J48 and fuzzyARTMAP to 

predict customer churn and non-churn in the 

telecommunication sector. 

Different attributes of datasets, including customer dissatisfaction, 

switching costs, service usage, customer-related variables and 

customer status. 

[117] Predicting customer churn with the help of 

the Apache PIG. 

Average call minutes per day, customers having a number of 

active plans being equal to zero, customers giving negative 

feedback, which customers had complained, which customers had 

zero incoming and outgoing calls in month 4, month 5, month 6 

(if these conditions all match, then these customers are likely to 

churn). 

[113] Examining whether sentiment/mood towards 

a product, as measured from a large-scale 

collection of tweets posted on twitter.com, is 

correlated or even predictive of churn-rate 

values. 

Detail status of each customer at a certain time and number of 

positive, negative and neutral sentiment (mood) tweets for each 

month. 

[24] Using customers’ social network 

information, along with their call log details, 

to predict the churn users.  

Users’ social network information (Pokec) to find the influential 

user and call log details to help improve the accuracy of prediction. 

[116] Addressing the causes of customer churn. Factors such as differences in prices, poor customer service, 

billing issues and failure of network coverage. 

 Table 4.1: Customer Churn Variables in Previous Studies. 
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4.3 Methodology 

To determine the possible variables that can differentiate between the behaviour of churners and non-

churners, first, I collected the variables from a literature review, as explained in the section above; the review 

is summarised in Table 4. 1. To be built as a block, research must relate to previous knowledge [445]. Webster 

& Waston [446] considered a well-constructed literature review as an effective tool to develop a firm a theory. 

Likewise, [445] considered a literature review as an excellent tool to provide evidence of research outcomes 

on a meta-level and expose the areas in which research is required. Hence, I used a literature review to collect 

churn variables and customer satisfaction metrics. 

After the literature review variable extraction, I provided the questionnaire to telecom customers. One of the 

most frequent tools of the quantitative method is a questionnaire [447] (section 3.1). Questionnaire is defined 

as a survey scheme that analyses a population sample to offer a numerical overview of population tendencies, 

sentiment or opinions [448]. The ability of a questionnaire to collect data from a large sample in a short time 

[449] with low costs [50], as well as its ability to represent the features of a community, were the primary 

reasons for using a questionnaire to measuring the importance of the customer satisfaction metrics from the 

customers’ points of view. Additionally, the questionnaire was used to collect the churn causes and test the 

relation between churn behaviour and churner characteristics. More details on its construction are in sub-

section 4.3.1.   

After the questionnaire, I conducted informal interviews with a Zain telecom expert (a telecom business 

consultant) to gather more in-depth information on churning variables.  

Based on the literature review, questionnaire and interview results, I developed the variables that could help 

us to predict customer churning. 

4.3.1 Questionnaire Construction  

The aims of the questionnaire were: 

Qo1: To define customer satisfaction metrics from the customers’ perspective. 

Qo2: To understand churning causes and churner characteristics and behaviours. 
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Qo3: To define the differences between the telecom companies. 

The questionnaire consisted of the following four parts, Appendix B: 

Part A: Demographics variables: it contained three questions that addressed the following personal and 

socio-demographic data of the customers: age, gender and (optional) Twitter account. This part responds to 

the following fourth research: to predict the potential ratio of customer churn by defining the demographic 

variables relating to customer churn behaviour used as input variables in our prediction model.  

Part B: Behaviours and characteristics of customers who change telecommunication providers: it 

contained seven questions to identify the characteristics and behaviours that correlate with customer churn 

behaviour. Furthermore, it included an open question about the reasons for changing telecommunication 

provider. This question provided insight for telecom companies about the reasons behind customer churn 

from the customers’ perspective, in line with the fourth research objective.  

Part C: Communication methods: it contained three questions about the method that customers used to 

make complaints, requests or suggestions. This section aimed to confirm that customers use the official 

Twitter accounts of the Saudi telecom companies for communication purposes. Furthermore, I sought to find 

any other communication methods used by customers of each telecommunication company. 

Part D: Customer satisfaction towards telecom companies: it contained nine statements that identified 

the various metrics of customer satisfaction towards the telecom companies (section 2). The customer 

chose one item that describes the importance of customer satisfaction from their perspective. This part D 

reflects the first research question, which is, ‘What are the traceable, measurable criteria for customers’ 

satisfaction with telecom companies in Saudi Arabia?’. 

4.3.2 Study Sample 

To answer the research questions and validate the study hypotheses, it was necessary to use a large sample; 

[447] recommended having a large number of responses. To avoid bias in the sample, I have:  

• Identified the population. 

• Specified the sample frame. 
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• Chosen the right sampling technique. 

The population in this study is STC, Mobily and Zain customers. The sample frame is an adult over 18 years 

old, using three Saudi telecom companies for post-paid voice service. The sample was calculated to ensure 

that it reflected the population features of the study. A sample size calculator15 was used to identify the 

optimal sample size, with a confidence level of 95% and a confidence interval (i.e., the margin of error) of 

5%, resulting in a sample size of 384. Afterwards, the probability sample technique simple random sample 

(SRS) was chosen. The advantage of SRS is that all of the population has the same chance of being selected 

[418]. Although some studies consider that a sample size of more than 200 responses is reasonable [450] , I 

gathered the largest number of responses possible. The total number of participants was 445. After filtering 

(i.e., removing incomplete answers), the remaining sample contained 437 answers. The responses and results 

were stored automatically when a participant finished the questionnaire. 

4.3.3 Data Collection 

There are different methods to distribute and collect questionnaires, such as online or by hand [451]. The 

questionnaire in this study was sent to participants through some social media platforms (Twitter and Whats 

app) and by e-mail to the staff and students at many Saudi universities to avoid bias in the outcomes and 

generalise results. Online distribution tools were used because they made it easier to administer the 

questionnaire to a wide range of participants and collect a large number of responses to ensure that the sample 

reflected the attributes of the community [452],[447]. Additionally, it saved time [453] and was cost-effective 

[454]. The questionnaire rule guide and the information section defining the research aims were included in 

the questionnaire cover letter.  

4.3.4 Pilot Study 

Before administering the whole sample, the questionnaire was piloted to confirm that the questions were 

clear and ensured validity and efficiency [451]. The pilot study was conducted with ten adults post-paid 

customers for different telecommunication companies in Saudi Arabia. Subsequently, to measure the validity 

and reliability of all the questionnaire elements, Cronbach’s alpha test was used through the Statistical 

 
15 https://www.surveysystem.com/sscalc.htm 

https://www.surveysystem.com/sscalc.htm
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Package for Social Science (SPSS). The rate of reliability and validity for the questionnaire in terms of 

Cronbach's alpha [455] was 0.853, which is greater than the 0.7 cut-off point [456] and indicates the degree 

of consistency and clarity of questions of the questionnaire. The questionnaire was ready for distribution after 

it was evaluated and modified based on feedback. 

4.3.5 Data Analysis 

The SPSS software tool is generally used for the analysis of social science surveys [451]. Hence, SPSS was 

used to conduct a correlation analysis to investigate the relationships between the variables in this study. 

The mean, frequencies, percentages and standard deviation are the most well-known statistical tools used in 

the descriptive approach [451],[457]. Additionally, in this study, the Kolmogorov-Smirnov normality test 

[458] was used to check the normality distribution of the sample. The aim was to choose appropriate 

correlation tests for both questions and respondents. The correlation analysis tests, chi-square and Kruskal-

Wallis tests were applied to find out whether there were significant relationships between the variables. 

Furthermore, a thematic text analysis [459] was used for the open-ended question. The answers required 

classification before they could be analysed, which was implemented through a text analysis tool that depends 

on thematic text analysis (i.e., analysis looking for the occurrence of themes) [460]. This analysis was based 

on a coding system [460]. There are two types of thematic text analysis applied to survey data: instrumental 

thematic text analysis (which entails using a computer program for coding and texts interpretation from the 

researcher’s point of view) and representational thematic text analysis (the coding is done by a human and 

uses text interpretation from the author’s point of view) [460]. In the latter, the process unfolds as follows: 

gaining a good understanding of the text and what is also between the lines; looking for the theme in each 

fragment; and locating the code for each fragment. It is time-consuming, but it helps to avoid idiomatic 

ambiguity in the identification of themes [460]. In this research, manual coding was performed whenever 

short answers to open-ended questions were available.  

A 5-point Likert-scale was used in the questionnaire to record the level of customer satisfaction concerning 

the services provided by a telecommunication company.  

The questionnaire used a scale ranging from 1 = not important to 5 = very important, as follows: 
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• Very important, weighted 5. 

• Important, weighted 4. 

• Neither important nor unimportant (Neutral), weighted 3. 

• Unimportant, weighted 2. 

• Very unimportant, weighted 1. 

The relative importance index (RII) [461] was used to rank the metrics based on their importance for each 

telecom company.  

I calculated the RII (m) based on the equation, where m is the metric:  

𝑅𝐼𝐼(𝑚) =  
∑ 𝑖∗W𝑖

𝐴∗𝑁
,  (4.1) 

where Wi is the weight of index i, with 𝑖 ∈  {1 𝑡𝑜 5}, A= 5 (the highest weight) and N is the total number of 

respondents for all weights. 

4.3.6 Ethical and Legal Issues 

Every project influences human interest differently through legal, ethical, social and professional impacts. 

This section addresses this Chapter’s work ethical and legal issues.  

Project ethics, as defined in [447], are ethical rules that are important to follow during a project for several 

reasons; some of them also affect a project’s validity and reliability. The rules defined by [447] concerning 

the data collection stage are that the researcher must obtain authorisation from the target sample, the privacy 

and confidence of participants’ information must be ensured, and questionnaire information must be saved 

and stored in a secure place. The process to avoid any legal and ethical issues was followed, and the ethical 

form was submitted to the Institutional Review Board (IRB) at Princess Nourah bint Abdulrahman University 

(PNU), Appendix C.  
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4.4 Data Analysis and Results 

4.4.1 Part A: Demographic Variables  

This section reports the results for each question in Part A of the questionnaire. 

As shown in Table 4.2, there were 320 female respondents (73.2%) and 117 male respondents (26.8%) in 

this study. The options allowed us to analyse respondents as mapped over six age groups, based on the report 

from the Saudi Communications and Information Technology Commission [416] that categorised the users 

of social media in Saudi Arabia in this way.  

As can be seen in Table 4.2, most respondents were between 35 and 44 years old (200 respondents, or 45.8%), 

while respondents over 65 years of age constituted the smallest portion of the sample (5 respondents, or 

1.1%). Out of 424 respondents, 298 (70.2%) used STC as their telecom company, 97 (22.9%) Mobily, 23 

(5.4%) Zain and six respondents (1.4%) other companies. As can be seen, the data is highly unbalanced; this 

is because the sample reflects a population – the one of Saudi Arabia – where STC customers are much more 

numerous than Mobily customers and there are more Mobily than Zain customers. 
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Table 4.2: Demographic Variables. 

 

4.4.2 Part B: Behaviours and Characteristics of Participants who Changed their 

Telecommunication Company.  

This section reports the results for each question in Part B of the questionnaire. 

Did you change your telecommunication company before? 

Over 437 respondents (311, or 71.2%) answered that they had never changed their telecommunication 

company, while the remaining respondents (126, or 28.8%) had done so (Figure 4.1). 

  

Age Group Frequency Percentage 

18–24 26 5.9 

25–34 112 25.6 

35–44 200 45.8 

45–54 66 15.1 

55–64 28 6.4 

65+ 5 1.1 

Total 437 100.0 

Gender   

Female 320 73.2 

Male 117 26.8 

Total 437 100.0 

Telecom Company   

Valid STC 298 70.2 

Mobily 97 22.9 

Zain 23 5.4 

Others 6 1.4 

Total 424 100 

Missing 13 3.0 

Total 437  
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What was the previous telecommunication company that you used as a cell phone network? 

To answer, respondents had to choose one telecom company. Table 4.3 shows that the Zain company received 

most of the responses (45 responses, or 35.7%). STC came second with 41 responses (32.5%), while Mobily 

was last with 38 (30.1%). 

           

 

 

 

 

 Table 4.3: Previous Telecom Company. 

 

 

 

 

 

 Frequency Percentage 

STC 41 32.5% 

Mobily 38 30.1% 

Zain 45 35.7% 

Others 2 1.5% 

Missing 311 71.1% 

Total 437 100.0 

 

Figure 4.1: Frequency of participants who had changed telecommunication companies 

before. 

 
  
 
 
 
 
 
 
 
 
 

311 
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311 
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For how long did you use the previous telecommunication company?  

In Figure 4.2, 50 respondents (39.6%) indicated that they used their previous telecom company for 1 to 5 

years, while 16 respondents (12.6%) used their previous telecom company for less than one year.  

 

 

 

 

 

 

 

 

 

Before you left the previous telecom company, did you have overdue payments?  

As shown in Figure 4.3, the number of respondents who had overdue payments before leaving their previous 

telecom company constituted the majority, with 58 responses, or 46%, The ‘no overdue payments’ 

respondents were the next in size (44). 
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Figure 4.2: Length of using the previous telecommunication company. 

Figure 4.3: Frequency of having overdue payments. 
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Has one of your family members ever used your previous telecommunication company as their cell 

phone network?  

The majority of respondents –100 responses – stated that one of their family members had used their previous 

telecommunication company, whereas 18 indicated that none had, and eight respondents did not know 

(Figure 4.4).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Why did you change your previous telecommunication company? 

To obtain deeper insight into customer satisfaction with telecommunication company services and reasons 

for customer churn, this question was posed as an open question. Each respondent had to fill in the blank. 

These types of questions provide investigators with more information and explanations than can be captured 

through closed questions.  

The thematic text analysis [459] was performed by a human coder through Excel, identifying nine themes 

that could be allocated to each response (Table 4.4). Each theme had its own code and represented one service 

provided by the telecom company. Responses without a stated reason (20 responses) were deleted. The 

responses were then divided among the three companies. 
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Figure 4.4: Frequency of having family members using the respondents’ previous 

telecommunication company. 
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Table 4.4: Themes and Codes for the Services Provided by Telecom Companies. 

As shown in Table 4.5, STC received the highest number of responses (164). Mobily received 132 responses, 

making it the second-highest company in terms of the number of received responses. Zain company received 

the least responses (61). 

 

 

 

 

Table 4.5: The frequency and percentage of the responses based on companies. 

 

 

 

 

 

Themes Code 

Quality of voice transmission QV 

Customer service CS 

Billing price BP 

Unreasonable fees when calling someone who uses 

another telecom company 

RF 

Network coverage NC 

Internet browsing speed BS 

Technical issues TI 

Unsuccessful calls SC 

Bad offers OF 

Telecom Company Frequency Percentage 

Valid STC 164 45.9 

Mobily 132 36.9 

Zain 61 17.08 

Total 357 100 

Missing 80 18.3 

Total 437  
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As shown in  

Figure 4.5, ‘high billing price’ was the most listed reason, mentioned in 18 responses, while ‘bad quality of 

voice transmission’, ‘unsuccessful calls’ and ‘technical issues’ received no responses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Frequency of the reasons behind Zain company’s customer churn. 

Figure 4.6: Frequency of the reasons behind Mobily company’s customer churn. 
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As demonstrated in Figure 4.6, ‘slow response of customer service’ was the first churn reason mentioned 

(28%, 37 responses), followed by ‘bad or lack of network coverage’ with (27%, 36 responses), ‘high billing 

price’ with 25 responses, whereas ‘bad quality of voice transmission’, ‘technical issues’ and ‘unreasonable 

fees when calling someone who uses another telecom company’ each received one response. 

 

 

 

 

 

 

 

 

 

 

 ‘High billing price’ was the most frequently mentioned reason (37%, 60 responses; Figure 4.7), followed by 

‘slow response of customer service’, allocated as the second reason (18%, 30 responses), whereas ‘bad 

quality of voice transmission’ and ‘unsuccessful calls’ received no responses. 

4.4.3 Part C: Communication Methods 

This section reports the results for each question in Part C of the questionnaire. 

Do you use the web or social media platforms to communicate with the telecommunication company 

(for example, for complaints or suggestions)? 

There were 262 respondents who did not use the web or social media to communicate with their telecom 

company, while 174 respondents did (Figure 4.8). 

 

 

Figure 4.7: Frequency of the reasons behind STC company’s customer churn. 
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What type of methods do you currently use to communicate with your telecom network (for example, 

for complaints, requests or suggestions)? 

As shown in Table 4.6, Twitter was the most frequently used communication tool, receiving the highest 

number of responses (175, 40%). ‘Using a telecommunication company’s application to communicate’ 

received 115 responses, whereas 59 respondents chose ‘telephone’. 

 

 

 

 

Table 4.6: Communication Methods. 

 

 

 

 Frequency Percentage 

Twitter 175 40.0% 

Telecom company application 115 26.3% 

Telecom company website 88 20.1% 

Telephone 59 13.5% 

Total 437 100% 

Figure 4.8: Frequency of using the web or social media platforms as communication methods to contact 

the telecommunication company. 
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Do you think that service quality has been enhanced because of your communication with your telecom 

company through Twitter (for example for complaints, requests or suggestions)? 

More than half of the respondents (245, 56.06%) thought that service quality was enhanced after using 

Twitter as a communication method with a telecom company (for example, for complaints, requests or 

suggestions), whereas 192 (43.94%) answered the opposite (Figure 4.9). 

 

 

 

 

 

 

 

 

4.4.4 Part D: Customer satisfaction metrics towards the telecom companies 

This section reports the results for each question in Part D of the questionnaire. Table 4.7 shows that 98 

participants considered ‘good network coverage’ standard to be a very important satisfaction metric, and 172 

marked it an important metric. Sixty judged it as an unimportant metric and only 28 as very unimportant. 

Thus, this metric was considered important by the majority (270 participants) rather than unimportant (88 

participants).  

Figure 4.9: Frequency of service quality after using Twitter as a communication method with a 

telecommunication company. 
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Table 4.7: Frequency Table for the ‘Good Network Coverage’ Metric. 

 
As shown in Table 4.8, the number of participants who considered ‘good quality of voice transmission’ as 

an important satisfaction metric was 196 – significantly more than the 35 participants who considered it as 

an unimportant metric.  

 

 

 

 

 

Table 4.8: Frequency Table for the ‘Good Quality of Voice Transmission’ Metric. 

 

Regarding the ‘quick response provided from customer service’ metric, Table 4.9 shows that 134 respondents 

chose it as an important satisfaction metric, and 88 chose it as a very important one. For 38 respondents, it 

was a very unimportant metric, and 81 selected it as an unimportant one. 

 Frequency Percentage 

Validity Very important 98 22.4 

Important 172 39.4 

Neutral 79 18.1 

Unimportant 60 13.7 

Very unimportant 28 6.4 

Total 437 100.0 

 Frequency Percentage 

Valid Very important 116 26.5 

Important 196 44.9 

Neutral 75 17.2 

Unimportant 35 8.0 

Very unimportant 15 3.4 

Total 437 100 
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Table 4.9: Frequency Table for the ‘Quick Response Provided from Customer Service’ Metric. 

 
Table 4.10 shows that the number of participants who decided that the ‘number of successful calls’ is an 

important metric was higher (106 important, 100 very important) than the number of those for whom this 

metric was unimportant (90 unimportant, 47 very unimportant). 

 

 

 

 

 

Table 4.10: Frequency Table for the ‘Number of Successful Calls’ Metric. 

 

As shown in Table 4.11, 43.0% of the participants counted ‘billing price’ as an important metric, whereas 

8.9% counted it as an unimportant metric.   

 Frequency Percentage 

Valid Very important 88 20.1 

Important 134 30.7 

Neutral 96 22.0 

Unimportant 81 18.5 

Very unimportant 38 8.7 

Total 437 100 

 Frequency Percentage 

Valid Very important 100 22.9 

Important 106 24.3 

Neutral 94 21.5 

Unimportant 90 20.6 

Very unimportant 47 10.8 

Total 437 100.0 
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Table 4.11: Frequency Table for the ‘Billing Price’ Metric. 

The percentage of participants that considered ‘high internet speed’ to be an important standard was 24.9%, 

while the percentage of participants that considered it to be unimportant was the lowest (16.2%; Table 4.12). 

 

 

 

 

 

Table 4.12: Frequency Table for the ‘High Internet Speed’ Metric. 

 

Table 4.13 shows that 108 participants selected the ‘reasonable fees when calling someone who uses another 

telecom company’ metric as an unimportant metric, whereas 91 participants selected it as an important metric. 

It was selected as very important by 89 participants – a higher number than those who set it as very 

unimportant (62 participants).  

 Frequency Percentage 

Valid Very important 129 29.5 

Important 188 43.0 

Neutral 67 15.3 

Unimportant 39 8.9 

Very unimportant 14 3.2 

Total 437 100.0 

 Frequency Percentage 

Valid Very important 75 17.2 

Important 109 24.9 

Neutral 90 20.6 

Unimportant 92 21.1 

Very unimportant 71 16.2 

Total 437 100 
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Table 4.13: Frequency Table for the ‘Reasonable Fees When Calling Someone Who Uses Another 

Telecom Company’ Metric. 

 

Table 4.14 shows that 110 participants selected ‘good offers’ as an unimportant metric, whereas 120 

participants selected it as an important one. It was selected as very important by 89 participants, which was 

more than the number of those who set it as very unimportant (55).  

 

 

 

 

Table 4.14: Frequency Table for the ‘Good Offers’ Metric. 

 

4.4.5 Cross Tables 

A correlation test analysis was used to find out whether the same variables drove any factors. A relationship 

was indicated between all factors where the degree of correlation coefficient above 50%. However, a lack of 

relationship indicated in this way does not mean that it does not exist at all [462]. 

• ‘Did you change your telecommunication company before?’ versus customer gender. 

In order to find out whether there is a relationship between the customer ‘changing the telecom company 

before’ and ‘customer gender’, I conducted a correlation test analysis. I used the chi-square test and p-value. 

 Frequency Percentage 

Valid Very important 89 20.4 

Important 91 20.8 

Neutral 87 19.9 

Unimportant 108 24.7 

Very unimportant 62 14.2 

Total 437 100 

 Frequency Percentage 

Valid Very important 89 20.4 

Important 120 27.5 

Neutral 63 14.4 

Unimportant 110 25.2 

Very unimportant 55 12.6 

Total 437 100 
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It has been found that there is a statistical significance at the level of significance α = 0.05, where p-value = 

0.007. As shown in Table 4.15, the percentage was higher for females who did not change telecom company 

(54%) and the males who did change telecom company (10.3%; Figure 4.10). Therefore, the null hypothesis 

(H0) was rejected, and the alternative hypothesis (H1) was accepted: 

• H0: There is no significant relationship between the two variables. 

• H1: There is a significant relationship between the two variables.  

 

 

 

 

 

 

Table 4.15: The Correlation Between the ‘Changing the Telecommunication Company’ and ‘Gender’ 

Variables. 

 

 

 

 

  

Gender 
Total 

Chi-

Square 

P-

Value 
Female Male 

Change Yes Coun

t 

81 45 126 

7.219 0.007 

% of  

Total 

18.5% 10.3% 28.8% 

No Coun

t 

239 72 311 

% of 

Total 

54.7% 16.5% 71.2% 

Total Coun

t 
320 117 437 

% of 

Total 
73.2% 26.8% 100.0% 
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• ‘Did you change your telecommunication company before?’ versus customer age. 

The values of chi-square = 79.93 and p-value = 0.042 were obtained through a review of the correlation 

matrix (Table 4.16). A statistical significance at the level of significance α = 0.05 was found, which indicates 

a correlation between the two variables ‘changing the customer telecom company and ‘customer age’. Thus, 

the null hypothesis (H0) is rejected, and the alternative hypothesis (H1) is accepted. As shown in Table 4.16, 

the 35–44 age group was the one in which the highest number of participants did not change their telecom 

company (31.8%), and the 65+ age group was the group with the lowest number of participants who had 

changed their telecom company (0%). 

  

  

 

Figure 4.10: The correlation between the ‘changing the telecommunication company’ 

and ‘gender’ variables. 
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Table 4.16: The Correlation Between the ‘Changing Telecommunication Company’ and ‘Age’ Variables. 

 

• ‘Did you have overdue payments?’ versus ‘What telecommunication company have you used 

for your mobile?’ 

By reviewing the correlation matrix (Table 4.17), values of chi-square = 2.195 and p-value = .901 were 

obtained, which indicates that a statistical significance at the level of significance α = 0.05 was not found, 

entailing the lack of correlation between ‘type of previous telecommunication company’ and ‘having overdue 

payments. Thus, the null hypothesis (H0) is accepted, and the alternative hypothesis (H1) is rejected. As 

shown in Table 4.17, the highest count (27) was found for Mobily customers who had overdue payments, 

whereas the lowest count (1) was found for Zain customers who did not remember. I ignored other responses 

because a limited number of participants chose the ‘others’ answer choice. 

  

 

Age Group 

Total 
Chi-

Square 

P-

Value 18- 24 25-34 35-44 45-54 55-64 65+ 

change Yes Count 10 37 61 10 8 0 126 9.937 0.042 

% of 

Total 
2.3% 8.5% 14.0% 2.3% 1.8% 0% 28.8% 

No Count 16 75 139 56 20 5 311 

% of 

Total 
3.7% 17.2% 31.8% 12.8% 4.6% 1.1% 71.1% 

Total Count 26 112 200 66 28 5 437 

% of 

Total 
5.9% 25.6% 45.8% 15.1% 6.4% 1.1% 100.0% 
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Table 4.17: The Correlation between ‘Changing the Telecommunication Company’ and the ‘Having 

Counts of Overdue Payments’. 

• ‘Length of using the previous telecom company’ versus ‘What telecommunication company 

have you used for your mobile services?’ 

The review of the correlation matrix (Table 4.18) gave values of the chi-square = 23.02 and p-value = 0.006; 

therefore, a statistical significance at the level of significance α = 0.05 was found, indicating a correlation 

between ‘type of previous telecommunication company’ and ‘length of using the previous telecom company’. 

Thus, the null hypothesis (H0) is rejected, and the alternative hypothesis (H1) is accepted. As shown in Table 

4.18, the highest percentage, 44.4%, was for Zain customers who had used the telecom company for 1 to 5 

years. However, the lowest percentage, 4.8%, was for STC customers who had used the telecom company 

for 5 to 10 years. I ignored ‘other’ responses because of the limited number of participants that chose the 

‘others’ answer choice. 

  

 
  

 

What telecommunication company 

have you used for your mobile services? Total 

Chi-

Square 
P-Value 

STC  Mobily Zain Others 

Before you left the previous 

telecommunication 

company of your mobile 

phone, did you have counts 

of overdue payments? 

Yes Count 23 27 21 1 72 2.195 .901       

  

No Count 12 8 23 1 44 

  

     

I don’t 

rememb

er 

Count 6 3 1 0 10     

. 

 

Total Count 41 38 45 2 126 

% 32.5% 30.1% 35.7% 1.5% 100.0%   
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 Table 4.18: The Correlation between the Changing the Telecommunication Company and the 

Length of Using the Previous Telecom Company Variables. 

 

• ‘Does one of your family members use your previous telecommunication company?’ versus 

‘What telecommunication company have you used for your mobile services?’ 

By reviewing the correlation matrix, shown in Table 4.19, values of chi-square = 10.356 and p-value = 0.110 

were obtained. No statistical significance at the level of significance α = 0.05 was found. This indicates that 

there is no correlation between the variables the ‘Type of the previous telecommunication company’ and the 

‘Having of customers’ family members using the previous telecommunication company of that customer’. 

Thus, the null hypothesis (H0) is accepted, and the alternative hypothesis (H1) is rejected. As shown in Table 

32, the highest percentage, 89.8%, was for Mobily customers having one of their family members currently 

using their previous telecommunication company, whereas the lowest percentage, 2.4%, was for STC 

customers who chose the ‘didn’t remember’ answer choice for whether they had one their family member 

using their previous telecommunication company. I ignored the ‘other’ responses because a limited number 

of participants chose that option. 

 

What telecommunication company 

have you used for your mobile 

services? Total 
Chi-

Square 

STC Mobily Zain Others 

How long did you use 

the previous 

telecommunication 

company? 

Less than one 

year 

Count 8 3 4 1 16 23.024 

%  19.5% 7.9% 8.9% 50% 12.7%  

1-5 years Count 14 16 20 0 50  

%  34.1% 42.1% 44.4% 

 

39.7% 

5-10 years Count 2 10 7 1 20 

%  4.8% 26.3% 15.6% 50% 15.9% 

More than 10 

years 

Count 17 9 14 0 40 

%  41.4% 23.7% 31.1% 

 

31.7% 

Total Count 41 38 45 2 126 

%  100.0% 100.0% 100.0% 100.0% 100.0%  
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 Table 4.19: The Correlation between ‘Type of Previous Telecommunication Company’ and Having 

of Customers’ Family Members Using the Previous Telecommunication Company of that Customer’. 

 
• ‘What telecommunication company have you used?’ versus ‘Communication method’. 

As shown in Table 4.20, 130 STC customers used Twitter as a communication method, 69 used the company 

application, 62 used the company website, and 37 the telephone. Ten Zain customers used Twitter as a 

communication method, whereas ‘using the telephone’ received the lowest count for Zain customers with 

two participants. Mobily customers used the company application as their primary communication method 

(39 participants), followed by Twitter as the second preferred communication method (25 participants). 

Furthermore, Table 4.20 shows that the values of the chi-square = 10.283 and the p-value = 0.036 were found 

as statistically significant at α = 0.05. Therefore, the null hypothesis is rejected, indicating a correlation 

between ‘telecom company type’ and ‘communication method [used to complain or make suggestions]’. The 

highest percentage of those who communicate with the company through Twitter were STC customers (130 

participants, 78.8%), whereas the lowest percentage of those who communicated with the company through 

telephone included Zain customers (two participants, 3.4%). 

 

 

 

 

What telecommunication company 

have you used for your mobile 

services? 
Total 

Chi-

Square 

test 

P-value 

STC  Mobily Zain Others 

Is one of your family 

members currently using 

your previous 

telecommunication 

company for their mobile 

phone? 

Yes Count 35 34 31 0 100   

%  85.4% 89.8% 68.9% 
 

79.4% 10.356 .110 

No Count 5 3 10 0 18 

%  12.2% 7.9% 22.2% 
 

14.3% 

I don’t 

know 

Count 1 1 4 2 8 

%  2.4% 2.6% 8.8% 100% 6.3% 

Total Count 41 38 45 2 126 
%  100.0% 100.0% 100.0% 100.0% 100.0%  
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 Table 4.20: The Correlation between ‘Type of Telecommunication Company’ and ‘Communication 

Method’. 

 

• ‘Do you think that service quality has been enhanced as a result of your communication with 

your telecom company on Twitter?’ versus ‘What telecommunication company have you used 

for your mobile?’ 

Table 4.21 shows that the values for chi-square = 5.606 and p-value = 0.132 were not statistically significant 

at α = 0.05. Therefore, the null hypothesis is accepted, which means that there is no correlation between 

‘telecom company type’ and ‘probability of enhancing service quality after using Twitter as a communication 

method’. The highest percentage, 59.1%, was for STC customers who thought that service quality was 

enhanced as a result of customer communication with the telecom company through social media. In contrast, 

the lowest percentage, 30.4%, was for Zain customers who thought that service quality was not enhanced 

because of it. 

 
Communication Method 

Total 
Chi-

Square 

P-

Valu

e 
Twitter Website Application 

Telephon

e 

Type of 

Telecom 

Compan

y 

STC Count 130 62 69 37 298 10.283 0.036 

% of 

Total 
78.8 77.5 60.5 62.7 71.3 

Mobily Count 25 13 39 20 97 

% of 

Total 
15.1 16.3 34.2 34.0 23.2 

Zain Count 10 5 6 2 23 

% of 

Total 
6.0 6.3 5.3 3.4 5.5 

Total Count 165 80 114 59 418 

% of 

Total 
100.0% 100.0% 100.0% 100.0% 100.0% 
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 Table 4.21: The Correlation between ‘Type of Telecommunication Company’ and ‘Probability of 

Enhancing Service Quality after Communication with a Telecom Company through Social Media’. 

 

• The importance of customer satisfaction metrics for each telecom company. 

Before deciding on the appropriate test to analyse the correlation between the importance of the customer 

satisfaction metric and telecom companies, I tested the normality of the sample per metric for each telecom 

company (STC, Mobily and Zain) using the Kolmogorov-Smirnov Normality test [458] to check the 

normality distribution of the sample (Table 4.22). The purpose of this was to choose the appropriate 

correlation test for the questions and respondents. I found that all metrics were significant and lesser than the 

significant level α = 0.05, which indicated that the sample was not normally distributed. Therefore, the non-

parametric Kruskal-Wallis test was applied to test more than three independent groups not normally 

distributed and find out whether there were significant relationships between the variables. 

Table 4.23 shows that the p-values for ‘reasonable fees when calling someone who uses another telecom 

company’ and ‘high internet speed’ are .025 and 0.03 – both < 0.05, indicating that these two metrics are 

significant. The ‘reasonable fees when calling someone who uses another telecom company’ metric was 

significant for Zain customers, as well as the ‘high internet speed’ metric. 

 

What telecommunication company 

have you used for your mobile 

services? 
Total 

Chi-

square 

test 

P-

Value 

STC  Mobily Zain Others 

Do you think that quality has 

been enhanced as a result of your 

communication with your 

Telecom Company in social 

media? 

Yes Count 176 48 16 2 242 5.606 .132 

%  59.1% 49.5% 69.6% 33.3% 57.1%  

No Count 122 49 7 4 182 

%  40.9% 50.5% 30.4% 66.7% 42.9% 

Total Count 298 97 23 6 424 

%  100.0% 100.0% 100.0

% 

100.0 100.0%  
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 Table 4.22: Normality Test. 

a. Lilliefors Significance Correction 
 

 Table 4.23: The Kruskal-Wallis Test for the relation between the Importance of Customer Satisfaction metrics and each Telecom company. 

Kolmogorov-

Smirnova 

Good Offers 

Good Quality of 

Voice 

Transmission 

Quick Response 

Provided by 

Customer Service 

Number of 

Successful Calls 
Billing Price Reasonable Fees 

Good Network 

Coverage 
Internet Speed 

STC Mobily Zain STC Mobily Zain STC Mobily Zain STC Mobily Zain STC Mobily Zain STC Mobily Zain STC Mobily Zain STC Mobily Zain 

df 277 91 .000 273 89 23 274 91 22 .270 90 .000 273 90 23 272 91 23 273 90 22 270 88 22 

Sig. .000 23 .034 .000 .000 .019 .000 .000 .000 .213 23 .008 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

Kruskal-

Wallis 

Test 

Good Offers 
Good Quality of 

Voice Transmission 

Quick Response 

Provided by 

Customer Service 

Number of 

Successful Calls 
Billing Price  Reasonable Fees  

Good Network 

Coverage 

High Internet 

Speed  

STC Mobily Zain STC Mobily Zain STC Mobily Zain STC Mobily Zain STC Mobily Zain STC Mobily Zain STC Mobily Zain STC Mobily Zain 

N 
298 97 23 298 97 23 298 97 23 298 97 23 298 97 23 298 97 23 298 97 23 298 97 23 

Mean 

Rank 198.8 187.9 193.8 198.8 180.0 173.6 190.3 197.7 224.0 200.0 171.9 199.5 188.3 199.7 230.3 185.9 202.5 246.7 186.7 208.2 207.7 179.0 210.7 243.9 

Chi-

Square .704 3.097 2.109 5.023 3.554 7.397 3.081 11.426 

Asymp 

Sig. .703 .213 .348 .081 .169 .025 .214 .003 
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The importance of customer satisfaction metrics versus ‘What telecommunication company have you 

used for your mobile services?’                     

 

 

 

 

 

 

 

 

As shown in Figure 4.11, the ‘good quality of voice transmission’ metric was the most important metric for 

140 STC customers, whereas customers allocated the ‘billing price’ metric the second-highest importance 

(134 customers). ‘Billing price’ was considered very important by 93 customers, whereas the ‘reasonable 

fees when calling another telecom company’ metric was considered very unimportant by 50 customers and 

unimportant by 70 customers. ‘High internet speed’ was considered very unimportant by 42 customers. 

 

 

 

 

 

0 50 100 150 200 250 300 350

Billing Price

Good Quality of Voice Transmission

Good Network Coverage

Number of Successful Calls

Quick Response Provided from Customer Service

Good Offers

 High Internet Speed

Reasonable Fees When Calling another telecom

Very Important Important Neutral Unimportant Very Unimportant

Figure 4.11: The importance of the metrics for STC customer satisfaction. 
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The highest response from Mobily customers (50 respondents) was for ‘billing price’ as an important metric 

(Figure 4.12), whereas the ‘reasonable fees when calling another telecom company’ metric received the 

lowest importance count (18 customers). The highest metric chosen as an unimportant metric was ‘good 

offers’ (23 respondents), whereas the lowest response, chosen by only seven Mobily customers, was for ‘good 

network coverage’ as an unimportant metric. 

With the most responses from Zain customers (12 respondents), ‘high internet speed’ was chosen as a very 

important metric (Figure 4.13), followed by ‘billing price’ as important for 11 participants. ‘Unimportant’ 

0 20 40 60 80 100 120

Quick Response Provided from Customer Service

Good Quality of Voice Transmission

Good Network Coverage

Billing Price

 High Internet Speed

Good Offers

Reasonable Fees When Calling another telecom

Number of Successful Calls

Very Important Important Neutral Unimportant Very Unimportant

Figure 4.12: The importance of the metrics for Mobily customer satisfaction. 
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was mostly attributed to ‘good offers’ (nine respondents), whereas ‘good quality of voice transmission’ 

received no responses as an unimportant metric.       

As shown in Table 4.24, the p-value of all standards was < 0.05, indicating a statistically significant relation 

between ‘type of telecom company’ and each other metric except for ‘network coverage’, where the p-value 

was .184 > 0.05, which means that there was no correlation between those two variables. Furthermore, the 

p-value of ‘quality of voice transmission’ was .281 > 0.05, implying no correlation between the two variables. 

Moreover, the p-value of ‘customer service’ was .931 > 0.05, entailing no correlation between the two 

variables, and the p-value of ‘number of successful calls’ was .112 > 0.05, leading to no correlation between 

the two variables. 

To rank the importance of the metrics for each telecom company from the customer’s point of view, I 

calculated the RIIs as mentioned before and then listed them in ascending order from 1 to 8. Table 4-25 

shows that the top three most important metrics for STC customers were ‘billing price’, ‘good quality of 

voice transmission’ and ‘good network coverage’, whereas the least important was ‘reasonable fees when 

calling another telecom company’.  

For Mobily customers, as shown in Table 4.26, the first three most important metrics were similar to those 

for STC customers for the second and third metrics: ‘quick response provided from customer service’, ‘good 

0 5 10 15 20 25

Number of Successful Calls

 High Internet Speed

Good Quality of Voice Transmission

Billing Price

Reasonable Fees When Calling another telecom

Good Network Coverage

Quick Response Provided from Customer Service

Good Offers

Very Important Important Neutral Unimportant Very Unimportant

Figure 4.13: The importance of the metrics for Zain customer satisfaction. 
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quality of voice transmission’ and ‘network coverage’. The least important metric was ‘number of successful 

calls'. As shown in Table 4.27, the first and second most important metrics for Zain were ‘number of  

 successful calls’ and ‘high internet speed’, whereas the least important was ‘good offers'.  

 

 

 

 

 

 

 

 

 

Table 4.24: Chi-Square Test for the Importance of Customer Satisfaction Metrics per each Telecom 

Company. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Metrics Pearson Chi-

Square 

Asymp. Sig. 

(2-sided) 

Network Coverage 11.324 .184 

Quality of Voice Transmission 9.778 .281 

Customer Service 3.055 .931 

Number of Successful Calls 13.001 .112 

Billing Price 17.806 .023 

Reasonable Fees when Calling 

another Telecom Company 

22.169 .005 

Good Offers 19.760 .011 

High Internet Speed 17.603 .024 
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Table 4.25: Ranking the Importance of Customer Satisfaction Standards for STC Telecom 

Company. 

 

 

 

 

 

 

Table 4.26: Ranking the Importance of Customer Satisfaction Standards for Mobily Telecom 

Company. 

 

Standard RII Rank 

Billing Price  0.789 1 

Good Quality of Voice Transmission 0.774 2 

Good Network Coverage 0.728 3 

Number of Successful Calls  0.672 4 

Quick Response Provided from Customer Service  0.659 5 

Good Offers  0.634 6 

High Internet Speed  0.602 7 

Reasonable Fees when Calling another Telecom Company 0.586 8 

Standard RII Rank 

Quick Response Provided from Customer Service  0.748 1 

Good Quality of Voice Transmission 0.726 2 

Good Network Coverage 0.709 3 

Billing Price  0.693 4 

High Internet Speed  0.687 5 

Good Offers  0.668 6 

Reasonable Fees when Calling another Telecom Company 0.656 7 

Number of Successful Calls  0.639 8 

Standard RII Rank 

Number of Successful Calls 0.791 1 

High Internet Speed  0.774 2 

Good Quality of Voice Transmission 0.739 3 

Billing Price  0.739 4 

Reasonable Fees when Calling another Telecom Company 0.739 4 

Good Network Coverage 0.730 6 

Quick Response Provided from Customer Service  0.704 7 

Good Offers  0.687 8 

Table 4.27: Ranking the Importance of Customer Satisfaction Standards for Zain 

Telecom Company. 
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4.5 Discussion 

This section discusses the results of our analysis of the responses provided by the participants. The results 

are then used to answer the research questions and indicate any correlation between the findings of previous 

studies and theories that were discussed earlier. 

4.5.1 Questionnaire objectives 

Qo1: To define customer satisfaction metrics from the customers’ perspective. 

As mentioned before, I defined customer satisfaction metrics using a report by the Saudi Communications 

and Information Technology Commission [438], related research and the tweet annotation process. Then, I 

evaluated the importance of these metrics using statistical analysis for the responses obtained by the 

questionnaires from the customers’ point of view. The metrics are ‘network coverage’, ‘quality of voice 

transmission’, ‘customer service’, ‘successful calls’, ‘billing price, ‘offers’, ‘reasonable fees when calling 

another telecom company’ and ‘internet speed’. I analysed the importance of each metric for each telecom 

company using RII, as shown in Figure 4.14.  

 

Figure 4.14: Taxonomy of the average importance of measurable metrics of customer satisfaction 

and their relationship with customer churn. 

As shown in Figure 4.14, ‘quality of voice transmission’ is the most important metric from customers’ point 

of view, followed by ‘billing price’. Woo & Fock [440] argues that voice transmission quality is the most 
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important factor in driving customer satisfaction. However, interestingly, customers did not select ‘quality 

of voice transmission’ as a reason for churning, which proves that despite the quality of voice transmission 

is important for customer satisfaction, it is not a reason for churning.  

Nevertheless, I found ‘billing price’ to be the second metric important from customers’ point of views, which 

is compatible with findings from previous literature. Specifically, [439] found that price perceptions 

positively affect overall customer satisfaction. Furthermore, customers allocated this metric as the first reason 

for churning in the open question, which is in line with what found by [463] in his qualitative analysis – 

namely, that a high billing price is a crucial churn factor. 

Network coverage resulted in being the third-important metric for customer satisfaction. This metric is 

considered a key reason explaining churn via the open question in my questionnaire. In the literature [464] it 

was also shown that a poor network is one of the key reasons for churning. The importance of network 

coverage was highlighted by internet users who faced poor network coverage, as also found by [106]. Both 

network coverage and the quality of voice transmission depended on the number of network towers 

geographically spread in Saudi Arabia for each telecom provider.  

‘Customer service’ was found to come after ‘network coverage’ for customer satisfaction, and it was assessed 

as a crucial reason for churning following the open question. This is compatible with found by [464] – 

namely, that customer service is more impactful than the rest of the factors.  

The least important metrics for customer satisfaction were ‘reasonable fees when calling another telecom 

company’ and ‘good offers’, which are related because telecom companies in Saudi Arabia offer a lot of 

packages at a reasonable price, especially when calling another telecom company in Saudi Arabia.  

Regarding the different companies, the questionnaire analysis found that ‘‘billing price’ was the most 

important metric of customer satisfaction for STC customers. This result corresponds with that from the 

questionnaire participants in an open question for customer churn reasons, where high billing was the most 

frequently mentioned one (37%, 60 responses). 



151 | P a g e  
 

For Mobily, ‘quick response provided from customer service’ was the most important metric. The CITC 

report16 regarding Mobily service quality indicators shows that 80% is the acceptable percentage for the 

customer service team to answer a customer call within 60 seconds. The company scored 74.67%, which 

indicates this service’s failure rate. This result corresponds with the answers to the questionnaire’s open 

question about customer churn reason, whereby ‘slow response of customer service’ was the most frequently 

mentioned churn reason (28.0%, 37 responses). 

Zain customers ranked ‘number of successful calls’ first, followed by ‘quality of voice transmission’, likely 

due to the limited number of Zain network towers in Saudi Arabia, which affects the successful completion 

of calls. This problem was recently brought to the attention of Zain. An attempt was made to solve it by 

asking IHS Holding Limited – the largest cell tower operator in the European, Middle Eastern and African 

markets – to sell and lease back their towers to Zain17. This agreement should ‘raise the efficiency of mobile 

networks’. 

The least important metrics for STC customers were ‘high internet speed’, followed by ‘reasonable fees when 

calling another telecom company. This is probably due to the fact that STC led the implementation of 3G 

and 4G technologies in Saudi Arabia and recently added 5G18. Furthermore, STC offers free calling to other 

telecom companies.  

‘Reasonable fees when calling another telecom company’ was the least important metric for Mobily 

customers due to the availability of multi-offers provided by Mobily that include unlimited minutes to call 

the networks of other telecom companies in Saudi Arabia19. This result corresponds with the answer of the 

questionnaire participants to the open question about customer churn reasons, where ‘unreasonable fees when 

calling someone who uses another telecom company’ received one response, followed by ‘number of 

successful calls’ as the last metric in term of importance. This is explained by the fact that spread of Mobily 

cell towers in large areas in Saudi Arabia, as the CITC report found, entails that the geographical spread for 

 
16 https://www.citc.gov.sa/ar/indicators 
17 https://www.sa.zain.com/ 
18 https://www.stc.com.sa/ 
19 https://www.mobily.com.sa 

https://www.citc.gov.sa/ar/indicators/DocLib1/Mobily%20QoS%202017%20AR.pdf
https://www.sa.zain.com/autoforms/portal/site/zainsa/news/news271?AF_language=en
https://www.stc.com.sa/
https://www.mobily.com.sa/portalu/wps/portal/personal/products/voice-plans/postpaid-plans/mobily-postpaid-packages/!ut/p/a1/5ZZdd5pAEIb_SnvhZdxRZF16R63BoMZjpDZy4-HLBeWbFZRfn41p2h6t0DTchRvO7vvynNmZYc4iHT0iPTRyjxrMi0LDf17reC2AjEe9BYwJ_oZhDsuvRFPHMACRG1bcQCRlMOI7KkhLgLulMtBmw35HU6Du-x9IR7oVspi5aBVHKTP8T5nHnBaUeA1XHgNOMpGo5W53sAUpB_ByarHI6XcYrZQh6VbKQaVMo36VTAxcJVuJeJIFMLDby2BHsI0hgdwkjLstnhCejtjybLSih-xYBPSm3Cexa9EoCsO4dOydG9u7ZGPbfkidl_RdL4Ay61cbYNqtMcxrDKcanwzXqiVDNYHIuNowmItIRTr1I_PUkis5NAVCkZ46Gyd10vY-5dsuY3H2pcVrXxRFO4hMzz-2rShoZ0YLXjprz7U4e13xt5NmP9v8gulGGUOPFyi04g3f_x3pbDh5PuH93VSa3AqgCGhxWUK7dPLAp4f9saTxPrOKYsert6HUtJxz4NnRMX4v8CxC0m0aCO8GjsZ8QoyF5ZD0brugif8J_DVmFCINYC4L2kydLHisb8-hWtePvGO8bZLoMp9eUcicA2-WjzC-zlN9NtGVzt9SXTnCaoBCw0DSaxrY9JFn0DSw2zRQfDNQ_YeLxIf8oeruA3HwPSACfhg-DDdTJppinJfaJgjW9_c3hklAEP38z9WrPM3kz0-w2Dmt/dl5/d5/L2dBISEvZ0FBIS9nQSEh/
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radio coverage for Mobily is 99.4%20. In support of this result, the report issued from CITC about Mobily 

telecom service quality indicators denotes that the acceptable average for unsuccessful calls is < 2%, and the 

average of unsuccessful calls in Mobily company is 0.8%21. This result implies that the number of 

unsuccessful calls is not an issue for Mobily customers.  

For Zain customers, ‘good offers’ was the least important standard because Zain company has different offers 

with different prices, from high to low. 

Qo2: To understand churning causes and churner characteristics and behaviours. 

As shown in Figure 4.14, the factors that related to churning behaviour in this study are ‘length of use’, 

‘gender’, ‘age’, ‘having one family members using a customer previous telecommunication company’, and 

‘having overdue payments'. This result is consistent with what found by [62] – namely, that both customers’ 

age and tenure length affect churn probability.  

The age and gender are key factors related to churning, as previous authors argue ([101], [114], [20], [115], 

[18], [116], [23], [62], [91],[116], [132], [94]). In the present study, the highest number of participants (14%) 

who had changed their telecommunication company belonged to the 35–44 age group, whereas the group 

with the lowest number of participants who had changed their telecom company (0%) was the 65 and over 

age group. This result is consistent with what found by [91], namely that young people below the age of 45 

are more likely to churn. Furthermore, [106] found that customer age is the seventh most-important churn 

indicator and confirmed that young people are more likely to churn. This can be explained by the fact that 

young people tend to choose the most recent technology and the most up-to-date options when compared to 

customers of other ages. With gender, this study confirmed more females (54%) than males had not changed 

telecom company, whereas more males (10,3%) than males had done so.  

Nevertheless, as the present study demonstrated, having a family member in the same telecom company did 

not have a relation with the customer churning behaviour, with 100 responses mentioning having one of their 

family members to still be using their previous telecommunication company. Which may be due to those 

 
20 https://www.citc.gov.sa/ar/indicators 
21 https://www.citc.gov.sa/ar/indicators 

https://www.citc.gov.sa/ar/indicators/DocLib1/Mobily%20QoS%202017%20AR.pdf
https://www.citc.gov.sa/ar/indicators/DocLib1/Mobily%20QoS%202017%20AR.pdf
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offers provided by telecom companies in Saudi Arabia that make calling different operators cheap or free. 

This result was the opposite of what found by [62],[24]. Hung et al. [62] confirmed that customers who did 

not often make phone calls to others within the same operator’s mobile network were more likely to churn.  

Regarding the length of use, I demonstrated that the highest percentage of those who left their previous 

telecom company was in the 1-5 years group (39.6%). Other studies used contract length as a churn 

predictor [20], [465], [94],[466], [62]. Balasubramanian and Selvarani [94] and [62] concluded that a 

customer with contract length between 25-30 months are more likely to churn.  

Many studies associated ‘contract length’ and ‘overdue bill’ as potential churn predictors. Balasubramanian 

and Selvarani [94] found that a customer with a contract length between 25–30 months and with less than 

four overdue payments are less likely to churn. Furthermore, [62] concluded that churning is less likely for a 

customer with a contract length between 25–30 months and with less than four overdue payments within six 

months. In this study, I found that most respondents had overdue payments before leaving their previous 

telecom company (58 customers, or 46%). 

Qo3: To define the differences between the telecom companies. 

Regarding the correlation between ‘type of previous telecommunication company’ and ‘having overdue 

payments’, the results showed that there is no correlation between the two variables. Most customers with 

overdue payments before leaving a telecom company were from Mobility (27), whereas 23 were from STC 

and 21 from Zain. Hence, having outstanding payments is an early indicator of churning. Accordingly, 

previous literature [116] considers unpaid balances as a churning indicator.  

However, I proved that there is a correlation between ‘type of previous telecommunication company’ and 

‘length of using the previous telecom company’; 41.4% STC customers who left it had used it for more than 

10 years. Regarding Mobily customers, 42.1% of those who left it had used it for 1–5 years. Among Zain 

customers, 44,4% among those who left it had used it for 1–5 years. Customers’ longer use of STC is due to 

the dominance of the STC company in the Saudi market for a long time, until the other competitors entered 

it, which suddenly gave customers more choice. 
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Concerning the relation between ‘type of previous telecommunication company’ and ‘having customer’s 

family member using the previous telecommunication company’, the results proved that there is no 

correlation. There are 85.4% of the STC customers who had family members who used [the] customers’ 

previous telecommunication company. The same applies to Mobily and Zain customers, with 90.8% and 

68.9% of them, respectively, having one of their family members using their previous telecommunication 

company. These results explain the reason mentioned earlier.  

As regards the correlation between ‘telecom company type’ and ‘communication method [used to complain 

or make suggestions]’, Table 4.20 show that there is a correlation between the two variables. 130 STC 

customers used Twitter as a communication method, 69 the company application, 62 the company website, 

and 37 the telephone. These results reflect the Saudi society as a whole, in the way it is using communication 

methods, as well as it reflects the impact of the internet and social media on Saudi lives. STC realised the 

impact on Saudi people of social media. In particular, Twitter supports different accounts that have been 

created to care for customers and specific businesses, some of these accounts, are @stccare_ksa which 

oriented for customer care 24 hours, @InspireU_STC, @dawristc, @stclive, @specialized_stc, @stc_ksa, 

@stcpay_ksa, @Qulitynet_q8, and @stc. Similarly, STC provided many applications specific to caring for 

customers, focussed on specific tasks, such as STC Pay and My Stc.  

 

 

 

 

 

 

 Figure 4.15: Communication methods in STC and their proportions. 

However, the situation with Mobily customers is the opposite of that of STC customers, As shown in Figure 

4.16, most of them used the company application as their primary communication method (39 participants), 

followed by Twitter as their second preferred communication method (25 participants). Mobily customers 

Twitter Website Application Telephone
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preferred the company applications, as the first communication method and Twitter as the second 

communication method. This is probably due to the fact that Mobility provides many applications to serve 

customers, whereas they have only one Twitter account that does not provide customer care 24 hours. 

Furthermore, as I explained before in Table 4-26, the main metric for Mobily customer satisfaction is 

customer service, which is the first reason for churning, as resulted from the open question. 

 

 

 

 

 

 

 

 Figure 4.16: Communication methods in Mobility and their proportions. 

Zain customers used Twitter as their primary communication method because the company provides one 

Twitter account for customer care for 24 hours. In contrast, ‘using the telephone’ received the lowest count 

for Zain customers with two participants, as can be seen in Figure 4.17. 

Twitter Website Application Telephone
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Figure 4.17: Communication methods in STC and their proportions. 

Regarding the correlation between ‘telecom company type’ and ‘probability of enhancing service quality 

after using Twitter as a communication method’, the results denoted that there is no correlation between these 

two variables. The highest percentage, 59.1%, was for STC customers who thought that service quality was 

enhanced as a result of communicating with the telecom company through Twitter, which confirmed what I 

found out about Twitter being the first communication method used by STC customers. As regards Mobility 

customers, 50.5% of them found that using Twitter did not enhance service quality, which is compatible with 

what I mentioned early. In contrast, 69.6% of Zain customers remarked that service quality was enhanced by 

the opportunity for customer communication with the telecom company through Twitter. 

4.6 Limitations 

With 298 STC customers, 97 Mobily customers and 23 Zain customers, the collected data is 

unbalanced. The sample should reflect the relative population, in this study, STC customers in 

Saudi Arabia are more than Mobily customers, and Mobily customers more than Zain customers. 

4.7 Summary 

This chapter illustrates the creation of a metrics suite to assess customer satisfaction. The suite’s 

implementation started with a literature review on metrics and data gathering from the Saudi 

Communications and Information Technology Commission [438], followed by a tweet annotation process. 

Twitter Website Application Telephone
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The resulting metrics were then analysed using a questionnaire to investigate churn causes, characteristics 

and behaviours.  

These metrics will be used in Chapter 6 to predict customer satisfaction percentage towards the services 

provided by the Saudi telecom companies and suggest recommendations for them. The collected churn 

characteristics and behaviours will be used in Chapter 7 to predict customer churn percentage. Thus, this 

chapter answers RQ1 – ‘What are the traceable, measurable criteria for customer satisfaction with telecom 

companies in Saudi Arabia?’  Furthermore, it contributes to achieving RO2 – To propose recommendations 

to improve the services of Saudi telecom companies.  

This chapter’s results can potentially provide insight for decision-makers in telecom companies in Saudi 

Arabia to enhance their services. Furthermore, telecom companies may be able to avoid customer churn by 

focusing on what has been found in this study regarding customer churn reasons. 
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Chapter 5: Binary Classification Experiments 

5.1 Introduction 

 Customer satisfaction is closely related to customer churn [11, 13, 14]. Twitter mining can be used as a tool 

to evaluate customer satisfaction. The objective of this chapter is to use Twitter mining to predict Saudi 

telecom customer satisfaction. This chapter answers the RQ3 and achieves the RO3: to identify, based on 

Twitter mining, Saudi telecom companies’ customers’ satisfaction.  I thus compare, vary and enhance several 

baseline and cutting-edge approaches. Starting with machine learning algorithms, with best-in-class SVM, 

which were used both as a baseline and enhanced with Twitter features. I used the statistical evaluation of 

the feature selection method. Contrary to the initial expectations in this study, although there are a significant 

number of prayers in the Arabic tweet corpus, the Has-Prayer feature had to be removed from the feature 

set, possibly due to both positive and negative tweets that use prayers, often including the word ‘God’. 

Additionally, several cutting-edge techniques, i.e., two deep learning models, LSTM and GRU, with different 

embeddings and settings and three transformer networks, AraBERT, hULMonA and RoBERTa models were 

compared. The result is a new model for Arabic Sentiment Analysis in the telecommunication field. The 

proposed model combining the AraBERT model and Bi-GRU was demonstrated to predict customer 

satisfaction based on tweets successfully. The results showed that the new model is highly accurate when 

compared to other models. The results were triangulated with the actual result for validation. The result will 

be used as an input variable on the churn prediction model (Chapter 7). 

5.2 Feature Engineering 
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5.2.1 Feature selection 

Valuable feature engineering is essential in the learning process to improve accuracy [45]. Feature 

engineering is the primary and most complicated task [313]. One of the crucial steps in feature engineering 

is an appropriate feature selection. Their utility in text analysis must be examined. Feature selection entails 

choosing the feature subset that achieves superior performance in a classification [467]. Feature selection 

aims to select the minimum number of features, reduce redundancy, and increase the classification label 

significance [467]. 

Several feature selection techniques were identified in the literature: best-subset selection, and forward and 

backwards stepwise selection [468]. Best-subset selection is used to search for all features and improve 

classification accuracy. Despite being considered as the best technique [45], it is an exacting and time-

consuming process, especially when there are many features. With the forward stepwise selection, model 

performance is observed after adding features one by one. A forward selection has its drawbacks, including 

the fact that each addition of a new variable may render one or more of the already-included variables non-

significant. Meanwhile, the backwards stepwise selection avoids this by beginning the classification with all 

possible features and then eliminating one feature after another while observing the effect of each feature in 

terms of classification performance. Therefore, in this study, I used backwards stepwise selection for the 

reasons mentioned before, following [45]. 

A feature set could include (but is not limited to) any of the following: syntactic, semantic, stylistic and genre-

specific features [425], [428]. As [249] mentioned, some constraints for selecting specific features are 

effortless to extract – they are uncomplicated but relevant and axiomatic for a classifier to train. 

In this study the feature extractions were based on ASA literature, that is, [45], [249], [425], [428] as follows.  

Term features are represented as a term-weight vector considering every term in a document as a vector. 

There are three available weighting schemes for term-weight vector: term frequency (TF), term presence and 

term frequency–inverse document frequency (TF-IDF) [469].  
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These features are common term features used in sentiment analysis [45]. Term presence checks the existence 

of a term in a document giving a term weight 1 for existence and 0 for non-existence. In contrast, the term 

frequency count of a term's frequency within a document and TF-IDF is the percentage of each word's 

frequency based on all records' frequencies. 

Syntactic features are the most common features used for SA [428]. They include n-gram features [152]. N-

grams are a series of the terms in a text. Unigram’s process one term at the time, while bigram two terms at 

the time, and trigram three terms. Many studies proved that n-gram features enhance the performance of a 

classifier [45], [203], [425], [184]. 

Semantic features include using a sentiment lexicon to classify the text.  This was used to annotate tweets 

based on positive and negative words corresponding to a sentiment lexicon. In this study, the manually built 

lexicon AraSTw has been used. Many studies proved that using a sentiment lexicon as a semantic feature 

enhances SA  [430], [425], [45]. I applied the AraSTw lexicon as four features: Has-positive word, Has-

negative word, Positive Word Count, Negative Word Count. Has-positive word and Has-negative word check 

the word in a tweet if it is positive/ negative in AraSTw lexicon. Positive Word Count and Negative Word 

Count define the number of positive words and negative words in a tweet.   

Morphological features have been proposed by previous ASA studies [199], [425]. Al-Twairesh [45], which 

experimented with using Part-Of-Speech (POS) tags as a feature, reported that it did not enhance 

classification, because of the lack of POS taggers for social media. Other morphological features used in 

ASA include aspect, gender, mood, person, state and voice. However, [425] proved that these features drop 

the classifier performance by 21%. Accordingly, I did not use the morphological features in our classification 

models. 

Language-style features are a feature set that represents the social media dialect.  

• Is-Sarcastic feature: this feature is assigned via manual corpus annotation process by annotators. 

In this study, I asked the annotators (Chapter 3) optionally to assign true or false for Is-Sarcastic 

for those tweets that they think are sarcastic, following [425]. 
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• Stylistic features: this feature set refers to the number of informal sentiment indicators on social 

media and some quantitative features, such as tweet-length. Refaee [425] used tweet-length 

features and found that this feature is beneficial to an Arabic SA. In addition, [428] stated that this 

feature set helps SA of Arabic forums, due to the language’s rich stylistic variation nature.  

Additionally, some features were selected, based on the nature of the corpus, as described below.  

Affective cues features demonstrate whether there are some signals in a text; these signals reflect the user's 

culture and express a sentiment. The motivation for using this feature set was finding a set of simple features 

that can correlate with the users' culture and, at the same time, can be utilised as a means of conveying 

sentiments. There were many examples of du'a' (supplication/prayer) in the AraCust corpus.  The most 

frequent bigrams in the AraCust corpus were a prayer, as I mentioned in Chapter 3, Table 5.1. Mourad and 

Darwish [430] found many Quranic verses in their corpus that expressed the writers' sentiment [425]. 

Therefore, the Has-Prayer feature is used to check whether a tweet has a supplication or not and the sentiment 

involved with that supplication following [425]. 

  

 

Table 5.1: An example of an affective cue feature in our corpus. 

 

The Tweet-topic feature evaluates the role of the SA topic. Abdul-Mageed et al. [199] reported that this 

feature is beneficial for ASA. They asked annotators to manually specify one of the topics that represent a 

sentence in Arabic news. In addition, [425] asked the annotators to choose one topic from the following: 

sports, economy, politics, social/religious, Internet and other. I also processed tweets, and due to the ASA 

recommendations, I adopted to use this feature. In this study, I asked the annotators to select from a set of 

predetermined topics (Saudi telecommunication services) discussed in Chapter 4, which are Successful Calls, 

Internet Speed, Quality of Voice Transmission, Billing Price, Reasonable Fees when Calling another 

Telecom Company, Network Coverage, Customer Service and Good Offers. In this section, I present the 

telecommunication company services that customers considered important, and that were identified in 

 حسبي الله  

Requesting Allah for 

a suffering 
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customer tweets to measure their customer satisfaction, following [89]. The summary of the feature sets used 

in this study are shown in Table 5.2 besides the term features. 

Overall, in this study, the feature extractions were based on ASA literature, that is, [45], [249], [425], [428]. 

 

 

 

 

 

 

Table 5.2: Summary of the feature sets used in this study. 

5.3 Model of Sentiment Classification 

There are many sentiment classifications levels, binary and multi-way sentiment classification, conducted 

through a rating scheme (i.e., a 4-star rating scheme) [470]. One of the most popular one is the binary 

classification of sentiments, into positive vs negative. In this study, I used binary classification of sentiments 

into positive vs negative. Each sentiment label is indicative of customer satisfaction, Satisfied vs. Unsatisfied. 

5.4 Performance Evaluation 

5.4.1 Evaluation Metrics 

To evaluate the performance of the model, I used four metrics suitable for binary classification F1, Accuracy 

(Ac) [471], Precision (Pr), and Recall (Rc). These metrics use the True Negative (TN), True Positive (TP), 

False Negative (FN) and False Positive (FP) [472] as follows: 

• TP: the number of correctly classified positive instances. 

• TN: the number of correctly classified negative instances. 

Feature Value 

N-gram series of the terms 

Has-Prayer True/false 

Is-Sarcastic True/false 

Tweet length Numeric 

Tweet-topic Nominal 

Has-Positive Word True/false 

Has-Negative Word True/false 

Positive Word Count Numeric 

Negative Word Count Numeric 
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• FN: the number of positive instances misclassified as negative instances. 

• FP: the number of negative instances misclassified as positive instances. 

The confusion matrix [473] is a tool used with binary classification; it compares the actual positive and 

negative and the predicted positive and negative. It uses TN, TP, FN and FP (Table 5.3). 

 

 

 

Table 5.3: Confusion matrix used in this study. 

 

The micro average is suitable for binary-classes, especially if the classes are imbalanced. It totals all classes' 

contribution to the average metric calculation [474] and it aggregates the precision and recall of the classes. 

Accuracy (Acc.) is defined as the ratio of correctly classified instances, calculated as follows: 

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁 +𝐹𝑁+𝐹𝑃
  (5.1) 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (5.2)           

 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (5.3)             

 

where F1 is the harmonic average among precision and recall, which is calculated as follows:  

2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (5.4) 

Here, I use the four metrics for each class. In addition, I use the average of F1 (F-avg) as an indicator 

for the performance of the model overall, which is considered a better measure than accuracy, especially 

with imbalanced data [475], [476]. For a comprehensive view upon our results, I use all these metrics. 

Predictions Actual 

Satisfied Unsatisfied 

Satisfied TP FP 

Unsatisfied FN TN 
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5.4.2  Evaluation Methods 

Some of the successful methods for evaluating a model proposed by the literature were k-Fold Cross-

Validation (CV) [436] and an independent test set.  

• K-Fold CV is a widely used classification task [436], especially with ASA studies [430], [332], for 

the reasons given by [436]:  it’s simple to apply, and it avoids the bias. The k-Fold CV has a specific 

parameter k that denotes to equal, fixed numbers as folds. A classifier splits the dataset to a training 

set and test set. Based on k, a classifier splits the dataset in k folds, then each fold, in its turn, is used 

in the test set. In addition, in each classification process, there are different combinations of the 

training set. In the end, the average error is calculated as the overall score. Ten folds have been used 

for the dataset to obtain the best estimate of errors, as proposed by [436]. 

 

• The independent test set is used to assess the model's ability to predict in a dynamic medium like 

Twitter [252]. Refaee [425] and [45] are two of the ASA studies that used an independent test set as 

an evaluation method.  

In this study, due to its flexibility and popularity, I  used k-Fold CV on the AraCust to train the model, tuning 

the parameters until I found the most accurate predictive model. 

5.5 Machine Learning Schemes 
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Figure 5.1: SVM architecture. 

5.5.1 Baseline 

First, I created the baseline to compare the model to it. The baseline includes the basic features: term 

features and n-gram models, following [45]. The term features include term presence, TF and TF–IDF 

(Table 5.4). Some studies stated that the n-gram model enhanced the classifier’s accuracy and they used 

it as a baseline for the SA classification of tweets [39], [425], [480, 481].  

I evaluated n-gram models (unigram, unigram+bigram and unigram+bigram+trigram) and term presence 

(feature) models to create the best model (Table 5-5). The results showed that the term presence model 

achieved the best F-avg, with the SVM classifier, for the three corpora Mobily, STC and Zain. This was in 

line with the results found by [198] and [425], which is that term presence is the best feature with binary 

classification due to a lack of term repetition within a short text, such as a tweet. Pang & Lee [247] noted that 

using term presence leads to a better performance than using TF. 

Regarding the n-gram models, I found the combination of the unigram and bigram models to be the best for 

the STC, Mobily and Zain corpora. The result is consistent with what was found in the literature regarding 

the superiority of combining the unigram and bigram models over the n-gram model in both ASA [203], 

[481], [430], [425] and English SA [155], [184]. 

The rationale behind combining the unigram and bigram models is to provide more information than the 

unigram model alone could do, and it is less sparse [430], [155]. The baseline model for all three corpora can 

found in Table 5.6.   
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Table 5.4: F-avg for the term models using SVM. 

 
 

 

 

 

Table 5.5: Baseline for the Three Corpora Using SVM. 

 

 

  

 

 

Table 5.6: F-avg for the n-gram models using SVM. 

 

 

 

 

Term models/ Corpus TF TF-IDF Term presence 

STC 0.761 0.755 0.771 

Mobily 0.749 0.750 0.815 

Zain 0.701 0.767 0.855 

Corpus Features F-avg using SVM 

STC Term presence + unigram and bigram models 0.773 

Mobily Term presence + unigram and bigram models 0.807 

Zain Term presence + unigram and bigram models 0.853 

Gram models/ 

Corpus 
Unigram 

Unigram+ 

Bigram 

Unigram +Bigram 

+Trigram 

STC 0.635 0.770 0.756 

Mobily 0.746 0.799 0.764 

Zain 0.799 0.850 0.729 
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5.5.1.1 Evaluation feature selection process 

There are two attribute selection techniques common in the text classification task: Information Gain (IG) 

[482] and Chi-squared [437]. In this study, I used them to assess the feature selection method chosen before, 

following [425] and [45]. Yang and Pedersen [482] defined that the IG for a specific feature is the amount of 

information in the appearance or absence of this feature. Table 5.7 shows the IG for each feature for STC 

corpus; the features are ascendingly ordered by their IG. 

 

 

 

 

 

 

Table 5.7: IG for each feature. 

 

Regarding the Chi-Square, [437] defined it as a statistical analysis that calculates the feature's 

independence from the class. Table 5.8 shows the Chi-square for each feature for STC corpus. After 

that, the features are in descending order of their Chi-square result. 

 

 

 

 

 

 

 

Feature IG 

Tweet-topic 0.483 

Is-Sarcastic 0.378 

Has-Negative Word 0.227 

Has-Positive Word 0.125 

Negative Word Count 0.082 

Positive Word Count 0.061 

Has-Prayer 0.048 

Tweet length 0.044 

Feature IG 

Tweet-topic 5526.24 

Is-Sarcastic 4413.42 

Has-Negative Word 2557.22 

Has-Positive Word 1730.72 

Negative Word Count 1520.85 

Positive Word Count 797.96 

Has-Prayer 694.55 

Tweet length 620.87 

Table 5.8: Chi-Square for each feature for the STC corpus. 
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I found that the IG and Chi-square results on STC, Mobily and Zain corpora are similar, so the results reported 

here are STC. I noticed from Table 5.7 and Table 5.8 that the IG and Chi-square techniques generated the 

same results; this result reveals the features' reliability. 

5.6 Binary classification Experiments  

5.6.1 Using SVM 

 

As said, in Subsection 5.2.1 I used a back-stepwise selection to choose the best features with the SVM model 

on the AraCust corpus. I experimented with subsets of the initial feature set (Table 5.2). First, I calculated F-

avg and the accuracy of the model with all features, then each feature was removed from the feature set one 

by one, with the remaining ones depicted in Table 5.9. If removing a feature decreased the classifier's 

performance, I kept it in the classification model. If the classifier's performance increased after removing a 

feature, that was interpreted as this feature was harming the classifier. If this was the case, I eliminated this 

feature from the feature set (see Figures 5.2, 5.3 and 5.4). 
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Figure5.2: The F-avg of all features used in the STC corpus and the F-avg when removing each 

feature. 

 

Figure 5.3: The F-avg of all features used in the Mobily corpus and the F-avg when removing each 

feature. 
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Figure 5.4: The F-avg of all features used in the Zain corpus and the F-avg when removing each 

feature. 

5.6.1.1 Discussion 

As shown above in Figure 5.2, the classifier’s performance is increased when the Tweet-Length and Has-

Prayer features are removed. This means that these features harmed the classifier by 11.3% and 10.4% 

respectively; thus, they were removed from the feature set. Meanwhile, removing the Tweet-Topic feature 

caused a higher performance drop than other features, of 2.3%. This means that this feature is essential in the 

features set. This is the case when removing the Is-Sarcastic and ‘Positive Word Count   and Negative Word 

Count and ‘Has-Negative Word and Has-Positive Word’, so these features should also be retained. When the 

classifier with the remaining features (Table 5.9) was applied on AraCust, the F-avg was 0.905, which means 

the model performance increased than the baseline by 18.0%. It should be noted here that ‘Positive Word 

Count   and Negative Word Count’ and ‘Has-Negative Word and Has-Positive Word’ features are using 

AraSTw lexicon.  

Regarding the Mobily corpus (Figure 5.3), removing Tweet-Length, Has-Prayer and Word Count features 

increased the classifier's performance slightly, which means that these features harmed the model. 

Meanwhile, removing the other features decreased the classifier performance somewhat, so they were 
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retained (Table 5.9). An essential feature in feature sets is the AraSTw lexicon. After running the classifier 

with the remaining features, the F-avg obtained was 0.920. That is an increase over the baseline of 15.4%. 

Regarding the third corpus, Zain (Figure 5.4), removing the Tweet-Length, Word Count   and Has-Prayer 

features caused the slight increase in the model’s performance. Therefore, these features were removed from 

the features set, because they harmed the model. Removing the Tweet-Topic feature caused a large decrease 

in the model performance, meaning that it is the most crucial feature. After running the classifier with the 

remaining features (Table 5.9), the performance increased with F-avg 0.935.  

      

 

 

 

Table 5.9: The features set of each corpus and the F-avg of the remaining Feature sets.  

 

Table 5.9 shows the impact of the chosen feature set on the classification model. I noted that the classifier's 

performance was enhanced after adding the feature set; this confirms the significance of these features. The 

impact of the Tweet-Topic feature was the essential feature for STC and Zain corpora. The Tweet-Length 

feature, which was the only tweet-specific feature used, harms the corpora's classification performance. The 

classifier's performance on the test set decreased, consistent with the previous work by [425]. This result is 

due to the changing nature of Twitter over time [247]. The result of 'Has-Prayer' feature is somewhat 

Corpus 
Eliminated 

Features 
Remaining Features Favg Baseline 

STC 

Has-Prayer. 

Tweet-Length 

 

Tweet-Topic 

Is-Sarcastic. 

AraSTw Lexicon (Has- 

Negative Word, Has-Positive 

Word) 

Word Count (Positive Word 

Count, Negative Word Count) 

0.900 0.773 

Mobily 

Tweet-Length 

Has-Prayer 

Word Count 

AraSTw Lexicon 

Is-Sarcastic  

Tweet-Topic 

0.920 0.807 

Zain 

Tweet-Length 

Word Count and 

Has-Prayer 

Tweet-Topic 

AraSTw Lexicon 

Is-Sarcastic. 

 

 

0.935 0.853 

Average  0.918 0.811 
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surprising, as it is a specific characteristic of Arabic Tweets. I think the result is due to the classifier being 

unable to distinguish between negative and positive tweets that used prayer because both types of tweets 

contain the same word "الله", which means God. 

5.6.2 Using LSTM and GRU 

The advantages of the deep learning model are: 

• using an uncomplicated model to achieve complicated functions [314]. 

• using a massive volume of data (Big Data) effectively. 

• dealing with the variety of data formats since it used abstract data.  

• reduced demand for features extraction. 

• deep learning model can learn complex features [313].  

5.6.2.1 Experiment Settings 

For reasons that were mentioned previously, the two most popular deep learning-based models, LSTM and 

GRU, have been used in this study with two different implementations: simple LSTM and GRU and 

bidirectional LSTM and GRU and with different parameters. This is in order to define the best model suitable 

to ASA and the nature of our AraCust corpus. 
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Table 5.10: Different settings for the different models using LSTM and GRU.  

Experiments were carried out with different settings and models to choose the best ASA model and the 

AraCust corpus (Table 5.10). Keras [483] was used for utilising deep learning models. In addition, 

TensorFlow [484] an open-source library, was used in a GPU environment. Two embeddings were utilised 

to obtain the features: character-level and Word2Vec. In the Word2Vec, the features were obtained using 

word representation to expose the connections between the tweets' words. On the other hand, the character-

level was used to show how the sentiment affects the different characters in the tweets.  

The models started with word embeddings, to represent each word in a tweet as a 300-dimensional word 

vector. It was then fed into the LSTM/GRU layer with this embedding, using a 128-dimensional hidden state. 

To avoid the model overfitting through training dropout [485]. Then the output was fed into another 

LSTM/GRU layer with a 128-dimensional hidden state that returns a single hidden state (Figure 5.5). 

Different experiments were done on 20, 40, 50, 70 and 100 epochs. The best performance was accomplished 

at 50 epochs. Therefore, all the experiments were conducted with 50 repetitions. The sigmoid layer was used 

for the classification. I applied a dense layer with two units for the two possible classes, followed by the 

Sigmoid activation. In addition, I used backpropagation in a default implementation bundle with the 
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M1 LSTM Character 300 Sigmoid 0.5 Adam 50 2 

M 2 LSTM Word2Vec 300 Sigmoid 0.5 Adam 50 2 

M 3 Bi 

LSTM 

Character 300 Sigmoid 0.5 Adam 50 2 

M 4 Bi 

LSTM 

Word2Vec 300 Sigmoid 0.5 Adam 50 2 

M 5 GRU Character 300 Sigmoid 0.5 Adam 50 2 

M 6 GRU Word2Vec 300 Sigmoid 0.5 Adam 50 2 

M 7 Bi GRU Character 300 Sigmoid 0.5 Adam 50 2 

M 8 Bi GRU Word2Vec 300 Sigmoid 0.5 Adam 50 2 

M 9 Bi 

LSTM 

Character+Word2Vec 300 Sigmoid 0.5 Adam 50 2 

M 10 Bi GRU Character+Word2Vec 300 Sigmoid 0.5 Adam 50 2 
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TensorFlow library. For optimisation of the weight, Adam [486] was used, because it was shown to be 

efficient in computation.  

 

 

 

 

Figure 5.5: Architecture of the proposed deep learning model. 

In the bidirectional LSTM or GRU (Figure 5.6), the model considers the future context of the text and the 

past context using joining forward and backward hidden layers [487]. I added the Keras library's attention 

mechanism with a context/query vector for temporal data to handle the long sequence on top of a recurrent 

neural network layer (LSTM or GRU) with return_sequences=True, (1). The dimensions are inferred based 

on the output shape of the RNN. 

model. Add (GRU (64, return sequ ences=True))   

model. Add (AttentionWithContext ())   

I used a context vector to assist the attention. 

 

 

 

 

 

 

 

Figure 5.6: Bi-GRU/LSTM Architecture. 
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5.6.2.2 Results and Discussion 

Figure 5.7 shows that Bi-GRU with Word2Vec (M8) performed better than all other models, at 95.16% 

accuracy. LSTM with character embedding achieved lower accuracy than the other models, at 94.30% 

accuracy. Comparing the results of the best of the two deep learning models with the baseline from the last 

section, SVM (Table 5.11), deep learning models have shown superiority, because of the applicability of 

deep learning approaches to the continuously dynamic nature of Twitter. GRU has also performed well, with 

a 95.16% accuracy, and better than LSTM. This may be due to GRU being less complicated than the LSTM 

model, which leads to it being widely used [313]. Finally, adding the bi-directional model attention 

mechanism enhanced the model's performance, while adding Word2Vec and the character level processing 

decreased the model's performance (see Fig. 7, where all models M1-M10 from table 10 are compared). 

 

Figure 5.7: Comparing between the accuracy of deep learning models (M1-M10) with different 

parameters and SVM. 

 

 

 

 

Model Accuracy F1 Recall Precision 

Bi-LSTM with Word2Vec 

 
95.08% 0.951 0.951 0.951 

Bi-GRU with Word2Vec 95.16% 0.952 0.952 0.952 

SVM 93.0% 0.918 0.918 0.918 

Table 5.11: M4 and M8 comparison with SVM baseline model. 
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I examined the statistical significance between the two models (Bi-LSTM with Word2Vec and Bi-GRU with 

Word2Vec) to check the differences between the two models by chance or by model skills. To check that the 

two models have a similar or different proportion of errors on the test set. 

I used McNemar's test [488] following [489] to check the statistical significance.  I found that the p-value is 

0.01 < 0.05, which means reject H0 and accept the H1. 

H0: There are no differences between the models' skill. 

H1: There are significant differences between the models' skill. 

5.6.2.3 Comparison and Implications 

After applying the M8 model to relevant data from the famous NLP competition, SemEval – specifically, the 

Arabic data set provided by the SemEval 2017 Task 4, Subtask A: Tweet classification according to a three-

point scale of Twitter [170], the proposed model achieved 79.7% in terms of accuracy. Comparing the 

proposed model's result to the 58.1% results achieved by the NileTMRG team [411], which was placed first 

amongst the other top ten teams in Subtask A, the proposed model achieved clearly a much higher accuracy. 

This is promising progress in terms of ASA on Tweets. 

5.6.3 Using Transformer Networks 

The Transfer Learning concept depends on using a pre-training model that has some language knowledge, 

for a new task. Language model represents many language features, such as graded relationships [490] and 

sentiment direction [491]. 

In this section, I compared three transformer networks: a Robustly Optimized BERT Pretraining (RoBERTa) 

[374], and the two transfers networks designed for Arabic language, AraBERT [376] and the Universal 

Language Model in Arabic (hULMonA) [358]. I have chosen RoBERTa because it is shown to outperform 

Bidirectional Encoder Representations (BERT) in sentiment classification tasks [360], although BERT is the 

best in many NLP tasks [360]. As explained, this the first attempt of using RoBERTa for Arabic sentiment 

analysis, to the best of our knowledge. I have used Google Colab [492] for developing the experiments due 

to defective computer hardware. 
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5.6.3.1 RoBERTa Model Construction 

I used the RoBERTa model, a BERT-based model with Adam optimisation [486], using the parameters 

seed=42 for the random weight, precision floating for GPU, and the batch size =16-64 for the maximum 

sequence length. After visualising the number of tokens in most tweets (Figure 5.8), the maximum tokens 

per tweet is 30 tokens. Therefore, all tokens were padded up to this size. After that, the model converts the 

word to an integer. The model used discriminative fine-tuning and gradual unfreezing. The model froze all 

the layers in the Neural Network except the last two layers.   

RoBERTa trained over five datasets and 160GB text. To implement the sentiment analysis task, I use 

discriminative fine-tuning and gradual unfreezing. That means it predicts the next token, based on the present 

series of tokens in the sentiment corpus, with various learning rates, from 1e-02 to le-06. After that, the model 

unfreezes the output layer, after each epoch, layer by layer, except for the last two layers. 

 

 

 

 

 

 

 

 

 

 

5.6.3.2  AraBERT Model Construction 

AraBERT is a BERT-based model; it is trained on different Arabic datasets. It used the BERT basic 

configuration [372], except a special pretraining was added before the experiment specific to the Arabic 

language. This tried to find the solution for the lexical sparsity in Arabic [350] which uses “ال“  “Al” before 

the word (it is a prefix; it has no equivalent meaning in English) by using a Fast and Accurate Arabic 

Segmenter (Farasa) [378] to segment the word.  

Figure 5.8: The number of tokens in most tweets. 



178 | P a g e  
 

5.6.3.3 HULMonA Model Construction 

HULMonA [358] is the first Arabic universal language model based on ULMFiT. It is pre-trained on large 

Arabic corpora and fine-tuned to many tasks. It consists of three stages: training AWD-LSTM model [371] 

on Arabic Wikipedia corpus, fine-tuning the model on a destination corpus, and for text classification, 

including a classification layer on the model. The results showed that hULMonA is superior in ASA. 

5.6.3.4 Experiment Results, Discussion and Evaluation 

When comparing the results of using RoBERTa, AraBERT, and hULMona models using the micro average 

of different metrics, Table 5.12 shows that the results favour the AraBERT model with 94.0% accuracy.  

 

 

 

 

Table 5.12: Comparing between RoBERTa, AraBERT, and hULMonA Models. 

To discover the reasons behind the obtained results, I analysed the three models’ architecture. AraBERT 

outperformed the two other models because:  

1. It is trained on different Arabic data sets – Modern Standard Arabic data sets and evaluated on dialectical 

data sets.  

2. It applies a special pretraining specific to the Arabic language.  

3. It uses Farasa [378], a pre-processing tool directed to the Arabic language; it outperformed the state-of-

the-art MADAMIRA [270]. 

Although hULMonA is trained on different Arabic data sets, its performance was worse than other models, 

because it is based on ULMFiT [359]. Additionally, it lacks the appropriate pre-processing for Arabic text. 

RoBERTa, which is a BERT based model, transfers each Arabic letter to a Latin character and every Latin 

character meets one integer number. That is the reason for the decrease in the performance of the model. 

Model Accuracy  F1 Recall Precision 

RoBERTa model 92.1 92.2 92.0 91.1 

AraBERT model 94.0 92.6 92.1 93.0 

hULMonA model 90.8 79.8 89.0 84.0 
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5.6.4 The proposed Model 

While AraBERT performed better than other models, I propose a new model (AraBERT-GRU) – consisting 

of the AraBERT model combined with Bi-GRU, which achieved a high performance previously.  

In the new model (Figure 5.9), the input embedded vector passed through the AraBERT [376] consisted of 

12 layers, 768 in-features, 512 maximum sequence dimensions, and a total of 110M parameters. AraBERT 

generates the context vector. I created tensor data for training and the iterator to carry out iterations over the 

whole dataset. For optimisation, I used Adam optimisation. Also, a learning rate monitoring algorithm was 

used to change the learning rate and achieve better results. 

There is a relationship between each sequential element. For that, Bi-GRU is needed to extract that 

relationship to classify. Once the sequential information extracted, the classifier layer classifies the sequence. 

Sequence information is forwarded from GRU to the next GRU and then to the final GRU. The last GRU 

output is fed to the SoftMax classifier layer. 

I initialised the model with hidden dimensions 256- and 2-layer GRU, with the output dimensions 2, to take 

care of sequence information. Finally, the classifier layer classified into two classes – positive and negative. 

The classifier layer is a fully connected layer with a SoftMax, with a weight drop 0.25. The sequence flow 

of the new model is AraBERT, Bi-GRU, then classifier layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

[CLS] T1 T10 [END] …. …. 

E0 E1 E10 En 

SoftMax 

Output 

Token 

Embedding 

Context vector 

H0 H1

 

H10

 

Hn Hidden Layer 

 

 

Figure 5.9: New model architecture. 
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5.6.4.1 Results and discussion 

The results were impressive; the accuracy of the AraBERT before was 94.0% and after adding the Bi-GRU 

layer, the accuracy increased to 99.3% (Table 5.13), which means that the proposed AraBERT-GRU model 

achieved its goal of efficient, competitive prediction of sentiment, and thus, indirectly, customer satisfaction. 

Social media is considered an easy-to-use platform. The number of internet users that use social media 

increased in 2019 to 2.77 billion users [80]. Therefore, there is a high probability of people using social media 

platforms for expressing their feelings. This may be why the new model is competitive and has obtained such 

a high accuracy (99.3%). The new model is suitable for a high volume of respondents and represents a cost-

effective tool to monitor customer satisfaction on social media. Additionally, because of its dependence on 

text mining, there is also a possibility of generalising this model to different social media platforms.  

 

 

 

 

Table 5.13: Results of the new model. 

In the next section, the AraBERT-GRU model has been applied on our own corpus, AraCust to predict 

actual customer satisfaction for the three companies. 

I examined the statistical significance between the two (AraBERT and AraBERT-GRU models) to check 

the if there is a statical significant between the two models using McNemar's test [488] following [489]. I 

found that the p-value is 0.03 < 0.05, which means reject H0 and accept the H1. 

H0: There are no differences between the models' skill. 

H1: There are significant differences between the models' skill. 

Label Positive Negative Avg 

Precision 98.7 99.0 98.9 

Recall 97.0 97.1 97.0 

F1-Score 0.978 0.98 97.9  

Accuracy 99.2 99.5 99.3 
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5.7 Predict Customer Satisfaction 

The third RO was to develop a potential model for the sentiment analysis of tweets to measure customer 

satisfaction using the real-time method. The application was aimed at Saudi Telecom companies STC, 

Mobily and Zain, as the largest providers in Saudi Arabia. In this study, a AraBERT-GRU model has been 

developed, which achieved a proficient result in predicting the customer satisfaction on the AraCust corpora.  

First, customer satisfaction, created based on domain expert knowledge, was calculated as follows: 

 𝑐𝑢𝑠𝑡_𝑠𝑎𝑡 =  𝑡𝑜𝑡𝑎𝑙_𝑟𝑎𝑡𝑖𝑛𝑔𝑠 /(2 ∗ 𝑛𝑢𝑚_𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠)   (5.1) 

num_customers = len(ratings)  (5.2) 

 total_ratings = sum(ratings) (the summation of all ratings) rating: binary rating.  (5.3)  

The corpus was then divided based on the company. The AraBERT-GRU model predicted customer 

satisfaction. These results showed that the predicted customer satisfaction percentage for the three companies 

STC, Mobily and Zain were 31.06%, 34.25% and 32.06%, respectively (all below 50%). Perhaps that was 

because customers tend to post a negative tweet rather than a positive tweet on Twitter, as previously 

observed.  

5.7.1  Evaluating the New Model 

This study has used a sentiment analysis to design an accurate model, by applying several approaches to 

measure customer satisfaction. To evaluate the proposed new model, we developed a simple questionnaire 

comprising two questions. The questionnaire is oriented to the customers whose tweets were mined, to 

evaluate the model by comparing the predicted customer satisfaction using the model, with the actual 

customer satisfaction, by using the questionnaire (Table 5.15).  

I created an automatic tweet generator in Python (the tweet has a link to the questionnaire) to all the 20000 

users whose tweets I had previously mined, but the respondents totalled just 530. The tweet generator was 

created using a code in Python for sending tweets that contain two things:  

1. the link to the questionnaire and  

2. mentions to the Twitter accounts of participants.  

The code completed this procedure automatically without the need to do it myself, to save time (Figure 5.10).  
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I gave the participants the choice of answering or not.  The questionnaire was built in google forms, because 

it is easy to build and distribute. The questionnaire had two questions: ‘what is your telecom company?’ and 

‘define your satisfaction toward your company (satisfied, unsatisfied), Appendix C. I received 530 

responses. The sample was distributed between three companies, as shown in Figure 5.11.  

 

 

 

 

 

 

 

 

 

 

                        

The unbalanced numbers of participants between the three companies reflects the real distribution of the 

users of the Saudi telecom companies.  The number of unsatisfied and satisfied users for STC, Mobily and 

Zain companies is shown in Figure 5.12. 
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Figure 5.10: Snapshot from the Python code for tweets generator. 

Figure 5.11: Number of participants based on telecom companies. 
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In Table 5.14, it is shown that the AraBERT-GRU model achieved the goal of predicting the customer 

satisfaction of telecom companies based on the Twitter analysis.   

These results can provide insights for the decision-makers in these companies regarding the percentage of 

customer satisfaction and help to improve the services provided by these companies. These results should 

encourage the decision-makers to consider using Twitter analyses for measuring customer satisfaction and 

to include them as a arguably reliable method for evaluating their marketing strategies. 

 

 

 

Table 5.14: Percentage of predicted customer’s satisfaction vs. actual customer’s satisfaction. 

 

5.8 Summary 

This chapter explained the experiments completed using ASA to achieve the RO3 and answer the RQ3, which 

defines the customer satisfaction percentages on the three Saudi telecom companies STC, Mobily and Zain. 

The experiments started with applying SVM as a baseline model with many feature selections experiments 

to choose the best feature sets. I used the statistical evaluation of the feature selection method. Contrary to 

Company Predicted Customer’s Satisfaction Actual Customer’s Satisfaction 

STC 31.06% 20.1% 

 

Mobily 34.25% 22.89% 

 

Zain 32.06% 22.91% 

 

Figure 5.12: Number of satisfied and unsatisfied users for STC, Mobily and Zain companies. 
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the initial expectations in this study, although there are a significant number of prayers in the Arabic tweet 

corpus, the Has-Prayer feature had to be removed from the feature set, possibly due to both positive and 

negative tweets that use prayers, often including the word ‘God’.   

Next, I compared two deep learning models LSTM and GRU, with different embeddings and settings on 

AraCust to define the best model for AraCust corpus and Arabic dialect characteristics. After that, three 

transfer networks designed for Arabic language AraBERT, hULMonA and RoBERTa models were utilised 

on AraCust to define the best performance suitable to the corpus and the dialect Arabic characteristics. 

Finally, the proposed model combining the AraBERT model and Bi-GRU predicted customer satisfaction 

for the three companies.  

The results showed that the new model is highly accurate when compared to other models. Moreover, there 

is the possibility to generalise the proposed model for use on different social media platforms – a simple 

questionnaire distributed to the customers to calculate the same companies' customer satisfaction percentage. 

In the next chapter, customer satisfaction experiments will further predict the customer churn for the telecom 

company that offered the historical data to this study and compare it to the customer churn percentage 

obtained from the company. 
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Chapter 6:  Multi-Way Arabic Sentiment Analysis  

6.1 Introduction 

Usually, past studies considered binary sentiment analysis (positive or negative) instead of multi-way 

sentiment analysis (MWSA), which means classifying the dataset into several (>2) classes [493]. This is due 

to the complexity of multi-way sentiment analysis for machine learning to predict [494]. Some studies 

attempt to alleviate this complexity by using a rating scale (from poor to excellent) as multi-way sentiment 

analysis [494], [69]. Hence, this Chapter attempts to alleviate this matter by focusing on MWASA assigning 

one of the multi-level classes to tweets - from ‘Strongly negative’ to ‘Strongly positive.’ The reason for doing 

this is that, whilst there is a lack of studies that use multi-way analysis, many studies discussed and 

recommended this type of classification [493]. 

This Chapter achieves objective RO2, which is to propose recommendations to improve Saudi telecom 

companies' services. This chapter also answers research question RQ2: what type of services for customers 

of telecom companies in Saudi Arabia are mentioned in tweets, and what is the customer sentiment about 

these services? The first part of the research question is answered by manually creating and annotating a 

gold-standard corpus, as explained in Chapter 3. For the second part of the research question, SA needs to be 

performed on this corpus.  

Thus, to address the second part of the research question and find the best possible sentiment classifier for 

this problem, this study compares flat classification and hierarchical classification structures, using 

(MWASA) classifier on the same data set. As a result of this comparison, a hierarchical classification 

structure is proposed for MWASA in this Chapter. The hierarchical classifier structure consists of four-level 

binary classifiers, and this Chapter shows how this addresses the multi-way sentiment analysis and raises the 

MWSA classifier performance. 
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6.2 Related Research 

Starting with Sentiment Analysis in general, outside the Arab language sphere, usually, studies consider 

binary sentiment analysis (positive or negative) instead of MWSA, the latter meaning classifying the data set 

to classes greater than two [493], [495]. The reason for this is that the complexity of predicting the multi-

way sentiment analysis for machine learning is higher than that of the binary sentiment analysis [494]. Some 

studies used a rating scale (from low to excellent) as multi-way sentiment analysis [494], [496], [69]. 

Bickerstaffe and Zukerman [496] proposed a hierarchical classifier for the multi-way classification, taking 

into consideration the inter-categories’ similarity. The proposed classifier depended on SVM for removing 

unrelated features. The results proved the efficiency of their proposed classifier for movie reviews with three 

or four-star ratings. 

Due to the significance of the MWSA problem, SemEval-201722  [497], included it in Task 4, and SemEval-

2018 [498], included it in Task 1. The task 4 in 2017 [497],  is about sentiment analysis on Twitter. They 

included MWSA in the classification and quantification subtasks. The classification subtask focused on 

prediction of the sentiment of the tweet towards a given topic, via two classes (positive and negative), three 

classes (positive, neutral and negative) and five classes (strongly positive, positive, neutral, negative and 

strongly negative). The OMAM [499] team achieved the top ranks in subtask C, topic-based polarity 

classification (the only task relevant to the current research). The OMAM system achieved 0.9431 macro 

average mean absolute error (MAEM) and 0.6461 standard mean absolute error (MAEµ).  

As already stated throughout this thesis, ASA is less represented by this body of research [45]. Relevant for 

the current Chapter is that especially studies proposing MWASA are very few and far between. Due to the 

importance of MWSA, some studies have applied it to different Arabic datasets. One of the earliest studies 

that addressed the MWSA problem [230] presented a Large-Scale Arabic Book Reviews (LABR) dataset 

collected from the Good Reads website and performed two tasks on the dataset: sentiment polarity 

classification and rating classification. LABR consisted of 63,000 Arabic book reviews written in MSA and 

 
22 SemEval are annual natural language (NLP) competitions posted for the NLP community at large to solve: SemEval | 

International Workshop on Semantic Evaluation  

https://semeval.github.io/
https://semeval.github.io/
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DA. In the rating classification, each review was rated on a scale from 1 to 5 stars. For the sentiment polarity 

classification, the review was labelled as positive, if the rating is 4 or 5; or negative, with 1 or 2. They used 

Multinomial Naive Bayes (MNB), Bernoulli Naive Bayes (BNB) and SVM implemented in Python. 

According to their results, SVM performed better than other classifiers in the unbalanced setting, with 

accuracy/weighted F1 measure 0.503/0.491. One subsequent LABR study is [202]. 

In addition, Elnagar et al. [500] introduced a Hotel Arabic-Reviews Dataset (HARD) containing 370,000 

hotel reviews from the Booking website in MSA and Gulf Dialectal Arabic (GDA). They carried out three 

experiments on their dataset: polarity classification using a supervised approach, rating classification using a 

supervised approach and polarity classification using the lexicon-based approach. Their results showed that 

the supervised approach outperformed the lexicon-based approach in polarity classification with 94%-97% 

against 89%. However, in the rating classification, they obtained a lower accuracy than 75%.  

Another related research [501] developed the Aara system for opinion mining for 815 comments from local 

Saudi newspapers. The comments were written in Arabic, both formal and colloquial. The specific dialect 

was Najdi Arabic, used in Riyadh (the capital city of Saudi Arabia). They used an NB classifier to classify 

Arabic reviews into four categories (strongly negative, negative, positive, strongly positive). Their system 

achieved 82% accuracy and 84.5% macro-averaged F-score.  

Nabil et al. [273] introduced an Arabic social sentiment analysis dataset (ASTD), collected from Twitter. 

They applied MNB, BNB, SVM, stochastic gradient descent (SGD) and KNN on four sentiment classes 

(objective, subjective positive, subjective negative, and subjective mixed). The results showed that SVM 

performs better than other classifiers. 

From the above studies, it is obvious that MWASA is an interesting and relevant topic and that it still has a 

wide scope for improvement. There is a lack of studies that used multi-way analysis, although many studies 

used this type of classification [493]. As a result, I have decided to apply MWASA on my corpus for telecom 

companies. I consider the multi-way sentiment analysis as assigning one of the multi-classes for tweets, in a 

range starting from ‘Strongly negative’ to ‘Strongly positive’ as recommended by [502]. 
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Some studies proposed the Hierarchical Classifiers (HCs) instead of Flat Classifiers (FCs) [502], [503], [504] 

to address MWSA. HCs are a type of well-defined classification that works hierarchically, where the 

classification output matches one or more classification labels [503]. HCs classify the classes sequentially in 

a hierarchical way and consider the relations between the classes. Hao et al. [505] explained the HC structure 

as classifying the document starting from root level to sub-categories, until the classification extends to the 

leaf category at the leaf node level. HCs are widely used with massive and mixed data [503]. HCs were 

proposed to alleviate issues with FCs, which classify the data at one level (leaf nodes) regardless, where the 

relations between the classes could affect the classifier performance on a big dataset [503]. Despite this 

drawback of FCs, however, some researchers prefer them, because they are less complicated and more 

straightforward [502], [505]. 

The advantages of using the hierarchy classification demonstrated in the literature include effective learning, 

by subdividing the classification problem into sub-problems [506]; keeping the characterising ability 

regarding the sole classifier, due to the fact that a HC is flexible and customisable [507]; and the fact that it 

is able to complete the classification of a large problem faster and more efficiently than flat classification, 

because HC divides the large problem into simpler subproblems [505]. In addition, some studies have proved 

the higher performance of HC when compared to FC [503], [507], [505], [504]. 

Angiani et al. [507] detected emotions using flat and hierarchical classifiers. The HC that they used had three 

levels, and on each level, there was a binary classifier. The first classifier classified a tweet as subjective or 

objective. The second one classified the subjective tweet as positive or negative. The third classifier classified 

a positive tweet as one of three positive emotions and a negative tweet as one of three negative emotions. 

The authors applied Naive Bayes Multinomial to 10,000 tweets. The best accuracy achieved by HC was 

45.17%.  

Hao et al. [505] consider the Binary Hierarchical Classifier as a virtual tree of category classification, 

organising the classes on a tree that the multi-class classification addresses by some binary classifiers [508].  

There is a lack of studies that proposed a hierarchical classifier in Arabic sentiment analysis [470], [502], 

[504].  Per to our knowledge, [470] the first who proposed hierarchical structure for MWASA problem.  They 

applied two HCs and compared them with FC.  They used Large Scale Arabic Book Reviews (LABR) dataset 
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[230]. They used many classifiers SVM, Naive Bayes, Decision Trees, and KNN. The two HCs that they 

proposed are 2-level HC and 3-level HC. The 2-level HC start with ternary classifier classified the text to 

positive, negative or neutral. The second classifier classified the positive text to weak or strong and the third 

classifier classified the negative text to strong or weak. While the 4-level HC composed of 4 binary classifiers 

starting with classifying the majority class with others sentiment class. The results proved that the hierarchical 

classifiers improved the classification by c50% more than flat classifiers. 

Followed by [502] proposed six different Hierarchical Classifiers to solve the MWSA problem. They applied 

a supervised approach (corpus-based) which included SVM, NB, KNN and DT. The first hierarchical 

classifier has two levels, the first one classifies the text to (negative, neutral, positive), the second level 

classifies the text to (strong, weak). The second hierarchical classifier has 4 binary classifiers classify one 

label against the rest of the labels. The third hierarchical classifier has two levels, the first level classifies to 

(strong positive, strong negative), then it classifies to (weak positive, neutral and weak negative). The fourth 

hierarchical classifier has four classifiers, the first one classifies to (neutral, not neutral), the second one 

classifies to (weak positive, weak negative), the third one classifies to (weak positive, strong positive), the 

fourth one classifies to (weak negative, strong negative). The fifth hierarchical classifier has four classifiers 

starting by classifying the text to the majority sentiment label from the other sentiment labels. The sixth 

hierarchical classifier has two level classifiers:  the first one is a flat classifier that classifies a text to all 

sentiment classes. When comparing the results between the FC and HC, the best accuracy and Mean Square 

Error (MSE) for FC were 45.77% and 1.61, and the best accuracy and MSE for an HC were 72.64% and 

0.53, respectively.  

 In addition, [504] compared between 2-level, 3-level and 4-level binary HC using different techniques. Their 

dataset was Hotel Arabic Reviews Dataset (HARD) [500].  The 2-level binary HC composed of two binary 

classifiers, the first one classified the text to positive, negative or neutral. The second classifier classified the 

positive text to strong or weak and the negative text to strong or weak. In the 3-level binary HC, the first 

classifier classified the text to neutral or not neutral. The second classifier classified the text to positive, or 

negative. The last classifiers classified the text to (weak or strong) positive/negative. The 4-level binary HC 

start by classifying the text to strong positive or other sentiment labels, taking in consideration that the 
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majority in the data set are strong positive. They achieved the best results with Random Forest and Decision 

Tree, while the worst results with SVM and NB.  The best result got by Decision Tree for the three-level 

binary HC with 99% for Accuracy and F1.  

6.3   Corpus Collecting and Annotating 

To create the corpus, as explained in Chapter 3, I asked the annotators to annotate the 20,000 tweets with the 

pre-defined telecom services from my list that matched the one mentioned in a tweet. This list of telecom 

services was extracted from customer satisfaction metrics defined by the Saudi Communications and 

Information Technology Commission [438] and related researches. The annotators were asked to annotate 

with labels from this list of pre-defined services and the sentiment towards that particular service, if existent.  

They could identify more than one service in a single tweet. The annotators used the five-way sentiment 

analysis scale (Strongly Positive, Positive, Neutral, Negative, Strongly Negative). They found 4,380 tweets 

that mentioned one or two services. They listed the services mentioned in the tweets: Network Coverage, 

Phone Network, Quality of Voice Transmission, Customer Service, Successful Calls, Billing Price, Good 

Offers, Reasonable Fees when calling another Telecom Company, Browsing Speed, and Hiring Section. The 

Network Coverage and Phone Network were subsequently merged after analysing the initial sets of labels 

with an expert, as they pointed to the same service. Additionally, I merged Internet speed and Browsing 

Speed. I excluded the Hiring Section, because it was out of scope for this research. After that, I listed the 

final list of services for which I will identify the sentiment as follows: Network Coverage, Quality of Voice 

Transmission, Customer Service, Number of Successful Calls, Billing Price, Good Offers, Reasonable Fees 

when calling another Telecom Company, and Internet Speed. Each sentiment label considers the degree of 

customer satisfaction towards that specific telecom service. Tables 6.1, 6.2, and 6.3 show the number of 

tweets mentioning each service in each company in the corpus, which I called AraCust1. 

Services\Company # Positive 
#Strongly 

Positive 
#Neutral #Negative 

#Strongly 

Negative 
Total  

Network Coverage 44 1 0 50 0 95 

Quality of Voice 

Transmission 
50 4 1 50 5 110 

Customer Service 160 9 0 320 10 499 
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Table 6.1: The number of tweets in AraCust1 for each category in the STC company. 

 

Table 6.2: The number of tweets in AraCust1 for each category in the Mobily company. 

Successful Calls 60 3 0 69 2 134 

Billing Price 35 0 0 45 3 83 

Reasonable Fees when 

calling another Telecom 

Company 

65 1 0 65 3 134 

Good Offers 100 0 1 114 10 225 

Internet Speed 130 17 0 319 1 467 

Total 644 35 2 1032 34 1747 

Services\Company # Positive 
#Strongly 

Positive 
#Neutral #Negative 

#Strongly 

Negative 
Total 

Network Coverage 120 21 0 250 50 441 

Quality of Voice 

Transmission 
38 1 0 38 2 79 

Customer Service 25 10 0 80 20 135 

Successful Calls 54 7 0 58 5 124 

Billing Price 14 7 0 20 2 43 

Reasonable Fees 

when calling 

another Telecom 

Company 

40 21 0 50 12 123 

Good Offers 50 4 1 70 6 131 

Internet Speed 50 7 0 108 3 168 

Total 391 78 1 674 100 1244 

Services\Company # Positive 
#Strongly 

Positive 
#Neutral #Negative 

#Strongly 

Negative 
Total 

Network Coverage 48 8 1 52 20 129 

Quality of Voice 

Transmission 
100 20 0 90 36 246 

Customer Service 122 30 1 122 57 332 

Successful Calls 30 15 0 70 12 127 

Billing Price 73 8 0 77 9 167 

Reasonable Fees 

when calling 

another Telecom 

Company 

112 4 0 100 16 232 

Good Offers 94 5 0 95 4 198 

Internet Speed 115 4 2 220 68 409 

Total 694 94 4 826 222 1840 

Table 6.3: The number of tweets in AraCust1 for each category in the Zain company. 
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6.4  Evaluation Metrics 

To compare the performances of HC and FC models, I used five metrics suitable for multi-way classification: 

micro averages of Precision (Pr), Recall (Rc), F1, Accuracy (Ac), and Mean Square Error (MSE) [509], as 

motivated by [502].  The micro average is suitable for multi-classes, especially if the classes are imbalanced, 

and the micro average totals all classes' contribution to the average metric calculation [474]. It aggregates the 

precision and recall of the classes. 

MSE is calculated as shown [470]: 

MSE=  
1

𝑛
 ∑ (𝑦𝑖 − 𝑦𝑖)2𝑛

𝑖=1   (6.1) 

Where y’i is predicted value within n predictions and yi is the true value.  

The reason for using MSE is that the four metrics, Pr, Rc, F1, and Ac, do not consider the relationship the 

relation between the classes in a hierarchical classification [510]. However, MSE considers the gap between 

the real category and the predicted category, making it more appropriate for MWSA. Nevertheless, for a 

comprehensive set of results, I have used all of the other metrics as well. 

6.5 Model Construction 

6.5.1 Flat Classification 

The classifier classifies the tweets into five-way (Strongly Positive, Positive, Neutral, Negative, Strongly 

Negative) on one level (Figure 6.1). 
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Figure 6.1: Flat classification structure of Tweets. 

 I have carried out the experiments using the proposed classifier described in Chapter 5. The flat experiment 

started by using Python libraries, such as Panda, Keras and Sklearn, reading the data file of the two types, 

with one service label (Table 6.4) and two service labels (Table 6.5). The file has four columns: tweet text, 

mentioned services, sentiment label and mentioned company. The row represents each tweet. 

 

 

Table 6.4: Sample of the data set with one service label. 

 

Table 6.5: Sample of the data set with two service labels. 

I defined the number of services per tweet as follows in the Python code snippets provided, where df means 

the data frame, Num_ser is the number of services: 

df['Num_ser'] = df. Service. apply (lambda x: len(x.split(','))) 

Creating a data frame which has one service: 

df_ = df[df['Num_ser']==1] 

Creating a data frame which has 2 services: 

 

 

 

Tweet Classification 

Strongly Positive Positive Neutral Negative Strongly Negative 

 

Tweet Label Service Company 

 Strongly Negative Billing Price STC الفاتورة غير معقولة مرتفعه جدا جدا  0

 Negative Customer Service STC وتظام الرد فيه مشكلة وما استطعت الوصول لاي موظف  1

Tweet 
Label-

service1 
Label-

service2 
Service Company Num_service 

والله نتكم مجنون و 

 السعر الحلو
Positive Positive Internet Speed, Billing 

Price 

Zain 2 

تغطيه وانترنت زي  

 الخرا  
Negative Negative Network Coverage, 

Internet Speed 

Zain 2 
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df2 = df[df['Num_ser']>1] 

I then generated 8 column data frames, one column for each service: 

table = pd. pivot_table (df_, values='Label', index=df_. index, 

columns=['Service']) 

After that, I converted the data frame (df2) with all services as columns filled with 0 except for the services 

that were mentioned in the tweet; I filled these with the sentiment, where 2 is for Strongly Positive, 1 for 

Positive, 0 for Neutral, -1 for Negative and -2 for Strongly Negative (Table 6-6). 

services = table.columns[0:-2].tolist()  

for i in services: 

 df2[i] = np.ones((len(df2)))  

Adding the label: 

for i in serv2: 

df2[i] = df2['Label'] 

Next, this processed data was used for applying on it the various models.  

6.5.2 Hierarchical Classification 

For multi-way Sentiment Analysis, hierarchical classifiers containing many classification layers are 

recommended for ASA, following [502] and [504], Section 6.2. Addi et al. [504] proposed the 3-level binary 

classification because it is less complicated than other hierarchical structures and does not consider the data 

balance. In [502] and [504], they used different hierarchical structure techniques, but they did not apply deep 

learning models. Here, I will apply the deep learning model with the hierarchical structure and see how it 

works with MWASA and hierarchical structure. Here, three layers of classification were used, as shown in 

Figure 6.2. The first layer used a binary classifier to classify the tweets as ‘Has the sentiment’; ‘Neutral’ 

means that a tweet does not include an opinion about the target, any one of the telecom company services. 

Then, in the second layer, the binary classifier classifies the tweets as Positive or Negative. There are two 

binary classifiers in the third layer; the third classify the tweets as Strongly Positive or Positive, and the fourth 

classifies the tweets as Strongly Negative or Negative. Four data frames were created via a Python transcript 

– one for each model: 
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The first data frame had 2 classes: ‘neutral’ or ‘has sentiment’. 

label_dict = {'Neutral':0, 'negative':1,’Strongly Negative':1, 

'Positive':1,'Strongly Positive':1}   

df1 = df [df.Label.isin(['Neutral', 'Negative',' Strongly Negative', 

'Positive', ‘Strongly Positive'])] 

The second data frame was for further classifying the output of the ‘has sentiment’ class as negative, or 

positive. It did not affect the neutral class output.  

label_dict = {‘Strongly Positive':1,’Positive’: 1,'Strongly 

Negative':0,’Negative’:0} 

df2 = df [df. Label.isin([‘Strongly Positive',’Positive’,'Strongly 

Negative',’Negative’])] 

df2.Label = df2.Label. apply (lambda x: label_dict[x]) 

The third data frame was only applied to the previous outcome of the positive class, and further 

differentiated between strongly positive and positive. 

label_dict = {‘Strongly Positive':1,’Positive’: 0} 

df3 = df [df. Label.isin([‘Strongly Positive',’Positive’])] 

df3.Label = df2.Label. apply(lambda x: label_dict[x]) 

The fourth data frame performed the same for the outcome of the negative class, resulting in an output of: 

strongly negative or negative. 

label_dict = {‘Strongly Negative':1,’Negative’:0} 

df4 = df [df. Label.isin(['Strongly Negative',’Negative’])] 

df4.Label = df2.Label.apply(lambda x: label_dict[x]) 

Then the four models model1, model2, model3 and model4 were trained on the four datasets, respectively, 

df1, df2, df3 and df4. 

model1=build_2_input_gru_classifier(bidirectional=True,add_attention=Tr

ue,trained_embedding=True,num_classes=2) 

model2=build_2_input_gru_classifier(bidirectional=True,add_attention=Tr

ue,trained_embedding=True,num_classes=2) 

model3=build_2_input_gru_classifier(bidirectional=True,add_attention=Tr

ue,trained_embedding=True,num_classes=2) 

model4=build_2_input_gru_classifier(bidirectional=True,add_attention=Tr

ue,trained_embedding=True,num_classes=2) 

model1.load_weights ('Model1.hdfs') 

model2.load_weights ('Model2.hdfs') 

model3.load_weights ('Model3.hdfs'). 

model4.load_weights ('Model4.hdfs') 

After that, the hierarchal classifier was built and applied for merged data frames. 
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df = pd. concat([df1,df2,df3,df4]) 

 

 

 

 

 

 

 

 

 

  

6.6 Experimental Results  

Table 6.7 shows that there is improvement using HC, with 83.17% accuracy. The MSE obtained using HC 

was 0.31. That means that the hierarchical structure improves model performance. 

 

 

 

Table 6.7: Comparing between Hierarchical classification and Flat classification. 

6.7 Comparing with similar study 

At present, only three studies have used hierarchical structure for MWASA. The experiment run here was in 

2019, and only two studies preceded it. In comparison with these studies found and mentioned in the related 

research, results are as follows.  The best accuracy and Mean Square Error (MSE) in [502] for HC6 which is 

2-level classifier are 72.64% and 0.53, respectively. While the best accuracy and MSE for [470] was for 4-

level hierarchical classifier using KNN with 57.8% for accuracy and 0.96 for MSE. Regarding the [504] the 

best accuracy and F1 were 99.00% using decision tree in 3-level binary classification.  

 Ac F1 Pr Rc MSE 

HC 83.17% 0.80 0.80 0.80 0.31 

FC 70.4% 0.70 0.70 0.70 0.35 

 

 

 

 

 

 

 

Tweet  

Strongly Positive 

Positive 

Neutral 

Negative 

Strongly Negative 

Sentiment 

Negative Strongly Positive 

First Classifier 

Second Classifier 

Third Classifier Fourth Classifier 

Figure 6.2: Hierarchical classification structure of the tweets. 
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So, my HC structure outperforms their HC structure with 83.71% and 0.31 for accuracy and MSE.  

Recently, in 2020, another study was published that outperformed mine [504]. This is possibly due to their 

database, which is based on Modern Standard Arabic, which is easier to process than Dialectal Arabic (as in 

my work). Thus, results still emphasise the effectiveness of my approach to solving the MWASA problem.  

6.8 Customer Satisfaction Toward the Services  

To answer the second research question, RQ2 – what type of services for customers of telecom companies in 

Saudi Arabia are mentioned in tweets, and what is the customer sentiment about these services? – I applied 

the proposed hierarchical model on the AraCuts1. Table 6.8 shows the average F1 score for all services, over 

10 training sessions.  

 

 

 

 

 

 

 

 

 

Table 6.8: F1 average for each service. 

  

Service FI score 

Billing Price 0.96 

Quality of voice transmission 0.98 

Customer Service 0.88 

Internet Speed 0.88 

Network Coverage 0.96 

Good Offers 0.88 

Reasonable fees when calling someone uses 

another telecom company 

0.85 

Successful Calls 0.91 

Average F1 score on all services 0.91 
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After that, I applied the HC model to calculate the customer satisfaction percentage towards each company's 

service, based on the equation (5.1) in Chapter 5, Figure 6.3. 

 

Figure 6.3: Calculating customer satisfaction using HC. 

The code shown in Figure 6.3 calculates the customer satisfaction percentage using the 

calculate_customer_satisfaction function that used four labels – ignoring the neutral label because its weight 

is 0 – using the HC model through pred_prop as input for the extrapolating function, to calculate each 

service's customer satisfaction percentage through the for loop. 
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 Table 6.6: The data frame after the services were filled with 0 (except for the services mentioned in the tweet). 

 

 

 

 

 Tweet Label Service Company 
Num 

_ser 

Bill 

Price 

Call 

quality 

Customer 

Service 

Hiring 

section 

Internet 

Speed 

Network 

Coverage 
Offers Reasonable fees 

Successful 

Call 

Internet 

Speed 

ضعف  عندكم 

 الشبكه والابراج 

2 Network 

Coverage, 

Internet 

Zain 2 0 0 0 0 0 2 0 0 0 2 

الشبكة  شكرا ، 

 تحسنت

 والانترنت

2 Network 

Coverage, 

Internet 

Zain 2 0 0 0 0 0 4 0 0 0 4 

Services\Company 
Customer Satisfaction percentage (%) 

STC Mobily Zain 

Network Coverage 47.37 31.97 48.06 

Quality of voice transmission 49.09 49.37 48.78 

Customer Service 33.87 25.93 45.92 

Successful Calls 47.01 49.19 35.43 

Billing Price 42.17 48.84 48.50 

Reasonable fees when calling another telecom 

company 
49.25 49.59 50.00 

Good Offers 44.44 41.22 50.00 

Internet Speed 31.48 33.93 29.10 

Table 6.9: Customer Satisfaction of the STC, Mobily and Zain customers toward the services. 

 

Table 6-9: CS of STC, Mobily and Zain customer toward the services 
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6.9 Discussion 

RQ2: What type of services for customers of telecom companies in Saudi Arabia are mentioned in 

tweets, and what is the sentiment of customers about these services? 

The listed services that are mentioned in the tweets are as follows: Network Coverage, Phone Network, 

Quality of voice transmission, Customer Service, Successful calls, Billing Price, Good Offers, Reasonable 

fees when calling someone uses another telecom company, Browsing Speed and Hiring section. The 

Network Coverage and Phone Network were merged, as they pointed to the same service. Additionally, I 

merged Internet Speed and Browsing speed. I excluded the hiring section because it is out of scope for this 

research. 

Table 6.9 shows that the average customer satisfaction percentage towards the three companies’ service is 

below 50%. The STC customer satisfaction percentage is between 31.48% for Internet Speed and 49.25% 

for Reasonable Fees when calling another Telecom Company. That is under 50%, consistent with the 

customer satisfaction percentage overall towards the company, which is 31.06%. 

Regarding the Mobily company, the customer service scored lower satisfaction with 25.93%, although the 

Reasonable Fees when calling another Telecom Company service received higher satisfaction rates of 

49.59%.   

For the Zain company, the lowest satisfaction percentage of 29.10% is for Internet Speed service. In 

addition, it scored a higher satisfaction percentage than other companies with 50.0% for Reasonable Fees 

when calling another Telecom Company and Good Offers. 

RO2: To propose recommendations to improve the services of Saudi telecom companies. 

To achieve the second research objective, I used the tableau23 software to visualise the service importance 

versus customer satisfaction towards the service due to the enormous potential of tableau and its easy use. 

 
23 https://www.tableau.com 

 

https://www.tableau.com/


201 | P a g e  
 

The service importance was obtained from the questionnaire analysis in Chapter 4. I visualised this 

correlation to highlight potential recommendations for the decision-makers of the three telecom companies. 

 

Figure 6.4: The importance versus customer satisfaction for STC customers. 

 As shown in Figure 6.4, all the STC company services are placed on Low satisfaction and High importance 

area. All the services are important from the customers' point of view, yet the customer satisfaction towards 

these services is lower than 50%. Therefore, STC decision-makers need to pay attention to all these services, 

especially Internet Speed, where customer satisfaction is 31.48% and its service importance rating is much 

higher at 60.2%. In addition, Customer Service scored 33.87% customer satisfaction, and 65.62% service 

importance. That means these services are highly important to STC customers, but the satisfaction was low. 

Billing Price and Quality of Voice Transmission scored 78.9% and 77.4% as the most important services, 
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while the satisfaction was 42.17% and 49.09%; this is better than the satisfaction towards other standards, 

but there is room for improvement. 

 

Figure 6.5: The importance versus customer satisfaction for Mobily customers.  

Figure 6.5 shows four of the services – Customer Services, Network Coverage, Internet Speed, and Offers 

– located in the area Low satisfaction/High importance for the Mobily company. They scored the lower 

satisfaction rate of 25.93%, 31.97%, 33.93% and 41.22%. This means that the Mobily company's decision-

makers need to improve these services because their importance is much higher than customer satisfaction. 

This explains the answers to the open question in the questionnaire (Chapter 4): Why did you change from 

the previous telecommunication company you have used for your mobile phone? The Slow response 

of Customer Service was the reason most mentioned. Successful Calls, Reasonable Fees when calling 

another Telecom Company, Billing Price, and Quality of Voice Transmission are located in the borderline 

between Low Satisfaction areas, High Importance and High Satisfaction, and High importance, indicating 

that the service is important customer satisfaction percentage towards the service are close. Reasonable Fees 
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when calling another Telecom Company achieved the highest customer satisfaction percentage of 49.59%. 

This finding is consistent with the answers to the open question: Why did you change from the previous 

telecommunication company you have used for your mobile phone or Internet access?  The 

Unreasonable Fees when calling another Telecom Company was mentioned just by one participant as the 

reason for changing the company. In addition, the bad Quality of Voice Transmission received just one 

response as the reason for changing the company; its importance from a customer point of view is the highest 

percentage of all the services (72.6%), and the customer satisfaction towards this service is 49.37%. This 

service is good in Mobily company, but there is also room for improvement. The high Billing Price and 

Bad/Lack of Network coverage received the same number of responses as the answers to the open question 

mentioned above – 28.0% responses and 27.0% responses. Billing price scored 69% for the service 

importance and 48.84% for the customer satisfaction towards it from the customers’ point of view. The 

Network Coverage scored 71% for service importance and 31.97% for customer satisfaction. Therefore, the 

Mobily company's decision-makers need to improve these two services to increase customer satisfaction, 

especially given the importance of these services.  
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Figure 6.5: The importance VS. customer satisfaction for Zain customers. 

Figure 6.6 shows the results for the Zain Company. Internet Speed received a Higher Importance service 

rating from the customers with 77.5% and the lowest customer satisfaction with 29.10%. This means this 

service needs to improve more than any other services in the Zain company. They need to plan for more 

improvement because 21.3% of the responses indicated this as a reason for changing the company in the 

open question in the questionnaire. In addition, the Customer Service and Successful Calls are situated in 

the Low Satisfaction area. At the same time, High Importance, with 70.4% importance and 45.92%, is 

allocated to Customer Satisfaction for Customer Service. Successful Calls scored the highest service 

importance rating with 79%, 35.43% for customer satisfaction and no responses to change the company in 

the open question in the questionnaire. As has been stated before in Chapter 4, the Zain company has 

attended to this poor service and is trying to raise mobile networks' efficiency by agreeing to increase their 

network infrastructure. 
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Offers scored a High Importance service rating from the customers’ point of view, with 67%, and it received 

the highest customer satisfaction with 50.0%. In addition, the Quality of voice transmission service was 

rated with a high importance service with 74%, customer satisfaction 48.78% and no responses as a reason 

for changing the company. The improvement of this service depends on Zain's agreement to sell their towers 

to IHS Holding Limited (the largest cell tower operator in the markets of Europe, Middle East and Africa) 

and lease them back. Reasonable Fees when calling another Telecom Company, and Billing Price were 

rated at the same importance level of 74%. In comparison, the customer satisfaction towards the Reasonable 

fees service is a little bit higher at 50% than the satisfaction towards the Billing Price – 48.50%. Both 

services need improvement. This result is inconsistent with the questionnaire participants' responses about 

the reason for changing the company question. High Billing price was the reason most mentioned, with 

29.5% responses. 

In contrast, just one response mentioned the Unreasonable Fees as the reason for changing. Network 

coverage received 73% as an important service, 48.06% for customer satisfaction and 26.2% responses as 

the reason for changing. This problem has been recognised by the Zain company, and they agreed to increase 

their network infrastructure.  

6.10   Summary 

 This Chapter proposes a hierarchical structure and compares it with the flat classification structure. The 

results showed that using the proposed hierarchical classifier improves the outcome, based on several 

different measures, for the complex problem of Multi-Way Arabic Sentiment Analysis compared to FC. The 

best accuracy and MSE for FC are 70.4% and 0.35, respectively. For HC, the best accuracy and MSE are 

83.17% and 0.31. 
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Chapter 7: Customer Churn 

7.1 Introduction 

With the rising growth of the telecommunication industry, the customer churn problem has grown in 

significance as well. One of the most critical challenges in the data and voice telecommunication service 

industry is retaining customers, thus reducing customer churn by increasing customer satisfaction. To 

overcome the delayed feedback problem of traditional customer satisfaction questionnaires, new methods 

to extract real-time customer satisfaction feedback are needed. Therefore, this study offers a new approach 

to using social media mining to predict customer churn in the telecommunication field. This represents the 

first work using Twitter mining to predict churn in Telecom industries. A proposed SentiChurn model was 

developed to predict customer churn. The selection of the model's inputs was based on a literature review, 

questionnaire, and interview with an expert.  

The newly proposed method proved its efficiency based on various standard metrics, and secondly based 

on a comparison with the ground-truth real outcomes provided by a telecom company. The proposed 

SentiChurn model proved its efficiency firstly based on various standard metrics; average precision for our 

model was 93.0%, the average recall was 97.0%, the average F1-score was 95.0%, and the model accuracy 

was 95.8%, and secondly based on a comparison with the ground-truth real and recent outcomes provided 

by a telecom company as 27% of customer churn rate. SentiChurn model predicted the customer churn for 

the same period as 31.6%, which is close to the actual rate. This Chapter answers the RQ4:  Is it possible to 

predict the customer churn of telecommunication companies in Saudi Arabia by analysing customers’ tweet? 

7.2 Related Research 

7.2.1 New Customer Churn Model Variables 

I show here how our customer churn variables have been chosen. These data and parameters are presented 

here as gathered from three sources, sequentially: literature review, questionnaire and interviews with the 

telecom company experts (Table 7.1) and the customer satisfaction rate obtained from customer tweet 

mining. I can further divide the variables into two types: independent variables (predictors), all the variables 
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collected as inputs for the prediction model, and dependent variable, which represents the model outcome 

of the churn status variable. This section explains in detail where and why I use these specific variables 

based on literature.  

Using customer demographics (age and gender) as churn predictors in the churn prediction model is 

common in the literature [101, 114], [20], [115], [18], [116], [23], [62], [91], [116], [132, 511]. Olle and Cai 

[91] found that young people below forty-five years of age are more likely to churn. Similar results were 

found by [94], [62]: customers between forty-five and forty-eight years old are more likely to churn. 

Many researchers have studied the impact of a family or a friend leaving the same telecom company on a 

customer’s churn decision [62], [24]. That is because of the increase in call price between two customers 

with different voice provider. 

Consistent with this result, [511] showed that customers are more likely to churn if they have a social 

relationship with another customer who intends to or has already churned from the telecom company. This 

finding denotes that a company is at risk of churning if a customer’s relationship leaves the company. 

Moreover, [444], [132], [466] used calling behaviour and network interaction (call length and number of 

calls) as churn predictors. 

Some studies have realised the impact of social network information on churn prediction. For instance, [24] 

predicted customer churn by using customer information and their social network information. Their dataset 

was from the Pokec social network25, and the call details of customers issued from the network for six 

months. They found that combining social network information with call log details improved the churn 

prediction. The same results were obtained by [78], who studied the impact of the social network on the 

prediction of customer churn. They combined call details from a social network with information about the 

customers. Moreover, [444] used a relational learner to increase the performance of the churn prediction 

model. They analysed calling behaviour and network interaction. 

 

Different studies used the contract length as a churn predictor [20], [465], [94], [466], [62]. Balasubramanian 

and Selvarani [94] and [62] concluded that customers with contract lengths between twenty-five and thirty 

 
25 http://snap.stanford.edu/data/soc-pokec.html 

 

http://snap.stanford.edu/data/soc-pokec.html
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months are more likely to churn. Many studies are related to contract length and overdue bills as churn 

predictors. Balasubramanian and Selvarani [94] found that customers with contract lengths between twenty-

five and thirty months and four overdue bills are more likely to churn. In agreement with this result, [62] 

concluded that churning happens more for customers with contract lengths between twenty-five and thirty 

months and who have more than four overdue payments within six months. Mohanty and Rani [116] chose 

five attributes to predict churning, one of which also includes unpaid balances.  

Most studies analysed using the customer call details as the primary churn predictor [511].  

Coussement et al. [114] assessed the categorical and continuous data transformation in the performance of 

the churn prediction model. Their dataset was from a European telecommunication company. Some of the 

variables they selected were the number of minutes for outgoing calls and contacts with the call centre. In 

addition, [20] compared some techniques used in churn modelling. Their dataset was from a UK mobile 

telecommunication company. They included several variables, one of which was call usage detail.  

 

In 2016, [93] proposed a model for churn prediction for telecommunication companies. They used historical 

records related to the telecom company. The attributes included phone and call details. Forhad et al. [115] 

applied the rule-based classification to predict whether a customer is likely to churn or not. Their dataset 

contained customer information such as call details (billing information and length of calls).  

 

Furthermore, [11] applied different data mining techniques to predict customer churning. They applied their 

methodology to the online dataset from Kaggle. They used fourteen attributes, including call details, customer 

service calls and phone number. Chen et al. [18] built a churning prediction model for a mobile 

telecommunication company. They used two datasets: customer information and statistical data, which 

contained call length and complaint information. Mohanty and Rani [116] assessed many techniques to 

predict customer churning and used the dataset from an Indian telecommunication company. They chose five 

attributes to predict churning: customer dissatisfaction and satisfaction, switching costs, quality of services, 

service usage in terms of used minutes in calls, call details, and unpaid balances. They also used customer-

related variables, such as customer gender, customer status or whether a customer is an active user. Tiwari et 

al. [117] concluded that customers with no active plans and no incoming and outgoing calls within six months 
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are likely to churn. 

 

In addition, [119] predicted customer churning in the telecommunication industry based on rough set theory. 

They used historical data on a publicly available dataset and found some essential attributes in the customer 

churn prediction, such as evening minutes, customer service calls and day minutes. Keramati et al. [465] 

proposed a prediction model for a customer churn by using different data mining techniques. They used 

customer information, such as contract length, customer complaints and call details.  

Hudaib et al. [512] used three hybrid models over two stages: data clustering and churning prediction. They 

collected the three-month call data of customers of a Jordanian telecommunication company. Wei and  Ghiu 

[63] predicted  customer churn according to the call details and contract information gathered from interviews 

with telecom experts. Singh and Singh [23] proposed a model for predicting high-value customers and 

customers' churner. They used customer information, such as age, sex and call details. Numerous studies 

recognised the importance of including customer complaints as an attribute in their churn prediction model 

[465], [117], [116], [18], [115], [64], [20], [513], [91], [23], [466], [132], [106], [116, 138]. 

 

After reviewing the literature, I listed the most common techniques in Table 3. As shown in the literature, 

decision trees and logistic regression are the most common techniques used in churning prediction models. A 

decision tree offers a graphical representation of the relations between churning variables [98]. CART or 

CHAID are examples of the algorithms used to develop a decision tree [514]. Both logistic regression and 

decision tree are effective and easy techniques to predict churning and analyse the characteristics that cause a 

churn [93], [515], [96], [94]. However, there are some disadvantages in using a decision tree, such as being 

affected by the complex relations between the variables [516]. The following technique commonly used in the 

literature is a neural network, which has some limitations, including its need for an extensive dataset and 

extensive time consumption in training [93]. Support vector machine and naïve Bayes were likewise used.
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Num. Customer Churn Variables Description Type of Variable Range 

1 Age 
Age group has been 

identified 
Ordinal variable 

18–24, ‘1’ 

25–34, ‘2’ 

35–44, ‘3’ 

45–54, ‘4’ 

55–64, ‘5’ 

65+, ‘6’ 

2 Gender Male or Female Binary variable 
Male, ‘0’ 

Female, ‘1’ 

3 
Has a relation at the same telecom 

company 

Does the customer have a 

family member who used 

the same telecom provider 

as he/she did? 

Binary variable 

Yes, ‘1’  

No, ‘0’ 

4 Overdue bill 
Does the customer have an 

unpaid bill? 
Binary variable 

Yes, ‘1’  
No, ‘0’ 

5 Long period 

Contract length in month 

from start day of contract 

until June 2017  

Ordinal variable 

> 1, ‘1’ 

1 > 5, ‘2’ 

5 > 10, ‘3’ 

10+, ‘4’ 

6 New customer 
Has the customer used a 

telecom provider recently? 
Binary variable 

Yes, ‘1’ 

No, ‘0’ 

7 Inactive Is the customer active? Binary variable 
Yes, ‘1’ 

No, ‘0’ 

8 Low data 
Does the customer have 

low data usage? 
Binary variable 

Yes, ‘1’ 

No, ‘0’ 

9 Low talk 
Does the customer make 

few phone calls? 
Binary variable 

Yes, ‘1’ 

No, ‘0’ 

10 No Internet & Talk & SMS 

Does the customer not use 

the Internet, phone calls 

and short message service? 

Binary variable 
Yes, ‘1’ 

No, ‘0’ 
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11 No value-added service 
Does the customer use any 

of the non-core services? 
Binary variable 

Yes, ‘1’ 

No, ‘0’ 

12 Customer satisfaction 

Percentage of customer 

satisfaction from Twitter 

analysis  

Continuous variable  

13 Churn status Does the customer churn? Binary variable 

Churner/Non-churner 

Churner, ‘1’ 

Non-churner, ‘0’ 

Table 7.1: Details of The Customer Churn Variables. 
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7.3 Methodology 

The two types of known customer churning are voluntary and involuntary [517]. The decision of a customer 

to move to another telecom company on their own is called voluntary, while a customer ceasing telecom 

company services for reasons outside their influence, such as death or change of the customer’s job, is called 

involuntary [65]. Usually, the literature is interested in voluntary customer churning because it describes the 

relationship between a customer and a company. There are two types of customer payment schemes: post-

paid and pre-paid [518]. Post-paid customers receive a monthly bill for company services, while a pre-paid 

customer is charged in advance for company services. 

In this study, a churner is defined as a post-paid customer who voluntarily leaves the company and stops 

telecom services within our time window. By contrast, a non-churner in our study is a post-paid customer 

who remains with the company within our time window. 

Data mining refers to knowledge discovery from a large database [519]. The three most common data mining 

methodologies used to develop data mining models are Knowledge Discovery Databases (KDD) [520], Cross-

Industry Standard Process for Data Mining (CRISP-DM) [521], [4] and Sample, Explore, Modify, Model, 

Assess (SEMMA), which was created by the SAS Institute (Inc SI. SAS version 9.1., 2005). The literature 

review indicated that KDD and CRISP-DM are more widely used than SEMMA [522], [523]. Although KDD 

includes nine phases and CRISP-DM has six phases, their phases are equivalent [522].  
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Figure 7.1: The CRISP-DM approach (based on [4]).         

I adopted some of the steps of CRISP-DM [4] that suit our task to develop our churn prediction model 

(SentiChurn model, Figure 7.2) because CRISP-DM is appropriate for a business domain [524]. The six phases 

of CRISP-DM are shown in Figure 7.1. 

 

 

 

 

  

 

Defining the variables entails collecting the variables from the sources (Figure 7.2). To determine the 

possible variables that can differentiate between the behaviour of churners and non-churners, variables were 

collected from three sources (Table 7.1). First, I collected variables from the literature review. Some 

variables found in the review were disregarded because of the difficulty of obtaining them from telecom 

companies due to privacy concerns, such as name, phone number and code, call details and billing 

information. This is the case with many prediction model systems in other countries [117]. Next, I conducted 

a survey via questionnaire with the telecom customers. The questionnaire aimed to test the relationship 

between the collected variables and churning behaviour from a customer’s perspective. Afterwards, I 

conducted an informal interview with a Saudi telecom expert (a telecom business consultant) to show here 

 

 

 

  

 

 

 

Model 

Deployment 

     Figure 7.2: Our SentiChurn Model Approach. 
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the collected variables and question him about other variables from the company’s point of view. The 

telecom company divides its customers into segments based on their own selected set of variables and 

calculates the churn rate for each segment quarterly, half-yearly and annually. They propose that the 

variables for one segment have higher churn rates half-yearly because a higher churn rate must be obtained 

to train the prediction model. Based on the literature review results, questionnaire, and interview, I collected 

some variables that could help us predict customer churning and differentiate between churners and non-

churners. The company provided us with historical data from two years ago to maintain customer privacy 

about their current customers. According to its request, the company name has been withheld and is called 

in the rest of the document ‘the Company’.   

 

Data preparation includes data description, data transformation and initialization of the dataset model 

(Figure 7.2). In training the model, an appropriate data mining algorithm (G. Modelling) the model in the 

training set is trained to address the problem.  

In model evaluation, the model is evaluated on the test set by using the performance measures. In the model 

deployment stage, the prediction result is presented to the company for evaluation from a real-world and 

company perspective.  
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7.3.1 Data Set Construction 

The dataset has been constructed from historical data that the Company provided and the customer 

satisfaction rate measured through Twitter mining [336]. I collected a sample of 100,000 customers’ data 

from the Saudi telecom Company. From this figure, 27,000 were churners while 73,000 were non-churners. 

These historical data of customers were collected randomly within six months, from January 2017 to June 

2017. Earlier studies differed in setting the time window for churning analysis and prediction. For instance, 

[113] proved that a customer mood on Twitter could be a predictor for churning three months later. In 

addition, [512] collected the three-month call data of customers from a Jordanian telecommunication 

           Figure 7.3: Workflow to develop the customer churn variables. 
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company. Their results agreed with those found by [525] that two to three months is a sufficient time window 

to prepare a strategy for retaining customers and preventing churning.  

On the contrary, [91] stated that four months is needed to predict a customer churning based on his/her 

dissatisfaction. However, [13] increased this to a five-month collection of tweets as a dataset to predict their 

customer growth model. Other studies set even six months as the time window for churn prediction [94], 

[20], [24], [62]. Tsai and Lu [92] found that a customer should be with a company for six months or longer 

to have an accurate prediction model.   

 

Thus, our selected time window is adequate to conform to even the strictest previous studies. I take [92]’s 

suggestions into account, as I agree that a customer could become resentful but may take a more extended 

period to carry out the churning action. Thus, I can consider that, as our dataset is from January 2017 to 

June 2017, the churning can only be estimated between July and December 2017 (Figure 7.4). 

 

 

 

 

 

 

 

7.3.2 Historical Data Set Preparation 

The variable data type is transformed in the dataset preparation step, and the binary data are normalised. The 

goal of data preparation is to help the model deal with data easily [114]. The binary variable is normalised to 

‘1’ for ‘yes’ and ‘0’ for ‘no’ and ‘0’ for ‘Male’ and ‘1’ for ‘Female’. Regarding the continuous variables, 

 

 

 

 

January June December 

  

July 

Time period 

for monitoring 

customers and 

predicting 

the churning 

Time period for 

churning 

 

                                          Figure 7.4: Time window of the prediction. 
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 such as age and long period as a customer, I transform them into categories as an ordinal variable and then 

assign them by sequential numbering starting from 1. The final collected variables and their types that will be 

used as inputs for our prediction model are listed in Table 7.1. The dataset captures the features of the 

population under study. The outcome from this step is the final dataset that will be used to train the model 

(Figure 7.5).  

7.4 Modelling 

7.4.1 Performance Evaluation Metrics 

 

There are useful metrics that should be used to assess the model's performance and compare it with a 

benchmark. Numerous churning prediction studies used specific performance metrics, such as precision, recall, 

F1, accuracy, confusion matrix, specificity, sensitivity, area under the curve (AUC) and receiver operating 

characteristic curve (ROC). A confusion matrix is a tool used with binary classification; it compares the actual 

Positive and Negative and the predicted Positive and Negative. It uses the True Negative (TN), True Positive 

(TP), False Negative (FN) and False Positive (FP) [472] as follows: 

• FP: indicates that our model predicts the customer is a churner, but the customer is a non-

churner. 

• FN: indicates that our model predicts the customer is a non-churner, but the customer is a 

churner. 

• TP: indicates our model correctly predicts the customer is a churner. 

• TN: indicates our model correctly predicts the customer is a non-churner. 

 

   Figure 7.5: Final Data set after Preparation. 
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There are other metrics used in addition to TP, TN, FN and FP, such as sensitivity, specificity and accuracy. 

The weakness of an accuracy measure originates from overusing the sensitivity and specificity measures 

[14]. Sensitivity is equal to recall. Meanwhile, specificity is the ratio of the negative correctly predicted as 

shown in the following equation: 

Specificity =
TN 

(TN + FP)
        (7.1) 

High sensitivity is more preferred than high specificity in telecom providers because the cost of an untrue 

classification of a non-churner is less than the cost of an untrue classification of a churner [14]. 

Some churning prediction studies prefer to evaluate model performance by using ROC and AUC because 

these curves' ability to remain the same with imbalanced data, even if the positive and negative instances 

are changing [14].  

ROC is a two-dimensional curve drawn to show the relation between TP, the churner correctly predicted, 

and FP, the non-churner incorrectly predicted as a churner [526]. The best model performance occurs when 

the ROC is close to (0,1). A better model performance also has a higher AUC.   

Moreover, I used a cross-entropy/logarithmic loss (log loss) as a loss function; both calculate the same in 

the classification problem. The loss function is an error metric to measure uncertainty. It is one of the 

measures used for evaluating the performance of a binary classifier from the probability estimation between 

0 and 1. Log loss penalises both types of errors, especially those predictions where the confidence is 

inaccurate. If the log loss is closer to zero, then this indicates the good performance of the model.  

Using the log loss provides us with an accurate view of our performance model based on the prediction of 

probabilities, not only the output.  

𝐻𝑝(𝑞)𝑛 =
1

𝑁
∑ 𝑦𝑖 log((𝑃(𝑦𝑖) +(1 − 𝑦𝑖)

𝑛

𝑖=1
log(1 − 𝑃(𝑦𝑖))  (7.2) 

where N is the number of items on the training set; 
1

𝑁
 is the probability of each class; log is the natural 

logarithm; y is the binary label, which is either 0 or 1; and P(y) is the probability predicted of the class. 

7.4.2 SentiChurn Churn Modelling Technique 

I used the proposed model that explained in detail in Chapter 5. 
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7.4.3 Training the Model 

Given that an overlap exists between a churner and a non-churner, the threshold ‘cut-off’ must be defined. 

Usually, the threshold is set as fifty per cent. Any probability right of the threshold has the most specificity, 

while any probability left of the threshold has the most sensitivity, as shown in Figure 7.6.  

 

 

 

 

    Figure 7.6: Threshold setting between churner and non-churner. 

The dashed line in Figure 7.7 is the threshold. Any probability under the threshold means higher sensitivity, 

with more churners correctly predicted and better model performance, whereas any probability under the 

threshold means higher specificity, with more non-churners incorrectly predicted and worse model 

performance. The closer curve to the top left corner (0,1) denotes the better prediction power of the model. 

The ROC of the class’ ‘churner’ and ‘non-churner’ is 0.97; this denotes the power of our prediction model 

performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 False Positive Rate 

Specificity 

No predictive power 

 

Figure 7.7: ROC result for SentiChurn model. 
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Table 7.2: The Classification report. 

 

 

Figure 7.8: Confusion Matrix. 

 

The classification report in Table 7.2 denotes the performance model, where the average metrics precision 

for both classes is 0.93, the average recall for both classes is 0.97, the average F1-score for both classes is 

0.95, and the model accuracy is 95.8%. 

 

In the confusion matrix (Figure 7.8), 13,611 non-churner customers were correctly predicted as non-

churners by our model. Furthermore, 5,549 churner customers were correctly predicted as churners by our 

model, 840 non-churner customers were predicted as churners by our model and no churners were predicted 

as a non-churner customer by our model. 

The log loss score is 0.1, which means our model is fine. Figure 7.9 shows the probability distribution (x) 

with the log loss(y) and the distribution between the actual and predicted values.   

 

Non-Churner 

Precision Recall F1-score 

1.00     0.94     0.97     

Churner 0.87       1.00       0.93      

macro average 0.93 0.97 0.95 

weighted average 0.96 0.96 0.96 

13611 

 

13611 

840 

 

840 

5549 

 

5549 

0 

 

0 
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7.4.4 Evaluating the Model 

I evaluate the model by using the performance evaluation metrics and validating the percentage of 

customer churn than our model predicted versus that provided by the company. 

The company presented a customer churn percentage of 27% from January 2017 to June 2017. The model 

predicted the customer churn for the same period as 31.6%, which is close to the actual percentage.  

The model predicts the customer churn percentage based on the following equation: 

𝑐𝑢𝑠𝑡_𝑐ℎ𝑢𝑟𝑛 = 𝑡𝑜𝑡𝑎𝑙_𝑐ℎ𝑢𝑟𝑛𝑒𝑟/𝑛𝑢𝑚_𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 ×  100  (7.3) 

Where total_churner is the total number of churners in the dataset, and num_customers is the total number 

of all the customers in my dataset.  

After validating the customer churn percentage by using the historical data of customers and the customer 

satisfaction percentage predicted by Twitter mining, I answered the RQ4, ‘Is it possible to predict the 

customer churn of telecom companies in Saudi Arabia by analysing customers’ tweets?’  

7.5 Summary 

In this chapter, I proved the third research hypothesis: "The customer churn of telecom companies in Saudi 

Arabia can be predicted by analysing customer satisfaction in Twitter" by building our prediction model. 

The selection of the model's inputs was based on a literature review, questionnaire, and interview with an 

expert. The proposed SentiChurn model proved its efficiency firstly based on various standard metrics; 

average precision for our model was 93.0%, the average recall was 97.0%, the average F1-score was 95.0%, 

and the model accuracy was 95.8%, and secondly based on a comparison with the ground-truth real and 

Figure 7.9: Log loss score versus Probability distribution. 
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recent outcomes provided by a telecom company as 27% of customer churn rate. SentiChurn model 

predicted the customer churn for the same period as 31.6%, which is close to the actual rate.  The next 

chapter will conclude the recommendation for the company based on the last experiments.  
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Chapter 8: Conclusions and Future Work 

 

This Chapter reviews the main contributions of the thesis concerning the research hypothesis and raises 

questions regarding future work. 

8.1 Thesis Summary and Contributions 

The flexibility in mobile communications allows customers to switch from one service provider to 

another quickly, making customer churn one of the most critical challenges for the data and voice 

telecommunication service industry. Churn prediction models are required to avoid facing significant 

losses. Customer satisfaction is a popular topic in marketing literature, as much research correlates 

customer satisfaction with customer loyalty [11, 13, 14]. Customers who are satisfied with a company’s 

services make a company more valuable because the cost of attracting new customers is five times 

greater than retaining existing customers [15], [11], [14]. 

An evaluation of associated literature presented in Chapter 2 shows that many studies have been carried 

out to create useful models to predict churners. While these models suffer in being applied post-factum 

and lack real-time analytics to target customers efficiently [23], there is a demand for such improved 

customer churn models. The delay can cause drops in market position, particularly for companies with 

a vast customer community spreading across various time zones; monitoring daily data is challenging. 

Therefore, real-time methods are needed to solve the delayed acquisition of feedback and create 

efficient maintenance strategies. 

 

The thesis hypotheses were: If measurable criteria for customer satisfaction are defined, they could extract 

services that do not meet the expectations of customers. Customer satisfaction with telecom companies in 

Saudi Arabia can be monitored by analysing microblogging sites. The customer churn of telecom companies 

in Saudi Arabia can be predicted by analysing microblogging sites. 

To examine these hypotheses and accomplish the objectives as presented in Section 2.1, several steps were 

essential. This work's main aim has been to capture user satisfaction with telecom companies by mining 

microblogging sites and using these insights to apply social media mining techniques, to develop a useful 
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churn prediction model, taking into consideration language and location factors, and to use those data to 

make recommendations for these telecom companies.  

This research aims to contribute to the Arabic sentiment analysis community by addressing the deficiency 

of Saudi dialect corpora and sentiment lexicon for SA. Developing natural language processing tools for 

Arabic text requires an understanding of the unique internal structure of Arabic [38]. 

To achieve the aims of this research, a deductive approach is used. Deductive research involves adopting 

hypotheses and testing them in a causal manner [50] to explore the research variables' relationships. A 

literature review determined that there are distinct gaps in analysing of social media sentiments to predict 

customer churn. Accordingly, this research addressed the relationship between the variables of a Twitter 

sentiment analysis, customer satisfaction and customer churn prediction using a systematic review of the 

literature. The results showed a need for an Arabic sentiment analysis tool and resources freely available 

and specific to Dialectical Arabic. In addition, I identified a requirement for a real-time based churn 

prediction model that takes into consideration the language and location factors; the above investigation 

point is the first contribution of this study. 

To address the Arabic sentiment analysis requirement, I have constructed, cleaned, pre-processed and 

annotated a 20,0000 Gold Standard Corpus (GSC) to create AraCust, the first Telecom GSC for Arabic 

Sentiment Analysis DA, as explained in Chapter 3. AraCust contains Saudi dialect tweets, processed from 

a self-collected Arabic tweets dataset, and it has been annotated for sentiment analysis. Additionally, 

AraCust's power is illustrated by performing an exploratory data analysis to analyse the features sourced 

from the AraCust corpus's nature to choose the suitable ASA methods. In addition, using a corpus-based 

approach, the AraSTw lexicon has been manually created (Chapter 3). I evaluated the AraSTw lexicon 

using a simple lexicon-based approach, where negative and positive words were counted to define each 

tweet sentiment. I used one internal data set, our AraCust corpus, and one publicly available Arabic dataset 

created from the Twitter Arabic Sentiment Tweet Dataset (ASTD).  The AraSTw lexicon outperformed the 

accuracy on ASTD by 44.7%. Also, it outperformed by 1.11% the accuracy on AraCust. The AraCust corpus 

and AraSTw lexicon have been released online for free to the research community. These resources are the 

second contribution of this study. 
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To make recommendations to the telecom companies, I first extracted a taxonomy of metrics based on the 

current literature, and then I evaluated them using a questionnaire with the telecom customers. The 

questionnaire aimed to test the metrics and the relationship between the collected variables and churning 

behaviour from a customer's perspective, as explained in Chapter 4. 

Secondly, Twitter sentiment analysis has been examined using shallow machine learning, deep learning 

models and transformer networks. The machine learning algorithm, SVM, was used to test both baseline 

and corpus-based features. Then, I used the two most popular deep learning-based models, LSTM and GRU, 

with two different implementations: simple LSTM and GRU, and bidirectional LSTM and GRU, with a 

different setting. This was defined as the most appropriate model for the ASA and the telecommunication 

corpus. After that, I utilised three different transformer networks, RoBERTa, AraBERT and hULMonA.  

Based on the results, I developed a new prediction model that fills the detected gaps in the ASA literature 

and fits the telecommunication field. The proposed model proved its effectiveness for Arabic sentiment 

analysis and churn prediction. The taxonomy of metrics has been used to measure telecom services' 

satisfaction and visualise the importance of the metrics (services) to set the recommendations.  

8.2  Answers to the Research Questions   

In the following, each research question is separately discussed in terms of how this thesis answered it. 

RQ1. What are the traceable, measurable metrics for customers’ satisfaction with telecom 

companies in Saudi Arabia and how can they be combined for visualisation? 

I defined customer satisfaction metrics using a report by the Saudi Communications and Information 

Technology Commission [438], related research (Chapter 2) and the tweet annotation process (Chapter 3). 

Then, I evaluated the importance of these metrics using statistical analysis for the responses obtained by the 

questionnaires from the customers’ point of view. The final metrics are: ‘network coverage’, ‘quality of 

voice transmission’, ‘customer service’, ‘successful calls’, ‘billing price, ‘good offers’, ‘reasonable fees 

when calling another telecom company’ and ‘internet speed’. I analysed the importance of each metric for 

each telecom company using RII. The taxonomy of the measurable metrics of customer satisfaction and 

their relationship with customer churn is shown in Chapter 4. 
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What type of services for customers of telecom companies in Saudi Arabia are mentioned in tweets, 

and what is the sentiment of customers about these services? 

The listed services mentioned in the tweets are Network Coverage, Phone Network, Quality of voice 

transmission, Customer Service, Successful Calls, Billing Price, Good Offers, Reasonable Fees when calling 

someone who uses another Telecom Company, Browsing Speed, and Hiring section.  The Network 

Coverage and Phone Network were merged as they pointed to the same service. Additionally, I merged 

Internet Speed and Browsing Speed. I excluded the hiring section because it is out of scope for this research. 

I applied the proposed hierarchical model on the AraCust1 to calculate the CS percentage toward each 

company's service, Chapter 6. After that, I used the tableau software to visualise the service importance 

versus customer satisfaction toward the service. The service importance was obtained from the questionnaire 

analysis in Chapter 4. I visualised this correlation to set the recommendations for the decision-makers of the 

three telecom companies. 

Can we automatically measure and make automatic predictions about customers’ satisfaction with 

telecom companies in Saudi Arabia using Twitter? 

Several ASA experiments were carried out on AraCust (Chapter 5), starting by applying SVM as a baseline 

model to choose the best feature sets with many feature selections experiments. Next, I compared two state-

of-the-art deep learning models, LSTM and GRU, with different embeddings and settings, on AraCust, to 

define the best model for AraCust corpus and Arabic dialect characteristics. After that, three transformer 

networks, AraBERT, hULMonA and RoBERTa models, were utilised on AraCust to define the best 

performance suitable to the corpus and the dialect Arabic characteristics. Finally, I developed a model 

combining the AraBERT model and Bi-GRU to predict customer satisfaction for the three companies.  

The results proved that the prediction model is highly accurate when comparing with other models, and it 

achieves the prediction aim of accurately comparing with the actual results provided by the 

telecommunication customers. 

Is it possible to predict the customer churn of telecom companies in Saudi Arabia by analysing 

customers’ tweets? 
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I proposed a new variable input to the churn prediction model (SentiChurn), customer satisfaction 

percentage, calculated using SA, as shown in Chapter 7. The proposed model proved its efficiency based on 

various standard metrics: the average precision for the model was 93%, the average recall was 97%, the 

average F1-score was 95%, and the model accuracy was 95.8%. The efficiency was based on comparing the 

actual and recent outcomes provided by a telecom company as 27% of customer churn rate. The SentiChurn 

model predicted the customer churn as 31.6%, which is close to the actual rate.  

8.3 Limitations and Future work 

One of the limitations of this research was that the proposed method depended on one social media platform 

only, Twitter. This may mean that, as not all the telecommunication subscribers used social media to express 

their feelings towards their telecom company, some customers are therefore not included in this study as 

they may have used other means to communicate with or complain about their telecom companies. The 

reason for this was one of practicality – at the start of this research, other social media platforms, were 

considered; however, their unavailability for research purposes limited my choices.  

In addition, STC customers are greater in number than other telecommunication companies' customers in 

Saudi Arabia because it is the primary (most popular) Saudi telecommunication company in Saudi Arabia, 

making the dataset unbalanced. However, balancing techniques were applied to counter this issue to the 

extent possible.  

Next, the availability of customer data is limited to one company due to other telecommunication companies' 

privacy issues, so the SentiChurn model is applied only to one telecommunication company. 

The future work includes: 

• Expanding the Arabic dialect resources 

This work aimed to build further the gold standard Saudi Corpus and Saudi lexicon for ASA, as 

presented in Chapter 3. This is recommended by some studies that have identified the need for 

comprehensive Arabic dialect resources to combine their morphological analysis and tokenisation into 

one process. Doing so may resolve the Arabic tokenisation issue and improve the process when 

conducting SA and opinion mining [28], [34]. 
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• Better handing for Arabic language in ASA tool 

I recommend creating a specific corpus for the language valence shifters and negation with their ranks. This 

recommendation demands expert Arabic linguists' association with a computer specialist to give the best 

ASA corpus.  

8.4 Broader applicability of this work 

In this work, the ASA model was considered when proposing solutions for the CS and CC problem in the 

telecom sector. Different fields, such as education, have different features, making applying my approach 

is interesting because the proposed approach based on text-mining. Investigations could be made into how 

this work can be generalised to other fields and what changes or improvements are needed to enhance this 

work's recommended solutions to be enhanced. 
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Appendices 

Appendix A: Annotation Guideline 

 

Annotation Guidelines وسيم ارشادات الت 

هذه الدراسة تهدف الى قياس رضاء المستخدمين اتجاه شركات الاتصال عن طريق تحليل أراء العملاء في تويتر  

 .بالأسفلوتصنيفها حسب الجدول الموضح 

The aim of this study is to measure customer satisfaction toward telecommunication 

companies through analysing the customer tweets on Twitter according to the table 

shown below. 

Label  الوسم Definition  التعريف Example  مثال 

 إيجابي   

Positive 

دائل  على  تحتوي  التغريدة  كانت  إذا 

واضحة على رأي إيجابي نحو الشركة  

 ، حتى لو لم يكن الرأي قوي جدا . 

 If there is a clear indicator 

that the opinion is positive 

even if  it is not strong. 

 .ممتاز   Mobilyانترنت 

Internet of Mobily is good 

  

 .أيجابيتصنيف التغريده: 

 Tweet label : Positive 

 سلبي    

 Negative 

إذا كانت التغريدة تحتوي على دائل واضحة 

على رأي سلبي ، حتى لو لم يكن الرأي قوي 

 جدا .

 If there is a clear indicator that 

the opinion is a negative, even if  

it is not strong. 

 .ضعيفة  Mobilyخدمة الانترنت في 

Internet of Mobily is   weak.     

 .سلبي :تصنيف التغريده

Tweet label: Negative.                 

 ساخر  

Sarcasm 

 

 

 

  

التغريده ساخره أذا كان في ظاهرها تعتبر 

أيجابي ولكنها ضمنيا تحمل رأي سلبي  او 

   .بالعكس

 The tweet considers a sarcasm if 

a tweet says something positive 

while it  really means something 

negative or vice versa.    

موبايلي المستشار الخبير الرائع فشل في 

  .المشكلةحل 

Mobily is the wonderfully 

expert advisor failed to resolve 

the problem.  

 .ساخر :التصنيف

 Label : Sarcasm. 

 لايمكن تحديده  

Indeterminate 

 

عند عدم وضوح الرأي نرجو عدم   

 التخمين ولكن اختيار)لا يمكن تحديده(.

When the sentiment doesn't 

clear choose (indeterminate). 

 موبايلي شركة جيدة ولكن من الاسوأ. 

Mobily is a good company, 

but it is one of the worst 

companies here. 

 

 

اذا كانت التغريدة تحتوي على خدمة من خدمات شركات الاتصالات المحددة مسبقا فالرجاء تحديد الخدمة والمشاعر  

 اتجاهها.

According to the table below, choose the predefined telecommunication services from 

the list mentioned in the tweet and sentiment toward it. 
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Label  الوسم Definition  التعريف Example  مثال 

 إيجابي   

Positive 

دائل  على  تحتوي  التغريدة  كانت  إذا 

واضحة على رأي إيجابي نحو خدمة من 

خدمات الشركة ، حتى لو لم يكن الرأي  

 قوي جدا . 

 If there is a clear indicator 

that the sentiment is positive  

toward the service even if  it is 

not strong. 

 ممتاز   Mobilyانترنت 

Internet of Mobily is good 

  

 أيجابي تصنيف التغريده: 

 Service label : Positive 

 ممتازة  الكلمة المؤثرة :

Sentiment-bearing word : good 

 يجابي الموثرة: اتصنيف الكلمة 

Label of sentiment-bearing 

word: Positive 

   انترنت: لخدمةا

 Service:  Internet    

 ايجابي بشدة 

Strongly Positive 

تعتبر المشاعر اتجاه الخدمة ايجابيه  

بشدة اذا تطابقت مع احد الحالات  

 التالية:   

If the service's sentiment is 

one of the following cases that 

indicates the feeling is 

strongly positive  . 

 

 الانترنت سريع جدا    (1

Internet of Mobily is very 

fast. 

كانت  1 دائل (إذا  تحتوي على  التغريدة 

كلمة   مع  إيجابي  رأي  على  واضحة 

دايما,  توكيدية  مثل )جدا, كثيرا, مره, 

   أو دعاء. أكيد..(

 The tweet has a positive 

sentiment with intensifier 

such as very, or extremely   
 

 أيجابي بشدة  :تصنيف الخدمة

service label:  Strongly positive 

 سريع  :الكلمة المؤثرة

 Sentiment-bearing word: fast 

 أيجابي  :تصنيف الكلمة الموثرة

Label of sentiment-bearing 

word: positive 

الانترنت في موبايلي ممتاز وسريع   2)

 وقوي 

Internet of Mobily is excellent 

and fast. 

في   (2 الإيجابية  الكلمات  تعددت 

 التغريده الواحده كلمتين وأكثر. 

The tweet has more than two 

positive words toward the 

service . 3) الانترنت في موبايلي سرييييع   

Internet of Mobily is fassst. 3)   تكرارالحرف مع  إيجابي  رأي 

 اكثر من ثلاث مرات.  

The tweet has a  positive 

sentiment-bearing word with 

repeated letters.   

 

الانترنت في موبايلي الاسرع  4)    

Internet of Mobily is fastest. 

على  (4 تحتوي  التغريده  كانت  أذا 

مثل   مقارنة  بشكل  ايجابيه  كلمة 

 أحسن, أسرع. أفضل, 

The tweet has a positive 

sentiment-bearing word in 

superlative form. 
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Label  الوسم Definition  التعريف Example  مثال 

 سلبي    

 Negative 

دائل  على  تحتوي  التغريدة  كانت  إذا 

لم  لو  ، حتى  سلبي  واضحة على رأي 

 يكن الرأي قوي جدا . 

 If there is a clear indicator 

that the sentiment is a 

negative toward the service, 

even if  it is not strong. 

ضعيفة   Mobilyخدمة الانترنت في 

.Internet of Mobily is   weak     

سلبي  Service label -تصنيف الخدمة

Negative                    

 ضعيف  :الكلمة المؤثرة

  Sentiment-bearing word:  

Weak 

 سلبي  :تصنيف الكلمة الموثرة

Label of sentiment-bearing 

word: Negative  

 : الانترنت  لخدمة ا

Service Internet 

 سلبي بشدة 

Strongly Negative 
 

تعتبر التغريدة سلبيه بشدة اذا تطابقت مع 

   احد الحالات التالية

If the service's sentiment is 

one of the following cases 

that indicates the feeling is 

strongly negative . 

 انترنت موبايلي بطئ جدا  )1

Internet of Mobily is very 

slowly. 

 سلبي بشدة  :تصنيف الخدمة 

 Service label :Strongly 

Negative 

 بطيء  :الكلمة المؤثرة 

Sentiment-bearing word : 

slowly 

 سلبي تصنيف الكلمة الموثرة: 

Label of sentiment-bearing 

word: Negative 

   الانترنت الخدمة:

Service : Internet 

 

 

إذا كانت التغريدة تحتوي على دائل   (1

واضحة على رأي سلبي مع كلمة  

توكيدية  مثل )جدا, كثيرا, 

 دعاء. مره,دايما, كمان ...( أو 

The tweet has a negative 

sentiment with intensifier 

such as very, or extremely   

 

  

(اذا تعددت الكلمات السلبيه في التغريده 2

 الواحده كلمتين وأكثر.  

The tweet has more than two 

negative words toward the 

service.  

 نترنت موبايلي بطئ وضعيف   ا 2) 

Internet of Mobily is slow and 

weak. 

    

 

(أذا كانت التغريده تحتوي على كلمة  3 

 مقارنة مثل أفشل, أسوأ, أبطء  

The tweet has a negative 

sentiment-bearing word in 

superlative form. 
  

 انترنت موبايلي أبطأ نت 3)

 Internet of Mobily is the 

slowest one. 
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( رأي سلبي مع تكرارالحرف اكثر من 4 

 ثلاث مرات  

The tweet has a  negative 

sentiment-bearing word with 

repeated letters.   
 

 انترنت موبايلي بطييييء  (4

Internet of Mobily is sloooow. 

 

 محايد 

 Neural 

إذا لم يكون هناك رأي معبر عنه في  

 التغريدة اتجاه احد الخدمات. 

There is no sentiment in the 

tweet toward any predefined 

service. 

 احب شركة موبايلي.

 I love Mobily company. 

 ؟  4Gهل تشتغل خدمة  

Is the 4G service working 

today ? 

 لا يوجد  :الكلمة المؤثرة

Sentiment-bearing word: 

Empty 

 لا يوجد  :الخدمة 

Service:  Empty 
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Appendix B: Questionnaire 

 

Exploratory Survey about customer satisfaction 

 
This Survey will help with better understanding the parameters that lead to customer satisfaction 

toward Telecom companies in Saudi Arabia. This survey is done as part of research undertaken in 

Princess Nourah bint Abdulrahman University, Saudi Arabia. No personal information is collected 

in the survey and the results of the survey will only be used for research purposes. 

It will take no more than 10 minutes of your time. Your participation is much appreciated. 

 

Please answer all these questions according to their types: 

 a single choice,    a multiple-choice, and ___  a text-field 

 

Thank you. 

 

 

A. Personal Background 
 

Age group:  
1  18–24 

1  25–34 

1  35–44 

1  45–54 

1  55–64 

1  65+ 

Gender:  
1  Female 

1  Male 

Twitter account (optional): ____________ 

 

What Telecommunication Company are you using for your mobile phone or 
Internet access? 
 
     STC (Saudi Telecommunication Company) 

     Mobily 

     Zain 

     Others: _________________________________________________ 

 

Part B: Behaviours and Characteristics of Participants who Changed their 
Telecommunication Company. 
 

1. Did you change your telecommunication company before? 
 
Yes 

 No 
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If you have changed your telecommunication company in the last ten years, answer 2, 3,4,5 and 

6. 

 

2. What was the previous telecommunication company that you used as a cell 
phone network? 
 
     STC (Saudi Telecommunication Company) 

     Mobily 

     Zain 

     Others: _________________________________________________ 

 

3. For how long did you use the previous telecommunication company? 
 
     Less than one year 

     1-5 years 

     5-10 years 

      More than 10 years 

 

4. Before you left the previous telecom company, did you have overdue 
payments? 
 
     Yes 

      No 

      I dont remember. 

 
5. Has one of your family members ever used your previous telecommunication 
company as their cell phone network? 
 
      Yes 

      No 

      I dont know. 

 

6. Why did you change your previous telecommunication company? 
_____________________________________________________________ 
 

Part C: Communication Methods 

1. Do you use the web or social media platforms to communicate with the 

telecommunication company (for example, for complaints or suggestions)? 

      Yes 

      No 

2. What type of methods do you currently use to communicate with your telecom 

network (for example, for complaints, requests or suggestions)? 

     Telecommunication Company Twitter account 

     Telecommunication Company IOS/android application 

      Telecommunication Company website 
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      By Telephone 

3. Do you think that service quality has been enhanced because of your 

communication with your telecom company through Twitter (for example for 

complaints, requests or suggestions)? 

      Yes 

      No 

 

Part D: Customer satisfaction metrics towards the telecom companies 

please choose one choice that describes the importance of the customer satisfaction metric toward 

the services that are provided by the Telecommunication Company that you are currently using 

for your mobile phone or Internet access, from your perspective: 

Services importance Very 

important 

important Neither 

important nor 

unimportant 

Unimportant Very 

unimportant 

Good Network Coverage 5 4 3 2 1 

Good Quality of Voice 

Transmission  

5 4 3 2 1 

Quick Response Provided 

from Customer Service 

5 4 3 2 1 

Number of Successful 

Calls 

5 4 3 2 1 

Billing Price 5 4 3 2 1 

High Internet Speed 5 4 3 2 1 

Reasonable Fees When 

Calling Someone Who 

Uses Another Telecom 

Company 

5 4 3 2 1 

Good Offers 5 4 3 2 1 
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Appendix D: Evaluation questionnaire 

 

Evaluation Questionnaire about customer satisfaction 

 
This questionnaire will evaluate the proposed model that measures customer satisfaction toward 

Telecom companies in Saudi Arabia. This questionnaire is done as part of research undertaken in 

Warwick University, UK, and Princess Nourah bint Abdulrahman University, Saudi Arabia. All 

information provided by you will be confidential and anonymous and used for academic research 

purposes only. Your participation in this questionnaire is voluntary, and you are entirely free to 

withdraw at any time you wish. 

It will take no more than 2 minutes of your time. Your participation is much appreciated. 

Thank you. 

 

What Telecommunication Company are you using for your mobile phone or 
Internet access in 2017? 
 
     STC (Saudi Telecommunication Company) 

     Mobily 

     Zain 

     Others: _________________________________________________ 

 

What was your satisfaction level toward your Telecommunication Company? 

     Satisfied 

     Unsatisfied 

 

 

 


