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Abstract

The physics of complex fluids is important to the understanding of many biological

and industrial systems. The flow properties of these materials are dominated by

their mesoscopic microstructures, which can lead to a large variety of behaviours in

response to deformation. In this thesis, we study flow instabilities of two such fluids

in shear flow: shear-thinning viscoelastic fluids and elastoviscoplastic yield stress

fluids.

Our first study examines the stability of a pressure-driven channel flow of a

shear-thinning viscoelastic fluid to two-dimensional perturbations. We perform this

study using three constitutive models: Rolie-Poly, Johnson-Segalman and White-

Metzner. For each model, we perform linear stability analysis to determine the

critical pressure drop, P ′∗, for which the flow becomes unstable as a function of the

model parameters. We find instability when the degree of shear thinning exceeds

some level characterised by the logarithmic slope of the flow curve at its shallowest

point.

Specifically, we show that P ′∗ obeys a criterion expressed in terms of the

degree of shear-thinning,n= d log Σ
d log γ̇

|min, together with the derivative of normal stress

with respect to shear stress. In the Rolie-Poly and Johnson-Segalman models, the

mechanism for instability appears to involve the deformation of a quasi-interface

that exists in each half of the channel, across which normal stress varies rapidly. In

the White-Metzner model, no such quasi-interface exists. Despite these apparent

differences, the criterion for instability is of the same form in each model.

We next investigate yielding during shear start-up in soft glassy materials.

Employing the soft glassy rheology model (SGR), we study the effects of sample

preparation and applied shear-rate on yielding. Our study performs shear start-up

on samples at zero and non-zero noise temperature, which correspond to athermal

and thermal materials respectively. We perform this study using three preparation

protocols commonly used in the simulation of soft glassy materials. Our results

demonstrate qualitative agreement with the findings of particle-based simulations

at athermal soft glasses not previously simulated using SGR.

For materials sheared at non-zero noise temperature, our calculations demon-
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strate that brittle yielding only occurs when the start-up curve has a sufficiently large

overshoot. This is not the case for athermal materials, which display brittle yielding

given any overshoot at small enough strain rate. In all protocols studied, we find

close correspondence between material yielding and the formation of shear bands.

This suggests that brittle yielding may be caused by the instability of a spatially

homogeneous shear flow to heterogeneous shear rates during start-up, as opposed to

a spinodal mechanism proposed by other authors.

Finally we study the longevity of shear bands during shear start-up in yield

stress fluids using a novel lattice implementation of the soft glassy rheology model.

We characterise the longevity of heterogeneous flow by calculating the time required

for a material sample to completely fluidise during start-up. Our study explores

the effects of sample preparation prior to the application of shear for materials at

zero and non-zero effective noise temperature. We find qualitative agreement with

the findings of both experimental studies and particle-based simulations. Our study

shows this model to be quite effective at capturing the physics of transient shear

banding in soft glassy systems.
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Chapter 1

Introduction

Complex fluids encompass a myriad of materials, and many have flow properties that

lead to useful applications. These can vary from the domestic, such as foodstuffs

and personal care products, to the industrial, such as drilling muds used in fossil

fuel extraction. The flow properties of these materials result from their mesoscopic

substructure, which may include jammed colloidal particles, entangled polymers and

foam bubbles. When the material is deformed, the rearrangement of the substructure

leads to a wide variety of fascinating mechanical responses. Rheology is the study

of the way in which materials flow and mechanically respond to deformation. Flows

of complex fluids can exhibit very different properties from the Newtonian variety

and examples of this may be seen in the viscoelastic siphon [1], the rod-climbing

Weissenberg effect [2], and the jets of the Kaye effect [3].

Fluid mechanics seeks to model how the flow of liquids evolve with time.

The response of a given flow type to disturbance is often of great interest to both

academic and industrial research. The dynamics of complex fluids can introduce

new layers of complexity to the hydrodynamics of even simple flows. The principal

aim of this thesis is to examine some of the flow instabilities that arise due to the

rheology of complex fluids.

The first type of complex fluids we study are shear-thinning polymeric

fluids, which include foodstuffs such as egg-whites [4], as well as industrially rel-

evant polymer solutions and melts [5]. They also include wormlike micelles, the

long flexible structures which exhibit some of the same relaxation mechanisms as

1
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polymers [6]. Pressure-driven flows, such as blood-flow in veins and arteries, are

a ubiquitous example of shear flow. We shall demonstrate how a combination of

rheological properties and flow geometry results in an initially simple flow becoming

unstable to small perturbations.

The second variety of complex fluids we examine are elastoviscoplastic

yield stress fluids. These amorphous materials include ketchup [7], mayonnaise [8],

shaving-cream [9], and industrial fluids such as machine lubricants [10]. When elas-

toviscoplastic materials are subjected to deformation, they may behave as elastic

solids for small deformation before yielding to viscous liquids at large deformation.

We investigate how the transition from a solid to a fluid like response is

linked to a shear-induced phenomenon common to many complex fluids known as

shear-banding. In this phenomenon, a homogeneous flow may develop into many

different “bands” which coexist at a given shear stress, but at different shear-

rates [11–13]. In the fluids we consider, these bands dissipate with time, and are

known as transient shear-bands. Our studies examine the formation of these bands,

as well as their development following yielding.

1.1 Layout of thesis

Three distinct studies are undertaken in this thesis. The first relates to shear-

thinning polymeric fluids, the second and third to elastoviscoplastic fluids. These

are discussed across three chapters, with an initial chapter introducing some of

the prerequisite background information. A conclusion chapter then follows, which

summarises the findings presented in this thesis and outlines future studies which

may further advance the field.

1.1.1 Ch.2: Theory & Methods

The basic concepts relevant to the studies undertaken in subsequent chapters are

outlined here. We introduce the formalisms used in this thesis to study hydrody-

namics and their relative advantages. We also introduce the numerical methods

used throughout our studies.
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Some of the fundamentals of rheology, including steady-state flow curves,

viscoelasticity and normal stress differences are discussed. We also describe flow in-

stabilities in the contexts relevant to those investigations performed in the following

chapters. The first is the stability of a one dimensional base state to two-dimensional

perturbations as is studied in Chapter 3. Secondly, we introduce shear-banding and

focus particularly on transient shear-banding and its occurrence in yield stress fluids,

which is relevant to Chapters 4 and 5.

1.1.2 Ch. 3: Linear Instability of Shear-Thinning Pressure-

Driven Channel Flow

The theoretical studies of Wilson and collaborators used a number of constitutive

models to investigate the linear stability of pressure driven channel flow of a shear-

thinning viscoelastic fluid [14–17]. Their work predicted that a one dimensional base

flow of a highly shear thinning fluid may be linearly unstable to two-dimensional

perturbations at high flow rates. In several later studies this prediction was proved

experimentally [18–20]. Motivated by this, our study aims to find a common criterion

to predict the onset of instability through linear stability analysis and full non-linear

simulation, using three widely used models of shear-thinning polymeric fluids.

We numerically perform linear stability analysis of pressure driven channel

flow in the phenomenological Johnson-Segalman and White-Metzner models, as well

as the microscopically motivated Rolie-Poly model. We map extensively the critical

pressure drop P ′∗ as a function of model parameters. In each of the models studied,

we observe instability when the degree of shear-thinning, measured as the minimum

logarithmic slope of the steady state flow curve n = d log Σ
d log γ̇

|min is below some critical

value.

In both the Rolie-Poly and Johnson-Segalman models, we conduct full non-

linear simulations which demonstrate that the unstable perturbations grow to form

a system-spanning vortex at long times. We find that in the Rolie-Poly model, the

flow will once again become stable at very high applied pressure drops.

We demonstrate that a general functional form can predict the critical

applied pressure drop required to observe instability in each of the three models.
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This criterion predicts the onset of instability as a function of the properties of the

1D base flow which stems from the steady-state 0D flow curves of the fluid. Within

each model, we show that for the flow to become unstable, the applied pressure

drop must exceed a value determined by the degree of shear-thinning, together with

the maximum derivative of first normal stress difference with respect to shear-stress

dN1

dΣ
|max.

1.1.3 Ch. 4: Ductile to Brittle Yielding in Soft Glassy Ma-

terials

When an elastoviscoplastic material is subjected to external deformation, its mate-

rial response changes from that of an elastic solid to a liquid. In some materials, this

process is highly sensitive to the material history prior to deformation [21]. In this

chapter, we examine this effect during shear start-up, whereby the material sample

is subjected to a constant average rate of shear γ̇, switched on at some initial time

t = 0. The transition from elastic to viscous behaviour may be gradual, a process

known as ductile yielding, or may be sudden, called brittle yielding.

In recent years, several studies have proposed that a change from ductile to

brittle yielding is attributed to a qualitative change in the theoretical start-up curve

for a homogeneous flow [22–24]. This postulate suggests a spinodal phase transi-

tion like mechanism for brittle yielding. We challenge this hypothesis by studying

theoretically how yielding behaviour varies as a result of sample preparation and

applied shear-rate. Previous studies have demonstrated the yielding of soft glassy

materials to be associated to time-dependent heterogeneous flow effects known as

transient shear-bands [13, 25, 26]. Our study characterises the formation of shear-

bands during yielding. We find brittle yielding to occur during start-up in well

annealed samples at low shear-rates without the necessity of a qualitative change in

the homogeneous start-up curves.

We use the soft glassy rheology (SGR) model to simulate the effects of sam-

ple preparation and applied shear-rate on yielding and the formation of transient

shear-bands. We study the formation of bands using three different sample prepa-

ration protocols which emulate those widely used in simulation and experiment.
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The adaptation of the SGR model used here for the first time, to this

author’s knowledge, replicates the dynamics observed in simulations of soft glassy

materials performed at zero noise temperature. We show that there is a qualitative

difference in yielding when shear start-up is performed at zero and non-zero noise

temperature. In both systems, brittle yielding is accompanied with the formation

of transient shear-bands. Our study therefore presents ample evidence to challenge

the proposed interpretation of yielding in amorphous materials. Our finding instead

suggests that brittle yielding results from a homogeneous flow becoming unstable to

the formation of spatially heterogeneous flow rates.

1.1.4 Ch.5: Ultra-Long-Lived Transient Shear Banding in

Soft Glassy Materials

Having studied the formation of shear-bands, we now move on to study their evo-

lution. Experiments [27] and simulations [28, 29] of soft glassy materials have

previously studied the longevity of transient shear-bands during start-up. They

have demonstrated that the time taken for a system to completely fluidise following

the formation of shear-bands may depend on both sample preparation and applied

shear-rate.

We now attempt to reproduce these findings in an Elastoplastic Lattice

Model. These mesoscopic models have emerged as a powerful theoretical tool to

describe the dynamics of soft glassy materials [30,31]. In this chapter we introduce

a new such model that incorporates the dynamics of SGR. We are therefore able, for

the first time, to incorporate ageing and other effects of finite temperature into this

paradigm. We perform calculations using the ageing protocol of Moorcroft et al. [25].

In that study, very long lived shear-bands during shear start-up were observed, the

longevity of which were not characterised. We measure the longevity of transient

shear-bands in this protocol as a function of sample age and applied shear-rate. The

second protocol we study replicates the gradual cooling preparation utilised in the

simulations of Vasisht and collaborators [29, 32], which examined the longevity of

shear-bands as a function of the applied cooling rate and shear-rate.

Our findings demonstrate good qualitative agreement with some of the
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results of simulation and experiment, reproducing particularly well the effects of the

cooling protocol of Refs. [29,32]. We also find some agreement with the simulations

of Refs. [28, 33, 34], including the observed γ̄1/2 growth of shear-band width as a

function of strain. In both protocols, we find the longevity of shear-bands to vary

as a power-law of the applied shear-rate γ̇
−p

in accordance with previous studies.

1.1.5 Ch. 6: Conclusions

We here summarise the findings of each chapter, and highlight where our results

have furthered understanding of the relevant topic. We also discuss possible studies

that may advance the research presented here.



Chapter 2

Theory & Methods

In this chapter, we introduce the basic elements of hydrodynamics, rheology and

the numerical methods that will be used to study the flow behaviour of complex

fluids. Firstly we introduce some hydrodynamic concepts relevant to the studies

later performed in this thesis. Following this, we discuss some of the basic aspects

of rheology, including the flow geometries relevant to the studies we conduct. We

outline key aspects of hydrodynamic flow instabilities in viscoelastic and elastovis-

coplastic fluids, including shear banding and viscoelastic turbulence. Finally, we

introduce the fundamental numerical techniques used in this thesis to perform the

studies undertaken.

2.1 Hydrodynamics

The Navier-Stokes equations for a generalised incompressible flow are given by

ρ(∂tv + v · ∇v) = ∇ ·Π, (2.1)

∇ · v = 0. (2.2)

Π describes the total stress of the fluid, with a flow field v and fluid density ρ. For

all systems we consider, the total stress is given by

Π = 2ηD + σ − pI, (2.3)

where D (r, t) is the symmetric rate of strain tensor, D = 1
2
(∇v + ∇vT ) and p is

the pressure which is set by enforcing incompressibility as in Eq. 2.2. The velocity

7
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gradient tensor, (∇v)αβ = ∂vα
∂xβ

, describes rate of deformation of a material. The

tensor σ (r, t) describes the stress contribution from the microscopic material ele-

ments e.g. entangled polymers, foam bubbles or suspended colloids. The 2ηD (r, t)

term corresponds to a Newtonian solvent stress, which may be attributable either

to a true solvent, or to relaxation modes of the material much faster than those

dominant to the dynamics of the material stress. The time dependent evolution of

the material stress is described by constitutive models which shall be introduced in

the relevant sections of this thesis.

The Reynolds number characterises the ratio of inertial to viscous forces

in a fluid and is defined by Re =
ρV L

η
, where the quantities V , L, ρ and η are the

characteristic velocity, length-scale, density and viscosity of the fluid respectively.

In all flow geometries we consider, we assume the limit of Re = 0. This assumption

is valid where the fluid motion is slow, the length-scale of the system is small and

the viscosity of the liquid is high, as it is in the viscometric flows that we consider

in our studies. Eq. 2.1 then reduces to the Stokes equation,

∇ · (2ηD + σ − pI) = 0. (2.4)

In this limit, we assume that the flow field v responds instantaneously to any changes

in the viscoelastic or elastoplastic stress σ in order to maintain force balance. We now

illustrate how the hydrodynamics in this limit can be described using the stream-

function and Oseen formulations.

2.1.1 Streamfunction formulation

For a two dimensional incompressible flow field with velocity vector v and its spatial

variation ∇v confined to the xy-plane, assuming no flow and no variation in the ẑ

direction, the streamfunction ψ is defined such that

v = ∇× ψẑ. (2.5)

where v = (u, v, 0). u and v are the magnitude of the velocity vector in the x̂ and ŷ

directions respectively. ψ is defined up to an arbitrary constant and ψ → ψ+ const

leaves Eq. 2.5 unchanged [35].
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By substituting the expression Eq. 2.5 into Eq. 2.3 and given that

∇×∇ · pI = 0 we obtain the expression

η∇×
[
∇2(∇× ψẑ)

]
= −∇×∇ · σ. (2.6)

For an isotropic material, the conservation of angular momentum means the vis-

coelastic stress tensor must be symmetric i.e. σxy = σyx. Expanding each term of

Eq. 2.6, we obtain the 4th order PDE

η
(
∂4
x + 2∂2

x∂
2
y + ∂4

y

)
ψ =

(
∂2
x − ∂2

y

)
σxy − ∂x∂y (σxx − σyy) . (2.7)

We shall come to use the streamfunction formulation to study channel flow

in a system with mixed boundary conditions, periodic in the x̂ direction, but with

fixed walls in the ŷ direction. The stream-function formalism is apposite to use in

these circumstances as we shall see in more detail below.

Subject to a Fourier transform along the x̂ direction whereby ψ (x, y) →∑
qx

ψ̃qx (y) and σ (x, y) →
∑
qx

σ̃qx (y), we can rewrite Eq. 2.7 (dropping subscript qx

for clarity) as

η∂3
y ψ̃ = −∂yσ̃yx + P ′ qx = 0, (2.8)

η
(
q4
x − 2q2

x∂
2
y + ∂4

y

)
ψ̃ =

(
−q2

x − ∂2
y

)
σxy − iqx∂y (σ̃xx − σ̃yy) qx 6= 0. (2.9)

where P
′

is the average pressure gradient in the fluid along the x̂ direction. We may

then solve this equation for ψ for any given wave-number qx. This may be done for

any value of qx in order to assess the stability of a 1D base state to 2D perturbations

of wave-number qx, as we shall see in Chapter 3. We shall also use this method to

perform full non-linear simulations of pressure driven flow in that study.

If we make the substitution u = ∂yψ, Eq. 2.8 becomes

η∂2
yu+ ∂yσxy − P

′
= 0, (2.10)

The total shear-stress Σ is a combination of the viscoelastic shear-stress σxy and

Newtonian shear-stress η∂yu. We may therefore rewrite Eq. 2.10 as

∂yΣ− P
′
= 0. (2.11)
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From this we can see that the total shear-stress in a one-dimensional pressure-driven

flow, i.e. a flow with no variation in x̂ varies linearly in the ŷ direction, with slope P ′.

We make use of this equation extensively when we come to examine the instability

of pressure driven channel flow in Chapter 3 of this thesis.

The stream-function formulation is an effective method for solving a two-

dimensional flow in the regime described, and can also be implemented in systems

with many different boundary conditions with relative ease. It is, however, usually

limited to two dimensional flows. This is not a limitation that affects the Oseen

Tensor formulation as we shall now see.

2.1.2 Oseen formulation

In a fully periodic system the Fourier Transform of the Stokes equation is given by

the expression

0 = −ηq2ṽq − iqp̃q + iq · σ̃q, (2.12)

where q denotes the wavevector. The divergence is taken by performing the dot

product of each term with iq. Using the incompressibility condition iq · ṽq = 0, we

obtain

−q2p̃q = iq · (iq · σ̃q). (2.13)

Rearranging this expression yields the following equation for the pressure

p̃q =
q · (q · σ̃q)

q2
. (2.14)

By substituting Eq. 2.14 into Eq. 2.12 the expression for the velocity becomes

ṽq =
1

ηq2
(I− q̂ · q̂) · (iq · σ̃q). (2.15)

A useful property of this formalism is that it generalises to any number of dimen-

sions of a system with periodic boundary conditions while being relatively simple to

implement computationally [36]. It is not straightforward to do so with non-periodic

boundaries, although it may be done using a method of images [37]. We therefore

make use of this formalism when we consider geometries with fully periodic bound-

aries as in Chapter 5, but utilise a stream-function formalism for systems with mixed

boundary conditions as in Chapter 3.
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Figure 2.1: a) An extensional or simple shear flow. b) Planar shear flow.

2.2 Rheology

Rheology is the study of material response to flow deformation. Extensional flow

describes one in which the material elements are stretched or extended without

being sheared. Planar shear is a deformation in which the material elements in

parallel planes remain parallel and are deformed relative to one another by a constant

measure. Extensional and planar shear flow are sketched in Figure 2.1 a) and b)

respectively. In this thesis we shall concentrate on planar shear flows. An example

of such a shear-flow is a material between two parallel plates as in Figure 2.2 a) and

flow is induced by imposing either a given shear-rate γ̇ or shear stress Σ.

An imposed shear-rate is applied to the material by the motion of the cell

wall at a fixed velocity vwall. The direction of this motion is the flow direction,

x̂ in Figure 2.2 a). The velocity varies between vwall and 0 at a constant rate

γ̇ = vwall/Ly, which corresponds to the applied shear-rate. The direction in which

the flow velocity varies, ŷ in Figure 2.2 a), is then the flow gradient direction. The

direction ẑ then corresponds to the vorticity direction, along which we assume no

variation in the flow. An idealised viscometric shear-flow has the form

∇v =


0 0 0

γ̇ 0 0

0 0 0

 . (2.16)
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Figure 2.2: a) Shear flow betwen two plates b) A cone plate geometry. c) Taylor-

Couette geometry

Here the quantity γ̇ =
∂u

∂y
, where u is the magnitude of the velocity field along the

flow direction. By measuring the material response to such an imposed flow, the

rheological properties may be characterised.

The flow sketched in Figure 2.2 a) is called planar Couette flow. In real-

ity, it is difficult to implement such flow between parallel plates. Experimentalists

generally use curved geometries to implement this flow type. Examples of such

geometries are the cone-plate geometry as in Figure 2.2 b) and Taylor-Couette ge-

ometry Figure 2.2 c) [38].

For a Newtonian fluid, as shown in Figure 2.3 the stress is linearly pro-

portional to the applied shear-rate. More generally the total stress tensor of a

Newtonian fluid is described by the equation

Π = 2ηD− pI. (2.17)

The viscosity η is defined as the ratio Σ/γ̇, where Σ is the total shear-stress of

the material. For a Newtonian fluid, this value is constant and does not depend

on the applied shear-rate or shear-stress. The resultant stress tensor for a uniform

shear-flow is then given by

Π =


−p ηγ̇ 0

ηγ̇ −p 0

0 0 −p

 . (2.18)

When the shear-stress for a Newtonian fluid is then plotted against the applied

shear-rate, the result is a straight line through the origin. The measured stress
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against applied shear-rate of a material is known as its flow curve, and is a vital

quantity when characterising the rheological properties of a fluid.

Many complex fluids exhibit non-linear (non-Newtonian) flow curves [38].

Examples of some common rheological behaviours observed in complex fluids are

shown in Figure 2.3. Some of the mostly widely studied examples of non-Newtonian

fluids include shear-thinning and shear-thickening fluids. The viscosity of a shear-

thinning fluid decreases with increasing applied shear-rate. Examples include col-

loidal suspensions [39] and most polymer solutions [40]. A shear-thickening fluid

will demonstrate the converse effect, becoming more viscous with increasing shear-

rate, examples are found in telechelic polymeric fluids [38] and cornstarch and clay

suspensions (for reviews see Ref. [41–43]).

In the case of yield stress fluids, no flow is observed below a critical yield

stress Σy, but the material flows as a plastic fluid above this stress. This phenomenon

known as viscoplasticity, and is so called due to the soft solid material yielding in

an irreversible manner above Σy after which it behaves as a fluid. This behaviour is

observed in foams, muds and emulsions such as mayonnaise (for reviews see Ref. [44,

45]).

A Bingham fluid is such a yield stress fluid, the flow curve of which is

described by the equation Σ (γ̇) = Σy+Aγ̇ for Σ (γ̇) > Σy, where A is some constant

of proportionality [46]. For Σ (γ̇) < Σy, the material does not flow, therefore Σ (γ̇) =

0. In many yield stress materials, the stress varies non-linearly as a function of the

applied shear-rate. The yield stress fluids we consider in this thesis also display

an elastic component of stress and are therefore considered to be elastoviscoplastic

fluids.

2.2.1 Viscoelasticity

Viscoelasticity is the property whereby materials may exhibit characteristics of both

an elastic solid and a viscous liquid depending on the timescale over which they are

observed. A good means of elucidating the properties of such materials is to discuss

the effects of imposing a constant shear-rate on a sample of the material. At a fixed

time t = 0, a sample of a material previously at rest is subjected to a constant shear-
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Figure 2.3: Flow curves for a range of rheological behaviours.

rate γ̇ for all t > 0. The resulting shear-stress Σ is then measured as a function of

time (or of the applied strain γ = γ̇t). This protocol is known as shear start-up.

In absence of inertia, the shear stress on a Newtonian fluid subjected to

a fixed shear-rate γ̇ instantaneously reaches a steady state value such that Σ = ηγ̇

where η is the viscosity of the fluid. In an elastic solid, the material stress increases

linearly as a function of applied strain such that Σ = Gγ̇t where G is the elastic

shear-modulus and t is the time during which strain is applied. Many materials fit

into neither of categories, but are viscoelastic and display both elastic and viscous

properties. During applied shear, these materials initially deform as an elastic solid

before gradually changing to a fluid like response. A very simple model of such a

viscoelastic fluid is the Maxwell model [47]

∂tΣ = Gγ̇ − 1

τ
Σ. (2.19)

Here τ is the viscoelastic relaxation time of the material. By imposing Σ (0) = 0

and solving for Σ (t) we obtain the solution

Σ (t) = Gτγ̇
(

1− e−
t
τ

)
. (2.20)

By varying the relaxation time τ the fluid will behave more like an elastic solid or

a viscous fluid during start-up. For a very large value of τ the fluid will take a very

long time to transition to a fluid like state, while conversely for a very small value

it will transition quickly. The quantity Gτ then corresponds to the viscosity of the
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(a) Newtonian (b) Elastic (c) Viscoelastic

Figure 2.4: Start-up curves for a fixed shear-rate γ̇ for a) Newtonian fluid b) Elastic

solid c) viscoelastic material (steady state value shown in dashed line).

material. Sketches of shear start-up are shown in Figure 2.4 for a) a Newtonian

fluid, b) an elastic solid and c) a viscoelastic material.

Viscoelasticity is a common feature of complex fluids including polymeric

materials [38,48]. While many viscoelastic fluids may exhibit non-linear flow curves,

there also exist constant viscosity viscoelastic fluids, known as Boger fluids [49]. The

fluid described by the Maxwell model used here is such an example. The start up

behaviour sketched here is only a very simple example of the many varieties of start-

up behaviour observed in complex fluids. We examine some of these when we study

age dependent start-up in elastoviscoplastic materials.

2.2.2 Normal stress differences

In many complex fluids, the stress response to a uniform imposed shear-rate γ̇ as in

Eq. 2.16 is not characterised purely by the scalar shear-stress Σ as in a Newtonian

fluid. The viscoelastic stress tensor σ may instead be of the form

σ =


σxx σxy 0

σyx σyy 0

0 0 σzz

 (2.21)

The off diagonal terms correspond to the viscoelastic shear-stress as described by

the flow curves. The diagonal terms of the stress tensor are normal stress terms.

Experimentally one can only measure components of the total stress tensor Π =

σ + 2D− pI, for which the normal stress terms include the hydrostatic pressure p.
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Hence one cannot measure the normal stress components explicitly, but only the

normal stress differences [50]

N1 = σxx − σyy (2.22)

N2 = σyy − σzz. (2.23)

Here N1 and N2 are the first normal stress difference and second normal stress differ-

ence respectively. Normal stress differences typically arise from the microstructure of

the fluid becoming anisotropic in the presence of flow. In the context of a polymeric

fluid under a simple shear flow, the polymers align with the flow direction. They

are stretched along this direction and entropic forces then act to return the polymer

to an isotropic conformation. This results in the normal stresses just described [51].

2.2.3 Pressure Driven Channel Flow

We now introduce the fundamentals of another type of shear-flow pertinent to this

thesis, pressure driven channel flow. An idealised shear flow in two dimensions is

described by the flow gradient tensor

∇v =

0 0

γ̇ 0

 . (2.24)

In planar Couette flow this γ̇ is a constant across the channel and is specified by the

velocity of the wall vwall. This is no longer the case in a pressure driven flow. In the

geometry we consider, the walls are fixed and the flow speed is determined by the

applied average pressure gradient P ′. The local shear-rate within the channel, γ̇ (y)

is then a function of position.

The Stokes equation for a one-dimensional (1D) pressure-driven channel

flow for any fluid with a shear-stress Σ is given by

∂yΣ− P ′ = 0. (2.25)

The shear-stress will then vary linearly within the channel Σ ∝ P ′y. In a constant

viscosity fluid, with shear-stress Σ = ηγ̇, the shear-rate then varies linearly as a

function of position in the channel, and flow speed u (y) will be parabolic u (y) ∝

P ′y2/η .
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(a) Newtonian (b) Shear-thinning (c) Yield Stress Fluid

Figure 2.5: Flow profiles for different fluids under an applied pressure gradient

between fixed walls.

This is not the case for a non-constant viscosity fluid, for which the shear

stress may vary in a non-linear manner as a function of shear-rate. The shear-rate

for a pressure driven flow of such a fluid therefore varies according to the flow curve

of the fluid in question. Sketched examples of flow profiles for different fluids (for a

1D flow) are shown in Figure 2.5. We examine such pressure driven channel flows

in Chapter 3 of this thesis. Specifically, we study instabilities that may arise in

pressure driven flows for shear-thinning viscoelastic fluids.

2.2.4 Flow Instability

The studies conducted in this thesis explore flow instability in complex fluids. In-

stability in this context refers to the emergence of complex behaviours from initially

simple flow states. This has long been a topic of study in broader fluid mechanics.

Complex fluids may demonstrate instabilities in flow regimes where inertial effects

are minimal and the flow of a Newtonian fluid would be stable [52–57]. We exam-

ine in detail two such instabilities. The first is the emergence of two-dimensional

(2D) flow from a one-dimensional (1D) base state. The second is the formation of

transient shear-bands during shear start-up. We now introduce some of these con-

cepts here, before they are re-explored in greater detail within the following relevant

chapters.
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(a) (b) (c)

Figure 2.6: a) A 1D base state prior to the application of perturbation. b) Periodic

2D perturbations applied throughout the channel. The perturbations grow or shrink

depending on the stability of the base state. c) At long times an unstable base state

may transition to a non-linear state, demonstrating unsteady flow behaviour.

2.2.5 Instability of a 1D base state to 2D perturbations

Consider a flow within an infinitely long channel of height Ly. The base state flow

within the channel varies only in the cross channel direction ŷ and is uniform along

the direction x̂. The flow-field v (x, y) = (U (y) , 0). We consider this flow to be

one-dimensional (1D), since it varies only in a single direction. Such a base flow is

sketched for a shear thinning pressure driven flow in Figure 2.6 a).

We use linear stability analysis to assesses the response of an initially 1D

base flow to infinitesimally small perturbations of the form δv (y) exp (iqx+ ωqt),

where q is the wavenumber of the perturbation and ωq is the eigenvalue corre-

sponding to the wavenumber q. These perturbations may result in experiment from

mechanical or thermal noise, but are be added numerically in the studies performed

here. After these perturbations are added, they may grow or shrink depending on

whether the flow is unstable or stable respectively. If stable, these perturbations

will shrink and the original 1D base state will be recovered. If unstable, the per-

turbations will grow exponentially up to some value where the flow effects become

non-linear and the flow may transition to turbulence (see Figure 2.6 c)). The growth

rate of these perturbations is determined by the real part of the eigenvalue Re (ωq).

If Re (ωq) > 0 the base state is unstable to perturbations of wavenumber q, while if

Re (ωq) < 0 the flow is stable.

In Chapter 3, we analyse the stability of pressure-driven channel flow of
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(a) (b)

Figure 2.7: a) The constitutive curve (solid black line) and flow curve (broken green

line) of a shear-banding fluid. b) Shear-banded flow between parallel plates. The

flow separates into regions of low and high shear-rates γ̇l and γ̇h respectively.

a shear-thinning viscoelastic fluid. In that chapter, we study the stability of the

flow to infinitesimally small perturbations in the linear regime. At longer timescales

we see how these perturbations grow to a finite amplitude, producing non-linear

behaviour. We describe in detail the process by which we undertake the linear

stability analyis that has been outlined here. The work done here is inspired by

previous theoretical studies [14–17] and by results obtained experimentally [18–20].

These studies have shown such flows to be linearly unstable for a combination of

sufficient shear-thinning and high pressure gradients. We expand on this previous

work and develop criteria for instability based on characteristics of the 1D base

state.

2.2.6 Shear Banding

A constitutive curve gives the measured response in shear-stress subject to a fixed

homogeneous shear-rate Σ (γ̇). This may be a theoretically idealised flow and not

attainable experimentally. A flow curve is the material response directly measured

when a material is sheared in a system where spatial heterogeneities may develop.

In the cases where heterogeneities do not emerge these are equivalent. For some

materials this is not the case. We see in Figure 2.7 a), such an example where

the homogeneous constitutive curve and heterogeneous flow curve are different from
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each other.

Some fluids may exhibit an extreme level of shear-thinning such that the

constitutive curve is non-monotonic and the material exhibits a phenomenon known

as shear banding [58]. In this phenomenon the homogenous flow profile is unstable

to the formation of distinct regions of high and low shear-rate (γ̇h and γ̇l as shown)

which coexist within the cell as in Figure 2.7 b). Hence the heterogeneous flow

curve will show a different response to a homogeneous constitutive curve. The flow is

linearly unstable to the formation of these bands for the non-monotonic region of the

constitutive curve, but depending on the previous history of flow deformation, bands

can also form in the surrounding metastable regions. This behaviour is observed in

a wide variety of complex fluids and reviews of both experimental and theoretical

progress on the study of shear-banding may be found in Refs. [11, 13, 59, 60]. We

do not directly study systems that display steady-state shear-banding in this thesis,

but study the related phenomenon of time-dependent shear-banding.

Time-Dependent Shear Banding

We have discussed how a material with a non-monotonic constitutive curve may

demonstrate steady state shear-banding. However, many materials may demon-

strate shear-banding during the time-dependent stress response in start-up, a be-

haviour seen in many soft glassy materials [12, 21, 44] and polymeric fluids [13, 61].

During start-up, viscoelastic and elastoviscoplastic fluids transition from an elastic

like response to fluid-like behaviour. Transient shear bands are formed when this

process does not happen uniformly in a sample, but instead portions of the sample

fluidise more rapidly than others. This leads to regions of the flow having different

shear-rates. Over time, the fluidised regions grow until all of the material sample is

completely fluidised and the shear-rate is once again uniform. These heterogeneous

shear-rates may occur during many different rheological protocols, such as in large

amplitude oscillatory shear [62, 63], stress imposed flow [64, 65], channel flow [66]

and, the main focus of our studies, shear start-up [25,27,67]. For polymeric materi-

als the criteria for the formation of transient shear bands in a wide variety of these

start-up protocols was developed by Moorcroft et al. [68, 69].
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Our focus in the studies performed here is the emergence of this phe-

nomenon in yield stress fluids, where transient shear-bands have been found to

occur in carbopol gels [27,70], laponite clays [71,72], fumed silica [73], carbon-black

gels [65,74,75] and waxy crude oil [76]. A stress overshoot is often observed during

shear start-up in these fluids, i.e. during start up the transient stress may exceed the

steady state value [64, 72]. The presence or absence of this overshoot may depend

on the history of the sample, including how long the sample is aged prior to being

deformed [21, 67, 77]. Fielding and collaborators have shown that this overshoot is

required for the formation of transient shear-bands during shear start-up using both

fluidity and elastoviscoplastic models of age dependent soft glassy materials [25,26].

In Chapter 4 of this thesis, we focus on the formation of these bands, and the link

between their formation and material yielding. We examine the effects of sample

age, shear-rate and different preparation protocols on the transient rheology of yield

stress fluids.

Moorcroft et al. [25] noted that these bands may persist to very large

values of strain, but did not explicitly characterise their longevity. Divoux and

collaborators have shown that the timescale for fludisation τf in a carbopol gel is

dependent on the applied shear-rate [27] or shear-stress [64]. We study the longevity

of these bands theoretically, evaluating the effects of preparation and shear-rate on

the timescale of fluidisation in Chapter 5 of this thesis.

2.3 Numerical Implementation

The systems studied here are described by coupled differential equations which are

evolved numerically. We use several methods in order to solve the hydrodynamic and

constitutive equations of interest. We now outline these, beginning with the Finite

Difference and Fourier methods used to evaluate non-local terms, before discussing

the time-stepping routines used to evolve the dynamical equations.
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2.3.1 Finite Difference Method

Differentiation-Centred Difference

The finite difference method uses a set of discrete grid points to approximate a

continuous function [78]. Derivatives are taken as a function of neighbouring grid

points. We can derive these expressions by taking a Taylor series expansion of a

function φ (y). We consider the value of this function at a point y0, φ (y0) and

perform a Taylor series expansion to approximate the values of φ (y0 + ∆y) and

φ (y0 −∆y)

φ(y0 + ∆y) = φ(y0) + ∆y
dφ

dy
|y=y0 +

∆y2

2

d2φ

dy2
|y=y0 +O(∆y3) (2.26)

φ(y0 −∆y) = φ(y0)−∆y
dφ

dy
|y=y0 +

∆y2

2

d2φ

dy2
|y=y0 +O(∆y3) (2.27)

The first derivative
dφ

dy
|y=y0 can then be approximated to an accuracy of O (∆y2)

by taking the difference of these equations and rearranging

dφ

dy
|y=y0 ≈

φ(y0 + ∆y)− φ(y0 −∆y)

2∆y
. (2.28)

The second derivative may also be approximated by summing to give

d2φ

dy2
|y=y0 ≈

φ (y0 + ∆y)− 2φ (y0) + φ (y0 −∆y)

∆y2
. (2.29)

Higher order derivatives are approximated by expanding to a larger number of terms.

By using these expansions, combined with discretisation of space into elements sepa-

rated by a distance ∆y, we may approximate the derivatives of a continuous function.

We also see how such a method may be used to solve differential equations.

Eq. 2.28 is accurate up to O(∆y2), but higher accuracy expressions are

obtained by summing series that expand to higher orders, and in turn utilise a

larger number of grid points to approximate the derivative. Such a case is when

calculating upwind derivatives in order to evaluate advective terms.

Differentiation-Upwinding

So far we have discussed centred derivatives where the value of a derivative at some

gridpoint is taken as an equal function of elements either side of itself. However
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there exist scenarios where this is not optimal. Such an example is in the case of

advective quantities in a flow field. Consider the advective equation

∂tφ+ v · ∇φ = 0. (2.30)

where v = (u, v, 0) is the two dimensional flow field that advects the scalar quantity

φ. Numerically solving these equations on a discretised mesh can lead to what are

called transport errors. The source of these errors is clear if we expand the terms of

Eq. 2.30

∂tφ+ u∂xφ+ v∂yφ = 0. (2.31)

Using a centred derivative, ∂xφ and ∂yφ are approximated in either direction of

the flow. In reality, however, if u is positive, then only points which are in the

positive direction are advected, and so information is lost using a centred method.

In order for information to be preserved and propagate in the correct direction, we

therefore use an upwinding finite difference method which accounts for the direction

of the flow field [78]. Where this is utilised, we make use of a third order upwinding

formalism [78]. We consider the quantity φ being advected in the ŷ direction in a

channel of width Ly in the ŷ direction. The channel ŷ direction is discretised into

a grid of Ny + 1 elements, with index j = 0, ..., Ny and space step ∆y = Ly/Ny. At

each grid point j, the value of y = Lyj/Ny. At any grid point j, the derivative is

determined by the conditional expression;

∂φ

∂y
=

1

6∆y
(−φj+2 + 6φj+1 − 3φj − 2φj−1) vj < 0

∂φ

∂y
=

1

6∆y
(φj−2 − 6φj−1 + 3φj + 2φj+1) vj > 0. (2.32)

Here we see that the derivative takes into account the direction of the flow field,

biasing the derivative against the direction of the flow (i.e “upwind”). Higher order

upwinding methods may be used for flows that require a greater level of accuracy

to obtain numerical stability [79], but for the studies undertaken in this thesis the

third order formulation in Eq. 2.32 is sufficient.
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Boundary Conditions and Integration

In order to solve differential equations using the finite difference method, we must be

able to apply relevant boundary conditions. As a working example, we may consider

the ordinary differential equation describing the scalar quantity φ

d2φ

dy2
= f (y) , (2.33)

within the region 0 ≤ y ≤ Ly, where the function f (y) is some known continuous

function of y. We impose boundary conditions such that dφ
dy
|y=0 = dφ

dy
|y=Ly = 0.

This is known as a Neumann boundary condition as it imposes a fixed value on a

gradient term. To impose this numerically using a finite difference method, we use

so called phantom points. We first discretise the channel in the ŷ direction on a

grid of Ny +1 elements, with index j = 0, ..., Ny. The space between each element is

then ∆y = Ly/Ny. The value of y on each grid point is then given by y = Lyj/Ny.

In this discretised grid Eq. 2.33 is approximated at each element by

φj+1 − 2φj + φj−1

∆y2
= f (Lyj/Ny) . (2.34)

At the edges of the region, where y = 0 and y = Ly, we construct points beyond the

grid such that
φ1 − 2φ0 + φ−1

∆y2
= f (0) (2.35)

and
φNy+1 − 2φNy + φNy−1

∆y2
= f (Ly) . (2.36)

Our prescribed boundary conditions are then

φ1 − φ−1

2∆y
= 0 (2.37)

at the channel wall y = 0 and

φNy+1 − φNy−1

2∆y
= 0 (2.38)

at the channel wall y = Ly.

Solving for phantom points φ−1 and φNy+1, and inserting these into Eqs. 2.35

and 2.36 we obtain
2φ1 − 2φ0

∆y2
= f (0) (2.39)
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and
−2φNy + 2φNy+1

∆y2
= f (Ly) . (2.40)

We can now decompose the system described by Eq. 2.33 with these boundary

conditions as Ny + 1 coupled simultaneous equations;

−2φ1 + 2φ0

∆y2
= f (0)

φ2 − 2φ1 + φ0

∆y2
= f

(
1

Ny

Ly

)
φ3 − 2φ2 + φ1

∆y2
= f

(
2

Ny

Ly

)
φ4 − 2φ3 + φ2

∆y2
= f

(
3

Ny

Ly

)
...

φNy − 2φNy−1 + φNy−1

∆y2
= f

(
Ny − 1

Ny

Ly

)
2φN−1 − 2φN

∆y2
= f (Ly) .

These in turn can be written in the form of an (Ny + 1)× (Ny + 1) matrix equation

1

∆y2



2 −2 0 0 0 0 . . . 0

1 −2 1 0 0 0 . . . 0

0 1 −2 1 0 0 . . . 0

0 0 1 −2 1 0 . . . 0
...

. . . . . . . . . . . . . . . . . .
...

0 . . . 0 0 1 −2 1 0

0 . . . 0 0 0 0 2 −2





φ0

φ1

φ2

φ3

...

φNy−1

φNy


=



f (0)

f
(

1
Ny
Ly

)
f
(

2
Ny
Ly

)
f
(

3
Ny
Ly

)
...

f
(
Ny−1

Ny
Ly

)
f (Ly)


(2.41)

By inverting this matrix, we can then solve for φ at each grid-point. One may apply

other boundary conditions in a similar manner using a finite difference method. This

includes periodic boundary conditions, which we also consider in our studies here.

A limitation of the finite difference method, however, is that derivatives are only

calculated from adjacent grid elements. The information used to calculate deriva-

tives is therefore limited by the number of adjacent elements used. We can obtain
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greater numerical accuracy by increasing either the total number of elements, thus

reducing ∆y, or the number of adjacent points used. However, doing so may prove

very computationally expensive. When we come to study systems with periodic

boundary conditions, we therefore make use of Fourier methods, which have several

advantages over finite difference methods.

2.3.2 Fourier Methods

In geometries with periodic boundaries, it is convenient to make use of Fourier

methods to solve differential equations. Numerically this is done by decomposing

the quantity into a Fourier series using a Discrete Fourier Transform. In a periodic

system of size Lx the function φ (x) thus becomes

φ (x) =
∑
qx

φ̃qx exp (iqxx) , (2.42)

where qx = 2πq
′
x/Lx is the wavenumber and φ̃qx is the Fourier transform of the

function φ (x) with wavenumber qx and mode number q
′
x [80]. When a Discrete

Fourier transform is performed on a system of Nx elements approximating a system

of size Lx, the highest frequency mode is determined by the number of elements.

As an example of how Fourier methods may be used to solve differential

equations, let us consider the system described by the second order differential

equation
d2φ

dx2
= g (x) . (2.43)

In this system both φ (x) and g (x) are continuous periodic functions of x. By

properties of a Fourier transform, derivatives in Fourier space become

∂nxφ(x) =
∑
qx

(iqx)
nφ̃qx exp(iqxx). (2.44)

By performing a Fourier transform to Eq. 2.43, we therefore obtain for each qx

−q2
xφ̃qx = g̃qx , (2.45)

where g̃qx is the Fourier transform of the function g (x) for wavenumber qx. To

obtain a solution for φ (x) we divide both sides of this equation by −q2
x and perform



2.3. Numerical Implementation 27

an inverse Fourier transform. This method is used in the following studies to solve

differential equations with periodic boundaries.

As with all computational techniques, there are both advantages and dis-

advantages to the use of Fourier methods to solve differential equations numerically.

A key merit over using finite difference methods for the same systems is that the

calculation of derivatives uses information from throughout the system, not just

from locally adjacent grid points. This can mean that a greater numerical accuracy

may be achieved for a much smaller mesh. The principal disadvantage however

comes from the computational resources required to perform Fourier transforms on

large numbers of elements. The use of Fast Fourier Transform algorithms miti-

gates this [81], but for very large systems their use may still prove computationally

intensive.

In a completely periodic system, Fourier methods may be used to evaluate

all derivatives of a set of equations, as in Chapter 5. In the case of systems with

mixed boundary conditions, as for our non-linear simulations in Chapter 3, we make

use of a combination of both Fourier and finite difference methods.

2.3.3 Time-stepping

Euler Timestepping

Given a function which evolves continuously in time φ(t), with known value φ (t0),

one can approximate its value at some time t0 +∆t for a small value of ∆t by taking

a Taylor series expansion. The value of φ (t) at t0 + ∆t can be approximated by

φ(t0 + ∆t) ≈ φ(t0) + ∆t
∂φ

∂t
|t=t0 . (2.46)

Therefore, given the equation
∂φ

∂t
= f(t) (2.47)

The quantity φ may be evolved by the equation

φ(t0 + ∆t) = φ(t0) + ∆tf(t0). (2.48)

This method is referred to as the explicit Euler algorithm [78] and unless otherwise

specified is used for the temporal evolution of most local terms in this thesis. In
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other cases we use the 4th order Runge-Kutte timestepping algorithm.

Runge-Kutte Timestepping

In certain cases where Euler timestepping is insufficient to ensure numerical stabil-

ity or the timestep size ∆t required by the Euler algorithm is too small to make

a calculation numerically feasible, we make use of an semi-implicit Runge-Kutta

method [78]. In order to timestep the system described in Eq. 2.47 with a stepsize

∆t, the Runge-Kutta method defines the advance by the set of equations

φ(t0 + ∆t) = φ(t0) +
1

6
(k1 + k2 + k3 + k4)

k1 = ∆tf(φ(t0), t0)

k2 = ∆tf(φ(t0) +
k1

2
, t0 +

∆t

2
)

k3 = ∆tf(φ(t0) +
k2

2
, t0 +

∆t

2
)

k4 = ∆tf(φ(t0) + k3, t0 + ∆t)

This makes the system of equations much more numerically stable, allowing for the

use of larger timesteps, thereby reducing numerical cost.
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2.4 Conclusion

This chapter has introduced some of the fundamentals which are relevant throughout

this thesis. This includes hydrodynamics, rheology and flow instabilities. In the

coming chapters, we study these topics theoretically using a variety of numerical

methods, the essentials of which were also introduced here. This chapter discussed

the concepts of non-Newtonian fluids and some of the different flow-curves which

may categorise different rheological behaviour. We then explained how such fluids,

as well as being non-Newtonian, often display elastic properties.

We then introduced the two types of flow instability of interest to us in this

thesis. The first of these was the instability of a 1D base state to 2D perturbations.

We discussed how if a base state is linearly unstable, infinitesimally small pertur-

bations may grow exponentially to form secondary flows, thus leading to non-linear

behaviour at large time-scales. The next instability of interest to us in this thesis

is shear-banding, and we introduced both steady-state and transient shear-banding

here.

Finally, we go through the various numerical techniques used in the studies

conducted in this work. This acts as a background to the specific methods used in

each chapter which are discussed in turn. With this prerequisite knowledge now in

place, we move on to our first study: the linear instability of viscoelastic pressure

driven channel flow.



Chapter 3

Linear Instability of

Shear-Thinning Pressure-Driven

Channel Flow

3.1 Introduction

The appearance of complex behaviour arising from initially simple flow is widely ob-

served in many viscoelastic flows [53]. Unlike the case of many instabilities in New-

tonian fluids, these instabilities may manifest in the creeping flow regime, where

inertial effects are small. This behaviour is often found in flow geometries with

curved streamlines, such as in Taylor-Couette flow [82], cone plate [83] and in plate-

plate geometries [84]. Instabilities have also been studied in curved streamlines in

a channel flow, both theoretically [85, 86] and in experiment [87, 88]. An exam-

ination of these instabilities in a range of geometries led to the development of a

criterion based on the curvature of the streamlines and the Weissenberg number,

Wi [89]. The Weissenberg number is defined as Wi = γ̇cτc, where γ̇c and τc are the

characteristic shear-rate of the flow and viscoelastic relaxation time of the material

respectively [90].

A great deal of research has also been conducted into instabilities that

arise in geometries with straight streamlines. It has been found that an Oldroyd B

fluid, which describes a viscoelastic fluid with constant viscosity, is stable to small

30
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amplitude perturbations in a Couette [91] and pressure driven Poiseuille flow [92].

Similar results were found for the Upper-Convected Maxwell fluid by Gorodtsov

and Leonov in their analytical study of 1967 [93]. Studies into layered fluids have

revealed instabilities to be widespread in flows with spatially varying viscoelastic

properties. Instabilities in multi-fluid flow have been studied theoretically in both

pressure driven Poiseuille flow [91,94,95] and Couette flow [96].

Shear-banded flows have also been shown to exhibit interfacial instability

in both theoretical studies [97–99] and in experiment [100, 101]. These studies

have demonstrated that instabilities in shear banded flows appear to be driven by

large variations in normal stress differences and variations in shear-rate similar to

those seen in flows of layered viscoelastic fluids. We discuss this similarity further in

this chapter when we consider the nature of unstable channel flow in the Johnson-

Segalman and Rolie-Poly models.

In this study we examine shear thinning viscoelastic fluids, which exhibit

decreasing viscosity with increasing shear rate, but retain a monotonic flow curve

and so do not have a shear-banded base state. In pressure driven flows instability was

first predicted theoretically in this type of fluid by Wilson and Rallison performing

linear stability analysis on such a system descibed using a White-Metzner model [14].

This model has the same form as the Upper-Convected-Maxwell model, but uses a

shear-rate dependent relaxation time [102]. The relaxation time for this model is

given by τ (γ̇) = KM γ̇
n−1, where n is the exponent controlling the degree of shear-

thinning of the fluid, γ̇ is the local frame invariant shear-rate and KM is a constant

of proportionality. The characteristic shear-rate for this study was determined by

taking the flow velocity of the base state at the centre of the channel U0 and dividing

by the half channel width L. The Weissenberg number was then given by the the

expression Wi = KM(U0/L)n. They found that given a sufficiently high Weissenberg

number and for sufficiently low shear-thinning exponent n, the calculated eigenvalues

demonstrated the one-dimensional base state to be unstable to two dimensional

perturbations along the flow direction. We replicate the basic results of this study

in this chapter using a method of linear stability analysis novel to this work, and

cast the results of this original study into a generalised framework for predicting the
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onset of instability.

Subsequent studies of shear thinning pressure driven channel flow per-

formed by Grillet and collaborators using the Phan-Thien-Tanner (PTT) and Giesekus

models [103] also found instability at sufficiently high Weissenberg numbers. The

Weissenberg number at which instability was observed was found to depend on the

degree of shear thinning of the model in question. In this study the characteristic

shear rate is calculated by taking the average velocity in the base state divided by

the half channel width. The authors found that the instability was predicted at

all studied values of the anisotropic drag parameter, 0 < α ≤ 0.5, using a Weis-

senberg number calculated from the wall shear-rate, γ̇wall as opposed to the average

shear-rate. The principal wavevector q∗ in this study, which corresponds to the

most unstable wavevector at the threshold of instability, was found to shift to lower

wave-vectors with decreasing α. Previous studies of the Giesekus model performed

by Blonce [104] and Lim and Schowalter [105] failed to find instability by only look-

ing at the high wave-number regime. Instability to two-dimensional perturbations

at small wavenumbers in the the Giesekus model was also observed in work by

Palmer [106] with the addition of a solvent viscosity. In the PTT model Grillet’s

study found the trend to be different, with the critical wall Weissenberg number

decreasing with non-linear relaxation parameter ε, but with non-monotonic varia-

tion in critical average Weissenberg number. This marked difference in behaviour

between the models suggest that either the instabilities are unrelated or that some

other means is necessary to characterise the onset of instability.

Later work by Bogaerds showed the eXtended Pom-Pom to be stable in

pressure driven Poiseuille flow [107]. It was found that despite the model displaying

strong shear thinning, the flow is stable to linear perturbations within the regime

studied Wi ∼ O(1). Their study also suggested that the presence of a second normal

stress difference further stabilises the system to two dimensional perturbations. One

can show that an incompressible, two dimensional flow field is not affected by second

normal stress differences, therefore it is unclear why the presence of second normal

stress difference should influence the flow stability.

Following over a decade of theoretical work, experimental evidence for in-
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stability of viscoelastic shear thinning channel flow was presented by Bodiguel et

al. [18] and by Poole [19]. Both of these studies examined the stability of hydrolysed

polyacrylamide (HPAC) solutions in two dimensional flow. They characterised the

degree of shear thinning of the fluid by taking a power law fit of the shear thin-

ning region of the flow curve, with all concentrations studied having shear thinning

exponent 0.1 ≤ n ≤ 0.21. Further examination of the fluids showed that unlike

the original theoretical work by Wilson [14], a second shear thinning exponent on

the shear modulus better modelled their rheology within the shear-thinning part

of the shear-stress curve. The experimental design used by Bodiguel examined this

instability at the micro-fluidic scale, while Poole used apparatus at larger scales thus

mitigating the effects of slip. Two systems were studied by Poole to examine this

instability, a channel and a circular pipe. The onset of instability was observed at

similar flow rates in both geometries, suggesting that fluctuations in the vorticity

direction may be unimportant to the emergence of instability. Poole also analysed

the power spectrum of the flow at long timescales. He showed that the amplitude

of the Fourier modes of velocity fluctuations followed a power-law distribution in

the channel well beyond onset of instability. Both studies observe instability at a

Weissenberg number similar to that predicted by Wilson’s original work with the

White-Metzner model (Wi = 2). Observed in these studies was the apparent in-

crease in flux through the pipe after the onset of instability. This phenomenon has

since been observed in other experiments of viscoleastic turbulent channel flow at

low Reynold’s number [108,109]. Another experimental observation of instability in

a similar geometry was in extruded flow of a shear-thinning sodium alginate solu-

tion [20]. In this study a helical gyration of the extruded fluid above some critical

flow rate was observed at a critical Weissenberg number similar to those seen by

other experimental studies, but for a higher shear-thinning exponent (n = 0.3).

More recent work examining the instability of shear-thinning viscoelastic solutions

of polyethylene glycol in microtubials has examined the onset of turbulence at very

high elasticity numbers, the ratio of elastic to inertial effects in the flow, El [110].

Their findings showed that with increasing polymer concentration, the threshold

Reynolds number for instability decreased. From this they inferred that the insta-
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bility is primarily elastic in origin.

In order to examine this work further, Wilson and collaborators studied the

stability of a modified White-Metzner model, using both a shear thinning relaxation

time, described by the expression τ(γ̇) = KM γ̇
n−1 and shear-modulus G (γ̇) =

GM γ̇
m−n [15]. The special case of m = n corresponds to the model used in the

original study by Wilson and Rallison. In this new model the fluid was found to be

most unstable near the parameters which best fit the experimentally studied fluid

(n = 0.2, m = 0.43). However the model predicted that the unstable modes would

be varicose, symmetric within the channel, as in the original theoretical study. In

experiments however sinuous, anti-symmetric, modes are observed. Following this

work, another modification was made [16], this time with the inclusion of a shear-

thinning inelastic solvent, such that the flow curves of shear stress and first normal

stress difference are described by

Σ (γ̇) = Gτmγ̇m + µγ̇m (3.1)

N1 (γ̇) = 2Gτm+nγ̇m+n. (3.2)

This study showed the flow to become more stable with increasing solvent viscosity

coefficient µ suggesting the instability is primarily of elastic origin, i.e. that shear-

thinning alone without viscoelasticity is not sufficient to give instability. In both this

study, and in that performed without the addition of solvent there is an unusual

behaviour observed when m = n. The stability of the flow drops suddenly as m

approaches the value of n from either direction. This sudden change in stability,

as well as the absence of unstable sinuous modes, suggest that White-Metzner type

models cannot capture a completely physically accurate description of channel flow

behaviour.

The most recent theoretical study of shear thinning channel flow, also by

Castillo and Wilson [17], used the Bautista-Manero-Puig fluidity model. The form

of this model is quite different from others studied so far [111]. Since the stress

evolution is modelled by a conventional UCM equation, the normal stress profile

is always parabolic. By varying the model parameters the authors were able to

determine the influence of thixotropy on the instability, and find that the thixotropic
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timescale does not affect the sign of the unstable eigenvalue, only its magnitude,

which increases as the fluid becomes less thixotropic. It was found in this study

that the most unstable eigenvalues are found for wavenumbers 0.35 < q < 0.6,

much lower than seen in their previous work with the White-Metzner model. The

authors also showed that the position of the shear thinning regime within the channel

influences the stability of the flow, with the eigenvalue increasing as the region of

shear thinning moves close to the wall. This suggests that the onset of instability

may be linked to the underlying base state.

In this study, we characterise the onset of this instability in several models

to determine the possible generality of instability of shear-thinning pressure driven

flow in models of shear-thinning viscoelastic fluids to two dimensional perturba-

tion. We perform this study within a number of constitutive models widely used to

describe the evolution of viscoelastic stress. In partiular we consider the microscop-

ically motivated non-stretch Rolie-Poly (RP) model [112] and the phenomenological

Johnson-Segalman (JS) [113] and White-Metzner (WM) [102] models. Using linear

stability analysis, we calculate the threshold imposed pressure drop for the onset

of instability in each model as a function of the model parameters. From this we

determine a general functional form based on the steady state flow curves which

predicts the onset of instability in each of the models studied based on the underly-

ing steady state shear-stress Σ (γ̇) = σxy (γ̇) + ηγ̇ and first normal stress difference

N1 (γ̇) = σxx (γ̇) − σyy (γ̇) flow curves. We also analyse and discuss how the linear

behaviour may offer insight into how instability manifests itself across apparently

dissimilar models. We observe instability in each model below some critical logarith-

mic slope of the flow curve at its shallowest point, n =
d log Σ

d log γ̇
|min. We demonstrate

that the critical pressure drop for the onset of instability is well described by a cri-

terion expressed in terms of the degree of shear-thinning n, and the maximum value

of the derivative within the channel of the first normal stress difference with respect

to shear-stress
dN1

dΣ
|max. In the case of the Rolie-Poly and Johnson-Segalman mod-

els, we perform non-linear simulations to observe long-timescale behaviour. The

observation of instability in the Rolie-Poly and Johnson-Segalman models is novel

to this study as far as this author is aware. We also reproduce the basic findings
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of the work of Ref. [14], and demonstrate that instability in the WM model can be

predicted by the same functional form as in the case of the RP and JS.

Characterising Pressure Driven Flow

Weissenberg numbers are used widely to characterise the onset of instability in

viscoelastic fluids, including in channel flow as is of interest here. In the original

work of Wilson and collaborators [14], the Weissenberg number was defined by

considering the average shear-rate across the channel, such that

Wi = KM(U0(0)/L)n. (3.3)

Here KM is the relaxation time coefficient such that τ (γ̇) = KM γ̇
n−1, U0(0) is the

velocity at the centre of the channel and L is the channel halfwidth. The flow profile

U0(y) can be calculated analytically, thereby allowing the pressure drop P ′ to be

selected such that the centreline velocity is 1. The stability is then assessed by

varying Weissenberg number for a given model parameter n by varying KM .

In the work of Grillet and collaborators in Refs. [103, 107] the average

velocity in the channel, < U(y) >, divided by the channel halfwidth, is used to

obtain a characteristic shear-rate. Poole used this definition in his experimental

study, with the average velocity taken from the velocimitry data within the channel.

Grillet separately defined a wall Weissenberg number (taken as the wall shear-rate

multiplied by the relaxation time τ) to characterise the flow.

In the experimental studies in Ref. [18, 20], the Weissenberg number is

defined from the flow curves as

Wi =
N1(γ̇wall)

Σ(γ̇wall)
. (3.4)

All of these definitions seek to characterise the onset of instability by defining for

a pressure driven flow a characteristic shear-rate in the channel. We choose in this

study not to define a Weissenberg number and instead relate the onset of instability

to the applied pressure drop P ′.
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Critical Pressure Drop

In this study we are motivated to define the onset of instability by using the quan-

tities readily available to experimentalists. Included in this are the steady-state

shear-stress curves, first normal stress difference curves and the applied average

pressure drop along the channel. We show in this chapter that these quantities may

predict the stability properties of a 1D base state to two-dimensional perturbations

in pressure driven channel flow. We do not utilise a Weissenberg number to charac-

terise the onset of instability in our study, but the critical pressure drop P ′∗. This

acts to the same effect as the Weissenberg number, since it characterises the strength

of the flow, but also offers key insights into how the steady state rheology of the

fluid in question presents itself in the channel.

We note firstly that force balance requires the total shear stress to vary

across the channel as Σ = P ′y for a 1D flow. The magnitude of the wall shear

stress in the channel (in the 1D base state) is determined by the applied pressure

gradient in the channel P ′ via the relation Σ = P ′Ly/2, where Ly is the channel-

width. The shear-rate between the centre of the channel and the wall is then set by

the homogeneous shear-stress curve Σ (γ̇). This value of shear-rate as a function of

position γ̇ (y) is set by the inverse function of the flow curve γ̇ (Σ = P ′y). We shall

see this when come to examine more closely the flow curves and base states of each

model in this chapter.

As well as determining the base-state profile, other important quantities are

set by the applied pressure drop. The variation of the first normal stress-difference

and shear-rate within the channel are then given by

dN1

dy
=
dΣ

dy

dN1

dΣ
= P ′

dN1

dγ̇
/
dΣ

dγ̇
. (3.5)

and
dγ̇

dy
=
dΣ

dy

dγ̇

dΣ
= P ′

dγ̇

dΣ
. (3.6)

respectively. We shall see that these quantities, combined with the shear-thinning

nature of the fluid, leads to the instability of the base state to two dimensional

perturbations.
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3.2 Flow Geometry

The flow considered is between two infinite flat parallel static boundaries, at which

we impose boundary conditions of no-slip and no-permeation. These boundaries are

set at y = +Ly/2 and y = −Ly/2, and throughout we work in units of length such

that the channel width Ly = 1. The flow is driven along the channel in the positive

x̂ direction by a constant negative applied pressure gradient per unit length, P ′

which we measure in units of G/Ly, where G is the shear-modulus of the fluid. The

flow is assumed to remain translationally invariant in the vorticity direction ẑ, with

zero velocity component in ẑ. (These assumptions are in accordance with Squire’s

theorem, which holds that a shear flow of the form v = (U0 (y) , 0, 0) is less stable

to two-dimensional perturbations of the form ṽ = (ũ (x, y, t) , ṽ (x, y, t) , 0) rather

than to three-dimsensional perturbations [114]. This should be checked in future

fully 3D studies in order to consider the potential influence of second normal stress

differences [115].) The numerical methods used to simulate this system are outlined

in Appendix I of this chapter.

3.3 Models

Many different constitutive models are used by rheologists to describe the dynam-

ics of polymeric fluids [47]. These may be phenomenologically motivated, such as

White-Metzner [102] and Johnson-Segalman [113] or developed based on molecular

dynamics, such as the GLaMM [116], Rolie-Poly [112] or Pom-Pom model [117].

We make use of three constitutive models to study the stability of an

initially 1D shear-thinning channel flow profile to two dimensional perturbations.

These are the Rolie-Poly, Johnson-Segalman and White-Metzner models. In addi-

tion to the viscoelastic or polymeric stress that is described by each of the models,

we also include a Newtonian solvent. This is due to several reasons motivated by

the physical properties of the fluids we seek to study and in order to facilitate our

calculations. As we see in Figure 3.1 for the Johnson-Segalman model, some con-

stitutive models display sufficient shear-thinning such that the shear stress curve

becomes non-monotonic. This may also occur in the Rolie-Poly model. With the
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addition of a Newtonian solvent stress ηγ̇ to the polymeric stress σxy, the total shear

stress Σ is monotonic. As discussed in Chapter 2, this non-monotonic constitutive

curve is linked to the formation of shear-bands. The stability of such a shear banded

flow was studied for pressure driven channel flow in Ref. [118]. In this study we re-

strict ourselves to non-banded flows. Therefore we include for each model a solvent

component to the stress, with solvent viscosity such that the flow curve is mono-

tonic. The addition of a solvent viscosity also allows us to calculate the resulting

flow field via the Stokes equation. The methods used for this are described in detail

in Appendix I of this chapter.

An important feature of these models is their steady state rheology. In the

case of shear flow, this refers to the values of shear-stress (shear rate) obtained due

to an imposed shear rate (shear stress) following the subsidence of transient dynam-

ics. This is an extremely important means by which experimentalists characterise

the properties of complex fluids, and theoretical constitutive curves are often fitted

to experimentally measured data for the purposes of simulating complex flow be-

haviour. In each of the models used we focus strongly on the steady state behaviour

in each of the models used and show how the properties of the flow curves relate to

the onset of instability.

Although the Oldroyd B model is not used in this study, both the Johnson-

Segalman and White-Metzner models are equivalent to the Oldroyd B model for

some values of their rheological parameters. It is therefore beneficial that we intro-

duce it here. We shall now introduce each of the models used in this study, as well

as the Oldroyd B model. For comparison purposes, the steady state constitutive

curves of the four models are plotted together in Figure 3.2.

3.3.1 The Oldroyd B model

We do not study explicitly the stability of an Oldroyd B fluid in pressure driven

channel flow, because this model has been found to be linearly stable to perturba-

tions in previous work examining pressure driven channel flow [92,119]. We however

make reference to Oldroyd B frequently as two of the models used in this study

(Johnson-Segalman and White-Metzner) recover Oldroyd B dynamics at some value
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Figure 3.1: The polymeric stress σxy, Newtonian solvent stress ηγ̇ and total shear

stress Σ = σxy + ηγ̇ plotted as a function of applied shear-rate γ̇ for the Johnson-

Segalman model with parameters a = 0.2 and η = 0.125.

of their rheological parameters. The model is motivated here using a kinetic theory

approach, i.e, an approach in which the elements of a constitutive model can be

defined in terms of molecular properties.

The Oldroyd B constitutive equation models each polymer chain as a dumb-

bell, two beads connected by a linear elastic spring [120]. The displacement between

beads, known as the end-to-end vector, is denoted R. The polymer chains are in

a solvent with viscosity η. The model considers the dilute limit where interactions

between the polymers can be neglected and only interactions between the polymer

and the solvent are important. The polymer stress tensor σ is calculated by con-

sidering the dumbbells crossing a small surface element δS of unit normal n. If the

force on a single dumbbell is proportional to the magnitude of R, then the polymer

stress exerted by the dumbbells crossing the surface element is given by

σ = G 〈RR〉 = G(W − I). (3.7)

Here 〈...〉 denotes the ensemble average and W is defined as the conformation tensor

which describes the configuration of polymer chains under deformation. For an

elastic dumbbell in a solvent, there are three forces acting upon it: the viscous

drag, the elastic spring force and a random Brownian force. It is assumed that
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the centre of mass of the dumbbell moves with the velocity of the solvent at that

position. One can therefore show by considering these effects that the evolution of

the conformation tensor in a flow field v obeys the equation

∂tW + v∇ ·W = ∇vW + W∇vT − 1

τ
(W − I). (3.8)

Here τ is the relaxation time of the polymer stress. Without a solvent contribution

to the stress (which we have assumed for all models in this study), this equation

also describes the evolution of the Upper-Convected-Maxwell model [47].

The homogeneous shear stress and first normal stress difference curves are

given as a function of shear-rate by the expressions

Σ = Gτγ̇ + ηγ̇ (3.9)

and

N1 = 2Gτ 2γ̇2 (3.10)

respectively. As we can see, the Oldroyd B model describes a constant viscosity

viscoelastic fluid, or Boger fluid [49]. This can be used describe low concentration

polymeric fluids which may display minimal shear-thinning. In Figure 3.2 we see

that for low shear-rates both the shear-stress and first normal stress difference in

the Johnson-Segalman and Rolie-Poly models behave as for Oldroyd B. At higher

shear-rates we see that shear-thinning effects become more pronounced and their

behaviour diverges.

3.3.2 Johnson-Segalman Model

The Johnson-Segalman (JS) model is a spring and dumbell model closely related

to the Oldroyd B model [113], but extends it by introducing a “slip parameter” a,

which controls how the dumbbells can deform in a non-affine way relative to the

background flow field. The dynamic equation of the stress tensor is then

∂tW + v · ∇W = (ΩW −WΩ) + a(DW + WD)− 1

τ
(W − I). (3.11)

Here D =
1

2
(∇v + ∇vT ) and Ω =

1

2
(∇v − ∇vT ) are the symmetric and anti-

symmetric part of the rate of strain tensor respectively.
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For a = 1 the deformation of the dumbbells is purely affine with the back-

ground flow, and the Oldroyd B model is recovered. For |a| < 1 the steady state

polymeric stress is a non-monotonic function of shear-rate. In this study we set the

solvent viscosity η > Gτ/8 to ensure that the constitutive curve remains monotonic.

This leads to a much higher value of solvent viscosity being used in our calculations

for JS compared to others in our study. In Figure 3.2 a) we see that this leads

to a more pronounced high-shear rate Newtonian regime than for the other models

shown. The analytical form of the steady state shear stress as a function of shear

flow for a state of stationary homogeneous shear is given by

Σ(γ̇) =
Gτγ̇

1 + (1− a2)τ 2γ̇2
+ ηγ̇, (3.12)

where η is the Newtonian solvent viscosity. The corresponding steady state first

normal stress difference is given by

N1(γ̇) =
2Gτ 2γ̇2

1 + (1− a2)τ 2γ̇2
. (3.13)

A limitation of the Johnson-Segalman model is its tendency to give unphysical tran-

sient behaviour at high shear rates, leading to high frequency oscillations of the

start-up curve values. Our focus in this study is on the impact of the steady state

behaviour on secondary flow and does not relate to this transient behaviour. We

therefore deem it to be a suitable model for use in this study.

As stated previously, at low shear-rates the flow curve of the Johnson-

Segalman model will be equivalent to that for Oldroyd B. For shear-rates γ̇ &
1√

1− a2
, the model displays very strong shear-thinning. At higher shear-rates the

solvent stress dominates and the flow curve displays a high shear-rate Newtonian

regime also seen in polymer solutions, such as those used in the experiments of

Ref. [18]. When we examine the flow curve of first normal stress difference, we again

see in Figure 3.2 b) that at low shear-rates the model imitates Olrdoyd B. At higher

shear-rates however, the first normal stress difference ceases to grow quadratically

with the applied shear-rate and saturates. While the Johnson-Segalman model is a

phenomenological model, we see that many of its features are also observed in the

molecularly motivated Rolie-Poly model.
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3.3.3 Rolie-Poly Model

The modelling of fluids composed of entangled polymers - a chain of repeating

monomer units - is often done by considering a single polymer molecule which is

constrained by a mean field of entanglements with other polymers. It was proposed

by Edwards [121] that this creates a tube of confinement around the chain, the

contour of which approximates a random walk with step size equal to the tube di-

ameter. This random walk is called the primitive path, the contour length of which

is much less than the chain itself [38]. De Gennes suggested that the polymer would

thereafter diffuse along its length and escape the constraints of the tube. This pro-

cess was termed “reptation” due to its similarity to the motions of a snake. The

Doi-Edwards model [122] was among the first of these tube-like models which was

widely used successfully to model polymeric fluids.

The theory did not however incorporate the relaxation mechanism of convective

constraint release (CCR), which describes how the constraints on a polymer can

be lost due to neighbouring polymers themselves reptating through points of en-

tanglement [123]. The theory also did not allow for chain stretch during strongly

nonlinear flows with deformation rates approaching the inverse Rouse time γ̇ ≈ τ−1
R .

Chain stretch denotes the effects of elongational displacement of the polymer chains.

τR is the Rouse relaxation time, which corresponds to the timescale on which the

chain stretch relaxes. The GLAMM model [116] was developed from the original

Doi-Edwards tube model to incorporate such mechanisms. It provides a stochas-

tic microscopic equation of motion for the chain and the surrounding tube. It is

however highly intensive computationally, and so a single mode approximation to

GLAMM was derived. This single mode approximation is the Rolie-Poly (ROuse

LInear Entangled POLYmers or “RP”) model [112]. The stress tensor in the Rolie-

Poly model is defined such that σ = GW, where W is the microscopic viscoelastic

conformation tensor. The constitutive equation for the viscoelastic conformation

tensor of this model is given by

∂tW+v·∇W = ∇v·W+W·∇vT− 1

τd
(W − I)− 2(1− A)

τR

[
W + βA−2δ (W − I)

]
,

(3.14)
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where A =
√

3/T and T = tr(W) denotes the magnitude of the chain stretch in

the system. The timescale τd is the “reptation” time, defined as the timescale on

which the polymer chain escapes the tube of entanglements along which it undergoes

diffusion along its own length. τd and τR are related via the number of entanglements

of the polymer Z, where

Z =
τd

3τR
. (3.15)

In this study we make use of the highly entangled limit, where Z → ∞, such that

τR = τd/Z → 0 This yields the non-stretch version of the Rolie-Poly model, as the

timescale for the polymers to relax from displacement along their own length is in-

finitely less than the corresponding timescale of reptation. This has the constitutive

equation

∂tW + v ·∇W = ∇v ·W + W ·∇vT − 1

τ
(W − I)− 2

3
Tr(∇v ·W) [W + β(W − I)] .

(3.16)

Here β is the convective constraint release parameter which describes the number

of constraint release events required to result in some portion of the tube moving

a distance of the tube parameter. We drop the subscript, writing simply τ = τd,

which is then the characteristic timescale for our study with this model.

Unlike the other models used in this study, the Rolie-Poly model lacks a

known analytical expression for its steady state behaviour. We see in Figures 3.2 a)

and b) that many features of the steady state rheology of the Rolie-Poly are similar

to those of Johnson-Segalman. In the shear stress curve we observe a low shear-rate

Oldroyd B like regime, a shear-thinning plateau, and high shear-rate Newtonian

behaviour. Likewise, we see that at low shear-rates that N1 ∼ γ̇2 before saturating

at higher shear-rates. These similarities will become significant when we come to

describe the influence of the flow curves on how channel flow instability manifests

in each model. These features are, however, lacking in the next model we introduce.

3.3.4 White-Metzner Model

The White-Metzner model uses an Upper-Convected-Maxwell type equation with

a relaxation time τ set as a function of the frame invariant shear-rate [102]. The
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constitutive equation is then given by

∂tW + v · ∇W = ∇vW + W∇vT − 1

τ(γ̇)
(W − I). (3.17)

Here τ(γ̇) = τnγ̇n−1 where γ̇ is the frame invariant shear-rate defined as

γ̇ =
√

2D : D, (3.18)

where D is the symmetric rate of strain tensor previously defined. The power law

index 0 < n ≤ 1 gives shear-thinning for n < 1.

The steady state flow curves of shear-stress and first normal stress differ-

ence are described for the White-Metzner model respectively by

Σ = Gτγ̇n + ηγ̇. (3.19)

and

N1 = 2Gτγ̇2n. (3.20)

We see in Figures 3.2 a) that this leads to very different behaviour from other

models in this study. We note that the White-Metzner model gives shear-thinning

power law fluid behaviour even in the limit γ̇ → 0, thereby not displaying any

Newtonian regime at low shear-rates. This is unlike the other models studied in this

chapter. Therefore caution is needed if this model is to be applied to the simulation

of experimental polymeric solutions in channel flow, as is our concern here, because

near the centre of the channel low shear-rates will always be observed. By symmetry,

the base state shear-rate is always zero along the channel centreline. The behaviour

of N1 is also quite different in this model. We see neither the low shear-rate γ̇2

dependence nor the high shear-rate saturation.

Within the White-Metzner model an initially 1D base state of a pressure

driven flow was found to unstable to perturbations originally in Ref. [14]. In this

study we seek to understand this already known instability in the context of other

models we have studied. By making direct comparison with previous studies we also

seek to validate the novel method we have used to perform linear stability analysis.

Unlike in the prior study, we require the addition of a solvent viscosity to calculate

the flow field, which introduces minor differences to the base state.
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Figure 3.2: l Constitutive curves of a) shear-stress and b) first normal stress dif-

ference for the Oldroyd B, Johnson-Segalman (JS), Rolie-Poly (RP) and White-

Metzner (WM). The model parameters are Oldroyd B:η = 0.0125. Johnson-

Segalman: a = 0.2, η = 0.125. Rolie-Poly: β = 0.2, η = 0.0125. White-

Metzner:n = 0.2, η = 0.0125.

3.4 Model Parameters and units

We report all results in this chapter in units of length in which the channel width

Ly = 1; units of stress in which the polymeric shear modulus G = 1; units of time

in which the basic polymeric relaxation timescale τ = 1. In the case of the White-

Metzner model the polymeric relaxation time is a function of the frame invariant

shear-rate γ̇ =
√

2D : D such that τ(γ̇) = τn0 γ̇
n−1. Therefore the time unit for this

model is defined in terms of this coefficient τ0.

In these units we need only consider four parameters for each model. The

first of these is the model parameter controlling the viscoelastic behaviour of the

model in question: the CCR parameter β for Rolie-Poly, the slip parameter a for

Johnson-Segalman and the power law exponent n for the White-Metzner model. The

second parameter in the Newtonian background solvent viscosity which is always

small on the scale of the polymeric viscosity Gτ = 1. The third is the channel

length Lx. Our linear stability analysis calculates the growth rate of perturbations

as a continuous function of the magnitude of the wavevector qx̂. However in reality

this is quantised as q = 2πq
′
/Lx for any channel of finite length Lx. In non-linear

simulations Lx is an explicit parameter. The last parameter which we vary in this

study is the imposed pressure drop, P ′, which characterises the strength of the
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imposed flow.

3.5 Linear Stability Analysis

We now outline the method by which the linear stability analysis was conducted

in this study. Credit for derivation of this method is given to Professor Suzanne

Fielding.

By using linear stability analysis, we aim to determine the stability of an

initial 1D base state to a perturbation with some wavevector qx̂. All the constitutive

models used in this study have the same basic form outlined as follows. The total

stress is given by

Π = σ + 2ηD− pI, (3.21)

where the viscoelastic stress σ = σ(W). Within the zero Reynolds number flow

regime, force balance requires:

∇ ·Π = 0, (3.22)

and the condition of incompressibility gives:

∇ · v = 0. (3.23)

The constitutive equations used to model the evolution of the conformation tensor

W, and hence the viscoelastic stress tensor σ, are all of the general form

∂W

∂t
+ v · ∇W = F (W,∇v, ξ) . (3.24)

Here ξ is a model parameter controlling the rheology of the model. This parameter

varies depending on the model in question, with ξ = n in White-Metzner, ξ = a in

Johnson-Segalman and ξ = β in Rolie-Poly. These equations must be solved subject

to a constant imposed average pressure gradient P ′ per unit length in x̂.

In order to study the instability of the flow to two dimensional perturba-

tions, we first must calculate a one dimensional stationary solution to Eqs. 3.21-3.24.

This is done by evolving the equations numerically to steady state, allowing spatial

variation only in the ŷ direction. We denote the base state as
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v0(y),W0(y), σ0(y), p0(y),Π0(y). The base state is therefore defined such that

0 = η∇2v0 +∇ · σ0 − P ′x̂ (3.25)

0 = F (W0,∇v0, ξ). (3.26)

These quantities each depend on ξ and η, but these dependencies are dropped for

ease of notation. The base state velocity v0 is non-zero only in the x̂ direction, such

that v0(y) = U0(y)x̂, where U0(y) is the magnitude of the base state velocity field.

In order to study the linear stability of a 1D base state, we apply small

perturbations to the base state of the form,

σ(x, y, t) = σ0(y) + σ̃q(y)eiqx+ωqt (3.27)

p(x, y, t) = p0(y) + p̃q(y)eiqx+ωqt (3.28)

v(x, y, t) = v0(y) + ṽq(y)eiqx+ωqt, (3.29)

Π(x, y, t) = Π0(y) + Π̃q(y)eiqx+ωqt (3.30)

W(x, y, t) = W0(y) + W̃q(y)eiqx+ωqt (3.31)

The eigenvalue ωq then describes the temporal evolution of the perturbation for a

given wavenumber q. The perturbations ṽq(y),W̃q(y), σ̃q(y), p̃q(y), Π̃q(y) develop

into the eigenfunctions corresponding to the most unstable eigenvalue for the given

wavenumber q. Therefore, when a perturbation is added to the constitutive equation

we obtain

ωqW̃qe
iqx+ωqt + (v0 + ṽqe

iqx+ωqt) · ∇(W0 + W̃qe
iqx+ωqt) = (3.32)

F (W0 + W̃qe
iqx+ωqt,∇v0 +∇ṽqe

iqx+ωqt, ξ).

Expanding in powers of the amplitude of perturbation, retaining only terms

of first order in that amplitude, and multiplying across by e−iqx−ωqt we obtain a set

of linearised equations that govern the dynamics of the perturbations. In the linear

regime, where perturbations remain small, these equations are valid and the q-modes

evolve independently of each other. In this study the main quantities of interest are,

for each value of q, the eigenvalue ωq with the largest real part and the correspond-

ing eigenfunction ṽq(y),W̃q(y), σ̃q(y), p̃q(y), Π̃q(y). The sign of the real part of the



3.5. Linear Stability Analysis 49

eigenfunction Re(ωq) determines whether the mode with corresponding eigenfunc-

tion grows or decays. A positive value Re(ωq) > 0 signifies the one dimensional base

state to be linearly unstable to two dimensional perturbations ∝ exp(iqx), while the

converse is true if Re(ωq) < 0. If Re(ωq) < 0 for all modes, the base state is linearly

stable against all such perturbations.

The fully linearised method outlined above is an exact method for calculat-

ing the eigenmodes of the instability. In practice however, it is rather cumbersome.

Instead we use the following semi-linearised equation to describe the evolution of a

single mode q, which gives the following form

∂tW̃q+iqU0W̃q+ũqiqW0+ṽq∂yW0 = F
(
W0 + W̃q,∇v0 + e−iqx−ωqt∇ṽqe

iqx+ωqt, ξ
)
.

(3.33)

Here ũq(y) and ṽq(y) are the magnitude of perturbation to the flow field in the x̂ and

ŷ directions respectively. Note that the advective terms in Eq. 3.33 are linearised

while the rest are left in non-linear form. While the perturbations remain small, this

method is equivalent to the fully linearised form. The perturbation to the velocity

field is of the form

ṽqe
iqx+ωqt =

ũq(y)

ṽq(y)

 eiqx+ωqt. (3.34)

The perturbation rate of strain tensor ∇ṽqe
iqx is then given by

∇ṽqe
iqx+ωqt =

∂xuq(y)eiqx+ωqt ∂xvq(y)eiqx+ωqt

∂yuq(y)eiqx+ωqt ∂yvq(y)eiqx+ωqt

 . (3.35)

Multiplying through by e−iqx−ωqt yields

e−iqx−ωqt∇ṽqe
iqx+ωqt =

iqũq(y) iqṽq(y)

∂yũq(y) ∂yṽq(y)

 (3.36)

The force balance equation of the perturbation flow field ṽq is given by

η∇2ṽq +∇ · σ̃q −∇p̃q = 0. (3.37)

Into these equations we substitute the stationary base state for σ0(y) and

v0(y) calculated above and initialise the system with small amplitude spatially ran-

dom perturbations of σ̃q(y), ṽq(y) before evolving the semi-linearised equations with
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time. The amplitude of the perturbation at any time t is then given by

|σ̃q| =
1

4

2∑
i=1

2∑
j=1

∫ Ly/2

−Ly/2
|σ̃ij|dy. (3.38)

The value of Re(ωq) is then calculated by taking the slope the growth of log(|σ̃q|)

with respect to time. By performing this calculation over a range of wavevectors

the growth rate of the perturbations as a function of q, or dispersion relation is

calculated. The stability threshold for a given set of values of ξ and η is the value

of P ′ for which the largest real part of any eigenvalue Re (ωq) = 0 for some value q.

Im (ωq) describes the advection of the perturbations along the channel and does not

relate to the stability of the mode and as such is not reported here. The calculated

functions σ̃q(y) and ṽq(y) correspond to the perturbation stress tensor and velocity

from which the eigenfunctions for a given wave-vector q emerge.

There are associated advantages and disadvantages to using this method

of linear stability analysis compared to root finding methods such as in Refs. [16,

91, 92, 94]. A disadvantage of the method is that for a given value of q only the

most unstable, or least stable, eigenvalue can be easily calculated. Therefore, even

if multiple eigenvalues are unstable for a single mode, only the largest may be

determinable.

In several studies by Wilson and collaborators [91,94], the authors are able

to examine the limit of a discontinuously banded, or layered, base state of the flow.

Given that the method used here requires spatial resolution of the base state and

eigenfunctions, the addition of a diffusion term as used in Ref. [97] is necessary to

study the evolution of a shear-banded flow. The method also cannot explore the

limit of zero solvent viscosity, since the perturbation flow field ṽq must be solved at

each timestep via Eq. 3.37.

An advantage to using this method however is that it allows for the study of

a variety of constitutive models, without the necessity for cumbersome linearisation

of the model equations of each one. Secondly, while only able to capture the most

unstable mode, unlike the root finding methods used in other studies no initial

estimate is required to determine the eigenvalue. Therefore one can determine that

a mode is conclusively stable or unstable via this method and not need to worry
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about having “missed” the mode due to inaccurate initial estimates.

3.6 Criterion For Instability

We aim to show that the instability of pressure driven channel flow can be under-

stood and predicted via the properties of the base state. As we have discussed the

applied pressure drop determines the wall shear-stress in the channel. By consider-

ing force balance we know that the divergence of the total stress tensor ∇ ·Π = 0.

This leads to the expression for the shear-stress Σ = σxy + ηγ̇ such that

∂yΣ− P ′ = 0. (3.39)

We can therefore deduce that the total shear-stress is linear with respect to position

in the channel, with Σ = 0 at the centre, increasing to Σ = P ′Ly/2 at y = Ly/2.

The variation in the shear-stress as a function of position is then linear, with slope

P ′.

The Σ(γ̇) and N1(γ̇) curves give the steady state shear-stress and first

normal stress difference as a function of shear-rate. The corresponding shear-rate

can also therefore be determined as a function if applied shear-stress γ̇ = γ̇(Σ).

Within the channel, this varies as a function of position with dependence Σ(y) =

P ′y. Following from this one can determine the local shear-rate in the channel as a

function of position γ̇ (y) = γ̇(Σ = P ′y) using the steady state shear-stress curve.

We see how the base-state in each of the models studied in this chapter then varies

with the corresponding flow curves.

Similarly we can combine the shear and normal stress flow curves Σ(γ̇) and

N1(γ̇) to give the first normal stress difference as a function of position across the

channel using N1(Σ = P ′y). The slope of the variation in normal stress across the

channel is then given by

dN1

dy
=
dΣ

dy

dN1

dΣ
= P ′

dN1

dΣ
= P ′

dN1

dγ̇
/
dΣ

dγ̇
. (3.40)

We observe from this that the regime of strong shear-thinning (small dΣ/dγ̇) may

lead to large variation in normal stress gradients within the channel. In previ-

ous work by Wilson examining layered Oldroyd B fluids [91, 94] and shear-banded
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Johnson-Segalman fluids [118], instability was attributed to large variations in first

normal stress difference between fluid layers or shear-bands. We postulate that for a

shear-thinning fluid, given sufficiently high normal stress gradient within the chan-

nel, the base state is predisposed to instability to two dimensional perturbations.

The gradient in N1 increases with applied pressure drop P ′. However, even

the normal stress gradient of an Oldroyd B fluid (a constant viscosity viscoelastic

fluid) will increase indefinitely with increasing pressure drop P ′, yet we know channel

flow in Oldroyd B to be stable to perturbations along the flow direction beyond large

gradients in
dN1

dy
[92]. We therefore postulate the presence of shear-thinning to be

a necessary condition. For a regime of high shear-thinning to occupy the space

between the walls in the channel we must have

P ′
Ly
2
− Σ∗ > 0. (3.41)

Here Σ∗ is the shear-stress of the quasi-plateau, the flat regime of the flow curve,

which marks the shear-thinning region of the flow curve of many fluids (see Fig-

ure 3.3). This value on the flow curve corresponds to the minimum logarithmic

slope of the flow curve
d log Σ

d log γ̇
|min. In order to observe instability the applied pres-

sure drop must exceed twice this plateau value, such that the shear-thinning region

is within the channel.

We next assume that given the presence of shear-thinning within the chan-

nel, the normal stress gradient required is a function of the degree of shear-thinning,

calculated as the minimum logarithmic slope of the flow curve

dN1

dy
|max > f

(
d log Σ

d log γ̇
|min

)
, (3.42)

where f is some unknown increasing adimensional function of its argument. In our

chosen units the necessary prefactor to the right hand side G/Ly is equal to one.

This equation can be written as the equivalent expression

P ′∗
dN1

dΣ
|max > f

(
d log Σ

d log γ̇
|min

)
, (3.43)

where
dN1

dΣ
|max is the maximised value of

dN1

dΣ
in the base state flow within the

channel. We will show for several of the models studied we find a reasonable collapse
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to the function

f(ζ) = α0 + α1/(α2 − ζ). (3.44)

Here α0, α1, α2 are parameters fitted to the data calculated for each model. The

parameter α2 corresponds to the maximum degree of shear-thinning at which insta-

bility can be observed. We see that for each model studied here the calculated data

fit reasonably well to this functional form, but that the parameters vary with each

model studied. We shall discuss the effectiveness of these criteria with respect to

each model studied in this chapter.
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Figure 3.3: a) Flow curves of shear stress as a function of shear rate γ̇ in homo-

geneous (0D) shear flow, computed in the Rolie-Poly model for several values of

the convective constraint release parameter β, with solvent viscosity η = 0.03. b)

The corresponding normal stress as a function of shear rate and (inset) plotted

parametrically as a function of shear stress Σ.

3.7 Rolie-Poly model

3.7.1 Flow Curves

The shear stress and first normal stress difference curves of the 0D Rolie-Poly model,

computed with the assumption of a homogenous shear flow are plotted in Figure 3.3.

The shear stress as a function of shear rate is plotted in Figure 3.3 a). We observe

for strain rates roughly between γ̇ = 1− 10 a region of very strong shear thinning.

The stress plateau corresponding to this region is Σ∗ ≈ 0.75 for all values of the

CCR parameter β shown. Curves of first normal stress shown in Figure 3.3 b) show

a steep rise within this range of shear-rates, before each converges asymptotically

to a constant as γ̇ → ∞. This asymptotic value decreases with increasing CCR

parameter β.

3.7.2 Base State

As noted to previously, the homogeneous flow curves just discussed relate directly

to the 1D base state in pressure-driven channel flow. The requirement that the

shear stress be linear across the channel means that, for any set of values of the
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Figure 3.4: a) Base state profiles of shear-rate as a function of position across the

channel in the Rolie-Poly model for β = 0.5, η = 0.03. Inset shows the same data

for y > 0 on a log-log scale. b) Corresponding base state profile of the first normal

stress as a function of position across the channel.

model parameters, the variation of the shear-rate as a function of position across the

channel is an inversion γ̇(y) = γ̇(Σ = P ′y) of the flow curves as shown in Figure 3.4

a). In the same way, combining the shear and first normal stress difference flow

curves Σ(γ̇) and N1(γ̇) into the parametric plot N1(Σ), as shown inset in Figure 3.3

b), gives the normal stress as a function of position across the channel N1(y) =

N1(Σ = P ′y). The result of this in the Rolie-Poly model is the creation of a pseudo-

interfacial region at some location across the channel, where N1 and γ̇ both change

steeply. The interface position is given by Σ∗/P ′, which corresponds to the shear

thinning plateau discussed previously.

3.7.3 Linear Behaviour

Linear stability analysis of the Rolie-Poly model demonstrates a 1D base state to

be unstable to 2D perturbations. The dispersion relations shown in Figure 3.5 a)

show Re(ωq) as a function of wavevector q. As mentioned previously, the existence

of Re(ωq) > 0 for any q demonstrates the 1D base state to be unstable to 2D

perturbation ∝ eiqx. We observe the transition between stable and unstable flow

as with increasing applied pressure drop the peak of the dispersion relation crosses

from negative to positive. The transition shown here for the given values of β and

η occurs for P ′∗ ≈ 7.8. The values of critical pressure drop for a range of β describe
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Figure 3.5: a) Dispersion relation of growth rate Re(ωq) as a function of wavevector

for several values of the applied pressure drop in the Rolie-Poly model for a CCR

parameter β = 0.5 and solvent viscosity η = 0.03. Numerical grid and timestep

Ny = 1024 and dt = 10−4. b) The real part of the normalised eigenfunction in the

first normal stress difference, Re(Ñ1) at wavevector q = 4.5.

the neutral stability curve. The dispersion relation Re(ωq)(q) is shown in Figure 3.5

a). For the given parameter values β and η, instability is observed for imposed

pressure drops exceeding a critical threshold value, P ′ > P ′∗(β, η) ≈ 7.8.

The corresponding normal stress part of the eigenfunction is shown in Fig-

ure 3.5 b) for wavevector q = 4.5. The peaks of the eigenfunction have been found to

correspond to the location of the pseudo-interface within the channel, with the same

properties of symmetry, y → −y as the interface position of the shear-rate or first

normal stress difference. This indicates that the mode of instability corresponds to

a displacement of the base state. This displacement is in the same direction in both

halves of the channel. This corresponds to a sinuous mode, as opposed to a varicose

mode which would show an equal and opposite displacement in the two halves of the

channel. Although the definition of sinuous and varicose usually refer to the symme-

try of the perturbation to the flow velocity, we have checked that this accords with

the perturbation in N1. We have performed linear stability calculations over a full

range of values of the convective constraint release parameter, 0 ≤ β ≤ 1, for several

values of solvent viscosity η. The calculated curves of neutral stability are shown

by the solid curves in Figure 3.6 b). For fixed β the flow is always stable at low P ′.

This is to be expected as the Rolie-Polie model will behave as an Oldroyd B fluid
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in this limit. For the lowest value of solvent viscosity studied, η = 0.025, instability

is observed for all values of β for some critical pressure drop P ′∗. As the solvent

viscosity is increased, the range of β for which instability is observed narrows. At

very high values of pressure drop, re-entrant stability is observed, leading to a region

of the parameter space P ′, β where the flow is unstable. The kinks apparent in some

of the solid curves arise not from numerical difficulties but due to the most unstable

mode switching as β and η are varied.

3.7.4 Criterion for Instability Onset

Within the Rolie-Poly model, we have shown that an initially 1D base state flow

is linearly unstable to the onset of 2D perturbations. We have shown this to be

the case over a wide range of pressure drops and model parameter values. We now

aim to link these results to the criterion introduced at the start of this chapter. As

stated previously the criterion we propose relates the minimum logarithmic slope of

the 0D shear flow curve
d log Σ

d log γ̇
|min to the maximum normal stress gradient across

the channel
dN1

dy
|max. To test this we plot in Figure 3.6 a) the critical normal stress

gradient
dN1

dy
across the channel against the minimum logarithmic slope of the shear

flow curve Σ (γ̇). To do this, for each pairing β, η plotted as solid lines in Figure 3.6

b) we read off the critical pressure drop calculated from the corresponding flow

curve. The maximised value of dN1/dΣ is taken from the parametric plot of N1

against Σ. The product of this quantity and the critical pressure drop then gives

the maximum normal stress gradient within the channel.

These results are collected into Figure 3.6 a) where we observe a reasonable

curve collapse onto the function in Eq. 3.44. The parameters found to best fit this

function are α0 = 25.81, α1 = 0.33 and α2 = 0.21 for all β,η. Following this we

reconstruct the critical pressure drop for any pair of parameter values β, η using

these values. By taking Eq. 3.44 and multiplying both sides by
dN1

dΣ
|max, we obtain

an expression for the critical pressure drop predicted by the fitted criterion. These

are shown as dashed lines in Figure 3.6 b). We find that these values indeed fit

the numerical data quite well, but fail to capture the region of re-entrant stability,
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Figure 3.6: a) The expression P ′∗
dN1

dΣ
|max corresponding to the maximum normal

stress gradient within the channel plotted as a function of the minimum logarithmic

slope
d log Σ

d log γ̇
|min. Dashed line: function y = f(ζ) of Eq. 3.44 with α0 = 25.81,

α1 = 0.332 and α2 = 0.21. b) Solid lines: curves of neutral stability P ′∗(β, η) as

a function of the CCR parameter β in the Rolie-Poly model for several values of

the solvent viscosity η = 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055. Dashed lines: fits

using Eqs.3.44 and 3.43 (which we note does not capture the regime of re-entrant

stability).

and so depart from the numerical data near the turning point of the data where the

onset of instability and re-onset of stability meet.

According to the form of the criterion, we should not expect to see in-

stability for any flow curve for which the minimum logarithmic slope
d log Σ

d log γ̇
|min

exceeds the fitted parameter α2 ≈ 0.21. We construct the plot in Figure 3.7 depict-

ing contours of
d log Σ

d log γ̇
|min as dotted lines in the plane of β and η. We also show

the maximum values of solvent viscosity for which instability has been observed in

our numerical calculations. The region of instability appears indeed to be found for

values of minimum logarithmic slope below about 0.21. The contour described by α2

is shown as a solid red line and follows a trend just above the numerically calculated

values. The black highlighted contour represents
d log Σ

d log γ̇
|min = 0, below which the

flow curves of stress against strain-rate is non-monotonic and the corresponding base

state profile will be shear-banded. Within this regime we have checked that the 1D

shear banded base state is indeed unstable to 2D perturbations. To extend our study

into the shear banded regime, a stress diffusion term was added to the right hand
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Figure 3.7: Dotted lines: Contours of minimum logarithmic slope of the flow curve,

d log Σ/d log γ̇|min increasing in increments of 0.01 in contours upward. The lowest

(black) contour has d log Σ/d log γ̇|min = 0 (below which the flow curve is non-

monotonic and the base state is shear-banded). The contour 0.21 is shown as a solid

red line. The solid blue triangles show numerical data for the maximum solvent

viscosity η that admits instability at any value of CCR parameter, β, consistent

with a contour value d log Σ/d log γ̇|min ≈ 0.21.

side of Eq. 3.16. The addition of a stress diffusion term outside the banding regime

would have the effect of reducing the steepness of variation of normal stress and

would potentially have a stabilising effect on the flow. The instability in strongly

shear-thinning but not shear banded flow may be understood as the destabilisation

of a quasi-interface, similar to the instability of a true interface in shear-banded

flow.

Critical Wavevector

It is observed in the Rolie-Poly model that as the solvent viscosity and CCR pa-

rameter β are varied, the critical pressure drop changes. Also observed are abrupt

changes in principal wave-number q∗. We see this in Figure 3.6 b), where there are

sudden changes in direction of the stability curves. An example of this shift is shown

in Figure 3.8 a), whereby a secondary peak to the dispersion relation emerges and

exceeds the former peak. As we are unable to explore all but the most unstable



3.7. Rolie-Poly model 60

Figure 3.8: a) Dispersion relations, Re(ωq) vs q, for several values of β calculated at

corresponding critical pressure drop P ′∗(β) for η = 0.025 with Ny = 1024, dt = 10−4.

b) Principal wave-vector versus interface position at critical pressure drop P ′∗(β) for

different values of solvent viscosity η = 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055.

eigenvalue for each set of values β, η and P ′, we cannot look more closely at how

this mode switch develops, but indications are given by examining properties of the

base state.

In Figure 3.8 b) the principal wavenumber is plotted as a function of the

position of the interface at the onset of instability (calculated as Σ∗/P ′∗). We

observe a reasonable curve collapse of critical wavenumber for different values of

solvent viscosity. The sudden shift in wavenumber, observed for lower values of

solvent viscosity, appears to occur at P ′∗/Σ∗ ≈ 0.25, where the higher and lower

shear rate Newtonian regimes occupy equal proportions of the channel. This result

suggests that the pseudo-interfacial behaviour has a strong influence on the most

unstable wave-vector and the form of the dispersion relation.

Stability Re-onset

We observe in the Rolie-Poly model that at high pressure drops, flows are once again

stable. This re-onset of stability creates a region of P ′ and β for each value of solvent

viscosity wherein the flow is linearly unstable to perturbations.

This behaviour may be understood by considering once again the base

state prior to the onset of instability and the steady state flow curves. As we have
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discussed previously, the shear-rate in the channel directly corresponds to the 0D

shear stress flow curve due to the linear variation in shear-stress in the channel

γ̇ (Σ = P ′y). In the Rolie-Poly model, the flow curve consists of a low shear-rate

Newtonian regime, a shear-thinning plateau and a high shear-rate Newtonian regime

which corresponds to the solvent shear-stress becoming dominant. This then leads

to parabolic flow profile near the centre of the channel, an interface like region with

large variation in shear-rate, and a high shear-rate parabolic Newtonian flow profile

towards the channel edge. As the applied pressure drop increases the proportion of

the flow dominated by the high shear-rate Newtonian regime also increases.

In the Rolie-Poly model, the flow curve of the first normal stress difference

saturates at high shear-rates. This is replicated in the base state of first normal

stress difference in the channel. At high applied pressure drops, the value of the first

normal stress difference varies very little towards the edge of the channel. The shear-

stress, however, continues to increase linearly across the channel. At high pressure

drops, therefore, the shear-stress may dominate the flow. It is therefore possible

that this dominance of the shear-stress over the normal stress (or the viscous over

the elastic stress) leads to the re-stabilisation of the flow at high pressure drops. In

order to characterise relative magnitude of shear versus normal stress in the channel

we define the wall Weissenberg number

Wiwall =
N1 (γ̇wall)

Σ (γ̇wall)
. (3.45)

Here γ̇wall is the shear-rate at the edge of the channel.

We plot the value of Wiwall at the re-onset of stability as a function of

the logarithmic slope of the shear-stress flow curve d log Σ
d log γ̇

in Figure 3.9 a). We

observe the surprising result that for the largest values of solvent viscosity η =

{0.045, 0.05, 0.055}, the reonset curves appear to overlap, suggesting that the reonset

of stability can be explained in terms of the viscous stresses becoming dominant in

the flow at high pressure drops.

However, for the lower values of solvent viscosity η = {0.03, 0.035, 0.04},

no overlap is observed and the stability reonset Weissenberg numbers are lower

than those for the other curves. This rather strange result may be connected to

the critical (most unstable) wavevector q∗. In Figure 3.9 b), q∗ at the re-onset
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Figure 3.9: a) Wall Weissenberg number versus logarithmic slope at the re-onset of

stability for several values of solvent viscosity η. b) Critical wave-vector q∗ versus

logarithmic slope of the flow curve at the re-onset of stability for several values of

solvent viscosity η.

of stability is plotted as a function of the logarithmic slope of the flow curve for

values corresponding to Figure 3.9 a). For the lower values of solvent viscosity

η, the values of the critical wave-vector are quite different to those for the high

values. This suggests a mode switch at high values of β, similar to those discussed

previously. This appears to lead to different dynamics governing the re-onset of

stability to those at lower values of β. It is unclear why this should be the case

and further study is required to uncover the connection between the most unstable

wave-vector q∗, the re-onset stability wall Weissenberg number Wiwall and the CCR

parameter β.

3.7.5 Non-linear Simulation

The linear analysis thus far performed on the Rolie-Poly model is valid where the

perturbations remain small. In order to study the dynamics of these perturbations

once they have grown to some finite amplitude, we perform full non-linear 2D sim-

ulations. An example of the results of these simulations is shown in Figure 3.10.

The flow is initialised similar to the linear study with a 1D base state

subject to a small perturbation expressed in terms of Fourier modes. In Figure 3.10

a) the full xx-component of the stress tensor is shown. In panel Figure 3.10 b)
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this is shown with the initial base state subtracted off. Even in the long time-scale

behaviour, the system’s state retains a clear interface, with variations of the Σxx

terms of the stress tensor displaying the greatest deviation from the base state near

the interface. The flow field with the base state subtracted is shown in Figure 3.5
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Figure 3.10: Non-linear simulations of unstable flow in the Rolie-Poly model for

parameter values P ′ = 15, β = 0.0, η = 0.03 and Lx = 16, Nx = 512, Ny = 1024,

dt = 0.0005. a) The xx component of the viscoelastic stress tensor. b) The xx

component of the stress tensor with the 1D base state subtracted ∆Σxx = Σxx−Σ0xx.

c) The magnitude of the velocity of the flow field with the base flow field subtracted

∆v = v − v0. The arrows show the direction of the velocity perturbation with the

magnitude scale being shown by the colourbar. Only 1/4 of the simulation box is

shown in the x̂ direction.

c), displaying the channel spanning vortices that are formed in the unstable flow.

We note however that the magnitude of the secondary flows are much smaller than
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the base state, despite the applied pressure drop being quite high relative to the

threshold of instability (P ′∗(0, 0.03) ≈ 2.45). This is in contrast to the results seen

in Ref. [18,19], which show larger secondary flows in experiment.
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3.8 The Johnson-Segalman Model

3.8.1 Flow Curves

The homogeneous shear stress flow curves of the Johnson-Segalman model are plot-

ted for a range of values of the slip parameter a in Figure 3.11 a). These have the

same basic form as the flow curves of the Rolie-Poly model discussed previously, pos-

sessing a low and high shear-rate Newtonian regime, with a shear thinning plateau

for intermittent values of shear-rate. A notable difference however is that the height

of the plateau regime, where Σ (γ̇) varies slowly with γ̇, varies considerably as a

function of the slip parameter a. To demonstrate this we consider the analytical

solution for the shear-stress flow curve

Σ(γ̇) =
Gτγ̇

1 + (1− a2)τ 2γ̇2
+ ηγ̇. (3.46)

In order to determine the plateau stress, we must first determine the shear-rate γ̇∗ at

which d log Σ/d log γ̇ is minimised. The analytical form of the minimum logarithmic

slope is given by the expression

d log Σ

d log γ̇
=
γ̇

Σ

dΣ

dγ̇
=

1
Gτ

1 + (1− a2)τ 2γ̇2
+ η

(
Gτ

1 + (1− a2)τ 2γ̇2
− 2(1− a2)Gτ 3γ̇2

(1 + (1− a2)τ 2γ̇2)2

)
.

(3.47)

Minimising this with respect to γ̇ we find that the plateau shear-rate and shear-stress

are respectively

γ̇∗ =
1

τ
√

1− a2
(
Gτ

η
+ 1)1/4 (3.48)

Σ∗ =
G√

1− a2

[
η1/4(Gτ + η)3/4

]
(3.49)

We see that the plateau stress diverges as a → 1, corresponding to the limit at

which JS is equivalent to the Oldroyd B model. Using this expression, as well as the

analytical solution of the flow curve in Eq. 3.47, we are able to obtain an analytical

expression for the logarithmic slope for |a| < 1

γ̇

Σ

dΣ

dγ̇
|min = − 4η

Gτ
+

4
√
η
√
η +Gτ

Gτ
− 1. (3.50)
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Figure 3.11: a) Flow curves of shear stress as a function of shear-rate for states

of homogeneous shear flow in the Johnson-Segalman model, for a solvent viscosity

η = 0.15, and several values of the slip parameter a b) The corresponding curves

of normal stress as a function of shear rate, and (inset) parametrically plotted as a

function of shear stress.

Unlike the Rolie-Poly model for the CCR parameter β, we see that the logarithmic

slope for JS is independent of slip parameter a. In Rolie-Poly it depends strongly

on the CCR parameter β.

3.8.2 Base State

As we showed in the case of the Rolie-Poly model, the steady state shear-stress and

first normal stress difference flow curves of the Johnson-Segalman model correspond

directly to the 1D base state of pressure driven channel flow. Examples of these base

states in shear-rate and first normal stress difference are shown in Figure 3.12 a)

and b) respectively. We also observe in this model a steep gradient in shear-rate and

first normal stress difference at the position which corresponds to the plateau stress

of the steady state flow curves. The highly localised nature of this region creates

a pseudo-interface in the channel between the high-shear-rate and low-shear-rate

regimes. Based on the analytical expression Eq. 3.49, the value of the shear-stress

plateau will diverge as a→ 1. This means that, for fixed pressure drop, as the non-

affine parameter a increases towards 1, the corresponding position of the interface

will also move away from the centre of the channel towards the wall. The base

state will then only retain a shear-thinning region if P ′ < 2Σ∗/Ly, since the shear
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Figure 3.12: a)The base state profile of shear rate as a function of position for the

Johnson-Segalman model for a = 0.6, η = 0.15, Ny = 2048. Inset shows the same

data for y > 0 on a log-log scale. b) The corresponding base state profile of first

normal stress difference as a function of position in the channel.

stress at the wall must exceed the plateau stress for the shear-thinning regime to

be located within the channel. The corresponding base state for first normal stress

difference will also change in response to the variation in non-affine parameter a.

If the shear-thinning region is not within the channel, the form of the base state

normal stress difference will be a parabola as in the case of the Oldroyd B model.

3.8.3 Linear Behaviour

As in the Rolie-Poly model, we perform linear stability analysis on the Johnson-

Segalman model for different combinations of parameters a and η. Figure 3.13 a)

shows for a single set of a and η the dispersion relation of the growth rate Re(ωq)

as a function of wavenumber q for a range of applied pressure drops. We observe

that above a certain pressure drop the 1D base flow becomes unstable to 2D pertur-

bations. We observe the transition from stable to unstable flow between P ′ = 3.25

and P ′ = 3.5, with the most unstable wavenumber observed to be q ≈ 2.25. The

dispersion relations have a similar form to those seen in the Rolie-Poly model, as

do the eigenfunctions of first normal stress difference Ñ1 shown in Figure 3.13 b).

The eigenfunctions of N1 therefore resemble
dN1

dy
of the base state, indicating that

the instability corresponds to a shift of the interface in the underlying base state.

Earlier studies of shear banded flow in the Johnson-Segalman model have
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Figure 3.13: a) Dispersion relations of growth rateRe(ωq) as a function of wavevector

for a range of applied pressure drops for the Johnson-Segalman model with slip

parameter a = 0.6 and solvent viscosity η = 0.15. Numerical grid Ny = 2048 and

timestep dt = 10−4. b) The real part of the normalised eigenfunction of the first

normal stress difference Re(Ñ1), with wave-vector q = 2.7.

shown a 1D shear-banded flow to be unstable to 2D undulations along the interface

between the bands [97–99], consistent with what we observe here. We do not consider

the shear banded regime here, and restrict ourselves to values of solvent viscosity

for which the flow curves remain monotonic.

We perform linear stability calculations for several values of solvent vis-

cosity η over a range of values of the slip parameter 0 ≤ a ≤ 1. The calculated

curves of neutral stability are shown as solid curves in Figure 3.14 b). For fixed a

the flow is always stable at low values of applied pressure drop P ′, since only the low

shear-rate Newtonian portion of the flow curve is within the channel. For the lowest

four values of solvent viscosity we observe that the flow is unstable at sufficiently

high pressure drops for all values of a. For the highest viscosity explored, only a

portion of the range of a is unstable. Although re-entrant stability was found to

be present in the Jonhson-Segalman model, it was not found at pressure drops low

enough for the numerical calculations to be considered reliable and so is not shown

here.
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Figure 3.14: a) Dashed line: function f(ζ) of Eq. 3.44 with α0 = 60.81, α1 = 1.15

and α2 = 0.11. The expression P ′∗
dN1

dΣ
|max corresponding to the maximum normal

stress gradient within the channel plotted as a function of the minimum logarithmic

slope ζ =
d log Σ

d log γ̇
|min. b) Corresponding neutral stability curves for different values

of solvent viscosity η = 0.14, 0.15, 0.16, 0.165, 0.17(curves upwards). An initially

1D base flow is stable below each curve, and unstable above it (until a region of

re-entrant stability is reached at much larger pressure drops, not shown). Dashed

lines: predicted thresholds based on Eq. 3.56.

3.8.4 Criterion for Instability Onset

We seek to determine if the criteria shown to be reasonably successful in the Rolie-

Poly model applies also to Johnson-Segalman.

Recall that the criterion is of the basic form

dN1

dy
|max > f

(
d log Σ

d log γ̇
|min

)
, (3.51)

where

f(ζ) = α0 + α1/(α2 − ζ). (3.52)

We reiterate the additional criterion that is

P ′
Ly
2
− Σ∗ > 0. (3.53)

This was not of great concern in the Rolie-Poly model since the plateau stress Σ∗ did

not vary a great deal with β. However as previously discussed, this is not the case

in Johnson-Segalman. This may be found by maximising the analytical expression
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of the derivative of the first normal stress difference with respect to shear-stress

dN1

dΣ
=
dN1

dγ̇
/
dΣ

dγ̇
=

4γ̇τ

η(1− (1− a2)γ̇2τ 2)2 + 1− (1− a2)γ̇2τ 2
. (3.54)

Maximising the value of the expression in Eq. 3.54 with respect to shear-rate yields

the following expression

dN1

dΣ
|max =

6
√

3Gτ√
1− a2

(√
η

1 + η

1

(8η − 1)

)
, (3.55)

Using this equation, as well as the expression for the stress plateau in Eq. 3.49

we suggest a means to understand the shape of the stability curves in Figure 3.14.

At lower values of slip parameter a, we postulate that the stability threshold is

defined by the normal stress gradient within the channel as in RP. Since
dN1

dΣ
|max

will increase with a, the normal stress gradient across the channel will also increase

for a fixed pressure drop. The minimum logarithmic slope
d log Σ

d log γ̇
|min is however

constant with respect to a, therefore the threshold normal stress gradient should also

be invariant with a for a fixed value of solvent viscosity η. Accordingly, if Eq. 3.51

is valid, the minimum normal stress gradient required to cause the base state to

become unstable should also not change with a. The critical pressure drop will

therefore decrease as a function of increasing non-affine parameter a. This appears

valid according to the results plotted in Figure 3.14, however for a & 0.8 we see that

the threshold pressure drop begins to increase. We propose that this is due to the

variation in the plateau stress Σ∗, which diverges as a→ 0.

To test these postulates we must check that Eq. 3.51 accounts for the

stability thresholds at low values of a. In order to do this we plot in Figure 3.14

a) curves of the critical normal stress gradient in the channel (calculated from a

combination of the steady state state flow curves and the numerical measured critical

pressure drop). This was performed by measuring the threshold pressure drop for

varying solvent viscosity η at several fixed values of 0 ≤ a ≤ 0.6. We observe that the

curves collapse reasonably well onto each other, although possess more variation that

was seen in the Rolie-Poly model. To this collapsed data, we then fit the functional

form of Eq. 3.52. As we can see the functional form appears to follow the trend

of the curves moderately well with fitting parameters α0 = 60.81, α1 = 1.15 and

α2 = 0.11. To check how well this reflects the measured stability curves we perform
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the same process as in the Rolie-Poly model to calculate the predicted threshold

pressure drop, but we make one modification. Since we have asserted that there are

two regimes dictating the critical value of P ′, we determine the predicted value by

solving the roots of the quadratic expression[
P ′ − 2

Ly
Σ∗
] [

P ′ −
(
dN1

dΣ
|max

)−1

f

(
d log Σ

d log γ̇
|min

)]
= 0, (3.56)

where f

(
d log Σ

d log γ̇
|min

)
has the parameters in Eq. 3.52 as best fit to the data plotted

in Figure 3.14 a). By only considering the roots of this equation for which the

non-zero factor of Eq. 3.56 is positive we obtain the values plotted as dashed lines

in Figure 3.14 b). As we see this performs reasonably well for the lowest values of

solvent viscosity studied, where the pressure drop values are modest. It performs

less well at higher solvent viscosities, for which the critical values of P ′ are much

higher. This may be attributable to the proximity of the quasi-interface to the

centre of channel. However, we are unable to take this into account in the studies

performed here.

The value of α2 = 0.11 obtained by fitting to the data in Figure 3.14

means that the Johnson-Segalman model should not admit instability if the mini-

mum logarithmic slope of the flow curve exceeds
d log Σ

d log γ̇
|min = 0.11. The contours

of
d log Σ

d log γ̇
|min as plotted in the parameter space η and a are shown in Figure 3.15,

with all numerically measured values of
d log Σ

d log γ̇
|min admitting instability in JS lying

below this value. This shows the Johnson-Segalman model predicts, overall, much

greater stability than the Rolie-Poly model, which has α2 = 0.21, since a fluid has

to shear thin much more strongly to be unstable.
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Figure 3.15: The region of instability mapped out with respect to non-affine pa-

rameter a and solvent viscosity η. Dotted lines: contours of minimum logarithmic

slope of the flow curve,
d log Σ

d log γ̇
|min. The lowest (black) contour line corresponds

to
d log Σ

d log γ̇
|min = 0 (below which the the flow curve is non-monotonic and the base

profile is shear-banded. The contour 0.11 is also shown as a solid red line. Blue

triangles show numerical data for the maximum solvent viscosity η that admits in-

stability at any value of the slip parameter a, showing a reasonable agreement with

an approximate contour range 0.095 ≤ d log Σ

d log γ̇
|min ≤ 0.11.)

.

3.8.5 Non-linear Simulations

To study the longer timescale behaviour in JS, we perform full nonlinear 2D sim-

ulations. Plots of the xx-component of the stress tensors (both its full value and

with the value in the base flow subtracted) are shown in Figure 3.16. Figure 3.16 b)

confirms that the instability takes the form of a quasi-interface, as in the Rolie-Poly

model. We likewise see that the velocity field, with the subtracted base state reveals,

a system-spanning vortex as in the non-linear simulations of the Rolie-Poly model

in Figure 3.10.
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Figure 3.16: Non-linear simulations of the unstable flow in the Johnson-Segalman

model P ′ = 10, a = 0.6, η = 0.16, Lx = 8 with Nx = 512, Ny = 1024, dt = 0.0005.

a) The full Σxx component of the viscoelastic stress tensor. b) The ∆Σxx component

of the stress with the base state subtracted ∆Σxx = Σxx − Σ0xx. c) The magnitude

of the velocity of the flow field with the base flow field subtracted, ∆v = v − v0.

The arrows show the direction of the velocity perturbation with the magnitude scale

being shown by the colourbar. Only 1/2 of the simulation box is shown in the x

direction.
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3.9 The White-Metzner Model

3.9.1 Flow Curves

Flow curves in the White-Metzner model follow a power law behaviour up to a

correction due to Newtonian solvent and are written analytically as

Σ (γ̇) = Gτn0 γ̇|γ̇|n−1 + ηγ̇ (3.57)

with

N1 (γ̇) = 2Gτ 2n
0 |γ̇|2n. (3.58)

The flow curves are shown for a number of values of the shear thinning exponent

n in Figure 3.17. In the limit of zero solvent viscosity, this exponent is also the

logarithmic slope of the shear stress flow curve for all values of γ̇ shown in Figure 3.17

a). The addition of a solvent however means that this is only exactly true at the

centre of the channel. In fact the logarithmic slope (assuming positive shear) is

given by
d log Σ

d log γ̇
=
γ̇

Σ

dΣ

dγ̇
=
Gτn0 nγ̇

n + η

Gτn0 γ̇
n + η

. (3.59)

The flow curves follow a power law behaviour up to very high shear rates

where the Newtonian behaviour due to the presence of solvent is recovered. Unique

among the models studied in this work, the White-Metzner model lacks a low shear-

rate Newtonian regime. Given that the polymeric stress does not saturate as it does

in other models, an explicit high shear-rate Newtonian regime is only recovered when

Gτnγ̇n � ηγ̇. Another difference between White-Metzner and the other models in

this study is the behaviour of the flow curve of first normal stress difference N1(γ̇),

which does not saturate at high values of γ̇. The parametric plot of N1 versus Σ

in the inset of Figure 3.17 b) shows that, for all values of n, N1 ∝ Σ2 up to the

higher shear rate regime, where the solvent effects become important. This will be

significant when considering the form of the base state.

3.9.2 Base State

The base state profile of the shear-rate across the channel γ̇ (y) in the White-

Metzner model in the limit of zero solvent viscosity is given by the expression
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Figure 3.17: a) Flow curves of shear stress as a function of shear rate for states of

homogeneous shear flow in the White-Metzner model for several values of power law

exponent n and solvent viscosity η = 0.005. b) The corresponding curves of first

normal stress difference for the equivalent range of power law exponent n. Inset:

Plot of normal stress versus shear stress.

γ̇ = sgn(y)(P ′/Gτ0)
1
n |y| 1n . With the addition of solvent viscosity this is no longer

the case, but we consider the correction to the base state to be small as it pertains

to the following discussion. Combining the analytical expression for the base state

shear rate as a function of position with the expression for the first normal stress

difference, we obtain the analytical expression for the base state of normal stress

difference as a function of position in the channel

N1 (y) = 2
P ′2y2

G
. (3.60)

This expression remains valid while ηγ̇ remains small.

An important consequence of the absence of a plateau in the shear-flow

curve Σ (γ̇) is that no interfacial region is found within the channel at which the

shear rate can rapidly vary as a function of position. This distinguishes White-

Metzner from the Rolie-Poly and Johnson-Segalman models. As a result we should

expect the basic physics to differ from those in the models considered previously in

this chapter.

The gradient of the first normal stress difference varies linearly across the

channel, obtaining its largest value at the wall. Unlike the other models in this

study, the location within the channel of the minimum logarithmic slope of the flow

curve does not correspond to the location of the greatest normal stress gradient
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Figure 3.18: a) The base state profile of shear-rate as a function of position at a

range of applied pressure drops for the White-Metzner model for n = 0.2, η = 0.005,

Ny = 1024. Inset shows same data for y > 0 on a log-log scale. b) The corresponding

profiles of first normal stress difference as a function of position across the channel.

dN1

dy
. This and the absence of a defined interface makes WM different to other

models studied. Base state shear rate and normal stress are plotted in Figure 3.18

a) and b) respectively.

3.9.3 Linear Behaviour

Wilson and collaborators have shown in extensive previous investigations that the

White-Metzner model is unstable to 2D perturbations in pressure driven channel flow

both in its form as presented in this work [14] and in variants of the model [15,16].

We study the same model again for the purposes of establishing whether or not the

results obtained can be understood in the same context as those for the Rolie-Poly

and Johnson-Segalman models. Thereby, we hope to establish the level of generality

or otherwise for our criteria of instability of shear-thinning pressure driven channel

flow across constitutive models.

We therefore consider whether the 1D base states just discussed are un-

stable to 2D perturbations for some value of imposed pressure drop. We plot, for a

particular set of values of η and n, the growth rate of the most unstable eigenvalue

Re(ωq) as a function of wavenumber q in Figure 3.19 a). As in the previous mod-

els studied, we observe positive values of Re(ωq) above some critical value of P ′,

indicating the base state flow to be unstable. The dispersion relations we observe
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Figure 3.19: a)Dispersion relations of growth rate Re(ωq) as a function of wavenum-

ber for a range of applied pressure drops for the White-Metzner model with power

law exponent n = 0.2 and solvent viscosity η = 0.005. Numerical grid Ny = 2048

and timestep dt = 10−4. b) The real part of the normalised eigenfunction of the

first normal stress difference Ñ1, q = 3.5.

to be reasonably similar to those of the other models studied (recall Figures 3.5 a)

and 3.13 a)).

A difference is observed however when we consider the eigenfunction of the

first normal stress difference Ñ1, as shown in Figure 3.19 b). Rather than being

localised, as in the previous models considered, the eigenfunction is diffusely spread

across the channel in White-Metzner. This is consistent with the model lacking

either a shear-thinning plateau region, or a steep normal stress gradient localised

within the channel. Instability in the White-Metzner model therefore does not

appear as a displacement of a tightly focussed interfacial region, but as a disturbance

that affects the flow right across the channel.

As in the other models considered in this study, we have performed a linear

stability analysis for a range of η and shear thinning exponent n. The stability

thresholds for WM are shown in Figure 3.20 b) for several values of solvent viscosity

for 0.1 ≤ n ≤ 0.3. We are not able in this study to access values of shear-thinning

exponent below n = 0.1. The region shown demonstrates that our results agree with

those from the original studies, which found that instability does not appear above

n = 0.3 for this form of the White-Metzner model in Ref. [14].
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3.9.4 Criterion for Instability Onset

In the models considered previously in this study we have constructed a criterion

for the critical pressure drop based on the maximum normal stress gradient in the

channel and the minimum logarithmic slope of the homogeneous flow curve Σ (γ̇). In

the White-Metzner model, the shear thinning exponent n itself corresponds to the

logarithmic slope
d log Σ

d log γ̇
= n, which is constant in γ̇, up to small corrections from

the solvent. With the addition of a solvent viscosity this is exactly true only at the

centre of the channel, but we will assume that the correction remains small for the

range considered. (We discuss later where this assumption may break down for some

larger values of solvent viscosity.) Accordingly we drop the subscript “min” from
d log Σ

d log γ̇
|min. As noted previously, the form of the flow curves and the corresponding

base states means that there exists no highly localised large gradient in first normal

stress across the channel. The maximum value of
dN1

dy
is now located at the wall of

the channel. The derivative
dN1

dΣ
is therefore not taken simply from the parametric

function of N1 as a function of Σ, but by computing the stress at the wall of the

channel and calculating the gradient from the corresponding value on the parametric

plot.

Recall that in the RP and JS models, we have built the criterion on the

basis of the existence of a quasi-interface within the channel, and in turn linking

this to the shape of the homogeneous shear flow curves. The form of this criterion

is given by the equations

dN1

dy
|max > f

(
d log Σ

d log γ̇
|min

)
, (3.61)

where

f(ζ) = α0 + α1/(α2 − ζ). (3.62)

Given the absence of a quasi-interface in this model should not expect this

to work for White-Metzner. However, when performing the same process as for the

previously discussed models, we suprisingly do find a reasonable fit for the criterion

with parameters α = 1.21, α = 0.55 and α2 = 0.31, see Figure 3.20. In the original

study in Ref. [14], no instability was found for shear thinning exponents exceeding

n ≈ 0.3. Our results here confirm this finding with α2 = 0.31. We then reconstruct
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Figure 3.20: a) The expression P ′∗
dN1

dΣ
|max corresponding to the maximum normal

stress gradient within the channel plotted as a function of the minimum logarithmic

slope
d log Σ

d log γ̇
|min = n for the White-Metzner model at different solvent viscosities

η = 0.005, 0.01, 0.02, 0.04. Black dashed line: function y = f(n) of Eq. 3.44 with

α0 = 1.21, α1 = 0.55, α2 = 0.31. b) Solid lines: the corresponding curves of neutral

stability P ′∗(η, n) as a function of the power law exponent n in the White-Mezner

model. The flow is stable for P ′ below the lines and unstable for P ′ above. (We

have not explored higher values of P ′ for this model so we do not know if this model

will display re-entrant stability akin to the other models studied in this chapter.)

Dashed lines: predicted critical pressure drop using Eqs. 3.44 and 3.43.

the pressure drops as before, finding that at low values of n the pressure drops

correspond reasonably well to the numerically calculated values as shown by dashed

lines in Figure 3.20. At larger values of n we see that the predicted pressure drops

deviate somewhat from the measured values, possibly due to the effects of solvent

becoming more significant.

Plotting the contours of n as vertical dotted lines in Figure 3.21, we see

that the region of instability is not hugely affected by the presence of solvent. This

is not surprising as the solvent remains a small contribution to the total stress

Σ = Gτn0 γ̇|γ̇|n−1 + ηγ̇ for the range of values of solvent considered and the pressure

drops explored. One may conclude therefore that the collapse in Figure 3.20 a)

is a relatively trivial result. What is surprising however, is that the functional

dependency observed of normal stress gradient to logarithmic slope follows the same

form for White-Metzner as in Rolie-Poly and Johson-Segalman, albeit with different
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Figure 3.21: Dotted lines: contours of minimum logarithmic slope of the flow curve,

n =
d log Σ

d log γ̇
|min, increasing in increments of 0.05 in contours rightwards for the

White-Metzner model. The contour n = 0.31 is the solid red line. The maximum

calculated values of logarithmic slope at which instability is observed for a given

solvent viscosity (blue diamonds). This is consistent with a contour value in the

range 0.277 to 0.3.

fitted parameters for α0, α1 and α2.

3.10 Conclusions and Future Work

In this chapter we have combined full numerical simulation and linear stability

analysis to study shear thinning viscoelastic fluids in pressure-driven channel flow

using four commonly used constitutive models. We demonstrate that a 1D base

state, describing a flow which is initially uniform in the channel direction, is unstable

to 2D perturbations for a combination of high enough degree of shear thinning and

sufficiently high pressure drop. We may speculate that the observation of instability

in all models suggests that the instability may be generic for all models of shear

thinning polymeric fluids.

We define the degree of shear thinning within each model as the minimum

logarithmic slope of the homogeneous 1D flow curve d log Σ
d log γ̇

|min. The minimum degree

of shear thinning (highest value of d log Σ
d log γ̇

|min that admits instability) was determined
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Model α0 α1 α2

Rolie-Poly 25.81 0.33 0.21

Johnson-Segalman 60.81 1.15 0.11

White-Metzner 1.21 0.55 0.31

Table 3.1: The fitting parameters for the three models of this chapter for which

the general criterion described by Eq. 3.44 was found to fit well to the numerically

calculated results. The parameter α2 corresponds to the threshold minimum loga-

rithmic slope for a given model of the 0D homogeneous flow curve below which a 1D

base flow is found to admit instability to 2D perturbations at some value of applied

pressure drop P ′. Above this value the model no longer admits instability for any

applied pressure drop.

to be d log Σ
d log γ̇

|min ≈ 0.21 for Rolie-Poly, d log Σ
d log γ̇

|min ≈ 0.11 for Johnson-Segalman and

d log Σ
d log γ̇

|min ≈≈ 0.31 for the White-Metzner model.

We find a generalised criterion by which we are able to predict to onset

of instability using rheological properties taken directly from the steady state flow

curves, within a reasonable approximation. That functional form is given by

dN1

dy
|max > f

(
d log Σ

d log γ̇
|min

)
, (3.63)

and

f(ζ) = α0 + α1/(α2 − ζ), (3.64)

where the parameters α0,α1 and α2 are taken from fitting numerical data. In the

case of each of the three models, different fitting parameters are found to match the

data. These fitting parameters are shown in Table. 3.1.

Although the functional form remains consistent, that each model requires

different fitting parameters conveys that the analysis performed here is only a partial

success. A true general criterion should be independent of the model to which it is

applied. Future studies may shed light on how these parameters vary according to

the generalisable dynamics of each model, yet this may prove unfeasible in practice.

The shear-thinning plateau region that is present in the shear-stress flow
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curves of both models leads to the the 1D base state having a quasi-interfacial region

within the channel. In turn we see the instability presenting itself as a destabilisation

of the quasi-interface in the Johnson-Segalman and Rolie-Poly models. This result

suggests a similarity between the shear-thinning fluid instability studied here and

those observed in shear-banded and stratified flows. In Refs. [91, 94] it was shown

that instabilities between layers of fluid with differing viscosities are driven by large

gradients in normal stress differences and shear rate. It was shown however in

Ref. [95] that this is not the case if the viscosities are matched. The immediate

question then arising is why such a criterion also applies to the White-Metzner

model, which lacks such a quasi-interfacial behaviour. Our findings may then suggest

that a shear thinning flow may in fact be equivalent to a very smeared interfacial

flow between fluids of varying viscosities.

To test this hypothesis we consider our findings in the context of other

work in literature. In a recent study by Castillo and Wilson, the authors state that

“We can characterise the instability in terms of the thixoplastic number; in doing

so, we found that the instability is strongest if the base-state [ plateau stress Σ∗]

is located near the channel-wall (at y ≈ 0.98).” As mentioned in the introduction

to this chapter, the N1 base state of the BMP model is parabolic, with the largest

gradient in first normal stress difference at the wall. We therefore suggest that the

effect of the proximity of the shear-thinning plateau to the wall in fact relates to

the normal stress gradient near this plateau. In the Wilson and Castillo study using

a modified White-Metzner model in Ref. [16], the addition of a non-viscoelastic

shear thinning solvent was found to stabilise the flow, despite retaining the same

form for the base state shear rate as a function of position. Since the addition of

a solvent parameter of this form will decrease the gradients of first normal stress

within the channel, we may conclude that this result is consistent with our findings

in this chapter. In contrast to this finding however, Refs. [95,96] considered layered

viscoelastic fluids with matched viscosities, but different relaxation times, and so

normal stresses. The interface was found to be unstable even with the addition

of surface tension to mitigate the effects of normal stress gradients. It therefore

remains unclear whether all instabilities of this form can be directly related to the
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base state shear rate, normal stress and viscosity or whether or not there is some

underlying dynamical property which drives the formation of secondary flows.

The spatial behaviour of the eigenfunctions seen in various studies may

also suggest the underlying nature of the instability. In the case of the Rolie-Poly

and Johnson-Segalman models in this study, the eigenfunctions are localised near

the quasi-interfacial region of shear thinning in the channel, while in White-Metzner

they are highly delocalised. In Ref. [17], the eigenfunctions are highly localised near

the region of shear thinning. This suggests that although normal stress gradients

may drive the instability, it is the span of the region of shear thinning within the

channel that determines the form of the eigenfunctions.

In experimental studies which motivated this work we can see a number of

comparisons and similarities to our own findings. The experiments of Refs. [18–20]

all observe instability within a range of values of d log Σ/d log γ̇|min similar to our

own findings. This ranges from
d log Σ

d log γ̇
= 0.12 in Ref. [18] to 0.29 in Ref. [20].

All three studies also report instability only when the shear-thinning region of the

flow curve is within the channel, in accordance with Eq. 3.53. Finally we note

that in the Ref. [18], it is observed that tracer particles begin to undulate close to

the walls of the channel, near the region of shear thinning, before unsteady flow

develops throughout the channel. This is similar to what is observed in RP and

JS, which show the perturbation to the flow field highly localised to the region of

shear-thinning in the base state.

While these aspects of our study and prior experimental work are in agree-

ment, discrepancies exist which we must address. The foremost of these is the

absence of a drag reduction in our non-linear simulations. This was observed by

both Bodiguel [18] and Poole [19], who measured a flux increase (for a pressure

controlled flow) and a pressure decrease (for a flow rate controlled flow). We do not

observed this in our simulations. This may be attributable to a number of factors. It

may be that this drag reduction is a microscopic effect and therefore not observable

in a continuum model, or that some aspect of the polymer dynamics which causes

this drag reduction is not replicated in RP or JS. Another factor however may re-

late to the location of the shear-thinning region within the channel itself. In all the



3.10. Conclusions and Future Work 84

experimental studies, instability appears to occur when the shear-thinning portion

of the flow curve is at the channel wall, rather than some distance from it within

the channel, as in our calculations. This may be due to the higher value of solvent

viscosity used in our simulations as compared to experiment. In our simulations

η/Gτ > 10−3 for all models studied, while the equivalent values in Refs. [18–20] are

O (10−4). Further non-linear studies, using smaller solvent viscosities, may be able

to resolve these differences in our findings.

Finally, we make some remarks about how the time dependent 2D per-

turbations may grow. In an experiment, one may be interested to determine what

length a channel must be for the fluid carried through it to become unstable. One

may estimate this by considering a an average flow rate V within the channel and

the magnitude of the most unstable eigenvalue Re(ω), which gives the timescale for

the growth of the instability. One may estimate then that a flow will show instability

if the channel length is of the order Lx = V/Re(ω). This means that any study ex-

amining the onset of such instability must ensure that channel is of sufficient length

for perturbations to grow. Any study performed in an overly short channel may

therefore appear stable, despite the base flow being unstable to perturbations in

experiments performed in longer channels.

Further study is required to determine if our criterion predicting the onset

of instability as a function of flow curve properties proposed in this work is in fact

applicable to previous studies of shear thinning channel flow. In order to do this,

results from the previous studies would need to be recast in terms of pressure drop

and logarithmic slope. If this functional form determines the onset of instability in

most models, but not all, it may yield insight into the differences between models

for which this criterion works and those for which it does not. This may also offer

additional benefits to the construction of constitutive models in future. In this work,

we have ignored 3D effects and have assumed that Squire’s theorem holds true in the

regime studied. It would be worthwhile, particularly in light of the experimental

results shown by Ref. [20], to perform a linear stability analysis of a fully three-

dimensional flow, taking into account perturbations in both the flow and vorticity

directions.
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Lastly we acknowledge that due to numerical limitations we were unable

to conduct fully non-linear simulations of a White-Metzner fluid. It would be inter-

esting to see in particular if the non-linear behaviour seen in JS and RP was similar

in White-Metzner, thereby showing whether or not the secondary flows developed

in the same manner, despite the very different flow curves.
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3.11 Appendix I - Numerical methods

The system studied in this chapter couples a dynamical equation describing the

evolution of a viscoeleastic polymeric fluid to a Newtonian flow field. This study

is performed using linear stability analysis and full non-linear simulation. We here

describe how these systems of equations were solved numerically.

Linear Stability Analysis. The initial calculation performed as part of the lin-

ear stability analysis determines the 1D base state to which perturbations will be

added. This was done by evolving to steady state the dynamical equation of the 1D

conformation tensor W (y, t)

∂tW (y, t) = F (W (y, t) , ∂yv (y, t) , ξ). (3.65)

from which the 1D stress tensor σ (y, t) may be calculated depending on the consti-

tutive equation. This is coupled to the force balance condition

0 = η∇2v (y, t) +∇ · σ (y, t)− P ′x̂. (3.66)

This reduces to

η∂2
yU (y, t) + ∂yσxy (y, t)− P ′ = 0 (3.67)

The flow field is modelled using a stream-function formulation such that

v = ∇× ψ. (3.68)

The 1D stream-function is therefore related to the base velocity field by the expres-

sion

v (y) = U (y) x̂ = ∂yψ (y) x̂. (3.69)

which in turn obeys the third order equation

∂3
yψ (y) = −1

η
∂yσyx (y)− 1

η
P ′. (3.70)

We impose no-slip boundary conditions on the flow field such that v (y = 0) =

v (y = Ly) = 0 and zero-gradient on the stress perpendicular to the boundary such

that ∂yσ (y = 0) = ∂yσ (y = Ly) = 0.
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At each time-step the flow field is solved to ensure force balance. A dis-

cretised mesh of Ny elements describes the spatial variation in ψ (y) and σ (y) with

points indexed j = 0, · · · , Ny, where the element j corresponds to the position

y = jLy/Ny. A finite difference method is used to solve the value of ψ0 at each

timestep.

The 1D stream-function described in Eq. 3.70 is solved on staggered half

grid points such that

∂3
yψ|j+1/2 =

1

(∆y)3
(ψj+2 − 3ψj+1 + 3ψj − ψj−1) (3.71)

and

∂yσyx,j =
1

∆y
(σyx,j+1 − σyx,j) (3.72)

where ∆y = Ly/Ny. Performing this method ensures that Eq. 3.66 is satisfied,

including boundary conditions and setting the value of ψ0 up to an arbitrary con-

stant. To obtain the 1D base state, the Eqs. 3.65 and 3.66 are evolved to steady

state. Given that there is initially no viscoelastic stress, the flow field will adopt a

Newtonian profile on the first timestep such that

U0(y) = −1

2
P ′(y − Ly/2)(y + Ly/2). (3.73)

The velocity gradient tensor ∇v is then calculated and the constitutive equation

evolved using Euler time-stepping. This performed for each time t such that

W (y, t+ ∆t) = W (y, t) + ∆tF [W (y, t) ,∇v (y, t)] . (3.74)

The flow field is then recalculated at each time-step. This process is repeated until

the system has reached a steady state. This is done by comparing the stress tensor

at each time σ (t, y) to the previous timestep σ (t−∆t, y). The system is deemed to

be in steady state when max(|σ (t, y)− σ (t−∆t, y) |) < ε for all values of y, where

epsilon is some small value ε� 1.

This base state is used for calculating the evolution of the perturbations

σ̃ (y, t) and ṽ (y, t) and is assumed not to vary while these perturbations evolve. The

evolution of these perturbations is measured during tlin, where tlin = 0 corresponds

to the timestep at which the perturbations are first added to the base state. The
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following equation describes the evolution of the perturbation to the conformation

tensor

∂tW̃ + iqU0W̃ + ũiqW0 + ṽ∂yW0 = F
(
W0 + W̃,∇v0 + e−iqx−ωt∇ṽeiqx+ωt, ξ

)
.

(3.75)

where W̃q and ṽq are the perturbation conformation tensor and velocity field respec-

tively corresponding to wavenumber q. The perturbation streamfunction ψ̃q then

obeys the equation

(q4 − 2q2∂2
y + ∂4

y)ψ̃ =
1

η
[(−q2 − ∂2

y)σ̃xy − iq∂y(σ̃xx − σ̃yy)]. (3.76)

This fourth order differential equation solves the perturbation flow field according to

the evolution of the perturbation stress tensor. Over time the perturbation stress-

tensor and stream-function will correspond to the eigenfunction of the mode for the

largest value of Re (ωq). If Re (ωq) > 0 the amplitude of these modes will grow in

time. The evolution of the eigenfunction will also depend on the imaginary part of

the eigenvalue Im (ωq). The value of the imaginary part of the eigenvalue determines

oscillation in amplitude of the real and imaginary parts of the eigenfunction.

The flow field is solved using a finite difference method at each timestep.

Following this the perturbation velocity gradient tensor ∇ṽ and hence the perturba-

tion stress tensor σ̃ are updated. The local terms on the right hand side of Eq. 3.75

are evolved using Euler time-stepping, while those of the left hand side which cor-

respond to the advective quantities are evolved using a fourth order Runge-Kutte

method. This combination of time-stepping methods ensures numerical stability

while preventing the calculations becoming numerically expensive.

Non-linear Simulation. The non-linear simulations in this study are performed

using a combination of finite difference and Fourier methods. The channel is periodic

along the x̂ direction, with fixed walls at the points defined by y = −Ly/2 and

y = Ly/2. In both directions this is discretised on a grid, with index i = 0, ..., Nx

along the flow direction and j = 0, ..., Ny in the cross channel direction. The method

by which the system of equations are evolved may be outlined as follows;
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Step 1: A Discrete Fourier transform along the channel direction is performed on the

stress tensor σ (x, y)→ σ̃q (y).

Step 2: The flow field is solved using a stream-function formulation in Fourier space.

The zeroth mode is solved at staggered half grid points, while non-zero modes

are solved on each grid point.

Step 3: The stream-function is then inverse transformed to real-space and used to

calculate the local velocity field: v(x, y) and rate of strain tensor: ∇v(x, y).

Step 4: Local stress terms are updated by Euler time-stepping the local terms of the

constitutive equation.

Step 5: Third order upwinding is used to calculate the derivatives of the stress tensor

components. Following this advective terms are updated using a fourth order

Runge-Kutte time-stepping method.

This is repeated until the system is deemed to have reached a steady state which

is assessed via inspection of the amplitude of Fourier modes of the stress tensor

components. The dynamics of the system are deemed to have reached a steady

state once the mode amplitudes have saturated.



Chapter 4

Ductile to Brittle Yielding in Soft

Glassy Materials

4.1 Introduction

Amorphous materials are defined by a lack of an ordered microstructure. This

category includes soft materials such as dense colloidal suspensions, foams, gels

and emulsions [44, 45, 124–126]. It also includes hard solids, such as molecular and

metallic glasses [127,128]. For these materials, an elastic regime at low deformations

transitions to a plastic regime at high deformations. This may occur rapidly, which

is known as brittle yielding [129,130], or in a more gradual manner known as ductile

yielding [27,65,131]. In this chapter, we study the effects of sample preparation and

the rate of deformation on this process.

Many of these materials are what are known as yield stress fluids, which

include foodstuffs such as ketchup [7] and mayonnaise [8]. Despite their ubiquity, the

physical mechanisms behind their rheology remain an active area of study [31]. The

flow curves of yield stress fluids often follow the Heschel-Bulkley model [132,133],

Σ < Σy ⇒ γ̇ = 0 (4.1)

Σ ≥ Σy ⇒ Σ (γ̇) = Σy +Kγ̇n.

The fluid described by these equations, when subjected to an applied shear stress Σ,

only flows if the applied shear stress exceeds the “yield stress” Σy. At low applied

90
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shear-stress, the sample will deform reversibly. As the applied stress increases,

creep may be observed [134]. For applied shear-stress above the yield stress Σy, the

material will yield and fluidise [38]. The exponent n determines the shear-thinning

properties of fluid. This model is an extension of the original proposed by Bingham,

which first introduced the concept of yield stress fluids [46]. Bingham’s original

model is recovered for the Herschel-Bulkley model with n = 1.

This yield stress behaviour emerges effectively from the inability of the

microstructure to deform quickly enough to release the stress created due to macro-

scopic deformation. The yield stress of these fluids is often a function of tempera-

ture [135] and packing fraction [136]. Soft glasses, such as dense colloidal systems,

are among the best studied of these yield stress fluids.

“Non-Brownian” systems describe materials with microstructures that are

large enough such that thermal effects become negligible. The emergence of a yield

stress in soft athermal materials can sometimes be described as a static transition

from a qualitiative change in the microstructural properties of the material [137].

While undergoing small deformation, elastoviscoplastic materials behave

as elastic solids such that Σ ∼ Gγ̄. At larger strain, the material transitions to a

fluid like state, where the shear-stress Σ is a function of the shear-rate γ̇. In some

materials, this initial regime of elastic behaviour may dramatically overshoot the

steady state stress before yielding. Following this, the stress decreases to its steady

state value. This difference between the maximum value of the start-up curve and

the steady state stress will be referred to as the overshoot height in the ensuing

study.

“Brittle” and “Ductile” yielding

In the shear start-up protocol, a constant average shear-rate γ̇ is applied to a material

sample for all times after some initial switch on time t = 0. The resulting shear-

stress, Σ, is then measured as a function of the applied average strain γ̄. If the

induced flow remains homogeneous, every part of the sample undergoes an equal

measure of strain γ = γ̄. For a Newtonian fluid in the limit of zero inertia, the

stress response is instantaneous and the shear-stress Σ = ηγ̇, where η is the fluid
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Figure 4.1: Schematic of shear stress versus strain in two possible scenarios for

ductile versus brittle yielding: a) as suggested in Ref. [22] and b) as is suggested

in this work. In each diagram the lower curve corresponds to a less well annealed

sample, which shows “ductile” yielding. The upper curve displays brittle yielding

and is better annealed. Solid line: theoretical curve in which homogeneous shear is

artificially enforced. Dotted line: discontinuous change in stress overhang, or drop

from homogeneous curve due to shear banding.

viscosity.

In particle simulations, yielding is associated with a decrease in stress dur-

ing start-up [22–24, 138]. These simulations were performed in the limit γ̇ → 0,

using a protocol known as Athermal Quasistatic Shear or AQS [139], as well as at

finite shear-rates. Yielding was found to become increasingly sharp with decreasing

shear-rate and better annealing prior to shear. The increasingly brittle nature of

the yielding observed with decreasing shear-rate is such that simulations performed

in the limit of γ̇ → 0 show a discontinuous change in stress as a function of average

shear-strain for well annealed samples.

Refs. [22, 23] proposed that the transition from ductile to brittle yielding

was attributable to a reversal in the direction of the homogeneous stress-strain start-

up curve as sketched in Figure 4.1 a). This theory describes the mechanism for

yielding in terms of spinodal phase transition [140–144].

In this work, we present an alternative hypothesis to explain this phe-

nomenon. We propose instead that brittle yielding results from a homogeneous flow

becoming unstable to the formation of heterogeneous shear rate. As theorists, we
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are able to produce homogeneous start-up curves by enforcing a constraint upon

the system, leading to no spatial variation within the flow geometry considered. We

compare the evolution of the shear-stress of a homogeneous flow to the shear stress

of a heterogeneous flow and show that abrupt yielding behaviour can be observed

for materials with homogeneous start-up curves as sketched in Figure 4.1 b). We

use the term brittle to characterise abrupt yielding in which the rate of failure is

much larger than the rate of imposed deformation, and in which the strain becomes

strongly localised within the sample. The term ductile is used to describe yielding

which occurs more slowly compared to the rate of applied strain and in which we

see no such strong localisation.

We show that the emergence of brittle yielding may be understood as a

dynamical process caused by the emergence of flow heterogeneities during yielding,

as observed in Ref. [145]. This occurs without any qualitative change in the homo-

geneous start-up curve. The transition from continuous to a discontinuous yielding,

with corresponding formation of shear-bands, was recently observed in particle sim-

ulations performed by Singh, Ozawa and Bethier [24]. In this work, we examine

the link between yielding and the formation of transient shear bands using a meso-

scopic model, which we will show to be effective in reproducing the results of particle

simulations.

Transient Shear Banding

When subject to an imposed average shear-rate, an initially homogeneous flow profile

with shear-rate γ̇ invariant in space, may become unstable to the emergence of

spatially varying shear-rates. Parts of the sample yield and fluidise, while other

unyielded regions of the sample continue to deform in the manner of a soft-solid.

These yielded and unyielded regions of the sample then experience different shear-

rates corresponding to their local material properties.

As the sample is subjected to further shear, the fluidised band grows until

the system has reached an entirely fluidised plastic state. Subsequently, the shear-

rate is once again uniform throughout the sample. Time dependent heterogeneous

flow of this manner is known as transient shear-banding. Previous research has
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shown that during shear start-up, many soft materials, such as carbopol gels [13,

27, 64], foams [146, 147] and clay suspensions [73, 148] display this emergent flow

heterogeneity.

The study undertaken here proceeds from the extensive theoretical work

of Fielding and collaborators, who have used a wide variety of constitutive models

to study transient shear banding [25, 68, 69]. In Ref. [68] they derived criteria for

the formation of transient shear bands in polymeric materials. In a shear start-up

protocol, this was found to require a stress overshoot and subsequent yielding of the

material. This connection between the stress overshoot and the formation of shear

bands has also been observed in soft glassy materials [149,150]. Our work presented

here aims to substantiate and quantify this connection. We do so using the soft

glassy rheology model previously utilised to study transient shear-banding [25,151],

but with several novelties unique to this work.

4.2 The Soft Glassy Rheology Model

The “soft glassy rheology” or SGR model describes soft materials with a disordered

structure such as emulsions and dense colloidal suspensions [152]. In this model,

material locally deforms elastically until the local energy barrier for a plastic yielding

event is overcome. The SGR model represents this in terms of a particle in an energy

well which gains elastic energy through deformation. Given sufficient energy, the

particle may hop out of its energy well.

A sample of material is described using an ensemble of these SGR ele-

ments. Each element has local deformation described by the quantity l. For every

element, there is a corresponding energy well depth E and the local material strain

is described by the microscopic conformation tensor W. The complete local defor-

mation is quantified as l =
√

(W − I) : (W − I). These particles gain energy per

unit volume
1

2
Gl2, via the application of external deformation to the element. The

quantity γ̇ is the macroscopic (global) rate of deformation and G is the microscopic

elastic shear-modulus with units of stress. Throughout this chapter G = 1, thus

setting the unit of stress for our calculations. In experimental studies, G may have
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SI units of Pascals.

Before the onset of deformation, the macroscopic strain is zero: 〈l〉 = 0.

This is achieved by setting all the microscopic strains W = I, before strain is

imposed. Between yielding events, Ẇ = 2D = ∇v + ∇vT . The quantified strain

l̇ ∼ γ̇ until the particle escapes the energy well and the element yields. Upon

yielding W is set to I, and thus l is reset to zero. A new energy well depth E
′

is

chosen from an exponential distribution ρ(E
′
) = e−E

′
/Tg . A schematic of the particle

picture is shown in Figure 4.2. Tg is defined as the glass transition temperature in

the Bouchaud trap model [153–155], which corresponds to the SGR model without

flow. Tg = 1 for this study, providing the unit of temperature throughout.

The distribution of trap energies P (E, l, t) obeys the governing equation

Ṗ + γ̇∂lP = −Γ(E, l)P + ρ(E)δ(l) 〈Γ(t)〉 . (4.2)

The second term on the left hand side of this equation describes the increase in

strain energy of particles in between hopping events due to external deformation.

The first term on the right hand side describes particles hopping out of their traps

and the right-most term describes the selection of a new trap energy for the particle

post yielding event. 〈Γ(t)〉 is the average yielding rate over all elements

〈Γ(t)〉 =

∫
Γ(E, l, t)P (E, l, t)dEdl. (4.3)

The hopping rate for each element is given by

Γ(E, l) = Γ0min{exp

[
−(E − G

2
l2)/T

]
], 1}, (4.4)

where T is the effective noise temperature and Γ0 is the microscopic-hopping rate.

Our unit of time for the system is set by fixing Γ0 = 1.

Imposing a limit to the hopping rate (set to 1 for E > Gl2/2) is an ammend-

ment to the original soft glassy rheology model in line with the recommendations

of Ref. [156]. This modification introduces thermodynamic self-consistency. This

changes the behaviour of the model in only a minor fashion compared to the original

SGR model, which had no limitation. This modification means that in the limit of

T → 0, this function becomes a Heaviside step, such that the rate of hopping is
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Figure 4.2: Particle hopping in the SGR model. Plastic strain energy E =
1

2
Gl2 is

gained via external deformation at a rate l̇ ∼ γ̇. The rate of “hopping” is dependent

on the noise temperature T . After escaping an energy well, any particle then enters

a new well with energy depth E ′ chosen from a prior distribution ρ(E ′) = e−E
′/Tg ,

which is uncorrelated to the previous energy well depth. Figure is adapted from

Ref. [152].

zero below the energy threshold and 1 above. This enables us to explore the ather-

mal limit of soft glassy systems, where previously such calculations could not be

performed with this model.

The effective noise temperature T is a phenomenological factor which, when

introduced, aimed to describe the interactions between yielding events in the system

in a mean field manner. The noise is not generally thermal in origin, unless the

depths of the energy wells are of comparable magnitude to kBT . In this study,

however, we consider T to be equivalent to a real thermal temperature. We see that

this interpretation reproduces extremely well the results of simulations which model

thermal effects on annealing prior to start-up [22,28,29,32]. Experiments on ageing

soft materials also show similar results to those seen in the SGR model at non-zero

noise temperature [21, 73], so we may assume that the effective noise temperature

used in this study is valid for modelling the properties of thermal materials.
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The constitutive curve of the viscoelastic stress, depending on the effective

noise temperature, follows the expression [156–158]:

Newtonian regime Σ ∝ γ̇ for T > 2

Power law regime Σ ∝ γ̇T−1 for 1 < T < 2 (4.5)

“Glass phase” Σ− Σy ∝ γ̇1−T for T < 1

For an effective noise temperature below Tg, the constitutive curve displays a yield

stress Σy(T ). For T > Tg, in the absence of applied shear, P (E, l, t) evolves to a

Boltzmann distribution as t → ∞. For 0 < T < Tg, the equilibrium distribution

is non-normalisable. The system is considered to be in the glass phase and parti-

cles evolve into deeper traps over time. The average hopping-rate 〈Γ(t)〉 therefore

decreases as a function of time. This corresponds to sample ageing.

When steady shear is applied, the process of ageing is interrupted by the

evolution of the elastic energy so that particles in even the deepest wells can escape.

Age dependent materials have been previously studied by Fielding and collaborators

with SGR, using it to model shear start-up, step-strain, step-stress, large amplitude

oscillatory shear and extensional flows [25,69,151,159,160]. The transient response

during shear start-up has been previously found to be strongly age dependent in both

experiment [21] and in previous calculations performed with the SGR model [25].

This transient behaviour is determined by the distribution of energy well depths of

the ensemble of elements prior to the application of deformation. Later in this chap-

ter, we see how the preparation of the sample prior to shear affects this distribution.

Particles cannot escape energy wells at T = 0 in absence of applied defor-

mation, therefore the sample will not age. Yield stress fluids that do not exhibit

ageing effects are considered to be athermal “non-Brownian” materials. We perform

calculations in this limit for the first time using the SGR model and show that it is

remarkably effective at replicating behaviours seen in simulations performed at the

athermal limit [22, 24,29,32].

In this chapter, we perform all calculations in 1D. The flow is therefore

assumed to only vary in the flow gradient direction ŷ and is invariant in the flow

direction x̂. This tensorial representation therefore reduces to a scalar picture and
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l =
√
W 2
xy +W 2

yx. Wxy = Wyx due to the required symmetry of the conformation

tensor W for isotropic materials, hence the local deformation on each element is

given by l =
√

2Wxy. The elastoplastic shear-stress σxy for each element is defined

as σxy = GWxy.

Using the soft glassy rheology model to study shear start-up, we exam-

ine the onset of yielding in amorphous thermal and athermal yield-stress fluids.

Our study characterises the variation in the yielding process from a ductile, smooth

transition, to rapid, brittle behaviour. We explore the stress response and the devel-

opment of heterogeneous flow for samples subjected to different pre-shear protocols

and imposed average shear-rates γ̇. Within the framework of each of these proto-

cols, we demonstrate how the stress response of the materials varies with respect to

sample preparation. We also characterise the effects of varying the applied average

shear-rate γ̇.

We see that yielding is highly dependent on the degree of annealing that

the sample undergoes prior to shear. This is true of systems with both zero and

non-zero effective noise temperature. Our findings show that, depending on the

applied shear-rate, thermal and athermal materials may behave quite differently

during start-up. In all cases, we demonstrate that sudden yielding corresponds to

the formation of shear-bands in the sample. Despite this, we see differences between

protocols that apply to shear with and without T = 0.

4.3 Flow Geometry

In the study that follows, we assume the flow to vary only in the cross channel

direction ŷ and to be uniform along the x̂ direction. To simulate this, we divide

the flow into j = 1, ..., N streamlines. On each streamline we take i = 1...M SGR

elements. The elastoplastic stress on each streamline is taken to be the average of

the stress on each element along the streamline σxy (j) =
1

M

M∑
i=1

σxy(i, j).

It is important that we mitigate the stochastic effects of the SGR model on

the measured quantities. We therefore perform multiple calculation for every set of

parameters, using a different random number seed for each calculation. We perform
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each calculation fifty times for each set of parameters and take an average value

of each measured quantity. To ensure the stress response of the system remains as

consistent as possible between calculations performed, we increase the number of

elements per streamline until we no longer observe a substantial variation in start-

up behaviour between calculations performed for different random number seeds.

Likewise, we introduce a fixed initial perturbation to the energy well depth from

streamline to streamline such that E(i, j)+δE (j) = E (i, j)
[
1 + ε sin

(
2πj/N − π

4

)]
,

where ε = 10−3. This ensures the consistent formation of a single band in each

calculation, further mitigating how stochasticity affects our results. The magnitude

of the perturbation ε is selected to be sufficiently large that it overcomes any residual

noise effects due to the finite number of particle elements per streamline.

For all data in this study M = 8×104 elements are used for each streamline,

with N = 20 streamlines to describe the spatial variation in the shear direction.

Alongside the stress described by the SGR elements, we introduce a solvent with

small Newtonian viscosity η = 0.01. This solvent may represent a true solvent in

the system, such as that in a solution of particles. It may, however, also correspond

to modes which evolve much more quickly than those which are described by the

SGR dynamics.

In order to introduce diffusive coupling between streamlines, we apply a dif-

fusivity parameter D with periodic boundary conditions. This creates a non-local

coupling between streamlines, acting analogously to diffusive terms in continuum

models used to study shear-banded systems [161, 162]. We set the diffusivity pa-

rameter D = 0.05 as in Ref. [25]. This is described in further detail in Appendix I

of this chapter.

We calculate start-up curves for a homogeneous flow by evolving the shear-

stress for each element at the imposed shear-rate γ̇. The corresponding start-up

curves for a system where heterogeneous flow is permitted are calculated by allowing

the shear-rate to vary between streamlines. For each streamline j = 1, ..., N , every

element on the streamline will experience a shear-rate γ̇ (j). The value of γ̇ (j) is de-

termined by force balance, as described in Appendix I of this chapter. For simplicity,

we shall refer to the start up curves for which homogeneous flow is enforced as ho-
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mogeneous start-up curves. Start-up curves for which the flow is allowed to become

heterogeneous are, in turn, referred to as heterogeneous start-up curves. We should

note, however, that although the shear-rate may vary between streamlines, force bal-

ance means that the total shear-stress on each streamline Σ (j) = σxy (j) + ηγ̇ (j) is

the same for all streamlines. The total shear-stress is therefore always homogeneous

throughout the system.

The degree of banding and rate of yielding

The thesis of this work is to show that the emergence of shear-bands is closely related

to the sudden stress drop observed during start-up for well annealed amorphous

materials. We quantify these effects in the following manner.

In order to account for the presence of heterogeneity due to systemic noise

in our model, we chose to define the degree of banding ∆γ̇ by the root-mean-squared

deviation of the shear-rate

∆γ̇ (t) =
1

N

N∑
j=1

√
(γ̇ (j, t)− γ̇)2. (4.6)

The maximum degree of banding ∆γ̇m is the largest value obtained for ∆γ̇

during shear start-up. The normalised value
∆γ̇m

γ̇
then reflects variation in the flow

relative to the average shear-rate.

The yielding behaviour observed in this study varies as a function of an-

nealing and shear-rate. To quantify this variation, we define the severity of yielding

by the maximum negative slope of the start-up curve

M∗ = max(−dΣ

dγ
). (4.7)

A similar measure is used in Ref. [24] to measure the severity of yielding in simu-

lation. By use of these quantities, our study finds the variation in yielding and the

degree of banding to closely follow one another for each protocol examined.

In order to account for the variation due to the use of different random

number seeds, each calculation is performed 50 times, and the average value of M∗

or ∆γ̇m/γ̇ plotted. The standard deviation has been included with each reported

value and is represented by error bars in the subsequent figures.
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Figure 4.3: Distributions of energy well depths for the SGR model aged at T = 0.3

from a system quenched from T =∞. The distributions move towards deeper wells

with increasing age. Distributions shown correspond to ages, increasing left to right,

of tw = {101, 102, 103, 104, 105, 106, 107, 108, 109, 1010}. The histogram is composed

by sampling from a grid of N = 1.6× 106 elements.

In this study, we examine yielding in amorphous materials subject to three

different preparation protocols prior to shear being applied. The first models an

aged thermal material sheared at a fixed non-zero noise temperature. The second

protocol entails cooling the material to the athermal limit from Tinit > Tg at a fixed

rate prior to the application of shear. The final protocol we study models a material

that is quenched infinitely quickly from Tinit > Tg to T = 0 before shear is applied.

We explain in greater detail the particular aspects of each protocol in what follows.

4.4 Protocol I

This protocol models a thermal yield stress fluid aged for some waiting time tw

prior to start-up. The system is quenched from an initially infinite temperature,

such that P (E) = ρ (E) = e−E/Tg for all energy wells, to some value 0 < T < Tg.

In all calculations performed here for this protocol, we set T = 0.3. The sample is
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Figure 4.4: Shear start-up curves depicting homogeneous (solid lines) and heteroge-

neous (broken lines) start-up for a) fixed average shear-rate γ̇ = 0.001 and a range

of ageing times tw = 101, 102, 103, ..., 1010, with height of the stress overshoot height

increasing with increasing sample age. b) fixed sample age tw = 106 and varying

shear rate, γ̇ = 10−4, 10−3.5, 10−3, ..., 10−1 . Height of the stress overshoot increases

with increasing shear-rate.

allowed to evolve at this temperature without applied shear until the waiting time

tw has been reached. Following this, a fixed average shear rate ¯̇γ > 0 is applied.

The noise temperature is maintained at the same fixed value during both the ageing

process and during start-up.

The distribution of energy well depths at the end of the ageing time and

prior to the application of shear is shown in Figure 4.3 for several values of tw.

For each protocol, the distribution of energy wells prior to shear illustrates how the

variation of the initial state of the system depends on how the sample is prepared.

We observe that the mean of the distribution of energy wells increases with age,

corresponding to more elements in deeper wells. With increasing average well depth,

the sample becomes better annealed. We see that this causes the initial elastic regime

to persist to larger strain, leading to a larger overshoot.

4.4.1 Stress Response

The evolution of the shear stress as a function of average strain γ̄ is plotted in Fig-

ure 4.4 for both homogeneous and heterogeneous start-up curves. We reiterate that

the homogeneous start-up curves represent the material stress response calculated
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by imposing the constraint that heterogeneities are not formed between streamlines.

To calculate this, we enforce the imposed average shear-rate γ̇ upon every streamline

(and by extension each element) in the sample. The heterogeneous curves allow for

streamlines to have different shear-rates dependent on force balance as discussed.

In so doing, we see how the heterogeneous dynamics differ from the theoretical

homogeneous start-up curves.

We observe in Figure 4.4 a) that as the age of the sample increases at a

fixed shear rate, so too does the height of the overshoot, as is seen in experiments

of age-dependent materials [21]. Initially, all the homogeneous and heterogeneous

curves overlap, demonstrating the flow to remain homogeneous at small strains.

Behaviour at larger strains differs according to the sample age. For smaller values of

waiting time tw, the curves continue to overlap as the material yields, so the process

is ductile. For longer ageing times, the heterogeneous curves break off from the

homogeneous curves after the apex of the overshoot, showing more brittle behaviour.

In Figure 4.4 b) the start-up curves for a fixed sample age are plotted as

calculated for different values of γ̇. We see that the overall height of the overshoot

decreases as a function of the applied average shear-rate γ̇. Such behaviour is in

line with the property that the overshoot for this protocol is set by the value of

γ̇tw [163]. For the combination of shear-rate and sample age shown, we see the

heterogeneous curve breaks off from the homogeneous curve at some value of strain

after the peak of the overshoot. Despite the decreasing overshoot height, yielding

for curves that permit heterogeneity is more brittle with decreasing shear-rate. We

now characterise this yielding via the quantity M∗ introduced previously.

The calculated values of M∗ in Figure 4.5 are the average values taken from

fifty start-up calculations. In Figure 4.5 a) these calculations are performed for a

range of sample ages at fixed γ̇ = 10−2 and γ̇ = 10−3. For the shorter waiting times

plotted, the curves follow similar trends, with the M∗ being lower for the γ̇ = 10−3

curve. A transition occurs between tw = 104 and tw = 105, and M∗ is larger for

γ̇ = 10−3 than γ̇ = 10−2 for samples with longer waiting times. This occurs despite

the overshoot height for the lower shear-rate curves being smaller that those for a

larger shear-rate.
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Figure 4.5: The maximum negative slope M∗ of the start-up curves averaged over

50 start up curves a) for fixed average shear-rate γ̇ and varying tw. b) for fixed tw

and varying γ̇. Error bars depict standard deviation of calculated values.

Figure 4.5 b) plots M∗ over several decades of applied average shear-rate

γ̇ for tw = 104 and tw = 106. The dependence observed is non-monotonic for

tw = 104, with a peak near γ̇ = 10−2. The yielding behaviour for this material,

which is ductile at high shear-rates, becomes more brittle with decreasing shear-

rate. It becomes ductile again as the shear-rate further decreases. We speculate

that a similar trend could be observed for the tw = 106 curve at smaller shear-rates.

However, such values are inaccessible for this study.

4.4.2 Flow Heterogeneity

The evolution of the degree of banding ∆γ̇ (γ̄) as a function of average strain is

shown in Figure 4.6. We observe a large degree of banding upon yielding, followed

by a persistent smaller value at larger strains. This second part of the evolution

of the banding corresponds to the system gradually fluidising. We re-examine this

protocol in Chapter 5 of this thesis to study the development of these bands with

strain.

As the sample age increases, the duration of the peak becomes shorter, sim-

ilar to the increasingly sudden yielding observed in the start-up curves. In Figure 4.6

a) we observe that for increasing sample age, the maximum degree of banding grows

steadily, whereas the duration of the peak remains relatively constant. Figure 4.6 b)

shows the evolution of the banding for several applied average shear-rates. As the
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Figure 4.6: The unnormalised degree of banding during start-up as a function of

average strain for a) fixed imposed average shear-rate γ̇ = 0.001 for (varying left to

right) tw = {105, 106, 107, 108, 109, 1010}. b) sample age tw = 106 for applied average

shear-rates γ̇ = {10−4, 10−3, 10−2, 10−1}.

shear-rate decreases, the maximum amplitude of the banding also decreases slightly.

As for the case of M∗, the maximum degree of banding ∆γ̇m is calculated

50 times for each set of parameters tw and γ̇. We normalise this quantity relative

to the applied average shear-rate to characterise the degree of banding relative to

the flow. In Figure 4.7 we plot ∆γ̇m/γ̇ for a range of values of tw and γ̇. The values

used in this figure are the same as those used in Figure 4.5 in relation to M∗.

In Figure 4.7 a) we observe a similar trend in ∆γ̇m/γ̇ as in M∗ in Figure 4.5

a). The cross over in yielding rate between tw = 104 and tw = 105 is also seen here

for the degree of banding. The variation in ∆γ̇m as a function of shear-rate for fixed

sample age is shown in Figure 4.7 b). We once again obtain the non-monotonic

curves observed in Figure 4.5 b) for M∗ for tw = 104.

The relationship observed here between M∗ and γ̇m/γ̇ for all values of γ̇

and tw present the first evidence of a connection between brittle yielding and the

formation of shear-bands. We performed these calculations for fixed shear-rate at

varying sample age, and vice versa. Due to the computational intensiveness of the

SGR model, we have not performed a full examination of the γ̇, tw parameter space.

We may, however, compare our findings to that of a fluidity model, which provides

a simpler, less computationally expensive method of studying a yield stress fluid of

this type.
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Figure 4.7: The normalised maximum degree of banding during start up ∆γ̇m/γ̇

averaged over 50 start-up curves a) for varying age, tw, at fixed average applied

shear rate γ̇. b) varying shear-rate γ̇, at fixed sample age tw. Error bars depict

standard deviation of calculated values.

4.4.3 Comparison to Fluidity model

For Protocol I in this chapter we observe several interesting behaviours during start-

up. M∗ and ∆γ̇m/γ̇ are shown to be non-monotonically dependent on the applied

average shear-rate γ̇. We also see that brittle yielding occurs some while after

the peak of the overshoot, rather than as soon as yielding begins. In order to

further examine this behaviour, and its dependence on sample age and shear-rate,

we now turn to a simplified fluidity model. These results were obtained by Mr James

Cochran [164], using the model we will now describe.

The elastoplastic stress evolves according to the Maxwell type constitutive

equation

∂tσxy = Gγ̇ − σxy
τ
, (4.8)

where G is a constant elastic modulus and τ is a stress relaxation time, which evolves

according to the dynamical equation

∂tτ = 1− |γ̇|τ
λ+ |γ̇|τ0

+
l20
τ0

∂2
yτ. (4.9)

Here τ0 is the fundamental relaxation time of the model. The constitutive curve

Σ (γ̇) of the model follows that of a Bingham fluid with yield stress Gλ and slope

Gτ0. For the purposes of this study, we set the parameters G = 1, τ0 = 1 and

λ = 1. λ is a dimensionless parameter which sets the fluid yield stress and the rate
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of fludisation of the material in response to applied shear. For λ = 0, the material

does not display a yield stress and will not age. We may therefore consider the

effects of λ to be somewhat analogous to the effective noise temperature in the SGR

model.

In absence of applied shear Eq. 4.9 reduces to ∂tτ = 1 meaning that the

relaxation time τ grows linearly with the waiting time tw. As in the SGR model, the

value for this waiting time determines the transient response of a sample to applied

strain. The diffusive term on the right-most side of Eq. 4.9 prevents the formation

of unphysical heterogeneities on the lengthscale of the numerical grid, similar to

the diffuse coupling implemented for SGR. The diffusion length l0 sets the interface

width between bands and is set l0 = 10−3 throughout this study.

The geometry in which we implement this model is a one-dimensional cell

of size Ly = 1 in the flow gradient direction ŷ. As in the calculations performed

elsewhere in this chapter, the fluid is considered to only move along the x̂ direction.

The shear-rate varies only along the ŷ direction. A finite difference method using

Ny = 3000 lattice elements is used to approximate the spatial variation of the shear-

stress and relaxation time in the cell. Each lattice site has a corresponding value

σxy(y) and τ(y), where y = Ly
j
Ny

. The shear-rate on each lattice site within the

cell is calculated via the same method as in the SGR model, with solvent viscosity

η = 0.05.

To seed the formation of the bands in this model, noise is added contin-

uously as σxy(y, t + ∆t) = σxy(y, t) + rδ
√

∆t cos(πy/Ly). ∆t is the time-step used

to evolve the stress and relaxation time, and r is a random number taken from a

uniform distribution between −1
2

and +1
2
.

The relative simplicity of this model means that it is much less numerically

expensive than SGR. Despite this simplicity, we see that the model exhibits many

of the same behaviours seen for Protocol I in SGR. The smaller numerical cost of

these calculations also means that we can explore a much larger parameter space,

as we now discuss.

Start-up curves for aged samples in this model display a similar behaviour

as in SGR. Example shear start-up curves are plotted in Figure 4.8 a) for both



4.4. Protocol I 108

Figure 4.8: a) Start-up curves for homogenous (solid lines) and heterogeneous (bro-

ken lines) of the fluidity model showing increase in the height of the stress as a

function of waiting time (curves left to right) tw = 105, 106, 107, ..., 1012. Colourmap

of the b) maximum negative slope and c) maximum degree of banding. The crosses

marked in these maps correspond to the start-up curves shown in a), with sample age

increasing from left to right. Diffusion lengthscale l0 = 10−3, timestep ∆t = 0.01,

Ny = 3000.

homogeneous and heterogeneous flow. As is the case for SGR, increasing sample

age leads to increasing overshoot height. For the plotted shear-rate, start-up curves

break off from one another for tw > 108, but overlap for younger systems. This

mirrors the behaviour seen for the SGR model in Figure 4.4 a) . In both of these

models, where the heterogeneous start-up curve breaks off from its homogeneous

counterpart, it does so after the overshoot peak.

Colour-maps of the maximum negative slope M∗ and normalised maximum

degree of banding ∆γ̇m/γ̇ as a function of shear-rate and ageing time are shown in

Figure 4.8 b) and c) respectively. Firstly, we note that both these quantities appear

to be highly correlated, as we see in the results of the SGR data. This further

affirms our hypothesis that the severity of yielding is related to the emergence of

shear-bands in the sample. The trends observed for M∗ and γ̇m/γ̇ in this model are

very similar to those for Protocol I in SGR. Both of these quantities increase with

tw for all values of γ̇, but vary non-monotonically with shear-rate at low values of

tw

In both of these models, non-monotonic dependence is possibly related

to the competition between dynamics that result from ageing and those due to
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deformation. We may understand this by considering Eq. 4.9 in the limit in which

γ̇ → 0. As γ̇ becomes small, so too do the right-most terms. This causes the ageing

term to dominate. As a result, any variation in the relaxation time τ (y) within the

system due to small heterogeneities in the flow remains small. When no shear bands

develop, the heterogeneous and homogeneous start-up curves follow each other. The

yielding process is therefore smooth. A mechanism similar to this may be at work

in the SGR model, whereby the rejuvenation of elements at some timescale set by

the finite noise-temperature prevents rapid fluidisation. We see from here forward

that this does not occur in athermal systems.

4.5 Protocol II

In this protocol, the system is first equilibriated at a temperature Tinit > Tg. Sub-

squently, the system is cooled at a constant rate α such that Ṫ = −α. At T = 0,

the system is subjected to an average shear-rate γ̇. This method of annealing a

sample was performed previously in simulations of Leonard-Jones glasses [29,32]. In

this study we set Tinit = 5 for all calculations performed with this protocol. To this

author’s knowledge, there exists no prior example of such a protocol being applied

in a mesoscocopic model. The energy well distribution for different cooling rates

is shown in Figure 4.9. At the highest cooling rate, the Boltzmann distribution

of the initial temperature is well preserved. As the cooling rate is decreased, the

distribution narrows and the average well depth increases. Ref. [30] shows similar

distributions of activation energies for particle simulations. We now investigate if

these similarities apply to the transient dynamics, when the sample is subjected to

shear start-up.

4.5.1 Stress Response

The stress evolution after cooling is shown as a function of applied average strain

in Figure 4.10. As in the previous protocol, we plot the start-up curves with ho-

mogeneity imposed and heterogeneity allowed. Overshoot heights increase for both

homogeneous and heterogeneous start-up curves with decreasing cooling rate α.
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Figure 4.9: Distributions of energy well depths for the athermal SGR

model for a system cooled from Tinit = 5. The distributions move to-

wards deeper and deeper wells with decreasing cooling rate, with α =

{10, 3.162, 1, 0.3162, 0.1, 0.03162, 0.01, 0.003162, 0.001}. The histogram is composed

from sampling from a grid of N = 1.6× 106 elements.

Figure 4.10: Start-up curves with imposed homogeneity (solid lines) and allowed het-

erogeneity (broken lines) for a) fixed shear-rate γ̇ = 0.001 for a range of cooling rates

α = {100.5, 100, 10−0.5, ..., 10−3}. Increasing overshoots observed for start-up curves.

b) at fixed α = 10−3 for varying applied shear-rate γ̇ = {10−1, 10−1.5, 10−2, ..., 10−4}.

Homogeneous curves converge to a shear-rate independent homogeneous curve while

heterogeneous drop off becomes increasingly precipitous with decreasing shear-rate.
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Near the apex of the overshoot, all the start-up curves of flows which permit hetero-

geneity cease to follow the homogeneous curves. We do not see the heterogeneous

and homogeneous start-up curves overlay each other for small overshoots as was the

case in Figure 4.4 a). Yielding in a heterogeneous flow for this protocol therefore

appears to be always more brittle than for its homogeneous counterpart.

In Figure 4.10 b), we see another distinct difference from the previous

protocol. The curves of shear-stress during start-up with homogeneity enforced

vary only a small amount with γ̇. As the shear-rate decreases, the start-up curve

becomes independent of the applied shear-rate. For the previous protocol, Figure 4.4

b) demonstrates the start-up curves to have a much greater dependence on applied

shear-rate γ̇, even at low applied shear-rates.

With decreasing shear-rate γ̇, the yielding becomes more severe. For the

largest plotted shear-rate γ̇ = 0.1, the yielding is ductile and start-up curves for

homogeneous and heterogeneous flow follow each other closely. As γ̇ → 0, the

heterogeneous yielding is increasingly brittle and we see the break off point converge

near the apex of the homogeneous start-up curve.

Our calculated values of M∗ in this protocol are plotted in Figure 4.10. For

decreasing α in Figure 4.11 a), the value of M∗ increases. This finding is consistent

with start-up curves in Refs. [29, 32]. Samples cooled more gradually are better

annealed, as with longer aged samples in the previous protocol.

We see M∗ grow as a function of decreasing applied shear-rate in Figure 4.11

b). Fitting this to a power law produces a best fit M∗ γ̇
−0.9

. This suggests that the

slope may continue to increase indefinitely as a function of decreasing shear-rate.

This is in contrast to the behaviour seen in Protocol I. In the thermal case, the

value of M∗ varies non-monotonically with decreasing shear-rate. We speculate that

in the limit of γ̇ → 0, the system may exhibit discontinuous yielding, as observed in

simulations performed using AQS in Refs. [22, 24,145,165].
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Figure 4.11: The maximum negative slope averaged over 50 start-up curves for a)

fixed average shear-rate γ̇ and varying cooling rate α. b) fixed cooling rate α = 0.001

and varying average shear-rate γ̇. Data shown in symbols (•), with line of best fit

M∗ ∼ γ̇
−0.9

(broken line). Error bars depict standard deviation of calculated values.

4.5.2 Flow Heterogeneity

The evolution of the degree of banding ∆γ̇ as a function of strain is shown in Fig-

ure 4.12 for the parameters which we discussed in the previous section. In Figure 4.12

a), this is plotted for different cooling rates. The maximum degree of banding in-

creases with decreasing cooling rate. We do not see the same effect in the variation

with shear-rate in Figure 4.12 b), noting that the maximum degree of banding is

seen to be invariant with shear-rate. The onset of banding occurs sooner, similar to

the yielding observed in Figure 4.10 b).

The maximum normalised degree of banding calculated during start-up is

shown in Figure 4.13 for a) varying cooling rate and b) varying shear-rate. Once

again we see that the variation of the degree of banding follows a similar trend to

that of the calculated maximum negative slopes M∗. The maximum normalised

degree of banding varies with shear-rate as a power law, with an exponent very

close to −1. This trend demonstrates the maximum value of the degree of banding

within the sample to be invariant with the applied average shear-rate, as we saw in

Figure 4.10 b).

It is worth noting how these results differ from those seen in the thermal

Protocol I. Although we observe the same general behaviour, such as an increase in

the degree of banding with annealing, some differences are apparent. The degree
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Figure 4.12: The unnormalised degree of banding as a function strain for a) a

fixed average strain-rate γ̇ = 0.001 and cooling rates α = {1, 0.1, 0.01, 0.001}

and b) a fixed cooling rate α = 0.001 and varying average shear-rates γ̇ =

{10−4, 10−3, 10−2, 10−1}.

of banding is invariant with shear-rate, leading to the normalised degree of banding

being inversely proportional to the applied shear-rate. A similar trend is observed

in the corresponding value of M∗. We may infer from this that both the yielding

and banding behaviour are dependent on the homogeneous start-up curves, which

are also invariant with shear-rate as γ̇ → 0.

An aspect of this protocol which is not seen in the previous case is the be-

haviour for less well annealed samples. In the protocol with non-zero noise tempera-

ture, the heterogeneous start-up curves for small overshoots follow the homogeneous

curves almost exactly. In this case, we see that even for small overshoots, the curves

for the heterogeneous flow break off from their homogeneous counterparts. We now

see this same behaviour in our next protocol.

4.6 Protocol III

In this protocol, the system is initialised at some temperature Tinit > Tg and allowed

to reach equilibrium. Following this, the system is instantaneously quenched to T =

0 and a fixed average shear-rate is then applied. This protocol may be considered

as the limit of the previous cooling protocol with α = ∞. This protocol was used

previously in the simulations of Berthier and collaborators to examine yielding in
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Figure 4.13: The maximum normalised degree of banding during start-up ∆γ̇m/γ̇

averaged over 50 start-up curves for a) varying cooling rate α for fixed average shear-

rates γ̇. and b) varying average shear-rate γ̇ for fixed cooling rate α = 0.001. Data

shown as symbols (�) with line of best fit
∆γ̇m

γ̇
∼ γ̇

−0.976
(broken line). Error bars

depict standard deviation of calculated values.

Figure 4.14: Distributions of energy well depths for samples equilibrated Tinit =

{10, 5, 4, 3, 2, 1.75, 1.5, 1.25, 1.1}, the distributions increase in steepness with decreas-

ing Tinit. The histogram is composed from sampling from a grid of N = 1.6× 106.

disordered systems [22,24,165]. Our findings agree qualitatively with these previous

studies. The distributions shown in Figure 4.14 are described by the equation

P (E) =
1

1− 1
Tinit

exp

[
−E

(
1− 1

Tinit

)]
. (4.10)
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Unlike both the thermal ageing protocol and the cooling protocol, the distribution

of energy wells decreases monotonically over the full range of values of E. Despite

these distributions appearing very different from those in the previous protocols, we

observe similar behaviour during shear start-up to that seen in Protocol II.

4.6.1 Stress Response

The stress-strain curves for a range of initial temperatures at fixed shear rate are

shown in Figure 4.15 a). We see increasing overshoot height with decreasing initial

temperature Tinit, in line with the findings of Ref. [22]. As in the previous protocol,

the onset of yielding occurs near the apex of the overshoot. We observe the start-up

curve for the heterogeneous flow break off from its homogeneous counterpart even for

small overshoot heights. Likewise, we see similar behaviour with decreasing shear-

rate at fixed Tinit = 1.1 in Figure 4.15 b), as we see in Protocol II. The homogeneous

start-up curves converge and the heterogeneous yielding becomes more brittle. This

response was also observed for Protocol II in this chapter, despite the system having

very different initial energy well distributions. This strongly suggests that the effect

is connected with the samples being sheared at zero effective noise temperature.

In Figure 4.16, the average maximum negative slope of stress against strain

M∗ for varying Tinit and γ̇ is shown. We find that with decreasing initial temperature,

we see increasing maximum negative slope. This behaviour is in accordance with

particle based simulations performed in Ref. [24]. As seen in the cooling protocol

(Protocol II), the curves of lower and higher shear-rates resemble each other, with

M∗ being lower for all values of Tinit at the higher shear-rate. The maximum negative

slope M∗ once again varies as a power law function of the shear-rate, with exponent

close to -1. This is similar to that seen in the previous protocol.
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Figure 4.15: Homogeneous (solid lines) and heterogeneous (broken lines) shear start-

up curves for a) fixed average shear-rate γ̇ = 0.001 and for initial temperatures

Tinit = {1.1, 1.25, 1.5, 1.75, 2, 3, 4, 5, 6, 7, 8, 9, 10}, with overshoot height increasing

with decreasing initial temperature. b) fixed Tinit = 1.1 and varying applied shear

rate γ̇ = {10−1, 10−1.5, 10−2, ..., 10−4}. Homogeneous curves converge to a shear-rate

independent homogeneous curve while heterogeneous drop off becomes increasingly

precipitous with decreasing shear-rate.

Figure 4.16: The maximum negative slope M∗ averaged over 50 start-up curves

a) for fixed average shear-rate and varying initial temperature and b) for varying

shear-rate for fixed initial temperature Tinit = 1.1. Data shown in symbols (•) with

line of best fit M∗ ∼ γ̇
−0.95

(broken line). Error bars depict standard deviation of

calculated values.

4.6.2 Flow Heterogeneity

The unnormalised degree of banding as a function of strain is shown in Figure 4.17

a) for several Tinit at fixed shear-rate γ̇ and b) for several values of γ̇ for fixed initial
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Figure 4.17: The unnormalised degree of banding as a function strain for a)

a fixed average strain-rate γ̇ = 0.001 and Tinit = {3, 2, 1.75, 1.5, 1.25, 1.1} and

b) a fixed initial temperature Tinit = 1.1 and varying average shear-rates γ̇ =

{10−4, 10−3, 10−2, 10−1}.

temperature Tinit. We see an increasing maximum degree of banding with decreasing

initial temperature in Figure 4.17 a). As seen in the previous protocols, this is

correlated to increasing overshoot height. The unnormalised degree of banding,

however, once again varies minimally with shear-rate in Figure 4.17 b). The width

of this peak banding becomes narrower with the decreasing applied shear-rate.

The normalised degree of banding ∆γ̇m/γ̇ for varying initial temperature

and shear-rate is plotted in Figure 4.18. The normalised degree of banding is shown

to increase as function of decreasing initial temperature at fixed applied average

shear-rate γ̇. As in all protocols studied here, it varies in a similar manner to the

corresponding severity of yielding M∗. We once again see that the variation in the

normalised degree of banding with respect to γ̇ obeys a power law with exponent

very close to −1. This behaviour is consistent with that seen in Protocol II, in which

we also subjected the sample to shear at zero effective noise temperature.

This protocol shows many similarities with Protocol II. When we compare

Figures 4.10 b) and 4.15 b), we see that in both protocols the start-up curves follow a

similar trend with decreasing shear-rate. This trend mirrors that seen in simulations

of shear start-up in athermal soft glasses in Ref. [24] for decreasing shear-rates. The

SGR model in the athermal limit is therefore demonstrated here to be effective at

modelling the behaviour seen in simulations of athermal amorphous materials.
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Figure 4.18: The maximum normalised degree of banding during start-up ∆γ̇m/γ̇

averaged over 50 start-up curves for a) varying initial temperature Tinit for fixed

applied average shear-rate and b) varying shear-rate for fixed initial temperature

Tinit = 1.1. Data shown in symbols (�) with line of best fit
∆γ̇m

γ̇
∼ γ̇

−0.96
(broken

line). Error bars depict standard deviation of calculated values.

4.7 Conclusions and Future Work

In this chapter, we have studied the process of yielding in yield stress fluids subject to

three different protocols for sample preparation. Following preparation, the system

was subjected to a fixed average shear-rate γ̇. In the case of two of the protocols

studied, shear was applied at zero effective noise temperature. We compared the

results obtained for the non-zero temperature protocol to those of a simplified fluidity

model which describes an age dependent yield stress fluid. While in all cases our

results establish a clear relationship between the onset of yielding during shear

start-up and the formation of heterogeneous flow, we observe distinct differences in

behaviour between thermal and athermal systems during start-up.

In Protocol I, in both the fluidity and SGR models, we observe that longer

ageing times lead to more brittle yielding, as characterised by the maximum negative

slope of the start-up curve M∗. We also observe that yielding becomes more brittle

with decreasing shear-rate for sufficiently large overshoots. In both models, the

homogeneous flow is stable for sufficiently small overshoots. For stable flows, the

heterogeneous start-up curves match those for homogeneous start-up.

We also observe that for shorter ageing times in the SGR model, as shown

in Figure 4.5 b), the severity of yielding varies non-monotonically with shear-rate.
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A similar behaviour is observed in the fluidity model, as shown in the colourplots in

Figure 4.8 b). In both models, this trend is also exhibited in the degree of banding.

Since the overshoot in both models for this protocol is determined by the product

γ̇tw, we may conclude that this is due to the overshoot height becoming too small

for the flow to be unstable, hence both brittle yielding and banding diminish.

We do not observe such behaviour in the other protocols studied. Both

Protocols II and III subject the systems to shear at zero effective noise temperature.

In Protocol II, annealing is performed by cooling the systems at various rates prior

to start-up. In Protocol III, the system is equilibrated to a fixed initial temperature

before being quenched to T = 0 prior to shear. For better annealed samples, we see

an increase in overshoot height, as was seen in Protocol I for longer ageing times.

These results replicates those seen in particle simulations for both the cooling [29,32]

and quenching [22,24] methods of preparation. To the knowledge of the author, this

is the first time calculations performed using a mesoscopic model have replicated

the results of these simulations. In these calculations, wherein samples are sheared

at T = 0, we observe a break-off even at small overshoots, unlike the results seen in

Refs. [22, 23]. In the particle simulations of Refs. [22, 23], small overshoots are seen

for less well annealed samples. Where this is the case, ductile yielding is observed,

even in the limit γ̇ → 0. This disparity between our findings and simulation may be

attributable to finite size effects which are not accounted for in our model.

For variation in shear-rate, we see another departure from the behaviour

seen in Protocol I. Where the flow is constrained to be homogeneous, the corre-

sponding start-up curves converge with γ̇ → 0, such that they are independent of

the applied shear-rate. When heterogeneous flow is allowed, the observed yielding

becomes more brittle with decreasing shear-rate. This replicates simulations per-

formed at finite shear-rates in Ref. [24], wherein simulations showed increasingly

precipitous yielding as γ̇ → 0. At γ̇ = 0, these simulations showed such yielding

to be discontinuous. Our results in this chapter suggest that for athermal systems,

we will observe the same effect. Results in both protocols show the values of M∗

to follow an almost inverse dependence on the applied shear-rate as shown in Fig-

ures 4.11 b) and 4.16 b). This demonstrates that the rate of yielding with respect
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to time dΣ/dt is independent of applied shear-rate.

When we examine the degree of banding in Protocols II and III, we again

observe behaviours distinct from those seen in Protocol I. The absolute degree of

banding is independent of applied shear-rate for a fixed value of α or Tinit. As a

result, the normalised degree of banding is inversely dependent on the applied shear

rate. In Protocol I, we see the degree of banding decrease at very small shear-rates

as the overshoot becomes too small to allow banding. In Protocols II and III, the

invariance of both the degree of banding and the homogeneous start-up curves may

indicate that these quantities are linked i.e. that the maximum degree of banding

is set solely by the homogeneous start-up curve.

The motivation for this study was to examine yielding in amorphous mate-

rials during shear start-up and to gain insight into how this is linked to the formation

of transient shear-bands. We have conclusively shown across all protocols studied,

for both thermal and athermal systems, that the yielding is correlated to the for-

mation of transient heterogeneous flow. In all cases in athermal systems, and in

thermal systems where the height of the overshoot remains large enough to permit

banding, the severity of yielding, as defined by M∗, increases with decreasing applied

shear-rate.

In the case of athermal systems, the severity of yielding consistently in-

creases with decreasing shear-rate. This suggests that should these calculations

be performed at γ̇ = 0, we may also observe the discontinuous yielding seen in

Refs. [22, 24]. In Refs. [22, 23], this behaviour is attributed to a reversal in the di-

rection of the start-up curve for homogeneous flow as depicted in Figure 4.1 a). For

all calculations performed here, we find that the theoretical homogeneous start-up

curves retain the form shown in Figure 4.1 b). We therefore suggest that the discon-

tinuous yielding observed in simulation is the result of heterogeneous flow developing

over some fixed timescale, rather than the spinodal phase transition mechanism pro-

posed. Future simulations which measure the degree of heterogeneity as well as the

overall shear-stress may substantiate the findings in this chapter.

Despite differences between the protocols, in all cases we see that better

annealed samples display more brittle yielding. This is observed for thermal and
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athermal protocols. In order to understand this, we consider first the behaviour

of the system prior to the formation of shear-bands. For increasingly well annealed

samples, more elements are in deeper energy wells. We see this in Figures 4.3, 4.9 and

4.14. This naturally leads to larger overshoots due to a larger strain being required

to induce yielding on elements. When the sample begins to yield heterogeneously,

force balance requires that the fluidised region develops a larger shear-rate. If the

average stress on the system is large, as in the case of the well annealed samples,

this local shear-rate must likewise be large such that the Newtonian stress in the

yielded region is equal to the elastoplastic stress in other regions. This increase

in shear-rate leads to elements on this streamline yielding more rapidly, and in

turn the shear-rate along that streamline increases further. In order to maintain

a constant average shear-rate, the local shear-rate on all other regions decreases

and may become negative [12]. This then causes the average stress to decrease

rapidly and brittle yielding is observed. We can therefore infer from this process

why the large shear-stress overshoot observed for well annealed samples leads to

brittle yielding in all protocols.

While the findings of this study offer strong evidence to explain the be-

haviours observed in simulations, there remain questions which are unanswered,

as well as new ones presented by this work. Simulations performed in Ref. [22]

show that for samples sheared at γ̇ = 0 and equilibrated at moderate Tinit, a small

overshoot without discontinuous yielding is observed. Our findings in this chapter

suggest that given even a small overshoot, discontinuous yielding will be observed in

the limit of zero shear-rate for athermal materials. We speculate that this is due to

finite size effects unaccounted for in our model. This is substantiated by findings in

Ref. [24], which demonstrate more dramatic yielding at γ̇ = 0 for increasing system

size.

Further questions which merit future study that have emerged from this

work are the dissimilarities between the processes of shear start-up and yielding in

thermal systems (Protocol I) as opposed to athermal (Protocol II and III). Even at

low shear-rates, yielding does not occur at the apex of the homogeneous start-up

curve, but after a small drop in shear-stress. Further study is required to examine
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how this behaviour varies with effective noise temperature.

Finally, it should be noted that while all calculations performed in this

study have been at finite shear-rates, we frequently attempt to extrapolate our

findings to the limit γ̇ → 0. We compare our results to simulations performed

in this limit and substantiate our reasons for doing so. For scientific completeness

however, such mesoscopic calculations should be performed in this limit to verify the

findings of this work and hopefully grant further insights into the interplay between

transient shear-banding and yielding during applied shear deformation.
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4.8 Appendix I : Numerical Methods

For all protocols described in this chapter, we calculate both the homogeneous and

heterogeneous start-up curves. We first outline in this appendix the method by

which the system is evolved homogeneously before discussing additional methods

used to study heterogeneous flow.

In the SGR model, the evolution of the material is studied by considering an

ensemble of elements, each having a specified energy well depth E and microscopic

strain l =
√

(W − I) : (W − I). A fixed shear-rate γ̇ is applied to all elements and

the strain on each element at a given time-step n incremented such that

Wn+1/2 (t) = Wn (t) + 2∆tDn (t) . (4.11)

Here ∆t is the Euler time-step and D = 1
2
(∇v +∇vT ) is the symmetric part of the

rate of strain tensor. In a system with uniform shear-rate, this becomes

D =
1

2

0 γ̇

γ̇ 0

 . (4.12)

The conformation tensor for the next stage of the update is given by Wn+ 1
2

(i, j).

The update in Eq. 5.5 is performed over all elements on the lattice. Following this,

the hopping rate Γ(i, j) is calculated for each element according to equation

Γ(i, j) = Γ0min{exp[−(E (i, j)− G

2
l (i, j)2)/T ], 1}. (4.13)

where l (i, j) =
√

Wn+1/2 (i, j)− I) : (Wn+1/2 (i, j)− I) The test for yielding is then

performed via selecting a random number r from a uniform distribution in the range

(0, 1). The criterion is applied such that the element yields if r < Γ(i, j)∆t. The

microscopic conformation tensor is then reset Wn+1 (i, j, t+ ∆t) = I. If the element

does not yield Wn+1 (i, j, t+ ∆t) = Wn+ 1
2

(i, j).

To study the stress evolution with heterogeneity permitted we simulate a

one-dimensional flow field of N coupled streamlines. The shear-rate on each stream-

line γ̇ is no longer fixed, but varies with time. Each streamline corresponds to an

ensemble of M SGR elements, with shear-rate fixed along each streamline. A fixed

average shear-rate is applied to the system and force balance preserved via coupling
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each streamline to the 1D Stokes equation such that

∇ ·Σ = ∂y(ηγ̇ + σxy) = 0. (4.14)

The total stress is therefore uniform for each streamline. In order to apply an average

shear-rate γ̇ to the system, we calculate the average total stress

Σ = ηγ̇ + σ̄xy, (4.15)

where Σ is the average stress over all elements in the system. Force balance ne-

cessitates that the stress on each streamline be equal, and we impose an average

Newtonian stress ηγ̇. Therefore the shear-rate on each streamline is calculated via

the relation

γ̇ (j) =
1

η
(ηγ̇ + σ̄xy − σxy (j)). (4.16)

Here σ̄xy is the average elastoplastic shear stress, with σxy (j) corresponding to the

average elastoplastic stress along a given streamline j . γ̇ (j) is the shear-rate along

a streamline j, and γ̇ is the applied average shear-rate. At each time-step, the

average elastoplastic stress is calculated for each streamline as well as the overall

average stress. The shear-rate upon each streamline is then preserved by varying

the shear-rate γ̇ (j) on each streamline.

The evolution of the homogeneous stress during start-up may be shown

to be robust to a large range of timesteps. However, when undergoing heteroge-

neous dynamics, it is important to ensure that sufficiently small timesteps are used

to resolve the dynamics of the flow. The timestep ∆t is determined via an adap-

tive method which couples its value to the unnormalised degree of banding in the

system
1

M

√
M∑
j=1

(γ̇ (j)− γ̇)2. The timestep is then varied in accordance with this

heterogeneity. This ensures that during yielding, when heterogeneity is large, the

dynamics are well resolved. Conversely, much faster calculation of the evolution of

system is possible when homogeneity is retained.

In order to introduce a diffusive coupling between elements, as applied in

previous studies of shear-banding, we impose the following protocol. If an element

i along streamline j yields, the shear strain of three randomly chosen elements on

each neighbouring streamline is adjusted by a factor DWxy (i, j) (−1, 2,−1), before
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the strain of Wxy (i, j) is reset Wxy (i, j) = 0. This gives a spatial dependence of the

heterogeneity in the system, previously shown to be important to avoid unphysical

behaviour [161].



Chapter 5

Ultra-Long-Lived Transient

Shear-Banding in Soft Glassy

Materials

5.1 Introduction

In the previous chapter we established that the transition from solid to liquid like

behaviour in an elastoviscoplastic fluid is closely associated with the manifestation of

spatially heterogeneous shear-rates. Characterising both the onset and development

of these heterogeneities remains a topical area of research. In this chapter, we

study theoretically the longevity of shear-bands during shear start-up. A widely

cited study of the longevity of shear-bands in a yield stress fluid was performed by

Divoux et al. [27]. This study examined the evolution of shear-bands in a carbopol

gel using velocimetry data to spatially resolve the flow profile in a Taylor-Couette

cell. By tracking the interface between shear bands until a homogeneous shear-rate

was recovered, they calculated the lifetime of shear-bands as a function of shear-rate.

The time taken for the system to completely fluidise (i.e. the lifetime of the shear

bands) τf was found to fit well to a power law γ̇
−α

with exponent α = 2.3.

A further study of band longevity was performed for stress controlled start-

up [70]. This also demonstrated that the timescale for fluidisation followed a power

law dependence (Σ−Σy)
−β, with power law exponent increasing with carbopol con-

126
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centration from β = 3.4 − 8. In this paper, they suggest that sample preparation

may also play a part in the these properties. They found that despite two samples

having the same concentration, different exponents β were observed. This finding

was attributed to variations in pH between the samples. The ratio of the exponents

of fludisation time τf against applied shear-rate, α, and against shear-stress β was

found to match the Herschel-Bulkley exponent of the fluid. This observation, it was

suggested, may indicate a physical motivation for the Herschel-Bulkley model, usu-

ally considered phenomenological in nature. In an attractive colloidal gel, however,

the fluidisation time τf was found to be exponentially dependent on the applied

shear-stress [166, 167]. A free energy based continuum model was recently devised

that effectively reproduces many of the results found in the experiments of Divoux

and collaborators [168].

Chaudhuri et al. [169] performed simulations of an aged Yukawa fluid in

order to study the longevity of shear-bands in a stress controlled shear-flow. Their

study found the timescale for fludisation to also follow a power law τf ∼ (Σ−Σy)
−β,

with exponent β = 2.285.

Simulations have also been used extensively to examine the emergence and

persistence of shear-bands in soft glasses during shear start-up. These studies have

made use of a number of different methods to prepare the sample prior to shear.

In the case of Ref. [28, 33], the system of Leonard-Jones particles is equilibrated at

a fixed temperature above the measured glass transition temperature. The system

is then quenched below the glass transition and aged for a fixed waiting time tw,

before being subjected to shear at a fixed rate. The stress response was found to

be dependent on both the applied shear-rate γ̇ and ageing time tw. The spatial

evolution of transient shear bands was examined by calculating the local mobility

of particles in the sample. It was observed that the interface between the bands

propagates as t
1
2 . For a fixed sample age tw = 104, the authors found that the

fluidisation time τf , followed a power law such that τf ∼ γ̇
−1.28

.

Simulations were also performed by Vasisht and DelGado, who studied the

longevity of shear bands in an athermal Leonard-Jones glass at high packing frac-

tion [29,32]. In their simulations, the samples were prepared by first equilibritating
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the system at a high temperature before cooling to zero temperature. When mea-

sured as a function of shear-rate, the lifetime of shear bands was found to vary as

a power law, as observed in the experiments of Divoux et al. [27]. The exponent

of this power law was found to vary as a function of the cooling rate applied to

the sample, with exponent of 1.11 for the highest cooling rate and 1.66 for the low-

est. We perform a similar protocol in this study and compare our findings to those

observed in simulation.

Simulations by Alix-Williams and Falk examined the formation and broad-

ening of shear-bands in metallic glasses in two dimensions [34]. They performed

particle simulations using a Leonard-Jones glass as well as using metallic glass po-

tentials. In these simulations, the system is initially equilibrated before being cooled

at different rates to a fixed non-zero temperature. The initial width of the shear-

band within the cell was found to be dependent on the cooling rate applied. This

study also compared the results found in simulation to those predicted by a Shear

Transformation Zone (STZ) model which modelled the evolution of the bands as a

pulled interface. Good agreement was found between this model and the simulations

performed.

The STZ model has been used in several studies to examine how shear-

bands develop during shear start-up. Studies by Manning and collaborators [170,

171] examined the emergence of shear-bands for different inital effective tempera-

tures. In Ref. [170] they compared their results directly with particle simulations

which were performed using a cooling protocol on samples of metallic glasses [172].

In order to emulate the effects of a cooling protocol, the initial effective tempera-

ture was selected for each calculation that best reproduced the start-up curves seen

in simulation. Their calculations effectively captured aspects of the simulations,

including a rate dependent localisation of shear-rate and an increasing overshoot

height with decreasing cooling rate. They did not explore the longevity of these

bands and examined only the early timescale behaviour of the material when sub-

jected to shear. A study performed later by Hinkle and Falk [173] also used the

STZ theory to qualitatively match the transient behaviour seen in the experiments

of Ref. [27]. With some variation of the parameters of the model with the magni-
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tude of the shear-rate, their study was quantitatively able to match the power law

dependence of band longevity on applied shear-rate.

In all of these STZ studies the flow was confined to a 1D approximation,

with effective temperature and shear-rate only varying in the cross channel direction.

A two-dimensional simulation of strain localisation in metallic glasses was performed

by Jagla [174] using a model first introduced in Ref. [175]. The study modelled the

effects of ageing using a system of PDEs that simulate the relaxation of mesoscopic

elements. This study observed that the height of the overshoot increased with sam-

ple age, and that shear bands formed during start-up when samples demonstrated

sufficiently large stress overshoots. The width of these bands was found to grow as

t
1
2 , as was seen in the particle simulations performed in Ref. [28,33,34]. This model,

which describes the material mesoscopically in terms of discrete elements is an ex-

ample of an elastoplastic model, which are widely used to study elastoviscoplastic

fluids, as we shall now discuss.

5.2 Elastoplastic Models

Elastoplastic models (EPMs) are widely used to study heterogeneous processes in

amorphous materials. Thorough reviews of elastoplastic models and their widespread

use may be found in Ref. [30, 31]. All elastoplastic models have a similar form and

describe an amorphous material via a collection of elements. In general, evolution

of the stress in these elements is captured by the following criteria [30]:

1. Each element behaves elastically before yielding.

2. A local yield criterion determines the onset of a plastic event for a given

element.

3. The redistribution of the stress that is given during plastic yielding causes long

range interactions among elements.

4. Each element recovers its elastic behaviour following a plastic event.

While these attributes apply generally to all elastoplastic models, including that

used in this study, it is from each model’s slight variations that different behaviour is
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observed. Differences between models chiefly relate to the selection of local yielding

criteria and the manner in which the stress is redistributed following each yielding

event.

A widely used class of lattice EPM was devised by Picard et al. [176]. They

incorporate a yielding rate dependent on the stress of each element, Σ and critical

stress Σc. The yielding rate of each element is modelled as Θ (Σ− Σc), where Θ (ξ)

is the Heaviside step function. This yielding rate acts as the characteristic timescale

of the system. Until each element has obtained this critical stress due to external

loading, the yielding rate is 0, and the element imitates an elastic solid and gains

stress in linear proportion to the applied strain. Once the stress exceeds Σc, the

local yielding rate is 1. The element then has unit probability of yielding per unit

time. Upon yielding, the anistropic stress redistribution is modelled using an Es-

chelby propagator [177]. This redistributes the stress according to the quadrapolar

description derived originally by Eschelby for the failure of a single element in an

elastic medium [178]. More recently, this formulation has been extended to a tenso-

rial description of the stress [179], but showed little variation in overall behaviour. In

this formulation, the stress is assumed to be redistributed instantaneously, but some

models incorporate effects such as inertia which leads to a delayed redistribution of

stress [180]. In the model we introduce in this chapter, the stress is redistributed via

a background solvent viscosity, similar to the method used in other chapters in this

thesis. We also incorporate a tensorial representation of the stress in our model. We

demonstrate that this method also obtains the quadrupolar redistribution of stress

after a single yielding event.

Much use of these models is made to study the avalanche dynamics caused

by long range changes in the stress due to local plastic failure [181–186]. Associated

with these avalanches are changes in the average shear-stress of the system, and many

studies have linked them with macroscopic material yielding [187–192]. While this is

a very active area of research, we do not explicitly explore these avalanche dynamics

in this study and instead concentrate on modelling the other features of yielding.

We specifically study the evolution of shear bands in an EPM [190, 193–195], the

formation of which is examined in Chapter 4 of this thesis.
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As in other complex fluids, the formation of permanent shear-bands is

closely associated with a non-monotonic constitutive curve [23, 196–198]. In this

study however, our model has a monotonic constitutive curve for all parameters

studied and so permanent shear-bands do not form. Previous studies of transient

heterogeneities under applied deformation using elastoplastic models [25, 199–201]

have shown this to be related to the yielding criteria of the sample elements prior

to shear. Moorcroft et al. [25] demonstrated that the formation of shear bands

in the elastoplastic soft glassy rheology model was dependent on the sample age.

They also found these shear-bands to be extremely long lived, sometimes persisting

to thousands of strain units. They did not, however, characterise the longevity of

these shear-bands in terms of sample age and applied shear-rate. In this study, we

characterise the longevity of shear-bands by applying the soft glassy rheology model

ageing dynamics to an elastoplastic lattice model.

5.3 Lattice Soft Glassy Rheology Model

In this study, we combine the ageing dynamics of the soft glassy rheology model

with a two-dimensional lattice formulation. Previous studies have examined the

effects of the varying initial distribution of critical stresses Σc [23,200,201] for meso-

scopic elements prior to shear start up. They do so by explicitly varying the initial

distribution of critical stresses directly. While these studies may offer insight into

the underlying processes involved in yielding and transient shear banding, it is not

necessarily clear how we can compare these results directly with simulation or exper-

iment. Also of note is that previous studies which attempt to describe aged materials

are all performed at the athermal limit and so do not account for the effects of non-

zero temperature. Applying the ageing dynamics of SGR, we are able to directly

compare our results with those of simulations, in particular those of Refs. [32, 33].

Our study emulates the ageing and cooling protocols used in these studies and so a

proper comparison can be made.

In order to do this we define a lattice of i = 1, ..., Nx and j = 1, .., Ny

elements. Each of these elements has an associated microscopic conformation tensor



5.3. Lattice Soft Glassy Rheology Model 132

W (i, j), rate of strain tensor ∇v (i, j), an energy well E (i, j) and a stress tensor

σ (i, j) = G (W (i, j)− I). The soft glassy rheology dynamics are described in Chap-

ter 4 so we shall not describe them in depth here. Recall that in an ensemble of

SGR elements, each element has an associated hopping rate given by the expression

Γ (i, j) = Γ0min

{
1, exp

[
−(E (i, j)− 1

2
Gl (i, j)2)/T

]}
. (5.1)

Here Γ0 is the microscopic hopping rate, T is the effective noise temperature. G the

shear modulus and l is the generalised expression of strain as defined in [202, 203]

for each element defined such that

l (i, j) =
√

(W (i, j)− I) : (W (i, j)− I). (5.2)

The lattice of elements is projected onto a cell with dimensions Lx and Ly. The

coordinates of each element (i, j) are then given by
(
x = i

Nx
Lx, y = j

Ny
Ly

)
. Each

element is assumed elastic until it yields, such that the evolution of the stress between

yielding events is given by the expression

σ̇ (x, y) = 2GD (x, y) . (5.3)

Here D is the symmetric rate of strain tensor,
1

2
(∇v +∇vT ). The evolution of the

rate of strain tensor for each element is calculated via the Stokes equation

∇ · (2ηD + σ − pI) = 0. (5.4)

Here p is the hydrostatic pressure field which is determined by enforcing incom-

pressibility ∇ · v = 0. The solvent viscosity η describes either a true solvent or

modes much faster than those describing the elastoplastic stress σ. Each element

therefore does not possess purely elastic stress, but also a viscous stress defined by

the expression 2ηD. The stress is redistributed between yielding events via the lo-

cal rate of strain tensor. This introduces a timescale for the redistribution of the

stress which is given by τη = η/G. For all the applications of the model performed

here η � G/Γ0. The timescale for the redistribution of the stress is therefore much

shorter than the rate of yielding. Therefore, for small values of η, the macroscopic

behaviour is independent of the solvent viscosity η. The use of a background solvent



5.3. Lattice Soft Glassy Rheology Model 133

is, as far as this author is aware, a novel method to preserve force balance in an

Elastoplastic Lattice Model. We also implement Lees-Edwards periodic boundary

conditions [204] in the system and incorporate affine advection using the method we

shall now describe.

The deformation of each mesoscopic element is simulated by evolving each

element individually as in Eq. 5.3. This is performed using Euler timestepping,

which gives the expression

Wn+ 1
2

(i, j) = Wn (i, j) + ∆t2Dn (i, j) . (5.5)

Here Wn (i, j) is the microscopic conformation tensor and Dn (i, j) is the symmetric

rate of strain tensor for element i, j at time-step n. The updated conformation

tensor for the next update step is given by Wn+ 1
2

(i, j). The update in Eq. 5.5 is

performed over all elements on the lattice. Following this, the hopping rate Γ(i, j)

is calculated for each element according to equation Eq. 5.1. The test for yielding is

then performed via selecting a random number r from a uniform distribution in the

range (0, 1). The criterion is applied such that the element yields if r < Γ(i, j)∆t

and the microscopic conformation tensor is then reset Wn+1 (i, j) = I. If the element

does not yield Wn+1 (i, j) = Wn+ 1
2

(i, j).

Following this, the flow field is calculated for the cell. Lees-Edwards bound-

ary conditions incorporate shear via transformation into the co-sheared frame

(x′, y′, t) = (x′ = x− γ̇ty, y′ = y, t′ = t). (5.6)

The partial derivatives after this transformation are given by

(∂x, ∂y, ∂t) = (∂x′ ,−γ̇t∂x′ + ∂y′ ,−γ̇y∂x′ + ∂t′). (5.7)

The cosheared 2D gradient operator then becomes

∇c = x̂∂x′ + ŷ(−γ̇t∂x′ + ∂y′), (5.8)

which is given in Fourier space by the expression

∇̃c = x̂iqx′ + ŷ(−γ̇tiqx′ + iqy′). (5.9)
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Using this transformation, we are able to describe the evolution of the flow field

in a periodic two-dimensional system subject to an applied shear-rate γ̇ and incor-

porate the effects of affine advection into our calculation. The quantity γ̇t, which

corresponds to the affine displacement, we describe by the quantity ζ. This is in-

cremented as the affine strain such that ζ̇ = γ̇. Under the transformation described

so far, the relative shear of the laboratory and cosheared frames becomes large at

long times, diverging at a constant rate γ̇. The divergence between the cosheared

and lab frame leads to numerical instabilities at large strains. To alleviate this, the

quantity ζ is reset when ζ > 1
2

Ly
Lx

to ζ = −1
2

Ly
Lx

, and the elements are reset such that

each element (i, j)→ (i− jNx/Ny, j). This method was previously implemented in

a continuum model of demixing Newtonian fluids [205].

Using these transformed coordinates, the flow field can be solved using an

Oseen tensor formulation such that in Fourier space, the flow field ṽq is described

by the expression

ṽq′ =
1

ηq′2
(I− q̂′q̂′) · (q′ · σ̃q′). (5.10)

A derivation of the Oseen tensor formulation may be found in Chapter 2. The

velocity gradient tensor is then calculated for each element in order to evolve the

system for the next timestep.

We must first demonstrate that this implementation does show the charac-

teristics of an elastoplastic model, along with that of a yield stress fluid. In Figure 5.1

a) we show the redistribution of the stress from a single yielding event. We first ini-

tialise all elements such that the viscoplastic shear stress σxy = 1. A single element

is then artificially caused to yield. All other elements are prevented from yielding

and the stress is redistributed via the flow field. We see that our model reproduces

the distinctive quadrupolar stress propagation derived by Eschelby [178] and used

in the model derived in Ref. [176]. We also demonstrate the steady state response of

this model by computing the flow curves in Figure 5.1 b). With decreasing effective

noise temperature, we observe an increasing yield stress. We note however that only

T = 0 appears to display a true yield stress for the shear-rates explored. At higher

temperatures, a small positive slope is seen even at the very low shear-rates plotted.
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Figure 5.1: a) The quadrupolar redistribution of the elastoplastic shear stress

σxyfollowing a single local event imposed in a system with η = 0.01, dt = 0.005.

All elements are initialised to σxy = 1 prior to yielding imposed on a single element.

Plot shown 10Γ−1
0 after yielding imposed b) The steady state flow curves computed

for a range of values of effective noise temperature, from T = 1 upward in increments

of ∆T = 0.1, to T = 0.

Methodology

This study seeks to establish the longevity of shear bands in systems subject to dif-

ferent sample preparation before start-up. The two protocols we use in this chapter

have already been introduced to the reader in Chapter 4, but we shall recount them

here.

The first of these protocols, which we term Protocol I, allows a waiting time

prior to the application of shear. At t = 0, the system is quenched from T =∞ to a

value 0 < T < 1. For this study we choose T = 0.3. The sample is then allowed to

age for some waiting time tw undisturbed, before an average shear-rate γ̇ is applied

and held constant thereafter.

The second protocol (Protocol II), sets the initial temperature Tinit of the

sample above the glass transition temperature Tg, before cooling gradually at a fixed

rate α until T = 0. The temperature of the sample then evolves as T = Tinit − αt.

Here, we set this initial temperature Tinit = 2, unlike the value used in the previous

study in Chapter 4. This is due to the increased level of noise in the system which
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arises from the use of a smaller number of elements in the flow direction. As a result,

the system must be better annealed in order to observe the formation of distinct

shear-bands. Once the temperature T = 0 is reached, an average shear-rate γ̇ is

applied and held constant thereafter.

In order to study the evolution of a single band, independent of the stochas-

tic effects of the model, we perturb the system prior to imposing shear. To ensure

the formation of single high shear-rate band, the energy well depth of elements of

the cell is varied by the function

E ′(x, y) = E(x, y)
[
1 + ε sin(2πy +

π

2
)
]
, (5.11)

where ε = 0.1. This relatively large perturbation effectively weakens the material

sample at the centre of the cell. The elements near the centre of the cell will

then yield for a much smaller applied strain, leading to the formation of a band of

high shear-rate. We are then able to study the evolution of this yielded region as a

function of the applied strain. We characterise the evolution of the band by the local

shear-rate γ̇ (x, y). In order to make our measurements robust to local stochastic

effects, the local shear-rate is averaged over a single strain unit for all measurements.

In order to determine the width of the band wb, the spatial average shear-

rate along the x̂ direction is measured at each unit of strain as

γ̇ (y, 〈γ̄〉) =
1

Lx

∫ Lx

0

∫ γ̄

γ̄−1

γ̇ (x, y, γ̄) dγdx. (5.12)

The position of the edge of the band is determined by comparing the value of

γ̇ (y, 〈γ̄〉) to the imposed average shear-rate γ̇. The position of the band interface

is defined to be where γ̇ (y, 〈γ̄〉) first exceeds γ̇ moving inwards from the edge of

the cell. This is calculated moving inwards from y = 0 and y = Ly. The width of

the band is then taken as the difference between these values. Examples of these

profiles for several values of strain are shown in Figure 5.2. The interface is defined

as where the high shear-rate band at the centre of the channel first exceeds the line

designating the average shear-rate.
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Figure 5.2: Profiles of shear-rate at several values of strain for a shear-banded sam-

ple. The average shear-rate is marked as a dashed line. The interface position

is taken as the value of y at which the local shear-rate first exceeds the average

strain-rate γ̇ as measured from either edge of the cell. Sample parameters T = 0.3,

tw = 106, γ̇ = 0.01, η = 0.01, Nx = 256, Ny = 256, dt = 0.005.

Figure 5.3: Start-up curves γ̇ = 0.01 for system parameters T = 0.3, η = 0.01,

Nx = 256, Ny = 256, dt = 0.005 a) for a range of sample ages tw, b) for a range

of applied shear-rates γ̇. Overshoot height increases with both sample age and

shear-rate.

5.4 Results: Protocol I

5.4.1 Shear Start-up

Moorcroft et al. used a one-dimensional implementation of the soft glassy rheology

model to study the onset of banding in aged systems [25]. It was observed that



5.4. Results: Protocol I 138

the bands can be extremely long lived. We now use a 2D lattice SGR model to

characterise this longevity. Fig 5.3 a) shows the evolution of the average shear-stress

in the system for different sample ages. We observe stress overshoots during start-up.

The overshoot height increases with sample age in accordance with experiment [21]

and simulations [28, 33] of soft glassy materials. Following an elastic like response

at low strain, we observe the system yield and begin to fluidise. The stress then

decreases to a value which is independent of the initial sample age tw.

For fixed sample age and varying shear-rate in Figure 5.3 b), the overshoot

height increases with applied shear-rate [21,73,77]. This behaviour is widely seen in

experiment [64, 73], as well as in simulation [28, 33]. This was also found to be the

case in our study performed in Chapter 4, which modelled the emergence of shear-

bands during start-up in a one-dimensional flow. In that study, we observed that

the degree of banding increased with sample age, but did not study the evolution of

the bands after yielding. We shall now examine how these bands evolve with time.

5.4.2 Banding Profiles

During start-up, the material initially deforms as an elastic solid before it reaches

the overshoot. After the overshoot, the material yields to a plastic flow. During

this transition, shear-bands form due to the material yielding from elastic to plastic

behaviour inhomogeneously. As the strain increases, the regions which are fluidised

gradually grow until the entire system has a uniform shear-rate.

We show this for two samples aged for different waiting times in Figure 5.4.

These plots show the local shear-rate averaged over a single strain unit γ̇ (x, y, 〈γ̄〉)

. Prior to shear, both samples are aged at T = 0.3 for a waiting time tw. A

perturbation is applied to weaken the centre of the cell, as described above, which

leads to the formation of a single high shear-rate band. This corresponds to the

brighter regions of the colour-plots shown. The systems are aged for tw = 105 (Left)

and tw = 106 (Right). In both cases, we see that a shear-band forms and the high

shear-rate band (brighter region) grows outwards with increasing strain (panels top

to bottom in figure). We observe that the younger system fluidises more rapidly,

with the band expanding outwards to fill the cell by γ̄ = 90 in the case of the
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system aged for tw = 105. The yielded region remains localised for the system aged

for tw = 106.
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(a) tw = 105,γ̄ = 30 (b) tw = 106,γ̄ = 30

(c) tw = 105,γ̄ = 60 (d) tw = 106,γ̄ = 60

(e) tw = 105,γ̄ = 90 (f) tw = 106,γ̄ = 90

Figure 5.4: Colourscale of local shear-rate averaged over a single strain unit

γ̇ (x, y, 〈γ̄〉) . γ̇ = 0.01, T = 0.3,Nx = 256, Ny = 256, dt = 0.005. Left) Sys-

tem aged for tw = 105 prior to applied shear. Right) System aged for tw = 106 prior

to applied shear. Top) γ̄ = 30. Middle) γ̄ = 60. Bottom) γ̄ = 90 .
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(a) tw = 104, γ̇ = 0.01 (b) tw = 106, γ̇ = 0.01

(c) tw = 104, γ̇ = 0.001 (d) tw = 106, γ̇ = 0.001

Figure 5.5: Colourmap of γ̇(y, 〈γ̄〉) as a function of strain for η = 0.01, Nx =

256, Ny = 256, dt = 0.005 a) tw = 104, γ̇ = 0.01. b) tw = 106, γ̇ = 0.01. c) tw = 104,

γ̇ = 0.001. d) tw = 106, γ̇ = 0.001.

The growth of these bands as a function of time is plotted in Figure 5.5.

These colour-maps show the value of the local shear-rate averaged over a single

strain unit and integrated along the x̂ direction of the cell as described by Eq. 5.12.

The position of the bands is calculated using the algorithm described previously.

The fluidised band expands outwards from the centre of the cell with increasing

strain. As the age of the sample increases, we see that the time for the bands to

reach the complete system size also increases.

In Figure 5.6 a), we observe the growth of the band width wb for fixed

shear-rate at varying ageing times. Refs. [28, 33, 34, 173] demonstrate the width of

the bands to grow as a power law γ̄
1
2 . We take a power law fit of the growth of

the bands here, as well as measuring the initial band width w0. In Figure 5.6 b)

the value of the exponent β is found only to vary a little with sample age, with
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Figure 5.6: a) The growth of shear-band width wb as a function of average shear-

strain γ̄ for fixed average shear-rate γ̇ = 10−2 for varying sample age tw. Data from

simulations (solid lines) are fitted to power laws expression wb − w0 ∼ γ̄β (broken

lines). b) Exponent β as a function of waiting time tw. c) Initial band width w0

as a function of waiting time tw. Model parameters T = 0.3, η = 0.01, Nx = 256,

Ny = 256, dt = 0.005.

Figure 5.7: a) The growth of shear-band width wb as a function of average shear-

strain γ̄ for fixed sample age tw = 105 for varying applied shear-rate γ̇. Data from

simulations (solid lines) are fitted to power laws expression wb − w0 ∼ γ̄β (broken

lines). b) Exponent β as a function of applied shear-rate γ̇. c) Initial band width

w0 as a function of applied shear-rate γ̇. Model parameters T = 0.3, η = 0.01,

Nx = 256, Ny = 256, dt = 0.005.

β ≈ 0.5 for all measured samples. In contrast, we see the initial width of the band

w0 in Figure 5.6 c) decreases with sample age. Such behaviour was also seen in the

theoretical work of Manning et al. [170], which saw the measured band thickness

decrease with initial effective temperature in an STZ model. It was also observed in
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the simulations of Hinkle and Falk for decreasing cooling rate [34].

In Figure 5.7 a) the growth of the band width wb for several values of

applied shear-rate γ̇ is plotted as a function of average strain γ̄. The calculated

power law exponents are once again found to vary only a small amount with shear-

rate, with most values of β ≈ 0.5. We therefore see that this model successfully

replicates the wb ∼ γ̄
1
2 band growth described in simulations. We also see that the

initial width of the bands decreases with increasing shear-rate. Having observed

the formation and development of shear-bands with time, we now see how the time

taken for the system to completely fluidise varies with shear-rate and preparation.
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5.4.3 Band Longevity

The time at which the system has become completely fluidised τf , corresponds to

the time at which the bands reach the edge of the cell. In order to mitigate the

effects of noise encountered as the band begins to meet itself at the edge of the cell,

we define the fluidisation time as when the band width wb = 0.95Ly. The values of

this fluidisation time τf are plotted as a function of sample age for several values

of applied shear-rate in Figure 5.8 a). We observe the fluidisation time increase

with decreasing applied shear-rate γ̇ as observed in the simulations of Shrivastav

et al. [33]. The calculated exponents of these power laws are included in the inset

in Figure 5.8 a). For the sample ageing times here, we observe an increase in the

exponent with sample age. All exponents are less than unity and generally increase

with the value of tw. The findings of Ref. [33] also find the longevity of shear bands to

increase as a power law, with exponent −1.28, for a sample aged for a single waiting

time. This is in accordance with experimental studies of shear-band longevity in

yield stress fluids [27, 70], which also observe such a power law dependence. Our

results are somewhat in contrast to previous findings as no former study known to

this author measures this exponent to be less than 1. In Figure 5.8 b) the fluidisation

time as a function of sample age tw is plotted for several applied shear-rates. We

find that for all values of γ̇, the time taken for shear bands to dissipate follows a

power law t
1/2
w .
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Figure 5.8: a) The fluidisation time as a function of applied average shear-rate γ̇

for several values of sample age tw. Data from simulations (symbols) fitted to power

laws (dashed lines). Inset) Calculated power law exponents. b) The fluidisation

time as a function of waiting time tw. Power law t
1
2
w (dashed line) included as guide

for the eye.

5.5 Results: Protocol II

We now seek to examine how heterogeneous flow develops in systems with zero

noise temperature. The protocol for sample preparation in this limit is inspired by

work done by Vashist and collaborators in simulation [29, 32]. Their studies were

performed for a Leonard-Jones glass cooled from above the glass transition to zero

temperature.

5.5.1 Shear Start-up

We observe in Figure 5.9 a), that as the cooling rate applied to the sample is de-

creased, the stress overshoot increases. This is in agreement with the simulations

in Refs. [29, 32]. Our findings show a variation in overshoot height as a function

of both shear-rate γ̇ and cooling rate α which are in accordance with the results of

their studies. In Figure 5.10, the height of the overshoots ∆Σ is plotted as a function

of the cooling rate and the applied shear-rate. We see that on a semi-log scale, the

height of the overshoot plotted as a function of the cooling rate α in Figure 5.10 a),

follows a straight line. This indicates that the overshoot height has an exponential

dependence on the cooling rate.
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Figure 5.9: The evolution of the system average shear-stress for systems under

imposed average shear-rate for simulation parameters η = 0.01, Nx = 256, Ny = 256,

dt = 0.005. a) Shear start-up curves for a range of samples cooled to T = 0 for Tinit =

2 at a range of cooling rates at fixed applied average shear-rate γ̇ = 0.01. Overshoots

increase with decreasing cooling rates corresponding to more well annealed samples.

b) Shear start-up curves for samples with fixed cooling rate α = 0.01 for a range

of applied average shear-rate γ̇. Overshoots decrease with decreasing shear-rate, as

well as experiencing a more abrupt drop off in stress at the overshoot.

In Figure 5.10 b), we plot the overshoot height against shear-rate. Our

results corresponds closely to Figure 12 c) of Ref. [29]. This differs somewhat from

the results of Chapter 4 of this thesis, which implemented this protocol for a 1D SGR

model. In Chapter 4 we observed very little variation in overshoot height with shear-

rate. This may be attributed to the noise effects of the SGR model. In the previous

chapter 80’000 elements are used to model the flow direction. This minimizes the

variation between the small number of streamlines due to the stochastic effects in

the SGR model. In this chapter we perform calculations for a system of 256×256

elements. This results in a much greater degree of variation in the stress response

over the cross flow direction, thereby causing the system to yield at lower strains

and with a much larger effect of shear-rate. Further studies using a greater number

of element in a Lattice SGR model may replicate the findings in Chapter 4, but

may be extremely computationally expensive. In line with the findings of Chapter

4, and those of simulations of shear start-up in athermal soft glasses [24, 29, 30, 32],

yielding becomes more severe with decreasing shear-rate.
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Figure 5.10: a) Overshoot height ∆Σ plotted as a function of cooling-rate α for a

range of values of shear-rate γ̇. b) as a function of shear-rate for a range of cooling

rates. T = 0, Tinit = 2 η = 0.01, Nx = 256, Ny = 256, dt = 0.005.

5.5.2 Band Profiles

In the previous protocol, the system was prepared prior to shear by ageing the

sample at a fixed temperature. In this protocol, we instead cool the sample at a

fixed rate to the athermal limit T = 0 from Tinit. Systems cooled at slower rates are

better annealed, so we expect to see shear-bands persist longer as the cooling rate

is decreased. Full colour-maps of the local shear-rate γ̇ (x, y) averaged over a single

strain unit are shown in Figure 5.11. We see that the more rapidly cooled sample

fluidises more quickly, with the shear-rate almost homogeneous by the largest strain

γ̄ = 90 for α = 10−2. In the α = 10−3 system, which was cooled more slowly, the cell

retains a large region at almost no shear-rate and the interface between the banded

and non-banded region is quite sharp. As seen in the previous protocol, the fluidised

band spreads outwards to encompass the entire cell.
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(a) α = 0.01, γ̄ = 30 (b) α = 0.001, γ̄ = 30

(c) α = 0.01, γ̄ = 60 (d) α = 0.001, γ̄ = 60

(e) α = 0.01, γ̄ = 90 (f) α = 0.001, γ̄ = 90

Figure 5.11: Colourscale of local shear-rate γ̇ (x, y, 〈γ̄〉) averaged over a single strain

unit. γ̇ = 0.01, T = 0.0,Tinit = 2, η = 0.01, Nx = 256, Ny = 256, dt = 0.005, Left)

System cooled at α = 10−2 prior to applied shear. Right) System cooled at α = 10−3

prior to applied shear. Top) γ̄ = 30. Middle) γ̄ = 60. Bottom) γ̄ = 90.
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(a) α = 0.01, γ̇ = 0.1 (b) α = 0.001, γ̇ = 0.1

(c) α = 0.01, γ̇ = 0.01, (d) α = 0.001, γ̇ = 0.01

Figure 5.12: Colourmap of γ̇(y, 〈γ̄〉) as a function of strain for T = 0, Tinit = 2,

η = 0.01, Nx = 256, Ny = 256, dt = 0.005. a) γ̇ = 0.1, α = 0.01. b)γ̇ = 0.01,

α = 0.001. c) γ̇ = 0.1, α = 0.001. d) γ̇ = 0.01, α = 0.001

As previously, we integrate along the x̂ direction in the cell to examine the

spread of the band as a function of strain. Four samples are shown for this protocol

in Figure 5.12. As shown in the full colour plots, the system remains banded at larger

strains for the more gradually cooled sample, as they do for larger ageing times in

Protocol I. In contrast to the previous protocol however, we observe that for lower

shear-rates bands diffuse more slowly. This is in accordance with the findings of

both experiment [27, 64, 70] and simulation [32, 33]. This implies that the lattice

SGR model sucessfully captures the dynamics of shear banded yield stress fluids at

this athermal limit.
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Figure 5.13: a) The growth of shear-band width wb as a function of average shear-

strain γ̄ for fixed shear-rate γ̇ = 10−2. Data from simulations (solid lines) are fitted

to power laws expression wb − w0 ∼ γ̄β. b) Exponent β as a function of cooling

rate α. c) Initial band width w0 as a function of cooling rate α. Model parameters

T = 0, Tinit = 2, η = 0.01, Nx = 256, Ny = 256, dt = 0.005.

Figure 5.14: a) The growth of shear-band width wb as a function of average shear-

strain γ̄ for fixed cooling rate α = 10−3 Data from simulations (solid lines) are fitted

to power laws expression wb − w0 ∼ γ̄β. b) Exponent β as a function of applied

shear-rate γ̇. c) Initial band width w0 as a function of applied shear-rate γ̇. Model

parameters T = 0, Tinit = 2, η = 0.01, Nx = 256, Ny = 256, dt = 0.005.

The width of the bands wb is plotted as a function of strain in Figure 5.13

a) for a range of cooling rates at fixed strain-rate γ̇. As in Protocol I, we find that

the growth follows a power law, however not the γ̄
1
2 seen previously. Instead we see

the value of the exponent drop with decreasing cooling rate in Figure 5.13 b) to a

value near β ≈ 0.3. We also see a variation in the initial width of the bands drop



5.5. Results: Protocol II 151

considerably with decreasing cooling rate in Figure 5.13 c) in line with the findings

of particle simulations for cooled metalic glasses [34].

In Figure 5.14 a), the growth of the bands is plotted at a range of shear-

rates at fixed cooling rate. Here we observe once again an only small variation in

the growth exponent of the bands, as plotted in Figure 5.14 b). We also observe

a large decrease in initial band width in Figure 5.14 c) with decreasing shear-rate.

This is in contrast to the behaviour observed in Protocol I, which showed the bands

being initially smaller at higher shear-rates. They are, however, in agreement with

the calculations of Ref. [170] and the particle simulations of Ref. [34], both of which

observed smaller initial band width at smaller shear-rates.
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Figure 5.15: a) The fluidisation time as a function of shear-rate for several cooling

rates. Data points are shown as symbols, with lines of best fit to a power law

expression τf ∼ γ̇
−p

shown as broken lines. Inset) Calculated exponents p as a

function of cooling rate α. b) The fluidisation time as a function of cooling rate α

for a range of values of imposed average shear-rate γ̇.

5.5.3 Band Longevity

As in the case of the first protocol, we calculate the longevity of the bands based

on the time at which they obtain a width wb = 0.95Ly. This τf is the time at

which the system can be considered to be completely fluidised. Plotting τf as a

function of applied average shear-rate γ̇ in Figure 5.15 a) demonstrates a power-law

dependence similar to that seen in the results of Vashist and collaborators [32]

for the same protocol. For a Leonard-Jones glass cooled at various rates, they

observe the longevity of shear-bands to increase with decreasing shear-rate. They

also observe the exponent of these power-laws to increase as a function of decreasing

cooling rate. As in their study, we plot the calculated exponents of these power laws

as a function of cooling rate α ( see Figure 5.15 a) Inset ). Over four decades in

cooling rate (5 × 10−2 − 5 × 10−6) they observe an increase in the exponent from

1.11 to 1.66, while our results show a much larger increase from p ≈ 1.5 to p ≈ 3.8

over only one and a half decades.

Despite this larger variation, we observe the same trend in exponent with

cooling rate. The exponent p follows a linear dependence on cooling rate α on a

semi-log scale, indicating an exponential dependence as observed for the overshoot.

The longevity of the bands as a function of cooling rate for fixed imposed shear-rate
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γ̇ is plotted in Figure 5.14 b). The longevity of the bands increases with decreasing

cooling rate. At very low cooling rates the value of τf appears to plateau. This

plateau value increases with decreasing imposed shear-rate.
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5.6 Conclusions and Future Work

The study performed in this chapter examines the longevity of shear-bands that

form during shear start-up in an elastoviscoplastic fluid. We have performed this

study using a novel elastoplastic lattice model that incorporates SGR dynamics to

simulate the effects of temperature [28,29,32,33,169] and experiment [21,73]. Our

findings match qualitatively many of the results of prior studies, but also show some

differences which suggest that further research is required.

In the first protocol, the system is aged at a fixed temperature for a waiting

time tw before being sheared at a fixed rate γ̇ at effective noise temperature T = 0.3.

This protocol is most closely matched in simulation by the work of Ref. [28, 33]. In

agreement with their findings, we see larger overshoots during shear start-up for

longer aged materials and for higher imposed average shear-rates. Our findings

also show longer lived shear bands for smaller shear-rates in accordance with the

findings of Ref. [28]. We also observe that as the fluidised band grows outwards

from the centre of the cell, the growth follows a power law function of average

strain, displaying the γ̄1/2 relation seen in that study as well as Refs. [34]. Our

findings also demonstrate that the lifetime of the bands increases with decreasing

shear-rate as a power law function of γ̇. In our study, all calculated exponents

were less than one, unlike the finding of Ref. [33]. This suggests that while our

model successfully describes many of the features of shear-banded systems at finite

temperature, but fails to capture others. We note however, that the exponent of

these power laws increases with sample age tw, suggesting that further simulations

with larger waiting times may capture the results of simulation, or that simulations

for lower ageing times may see the behaviour we observe here.

In the second protocol, our methodology closely followed that of the works

in Refs. [29,32], which performed simulations of a Leonard-Jones glass cooled to the

athermal limit. The simulations performed in Ref. [32] demonstrated the fluidisation

time τf to be a power-law function of the applied average shear-rate γ̇. The exponent

of this power law varied between 1.11 and 1.66, for cooling rates 5×10−2 and 5×10−6.

These power laws are fitted over a range of shear-rates between γ̇ = 10−4 to 10−1.

Our results show a qualitative agreement with these findings, and we observe that
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the time for fluidisation increases with decreasing average shear-rate. Unfortunately

we have not been able to perform our simulations over as many decades in shear-rate

due to computational limitations. The exponent of these power-laws also increases

with decreasing cooling rate, as seen in Ref. [32]. Our calculations show a greater

variation in the exponent with cooling rate (1.5 to 3.8 for a variation in α from

10−2 to 10−3.5). This may be the result of finite system size effects in simulation

which are not accounted for in the ageing dynamics of SGR. Future work combining

simulations with this new model may prove useful to establish the parameters for

which it may best replicate the findings of simulation.

We may understand the differing effectiveness of the model to reproduce

the results of simulation by comparing the protocols to one another. In the first

protocol, the sample is aged prior to shear. With increasing sample age tw, the

average depth of energy wells increases, and the system is better annealed. The

sample is then subject to a fixed imposed shear-rate at a non-zero noise temperature

T = 0.3. In the second protocol, the average well depth increases with decreasing

cooling rate α. Shear is then applied at the athermal limit T = 0. Therefore,

the development of the bands over time may be linked to the effects of non-zero

temperature while a shear-rate is imposed. Further studies modelling the effects of

varying noise temperature on shear-bands (as performed in Ref. [28]) may provide

better understanding of these effects.

This study seeks to examine the behaviour of shear bands formed in a

sample of a yield stress fluid during shear start-up. By studying such behaviour for

other start-up protocols, we could further assess the effectiveness of this model to

simulate the dynamics of soft glassy materials. Studies of shear-banding have been

performed for stress imposed flows in both experiment [70] and simulation [169].

They have shown the fludisation time to follow a power law τf ∼ (Σ−Σy)
−β, where

Σy is the fluid yield stress. In the experiments of Ref. [64], it was found that the

ratio of the band longevity exponents of this protocol and that of the shear start-up

protocols corresponded to the Herschel-Bulkley exponent of the material. A next

step in order to evaluate the effectiveness of this model would be to examine the

formation of shear-bands in such a flow protocol.
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In this study we have introduced a new model of an elastoviscoplastic ma-

terial that can effectively replicate much of the behaviour observed in simulation

and experiment. This may prove especially useful to examine the connection be-

tween macroscopic yielding and the preceeding mesoscopic behaviour. Experimental

studies have found evidence for microscopic precursors to failure in the form of local

plastic yielding and non-affine particle motion [206–208]. To this authors knowl-

edge, these observations have not yet been explored in a mesoscopic model of soft

materials. In particular, how these effects may act as precursors to the formation of

shear-bands offers an unsolved mystery to theoreticians. A next step for this research

could be to study how the mechanism for the development of shear bands during

yielding may imitate local nucleation during a phase transition. In experiments

of granular materials the formation of shear-bands has been linked to microbands

which may also occur in soft materials [209–211]. In order to observe these, as well

as other possible precursors, we may perform further simulations without the initial

perturbation used to seed the bands in this study. The development of macroscopic

fluidised regions from uncorrelated (or initially uncorrelated) plastic events is a clear

next step for our research. This will require statistical analysis of elements yielding,

local shear-rates and non-affine motion to be undertaken, such as the calculation of

spatial or time correlation functions.

Following their formation, other questions about the development of shear

shear bands remain, such as the effects of temperature on their growth. In this

study we have seen how the broadening of shear bands is affected by preparation

and applied shear-rate, but also see discrepancies between the growth of shear bands

with and without effective noise temperature. Further investigations into the effects

of temperature on the growth of shear bands may be of interest to describe how these

materials fluidise with time. By artificially setting the initial distribution of energy

wells and only varying the effective temperature at which shear is applied we may

investigate these effects more closely. Our study does not probe the effects of normal

stress difference on shear-band development, despite the inclusion of normal stress

terms in our model. Previously developed elastoplastic models have neglected these

terms [31,176], and we should carefully examine their influence on the macroscopic
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dynamics following yielding in future work.



Chapter 6

Conclusions

In this thesis, we have studied shear flow instabilities in two types of complex fluid

using numerical simulation: shear-thinning polymeric fluids and yield stress fluids.

Although our studies may appear disparate, shear-thinning acts as a common rheo-

logical property connecting our studies. Yield stress fluids typically display a large

degree of shear-thinning, with the viscosity of a Bingham fluid η (γ̇) ∼ γ̇−1. Tran-

sient shear-banding, the focus of our studies in Chapters 5 & 6 has been shown in

previous studies to occur in the shear-thinning polymeric fluids studied in Chapter

3 [69]. The studies undertaken in this thesis may therefore be considered a general

investigation into flow instabilities arising in shear-thinning complex fluids. Future

work may determine further connections between the instabilities studied here, such

as the influence of normal stress effects on yielding and fluidisation of soft glassy

materials. We now outline the key findings of each study, and some possible avenues

for future research that may further advance the field.

6.1 Linear Instability of Shear-Thinning Pressure-

Driven Channel Flow

Summary of main results. In this chapter we studied the linear instability of

a one-dimensional base state to two-dimensional perturbations for a shear-thinning

viscoelastic fluid. We determined, in each of the models studied, the critical pressure

drop required to observe instability P ′∗ as a function of model parameters using

158
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linear stability analysis. Our studies are the first to demonstrate this instability

in the Rolie-Poly and Johnson-Segalman models, for which we also conduct full

non-linear simulations. Using these calculated values and the steady state flow

curves for each model, we constructed empirically a generalised functional form

that predicts the critical pressure drop in all studied models. In this chapter, we

also reproduced the basic results of Ref. [14] for stability of the White-Metzner

model in pressure-driven channel flow. The criterion we developed is also effective

in predicting instability in this model.

All models studied show some general behaviour, which suggests that the

mechanism that leads to instability may be universal. Most notable of these is the

functional form
dN1

dy
|max > f

(
d log Σ

d log γ̇
|min

)
, (6.1)

where

f(ζ) = α0 + α1/(α2 − ζ). (6.2)

We have demonstrated this functional form to be reasonably effective in predicting

instability in all models studied. In each model the fitting parameters α0, α1 and α2

differed. α2 demarks the largest value of d log Σ
d log γ̇

|min for which instability was observed

and a different minimum degree of shear-thinning was required to observe instability

in each model. The Johnson-Segalman model, for which α2 ≈ 0.11, is shown to be

the most stable model studied, while White-Metzner, with α2 ≈ 0.31, is the most

unstable. The Rolie-Poly model was found to be unstable for d log Σ
d log γ̇

|min < 0.21.

It is unclear from our study what leads to this variation, and it may be linked to

the dynamics of the particular model in question. The degree of shear-thinning for

which instability is observed in all studied models is within the range for which it

was shown in experiment [18–20].

Further commonalities in our results suggest a general mechanism underly-

ing the observed behaviour. Eigenfunctions of stress in the Rolie-Poly and Johnson-

Segalman models are highly localised to that region of the base state where the

shear-rate varies most sharply. In White-Metzner, the degree of shear-thinning is

constant throughout the channel, and the eigenfunctions are spread out. Therefore,

our findings suggest that some combination of shear-thinning and normal stress dif-
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ferences are necessary to observe instability.

Outline for future work. The results of this study suggest that the instability of

pressure driven channel flow to two-dimensional perturbations may be generic across

shear-thinning constitutive models. There exist several previous theoretical studies

of this instability in other constitutive models, such as Giesekus and Phan-Thien-

Tanner [103], eXtended Pom-Pom [107], Bautista-Manero-Puig [17] and additional

variations of the White-Metzner model [15, 16]. An immediate direction for future

research would be to perform a meta-analysis of the findings of these studies and to

establish if the criteria found to be effective here also works for past studies. It would

also be of interest to perform full non-linear simulations within the unstable regime

for each of the models studied, thereby establishing which model best reproduces

the results of experiment at longer timescales.

The parameters used in our theoretical study, P ′∗, d log Σ
d log γ̇

|min, dN1

dΣ
|max, may

be determined from experimental measurements. This could be done for a num-

ber of different viscoelastic fluids, such as the different polymer concentrations in

Refs. [18, 19, 110]. A further avenue for research would be to fit the experimentally

measured flow curves with the models studied here. We have shown that the dif-

ferent models studied can display different levels of stability, despite exhibiting the

same degree of shear-thinning. By establishing the effectiveness of constitutive mod-

els to reproduce flow instabilities seen in experiment, it may provide an important

tool for model building in future. The feasibility of performing such a study, how-

ever, remains speculative. Any such work would require close collaboration between

experimentalists and theoreticians.

6.2 Ductile to Brittle Yielding in Soft Glassy Ma-

terials

Summary of main results. In this chapter, we examined the yielding of soft glassy

materials during shear start-up. We performed numerical calculations using the soft

glassy rheology model in three different preparation protocols. Our findings showed

that in both thermal and athermal materials, better annealed samples displayed
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more sudden yielding. We also demonstrated this to be the case for samples sheared

at lower rates during start-up.

We characterised the rate of yielding and the maximum degree of banding

during start-up as a function of annealing and shear-rate. In the first protocol

we studied, based on the ageing protocol implemented by Moorcroft et al. [25],

the samples were sheared at non-zero noise temperature. We observed that the

overshoot height in this case is dependent on the applied shear-rate. For smaller

overshoots, the start-up curves with heterogeneous flow allowed do not break off

from the corresponding curve with homogeneity enforced.

In the other protocols, for which the system was sheared at zero noise tem-

perature, this is not the case. The homogeneous start-up curve is instead almost

independent of the applied shear-rate. As the shear-rate decreases the rate of yield-

ing increases in a similar manner to the behaviour seen in simulations of athermal

soft glasses [24]. The start-up curve with heterogeneous flow allowed breaks off from

the homogeneous start-up curve even for small overshoots. This suggests that ather-

mal systems may always display brittle yielding for sufficiently small shear-rates.

In each of the protocols studied, we calculated the stress response as a func-

tion of strain for systems with homogeneity enforced and with heterogeneous flow

allowed. We do not observe a qualitative variation in the shape of the homogeneous

start-up curve that was suggested in Refs. [22,23]. Our findings show in all protocols

a consistent relationship between yielding and the formation of shear-bands. The

results of this study therefore offer an alternative hypothesis to the spinodal decom-

position mechanism espoused by these studies. It instead suggests that yielding is

a product of homogeneous flow becoming unstable to the formation of shear-bands.

Outline for future work. The most apparent avenue for future work is to as-

sess the effects of noise temperature on yielding. We have observed in this study

qualitative differences in behaviour between athermal and thermal systems. Future

calculations performed at different effective noise temperatures may reveal more

about the influence of finite temperatures on the dynamics of yielding. The in-

fluence of finite temperature dynamics, in the context of shear start-up, has been

explored in simulation by Shristavaz et al. [28,33], but they did not characterise the
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effects of temperature on yielding. A collaborative study using both simulation and

mesoscopic modelling may be best suited to fully investigate these phenomena.

In the study performed here, we have shown that the severity of yielding

in athermal systems diverges with decreasing shear-rate. This is consistent with

simulations performed under AQS, which imitates zero shear-rate start-up. For

completeness, such an algorithm could be developed that would allow such calcula-

tions to be performed in SGR, thereby confirming that our findings are completely

consistent with simulation.

6.3 Ultra-Long-Lived Transient Shear Banding in

Soft Glassy Materials

Summary of main results. Our study in this chapter examines the evolution of

shear-banded systems during shear start-up. We do so in a novel elastoplastic lattice

model that incorporates the ageing dynamics of SGR as well as affine advection. We

study the longevity of shear-bands as a function of sample preparation and applied

shear-rate. This study is performed using two different preparation protocols, with

shear applied at zero and non-zero noise temperature. The protocols used replicate

those in the simulations of Shrivastav et al. [28, 33] and Vasisht et al. [29, 32]. Our

calculations of the longevity of shear-bands, measured as the fluidisation time τf ,

show results qualitatively consistent with these simulations.

In the first protocol, we observe that the bands grow as wb ∼ γ̄1/2 in

accordance with the findings of Refs [28, 33, 34]. The lifetime of bands was found

to increase with sample age tw with power law dependence τf ∼ t
1/2
w for all applied

shear-rates. We also observed that the fluidisation times increases as a power law

τf ∼ γ̇
−p

for all sample ages, but that the exponent was less that one for all sample

ages studied. This result is broadly consistent with the findings of experiment [27]

and simulation [28]. In previous studies, however, the exponent p has always been

found to be greater than unity, even in the non-zero temperature simulations of

Ref. [33]. In this protocol, shear-bands in systems subjected to a higher strain-rate

will persist to larger strains, but shorter times.
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The second protocol is inspired by the work of Vasisht and collaborators [29,

32]. In this protocol, we examine the evolution of shear-bands at zero effective noise

temperature following cooling. Here we see that the fluidisation time also follows a

power-law function of shear-rate τf ∼ γ̇
−p

, with p > 1. The exponent p increases

as an exponential function of the cooling rate α. These results are in qualitative

agreement with those of Ref. [32]. Their findings, however, differ quantitatively and

show a much smaller increase in the value of p with decreasing cooling rate.

We have therefore shown that the model introduced in this chapter is

effective at reproducing many of the behaviours observed in soft glassy materials

in the shear start-up protocol. Further study is required, however, to establish if

this model can replicate other behaviours observed in amorphous materials.

Outline for future work. This study looks at the longevity of shear bands subject

to a shear start-up protocol. A first course of further study may therefore be to

look at how this model behaves subject to different start-up protocols, such as

stress controlled flow [70, 169, 187]. Performing such a study may be a relatively

straightforward way of further establishing the effectiveness of the model to simulate

elastoviscoplastic materials.

As in the previous study, an interesting way forward for future research

lies in studying the effects of finite temperature on the transient dynamics of het-

erogeneous flows. Such a study could establish a relationship between the dynamics

resulting from temperature effects and those caused by imposed deformation. This

could offer greater insights into the different rheology of thermal and athermal sys-

tems. Some debate still remains, however, concerning the relationship between

effective noise temperature and true thermal effects [156].

Further direction of research lie in studying precisely how the transition

from an elastic to a fluid like response occurs, particularly how and where a material

yields [208]. Many studies have been performed that attempt to establish precursors

to mechanical yielding, such as correlations between local plastic events [191, 192,

212]. Investigating how these plastic events act as precursors to yielding may prove

a fruitful avenue for future research using mesoscopic models.
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6.4 Closing Remarks

Finally, the studies performed in this thesis have examined some of the rich variety of

flow instabilities observed in complex fluids. Our examination of these systems has

been motivated by previous theoretical, experimental and simulation based studies.

We hope that the results presented here may in turn motivate others to perform

further investigations which will build upon the results and methods introduced in

this thesis.
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