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Abstract 

 
Mycobacterium tuberculosis is a pathogen responsible for around 10 million new TB cases and 

1.4 million deaths per year, making it the primary cause of death from an infectious agent. A range 

of effective treatments are available, typically involving complex and lengthy protocols. 

Difficulties in treatment can arise with incorrect prescription and adherence to these protocols 

alongside the emergence of drug-resistant TB. This has generated a pressing need for improved 

TB therapies. The cell wall of M. tuberculosis is a complex structure with a diverse array of unique 

molecules such as mycolic acids. This complexity of lipids can provide M. tuberculosis with 

increased virulence capacity, but also resistance to antibiotics. Lipid metabolism pathways used to 

synthesise the unique mycolic acid components have become attractive therapeutic targets, with 

acyl-CoA carboxylase (YCC) enzymes functioning at the committed step of their biosynthesis. 

YCC enzymes are composed of biotin carboxylase-biotin carboxyl carrier protein (α) and 

carboxyltransferase (β) subunits. So far, whole complex structures are yet to be determined. This 

information could be essential to future drug design. This study is focussed on structural and 

kinetic characterisation of subunits relevant to mycolic acid synthesis, some of which include 

AccA3 (α), AccD5 (β) and AccE5 (ε) together forming an enzyme complex, the latter subunit 

proposed to improve complex stability. Co-expression and co-purification strategies were used to 

isolate our protein complex. Negative stain electron microscopy and kinetic bioassays helped 

uncover structural and kinetic properties of this enzyme complex. With the assistance of a 

crosslinking reagent, the purified acyl-CoA carboxylase AccA3-AccD5-AccE5 was shown to be 

catalytically active in vitro but did not assemble into a complex that was viable for further imaging 

studies beyond negative stain electron microscopy screening. Possible explanations for this are 

discussed. Future studies could employ the use of substrate addition, more variables involved in 

the crosslinking procedure and increasing AccE5 expression levels in order to overcome 

limitations shown when attempting to achieve a stable complex. Further to this, we have 

demonstrated the potential for smaller complexes to be catalytically active which could have 

implications for future design of therapeutics, as shall be discussed. 
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1. Introduction 
 

1.1 Mycobacterium tuberculosis 
 

Mycobacterium tuberculosis (Mtb), the pathogen causing tuberculosis (TB), is recognized as a 

global health emergency by the World Health Organization (WHO) (Global Tuberculosis Report 

2019, WHO). With an estimated global infection rate of 10 million new cases and 1.4 million 

deaths in 2017, TB is the leading cause of death from an infectious agent. About a quarter of the 

world’s population are infected with M. tuberculosis and thus are at risk of developing the disease 

(Global Tuberculosis Report 2019, WHO). Drug-resistant TB remains a public health issue with 

0.5 million new annual cases of rifampicin-resistant TB, 78% of which had multi-drug resistant 

(MDR) strains. 

 

Socioeconomic decline, co-infection with human immunodeficiency virus (HIV), diagnostic 

delays and lack of adherence to complex treatment protocols in developing countries have 

exacerbated the problem. UN member states produced a political declaration, underlining the 

urgent need for new TB vaccines, treatments and diagnostic methods (UN Political Declaration, 

2018). The prevalence of TB in developing countries such as Africa and parts of Asia is 

demonstrated in Figure.1.1.  

 

 

Figure 1.1: Incidence rate of M. tuberculosis per 100,000 (Global Tuberculosis Report 2019, WHO). 
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1.2 Transmission and Pathogenesis 

 
Transmission 

 

Studies on animal models and human TB have helped identify the pathway to which an organism 

becomes infected with M. tuberculosis (Flynn & Chan, 2005, Russell, 2007). Transmission is via 

airborne droplets from infected individuals containing one to a few bacteria that can pass the M. 

tuberculosis infection to others. These droplets are inhaled and deposit in lung alveoli. These are 

engulfed by alveolar macrophages, innate immune cells acting as the primary barrier against 

infection that most often kill the bacteria via phagocytosis. Bacterial contact with macrophage 

mannose or complement receptors can promote phagocytosis of M. tuberculosis bacteria 

(Schlesinger, 1993). Phagocytosed M. tuberculosis initially reside in an endocytic phagosome 

vacuole. Reactive oxygen species (ROS), acidic pH, lysosomal enzymes and antibacterial peptides 

kill most of the bacteria. However, some widespread strains of M. tuberculosis have evolved to be 

able to escape this first line of defence. This may be via preventing acidification of its surrounding 

environment (Crowle, et al., 1991). There is also evidence for bacteria inhibiting phagosome-

lysosome fusion, thereby preventing the entry of lysosomal enzymes into its environment (Frehel, 

et al., 1986).  

 

Pathogenesis 

 

Phagocytosis can result in the alveolar macrophages invading surrounding epithelial layers, giving 

rise to a localized inflammatory response that results in the recruitment of monocytes, lymphocytes 

and other immune cells (van Crevel, et al., 2002). These act as host cells for the multiplying 

bacterial population and are not effective in reducing bacterial numbers. The mycobacterial ESX-

1 type VII secretion system (T7SS) is required for the full virulence of Mtb, enabling translocation 

from phagosomes into the cytosol of infected macrophages. Here, M. tuberculosis may persist in 

a protected environment (Van der WN et al., 2007). The immune system attempts to control the 

infection by forming a granuloma structure, a collection of immune cells covered by fibrotic 

components that calcify the structure. This prevents further spread of bacteria due to the acidic pH 
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and low oxygen, but does not kill it (Dannenberg, 1994). M. tuberculosis cells within granulomas 

are considered metabolically quiescent, as characterized by limited or no replication and 

phenotypic resistance to drugs (O’Garra et al., 2013). This dormancy that can last for up to decades 

is called latent TB. This is asymptomatic and non-transmissible.  

 

A weakened immune response due to altered antigen expression, imbalances in effector and 

regulatory T-cell or T-cell exhaustion, amongst other reasons, may allow TB to progress from 

latent to active. Characteristic of this is necrosis of the granuloma cells and a loss of granuloma 

vascularization (Russell, et al., 2009). Eventual rupture of the granuloma results in the release of 

many infectious cells into airways, spreading throughout the body via the lymphatic system and 

becoming transmissible as an aerosol via coughing or sneezing (Balasubramanian V et al., 1996, 

Kaplan, et al., 2003). This cycle can be seen in Figure. 1.2, with the final stage showing active TB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: M. tuberculosis life cycle from initial infection of alveoli air sacs, to latent and 
active TB (Russel et al., 2010). 

Latent 

Active 
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1.3 First and Second-line anti-TB therapies 
 

The ability of M. tuberculosis to evade the host immunity has resulted in the need for antibiotics 

to fight or prevent disease. First line drugs (Table 1.1) are considered a standard set of treatments 

when someone is diagnosed with the disease. Second line drugs (Table 1.2) are used for MDR-

TB. First-line anti-TB therapies are effective against non-resistant TB. However, a range of toxic 

side effects that differ between the drugs alongside the long treatment periods of several months 

can lead to incompletion of treatment and contribute to drug resistance (Salfullah et al., 2012). 

MDR-TB is resistant to at least RIF and INH (Table 1.1) and extremely drug-resistant TB (XDR-

TB) is classified as MDR-TB with additional resistance to any fluoroquinolone and to at least one 

injectable second-line drug including capreomycin, kanamycin or amikacin (Table 1.2, Dalton, et 

al., 2012, Rendon et al., 2016). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Second-line drugs are used for the treatment of those with drug-resistant TB. Typically, second-

line drugs have higher toxicity, greater difficulty to procure and lower efficacy as they are designed 

Antibiotic Target of inhibition Reference 

Streptomycin 

(SM) 

Translation (16S rRNA 

of 30S ribosome) 

Schatz et al., 1944 

Isoniazid 

(INH) 

Mycolic acid synthesis Fox et al., 1952 

 

Rifampin 

(RIF) 

Transcription 
(RNA polymerase b-

subunit) 

 

Wehrli et al., 1971 

 

Pyrazinamide 

(PZA) 

Coenzyme A, 

Ribosomal Protein S1 

Malone et al., 1952 

Ethambutol 

(EMB) 

Arabinogalactan 
synthesis 

Shepherd et al., 1966 

 

Table 1.1: First line antibiotic drugs to treat M. tuberculosis infections. 
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to be bacteriostatic (inhibit growth) rather than first-line drugs that are bactericidal (kill bacteria 

outright) (Rodrigo et al., 2006, Schaaf et al., 2016). Second-line drugs are divided into 

fluoroquinolones (Ofloxacin (OFX), levofloxacin (LEV), moxifloxacin (MOX) and ciprofloxacin 

(CIP)), injectable anti-TB drugs (kanamycin (KAN), amikacin (AMK) and capreomycin (CAP)) 

and others including ethionamide (ETH), cycloserin (CS) and P-aminosalicylic acid (PAS).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Antibiotic Target of inhibition Reference 

Fluoroquinolones DNA Gyrase Wright, et al., 2000 

Kanamycin, 

amikacin, 

capreomycin 

Protein Synthesis (16S 

rRNA) 

Adamis, et al., 2004, 
Blumberg, et al., 2003 

 

 

Ethionamide Mycolic acid synthesis 
(enoyl reductase) 

McIlleron, et al., 2006 

 
Cycloserin Cell wall 

peptidoglycan 

synthesis (alanine 

racemase/ligase) 

Wishart, et al., 2006 

 

P-aminosalicylic 

acid 

Folate metabolism 

(dihydrofolate 

reductase) 

Zheng et al., 2013 

Table 1.2: Second line antibiotic drugs to treat M. tuberculosis infections. 
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1.4 Novel anti-TB therapies and drug targets 
 

Many first and second-line therapies are now known to be ineffective against some MDR-TB and 

XDR-TB strains. A range of new promising TB drugs currently in clinical trials are shown in Table 

1.3. These next-generation compounds are the products of studies based around modern genetic 

approaches, compound screening and structural biology in order to identify anti-TB alternatives.  

 

 

 

Compound name Clinical trial 

stage 

New features Reference 

Moxifloxacin, 
gatifloxacin, 
Levofloxacin 

 

III Safer, shorter 

treatment duration 

Cynamon, et al., 

2007, Lienhardt et 

al., 2016 

Rifapentine 

 

II Serum half-life 

longer than RIF 

Burman, et al., 
2001 

SQ109 

 

III Activity higher than 

ethambutol 

Jia, et al., 2005 

Bedaquiline (SituroTM) II Improved efficacy 

against resistant 

strains 

Andries, et al., 

2005 

Sutezolid, Linezolid II Binds 23S ribosome 

to inhibit protein 

synthesis 

Lienhardt et al., 

2016 

Q203 II Blocks respiratory 

cytochrome bc1 - 

lowers ATP 

production 

Lienhardt et al., 

2016 

Table 1.3: Next generation anti-TB compounds currently in clinical trials. 
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Novel drug targets  

 

More recent TB drug discovery has generated hits with compounds that could progress to potential 

leads (Mdluli et al., 2014). These efforts are helping generate the next wave of TB drug target 

leads still in the preclinical phase, with some discussed below. 

 

Iron is an essential nutrient for many living organisms, including pathogenic bacteria during an 

infection. During infection, M. tuberculosis localize inside host macrophages, where it can access 

transferrin-bound iron via secretion of mycobactins, molecules that can abstract iron from 

mammalian iron-binding proteins, allowing M. tuberculosis to internalize the iron (Kauffmann 

2004, Rodriguez 2007). Mycobactin analogs that inhibited MbtA, the mycobactin biosynthesis 

enzyme, show superior activity to first-line TB therapies in preclinical trials (Neres et al., 2008). 

 

Generation of reaction oxygen species (ROS) in the vicinity of a pathogen is hypothesized to be 

an essential feature of host immunity and antibiotics to enable bactericidal activity (Dwyer et al., 

2009). The M. tuberculosis deazaflavin-dependent nitroreductase is hypothesized to provide 

protection from oxidative stress, with nitroreductase mutants being hypersensitive to some first-

line therapies (Gurumurthy et al., 2013). Drugs that inhibit the nitroreductase activity may allow 

sufficiently high concentrations of ROS to accumulate and become bactericidal, without affecting 

host cells. 

 

Another promising group of emerging targets are enzymes involved in lipid metabolism such as 

isocitrate lyase and fatty acid synthases (McKinney, et al., 2000, Khasnobis, et al., 2002, Nadav 

et al., 2018). Strongly related to this group of enzymes are those responsible for M. tuberculosis 

cell wall biosynthesis. Particularly relevant and unique to M. tuberculosis is the biosynthesis of 

mycolic acid components of the cell wall. Cell wall integrity is very important for M. tuberculosis 

survival, such as in unfavourable conditions in macrophage phagosomes and when subjected to 

antibiotics (Ma et al., 2001). Novel chemical compounds directed to inhibition of cell wall 

biosynthetic enzymes (enzyme components shown later in Table 1.4), could provide a powerful 

means to prevent bacterial infection in the host (Abrahams et al., 2018). 
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1.5 The cell wall of Mycobacterium tuberculosis 

 
Mycobacteria are classified as gram-positive but possess features of gram-negative organisms too 

due to the unique chemical composition of the cell wall. Studies on the cell wall architecture 

identified lipids, glycans, pectins, mycolic acids and capsule-like material (Mudd, et al., 

1941, Goren 1972, Minnikin, et al., 1982). A hallmark of the ability of mycobacteria to survive 

despite a fully functioning host immune system is the complexity of the cell envelope that is rich 

in structurally unique lipids and polysaccharides (Angala SK et al., 2014). 

 

The cell wall is multi-layered, comprising a plasma membrane, peptidoglycans, arabinogalactans 

(arabinan and galactan pectins linked), mycolic acids and an outer capsule, as shown in Figure 1.3. 

Over 60% of the mycobacterial cell wall is lipid (Cole, et al., 1998). This hydrophobic structure 

provides protection against unfavourable conditions such as ROS, pH change, antibiotic entry and 

so is essential for cell survival (Briken, et al., 2004, Hunter, et al., 2006). M. tuberculosis has a 

large proportion (over 6%) of open reading frames (ORFs) encoding enzymes for fatty acid 

metabolism (Camus, et al., 2002, Ehebauer &, 2011). 

 

The cell membrane is composed of a thick outer layer and thin inner layer (Paul & Beveridge, 

1992, Zuber, et al., 2008). The outer layer contains phospholipids, carbohydrates and lipid anchors 

such as Lipid II to enable linkages to peptidoglycans in the cell wall core (Sibley, et al., 1988, 

Lemassu & Daffe, 1994, Guerardel, et al., 2002, Pitarque, et al., 2008). The peptidoglycan layer 

is made of polymers of alternating N-acetylglucosamine and N-acetylmuramic acid residues, 

cross-linked by transpeptide bridges (Brennan et al., 1995) Peptidoglycan is unique to bacterial 

cells and acts to provide shape and rigidity, counteract turgor pressure and so is essential for growth 

and survival (Vollmer et al., 2008).   

 

Arabinogalactan, a polysaccharide of arabinose and galactose sugar residues, is covalently linked 

to peptidoglycans by a single linker unit. This attachment is catalyzed by a GlcNAc-1-P 

transferase, rhamnosyltransferase and a Lcp1 ligase (Ishizaki et al., 2013, Harrison et al., 2016). 
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Arabinogalactans function as attachment sites, signaling molecules and help define cell wall 

structures in all mycobacteria (Showalter et al., 2001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The outer cell wall component is the capsule, primarily made of glycogen-like α-glucan, 

additionally with arabinomannans and mannans, proteins and lipids. Capsules are essential for 

bacterial cell wall integrity, commonly forming the outermost layer (Rainer et al., 2019). M. 

tuberculosis capsular components mediate interactions with macrophages to improve the 

likelihood of bacterial survival when exposed to the organism’s immunity (Cywes et al., 1997). 

 

The mycolic acid layer is a unique and essential component of the mycobacterial cell wall, linked 

to arabinogalactans via the non-reducing termini of the arabinan chains by the enzyme 

mycolyltransferase (David et al., 2007, Draper P et al., 1997). Mycolic acids are very long-chain 

α-alkyl, β-hydroxy fatty acids (Glickman, et al., 2000, Vilcheze, et al., 2000). Mycolic acids are 

synthesized by Fatty acid synthases I (FAS I), II (FAS II) and a polyketide synthase (Bhatt, et al., 

2005, Bhatt, et al., 2007, Brown, et al., 2007). These fatty acids are essential for maintaining cell 

 

 

Figure 1.3: Diagram of the Mycobacterial cell wall, showing the basic intracellular to extracellular 
components including cell membrane (blue/yellow), peptidoglycans (green), galactans (black), arabinans 

(red), mycolic acids (orange) and capsule (blue). 
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wall architecture, limiting the effectiveness of hydrophilic antibiotics, provide resistance to 

chemical damage and dehydration (Liu J et al., 1996). They are the major component of the cell 

wall and are essential for mycobacterial growth and survival.  

 

 

1.6 Fatty acid biosynthesis 

 
Mycobacteria possess both fatty acid synthases I and II (FAS I/II). Other bacteria only harbor 

either FAS-I for de novo fatty acid biosynthesis as in corynebacteria and nocardia, or the 

multicomplex FAS-II for the elongation of existing medium-chain fatty acids which is the 

predominant synthase in prokaryotes (Harwood et al., 1988). Both types in mycobacteria exist, 

contributing to the unique lipid composition of the cell wall. This allows the generation of de novo 

fatty acids but also elongation of fatty acids to produce the meromycolate part of mycolic acids 

(Fernandes et al., 1996).  

 

Mycobacterial FAS-1 synthases catalyze de novo synthesis of long-chain acyl CoAs C16:0 and 

C18:0 using acetyl-CoA and malonyl-CoA as the nucleating units respectively (Smith, et al., 

2003). These long-chain acyl CoAs have two paths they can take depending on the metabolic need 

of the bacteria as shown in Figure 1.4. They can be shuttled to the FAS-II system (pathway A) 

whereby C16:0 and C18:0 acyl-CoA units are condensed with malonyl-ACP to form 3-ketoacyl-

ACP. This enters the FAS-II cycle to form acyl-ACP, involving the different FAS-II enzyme 

complexes mtFabH, MabA, HadABC and InhA as shown in Figure 1.4 (Carel et al., 2014). 

 

Alternatively, C16:0 and C18:0 acyl-CoA units are subjected to additional elongation by FAS-I to 

produce a C26:0 acyl-CoA (pathway B) (McCarty et al., 1971). Pks13 polyketide synthase 

catalyzes the condensation reaction between acyl-ACP (from FAS-II) and C26:0 acyl-CoA (from 

FAS-I), converging the two pathways to produce α-alkyl β-ketoacids which are direct precursors 

of mycolic acids (Gavalda et al., 2014). The mycolic acid structure is shown. 
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The production of malonyl CoA by the enzyme acetyl-CoA carboxylase (ACC) is the first 

committed step in long-chain fatty acid and thus mycolic acid biosynthesis (Berg et al., 2002). 

This enzyme and related enzymes, such as propionyl-CoA carboxylases, are collectively known 

as acyl-CoA carboxylases (YCC) and are the focus of this study. Acyl-CoA carboxylases (YCC) 

are part of a larger family of enzymes called Biotin-dependent carboxylases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: Diagram of the mycolic acid biosynthesis pathway 

A 

B 

C26:0 
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1.7 Biotin-dependent carboxylases 

 
Biotin-dependent carboxylases 

 

 

Biotin-dependent carboxylases include acyl-CoA carboxylases (YCC), 3-methylcrotonyl-CoA 

carboxylase (MCC), geranyl-CoA carboxylase, pyruvate carboxylase (PC), and urea carboxylase 

(UC) (Tong L., 2013). These enzymes have a diversity of functions including mycolic acid 

synthesis, terpenoid metabolism, carbohydrate metabolism, polyketide biosynthesis and urea 

utilization (Gago et al., 2011, Zhang et al., 2010, Forster et al., 2010, Navarathna et al., 2010). 

Most relevant to this study are YCCs as they are involved in the production of malonyl CoA and 

its derivatives as precursors for mycolic acid synthesis. 

 

 

Mechanism of Biotin-dependent carboxylases 

 

 

Biotin-dependent carboxylases have three structural components: biotin carboxylase (BC), biotin 

carboxyl carrier protein (BCCP) and carboxyltransferase (CT) (Gago et al., 2011). Biotin is 

covalently linked via an amide bond to a BCCP lysine side chain. There are two distinct enzymatic 

activities, catalyzing their reactions in two steps as seen in the reaction below in Figure 1.5. 

 

The BC unit catalyzes the ATP-dependent carboxylation of the N1′ atom of the biotin cofactor, 

using bicarbonate as the carboxyl donor to form carboxybiotin (Knowles et al, 1989). This confers 

a conformational change in biotin attached to BCCP, allowing carboxybiotin to translocate from 

the BC active site to the CT active site (Knowles et al, 1989). In the second step, the CT component 

catalyzes the carboxyl group transfer from carboxybiotin to the substrate, forming a carboxyacyl-

CoA product, e.g. malonyl-CoA. 
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1.8 Actinobacterial Acyl-CoA Carboxylases 
 

Actinobacteria constitute one of the largest bacterial phyla. They are gram-positive bacteria with 

a high GC content in their DNA and a characteristic filamentous cell morphology (Dhakal et al., 

2017). The three genera Mycobacterium, Streptomyces and Corynebacterium are well-studied as 

they are considered to be economically valuable for the production of bioactive secondary 

metabolites such as antibiotics, antitumour agents, immunosuppressive agents and enzymes. They 

can act as dangerous pathogens too e.g. Mycobacterium tuberculosis, Streptomyces somaliensis 

and Corynebacterium diphtheria (Berdy et al., 2005). 

 

Figure 1.5: Diagram of the biotin-dependent mechanism for carboxyacyl-CoA production 
from acyl-CoA substrates. 

Biotin Carboxybiotin 
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Roles of actinobacterial YCCs 

 

Genome sequencing, biochemical analyses and structural biology has allowed the structural and 

functional characterisation of a number of YCCs from actinobacteria (Gande, et al., 2007, Gago, 

et al., 2006). In addition to malonyl-CoA for fatty acid biosynthesis, YCCs catalyse the 

carboxylation of propionyl-CoA, butyryl-CoA or long-chain acyl-CoAs to produce a diverse range 

of products for lipid and polyketide synthesis (Tran et al., 2015). In actinobacteria, the BC and 

BCCP together form the a-subunit. The CT is considered the b-subunit and demonstrates greater 

diversity, as shall be discussed.  

 

Actinobacterial YCC subunit-encoding genes and functions associated were first illustrated in 

Streptomyces coelicolor (Diacovich, et al., 2002). The genome contained four genes for α-subunits 

(accA1, accA2, pccA, SCO4381), four genes for β-subunits (accB, PccB, SCO2776, SCO4380 and 

two for ε-subunits (accE, PccE) (Rodriguez & Gramajo, 1999, Rodriguez, et al., 2001). The 

genome of Corynebacterium glutamicum also carries genes encoding one α-subunit (accBC), four 

β-subunits (accD1 – D4) and an ε-subunit (accE) (Gande et al., 2007). 

 

M. tuberculosis genomes encode genes for the YCC subunits: three a-subunits (accA1-A3), six b-

subunits (accD1-D6) and an e-subunit (accE5). The e-subunit is proposed to help with the stability 

of some accA-accD complexes (Oh et al., 2006). YCC a-subunits (»65kDa each) and b-subunits 

(»60kDa each) complex in different combinations depending on the substrate. The structure is 

proposed to have a6: b6 subunits, with a stoichiometry of 1:1, making a dodecameric structure of 

approximately 750 kDa (Tong et al., 2017). This is supported by previously identified 750 kDa 

dodecameric forms of AccA1-AccD1 and AccA2-AccD2 (Ehebauer et al., 2015). Mutagenesis 

experiments in M. tuberculosis have shown accA3 and accA2 encode the α-subunits of the essential 

(critical to survival) YCC complexes in M. tuberculosis (Sassetti, et al., 2003, Griffin, et al., 2011). 

The different β-subunits are proposed to act on different fatty acyl-CoA units as substrates, 

conferring the ability to produce a highly diverse range of mycobacterial lipids (Ehebauer et al., 

2015). 
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1.9 Mycobacterium tuberculosis Acyl-CoA carboxylases 

 
The genome of M. tuberculosis encodes different YCC subunits. This range of β-subunits (AccD1-

6) contribute to the diversity in lipid production for Mycobacteria. Different YCC complexes can 

form from the available subunits, with β-subunits showing specificity to different CoA substrates 

to produce lipid products as shown in Table 1.4 (Cole, et al., 1998, Portevin, et al., 2005, Gago, et 

al., 2006). Some substrate interactions are yet to be characterised. 

 

 

 

Subunit Protein Active 

Expression 

Substrate 

α-subunit AccA1 

AccA2 

AccA3 

Late log phase 

Late log phase 

Log phase 

Biotin 

Biotin 

Biotin 

β-subunit AccD1 

AccD2 

AccD3 

AccD4 

AccD5 

AccD6 

Late log phase 

Late log phase 

Unknown 

Log phase 

Log phase 

Log phase 

Methylcrotonyl-CoA 

Unknown 

Unknown 

C26-CoA 

C3-CoA 

C2-CoA 

ε-subunit AccE5 Log phase None 

 

 

The ability to form a range of functional YCC complexes has been demonstrated in a number of 

bait/prey pull-down experiments (Ehebauer et al., 2015). This helps to identify the ‘interactome’ 

as in Figure 1.6, which can act as a basis for further substrate identification and accelerate structural 

characterisation of complexes. Notably, AccA3 has a number of interactions with different β-

subunits which can also interact with each other as well as AccE5 (‘E’ subunit). AccD3 does not 

Table 1.4: Acyl CoA carboxylase subunits of M. tuberculosis  
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interact with any protein partners, with separate roles being suggested for this subunit due to low 

sequence similarity of <22% with other β-subunits (Ehebauer et al., 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mycobacterial YCC complexes involved in mycolic acid biosynthesis 

 

The three YCC complexes that are identified to be involved in the mycolic acid biosynthesis 

pathway are AccA3-AccD4, AccA3-AccD5-AccE5 and AccA3-AccD6 (Gago et al., 2006, Kurth 

et al., 2009, Trivedi et al., 2004).  

 

AccA3-AccD5-AccE5 complexes most likely generate methylmalonyl CoA for the biosynthesis 

of mycolic and other branched-chain fatty acids, due to its preference to utilise propionyl-CoA 

instead of acetyl CoA (Gago et al., 2006). Previous work on this complex includes the elucidation 

of the AccD5 crystal structure (Holton et al., 2006). In addition, biochemical experiments show 

complex activity is maximal in the presence of the AccE5 subunit (Gago et al., 2006). Structural 

characterisation of the complex could provide information critical to accelerate structure-based 

drug design. 

Figure 1.6: Diagram of the Acyl CoA carboxylase ‘interactome’, as identified by bait/prey 
experiments. 
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AccA3-AccA6 generates malonyl CoA for mycolic and fatty acid biosynthesis, based on accD6 

mutagenesis experiments in Mycobacterium smegmatis (Kurth et al., 2009). The complex has also 

been shown to act on acetyl-CoA and propionyl-CoA substrates, with holoenzyme structures also 

yet to be characterised (Daniel et al., 2007).  

 

AccA3-AccD4 is suggested to be involved in the generation of long-chain acyl carboxylic acids 

for the Claisen condensation reaction step in mycolic acid biosynthesis. This has been inferred 

from AccD4 orthologs only found in mycolic acid-producing bacteria, as well as accD4 being in 

the proximity of genes pks13 and fadD32, that encode a polyketide synthase and an acyl-AMP 

ligase involved in mycolic acid biosynthesis (Gago et al., 2011, Trivedi et al., 2004).  
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1.10 Aims of the study 

 

The requirement of mycolic acids for the growth, survival and antibiotic resistance of 

Mycobacteria means the enzymes involved in mycolic acid synthesis are attractive potential drug 

targets. Acyl-CoA carboxylase complexes involved in this act at the rate-limiting step of mycolic 

acid synthesis. These complexes are essential to M. tuberculosis and have limited homology to 

similar enzymes in human beings. Despite being exciting potential drug targets, the AccA3-

AccD5-AccE5, AccA3-AccD4 and AccA3-AccD6 complexes are yet to be structurally 

characterised.  

 

This study intends to begin to structurally characterise the AccA3-AccD5-AccE5 complex using 

electron microscopy, alongside using a bioassay to provide kinetic analysis. This could help 

provide insights into the molecular structure and catalytic activity of ACCase in M. tuberculosis, 

thereby acting to assist structure-based drug design and additional future studies for other 

complexes involved in mycolic acid biosynthesis. 

 

Experiments will initially be conducted using the non-native host Escherichia coli due to fast 

culture times and high expression potential to help gauge how we can optimise the expression and 

purification procedure using a near-native host to M. tuberculosis, this being M. smegmatis. 

Experiments will then be performed using the near-native host M. smegmatis, of which outcomes 

may be relatable to M. tuberculosis lipid metabolism and enzymes involved. 
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2. Materials and Methods 

 
2.1 Materials 

 
Consumables, chemicals and bacterial strains 
 

A list of laboratory consumables used for the study are shown below in Table 2.1. These were 

obtained from a range of suppliers. Chemicals used were of analytical grade and purchased from 

Sigma-Aldrich, Merck Group and Carl Roth GmbH.  

 

 
Consumable Supplier 

Centrifuge ultrafiltration filters Merck 

Chromatography columns Bio-Rad 

Cuvettes Sarstedt 

Electrophoresis gels Biozol 

Electroporation cuvettes Biozym Scientific 

Falcon tubes Cellstar 

Injection needles B. Braun 

Inoculation loops Greiner Bio-One 

Pipette tips Sarstedt 

Petri dishes Sarstedt 

Serological pipettes Greiner Bio-One 

Syringe filters Sartorius 

Syringe tubes Henke Sass Wolf 

 
E. coli and M. smegmatis strains used for cloning and expression were from the EMBL Hamburg 

bacterial strain collection. Different plasmid constructs containing genes encoding protein subunits 

and antibiotic resistance were cloned or expressed in these cells (see Appendix Table 6.2). E. coli 

Table 2.1: Laboratory consumables used for the study  
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DH5-α cells were engineered to maximise transformation efficiency with three mutations recA1 

to prevent heterologous recombination, endA1 for plasmid insertion and lacZM15 for blue-white 

colony screening (Kostylev et al.,2015). DH5-α were used for rapid cloning of pMyNt 

(Hygromycin-resistance, Addgene plasmid #42191) vectors which can then be isolated, 

transformed to M. smegmatis and expressed (Appendix). This uses M. smegmatis groEL1ΔC cells 

to purify poly-histidine tagged recombinant proteins. The genomes of these cells are deficient in a 

His-rich coding sequence of the Hsp60 chaperone GroEL1 to help with efficient expression and 

purification of only poly-histidine tagged target proteins without Hsp60 co-purifying (Noens et 

al., 2011). 

 

Alternatively, BL21 E. coli cells that were engineered for expression directly in E. coli contain 

mutations, meaning they are deficient in proteases (Jeong et al., 2015). These were used for 

expression of pETM (Kanamycin-resistance) vectors. BL21 pRare cells are additionally deficient 

in RNAses but express additional tRNAs. The additional copies of certain rare codon tRNAs can 

assist protein production and stability for protein complexes, so as to prevent low abundance tRNA 

depletion and the subsequent failure to generate a full-length product that can otherwise occur in 

recombinant overexpression (Rosano et al., 2014, Pedersen, 1984). The incorporation of antibiotic 

resistance genes in a plasmid containing the desired gene to be expressed helps ensure only the 

bacteria that contain the desired gene are selected for to grow and reproduce (Diana et al., 2019). 

 
Plasmid DNA isolation and purification 

 
For the isolation of plasmid DNA from cloning E. coli cell lines, the QIAprep Spin Miniprep kit 

by Qiagen was used. Isolated plasmid concentrations were quantified using a Spectrophotometer 

to ensure sufficient yield (~ 5 mg plasmid per L culture) for our further transformation experiments 

into M. smegmatis (Liang et al., 2016). 

 

The purification of proteins uses Superdex or Superose columns to conduct metal affinity 

chromatography of His-tagged proteins, followed by size exclusion chromatography (gel 

filtration) to isolate our target protein(s). Purified protein concentrations were also quantified using 
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a Spectrophotometer to ensure sufficient yield (~ 10 mg protein per mL culture) for our subsequent 

structural analysis experiments (Simonian, 2002). 

 

2.2 Methods 

 
Preparation of cloning and expression constructs 
 

Prior to transforming plasmids into bacterial strains, genes of interest must be inserted into 

plasmids that contain antibiotic resistance genes. Initially, vectors were linearized and digested 

with restriction enzymes (RE) that cleave at specific cut sites to allow later gene insertion (Roberts, 

2005). 2 μg of vector DNA was combined with 1.5 μL RE1 (e.g HindIII) + 1.5 μL RE2 (e.g. NcoI) 

+ 3 μL NEB cutsmart buffer, totalling to 30 μL with the remainder being H2O. This was incubated 

at 37 oC overnight (~16 hrs). Linearized vectors will now have two ends containing phosphate 

groups that can re-circularize via ligation (Ukai et al., 2002). Therefore, the overnight protocol 

was followed by vector dephosphorylation using 3 μL of Antarctic phosphatase for 1 hour at 37 
oC (Maria et al., 2000).  

 

Digested vector purification was conducted using a standard gel-purification technique. This uses 

an agarose DNA gel (0.5-2% agarose in distilled water) with a few drops (~10 μL each) of gel 

green (Sigma Aldrich). 6 μL DNA loading dye was combined with 30 μL vector and 

electrophoresed for 1 hour at 120 V. Gels were excised using a scalpel. To remove any 

contaminants a Monarch gel ‘extraction’ kit from New England Biolabs was used to yield a pure 

sample of digested vector DNA (Zhong, 2017).  

 

Next, the gene of interest must be inserted into our digested vector. This was performed using a 

Seamless Ligation Cloning Extract (‘SLiCE') Cloning Method (Zhang et al., 2014). The SLiCE 

extract was first thawed on ice and mixed well via vortexing. The mixture below was setup in a 

0.5 mL microcentrifuge and mixed well via vortexing (Table 2.2). This was incubated at 37 oC for 

30-45min. 
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An aliquot of the plasmid vector with the insert were sent externally for DNA sequencing. 

Correctly inserted genes are now viable candidates for transformation into cells.  

 

 

 

 

Component Amount 

Purified Vector DNA fragment 50 - 200 ng 

Purified Insert DNA fragment Molar ratio insert: vector is 3:1 

10X SLiCE Buffer 1 μL 

PPY SLiCE extract 1 μL 

MilliQ H2O Remainder to total 10 μL 

 
Preparation of E. coli transformants 

 
Chemically competent E. coli cells were prepared using the Inoue method (Inoue, et al., 1990). 

These cells were obtained from a previous EMBL researcher who details the method 

(Anandhakrishnan, 2013, Appendix).  

 

E. coli cells used for transformation included DH5-α cells for cloning of pMyNt vectors, or BL21 

cells for expression of pETM vectors. This uses a heat shock transformation protocol. A 100 μl 

frozen (-80 oC) aliquot was thawed on ice. 1-2 μl plasmid DNA was gently mixed with the cells to 

create a mixture. This was incubated on ice for 30 minutes. Cells undergo a 42 oC heat shock for 

30-40 seconds and were immediately placed back on ice for 2 minutes. 400 μl of pre-warmed SOC 

medium was added to the mixture (Appendix) and incubated with shaking for 60min (37 oC, 400 

rpm). The transformation mixture was centrifuged (6,000 rpm, 2min), with the cell pellet being 

resuspended in SOC medium and plated onto an LB-agar plate, supplemented with the correct 

antibiotic(s) (Appendix). This was incubated at 37oC overnight. Pre-cultures can be used for larger-

scale expression procedures as will be described, or to create a stock of plasmid DNA. DNA stocks 

can be isolated using the ‘QIAprep Spin Miniprep kit by Qiagen’ kit (Olga et al., 2018). This only 

Table 2.2: SLiCE reaction mixture of components  
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requires small volumes (1-10 ml) of cell cultures, after which plasmid DNA can be quantified 

using a spectrophotometer and later frozen (-20 oC). 

 

Preparation of M. smegmatis transformants 

 
All work with M. smegmatis was conducted in a laminar flow hood in a biological safety level 2 

(S2) laboratory. These cells with the groEL1ΔC mutation were also obtained from a previous 

EMBL researcher (Anandhakrishnan, 2013, Appendix). Electrocompetent M. smegmatis cells are 

able to uptake exogenous genetic material after being subjected to an electrical field of a particular 

voltage i.e. electroporation (Goude et al., 2009).  

 

For the transformation of M. smegmatis cells, a 100 μl frozen (-80 oC) aliquot was thawed on ice. 

An electroporation cuvette was cooled on ice. 2-3 μl of plasmid DNA and 100 μl M. smegmatis 

cells were added to the electroporation cuvette. This reaction was incubated on ice for 20 min. 

Electroporation was performed at 2.7 kV twice. 500 μl of pre-warmed (37 oC) 7H9 expression 

media was added to the cuvette and was mixed well (Appendix). The reaction mixture was 

transferred to an eppendorf tube and incubated at 37 oC, 400 rpm for 1.5-2 hours. The mixture was 

centrifuged for 2min at 6000 rpm. The pellet was resuspended in the remaining media and plated 

onto a LB-agar plate, supplemented with the correct antibiotic(s), allowing growth to occur around 

3-4 days later.  

 

The pMyNt vectors cloned in E. coli were isolated and transformed into M. smegmatis - plated 

using Hygromycin (50 μg/ml) as the antibiotic. The full complex A3D5E5 was already present at 

the EMBL site in an M. smegmatis strain, as prepared by Sonja Staack. This has two plasmids co-

expressed, with AccA3 (Kanamycin-resistance) on one plasmid and AccD5-AccE5 (Hygromycin-

resistance) on another, both within the same cell. The vector map is shown in Figure 2.1.  
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 Figure 2.1: Vector map of the two plasmids expressing A3 and D5E5 in M. smegmatis  
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Large-scale protein expression in E. coli 

 
For large-scale protein expression in bacteria, it is common to produce a pre-culture from agar-

plate colonies to ensure growth, prior to scaling up. Scaling up is followed by protein expression 

induction and cell pellet harvesting.  

 

100 ml LB media pre-cultures contain a single colony of cells, or an inoculation loop of cells from 

a glycerol stock, combined with the appropriate antibiotic(s) left overnight at 37 oC, 150 rpm. 10-

20 ml of the pre-culture was used to inoculate larger 1 L flasks of Terrific Broth (TB) media (47.6g 

TB powder and 4 mL glycerol dissolved in distilled water to a final volume 1 L.), supplemented 

with appropriate antibiotic(s) (Appendix). These cultures were incubated at 37 oC, 150 rpm until 

an OD600 of 0.8-1 was reached. Here, induction of protein expression was via addition of IPTG at 

a final concentration of 0.1-0.5mM. Incubation continued for 4 hours at 37 oC or for 16 hours at 

18 oC. Cells were harvested by centrifugation at 7,000 rpm for 30 min using a JLA 8.1000 rotor in 

an Avanti Centrifuge J20 XP (Beckman Coulter). Cell pellets were stored at -20 oC until further 

use. 

 

Large-scale protein expression in M. smegmatis 
 

A 100 ml 7H9 expression media pre-culture contains a single colony of cells, or an inoculation 

loop of cells from a glycerol stock, combined with the appropriate antibiotic(s) left 3-4 days at 37 
oC, 150 rpm, as M. smegmatis takes longer to grow than E. coli. 10-20 ml of the pre-culture was 

used to inoculate larger 1 L flasks of 7H9 expression media, supplemented with appropriate 

antibiotic(s) (Appendix). These cultures were incubated at 37 oC overnight, 150 rpm until an OD600 

of 1-1.5 was reached. Here, induction of protein expression was via addition of 4.55 ml of 220X 

acetamide solution (Appendix). Acetamide upregulates gene expression by acting as an inducer at 

the promoter of the acetamidase operon, leading to downstream recombinant gene expression of 

Acc genes and subsequent protein expression (Sundararaman et al., 2014). Incubation was 

continued for 16 hours at 37 oC. Cells were harvested by centrifugation at 6,000 rpm for 60 min 

using a JLA 8.1000 rotor in an Avanti Centrifuge J20 XP (Beckman Coulter). Cell pellets were 

stored at -20 oC until further use. 



   

   32 

Protein purification: Metal-affinity chromatography 

 
Principle of metal-affinity purification 

 

Proteins were purified from cellular contents using two techniques. This was using metal-affinity 

chromatography, followed by size exclusion chromatography (SEC). Metal-affinity 

chromatography is a well-known technique used to isolate a protein from a mixture of proteins and 

other cellular contents (Bornhorst et al., 2000). This utilizes the property of Histidine residues 

(His-tag) being able to bind divalent metal cations. Recombinant His-tag proteins contain a stretch 

of His residues that allow separation from non-tagged proteins in the cell lysate supernatant. The 

metal cation is Ni2+, immobilized with Nitrilotriacetic acid (NTA) on the affinity column. After 

passing the cell lysate through the column, His-tagged protein will be bound to the Ni2+ ions. 

Detachment and elution of His-tagged protein was via addition of high imidazole concentrations, 

as imidazole outcompetes the His-tag to bind the Ni2+ cations (Bornhorst et al., 2000). 

 

Protocol of metal-affinity purification 

 

After large-scale protein expression, cells were thawed on ice and resuspended in lysis buffer 

(Appendix) with 1 mL DNAseI and 1 tablet of protease inhibitor cocktail added. E. coli cells were 

lysed by ultra-sonication. This used 3 x 3min cycles (0.5sec on + 0.5 sec off) with 2min pauses 

between sonication cycles. This uses a Bandelin Sonoplus sonicator with a VS 70T probe. Cell 

fractions were kept on ice during the sonication due to the heat that can be generated during this 

lysis procedure. Centrifugation of cells using a JA 25.50 rotor in an Avanti Centrifuge J20 XP 

(Beckman Coulter) at 19,000 rpm (20min, 4 oC) allows separation of cell lysate from protein that 

should be in the supernatant. Lysis of M. smegmatis cells utilize an Avestin EmulsiFlex-C3 High 

Pressure Homogeniser that applies pressure (20,000-25,000 psi) to lyse cells, generally re-applying 

the sample 3-4 times to ensure all cells were lysed (Uhlmann et al., 2013). Cell debris was removed 

via centrifugation (19,000 rpm, 90min, 4 oC) prior to purification. 

 

Soluble cellular fractions (supernatant) were passed through a 0.45μm Sartorius syringe filter and 

loaded onto the Ni2+-NTA resin column (5 mL HisTrap GE Healthcare column). Columns were 
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attached to an ÄKTA explorer protein purification system. Columns were washed and equilibrated 

using wash and binding buffers prior to imidazole addition (Appendix). Imidazole was added via 

the elution buffer (Appendix), with the final concentration increasing in a stepwise fashion (50 to 

300 mM). The lower concentrations act to elute any loosely bound or contaminant proteins, 

followed by a linear high concentration of imidazole (300 mM) addition to elute our target protein. 

Here, our recombinant protein should elute into fractions for SDS-PAGE analysis, as will be 

detailed. All purification steps were carried out at 4 oC to help minimize protein stability issues. 

 

Protein purification: Size-exclusion chromatography 
 

Principle of SEC 

 

SEC aims to separate molecules based on their size (hydrodynamic radius) (La Verde et al., 2017). 

The chromatography column contains fine, porous beads made of either polyacrylamide, agarose 

or dextran polymers. Different sized molecules migrate at different rates through the column, with 

smaller beads migrating slower as they are more likely to enter the pores, whereas larger molecules 

elute first as they are less likely to enter these pores (La Verde et al., 2017). A larger volume of 

SEC buffer must be applied to elute the smaller molecules (Appendix).  

 

Protocol of SEC 

Proteins obtained via affinity chromatography were checked on an SDS-PAGE gel to ensure there 

was sufficient protein expression and purity of our recombinant protein(s). Proteins were loaded 

onto a column via sample injection into an ÄKTA explorer protein purification system (uses a 

Superose TM 6 GE Healthcare column). This was washed and equilibrated using wash and SEC 

buffers (Appendix). Eluted proteins were analysed on chromatograms and collected in designated 

fractions for SDS-PAGE analysis. In some cases, affinity tags e.g. SUMO were removed via TEV 

protease addition overnight (4 oC). Tags such as SUMO can help with identifying the protein or 

initiate cellular processes such as protein expression and folding (Peroutka et al., 2011).  
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Gel electrophoresis  

 
Gel electrophoresis allows the separation and analysis of macromolecules based on their size and 

charge (Ames, 1974). Proteins can migrate on polyacrylamide (PAGE) gel substrates when 

exposed to an electric field, with their size and charge determining the rate of migration. This 

separation technique is useful for analysing the biochemical purity of samples after affinity or size 

exclusion chromatography. Addition of anionic Sodium dodecyl sulfate (SDS) detergent to a 

protein imparts a total negative charge on the protein(s). SDS masks the charge of amino acid side 

chains, meaning migration is now determined by size from positive to negative electrodes i.e. the 

larger the size, the shorter the migration distance (Costas, 1995). Beta-mercaptoethanol (β-ME) is 

also added to assist with denaturation by reducing disulphide bonds (Kartheek et al., 2019).  

 

Samples were combined with a Biolabs purple gel loading dye (15 μl sample, 5 μl dye). Mixing 

by brief centrifugation was followed by heating of samples (75 oC, 10min) and β-ME addition (5% 

w/v sample) to denature any secondary, tertiary or quaternary structures to allow separation of 

individual proteins. These denatures samples were loaded onto the ‘Mini-Protean Tetra Cell’ 

vertical protein electrophoresis system (Bio-Rad), using a Biozol expedeon 12 or 17-well gel. This 

system uses an NuPAGE MES SDS running buffer (151.4g Tris base, 720g Glycine, 50g SDS and 

distilled water up to a 5 L solution). A pre-stained ‘PageRuler’ protein ladder was also loaded to 

estimate molecular weight (kDa) of loaded protein samples. Samples were electrophoresed for 45-

60min at 160-180V. Gels were washed with ddH2O and stained using the Coomassie blue stain 

(0.8g Brilliant blue G-250 is added to 500 mL distilled water and dissolved with stirring overnight 

at 4 oC. 34mL of 32% (v/v) HCl is added and the volume was made to 1000 mL with distilled 

water). Gels were destained with ddH2O and imaged using Coomassie fluorescence detection.  
 
Native gel electrophoresis uses commercial pre-cast gels with 10 wells and a non-SDS containing 

buffer with high Coomassie Brilliant blue concentrations (increased concentrations (0.2-5%) of 

Brilliant Blue G-250 were made for running Native gels). For this study, complex size can be 

estimated using this method after performing size exclusion experiments. The Coomassie dye coats 
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the protein in a negative charge similar to SDS. However, this is not denaturing and so complexes 

migrate based on their intact size (Wittig et al., 2010). Gels were run using a combination of protein 

and Thermo Scientific™ Pierce™ Lane Marker Sample Buffers (15 μl sample, 5 μl dye). SDS and 

heating of samples were not required for this technique as we want to keep the complex intact. 

Samples were electrophoresed for 3 hours at 150-200V, ensuring >5mA was maintained for proper 

migration. Samples were then de-stained for 3-4 days using a de-staining solution (Native de-

staining solutions were made with 20% (v/v) ethanol, 5% acetic acid (v/v) and 1% glycerol (w/v) 

in 500 mL distilled water. This was stored at 4 oC.). 

 

Centrifugal ultrafiltration and measuring protein concentration 
 

Protein samples were concentrated using centrifugal ultrafiltration (4000 rpm, 4 oC) in a time-

dependent manner i.e. the longer ultrafiltration time, the more concentrated the protein (Blanco et 

al., 2004). This used a 100kDa filter as complexes were estimated to be around 140kDa. Estimating 

protein concentration was performed using a NanoDrop Spectrophotometer (PEQLAB) that 

measures light absorption at UV280nm. This uses the principle of the Beer-Lambert Law (Beer, 

1852). The law demonstrates the relationship between absorbance (A), molar concentration (c, M) 

with the path length of light (L, cm), the and the molar extinction coefficient (Ɛ, M-1cm-1). The 

molar extinction coefficient can be calculated using online softwares (expasy.org) to multiply the 

total extinction coefficients of absorbing species (Tyr, Trp, Cys disulphides) by their number per 

protein molecule. The law is shown in the equation below: 

 

𝐶 = 	
𝐴

Ɛ ∗ L
		 

Crosslinking protein subunits 

 
Some protein complexes may be unstable after purifying as they are stored in non-native 

conditions. Attempts to maintain stability can be performed using crosslinking techniques. 

Crosslinking may be necessary for subunits with low in vitro binding affinity and is a relatively 

simple procedure. Buffers used for purification steps involving crosslinking proteins have Tris-
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HCl replaced with HEPES to prevent Tris-HCl quenching the glutaraldehyde during the 

purification. After size exclusion purification of protein subunits, samples should be concentrated 

using centrifugal ultrafiltration to around 1 mg/mL. Proteins were then mixed with the 

glutaraldehyde (GA) crosslinking agent at a range of final concentrations, typically 0.01-0.1% of 

GA.  

 

This reaction was incubated on ice for 1 hour and quenched by addition of 40mM (final 

concentration) of Tris-HCl to prevent further crosslinking. Samples were run on an SDS-PAGE or 

native gel alongside non-crosslinked controls to show if the crosslinking was effective. Here, the 

optimal crosslinker concentration and incubation time can be identified before further purification 

or imaging studies. The crosslinking mechanism is shown below in Figure 2.2, with aldehyde 

groups of GA binding to amine groups of proteins to help form inter-particle crosslinks. GA is the 

carbonyl reagent that condenses amines via Mannich reactions or reductive amination (Bala et al., 

2014). 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Crosslinking mechanism of glutaraldehyde (Thongnuanchan et al. 2018).  
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Electron Microscopy  
 

Principle of EM 

 

Electron microscopy (EM) is a useful screening tool to identify the optimal protein concentration 

for imaging and whether or not the protein complex would have a resolvable structure during 

crystallisation trials or Cryo-EM studies. EM uses a beam of accelerated electrons typically from 

a tungsten cathode electron gun to illuminate the sample. This achieves a higher resolution than 

that of light microscopes, the resolution of which is limited by the longer wavelength of photons 

compared to electrons (De Haan et al., 2019). The signals scattered or emitted from the sample are 

measured on a detector or camera that allow construction of a sample image. Two common types 

of EM are scanning EM (SEM) and transmission EM (TEM). SEM scans with electrons along a 

series of rectangular areas of a specimen, giving information on sample surface topography and 

composition. TEM uses thin sections of specimens placed on a grid. TEM beams are transmitted 

through the sample with the image magnified and captured, typically onto a fluorescent screen or 

photographic film. TEM utilizes a shorter wavelength (higher acceleration voltage (kV)) of 

electrons to deliver a higher resolution than SEM (Bogner et al., 2007).  

 

Sample complex stability and purity can be screened using negative staining TEM. Negative stain 

studies used a thin specimen contrasted with an optically opaque salt such as uranyl acetate or 

ammonium molybdate (Scarff et al., 2018). The fluid stains the background, meaning the specimen 

remains untouched, light and visible contrasted to the darker background. The background 

comprises small particles that can bind to the staining fluid, a fluid that scatters electrons strongly 

compared to the protein sample (Scarff et al., 2018). This results in background particles appearing 

dark and invisible in contrast to the lighter, visible sample. Prior to sample application, the carbon-

coated copper grids (300 mesh, ScienceServices) loaded into EM machines were glow-discharged. 

Glow-discharge applies an electric current in the form of plasma for up to 120s. This removes any 

contaminant particles on the grid surface and makes the surface hydrophilic to encourage sample 

adherence (Gallagher et al., 2019). Samples and stains are applied in μL volumes to carbon-coated 

copper grids prior to imaging.  
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Protocol of sample preparation and EM imaging 

 

In order for resolution of individual particles, samples must have a concentration of approximately 

0.1 mg/mL using centrifugal ultrafiltration, as measured via the NanoDrop Spectrophotometer. 

Samples were kept on ice prior to being applied to individual grids. Initially, the grids were glow-

discharged and held by tweezers to make sample application easier. 20 μL buffer (normally SEC 

buffer from the most recent purification) is pipetted to wash the grids and this was blotted using 

clean paper after 30 seconds to remove liquid. After this, 20 μL of the sample protein was added 

and fixed for 30 seconds. This was followed by addition of 15 μL of uranyl acetate (2%, dissolved 

in distilled water) addition to the grid. 30 seconds later, this mixture was blotted to remove any 

liquid. Liquid must be removed as the EM sample stage must maintain a vacuum.  

 

Grids were loaded into the EM, with the sample loading area kept cool by a liquid nitrogen source. 

Images were taken using a range of adjustments to the magnification and focus as appropriate. 

Images should be taken from a sample of regions on the grid for a representative set of images. If 

the sample protein can be resolved, 1000s of 2-D images can be taken automatically of similar 

structures to give a single-class average image of the protein of interest (Qi et al., 2017). 

 

Kinetic characterisation of protein complexes 
 

Demonstration of in vitro catalytic activity would be complementary to purification and imaging 

studies in order to show an active complex is present and the activity is intact. Complex enzymatic 

activity can be measured using biochemical assays. 

 

Kinetic model 

 

Michaelis-Menten kinetics, a simple and popular choice to model an enzyme’s activity, assumes a 

reaction between a substrate and enzyme to help identify a number of kinetic constants relating to 

the complex (Michaelis et al., 1913). The hyperbolic model is based on the hypothesis that the 

rate-limiting step in enzymatic reactions is the breakdown of enzyme-substrate complexes to 
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product and free enzyme, with an eventual saturation of enzyme activity upon substrate addition 

(Michaelis et al., 1913). 

 

Typically, a reaction is setup involving the enzyme at a constant concentration and substrate(s) 

added at varying concentrations [S]. The reaction rate (v) can be measured via measurable product 

formation from the reaction. From this, we can interpret the Vmax which represents the maximum 

rate of product formation achieved in our system, and the KM which is equal to the substrate 

concentration required to reach half of Vmax (Michaelis et al., 1913). The equation for the kinetic 

model can be seen below.  

𝑣	 = 	
𝑉𝑚𝑎𝑥	[𝑆]
𝐾𝑚 + [𝑆] 

Acyl-CoA Carboxylase assay 

 

Carboxylase activity of AccA3-AccD5 complexes can be estimated using an enzyme-coupled 

assay (Sausen et al., 2019). This assay follows the rate of NADH oxidation spectrophotometrically 

as a proxy of ATP hydrolysis by the carboxylase complex as shown in Figure 2.3. The assay was 

previously optimised to ensure the ACCase step was the rate-limiting component 

(Anandhakrishnan, 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2.3: Enzyme assay used to measure the catalytic activity of Acyl-CoA Carboxylases. 

Activity is measured spectrophotometrically via the oxidation of NADH during Lactate formation. 

(μmol/min) 
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Acyl-CoA Carboxylase complexes utilize ATP, with ADP as a by-product. ADP can be 

phosphorylated in the reaction catalysed by pyruvate kinase to form pyruvate. Activity of this 

reaction was measured via the absorbance of the NADH metabolite. NADH in solution produces 

a significant absorbance peak at 340 nm, while NAD+ has low to no absorbance at this wavelength 

but has a peak at 260nm (Sausen et al., 2019). This assay is hypothesised to measure NADH 

oxidation at 340nm upon substrate addition, as this is indicative of the rate of ATP hydrolysis 

(Sausen et al., 2019). Therefore, the rate of reaction (v) can be calculated from rate of NADH 

oxidation to NAD+, as measured by the changes in absorbance of NADH at A340nm. 

 

As with previous kinetic trials, the assay mixture (components from Sigma) contains: 7 units of 

pyruvate kinase, 10 units of lactate dehydrogenase, 50 mM NaHCO3, 3 mM ATP, 0.5 mM 

phosphoenol pyruvate, 0.2 mM NADH, 0.3 mg/ml BSA, 100 mM K2HPO4 and 5 mM MgCl2 and 

varying concentrations of Acyl-CoA substrate. This is conducted at pH 7.6, with enzyme units (U) 

being defined as amount of the enzyme that catalyses the conversion of 1 μmol substrate to product 

per minute (typically at 25 oC). 

 

Reactions were initiated by the addition of the Acyl-CoA Carboxylase to the assay mixture 

(Appendix) and kept at 30 °C. Absorbance data were acquired using a multimode microplate reader 

(Infinite M1000, Tecan) at A340nm which were used to calculate the rate of product formation 

(μmol/min). The Km and Vmax were determined by fitting the rates of reaction against the substrate 

concentration.  
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3. Results 
 

3.1 Protein Purification and Imaging of E. coli ACCase 

 
Expression and Purification of E. coli AccA3-AccD5-AccE5 

 
Affinity Chromatography 

 

The requirement of mycolic acids for the growth, survival and antibiotic resistance of 

Mycobacteria means the enzymes involved in mycolic acid synthesis are attractive potential drug 

targets. Acyl-CoA carboxylase complexes involved in this act at the rate-limiting step of mycolic 

acid synthesis. Despite being exciting potential drug targets, the AccA3-AccD5-AccE5, AccA3-

AccD4 and AccA3-AccD6 complexes are yet to be well-characterised. The purification steps 

intend to obtain a high purity protein sample from M. smegmatis that can be used for structural 

and kinetic characterisation. This process could help provide insights into the molecular structure 

and catalytic activity of ACCase in M. tuberculosis. 

 

After successful cloning and transformation of plasmids into the chosen host, AccA3, AccD5 and 

AccE5 were separately expressed in E. coli. Protein overexpression was induced, and cells were 

harvested after incubation. Three separate affinity chromatography runs allowed isolation of the 

individual proteins from the supernatant of centrifuged mixtures, yielding ~25 mL of protein-

containing fractions at concentrations of ~2 mg/mL. 

 

As explained in the Methods section, the use of the E. coli pRare strain was chosen as a non-native 

host for the production of AccA3 and AccD5 proteins (Anandhakrishnan, 2013). The affinity 

chromatograms and SDS gels are shown below in figures 3.1A-F. 
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Figures 3.1A plots the elution volume (ml) against the UV absorption (mAU) of the eluted AccA3 

sample. A stepwise addition of imidazole at 6, 12, 24 and 48 mM is shown to remove any loosely 

bound contaminant particles from the column. This was also used in case our protein elutes at low 

imidazole concentrations, allowing us to optimise the elution process. This is followed by a linear 

addition of imidazole from 0-300 mM to completely elute our target His-tagged protein. Fractions 

where our His-tagged protein elutes were run on an SDS PAGE gel, shown in figure 3.1B. The 

AccA3 protein size is approximately 64kDa, as calculated from the marker protein ladder in lane 

M. The molecular weight of purified AccA3 is consistent with prior Expasy sequence analysis. 
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Figure 3.1A: Affinity chromatogram of AccA3. Imidazole addition 

is shown in green on the chromatogram in a stepwise and linear 

manner. His-tagged protein is eluted into fractions 2H2-3C11 (only 

raw data was available for this chromatogram).  

Figure 3.1B: SDS-PAGE gel of AccA3. Lanes 1 

and 2 are non-purified supernatant and HisTrap 

flow through respectively. Eluted in lanes 3, 4 and 

5 is the AccA3 protein, estimated to be 64kDa.  

AccA3 
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Figures 3.1C plots the elution volume (ml) against the UV absorption (mAU) of the eluted AccD5 

sample. Again, there is a stepwise addition of imidazole at 6, 12, 24 and 48 mM is shown to remove 

any loosely bound contaminant particles from the column, followed by a linear addition of 

imidazole from 0-300 mM to completely elute our target His-tagged protein. Fractions where our 

His-tagged protein elutes can be used for an SDS PAGE gel, shown in figure 3.1D. The AccD5 

protein size is approximately 59kDa, as calculated from the marker protein ladder in lane M. The 

molecular weight of purified AccD5 is consistent with prior Expasy sequence analysis. AccD5 

shows a similar gel profile to AccA3, but with a higher concentration. 
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Figure 3.1C: Affinity chromatogram of AccD5. Imidazole addition 

is shown in green on the chromatogram with the linear addition 

shown. His-tagged protein is eluted into fractions 3B4-3E3.  

AccD5 

Figure 3.1D: SDS-PAGE gel of AccD5. Lanes 1 

and 2 are non-purified supernatant and HisTrap 

flow through respectively. Eluted in lanes 3, 4 and 

5 is the AccD5 protein, estimated to be 59kDa.  
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Figures 3.1E plots the elution volume (ml) against the UV absorption (mAU) of the eluted AccE5 

sample. Again, there is a stepwise addition of imidazole, followed by a linear addition of imidazole 

to elute our target His-tagged protein. Fractions where our His-tagged protein elutes can be used 

for an SDS PAGE gel, shown in figure 3.1F. The AccE5 protein size is approximately 19kDa, as 

calculated from the marker protein ladder in lane M. After several repetitions of this experiment 

using appropriate equipment washing procedures, the samples were proving difficult to purify 

without contamination. Further to this, the proposed AccE5 observed on the gel eluted at a low 

concentration and appeared slightly larger in molecular weight compared to prior Expasy sequence 

analysis. 

 

Figure 3.1E: Affinity chromatogram of AccE5. Imidazole addition 

is shown in green on the chromatogram with linear additions 

shown. His-tagged protein is eluted into fractions 2H9-3A2. 

Figure 3.1F: SDS-PAGE gel of AccE5. Lanes 1 and 

2 are non-purified supernatant and HisTrap flow 

through respectively. Eluted in lanes 3, 4 and 5 is the 

AccE5 protein estimated to be 19kDa. 
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Crosslinking and Imaging of E. coli AccA3-AccD5-AccE5  
 

Crosslinking E. coli ACCase components 

 

Previous optimisation experiments showed that we required additional crosslinking agents to 

maintain protein complex stability for further imaging and kinetic analysis of the ACCase subunits, 

the rationale for which has been explained previously. Some protein complexes may be unstable 

after purifying as they are stored in non-native conditions. To generate improved complex stability 

for EM imaging, crosslinking the components was utilised. Samples AccA3, AccD5 and AccE5 

were optimised for crosslinking at a concentration of 1 mg/ml and mixed in equal volumes prior 

to crosslinking. Samples separated on an SDS gel are shown below in figure 3.1G. The optimal 

crosslink concentration range must now be identified using a combination of SEC and a native gel. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Size Exclusion Chromatography 

 

All crosslinked samples from the HisTrap study were optimised for SEC to a concentration of  0.05 

mg/mL. As an example, figure 3.1H shows the SEC elution profile of 0.1% GA addition to our 

Figure 3.1G: SDS-PAGE gel of crosslinked AccA3-D5-E5 components from E. coli. Lane 1 shows a non-crosslinked 

AccA3-D5-E5 sample. Lanes 2-5 show crosslinker added to the sample at 0.01, 0.02, 0.05 and 0.1% respectively. 

AccD5 
AccA3 

Crosslinked AccA3-D5-E5 
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sample. The elution profile suggests presence of a heterogeneous sample. Figure 3.1I shows the 

native gel of SEC samples with crosslinker added to our sample at a range of concentrations. 

 

 

 

 

     

 

 

  

 

 

 

 

 

 

 

 

The native gel shows crosslinked complexes electrophoresing at bands of approximately 400-480 

kDa, perhaps suggesting smaller complexes than the originally predicted 750kDa dodecamer. 

Samples clearly showing strong crosslinking were taken for negative EM staining. This includes 

samples with 0.02%, 0.05% and 0.1% GA addition. Addition of 0.01% GA did not crosslink 

sufficiently as shown in lane 2 with complexes remaining at a similar size to without GA addition. 

 

Negative Stain TEM images of E. coli AccA3-AccD5-AccE5  

 

Investigation into ACCase complex formation was conducted using negative stain electron 

microscopy of the gel filtration samples (from figure 3.1H). Four images are shown in figure 3.1J. 

Image A has no crosslinker added, with B, C and D containing crosslinker glutaraldehyde (GA) at 

increasing concentrations. Protein concentrations of 0.05-0.08 mg/ml were optimal for imaging 

purposes. Visual analysis shows conformational heterogeneity of all samples, most likely with 
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Figure 3.1H: Size exclusion profile of AccA3-D5-E5 

complex using 0.1% GA crosslinker addition 

Figure 3.1I: Native gel of crosslinked components 

from E. coli. Lane 1 shows a non-crosslinked AccA3-

D5-E5 sample. Lanes 2-5 show crosslinker added to 

the sample at 0.01, 0.02, 0.05 and 0.1% respectively.     

Crosslinked subunits 
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degradation and low stability. However, crosslinker addition appears to make particles less 

crowded with improved resolution, especially at 0.1% GA addition in image D when compared to 

image A that is crowded, most likely containing contaminant particles. Particle sizes hypothesized 

to be protein complexes, as in image D, are approximately 10-15 nm. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 3.1J: Negative stain electron microscopy. Image A shows no crosslinker added. Images 

B, C and D show 0.02%, 0.05% and 0.1% GA addition, respectively. 

A B 

C D 
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3.2 Protein Purification and Imaging of M. smegmatis ACCase 

 
Expression and Purification of M. smegmatis AccA3-AccD5-AccE5  
 

After successful transformation of two plasmids co-expressed into groEL1ΔC strains of M. 

smegmatis, one plasmid with AccA3 and another with AccD5-AccE5, (refer to methods for 

constructs), protein overexpression was induced and cells were harvested after incubation. An 

affinity chromatography run allowed isolation of the proteins within the complex from the 

supernatant of centrifuged mixtures, yielding ~25 mL of protein-containing fractions at 

concentrations of ~2 mg/mL . The affinity chromatogram and SDS PAGE gel are shown below in 

figures 3.2A and 3.2B, respectively. 

 

Affinity Chromatography  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.2A: Affinity chromatogram of AccA3-D5-E5. 

Imidazole addition is shown in green on the 

chromatogram with stepwise and linear additions shown. 

His-tagged protein is eluted into fractions 2B5-2C9. 

Figure 3.2B: SDS-PAGE gel of AccA3-D5-E5 HisTrap. Lanes 

1-6 show AccA3 (64kDa) and AccD5 (59kDa) with low level 

expression of AccE5 (19kDa) in some of the lanes. 
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Figure 3.2A plots the elution volume (ml) against the UV absorption (mAU) of the eluted samples. 

As before with E. coli, stepwise and linear additions of imidazole were used. Fractions where our 

His-tagged protein elutes can be used for an SDS PAGE gel as in figure 3.2B. Gels show the sizes 

of AccA3 and AccD5 are approximately 64kDa and 59kDa respectively, as compared to the 

marker in lane M. Further observed were marked differences in expression between all three 

subunits, with low level expression of AccE5 at 19kDa near the base of the gel. 

 

Crosslinking and Imaging of M. smegmatis AccA3-AccD5-AccE5  

 
Crosslinking M. smegmatis ACCase components 

 

Different to the procedure in E. coli, the plasmids in M. smegmatis cells have all 3 subunits co-

expressed, meaning individual purifications were not required. Similar to the procedure with E. 

coli, subunits were crosslinked, with the SDS PAGE gel in figure 3.2C demonstrating greater 

complex formation (higher kDa bands) with crosslink addition, meaning individual subunit bands 

become less visible as they are presumably complexed. As an example, the size exclusion profile 

with 0.1% GA added is shown in figure 3.2D.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.2C: SDS-PAGE gel of crosslinked AccA3-D5-E5 components from M. smegmatis. Lane 1 shows a non-

crosslinked AccA3-D5-E5 sample. Lanes 2 and 3 show crosslinker added to the sample at 0.05% and 0.1% respectively. 
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Size Exclusion Chromatography 

 

Crosslinked samples from the HisTrap study were optimised for SEC to a concentration of 0.05 

mg/mL. Figures 3.2D and 3.2E show the SEC elution profile with UV280nm absorption and the 

native gel from SEC samples, respectively. Non-crosslinked samples are approximately 140kDa 

and crosslinked samples are nearer to 350kDa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Samples containing 0.05% and 0.1% GA crosslinker demonstrate strong crosslinking in the native 

gel. As before with E. coli, the same samples from the gel filtration were taken forward for 

imaging. 

Figure 3.2D: Size exclusion profile of AccA3-D5-E5 

complex with elution into fractions 1E8-1H7.  
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Figure 3.2E: Native gel of crosslinked AccA3-D5-E5 

components from M. smegmatis. Lane 1 shows a non-crosslinked 

AccA3-D5-E5 sample. Lanes 2 and 3 show crosslinker added to 

the sample at 0.05% and 0.1% respectively. 

Crosslinked complexes ~ 350kDa 
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Negative Stain TEM images of M. smegmatis AccA3-AccD5-AccE5  

 

As before with E. coli, imaging of M. smegmatis complexes was conducted using negative stain 

electron microscopy. Shown in figure 3.2F are micrographs of ACCase complexes. Image A has 

no crosslinker added. Image B has 0.05% GA added. Images C and D have 0.1% GA added. 

Protein concentrations of 0.05-0.08 mg/ml were optimal for imaging purposes. Visual analysis 

again shows conformational heterogeneity of all samples, with images crosslinked protein being 

less crowded. Particle sizes are approximately 10-15 nm. Images C and D show complexes that 

appear to form pentameric or hexameric ring formations as annotated by the magnified 

perspective. Ring formations have an approximate 10nm diameter. These could be artefacts of our 

experiment and are discussed later. 
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Figure 3.2F: Negative stain electron microscopy. Image A shows no crosslinker added. Images B, C and D show 0.05%, 

0.1% and 0.1% GA addition, respectively, with magnified complexes from C and D displayed. 

 

D 
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3.3 Kinetic characterisation of ACCase complexes from M. smegmatis 
 
Kinetic assay data of M. smegmatis AccA3-AccD5-AccE5  

 

The AccA3-AccD5-AccE5 complex isolated and crosslinked from M. smegmatis bacteria was 

utilized in vitro to demonstrate catalytic activity. Figure 3.3 shows the complex is active in vitro 

and is based on a spectrophotometric assay measuring NADH oxidation at 340nm (see methods 

for reaction details). The change in absorbance of NADH can be measured over 3 repetitions (5 

min reaction time) to calculate the rate of reaction with increasing substrate addition. The final 

concentration of the enzyme complex used was 0.35 mg/ml. This allowed determination of 

Michaelis-Menten parameters for the carboxylase activity using the Beer-Lambert Law: Vmax = 

1.22 mM min-1 mg-1 and KM = 0.86 mM. The raw data set and concentrations of each component 

are shown in the appendix.  
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Figure 3.3: AccA3-AccD5-AccE5 in vitro shows catalytic activity when using Acetyl CoA as a substrate. The mean 

rate of reaction is plotted against increasing substrate concentration using non-linear regression analysis in Microsoft 

Excel. Error bars are derived from three repetitions. 
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4. Discussion 
 

In the present study, AccA3-AccD5-AccE5 complexes from E. coli and M. smegmatis involved in 

the committed step of mycolic acid biosynthesis were successfully overexpressed and purified 

using a combination of affinity and size exclusion chromatography. Complexes were then 

subjected to imaging and kinetic analyses. However, limitations were identified at the purification 

and imaging stages of our approach. 

 

Protein expression and purification 
 

Previous research shows evidence for approximately 750 kDa dodecameric AccA1-AccD1 and 

AccA2-AccD2 complexes, with these α and β subunits forming a series of trimeric or hexameric 

complexes of a 1:1 stoichiometry (Huang et al., 2011). Our study shows with both species of 

bacteria, the molecular weights of the AccA3/AccD5 subunits purified appear consistent with 

previous research. However, an inconsistency is the overall molecular weight of the complexes 

formed. Initially, this study was attempted using no crosslinking reagent, with complexes of 140-

180 kDa forming, as shown on native PAGE gels. Addition of crosslinker assisted complex 

formation, with complexes of 400-480 kDa now forming, still falling short of the previously 

identified 750 kDa related complexes. To generate improved complex stability, the optimal 

crosslinker concentration was 0.02-0.1% glutaraldehyde. Our observed molecular weight of 400-

480 kDa would suggest smaller complex formations, such as hexamers or octamers, if indeed 

complexes are forming. The use of crosslinking reagents was partly effective here, as with previous 

studies (Bala et al., 2014, Slusarewicz et al., 2010). 

 

An initial observation of note was the differences in expression levels of the individual subunits 

shown on electrophoresis gels in our study, especially the low levels of AccE5, a monomer 

proposed to improve complex stability and substrate access to enzyme active sites (Oh et al., 2006, 

Gago et al., 2006). Despite the predicted 1:1 stoichiometry between α and β subunits, a mismatch 

in protein subunit concentration is not uncommon as one subunit may display functions elsewhere 

or could be regulated by different transcription factors, as show in Figure 3.2B with a lack of 
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stoichiometry between AccA3 and AccD5 - the reasons for which are still speculative. Lack of 

expression coherence due to multi-functionality or differences in transcriptional regulation have 

been demonstrated in E. coli and Saccharomyces cerevisiae (Leake et al., 2006, Gavin et al., 2006). 

With regards to AccE5, a previous study also had issues generating a concentrated and stable 

solution of AccE5 (Anandhakrishnan, 2013). This was proposed to be a result of a lack of 

secondary structure formation in vitro, as verified by circular dichroism (CD) spectroscopy 

(Anandhakrishnan, 2013). This could mean once purified alongside AccA3 and AccD5, AccE5 

unfolds and so the full complex is no longer stabilised. Perhaps the lower AccE5 stability was 

partly accounted for by the addition of a crosslinker. Furthermore, both SDS and native PAGE 

gels show contamination from other endogenous proteins or perhaps degraded protein complexes. 

Contamination of AccE5 samples may have also contributed to the larger than predicted AccE5 

molecular weight, leading to a subsequent effect on complex formation and stability. The 

heterogeneity of our sample is almost certainly contributing to lower stability of our full complex 

(Wingfield, 2015). Methods to reduce protein contamination are discussed later. 

 

Negative stain electron microscopy 
 

Negative stain electron microscopy showed similar complex particle sizes to previous studies 

(Ehebauer et al., 2015). Crosslinking samples certainly improved complex formation and 

homogeneity, thereby reducing particle crowding. This was most apparent at 0.05% and 0.1% 

glutaraldehyde addition, which may be high enough for intermolecular crosslinks, but not too high 

that intramolecular crosslinks become an issue (Oveimar et al., 2014). However, also shown was 

monomeric protein and most likely contamination of the sample. Stability is an issue and is visible 

with both E. coli and M. smegmatis complexes. Discussed here are the imaging observations and 

how we can reduce contamination and improve stability of our sample in the future.  

 

An interesting observation in M. smegmatis samples were ring-like complexes. This is potentially 

new information of how the complex can form, rather than the previously identified dodecameric 

form of AccA1-AccD1 and AccA2-AccD2 (Ehebauer et al., 2015). When comparing EM images 

to the native gel, we could conclude there exists a hexameric or octameric complex based on 

molecular weights. However, given the low or potentially absent AccE5 expression, the ring-like 
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complexes we observe may simply be oligomers of AccA3 or AccD5 on their own or bound 

together that are unable to form a stable dodecamer, or indeed artefacts of our experiment. 

Hexameric formations of AccA3-AccD5 crystals have been previously studied and this may be 

what we are observing (Ting-Wan et al., 2006). This could be confirmed with peptide mass 

fingerprinting to identify both the composition of the hexameric complexes, as well as the nature 

of the contaminant proteins co-eluting with our target protein that may be responsible for the ring-

like formations (Tiengo et al, 2009). 

 

Protein purity and stability 

 

There are a number of means that could be utilized to improve protein purity or stability. To 

improve protein purity, attempts to reduce endogenous protein contamination could involve 

repeating the already established purification steps, or use a range of purification techniques. Other 

purification techniques we could apply to our sample could be anion exchange, hydrophobic 

interaction or hydroxyapatite chromatography. When combined prior to size exclusion 

chromatography, this can help reduce host cell contaminant protein, aggregates, endotoxins and 

DNA from recombinant proteins (Larry et al., 2009). This would also contribute to improving 

complex formation and stability (Wang et al., 2014). 

 

Other ways to improve complex stability would be via using a greater range of crosslinking 

variables, increasing AccE5 expression levels or introducing a substrate. Our crosslinking studies 

were helpful for initial studies into improving complex formation of our ACCase enzyme. Further 

studies should utilise a greater range of glutaraldehyde concentrations, different durations exposed 

to the crosslinker and perhaps try different intermolecular crosslinking reagents such as dimethyl 

adipimidate (DMA) or dimethyl suberimidate (DMS) (Zhenzhan et al., 2004). This may help 

optimise the crosslinking procedure and maximise the chance of achieving complex stability with 

this technique. Literature on similar studies indicate the need for AccE5 to aid stability of AccA3 

and AccD5 when forming a dodecameric complex together (Oh et al., 2006). We could take 

expressed and purified AccE5 protein and exogenously add this to co-expressed AccA3-AccD5. 

This may be necessary because as seen in gels, AccE5 expression is low or potentially absent. 

Using separately expressed AccE5 for M. smegmatis may be necessary in order to ensure sufficient 
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AccE5 is available to aid complex stability. Any improvements to stability could be screened for 

using either Differential Scanning Calorimetry (DSC) or Thermal Shift Assays (TSA) (Bruce et 

al., 2019). 

 

The introduction of proposed enzyme substrates could help with enzyme stability (Wurth et al., 

2001). A study by Wurth et al shows addition of substrates can modify enzyme conformation to 

increase levels of order and stability, as measured by thermal denaturation experiments and far-

UV circular dichroism (CD). This could be applied to our study with addition of known substrates 

of ACCase such as saturated organic acids acetyl CoA and propionyl CoA or unsaturated 

counterparts 3-methylcrotonyl-CoA and geranyl-CoA. Increasing enzyme stability may improve 

complex formation for EM images and further studies. 
 
 
Kinetic assay of M. smegmatis ACCase 

 
Kinetic data collected using a well-established enzyme-coupled assay shows our purified complex 

is active in vitro. This assay did not work in E. coli. This may be explained by using the near-

native host M. smegmatis that ensures proper protein folding and processing, generating sufficient 

catalytic activity in vitro.  

 

In a previous study, a Vmax of 1.33 mM min-1 mg-1 was generated for the same complex as ours 

(Gago et al., 2006). Our calculated Vmax of 1.22 mM min-1 mg-1 is comparable to this study. A 

possible explanation for higher maximal activity in the previous study is they used a ratio of AccE5 

to AccA3-AccD5 of 5:1 compared to our 1:1, perhaps improving complex stability and thus 

boosting maximal catalytic activity. However, this research group were also challenged with EM 

imaging (and crystallisation) of the complex, despite increasing the ratio of the AccE5 subunit.  

 

This may suggest that expression levels of AccE5 are not too important for protein stability and 

thus catalytic activity. Perhaps substrate presence is more important, given that our study and 

others have varying AccE5 expression levels, yet similar kinetic outputs and problems with 

imaging. This reinforces the idea that substrate addition prior to imaging may improve complex 

stability. An additional outcome from this kinetic assay is that the previously proposed 
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dodecameric structure may not be needed for an active enzyme, at least in vitro. Our data produced 

some full complexes, but with the majority not in a complete complex, yet our enzyme 

demonstrated catalytic activity. In a previous study AccA3 and AccD5 were shown to demonstrate 

activity as (hetero)hexamers - perhaps this is what we have observed (Lin et al., 2006).  

 

This may have wider implications when using TB metabolism as a drug target. Lipid biosynthetic 

enzymes may not need a full complex to form but can function as separate subunits. Therefore, 

perhaps the focus of drug targeting should look at not only preventing complex formation, but also 

investigate structural inhibition of AccA3-AccD5 oligomers, thereby reducing substrate access. 

 

Conclusion 

 
The present study has interesting implications for the research into mycobacterial metabolic 

enzymes. Our study, like previous studies, has shown there are difficulties in maintaining a stable 

and pure protein complex of enzymes involved in mycolic acid biosynthesis. However, we can 

provide speculative results of an active enzyme in vitro, either in dodecameric form or hexameric 

AccA3-AccD5. This is based on complex molecular weight knowledge obtained from previous 

studies and what is observed in this study. 

 

If the suggestions of increasing AccE5 expression combined with the addition of a substrate were 

taken in further studies, perhaps improved complex formation would be observed. This could 

improve the chances of achieving cryo-EM structures or encourage attempts at crystallising the 

complex to attain diffraction patterns. We have opened a new avenue by providing kinetic data 

with this complex that may not be in dodecameric form. This could mean that for studying 

metabolic enzymes in TB, valuable structures are also found in the subunit alone as these appear 

to maintain activity. Therefore, the subunits themselves could still be considered useful potential 

drug targets and if inhibited may slow TB infections. If subunits do function alone, preventing 

substrate access to subunits or using competitive analogs may be a more viable therapy than 

preventing complex formation. This approach has been shown before in a study and review that 

showed substrate access and inhibition are potent means to inhibit TB growth (Hassan et al., 2018, 

Duckworth et al., 2012). 
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5. Future Perspectives 
 

The objective of the study was to optimise the process of obtaining purified ACCase enzyme 

complexes involved in the committed step of mycobacterial mycolic acid biosynthesis. Further to 

this, explore the capability of using negative stain EM and kinetic assays to understand if 

complexes formed were suitable for crystallisation trials and showed catalytic activity. Elucidating 

the structure and activity of such complexes could be fundamental to future experimental 

approaches and downstream structural drug design. 

 

Our study did not obtain a homogeneous solution of dodecameric complexes formed, as hoped for 

based on previous experimental data. The reasons for this have been discussed. I propose future 

studies utilise the addition of substrates or substrate analogs, extra crosslinking variables or further 

increasing AccE5 expression in order to improve the chances of achieving the proposed 

dodecameric complex. If larger complexes are formed near to 750 kDa, then perhaps performing 

more advanced imaging studies becomes more viable. 

 

Interestingly, the study shows that the expressed protein is forming particles of heterogeneous size, 

some similar to the size of the dodecameric complex (750 kDa), with others appearing hexameric 

according to molecular weight. This has highlighted the possibility that expressed protein 

complexes that may be AccA3 or AccD5 alone, could function independently due to the catalytic 

activity observed. Separate kinetic assays using AccA3 or AccD5 alone could be complementary 

to further providing evidence for this. In addition, this could demonstrate that one of the 

components is contributing more than the other to the perceived activity observed in this study.   

 

With regards to the impact of our study on drug design in this field of TB treatment, this could 

change the perspective of how to design such therapies. Perhaps if the enzyme can function as a 

smaller complex, the focus should perhaps be on reducing substrate access or inhibiting AccA3-

AccD5 hexamers rather than inhibiting dodecameric complex formation. Overcoming the hurdles 

faced in this study would be essential for furthering research in this direction. 
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6. Appendix 
 
 
 
 

 
 
 
 

Vector Promoter Resistance Tag Protease 
cleavage site 

Source 

pETM-11 T7/Lac Kanamycin N-ter His TEV G. Stier 

pET SUMO-
LIC 

T7/Lac Kanamycin N-ter His 
N-ter SUMO 

TEV H. Meyerhofer 

pMyNT Acetamidase Hygromycin N-ter His TEV A. Geerlof 

pMyC Acetamidase Kanamycin N-ter His 
N-ter Strep 

TEV K. Beckham 

Strain Description Function Source 

E. coli DH5a T1 phage-resistant Cloning host (non-expression) Life 
Technologies 

E. coli BL21 (DE3) Deficient in Ion and 
ompT proteases 

Expression host Novagen 

E. coli BL21 star 
pRare 

RNaseE (rne131) mutant. 
Addition of plasmids 

argU, argW, argX, glyT, 
ileX, leuW, metT, proL, 

thrT, thrU and tyrU. 

Expression host with reduced 
mRNA degradation and 

additional rare tRNA codons 

A. Geerlof 

M. smegmatis 
groEL1ΔC 

Deficient in C-terminal 
His-rich coding sequence 

Efficient and specific 
purification of His-tagged 

proteins 

Noens et al., 
2011 

Table 6.1: Bacterial expression vectors used in E. coli and M. smegmatis studies 

Table 6.2: Bacterial strains used for this study 
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Bacterial growth media and electrophoresis components 
 
 
Luria Broth (LB) 
 
 
For LB medium, 20 g LB powder was dissolved in 1000 mL distilled water, sterilized by 

autoclaving and stored at room temperature. LB agar stocks were made using 37g LB agar powder 

dissolved in 1000 mL distilled water, sterilized by autoclaving and stored at room temperature. 

For pouring LB agar onto plates, LB agar stocks were melted using a microwave, cooled and 

poured with the appropriate antibiotic added. These were labelled and stored at 4 oC.  

 

Antibiotics 
 

1000X Kanamycin was made using a Kanamycin stock to make a 50 mg/mL solution in distilled 

water. 1000X Hygromycin was made using a Hygromycin stock to make a 50 mg/mL solution in 

distilled water. Solutions were filter-sterilized and stored in 1 mL aliquots at -20 oC. 

Construct ID Protein Gene Vector Resistance Created 
by 

M02 AccA3 Rv3285 pETM-11 Kanamycin Simon, 
Oct ‘05 

M03 AccA3 Rv3285 pMyNt Hygromycin Madhan, 
Feb ‘10 

M06 AccD4 R3799c pETM-11 Kanamycin Simon, 
June ‘11 

M07 AccD4 Rv3799c pMyNt Hygromycin Simon, 
Jan ‘07 

M08 AccD5 Rv3280 pETM-11-LIC Kanamycin Madhan, 
July ‘11 

M09 AccD5-
AccE5 

Rv3280-Rv3281 pMyNt Hygromycin Madhan, 
Mar ‘11 

M11 AccE5 Rv3281 pET SUMO-
LIC 

Kanamycin Madhan, 
Mar ‘11 

M38 AccD5-E5 Rv3280-Rv3281 pMyC Kanamycin Sonja, 
Jan ‘15 

Table 6.3: Plasmid constructs used in this study 
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Terrific Broth (TB) 

 
TB was made using 47.6g TB powder and 4 mL glycerol dissolved in distilled water to a final 

volume of 1000 mL. These are sterilized by autoclaving and stored at room temperature. 

 

Super optimal catabolite repression medium (SOC) 
 
SOC is used for smaller volumes of bacteria, typically for use in plasmid isolation after colony 

PCR. This uses a combination of 2.5g Yeast Extract, 10g Tryptone, 1 mL 5M NaCl, 416 μL 3M 

KCl, 5 mL 1M MgCl2, 5 mL 1M MgSO4 and 495 mL distilled water. This was sterilized by 

autoclaving, cooled and 5 mL of 1M glucose was added prior to storage at 4 oC. 

 
7H9 media 
 
7H9 expression medium uses 4.7 g Middlebrook 7H9 medium powder (Merck) dissolved in 1000 

ml distilled water and autoclaved. Immediately prior to use, 10 ml of 20% (w/v) glucose, 4 ml of 

50% (v/v) glycerol and 2.5 ml of 20% (v/v) Tween 80 were added. 

 
Acetamide solution 
 
A 220X acetamide solution was made using 20g acetamide dissolved in 31 mL water. This was 

filter-sterilized and stored in a 50 mL falcon tube at 4 oC. 

 

SDS-PAGE running buffer 
 
A 10X buffer was made using 151.4g Tris base, 720g Glycine, 50g SDS and distilled water up to 

a 5 L solution.  

 

Coomassie blue safe stain 
 
0.8g Brilliant blue G-250 is added to 500 mL distilled water and dissolved with stirring overnight 

at 4 oC. 34mL of 32% (v/v) HCl is added and the volume was made to 1000 mL with distilled 
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water. The staining solution is stored at 4 oC and protected from light. Increased concentrations 

(0.2-5%) of Brilliant Blue G-250 were made for running Native gels.  

 

Native Gel PAGE de-staining solution 
 
Native de-staining solutions were made with 20% (v/v) ethanol, 5% acetic acid (v/v) and 1% 

glycerol (w/v) in 500 mL distilled water. This was stored at 4 oC. 

 

 

Buffers for protein purification 

 
All buffers were prepared using Mill-Q water from the Mill-Q Millipore system. Buffer pH values 

were measured using a S20-K SevenEasy pH meter from Mettler Toledo. Buffers were filtered 

(0.22 μm membrane filter) and de-gassed before use. See following pages for buffer compositions. 

Compositions are mostly taken from a previous study conducted at the same institute 

(Anandhakrishnan, 2013). The # symbol by a component indicates it should be added just prior to 

use. 
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