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Abstract

Galaxy spectra are a useful diagnostic tool that can be used to reveal the

intrinsic properties of galaxies, such as their star formation rate and stellar

mass, along with the conditions in the interstellar medium. Generally the

computation of the full galaxy spectra within galaxy formation and evolution

models tends to be very time consuming and memory inefficient, so the cal-

culation of spectra is typically only done in post-processing for a subset of

model galaxies (e.g. Trayford et al. 2017, Cowley et al. 2018). Upcoming sur-

veys will measure tens of millions of spectra (e.g., Euclid (Laureijs et al. 2011)

and the Dark Energy spectroscopic Instrument (DESI; Levi et al. 2019)). To

exploit these data, theoretical models need to be able to predict spectra to

connect more closely with these surveys. In this thesis, we aim to reduce the

computational expense when calculating galaxy spectra by applying principal

component analysis (PCA) to the spectral energy distributions of simple stel-

lar populations (SSPs). We consider different star formation histories and

different matallicities. As a result, we find that the dimensionality of the SSP

spectra can be reduced by a factor of ∼50 whilst there is only a small loss in

accuracy (∼1 - 5%) of the reconstructed spectra. Moreover, we find that this

loss in accuracy is negligible when computing broadband magnitudes (� 1%).

Our results suggest that this calculation method may be a plausible way to

predict spectra for all the galaxies in the output of a semi-analytical model

covering a cosmological volume (e.g. GALFORM ; Cole et al. 2000).

Supervisors: Prof. Carlton Baugh and Dr. Peder Norberg

i



Acknowledgements

I would like to sincerely thank my supervisor, Prof. Carlton Baugh, for the end-
less encouragement, guidance, and valuable time he has given me throughout this
research. I am also very grateful to Dr. Peder Norbergfor sharing his ideas and
suggestions of computing technique. The opportunity to work with them is one of
the greatest opportunities I have ever been given.

Moreover, I would also like to thank Dorothy Jenkins and my friends, Bingchao
Wang, Xiao Jin, and Maura Ramirez-quezada for their mental supports during the
pandemic lockdowns.

I acknowledge the financial, academic, and technical support from the Royal
Thai Government Scholarship.

At last but not least, I thank my family from across the sea for their love,
support, and belief.

ii



Contents

Declaration v

List of Figures vi

List of Tables ix

List of Acronyms x

1 Introduction 1

1.1 The spectral energy distribution . . . . . . . . . . . . . . . . . . . . 2

1.2 An Overview of the Theory of Galaxy Formation . . . . . . . . . . . 4

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Stellar Population Synthesis 9

2.1 The Simple Stellar Population . . . . . . . . . . . . . . . . . . . . . . 11

2.2 The Composite Stellar Population . . . . . . . . . . . . . . . . . . . 16

3 Principal Component Analysis 20

3.1 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . 20

3.2 The Derivation of Principal Component Analysis . . . . . . . . . . . 23

3.3 Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 The Criteria for Choosing the Number of Principal Components . . 27

iii



3.5 Application of PCA to Spectra . . . . . . . . . . . . . . . . . . . . . 28

4 Results I: The PCA of Simple Stellar Populations 30

4.1 Data Preparation of the Simple Stellar Population Spectra for PCA 30

4.1.1 The LP -norm Normalisation of Spectra . . . . . . . . . . . . 32

4.1.2 The Logarithm of Spectra . . . . . . . . . . . . . . . . . . . . 33

4.1.3 Comparison Between Different Normalisation Techniques . . 33

4.2 Principal Component Analysis of a Fixed Metallicity Simple Stellar

Population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 The Solar Metallicity SSP: PCA applied to the whole wavelength

range at once . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.2 The Solar Metallicity SSP: PCA applied to distinct wavelength

ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Principal components of the SEDs of the Simple Stellar Populations

With Varying Age and Metallicity . . . . . . . . . . . . . . . . . . . 43

4.3.1 Sample Size of the Simple Stellar Population SEDs . . . . . . 43

4.3.2 Simple Stellar Population SEDs Reconstruction . . . . . . . . 44

5 Results II: The Composite Stellar Population from PCA 50

5.1 Calculating the composite stellar population using PCA . . . . . . . 50

5.2 The Photometry of the PCA CSP . . . . . . . . . . . . . . . . . . . 53

6 Conclusions and Future Work 59

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Appendix A Metallicity Evolution 63

Bibliography 66

iv



Declaration

The work in this thesis is based on research carried out between 2019 and 2020
while the author was a research student under the supervision of Prof. Carlton
Baugh and Dr. Peder Norberg in the Institute for Computational Cosmology,
Department of Physics, University of Durham, England. No part of this thesis has
been submitted elsewhere for any other degree or qualification.

Copyright © 2020 by Suttikoon Koonkor.

“The copyright of this thesis rests with the author. No quotation from it should
be published without the author’s prior written consent and information derived
from it should be acknowledged”.

v



List of Figures

1.1 Spectra of different types of galaxies . . . . . . . . . . . . . . . . . . . . 3

1.2 A schematic overview of GALFORM . . . . . . . . . . . . . . . . . . . . 7

2.1 Overview of the stellar synthesis technique used in the FSPS model . . 10

2.2 The spectral energy distributions of simple stellar populations . . . . . . 11

2.3 A schematic evolution of a solar mass star . . . . . . . . . . . . . . . . . 14

2.4 Evolutionary track and Isochrone from MIST . . . . . . . . . . . . . . . 14

2.5 The star formation history of the tau model with different tau values . . 16

2.6 The composite stellar populations . . . . . . . . . . . . . . . . . . . . . 18

2.7 A comparison between the direct CSP calculation from FSPS code and

our method with different time bins . . . . . . . . . . . . . . . . . . . . 19

3.1 Visualisation of 150 iris flowers . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 First and second principal components of the iris data set . . . . . . . . 23

4.1 Comparison between non-scaled and scaled SSP SEDs . . . . . . . . . . 31

4.2 Comparison between different normalisation techniques . . . . . . . . . 34

4.4 The explained variances and the explained variance ratios captured by

the first 10 principal components . . . . . . . . . . . . . . . . . . . . . . 36

4.3 The principal components of SSP SEDs applied with the whole spectral

range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

vi



4.5 The SED reconstruction of the solar metallicity SSPs with 3 components

at different ages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.6 The distribution of the reconstruction error . . . . . . . . . . . . . . . . 40

4.7 The distribution of the reconstruction error computed separately in 3

different bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.8 The SED reconstruction of the solar metallicity SSPs using the PCA of

separate bands at ages of 0.2 and 10 Myr . . . . . . . . . . . . . . . . . 41

4.9 The SED reconstruction of the solar metallicity SSPs using the PCA of

separate bands at the age of 1.0 and 19.95 Gyr . . . . . . . . . . . . . . 42

4.10 The principal components of SSP SEDs in UV . . . . . . . . . . . . . . 45

4.11 The principal components of SSP SEDs in IR . . . . . . . . . . . . . . . 46

4.12 The principal components of SSP SEDs in IR . . . . . . . . . . . . . . . 47

4.13 The SED reconstruction of the solar metallicity SSPs using the PCA of

separate bands at the age of 10 Myr, 1.0 Gyr, and 19.95 Gyr . . . . . . 48

4.14 The SED reconstruction of the solar metallicity SSPs using the PCA

applied in separate wavelength bands at ages of 10 Myr, 1.0 Gyr, and

19.95 Gyr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.15 The distribution of the reconstruction error of the SSPs with different

ages and metallicities computed separately in 3 different bands . . . . . 49

5.1 The CSP SEDs at 0.1 and 1 Gyr . . . . . . . . . . . . . . . . . . . . . . 52

5.2 The CSP SEDs at 5 and 137 Gyr . . . . . . . . . . . . . . . . . . . . . . 52

5.3 The transmission curves of SDSS filters and some of the NIRcam filters

from the JWST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4 The Color Magnitude Diagram of the Model Galaxies Compared to the

SDSS DR7 cataloque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.1 The star formation history and the chemical evolution . . . . . . . . . . 64

6.2 The CSP SED at the age of 13.7 Gyr with τ = 1 Gyr and the metallicity

changes from log(Z/Z�) = −2.5 to 0.5 . . . . . . . . . . . . . . . . . . . 65

vii



6.3 The CSP SED at the age of 13.7 Gyr with τ = 1 Gyr and the metallicity

changes from log(Z/Z�) = −2.5 to −1.0 . . . . . . . . . . . . . . . . . . 65

viii



List of Tables

2.1 Summary of FSPS model ingredients used in this study . . . . . . . . . 15

3.1 Iris Flower Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 The explained variance of the first 10 principal components . . . . . . . 36

4.2 Summary of the parameter grids for computing the SSPs . . . . . . . . 43

5.1 The percentage errors of the PCA CSPs in different SDSS filters com-

pared to the direct CSPs (the numbers inside the bracket for the half-

solar metallicity CSPs). . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 The percentage error of the PCA CSPs in different bands compared to

the direct CSPs for JWST NIRCam filters. . . . . . . . . . . . . . . . . 56

ix



List of Acronyms

AGB Asymptotic Giant Branch

AGN Active Galactic Nuclei

CDM Cold Dark Matter

CMB Cosmic Microwave Background

CSP Composite Stellar Population

FSPS Flexible Stellar Population Synthesis Fortran library

IMF Initial Mass Function

NN Neural Network

PCA Principal Component Analysis

SED Spectral Energy Distribution

SFH Star Formation History

SFR Star Formation Rate

SPS Stellar Population Synthesis

SSP Simple Stellar Population

x



Chapter 1

Introduction

Galaxy spectra are a useful diagnostic tool that can be used to reveal the intrinsic

properties of galaxies, such as their star formation rate and stellar mass, along

with the conditions in the interstellar medium. Following on from the Two-degree-

Field Galaxy Redshift Survey (2dfGRS; Colless et al. 2001) and the Sloan Digital

Sky Survey (SDSS; York et al. 2000), upcoming wide field surveys will measure

tens of millions of spectra (e.g. Euclid: Laureijs et al. 2011; The Dark Energy

Spectroscopic Instrument (DESI): Levi et al. 2019). To be able to connect more

closely with these surveys, and to exploit the wealth of information contained in

these observations, theoretical models need to be able to predict spectra. This will

allow the model galaxies to be selected in as similar a way as possible to the selec-

tion of the observed galaxies, allowing us to build more realistic mock catalogues.

Currently, galaxy formation models typically do not predict spectra directly. They

predict the inputs needed to calculate the full spectral energy distribution, such as

a galaxy’s star formation history and its chemical evolution. However, the compu-

tation of spectra tends to be very time consuming and is only done for a subset

of the model galaxies in post-processing (e.g. Trayford et al. 2017; Cowley et al.

2018). The objective of this thesis is to explore a fast way to add spectra to the

model predictions for all galaxies as the model is running.

In this Introduction, we explain why the spectral energy distribution of a galaxy

1



1.1. The spectral energy distribution

is an interesting property to output, and we give a brief overview of galaxy form-

ation models. Our framework can be implemented into these models; however, to

speed up the development of the code, rather than run a full galaxy formation

model we have used a simple parametric form for the star formation history of a

galaxy and have made simple assumptions about how the metallicity of the star

forming gas changes with time. The implementation of the code into a full model

of galaxy formation is left for future work.

1.1 The spectral energy distribution

The spectral energy distribution of a galaxy records the flux emitted as a function

of wavelength. Different components of the galaxy contribute: i) stars, ii) clouds

of hydrogen ionised by energetic photons produced by massive young stars, called

HII regions, iii) dust within the galaxy, iv) accretion on to a central supermassive

black hole.

Fig. 1.1 shows the UV-to-NIR spectra of different types of galaxies. Moving

from ellipticals (E, top) to late-type spirals (Sa-Sc; lower spectra), the continuum

becomes bluer, with more photons emitted at short wavelengths, and the emission

lines becomes systematically stronger. This sequence is approximately one of in-

creasing star formation activity as we move down from the top. For early-type

galaxies, which lack hot, massive young stars because they have little or no recent

star formation, most of the light emerges at long wavelengths and the spectrum

shows a small amount of light at wavelengths shorter than 4000Å and there are no

emission lines. On the other hand, late-type galaxies and starbursts, which do have

ongoing star formation emit more light in the blue and near-ultraviolet; this light is

dominated by hot, massive young stars which have short lifetimes. Because of this

the interstellar medium also gets heated and is ionized by the Lyman continuum

photons giving rise to strong emission lines (see Byler et al. 2018). The 4000Å

feature arises in old stellar populations due to the CaII (K, H) absorption features

2



1.1. The spectral energy distribution

Figure 1.1: The UV-to-NIR spectra of different galaxy types from ellipticals to late-spirals
and starburst. The emission and absorption lines (with the associated wavelengths) are
shown and labeled by the vertical lines. The spectra are offset in amplitude for clarity. See
text for details. Figure taken from Mo et al. 2010.

and other absorption lines. This feature is apparent as a drop in the Elliptical

spectrum continuum, which becomes less pronounced moving down the spectra in

the figure, as the stellar populations become progressively younger.

The stellar spectrum is attenuated by the dust grains, with the radiation that

is absorbed being re-radiated at longer wavelengths. We do not consider the dust

emission spectrum further in this thesis. We also do not consider emission lines

3



1.2. An Overview of the Theory of Galaxy Formation

in the galaxy spectra further. Finally, we do not consider the contribution to a

galaxy’s SED from an nuclear activity. Instead we focus on the simplest prediction

made by stellar population synthesis models (see Chapter 2); the stellar emission.

We will consider the effects of the age and metallicity of the stellar population on

the appearance of the spectrum in the next chapter.

1.2 An Overview of the Theory of Galaxy Formation

Whilst this thesis is not about the physics of galaxy formation, and we do not

implement our code into a physical model at this point, here, for completeness we

give a brief overview of galaxy formation modelling.

Modern galaxy formation theory is based on the hierarchical structure form-

ation paradigm, in which small fluctuations in density, seeded during inflation,

are amplified by gravity and grow into galaxies and groups and clusters of galaxies.

The standard cosmological model, Λ cold dark matter (ΛCDM), is well constrained

and supported by many observations including the temperature fluctuations of the

cosmic microwave background (CMB) radiation (e.g. Komatsu et al. 2011; Planck

Collaboration et al. 2018), the magnitude-redshift relation of Type Ia supernovae

(e.g. Kowalski et al. 2008), and the large-scale structure of the Universe as meas-

ured by spectrocopic galaxy surveys of large scale structure (e.g. Cole et al. 2005;

Eisenstein et al. 2005; Percival et al. 2007a; Reid et al. 2010)∗. The standard

ΛCDM universe contains two forms of energy-density. The first is dark energy that

makes up the highest portion of the universe, accounting for about 68 percent of

the total energy density today. And the rest is matter (dark matter (DM) and

baryonic matter). The dark matter is referred to as non-relativistic (cold) colli-

sionless particles that mainly interact through gravitation. The DM makes up 27
∗We note that the model has been challenged by observations on small scales, such as the

abundance and structure of satellite galaxies. Various solutions have been proposed, which include
considering the impact of baryonic physics (see Weinberg et al. 2015 for a review).
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1.2. An Overview of the Theory of Galaxy Formation

percent of the universe. The remaining 5 percent is baryonic matter, namely the

atoms that produce all of the light we can observe in the universe.

The basic theory behind how galaxies form and evolve in the hierarchical struc-

ture formation paradigm has been well established for many decades (Rees and

Ostriker 1977; White and Rees 1978; White and Frenk 1991). Current models

of galaxy formation typically follow the following processes: (i) Gravity - Grav-

ity plays an important role in constructing the foundation for galaxy formation

through the formation and merging of dark matter halos; (ii) Hydrodynamics

and Thermal evolution - When gas and dark matter collapse in an over-dense

region, the entropy and temperature of the gas can be increased by strong shocks.

Then the formation of galactic disks is determined by how efficiently the gas can

cool and radiate away the thermal energy; (iii) Star formation - in galaxy disks

and in starbursts; (iv) Feedback - includes the effects due to supernovae, act-

ive galactic nuclei (AGNs), photo-ionization of the intergalactic medium (IGM);

(v) Galaxy mergers - that can trigger starbursts and lead to the formation of

spheroids from the effect of dynamical friction; spheroids can also form when disks

become dynamically unstable, leading to bar instabilities that transfer material

to the centre of the galaxy, possibly triggering a star burst – these events can be

triggered by perturbations due to the presence of satellite galaxies; (vi) Stellar

population synthesis and chemical evolution; this step allows us to make

direct comparisons between models and observations by combining the predicted

star formation histories and chemical evolution with a stellar population synthesis

model.

There are two broad types of physical models of galaxy formation: gas simu-

lations and semi-analytics. The first approach is the most explicit way to model

galaxy formation by using numerical hydrodynamic techniques to solve the equa-

tions of gravity, hydrodynamics, and thermodynamics of particles and/or grid cells

that represent dark matter, gas, and stars. On the other hand, the other technique,

semi-analytic modelling (SAM), has been widely used to model galaxy formation.

5



1.2. An Overview of the Theory of Galaxy Formation

This approach does not explicitly solve fundamental equations for particles or grid

cells, but adopts a set of simplified equations instead and, in general, requires

stronger approximations and assumptions to be made than in the case of gas simu-

lations. In both cases, some physical processes remain "sub resolution" or "sub-grid"

or simply, we do not know the correct equations to describe them – in these cases,

both approach resort to "semi-analytic" approaches with parameters. As these two

approaches make different assumptions and approximations, our focus here is not

on the details of these models, but on trying to extend the functionality of the

models by allowing a direct prediction of the SED. For a more detailed discussion

of the two different approaches see Baugh (2006); Somerville and Davé (2015).

To make direct comparisons between models and observations, implementing

a stellar population synthesis model directly into a galaxy formation model to

compute the full spectrum can be computationally expensive when one attempts

to calculate the SED for every single galaxy in the model. Currently, GALFORM

pre-processes the output of the stellar population synthesis model to tabulate the

mass-to-light ratios in a set of specified filters. The overall mass-to-light ratios in

each band are computed for the composite stellar population, then multiplied by

the stellar mass of the galaxy to obtain the magnitude in each band. If a magnitude

is required in a different band, GALFORM has to be re-run. This approach has the

advantage that only a few numbers have to be stored - the mass-to-light ratios in

the bands. On the other hand, the full spectrum consists of more than a thousand

wavelength bins. Therefore, in general, galaxy formation models do not provide

galaxy spectra in their standard output. Instead, a subset of the model galaxies

is selected in some way from the full model output to be a sample set to calculate

the SEDs by using a post-processing calculation (e.g. Cowley et al. 2018; Trayford

et al. 2017).

Even though a small sample of the models galaxy of ∼ 105 galaxies out of

millions galaxies is selected, the calculation time for the SED calculations by coup-

ling the GALFORM with the full output of a stellar population synthesis model

6



1.3. Thesis Outline

Figure 1.2: The schematic overview of GALFORM. The main objective of this study is to
calculate galaxy SEDs, which is highlighted in green rectangle. Figure adapted from Cole
et al. 2000.

GRASIL (Silva et al. 1998) is an significant computational overhead (Cowley et al.

2018). Therefore, the aim of this study is to reduce the computational expense of

the calculation of spectra, which is highlighted in the green rectangle in Fig. 1.2.

1.3 Thesis Outline

In this thesis, we aim to reproduce galaxy spectra using PCA. The structure of the

remainder of the thesis is as follows. In Chapter 2, we review how the spectrum

of a model galaxy can be computed using a stellar population synthesis model.

In Chapter 3, we give an overview of the mathematical background of PCA and

describe how we can use it to reduce the dimensionality of the galaxy spectra. In

7



1.3. Thesis Outline

Chapter 4, we discuss the effect of the scaling the spectra on the performance of

the PCA for spectral reconstruction (§4.1). Then we show the result of applying

PCA to simple stellar populations with a fixed metallicity and different ages (§4.2).

We apply the PCA to a 2D-grid of simple stellar populations with both age and

metallicity varying in §4.3. In that Chapter we also show how the number of

principal components is chosen based on the error in the SED reconstruction. In

Chapter 5, we calculate the SED of a composite stellar population by using the

combination of a parametric star formation history and the PCA spectra of the

simple stellar population (§5.1). We also calculate the photometry of the composite

stellar population obtained from the PCA approach and compare the result to the

color-magnitude diagram observed for local galaxies to determine a realistic star

formation history. Finally, Chapter 6 provides the conclusions of this study and

gives suggestions for future work.

8



Chapter 2

Stellar Population Synthesis

In studying the formation and evolution of galaxies, stellar population synthesis

(SPS) is the tool that allows us to build a spectrum for a model galaxy. It is a

technique to model the spectophotometric properties of stellar populations using

the understanding of the evolution of stars. In this chapter we will briefly discuss

the history of the SPS technique, then provide an overview of the ingredients

of these models (Fig. 2.1), show some basic features of SSPs (§2.1), and finally

introduce the idea of composite stellar populations and how it is calculated (§2.2).

Stellar population synthesis (sometimes referred to as evolutionary population

synthesis e.g., Maraston 1998) modeling has a rich history. It was pioneered by

Tinsley (1968). This approach provides an analytical method to predict the spec-

trum of a stellar population by assuming a star formation history and an initial

mass function that stars are produced with, combined with the evolution of a star

at different stages on the Hertzprung-Russell (HR)-diagram, which is governed by

its mass. The population synthesis technique was developed substantially through-

out the 1980s and 1990s (e.g., Tinsley and Gunn 1976; Bruzual A. 1983; Bruzual

A. and Charlot 1993; Worthey 1994; Leitherer et al. 1999).

Nowadays, there are several popular SPS models available e.g., Silva et al.

1998, GRASIL; Bruzual and Charlot 2003, BC03 ; Maraston 2005, Ma05 ; Conroy

and Gunn 2010, FSPS . We do not aim to compare the differences between SPS

9



2. Stellar Population Synthesis

models in this study. For readers who are interested in this, see Conroy and Gunn

(2010); Chen et al. (2010); Baldwin et al. (2018).

Figure 2.1: Overview of the stellar synthesis technique used in the FSPS: a) The top three
panels show the main ingredients for constructing simple stellar populations (SSPs) in-
cluding, from left to right, the stellar initial mass function (IMF), isochrones, and stellar
spectra. b) The middle three plots show the key components of composite stellar popula-
tions (CSP), which include star formation histories (SFHs) and chemical evolution, SSPs,
and dust attenuation and emission. c) The final result, the CSP showing stellar emission
only (dust-free) and including the effects of dust (dusty). Figure taken from Conroy (2013).

10



2.1. The Simple Stellar Population

2.1 The Simple Stellar Population

a ) solar-metallicity SSPs at different ages b ) SSPs with different metallicities

Figure 2.2: a) The spectral energy distributions of a simple stellar population with solar
metallicity, Z�, at different ages (in Gyr). b) The spectral energy distributions of simple
stellar populations with different metallicities at a fixed age of 1.0 Gyr (Solid line in colors)
compared with the solar-metallicity simple stellar population at 13.7 Gyr (black dashed
line). Both examples are predicted by using the FSPS model with a Kroupa IMF.

Fig. 2.2a shows the spectral energy distributions (SEDs) of simple stellar popu-

lation (SSP) with a fixed solar metallicity at different ages and Fig. 2.2b shows the

SEDs of simple stellar population at age 1.0 Gyr with different metallicities. The

evolution of the simple populations can be understood by comparing the SEDs.

At a very young age (< 1 Myr), the SED displays lots of emission in the UV be-

cause the blue main sequence stars that have high effective temperatures emit light

strongly in the UV region. At about an age of few tens Myr, the most massive

stars have evolved to become red supergiants. The death of the most massive stars

causes a huge drop in the UV and a rise in the importance of the near-IR. The

UV flux continues to drop during about 0.1 to 1 Gyr, but near-IR flux remains

high because lower mass stars evolve to the asymptotic giant branch (AGB) phase.

After that, red giant branch stars are the main contributors in the near-IR at a few

Gyr. From the SEDs, there is remarkable rise in the UV at very old ages which is

11



2.1. The Simple Stellar Population

the effect of low-mass stars evolving into post-AGB phase.

The evolution of a star also depends on its chemical composition; stars with

higher metallicities evolve faster than low-metallicity stars. As shown in the right

hand side of Fig. 2.2, a high-metallicity population at age 1 Gyr (red solid SED

curve) looks similar to a very old age solar-metallicity population at age 13.7 Gyr

(black dashed curve).

We have provided examples of the SED evolution of stellar populations above.

To understand the evolution of a stellar population and to understand how is SED

is computed, we consider the simplest case in which all stars in the population begin

to evolve at the same time without any change in metallicity and no subsequent star

formation, i.e. the simple stellar population. The key ingredients of constructing

an SSP are an initial mass function (IMF), isochrones, and stellar spectral libraries

(more details see Conroy, 2013, Section 2.1). These ingredients are listed below.

• The Initial Mass Function (IMF): gives the mass distribution of stars

at their birth. The IMF of the Milky Way (MW) was established using the

observational data by Salpeter (1955) to have the form of a power law

N(M)dM ∝M−x (2.1)

with x = 2.35 for masses greater than ∼ 0.5M�. Later works (e.g. Kroupa

2001 and Chabrier 2003) found that the Salpeter IMF overestimated the dis-

tribution of low-mass stars in the MW. A piece-wise power-law IMF was then

proposed to lower the slope for low-mass stars with x = 1.3 at M < 0.5M�

and x = 2.3 at M ≥ 0.5M�. Usually in galaxy formation models or stellar

population synthesis models, the form of IMF is incorporated universally (in-

dependently of star formation history, morphology, metallicity, etc.). Even

though the IMF affects the stellar mass-to-light ratio, the rate of luminos-

ity evolution, and the shape of simple and composite stellar populations,

our work does not aim to consider the effect of different forms of the IMF.

12



2.1. The Simple Stellar Population

Throughout this study we use the Kroupa (2001) form. For a further discus-

sion about the variation of the IMF in massive early-type galaxies, see the

recent review by Smith (2020).

• Isochrones: The evolution of a star is almost determined by its initial (zero-

age main sequence) mass and chemical composition. By probing the two most

important properties of a stars which are the effective temperature, Teff , and

the luminosity, L, the evolution of the star can be represented in the Teff −L

plane. As the Teff and L are also related to the color (e.g. B-V) and absolute

magnitude of a star, the evolutionary tracks of stars can be plotted on sa

diagram called the Hertzsprung-Russell (HR) diagram. Figure 2.3 shows an

illustration of the different evolutionary phases of a solar-mass star on the

HR diagram.

An isochrone then provides the same content as the evolutionary track, but

instead of tracking stellar parameters as a function of age, it connects the

parameters of different masses at the same age (see Figure 2.4a and Figure

2.4b). Figure 2.4 shows the stellar evolutionary tracks and the isochrones of

stars with masses from 0.1 to 100M� at different ages from 105 to 1010 years.

Isochrones are usually constructed by calculating the stellar evolution from

the hydrogen burning limit (≈ 0.1M�) to the maximum limit (≈ 100M�)

depending on the model.

• Stellar Spectral libraries: To convert a model of stellar evolution into an

observable SED, the stellar spectra of a specific metallity associated with the

surface gravity and the effective temperature of stars in the population are

required. There are 2 different approaches to obtain the stellar spectrum.

The first is to use Empirical Spectra. An empirical library is based on

observations of stars in the solar neighbourhood. An accurate spectrum is

available for a star with the measured absolute magnitude, effective temper-

ature and metallicity. Then the spectrum of a star with given a metallicity

13



2.1. The Simple Stellar Population

Figure 2.3: A schematic evolutionary track of a solar-mass star on the HR diagram. Figure
taken from Carroll and Ostlie (1996).

a ) Evolutionary Tracks b ) Isochrones

Figure 2.4: a) The evolutionary tracks of solar-metallicity stars with different masses. b)
The plot shows the isochrone of stars with the same physical properties as shown on the
left, but rather than tracking stars of a common mass, the isochrone connects stars with
the same age instead. The data used in these plots are taken from Choi et al. (2016).

and effective temperature can be calculated by interpolation. One of the first

comprehensive observational spectral libraries was provided by Gunn and

Stryker (1983). (For more details, e.g. current optical libraries see Yan and

MaStar Team, 2017, Table 1.)

The second approach is to use Theoretical Spectra. The advantage of the
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2.1. The Simple Stellar Population

theoretical library is the broader coverage of parameter space and improved

spectral resolution compared to the empirical one. A synthesis spectrum is

calculated from the input atomic and molecular parameters and assumptions

of the stellar atmosphere. For further discussion and a list of the libraries

available see e.g. Conroy 2013, Section 2.1.3 and Mo et al. 2010, Section

10.3.1.

As we have provided the definition and an overview of the three SPS ingredi-

ents, we list the choice used in this study in Table 2.1 below.

SPS Ingredients Model used in this study
IMF Kroupa IMF:

x = 1.3 at M < 0.5M�
x = 2.3 at M > 0.5M�

(Kroupa, 2001)
Isochrone MIST:

−2.5 ≤ log[Z/Z�] ≤ 0.5 with Z� = 0.0142
5 ≤ log(Age/yr) ≤ 10.3

0.1 ≤M/M� ≤ 300
(Choi et al., 2016)

Spectral Library MILES empirical spectral library
(Sánchez-Blázquez et al., 2006)

Table 2.1: The summary of the SPS model ingredients used in our study. For the coverage
of the MILES library see Figure 2 of Conroy 2013.

The SED of a simple stellar population given its age and metallicity, LSSPλ (t, Z),

can be constructed by combining these three ingredients as follows:

LSSPλ (t, Z) =
∫ mup(t)

mlo

Lstarλ [Teff (M, t, Z), L(M, t, Z)]Φ(M)dM, (2.2)

where Lstarλ is a stellar spectrum from the stellar spectral library determined by

the effective temperature (Teff ) and the bolometric luminosity (L) of a star with

mass M and metallicity Z, Φ(M) is the IMF, and M is the initial stellar mass.

The lower limit of integration, mlo is generally referred to the hydrogen burning

limit and the upper limit mass is more uncertain and typically take to be of the

order 100M�.
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2.2. The Composite Stellar Population

2.2 The Composite Stellar Population

In reality, a galaxy (i.e. a population of stars mixing with cold gas, nebulae, AGNs

etc.) is more complicated than the single-metallicity coeval stellar population that

we have described in Section 2.1. Stars in a galaxy are produced at different times

with the rate of star formation which is described by the star formation history

(SFH).

Figure 2.5: The star formation history of the tau model with different tau values (see
Equation 2.5)

When stars die out, they leave behind stellar remnants. They produce winds

ejecting mass and metals as they evolve. This can change the composition of the

next generation stars. Moreover, a galaxy is mixed with stars and dust together.

An observed SED of a real galaxy, therefore, must be more complex. To understand

the stellar component of a galaxy SED, we consider composite stellar populations

(CSPs) which differ from simple populations in three respects: (1) stars in a CSP

have a range of ages given by the star formation history (SFH); (2) they contain

stars with different metallicities described by their time-dependent metallicity dis-
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2.2. The Composite Stellar Population

tribution function P (Z, t); and (3) the stars are produced in regions that contain

dust (Conroy, 2013).

In Section 2.1, we have provided an overview of SSPs which are the building

blocks for composite stellar populations. A composite population can be com-

puted by combining each building block using the star formation history, chemical

evolution, and dust in the following way:

LCSP (t) =
∫ t

t′=0

∫ Zmax

Z=0

[
SFR(t− t′)P (Z, t− t′)LSSP (t′, Z)fdust,abs + fdust,em

]
dt′dZ,

(2.3)

where t′ and Z are the integration variables referring to the population age and

metallicity, respectively. The dust absorbs starlight, particularly at short wavelengths,

and as a result the dust gets heated and can reradiate the energy at longer wavelengths

(see the plots on the left in Fig. 2 from Cowley et al. 2018 for example). The model

of dust absorption and emission can be added to the SPS as fdust,abs and fdust,em

in Equation 2.3.

Despite the fact that the light propagating through the geometry of a galaxy is

affected by dust which is mixed within the galaxy, we do not aim to take the account

of dust in this study as we can deal with its effect separately, in post-processing.

Moreover, we only consider simpler populations for which a single metallicity is as-

sumed for the entire composite stellar population. Therefore Equation 2.3 becomes

much more simple as

LCSP (t) =
∫ t

t′=0
SFR(t− t′)LSSP (t′, Z)dt′. (2.4)

Even though the SFH obtained from a galaxy formation simulation can be

very complicated (e.g. see Fig. 2 of Cowley et al. 2018), a simpler SFH are usually

assumed in inferring the galaxy properties (e.g. Mitchell et al. 2013; Simha et al.

2014). One of the most popular form of SFH is the delayed exponential SFH,

SFR(t, τ) = t

τ
e−t/τ , (2.5)
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2.2. The Composite Stellar Population

where t is the time that has elapsed since the beginning of the SFH and τ is

the characteristic e-folding timescale, which is a model parameter. This form of

SFH includes an early rising SFR (linear term, t/τ) and a late-time decaying SFR

(exponential term, e−t/τ ) which are the natural consequence of galaxy evolution in

a hierarchical Universe (e.g., high redshift galaxies see Maraston et al. 2010 and

Papovich et al. 2011) and the scenario of a closed-box model (e.g., see Schmidt

1959), respectively.

Despite the apparently poor match between parametric SFHs and the SFH

obtained from a model (see the examples plotted in Baugh 2006), we are not

interested in the precise form of the SFH. We will use a SFH of the form of a

tau model with different tau values for computing the composite stellar population

(§5) in this work, as eventually this will be replaced by the one calculated by

GALFORM. By using a parametric form for the SFH, the development of our

PCA code is greatly sped up.

Figure 2.6: The SED of a solar-metallicity composite stellar populations viewed at an age
of 13.7 Gyr, computed for different τ values, the same as those plotted in Fig. 2.5.
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2.2. The Composite Stellar Population

The synthesis model outputs a finite number of SSPs. SSPs can then be gen-

erated at output times that are not on the original grid using interpolation. We

can change the form of Eq. 2.4 from an integration to a summation as

LCSP (tage) =
ntage∑
i=1
LSSP,i wi, (2.6)

where tage is the age of the CSP, ntage is the index of the oldest SSP (i.e. the index

that corresponds to the age of the CSP) and wi is the SFH weight of the SSP which

is defined as wi =
∫ ti
ti−1

SFR(ti − t′)dt′/
∫ tage

0 SFR(tage − t′)dt′.

We found good agreement with the calculation made by FSPS when we apply

1600 bins in the CSP calculation. Fig 2.7 shows a comparison between a CSP

computed directly from the FSPS code and our calculation. The sense of error

when comparing the result from the calculation and the expectation is that a

positive error refers to the overprediction whilst the underprediction is shown by

a negative value and this sense will be applied throughout the thesis. Hence this

number of age bins will be used in all CSP calculations in this study.

Figure 2.7: Top left: A comparison between the CSP calculation direct from FSPS code
(blue line) and the calculation by using Equation 2.6 (red and green lines). Green line
represents the CSP calculated by using 1600 age bins. Top right: The zoom-in spectrum
on 3000 - 5000 Å spectrum shown as a rectangular area on the left plot. The bottom panels
show the percentage error of the CSP spectra compared to the direct FSPS code.
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Chapter 3

Principal Component Analysis

A galaxy spectral energy distribution (SED) typically consists of thousands of

pieces of information when expressed as a function of wavelength. This can be

condensed into a few numbers by measuring spectral features, such as the 4000

Angstrom break, or by sampling the spectrum using broad band filters, which

can in turn be related to intrinsic galaxy properties (e.g. Kauffmann et al. 2003,

Gallazzi et al. 2005). It is obviously complicated to make use all of the information

contained in a galaxy SED as it consists of a vast amount of data. On the other

hand, some important information stored in a galaxy SED may be lost when the

full SED is replaced by “summary” statistics or measurements. In this chapter we

will introduce a data compression technique called principal component analysis

(hereafter, PCA) and provide a detailed mathematical overview. Finally we will

show how we can reduce the dimensionality of galaxy SEDs by using PCA, whilst,

at the same time, retaining the full information in the SED.

3.1 Principal Component Analysis

Principal component analysis (PCA) is a well known statistical technique that

has been proven to be useful for dealing with high dimensional data in astronomy

(see e.g. Connolly et al. 1995 and references therein) and it will be the main

mathematical tool used throughout this study.
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3.1. Principal Component Analysis

Figure 3.1: The scatterplot of the iris flower data set Fisher 1936 comparing measurements
of different properties. The three different types of iris flowers including Setosa, Versicolor,
and Verginica are shown as red, green, and blue dots, respectively. The data used in this
plot are from Table 3.1.

PCA is an unsupervised technique used to reduce the dimensionality of data

sets. It defines a new set of uncorrelated axes and reorders their importance ac-

cording to the amount of variance along each of the new axes. Once the new set

of axes is specified, the original data can be mapped onto it. We demonstrate

the application of the PCA technique using a well known classification example

called the Iris flower data set (Fisher, 1936). This catalogue of iris flowers contains

150 examples of three related iris flower species. Each entry is described by four

characteristics (i.e. features) including sepal length, sepal width, petal length, and

petal width as shown in Table 3.1.

Each sample in the original iris data set can be described as a vector in a 4

dimensional space as

~xi = Aiê1 +Biê2 + Ciê3 +Diê4, (3.1)

where Ai, Bi, Ci, and Di represent, respectively, the values of measurements
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3.1. Principal Component Analysis

Sepal Length Sepal Width Petal Length Petal Width label
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
...

...
...

...
...

...
51 7.0 3.2 4.7 1.4 versicolor
52 6.4 3.2 4.5 1.5 versicolor
53 6.9 3.1 4.9 1.5 versicolor
...

...
...

...
...

...
148 6.5 3.0 5.2 2.0 virginica
149 6.2 3.4 5.4 2.3 virginica
150 5.9 3.0 5.1 1.8 virginica

Table 3.1: The iris flower data set containing 150 samples of three related species. All
features including sepal length, sepal width, petal length, and petal width are measured in
centimetres.

ê1, ê2, ê3, and ê4 of the sample i as indicated in Table 3.1. Plotting all four

features in the same figure is very complicated. However, we can visualise the

scatter between any pair of features in the scatterplot and label each species of iris

flower in a different colour as shown in Fig. 3.1. From the data set, we may wish to

classify the species of iris flowers on the basis of their measured properties. Instead

of using all features separately or trying to plot two different features with an ad

hoc selection, we can use PCA to reduce the number of dimensions of the data.

As a result, the iris flowers can be mapped onto new axes defined by the PCA as

x′i = α1,i ~PC1 + α2,i ~PC2, where α1 and α2 are the eigenvalues of the eigenvectors
~PC1 and ~PC2, which are the first and second principal components containing the

highest and second highest variance of the data set. The first two components are

defined in terms of the original vectors as

~PC1 = 0.362ê1 − 0.082ê2 + 0.857ê3 + 0.359ê4,

~PC2 = 0.656ê1 + 0.730ê2 − 0.176ê3 − 0.075ê4.

(3.2)

The projection of the original iris data set onto the first two principal compon-

ents is shown in Fig. 3.2. This plot clearly shows that the transformed data are

separable using only the first two components, so the values of two numbers rather

than the four numbers stored in the original dataset. Then we can identify the
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3.2. The Derivation of Principal Component Analysis

species of the iris flowers by a classification method, e.g. support vector machine

or K-Nearest Neighbours model (which is not covered in this study), which divides

up the space plotted in the left panel Fig. 3.2.

Figure 3.2: Left) The projection of the iris data set onto the first two principal components
defined in Equation 3.2; points are colour-coded by their iris family label. Right) The cu-
mulative fractional variance captured by each principal components. The value of variance
of first two components combined accounts for 97.8 percent of the total variance.

3.2 The Derivation of Principal Component Analysis

The main propose of this study is to reduce the dimensionality of galaxy spectra,

so the notation used in this section will correspond to the structure of the sample

set of galaxy spectra. Consider a set of galaxy SEDs, {xi}, containing N SEDs

with each SED made up of K features (i.e. wavelength bins). We first center the

data on the mean of each bin and write the mean-subtracted data as an N × K

matrix,

X =


· · · x1 · · ·

...

· · · xN · · ·


N×K

−


...

1
...


N×1

[
· · · x̄ · · ·

]
1×K.

(3.3)
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3.2. The Derivation of Principal Component Analysis

We can calculate the covariance matrix of the centered data, SX , by using the

formula

SX = 1
N − 1X

TX, (3.4)

where the term N − 1 is the bias correction arising from the fact the covariances

are derived from the data sample. As mentioned in the description of Fig. 3.2, we

wish to find a projection of the centered data set that points along the directions

of maximal variance. We write the projection of the data as,

Y = XW, (3.5)

where Y is the matrix of the data projected onto a set of new vectors,W , containing

basis vectors, vi.

W =


...

...

v1 · · · vN
...

...


K×N

(3.6)

Each vector vi in matrix W is chosen to be orthonormal i.e. they satisfy

vTi vj =


1 ; i = j

0 ; i 6= j.

(3.7)

The covariance matrix of the projected data is then

SY = 1
N − 1W

TXTXW

= W TSXW.

(3.8)

We can find the first principal component (i.e. the unit vector that points

along the direction of maximal variance) by maximising the variance using the

Lagrangian function. We introduce a new variable, the Lagrange multiplier λ, and

add λ times the constraint equation (i.e. Equation 3.7) to the objective equation

which is the covariance of the projected data, SY , that we want to maximise. The

Lagrangian function used to identify the first principal component is written as

L (v1, λ1) ≡ vT1 SXv1 − λ1(vT1 v1 − 1), (3.9)
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3.2. The Derivation of Principal Component Analysis

where the derivatives with respect to λ and W are

∂L

∂λ1
= vT1 v1 − 1, (3.10)

∂L

∂v1
= 2SXv1 − 2λ1v1. (3.11)

We now can solve the problem above by setting the derivatives to zero and we

obtain

vT1 v1 = 1, (3.12)

SXv1 = λ1v1. (3.13)

The first principal component, v1, satisfies Equation 3.12 as it is chosen to be

an orthonormal basis vector and Equation 3.13 provides the value of λ1 as the

eigenvalue of the covariance matrix.

λ1 = vT1 SXv1 (3.14)

The further principal components can be derived in the same way as the first

one by using the additional constraint which is the orthogonality between different

components (i.e. the case when i 6= j in Equation 3.7). For example, the constraint

term for the second component is λ2(vT2 v2)+2φvT1 v2. By setting the derivative with

respect to v2 to zero, we will see that φ must be zero and we obtain λ2 which is

the second largest eigenvalue associated with the second principal component,

λ2 = vT2 SXv2. (3.15)

From Equation 3.8, the diagonal values of the covariance matrix SY define the

amount of variance contained within each principal component (e.g. λ1 and λ2 for

the first and second components defined in Equation 3.14 and 3.15, respectively).

We can define the set of principal components ordered by the variance they are

responsible for, with the first component having the most variance.
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3.3. Dimensionality Reduction

3.3 Dimensionality Reduction

We have shown that we can find a set of principal components by maximising the

amount of variance contained in the components, and that most of the variance is

naturally contained in the first few components. It follows that we need only retain

the first few components and we can ignore the rest by comparing the cumulative

variance in the retained components to the total variance. We can define the

fraction of the variance, R, as

R ≡
∑m
i=1 λi∑N
j=1 λj

= sum of the first m variances
total variance . (3.16)

Note that one of the limitations of PCA is that there is no prescription for

deciding where to place the cut-off in the retained eigenvectors. This is a subjective

choice.

Each galaxy spectrum, xi, is originally written as a linear combination of vec-

tors corresponding to each wavelength bin and the luminosity in that bin,

xi =
N∑
j=1

Lijej , (3.17)

where Lij represents the amplitude (e.g. luminosity) of each {ei} which are {{1, 0,

0, 0, ...}, {0, 1, 0, 0, ...}, ..., {0, 0, ..., 1}}. The original set of galaxy spectra can

be written in matrix form as

x =


· · · x1 · · ·

...

· · · xN · · ·


N×K

=


L11 · · · L1K

...

LN1 · · · LNK


N×K


...

...

e1 · · · eK
...

...


K×K,

x = LE.

(3.18)

From Equation 3.18, we can readily see that one way to reduce the dimensionality

of the original data is by removing columns in matrix E, by applying some form

of averaging or smoothing, i.e. by integrating over small features (smoothing and

rebinning onto a coarser wavelength grid) or integrating over broad band filters.
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However, this approach ignores some features that may have high variance in the

data set or either may lose low variance features.

The advantage of PCA is that it provides a better means of dimensionality

reduction as the principal components are ordered in terms of how much variance

they account for in the data. To reconstruct the original data set x, we use the

projection in Equation 3.5 and rename the projection matrix Y as the coefficients

or eigenvalues of the principal components α,

α = XW. (3.19)

Finally we are able to reconstruct the zero-centered data matrix X as

[X]N×K = [α]N×K [WN×K ]T (3.20)

As the principal components in W are organised by their importance, the data set

X can be estimated as

[X]N×K = [α]N×m[WK×m]T , (3.21)

where the number of components used, m, is smaller than the original dimension

of the data set, K. To make use of Equation 3.21 in our work, we can rewrite each

reconstructed spectrum at any given wavelength bin, xi(λ) as a linear combination

of the principal components,

xi(λ) ≈ x̄(λ) +
m∑
j=1

αijvj(λ), (3.22)

where x̄(λ) is the mean spectrum, αij is the coefficient of the principal component,

vj(λ) is the principal component vector at the specific wavelength bin λ.

3.4 The Criteria for Choosing the Number of

Principal Components

The number of principal components kept determines how well the reconstruc-

tion process performs. If too few components are retained then the reconstruction
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is inaccurate. On the other hand keeping too many principal components may

introduce noise into the reconstruction, which may not worth increasing the num-

ber of components. The criteria for selecting the maximum number of principal

components to be retained is based on empirical relations derived from different

experiments. A particular choice might arise for a given application (see Jolliffe

1986 for a detailed discussion).

The common choice of the number of principal components to retain is made

using the variance fraction (i.e. Equation 3.16). An “acceptable” threshold value

is set for R such that it captures “most” of the variance in the data set, typically

R = 0.70 to 0.95. In some cases, a substantial number of principal components

may be required to reach the threshold. The change in the gradient of the variance

with number of retained eigenvectors (i.e. the knee in the scree plot, see left plot of

Figure 3.2) could be used instead (Cattell 1966). However, in reconstructing galaxy

SEDs, we place requirements on the accuracy of the reconstructed spectra over the

whole wavelength range rather than the amount variance captured by principal

components. The criteria used in this work will be discussed separately in the next

chapter.

3.5 Application of PCA to Spectra

The PCA technique has been used widely to study spectral classification and to in-

fer physical properties using galaxy spectra (e.g., Connolly et al. 1995; Folkes et al.

1996; Folkes et al. 1996). Madgwick et al. (2003) found that the linear combination

of the first two principal components resulting from an analysis of spectra in the

2dF Galaxy Redshift Survey (2dFGRS) is correlated with morphological type and

has a tight correlation with the star formation rate (e.g. Madgwick et al. 2003

and also Ronen et al. 1999 for a similar result). Chen et al. (2012) used PCA to

estimate the physical properties of galaxies from the Baryon Oscillation Spectro-

scopic Survey (BOSS) and found that 7 principal components provide a good fit to
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the original spectra. Moreover, the prediction of synthetic galaxy spectra from a

population synthesis model can be speeded up by training a neural network (NN)

with the decomposed data from the PCA. Alsing et al. (2020) found that, instead

of training the NN to reproduce the whole spectrum with several thousand spectral

features (i.e. wavelength bins), training it to produce only a few tens components

provides a great improvement in accuracy while the calculation is much faster than

calculating the spectra with direct SPS modeling once the NN is trained.
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Chapter 4

Results I: The PCA of Simple

Stellar Populations

We introduced a tool for data compression in the previous chapter and have shown

that the PCA technique can be helpful in studying galaxy SEDs. In this chapter

we will apply PCA to the SEDs of simple stellar populations i.e. those defined by a

fixed age and metallicity. First, we will describe the method of preprocessing of the

simple stellar population SEDs before being the PCA is applied. This additional

step is necessary because of the large range of values covered by the spectra. Then

we will show the results of the reconstruction of the SSP spectra.

4.1 Data Preparation of the Simple Stellar

Population Spectra for PCA

From Fig. 2.2a, we can see that the SEDs of simple stellar populations change

dramatically at very young ages, and start to change more gradually when they

become very old. The PCA technique is very sensitive to outliers in the data

set. One significant outlier may lead to a poor overall result since the PCA tends

to fit the outlier well (Serneels and Verdonck 2008). In our SSP SED sample,

the dynamic range of the fluxes seen in very young populations can be viewed as
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outliers as we can see in Fig. 4.1a; they are very different from other SSP outputs.

The flux changes from the order of 100 at short wavelengths for the youngest SSP

age to the order of 10−5 for the oldest age output.

a ) The original SSP SEDs b ) SEDs scaled with L1-norm)

c ) SEDs scaled with L2-norm d ) Logarithmic SEDs

Figure 4.1: A visualisation of the SSP SEDs. The value on the y-axis is plotted on a linear
scale. a) The original SSP SEDs clearly contain a huge dynamic range, which are the
specific flux of young populations at wavelength ∼ 1000Å, in the sense that they can be
seen as distinctly separate from the other SEDs on a linear scale. Compare this with the
same information shown on a logarithmic scale in Fig. 2.2a. b) - c) The SSP SEDs again
plotted on a linear scale, but scaled by using the L1 and L2 normalisation, respectively
(see text). d) The SSP SEDs plotted on a logarithmic scale. The outliers evident in panel
a) are now less extreme in panel b) and c), especially in logarithmic scale.
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4.1.1. The LP -norm Normalisation of Spectra

4.1.1 The LP -norm Normalisation of Spectra

To reduce the severity of the outliers (or the dynamic range) in the data set for the

PCA, we rescale each individual SED by dividing it by the LP -norm value. The

norm is defined as

ηi =||fi,λ||P =

λK∑
λj

fPi,λj

1/P

=(fPi,λ1 + fPi,λ2 + ...+ fPi,λK
)1/P ,

(4.1)

where fi,λj
is the flux in wavelength bin λj of spectrum i. As a result of applying this

normalisation, the scaled SEDs shown in the panel b) and c) of Fig. 4.1c showing

less extreme outliers. The change in flux seen for the youngest SSPs is now ∼ 1

dex instead of 5. Hence we now can redefine the data matrix from Equation 3.3

to be the normalised data matrix, X ′, by multiplying the inverse of the diagonal

matrix containing the LP -norm values of each spectrum as

X ′ =


· · · x′1 · · ·

...

· · · x′N · · ·

−

...

1
...


[
· · · x̄′ · · ·

]
, (4.2)

X ′ = diag{η1, η2, ..., ηN}−1


· · · x1 · · ·

...

· · · xN · · ·

−

...

1
...


[
· · · x̄′ · · ·

]
(4.3)

where x̄′ is the mean of the normalised spectra. The normalised data matrix X ′

then replaces the original data matrix in Equation 3.4 and the PCA will define the

new eigenvectors (principal components) based on this normalised data.

By substituting the normalised matrix data X ′ into Equation 3.4, a spectrum

for the simple stellar population can be approximately described by

xi(λ) ≈ ηi

x̄′(λ) +
m∑
j=1

αijv
′
j(λ)

 . (4.4)
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4.1.2. The Logarithm of Spectra

4.1.2 The Logarithm of Spectra

The change seen in the spectra at young ages can be reduced by rescaling using

the L2-norm normalisation technique. However, the change in flux is still on the

order of one magnitude in the new units. We can clearly see this if we plot the

spectra on a logarithmic scale. The change is now of the same order of magnitude

(e.g. compare Fig. 4.1c with Fig. 4.1d.) Therefore, we can also apply the PCA to

the logarithm of the spectra. Equation 3.22 becomes

log xi(λ) ≈ x̄′log(λ) +
m∑
j=1

αijv
′
log,j(λ), (4.5)

where x̄′log(λ) is the mean of the logarithmic spectra and v′log,j are the principal

components of the logarithmic spectra.

4.1.3 Comparison Between Different Normalisation Techniques

The dynamic range in the data set can be reduced by rescaling the SEDs using

the LP -norm normalisation or by taking the logarithm of the spectra. By doing

so, the outliers become less extreme in the new units which prevents the PCA

from being unduly affected by them. To demonstrate this, we can compare the

results of the PCA applied to the data set with different normalisation methods,

as shown in Fig. 4.2 (the details behind the creation of this plot will be discussed

in Section 4.2).

Fig 4.2 shows a comparison between the results of the PCA when applied to

different preprocessing techniques for solar metallicity SSP SEDs at different ages.

Even though the PCA performs very well when applied to the logarithmic spectra,

it is worth mentioning that the objective of this study is to calculate composite

stellar populations via the stellar population synthesis approach, which relies on

the linear superposition of the SSPs. And we wish to reduce the dimensionality

of the SEDs by mapping the SEDs onto the principal components obtained from

the PCA. The normalisation method used in the data preprocessing step therefore
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4.1.3. Comparison Between Different Normalisation Techniques

a ) The original SSP SEDs b ) SEDs scaled with L1-norm)

c ) SEDs scaled with L2-norm d ) Logarithmic SEDs

Figure 4.2: A comparison of the SSP SEDs reconstruction results by applying the PCA with
different normalisation techniques (the original spectra, the L1-norm normalised spectra,
the L2-norm normalised spectra, and the logarithm of the spectra). The plots show the
reconstruction errors of SSP SEDs when using 50 principal components as a function of
wavelength. The black dotted lines represent the mean of the reconstruction error. The
regions show the 68% (brown) and 95% (cream) percentiles of the deviation from the mean.
The 1% and 5% error intervals are shown by the horizontal solid and dotted lines.

needs to be linear (i.e. the values of specific flux at all wavelength bins of a spectrum

can only be multiplied by a scalar). Non-linear normalisation methods (e.g. taking

the logarithm of the spectrum) will lead to a complexity in calculating the SED

that will negate any reduction in dimensionality. Therefore, in this study we will

henceforth apply the PCA to the L2-norm scaled spectra as it provides the "best"

reliability of the SSP SED calculation.
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4.2. Principal Component Analysis of a Fixed Metallicity Simple Stellar Population

4.2 Principal Component Analysis of a Fixed

Metallicity Simple Stellar Population

In Chapter 2, we introduced the stellar population synthesis model and discussed

the data preprocessing technique in Section 4.1. In the application of the PCA to

the SEDs of the simple stellar populations, we aim to reproduce the SSP spectra

over the whole wavelength range, from the UV to the near IR. Firstly, we will

consider a less complex data set which is the SEDs for a fixed solar metallicity

SSP.

4.2.1 The Solar Metallicity SSP: PCA applied to the whole

wavelength range at once

Originally the SSPs computed from the FSPS code (Foreman-Mackey et al., 2014)

with the inputs as shown in Table 2.1 have 107 ages that cover the 10−4 to 101.3

Gyr in logarithmic steps. This parameter space will be our goal for this first phase

of the SSP SED reconstruction. By applying the PCA to this data set, the mean

spectrum and the principal components of the solar metallicity SSPs with the

original age grid are shown in Fig. 4.3.

The first eigenspectrum (first principal component: PC1) captures most of

the variance in the data set. The subsequent eigenspectra are then identified to

have the second highest amount of variance captured and so on. The values of

explained variances (obtained from Equation 3.12), are plotted in Fig. 4.4, which

shows the scree plot of the variance and the fractional variance contained in the

first 10 components.

A typical choice for selecting the number of principal components to keep

is made by setting the threshold of the cumulative explain variance ratio at ∼

70% − 95% as we have discussed in Section 3.4. From Table 4.1, the first 3 com-

ponents together combined capture 97.78% of the total variance. However, the
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4.2.1. The Solar Metallicity SSP: PCA applied to the whole wavelength range at once

PC EV %EVR C. %EVR
1 0.337 83.33 83.33
2 4.67E-2 11.57 94.90
3 1.16E-2 2.876 97.78
4 5.79E-3 1.431 99.21
5 1.60E-3 0.3966 99.61
6 6.3eE-4 0.1566 99.76
7 4.64E-4 0.1149 99.88
8 1.65E-4 0.0408 99.92
9 1.25E-4 0.0310 99.95
10 6.20E-5 0.0154 99.96

Table 4.1: Values of explained variance
(EV; from Eqn. 3.14), explained vari-
ance ratio percentage (%EVR*), and
the cumulative explained variance ratio
(C. %EVR; from Eqn. 3.16) of the first
10 principal components. ∗Note that
the value of total explained variance is
0.4043.

Figure 4.4: The explained variances and the ex-
plained variance ratios captured by the first 10
principal components of the fixed-solar metallicity
SSP SEDs

reconstructed SSP SEDs with 3 components are not sufficient to represent the ori-

ginal SEDs. With such a low number of principal components we are only able

to provide a good reproduction of the shape of the SSPs at ages around 10 Myr

(Fig. 4.5b) but the reconstruction error across all wavelength bins is relatively

high. Moreover, with this number of principal components, the reconstruction

completely fails to rebuild very young SSPs in the infrared region (Fig. 4.5a) and

fails to reconstruct the ultraviolet spectra of old age SSPs (Fig. 4.5c and Fig. 4.5d).

In our case, the number of components to be retained is driven by the accur-

acy of the reconstructed SEDs. If we wish to rebuild the SSP SEDs with a typical

accuracy level such that all specific flux lies within an error of < 5%, 77 principal

components are required. Moreover, for the case of “extremely” accurate recon-

struction (< 1% error), we need 91 components. See Fig. 4.6 for the distribution of

the reconstruction error as a function of wavelength, which is the criteria for how

many principal components we need to use.

As shown in Fig. 4.6, The PCA applied over the whole wavelength range can
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4.2.2. The Solar Metallicity SSP: PCA applied to distinct wavelength ranges

reconstruct the SEDs in the optical very well compared to the reconstruction in

the UV and NIR. Because of this we can decide to apply the PCA separately to

different wavelength ranges in an attempt to improve the accuracy in the UV and

IR, at the expense of a modest reduction in the accuracy in the optical.

4.2.2 The Solar Metallicity SSP: PCA applied to distinct

wavelength ranges

PCA applied in one go to the full wavelength range tends to result in better re-

productions of the spectra in the optical rather than in the UV and NIR. We now

apply the PCA by dividing the SSP spectra into three wavelength ranges. The

wavelength ranges are the UV (1000 - 3500 Å), the optical (3500 - 7500 Å), and

the NIR (7500 - 30000 Å). The sample size of the SSP SEDs is the same as used for

the whole wavelength range PCA. As a result, we are able to reduce the number

of principal components needed to reconstruct the SSP SEDs at both accuracy

levels quoted above in every wavelength bin. Fig. 4.7 shows a comparison between

the reconstruction error distribution for the PCA applied to the whole wavelength

range and the PCA applied to the SEDs divided into three wavelength ranges.

The boundaries between each band are plotted at 3500Å and 7500 Å with blue and

orange short vertical lines at the bottom of the plots. By dividing the wavelength

space into these three ranges, we only need 68 principal components in total (45 for

the UV, 14 for the optical, and 9 for the IR) to reconstruct the SEDs in the typical

accuracy case ( < 5% error). 53 components for the UV, 20 for the optical, and 12

for the NIR (85 PCs in total) are needed to reconstruct the SEDs in the extremely

accurate case ( < 1% error). In comparison to the whole wavelength range PCA,

with this procedure we can reduce the total number of components from 77 to 68

for the typical case and from 91 to 85 for the extreme case.

To show the solar metallicity SSP reconstructed using the results of the PCA,

we provide a set of examples at four different ages that show a considerable change

in the spectrum: 0.2 Myr, 10 Myr, 1.0 Gyr, and 19.95 Gyr (see Fig. 4.8 and 4.9).
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4.2.2. The Solar Metallicity SSP: PCA applied to distinct wavelength ranges

Figure 4.3: The mean of the normalised spectra (top panel) and the first five principal
components of the solar-metallicity SSP SEDs with the original age grids. The components
are listed in increasing order of component number from top to bottom.
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4.2.2. The Solar Metallicity SSP: PCA applied to distinct wavelength ranges

a ) 0.0002 Gyr (0.2 Myr) b ) 0.01 Gyr (10 Myr)

c ) 1.0 Gyr d ) 19.95 Gyr

Figure 4.5: The SED reconstruction of the solar metallicity SSPs using 3 principal com-
ponents at 4 different ages (0.2 Myr, 10 Myr, 1.0 Gyr, and 19.95 Gyr). The blue solid lines
represent the original SEDs obtained from the SPS model and red dots show the recon-
structed SSPs using 3 components. The percentage of the reconstruction error is shown as
red dots in the inset panel at the bottom of each plot.
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4.2.2. The Solar Metallicity SSP: PCA applied to distinct wavelength ranges

a ) Typical Accuracy ( < 5%) with 77 PCs b ) Extreme Accuracy ( < 1 %) with 91 PCs

Figure 4.6: The distribution of reconstruction error as a function of wavelength. The black
solid lines are the mean of the reconstruction error. Brown and cream shading represent
the 1 and 2 standard deviation from the mean. The 1% and 5% reference errors are shown
by dashed- and dotted-lines. a) 77 components are required to rebuild the SSP SEDs to
within 5% error over the whole wavelength range for all ages. b) In a case of 1% error, 91
components are required.

a ) Typical error case ( < 5%) with 68 PCs b ) Extreme error case ( < 1 %) with 85 PCs

Figure 4.7: The distribution of reconstruction error as a function of wavelength computed
separately in 3 different bands. The same description as in Fig. 4.6 plus light blue color
referring to the 2 standard deviation from the mean of the whole spectrum PCA. See text
for description.
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4.2.2. The Solar Metallicity SSP: PCA applied to distinct wavelength ranges

a ) Typical case at 0.0002 Gyr (0.2 Myr) b ) Extreme case at 0.0002 Gyr (0.2 Myr)

c ) Typical case at 0.01 Gyr (10 Myr) d ) Extreme case at 0.01 Gyr (10 Myr)

Figure 4.8: The SED reconstructions at the age of 0.2 and 10 Myr by using the PCA of
UV, Optical, and NIR bands. The solid blue line represents the original SED. Purple, red,
and orange lines are for UV, optical, and NIR. In the bottom panel, the red dots show
the percentage error of the separate wavelength PCA whilst black dots show that of the
whole-wavelength-range PCA by using the same total number of components.
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4.2.2. The Solar Metallicity SSP: PCA applied to distinct wavelength ranges

a ) Typical case at 1.0 Gyr b ) Extreme case at 1.0 Gyr

c ) Typical case at 19.95 Gyr d ) Extreme case at 19.95 Gyr

Figure 4.9: The SED reconstructions at ages of 1.0 and 19.95 Gyr by using the PCA of
UV, Optical, and NIR bands. The solid blue line represents the original SEDs. Purple,
red, and orange lines are for UV, optical, and NIR. In the bottom panel, the red dots show
the percentage error of the separate wavelength PCA whilst black dots show that of the
whole wavelength range PCA by using the same total number of components.
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4.3. Principal components of the SEDs of the Simple Stellar Populations With Varying
Age and Metallicity

4.3 Principal components of the SEDs of the Simple

Stellar Populations With Varying Age and

Metallicity

In the previous section we showed the result of the PCA for SSPs with fixed solar

metallicity and varying ages. In this section we apply the PCA to a more complic-

ated data set. Instead of applying the PCA to a fixed metallicity SSP spectra, we

now vary both age and metallicity.

4.3.1 Sample Size of the Simple Stellar Population SEDs

In the application of PCA to the SEDs of simple stellar populations, we aim to

reproduce the SSP spectra of the whole parameter space. According to the ori-

ginal parameter space provided by the FSPS code, the time grid covers the range

from 10−4 to 101.3 Gyr with logarithmic spacing and the metallicity grid covers

log(Z/Z�) = −2.5 to 0.5. In this work we will keep the original parameter space

without adding another ages and metallicities. The summary of parameter space

is shown in Table 4.2.

Parameters Coverage
Age of SSPs logarithmically distributed

from 10−4 to 101.3 Gyr with 107 bins
Metallicity logarithmically distributed

from −2.5 ≤ log(Z/Z�) ≤ 0.5 with 12 values
Wavelength bins In rest-frame from 1000Å to 30, 000Å

(∼ FUV to K band)

Table 4.2: The summary of parameter grids for calculating the SSP SEDs. The total
number of SEDs is 1284 spectra.
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4.3.2. Simple Stellar Population SEDs Reconstruction

4.3.2 Simple Stellar Population SEDs Reconstruction

We use the same technique as used in calculating the principal components for the

fixed metallicity SSPs, namely to apply the PCA to the three different wavelength

ranges separately (See Section 4.2.2). The first 10 principal components of the UV,

optical, and IR PCA are shown in Fig. 4.10, 4.11, and 4.12.

Once the principal components are defined, the spectrum of an SSP can be

reconstructed by using Equation 4.4. As we also discussed about the number of

components to keep in Section 4.2.1, we experience a similar situation in the case

of the SSPs with varying metallicities and ages. Specifically, the first 2 components

of the whole wavelength range PCA of this data set capture ∼ 98% of the total

variance of the spectra but they cannot be used by themselves to represent the SSP

SED to an acceptable level of accuracy. The demonstration of the reconstruction

error can be represented as a distribution of the error of the whole parameter

space as a function of wavelength. Fig. 4.15 shows the 2 − σ range of the error

distribution as a function of wavelength with the same description in Fig. 4.7. In

this case, 26 components of the optical PCA and 12 components of NIR PCA are

selected to rebuild the spectra to reach 5% accuracy compared with the 50 and 24

that are needed to reach 1% level in the wavelength ranges. However, the number

of components of the UV range goes up to more than 100 components yet still does

not narrow the 2− σ range of the error distribution of the whole parameter space

to be less than 5%. We will keep the number of the principal components used in

the UV as a free parameter in calculating the composite stellar population SED in

the next Chapter.
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4.3.2. Simple Stellar Population SEDs Reconstruction

Figure 4.10: The mean of the normalised UV spectra (top panel) and the first 10 principal
components of the SSP SEDs (listed from top to bottom). The wavelength range covers
1000 to 3500 Å.
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4.3.2. Simple Stellar Population SEDs Reconstruction

Figure 4.11: The mean of the normalised optical spectra (top panel) and the first 10
principal components of the SSP SEDs (listed from top to bottom). The wavelength range
covers 3500 to 7500 Å.
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4.3.2. Simple Stellar Population SEDs Reconstruction

Figure 4.12: The mean of the normalised NIR spectra (top panel) and the first 10 principal
components of the SSP SEDs (listed from top to bottom). The wavelength range covers
7500 to 30000 Å.
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4.3.2. Simple Stellar Population SEDs Reconstruction

a ) Typical case at 0.0002 Gyr ( 0.2 Myr) b ) Extreme case at 0.0002 Gyr ( 0.2 Myr)

c ) Typical case at 0.01 Gyr ( 10 Myr) d ) Extreme case at 0.01 Gyr ( 10 Myr)

Figure 4.13: Same description as in Fig. 4.8 but for the SSPs at 10 Myr, 1.0 Gyr, and 19.95
Gyr. For each panel, the values of log(Z/Z�) are 0.5, 0.0, and -1.0 from top to bottom as
shown in the brackets.
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4.3.2. Simple Stellar Population SEDs Reconstruction

a ) Typical case at 1.0 Gyr b ) Extreme case at 1.0 Gyr

c ) Typical case at 19.95 Gyr d ) Extreme case at 19.95 Gyr

Figure 4.14: Same description as in Fig. 4.13 but for the SSPs at 10 Myr, 1.0 Gyr, and
19.95 Gyr.

a ) < 5% error with total of 88∗ PCs b ) < 1 % error with total of 124∗ PCs

Figure 4.15: The distribution of reconstruction error as a function of wavelength computed
separately in 3 different ranges. The same ranges as shown in Fig. 4.15. ∗See text for the
explanation of the total number of components.
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Chapter 5

Results II: The Composite Stellar

Population from PCA

5.1 Calculating the composite stellar population

using PCA

We introduced stellar population synthesis models in Chapter 2 and computed

the principal components of the simple stellar populations which are the building

blocks of the composite stellar population in Chapter 4. In this chapter we will

compute the spectra of composite stellar populations by replacing the simple stellar

populations with the result of the PCA from Chapter 4.

We have mentioned the method used for the CSP calculation that differs from

the direct FSPS calculation in Equation 2.6. And the SED of a simple stellar

population that has been decomposed using PCA has the form

LSSP,i = ηi

µ+
m∑
j=1

αi,jvj

 , (5.1)

where ηi is a normalisation factor, µ is the mean spectrum (of the SSPs), and αi,j

is the coefficient of the principal component vj . The value of m is the number of

principal components used to represent the SSP. The reason we need to multiply
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5.1. Calculating the composite stellar population using PCA

the reconstructed SED by the normalisation factor ηi is that we are applying the

PCA to the re-normalised spectra. In the CSP calculation we need to convert the

reconstructed spectra back to the original units. Then, by substituting this back

into Eq. 2.6, we can compute the CSP spectrum by using a linear combination of

the principal components of all SSPs as

LCSP (tage) =
ntage∑
i=1
LSSP,i wi

=
ntage∑
i=1

{
ηi

µ+
m∑
j=1

αi,jvj

}wi
= µ

ntage∑
i=1

ηiwi +
m∑
j=1

[ntage∑
i=1

ηiαi,jwi

]
vj .

(5.2)

As we can see, the first term of Eq. 5.2 is the mean spectrum times its weight

obtained from the sum of SFH weight times the SED normalisation factor and

the second term is the linear combination of the principal components where the

coefficient of each component is weighted by the SFH weight and the normalisation

factor. From Eq. 5.2, we can clearly see that we are able to take the advantage of

the PCA of the galaxy spectra by replacing the specific fluxes with the eigenvalues.

Following this approach, we now show the calculation of composite stellar

populations that have different star formation histories, using the τ -model SFH

with e-folding times of 0.1, 1.0, 5.0 and 50 Gyr. We also consider two different

fixed metallicities, solar and half-solar metallicity. All CSPs are computed at 4

ages including 0.1, 1.0, 5.0 and 13.7 Gyr with 50, 26, and 12 principal components

used for the UV, Optical, and IR ranges of the spectrum. The SEDs of these

composite populations are shown in Fig. 5.1 and Fig. 5.2. At such ages, the CSPs

with different τ value can be distinguished.

In Fig. 5.1 and Fig. 5.2, we calculate the mass-weighted ages of the CSPs and

show them as AgeMassWeighted for each value of τ . The mass-weight age gives an

indication of the typical age of the SSPs that dominate the composite population.

We can clearly see that the composite stellar populations computed using the prin-

cipal components tend to be more accurate for populations with a small e-folding

51



5.1. Calculating the composite stellar population using PCA

a ) at 0.1 Gyr b ) at 1 Gyr

Figure 5.1: TOP: The CSP SEDs at 0.1 Gyr (a) and 1 (b) Gyr for e-folding times of: 0.1,
1.0, 5.0 and 50 Gyr represented as blue, green, orange and brown lines, respectively. The
solar- and half-solar-metallicity CSP are plotted as solid and dotted lines. Note: We only
show the reconstructions in the main panel. MIDDLE: The percentage error on the CSP
obtained using the PCA-approach compared to the CSP computed using original SSPs as
a function of wavelength for solar metallicity. BOTTOM: The same as the middle panel
but for the half-solar metallicity CSP.

a ) at 5 Gyr b ) at 13.7 Gyr

Figure 5.2: The same description as in Fig. 5.1, but now for ages of 5 and 13.7 Gyr.

time, which have less ongoing star-formation at the viewing “age” compared to the

CSPs with larger e−folding times. A composite population with a short e-folding

time is dominated by relatively old SSPs, with a mass-weighted age similar to the

age of the galaxy. From the result we obtained in § 4.3.2 our PCA technique fits

52



5.2. The Photometry of the PCA CSP

the SEDs of very young SSPs better than that of old SSPs, so the CSPs dominated

by old SSPs will differ more from the directly computed CSP than the young-age-

dominated CSPs, reflecting the relative error in the SSPs. In comparison, we can

see that the PCA CSPs tend to fit the spectral features for the half-solar metallicity

case better than in the solar metallicity example when considering the CSP at the

same age with the same SFH and the same number of principal components used.

To solve these issues, one may perform the PCA on SSPs using a better

sampling of the age and metallicity parameter space to improve the SSP reconstruc-

tion at high metallicities. In case of the age grid, we could focus on reconstructing

the SSP ages that dominate the CSP, i.e. those close to the effective mass-weighted

age of the CSP.

5.2 The Photometry of the PCA CSP

A galaxy spectrum provides feature-ful information about a galaxy including the

continuum spectrum, absorption lines, emission lines, and spectral breaks (e.g.

the Lymann-break and the 4000Å-break). Making use of these spectral features

can lead to an understanding of the physical properties of a galaxy. The shift in

wavelength of absorption/emission lines is due to the redshift that is directly related

its radial velocity (due to the Hubble flow and peculiar velocity). The strengths of

some spectral lines can be used a proxy for the morphology of a galaxy. Various

properties of model galaxies can be tested against observational data by using

the photometry in different bands (e.g. the luminosity function, the Tully-Fisher

relation, the colour-morphology relation; see Fig. 2 of Cole et al. 2000). In this

section, we will show the calculation of the photometry of the galaxy SEDs in

different bands from the UV to the IR. the transmission curves of these bands are

shown in Fig.5.3. These filters include the ugriz SDSS filters Gunn et al. (1998)

and the F115W, F150W, and F200W of the Near Infrared Cammera (NIRCam) of

the soon to-be-launched James Webb Space Telescope.
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5.2. The Photometry of the PCA CSP

Figure 5.3: The transmission curves of the filters from the Sloan Digital Sky Survey (SDSS)
and the James Webb Space Telescope NIRcam instrument. The shape of the curves is the
key property for computing the galaxy magnitude. The filters have been normalised to a
peak transmission of unity.

We calculate the photometry of the PCA-approached galaxy spectra by using

the same numbers of principal components that we used in §5.1. As a result, the

magnitudes of the SDSS filters are shown in Table 5.1 and that of the NIRCam

is shown in Table 5.2, respectively. The numbers on the top of each element

in the tables refer to the percentage errors of magnitudes of the galaxies with

solar metallicity whilst the numbers in the bracket at the bottom are for half-solar

metallicity CSPs. Overprediction is shown by a positive number. As we can see

that, the PCA technique can provide an extraordinary result when we consider the

broadband filters. With the total of 88 principal components is able to deliver less

than 10−2 percent of absolute error for any given age, τ value, and metallicity used

in §5.1. This achievement of the PCA technique in calculating the photometry of a

galaxy spectrum is what we expect to obtain since the magnitude is the integration
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5.2. The Photometry of the PCA CSP

of a galaxy SED through a bandwidth that covers a broad range of wavelength as

shown in Fig 5.3. Interestingly we found that a similar level of accuracy can be

obtained in the magnitude with only ten principal components.

CSPs SDSS Filters
age (Gyr) τ(Gyr) u g r i z

0.1

0.1 6.7E-3
(-1.3E-3)

-1.5E-4
(2.1E-4)

3.5E-4
(7.3E-4)

-5.6E-3
(5.7E-4)

7.7E-4
(-4.5E-4)

1 5.3E-3
(-1.0E-3)

-2.0E-4
(2.9E-4)

6.0E-4
(5.0E-4)

-6.6E-3
(4.3E-4)

7.2E-4
(-4.7E-4)

5 5.2E-3
(-1.0E-3)

-2.0E-4
(3.0E-4)

6.2E-4
(4.9E-4)

-6.7E-3
(4.1E-4)

7.2E-4
(-4.7E-4)

50 5.1E-3
(-1.0E-3)

-2.0E-4
(3.0E-4)

6.2E-4
(4.8E-4)

-6.7E-3
(4.1E-4)

7.2E-4
(-4.7E-4)

1

0.1 -1.7E-2
(-4.4E-3)

4.8E-6
(1.4E-3)

-3.2E-3
(-2.6E-3)

1.6E-3
(7.0E-3)

-7.0E-4
(-1.4E-3)

1 5.4E-3
(3.0E-3)

-1.5E-4
(6.1E-4)

-1.2E-3
(-6.7E-4)

-2.4E-3
(2.3E-4)

-9.0E-5
(-1.1E-3)

5 6.0E-3
(-3.1E-3)

-1.6E-4
(5.3E-4)

-8.7E-4
(-4.2E-4)

-3.2E-3
(5.2E-4)

6.0E5
(-9.7E-4)

50 6.1E-3
(-3.2E-3)

1.6E-4
(5.1E-4)

-8.1E-4
(-3.8E-4)

-3.3E-3
(-5.5E-4)

9.0E-5
(-9.5E-4)

5

0.1 5.6E-3
(4.0E-5)

-6.3E-4
(-9.6E-4)

7.4E-4
(9.2E-4)

2.8E-4
(1.7E-4)

1.9E-4
(9.0E-5)

1 7.4E-3
(-1.5E-3)

-4.2E-4
(-5.5E-4)

5.5E-4
(6.0E-4)

-1.5E-3
(1.0E-5)

2.7E-4
(-1.4E-4)

5 -6.1E-3
(-4.1E-3)

-1.6E-4
(2.5E-4)

-2.5E-4
(-1.4E-4)

-3.4E-3
(3.8E-4)

1.5E-4
(-6.3E-4)

50 6.0E-3
(-4.1E-3)

-1.4E-4
(3.5E-4)

-3.8E-4
(-2.4E-4)

-3.6E-3
(3.8E-4)

1.4E-4
(-7.3E-4)

13.7

0.1 2.0E-2
(3.1E-3)

6.5E-4
(-7.5E-4)

-3.2E-3
(3.3E-4)

6.9E-4
(1.0E-3)

7.0E-5
(3.5E-4)

1 1.6E-2
(3.2E-3)

4.7E-4
(8.5E-4)

-2.8E-3
(5.7E-4)

1.2E-3
(1.3E-3)

7.0E-5
(3.5E-4)

5 7.1E-3
(-2.3E-3)

-7.6E-5
(-3.9E-4)

-1.0E-3
(4.8E-4)

-3.8E-4
(1.2E-3)

1.1E-4
(-2.0E-6)

50 6.3E-3
(-3.8E-3)

-1.5E-4
(9.5E-5)

-5.4E-4
(7.0E-5)

-2.2E-3
(7.8E-4)

1.2E-4
(-4.0E-4)

mean mag error 6.0E-3
(-1.7E-3)

-1.0E-4
(8.5E-5)

-6.6E-4
(4.6E-5)

-2.6E-3
(7.9E-4)

2.1E-4
(-4.6E-4)

Table 5.1: The percentage errors of the PCA CSPs in different SDSS filters compared to
the direct CSPs (the numbers inside the bracket for the half-solar metallicity CSPs).

In this study we use a simple parametric form for the star formation history
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5.2. The Photometry of the PCA CSP

CSPs JWST: NIRcam
Age (Gyr) τ (Gyr) f115w f150w f200w

0.1

0.1 -8.0E-4
(-1.0E-3)

6.1E-3
(3.2E-3)

-1.1E-2
(-6.5E-3)

1 -9.8E-4
(-9.8E-4)

6.2E-3
(2.8E-3)

-1.1E-2
(-6.1E-3)

5 -9.9E-4
(-9.8E-4)

6.2E-3
(2.8E-3)

-1.1E-2
(-6.0E-3)

50 -1.0E-3
(-9.8E-4)

6.2E-3
(2.8E-3)

-1.1E-2
(-6.0E-3)

1

0.1 -1.1E-3
(-1.8E-3)

7.4E-4
(2.9E-4)

2.3E-3
(4.3E-3)

1 -8.6E-4
(-8.9E-4)

2.5E-3
(1.4E-3)

-5.0E-4
(4.5E-4)

5 -8.9E-4
(-8.4E-4)

3.1E-3
(1.7E-3)

-1.9E-3
(-6.1E-4)

50 -9.0E-4
(-8.3E-4)

3.2E-3
(1.7E-3)

-2.2E-3
(-8.4E-4)

5

0.1 1.3E-3
(5.4E-4)

-4.8E-3
(9.5E-4)

7.6E-3
(-5.0E-3)

1 9.3E-4
(1.2E-4)

-2.9E-3
(1.5E-3)

5.0E-3
(-5.3E-3)

5 1.2E-4
(-4.5E-4)

1.1E-4
(1.5E-3)

1.5E-3
(-2.9E-3)

50 -1.0E-4
(-5.7E-4)

8.9E-4
(1.5E-3)

6.4E-4
(-2.3E-3)

13.7

0.1 3.2E-3
(2.1E-3)

-1.2E-2
(-5.4E-3)

2.5E-2
(4.4E-3)

1 3.1E-3
(1.9E-3)

-1.2E-3
(-4.7E-3)

2.3E-2
(3.6E-3)

5 2.0E-3
(8.8E-4)

-6.9E-3
(-1.8E-3)

1.4E-2
(-7.0E-5)

50 8.3E-4
(7.0E-5)

-2.7E-3
(1.3E-4)

7.7E-3
(-1.5E-3)

mean mag error 2.4E-4
(-2.4E-4)

-3.9E-4
(6.4E-4)

2.4E-3
(-1.9E-3)

Table 5.2: The percentage error of the PCA CSPs in different bands compared to the direct
CSPs for JWST NIRCam filters.

called the tau model, and we assume that the beginning of star formation history

is also the beginning of the cosmic time. The value of tau (i.e. τ ; the e-folding

time) we consider can be arbitrary short or very long, for example from 0.01 Gyr to

100 Gyr, which is the recommended range of input value for the tau model for the
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5.2. The Photometry of the PCA CSP

FSPS code. However, we can find a realistic range of tau values by comparing the

relation between the colour of the PCA galaxy SEDs and their absolute magnitude

with an observational colour magnitude diagram (CMD). Here we use the CMD of

a sample of galaxies from the Sloan Digital Sky Survey: Data Release 7 (SDSS-DR7

York et al. 2000) where the absolute magnitude in the r-band filter is in a range

between -23.5 < Mr < -15.5. To make our reconstructed SEDs comparable with

the observational data, we multiply each single SED by 1010.5M� for the reason

that the computed SEDs are normalized to 1 solar mass. Even though the colours

of the SDSS:DR7 galaxies are observer frame colours, these galaxies have a low

median redshift, z ≈ 0.1, so we do not attempt to correct the rest-frame for this

comparison. Moreover, we roughly adjust the boundary lines for selecting red,

green, and blue galaxies from a formula proposed by Papastergis et al. 2013 with a

0.15 mag colour offset to make the lines visually separate the three regions better.

The formula we are using is described as the following:

g − i = 0.0571(Mr + 24) + C, (5.3)

where C is 1.40 for the upper red line and 1.25 for the lower blue line. In contrast,

the values of C are 1.25 and 1.10 for the criterion used in Papastergis et al. 2013.

In the comparison between the CMD of the observed galaxies and our model

galaxies at the age of 13.7 Gyr as shown in Fig 5.4, we set a range of possible value

of τ from 0.01 Gyr to 50 Gyr. By overlapping colour g− i vs. absolute magnitude

in r filter of the model SEDs on the CMD, we find that the colour of a galaxy with

the value of τ longer than ∼ 10 − 20 Gyr is extremely "blue" and the value of τ

beyond this time scale barely changes the position on the CMD. In summary, it is

unnecessary to model a galaxy SED with the e-folding time greater than ∼ 10−20

Gyr for the tau-model SFH since an SED does not show any different in colour for

the value excess this which shows relatively high on-going star formation in late

time of the history.
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5.2. The Photometry of the PCA CSP

Figure 5.4: The color magnitude diagram of galaxy SEDs obtained from the PCA at an
age of 13.7 Gyr, compared with observations. The density plot in the background shows
galaxies from SDSS DR7. These are observer frame colours, but SDSS galaxies have a
low median redshift, z ≈ 0.1, so we do not attempt to correct to the rest-frame for this
comparison. The red and blue lines represent the boundaries for selecting red, green and
blue galaxies in the observations, as proposed by Papastergis et al. (2013), but shifted with a
0.15 mag color offset. Filled symbols show the rest-frame (g-i) colors of the τ models, using
the PCA reconstruction, for solar metallicity (stars) and half-solar metallicity (squares).
The values of τ used in both cases is indicated by the colormap on the right.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Galaxy spectra are an information-rich tool to study the intrinsic properties of

galaxies. Theoretical galaxy formation and evolution models need to be able to

predict spectra to allow them to build more realistic mock catalogues. However, the

predictions from current galaxy formation models are unlikely to include spectra

for all of the model galaxies. A coupling between the model outputs and post-

processing methods is needed, for example, by combining a galaxy’s star formation

history and its chemical evolution with a stellar population synthesis model. In

this thesis we focus on an investigation to reduce the computational expense of

calculating galaxy spectra by using a data compression method called principal

component analysis.

We apply the principal component analysis to a set of the full-wavelength

SSP spectra covering 1000 to 30000 Å in 4841 wavelength bins from the FSPS

model (Foreman-Mackey et al. 2014). We found that the ability of the PCA to

decompose the dimensionality of the data set depends on the data preprocessing

method adopted. We studied 4 different preprocessing techniques, including the

original spectra, L1-norm spectra, L2-norm spectra, and logarithmic spectra. The

logarithmic spectra are the best data set for the PCA to be able to reduce the
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6.1. Conclusions

dimension of the SSP SEDs. Unfortunately, the logarithmic SSP SEDs can not be

used for computing the composite spectra as the CSP SED calculation is a linear

combination of each SSP spectrum. Instead, we use result from the PCA of the

L2-norm spectra when computing the CSP spectra. Moreover, we found that the

SED reconstruction provides a relatively high accuracy for optical spectra whilst

providing a poor reconstruction of the UV and NIR spectra when we apply the PCA

to the whole wavelength range at once. To reduce the effect of this problem, we

compute the principal spectra by dividing each spectrum into 3 separate wavelength

ranges; UV (1000-3500Å), Optical (3500-7500 Å), and NIR (7500-30000 Å).

In summary, the PCA can dramatically reduce the dimensionality of the ori-

ginal SSP spectra whilst retaining a relatively high reconstruction accuracy. In

Chapter 4 we performed the PCA on simple stellar populations with the metalli-

city fixed at solar metallicity. This required 68 principal spectra in total (45 for

UV, 14 for optical, and 9 for NIR) to reconstruct the SEDs with less than 5% error

for the whole of the original FSPS age grid. In addition, 85 principal components

in total are needed to rebuild the SEDs with 1% error. These components include

53 UV PCs, 20 optical PCs, and 12 NIR PCs. Moreover, we considered the ef-

fects of metallicity on the SSP SEDs by applying the PCA to the simple stellar

population SEDs with different metallicities and population ages. As a result, to

reconstruct the 2D-parameter-grid SSP SEDs with less than 5% error, one needs

26 optical PCs and 12 NIR PCs. In the case of a target 1% error in the SSP SED

reconstruction, 50 optical and 24 NIR components are required. However, we found

that the number of UV PCs needed exceeds 100, yet we are not able to rebuild the

UV spectra within the two error thresholds stated. By ignoring the same criterion

of determining the number of PCs used for the optical and NIR spectra, 50 UV

PCs can provide a good fit to the SEDs.

In Chapter 5 the PCA promisingly provides the capability to reduce the com-

putation expense when computing the SED of composite stellar populations. We

found that one is able to obtain the composite spectra by using the principal com-
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6.2. Future work

ponents computed in Chapter 4. Moreover, in the case of broadband photometry,

the PCA becomes much more effective where the number of components needed

decreases dramatically. Fewer than 10 components in total can also yield the mag-

nitude in each filter with similar accuracy as ≈100 components.

6.2 Future work

As presented in the thesis, PCA is a very practical method for decomposing the

SSP SEDs which are the building blocks of the galaxy spectra. However, we only

considered only basic ingredients of how galaxy spectra are built. The specific

parameter space is also limited by the choice of the SPS model we used in this

study. To make the application of the PCA to the galaxy spectrum calculation

reliable for a galaxy formation model, we could expand upon the work presented

here as follows.

• As the ability of PCA to reconstruct the SSP spectra clearly depends on

the input sample, the complexity of the SPS models, and the preprocessing

technique, an additional effort to find a better sampling of the parameter

space and the reprocessing technique could provide a solid improvement when

computing the PCA. For example, the parameter space of the input sample is

based on the available parameter grids of the SPS model regardless of the SSP

SEDs used for the CSP SED calculation where these SSP SEDs are linearly

interpolated between the default SPS parameter space. To improve, one may

calculate the PCA based on the parameter space of the galaxy formation

model (e.g. the star formation history and the chemical evolution history).

• In this thesis, we disregarded the complexity of the SPS model in comput-

ing the CSP spectra by only considering the effect of starlight (SSP SED).

For example, strong nebular emission lines are a key feature of star-forming
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galaxies whilst they are ignored in our calculation. Hence we could make the

PCA more realistic by including the effect of nebular emission.

• As the main goal of this study is to reduce the computational expense of

generating the full-wavelength-range galaxy spectra for a galaxy formation

model. The result shows a promising procedure to solve the problem. There-

fore, the PCA-approach spectra calculation then could be implemented into

a galaxy formation model when used for computing the galaxy spectra, for

example, GALFORM (Cole et al. 2000) that provides the star formation

history and metallicity as an output.
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Appendix A

Metallicity Evolution

Although our results show that the fixed-metallicity CSP SEDs are well repro-

duced using the PCA technique (see §4.3.2), here we consider that the stars that

make up CSPs can form with different metallicities. Stars in a galaxy can form at

different times from an interstellar medium with an evolving metallicity, governed

by the chemical evolution model, which includes the yield of metals from stars

and the inflow and outflow of gas (see Cole et al. 2000, Ma et al. 2015). In this

section we do not aim to compute CSP SEDs with a realistic metallicity evolution

as predicted by a physical model, but instead we want to show that the CSP SED

calculation can still be made reliably with a change in metallicity by assuming that

the metallicity of stars in the composite population follow a simple linear form

described by Equation 6.1.

Z(t) = kt+ Z0, (6.1)

where Z0 is the initial stellar metallicity at the beginning of the star formation

history and k is the rate of change of metallicity.

Here we consider two examples of composite stellar populations with different

star formation histories and different metallicity evolution. The first CSP has its

star formation history with τ = 1 Gyr and its metallicity changes from log(Z/Z�) =

−2.5 at t = 0 Gyr to log(Z/Z�) = 0.5 at the age of 13.7 Gyr. The second CSP
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A. Metallicity Evolution

has τ = 5 Gyr and its final metallicity is log(Z/Z�) = −1 with the same initial

metallicity. The star formation histories and the metallicity evolutions of these

two CSPs are shown in Fig. 6.1. And their corresponding reconstructed SEDs are

shown in Fig. 6.2 and Fig. 6.3, respectively.

Figure 6.1: The plot shows two τ -model star formation histories with τ = 1 Gyr (blue
solid line) and τ = 5 Gyr (blue dashed line) and the adopted metallicity evolution, both
starting at log(Z/Z�) = −2.5 but one rises up to log(Z/Z�) = 0.5 (red solid line) whilst
the other reaches log(Z/Z�) = −1.0 (red dashed line) at the age of 13.7 Gyr. Note the
metallicity is plotted on a logarithmic scale (right hand axis).

In Fig. 6.2 and Fig. 6.3, blue lines represent the original SEDs calculated using

the direct output of FSPS model. Purple, green, and red lines in the top panel

of each figure show the reconstructed UV, Optical, and NIR spectra and the same

colours in the bottom panel show the reconstruction error. We can see that the

SEDs of varying-metallicity CSPs are well reconstructed by PCA, using the same

number of principal components as we used in the fixed-metallicity CSP calculation.
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A. Metallicity Evolution

Figure 6.2: The CSP SED at the age of 13.7 Gyr with τ = 1 Gyr and the metallicity
changing from log(Z/Z�) = −2.5 to 0.5 associated with the SFH1 and Metallicity1 in
Fig. 6.1. The lower panel shows the accuracy of the PCA reconstruction, compared to the
direct CSP calculation.

Figure 6.3: The CSP SED at the age of 13.7 Gyr with τ = 1 Gyr and the metallicity
changes from log(Z/Z�) = −2.5 to −1.0 associated with the SFH1 and Metallicity1 in
Fig. 6.1. The lower panel shows the accuracy of the PCA reconstruction, compared to the
direct CSP calculation.
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