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Systematic routes to improved approximations in
Kohn–Sham theory
Timothy James Callow

Abstract

The Kohn–Sham (KS) formulation of density-functional theory (DFT) has be-

come the pre-eminent method for modelling electrons in matter. In many cal-

culations, KS theory offers an unrivalled balance between accuracy and speed.

However, the most widely-used approximations are known to be inadequate

in certain applications, such as strongly-correlated systems. Furthermore, it

is not straightforward to systematically converge to the correct result in these

cases; this is in contrast to wave-function methods, which lend themselves more

naturally to systematic improvements. In this thesis, we develop methods to

help understand and improve systematic failings of common approximations

for the exchange and correlation functional in KS theory.

One major theme of this thesis is the use of wave-function theories to de-

velop accurate reference KS potentials in DFT. We consider an alternative

derivation of the KS potential based on the minimization of a wave-function

expression, which establishes a link between DFT and wave-function theories.

We use this tool to develop perturbative expansions of the KS potential: one

such expansion yields a novel KS potential which is expected to have exact

exchange and accurate correlation character. Continuing this theme, we ex-

plore a method to obtain the KS potential corresponding to a given density.

We focus on the role of the screening density in this method, a concept which

also helps our understanding of the pervasive self-interaction error in DFT.

The other major theme of this thesis is the development and application of

implicit density functionals. We explore how this class of functionals can be

used to develop a new formalism for open-shell systems in KS theory. Impli-

cit density functionals in KS theory require the optimized effective potential

framework, whose implementation in finite basis set codes has proven prob-

lematic in the past. We develop an implementation which is both simple to

apply and formally avoids these mathematical difficulties.

i



Declaration

The work in this thesis is based on research carried out in the Department of
Physics, University of Durham, England. No part of this thesis has been submitted
elsewhere for any other degree or qualification, and it is the sole work of the author
unless referenced to the contrary in the text.

Much of the work in this thesis is based on collaborative work that has been pub-
lished, or is due to be submitted, in journals. These publications are listed below.

• T.J. Callow and N.I. Gidopoulos. “Optimal power series expansions of the
Kohn–Sham potential.” Eur. Phys. J. B, 91, 209 (2018).

• T.J. Callow, N.N. Lathiotakis, and N.I. Gidopoulos. “Density-inversion
method for the Kohn–Sham potential: Role of the screening density.” J.
Chem. Phys, 152, 164114 (2020).

• T.J. Callow, B.J. Pearce, T. Pitts, N.N. Lathiotakis, M.J.P. Hodgson and
N.I. Gidopoulos. “Improving the exchange and correlation potential in dens-
ity functional approximations through constraints”. Faraday Discuss. (2020).

• T.J. Callow, B.J. Pearce, N.N. Lathiotakis, and N.I. Gidopoulos. “Exchange-
correlation density functionals with spin-density accuracy for open shells”. To
be submitted.

Copyright © 2020 by Timothy James Callow.

“The copyright of this thesis rests with the author. No quotation from it should be
published without the author’s prior written consent and information derived from
it should be acknowledged”.

ii

https://link.springer.com/article/10.1140/epjb/e2018-90189-2
https://link.springer.com/article/10.1140/epjb/e2018-90189-2
https://aip.scitation.org/doi/abs/10.1063/5.0005781
https://aip.scitation.org/doi/abs/10.1063/5.0005781
https://aip.scitation.org/doi/abs/10.1063/5.0005781
https://doi.org/10.1039/D0FD00069H
https://doi.org/10.1039/D0FD00069H
https://doi.org/10.1039/D0FD00069H


Acknowledgements

Throughout my PhD, I have been lucky to count on the support of a great number
of people. First and foremost, I thank my supervisor, Nikitas Gidopoulos, whose
enthusiasm for all matters DFT rubbed off onto me. I am very grateful for his
guidance. Plus, he had a great coffee machine which not only served its intended
purpose with distinction, but even proved to be something of a social hub.

Nikitas also introduced me to Nektarios Lathiotakis, whose code HIPPO formed
the basis for much of the work in this thesis. I thank Nektarios for all his help
running and developing the code, and for hosting me in Athens. I was lucky to
have Stewart Clark as my co-supervisor, who was ready to assist with any kind of
computational issue, as well as being a keen supporter of the group’s social events.
I also thank Hardy Gross and Rod Bartlett for interesting and lively discussions;
moreover, I thank Hardy for arranging my financial support from the Max Planck
Institute.

The office environment has consistently been a highlight of my PhD studies: thanks
to Rob, Matt (x2), Ben, Tom, Faten, Zac, Matjaz and and the ‘Coding Gremlin’
for the discussions, distractions and infamous Newcastle expeditions. I would like
to give a special shout-out to the Coding Gremlin for introducing Wine Fridays to
the office, which were something of a revelation.

My friends have been an important diversion from the world of DFT. I was lucky to
share a house with Ben and Stu — our discussions on the best kind of potato never
grew old. Additionally, I thank those from St Chad’s and the tennis club (especially
Emily, who was in both groups); and my friends from my undergraduate and even
school days, who frequently (sometimes too frequently) made the trip from London
to Durham.

I am grateful to my family for supporting me throughout my PhD and the many

iii



years that preceded it. In particular, I thank my parents, who have always enthusi-
astically supported my education; and my grandma, for her article and document-
ary suggestions, who would likely have read this thesis in full had she been able
to.

Last but certainly not least, I thank Sophie for her great companionship and being
my biggest cheerleader. I hope that the next few years will be as good as the past
ones!

Finally, I thank Durham University and the Max Planck Institute of Microstructure
Physics for co-funding my PhD studies.

iv



Contents

Abstract i

Declaration ii

Acknowledgements iii

1 Introduction 1

1.1 Outline of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Hartree atomic units . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 The many-electron problem 5

2.1 The Born–Oppenheimer approximation . . . . . . . . . . . . . . . . 6

2.2 Hartree–Fock theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 The Hartree–Fock equations . . . . . . . . . . . . . . . . . . . 9

2.2.2 Solving the Hartree–Fock equations . . . . . . . . . . . . . . 10

2.2.3 Restricted and unrestricted Hartree–Fock . . . . . . . . . . . 11

2.3 Electron correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Correlated methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Configuration interaction . . . . . . . . . . . . . . . . . . . . 15

2.4.2 Many-body perturbation theory . . . . . . . . . . . . . . . . 16

2.4.3 Coupled cluster . . . . . . . . . . . . . . . . . . . . . . . . . . 17

v



3 Density-functional theory 20

3.1 Hohenberg–Kohn theorems . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Hohenberg Kohn first theorem: one-to-one mapping . . . . . 21

3.1.2 Hohenberg–Kohn second theorem: variational principle . . . 23

3.2 The constrained search formulation . . . . . . . . . . . . . . . . . . . 24

3.3 Thomas–Fermi and orbital-free DFT . . . . . . . . . . . . . . . . . . 25

3.4 Kohn–Sham theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Spin density-functional theory and open-shell systems . . . . . . . . 28

3.6 Exchange-correlation functionals . . . . . . . . . . . . . . . . . . . . 29

3.6.1 Local spin density approximation . . . . . . . . . . . . . . . . 30

3.6.2 Generalized gradient approximations . . . . . . . . . . . . . . 30

3.6.3 Hybrid functionals and generalized Kohn–Sham . . . . . . . . 31

3.6.4 The path to the ‘exact’ functional . . . . . . . . . . . . . . . 33

3.7 Limitations of common functionals . . . . . . . . . . . . . . . . . . . 36

3.7.1 Self-interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.7.2 The derivative discontinuity and fundamental gap . . . . . . 39

3.7.3 Static and dynamic correlation . . . . . . . . . . . . . . . . . 43

3.8 The optimized effective potential method . . . . . . . . . . . . . . . 44

3.8.1 KLI and CEDA approximations . . . . . . . . . . . . . . . . . 46

3.9 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.9.1 Gaussian basis sets . . . . . . . . . . . . . . . . . . . . . . . . 48

3.9.2 SCF convergence . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.9.3 OEP implementation . . . . . . . . . . . . . . . . . . . . . . . 52

4 Optimal power series expansions of the Kohn–Sham potential 58

4.1 Review of integration of density and wave-function theories . . . . . 59

4.1.1 Adiabatic connection and DFT perturbation theory . . . . . 60

4.1.2 Gidopoulos variational principle . . . . . . . . . . . . . . . . 62

4.2 Reference determinants with minimum correlation energy . . . . . . 66

4.3 Comparison of DFT perturbation theory and present method . . . . 69

vi



4.3.1 Traditional DFT PT method . . . . . . . . . . . . . . . . . . 69

4.3.2 Present WFT-DFT method . . . . . . . . . . . . . . . . . . . 70

4.4 Local exchange potentials . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.1 Exact exchange potential . . . . . . . . . . . . . . . . . . . . 72

4.4.2 Local Fock exchange potential . . . . . . . . . . . . . . . . . 74

4.5 First order exchange and correlation potential . . . . . . . . . . . . . 75

4.6 Analysis of variational collapse in DFT PT . . . . . . . . . . . . . . 86

4.7 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Density-to-potential inversion: role of the screening density 90

5.1 Motivation and review of existing methods . . . . . . . . . . . . . . . 90

5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2.2 Choice of basis set representation for the screening density . 97

5.2.3 Convergence criteria . . . . . . . . . . . . . . . . . . . . . . . 99

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3.1 Inversion of LDA densities . . . . . . . . . . . . . . . . . . . . 103

5.3.2 Constrained inversion of LDA densities . . . . . . . . . . . . 106

5.3.3 Inversion of densities from wave-function theories . . . . . . . 107

5.4 Comparison with the method by Zhao, Morrison and Parr . . . . . . 111

5.5 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 Open-shell systems in Kohn–Sham theory via implicit density

functionals 114

6.1 Motivation and the ‘ghost’ exchange error . . . . . . . . . . . . . . . 115

6.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.3 Implementation of the OEP equation . . . . . . . . . . . . . . . . . . 122

6.3.1 Implementation for (semi)-local density-functionals . . . . . . 123

6.3.2 Implementation of exact exchange energy functional . . . . . 126

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

vii



6.4.1 (Semi)-local density-functionals . . . . . . . . . . . . . . . . . 128

6.4.2 Exact exchange . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.5 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.5.1 Unrestricted KS equations from generalized KS theory . . . . 139

7 Conclusions and further work 143

7.1 Modelling the derivative discontinuity . . . . . . . . . . . . . . . . . 146

Appendix A Quadratic line search method 151

Appendix B Alternative construction of bk in OEP equation 153

Bibliography 157

viii



Chapter 1

Introduction

The role of simulations in science is growing ever more important, due to the con-

sistent advancements in computing power over the last several decades [1], coupled

with the increasing capability of scientists and engineers to exploit these advance-

ments. Indeed, computational modelling has become the fundamental instrument

in guiding public policy in response to major global challenges such as the COVID-

19 pandemic [2] and climate change [3]. This underlines the critical importance of

developing scientific models that are accurate, reliable, and understandable [4].

This thesis is concerned with the development and understanding of models in

electronic structure theory. Electronic structure theory is the study of electrons

in matter: a vast field that encompasses many different methods and applications,

from drug discovery [5] to astrophysical processes [6]. Electronic structure methods

are so widely used that they take up a significant fraction (∼ 30%) of all high-

performance computing hours in the UK and USA [7].

The main focus of this thesis is density-functional theory (DFT) [8, 9], which can

justifiably be considered the most widely-used electronic structure method. In

2014, two of the ten most-cited scientific papers of all time (and twelve of the top

hundred) were DFT papers [10]; meanwhile in 2013, almost 30,000 papers used DFT

[11], a number which appears to be doubling every 5-10 years. DFT’s popularity

is due in part to its enviable balance between accuracy and speed, together with

1



1.1. Outline of thesis

the development of several large DFT codes [12] which has enabled it to become

a ‘black-box’ method for many users. It is most commonly used in chemistry and

materials science, to help understand or complement experimental results; however,

it also enjoys success as a predictive tool of its own accord [13–16].

Regardless of DFT’s many successes, it is vulnerable to various criticisms. One

of the main limitations of DFT is the difficulty in systematically improving the

approximations; by contrast, it is usually possible to systematically converge to

the correct result using wave-function methods [17]. This weakness is reflected in

the fact that the two most popular approximations today were both developed in

the 1990s [18, 19]; no general-purpose approximation has since challenged their

popularity. Moreover, there is now such a range of approximations that one can

pick an approximation that best agrees with the experimental data or hypothesis,

raising questions about scientific integrity.

Motivated by the above problems, the common theme of this thesis is the devel-

opment of systematic routes to improved approximations in DFT. We tackle this

theme in several ways, for example through the integration of techniques and res-

ults from wave-function theories in DFT, and through the development of improved

algorithms for a certain class of approximations.

1.1 Outline of thesis

This thesis is structured as follows:

• Chapter 2: We introduce fundamental concepts in electronic structure theory

such as the Born–Oppenheimer approximation and Hartree–Fock theory. We

also briefly review a few popular wave-function methods.

• Chapter 3: We review the formal theories underpinning DFT, namely the

Hohenberg–Kohn theorems and Kohn–Sham (KS) theory. We introduce the

established approximations and discuss common failings. We also introduce

2



1.2. Hartree atomic units

the optimized effective potential (OEP) method which is fundamental to

much of the work in this thesis. Finally, we discuss some implementation

details.

• Chapter 4: We introduce a theory connecting wave-function theory (WFT)

with DFT, and explore the development of perturbative expansions for the KS

potential using this theory. One such expansion leads to a new KS potential

with exchange and correlation character. We also compare our work with

other approaches linking DFT and WFT.

• Chapter 5: We present a method to obtain the KS potential from a given

density, and discuss the importance of the screening density in this method.

We analyse the technical details of our approach, which can be implemented

easily in DFT codes, and apply it to a variety of systems and input densities.

• Chapter 6: We introduce a method to treat open-shell systems within re-

stricted KS theory, by treating standard exchange-correlation functionals as

implicit density functionals. This leads to an OEP equation which we solve

using a recently developed method; we demonstrate the reliability of this

technique for a variety of systems. Finally, we discuss our findings in the

context of a well-known paradox in DFT, the spin-symmetry dilemma.

• Chapter 7: We draw conclusions and consider avenues for future work, with

a particular focus on modelling the derivative discontinuity.

1.2 Hartree atomic units

Throughout this thesis, we adopt Hartree atomic units unless otherwise specified.

This is a convenient practice because the following fundamental physical constants

are all equal to one:

• h̄, reduced Planck’s constant;

3



1.2. Hartree atomic units

• e, elementary charge;

• a0. Bohr radius;

• me, atomic mass unit.

This simplifies the notation of various expressions in quantum mechanics. The unit

of energy in this system is the Hartree (H), with 1 H ≈ 27.211 eV. Some results

are quoted in eV (electron-Volts) to improve readability.

4



Chapter 2

The many-electron problem

The behaviour and properties of a quantum-mechanical system are described by

the Schrödinger equation, which in its most general form is given by

i
d
dt |Ψ(t)〉 = Ĥ(t) |Ψ(t)〉 , (2.1)

where Ĥ(t) is the time-dependent Hamiltonian, and |Ψ(t)〉 the time-dependent

wave-function. Observable quantities of interest can be calculated from the wave-

function,

O(t) = 〈Ψ(t)|Ô(t)|Ψ(t)〉 , (2.2)

where Ô(t) is the corresponding operator for the desired observable.

For the work in this thesis, we focus on the specific situation in which the Hamilto-

nian is time-independent and relativistic effects are ignored. This leads to the

following form of the Schrödinger equation,

Ĥ |Ψi〉 = Ei |Ψi〉 , (2.3)

where Ei is the energy level corresponding to the ith eigenvector Ψi. From now

on, we assume we’re only interested in finding the ground-state solution {Ψ0, E0}.

For a finite system with N electrons and M nuclei, the Schrödinger equation (2.3)

5



2.1. The Born–Oppenheimer approximation

can be written as

ĤΨ0(x1, . . . ,xN ; R1, . . . ,RM ) = E0Ψ0(x1, . . . ,xN ; R1, . . . ,RM ), with (2.4)

Ĥ = T̂n + T̂e + V̂nn + V̂ee + V̂en + V̂ext (2.5)

= −1
2

M∑
α

∇2
Rα
− 1

2

N∑
i

∇2
xi +

∑
α<β

ZαZβ
|Rα −Rβ|

+
∑
i<j

1
|xi − xj |

+
∑
i,α

Zα
|xi −Rα|

+ V̂ext, (2.6)

where T̂n and T̂e are respectively the nuclear and electron kinetic energy terms, V̂nn

and V̂ee the nuclear-nuclear and electron-electron repulsions, and V̂en the electron-

nuclear attraction. V̂ext represents all terms due to any external (such as magnetic)

fields; for the remainder of this thesis we restrict ourselves to cases where any

external fields are negligible, V̂ext = 0. We use xi to denote the spatial and spin

co-ordinates (ri, σi) of the ith electron, and likewise Rα for spatial and spin co-

ordinates of the αth nucleus.

2.1 The Born–Oppenheimer approximation

Solving the full Schödinger equation (2.4,2.5) can be simplified using the Born–

Oppenheimer (BO) approximation [20], in which the motion of the electrons is

decoupled from that of the nuclei. This approximation is motivated by the much

higher masses of the nuclei relative to the electrons, meaning the nuclei can be

approximately treated as classical particles with fixed positions relative to the elec-

trons.

Within the BO approximation, the total wave-function is written as a simple

product of the electronic and nuclear states,

Ψtot(x1, . . . ,xN ; R1, . . . ,RM ) = χ(R1, . . . ,RM )Ψelec
R1,...,RM

(x1, . . . ,xN ), (2.7)

where χ is the nuclear wave-function, and the electronic wave-function Ψelec de-

pends parametrically on the nuclear co-ordinates. Substituting the product (2.7)

6



2.2. Hartree–Fock theory

into the Schödinger equation (2.4), and neglecting terms that couple electronic and

nuclear motion, yields the decoupled equations for the electrons and nuclei,

(
T̂e + V̂en + V̂ee

)
Ψelec

R (x) = Eelec(R)Ψelec
R (x) (2.8)(

T̂n + V̂nn + Eelec(R)
)
χ(R) = Etotχ(R), (2.9)

where the simpler notation R denotes all the nuclear coordinates and x the elec-

tronic coordinates.

In the BO approximation, the electrons move adiabatically on a potential energy

surface Eelec(R) defined by the nuclear positions R1 . . .RM . The BO approxima-

tion is usually accurate, but breaks down when different solutions to the electronic

Schrödinger equation (2.8) are energetically close. In such situations, it is necessary

to go beyond the BO approximation [21]. However, in the remainder of this thesis,

it is assumed we do not encounter such situations and hence the BO approximation

is used throughout.

2.2 Hartree–Fock theory

We now focus on solving the electronic Schrödinger equation (2.8), which we now

denote simply as (
T̂e + V̂en + V̂ee

)
Ψ = EΨ. (2.10)

Computationally, this equation is impossible to solve exactly for any system con-

taining more than a few electrons for both memory and speed reasons, and therefore

some level of approximation is necessary [17, 22].

In this section, we introduce the Hartree–Fock (HF) method [23]. Although it is

not typically still used in calculations, HF is a historically significant method, and

the starting point for more advanced wave-function methods; it also features in an

important class of approximations in density-functional theory, as we shall see in

§ 3.6.3. Furthermore, it is insightful tool for understanding the effects of exchange

and correlation in electronic structure theory.

7



2.2. Hartree–Fock theory

We first consider some basic physical properties that the wave-function should

satisfy. Firstly, it must be normalized, ie

∫
dx1· · ·

∫
dxN |Ψ(x1, . . . ,xN )|2 = 1. (2.11)

This condition ensures the probability of finding the N electrons over all space is

equal to one. Secondly, because electrons are fermions, it must be antisymmetric

with respect to the exchange of two electrons, ie

Ψ(x1, . . . ,xi, . . . ,xj , . . . ,xN ) = −Ψ(x1, . . . ,xj , . . . ,xi, . . . ,xN ). (2.12)

The simplest expression that satisfies the requirements (2.11,2.12) is a single Slater

determinant,

ΦSD = 1√
N !

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(x1) ψ2(x1) . . . ψN (x1)

ψ1(x2) ψ2(x2) . . . ψN (x2)
...

... . . . ...

ψ1(xN ) ψ2(xN ) . . . ψN (xN ),

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where the single-particle orbitals ψi(r) are products of spatial and spin functions,

ψi(r) = φi(r)σi(s). (2.13)

In Hartree–Fock (HF) theory, we represent the wave-function in the above manner

using a single Slater determinant, with the optimal determinant calculated from

the Rayleigh-Ritz variational principle. The variational principle states that for a

normalized and anti-symmetric trial wave-function Ψ̃,

〈
Ψ̃
∣∣∣Ĥ∣∣∣Ψ̃〉 ≥ E0, (2.14)

with E0 the ground-state energy of the exact wave-function. Searching the N -

electron Hilbert space to find the wave-function which minimizes
〈

Ψ̃
∣∣∣Ĥ∣∣∣Ψ̃〉 would

yield the exact wave-function, the only Ψ̃ for which equality holds in inequal-

ity (2.14) (assuming no degeneracies). In HF theory, this search is restricted to

8



2.2.1. The Hartree–Fock equations

single Slater determinants of N -electrons, and thus the HF wave-function is defined

as

ΦHF = min
ΦSD→N

〈
Ψ̃
∣∣∣Ĥ∣∣∣Ψ̃〉 , (2.15)

under the additional constraint that the single-particle orbitals in the Slater de-

terminant are orthonormal.

2.2.1 The Hartree–Fock equations

We perform the minimization over all Slater determinants (2.15) by making the

energy stationary with respect to variations in the single-particle orbitals, under

the constraint that the spatial orbitals are orthonormal (the spin orbitals are or-

thonormal by definition). Imposing the orthonormality constraint through Lag-

range multipliers, the minimization leads to the following HF equations,

F̂iφi =
N∑
j

λijφj (2.16)

where λij are the Lagrange multipliers. F̂i is known as the Fock operator and it is

equal to

F̂i = ĥi + Ĵi − K̂i, (2.17)

where ĥ0 defines the local part of the Hamiltonian consisting of kinetic and electron-

nuclear potential terms,

ĥi = −∇2
i

2 + ven(ri). (2.18)

Ĵi and K̂i are respectively the Coulomb and non-local exchange operators,

Ĵiφi(ri) =
N∑
j

φi(ri)
∫

drj
|φj(rj)|2

|ri − rj |
, (2.19)

K̂iφi(ri) =
N∑
j∈σ

φj(ri)
∫

drj
φ∗j (rj)φi(rj)
|ri − rj |

, (2.20)

where the summation in the exchange term (2.20) only includes orbitals φj with the

same spin as φi. This is because the exchange term arises from the indistinguishab-

ility of two electrons with the same spin; if two such electrons are exchanged, the

energy is unchanged and the wave-function changes only by a sign.
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2.2.2. Solving the Hartree–Fock equations

By making a unitary transformation the HF equations (2.16) are transformed into

the following eigenvalue form,

F̂ φi = εiφi. (2.21)

This defines a set of simultaneous equations for each of the orbitals in the HF Slater

determinant ΦHF.

The HF energy is equal to

EHF = 〈ΦHF|Ĥ|ΦHF〉 (2.22)

=
N∑
i=1

[
〈φi|ĥi|φi〉+ 1

2 〈φi|Ĵi − K̂i|φi〉
]
. (2.23)

The HF orbitals do not have a strict physical interpretation; however, they are often

associated with the molecular orbitals (MOs), and the corresponding quantities εiσ

as the energy eigenvalues of these MOs. In fact, these eigenvalues do have physical

meaning. In Koopman’s theorem [24], it is shown that the kth ionization energy

Ik is equal to the negative of the kth eigenvalue εk,

Ik = E[N − 1, k]− E[N ] = −εk, (2.24)

where E[N − 1, k] is the energy with the kth electron removed. The above relation

assumes the “frozen MO” approximation, in which the MOs of the systems with

N and N − 1 electrons are taken to be identical.

2.2.2 Solving the Hartree–Fock equations

To solve the HF equation (2.21), one typically expands the orbitals in a basis set,

φi(r) =
∑
k

cikξk(r). (2.25)

There are various choices for the basis set which will be discussed in § 3.9.1. For

now, we assume the chosen basis represents the orbitals sufficiently well.

Expanding the orbitals in the above manner, and taking the inner product with a

basis element ξl(r), defines the matrix equation

FC = SCε, (2.26)

10
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Initial guess
for orbitals

Construct Fock matrix

Solve FC = SCε

Iterate until density
and energy converged

Figure 2.1: Illustration of the SCF procedure

where F and S are the Fock and overlap matrices respectively,

Fkl = 〈ξk|F̂ |ξl〉 , (2.27)

Skl = 〈ξk|ξl〉 ; (2.28)

and C and ε are the matrices containing the coefficients cik and εi. The matrix

equation (2.26), which is known as the Roothaan-Hall equation [25, 26], can be

solved with standard linear algebra techniques. However, because the HF orbitals,

and thus the coefficients cik, are present in the Fock matrix Fkl, this equation has

to be solved in a self-consistent manner. This self-consistent field procedure (SCF)

is outlined in Fig. 2.1.

2.2.3 Restricted and unrestricted Hartree–Fock

The only restriction we’ve so far imposed on the spatial orbitals that form the HF

determinant is that they must be orthonormal. However, in closed-shell calcula-

tions, there is usually an additional restriction imposed, namely that each spatial

orbital can accommodate two electrons of opposite spins, or in other words φ↑i = φ↓i .

This is known as the restricted Hartree–Fock (RHF) method.

11



2.3. Electron correlation

We can impose this kind of restriction for an open-shell calculation, by forcing all

the spatial orbitals except that of the unpaired electron to be doubly occupied.

This is known as restricted open-shell Hartree–Fock (ROHF) [27]. However, this

restriction is typically not imposed for an open-shell system, so φ↑i 6= φ↓i in general:

this is known as unrestricted Hartree–Fock (UHF), and it can also be used in

closed-shell calculations.

It is important to note that the UHF wave-function is not an eigenfunction of the

operator Ŝ2, or in other words it is said to be spin-contaminated. This means it

can contain contributions from different spin states which can be advantageous in

accounting for certain types of electron correlation, as we shall see in the next sec-

tion. However, this spin-contamination is also the source of various problems [28],

for example erroneous potential energy surfaces [29], inaccurate reaction barrier

predictions [30], and difficulties computing spectroscopic properties [28]; further-

more, these errors often propagate to the ‘post-HF’ correlated methods which we

discuss shortly in § 2.4 [31].

2.3 Electron correlation

In the broadest possible sense, electron correlation simply refers to the interacting

nature of electrons, in that the electron density in one region is not independent of

the electron density elsewhere. However, in quantum chemistry, the term electron

correlation describes all the effects that are not captured by the (restricted) HF

approximation. The correlation energy is usually defined as

Ec = E0 − ERHF, (2.29)

where E0 is the total (exact) energy. Although the correlation energy usually only

contributes around 1% of the total energy [32], it is important in many applications

(as we are rarely interested in simply finding the total energy).

12



2.4. Correlated methods

HF theory is often described as a ‘mean-field’ theory, because each electron experi-

ences a potential which depends only on the average positions of the other electrons,

and not on their individual positions. In reality, the potential experienced by an

electron does depend on the instantaneous positions of all the other electrons. This

effect, which is not captured in any HF implementation, is commonly referred to as

‘dynamic’ correlation. The absence of dynamic correlation in the HF approxima-

tion means the probability of an electron being in the vicinity of another is slightly

higher in HF than it should be (in other words, the electron charge has a tendency

to over-localize).

Another correlation effect arises when degenerate Slater determinants emerge,

which is commonly called ‘static’ correlation. A typical example of when this

kind of correlation is important is when an H2 molecule is stretched: in the RHF

approximation, there is just a single determinant which assigns equal probability to

the molecule dissociating into two ions as into two neutral atoms, when the correct

behaviour is to dissociate into two atoms. This kind of correlation is, to an extent,

captured by UHF, because it can break symmetry and form a mixed singlet and

triplet state. A comparison of energy dissociation curves for H2 between the RHF,

UHF and CCSD(T) (a correlated method introduced in the next section) methods

is shown in Fig. 2.2. However, this is only an example of static correlation, and

other static correlation effects cannot be captured so well with an unrestricted de-

scription [33]. Furthermore, although we have drawn a distinction between static

and dynamic correlation, the two are intrinsically linked and thus it is notoriously

difficult to formally define them as separate effects [34].

2.4 Correlated methods

In this section, we briefly introduce three of the most popular methods which go

beyond HF by including correlation effects: configuration interaction, many-body
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Figure 2.2: Energy dissociation curves for the H2 molecule, for RHF, UHF and
CCSD(T) methods.

perturbation theory (Møller–Plesset)∗, and coupled cluster. An understanding of

these methods is relevant to the objectives of this thesis, since we shall use them in

Chapters 4 and 5 to guide the development of new approximations in DFT. All the

methods are based on expanding the wave-function using multiple determinants,

Ψ = a0ΨHF +
∑
i=1

aiΦi, (2.30)

with the coefficients ai being determined by the method being used. These methods

are often described as ‘post Hartee–Fock’ because the first term in the expansion

is the HF determinant.

In all the methods to be described, the determinants Φi are formed by removing

occupied orbitals in the HF determinant, and replacing them with virtual (unoccu-

pied) ones in the basis set. These are akin to excitations from the HF determinant

and are labelled according to the number of excitations: so one swap is a single

excitation, two is a double, and so on.
∗We focus here on the flavour of many-body perturbation theory which is popular in quantum

chemistry. We do not discuss the Green’s function approach to many-body perturbation theory
[35], which is widely-used in the solid-state community, because it is less relevant to this thesis.
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2.4.1. Configuration interaction

2.4.1 Configuration interaction

Configuration interaction (CI) methods [36], like HF, are based on the variational

principle. The wave-function is expanded as follows

ΨCI = (1̂ + Ĉ1 + Ĉ2 + . . . )Φ0, (2.31)

with Ĉk denoting the set of excitations with k orbitals excited from the ground-state

determinant Φ0 to the virtual space. The expression 〈ΨCI|Ĥ|ΨCI〉 is minimized,

under the constraint that the wave-function is normalized.

If all excitations in the given basis set are included (up to Ĉnbas), the method is

known as full CI. In this case, all possible correlation in that basis is accounted for,

and the results can only be improved by using a larger basis set.

It is impossible to do a full CI calculation for any system which contains more

than a handful of electrons. This is because the number of determinants scales

factorially with the size of the basis set, making it rapidly inaccessible (although

a novel stochastic approach enables far larger systems to be studied with almost

full CI accuracy [37, 38]). Instead, it is normal to only consider excitations up to

a certain order, which is known as truncated CI. The most common approach is

to include singlet and doublet terms (CISD). Higher-order terms can be included,

but it is necessary to include at least doublet excitations as singlets alone have no

effect due to Brillouin’s Theorem [39].

Before continuing, we introduce the following two concepts:

i Size consistency: This means the energy of a dissociated molecule should equal

the energy of the separate atomic fragments, or in other words

E(A+B)rAB→∞ = E(A) + E(B); (2.32)

ii Size extensivity: This means the energy of a system which consists of nA

identical components A, where A is (for example) an atom or molecule, should
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2.4.2. Many-body perturbation theory

correctly scale with nA, or in other words

E(nAA) = nAE(A), (2.33)

Full CI satisfies both of the above criteria, however truncated CI satisfies neither.

In particular, the absence of size extensivity in truncated CI means that it performs

worse with increasing system size.

2.4.2 Many-body perturbation theory

A different route, many-body perturbation theory (MPBT), begins with a perturb-

ative expansion for the Hamiltonian

Ĥ = Ĥ0 + λV ′. (2.34)

If the zeroth-order term Ĥ0 is chosen to be non-interacting, then the zeroth-order

wave-function is known exactly and is a single determinant. The idea is then to

use an interacting perturbation V ′ to introduce correlation. The first-order energy

and wave-function are given in the standard perturbative manner by

E(1) = 〈Φ0|V ′|Φ0〉 , and (2.35)

|Φ(1)〉 =
∑
n sgl

〈Φn|V ′|Φ0〉
E0 − E1

|Φn〉 , (2.36)

where the summation (2.36) runs over all singlet excitations from Φ0.

Thus far, we have not specified what the unperturbed term H0 and perturbation

V ′ are given by. The most common choice is the following,

Ĥ0 =
N∑
i

F̂i =
N∑
i

ĥi + (Ĵi − K̂i) (2.37)

V̂ ′ = V̂ee −
N∑
i

(Ĵi − K̂i), (2.38)

where the single-particle terms hi, Ĵi and K̂i are defined by equations (2.18,2.20).

With this choice, the method is often called Møller–Plesset (MP) perturbation
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2.4.3. Coupled cluster

theory [40, 41], or just MBPT [42]. The energy up to first order EMP1 is given by

EMP0 = 〈ΦHF|
∑
i

F̂i|ΦHF〉 =
N∑
i

〈φi|ĥi|φi〉+ 〈φi|Ĵi − K̂i|φi〉 (2.39)

EMP1 = 〈ΦHF|V̂ee −
∑
i

(Ĵi − K̂i)|ΦHF〉 = −1
2

N∑
i

〈φi|Ĵi − K̂i|φi〉 . (2.40)

Hence we see that, up to first order, the energy is identical to HF as EMP0 +

EMP1 = EHF. The first contribution which includes correlation effects is therefore

the second-order term in the perturbation. Due to Brillouin’s theorem [39], all

contributions to the second-order energy from singlet excitations vanish, and thus

the second order energy is given by the sum over doublet excitations only,

EMP2 =
occ∑
i<j

unocc∑
a<b

〈
Φ0
∣∣∣V ′∣∣∣Φab

ij

〉 〈
Φab
ij

∣∣∣V ′∣∣∣Φ0
〉

E0 − Eabij
, (2.41)

where occ and unocc denote the occupied and unoccupied (virtual) orbitals in the

HF determinant. The MP2 energy tends to account for 80%-95% [32, 43] of the

total correlation energy. Its accuracy combined with its moderate scaling of n5
bas,

and the fact that it satisfies size extensivity, makes MP2 a popular post-HF method,

even though it is not variational.

It is of course possible to add higher-order perturbative terms. However, this

highlights one of the problems with MBPT methods, in that the perturbative

corrections are not guaranteed to converge monotonically to the correct answer.

This is related to the fact that the zeroth-order wave-function is not necessarily

close to the fully-interacting one. Indeed, it is observed that going to third-order

usually gives a worse answer than MP2; however, once fourth-order terms are

introduced (MP4), we do see improvement compared to MP2, albeit at a worse

cost of n7
bas.

2.4.3 Coupled cluster

In MBPT, all types of excitation (singles, doubles, and so on) are included up

to a given order. As discussed, this perturbative approach does not guarantee

17



2.4.3. Coupled cluster

convergence to the exact answer. The idea behind coupled cluster (CC) theory [44]

is to include all orders of perturbation for a given group of excitations. Thus, CC

can be thought of as an infinite-order perturbation theory.

In CC, we use the following exponential ansatz for the wave-function,

ΨCC = eT̂Φ0; (2.42)

where T̂ is a sum over excitation operators,

T̂ = T̂1 + T̂2 + · · ·+ T̂N , with (2.43)

T̂1Φ0 =
occ∑
i

unocc∑
a

taiΦa
i , T̂2Φ0 =

occ∑
i<j

unocc∑
a<b

tabij Φab
ij , (2.44)

and so on. The amplitudes tai , tabij are determined by solving the Schrödinger equa-

tion using the CC ansatz for the wave-function (2.42). Writing the exponential

operator eT̂ as a Taylor expansion, we see how to generate expansions for a given

level of excitations:

eT̂ = 1̂ + T̂1 +
(
T̂2 + T̂ 2

1
2

)
+
(
T̂3 + T̂1T̂2 + T̂ 3

1
6

)
+ . . . (2.45)

Let us analyse the terms that contribute to double excitations from Φ0. There are

two terms, T̂2 and T̂ 2
1
2 . The T̂2 term is called ‘disconnected’ and it is the same as

the configuration interaction doubles (CID) expression. We see therefore that an

additional term, T̂ 2
1
2 , emerges in CC doubles (CCD) which is not present in CID.

We call this a ‘connected’ term and we can see similar excitations are present at

all orders of the expansion. Thanks to the presence of these terms, CC methods

are size extensive regardless of when they are truncated, unlike truncated CI.

The CC energy is calculated as follows

ĤΨCC = ECCΨCC ⇒ ĤeT̂Φ0 = ECCe
T̂Φ0 ⇒ ECC = 〈Φ0|ĤeT̂ |Φ0〉 , (2.46)

where the final equation drops out because there is no overlap between Φ0 and its

excited states.

Including higher order excitations in CC methods will give convergence to the full

CI solution. CC with singles and doubles, CCSD, has comparable accuracy to
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2.4.3. Coupled cluster

MP4 with better scaling of n6
bas. Including triples, CCSDT, scales as n8

bas and is

thus usually considered too computationally demanding. However, a very popular

approach involves combining CC and MBPT to include triple order excitations

in a perturbative manner, by choosing those from MBPT which give the largest

contributions to the energy: this is known as CCSD(T) [45].
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Chapter 3

Density-functional theory

As discussed in the previous chapter, the electronic Schrödinger equation (2.10) is

impossible to solve exactly for any system larger than a few electrons, making ap-

proximate methods essential. The methods in the last chapter were all focussed on

approximating the wave-function; in this chapter, we introduce density-functional

theory (DFT), which takes a very different approach by instead using the electronic

density to calculate observables.

Before considering the question of whether it is actually possible to bypass the wave-

function and compute observables with the density, we comment on the considerable

advantages of this approach. The electronic density, given by

ρ(r) = N

∫
dσ
∫

dx1· · ·
∫

dx2 |Ψ(r, σ; x1; . . . ; xN )|2, (3.1)

is just a function of three spatial variables. The density therefore has vastly superior

scaling compared to the wave-function-based methods described in the last chapter.

This scaleability, alongside many other desirable properties, has made DFT the

most popular electronic structure method in materials, Chemistry and beyond [11].

In this chapter, we first review the theoretical foundations of DFT, and the Kohn–

Sham scheme which is the most widely-used formulation of DFT. Later, we discuss

some of the most popular approximations used and their limitations. We finish

with a discussion of computational implementation, with a particular focus on the

type of implementation used for calculations in this thesis.
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3.1. Hohenberg–Kohn theorems

V̂ext Ψ ρ(r)

Figure 3.1: Schematic of the 1:1 mapping in the first HK theorem

3.1 Hohenberg–Kohn theorems

The question of whether we are justified in using the electronic density as a funda-

mental variable for calculations is answered by the Hohenberg–Kohn (HK) theor-

ems [8]. The first theorem proves there exists a one-to-one mapping between the

ground-state density and the external potential; since the external potential defines

the Hamiltonian, this means the wave-function is a unique functional of the density

and thus all ground-state observables are (in principle) determined by the density

alone. The second theorem, using the variational principle, establishes a path to

determine this ground-state density.

3.1.1 Hohenberg Kohn first theorem: one-to-one mapping

The first HK theorem proves that the ground-state density uniquely determines

the external potential, up to an additive constant. The proof is in two parts:

1. Two potentials differing by more than a constant yield different

wave-functions.

Proof. The proof is by contradiction. Consider two potentials, V̂1 and V̂2,

which share the same wave-function Ψ and differ by more than a constant.

The Schrödinger equations for these two systems are

(T̂ + V̂ee + V̂1)Ψ = E1Ψ; (3.2)

(T̂ + V̂ee + V̂2)Ψ = E2Ψ. (3.3)

Taking the difference of the above equalities gives

(V̂1 − V̂2)Ψ = (E1 − E2)Ψ = cΨ; (3.4)
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3.1.1. Hohenberg Kohn first theorem: one-to-one mapping

because V̂ is a multiplicative potential we can divide both sides of the above

equation by Ψ (assuming Ψ 6= 0) which gives

V̂1 − V̂2 =
∑
i

v1(ri)− v2(ri) = c. (3.5)

Hence we see that two potentials giving the same wave-function can differ

only by a constant, which contradicts the initial premise and completes the

proof.∗

2. Two ground-state wave-functions, arising from different potentials,

yield two different ground-state densities.

Proof. This also proceeds by contradiction. Consider two different wave-

functions, Ψ1 and Ψ2, which by the first step of the proof must emerge from

different potentials V̂1 and V̂2. By the variational principle, the following

conditions must hold:

〈Ψ1|Ĥ1|Ψ1〉 < 〈Ψ2|Ĥ1|Ψ2〉 , and (3.6)

〈Ψ2|Ĥ2|Ψ2〉 < 〈Ψ1|Ĥ2|Ψ1〉 . (3.7)

Taking the difference of the above inequalities yields

∫
dr [v1(r)− v2(r)][ρ1(r)− ρ2(r)] < 0. (3.8)

Clearly, if ρ1 = ρ2, the above expression is absurd and therefore ρ1 6= ρ2,

which completes the proof.

Inequalities (3.6) and (3.7), and by extension the HK proofs, hold only for non-

degenerate ground-states. However, the requirement of non-degeneracy is lifted in

the Levy constrained search formulation which we come to in § 3.2.

With the unique mapping between the density and external potential established,

we can write the energy as a functional of the density. In DFT, this energy func-
∗Strictly speaking, equation (3.5) does not guarantee that v1(r) − v2(r) = c everywhere; how-

ever, under the reasonable assumption that the external potentials v1(r) and v2(r) are everywhere
continuous, it holds that v1(r) − v2(r) = c.
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3.1.2. Hohenberg–Kohn second theorem: variational principle

tional is usually written as

Even [ρ] =
∫

dr ρ(r)ven(r) + FHK[ρ], with (3.9)

FHK[ρ] = T [ρ] + Eee[ρ] = 〈Ψρ|T̂ + V̂ee|Ψρ〉 . (3.10)

This is a powerful equation: it states that, were the density and the HK functional

FHK known, then the energy would be known exactly without any knowledge of

the wave-function. Of course, the exact form of the functional is unknown (and

deriving it would be equally difficult as solving the full many-electron problem [46,

47]); however, a number of good approximations exist, which we shall visit later in

this chapter.

3.1.2 Hohenberg–Kohn second theorem: variational principle

The first HK theorem establishes the density is sufficient as a basic variable in elec-

tronic structure theory, but does not indicate how to compute the density without

knowledge of the wave-function. In other words, it raises the question: how do we

know a given density is (or is close to) the ground-state density?

The second HK theorem addresses this question using the variational principle.

Suppose we have a trial density, ρ̃, which has ground-state wave-function Ψ̃. By

the variational principle,

〈Ψ̃|Ĥ|Ψ̃〉 = Even [ρ̃] ≥ Even [ρ0] = 〈Ψ0|Ĥ|Ψ0〉 , (3.11)

where ρ0 and Ψ0 are the ground-state density and wave-function of the fully-

interacting system with Hamiltonian Ĥ. This proves that we can find the ground-

state energy (and wave-function) by finding the minimum of the energy functional

over all densities. Thus, we have established not only that the density contains all

the information we need, but also that this density can be uniquely determined

in a variational manner. Varying the energy functional (3.9) with respect to the

density yields the Euler equation in DFT,

δFHK[ρ]
δρ(r) + ven(r) = µ. (3.12)
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In the original HK formulation, only variations which conserve the total electron

number are permitted, and µ is a Lagrange multiplier which enforces this constraint.

However, if this requirement is relaxed and the energy is allowed to vary with

electron number, it can be shown that µ is equal to the partial derivative of the

ground-state energy with respect to electron number N [48],

µ = ∂Even [ρ0]
∂N

, (3.13)

and thus µ is commonly known as the chemical potential. The identification of

µ with the chemical potential can also be shown using the extension of DFT to

thermal ensembles [49], and taking the limit of zero temperature to derive the

ground-state relation (3.13).

3.2 The constrained search formulation

The HK functional FHK[ρ] (3.10) is only defined for densities which correspond

to ground-state anti-symmetric wave-functions defined by an external field ven(r);

we call these densities v-representable. This is a limitation of the second HK the-

orem because it is possible to construct trial densities which obey sensible physical

restrictions, but are not v-representable.

This problem was addressed by Levy and Lieb in the so-called constrained search

approach [50–52]. This formulation removes the condition on the density to be v-

representable and instead imposes the much less severe restriction ofN -representability.

A N -representable density must only be normalized and everywhere non-negative.

This procedure connects with the variational search in wave-function theory seen

in the previous chapter, in which we search over all possible anti-symmetric wave-

functions Ψ (with correct normalization) to find that wave-function which minim-

izes the energy. The search proceeds in two steps as follows:

1. For a given density ρα, search over all normalized anti-symmetric wave-

functions yielding that density, to find that which yields the minimum energy
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3.3. Thomas–Fermi and orbital-free DFT

for that density,

E0[ρα; ven] = min
Ψ→ρα

〈Ψ|Ĥ|Ψ〉 . (3.14)

2. Now search over all the space of all densities considered in the prior step,

ρα, ρβ, . . . , to find that density which minimizes the energy,

E0[ven] = min
ρα

E0[ρα; ven]. (3.15)

This procedure ensures that only v-representable densities, ie those which come

from a valid wave-function, are considered in the variational procedure in DFT. It

can be succintly expressed as

E0[ven] = min
ρ→N

{
F [ρ] +

∫
dr ρ(r)ven(r)

}
, (3.16)

with the so-called universal functional F [ρ] given by

F [ρ] = min
Ψ→ρ

〈Ψ|T̂ + V̂ee|Ψ〉 . (3.17)

We note that, besides N -representability, the search is restricted to densities whose

von Weizsaecker kinetic energy is finite,
∫

dr|∇ρ1/2(r)|2 <∞.

Additionally, we note that the above formulation lifts the non-degeneracy require-

ment of the original HK theorems, because during the initial search (3.14), only a

single wave-function of the possible wave-functions that yield a certain ground-state

energy is chosen.

3.3 Thomas–Fermi and orbital-free DFT

Having established that the electronic density can provide a complete description

of electrons in matter, the question becomes: how do we express the energy as

a functional of the density? The first attempt at this was made by Thomas and

Fermi [53, 54], some time before the HK theorems themselves were introduced. In

the Thomas–Fermi (TF) method, the kinetic energy functional is constructed by

splitting the electron density into a series of small volume elements in momentum
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3.4. Kohn–Sham theory

space (with radius equal to the Fermi momentum), and approximating the density

in these sub-regions to be uniform. This approximation is based on the homogen-

eous electron gas (HEG), which is an important concept in DFT, forming the basis

for several important approximations. The electron-electron interactions are taken

to be classical, leading to the following energy functional,

ETF[ρ] = 3
10(3π2)

2
3

∫
dr ρ

5
3 (r) +

∫
dr ρ(r)ven(r) + 1

2

∫
dr
∫

dr′ ρ(r)ρ(r′)
|r− r′| . (3.18)

This is a historically important result, being the first attempt to express the energy

in terms of the density. Unfortunately, it is of no use in a practical sense as it fails

to predict even the most basic material properties, due largely to the inadequacy

of the TF kinetic energy functional, but also due to the neglect of exchange and

correlation effects in the electron-electron interaction term.

As we shall soon see, the most popular approach in DFT is to begin with an

auxiliary system of non-interacting electrons. Methods which construct the energy

as a direct functional of the density in the style of Thomas–Fermi are known as

‘orbital-free’ DFT [55, 56]. These methods do not currently offer the level of

accuracy required to be of practical use due to the challenge of constructing a kinetic

energy density-functional [57]; but they continue to be of interest because they have

significant computational advantages compared to using an auxiliary system. In

particular, there has been a recent surge of interest in applying machine-learning

techniques to develop orbital-free functionals [58–61].

3.4 Kohn–Sham theory

The Kohn–Sham (KS) formulation of DFT cunningly avoids the difficult problem

of constructing a kinetic energy density functional, and is by far the most widely-

used approach in DFT. The theory, developed by Kohn and Sham [9], imagines an

auxiliary system of non-interacting electrons with the same density as the interact-

ing system (see Fig. 3.2 for a visual representation of this concept). The advantage
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3.4. Kohn–Sham theory

of this is immediate, in that the kinetic energy for a non-interacting system (whose

wave-function is a Slater determinant) is known exactly in terms of the orbitals,

Ts[ρ] = 〈ΦKS|T̂ |ΦKS〉 = −1
2

N∑
i=1

∫
drφ∗i (r)∇2φi(r), (3.19)

with the density defined in the usual way for a Slater-determinant,

ρ(r) =
N∑
i=1
|φi(r)|2. (3.20)

The kinetic energy functional is an implicit density-functional through its depend-

ence on the KS orbitals, which depend implicitly on the density.

The electron-nuclear energy is defined exactly in terms of the density in the normal

manner, and the electron-electron interaction energy is approximated using the

classical (Hartree) expression,

Een[ρ] =
∫

dr ρ(r)ven(r); (3.21)

EH[ρ] = 1
2

∫
dr
∫

dr′ ρ(r)ρ(r′)
|r− r′| . (3.22)

The non-interacting kinetic energy and Hartree energy do not account for the

quantum-mechanical nature of electron interactions. An extra term, the exchange-

correlation (xc) energy, is therefore introduced in the total energy functional to

include these effects. It is defined formally as

Exc[ρ] = T [ρ]− Ts[ρ] + Eee[ρ]− EH[ρ], (3.23)

with Eee[ρ] and T [ρ] defined by the universal functional (3.17),

T [ρ] + Eee[ρ] = min
Ψ→ρ

〈Ψ|T̂ + V̂ee|Ψ〉 . (3.24)

In principle, KS theory is formally exact (unlike HF); if the xc-energy were known

exactly then we would have the exact energy functional. As we are about to see,

this is not the case, although a number of good approximations exist.

With the KS energy functional given by

EKS[ρ] = −1
2

N∑
i=1

∫
drφ∗i (r)∇2φi(r) +

∫
dr ρ(r)ven(r)

+ 1
2

∫
dr
∫

dr′ ρ(r)ρ(r′)
|r− r′| + Exc[ρ], (3.25)
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(a) Interacting (b) Non-interacting

Figure 3.2: Illustration of the Kohn–Sham concept. An interacting system is trans-
formed into a non-interacting one with the same density.

this is minimized with respect to the density which yields the KS equation for the

orbitals, (
−∇2

2 + vs[ρ](r)
)
φi(r) = εiφi(r), with (3.26)

vs[ρ](r) = ven(r) +
∫

dr′ ρ(r′)
|r− r′| + δExc[ρ]

δρ(r) . (3.27)

Much like the HF equation (2.21), the KS equations must be solved in a self-

consistent manner, as the orbitals define the KS potential vs[ρ]. More details on

the numerical implementation of KS DFT can be found at the end of this chapter.

3.5 Spin density-functional theory and open-shell

systems

The unique mapping between the external potential and density in the original

HK theorems is valid only for spin-unpolarized external potentials. The extension

to spin-polarized systems, in which a unique map is established between a spin-

polarized external potential and a spin-density, was first proposed by von Barth and

Hedin [62]. The proof is similar to the HK theorem (see Fig. 3.1): two invertible

maps are established, firstly between the spin-potential and ground-state wave-

function, and then between the wave-function and spin-density. The uniqueness of

the first mapping does not hold in general [63, 64]; however, it has been shown both
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3.6. Exchange-correlation functionals

practically [65] and theoretically [66] that this mapping is indeed unique, except

for fully spin-polarized systems (including one-electron systems).

In the KS formulation of spin-DFT, the KS energy functional (3.25) is minimized

with respect to the spin-densities ρσ(r), rather than the total density. This leads

to the following spin-KS equations (sometimes referred to as the spin-unrestricted

or just unrestricted KS equations),{
−∇2

2 + vσext(r) + vH(r) + vσxc(r)
}
φσi (r) = εσi φ

σ
i (r), with (3.28)

vxc(r) = δExc[ρ↑, ρ↓]
δρσ(r) , and (3.29)

ρσ(r) =
Nσ∑
i=1
|φσi (r)|2. (3.30)

From the above, it is clear that the spin-up and spin-down (σ =↑, ↓) KS orbitals

are defined by separate KS equations.

Although the spin-DFT formalism is strictly only required in the presence of an

external spin-polarized field, the unrestricted KS equations are routinely employed

in the absence of a magnetic field to study open-shell systems (whose net spin-

density is non-zero). The optimal treatment of open-shell systems within KS-DFT

is in some ways an unresolved question in DFT [67]; we discuss this topic in depth

in Chapter 6 of this thesis, in which we develop a new formalism for open-shell

systems within the normal (restricted) KS framework.

3.6 Exchange-correlation functionals

In this section, we discuss some of the most popular (and historically important)

approximations for the xc-energy functional. The effectiveness of these approxim-

ations has been integral to the success of DFT; we also comment on how these

approximations can be improved in a quasi-systematic manner, giving rise to more

accurate functionals in DFT.
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3.6.1. Local spin density approximation

3.6.1 Local spin density approximation

The first approximation for the xc-functional in KS theory is the local density ap-

proximation (LDA) [9], usually generalised to the local spin density approximation

(LSDA). In the LSD approximation, the xc-energy is modelled using the HEG;

note the difference with Thomas–Fermi in which the much larger kinetic energy is

modelled with the HEG. The LSDA xc-energy is

ELSDA
xc [ρ] =

∫
dr ehxc(ρ̄↑, ρ̄↓)|ρ↑,ρ↓ , (3.31)

where ehxc(ρ̄↑, ρ̄↓) is the xc-energy density for the HEG. The exchange part of this is

known analytically, but the correlation part is parameterized from Monte-Carlo cal-

culations; there are a few well-known parameterizations [68–70] which give slightly

different results.

Whilst it might seem to be a severe approximation, the LSDA often yields accurate

results, especially for bulk systems whose densities are more uniform; is is also

computationally very fast, having a purely local density dependence. Its success is

in part because the HEG is a real physical system, meaning it obeys various exact

properties [71]. However, it is of limited use of in atomic and molecular systems.

Although it gives total energies to within 1% ∼ 5% of experimental results, one

is usually interested in computing energy differences to determine quantities of

interest, not simply the total energy. Qualitatively, it tends to overbind and does

not produce stable anions; quantitatively, it does not yield ‘chemical accuracy’ (1

kcal/mol) for properties of interest.

3.6.2 Generalized gradient approximations

A logical extension to the LSDA is to use the gradient of the density in xc-

functionals, in order to account for variations in the density. This class of function-

als, known as generalized gradient approximations (GGAs), take the general form
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3.6.3. Hybrid functionals and generalized Kohn–Sham

EGGA
xc [ρ↑, ρ↓] =

∫
dr eGGA

xc
(
ρ↑, ρ↓,∇ρ↑,∇ρ↓

)
. (3.32)

Unlike the LSDA, the above form does not define a unique functional and as such

a large number of GGAs have been developed. GGAs can be roughly grouped into

one of two categories: (i) those which are parameterized to fit known empirical

data, and (ii) those which are parameterized to satisfy known exact properties

(such as scaling relations). There are many well-known examples of both [19, 70,

72–75], but perhaps the most famous example of the former is the BLYP functional

[75] which has played an important role in the application of DFT in chemistry;

meanwhile the PBE functional [19] is the most prominent of the latter group, and

tends to be favoured by those in the physics community. GGA functionals tend to

systematically improve upon LDA for most properties, at a slightly increased cost

due to the semi-local dependence on the density.

3.6.3 Hybrid functionals and generalized Kohn–Sham

The local (LSDA) and semi-local (GGA) functionals described thus far all fall

within the KS formalism of DFT. We now introduce a class of functionals known as

hybrid functionals, so-called because they mix a common KS xc-energy functional

with some portion of Hartree–Fock (or other) exchange energy. The first well-

known hybrid was proposed by Becke [76] and uses a simple mix of half HF exchange

and half LSDA exchange-correlation (and is thus known as “Becke half-half"),

EHF
xc [ρ; {φi}] = 1

2E
HF
x [{φi}] + 1

2U
LSDA
xc [ρ], (3.33)

where ULSDA
xc denotes the potential xc-energy [70], as opposed to full xc-energy.

Becke’s original formulation was proposed based on the adiabatic-connection the-

orem [77–79]. Strictly speaking, this approach is only formally justified if the

optimized effective potential method is used to compute the x(c)-potential. How-

ever, formal justification for hybrid functionals in Becke’s implementation (and

other early hybrids) followed shortly after with the Generalized Kohn–Sham (GKS)
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3.6.3. Hybrid functionals and generalized Kohn–Sham

formalism [80]. The GKS formalism uses the constrained search formalism to define

a generalized universal functional FS [ρ],

F s[ρ] = min
Φ→ρ(r)

S[Φ] = min
{φi}→ρ(r)

S[{φi}], (3.34)

for some functional of an N-electron Slater determinant S[Φ]. This is a formal

representation of DFT provided three conditions are met:

1. FS [ρ] and its functional derivative exist

2. Minimizing the energy defined by

ES [{φi}; veff] = S[{φi}] +
∫

dr veff(r)ρ(r) (3.35)

yields the set of single particle equations

ÔS [{φi}]φj + v̂effφj = εjφj , (3.36)

where ÔS does not explicitly depend on the local effective potential v̂eff.

3. The densities of the interacting and GKS systems are v-representable.

The above conditions are met by several choices for S[Φ]. One such choice,

S[Φ] = 〈Φ|T̂ |Φ〉 , (3.37)

in other words the kinetic energy functional, yields the standard KS equations for

Eq. (3.36). Thus, KS theory emerges from GKS theory. Another possible choice of

S[Φ] is

S[Φ] = 〈Φ|T̂ |Φ〉+ a {UH[Φ] + Ex[Φ]} , (3.38)

which leads to the single particle equations

−∇2

2 φi(r) + venφi(r)+vH(r)φi(r)− a
∫

dx vHFx (r,x)φi(x)

+(1− a)vxc(r)φi(r) = εiφi(r). (3.39)

This defines a hybrid functional with some fraction a of the local or semi-local

exchange replaced with exact (HF) exchange.
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3.6.4. The path to the ‘exact’ functional

Although simple in appearance, Becke’s half-half hybrid yields significant improve-

ments over LSDA (and HF) for total energies, atomization energies, ionization en-

ergies and proton affinities [76]. Its success spawned the development of many sub-

sequent hybrid functionals [18, 81–85], which have evolved to contain various frac-

tions of different xc-functionals, including so-called local [86] and range-separated

hybrids [87–92]. The most famous hybrid is the B3LYP functional [18, 81]: this is

often credited with popularizing the use of DFT within the Chemistry community

due to its ability to attain chemical accuracy for a range of systems and properties.

The mixing parameters in hybrid functionals are often fitted (to various extents) to

data; this has led to criticism of over-parameterization (which also applies to empir-

ically derived GGAs), and contributed to the belief that DFT cannot be considered

an ab initio method. However, it should be noted that there is strong theoretical

justification for the use of GKS and hybrid functionals. Burke, Ernzerhof and

Perdew derived a non-empirical condition for the fraction of exact exchange to be

combined with the PBE functional [93]; and it has also been demonstrated that a

fraction of non-local exchange is crucial to improving band-gap calculations [94].

3.6.4 The path to the ‘exact’ functional

So far, we have discussed the three most historically important, and widely-used

classes of functionals in KS calculations. Roughly speaking, GGAs offer more

accuracy than LDAs at slightly increased cost; and hybrids improve on GGAs, at a

more increased cost due to the non-local potential∗. However, various other classes

of functional exist, such as the meta-GGAs (mGGAs), which depend on the kinetic

energy density τ [95],

EmGGA
xc [ρ↑, ρ↓] =

∫
dr emGGA

xc
(
ρ↑, ρ↓,∇ρ↑,∇ρ↓, τ↑, τ↓

)
, (3.40)

τσ(r) =
∑
i

|∇φiσ(r)|2. (3.41)

∗It is unwise to make a general statement about hybrids being more accurate than GGAs due
to the sheer number of both and the discussed problem of over-parameterization.
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3.6.4. The path to the ‘exact’ functional

Like GGAs, mGGAs can be constructed non-empirically to satisfy exact known

constraints; as they contain extra information, they can satisfy more of these prop-

erties than GGAs. However, despite early mGGAs showing promise [96], they do

not consistently perform better than popular GGAs and so their use is less wide-

spread. This may change in the future with the advent of more advanced mGGAs

[97].

The final important class of functionals which we shall discuss are those which

incorporate the exact exchange energy,

EEXX[{φk[ρ]}] = −1
2
∑
σ

Nσ∑
i,j=1

∫ ∫
dr dr′

φiσ(r)φ∗jσ(r)φ∗iσ(r′)φjσ(r′)
|r− r′| . (3.42)

We differentiate this class of functionals from hybrid functionals because the func-

tional derivative of the exact exchange energy (3.42) is taken with respect to the

density, leading to the normal KS equations (3.26), in which the orbitals experi-

ence a strictly local potential. By contrast, the GKS scheme for hybrid functionals

yields equations for the orbitals (3.39) containing a non-local potential.

Like the kinetic energy functional (3.19), the exact-exchange functional is an im-

plicit density-functional through its dependence on the KS orbitals. We therefore

cannot obtain the xc-potential directly from the functional derivative of the xc-

energy, and instead it must be solved using the optimized effective potential (OEP)

method, which is the subject of § 3.8. Strictly speaking, mGGAs are also orbital-

dependent functionals and thus should be solved using the OEP method: although

this is sometimes done [98], it is more common to use a trick that takes mGGAs

within the GKS formalism [96, 99], which is computationally simpler than solving

the OEP equation.

Unfortunately, pairing the exact exchange functional with (for example) a semi-

local correlation energy functional does not tend to yield good results∗, as the

correlation functionals for semi-local functionals benefit from self-cancellation with
∗This would be analagous to using full HF exchange, a = 1 in a hybrid functional (3.39);

typically optimal value of a is found to be ∼ 0.25 [93].
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LDA ↔ n(r)

GGA ↔ ∇n(r)

mGGA ↔ τ(r)

EXX* / hybrids ↔ φocc(r)

EXX + Ec ↔ φunocc(r)

ac
cu
ra
cy

co
st

Figure 3.3: The so-called Jacob’s Ladder [101] of DFT functionals

their exchange counterparts and are thus typically very crude approximations to

the actual correlation energy [100].

Therefore, the exact exchange energy is typically paired with a correlation energy

derived using MBPT; in Chapter 4 of this thesis, we review some some example

functionals of this type in § 4.1 and derive a new xc-potential using MBPT tech-

niques. For now, we remark that these functionals are used rarely in DFT calcu-

lations, due to both cost and difficulties in solving the OEP equation (which are

discussed in § 3.9.3). However, development of these functionals is a very active

area of research as they are capable of offering far greater accuracy than semi-local

functionals.

This brings to a close our discussion on the various flavours of DFT functionals.

The PBE and B3LYP functionals are by far the most widely-used, accounting

for around 2/3 of all DFT calculations [11]. Nevertheless, there is a continuing

drive to develop more accurate functionals, due to systematic failings of typical

functionals which are discussed in the following section. The inclusion of more

density-related variables to develop more accurate functionals is often referred to

as climbing ‘Jacob’s Ladder’ [101], as illustrated in Fig. 3.3.
∗EXX has a similar cost to hybrids, but unless paired with a suitable correlation functional,

is less accurate than LDA.
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3.7 Limitations of common functionals

In this section we discuss some general limitations of common functionals in KS

DFT. By general limitations, we refer to features that the exact KS functional

and potential should satisfy, but which are not captured by semi-local and hybrid

functionals in general use. We note that this is by no means an exhaustive list of

deficiencies in common functionals, nor are all of these limitations shared by all

functionals; more comprehensive reviews can be found, for example, in Refs. [102]

and [103]. However, there is not yet a functional in widespread use that captures

any of these features properly; and their proper description is critical to improving

many of the systematic failures prevalent in DFT.

3.7.1 Self-interaction

In the KS energy functional, the Coulomb repulsion energy of the electrons is

modelled by the classical Hartree term (3.22). This energy is contaminated by

an error because each electron experiences a repulsive force from its own charge

density: this is known as the self-interaction (SI) error [69, 104]. This error is

fully cancelled by the exact xc-functional (and hence there is no SI error in HF, as

exchange is treated exactly and there is no correlation); however, it turns out to

be only partially cancelled by the vast majority of semi-local approximations.

The SI error is easiest to conceptualize by considering the KS equation for a one-

electron system, which is given by(
−∇2

2 + ven(r) +
∫

dr′ |φ1(r′)|2

|r− r′| + vxc(r)
)
φ1(r) = εφ1(r). (3.43)

Since there are no inter-electron interactions in a one-electron system, it is clear

that the exact xc-potential (or more accurately the exchange potential as there is

no correlation in a one-electron system) should exactly cancel the Hartree potential,

vxc(r) = −
∫

dr′ |φ1(r′)|2

|r− r′| . (3.44)
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Figure 3.4: The electron-nuclear potential, ven, and the KS potential, vs, (with the
PBE xc-functional), for one-electron systems.

However, this simple relation is not satisfied by LDA and most semi-local DFT

functionals (it is broken less severely for hybrids as they contain a fraction of exact

exchange). In Fig. 3.4, we have plotted the KS potential against the external

potential for the Hydrogen atom and H+
2 ion; in an exact KS formulation these

would be identical, but they are clearly different with the PBE approximation used

here.

Though easiest to understand and define for the one-electron case, the SI problem

is prevalent in many-electron systems [105, 106]. One manifestation of the SI error
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3.7.1. Self-interaction

is in the asymptotic decay of the Hxc-potential: it should decay as vHxc(r) ∼

(N − 1)/r, but for LDA and most GGAs it instead decays as vHxc(r) ∼ N/r [107].

This incorrect behaviour causes serious under-estimation by up to 50% of ionization

potentials from KS eigenvalues [107–109].

One framework we can use to conceptualize SI in many-electron systems is by

considering that the potential experienced by electrons arises from an effective

screening density. This concept was first conceived by Görling [110] and Liu et al

[111] in terms of an xc-screening density, but here we consider the slightly more

general case of a screening density for the full Hartree and xc (Hxc) potential [108,

109]. The relationship between the Hxc-potential and screening density is

vHxc(r) =
∫

dr′ ρscr(r
′)

|r− r′|
. (3.45)

To consider how this aids our understanding of SI errors in many-electron sys-

tems, we note that each electron should be repelled by the other N − 1 electrons;

the screening charge Qscr (the screening density integrated over all space), for an

approximation free from self-interaction should therefore integrate to N − 1,

Qscr =
∫

dr ρscr(r) = N − 1. (3.46)

However, the above equation does not hold for LDA and the vast-majority of GGAs

such as PBE: in fact, Qscr = N , meaning their xc-potentials are fully contaminated

with SIs.

Many of the systematic errors present in semi-local DFT functionals can be (at least

partly) traced back to the presence of SI errors. Various methods have been de-

veloped to remove (or at least reduce) the SI error. The most famous SI-correction

(SIC) scheme is the Perdew-Zunger (PZ) method [69], in which an xc-functional

(most commonly LSDA) is modified such that the following condition is satisfied

EH[|φiσ|2] + Exc[|φiσ|2] = 0. (3.47)

The above condition ensures the self-Hartree energy of an electron is cancelled by

a corresponding term in the xc-energy. The PZ scheme is advantageous in some
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respects, for example correcting the long-range decay of the Hxc-potential [112],

but yields worse results than the original functionals for some properties [113] as

self-cancellation benefits between exchange and correlation are lost [114]; the PZ-

SIC corrected energy is also not invariant with respect to unitary transformations

of the orbitals. Separately, functionals which are naturally free from SIs for one-

electron systems have been developed [115, 116]; but problems associated with SIs

persist with these functionals for many-electron systems [105, 106].

3.7.2 The derivative discontinuity and fundamental gap

An important quantity in materials science is the band-gap (or fundamental gap),

which is defined by

Eg(N) = I(N)−A(N), (3.48)

where I(N) and A(N) are, respectively the ionization energy and electron affin-

ity for the N -electron system. LSDA and typical semi-local functionals seriously

underestimate Eg, often by up to 50% [117, 118], severely limiting the predictive

power of DFT in this area.

To understand the origin of this error, we first note the relationships between

(i) ionization energy E(N) and the highest-occupied molecular orbital (HOMO)

energy εN (N), and (ii) electron affinity A(N) and the lowest-occupied molecular

orbital (LUMO) energy εN+1(N + 1) (of the N + 1 electron system) [119],

I(N) = −εN (N) = E(N − 1)− E(N); (3.49)

A(N) = −εN+1(N + 1) = E(N)− E(N + 1). (3.50)

For periodic systems one cannot easily vary the electron number and thus the

definitions of A(N) and I(N) involving the orbital energies must be employed.

Defining the KS energy gap as the difference between the HOMO and LUMO

energies of the same N -electron system,

Eg,KS = εN+1(N)− εN (N), (3.51)
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one can re-express the fundamental gap as the sum of the KS energy gap and a

so-called many-body correction term ∆xc,

Eg = Eg,KS + ∆xc = εL − εH + ∆xc, (3.52)

where εH and εL refer to the KS HOMO and LUMO eigenvalues. Given that these

quantities are readily available, we turn our attention to the term ∆xc.

Consider an ensemble with N + ω electrons, from two systems of N and N + 1

electrons. In this case, Perdew et al [119] showed the energy of the ensemble varies

linearly with ω (piecewise linearity),

E(N + ω) = (1− ω)E(N) + ωE(N + 1), 0 < ω ≤ 1. (3.53)

As a consequence of the above relation, there is a derivative discontinuity (DD) in

the energy as it crosses an integer number of electrons; see Fig. 3.5 for a visualization

of this concept. This discontinuity defines the fundamental gap Eg, through the

definitions of I and A:

−A(N) = E(N + 1)− E(N) = δE

δN

∣∣∣∣
N+

= δE

δρ(r)

∣∣∣∣
N+

(3.54)

−I(N) = E(N)− E(N − 1) = δE

δN

∣∣∣∣
N−

= δE

δρ(r)

∣∣∣∣
N−

(3.55)

⇒ Eg(N) = δE

δρ(r)

∣∣∣∣
N+
− δE

δρ(r)

∣∣∣∣
N−

, (3.56)

where the final equality in equations (3.54) and (3.55) follows from the Euler equa-

tion (3.12) and the definition of the chemical potential µ (3.13) [120]. From the

definition of the energy functional for the interacting and non-interacting systems,

and the relation (3.52), one can equate ∆xc with the DD of the xc-energy,

∆xc = δExc
δρ(r)

∣∣∣∣
N+
− δExc
δρ(r)

∣∣∣∣
N−

(3.57)

= lim
ω→0

{
vN+ω
xc (r)− vN−ωxc (r)

}
, (3.58)

where vN+ω
xc (r) and vN−ωxc (r) are the xc-potentials of the N+ω and N−ω ensembles

respectively.
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N − 1 N N + 1

E(N − 1)

E(N)

E(N + 1)

Figure 3.5: Ensemble energy curves: the behaviour for the fully interacting system
is shown by the straight lines between energies. Semi-local DFT functionals tend
to over-delocalize electron density, as shown in the blue convex curves; HF has the
opposite tendency yielding the red concave curves.

Unfortunately, most semi-local functionals in DFT completely lack a DD (∆xc = 0)

in their standard implementation. As as illustrated in Fig. 3.5, their energy curves

are actually convex instead of being piecewise linear: this is a manifestation of

SI errors but is more commonly deemed the delocalization error [121, 122], as

this describes the tendency for electrons to over-delocalize their charge density in

standard DFT approximations. In fact, it has been shown that (almost) piecewise

linearity is restored for semi-local functionals using an ensemble DFT framework,

which yields a non-zero DD for finite systems [123]; however, the DD still vanishes

for periodic systems [124].

The delocalization error has been identified as a pervasive source of systematic

errors in KS theory [121]. Firstly, band-gap predictions using standard functionals

are severely underestimated since ∆xc = 0. The delocalization error also causes

qualitatively incorrect energy dissociation curves for diatomic molecules, as it is en-

ergetically favourable for the species to dissociate into partially charged fragments

instead of neutral atoms: see Fig. 3.6(a) for an example with the H +
2 ion. It has

been shown that the DD is also related to another kind of discontinuity in DFT

[125], steps in the KS potential which form when molecules are stretched [126]; this
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Figure 3.6: Dissociation energy curves for the H2 molecule and H+
2 ion. LDA

predicts qualitatively incorrect binding energies for both these simple systems.

presents an additional challenge for DFT in charge-transfer applications [127].

In contrast to KS theory, HF has a tendency to over-localize electron density,

producing a slightly concave ensemble energy as illustrated in Fig. 3.5. Hybrid

functionals, in particular range-separated hybrids [87–92], therefore yield more ac-

curate band-gap predictions [94] due to cancellation of errors between semi-local

DFT functionals and non-local exchange. SI-free functionals also predict a DD

[107]; however, the search for a non-empirical functional with semi-local cost that

captures the DD is a very active area of research [128].
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3.7.3 Static and dynamic correlation

Another challenge for DFT is the accurate description of systems where electron

correlation plays a significant role. As discussed in § 2.3, it is helpful to distinguish

between static (or more generally ‘strong’) and dynamic correlation. Both these

kinds of effects are considered to require a multi-determinant state in quantum

chemical methods; however, in KS theory they can be captured in principle through

the xc-functional.

Semi-local functionals describe short-range dynamic correlation well [129]; how-

ever, they struggle with long-range dynamic correlation effects. For example, they

fail to capture vdW interactions because their binding energy curves do not have

the correct −1/R6 behaviour [130]. However, there has been progress in this area:

Langreth and Lundquist constructed a non-empirical functional [131, 132] which is

fairly accurate and widely-applicable; meanwhile Grimme developed the DFT+D

approach [133, 134] which loses generality due to empiricism but is often very ac-

curate, and more recently a less-empirical alternative to the DFT+D method has

been developed which is more widely applicable [135]. However, the goal of captur-

ing dynamic correlation effects accurately with a general non-empirical functional

remains.

Traditional DFT methods notoriously struggle to capture strong correlation, which

is pervasive in electronic structure applications as it occurs whenever there are de-

generacies such as in stretched molecules [136] and Mott insulators [137]. The

exact KS functional should satisfy the so-called constancy condition [138], which

requires that the energy of an ensemble consisting of fractional spin-densities must

be a constant function of the ensemble mixing parameter. Semi-local functionals

do not satisfy this condition, as they energetically favour the fractional-spin state;

see Fig. 3.6 (b) for the manifestation of this error in H2. One can draw an analogy

here with the delocalization error in which fractional-charge states are energetic-

ally favoured, and Yang and co-workers have unified the constancy condition and
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3.8. The optimized effective potential method

the piecewise linearity into the so-called flat-plane condition [139]. An empirical

correction scheme, known as DFT+U [140] is used widely in calculations involving

Mott insulators, but developing a first-principles approach for strongly-correlated

systems is still very much an ongoing effort in DFT.

3.8 The optimized effective potential method

As discussed in §3.6.4, when the xc-functional is not an explicit functional of the

density, the optimized effective potential (OEP) method is required to find its

functional derivative. In fact, the OEP method predates the HK theorems and

KS theory: Sharp and Horton [141] first considered the OEP as a constrained

minimization of the HF energy expression, in which the orbitals are described by an

effective (local) potential. This is identical to using the exact exchange functional

(with no correlation) in the KS framework, but the OEP method can be applied

more generally to any xc-functional in DFT [142].

There are several ways to derive the general OEP equation. Below we present a

derivation which uses the chain rule to directly find the functional derivative of the

xc-energy with respect to the density; a detailed review by Engel [143] considers

the alternative mechanisms from which the OEP equation arises. Starting with the

usual expression for the xc-potential and then applying the chain rule yields

vxc(r) = δExc[{φk, εk}]
δρ(r) =

∫
dr′ δExc[{φk, εk}]

δv(r′)
δv(r′)
δρ(r) , (3.59)

where δv(r) denotes a variation of the KS potential. The functional derivative of

the xc-functional with respect to the potential can be determined directly using

perturbation theory. The expression δv(r′)
δρ(r) we recognise as the inverse of the so-

called density-density response function χ(r, r′) which describes the response of the

density to an infinitesimal change in the KS potential. The KS response function

is

χ(r, r′) = δρ(r)
δv(r′) = δ

δv(r′)
∑
σ

Nσ∑
i=1
|φi(r)|2 =

∑
σ

Nσ∑
i=1

φ∗i (r)δφi(r)
δv(r′) + c.c.; (3.60)
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3.8. The optimized effective potential method

the expression δφi(r)
δv(r′) can be determined with perturbation theory,

δφi(r)
δv(r′) =

∑
k 6=i

φi(r′)φ∗k(r′)φk(r)
εi − εa

. (3.61)

Hence the response function is equal to

χ(r.r′) =
∑
σ

Nσ∑
i=1

∞∑
a=Nσ+1

φ∗i (r)φi(r′)φa(r)φ∗a(r′)
εi − εa

+ c.c., (3.62)

where the summation over all orbitals k 6= i has been reduced to a summation over

just the unoccupied orbitals due to cancellation of some terms.

Hence the OEP equation for the xc-potential is given by

vxc(r) =
∫

dr′ δExc[{φk, εk}]
δv(r′) χ−1(r, r′); (3.63)

but it is more commonly given in the following (equivalent) form, because the

analytic form for the response function is known but the same is not true for its

inverse, ∫
dr′ χ(r, r′)vxc(r′) = δExc[{φk, εk}]

δv(r) . (3.64)

The above equation, a Fredholm equation of the first kind, determines the xc-

potential within the OEP method. We note that, if (for example) we were to treat

the whole Hxc-potential within the OEP framework, this follows exactly the above

procedure, but with the xc-potential and energy functional replaced by the Hxc

equivalents.

As an example, we consider the OEP equation for the specific case of the exact

exchange energy (3.42). The functional derivative of the EXX energy with respect

to v(r) (the right hand side of the OEP equation) is

δEEXX[{φk}]
δv(r) = δ

δv(r)
1
2
∑
σ

∫ ∫
dr′ dx |ρσ(r′,x)|2

|r′ − x| (3.65)

=
∑
σ

∫
dr′

∫
dx δρσ(r′,x)

δv(r)
ρσ(x, r′)
|r′ − x| (3.66)

=
∑
σ

Nσ∑
i=1

∞∑
a=Nσ+1

∫ ∫
dr′ dx φ∗i (r)φi(x)φa(r)φ∗a(r′)

εi − εa
ρσ(x, r′)
|r′ − x| + c.c. (3.67)
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3.8.1 KLI and CEDA approximations

The OEP equation involves a sum over the virtual KS orbitals which is compu-

tationally expensive, and thus an approximate scheme was developed by Krieger,

Li and Iarfrate (KLI) [144, 145] and later slightly improved in the common energy

denominator approximation (CEDA) [146, 147]. CEDA uses the Ünsold approxim-

ation [148], which approximates the energy differences between the occupied and

unoccupied KS orbitals as an average value∗,

εa − εi ≈ ∆, (3.68)

together with the completeness relation,
∞∑

a=Nσ+1
φa(r)φ∗a(r′) = δ(r− r′)−

Nσ∑
i=1

φi(r)φ∗i (r′). (3.69)

This means that the left-hand-side of the OEP equation becomes

∫
dr′ χ(r, r′)vxc(r′) = − 2

∆

{∫
ρ(r)vxc(r)

−
∑
σ

Nσ∑
i,j=1

φ∗i (r)φj(r)
∫

dr′ vxc(r′)φi(r′)φ∗j (r′)
}
, (3.70)

with a similar transformation occurring for the right-hand side. From the above, the

computational advantage of CEDA is clear, as the sum over the unoccupied orbitals

(the number of which corresponds directly to the basis set size) is transformed to

a sum over the occupied orbitals.

Moreover, CEDA preserves many of the desirable features of the full OEP solution

such as the Hxc-screening charge (3.46); it has also been demonstrated to give close

accuracy to the full OEP solutions in applications such as exact exchange [143] and

the PZ-SIC scheme [149]. An example comparison between the full exact exchange

potential and the CEDA result is given in Fig. 3.7. Finally, the full OEP solution

frequently suffers from numerical instabilities which will be discussed in more detail

in § 3.9.3; CEDA is free from these problems making it a more robust approach.
∗The average in the KLI approximation is over all the orbitals regardless of their occupation,

and is thus less accurate as εk − εl is not of fixed sign in this case.
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3.9 Implementation

There are several options to solving the KS equations (3.26)-(3.27) computationally;

however, the most appropriate choice is typically dictated by the nature of the

problem. It is possible to solve the KS equations (3.26)-(3.27) directly on a real-

space grid, but only for very small or lower-dimensional systems. Therefore the KS

orbitals are usually expanded in a basis set: the two most typical choices are plane

wave basis sets, and linear combinations of atomic orbitals (LCAOs). Plane wave

basis sets are the default choice in solid state applications involving bulk (periodic)

systems; LCAOs are usually more appropriate for studying finite systems such as

atoms and molecules.

In this thesis, all computations are based on the LCAO method. Code development

was done in the Gaussian basis set code HIPPO∗, with one- and two-electron integ-

rals for the Cartesian Gaussian basis elements calculated using the GAMESS code

[150, 151]. Some calculations, namely coupled cluster and unrestricted KS/HF

calculations for which HIPPO does not have the capability, were done in the PSI4

code [152, 153]. In the LCAO aproach, the KS orbitals are given by

φi(r) =
norb∑
k

cikξk(r), (3.71)

where norb is the number of elements in the orbital basis set. We assume the normal

convention that the KS orbitals are real-valued, although a complex representation

is possible [154, 155]. The computational procedure to solve the KS equations is

therefore the same as for HF as shown in Fig. 2.1, but with the Fock matrix now

given by the KS Fock matrix,

FKS
kl =

〈
ξk

∣∣∣∣∣−∇2

2 + ven + vH + vxc

∣∣∣∣∣ξl
〉
. (3.72)

∗Contact N. Lathiotakis at lathiot@eie.gr for information
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3.9.1 Gaussian basis sets

The most common choice for the basis functions in the LCAO expansion. (3.71)

are Gaussian-type orbitals (GTOs), which have the form (if expressed in Cartesian

co-ordinates)

ξGTO
k (r) = Nkx

lxylyzlze−αr
2
, (3.73)

where lx + ly + lz = l represents the type of orbital according to its angular mo-

mentum (l = 0 is an s-function, l = 1 a p-function and so on), and Nk is a

normalization factor such that 〈ξk|ξk〉 = 1. The advantage of GTOs is that the

integrals in the Fock matrix (3.72) can be determined analytically, which makes

their computation efficient compared to other expansions such as Slater-type or-

bitals. The kinetic and electron-nuclear terms are usually grouped together as a

‘core’ integral,

F core
kl =

〈
ξk

∣∣∣∣∣−∇2

2 + ven

∣∣∣∣∣ξl
〉
. (3.74)

These are sometimes referred to as the one-body integrals as they involve only one

integration variable. The Hartree term is a two-body integral, and is given by

〈ξk|vH|ξk〉 =
∑
σ

norb∑
m,n

Nσ∑
i=1

cimcin

∫ ∫
dr dr′ ξk(r)ξl(r)ξm(r′)ξn(r′)

|r− r′|
. (3.75)

The term given by

ρmn =
Nσ∑
i=1

cimcin (3.76)

is often referred to as the density matrix. The storage required for the integral

(3.75) is often reduced by expanding the density in terms of an auxiliary basis set

{θk} in a procedure known as density-fitting [156–158],

ρ(r) =
norb∑
m,n

ρmnξm(r)ξn(r) (3.77)

≈ ρ̃(r) =
∑
l

ρ̃lθl(r). (3.78)

Most commonly, the auxiliary (density-fitted) basis is a few times larger than the

orbital basis so that it can accurately approximate the density, and the coefficients
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3.9.1. Gaussian basis sets

of the auxiliary basis are chosen to minimize the Coulomb energy,

U [ρ, ρ̃] =
∫ ∫

dr dr′ [ρ(r)− ρ̃(r)][ρ(r′)− ρ̃(r′)]
|r− r′| . (3.79)

Due to the numerous and often complicated functional forms for the xc-term, the

integral over the xc-potential is usually done numerically on a grid. As such, this

integral is given by

〈ξk|vxc|ξl〉 =
ngrid∑
i=1

Wiξk(ri)vxc(ri)ξl(ri), (3.80)

where Wi is the grid weighting at co-ordinate ri. The grid construction is usually

designed to take advantage of the relatively high electron density around atomic

centres and low density elsewhere, as was proposed by Becke [159], which balances

the requirements for accuracy and efficiency. The integrals over the atomic centres

are computed using spherical grids, for which there are several choices: in HIPPO,

the angular integral uses a Lebedev grid, meanwhile the radial part uses an Euler-

McLaurin scheme [160]. In HIPPO, the computation of the xc-potential and energy

density is done by passing the grid-density and its gradient (if required) to the

external programme LIBXC [161], which returns the desired quantities.

The GTO representation (3.73) must be chosen to represent the density sufficiently

well to yield accurate results, whilst also balancing the need for computational

efficiency. The smallest possible basis set for a given atom is known as the minimal

basis set, and contains exactly one angular momentum function for each orbital

(for example two 1s and two 2s functions for Beryllium).

Minimal basis sets are not large enough to generate sufficiently accurate results

and therefore larger basis sets are always used for calculations. A double-zeta basis

set contains two angular momentum functions per orbital, a triple zeta set three,

and so on. An historically popular class of basis sets was developed by Pople

and co-workers [162], which use two angular momentum functions for the valence

orbitals but just one for the core orbitals; however, most modern calculations use

at least a double-zeta basis set. It is also common to add polarization functions,
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3.9.2. SCF convergence

that is higher angular momentum functions than the maximally occupied orbitals,

for increased flexibility; basis sets can also be augmented with diffuse functions if

longer-range interactions are to be studied.

Many kinds of basis sets exist which have been optimized for different purposes;

see [43, pp.200-208] for a thorough review. An important feature of basis sets is

that those belonging to the same family should converge to the complete basis

set limit as the basis set size is increased. Perhaps the most well-known example

of such a family are the correlation-consistent basis sets developed by Dunning

and co-workers [163, 164]. These have the acronym cc-pVXZ, where X represents

the number of angular momenta per orbital (X = D for double-zeta, X = T for

triple-zeta, and so on).

In this thesis, we use the correlation-consistent basis sets for all calculations. Al-

though they are not specifically optimized for DFT calculations - unlike for example

Jensen’s polarization-consistent basis sets [165] - this is an established practise as

the ccPVXZ sets are well known to correctly converge to the complete basis set

limit. Basis set data in this thesis has been obtained from the Basis Set Exchange

database [166–168].

3.9.2 SCF convergence

With the KS orbitals expanded as LCAOs, the self-consistent procedure for solving

the KS equations as shown in Fig. 2.1 is straightforward in principle. The diag-

onalization of the Fock matrix can be directly computed with standard routines

and this process is iterated until convergence - usually measured by the density

matrix (3.76) and the total energy - is reached. In practise, this does not lead to

convergence as there are large oscillations between each SCF iteration. However,

for many systems, a simple linear density mixing scheme for the Fock matrix,

F
(i)
kl = αF

(i)
kl + (1− α)F (i−1)

kl , (3.81)
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with α typically taking a value of around 0.2/0.3, is sufficient to converge many

SCF calculations.

A more sophisticated mixing scheme which accelerates convergence is Pulay’s Direct

Inversion in the Iterative Subspace (DIIS) algorithm [169], which is used by default

in most SCF calculations. In the DIIS procedure, the new Fock matrix is formed

using a linear combination of the n previous Fock matrices,

F
(i)
kl =

i−1∑
j=i−n

cjF
(j)
kl . (3.82)

The coefficients c are chosen to minimize the norm of the error of the interpolated

error e∗(i), where

e∗(i) =
i−1∑

j=i−n
cje

(j)
kl ; (3.83)

e
(j)
kl =

norb∑
m,n

(
F

(j)
kmρ

(j)
mnS

(j)
nl − S

(j)
kmρ

(j)
mnF

(j)
nl

)
, (3.84)

under the normalization constraint
∑
j cj = 1.

The DIIS procedure is sufficient to converge the majority of calculations, however it

is prone to difficulties in certain situations, for example when the HOMO is (near)

degenerate, which is often seen for open-shell systems and stretched molecules. This

causes the orbital occupations to change between iterations and hence the density

matrix never converges. There are various approaches to alleviate this problem,

such as level-shifting [170] and the second-order SCF method [171].

In HIPPO, we have implemented the maximum overlap method (MOM) [172] for

these situations. In the MOM method, after a certain number nMOM iterations,

the orbitals are no longer occupied according to the aufbau principle, but instead

the occupied orbitals are chosen to have maximal overlap with the set of occupied

orbitals that yielded the lowest total energy in the first nMOM iterations. This done

by occupying the Nσ orbitals with the highest projection pj , where

pj =
norb∑
k,l

Nσ∑
µ=1

ρ
(i)
µkSklρ

(i−1)
lj . (3.85)
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3.9.3 OEP implementation

When part of the KS potential is given by the OEP equation (3.64), this part of

the potential needs to be solved in a somewhat different manner before entering

the Fock matrix (3.72). We represent the general OEP equation in the following

form, ∫
dr′ χ(r, r′)veff(r′) = b(r). (3.86)

The effective potential veff(r) and right-hand side b(r) depend on the specifics of

the problem, such as whether we are finding the Hxc/xc/x-only potential, and the

orbital-dependent energy functional.

We expand the effective potential in terms of a screening density (3.45), as is done

in various implementations of the OEP in finite basis set codes [108–110, 173]. This

means we can impose constraints on the screening charge as outlined in § 3.7.1,

which is crucial as the solution to the OEP equation is only defined up to a constant

[174]. It is then common practise to expand the screening density in terms of an

auxiliary basis set {θk},

ρscr(r) =
naux∑
k

ρskθk(r), (3.87)

where naux denotes the number of elements in the auxiliary basis set.

The OEP equation now takes the form

naux∑
k

ρsk

∫
dr′ χ(r, r′)θ̃k(r′) = b(r), (3.88)

θ̃k(r′) =
∫

dx θk(x)
|r′ − x| . (3.89)

Multiplying both sides of the OEP equation (3.88) by θ̃l(r) and integrating over

all space means it is now expressed as a matrix equation,

naux∑
k

ρskAkl = bl ⇔ ρsk =
naux∑
l

(A−1)klbl; (3.90)

Akl = 〈θ̃k|χ|θ̃l〉 , bl = 〈b|θ̃l〉 . (3.91)
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Given a finite orbital basis (and assuming real-valued orbitals), the matrix Akl is

equal to

Akl = 2
∑
σ

Nσ∑
i=1

norb∑
a=Nσ+1

〈φi|θ̃k|φa〉 〈φi|θ̃l|φa〉
εi − εa

, (3.92)

with the right-hand side bl being dependent on the specific problem, but often

taking a similar form to the above.

In principle, the solution to the OEP equation is given by the above matrix equation

(3.90). However, as mentioned, this only determines the potential up to a constant,

and therefore it is necessary to impose a constraint on the screening charge Qscr =∫
dr ρscr(r). This is done by reformulating the OEP matrix equation (3.90) as a

minimization of the objective function G[{ρsk}] with respect to the coefficients ρsk,

G[{ρsk}] = 1
2

naux∑
k,l

ρskAklρ
s
l −

naux∑
l

blρ
s
l − λ

naux∑
l

Xlρ
s
l , (3.93)

Xl =
∫

dr θl(r), (3.94)

where λ is a Lagrange multiplier that constrains the screening charge. The coeffi-

cients {ρsk} are thus given by solving the equations

ρsk =
naux∑
l

(A−1)kl(bl + λXl), (3.95)

λ =
Qscr −

∑naux
k,l XkAklbl∑naux
k X2

k

. (3.96)

In some implementations, either instead of, or in conjunction with, the screening

charge constraint, the so-called ‘HOMO constraint’ is applied to enforce the correct

asymptotic behaviour of the screening charge [175, 176]. However, because this

constraint takes different forms depending on whether the potential is of Hxc/xc/x-

only character [177], we only impose the more general screening charge constraint

in HIPPO.

In principle, the above procedure determines the OEP in a straightforward manner;

however, in practise, the solution to the OEP equation (in the above formulation)

is riddled with mathematical and numerical problems which have hindered its use

in the DFT community. These problems manifest themselves both in the effective

53



3.9.3. OEP implementation

potential, which is often seen to exhibit spurious oscillations; and in the total ener-

gies, which have been shown to be unphysically low [178]. Below we discuss briefly

the causes of this unphysical behaviour (which is still something of an unsolved

problem), along with some of the remedies that have been proposed.

Hirata et al [174] proved that the solution to the OEP equation (3.86) is unique (up

to a constant) in a complete (infinite) orbital basis set; however, with the orbitals

represented in a finite basis set (3.71), the OEP is no longer determined uniquely

[174, 178]. This is because, in a finite basis representation, the components ρsk
can be non-zero in the null-space of the matrix Akl (3.92). However, as shown in

Ref. [179], even when these components can be removed unambiguously through

a singular value decomposition (SVD), the resulting potential is mathematically

unique but still demonstrates unphysical characteristics. There are also further

problems identified in Ref. [173] associated with choosing a suitable auxiliary basis

set and the ability of the orbital basis set to accurately represent the virtual orbitals.

However, the KLI and CEDA approximations in § 3.8.1 do not suffer from the

majority of these problems because they only depend on the occupied orbitals.

A variety of approaches to avoid these difficulties in solving the OEP equation have

been proposed. These include, for example, constructing the orbital and auxiliary

basis sets ‘balanced’ manner to ensure the orbital basis is sufficiently converged with

respect to the auxiliary basis [173, 180]; using regularization techniques to guar-

antee the OEP is smooth [181, 182]; expanding the screening density in products

of the orbital basis to avoid problems with choosing an suitable auxiliary basis set

[183]; and other approximate methods similar in style to CEDA [184, 185].

We now discuss in more detail the method proposed by Gidopoulos and Lathiotakis

[179]. We use the main argument of this method to solve the OEP equation during

this thesis, but with some important changes to the implementation which we

discuss later. We restrict our analysis here to the response function χ(r, r′), but

the same procedure is applied to whatever form is taken by the right-hand side b(r)

of the OEP equation (3.86).
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3.9.3. OEP implementation

In this method, the response function is first split into two parts as follows,

χ(r, r′) = 2
∑
σ

Nσ∑
i=1

∞∑
a=Nσ+1

φi(r)φi(r′)φa(r)φa(r′)
εi − εa

(3.97)

= 2
∑
σ

Nσ∑
i=1


 norb∑
a=Nσ+1

+
∞∑

norb+1

 φi(r)φi(r′)φa(r)φa(r′)
εi − εa

 (3.98)

= χ0(r, r′) + χ̄(r, r′). (3.99)

In the above, we have assumed for simplicity that the orbital basis consists of the

occupied KS orbitals φi(r), and a subset of the (lower-lying) unoccupied orbitals

φa(r). The first part χ0 is expressed in terms of the orbitals up to norb and is

thus known; the second part χ̃, which we denote the ‘complement’ of the response

function, is unknown as it contains unoccupied orbitals up to infinity outside the

basis set.

The complement is usually ignored and larger than typical orbital basis sets are

used to capture as much information about χ0 as possible. However, in the method

of Ref. [179] the complement is approximated using the Ünsold approximation [148]

and the completeness relation (3.68),

χ̄(r, r′) = 2
∑
σ

Nσ∑
i=1

∞∑
norb+1

φi(r)φi(r′)φa(r)φa(r′)
εi − εa

(3.100)

≈ − 2
∆
∑
σ

Nσ∑
i=1

∞∑
norb+1

φi(r)φi(r′)φa(r)φa(r′) (3.101)

= − 2
∆
∑
σ

Nσ∑
i=1

φi(r)φi(r′)δ(r− r′)−
Nσ∑
j=1

φj(r)φj(r′)−
���

���
���

norb∑
j=Nσ+1

φj(r)φj(r′)

 . (3.102)

The crossed out term is neglected because when the method is applied in practise,

the full response function is given by

χ(r, r′) = χ0(r, r′) + λχ̄(r, r′), (3.103)

where λ/∆ � 1. Given that this term contains the same sum over orbitals as χ0,

but it is multiplied a small constant, it is neglected.
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3.9.3. OEP implementation

The matrix Akl is therefore also composed of two parts,

Akl = A0
kl + αĀkl, α = λ

∆; (3.104)

with A0
kl given by equation (3.92), and Ākl equal to

Ākl = −
∑
σ

Nσ∑
i=1

 〈φi|θ̃kθ̃l|φi〉 −
Nσ∑
j=1
〈φi|θ̃k|φj〉 〈φi|θ̃l|φj〉

 . (3.105)

As discussed, a similar process is carried out for the right-hand side vector bk. As

was proved in Ref. [179], the solution to the OEP equation has a discontinuity at

λ = 0, so the inclusion of the complement terms with α � 1 alleviates many of

the OEP’s associated problems. In Fig. 3.7, we solve the OEP equation for the

EXX functional, with and without complement terms, in addition to the CEDA

solution and an exact solution from a grid-based OEP method [142]. We see that

with the complement, the exchange potential is much closer to the exact solution.

As mentioned, the method we use to solve the OEP equation differs from what

was used in Ref. [179]; in that paper, the exchange potential was expanded directly

in a Gaussian basis set (which does not permit a screening charge constraint), as

opposed to the expansion in terms of a screening density that we now employ.

Furthermore, we have made modifications to the implementation of bk to improve

the efficiency. These developments are described in detail in § 6.3.2.
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Figure 3.7: Exact exchange potentials for the Neon atom, with a cc-pVTZ orbital
basis and uncontracted cc-pVDZ auxiliary basis (with the tightest three s-functions
removed). The α = 0 result displays unusual behaviour, especially in the core
region; it can be much more pathological when vx(r) is expanded directly in the
auxiliary basis set and thus without a screening charge constraint, as is seen for
many examples in Ref. [179]. The exact (grid-based) result is taken from Ref. [173].
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Chapter 4

Optimal power series expansions

of the Kohn–Sham potential

In this chapter, we consider the integration of density and wave-function (WFT)

theories. A fundamental weakness of DFT is that it is difficult to systematically

improve the approximation for the xc-functional. By contrast, approximations in

WFT are generally derived from some form of perturbation theory, and thus lend

themselves naturally to systematic improvement. Therefore, it would seem wise

to use insights from WFT to help us climb to the highest rungs of Jacob’s ladder

[101] in DFT. Furthermore, as noted in § 3.6.4, pairing semi-local DFT correlation

functionals with exact exchange is not a viable strategy, and thus it is essential to

develop new approximations for the correlation functional in order to improve on

GGA and meta-GGA functionals.

We begin this chapter by reviewing the fusion of DFT and WFT: firstly, we con-

sider the historically popular approaches based on Görling-Levy perturbation the-

ory [186, 187], and then we introduce the variational principle by Gidopoulos [188]

which forms the basis for our work. This variational principle requires an appro-

priate choice of reference determinant, which we discuss in § 4.2. We follow with a

brief comparison of traditional DFT PT and our method in § 4.3. In § 4.4, we see

how certain choices of determinant lead to two exchange-only potentials, the EXX
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4.1. Review of integration of density and wave-function theories

potential and the local Fock-exchange (LFX) potential [189, 190]. The main result

of this chapter, in which we derive a new potential with exchange and correlation

character to first order, appears in § 4.5.

4.1 Review of integration of density and

wave-function theories

Historically, the Levy-Lieb constrained search formulation [50–52] and adiabatic

connection approach [77–79] laid the foundation for the cross-fertilization of DFT

and WFT. Görling and Levy utilized these concepts to create a perturbation the-

ory scheme for DFT [186, 187], which in principle allows the exact xc-functional

to be constructed using perturbation theory. This spawned the development of

second-order correlation energy expressions [191, 192], including the development

of ab initio DFT by Bartlett and co-workers [193–197]. More recently, the adia-

batic connection has been combined with the random phase approximation (RPA)

[78], with the adiabatic-connection and fluctuation dissipation theorem [198], which

yields accurate correlation energy functionals [199–206]. MBPT approaches from

the perspective of Green’s functions have also led to development of xc-functionals,

using the Sham-Schlüter method [207–209].

An alternative approach, developed by Gidopoulos [188], does not require the adia-

batic connection but instead the KS potential is found to be the minimizing poten-

tial of a wave-function expression. This variational principle was also considered

in a different light by Davidson [210] and additionally has links with a variational

principle by Lieb [52, 211]. It is this variational principle which we employ to derive

xc-potentials later in this chapter.
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4.1.1. Adiabatic connection and DFT perturbation theory

4.1.1 Adiabatic connection and DFT perturbation theory

We start with a brief review of traditional DFT perturbation theory (DFT PT)

[186, 187], which is the most well-known perturbative scheme in DFT for finite

systems. The starting point for DFT PT is the adiabatic connection path [77, 78],

in which a weakly-interacting system is defined by

[
T̂ + αV̂ee + v̂α

]
Ψn(α) = En(α)Ψn(α), λ ∈ [0, 1]. (4.1)

As the interaction strength λ is slowly varied, the multiplicative potential v̂α is also

adjusted such that the weakly interacting density, ρα(r), is held fixed to the value

of the ground-state fully-interacting density ρ0(r), ie

ρα(r) = ρα=1(r) = ρ0(r). (4.2)

Using this scheme, the kinetic and electron-electron repulsion energies are expanded

perturbatively in powers of the interaction strength α. The zeroth and first-order

energy expansions are given by

E0 = 〈Φs|T̂ |Φs〉 = −1
2
∑
σ

Nσ∑
i=1

∫
drφ∗iσ(r)∇2φiσ(r) (4.3)

E1 = 〈Φs|V̂ee|Φs〉 = 1
2

∫
dr
∫

dr′ ρ[Φs](r)ρ[Φs](r′)
|r− r′|

− 1
2
∑
σ

Nσ∑
i,j=1

∫ ∫
dr dr′

φiσ(r)φ∗jσ(r)φ∗iσ(r′)φjσ(r′)
|r− r′| (4.4)

In the above, Φs is the ground-state wave-function of the non-interacting (α = 0)

Hamiltonian (4.1), which is by definition the KS determinant. Therefore, from the

above expressions, we observe that the zeroth-order energy E0 is equal to the usual

KS kinetic energy (3.19), and the first order energy E1 is equal to the sum of the

Hartree (3.22) and exact exchange (3.42) energies.

The correlation energy is thus given by all the higher-order terms in the perturb-

ative expansion,

Ec[ρ] =
∞∑
j=2

Ej [ρ]. (4.5)
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4.1.1. Adiabatic connection and DFT perturbation theory

Of course, an infinite expansion is not computationally feasible, and thus only the

second-order correlation energy has been included in DFT PT,

E2[ρ] =
∑
n6=g.s.

| 〈Φs,0|V̂ee − v̂Hx|Φs,n〉 |2

Es,0 − Es,n
. (4.6)

In KS theory, the KS potential is given by the functional derivative of the total

energy with respect to the density; this is no different in DFT PT, in which the

jth-order energy defines the jth-order term in the expansion of the KS potential,

vj(r) = δEj [ρ]
δρ(r) . (4.7)

The functional derivative cannot be computed directly, as the exact exchange and

correlation energies are only implicit functionals of the density. However, using the

OEP method one can calculate these functional derivatives, with the xc-potential

to infinite order in DFT PT being given by

vxc(r) =
∫

dx δEx[{φi}]
δvs(x) χ−1(x, r) +

∞∑
j=2

{∫
dx δEj [{φi}, {εi}]

δvs(x) χ−1(x, r)
}
, (4.8)

where χ−1(x, r) is the inverse of the density-density response function (3.62).

DFT PT has formed the basis for a number of schemes which use perturbative

expansions for the xc-energy and potential [191–197, 212]. However, these methods

and the DFT PT scheme in general have not achieved widespread use in DFT.

Besides mathematical and numerical issues in solving the OEP equation, and the

high computational cost, there is a more serious error inherent in the method: when

the energy expansion is truncated at second-order, the second-order correlation

energy (4.6) is unbound from below.

Hence, when the total energy up to second-order is minimized, it is prone to vari-

ational collapse [213, 214]. This tendency to variational collapse is more prevalent

than in the analogous MP2 expansion in WFT, and is analysed in more detail in

§ 4.6. For now, we note that this has prevented the proper self-consistent imple-

mentation of DFT PT; however, some practical applications have applied DFT PT
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4.1.2. Gidopoulos variational principle

in a non self-consistent manner to avoid this problem, for example by using non-

variational schemes [191], or by using the Fock exchange orbital energies in place

of the true self-consistent KS orbital energies [194, 195].

4.1.2 Gidopoulos variational principle

In the variational principle by Gidopoulos [188], the energy difference

TΨ[v] = 〈Ψ|Hv|Ψ〉 − Ev > 0 (4.9)

is minimized. Here, Ψ is the ground-state of the physical (interacting) system, and

Hv is an effective Hamiltonian,

Hv =
N∑
i=1

[
−1

2∇
2
i + ven(ri) + v(ri)

]
, (4.10)

for some local potential v(r), which simulates the electron-electron repulsion. The

ground-state of Hv is Φv and the ground-state energy is Ev,

HvΦv = EvΦv. (4.11)

The energy difference TΨ[v] is strictly positive due to the Rayleigh–Ritz inequality;

this positivity is preserved even when it is expanded with perturbation theory and

an approximation up to second order is kept. Hence when TΨ[v] is minimized there

is no possibility of incurring the variational collapse of DFT with a correlation

energy functional from second order perturbation theory.

Inequality (4.9) holds because the interacting state Ψ cannot be the exact ground-

state of a non-interacting Hamiltonian Hv; however, we can view Ψ as an ap-

proximate ground-state of Hv. Then, choosing v(r) to minimize TΨ[v] amounts to

selecting the Hamiltonian Hv in the class of Hamiltonians (4.10) which optimally

adopts Ψ as its approximate ground-state.

We now draw the link between the energy difference (4.9), which is a wave-function

expression, and DFT. Minimizing the energy difference (4.9) by taking the func-

tional derivative of TΨ[v] with respect to v(r) and setting it to equal zero yields
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4.1.2. Gidopoulos variational principle

ρΨ(r)− ρs(r) = 0, (4.12)

where ρΨ is the density of Ψ and ρs is the density of vs. The potential vs is

therefore defined as the KS potential, by the definition of the KS potential and the

HK theorem (see Ref. [188] for a detailed proof).

There is no need to employ the adiabatic connection path formalism to keep the

density fixed in this method, since it is naturally fixed by the minimization of the

energy difference (4.9). This simplifies the problem of constructing a perturbative

expansion for vs, as we need only substitute a power series expansion of Ψ in

TΨ[v], truncating the energy difference TΨ[v] at a finite order. Optimization over

v for a given expansion of TΨ[v] then yields a corresponding expansion for the KS

potential. This procedure can be formally carried out for a whole class of Taylor

series expansions of Ψ, characterized by the choice of zeroth-order Hamiltonian. It

is then possible to consider the corresponding class of Taylor series expansions of

the KS potential and search in that class for those expansions that converge faster

than others, to find those expansions which are expected to be the most accurate

when truncated at some finite order.

In the following, we review how to approximate the wave-function Ψ in a perturb-

ative manner, and find the leading non-zero term in the energy difference (4.9). We

expand the interacting state as Ψu(α), which is the ground-state of the perturbative

Hamiltonian Hu(α),

Hu(α) Ψu(α) = Eu(α) Ψu(α), (4.13)

Hu(α) = Hu + α
[
Vee −

∑
i

u(ri)
]
. (4.14)

The zeroth-order Hamiltonian is Hu: it belongs in the same class of Hamiltonians

as Hv (4.10), with a local potential u (different in general from v) that simulates

the electron interactions in a mean-field way. The fully interacting Hamiltonian H

is obtained for α = 1.
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4.1.2. Gidopoulos variational principle

If we search for the potential that minimizes the energy difference (4.9) for the

non-interacting state Ψu(0) = Φu, the minimizing potential is clearly u = v, since

this makes TΨ(0)[v] = 0. Hence, for small α, we expect that the potential which

minimizes TΨu(α)[v] will be close to u, and we therefore set

v(r) = u(r) + αv′(r). (4.15)

With the above form for v, the leading term in the energy difference TΨu(α)[u+αv′]

turns out to be of second order,

TΨu(α)[u+ αv′] = α2Tu[u+ v′] +O(α3); (4.16)

where

Tu[w] =
∑
n6=g.s.

|〈Φu,n|Vee −
∑
iw(ri)|Φu〉|2

Eu,n − Eu
, (4.17)

with Φu,n and Eu,n being respectively the nth eigenstate and energy eigenvalue of

the effective Hamiltonian Hu.

The second-order energy difference Tu[w] is a functional of both the potentials u

and w, but for now we take u to be fixed and minimize Tu[u + v′] over v′: this is

equivalent to minimizing Tu[w] over w, because w = u + v′ and u is fixed. The

functional derivative of Tu[w] with respect to w, at fixed u, is given by

δTu[w]
δw(r) =

∑
i, a

〈φu,i|Ju −Ku − w|φu,a〉
εu,i − εu,a

φ∗u,a(r)φu,i(r) + c.c. (4.18)

Ju is the direct Coulomb (or Hartree) local potential operator and Ku is the Cou-

lomb exchange non-local operator. φu,i and φu,a are respectively occupied and

unoccupied orbitals in the Slater determinant Φu, with εu,i and εu,a their corres-

ponding eigenvalues.

Optimization over w of the second-order energy difference (4.17), by setting the

functional derivative (4.18) equal to zero (for fixed u), yields the first order KS

potential. We denote by w0[u] the minimizing potential of Tu[w] for fixed u,

min
w
Tu[w] = Tu

[
w0[u]

]
. (4.19)
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4.1.2. Gidopoulos variational principle

From the expansion (4.15), the first-order term v′[u], which denotes the optimized

v′ for fixed u, can be obtained from

w0[u](r) = u(r) + v′[u](r). (4.20)

The expansion of the KS potential to first order is therefore

vs[u](r) = ven(r) + u(r) + α v′[u](r) +O(α2). (4.21)

We denote the exact KS potential as vs, since this is of course independent of u;

at finite order, however, the expansion of the KS potential depends on u and we

write vs[u] to denote the KS potential up to first-order. We also denote by Φs[u]

the ground-state of vs[u], i.e. the KS determinant of the first-order KS potential

vs[u].

In theory, there are an infinite number of choices for u, each of which corresponds

to a KS potential vs[u]. We discuss how to make an appropriate choice for u, ie

one that leads to a rapidly-converging expansion of the KS potential and energy

difference, in the next section. For now, it is interesting to note that, by setting

w = u in the functional derivative (4.18), we retrieve the OEP equation for exact

exchange (xOEP) (3.64,3.65). This particular choice of u will be discussed in more

detail in § 4.4.1; for now, we see how it also arises from an alternative perspective.

The density ρΨu(α)(r) of the weakly interacting state Ψu(α) is given by

ρΨu(α)(r) = ρu(r) + α
δTu[w]
δw(r)

∣∣∣∣
w=u

+O(α2), (4.22)

where ρu(r) is the density of the zeroth-order state Φu. The density ρΨu(α)(r)

of the weakly interacting system differs from the zeroth-order density ρu(r) by a

charge density equal (up to first order) to the functional derivative (4.18), where

the latter is evaluated at w = u. Therefore, the search for the zeroth order potential

u for which the ground-state density does not change to first order yields the exact

exchange potential, as observed by Bartlett and coworkers [215].
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Furthermore, the density ρΨu(α) is related to the density ρu+αv′(r) as follows:

ρΨu(α)(r) = ρu+αv′(r) + α
δTu[w]
δw(r)

∣∣∣∣
w=u+v′

+O(α2). (4.23)

Hence, the density ρΨu(α) of the weakly interacting state differs from the density

ρu+αv′(r) of the non-interacting state by a charge density equal (up to first or-

der) to the functional derivative (4.18), where the latter is evaluated at w = u+v′.

Therefore, these densities are equal if the potential w is equal to the minimizing po-

tential w0[u] (4.20); this minimizing potential defines the KS potential vs[u] (4.21).

In other words, for any u, the density of the KS state is equal to the density of the

weakly-interacting state (to first order),

ρs[u](r) = ρΨu(α)(r) +O(α2), (4.24)

where ρs[u](r) = ρu+αv′[u](r). This implies that, if the weakly-interacting state

Ψu(α) is well-converged when truncated at finite order, then so will be the KS

determinant. We explore physical arguments to choose u appropriately in the next

section.

4.2 Reference determinants with minimum

correlation energy

We now explore the relationship between the perturbative expansion of the energy

difference (4.16) and perturbative expansions of correlation energy expressions,

which will guide our choice of zeroth-order Hamiltonian Hu. As a prelude to this

discussion, we first consider the relationship between the xOEP and correlation

energy. Historically, the xOEP is given by a minimization of the total energy

expression

EEXX = min
v
〈Φv|H|Φv〉, (4.25)

where the Slater determinant Φv belongs in the class of Hamiltonians (4.10). Since

the exact energy 〈Ψ|H|Ψ〉 does not depend on v, the minimization of the energy is
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4.2. Reference determinants with minimum correlation energy

equivalent to the minimization over v of the magnitude of the correlation energy

from the reference Slater determinant Φv,

EcH [v] .= 〈Ψ|H|Ψ〉 − 〈Φv|H|Φv〉 < 0; (4.26)

In the above expression it is clear that this correlation energy depends on the

interacting Hamiltonian H and the local potential v. Hence, another interpretation

of the xOEP follows:

Corollary. xOEP is that effective potential v(r) with weakest correlation energy

from its ground state Φv.

The implication is that if we want to treat the interacting Hamiltonian perturb-

atively to all orders, then the effective Hamiltonian with the xOEP is the best

zeroth-order Hamiltonian, as the remaining correlation energy to be treated per-

turbatively is smallest. This is perhaps not surprising, as the first order term in

the expansion of the KS potential in DFT PT is the xOEP.

However, we are typically unable to access all orders of perturbation theory, and

thus we are usually interested in the lowest orders of perturbative expansions.

Hence, we consider the partially interacting system described by the perturbative

Hamiltonian Hu(α) in (4.14) where the zeroth-order potential u(r) will later be

determined in an optimal way. In analogy to the xOEP corollary, we make the

following statement for the weakly interacting system with Hamiltonian = Hu(α),

in the limit α→ 0 and for any u:

Lemma. The KS potential vs[u](r) is that effective potential with weakest correla-

tion energy from its ground state Φs[u].

In this statement, the KS potential vs[u] is given to first order and the correlation

energy to second order (the leading order term).
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4.2. Reference determinants with minimum correlation energy

Proof. The correlation energy for the partially interacting system (4.13), with non-

interacting reference state Φv, is defined as

EcHu(α)[v] = Eu(α)− 〈Φv|Hu(α)|Φv〉 < 0. (4.27)

For fixed u, the potential that minimizes the magnitude of the correlation energy

EcHu(α)[v] over v is the same as the potential that minimizes the expectation value

〈Φv|Hu(α)|Φv〉 over v, since Eu(α) does not depend on v. This minimizing po-

tential v depends on the parameters u and α characterising the weakly-interacting

state Ψu(α) and thus it is in general different from the xOEP.

Let us expand the correlation energy (4.27) in powers of α and obtain the dominant

term. When α = 0, the potential which minimizes the magnitude of EcHu(α)[v] is

v = u, since Φv is the ground-state of Hu(0). Hence, for small α, we substitute

expansion (4.15) into the correlation energy (4.27) and expand the latter,

EcHu(α)[u+ αv′] .= Eu(α)− 〈Φu+αv′ |Hu(α)|Φu+αv′〉, (4.28)

to second order in α to obtain

EcHu(α)[u+ αv′] = −α2Tu[u+ v′] +O(α3), (4.29)

with Tu[w] being the second-order energy difference (4.17).

Up to second order in α, the correlation energy (4.29) is thus equal to minus the

energy difference (4.17):

EcHu(α)[u+ αv′] = −TΨu(α)[u+ αv′]. (4.30)

Given that the KS potential vs[u] is the minimizing potential of the energy dif-

ference (4.17), it is therefore also the potential which minimizes the magnitude of

EcHu(α), completing the proof.

It follows that when we minimize Tu[w] over w to obtain the first order KS potential

vs[u], its KS ground-state Φs[u] not only has the same density as Ψu(α) to first

order, but vs[u] also has the following unique properties among other effective local

potentials:
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• it best adopts Ψu(α) (to first order) as its own approximate ground state and

• Φs[u] has the lowest magnitude of correlation energy to second order.

Let us denote by Ecu[w] the negative of the energy difference Tu[w],

Ecu[w] = −Tu[w]. (4.31)

Ecu[w] is a second order correlation energy expression. It is useful to use this

notation to represent the total energy of the weakly interacting system using three

different references: the zeroth-order state Φu, the perturbative state Φu+αv′ , and

the KS determinant Φs[u]. Keeping up to second order, we have in the limit α→ 0:

Eu(α) = 〈Φu|Hu(α)|Φu〉+ α2Ecu[u] +O(α3) (4.32)

= 〈Φu+αv′ |Hu(α)|Φu+αv′〉+ α2Ecu[u+ v′] +O(α3) (4.33)

= 〈Φs[u]|Hu(α)|Φs[u]〉+ α2Ecu
[
u+ v′[u]

]
+O(α3). (4.34)

The difference between the energies (4.33) and (4.34) is that in the latter, the

second order correlation energy has already been minimized with respect to v′,

whereas it is unoptimized in the former.

4.3 Comparison of DFT perturbation theory and

present method

4.3.1 Traditional DFT PT method

In traditional DFT PT, the total energy is expanded in a perturbative manner.

The KS potential, which is the functional derivative of the total energy, is thus

given to the same order of perturbative expansion as the total energy. The first

order term in the energy expansion is the (exact) exchange energy, and thus the

first order term in the expansion of the KS potential is the exchange-only potential.

Higher orders of the total energy expansion yield the correlation energy; in practise,
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1st order Ex[ρ] 2nd order Ec[ρ]

vx(r) = δEx[ρ]
δρ(r) vc(r) = δEc[ρ]

δρ(r)

1st order vx(r) 2nd order vc(r)

Figure 4.1: Illustration of the traditional DFT PT scheme: first and second or-
der energy expressions yield, respectively, first order exchange and second order
correlation potentials.

the expansion is truncated at second-order [192, 194, 196], yielding a second-order

correlation potential. This scheme is illustrated in Fig. 4.1.

The first-order exchange and second-order correlation energies are only implicit

functionals of the density, through their explicit dependence on the KS orbitals and

their eigenvalues. Thus, the functional derivatives in Fig. 4.1 cannot be computed

directly and the exchange and correlation potentials must be obtained by solving

OEP equations. However, this does not change the fact that these potentials are

still the functional derivatives of energy expressions with respect to the density.

4.3.2 Present WFT-DFT method

In the present method, there are no density-functional expressions to minimize;

the connection to DFT is that the KS potential emerges from the minimization

of the energy difference (4.9). The exchange and correlation potentials are hence

not obtained by taking functional derivatives of total energy expansions up to
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4.4. Local exchange potentials

second order, but instead come from the minimization of the second-order energy

correlation energy Ec
u[w] over the potential w.

The minimizing potential w0[u](r) is equal to u(r) + αv′[u](r) for α = 1, and

therefore it represents the Hxc-potential in KS theory. To obtain the xc-potential,

we subtract the Hartree potential of the KS system with density ρs[u]. This gives

the xc-potential up to first order; note that, in general, the xc-potential potential in

our method is given as a single quantity and not separable into separate exchange

and correlation components, in contrast to DFT PT. We emphasize again the

conceptual difference between the two methods, namely that in our method we

not minimize total energy expansions which are functionals of the density; rather

we minimize the second-order energy difference Tu[w] (4.17), or equivalently the

magnitude of the second-order correlation energy Ec
u[w] (4.6), which are WFT

expressions. This scheme is summarized in Fig. 4.2.

4.4 Local exchange potentials

In this section, we explore approximations for the wave-function Ψ in the energy

difference (4.9) which yield potentials with exchange only character. The first

choice is based on a particular choice of u for the perturbative expansion Ψu(α)

that has been considered in the previous two sections; this yields the well-known

exact exchange potential (xOEP). We already saw in § 4.1.2 how the xOEP comes

from the potential u for which the ground-state density does not change to first

order (4.22); we now see it arises from the perspective of minimizing a correlation

energy.

We also briefly discuss using the first-order Møller-Plesset expansion [40] for Ψ,

which turns out to be equivalent to choosing Ψ to be the Hartree–Fock determinant.

This yields the so-called local Fock exchange potential, as discussed in Ref. [190],

which has been considered elsewhere in the literature as an accurate approximation

for the xOEP potential [50, 189, 216, 217].
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Second order Ec
u[w]

δEc
u[w]

δw(r)

∣∣∣∣∣
w0[u]

= 0

vxc(r) = w0[u](r)−
∫

dr′ ρs[u](r′)
|r− r′|

First order vxc(r)

Figure 4.2: Illustration of the present WFT-DFT scheme: the magnitude of the
second-order correlation energy Ec

u[w] is minimized to yield a first-order exchange
and correlation potential.

4.4.1 Exact exchange potential

Based on the discussion in § 4.2, we anticipate that a good choice for u in the

expansion of Ψu(α) will be the potential u which minimizes the magnitude of the

second-order correlation energy |Ec
u[u]|. Of course, this assumes the perturbat-

ive expansion (4.32) behaves ‘normally’ and higher order terms give successively

smaller contributions; but this is generally a safe assumption to make.

Mathematically, the problem of finding

min
u
|Ec

u[u]| = min
u
Tu[u] (4.35)

is a challenging one and we shall not attempt to find this minimizing potential.

However, we present an argument to choose u that makes Tu[u] small if not minimal.
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For any choice of u, it holds that

min
w
Tu[w] ≤ Tu[u], (4.36)

where we have not performed any optimization over u. This inequality holds be-

cause the search for the minimizing potential w includes u, and thus minw Tu[w]

cannot exceed the value of Tu[u]. It follows that, if we first minimize Tu[w] over w,

min
w
Tu[w] = Tu[u+ v′[u]] ≤ Tu[u], (4.37)

then this makes the magnitude of the correlation energy Ec
u[u] small, regardless of

the choice of u.

We shall choose u such that, after Tu[w] has been optimized over w, v′[u] = 0. This

choice, which we denote uHx as it will the give the (Hartree and) exchange-only KS

potential, yields equality in inequality (4.37),

TuHx [uHx +����:
0

v′[uHx]] = TuHx [uHx]. (4.38)

This choice for u leads to the well-known equation for the xOEP (with additional

Hartree term),∑
i, a

〈φu,i|Ju −Ku − u|φu,a〉
εu,i − εu,a

φ∗u,a(r)φu,i(r) + c.c.


∣∣∣∣∣
u=uHx

= 0. (4.39)

In our method and DFT PT, the xOEP (and the KS orbitals) are identical if

the perturbative expansion in DFT PT is truncated at first order, ie contains no

correlation energy. If second-order correlation energy is included in DFT PT then

the self-consistent KS orbitals are altered away from their exchange-only character,

and the exchange potential will also be modified. By contrast, in our method, one

can define a second-order correlation energy from the KS potential with exchange-

only character (the solution of the xOEP equation (4.39)): it is given by Ec
uHx =

−TuHx [uHx].
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4.4.2. Local Fock exchange potential

4.4.2 Local Fock exchange potential

We now consider a different approximation for the interacting wave-function Ψ

in the energy difference (4.9), which does not involve the pertubative expansion

discussed thus far. Instead, we consider a Møller-Plesset expansion for Ψ, whose

zeroth-order term is the Hartree–Fock determinant, ΦHF.

Considering only this zeroth-order term in the expansion for Ψ initially, the energy

difference to be minimized is

TΨ[v] = 〈ΦHF|Hv|ΦHF〉 − Ev. (4.40)

When this expression is minimized with respect to v its functional derivative be-

comes equal to zero, ie

ρHF − ρv(r) = 0. (4.41)

The potential v(r) is therefore the effective (KS) potential that yields the HF

density. Since HF is an exchange-only theory, the local potential with the HF

density is expected to have exchange-only character, but be different from the

EXX potential in KS theory. We follow the nomenclature in Ref. [190] and denote

this potential the Local Fock exchange (LFX) potential.

Analytically, it was shown that the LFX and EXX potentials obey different virial

relations [190]; but that the difference between these vanishes up to second-order

in an adiabatic connection expansion, and thus we expect the LFX potential to

be a close approximation of the EXX potential. The similarity of results from the

two potentials was demonstrated for a range of periodic systems in Refs. [190] and

[218], and for finite systems in Refs. [189] and [217]. In Fig. 4.3, we demonstrate

the qualitative similarity of the two potentials for the Neon and Beryllium atoms,

using the method from Ref. [219] and described in Chapter 5 to obtain the LFX

potentials, and the approach presented in § 6.3.2 for the EXX potentials. As

discussed in Ref. [190], the differences between LFX and EXX results are more

significant in systems where correlation is important, which is as expected.
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4.5. First order exchange and correlation potential

Much like in our expansion of Ψu(α), we can include higher-order terms in the

MP expansion of the wave-function ΨMP, which give rise to expansions of the

KS potential. We note that, from Brillouin’s theorem [39], singly excited Slater

determinants do not couple directly to their zeroth-order HF determinant, and thus

the density of ΨMP does not change to first order. Therefore, the potential which

minimizes the energy difference

TΨMP1 [v] = 〈ΨMP1|Hv|ΨMP1〉 − Ev, (4.42)

is the same potential as that which minimizes the energy difference (4.40) for the

HF determinant.

We draw a further analogy here with the xOEP. Including first-order corrections

to the MP wave-function does not change the density ρΨMP or the KS potential.

For the expansion ΨMP, the LFX potential is thus the zeroth-order term in the

expansion of the KS potential for which the density and KS potential are unchanged

when first-order electron interactions are switched on. Likewise, for the expansion

Ψu(α), the xOEP is that potential for which the density (4.22) and KS potential

(4.21) are unchanged when first-order electron interactions are switched on.

This concludes our discussion of the EXX and LFX potentials, which follow dif-

ferent derivations but share many similar characteristics. In the next section, we

construct an expansion for Ψu(α) which leads to a KS potential with exchange and

correlation character [220].

4.5 First order exchange and correlation potential

In the previous section, we argued that the potential that minimizes the magnitude

of the second-order correlation energy |Ec
u[u]| (4.32) is an energetically good choice

of u. As discussed, the mathematical complexity of finding this u led us instead to

consider a different choice which made |Ec
u[u]| small but not minimal, yielding the
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(a) Beryllium. The LFX potential is contaminated by some finite
basis set effects near the origin.
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Figure 4.3: Comparison of LFX (calculation details in Chapter 5) and EXX (cal-
culation details in § 6.3.2) potentials.

Hartree and exact exchange potential. In this section, we want to go further by

deriving an expression with correlation character in addition to exact exchange.

In § 4.2, we drew the link between the second-order energy difference Tu[w], and the

second-order correlation energy Ec
u[w]. Moreover, we argued that minimizing the

magnitudes of the second-order correlation energies (4.32) and (4.33) leads to fast-

converging expansions of the KS potential, or in other words defines energetically

good choices for u. Now, rather than trying to minimize |Ec
u[u]|, we shall instead

minimize |Ec
u[w]|, which is equal to the second-order energy difference Tu[w] (4.17).
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4.5. First order exchange and correlation potential

In principle, the minimization of Tu[w] over the two potentials u and w is an

equally complicated procedure as minimizing |Ec
u[u]|. However, we can decouple

the minimization which significantly simplifies the procedure. To start, we split

Tu[w] into two terms Su[w] and D[u]:

Tu[w] = Su[w] +D[u], (4.43)

with

Su[w] =
∑

n single

|〈Φu,n|Vee −
∑
iw(ri)|Φu〉|2

Eu,n − Eu
(4.44)

and

D[u] =
∑

n double

|〈Φu,n|Vee|Φu〉|2

Eu,n − Eu
. (4.45)

The first term Su[w] is a sum is over singly excited determinants from Φu, while

the second term D[u] is a sum over doubly excited determinants. Higher-order

excitations from the ground-state vanish.

The potential w appears in Su[w] but not in D[u]. Hence the minimizing potential

w0[u] of Tu[w] also minimizes Su[w] but leaves D[u] unaffected.

In practice, we find that for any reasonable u, the minimization of Tu[w] over w

reduces Su[w] to very small values, compared with D[u]:

0 < Su
[
w0[u]

]
� D[u]. (4.46)

Some example calculations are shown in Table 4.1. These results demonstrate that

after Su[w] has been minimized over w for various choices of u, Su[w0] is consistently

smaller than D[u] by approximately two orders of magnitude.

Therefore, the dominant term in Tu[w0[u]] is D[u], and the minimum of the energy

difference Tu[w] over w is approximately equal to D[u],

Tu
[
w0[u]

]
' D[u]. (4.47)
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u D[u] (eV) Su[w0] (eV)

Ne*

LDA 2.70 1.91× 10−2

PBE 2.67 1.88× 10−2

B3LYP 2.51 1.81× 10−2

EXX 2.58 1.85× 10−2

Avg. 2.62 1.87× 10−2

Avg. per elec. 0.262 1.87× 10−3

HF*

LDA 2.87 3.15× 10−2

PBE 2.85 3.21× 10−2

B3LYP 2.63 2.97× 10−2

EXX 2.73 2.89× 10−2

Avg. 2.77 3.06× 10−2

Avg. per elec. 0.277 3.06× 10−3

H2O*

LDA 2.76 3.90× 10−2

PBE 2.72 4.01× 10−2

B3LYP 2.49 3.69× 10−2

EXX 2.62 2.68× 10−2

Avg. 2.65 3.57× 10−2

Avg. per elec. 0.265 3.57× 10−3

CO*

LDA 4.47 9.66× 10−2

PBE 4.42 9.51× 10−2

B3LYP 3.89 8.46× 10−2

EXX 4.08 9.23× 10−2

Avg. 4.22 9.22× 10−2

Avg. per elec. 0.301 6.58× 10−3

C2H4
†

LDA 2.87 8.25× 10−2

PBE 2.83 8.18× 10−2

B3LYP 2.51 7.34× 10−2

EXX 2.73 7.97× 10−2

Avg. 2.74 7.94× 10−2

Avg. per elec. 0.171 4.96× 10−3

Tot. avg. per elec. 0.255 4.01× 10−3

* cc-pVTZ/cc-pVTZ-RIFIT orbital/auxiliary basis sets
† cc-pVDZ/cc-pVDZ-RIFIT orbital/auxiliary basis sets

Table 4.1: Example values for Su[w0] and D[u] (4.43). The potential u is the
converged KS potential for the set of functionals demonstrated. We observe that
D[u]� Su[w0], regardless of the system or the potential u.
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δD[u]
δu(r)

∣∣∣∣∣
u=u0

= 0 δSu0 [w]
δw(r)

∣∣∣∣∣
w=w0

= 0 vs = ven + w0[u0]
u0 w0

Figure 4.4: Schematic demonstrating the decoupled minimization procedure for
Tu[w] after splitting it into the terms Su[w] and D[u].

Given the above reasoning, we conclude it is safe to decouple the minimization

of Tu[w] in order to find the optimal values u0 and w0[u0]. First, we minimize

D[u] over u to find the the potential u0 which corresponds to the best zeroth-order

Hamiltonian Hu0 in the perturbative expansion Hu(α) (4.14). Then, we minimize

Su0 [w] over w to find the optimal w0. This procedure is illustrated in Fig. 4.4. We

note that, based on this argument, it is clear that w = uHx is not the energetically

optimal choice of u, because it does not minimize in any sense the dominant term

D[u].

To minimize D[u], we first compute its functional derivative,

∫
dr δu(r) δD[u]

δu(r) = lim
λ→0

D[u+ λδu]−D[u]
λ

. (4.48)

Hence we need to determine how D[u] changes due to a perturbation u→ u+λδu.

To first order, this change is given by

D[u+ λδu] =
∑

n double

∣∣(Φn + λΦ(1)
δu,n

∣∣Φ0 + λΦ(1)
δu,0

)∣∣2
En + λE

(1)
δu,n − E0 − λE(1)

δu,0
, (4.49)

where the dependence on u is now assumed and Φ0 labels the ground state. We

use the notation
(
Φ1
∣∣Φ2

)
= 〈Φ1|Vee|Φ2〉. To write D[u + λδu] explicitly to first

order in λ, we re-write it in the form

D[u+ λδu] =
∑
n dbl

∣∣(Φn + λΦ(1)
δu,n

∣∣Φ0 + λΦ(1)
δu,0

)∣∣2
En + λE

(1)
δu,n − E0 − λE(1)

δu,0

×
En + λE

(1)
δu,n − E0 − λE(1)

δu,0

En + λE
(1)
δu,n − E0 − λE(1)

δu,0
, (4.50)

and then express both sides of the above expression as a power series in λ. Ex-

panding the squared term yields the following expression for the functional deriv-
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ative (4.48),

lim
λ→0

D[u+ λδu]−D[u]
λ

=
∑
n dbl

(
Φn

∣∣Φu
)

En − E0

{(
Φ0
∣∣Φ(1)

δu,n

)
+
(
Φ(1)
δu,0

∣∣Φn
)

− 1
2
E

(1)
δu,n − E

(1)
δu,0

En − E0

(
Φ0
∣∣Φn

)}
+ c.c. (4.51)

We must now determine the perturbed states and energies. We begin with the

perturbed state |Φ(1)
δu,n〉; from Rayleigh-Schrödinger perturbation theory, this is

given by

|Φ(1)
δu,n〉 =

∑
m6=n

〈Φm|δU |Φn〉
En − Em

|Φm〉 , (4.52)

where δU .=
∑
i δu(ri).

The doubly occupied state |Φn〉 can be written in the form |Φab
ij 〉, where i, j denote

occupied orbitals in the ground state and a, b denote unoccupied orbitals. The

matrix element, |Φ(1)
δu,n〉, is evaluated using Slater-Condon rules and is given by

|Φ(1)
δu,n〉 =

∑
c

∑
k

〈c|δu|k〉
εk − εc

|Φabc
ijk〉 , (4.53)

where k ∈ |Φab
ij 〉, and c 6∈ |Φab

ij 〉. The possible combinations for the pair (k, c) are

therefore

(a, i); (a, j); (b, i); (b, j); (µ, i); (µ, j); (a, ν); (b, ν), (4.54)

where µ 6= (i, j), |µ〉 ∈ |Φ〉 and ν 6= (a, b), |ν〉 6∈ |Φ〉. Any other permissible combin-

ation of (k, c) represents a triple excitation which will vanish in the final expression.

We now determine the state |Φabc
ijk〉 based on these possible combinations. We write

|Φabc
ijk〉 = ĉ†cĉk ĉ

†
bĉj ĉ

†
aĉi |Φ〉 , (4.55)

where ĉ† and ĉ are fermion creation and annihilation operators. Using the anti-

commutator properties of these operators, namely

{ĉ†i , ĉ
†
j} = {ĉi, ĉi} = 0; {ĉ†i , ĉj} = δij , (4.56)

and the fact that

ĉ†nĉn |Φ〉 =


|Φ〉 , |n〉 ∈ |Φ〉 ;

|0〉 , |n〉 6∈ |Φ〉 ,
(4.57)
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the following combinations for the state |Φabc
ijk〉 are possible:

|Φabc
ijk〉 =



|Φabj
ijb 〉 = |Φa

i 〉 ,

|Φabi
ija〉 = |Φb

j〉 ,

|Φabj
ija〉 = − |Φb

i〉 ,

|Φabi
ijb〉 = − |Φa

j 〉 ,∑
ν |Φabν

ija 〉 = −
∑
ν |Φbν

ij 〉 ,∑
ν |Φabν

ijb 〉 =
∑
ν |Φaν

ij 〉 ,∑
µ |Φ

abµ
ijk 〉 =

∑
µ |Φab

jµ〉 ,∑
µ |Φ

abµ
ijk 〉 = −

∑
µ |Φab

iµ〉 .

(4.58)

We are now able to compute the matrix element
(
Φ0
∣∣Φ(1)

δu,n

)
in the functional de-

rivative (4.51) (relabelling µ as k and ν as c),

(
Φ0
∣∣Φ(1)

δu,n

)
= 〈j|δu|b〉∆bj

(
Φ0
∣∣Φa

i

)
+ 〈i|δu|a〉∆ai

(
Φ0
∣∣Φb

j

)
− 〈j|δu|a〉∆aj

(
Φ0
∣∣Φb

i

)
− 〈i|δu|b〉∆bi

(
Φ0
∣∣Φa

j

)
+

unocc∑
c 6=(a,b)

{
〈c|δu|b〉

∆bc

(
Φ0
∣∣Φac

ij

)
− 〈c|δu|a〉∆ac

(
Φ0
∣∣Φbc

ij

)}

+
occ∑

k 6=(i,j)

{
〈i|δu|k〉

∆ki

(
Φ0
∣∣Φab

jk

)
− 〈j|δu|k〉∆kj

(
Φ0
∣∣Φab

ik

)}
, (4.59)

where ∆αβ = εα − εβ. The matrix element
(
Φ(1)
δu,0

∣∣Φn
)
is likewise given by

(
Φ(1)
δu,0

∣∣Φn
)

= 〈j|δu|b〉∆jb

(
Φb
j

∣∣Φab
ij

)
+ 〈i|δu|a〉∆ia

(
Φa
i

∣∣Φab
ij

)
− 〈j|δu|a〉∆ja

(
Φa
j

∣∣Φab
ji

)
− 〈i|δu|b〉∆ib

(
Φb
i

∣∣Φba
ij

)
+

unocc∑
c 6=(a,b)

{
〈i|δu|c〉

∆ic

(
Φc
i

∣∣Φab
ij

)
− 〈j|δu|c〉∆jc

(
Φc
j

∣∣Φab
ji

)}

+
occ∑

k 6=(i,j)

{
〈k|δu|a〉

∆ka

(
Φa
k

∣∣Φab
ij

)
− 〈k|δu|b〉∆kb

(
Φb
k

∣∣Φba
ij

)}
. (4.60)
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Finally, we compute the perturbed energy levels E(1)
δu,n and E

(1)
δu,0 and hence the

difference E(1)
δu,n − E

(1)
δu,0,

E
(1)
δu,n − E

(1)
δu,0 = 〈Φab

ij |δU |Φab
ij 〉 − 〈Φ0|δU |Φ0〉 (4.61)

=
∫

dr δu(r)
(
|φa(r)|2 + |φb(r)|2 − |φi(r)|2 − |φj(r)|2

)
. (4.62)

We collate these terms to determine the functional derivative (4.51). Let us first

consider what happens to the first four terms in each of the matrix elements (4.59)

and (4.60) in the context of the functional derivative (4.51). The contribution from

the very first term in each expression is given by

occ∑
i,j
i 6=j

unocc∑
a,b
a6=b

(
Φab
ij

∣∣Φ0
) 〈j|δu|b〉

∆jb

[(Φ0
∣∣Φa

i

)
−
(
Φb
j

∣∣Φab
ij

)
∆ai + ∆bj

]
, (4.63)

where

(
Φ0
∣∣Φa

i

)
−
(
Φb
j

∣∣Φab
ij

)
=
( ∑
k∈Φu

−
∑
k∈Φai

)
〈ik||ak〉 = 〈ij||aj〉 − 〈ib||ab〉, (4.64)

with 〈ij||ab〉 = 〈ij|Vee|ab〉 − 〈ij|Vee|ba〉. The remaining three terms in the matrix

elements (4.59) and (4.60) involving a single-orbital substitution can be evaluated

in a similar manner, and by relabelling dummy indices these terms turn out to be

identical. The total contribution from these terms is therefore

4
occ∑
i,j
i 6=j

unocc∑
a,b
a6=b

(
Φab
ij

∣∣Φ0
) 〈i|δu|a〉

∆ai

〈ji||bi〉 − 〈ja||ba〉
∆ai + ∆bj

. (4.65)

We note that several of the other terms in the matrix elements (4.59) and (4.60)

are duplicates of each other, which again can be seen by relabelling dummy indices.

After expanding all the remaining terms in expressions (4.59), (4.60) and (4.63)

in terms of KS orbitals, the functional derivative of the double excitations term is
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4.5. First order exchange and correlation potential

given by

δD[u]
δu(r) = 2

occ∑
i,j
i 6=j

unocc∑
a,b
a6=b

〈ab||ij〉
∆ai + ∆bj

×
{

2φ∗i (r)φa(r)〈ji||bi〉 − 〈ja||ba〉∆ai

+
unocc∑
c 6=(a,b)

φ∗c(r)φb(r)〈ij||ac〉∆bc
+ φ∗i (r)φc(r)〈cj||ab〉∆ic

+
occ∑

k 6=(i,j)
φ∗i (r)φk(r)〈jk||ab〉∆ki

− φ∗k(r)φa(r)〈ij||kb〉∆ka

−1
2
[
|φa(r)|2 − |φi(r)|2

] 〈ij||ab〉
∆ai + ∆bj

}
+ c.c. (4.66)

The above expression is equal to zero at the minimizing potential, u(r) = u0(r).

This result is reminiscent of the derivative of the double-excitations part of the

second-order correlation energy in traditional DFT PT. In Ref. [192], in which the

KS potential is partially expanded in an auxiliary basis set {gt},

vs(r) = ven(r) + v0(r) +
∑
t

bσt gt(r), (4.67)

the derivative of the doubly-excited correlation energy term with respect to bσt can

be expressed as
∂E

(2)
d

∂bσt
= −

∫
dr gt(r)δD[u]

δu(r) , (4.68)

with δD[u]/δu(r) given by (4.66). However, as previously stressed, in Ref. [192] and

other works in DFT PT, the minimization is carried out over the total energy, which

is unbound from below. We discuss the issues with a total energy minimization

involving a second-order correlation energy in § 4.6.

We can re-express the functional derivative δD[u]/δu(r) (4.66) to make it more

convenient to apply the KLI or CEDA approximations [144–147]. We note that

some terms contain a denominator of mixed sign, which yields less accurate results if

we approximate the denominators with a constant. Consider the complex conjugate
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of the expression[
occ∑
i,j
i 6=j

unocc∑
a,b,c
a6=b 6=c

φ∗c(r)φb(r) 〈ab||ij〉∆ai + ∆bj

〈ij||ac〉
∆bc

]∗

=
occ∑
i,j
i 6=j

unocc∑
a,b,c
a6=b 6=c

φc(r)φ∗b(r) 〈ij||ab〉∆ai + ∆bj

〈ac||ij〉
∆bc

=
occ∑
i,j
i 6=j

unocc∑
a,b,c
a6=b 6=c

φ∗c(r)φb(r) 〈ab||ij〉∆ai + ∆cj

〈ij||ac〉
∆cb

, (4.69)

where in the last step we have just swapped the labels of the dummy indices b and

c. This term plus its complex conjugate is therefore equal to
occ∑
i,j
i 6=j

unocc∑
a,b,c
a6=b6=c

φ∗c(r)φb(r)〈ab||ij〉〈ij||ac〉∆bc

[
1

∆ai + ∆bj
− 1

∆ai + ∆cj

]

= −
occ∑
i,j

unocc∑
a,b,c

φ∗c(r)φb(r) 〈ab||ij〉〈ij||ac〉
(∆ai + ∆bj)(∆ai + ∆cj)

, (4.70)

where the denominator is now of fixed (positive) sign. Likewise the term in

δD[u]/δu(r) (4.66) with denominator ∆ki with its complex conjugate becomes

−
occ∑
i,j,k

unocc∑
a,b

φ∗i (r)φk(r) 〈ab||ij〉〈jk||ab〉
(∆ai + ∆bj)(∆ak + ∆kj)

. (4.71)

Using the above expressions (4.70) and (4.71), we can rewrite δD[u]/δu(r) (4.66)

as

δD[u]
δu(r) =

occ∑
i,j

unocc∑
a,b

〈ab||ij〉
∆ai + ∆bj

×
{

4φ∗i (r)φa(r)〈ji||bi〉 − 〈ja||ba〉∆ai

−
unocc∑
c 6=(a,b)

[
φ∗c(r)φb(r) 〈ij||ac〉∆ai + ∆cj

− 2φ∗i (r)φc(r)〈cj||ab〉∆ci

]

−
occ∑

k 6=(i,j)

[
φ∗i (r)φk(r) 〈jk||ab〉∆ak + ∆bj

+ 2φ∗k(r)φa(r)〈ij||kb〉∆ak

]

−
[
|φa(r)|2 − |φi(r)|2

] 〈ij||ab〉
∆ai + ∆bj

}
+ c.c. (4.72)

If desired, it is now straightforward to use the Unsöld approximation [148] and re-

move the summations over the unoccupied orbitals using the completeness relation.
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Setting δD[u]/δu(r) (4.66,4.72) equal to zero defines the minimizing potential u0,

δD[u]
δu(r)

∣∣∣∣
u=u0

= 0 . (4.73)

As δD[u]/δu(r) depends implicitly on u, the above equation to determine u0 must

be solved iteratively with an energy minimization algorithm such as steepest des-

cent. At the ith iteration, u(r) is updated as

u(i)(r) = u(i−1)(r)− εδD[u]
δu(r)

∣∣∣∣∣
u=u(i−1)

, (4.74)

with ε some small positive number (determined for example by a line search). We

iterate until D[u] and its functional derivative are converged.

Once the optimal potential u0 has been found, together with its single-particle

orbitals φu0,p and energies εu0,p, we may proceed to determine the first-order KS

potential by minimizing Su0 [w] over w, keeping u0 fixed.

The minimizing potential w0[u0] = u0 + v′[u0] (4.20) is given by (for fixed u0)

0 = δSu0 [w]
δw(r)

∣∣∣∣
w=u0+v′[u0]

=
∑
i,a

〈φu0,i|Ju0 −Ku0 − u0 − v′[u0]|φu0,a〉
εu0,i − εu0,a

φ∗u0,a(r)φu0,i(r) + c.c. (4.75)

The above equality is a standard OEP equation for the potential v′[u0]; however,

it needs only to be solved once to determine v′[u0], as the orbitals φi,u0 and their

energies depend only on the already determined u0.

Finally, the KS potential to first order is given by

vs[u0](r) = ven(r) + u0(r) + αv′[u0](r) +O(α2); (4.76)

the correlation energy corresponding to the KS potential is

Ecu0

[
u0 + v′[u0]

]
= −Su0

[
u0 + v′[u0]

]
−D[u0]. (4.77)

In summary, by minimizing Tu[w] over u and w, not only is the magnitude of the

correlation energy the smallest possible over all u and w, leading to a fast converging

expansion of the KS potential, but the resulting first order KS potential vs[u0] also

has both exchange and correlation character, rather than just exchange.
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4.6 Analysis of variational collapse in DFT PT

In this section, we analyse the tendency towards variational collapse that is ob-

served in DFT PT. By exploring the relationship between the second-order cor-

relation energies in DFT PT, and the second-order correlation energy expressions

in our work, we gain further insights into the liability of DFT PT to suffer from

variational collapse.

Using the notation of the energy difference (4.17) and correlation energy (4.27),

the second-order correlation energy in DFT PT, Ec[ρ], is given by

Ec[ρ] = EcvHxc[ρ]

[
vHx[ρ]

]
. (4.78)

In the above expression, vHxc and vHx refer respectively to the Hartree, exchange

and correlation, and the Hartree and exchange potentials, for the KS system with

density ρ. We note that the above expression, which is equivalent to equation (4.6),

contains an implicit dependence on the Hxc-potential (through the KS orbitals),

and an explicit dependence on the Hx-only potential. Alternatively, some applica-

tions of DFT PT [192] have used the following simpler form for the second-order

correlation energy, which we denote Ẽc[ρ] to distinguish it from Ec[ρ] in Eq. (4.78),

Ẽc[ρ] = Ec
vHxc[ρ]

[
vHxc[ρ]

]
. (4.79)

In the above, vHxc appears explicitly in place of vHx in the second-order energy

(4.6).

To proceed with the analysis and compare with our method, it is convenient to

view the density functionals (4.78) and (4.79) as potential functionals. Hence,

we consider the density, ρ = ρu, to be the ground-state density of an effective

Hamiltonian Hu, with ground-state Slater determinant Φu (4.13); this defines the

KS system for an interacting state with density ρu. In this system, the potential u

represents the Hxc part of the KS potential, with w0[u] representing the Hx part
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of the KS potential, as can be seen by setting the functional derivative of Tu[w]

(4.18) equal to zero.∗

Using our notation, the second-order correlation energies Ec[ρ] (4.78) and Ẽc[ρ]

(4.79) can thus be written as

Ec[ρu] = Ec
u

[
w0[u]

]
= −Su[w0[u]

]
−D[u]; (4.80)

Ẽc[ρu] = Ec
u[u] = −Su[u]−D[u]. (4.81)

Meanwhile the total energy functionals, written as potential-functionals, are given

respectively by

E[ρu] = 〈Φu|H|Φu〉 − Su
[
w0[u]

]
−D[u] = 〈Φu|H|Φu〉 − Tu[w0[u]]; (4.82)

Ẽ[ρu] = 〈Φu|H|Φu〉 − Su[u]−D[u] = 〈Φu|H|Φu〉 − Tu[u]. (4.83)

In DFT PT, the minimization over the total energy (truncated at second-order)

with respect to the density ρu is equivalent to the minimization over the potential

u, when viewed through an OEP lens. Thus, in DFT PT the above energy func-

tionals are minimized with respect to u. The minimization over only the first term

〈Φu|H|Φu〉 in these expressions is well-defined, and leads to the Hx-only potential.

However, the second-order terms −Tu[w0[u]] and −Tu[u] are unbound from below;

thus, during the minimization over the total energies these terms will blow up and

lead to variational collapse. This will be observed for both Ec[ρu] and Ẽc[ρu], but

the effect will be particularly strong for the latter because, in this case, there is no

optimization over w to restrict the magnitude of Su[w].

In the above analysis, the difference between the present method and DFT PT

is stark. In the present method, we minimize the magnitude of second-order cor-

relation energies, tantamount to minimizing the energy differences Tu[u] over u or

Tu[w] over u and w. By contrast, in DFT PT, the minimization of the total energies

truncated at second-order is biased towards the maximization of these quantities.
∗w0[u] also represents the Hxc part of the KS potential with density ρs[u] (4.21)
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This further emphasises that our method, applied in a fully self-consistent manner,

will not be prone to the issue of variational collapse inherent to DFT PT.

4.7 Summary and discussion

In this chapter, we have built on previous work at the interface of density and wave-

function theories [188]. In this earlier work, a link between WFT and DFT was

established via the energy difference (4.9): it transpires that the potential which

minimizes this energy difference, a WFT expression, is the KS potential from DFT.

It was also postulated in this earlier work that a perturbative expansion (4.13,4.14),

similar to expansions in MBPT, could be used to develop perturbative expansions

for the KS potential.

In the research presented in this chapter, we have explored appropriate choices for

the zeroth-order potential u in the weakly-interacting expansion Hu(α) (4.14). We

established a link between the second-order energy difference Tu[w] (4.17) and the

second-order correlation energy between the partially-interacting system and the

non-interacting reference state Φv (4.27). Using physically intuitive arguments and

experience from WFT, we argued that minimizing the magnitude of the second-

order correlation energies (4.32) and (4.34) leads to fast-converging expansions for

the KS potential, and thus defines good choices for the potential u.

We explored three choices for the zeroth-order term in a weakly-interacting ex-

pansion for the wave-function. In the first two choices, the density of the weakly-

interacting state does not change to first-order; respectively, these choices define

two exchange-only potentials in DFT, the EXX and LFX potentials. The third

and final choice, based on a minimization of |Ec
u[w]| (4.6) over both u and w, leads

to a potential previously unseen in the literature with both exchange and correla-

tion character to first order. We claim this is an energetically more optimal choice

for u than that which yields the EXX potential, because the choice of u which
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defines the EXX potential leaves the energetically dominant term of |Ec
u[w]| (4.45)

unoptimized.

Finally, we also considered in detail the relationship between the present work

linking WFT and DFT and traditional DFT PT. The tendency towards variational

collapse in DFT PT was analysed using expressions from our work; this emphasised

the differences between the two methods, and provided further evidence that our

method will not be prone to variational collapse.

In the following chapter, we explore the integration of WFT and DFT in a different

light, by developing a method to obtain numerically the KS potential from a given

density.
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Chapter 5

Density-to-potential inversion:

role of the screening density

In this chapter, we present a method to accurately obtain the KS potential from

a given density. The problem of inverting a density to find its KS potential has a

long history in the DFT literature; in the first section of this chapter we explore

the motivation for an accurate density-to-potential inversion procedure and review

some of the methods that have been developed.

In our method, the screening density (introduced in § 3.7.1) plays a fundamental

role in ensuring the KS potential has correct profile. The method, and the particu-

lars of the algorithm employed, is described in § 5.2. Following this, we show that

the method can be applied to a variety of different systems and target densities

in § 5.3. Finally, we draw comparison with the related and well-known density-

inversion method of Zhao, Morrison and Parr [221, 222] in § 5.4, before finishing

with a brief summary and discussion.

5.1 Motivation and review of existing methods

As discussed in Chapter 3, commonly-used functionals in DFT have various qual-

itative failings, such as the self-interaction error and closely-linked delocalization
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error, and the static correlation error. These qualitative failings hinder the predict-

ive power of DFT in various applications such as charge-transfer processes [223]

and molecular dissociation [121]; there are many research groups developing new

methods and functionals to overcome these difficulties [97, 109, 224–226].

In order to gauge the accuracy of new approaches in DFT, it is important to

have an accurate reference against which to benchmark results. Commonly, this

is achieved by comparing results with experiment or a higher-level theory such as

coupled cluster or quantum Monte-Carlo. However, it is also useful to have an

accurate reference KS potential, which can be obtained (in theory) by inverting

the density from a higher-level calculation to obtain the local (KS) potential which

reproduces that density. Further applications of density-to-potential inversion al-

gorithms include density-dependent embedding schemes [227], partition DFT [228],

machine learning the xc-potential from inverted densities [229, 230], and quantify-

ing ‘density-dependent’ errors in DFT [231].

In contrast to the usual problem in DFT, in which the KS equations are solved

self-consistently given an input xc-functional to determine the ground-state density,

a reliable numerical framework for the inverse problem remains an active area of

research. For one or two∗ electron densities, the effective potential can be directly

obtained through the formula

vs(r) = ∇2φ1(r)
2φ1(r) . (5.1)

However, for systems with N > 2, the inverse problem is challenging and as such

a plethora of methods has been developed.

Early algorithms for the density-inversion problem were limited to few-electron

or spherically symmetric systems; these include the parameter-based approach by

Almbladh and Pedroza [232], or the method by Aryasetiawan and Stott [233], later

extended by various others [234–237], based on solving N−1 differential equations.

Since then, more generally applicable methods have been developed; we briefly
∗for a closed-shell system in the restricted KS formalism
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describe two of the most famous approaches. The first is the Zhao-Morrison-Parr

scheme [221, 222], in which the following KS equation is solved{
−∇2

2 + ven(r) +
(

1− 1
N

)
vtH(r) + vZMP(r)

}
φi(r) = εiφi(r), with (5.2)

vZMP(r) = λ

∫
dr′ ρ(r′)− ρt(r′)

|r− r′| , (5.3)

in the limit that λ→∞. The second is the direct optimization method by Wu and

Yang [238], in which the objective functional

Ws[Ψ, v] = 2
N/2∑
i=1
〈φi|T̂ |φi〉+

∫
dr v(r) {ρ(r)− ρt(r)} (5.4)

is maximised wrt the potential v(r); Ws[Ψ, v] attains its maximum value when the

KS density ρ(r) and target density ρt(r) are equal, ie when v(r) is the KS potential

for the system with density ρt(r).

Various other methods have been developed for the inverse problem [190, 239–245],

most of which follow an iterative scheme in which the potential is updated as

v(i)
s (r) = v(i−1)

s (r) + ∆v(i)
s [ρ(i), ρt](r) (5.5)

until some objective functional S[ρ(i), ρt] depending on both the density at the ith

iteration and the target density ρt is minimized. In Ref. [246], the authors establish

a link between these methods based on the Levy–Perdew–Sahni equation [247].

Recently, more sophisticated approaches, based on partial differential equations and

careful tuning of the input density, have been implemented [248, 249]; algorithms

have also been developed for the time-dependent inverse problem [250, 251].

Despite the multitude of methods for the density-to-potential inversion problem in

DFT, it remains an interesting and open-ended research problem; see Ref. [248] for a

review of the difficulties in obtaining an accurate KS potential from a given density.

The popularity of KS-DFT is driven, in part, by the balance between accuracy and

ease-of-use; this balance is not so well-maintained in the inverse problem, in which

more accurate methods are often more challenging to implement.
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The method we present in this chapter, based on the approach in Ref. [190], is

designed to be conceptually simple and straightforward to implement in Gaussian

basis set codes. In our method, which uses the concept of screening density (3.45),

the value of the screening charge (3.46) is fixed; this stabilizes the minimization

procedure and ensures the KS potential has the correct asymptotic behaviour, as

we observe that multiple potentials can arise from the same density. We always

apply our method to the widely-used correlation-consistent basis sets [163, 164], to

understand what level of accuracy can be expected for a particular basis set.

5.2 Method

Our method falls within the general class of iterative methods described by equation

(5.5). Our objective functional is given by the Coulomb energy U [ρ − ρt] of the

density difference ρv − ρt,

U [ρv − ρt] = 1
2

∫
dr
∫

dr′ [ρv(r)− ρt(r)][ρv(r′)− ρt(r′)]
|r− r′| , (5.6)

where ρv is the density of a non-interacting N -electron system with KS potential

ven + v. This effective potential v mimics the electronic repulsion; at the minimum

of the Coulomb energy U , with ρt = ρv, this effective potential is equal to the

Hxc-potential for the system with density ρt, which is the potential we seek.

Clearly, the Coulomb objective functional (5.6) is strictly non-negative, and is

equal to zero when non-interacting density ρv is identical to the target density ρt.

We represent the effective potential v(r) using a screening density ρscr(r), which

integrates to a screening charge Qscr:

v(r) =
∫

dr′ ρscr(r
′)

|r− r′| , (5.7)∫
drρscr(r) = Qscr. (5.8)

As discussed in § 3.7.1, we argue that the value of the screening charge Qscr is a

measure of self-interactions. In theory, its value lies anywhere in the range

N − 1 ≤ Qscr ≤ N, (5.9)
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with Qscr = N − 1 being a necessary condition for the method to be fully self-

interaction free. As the value of Qscr does not change in the algorithm we use, it

is important to start with a screening density that is consistent with the screening

charge of the target density.

When we vary the potential v(r) as

v(r)→ v(r) + ε

∫
dr′ δρscr(r

′)
|r− r′| , (5.10)

the change in the objective functional δU [v]∗ is given by

δU [v] = ε

∫
dr
∫

dr′ δρscr(r)χ̃v(r, r′)δρ(r′) +O(ε2), (5.11)

with

δρ(r) = ρv(r)− ρt(r) (5.12)

and

χ̃v(r, r′) =
∫

dx
∫

dy χv(x,y)
|r− x||r′ − y| . (5.13)

χv(r, r′) is the density-density response function (3.62) for the KS system described

by the effective potential v(r). Since it is a negative semi-definite operator, if we

vary ρscr(r) in the direction

ρscr(r)→ ρscr(r) + εδρ(r), with ε > 0 (5.14)

then U will decrease, with the change δU equal to

δU [v] = −ε
∫

dr
∫

dr′ δρ(r)χ̃v(r, r′)δρ(r′) +O(ε2). (5.15)

We can therefore use a gradient-descent based algorithm to minimize U . We note

that during the minimization procedure, the screening charge Qscr remains equal

to the value prescribed by the initial guess for ρscr, since
∫

drδρ(r) = 0.

As an aside, we note that this algorithm to minimize the Coulomb objective func-

tional will also minimize the energy difference TΨ[v] as seen in Chapter 4,

TΨ[v] = 〈Ψ|Hv|Ψ〉 − Ev, (5.16)
∗U [ρv − ρt] is a functional of ρv and the target density ρt; since the target density is fixed and

ρv depends on v, we denote U more simply as a functional of v, U = U [v].
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given that the functional derivative of TΨ[v] is equal to −δρ(r). However, the Cou-

lomb energy is a more straightforward quantity to evaluate than TΨ[v]; it requires

only the density, rather than the wave-function, for the target system.

5.2.1 Algorithm

We have implemented the method described above in the HIPPO code. The al-

gorithm is described below.

1. Initialize the screening density as follows:

ρ(0)
scr(r) = N − α

N
ρ(0)(r), (5.17)

where α ∈ [0, 1] depends on the target density, and thus Qscr = N − α. ρ(0)

can be any function which integrates to N ; in practise, we choose it to be

the density from an LDA calculation because this is computationally cheap

to obtain and typically seems to be a reasonable starting point.

The screening density is expanded in an auxiliary basis,

ρscr(r) =
naux∑
k

ρskθk(r). (5.18)

For the auxiliary basis, we use the density-fitted basis set [252] corresponding

to the choice of orbital basis. Analysis and justification for this choice of

auxiliary basis set is presented in the following section.

2. Solve the single-particle KS equations[
−∇2

2 + ven(r) + v(r)
]
φv,i(r) = εv,iφv,i(r) (5.19)

to update the density ρv(r).

3. Update the screening density at the ith iteration as follows,

δρ(i)
scr(r) = ρ(i−1)

scr (r) + ε[ρ(i−1)
v (r)− ρt(r)]. (5.20)
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For any ε where 0 < ε� 1, the above step is guaranteed to decrease U (except

in the limit U = 0). The value of ε in steepest-descent algorithms is usually

chosen by a line-search routine, of which there are several flavours. We use

a quadratic line search to pick the optimal ε: this procedure is described in

Appendix A.

In the above step, we observe that it is convenient to expand the target density

in the same orbital basis as the KS density, because the density difference is

given without further computation. It is then straightforward to make the

following transformation from the density difference in the orbital basis to

the change in δρscr in the auxiliary basis∗,

δρsp = −
naux∑
q

norb∑
k,l

δρkl 〈θp|θ̃q〉−1 〈θ̃q|ξkξl〉 , with (5.21)

θ̃q(r) =
∫

dr′ θq(r
′)

|r− r′| . (5.22)

4. Repeat steps 2 and three until either

i U and δU are converged to within some chosen tolerance, or;

ii The amount, or the rate of increase, of negative screening charge,

Qneg = 1
2

{(∫
dr |ρscr(r)|

)
−Qscr

}
(5.23)

exceeds a chosen amount.

Condition (ii) is a kind of regularization [248, 253]. It has been observed [248,

249] that the density-to-potential inversion problem in KS-DFT is ill-posed,

in that the potential obtained from an inversion may be non-unique and

contain unphysical (discontinuous and oscillatory) features. This is largely

due to errors or missing information in the input density; Gaussian-basis set

densities lack the correct cusp near the nuclei, as well as incorrect decay in

the asymptotic region [249]. Additional factors that may adversely affect the
∗In fact, it is cheaper still to expand the screening density in products of the orbital basis,

eliminating the need for this additional computational step. We discuss later why we use an
auxiliary basis for the screening density.

96



5.2.2. Choice of basis set representation for the screening density

KS potential include finite basis set effects due to the interplay between the

orbital and auxiliary basis sets [173, 178, 179] and possible issues related to

non-interacting v-representability [50, 254–259].

In our method, the fixed nature of the screening charge restricts the freedom

of the KS potential, reducing the prevalence of the above issues. Furthermore,

the update step for the screening density (5.20) is quite restrictive and usu-

ally prevents the potential from developing spurious oscillations. However,

we are still restricted by the quality of the input density, and thus issues of

over-converging to the input density tend to emerge. This problem is reflec-

ted, for example, in the quality of the KS eigenvalues or the appearance of

the KS potential. We have observed that these issues are often correlated

with a large or rapid build up of negative screening charge. Thus, a simple

criterion to avoid over-convergence is simply to stop the optimization proced-

ure when Qneg or δQneg surpasses a certain threshold. Specific details of the

convergence criteria used are discussed in § 5.2.3.

5.2.2 Choice of basis set representation for the screening density

As discussed in the prior section, we choose to expand the screening density ρscr(r)

in the density-fitted basis which corresponds to the orbital basis used in the cal-

culation. This is an intuitive choice, because it seems sensible to expand a the

screening density in a basis set designed for density-like quantities; it is also a

convenient choice, because density-fitted basis sets are frequently used in the com-

putation of two-electron integrals in quantum chemistry codes (see § 3.9.1).

To justify this choice quantitatively, we recall (§ 3.9.1) that in typical DFT cal-

culations the xc-potential is represented on a grid. This grid, unlike the Gaussian

representation for the Hxc-potential we use (5.7,5.18), is specifically optimized to

accurately represent the xc-potential, with the Hartree potential represented us-

ing the orbital basis. The natural choice of criteria for the auxiliary basis set
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5.2.2. Choice of basis set representation for the screening density

U [ρga − ρgr] orbital uncontracted ρ-fitted

He 2.3× 10−7 2.1× 10−7 1.2× 10−8

Be 7.0× 10−4 5.5× 10−9 4.2× 10−10

Ne 9.0× 10−5 1.8× 10−6 3.4× 10−10

HF 9.0× 10−5 2.9× 10−7 7.5× 10−9

H2O 1.2× 10−4 2.2× 10−7 8.5× 10−9

H2 7.0× 10−8 1.6× 10−7 6.0× 10−8

CO 3.5× 10−4 2.7× 10−7 1.6× 10−9

Table 5.1: Values of U [ρga − ρgr] for LDA potentials in different Gaussian basis
sets. All bases cc-pVTZ.

will therefore be that which accurately reproduces the Hxc-potential as it is nor-

mally expressed. The xc-potential can be transformed from the grid to Gaussian

based representation using the relation (with ρxc(r) representing the xc-part of the

screening density),

vxc(r) =
naux∑
k

ρxcl

∫
dr′ θk(r

′)
|r− r′| , with (5.24)

ρxck =
naux∑
l

〈θ̃k|θl〉−1 〈θl|vxc〉 . (5.25)

To quantify the accuracy of representing the screening density in a particular Gaus-

sian basis set, we use the Coulomb energy U [ρga− ρgr] (5.6), where ρga and ρgr are

the densities arising from defining the potential in a Gaussian basis set (integrated

over |r− r′|−1) and on the grid respectively. The smaller the value of U [ρga − ρgr],

the better one might expect the Gaussian representation to be. In Table 5.1, we

compare the values of U [ρga−ρgr] for three choices of basis functions for the screen-

ing density: the orbital basis, the density-fitted basis, and the uncontracted orbital

basis, which is a common choice for the potential [108–110, 173]. We observe that

the density-fitted sets give the closest fit to the grid representation based on this

criterion, which is perhaps not surprising as they are specifically optimized for this

purpose.

In Fig. 5.1, we plot the LDA xc-potentials for these basis set choices. In contrast to

the above-mentioned analysis, the uncontracted sets seem to give the best fit to the
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5.2.3. Convergence criteria

grid potential, but we note that the density-fitted sets give a close fit everywhere

except the nuclear positions; it is also clear from these plots that the contracted

orbital basis is a completely inadequate representation for the xc-potential∗. In

our experience, the algorithm works more smoothly for the density-fitted sets than

the uncontracted ones. Given that we minimize U [ρv − ρt], it makes sense to

choose a representation that also minimizes this expression. The gradient-descent

algorithm also struggles to reproduce the target density near the nuclei regardless

of the auxiliary basis chosen, so the lack of accuracy of the density-fitted sets in

this region is not so important in our method.

5.2.3 Convergence criteria

The tolerances for the objective functional U , and the change in the objective

functional δU , are chosen to be 5×10−9 and 5×10−11 per electron, respectively. We

have observed that, in the inversion of a density that comes from a DFT calculation

(such as LDA), satisfying the above criteria does not lead to any issues regarding

over-convergence. However, we see that these tolerances are often too strict for

the inversion of densities from wave-function theories (Hartree–Fock and coupled

cluster), as the quality of the potential starts to deteriorate before convergence is

reached.

As discussed in § 5.2.1, we monitor the amount of negative screening charge to

avoid over-convergence. The onset of negative screening charge is dependent on

several factors, including

i the number of electrons, N ,

ii the size of the basis set, and

iii the nature of the target density,
∗In Ref. [219], when the Hxc-potential was separated into Hartree and xc-components for

plotting purposes, the Hartree part was computed using the orbital basis. In this thesis, the
Hartree potential is transformed into the auxiliary basis representation in the same manner as the
xc-potential (5.25) to maintain consistency, and thus the plots look different.
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Figure 5.1: Comparison of the LDA xc-potential on a grid, against various Gaussian
basis set representations. Lower images show the differences between the grid and
Gaussian representation.
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Qneg cc-pVDZ cc-pVTZ

He 0.0 9.88× 10−3

Be 5.81× 10−2 7.65× 10−2

Ne 0.0 3.30× 10−4

HF 4.50× 10−2 8.18× 10−2

H2O 3.03× 10−2 1.15× 10−1

H2 6.55× 10−3 6.35× 10−2

CO 1.09× 10−2 3.51× 10−4

Table 5.2: Amount of negative screening charge, Qneg, for exact LDA screening
densities.

in addition to other (hard to quantify) factors related to the system under consid-

eration. An example of the correlation between negative screening charge and the

accuracy of the inverted KS potential is seen in Table 5.3. As we later argue, the

energy eigenvalue of the highest-occupied molecular orbital (HOMO) is a reliable

indicator of the quality of the inverted potential; for the example in the table, we

see that the HOMO value becomes worse as Qneg increases.

To guide our intuition regarding how much negative screening charge to allow, we

recall that we can determine the ‘exact’ screening density for an LDA calculation

via the relations (5.24-5.25). In Table 5.2, we see that a small amount of negative

screening charge is typically present for the LDA effective screening density. In

Fig. 5.2, we see this negative screening density is usually present near the nuclei.

There is no reason to expect significantly dissimilar behaviour for different target

densities, and therefore it seems judicious to allow a small amount of negative

screening charge to manifest itself in the inversion procedure.

With the above arguments in mind, we monitor the following variables during the

inversion procedure:

i Soft limit, Qsoft
neg ;

ii Change in Qneg, δQneg between iterations;

iii Hard limit, Qhard
neg ;
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Figure 5.2: Effective screening densities, ρs(r), for LDA densities, with the actual
densities for comparison. We observe the tendency for a small amount of negative
screening charge near the nuclei.

If both conditions (i) and (ii) are satisfied, or just condition (iii), the calculation

stops. For the sake of consistency, we use the same values for all calculations shown

in this chapter:

i Qsoft
neg = 0.01;

ii δQneg = 0.005;

iii Qhard
neg = 0.05;
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CCSD(T) HF

U (H) Qneg −εH (eV) % err U (H) Qneg −εH (eV) % err

1.09× 10−4 0.00 8.71 6.5% 1.32× 10−4 0.00 8.28 1.5 %
2.31× 10−5 0.221 9.34 0.2% 4.69× 10−5 0.112 8.97 6.7%
1.36× 10−5 0.630 9.82 5.4% 3.33× 10−6 0.258 9.14 8.7%
1.29× 10−5 1.01 10.09 8.3% 5.03× 10−8 0.300 9.19 9.3%

Table 5.3: Values of the Coulomb objective functional U [ρv−ρt], negative screening
charge Qneg, and HOMO eigenvalue εH, for inverted CCSD(T) and HF densities of
the Beryllium atom. The final column shows, respectively, the percentage difference
between εH and the experimental ionization potential of 9.32eV, and the Hartree–
Fock value of 8.41eV.

where all the above values are quoted per electron. For the examples we have

tested (atoms and small molecules at their equilibrium geometries), these values

seem to be a reasonable choice. However, we note that there is a degree of arbit-

rariness in the specific numbers used and they may need to be adjusted in certain

circumstances, such as molecules stretched beyond their equilibrium geometries.

5.3 Results

5.3.1 Inversion of LDA densities

To demonstrate the validity of our method, we first apply it to the inversion of

LDA densities. In this case, we have an exact reference for the inverse potential,

giving insight into the accuracy and limitations of the inversion procedure.

As discussed in § 5.2.1, it is important to initialize the inversion with the correct

value of Qscr since it does not change during the optimization cycle. As can be seen

in Fig. 5.3, different values of Qscr give rise to different xc-potentials (the difference

is essentially a constant shift); this is for the same reason that the solution of the

OEP equation has the freedom to vary by a constant (§ 3.9.3) [173, 174].

Since LDA is a method fully-contaminated by self-interactions, one would expect

Qscr = N (§ 3.7.1). Indeed, this equality holds for the LDA potential expressed
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Figure 5.3: The inverted xc-potentials from the LDA density of Neon (cc-PVTZ),
for different values of Qscr. Each value of Qscr yields a unique xc-potential.

He Be

α −εH (eV) α −εH (eV)

cc-pVDZ 0.479 15.15 0.207 4.50
cc-pVTZ 0.214 14.82 0.148 4.81
cc-pVQZ 0.301 15.41 0.185 5.29
cc-pV5Z 0.256 15.89 0.165 5.41

Table 5.4: Values of α, where Qscr = N − α, and ionization potentials (IPs) as the
negative of the HOMO energies, for He and Be with increasing basis set size.

on the grid. However, when the potential is transformed into a Gaussian basis set

representation (5.24-5.25), Qscr 6= N . This is because typical Gaussian basis sets

are insufficient to fully describe the character of the xc-potential on the grid; if we

were to approach the complete basis set limit, we would see that Qscr → N in this

limit. Table 5.4 shows some example values of Qscr as we increase the basis set size;

even for very large basis sets, we see that the value of Qscr differs significantly from

N . We have observed that, if desired, it is possible to more cheaply approach the

limit of Qscr = N by adding one or two diffuse basis functions to the auxiliary basis.

For the results presented in this chapter, we choose not to modify the well-known

cc-pVXZ basis functions, but in principle the modification of these basis sets is

necessary without a priori knowledge of the precise value of Qscr.
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5.3.1. Inversion of LDA densities

cc-pVDZ cc-pVTZ cc-pVQZ

−εH (eV) Inverse LDA % err Inverse LDA % err Inverse LDA % err

He 15.15 15.14 0.1 14.82 15.47 4.2 15.41 15.37 0.6
Be 4.50 5.62 19.9 4.81 5.60 14.1 5.29 5.60 5.5
Ne 6.69 12.24 45.3 10.56 13.17 19.8 11.75 13.40 12.3
HF 7.18 8.45 15.0 8.91 9.38 5.0 9.37 9.64 2.8
H2O 5.71 6.23 8.3 6.67 7.00 4.7 6.86 7.21 4.4
H2 9.53 10.12 5.8 10.00 10.25 2.4 10.02 10.26 2.3
CO 6.16 8.71 29.3 7.73 9.07 14.8 8.82 9.11 3.2

Avg % err 17.7 9.3 4.5

Table 5.5: Comparison of the HOMO eigenvalues εH from inverted LDA densities
and the actual LDA eigenvalues.

With a method to calculate the appropriate value of Qscr for LDA densities, we now

demonstrate the accuracy of our method when applied to LDA densities and the

convergence with an increase in the basis set size. In Fig. 5.4, we see the qualitative

similarities between the actual LDA potential, and the inverted xc-potential from

and LDA density, for the HF molecule and the Be atom. The region of biggest

difference is near the nuclei; this is due in part to the deficiency of the input

density, which lacks the correct cusp near the nucleus. If this region is considered

important, it is important to use a larger basis set or modify the input density in

some way, such as the method described in Ref. [249].

The KS eigenvalues from the inverted LDA density, compared with the actual LDA

eigenvalues, can be used as a quantitative measure of the accuracy of the inversion

procedure. We focus specifically on the HOMO energy level εH; Table 5.5 compares

the values of εH for the inverted system with the actual LDA values. These results

show approximately what level of accuracy can be expected with a given basis set,

with a clear convergence towards the correct LDA values as the basis set size is

increased.
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Figure 5.4: Comparison between the xc-potential from inverted LDA densities, and
actual LDA results.

5.3.2 Constrained inversion of LDA densities

As discussed in the previous subsection, it is important to initialize correctly the

screening charge in order to accurately obtain the xc-potential from the inversion of

a density. Conversely, we can exploit the freedom of being able to choose the screen-

ing charge to mitigate against self-interaction errors. As discussed, the screening

charge can be used as a measure of self-interactions, and thus by initializing with

a screening charge of N − 1,

Qscr = N − 1, (5.26)

106



5.3.3. Inversion of densities from wave-function theories

to reduce self-interaction effects, in particular the incorrect asymptotic behaviour

of the (H)xc-potential, in common functionals such as LDA.

This concept has already been explored in a different context [108, 109], by min-

imizing the total energy functional for a DFA such as LDA, under the constraint

(5.26) and also under the additional constraint that

ρscr(r) ≥ 0. (5.27)

The above constraint was applied both as a form of regularization for the OEP

equation, and to ensure the screening density did not develop a ‘hole’ with charge

−1 in the far-field region. However, this positivity constraint is a computational

bottleneck; it is not required under the density inversion procedure since there is

no OEP equation to be solved and the update step (5.20) does not allow screening

charge to develop in regions of zero density.

In exact KS theory, the ionization potential (IP) is formally equal to the negative of

the KS HOMO eigenvalue (3.49). A systematic failing of common DFT functionals

is that they significantly underestimate IPs using this relationship. This is largely

attributed to the SI error inherent in these functionals. In Table 5.6, we compare

LDA IPs with IPs obtained under the constraint Qscr = N − 1, which we denote

‘constrained’ LDA (CLDA). We see that the IPs demonstrate systematic improve-

ment relative to the experimental IPs under this constraint, as had been observed

in Refs. [108] and [109]. We see that the IPs obtained via the density inversion

method are in close agreement compared to those from the original method [108].

In Chapter 7, we relax the positivity constraint for the original CLDA method,

using the more rigorous solution to the OEP equation described in § 3.9.3.

5.3.3 Inversion of densities from wave-function theories

The main aim of any density-inversion scheme is of course to obtain the KS poten-

tials corresponding to densities from theories other than DFT. In this chapter, we

have applied our method to densities from two theories: Hartree–Fock (HF) and
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IP (eV) LDA CLDA (inv) CLDA [108] Expt. [260]

He 15.47 23.12 23.82 24.59
Be 5.60 8.48 8.65 9.32
Ne 13.17 18.85 18.89 21.56
HF 9.38 14.08 14.17 16.03
H2O 6.83 11.10 11.04 12.62
H2 10.25 15.15 15.64 15.43
CO 8.97 12.50 12.84 14.01

Table 5.6: Comparison of IPs (from HOMO energies) for constrained-LDA using
the inversion of density, and the previous implementation of CLDA. All basis sets
are cc-pVTZ.

coupled cluster theory, specifically CCSD(T). We focus on these theories specifically

because HF is an exchange only method, whose inversion yields the exchange-only

Local Fock exchange (LFX) potential (§ 4.4.2) [190]; meanwhile CCSD(T) densit-

ies [45, 261] are very accurate even for strongly-correlated systems, and hence it

should provide an indication of what to expect from the ‘exact’ KS potential.

As demonstrated in the inversion of LDA densities, it is important to choose the

correct screening charge. As HF and CCSD(T) are both self-interaction free the-

ories, in a complete basis set we would expect Qscr = N − 1. Unlike the LDA case,

there is no way to determine whether this value varies due to finite basis set ef-

fects; however, our results strongly suggest it is a good choice and hence we always

use this value. We focus again on the HOMO eigenvalue εH: due to Koopman’s

theorem [24] and its equivalent in KS-DFT (3.49), the LFX value of εH should

equal its HF value. Likewise, −εH from an inverted CCSD(T) density should be

approximately equal to the experimental IP∗.

Table 5.7 shows a comparison between HF and LFX IPs for increasing basis set

size. Like in the LDA case, the method is demonstrably more accurate for larger

basis sets; we see that it is important to use at least a cc-pVTZ basis set to obtain

meaningful results, with this basis set yielding a reasonable average error of 3.8%.

We see a similar picture emerge for the CCSD(T) examples in Table 5.8; in this
∗We cannot expect to approach equality with the experimental IP except in the complete basis

set limit.

108



5.3.3. Inversion of densities from wave-function theories

cc-pVDZ cc-pVTZ cc-pVQZ

IP (eV) Inverse HF % err Inverse HF % err Inverse HF % err

He 25.23 24.88 1.4 24.97 24.97 0.0 24.98 24.98 0.0
Be 8.96 8.41 6.5 8.42 8.42 0.0 8.37 8.42 0.6
Ne 17.57 22.65 22.4 22.19 23.01 3.6 24.40 23.10 5.6
HF 14.21 17.12 17.0 16.57 17.52 5.4 17.23 17.64 2.3
H2O 12.03 13.44 10.5 12.99 13.76 5.6 13.40 13.85 3.2
H2 16.13 16.10 0.2 16.16 16.16 0.0 16.17 16.17 0.0
CO 11.65 14.96 22.1 13.74 15.09 8.9 14.03 15.11 7.1

Avg % err 11.5 3.4 2.7

Table 5.7: Comparison of IPs for the local potential of an HF density with the
actual HF IPs.

cc-pVDZ cc-pVTZ

IP (ev) Inverse % err Inverse % err Expt [260]
He 24.94 1.4 24.57 0.1 24.59
Be 9.13 2.0 9.12 2.0 9.32
Ne 12.09 43.9 20.41 5.3 21.56
HF 11.34 29.3 15.43 3.7 16.03
H2O 10.01 20.7 12.28 2.7 12.62
H2 15.91 3.1 16.45 6.6 15.43
CO 10.01 28.6 13.18 5.9 14.01

Avg % err 18.4 3.8

Table 5.8: Comparison of IPs for the local potential of a CCSD(T) density with
experimental IPs.

case, the cc-pVQZ results have not been computed due the computational expense

of obtaining the input densities. However, the average error of 3.8% for the cc-

pVTZ results is similar to the HF result.

Besides the comparisons of IPs, it is insightful to plot the xc-potentials from the

inversion procedure. In Fig. 5.5, we plot the xc-potentials for various basis sets.

From this figure, we see that the xc-potentials are smooth and converge with in-

creasing basis set size. These plots emphasize the importance of using at least a

cc-pVTZ basis set to obtain qualitatively accurate potentials. Like in the LDA

case, we observe the inverse potentials are least consistent near the nuclei, but

away from this region their behaviour is more reliable.
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Figure 5.5: x(c)-potentials from HF and CCSD(T) densities for various basis sets

On account of the similarity between the LFX and EXX potentials, particularly for

weakly-correlated systems (§ 4.4.2), the inversion of HF densities offers a route to

obtain exchange-only potentials without needing to solve the OEP equation. This

similarity can be further exploited to obtain approximate correlation potentials, by

taking the difference between an inverted CCSD(T) density and an LFX poten-

tial. This provides an important reference in the development of new functionals

with accurate correlation character, as it has been observed that the correlation

potentials of typical DFT functionals are quite poor [100]. In Fig. 5.6, we have

plotted the correlation potential for the Argon atom using this method, with the
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Figure 5.6: Top: Ar (cc-pvTZ) xc-potentials from inverted HF and CCSD(T)
densities, and PBE; bottom: correlation potentials from the difference of CCSD(T)
and HF inverted xc-potentials, and PBE.

PBE correlation potential also shown for comparison.

5.4 Comparison with the method by Zhao, Morrison

and Parr

Our density-inversion method invites a comparison with the well-known method

by Zhao, Morrison and Parr (ZMP) [222], since this method also features the

Coulomb energy of the difference between the KS and target densities (5.6). In the

ZMP method, rather than minimizing U [ρv − ρt], they impose the condition that

it vanishes in the minimization of the total energy functional. This leads to the

following definition of the KS potential,

vλs (r) = ven(r) +
(

1− 1
N

)
vtH(r) + λ

∫
dr′ ρv(r

′)− ρt(r′)
|r− r′| , (5.28)

where λ is a Lagrange multiplier used to enforce U [ρv − ρt] = 0. The densities ρv

and ρt become equal in the limit λ→∞; computationally, this is done by solving
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the KS equations for increasingly large values of λ and extrapolating to the limit

of infinite λ.

In the ZMP method, it is commented that the Fermi-Amaldi term in the potential

(1− 1/N) vtH(r) is present primarily to aid convergence, but also to obtain accur-

ately the KS orbital energies. As noted in the ZMP paper, replacement of this

term with just vtH(r) leads to an arbitrary shift in the eigenvalue spectrum. In our

analysis using the screening density, it is clear why the Fermi-Amaldi term must

be included: without it, the electrons experience a repulsive field from a net charge

of N electrons, whereas for an SI-free input density they should experience a field

from a net charge of N − 1 electrons.

In some sense, the connection between the ZMP method and our approach is like

the connection between the direct minimization of an energy density-functional,

and the indirect minimization using the OEP method. In the ZMP method, the

total energy is minimized directly wrt the density, with the “xc”-functional given

by

EZMP
xc [ρv] = lim

λ→∞
λU [ρv − ρt]−

1
N
U [ρv]. (5.29)

In practise, the limit λ → ∞ is reached approximately by doing separate calcula-

tions for several values of λ and extrapolating to the infinite limit. In our method,

we minimize only the Coulomb energy U [ρv−ρt], which is equivalent to minimizing

the total ZMP energy functional with λ =∞. This can only be done by minimiz-

ing U [ρv − ρt] indirectly wrt the density (over the potential v(r)) in an OEP-like

manner.

5.5 Summary and discussion

In this chapter, we have considered the problem of density-to-potential inversion in

KS-DFT. Our method is based on the algorithm in Ref. [190] but applied here to a

finite basis set code with a wider variety of target densities. It is simple to imple-

ment in any standard Gaussian-basis set code, with both the objective functional
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(5.6) and the update step for the screening density (5.20) being straightforward

to obtain. The inverted potentials are unique (for the correctly chosen screen-

ing charge) and continuous, making the inversion procedure well-posed. We also

see clear convergence with basis set size, with meaningful accuracy obtained for

moderately-large cc-pVTZ basis sets.

In our analysis, we have seen the importance of the role played by the screening

density. It is an important practical feature, as without a constraint on the screen-

ing charge the inverted potential is undetermined up to a constant; it is also a

useful tool in understanding SI effects.

We have observed that our method is limited both by the basis set used to generate

the target density, and by the auxiliary basis set used for the screening density.

These problems are not easily solved using larger basis sets from the standard

cc-pVXZ family: as such, future work for this density-inversion method would

likely focus on how to modify these basis sets in a minimal way to yield systematic

improvements.
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Chapter 6

Open-shell systems in Kohn–Sham

theory via implicit density

functionals

The treatment of open-shell systems is an enigmatic problem in DFT. Typically,

the spin-DFT formalism is applied to open-shell systems. Although this often yields

good energetics, it should not be formally required in the absence of a magnetic

field; besides, adopting this formalism leads to a so-called ‘spin-symmetry dilemma’

in DFT [262]. However, the naive closed-shell-like approximation for the exchange

energy of open-shell systems, which assumes (incorrectly) half the electrons are

spin-up and the other half spin-down, causes a ‘ghost’ exchange error due to the

exchange of fractional opposite-spin electrons.

In this chapter, we consider how to treat open-shell systems within the restricted

KS formalism without incurring this ghost exchange error. We start (§ 6.1) by

considering the motivation for such a formalism, and in particular the origins of

the ghost exchange error. Then in § 6.2, we discuss our approach, in which the

xc-functional is considered an implicit functional of the density, which leads nat-

urally to an OEP equation for the KS potential. In § 6.3 we then explain how

the OEP method described in § 3.9.3 is applied to DFAs and the exact exchange

114



6.1. Motivation and the ‘ghost’ exchange error

(EXX) functional. Following that, we present results to demonstrate we can re-

liably solve the OEP equation for both DFAs (§ 6.4.1) and EXX (§ 6.4.2) and

compare our results with unrestricted KS theory. Finally, we briefly summarize

our findings and discuss their significance in § 6.5; additionally, we see how the

unrestricted KS equations, until now derived from a spin-DFT perspective, arise

from the generalized KS (GKS) formalism in the absence of an external magnetic

field.

6.1 Motivation and the ‘ghost’ exchange error

The standard, or spin-restricted, KS formalism is the de facto approach for closed

shell systems in DFT [263]. However, as touched on in § 3.5, there isn’t a un-

animously favoured approach for the treatment of open-shell systems [67]. Most

commonly, open-shell systems are treated within the spin-DFT formalism, other-

wise known as spin-unrestricted or just unrestricted KS (UKS) theory.

UKS theory often yields good results, not only for open-shell systems, but also

improving on RKS results for closed-shell systems in certain situations [264]. How-

ever, the fundamental variable of spin-DFT is not the density but the spin-density;

in the true spirit of DFT, the spin-density should not be required in the absence

of a magnetic field. Furthermore, having the spin-density as the fundamental vari-

able can cause a conundrum known as the ‘spin-symmetry dilemma’ [262], in which

spin-DFT yields the correct total energy but the wrong spin-density. We return to

this dilemma in the discussion in § 6.5.

Alternatively, one can use the standard (restricted) KS theory for open-shell sys-

tems, as is routinely done for closed-shell systems. In this case, the exchange∗

energy is typically written as an explicit functional of the density and its gradient

(for the most popular semi-local approximations). For example, the LDA exchange
∗and correlation, though we focus here on the more conceptually straightforward exchange

error
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6.1. Motivation and the ‘ghost’ exchange error

energy is given by

ELDA
x = C

∫
dr ρ4/3(r); (6.1)

the exchange potential is then given directly by the functional derivative with

respect to the density.

Recalling that the KS system represents an auxiliary system of non-interacting

electrons, we see why the LDA exchange (6.1) and similar GGA expressions are

problematic. The exchange energy in this auxiliary system ought to be consistent

with Pauli’s exclusion principle, which forbids same spin-electrons from occupying

the same spatial position, but there is no exchange force between opposite-spin

electrons. Density functionals approximations which depend only on the density,

and do not account for the spin-density, are liable to violate Pauli’s exclusion

principle for open-shell systems∗. This violation is because the density alone cannot

account for the fact that the spin-densities are different for open-shell systems.

The tacit assumption in the LDA exchange approximation (6.1) and other DFAs

is that the spin-densities are equal to each other and to half the total density. For

open-shell systems, this assumption is incorrect and leads to an exchange energy

between fractional charges of opposite-spin electrons. This error has also been

observed for the exact exchange functional in ensemble calculations, when the KS

orbitals are fractionally occupied [265]. We call this spurious exchange energy

the ‘ghost’ exchange error, in analogy to the ghost interaction of Ref. [266]. We

note that this error is not limited to approximate density-functionals, and is also

observed in the exact exchange functional if fractional spin-densities are introduced.

We define the ghost-exchange error by the difference of the exchange energy with

mixed spin-densities, and the reference exchange energy in which the spin densities
∗The exact density functional, if it existed, would not violate Pauli’s exclusion principle if

it had no spin-density dependence, as the density alone is in principle sufficient for an exact
description. However, such a functional would have a highly non-local density dependence, in
contrast to typical (semi)-local DFAs.
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are separate∗, as they must be to form a Slater determinant. In other words,

Gx(ω) = Ex[(1− ω)ρ↑ + ωρ↓, (1− ω)ρ↑ + ωρ↓]− Ex[ρ↑, ρ↓], with (6.2)

0 ≤ ω ≤ 1 and ρσ(r) =
Nσ∑
i=1
|φi(r)|2. (6.3)

In Fig. 6.1, we see the effect of the ghost exchange error for the Hydrogen and

Lithium atoms, for both the approximate LDA exchange functional and the exact

exchange functional. In fact, the error is larger for the exact functional, but it

is sizeable in either case. From this we conclude that the exchange functional in

KS theory must account for any differences in the spin densities, making the usual

closed-shell approach inaccurate.

We note that there exist other approaches for open-shells in KS theory. These

have largely been developed with the goal of computing energy differences between

different multiplet states, because UKS theory suffers from spin contamination

issues [267–269], making it unreliable for computing these differences. The most

well-known method is the so-called restricted open-shell KS method (ROKS) [270,

271]. In this method, the spin-up and down-orbitals have the same spatial wave-

function; however, it is not strictly within KS theory, as it uses a linear combination

of KS determinants to satisfy symmetry constraints in a similar spirit to the ROHF

method [27]. A related approach is the restricted open-shell singlet (ROSS) method

[272], which is applicable specifically to open-shell singlets. Additionally, there is

the so-called symmetrized approach by Görling [273, 274]; like ROKS, this uses a

linear combination of Slater determinants to satisfy symmetry arguments, and thus

is not formally within standard KS theory. In fact, it is an extension of DFT, as

the fundamental variable is not the density or even the spin-density, but the totally

symmetric contribution to the spin-density.
∗An alternative interpretation for the mixing of spin-densities is that the up- and down-spin

densities are partially constructed from fractionally occupied KS orbitals.
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Figure 6.1: Illustration of the ghost exchange error, Gx(ω), as a function of the
mixing fraction ω of the up- and down-spin densities. There is no ghost exchange
error when there is no mixing (ω = 0, 1) and it is maximised for equal mixing
(ω = 0.5).
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6.2 Theory

We propose a method to treat open-shell systems within the standard KS formal-

ism, without incurring a ghost-exchange error. In this new approach, the exchange

(and by extension correlation) functional depends implicitly on the density through

its explicit dependence on the spin densities, which themselves are implicit func-

tionals of the density. In this sense, the theory is formally within DFT and not

spin-DFT as the density is the fundamental variable; however, there is no ghost-

exchange error as there is no mixing of spin-densities in the exchange functional.

We begin with some basic theory regarding the properties that should be satisfied

by the exchange energy functional. The exact exchange energy in KS theory is

given by

Ex[ρ↑, ρ↓] = −1
2

∫
dr
∫

dx
{
|ρ↑(r,x)|2

|r− x| + |ρ
↓(r,x)|2

|r− x|

}
. (6.4)

It is clear that the above expression is separable into the separate exchange energies

of the up and down spin-densities,

Ex[ρ↑, ρ↓] = Ex[ρ↑, 0] + Ex[0, ρ↓]. (6.5)

Any approximate exchange functional should satisfy the above additive relation

in order to avoid the ghost exchange error. As discussed, semi-local functionals

depending only on the density and its gradient do not satisfy this additive property

for open-shell systems. However, the local spin-density approximation (LSDA) for

exchange does explicitly satisfy this relation,

ELSDA
x [ρ↑, ρ↓] = C̃

∫
dr [ρ↑(r)]4/3 + [ρ↑(r)]4/3. (6.6)

Spin-dependent GGAs are parameterized to satisfy the spin-scaling relation [275],

Ex[ρ↑, ρ↓] = 1
2
(
Ex[2ρ↑, 0] + Ex[0, 2ρ↓]

)
(6.7)

which is equivalent to satisfying the relation (6.5).
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We must therefore use density-functionals that depend explicitly on the spin-

density in order to satisfy the additive relation (6.5). During the KS procedure, we

still minimize with respect to the total density, and not the separate spin-densities,

which yields a common effective potential for all the orbitals. We are therefore

still within ordinary KS theory and do not invoke spin-DFT; the exchange func-

tional becomes an implicit functional of the density through its explicit spin-density

dependence. An alternative way of framing this argument is by considering the ex-

change functional as an orbital dependent functional depending implicitly on the

density, just as the kinetic energy functional is an orbital-dependent functional.

Given that the exchange-functional is an implicit density-functional, the corres-

ponding correlation-functional should also be considered an implicit density-functional.

It is logical to use the spin-parameterized correlation energy functionals, which like

the exchange functionals are explicit functionals of the spin-density and implicit

functionals of the total density, because xc-functionals usually benefit from error

cancellation between the exchange and correlation contributions. We typically ob-

serve a modest gain in accuracy using the spin-dependent correlation functionals,

which is smaller in magnitude than the ghost-exchange error. The xc-functional is

thus given by

EiDFA
xc = ESDFA

xc [ρ↑[ρ], ρ↓[ρ]], (6.8)

where the acronym iDFA stands for implicit DFA. We have stressed that the spin-

densities are implicit functionals of the total energy in the above expression.

The total energy functional is thus given by

EiDFA[ρ] = Ts[ρ] +
∫

drven(r)ρ(r) + U [ρ] + EiDFA
xc [ρ]. (6.9)

This leads to the normal KS equations, with the xc-potential given by the functional

derivative

vxc[ρ](r) = δEiDFA
xc [ρ]
δρ(r) = δESDFA

xc [ρ↑[ρ], ρ↓[ρ]]
δρ(r) . (6.10)

As the xc-functional is an implicit density-functional, the functional derivative

cannot be directly computed and must be determined via the OEP method. It is
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given by

∫
dr′

∑
σ

χσ(r, r′)vxc[ρ](r′) =
∫

dr′
∑
σ

χσ(r, r′)δE
SDFA
xc [ρ↑, ρ↓]
δρσ(r′) , with (6.11)

χσ(r, r′) =
Nσ∑
i=1

∞∑
a=Nσ+1

φ∗i (r)φi(r′)φa(r)φ∗a(r′)
εi − εa

+ c.c. (6.12)

Thus far, we have focussed on developing a restricted KS formalism for approximate

(semi-local) density-functionals which avoids the ghost-exchange error. Although

this error is not inherently present in the exact exchange functional (6.4), the

method is equally applicable to EXX for both open and closed-shell systems. Most

applications of the OEP method for EXX in finite basis set codes have been for

closed-shell systems. This may be because it has been tacitly assumed that one

would typically need to solve separate OEP equations for each spin-channel (a not-

able exception being the symmetrized LHF (CEDA) approach by Della Salla and

Görling [276]), as is usually done for approximate functionals; given the mathemat-

ical and numerical difficulties in solving the OEP equation for a single KS potential

(§ 3.9.3), this may seem to be a daunting task. However, from our analysis it is

clear that there is no need to invoke spin-DFT equations for open-shell systems. In

fact, for exact exchange, open-shell systems can be solved just as straightforwardly

as closed-shell systems as the OEP equation to be solved is fundamentally the same

in either case.

During the minimization of the energy with respect to the density, we seek only

the absolute ground-state energy; this is unlike most other KS schemes for open-

shell systems which target the ground-state energy for a given symmetry to obtain

different spin multiplet energies. We note that the density is constructed according

to

ρ(r) =
norb∑
k

fk|φk(r)|2, (6.13)

where fk ∈ {0, 1, 2} is the occupation number. Typically in closed-shell theory,

the orbitals are occupied according to the Auflblau principle, but this is not a

formal requirement and we are free to search over any fk which yield the lowest
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total energy. Although it is not practical to search over all possible values of fk,

there are situations where it is energetically favourable to adopt a slightly different

configuration to what might be expected, both for systems with even and odd

numbers of electrons. We explore examples of when this occurs in § 6.4.1.

Since we are strictly limited to searching for the ground-state energy, we are not

formally justified in using terminology (for example ‘singlet’) which refers to the

spin-eigenstate of the system. However, for the sake of convenience, we use this

terminology in a colloquial manner to denote the difference between the number of

spin-up and spin-down orbitals that are occupied. For example, when we refer to

a state as a ‘triplet’ we simply mean that

N↑ −N↓ = ∆N↑↓ = 2, (6.14)

and likewise for other multiplet states.

6.3 Implementation of the OEP equation

We follow the general procedure for solving the OEP equation described in § 3.9.3.

The OEP equation to be solved (6.11) is for the xc (or x-only for exact exchange)

potential only, and thus the effective density in which we expand our potential

represents only the x(c)-part of the potential, not the full Hxc-potential as we saw

in the previous chapter. We denote this effective density ρxc(r) to differentiate it

from the Hxc-screening density ρscr(r).

The OEP equation we solve falls within the general class of OEP equations in

equation (3.86), with the full response function χ(r, r′) in this equation equal to

the sum over the spin-separated response functions,

χ(r, r′) =
∑
σ

χσ(r, r′); (6.15)

and the right-hand side b(r) is

b(r) =
∫

dr′
∑
σ

χσ(r, r′)δE
SDFA
xc [ρ↑, ρ↓]
δρσ(r′) . (6.16)
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Computationally, solving the OEP equation amounts to solving equations (3.95-

3.96) to determine the effective density ρxc(r). The matrix Akl is derived from

the response function χ(r, r′) and is thus invariant to the precise problem. The

vector bk, which comes from b(r), and the screening charge∗ Qscr, are specific

to the problem being solved; we discuss the details of their implementation for

(i) approximate density functionals and (ii) the exact exchange functional in the

proceeding sub-sections.

6.3.1 Implementation for (semi)-local density-functionals

We seek the vector bk = 〈θ̃k|b〉, with b(r) defined by equation (6.16). The functional

derivative of the spin-dependent energy functional is computed using the LIBXC

package, which given inputs such as the spin-densities and their gradients on the

grid, returns the following quantities:

vσ1 (r) = ∂exc[ρ↑, ρ↓]
∂ρσ(r) , (6.17)

vσ,σ
′

2 (r) = ∂exc[ρ↑, ρ↓]
∂fσ,σ′(r) , with fσ,σ′(r) = ∇ρσ(r) ·∇ρσ

′(r). (6.18)

From the above quantities, we can obtain the spin-dependent xc-potentials vσxc(r)

on the grid. For the LSDA case, vσxc is simply equal to vσ1 (r) (6.17). For GGA

functionals, vσxc(r) is given by

vσxc(r) = ∂exc[ρ↑, ρ↓]
∂ρσ(r) −∇ · ∂exc[ρ

↑, ρ↓]
∂∇ρσ(r) (6.19)

= vσ1 (r)− 2∇ ·
{

∇ρσ(r)vσ,σ2 (r) + ∇ρσ′(r)vσ,σ
′

2 (r)
}
, (6.20)

where the chain rule is used to transform from equation (6.19) to (6.20). In typ-

ical DFT calculations, the gradient in the above equation (6.20) is not directly

computed: since the xc-potential is always integrated over products of basis func-

tions (3.80), the product rule is used to transform the gradient to act on the basis

functions. This is because the there are numerical issues associated with taking
∗in this case the x(c)-only screening charge
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the Laplacian of Gaussian basis functions. Despite these issues, we compute the

xc-potential directly on the grid from equation (6.20) since there is no clear altern-

ative for calculating b(r) in the OEP equation (6.11); we are exploring approaches

to avoid computing ∇2ρσ(r), one of which is described in Appendix B.

Having obtained the spin-dependent xc-potentials from LIBXC, we first transform

them from the grid into the auxiliary basis. In other words,

vσxc(r) =
naux∑
k

ρxc,σk θ̃k(r) (6.21)

⇒ ρxc,σk =
naux∑
l

〈θ̃k|θl〉−1 〈θl|vσxc〉 . (6.22)

The vector bk is then given by

bk =
∑
σ

naux∑
l

ρxc,σl 〈θ̃k|χσ|θ̃l〉 (6.23)

=
∑
σ

naux∑
k

ρxc,σk Aσkl =
∑
σ

naux∑
k

ρxc,σk

[
A0,σ
kl + αĀσkl

]
, (6.24)

with

A0,σ
kl = 2

Nσ∑
i=1

norb∑
a=Nσ+1

〈φi|θ̃k|φa〉 〈φi|θ̃l|φa〉
εi − εa

, (6.25)

Āσkl = −
Nσ∑
i=1

 〈φi|θ̃kθ̃l|φi〉 −
Nσ∑
j=1
〈φi|θ̃k|φj〉 〈φi|θ̃l|φj〉

 . (6.26)

In the above, we have decomposed the spin-dependent response matrix Aσkl into its

main part A0,σ
kl and complement Āσkl, in the same manner as the decomposition of

the full matrix Akl.

During the KS-SCF procedure, we note that the computationally dominant step

is not the solving of the OEP equation, but rather the diagonalization of the Fock

matrix, as also observed by Görling and co-workers [173]. The cost can be reduced

further using CEDA (§ 3.8.1), which amounts to replacing the matrix Akl and

vector bk by their complement terms only,

Akl = Ākl; bk = b̄k, (6.27)
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and then solving the OEP equation as normal. In § 6.4.1, we compare results using

CEDA with the full OEP solution (with small finite α).

We have also explored an alternative construction for the vector bk, which in theory

is equivalent and thus should yield the same xc-potential. However, this is not the

case in practise due to finite basis set effects. In Appendix B, we describe this

alternative method and compare potentials and total energies between the two

constructions; as discussed in this appendix, the construction described above is

both computationally cheaper and arguably yields slightly more reliable results,

and hence we use this construction by default.

The final remaining quantity to be determined is the charge of the effective xc-

density,

Qxc =
∫

drρxc(r) (6.28)

which is required to prevent the xc-potential varying by an arbitrary constant.

As discussed in § 5.3.1, for L(S)DA and most GGAs one would expect Qxc = 0,

since the effective density represents only the xc-potential here. However, the

representation of the potential via the effective density in a finite basis set cannot

fully represent the xc-potential in its grid representation, and thus Qxc 6= 0.

Obtaining the precise value of Qxc in a finite basis set for open-shell systems is

something of a dark art. We can obtain Qσxc for each of the spin-potentials via the

following relation,

Qσxc = ρxc,σk Xk (6.29)

with ρxc,σk determined from Eq. (6.22), Xk defined in Eq. (3.94), and vσxc the spin

xc-potentials obtained from LIBXC on the grid. Although this does not define Qxc

for the common xc-potential that we seek, we typically find that Q↑xc ≈ Q↓xc; some

examples are shown in Table 6.1. We conclude that it is reasonable to take Qscr as

the average of its spin-values,

Qxc = 1
2
[
Q↑xc +Q↓xc

]
. (6.30)

125



6.3.2. Implementation of exact exchange energy functional

Q↑xc Q↓xc ∆Q↑↓xc
Li -0.2769 -0.2615 0.0154

LiH+ -0.0465 -0.0401 0.0063
Si -0.4672 -0.3917 0.0755
O2 -0.5953 -0.5613 0.0340
OH -0.3040 -0.2932 0.0108
NH4 -0.6123 -0.4616 0.1507
Na -0.2387 -0.2389 0.0002
〈∆Q↑↓xc〉 0.0134

Table 6.1: Comparison of Q↑xc and Q↓xc (6.29). Right-hand column shows the
absolute difference ∆Q↑↓xc = |Q↑xc−Q↓xc|; 〈∆Q↑↓xc〉 is the geometric mean of |Q↑xc−Q↓xc|.

6.3.2 Implementation of exact exchange energy functional

The exact exchange functional is not an explicit functional of the spin-densities,

and hence the functional derivative of the exact exchange energy with respect to

the spin-densities cannot be directly computed (6.11). Instead, the right-hand side

b(r) of the OEP equation is given by

b(r) = δEx[{φ↑i }, {φ
↓
i }]

δv(r) =
∑
σ

δẼx[{φσi }]
δv(r) , (6.31)

where Ẽx[{φσi }] denotes the exchange energy for just the spin-up or spin-down

system. The functional derivative (§ 3.8) is equal to

δẼx[{φσi }]
δv(r) = 2

Nσ∑
i=1

∞∑
a=Nσ+1

∫ ∫
dr′ dx φi(r)φi(x)φa(r)φa(r′)

εi − εa
ρσ(x, r′)
|r′ − x| , (6.32)

which leads to the following expression for vector bk,

bk = 2
∑
σ

Nσ∑
i=1

∞∑
a=Nσ+1

〈φi|θ̃k|φa〉
εi − εa

∫ ∫
dr′ dxφi(x)ρσ(r′,x)φa(r′)

|r′ − x| . (6.33)

We decompose this term in the usual way into a main part b0k and complement b̄k.

In order to make the computation of these terms more efficient, particularly for

the complement term, we make a transformation from the orbital to the auxiliary
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basis in the above integral. We first re-express this integral in the following way,

∫ ∫
dr′ dxφi(x)ρσ(r′,x)φa(r′)

|r′ − x| =
Nσ∑
j=1

∫ ∫
dr′dxφi(x)φj(x)φj(r′)φa(r′)

|r′ − x| (6.34)

=
Nσ∑
j=1

∫
dr′φa(r′)φj(r′)

∫
dxφi(x)φj(x)

|r′ − x| . (6.35)

For the latter integral in the above equation, we first expand the KS orbitals in

the orbital basis set, and then transform the integral over a product of orbital

basis functions into the integral over a single auxiliary basis function, using the

transformation in equation (5.21). In other words,

∫
dxφi(x)φj(x)

|r′ − x| =
norb∑
k,l

cikcjl

∫
dxξk(r

′)ξl(x)
|r′ − x| (6.36)

=
naux∑
p

c̄ijpθ̃p(r′). (6.37)

Strictly, equality only holds in the above transformation if the product of the

orbital basis can be represented fully in the auxiliary basis. However, we have

found that even though this relation holds only approximately for finite basis sets,

it is sufficiently accurate (using an uncontracted cc-pVDZ auxiliary basis set) to

reliably obtain the exchange potential; we show some results in § 6.4.1.

The full vector bk (in the complete basis set limit) is thus given by

bk = 2
∑
σ

Nσ∑
i=1

∞∑
a=Nσ+1

〈φi|θ̃k|φa〉
εi − εa

Nσ∑
j=1

naux∑
p

c̄ijp 〈φa|θ̃p|φj〉

 . (6.38)

In a finite basis set, this is decomposed in the usual way into a main part and

complement term, bk = b0k + αb̄k. The main term b0k and complement b̄k are given

by

b0k = 2
∑
σ

Nσ∑
i=1

norb∑
a=Nσ+1

〈φi|θ̃k|φa〉
εi − εa

Nσ∑
j=1

naux∑
p

c̄ijp 〈φa|θ̃p|φj〉

 (6.39)

b̄k = 2
∑
σ

{
Nσ∑
i=1

Nσ∑
l

〈φi|θ̃k|φl〉
εi − εa

Nσ∑
j=1

naux∑
p

c̄ijp 〈φl|θ̃p|φj〉


−
∫

drθ̃k(r)
Nσ∑
i,j=1

( naux∑
p

c̄ijpθ̃p(r)
)( naux∑

q

c̄ijqθq(r)
)}
. (6.40)
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In the second complement term, we have again made a transformation from the

orbital to auxiliary basis to decrease the computational cost, in this case

φi(r)φj(r) =
naux∑
q

c̄ijqθq(r). (6.41)

The only remaining quantity required to solve the OEP equation is the screening

charge Qx. In a complete basis set limit, we would expect Qx = −1 since the

method is self-interaction free. As discussed during the inversion of HF densities

in the previous chapter, there is no way to determine if this still holds when the

effective density is expanded in a finite auxiliary basis set, and therefore the only

sensible choice is to take the complete basis set limit Qx = −1. We show some

results in the following section which suggest this is a reasonable choice.

6.4 Results

We have implemented the algorithms described in the above sections in the HIPPO

code, and applied the implementation to a variety of systems. A common feature

of open-shell systems is degeneracy of the HOMO energy level, which can cause

convergence issues. We have implemented the MOM method (§ 3.9.1) to overcome

these difficulties and find that it works well even for solving the full OEP equation,

despite the presence of the εi − εa term in the denominator of both left and right

hand sides of the equation. We have applied our method to a variety of systems

and demonstrate some results in the upcoming sub-sections, first for DFAs and

then for EXX.

6.4.1 (Semi)-local density-functionals

Primarily, we focus on the L(S)DA functional as a proof of concept, but our imple-

mentation can theoretically be applied equally well to GGAs. We first confirm that

our method of solving the OEP equation, which includes the additional complement

terms, yields converged and smooth potentials. In Figure 6.2, we observe for a few
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6.4.1. (Semi)-local density-functionals

systems the convergence of the xc-potential with respect to the size of the orbital

basis. In three of these four examples, the potential is already well-converged with

a contracted cc-pVDZ orbital basis, relative to an uncontracted cc-pVDZ auxiliary

basis. The exception is the OH quadruplet, in which we observe some spurious

oscillations for the cc-pVDZ orbital basis, with these being largely eliminated for

the cc-pVTZ orbital basis.

Furthermore, in Table B.2 of Appendix B, we compare the KS HOMO eigenval-

ues obtained with our iDFA method with those from UKS theory for the LSDA

functional. The iLDA eigenvalues are in relatively close agreement with the LSDA

eigenvalues, which indicates the OEP results are reliable (since there is almost

no spin-contamination for these systems). Additionally, we have observed the xc-

potential is well-behaved using this method for many more examples in Ref. [277]∗.

We therefore conclude that the our method of solving the OEP equation yields

well-behaved potentials.

It is also informative to compare the approximate CEDA solution with the full

OEP solution. As can be seen in Tables B.1 and B.2 of Appendix B, CEDA seems

to be a very accurate approximation to the full OEP solution for iLDA, for both

xc-potentials and total energies. This is further evidenced in Fig. 6.3, in which we

have plotted the OEP and CEDA xc-potentials for two examples, alongside the

spin-polarized potentials v↑ and v↓ for reference. For these examples we have used

a cc-pVQZ orbital basis to ensure the full OEP solution is fully converged, and we

observe that CEDA is almost indistinguishable from the full OEP in this instance.

CEDA is mathematically guaranteed not to suffer from the instabilities of the full

OEP solution; given that it seems to yield near-identical results for iLDA, and is

computationally cheaper, it should be strongly considered as a viable alternative
∗There are a couple of small differences between the current work and Ref. [277]. Firstly, a

different screening charge constraint of Qscr = N − 1, or equivalently Qxc = −1, was used in that
paper to mitigate against self-interaction errors. Secondly, the Hartree potential was absorbed into
the right-hand-side of the OEP equation in Ref. [277], meaning the OEP equation determined the
full Hxc-potential in that work rather than just the xc-potential in the current work. However, the
latter change makes minimal difference to the results, and the former only shifts the xc-potential
by a constant amount and therefore does not affect convergence arguments.
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Figure 6.2: Convergence of iLDA xc-potentials wrt orbital basis set size for (i)
Lithium (doublet), (ii) OH (quadruplet) with bond length 4.0a0, (iii) Si (triplet),
and (iv) O2 (triplet) with bond length 3.0a0. The auxiliary basis set is uncontracted
cc-pVDZ for all calculations.

to the full OEP for iLDA. Nevertheless, we solve the full OEP equation for the

remaining results in this sub-section.

With a reliable method for solving the OEP equation established, we now compare

results from our implicit method with UKS theory, and also KS theory with the

ghost exchange error. As can be seen in Table B.2 of Appendix B, the KS HOMO

eigenvalues in our method yield similar results to UKS for L(S)DA; it is therefore

not surprising that ground-state energies from the implicit method compare very

favourably with those from UKS. This is demonstrated in Table 6.2, in which the

iLDA results being almost identical to the UKS results, with the small differences
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Figure 6.3: Comparison of iLDA xc-potentials between CEDA and the full OEP
solution (with α = 10−2), with the spin-polarized xc-potentials also shown for
reference. The orbital basis set is cc-pVQZ.

observed most likely due to the finite basis set representation of the xc-potential.

In this table, we also see the effect of the ghost exchange (and correlation) error;

although the absolute error in this case appears small, we shall see that it can play

a significant role in physically meaningful situations.

A well-known problem for semi-local functionals in DFT is their qualitative failure

to predict energy dissociation curves for diatomic molecules. The most famous

example of this is the H2 molecule [121]: as can be seen in Fig. 6.4, the H2 mo-

lecule does not correctly dissociate into two Hydrogen atoms in the restricted KS
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ELDA (H) EiLDA (H) ELSDA (H) Gxc (H)

Li -7.388721 -7.398133 -7.398155 0.00941
LiH+ -7.652062 -7.685600 -7.685608 0.0335
Si* -288.4505 -288.4503 -288.4505 -
Si† -288.4640 -288.4904 -288.4910 0.0264
O2* -149.5825 -149.5821 -149.5825 -
O2
† -149.6038 -149.6382 -149.6403 0.0344

OH -75.34820 -75.37078 -75.37215 0.0226
NH4 -56.79800 -56.80390 -56.80404 0.00591
Na -161.6491 -161.6571 -161.6572 0.00799
〈Gxc〉 0.0200
*Singlet state
†Triplet state

Table 6.2: L(S)DA ground-state energies calculated with: (i) standard LDA, which
includes the ghost exchange error, (iii) iLDA and (iii) spin-LDA (LSDA). The
final column shows the ghost ’xc’ error, defined here as the difference between
the LDA and iLDA energies, with the main contribution to this error being the
ghost exchange error. The discrepancy between LDA and iLDA singlet energies is
because the iLDA xc-potential is expanded in a finite basis set. ∆N↑↓ = 2 unless
otherwise stated.

theory. The unrestricted (spin-DFT) solution does produce a qualitatively correct

dissociation curve, but pays the price of the spin-symmetry dilemma in order to

do so, which we discuss in more detail in § 6.5. The implicit LDA (iLDA) yields a

different result still; there is a discontinuous transition at a bond length of about

4.2a0, at which point the triplet becomes lower in energy than the singlet, and the

energy thus tends to the correct limit. There is no transition if the ghost exchange

error is present: in this case the triplet energy is higher than the singlet at all bond

distances.

We see a similar picture emerge for the OH radical, this time with the PBE func-

tional, in Fig. 6.5. Just as for H2, the normal PBE solution yields a qualitatively

incorrect energy dissociation curve; however, the iPBE energy correctly becomes

equal to the energy of the two separate atoms in the infinitely stretched limit, be-

cause there there is a crossing from the doublet to the quadruplet configuration

at about 4a0. In both these examples, the transition region is interesting: the

unrestricted solution yields a smooth dissociation curve due to the mixing of total-
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Figure 6.4: Energy dissociation curves for the H2 molecule. Top, iLDA energies
for different values of ∆N (singlet/triplet); bottom, comparison of LDA, spin-LDA
(LSDA), CCSD(T) and iLDA minimum energies.

spin states, whereas in our single-determinant method the transition is abrupt. Of

course, our method does not correct the ubiquitous inability of typical semi-local

functionals to capture static correlation effects [138]; moreover, the spin-LDA/PBE

energy surfaces are closer to the (highly accurate) CCSD(T) energy surfaces. Con-

sequently, we do not expect our method to be used in place of UKS theory in typical

calculations; rather, it is a tool to demonstrate the effect of the ghost-exchange er-

ror and the possibility of avoiding the spin-symmetry dilemma. Furthermore, it

may be promising for applications where spin-contamination is significant.
∗The CCSD(T) curve is shifted such that its minimum energy aligns with the SPBE minimum

energy to make comparison easier.
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Figure 6.5: Energy dissociation curves for the OH radical. Top, iLDA energies for
different values of ∆N (doublet/quadruplet); bottom, comparison of PBE, spin-
PBE (SPBE), CCSD(T)∗ and iPBE minimum energies. We note that the iPBE
results are computed using the alternative construction of bk for the main part of
the response matrix A0

kl described in Appendix B.

6.4.2 Exact exchange

We have applied the EXX implementation described in § 6.3.2 to compute ground-

state energies and potentials for a variety of systems. This implementation is a

novel way of solving the EXX OEP equation and therefore we present results for

both open- and closed-shell examples.

As ever, to claim we can reliably solve the OEP equation we need to prove that

the potential converges with respect to orbital basis set size, and does not dis-

play pathological behaviour. In Fig. 6.6, we demonstrate for a few systems the

convergence of the exchange potential with respect to orbital basis set size, with

fixed auxiliary (uncontracted cc-pVDZ) basis. In all cases, the potential clearly
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Figure 6.6: Convergence of EXX potentials wrt orbital basis set size for (i) Neon
(singlet), (ii) CO (singlet) with bond length 2.14a0, (iii) F (doublet), and (iv) O2
(triplet) with bond length 2.28a0. The auxiliary basis set is uncontracted cc-pVDZ
for all calculations.

converges with respect to the orbital basis; however, it seems an orbital basis of

at least cc-pVTZ size is required for the potential to be fully converged. This

contrasts with the iLDA examples (Fig 6.2) in which a cc-pVDZ orbital basis was

large enough in most examples. Possibly, this is due to the non-local nature of

the right-hand side vector b(r) of the EXX-OEP equation relative; however, more

extensive testing would be required to verify this hypothesis.

The total energy of an EXX calculation is also a useful gauge of whether the OEP

solution can be considered well-posed. The EXX potential is the local potential

that minimizes the HF energy expression, and thus (being a more restricted solution
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Energy (H) −εH (eV)

OEP CEDA HF OEP CEDA HF

Li -7.432438 -7.432270 -7.432706 5.32 5.18 5.34
LiH+ -7.740910 -7.740830 -7.740966 16.69 16.66 20.27
Ne* -128.5301 -128.5298 -128.5320 21.47 21.25 23.01
Si* -288.7862 -288.7833 -288.7948 5.99 7.25 6.61
Si† -288.8447 -288.8419 -288.8565 6.80 7.77 8.18
O2* -149.5734 -149.5716 -149.5825 10.45 10.39 12.77
O2
† -149.6467 -149.6451 -149.6761 10.23 10.01 15.12

OH -75.41144 -75.41054 -75.41947 13.16 14.21 15.14
NH4 -56.67656 -56.67444 -56.68041 2.92 3.65 3.54
Na -161.8511 -161.8493 -161.8581 5.03 6.08 4.96

H2O* -76.05522 -76.05421 -76.05760 12.09 12.82 13.75
HF* -100.0561 -100.0555 -100.0583 15.76 16.76 17.52
CO* -112.7756 -112.7730 -112.7805 13.81 12.81 15.08

〈∆EOEP〉 0.00144 0.00688
*Singlet state
†Triplet state

Table 6.3: EXX, CEDA and HF total energies and HOMO eigenvalues εH for a
variety of systems. HF results are unrestricted for open-shell systems and restricted
otherwise. ∆N↑↓ = 0 unless otherwise stated. 〈∆EOEP〉 is the average energy
difference between the OEP, and respectively the CEDA and HF energies.

to the same minimization problem) the EXX total energy is expected to lie slightly

above the self-consistent HF total energy: if this is not the case, it is an indication

that the EXX solution is pathological, which has been observed in various OEP

calculations [178]. In Table 6.3, we show EXX total energies alongside CEDA and

HF total energies for various systems. The EXX energy is consistently higher than

the HF energy in these systems, with an average difference of 0.00688 Hartree∗;

this strongly suggests the EXX solution is well-posed.

In Table 6.3, we also include a comparison of total energies between CEDA and the

full OEP solution (with α = 10−2). The two are close, with an average difference of

0.00144 Hartree, but we note this is significantly larger than the difference between

OEP and CEDA for the iLDA calculations. This suggests the EXX total energy
∗This is several orders of magnitude larger than the difference between the iLDA and LSDA

total energies, so it is more than just the effect of expanding the exchange potential in a finite
basis set.
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expression is more sensitive than L(S)DA to small variations in the orbitals, which

is perhaps expected given that L(S)DA is a coarser approximation through its

dependence on the (spin)-density rather than the KS orbitals. We also observe a

noticeable difference in the potential between CEDA and the full OEP solution:

this is reflected in the KS eigenvalues in Table 6.3 and also the exchange potentials,

as can be seen in Fig. 6.7. In particular, the CEDA potential seems to lack some

of the sharper features of the full OEP potential at the edges of the potential

wells near the nuclei. The implication here is that CEDA is not such an accurate

approximation to the full OEP as it is for (semi)-local functionals, as has been

observed elsewhere for example Ref. [173].

6.5 Summary and discussion

In this chapter, we have shown that xc-functionals which depend only on the density

and its derivatives, and not the spin-densities, are contaminated by a spurious

exchange energy between fractional charges of opposite-spin electrons for open-shell

systems. This ghost exchange error is usually avoided in practical calculations by

adopting the formalism of spin-DFT, in which the spin-density rather than the

density is considered the fundamental variable, leading to separate KS equations

for the different spin systems. However, spin-DFT should not be formally required

in the absence of a magnetic field. We have demonstrated how to avoid this ghost-

exchange error within normal KS theory, by treating the xc-functional (which is

an explicit functional of the spin-densities) as an implicit functional of the total

density. This leads naturally to an OEP equation to determine the xc-potential;

we have demonstrated for several examples that we can reliably solve the OEP

equation, both for approximate functionals and the exact exchange functional.

One of the oft-cited issues with spin-DFT in the absence of a magnetic field is

the spin-symmetry dilemma, so-called because spin-DFT can yield either accurate

total energies but incorrect spin-densities; or correct spin-densities, but inaccurate
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Figure 6.7: Comparison of EXX potentials between CEDA and the full OEP solu-
tion (with α = 10−2), with the LFX result (§ 5.3.3) also shown for comparison for
CO∗. The orbital basis set is cc-pVQZ.
*The density-inversion routine to calculate the LFX potential is currently only applicable for
closed-shell systems.

total energies [79, 262, 273]. This is a dilemma in spin-DFT because the spin-

density is the fundamental variable, and thus the theory is expected to yield both

the correct energy and the correct spin-density. A famous example of the spin-

symmetry dilemma is the dissociation of the H2 molecule: this should dissociate into

two Hydrogen atoms with total energy 1 Hartree and zero net spin-magnetization.

As can be seen in Fig. 6.4, spin-DFT predicts the correct energy dissociation curve;
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however, it dissociates into one spin-down Hydrogen atom and another spin-up

Hydrogen atom. This ‘broken-symmetry’ solution therefore yields the wrong spin-

density; however, if the correct spin-density (singlet state) is imposed through the

restricted formalism, the total energy is wrong. This qualitative error is observed

in the dissociation of other diatomic molecules and for most xc-functionals, such

as the OH radical with the PBE functional in Fig. 6.5.

However, in DFT it is the total density rather than the spin-density which is the

key variable. Our theory yields the correct ground-state energy and density in

the dissociation limit, and thus there is no dilemma because the spin-density is

unimportant. This perspective is discussed in the well-known paper by Perdew,

Savin and Burke [262], who claim the spin-density is not an elementary quantity

in the absence of a magnetic field; instead, they argue that the on-top electron

pair density P (r, r′), alongside the total density, are the fundamental variables in

this case. They propose an ‘alternative’ spin-density functional theory, in which

they invoke the constrained search formalism to search the for the anti-symmetric

N -electron wave-function yielding a given ρ(r) and P (r, r′), which minimizes the

total energy. We share the philosophy of this paper, namely that the spin density

is immaterial in the absence of a magnetic field∗; but in our approach, there is no

need to consider the auxiliary on-top pair density, with the density alone being

sufficient to find the ground-state energy.

In the following sub-section, we show how the familiar equations of unrestricted

KS theory can be derived without invoking spin-DFT, but rather through the

generalized KS formalism.

6.5.1 Unrestricted KS equations from generalized KS theory

In generalized KS (GKS) theory, a general energy functional S[Φ] of an N -electron

Slater determinant Φ, plays the role of the kinetic energy functional T [Φ] in KS
∗‘Absence’ in this case meaning the absence of a magnetic field that is large enough to affect

the quantities being calculated
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theory. The total energy functional in GKS theory is given by

E[{φi}; ven] = S[{φi}] +RS [ρ[{φi}]] +
∫

drven(r)ρ[{φi}](r), (6.42)

with RS [ρ] defined by

RS [ρ] = F [ρ]− FS [ρ], (6.43)

with F [ρ] being the universal functional (3.17), and FS [ρ] defined in equation (3.34).

The functional S[Φ] can be any functional which satisfies the three conditions out-

lined in § 3.6.3. Minimizing the energy functional (6.42) with respect to the GKS

orbitals under the constraint of fixed density yields the GKS equations,[
ÔS [{φi}] + vR(r) + ven(r)

]
φj(r) = εjφj(r), (6.44)

with

vR(r) = δRS [ρ]
δρ(r) . (6.45)

In the above, we note that the operator ÔS [{φi}] is determined by taking the

functional derivative of S[Φ] with respect to the orbitals, whereas the residual

potential vR(r) is given by the functional derivative of RS [ρ] with respect to the

density.

In the normal KS scheme, the energy functional S[Φ] is given by the kinetic energy

functional, S[Φ] = 〈Φ|T̂ |Φ〉. This means the residual functional RS [ρ] is equal to

RS [ρ] = UH[ρ] + Exc[ρ], (6.46)

which leads to the normal KS equations. However, the following choice for S[Φ]

also satisfies the necessary conditions in § 3.6.3,

S[Φ] = 〈Φ|T̂ |Φ〉+ UH[ρ] + Exc[{φi[ρ]}], (6.47)

where we have specified that the xc-functional depends implicitly on the density

through its explicit dependence on the GKS orbitals. With this definition for S[Φ],

there is no residual functional, RS [ρ] = 0.

Although this may seem a somewhat arbitrary transfer of terms between S[Φ] and

RS [Φ], it changes the GKS equations. Consider, for example, the case in which the
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exchange functional is given by the exact exchange functional, and the correlation

functional is taken to be zero, Ec[ρ] = 0. With S[Φ] defined as the kinetic energy

functional as in the normal KS scheme, the residual potential vR(r) is given by

vR[ρ](r) = δ

δρ(r)

{
UH[ρ] + Ex[{φi[ρ]}]

}
= vH(r) + δEx[{φi[ρ]}]

δρ(r) (6.48)

with the functional derivative of the exact exchange energy with respect to the

density determined by solving an OEP equation. However, if the functional S[Φ] is

defined instead by equation (6.47), then the optimization over the Fock-exchange

energy is performed directly over the orbitals rather than the density, which means

the GKS equations become identical to the HF equations,{
−∇2

2 + ven(r) + vH(r)
}
φj(r) +

∫
dr′ vNLx (r, r′)φj(r′) = εjφj(r). (6.49)

Now let us consider the case where the xc-functional depends implicitly on the

density through its implicit dependence on the spin-densities. In this case, the

functional derivative of Exc[ρ↑Φ, ρ
↓
Φ] with respect to the orbitals is equivalent to

the functional derivative with respect to the spin-densities. Provided there is no

restriction that the spin-up and spin-down spatial orbitals are the same, the GKS

equations are thus identical to the spin-KS equations,{
−∇2

2 + ven(r) + vH(r) + vσxc(r)
}
φσj (r) = εσj φ

σ
j (r). (6.50)

Although the above equations are identical to spin-DFT equations in the absence

of a magnetic field, the spin-symmetry dilemma is no longer a dilemma. This is

because GKS theory is an exact reformulation of DFT and not spin-DFT, and thus

it can be expected to yield accurate ground-state energies and densities, but it

should not be expected to yield the correct spin-density.

In summary, there are various definitions of the energy functional S[Φ] in GKS

theory which are valid reformulations of DFT. Choosing it to be the kinetic energy

functional leads to the standard KS theory, which means all the orbitals experience

a common effective potential vs(r). However, if definition of S[Φ] is changed to
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ven(r)⇐⇒ ρ(r)

E[{φi}; ven] = S[{φi}] +RS [ρ[{φi}]] +
∫

drρ(r)ven(r)

S[{φi}] = 〈Φ|T̂ |Φ〉

RS [ρ{φi}]] = UH[ρ] + Exc[ρ{φi}]]

S[{φi}] = 〈Φ|T̂ |Φ〉+ UH[ρ] + Exc[{φi[ρ]}]

RS [{φi[ρ]}] = 0

[
−∇2

2 + vs(r)
]
φi(r) = εiφi(r)

[
−∇2

2 + vσs (r)
]
φσi (r) = εσi φ

σ
i (r)

KS GKS

Figure 6.8: The KS vs GKS equations: For DFAs that depend explicitly on the
spin-densities, minimizing wrt to the density leads to equations in which all orbitals
share a common potential (KS); meanwhile minimizing wrt the orbitals leads to
different equations for the spin-up and spin-down orbitals (GKS).

equation (6.47), this restriction is lifted, and the orbitals can experience different,

or non-local, potentials. In the case that the xc-functional is a functional of the

spin-densities, the former definition of S[Φ] leads to the restricted KS formalism

which must be solved via an OEP equation for open-shell systems. In the latter

definition of S[Φ], there is no requirement to compute the functional derivative

with respect to the whole density which results in spin-unrestricted KS equations.

The two different approaches are illustrated in Fig. 6.8.

142



Chapter 7

Conclusions and further work

Density-functional theory (DFT) is a hugely popular tool for the prediction and

analysis of various processes that require a quantum-mechanical description of elec-

trons in matter. Despite the many successes of DFT — as evidenced by publication

metrics [10, 11] and several impactful predictions [13–16] — common approxima-

tions in DFT suffer from certain qualitative failings. These include, for example,

failure to accurately predict electron affinities, reaction barriers and diatomic bind-

ing energies [225, 278]; systematic under-estimation of the fundamental gap [117,

118]; struggles with strongly-correlated materials such as transition-metal oxides

[137]; and even questions about the validity of the formalism for open-shell systems

[262].

In this thesis, we have explored several routes towards a more systematic approach

to functional development in DFT. Much of our work has incorporated insights

and results from wave-function theories (WFT) — typically more accurate, but

also more expensive, than DFT methods — to develop accurate KS potentials

which could serve as references in the development of new xc-functionals. This

theme formed the basis of chapters 4 and 5 of this thesis.

In Chapter 4, we reviewed an alternative derivation of the KS potential from a

wave-function based expression [188]. Using this theory, we were able to derive

perturbative expansions of the KS potential from perturbative expansions of the
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wave-function. The main result from this chapter was the analytical derivation of a

new KS potential with both exchange and correlation character to first order [220].

We expect this potential to yield more accurate predictions for quantities such as

electron affinities and reaction barriers than typical xc-approximations.

In chapter 5, we developed a method to invert a given density to obtain the local

KS potential which yields that density. Like the previous chapter, this offers an

avenue to obtain accurate reference KS potentials, but in this case numerically

through the inversion of WFT densities. In our method, the screening density was

seen to play an important role, as it determines the asymptotic behaviour of the

potential and is fixed during the optimization procedure. We verified the accuracy

of our approach through the inversion of LDA densities, and we also saw that it

could be applied successfully to HF and coupled cluster densities.

Finally, in chapter 6, we introduced a method to treat open-shell systems within

restricted KS theory. In order for a correct treatment of exchange — between

only whole electrons of the same spin — it is necessary to treat the usual spin-

polarized density functional approximations as implicit functionals of the density.

This leads to an OEP equation for the xc-potential; historically, solving the OEP

equation in finite basis set codes has presented various mathematical and compu-

tational difficulties. Our method of solving the OEP equation, which is based on

the approach in Ref. [179], avoids many of these difficulties and we obtain smooth

potentials for both LDA and the EXX potential. We also revisited a well-known

paradox in this chapter — the spin-symmetry dilemma [262] — and saw how this

paradox is avoided by considering the xc-functional to be an implicit functional of

the total density via its explicit dependence on the spin-densities, using either the

OEP method or GKS formalism to determine the ground-state density and energy.

A clear direction for future work is the implementation of the new xc-potential

derived in chapter 4. This implementation will involve the solution of an OEP

equation, and it will therefore benefit from our progress in this area. Another pos-

sible extension being actively considered [279] is to use other forms of wave-function

144



7. Conclusions and further work

expansions — in particular coupled cluster expansions — to derive analytical ex-

pressions for the KS potential based on those expansions. Both of these examples

would be complemented by the density-inversion method in Chapter 6, as one could

compare a KS potential from an inverted density with the corresponding potential

derived analytically.

The ability to reliably solve the OEP equation opens up various research avenues.

In this thesis, we have discussed at length the role of the screening density and

its relationship with self-interactions. In earlier work [108, 109, 280], the usual KS

energy expression was minimized under the following constraints on the screening

density,

Qscr = N − 1 (7.1)

ρscr ≥ 0. (7.2)

The former condition, as discussed in § 5.3.2, mitigates against the effects of self-

interactions (SIs) in the KS potential. The latter condition was introduced for two

reasons: (i) to avoid shifting negative screening density to infinity as the size of

the orbital and auxiliary basis sets increase and (ii) as a regularization technique

to avoid pathological behaviour of the OEP solution, which in this prior work was

solved without the complement terms. In Ref. [277], we explored relaxing the posit-

ivity constraint (a computational burden) using the improved approach to solving

the OEP equation in Chapter 6. We observed for many examples in this paper

that the positivity constraint can be safely relaxed, even for quite large auxiliary

basis sets. As seen in Table 5.6, and the examples in Ref. [277], constraining the

screening charge to equal N − 1 significantly improves the prediction of ionization

potentials from the HOMO KS energy level.

The ‘constrained’ approach to DFAs described above attenuates the effects of SIs

on the xc-potential by enforcing the correct asymptotic decay, but it is not a full

SI correction as it has no effect on the energy functional. We plan to explore a

more comprehensive SI correction, perhaps using as a starting template the method
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in Ref. [149] which solves the Perdew-Zunger SI correction scheme using the OEP

method. Looking further into the future, our approach of solving the OEP equation

may be particularly useful in time-dependent applications of the OEP method; as

discussed in Ref. [107], although CEDA and KLI are often good approximations to

the full OEP solution (as seen also in Chapter 6), they are quite poor at predicting

response properties which are ubiquitous in time-dependent DFT.

In Ref. [277], we also explored modelling the derivative discontinuity using stand-

ard DFAs with constraints on the screening density. In the following, we briefly

summarise the results of our preliminary investigation.

7.1 Modelling the derivative discontinuity

We recall from § 3.7.2 the following definition of the derivative discontinuity (DD)

in KS theory,

∆xc = lim
ω→0+

∆ω
xc(r) = lim

ω→0+

{
vN+ω
xc (r)− vN−ωxc (r)

}
, (7.3)

where vN±ωxc (r) is the xc-potential of an ensemble with N ± ω electrons. The

densities of the ensemble with N ± ω electrons are defined as follows,

ρN±ω(r) = (1− ω)ρN (r) + ωρN±1(r) (7.4)

= (1− ω)
N∑
i=1
|φi[ρN ](r)|2 + ω

N±1∑
i=1
|φi[ρN±1](r)|2. (7.5)

In the above, ρM (r) denotes the density of the M -electron system.

We consider the behaviour of the ensemble xc-potentials in the asymptotic region.

As proved in Ref. [247], the decay of the density in the asymptotic tail depends

only on the highest-occupied KS orbital,

lim
|r|→∞

ρ(r) = e−2
√
−2εH|r|. (7.6)

For the ensemble with density ρN+ω(r), the highest occupied KS orbital coincides

in the asymptotic region with the N + 1th orbital of the of the KS system with
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7.1. Modelling the derivative discontinuity

N+1 electrons, φN+1
N+1(r). We now draw a connection with the concept of screening

density. We have earlier argued that the screening density is the electronic density

‘seen’ by one electron (or KS orbital) due to the other electrons. The KS orbital

φN+1
N+1(r) experiences a repulsive field from a total charge of N -electrons, and thus

its screening charge is Qscr = N . Since the orbitals forming the ensemble experience

a common KS potential, they must experience a common screening charge also; the

screening charge for the N + ω ensemble is therefore given by QN+ω
scr = N .

However, the dominant orbital in the ensemble with density ρN−ω(r) is the Nth

orbital of the KS system with N -electrons. This orbital experiences a field from

a charge density of N − 1 electrons, and thus the screening charge for the N − ω

electron system is given by QN−ωscr = N − 1, the same as the screening charge of

the N -electron KS system. From the above reasoning, we conclude that there is a

discontinuous jump in the screening charge as the density of the ensemble system

crosses an integer number of electrons,

∆QN+ω
scr = QN+ω

scr −QNscr = 1, 0 < ω ≤ 1. (7.7)

Using the above constraints on the screening charge and our method of solving the

OEP equation, we could obtain the DD from equation (7.3) through an ensemble

OEP calculation, in a similar manner to Ref. [123]. However, we propose to use the

above property (7.7) of the screening charge to model the DD in a computationally

inexpensive manner (a related approach was explored in Ref. [281]). We investigate

the following approximation for the DD,

∆xc ≈ ∆CDFA
xc = vN

+
xc [ρN ](r)− vN−xc [ρN ](r), (7.8)

where vN+
xc is designed to mimic the xc-potential of the N+ω ensemble and thus has

a screening charge Qscr = N ; and vN−xc (r) is designed to mimic the xc-potential of

the N−ω ensemble and thus has a screening charge Qscr = N−1. The xc-potentials

are determined by two ground-state calculations for the N -electron system (rather

than an ensemble OEP calculation), respectively constraining the screening charges
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7.1. Modelling the derivative discontinuity

to be N and N − 1 (hence the acronym CDFA in the above equation standing for

constrained DFA). This can be done for any chosen semi-local DFA using the

procedure described in § 6.3.1 (which is equally valid for closed and open-shell

systems).

Clearly, if this is to be considered a valid method for modelling the DD, then ∆CDFA
xc

should be flat and non-zero in the complete basis set limit. As the xc-potential is

expanded in the form vxc(r) =
∫

dr′ρxc(r′)/|r− r′|, the difference will always tend

to zero in the asymptotic limit but should show the desired behaviour to a certain

spatial extent.

We test our method for the Neon atom. In theory, we can obtain the true DD (7.3)

by inverting the ensembles with densities ρN±ω(r) using the method in Chapter 5 to

obtain the KS potential in each case. Unfortunately, this density-inversion method

is currently inapplicable to systems with a HOMO/LUMO degeneracy, which is

the case for the Neon cation (which forms part of the N − ω ensemble)∗. Work is

in progress to correct this deficiency. For the time-being, we instead consider the

following approximation,

∆xc ≈ lim
ω→0+

{
vN+ω
xc (r)− vNxc(r)

}
; (7.9)

where the screening charge for the N + ω ensemble is equal to N , and for the

N -electron system is equal to N − 1 using the same arguments as before.

In Fig. 7.1, we show the approximate DD in the xc-potential (7.9) for various

values of ω, with the ensemble density obtained from LDA calculations. We see

convergence in the limit ω → 0; the difference ∆vωxc does not become completely

flat due to numerical instabilities in the density inversion procedure which are

exacerbated when the difference of two potentials is taken. However, we do not

suggest this method as a means of computing the DD in a practical sense, but rather

to compare with the CDFA method (7.8). We observe in this figure that ∆vCLDAxc

is largely flat until ∼ 2.5a0, and close to the inverted ensemble approximation.
∗A separate issue is that the Neon anion is not bound (εH > 0); nevertheless, we get an

indication of what to expect from the density-inversion calculation.
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Figure 7.1: The approximate derivative (7.9) for various values of ω. The CLDA
result (7.8) is shown for comparison. Orbital and auxiliary bases are both uncon-
tracted cc-pVTZ.

Next, we investigate the convergence of ∆vCLDAxc with basis set size; we use the

same (uncontracted) basis for the orbital and auxiliary bases for simplicity. In

Fig. 7.2, we see evidence for the convergence of ∆vCLDAxc as the basis set size is

increased; furthermore, the difference becomes flatter and extends further spatially

with larger basis sets. The evidence for the difference ∆vCLDAxc being constant is

also seen in the occupied KS eigenvalues, as shown in Table 7.1. The eigenvalue

differences for the systems with screening charges N and N − 1 are in very close

agreement for all the basis set sizes. These eigenvalue differences are a convenient

measure of the DD, as it can be seen from Fig. 7.2 that they are in agreement with

the difference ∆vCLDAxc .

Finally, we have extrapolated the value of the DD to the complete basis set limit,

as seen in the inset of Fig. 7.2. There appears to be a reasonably linear relationship

between the inverse number of basis elements (nbas)−1 and the value of ∆CLDA
xc ,

yielding an estimate of 6.14 eV for ∆CLDA
xc in a complete basis set. This strongly

suggests the gap is non-zero in the limit of a complete (orbital and auxiliary) basis

set.

Clearly, there is work to be be done if this method is to be employed in practical
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Figure 7.2: Main figure: convergence of ∆CLDA
xc with basis set size (orbital and

auxiliary basis both uncontracted cc-pVXZ). Inset: extrapolation of ∆CLDA
xc with

respect to number of basis elements Nbas.

calculations. Firstly, calculations for basis sets larger than cc-pVTZ are computa-

tionally very expensive even for the LDA functional; however, the value of ∆CLDA
xc

appears to change significantly with basis set size. We therefore need to investigate

the possibility of obtaining accurate estimates in the complete basis set limit with

smaller basis sets used for the extrapolation. The method is currently being more

extensively tested [282] for various other atoms and molecules to verify it is widely

applicable. Furthermore, modelling the DD is of principal interest in solid-state

applications; the method would require various modifications in order to be applic-

able in periodic DFT codes. However, despite the above caveats, the method shows

promise overall in estimating the DD in a computationally inexpensive manner.

∆εi (eV) cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z

1s 12.24 9.48 7.74 6.61
2s 12.23 9.48 7.74 6.62
2p 12.21 9.48 7.73 6.62

∆CLDA
xc 12.22 9.48 7.73 6.62

Table 7.1: Neon atom: the difference of the eigenvalues ∆i = εN
+

i − εNi , of the
CLDA xc-potentials vNxc and vN

+
xc , for the orbitals φi = φ1s, φ2s, φ2p. The average

difference ∆εi per basis set gives ∆CLDA
xc .
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Appendix A

Quadratic line search method

In the density-to-potential inversion method of chapter 5, a quadratic line search

is employed to find the optimal step size in the steepest-descent minimization of

the objective functional U [v] (5.6). We describe this method below.

If we vary v in the direction v + εδv, then provided 0 < ε � 1, U [v + εδv] can be

expanded parabolically about ε,

U [v + εδv] = ε2a2 + εa1 + a0. (A.1)

The value of ε is then chosen to be that which minimizes the above expression, ie

U1 < U0ε0 = min
ε
{ε2a2 + εa1 + a0} = − a1

2a2
. (A.2)

To determine ε0, we therefore need to compute a1 and a2 to construct the quadratic

curve for U [v + εδv]. We do this by computing three points for U [v + εδv] given

three different values of ε,

ε = 0⇒ U0 = a0 (A.3)

ε = λ⇒ U1 = λ2a2 + λa1 + a0 (A.4)

ε = 2λ⇒ U2 = 4λ2a2 + 2λa1 + a0. (A.5)

We note that we need only compute two values for U since U0 is already given by

the value of U from the previous iteration in the optimization procedure. From the
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above, the values of a1 and a2 are thus given by

a2 = U2 − 2U1 + U0
2λ2 (A.6)

a1 = −U2 − 4U1 + 3U0
2λ . (A.7)

The value of λ must be chosen such that U1 is smaller than both U0 and U2, ie

U1 < U0 and U1 < U2. (A.8)

If the value of λ is too large, such that U1 < U0, then it must be decreased and

the procedure repeated; likewise, if it is too small such that U1 > U2, then it must

be increased. In practise, however, we have found that this is rarely necessary

provided that λ is chosen to be the same value from the previous iteration.
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Appendix B

Alternative construction of bk in

OEP equation

In the following, we discuss an alternative method which we have explored to

construct the vector bk from the right-hand side b(r) of the OEP equation for semi-

local DFAs (6.16). With the spin-dependent xc-potentials obtained from LIBXC,

we directly substitute these into b(r) (6.16). We then follow the analysis in § 3.9.3,

in which the response function is decomposed into into its primary component

χ0(r, r′) and complement χ̄(r, r′), for the right-hand side b(r). This leads to the

following expressions for b0(r) and b̄(r),

b0(r) = 2
∑
σ

Nσ∑
i=1

nbas∑
a=Nσ+1

〈φi|vσxc|φa〉φi(r)φa(r)
εi − εa

, (B.1)

b̄v(r) = − 2
∆
∑
σ

Nσ∑
i=1

{
φi(r)

∫
dr′ δ(r− r′)vσxc(r)φi(r′)

−
occ∑
j

〈φi|vσxc|φj〉φi(r)φj(r)
}
. (B.2)

The vector bk in the OEP matrix equation (3.95) is therefore given by

bk = 〈θ̃k|b0〉+ λ 〈θ̃k|b̄〉 = b0k + αb̄k, (B.3)
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OEP CEDA

Energy (H) b2k b1k b2k b1k

Li -7.398145 -7.398140 -7.398133 -7.398133
LiH+ -7.685603 -7.685599 -7.685600 -7.685599
Si∗ -288.4503 -288.4503 -288.4503 -288.4503
Si† -288.4905 -288.4904 -288.4904 -288.4905
O2
∗ -149.5821 -149.5821 -149.5821 -149.5821

O2
† -149.6382 -149.6381 -149.6382 -149.6382

OH -75.37088 -75.37078 -75.37078 -75.37074
NH4 -56.80394 -56.80394 -56.80390 -56.80390
Na -161.6571 -161.6569 -161.6571 -161.6571

*Singlet state
†Triplet state

Table B.1: A comparison of ground-state total energies from the implicit LDA
(iLDA) method, with the xc-potential determined from both the full OEP equation
(with α = 10−2) and CEDA, using the two different constructions for bk. The
energies are essentially identical for all the different approaches. All states doublets
unless otherwise stated.

with

b0k = 2
∑
σ

Nσ∑
i=1

nbas∑
a=Nσ+1

〈φi|vσxc|φa〉 〈φa|θ̃k|φi〉
εi − εa

, (B.4)

b̄k = 2
∑
σ


Nσ∑
i=1

Nσ∑
j=1
〈φi|vσxc|φj〉 〈φj |θ̃k|φi〉 −

∫
drρσ(r)vσxc(r)θ̃k(r)

 . (B.5)

In theory, the above construction of bk is equivalent to that described in § 6.3.1;

however, this might not be the case in practise due to finite basis set effects. We

shall compare results for the two different constructions, henceforth referring to

the approach in § 6.3.1 as the first construction, and the approach in this section

as the second construction. In Table B.1, we compare total energies across the two

methods for a number of (mostly) open-shell systems, including both CEDA results

and results for the full OEP equation (with α = 10−2). These results demonstrate

almost no difference between either construction, nor between CEDA and the full

OEP equation. Based on this, the choice of whether to use one construction over

the other seems somewhat arbitrary.

In Table B.2, we compare values of the HOMO KS eigenvalue across the two meth-
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ods, which may be more sensitive to any differences. Indeed, we see quantifiable

differences between the results in this case; these differences mean the orbitals are

slightly different but this is barely reflected in the total energy, suggesting the

L(S)DA functional is resilient to changes in the orbitals. In both constructions, the

CEDA eigenvalues are usually close to the full OEP eigenvalues, especially for the

second construction of bk; this suggests CEDA is a rather accurate approximation

in this case. Finally, we have included the LSDA (spin-DFT) results for compar-

ison; we observe that the eigenvalues from the first construction are noticeably

closer to the LSDA eigenvalues than those of the second construction. Since the

LSDA results are not spin-contaminated for these examples, we expect the iLDA

results to be close to L(S)DA: this suggests the first construction may be more

accurate.

However, one possible advantage of the second construction of bk may be in the

application of the OEP method to GGA functionals. In the expressions for b0k and

the complement b̄k, one can substitute the form of vσxc(r) from equation (6.20),

and then use the product rule to transform the gradient to act on terms other

than vσxc(r) (which contains the gradient of Gaussian basis functions). This can

be performed efficiently for b0k (B.1) and for the first term in the complement b̄k

(B.2). However, it presents difficulties for the second term in the complement,

as calculating ∇{ρσ(r)θ̃k(r)} is computationally very expensive. Therefore, we

have not found a better way to compute the complement b̄k than using the first

construction as described in § 6.3.1; work is in progress to develop a method which

avoids the calculation of ∇2ρσ(r).

Furthermore, we note that the OEP equation always requires the computation

of the matrix Akl. In the first construction of bk described in § 6.3.1, the spin-

dependent matrices Aσkl which are used to construct bk can also be added together

to compute Akl, making that construction computationally cheaper than the one

described in this appendix. We therefore use by default the first construction of bk

from § 6.3.1, for both efficiency and (potential) accuracy gains.
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OEP CEDA

−εH (eV) b2k b1k b2k b1k LSDA

Li 3.45 3.56 3.36 3.57 3.58
LiH+ 13.12 13.87 12.48 14.19 14.59
Si∗ 4.47 4.72 4.63 4.64 4.96
O2
∗ 6.43 6.54 5.99 6.41 7.27

OH 7.31 8.07 7.71 8.13 8.39
NH4 1.61 1.73 1.58 1.75 2.26
Na 3.45 3.51 4.15 3.59 3.49
〈∆εH〉 11% 6.9% 15% 7.1%

*Triplet state

Table B.2: A comparison of HOMO KS eigenvalues εH from the iLDA method, with
the xc-potential determined from both the full OEP equation (with α = 10−2) and
CEDA, using the two different constructions for bk. For reference, the final column
shows the LSDA (UKS) values, with 〈∆εH〉 being the average % difference between
the LSDA and iLDA values. All states doublets unless otherwise stated.
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