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Abstract 

Interest in, and evidence for, the involvement of working memory in mathematics is increasing 

as the performance of school leavers is under constant scrutiny. Understanding how 

components of working memory relate to aspects of mathematics is, however, limited.  The 

stability of this relationship when other cognitive predictors are included is not known, nor is 

whether the relationship is stable over time. This thesis contains a systematic review of the 

literature and four studies investigating relationships between working memory and 

mathematics performance.  

As a first step, available literature on the relationship between visuospatial working memory 

and mathematics performance was reviewed in a systematic, thematic analysis of effect sizes. 

Results showed a significant influence on the effect size of standardised mathematics measures, 

but not the type of visuospatial working memory or mathematics being assessed.  Crucially, 

the overall effect size was positive, demonstrating a positive association between visuospatial 

working memory and mathematics performance.  

The first study built on these findings to identify the relative contributions of verbal, spatial-

simultaneous, and spatial-sequential working memory in written mathematics. Year 3 children 

(7-8 years of age, n=214) in the UK completed a battery of working memory tasks alongside a 

standardised mathematics test. Results showed the largest individual contribution was from 

verbal working memory, followed by spatial-simultaneous factors. This suggests the 

components of working memory underpinning mathematical performance at this age are 

verbal-numeric and spatial-simultaneous. The study raised the question of whether this 

relationship is consistent across the primary school years.  

The second study therefore examined the relative contributions of verbal and visuospatial 

simple and complex working memory to mathematics in primary school children. Children in 



9 
 

Years 2 to 5 (6 to 10 years) were assessed (M age = 100.06 months, SD = 14.47, n=111). 

Results revealed an age-dependent relationship, with greater visuospatial influence in older 

children. Further analyses demonstrated that backward word span and backward matrices 

contributed unique portions of variance of mathematics, regardless of the regression model 

specified.  

A further feasibility study (n = 28) investigated whether the relationships identified were 

resilient to the inclusion of other cognitive measures and whether there were any underlying 

cognitive deficits common in poor performers in mathematics. The study explored measuring 

working memory, speed of processing, g (intelligence), and number sense simultaneously. 

None of the regression models generated were significant, with no suggestions of fundamental 

differences between children who performed poorly in mathematics and their peers. Further 

analysis revealed considerable heterogeneity in the cognitive profiles of children showing a 

cause for concern in mathematics. The study demonstrated the approach is potentially feasible 

if the chosen measures thoroughly explore the child’s cognitive profile.  

A final two-year follow-up to study 1 investigated how subcomponents of working memory 

measured in Year 3 related to mathematical performance in Year 5 (n = 159 M age = 115.48 

months). Results show a shift from spatial-simultaneous to spatial-sequential influence, whilst 

verbal involvement remained relatively stable.  

Possible explanations for the findings in relation to the existing literature are explored along 

with implications for educators and further research. Consideration is also given to the value 

of remediation strategies for poor mathematical performance.  

The findings of the project as a whole indicate that there is a shift in the influence of the working 

memory components from spatial-simultaneous to spatial-sequential as children get older. The 

contributions of verbal working memory remain consistently important at all ages. These 
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results suggest that a screener developed to predict future attainment should include measures 

of each of these areas in order to account for both shorter and longer term prediction.   
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Preface 

In 2011, the Skills for Life survey found only 22% of people had strong enough maths skills to 

get a good GCSE in the subject - down from 26% when the survey was carried out in 2003. 

The Organisation for Economic Co-operation and Development (OECD) school league tables, 

published 2016, compared 15-year-olds’ abilities in core academic subjects across 65 countries 

and regions in the Programme for International Student Assessment (Pisa). The figures show 

that the United Kingdom was ranked just 26th for maths, a drop of two places since 2006. 

Consequently, British schoolchildren continue to lag behind their peers in the Far East despite 

increases in education spending. 

Department for Education statistics indicate that, at the time of proposing this research project, 

13% of all pupils in England were leaving primary school having achieved level 3 or below in 

maths (Department of Education, 2016), with this figure reaching as high as 35% and above in 

some schools. Understandably, poor achievement at primary school level does not only hinder 

performance in this phase in isolation; weak maths performance upon leaving primary school 

then has lasting impacts upon maths achievement at GCSE level (with 7.9% of all pupils in 

State funded secondary schools falling into the category of “low attainers” based on achieving 

grades A*-C in English and Maths) and beyond.  

I therefore intended to focus on primary aged children, both Key Stage 1 and 2 (i.e. 7 – 11 

years).  It is believed that the relationship between working memory and maths will be mediated 

by changes in age related strategy use and the nature of the curriculum (Holmes & Adams, 

2006). The project aims to examine the relationship between working memory and maths 

performance in children aged 7 – 11-years. The work builds upon research identifying a 

predictive link between working memory and mathematics (e.g. Passolunghi & Cornoldi, 2008; 

Swanson & Beebe-Frankenberger, 2004; Wiklund-Hörnqvist, Jonsson, Korhonen, Eklöf, & 

Nyroos, 2016; Wilson & Swanson, 2001). A further aim of the research is to work towards 
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developing a screening assessment to identify children with working memory deficits related 

to early maths development. An important component of the work is the combination of 

cutting-edge research with real classroom settings to maximise the ecological validity of the 

work and make a measurable and sustainable impact in the early identification of children-at-

risk of low maths attainment.  

This thesis will be presented as a portfolio of individual studies, with sections clearly 

identifying the progression from one study to the next. As such, the literature review section is 

dispersed throughout the introduction sections of the individual papers in order that background 

information is presented where it is most relevant. Papers that have been published have been 

highlighted using a change of font and information regarding where and when they were 

published is included in the introductory section of each study.   

  



13 
 

1 

Methodology 

This project is located in the literature and the methods of the field of psychology and, more 

specifically, working memory, with the aim that all of the methods used are presented clearly 

enough to be replicated (Baltes, Reese, & Nesselroade, 2014; Coe, Waring, Hedges, & Arthur, 

2017). My personal background is in Psychology, therefore, these methods are familiar to me 

and were chosen as they are best placed to answer the research questions that are detailed later 

in this chapter. I worked as a sole researcher throughout the project, recruiting, collecting, and 

inputting data alone (Wellington, Bathmaker, Hunt, McCulloch, & Sikes, 2005). I designed all 

of the studies besides study 2 with the guidance of my supervisors, Professor Steve Higgins 

and Dr John Adams. For study 2, I collaborated on the study design with Dr David Giofrè, as 

I did for the analysis of the papers where he is included as a co-author. Being a sole researcher, 

my personal interests may have influenced the study somewhat for example in the way I 

designed the studies (Foote & Bartell, 2011). The studies could be considered to support a 

particular model of working memory, for instance. However, I attempted to mitigate this by 

avoiding suggesting that the results supported a particular model and providing alternative 

explanations for results where applicable. I was also able to alleviate some of the issues of 

personal interest by precisely marking all of the mathematics tests strictly according to their 

mark scheme, for example a question asking children to identify the three triangles with right 

angles indicated that children should not receive the mark unless they had correctly identified 

all three of the target triangles and no others. This process was followed for all mathematics 

tests administered. Issues of researcher bias or positionality are also arguably mitigated by the 

publication of the papers as the research developed. Engaging with peer review helps to ensure 

the validity and rigour of the underpinning research methods and ensures that bias is minimised 

in the analysis and interpretation of results.  
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Research questions  

Systematic review 

1. How does the age of the participants influence the relationship between visuospatial 

working memory and mathematics?  

2. How does the type of maths being assessed influence the relationship between 

visuospatial working memory and mathematics?  

3. How does the type of visuospatial working memory being assessed influence the 

relationship between visuospatial working memory and mathematics?  

4. How does the nature of the mathematics tasks being used (standardised/non-

standardised) influence the relationship between visuospatial working memory and 

mathematics?  

Study 1, paper 1 

1. How do the subcomponents of working memory relate to the performance of written 

mathematics? 

Study 1, paper 2 

1. How does the balance of influence of different working memory subcomponents differ 

according to the area of mathematics in question?  

Study 2 

1. Which components of working memory are more influential in mathematics 

performance at different ages across the primary school years? 

Study 3 

1. Is the relationship identified between working memory and mathematics sufficiently 

stable as to remain when additional cognitive control measures are included? 
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2. Is the approach of assessing children’s cognitive capacities to identify those who may 

fall behind in mathematics in the future feasible?   

Study 4 

1. Is there evidence for a relationship between working memory measures taken in Year 

3 and a mathematics measure taken in Year 5?  

2. If so, is this relationship the same as that when the mathematics measure was taken in 

Year 3?  

3. Which working memory predictors are able to predict mathematical performance in 

Year 5 when mathematical performance in Year 3 is accounted for?  

The research questions detailed were developed as the project progressed, beginning with the 

need to fully understand the literature that was already available in a systematic way, before 

identifying the gaps in this literature to address through the experimental studies. The overall 

aim of the project was to understand how working memory relates to mathematics over the 

span of the primary school years and to establish whether this relationship is stable over time. 

In each case, the design and research questions for the subsequent study were derived from the 

results of the previous study to ensure the research was developed from the most up to date 

findings.  

Data Analysis 
The data were analysed using structural equation modelling, a form of multiple 

regression (Kline, 2011), based on the general linear model and using latent variables, that 

analyses the magnitude of the relationships between the measured variables, using a 

confirmatory approach. Measured variables can be either observed (in this case mathematics), 

meaning the construct is measured directly, or latent (in this case working memory), meaning 

the construct is not directly observable so measures are used that we assume are accessing it. 
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Latent variables are factor analysed to ensure that those we expect to be measuring the same 

underlying construct load onto the same factor.  

Models in structural equation modelling are defined based on the researcher’s 

understanding of the literature which meant that I was able to specify different models to 

explore their fit (how well they suited the data) using different assumptions about the structure 

of working memory. This allowed me to understand how different combinations of components 

of working memory related to mathematics. I was also able to perform variance partitioning on 

the data to understand the individual contributions of each component to the prediction of 

mathematics, rather than only understanding which measures were making a significant 

contribution, as is the case with standard regression.  

The main limit associated with structural equation modelling and variance partitioning 

is the sample size required to ensure that there is enough data for the number of comparisons 

being made. This meant that it was not statistically sound to do some more detailed analysis, 

for example analysing the contributions of working memory components to components of 

mathematics across different ages in study 2. However, the reliability and validity of the 

method, and the affordances for understanding the intricacies of the relationship outweigh the 

limits of the method and support using it to understand the relationship in more detail.  

Ethics 

Each study involved in this project carried different ethical risks, depending on the 

design used to answer the research question. I considered at each stage how the different 

designs led different ethical considerations to arise, as will be discussed below. Individual 

ethics applications can be found in the appendices (see Appendices A-D), dated 01/12/2017, 

31/10/2018, 24/05/2019, 19/08/2019. Throughout, I was working with a vulnerable group 

(children: Mahon, Glendinning, Clarke, & Craig, 1996; Morrow & Richards, 1996), therefore, 

there were more ethical considerations to take into account, and a greater number of safeguards 
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to put in place. The process of addressing these considerations was reflexive and adapted to the 

given situation (Powell, Fitzgerald, Taylor, & Graham, 2012). The design used was 

correlational and so does not carry as many risks as an intervention study, for example, but 

perhaps more than a purely observational study as participants are placed in a specific testing 

situation. To this end, the studies were designed with the ethical codes of the British 

Psychological Society (BPS; BPS, 2018) and British Education Research Association (BERA; 

BERA, 2018) in mind. The key points of each of these codes that pertain to this particular 

project are listed below:  

 

BPS 

Respect 

Privacy, confidentiality, power, consent, self-determination, compassionate care 

Competence 

Necessary skills, limits of competence, advances in evidence base, professional ethics 

and decision making, caution in making knowledge claims 

Responsibility 

Professional accountability, responsible use of knowledge, respect for welfare, 

potentially competing duties 

Integrity 

Honesty, unbiased representation, fairness, avoid exploitation and conflict of interest, 

maintaining boundaries 

BERA 
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Responsibilities to participants 

Respect, structural inequalities, competence, balance maximising benefits and 

minimising risk of harm to participants, informed consent/assent, opt-in and out 

depending on context (e.g. to reduce sampling bias), transparency (open, honest, 

conflict of interest), right to withdraw, incentives: level shouldn’t influence decision to 

participate, harm (ease of participants, avoid excessive demands, duty of care, rights 

of individuals, time and effort of long-term research), privacy/data storage 

(confidentiality, anonymity, waiver of anonymity, secure storage), disclosure 

Methods 

Analysis techniques, inferences to be drawn from findings 

Responsibilities to the community of educational ressearchers 

Integrity of the reputation, identify contacts 

Responsibilities for publication and dissemination 

Communicate findings and practical significance, open access 

 

Throughout my project, I have striven to adhere to these principles. I will discuss below 

how I managed these ethical considerations with respect to my project under the revised 

headings of Protection for Participants, Attributes of the Researcher, and Ethical Use of Data 

for clarity of combining the two ethical codes.  

Protection for participants 

To tackle the issue of anonymity and confidentiality, children were assigned an anonymous 

code that was used throughout data collection so that data could not be traced back to each 
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individual. This code was used on all documents surrounding data collection and analysis, and 

no reference to identifiable individual cases was included in the writing up of the reports so as 

to maintain anonymity. Another key component of maintaining anonymity is maintaining the 

trust of the child that their teacher will not find out their results (Einarsdóttir, 2007), however, 

in one particular case, which will be discussed further in due course, it was to the benefit of the 

child and their teacher to disclose their results, following obtaining parental permission. 

Participants did not have access to any data, be that their own or that of other participants, and 

all data collected is held securely. Should participants wish to have their data removed from 

the study, they may contact the researcher and their data will be destroyed by the researcher. 

Only those individuals who require access to the data were granted access (namely, the 

researchers and supervisor) to either the physical data or the electronic data file. All electronic 

data is stored on a protected device in order to reduce unwarranted access. 

With regard to consent, consent cannot be granted by the child themselves, since they 

are under 16 (Morrow & Richards, 1996), therefore an alternative process was used. Consent 

was obtained from the Head Teacher of the school and the class teacher, before a letter detailing 

the study was sent to parents with an attached opt-out consent form (see appendices E-H for 

copies). Opt-out consent was used so as not to bias the sample towards more affluent areas with 

more proactive parents (Krousel-Wood, Muntner, Jannu, Hyre, & Breault, 2006). The use of 

opt-in consent may have restricted the range of the sample to a lower proportion of 

disadvantaged children and may have therefore skewed the sample. This was, in fact the case 

during the follow up study where one school requested opt-in consent be gathered and the 

participation rate dropped significantly. The overall risk of harm was minimal throughout and 

opt-out consent also significantly reduced the burden on school staff as fewer administration 

duties were required before the study commenced, therefore we argued that the ethical concern 

should be adaptable to the inherent risk (Bromwich & Rid, 2015; Graham, Powell, & Taylor, 
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2015). Verbal assent was then obtained from each child respectively before beginning the study 

(Gallagher, Haywood, Jones, & Milne, 2010). The right to withdraw was explained verbally to 

all pupils at the same time as explaining all other aspects of the study. Children were also given 

the opportunity to ask any questions they may have had before the study began and at any time 

throughout. My decision to adopt opt-out consent was partly to ensure compliance, whilst also 

balancing the needs of ethical research (i.e. obtaining a balanced sample which is more likely 

to be representative) and ensuring ethical practice (such as minimising the burden on 

practitioners). It was also balanced by my discussions with the children (ethical engagement, 

not legally required but ethically important) and the overall potential benefit from the research 

programme (public good). 

The amount of stress placed upon the children involved was taken into consideration. 

As testing took place in an environment familiar to the children, it was unlikely to lead to 

increased anxiety levels (Saywitz & Nathanson, 1993). Additionally, the working memory 

tasks, although novel to most children, did not induce undue stress. The test materials used 

were taken from standardised test batteries that have been developed with clear and concise 

manuals detailing the exact format and process for each of the subtests. Children usually enjoy 

such activities when presented as low stakes games and puzzles in a supportive environment. 

All subtests were administered in the prescribed way, whilst remaining aware of the child’s 

well-being. If a child had shown any signs of discomfort, they would have been reassured and 

removed from the situation immediately and appropriate action taken to mediate the situation, 

such as placing the child in a different classroom with a familiar member of staff. This did not 

occur at any time during the testing periods for any of the studies in the project, indicating that 

children were at ease throughout. Children were fully debriefed on the study’s purpose in 

language they could understand and given the opportunity to ask any questions upon 

completion. Researcher contact details were also provided should any questions have arisen 
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after completion of the study or should a child or parent have wished to withdraw consent. By 

following the procedures detailed above, the risk of the study was minimal to none for all 

involved.  

A further concern was the time and effort required for long term research from the 

participants (Barry, 2005; Goodman & Blum, 1996). Children did drop out at various stages of 

the project, particularly in the final testing phase. This was accounted for in the initial number 

of participants recruited and was not questioned at any stage. Children had received no 

incentives to take part and so did so of their own free will. By explaining this to children meant 

they felt able to drop out of the study if they felt they no longer wanted to participate. They did 

receive an individual sticker as an acknowledgement of their efforts after each stage, however, 

no children were notified of this before the study began so as not to influence their decision to 

take part when giving assent.  

Finally, with regard to implications for research participants, at the school level, the 

main implication for the informants is the benefit of the knowledge obtained through the study. 

As a school they will then have the opportunity to inform their teaching practice using the 

results. From the perspective of the teachers, the implications reflect those of the school as a 

whole. I have returned to each of the schools who took part in the project and delivered a 

session on working memory in the classroom, incorporating the findings of my project, in order 

to give teachers the opportunity to develop their own understanding from taking part. Whilst 

the implications of the research may not be of immediate benefit to the children currently in 

the classes tested, future children will benefit from the results of the study through the school’s 

use of the findings in the design of their teaching.   
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Attributes of the researcher 

As a researcher entering a school with the expectation that I will be fully informed on 

everything involved with the project, I made sure I was familiar with the testing procedures for 

each of the measures I used so as to not waste time or lose data due to errors in administration. 

Further, I made every effort to remain abreast of the literature that had, and continued to, inform 

my project to make sure that I could answer any questions the children, teachers, or parents 

had. This helped put those I was working with at ease and ensure they felt confident to take 

part in the studies. I was very aware throughout that I was entering the schools with knowledge 

that was not usually available to children and teachers on an everyday basis. As such, it was 

important that I made teachers aware that I could not give any kind of diagnosis or make formal 

recommendations regarding particular children and that I maintained this stance throughout 

(Lanzi & Ramey, 2013). There was one case, as previously mentioned, where the results 

gathered from one child were at odds with advice teachers had previously told me they had 

received for the child. In this case, I thought it was in the child’s best interest to disclose my 

findings in order to inform the teacher of how they might learn best, however, this was not 

done until explicit consent to do so was received from the child’s parent. Even so, results were 

only then discussed in terms of standardised results, from which raw scores are impossible to 

derive without a thorough, in-depth knowledge of the data set.  

At all points during my data collection, the school, teachers, parents, and children were 

all fully aware of my purpose for being there and the research was conducted in a professional 

manner (Lanzi & Ramey, 2013). Children were all treated equally and fairly, with a careful 

balance in the relationship between myself and the children to elicit the best performance 

possible from them. The children received encouragement to ensure they put effort into the 

tasks, but I was mindful that this was not done in a way that would exert power or authority 
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and pressurise any child into taking part. This power imbalance when working with children is 

addressed in Einarsdóttir (2007).  

Ethical use of data 

Extensive analysis was performed at each stage of the project in order to obtain as much 

information regarding the relationships between working memory and mathematics as possible 

from the data set. It was important to thoroughly explore the data gathered to ensure that 

participant time was not wasted, especially given data collection had occurred during school 

hours. At each stage, everyone involved in the project was aware of the purpose for collecting 

the data and the types of inferences likely to be drawn to ensure transparency in the process at 

all times. The findings were then used to inform the design of future studies to ensure that only 

the necessary testing was carried out. Finally, following the analysis of the data, the majority 

of the resulting papers have been, or will be, published open access in order that they can be 

accessed by the public, particularly those in education, to inform practice. Alongside this, as 

previously mentioned, I have conducted feedback sessions with each school in order to inform 

them of the outcomes of the research, improve teachers’ awareness of working memory, and 

hopefully, inform classroom practice.  

Considering all of the above ethical issues in a flexible way, and thus being able to 

adapt to the ever changing situation of working with schools, has allowed me to gain as much 

insight as possible from the work I have conducted whilst always maintaining the well-being 

of those involved in my study as a priority.  

Data Management and Data Protection 

All data collected for this project were collected and held in accordance with data 

protection legislation (Chassang, 2017; Dove, 2018) and recommendations (Abbott, 2015; 

Cooper, 2016). Information was distributed to the schools, teachers, and parents of the children 
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involved regarding the data that would be collected, following approval from the University. 

Regarding data retention, parents were informed that the information provided by them, and 

the data gathered from the study, pertaining to their child(ren) would be kept for analysis, 

though that it would be done so following strict controls. To adhere to privacy regulations, 

children’s data was held anonymously, with the working memory and mathematics data held 

separately from personal information. All data was also analysed anonymously, with no 

reference to identifying data included in the data set. Parents were made aware at each stage of 

the project that they had the right to withdraw their consent for the processing of their child’s 

data (also adhering to the right to erasure). This happened on one occasion, on which the data 

was destroyed (shredded) immediately. The data in question had not yet been entered into the 

dataset, so only the physical copy of the results required destroying. Consent was obtained for 

all children involved in the series of studies by their parent or guardian in order for their data 

to be included. This data included their full name, gender, and date of birth, provided by the 

school. Children and parents were allowed to correct their personal data that was held for the 

study (rectification), however, young children are often unsure of their personal information, 

such as their date of birth. The mathematics tests used did ask children to indicate whether they 

were a boy or a girl, therefore, this information could be used to cross reference with the 

information provided by the school and ensure that information was matched correctly across 

data sets.   

In summary, this thesis is presented as a series of papers representing the development of my 

thinking throughout the process. The papers are drawn together with a broad introduction to 

the working memory literature, the mathematics development literature, and the available 

literature on predicting mathematics from working memory. These more general introductions 

are included to provide the broader background for the work and to set the project in context, 

before presenting the relevant, more specific literature for each study in the individual paper 
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introductions. Discussions are presented in each individual paper for the specific study and a 

general discussion for the project as a whole is presented at the end of the thesis to draw 

together the findings of the series of studies.  
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2 

Working Memory 

A number of definitions have been proposed over the history of working memory 

research, however, there is an emerging consensus on what working memory encompasses and 

what its role involves, despite the maintenance of different definitions. Baddeley (1992) defines 

working memory as the “temporary storage and manipulation of the information necessary for 

such complex cognitive tasks as language comprehension, learning, and reasoning”. This 

definition appears to be the one that most closely accounts for the elements included in 

alternative definitions, with the added clarification from Baddeley (1996) that working memory 

assumes the role of an “interface between perception, attention, memory, and action”. It 

achieves this by way of coordinating the involvement of each of these elements in everyday 

behaviours. It seems that Baddeley’s definition aligns relatively well with the alternative 

definitions given, with most discrepancies seemingly arising as a result of the use of 

terminology, as opposed to any fundamental differences in what the theorists describe.  

One example of these alternative definitions is that by Randall Engle (2002) who 

suggests working memory refers to the attention-related aspects of short-term memory. Engle 

and colleagues suggest working memory is the ability to control attention (as in Engle, 

Tuholski, Laughlin, & Conway, 1999; Unsworth & Engle, 2007), whereby a higher working 

memory span is reflective of an increased ability to control attention, and therefore reduce 

distraction. As a result, this definition is in contrast somewhat to that of Baddeley (1992) which 

describes a finite store, however, aligns with the notion that working memory encapsulates 

attention processes. Similarly to Engle, Cowan (2017) states that working memory is “a system 

of components that holds a limited amount of information temporarily in a heightened state of 

availability for use in ongoing processing” (in Adams, Nguyen, & Cowan, 2018). Cowan’s 

definition of “generic working memory” is intended to describe the ways in which relatively 
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easier access to information held in mind can help individuals to make use of such information 

during everyday tasks. Terminology aside, this definition appears to relate to the processing 

component of Baddeley's (1992) definition. This is by no means an exhaustive account of the 

numerous definitions given for working memory in the field, however, these definitions align 

well with the models discussed further in this chapter and highlight some of the overlaps in 

meaning behind the definitions used, despite a lack of formal consensus on the wording of a 

definition.  

One debate that is prevalent within the literature is that of whether working memory 

and short-term memory can and should be differentiated. Cowan (2008) suggests that the 

confusion surrounding the differences between the two is a result, again, of the language used 

by researchers in their definitions. Some researchers use definitions that lend themselves to 

there being no clear distinctions between short-term and working memory, for example Miller 

and Galanter (1960). They studied a more functional memory that allows us to go about our 

life successfully, by using goals and sub-goals to accomplish tasks and milestones. However, 

short-term memory is viewed by others distinctly as those tasks that do not require 

manipulation, instead requiring only verbatim recall (Adams et al., 2018). Daneman and 

Carpenter (1980) defined working memory tasks as exactly the opposite of these short-term 

memory tasks; tasks that require simultaneous storage and manipulation. In doing so, they were 

able to explore how increased processing demands of working memory tasks related to 

individual differences in storage capacity.  

This is not a universal consensus, however, with researchers such as Engle et al. (1999) 

and Kane, Bleckley, Conway and Engle (2001) arguing the critical distinction surrounds 

whether tasks are challenging with regard to attentional control. This relates to their definition 

of working memory, as mentioned above, suggesting that low span individuals will be more 

distractible as a result of being less able to marshal their attentional resources to focus on the 
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task in hand. Interestingly, this is an important element in understanding why poor working 

memory manifests as it does in the classroom and one potential reason for the difference in 

predictive value between working and short-term memory tasks for academic achievement. 

This point will be discussed further in a later chapter specifically dedicated to predicting 

academic performance.  

Similarly to previous comparisons of definitions, Baddeley (1996) provides a 

distinction between short-term memory and working memory that can also be applied to these 

other explanations when the meaning of the wording is considered. He explains that working 

memory comprises a “number of subsystems, rather than a unitary model” that demonstrates a 

functional role in task completion, with working memory used as the term for identifying the 

whole system, rather than just the short-term store (Baddeley & Hitch, 1974). That is to say 

that short-term memory is a part of working memory, but the functional element is the result 

of involving these additional processing modules. Following this, it is understandable how 

working memory as a whole can be seen as a useful place-keeper during everyday tasks, for 

example during mental arithmetic (Cowan, 2008). This also further highlights how the 

Baddeley and Hitch (1974) model is able to explain findings predicted by other models.  

Models of working memory 

As previously mentioned, we are now beginning to see some level of convergence 

between the many proposed models for working memory, which Adams et al. (2018) suggest 

should occur as a result of rigorous research practice. Before considering the models that are 

beginning to converge, it is important to first consider earlier models, such as that of Atkinson 

and Shiffrin (1968). Atkinson and Shiffrin provided what Baddeley and Hitch (1974) termed 

the “modal model” as this was the most often cited version of the typical type of model at the 

time. Their multi-store model has three components: the sensory register, the short-term store, 

and the long-term store. The short-term store is the component described as the subject’s 
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working memory (Atkinson & Shiffrin, 1968). A small amount of information passes from the 

sensory register into this short-term store where it is combined with long-term memory and 

held temporarily (Atkinson & Shiffrin, 1968; Shiffrin & Atkinson, 1969). Control processes 

are then at the disposal of the subject for revisiting information to maintain it in working 

memory, and for transferring information between working memory and long-term memory 

(Adams et al., 2018). However, Baddeley (1996) argues that this process relates more to short-

term memory than to working memory, with Cowan (2008) adding that it is short-term memory 

that is responsible for maintaining a small amount of information in a more accessible state for 

a short period of time. Whilst this model was acceptable at the time to explain short-term 

memory, it did little to explain some of the phenomena that were being highlighted through 

research findings. It considered the short-term store to be a unitary concept, which was not 

readily accepted by later theorists (e.g. Baddeley & Hitch, 1974) due to the apparent presence 

of different types of storage (i.e. phonological, visual; Cowan, 2017) and findings showing that 

phenomena such as the recency effect (the increased likelihood for the final items in a list to 

be recalled) were unaffected by a secondary memory load (Adams et al., 2018). With only a 

unitary store, this would not be the case since capacity would be reached with only the primary 

load. Hence, no further information would be maintained. This primary load may be displaced 

by the secondary load, or the secondary task would not be possible if the requirement was to 

maintain the primary load. 

This discrepancy with the multi-store model led to the development of alternative 

models. The first that will be discussed here is the embedded process model, developed by 

Cowan (1988).  Cowan (2017) refers to the model as one of “generic working memory” as he 

does not propose any mechanisms to explain the function of the model, rather focusing solely 

on information retention. Cowan (1999) defines working memory in relation to this model as 

“cognitive processes that are maintained in an unusually accessible state”, placing the 
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importance on accessibility through attentional processes. The model proposes that a brief 

sensory store brings in information from the environment, which then activates the relevant 

areas of long-term memory based on the properties of the incoming information. The new input 

then overwrites/interferes with the activated information from long-term memory. As with all 

models of working memory, the information must be regularly refreshed through rehearsal or 

attention to prevent decay. In this model, dishabituation (a response to a novel stimulus 

following repeated presentation of a previous constant unchanging stimulus i.e. individuals 

attention is recaptured again when something in their environment changes; Ropeter & Pauen, 

2013) is responsible for filtering the amount of information entering working memory as 

attention is drawn to changes in the environment. The central executive directs the focus of 

attention to the relevant information, thus allowing the coherent interpretation of the 

information, which can then be added to long-term memory to update the previous 

representation. This acts as an assimilation mechanism for new information with previously 

held information. There is some evidence that the capacity of working memory in this model 

is likely to be around four chunks of information (Cowan et al., 2005), however, there are also 

counter suggestions that the focus of attention can only hold a single item of information at any 

one time before offloading this to create space for a second set of information (Cowan, 1988, 

2001; Saults & Cowan, 2007). The issue of capacity will be discussed further in a subsequent 

section. The embedded process model lies somewhere between the nomothetic (relating to 

general scientific laws; Salvatore & Valsiner, 2010) and the idiographic (more data driven in 

nature, distinct from scientific laws, relating more to the particular; Salvatore & Valsiner, 2010) 

method in the way it is uses results to inform theory (Adams et al., 2018) in line with the 

model’s suggestion that new information is used to update previously held information.  
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Multi-component Model (Baddeley & Hitch, 1974) 

When considering the available data on working memory, Baddeley and Hitch (1974) 

argued that performance cannot be explained by a single process. They argued that 

performance requires the processes of multiple components of the same system to achieve the 

results they had identified (see Adams et al., 2018 for a summary). It was this explanation of 

their data that drove Baddeley and Hitch to develop their model of working memory (1974): 

the multi-component model. This tripartite model (Baddeley, 1996) has been highly cited in 

working memory literature and has had probably the largest influence on working memory 

research since it was published. It also appears to be the model that is best able to describe a 

number of the findings presented by researchers, hence is where we are beginning to see some 

level of convergence. Baddeley and Hitch (1974) developed a modular theory with information 

divided based on the type of information in question (e.g. verbal or visual information). 

Modular theories open up the possibility of explaining findings in terms of one module 

reaching capacity whilst other information is accounted for by other modules. This allows for 

the maintenance and manipulation of information over and above that which had been deemed 

to be the capacity of working memory by other models. This option is not available in instances 

where the model is not modular (Adams et al., 2018), for example the modal model (Atkinson 

& Shiffrin, 1968). Importantly, the model was mostly derived from nomothetic inference, 

however, took some input from idiographic data, especially that of brain damaged patients (e.g. 

Baddeley, Della Sala, Papagno, & Spinnler, 1997; Robertson, Manly, Andrade, Baddeley, & 

Yiend, 1997), which allowed Baddeley to understand how the model would function when a 

specific individual component was removed. In comparison to the embedded process model 

(Cowan, 1988), in the multicomponent model information from long-term memory feeds into 

the corresponding component to assist with the interpretation of new information (Baddeley, 

2010), as opposed to a small section of long-term memory being held in an active state and 
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using current information to update this section. In the following section, I will discuss the 

development of our understanding of each of the components of the multi-component model 

as these elements will be broadly those applied to the following work, with a particular focus 

on phonological and visuospatial subsystems.  

Phonological loop 

The module that underwent the most investigation first was the phonological loop, due 

to the easy accessibility of the subsystem through measures such as digit recall. The 

phonological loop is responsible for the storage and manipulation of phonological information 

(Baddeley, Gathercole, & Papagno, 1998) whose usefulness Baddeley argues should not be 

ignored in research as it has demonstrated widespread use in a number of circumstances 

(Baddeley, 2011). The phonological loop has been shown to be strongly implicated in 

developmental milestones including language acquisition, demonstrating that non-word 

repetition is predictive of language learning for both first and second language learning in 

children and adults (e.g. Adams, 1996; Gathercole & Baddeley, 1993; Speciale, Ellis, & 

Bywater, 2004). Importantly, Gathercole (1995) highlighted a bidirectional relationship 

between the phonological loop and long-term memory, following results showing that non-

words with similarities to English are more readily recalled than those that are dissimilar to 

English. This extends earlier research by Baddeley, Papagno and Vallar (1988) showing a 

direct link between working memory and long-term memory whereby the phonological loop is 

implicated in forming phonologically-related long-term memories, particularly those related to 

language learning. Further research on sign language and lip reading implicated the same 

system in these methods of communication (Baddeley, 2011; Rönnberg, 2004; Rönnberg, 

Rudner, & Ingvar, 2004), raising the question of whether the phonological loop functions to 

serve language more specifically, with other non-language-based sounds being moderated by 

a different system. Similarly, these results raise questions over whether phonological 
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information must be presented in an auditory manner, given the findings for sign language and 

lip reading.  

To test this, Larsen and Baddeley (2003) presented information visually to participants 

under articulatory suppression (subjects constantly repeat a simple irrelevant sound such as 

“the” in order to prevent subvocal rehearsal of the material; Baddeley, 1992) and demonstrated 

a large cost to the performance of the phonological loop under such conditions. These findings 

indicate that information need not be presented auditorily in order to access the phonological 

loop, whilst also highlighting the vulnerability of the loop to external factors, and its reliance 

on rehearsal. I will discuss the importance of rehearsal further following discussion of the 

model itself. Again considering articulatory suppression, Baddeley and colleagues have 

demonstrated that articulatory suppression eliminates the word length effect but not the 

phonological similarity effect for written words (Baddeley, Thomson, & Buchanan, 1975; 

Baddeley, Lewis, & Vallar, 1984). The word length effect demonstrates how performance 

declines as word length increases (namely, the number of syllables in a word; Hulme & 

Tordoff, 1989). Meanwhile, the similarity effect indicates that sequences containing 

phonologically similar words are harder to recall than those with phonologically dissimilar 

words (Conrad & Hull, 1964; Salamé & Baddeley, 1986). That the word length effect is 

eliminated under articulatory suppression, even when stimuli are presented in a written format, 

suggests that written material that is phonological in nature is transferred to the phonological 

domain before it is stored in the phonological loop. Finally, there is the suggestion that “item 

information may be helped by similarity since it places constraints on possible responses” 

(Baddeley, 2011). This statement indicates that, although phonological similarity may be 

detrimental to recall, semantic similarity and repetition from the same restricted set of stimuli 

can more accurately draw out the ability to remember serial order due to the additional 

information available. Conversely, using different items for each set is likely to confound 



34 
 

studies investigating serial order by bringing in the impact of loss through decay due to the 

restricted additional information available.  

Visuospatial Sketchpad 

The second of the slave systems, as reported by Baddeley and Hitch (1974) is the 

visuospatial sketchpad. This module appears more complex than the phonological loop 

(Baddeley, 1996), therefore was not as heavily researched immediately after the development 

of the model. As such, we continue to see a deficit in the volume of research on the visuospatial 

sketchpad as compared to the phonological loop. The function of the visuospatial sketchpad is 

defined as the storage and processing of visual and spatial information (RepovŠ & Baddeley, 

2006). The most commonly used test of spatial short-term memory is the corsi block tapping 

task, as developed by Corsi (1972). During the task, the experimenter taps out a sequence on a 

board displaying nine randomly spaced, fixed blocks (as described in Berch, Krikorian, & 

Huha, 1998). The subject must then repeat this sequence in the same order. This test is referred 

to as one of short-term memory as it does not require any active manipulation of the stimuli, 

rather a direct repetition of the sequence the experimenter taps out. The average span score for 

this type of task is around five (Monaco, Costa, Caltagirone, & Carlesimo, 2013), showing a 

lower span than that for digit recall tasks assessing the phonological loop.  

Following the corsi block tapping task being considered a measure of spatial span, a 

measure of visual span was developed, resulting in the visual patterns test. Della Sala, Gray, 

Baddeley, Allamano and Wilson (1999) argue that this task is tapping an area of working 

memory that is dissociable from that tapped by the spatial corsi block task. This distinction 

between visual and spatial has been investigated further to suggest that these elements are 

separable, yet related. One of the first researchers to demonstrate such a distinction between 

visual and spatial elements was (Logie, 1986) who determined that some imagery tasks relied 
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on the visual, not spatial, component (see Klauer & Zhao, 2004 for a review of this literature). 

The opposite had previously been shown by Baddeley and Lieberman (1980). Importantly, 

neuropsychological research has been conducted with patients showing evidence of double 

dissociations between the ability to make spatial imagery judgements about objects (e.g. their 

location in space) and the ability to use visual imagery to make visual judgements (e.g. of shape 

and colour; Carlesimo, Perri, Turriziani, Tomaiuolo, & Caltagirone, 2001; Luzzatti, Vecchi, 

Agazzi, Cesa-Bianchi, & Vergani, 1998; Tresch, Sinnamon, & Seamon, 1993). Further, visual 

involvement was also seen when text processing involved visuospatial information (e.g. 

imagining yourself moving through a space; Mammarella, Pazzaglia, & Cornoldi, 2008; 

Pazzaglia, 1999).  

Moving away from distinguishing between visual and spatial working memory, another 

area of considerable interest to researchers is limitations of duration and capacity. Posner and 

Keele (1967) suggested that visuospatial working memory lasts for only 2 seconds during 

written letter processing, after which point they suggested visuospatial systems were 

superseded by verbal systems. This finding suggests that, in terms of the processing of written 

letters, the immediate code may be visual, but that this is then taken over by a more slowly 

developing verbal code. Baddeley (2011) suggests a possible influence of the length of the 

visual trace (the visual stimuli to be remembered) in this situation. Phillips and Baddeley (1971) 

investigated this claim with non-word visual stimuli, requiring subjects to make same/different 

judgements of matrices. They found a decline in performance as a function of the length of 

time the visual trace was required to be held, similar to that of Kroll, Parks, Parkinson, Bieber 

and Johnson (1970), suggesting that the result identified by Posner and Keele (1967) is more 

likely to result from participants switching from a verbal to visual code due to the use of letter 

as stimuli.  
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Logie (1995, 2001) suggests that rehearsal may occur in the visuospatial sketchpad to 

increase retention time, drawing a distinction between visual and spatial information. He 

suggests that visual information is likely rehearsed in the visual cache, whereas spatial 

information is likely to be rehearsed in the inner scribe. This rehearsal mechanism can be used 

to explain how information can be maintained for longer than the estimated duration of the 

visuospatial sketchpad. Finally, Phillips (1974) highlights the capacity limits of the visuospatial 

sketchpad, showing a decline in performance as a function of the number of cells in the matrix 

used as a stimulus. That being, as the matrix increases in size (e.g. from 4 x 4 to 5 x 5), the 

accuracy of recall declines, giving evidence that the visuospatial sketchpad is a capacity limited 

module. Both temporal and capacity limits will be discussed further in due course.  

Central Executive 

The central executive is the component of the multi-component model where we begin 

to see the influence of attention. Baddeley (2011) states that he views the central executive as 

a homunculus; rather than suggesting the central executive as an explanation for phenomena, 

he describes it as an identification of areas requiring further research in order to understand 

them properly. To this end, Baddeley (1996) suggested four possible functions of the central 

executive: to focus attention, to divide attention, task switching, and to act as a long-term 

memory interface. In cases where patients appear to have lost the functions of the central 

executive due to neuropsychological damage, the term dysexecutive syndrome is often used 

(Baddeley et al., 1997; Baddeley & Wilson, 1988). The naming of these deficits as a syndrome 

suggests that the loss of function of the central executive results in a collection of symptoms 

which regularly occur together, thus making it difficult to ascertain the individual functions of 

the central executive in isolation. Siegel and Ryan (1989) have shown support for the notion 

that the central executive exerts control over the other systems, particularly in the form of 

attentional control, with Adams et al. (2018) adding that this control appears to be strategic. 
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They suggest one example of this strategic control is the initiation of rehearsal strategies to 

prevent the loss of information through decay.  

Tasks assumed to load onto the central executive are generally those that require 

attention to complete, for example counting backwards in 7s from 352 (Baddeley, 2011). This 

is in sharp contrast to the basic repetition tasks used to assess some other components of 

working memory. Is it reasonable in this case to distinguish between short-term memory and 

working memory tasks by suggesting working memory tasks require an executive component? 

One commonly used measure of the central executive is the reading span task whereby subjects 

are required to make a semantic true or false judgement about a sentence as well as retain the 

last word of the sentence. Once all true/false judgements have been made, subjects are required 

to recall the last words in the order they were heard (Daneman & Carpenter, 1980). This task 

is used to predict comprehension skills by predicting an individual’s capacity to draw 

inferences and extrapolate information among other skills demonstrating a definite executive 

component. Cain, Oakhill and Bryant (2004) found that measures of working memory thought 

to access the central executive predicted unique variance of reading comprehension in children, 

in line with the assumption that central executive functions are likely related to more 

demanding cognitive tasks.   

The central executive is also implicated in concurrent task completion, supporting 

Baddeley’s speculation of its role in dividing attention. For example, deficits are seen on both 

tasks when digit span and visual tracking are completed simultaneously, especially when done 

by patients with Alzheimer’s disease (MacPherson, Sala, Logie, & Wilcock, 2007) who are 

expected to show executive functioning deficits. This deficit remains even after task difficulty 

is titrated to show equivalent performance across groups on individual tasks. A finding of this 

nature suggests a dissociable component, thought to be a result of the central executive, highly 
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affected by Alzheimer’s disease, which deteriorates more rapidly than in healthy ageing 

(MacPherson et al., 2007; Morris, 1994).  

With regard to the other proposed functions of the central executive, one such is that it 

acts as an interface with long-term memory. Cowan (2008) suggests that it serves to reduce 

working memory load by grouping the required information into a smaller number of units. 

This suggestion is in line with that of Siegel and Ryan (1989) that working memory holds the 

stimulus information whilst retrieving other information from long-term storage. It is plausible 

that it is this interaction with long-term memory that is responsible for the findings of Baddeley, 

Vallar and Wilson (1987) showing an interaction between phonological and semantic coding 

with memory for semantically related words reaching spans of around 15 words, yet unrelated 

words reaching spans of around 5 words.  

Episodic Buffer 

The episodic buffer is the most recent addition to the multi-component model, added 

as a cross modal memory store to explain the links formed between pieces of information, for 

example names and faces, or other pairings of semantic information held in memory (Baddeley, 

2000). In a review of working memory research in 2011, Baddeley clarified that the episodic 

buffer was included in an attempt to demonstrate the “fractionation of the central executive 

into separate attentional and storage systems”. It is clear that the purpose of the episodic buffer 

is to hold semantic information (Adams et al., 2018), however, Cowan (2008) suggests that it 

may be the episodic buffer that relates more to the focus of attention than do other components 

of the model. As such, the episodic buffer is not specialized for any particular kind of 

information, but may show some stronger experimental links to attentionally driven tasks 

(Adams et al., 2018). Its links to long-term memory are explained by the suggestion that the 

episodic buffer is “assumed to hold integrated episodes or chunks in a multi-dimensional code” 
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(Baddeley, 2011), thus becoming the link between perception, working memory, and long-term 

memory.  

As with all components of working memory, the episodic buffer is also limited in 

capacity, demonstrating a capacity for roughly four chunks of information (Cowan, 2005). It 

was assumed initially to be dependent on the resources of the central executive as the processes 

it was involved in seemed to be attentionally demanding (Baddeley, 2011). Feature binding 

studies have sought to understand these capacity limits more intricately and have revealed a 

capacity of around four objects, regardless of the features required to be remembered (e.g. 

Vogel, Woodman, & Luck, 2001). This suggests the episodic buffer does not distinguish 

between types of information, rather between groups (chunks) of meaningful information. A 

binding deficit only becomes evident when an item other than the final item in the stimulus set 

is probed during recall, suggesting it is the maintenance of bound features against distractions 

that requires additional attentional resources (Allen, Baddeley, & Hitch, 2006). Baddeley, 

Hitch and Allen (2009) found similar results for verbal bindings, demonstrating that concurrent 

attentionally demanding tasks do not interfere with the binding process itself, rather with the 

maintenance of the bound features. The conclusion, therefore, is that the episodic buffer is an 

“important but essentially passive structure on which bindings achieved elsewhere can be 

displayed” (Baddeley, 2011), whilst also allowing for further manipulation after the initial 

binding phase, for example binding phrases into sentences and objects into scenes.  

Capacity Limitations 

The most well-known figure given for the capacity of working memory is Miller’s 

magic number seven (1956). In this number, Miller states that the capacity for working memory 

is seven items plus or minus two; that is capacity should range from five to nine items. 

However, this figure was derived from measures of short-term memory that do not necessarily 

reflect the ability to hold unrelated information in mind, not least perform manipulations on 
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the information. Cowan (2008) suggests that the figure might be relatively accurate in adults, 

though suggests that not all items are stored as a separate entity. Many researchers have claimed 

that the limit is more likely around three or four units of information when strategies to 

overcome capacity limits are accounted for (Broadbent, 1975; Cowan, 2001; LeCompte, 1999; 

Warfield, 1988). Further claims have also been made regarding visual working memory, 

estimating its capacity at three to five items in young adults (Cowan, 2010), consistent with 

verbal working memory estimates. Baddeley (1996) states that capacity has been reached when 

the “first item has faded from memory before the last item has been processed”, suggesting that 

typical memory capacity is likely to be around six to seven digits because serial order is lost 

beyond this point (Baddeley, 2011). He places an emphasis on the loss of serial order as 

defining the upper limit of working memory because many tasks in everyday life are reliant 

upon serial order, including language or the necessary steps for executing a skilled action such 

as kicking a ball (Baddeley, 2011). Without the ability to retain these chunks of information in 

a serial order, all meaning would be lost.  

Semantics and attention also seem to play a part in capacity, as capacity for lists of 

semantically dissimilar words may be reduced because of the lack of detail captured for 

complex items (Adams et al., 2018). Semantically similar lists also provide a smaller number 

of possibilities subjects can recall from. With regard to attention, word lists that were ignored 

at the time of presentation, rather than immediately recalled, are typically recalled with a span 

of 4 plus or minus one item (Cowan, 2001). Cowan suggests this may be more reflective of 

capacity as no strategies such as rehearsal or chunking are being deployed. A large amount of 

inter-individual variation is evident in capacity, varying from two to six items in adults, but 

fewer in children (Cowan, 2008; Gathercole, Pickering, Ambridge, & Wearing, 2004), with 

capacity limit seeming to correlate with cognitive aptitude (Cowan et al., 2005). Baddeley et 

al. (1975) and Baddeley (1986) proposed that working memory capacity is dictated by the 
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number of items that can be read or recited in a two second window, indicating that capacity 

may also be bound by time constraints of how many items can be recalled before decay begins 

to take effect. Barrouillet, Bernardin and Camos (2004) agreed in principle with this notion, 

however suggested that refreshing of information could be done via attention and was not 

necessarily dependent on rehearsal, as had previously been suggested by Baddeley. They 

proposed that high cognitive load/ distractor tasks engage attention elsewhere and prevent 

refreshing. A combination of these two explanations could be used in conjunction to explain 

more recent results (e.g. Camos, Mora, & Oberauer, 2011; Vergauwe, Barrouillet, & Camos, 

2010) who showed that adults prefer to use attentional refreshing when stimulus materials 

contain phonologically similar items, relying on rehearsal when a concurrent task is 

attentionally demanding, but that verbal and visuospatial recall is reduced when completing a 

concurrent task that is high in cognitive load. We also see some evidence of intra-individual 

variation, for example in individuals with developmental disorders (e.g. Alloway, Gathercole, 

Kirkwood, & Elliott, 2009). This study compared the working memory profiles of individuals 

with different developmental disorders in order to highlight strengths and weaknesses. It 

demonstrated that those with language impairments demonstrated deficits in verbal working 

memory, whereas those with motor impairments showed deficits in visuospatial working 

memory. The remaining areas of working memory functioned as expected in each case. This 

indicates the possibility that a single individual may have a relatively uneven working memory 

profile, though this is not always to a clinical level associated with a developmental disorder, 

as seen in Alloway et al. (2009). We see a similar pattern with regard to amnesic patients who 

show preserved capacities for some elements of working memory, yet severe deficits in other 

areas as a result of brain lesions (e.g. Baddeley & Wilson, 1988, 2002).  

One area particularly pertinent to this project is the development of working memory 

throughout childhood. A plethora of studies have investigated this and have demonstrated that 
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children as young as four years of age have a working memory profile that fits relatively well 

with the multi-component model (e.g. Gathercole et al., 2004), with its systems seemingly 

separable across childhood (Jarvis & Gathercole, 2003; Pickering, Gathercole, & Peaker, 

1998). Pickering et al. (1998) evidenced this by showing that the phonological loop and 

visuospatial sketchpad are independent structures in children aged five and eight years old. 

Gathercole and Pickering (2000) then went on to determine that the central executive and 

phonological loop are separate but associated in six and seven-year-old children, which is also 

in line with the adult model. Findings of this nature suggest that development may be 

responsible for increasing the capacity of each of the individual components, rather than 

undergoing a fundamental change in structure. It is, however, suggested that the visuospatial 

sketchpad is not dissociable from the central executive in six and seven-year-old children, 

indicating that there may be some element of structural change before children reach adulthood 

(Gathercole & Pickering, 2000), particularly relating to the higher-order executive components 

of working memory. Verbal and visuospatial components appear to be independent of each 

other in 11 and 14-year-olds (Jarvis & Gathercole, 2003), consistent with findings 

demonstrating this in younger children, with Gathercole et al. (2004) suggesting that structure 

and capacity appear to be adult-like by the mid-teenage years.  

There is some discrepancy around the age at which we begin to see these increases in 

capacity with the earliest proposition being that this begins at 4 years of age (Gathercole et al., 

2004) in the phonological loop, central executive, and visuospatial sketchpad. Children’s 

visuospatial (counting arrays of coloured spots) and verbal (memory for a series of tones) 

working memory was demonstrated to improve with age (Cowan, Li, Glass, & Scott Saults, 

2018). However, Adams et al. (2018) questioned whether these improvements were the result 

of increased capacity, or due to improvements in processing speed (allowing quicker 

refreshing). This is not a question that is easily answerable without conducting studies using 
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methods to prevent rehearsal and refreshing, but these kinds of tasks are very difficult to do 

with children due to the additional task demands of concurrent tasks or articulatory 

suppression. Many other studies have demonstrated similar findings for working memory 

capacity increase in sentence span and counting span (Siegel & Ryan, 1989), change detection 

(Riggs, McTaggart, Simpson, & Freeman, 2006), and visual patterns task and block tapping 

(Logie & Pearson, 1997), while some studies have attempted to distinguish capacity growth 

from other cognitive factors. Cowan (2016) and Cowan et al. (2018) suggested that results 

indicated that working memory capacity was increasing across development even after 

accounting for other cognitive factors such as distractibility and rehearsal.  

Paying particular regard to processing speed, memory decay is known to have a large 

influence on children’s memory span (Towse, Hitch, & Hutton, 1998). Children with a faster 

processing speed generally have higher working memory spans, suggesting that processing 

time is an important limiting factor for the amount of information children are able to hold in 

their working memory. Case, Kurland and Goldberg (1982) demonstrated this by showing a 

linear relationship between processing speed and memory capacity on a counting span task. 

These results suggest that older children are faster at the processing portion of the task and, 

hence, were able to hold more information in their working memory. One reason for this is that 

stored items may be lost if the processing phase takes longer, because stored information begins 

to decay before it is refreshed (Towse & Hitch, 1995). Interestingly, in the Case et al. (1982) 

study, adults completing a counting span-type task using nonsense words reflected the 

performance of six year olds on the counting span task. It was suggested that the familiarity of 

the non-words was relatable to the six-year-olds familiarity with counting words and may 

highlight a trade-off between processing and storage because more memory was devoted to 

remembering an unfamiliar sequence. When processing was faster, more resources were 

available for storage and hence participants scored higher on the task (Towse et al., 1998). It is 
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reasonable then to suggest that we may not be seeing such a vast increase in working memory 

capacity as originally thought, and rather an improvement in processing speed, leading to less 

forgetting. This is the conclusion drawn by Towse and Hitch (1995) who found that “for each 

age group, span was a function of the total duration of the counting operations. Complexity of 

counting had no effect beyond that attributable to count duration”. That is to say that storage 

and processing are independent of each other, and children complete these tasks by switching 

between processing and storage. They argued it is unlikely that a result of this nature is due to 

shared resources due to the lack of influence of counting complexity. These results highlight 

the importance of using scaled scores in order to make direct comparisons between different 

age groups on working memory measures as the findings taken together suggest continuous 

development and improvement in capacity from four or five years of age to adulthood.  

One potential way to counter the capacity limits of working memory is to employ 

chunking as a strategy. This strategy groups information into a smaller number of units of to-

be-remembered information. Broadbent (1975) suggested that chunks typically comprise three 

items, for example when participants were asked to recall states in the US, they typically 

recalled them in groups of three. However, when investigating the number of chunks recalled, 

a number of studies propose that this may increase (e.g. Ottem, Lian, & Karlsen, 2007) due to 

strategy development (e.g. Case et al., 1982; Towse, Hitch, & Skeates, 1999), and language 

ability (e.g. Ottem et al., 2007). One possible mechanism for this finding in terms of language 

ability is an increase in the ability to form associations between items. Gilchrist, Cowan, & 

Naveh-Benjamin (2009) investigated this over development and demonstrated that the number 

of chunks recalled increased as a function of age, however found no evidence that the amount 

of information contained in each chunk changed. In a developmental population, Pascual-

Leone (1970) has previously identified that the number of chunks remembered by children 

increased with age as older children were able to remember more stimulus-instruction bindings, 
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suggesting this finding is relatively robust. Running span tasks make chunking difficult as the 

participant is unaware of when the list will end, therefore recall appears to be limited to three 

to four items (Bunting, Cowan, & Scott Saults, 2006), as explained previously regarding 

working memory capacity. However, Tulving and Patkau (1962) suggested that it is possible 

to facilitate chunking, in which case subjects were able to recall four to six chunks of 

information. They also identified that the number of items per chunk in their study was related 

to how similar the non-words used were to English words, thus suggesting that familiarity and 

semantics may influence the size of chunks formed. Additionally, free recall and long lists 

seemed to facilitate chunked recall, as in Chen and Cowan (2005), who demonstrated that six 

pairs were remembered as well as six individual items. Early work by Glanzer and Razel (1974) 

seems consistent with more recent work that three to four chunks is the likely limit, although 

the size of each of the chunks is still to be understood.  

Temporal restrictions 

As mentioned previously, working memory is very short lived and cannot be brought 

back once lost through decay. Though the exact time limit is disputed, all estimates are in the 

order of seconds. Baddeley (1996), referring to the phonological loop, suggested that decay 

occurs in two to three seconds without rehearsal, whereas Engle (2002) proposed that non-

rehearsed material will be lost in around 20 seconds. Keppel and Underwood (1962) 

demonstrated that three items could be recalled equally well after different delay periods when 

no previous lists had been presented, thus suggesting working memory may last for longer than 

first thought. However, this finding is ungeneralizable to real life as human beings very rarely 

encounter truly novel situations where no previous experience is available to cause 

interference.  

In order to try to negate the effects of time, it is possible to mentally rehearse stimuli to 

revive the memory trace (Baddeley, 1996), effectively resetting the clock on memory decay. 



46 
 

Rehearsal as a practice becomes less effortful with age (Guttentag, 1984), but as a process is 

poorly conceptualized (Baddeley, 1996). Baddeley suggests it becomes less effortful with age 

because it relies on introspection, which is beyond the capabilities of young children. Rehearsal 

is usually done subvocally, though covert rehearsal can achieve the same maintenance effect, 

particularly in visuospatial working memory paradigms (Godijn & Theeuwes, 2012). In line 

with his model of working memory, Cowan (1992) suggested that mentally attending to the 

stimulus materials could reactivate the memory sufficiently well as to function as a form of 

rehearsal. Support for this idea was found when Barrouillet et al. (2004) and Barrouillet, 

Bernardin, Portrat, Vergauwe, & Camos (2007) demonstrated that including an attentionally 

demanding task between the to-be-remembered items reduced recall. One explanation for this 

is that attention is “used up” by the distractor tasks, leaving insufficient amounts of a limited 

resource to attend to the to-be-remembered information. A similar method used to prevent 

rehearsal is articulatory suppression (Alloway, Kerr, & Langheinrich, 2010; Baddeley et al., 

1975) which has been shown to impair tasks in the verbal domain.  

A body of research also exists surrounding the use of visual rehearsal, suggesting that it is 

possible to detect eye saccades when subjects are using visual rehearsal strategies (Tremblay, 

Saint-Aubin, & Jalbert, 2006), indicating that the mechanism for this type of rehearsal might 

be similar to that of “retracing your steps”, which may in turn be different to using visual 

imagery. Tremblay et al. (2006) highlighted this as a successful form of rehearsal, showing that 

greater overt visual rehearsal leads to better serial recall over and above the effects of rehearsal 

based on shifting spatial attention. This is concluded because preventing overt rehearsal 

lowered performance to levels equal to when no rehearsal took place. Visual rehearsal is shown 

to induce activation in the contralateral early visual processing areas relative to the presentation 

of the stimulus (Awh et al., 1999), highlighting one potential mechanism by which rehearsal in 

the visual domain may operate.  
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As previously mentioned, visual imagery can also be used to overcome the temporal limitations 

of working memory, however, is less practiced than rehearsal so relies on the central executive 

to a greater extent because of this (Baddeley, 1996). Visual imagery has been shown to improve 

retention for the purpose of comprehension of texts (Chan, Cole, & Morris, 1990), however, 

like other rehearsal strategies, is not flawless. Visual methods were impaired when subjects 

completed a concurrent spatial task, thus suggesting that the same underlying component is 

depended upon for each task (Gyselinck, De Beni, Pazzaglia, Meneghetti, & Mondoloni, 2006). 

As these results suggest, interference can be seen for visual techniques resulting from a 

distractor in the same domain, for example visual noise can be seen to disrupt visual 

maintenance (Quinn & McConnell, 2006).  
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3 

Mathematics 

Pre-school development of mathematics 

Development of number sense 

Despite the intuitive expectation that mathematics education begins once children enter 

formal schooling, a significant part of a child’s basic understanding of number and mathematics 

develops before they reach school age (Mcintosh, Reys & Reys, 1992). This development is 

termed “number sense”. Butterworth (1999) proposed that “number is an innately specified 

module” in human cognition, indicating that humans have an inborn capacity to represent, 

process and understand number (Dehaene, 2001). This supposition is supported by Dehaene 

(2001) who defines number sense as “our ability to quickly understand, approximate, and 

manipulate numerical quantities”. This definition emphasises the rapid nature of the ability, 

suggesting that, particularly at this age, the ability in question is a non-symbolic representation 

(Bonny & Lourenco, 2013). Number sense is particularly relevant to humans’ capacity to 

discriminate between sets of different sizes (Giaquinto, 2018), making comparisons of their 

size/magnitude relative to each other (Mcintosh et al., 1992). As expected, number sense 

develops with experience (Mcintosh et al., 1992).  

 Dehaene et al. (1999) suggests two systems of representation: approximate and exact. 

They suggest that approximate representations are analogue and independent of language, with 

the variability in the signal elicited proportional to the magnitude of the set size. Conversely, 

exact representations are both language and culture dependent. Dehaene et al. (1999) posit that 

exact representations of numbers are discrete and represented using integers. Each of these 

representations explains different findings from the literature, strongly suggesting that both 

have roles in development (Ansari & Karmiloff-Smith, 2002; Carey, 2001; Dehaene, 2011) 
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and providing evidence that numbers can be represented in different ways, and that these 

different ways may be more or less helpful or appropriate depending on the situation (Mcintosh 

et al., 1992). An extension of this model of representation is the triple code model, proposed 

by Dehaene and Cohen (1995), proposing that numerical information can be represented in 

three ways: analogue (as described previously), verbal (numbers as strings of words), and 

visual Arabic (digits). Dehaene (2001) goes on to explain that language, culture, and teaching 

are responsible for developing the lexicon, written notation, and formal procedures for 

completing formal maths.  

The latter is an intuitive claim since it is these formal operations children begin to learn 

when they enter formal schooling, however, the lexicon, and often written notation, begin to 

develop before formal schooling begins. Hence, mathematical learning does not begin at the 

point of school entry; it is evident long before this point. Analogue, verbal, and visual Arabic 

representations are often seen as modular representations in young children, thus explaining 

many of the errors young children make when learning mathematics, such as misreading, 

incorrect comprehension, transformations, incorrect processes, and inaccurate encoding 

(Watson, 1980). However, as mathematical cognition begins to develop and improve, these 

representations become less modular and so fewer of these types of errors are made. Fewer 

modular errors are the result of the emergence of transcoding. This means information can be 

translated directly from one form to another, and develops as children begin to develop their 

understanding of number. However, new procedures developed through instruction must 

cohere with the child’s current understandings of mathematics (Resnick, 1984). As a result, 

children are able to understand mathematics, rather than rely solely on fact retrieval and 

repetition. Although, some elements of mathematics do rely more heavily on fact retrieval than 

others, for example multiplication tables (De Smedt & Boets, 2010; Imbo & Vandierendonck, 

2007). Nevertheless, we can observe the use of transcoding in these situations as calculations 
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are based on a set of input and output codes, and often recited as verbal associations between 

strings of words, however, can also be recognised in written form. Addition facts can be 

checked for whether the proposed answer is likely to be correct by judging the distance between 

the operands and the answer given (Dehaene, 2001), however, this is not as easy to do for 

operations such as multiplication. Hence the increased reliance on memorisation. Dehaene 

(2001) suggests that close approximations in multiplication are often more confusing because 

the answers for neighbouring calculations are also activated in response to the calculation in 

question (see Baroody, 1992 for an explanation).  

Considering the comparison of numerosity, object file theory proposes that each object 

is stored in a different file, hence sets can be compared based on their quantity by way of one-

to-one correspondence between the number of “full” drawers (Carey, 2001; Simon, 1997; Uller 

et al., 1999). However, one of the major constraints of this theory is that the magnitudes that 

can be compared are limited by the number of available files. Some researchers argue that 

discrimination of numerosity follows Fechner’s law (Dehaene, 2001), a generalisation of 

Weber’s law, stating that as quantities get larger, a greater difference between the two 

quantities to be discerned is necessary for their accurate distinction. The time taken to compare 

numbers has also been proposed to take longer when the magnitude effect increases (this is the 

smaller number of the two to be compared – the larger the smaller number of the two, the longer 

the comparison will take) and the distance effect decreases (this is the distance between the 

two numbers to be compared – the closer the two numbers are in the number sequence, the 

longer the comparison will take; Giaquinto, 2018). Giaquinto (2018) highlights that magnitude 

comparison is also more error prone in these situations. However, this is countered by Inglis 

and Gilmore (2014) who argue that explaining the acuity of the approximate number system 

using Weber fractions and numerical rations demonstrates poor test-re-test reliability. They 

also indicate that numerical ratios are not related to measures of Weber fractions or accuracy, 
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and that Weber fractions produce skewed data sets. Studies of this nature suggest that 

researchers making assumptions on the approximate number system based on these measures 

should exercise caution in the conclusions they draw.  

Gallistel (1990) proposed that number sense developed evolutionarily to track food 

sources, predators, and mates. The sense was necessary to make comparisons to determine 

where is “more”. One major difference between these proposed origins and current research 

around the approximate number system is the inclusion of numerals. Learning symbols for 

words is never found in the wild, this aspect always requires training, suggesting that exact 

symbolic processing is not used by animals, but is not beyond their capabilities with very 

specific training (Dehaene, 2001).  On the other hand, non-symbolic representations are readily 

available, hence these skills developing before formal schooling begins (Mcintosh et al., 1992). 

Number sense is argued to be a single entity that develops from infancy to adulthood (Lipton 

& Spelke, 2003) as evidence shows that ability to successfully discriminate between 

numerosities requires a smaller ratio in 9-month olds (a ratio of 1.5) than in 6-month olds (a 

ratio of 2). As previously mentioned, this evidence should be interpreted with caution, given 

that ratios are the quoted measure, however, this is the measure used in the vast number of 

studies of this kind. Early work with human infants demonstrated the ability to distinguish 

exact numbers for sets up to set size three (Antell & Keating, 1983; Starkey & Cooper, 1980; 

Strauss & Curtis, 1981), as well as the ability to discriminate between quantities of two and 

three (Ansari & Karmiloff-Smith, 2002; Starkey & Cooper, 1980; Strauss & Curtis, 1981). This 

evidence of the early ability to make distinctions between numerosities does, however, appear 

to be limited to set sizes up to three. Feigenson & Carey (2005) showed infants are not able to 

extend the same principles to differentiate between one and four, suggesting infants may lack 

the cognitive access to cardinal numbers above three (Giaquinto, 2018).  
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The fact that infants fail discrimination tasks at quantities above three suggests they are 

subitizing, rather than applying analogue processes to do such tasks (Ansari & Karmiloff-

Smith, 2002). Assuming infants are subitizing during these tasks also relates well to the effect 

of the distance between the numbers being compared (Dehaene, 2001). In defining subitizing, 

Dehaene and Cohen (1994) state it is “the ability to rapidly name the numerosity of a set of 

simultaneously presented objects when it is below three or four, but not beyond”. That is that 

it is a visual process (Mandler & Shebo, 1982; Trick & Pylyshyn, 1994) possible only for the 

set sizes for which infants can successfully pass the task. Since this is a visual process, one 

may therefore expect that subitizing may relate to visuospatial working memory, particularly 

in early mathematics learning. Studies have investigated the stability of subitizing ability in 

primary school children, showing an ability to identify whether a display contains one, two, or 

three items using this method (Benoit, Lehalle, & Jouen, 2004). Le Corre and Carey (2007) 

found children aged 3-5 years old could state how many items were in a set up to set size four 

when cards were presented too quickly for the dots to be counted. This finding suggests a 

development in subitizing ability since infancy, with accuracy on this task indicating that these 

children have enduring representations of these set sizes (Giaquinto, 2018). With regard to the 

developmental trajectory of subitizing, adults demonstrate the ability to make successful 

quantitative judgements for quantities up to four (Ansari & Karmiloff-Smith, 2002), indicating 

its stability beyond early childhood.  

Beyond the ability to subitize with very small set sizes, infants are able to make 

successful judgements between four, eight, and 16, showing that they possess the ability to 

represent quantities greater than four (Brannon, 2002), though through a different mechanism. 

It can be argued that this provides evidence for the emergence of analogue representations in 

later infancy. Further evidence for the development of quantitative judgements is brought by 

Wynn (1992) who demonstrated the ability of five-month olds to track basic manipulations of 
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addition and subtraction. Infants of this age showed surprise when they observed a different 

number to the expected total of objects behind a screen when they have watched them being 

placed there. Wynn suggests this provides evidence that the infants are able to compute basic 

arithmetic as they know what to expect having watched the manipulation take place, however, 

this could also be due to their ability to keep track via object-file theory (Dehaene, 2001). 

Evidence against an alternative explanation to object-file theory shows infants are able to 

distinguish between eight and 16, given that object-file theory would provide insufficient 

capacity for such a task (Xu & Spelke, 2000). Further, evidence in support of hypotheses that 

infants are responding to number, rather than total area and other alternative explanations, 

comes from Kobayashi, Hiraki, Mugitani and Hasegawa (2004) and Kobayashi, Hiraki and 

Hasegawa (2005). They found that children looked for longer when the number of toys dropped 

behind an opaque screen was unequal to the number of collision sounds they heard when the 

rate and total duration of the sounds was controlled for. Giaquinto (2018) argues that the results 

seen are not the result of recognising because the representations tested are too short term, and 

must be enduring to be considered true recognising. This being the case, the children must be 

forming new representations each time in order to make comparisons.  

With regard to making comparisons in older, more experienced individuals, numerical 

benchmarks are often used to provide “mental referents for thinking about numbers” (McIntosh 

et al., 1992). Generally, those such as midpoints, multiples of 10 or 20 are used to judge number 

magnitude, as are rounded numbers in order to make calculations easier to process. 

Understanding there is an “orderliness” to numbers, another skill that develops later as children 

become more familiar with numbers, which often manifests itself in patterns, for example 

orders of 10 (McIntosh et al., 1992), is also useful for completing calculations. Humans tend 

to use numerical distance to make estimates for calculations (Ashcraft & Stazyk, 1981). Having 

in mind an approximate answer to a given calculation can then be used to help with the 
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identification and rejection of obviously incorrect results. The number size effect can, however, 

interfere with both accurate and approximate calculations, meaning larger numbers often lead 

to slower and more error prone calculations than smaller numbers (Dehaene, 2001). That being 

said, human adults are quicker at distinguishing between digits with greater distance between 

them than those closer together, including two-digit numerals. Dehaene, Dupoux and Mehler 

(1990), suggesting that the evidence we see in infants and animals still holds in adults, even 

though they also possess the ability to complete complex problems with accuracy. That these 

effects are still seen in adults is suggestive of a common underlying mechanism used by both 

infants and adults of converting symbolic representations of number into their analogic forms 

before completing comparison tasks (Dehaene, 2001). This mechanism appears then to be 

pervasive across development, but seems more strongly influential in formal mathematics in 

children who are weaker in mathematics (Bonny & Lourenco, 2013). McIntosh, Reys and Reys 

(1992) argue that inefficient strategy use is an indicator of poor number sense because it 

demonstrates a lack of awareness of the different representations available for calculations, as 

well as the different methods available. For example, those with poor number sense often revert 

to remedial counting strategies, rather than use approximation, which is usually borne of 

practice and familiarity. It is important to note, however, that approximate number system 

measures on different tasks in adults were unrelated (Gilmore, Attridge, & Inglis, 2011), 

suggesting that it may not be a singular, unitary system responsible for number sense over the 

lifespan.  

Counting principles 

The counting principles are five, arguably implicit, principles that children must 

understand in order to be considered able to count and understand the count sequence (Gelman 

& Gallistel, 1986). These principles have been shown to be highly influential in children’s 

future development in mathematics so warrant discussion here. They are: 
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1. Stable order 

2. One to one correspondence 

3. Cardinality  

4. Abstraction  

5. Order irrelevance 

This section will address each of these principles in turn in order to understand what 

each refers to.  

Stable order 

Stable order refers to the understanding that the numbers in the count sequence must 

remain in the same order and cannot be substituted. LeFevre et al (2006) argue that the stable 

order principle is in place by kindergarten, suggesting very early development, most probably 

due to the early exposure of children to the count sequence. Gelman and Meck (1983) 

previously argued that three and four year olds recognise the use of the number sequence, being 

able to identify instances of incorrect order, however, it was counter-argued that simply 

producing a string of number words in a particular order does not mean that the children 

understand sufficiently to be classified as grasping the principle (Fuson & Hall, 1983). Children 

of three and four years of age also struggled to identify cases where a number had been skipped, 

indicating a less than thorough understanding of the correct number sequence. Further evidence 

was also provided for counting in a stable order, even if the count sequence was unconventional 

(Baroody & Price, 1983), meaning that evidence of stable order does not always indicate a true 

understanding of what the count sequence should be.  

One to one correspondence 

One to one correspondence refers to the acknowledgement that each item in the array 

corresponds to one number in the count sequence. In this way, each item should be counted 
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once and only once. Wynn (1992) explains that evidence from young children implies this 

principle is in place by two to three years of age, despite previous arguments that it is not 

evident children understand this principle until the age of four and five years (Briars & Siegler, 

1984). Wagner and Walters (1982) argue that children do not exhibit adherence to this principle 

until later than Gelman and Gallistel (1986) claim, rather they have a tendency to re-count 

items in the array until their count sequence has been exhausted. Baroody and Price (1983) 

found no evidence that this was the case, however, only examined the counting of four 

preschool children. A sample of this size cannot be used as sound evidence against the 

argument of Wagner and Walters (1982), however, provides scope for further investigation 

regarding the age at which this principle is successfully and consistently applied by children 

learning to count. Importantly in this debate, children of three and four years of age are able to 

accurately detect when a puppet double counts or skips an object in an array (Gelman & Meck, 

1983), indicating that these children have understood that each item should be counted once 

and only once.  

Cardinality  

 This is the understanding that the final number in the count sequence used when 

counting items in an array represents the total set size (Bermejo, 1996). Children are able to 

count sets of items months earlier than they become aware that the final number in the count 

sequence represents the quantity (Fluck, 1995), but do not recognise the association between 

these two concepts; an association that is influenced by mothers’ interaction with their children 

when asking children to ‘count’ and ‘how many’ (Fluck, 1995). Approximately 50% of the 

preschool children tested by Freeman, Antonucci and Lewis (2000) demonstrated the ability to 

recognise a correct count or a miscount, showing an emerging understanding of the relationship 

in this age group, however, that this is by no means universal. Their finding is in line with that 

of Wynn (1990) who argued that only children older than three and a half years understood the 
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cardinality principle. The findings of Freeman, Antonucci and Lewis (2000) also support those 

of Gelman and Meck (1983) who demonstrated that three to four year olds recognised the error 

in a count when the number given as the total was not the same as the final number in the count, 

however, stretched our understanding further by suggesting children are able to also identify a 

miscount if objects have been missed or double counted. The existing literature is relatively 

consistent in suggesting children begin to develop an understanding of cardinality around three 

to four years of age.  

Abstraction  

Abstraction concerns the acknowledgement that not only physical objects can be 

counted. Children are thought to understand the principle of abstraction when they are able to 

count things that are not tangible to them, such as time, planets, distance, etc. Wynn (1990) 

suggests that children have begun to understand the abstraction principle by around two to three 

years of age as they are able to count sounds and actions, as well as objects. Children of this 

age were most successful when counting objects, but most were able to count the sounds and 

actions accurately.  However, Starkey, Spelke and Gelman (1990) argue that infants understand 

the abstraction principle much before they are able to speak, demonstrating an awareness of 

numerosity in different modalities. One potential explanation for why such young infants are 

able to do this is proposed by Greeno, Riley and Gelman (1984) who define abstraction as an 

“absence of restriction” as opposed to a constraint. In such a way, children may not be able to 

articulate what they are doing, but still be unhindered by restrictions placed on the to-be-

counted set.  

Order irrelevance 

This principle refers to the understanding that items in a set can be counted in any order 

without changing the cardinality and is described as the principle that “distinguishes counting 

from labelling” (Gelman & Meck, 1983). Whilst Gelman and Meck (1983) demonstrated that 
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children aged three to four years old do not object to objects being counted in a random order, 

later studies have shown that most five to 11 year olds believe order is important (Kamawar et 

al., 2010). In this study, children showed preferences for left-right or top-bottom counting. 

Only a small number of 10-11 year olds counted in an order-irrelevant way, suggesting that 

this principle may not be fundamental to one’s ability to count (Kamawar et al., 2010). Baroody 

(1993) argues that children do not show evidence of understanding that counting objects in a 

different order produces the same answer, instead arguing that children are able to understand 

that they can assign tags to objects in any order before they understand that this does not alter 

the cardinality of the set (Baroody, 1984). Hence, assigning tags can be seen as a less 

developmentally advanced task than understanding the implications for set size (Baroody, 

1984). To add to this, Cowan, Dowker, Christakis and Bailey (1996) demonstrated that children 

were more likely to state that a recount would produce the same total when they did not have 

to say what that total number would be. In doing so, they suggest that children may be less 

confident in their own counting abilities but are aware that the set size will not have changed. 

Findings such as these suggest there may be different levels of understanding of this principle.  

With regard to the application of these principles in everyday life, Wynn (1990) argues 

that children learn the words for, and meanings of, smaller numbers first. This is a logical claim 

since children are more likely to be exposed to these words first when taught to count in order, 

beginning with “one”. It is reasonable to suggest that stable order, one to one correspondence, 

and cardinality underlie early counting as order irrelevance and abstraction do not directly have 

a negative influence on a child’s ability to count. However, Butterworth (2005) suggests a more 

structured acquisition, with stable order developing first, followed by one to one 

correspondence, and then cardinality. Evidence for this comes from children’s ability to count 

a set of objects before they are able to answer the question “how many?” (Frye, Braisby, Lowe, 

Maroudas, & Nicholls, 1989). Understandably, children’s counting is often superior to their 
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ability to detect principle violation errors (Briars & Siegler, 1984), providing evidence for the 

argument that counting develops initially, followed by the understanding of the principles. In 

support of this, Briars and Siegler (1984) demonstrated that younger children were less likely 

to object to unusual counting orders (indicating some level of understanding of the order 

irrelevance principle), as well as one to one correspondence and stable order violations 

(conversely indicating a lack of understanding of these principles). On the other hand, Stock, 

Desoete and Roeyers (2009) found that more children had developed an understanding of the 

one to one correspondence principle than the stable order and cardinality principles by the end 

of kindergarten. Some level of caution must be applied when interpreting these results with 

regard to rate of development of understanding due to the differences in administration of the 

measures. Some studies require children to count themselves, whereas others require children 

to moderate the counting of a puppet or the experimenter. To this end, there may be an influence 

of both confidence in their own ability, or misunderstanding the purpose of the questioning 

techniques, for example thinking they have been asked to recount because they miscounted 

initially. The effect of set size should also be considered. For example, Gelman and Meck 

(1983) identified no effect of set size on children’s ability to apply the counting principles, but 

the children were not required to do the counting themselves, thus reducing the task demands. 

The effect of set size was, however, present when children counted the objects for themselves. 

The ability of children to apply the principles to the counting of a puppet suggests that they 

grasp the principles before they fully master the ability to count confidently themselves.  

Development of mathematics in school 

Entering school signifies the beginning of learning formal calculations to build on the 

principles children have learned beforehand. Numeracy is defined as “a high degree of ability 

to cope with current mathematical demands on the community” (Crowther, 1959, in Mcintosh 

et al., 1992). In order to develop this competence, children are taught according to a spiral 
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curriculum, first introduced by Bruner (1960) with the hypothesis that “any subject can be 

taught in some intellectually honest form to any child at any stage of development”. To this 

end, younger children are taught the foundational principles first and these are then followed 

by the more complex aspects later, building on prior knowledge. A spiral curriculum aims to 

break down the divides seen between subjects in the curriculum (Harden, 1999) and build 

knowledge through “an iterative revisiting of topics, subjects or themes throughout the course”. 

Each time a topic is revisited, subject knowledge is extended, and currently understood 

principles are built upon to ensure further understanding is built on solid foundations. Bruner 

(1960) states that “the end state of this process [is] eventual mastery of the connexity and 

structure of a large body of knowledge”, meaning that a curriculum designed in this way should 

lead children to reach a level of understanding that can be described as mastery of the subject, 

as opposed to relying on recall. A spiral curriculum provides value through reinforcement, 

moving from simple to complex, using integration, logical sequences, higher level objectives, 

and flexibility (Harden, 1999).  

Schmidt, Houang and Cogan (2002) suggested that a few pre-requisite topics were 

covered in the early years, with more complex topics covered in the later years. This reflects 

the spiral curriculum leading to positive outcomes as this pattern was identified in countries 

where children performed well in maths. Snider (2004) argues that the spiral curriculum 

disadvantages children from low social economic backgrounds, however, this paper was 

written around schools in the United States and so does not directly compare to schools in the 

UK, but does still provide an important point for consideration. As an alternative, following 

the argument that the spiral curriculum encourages topics to be taught one year then forgotten 

about before being returned to the following year, Snider (2004) suggests a strand curriculum 

in which topics are addressed for a long period of time and in a great deal of depth until mastery 

is reached. Snider suggests that a strand curriculum is less likely to discourage integration 
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across topics than a spiral curriculum. Another disadvantage of the spiral curriculum is 

highlighted by Gibbs (2014) who highlights an important issue that teachers engage with the 

curriculum in different ways and may not necessarily pick up where the child’s previous 

teacher left off. Hence, the spiral may not always function effectively. He suggests the way 

around this is team/collective planning within teaching communities or schools to identify 

exactly where children will have reached in their understanding before they are picked up by 

their subsequent teacher. He also suggests that the spiral should also occur within each year 

itself to encourage the development of academic skills and the use of processes of increasing 

complexity. One suggestion of how this can be achieved is through the amount of scaffolding 

in place during the instruction phase, with this scaffolding being removed as the year goes on 

and children develop competence. Importantly, in any curriculum design, there is a need for 

coherence (Knight, 2001), which should be achievable easily in a spiral curriculum as it should 

be evident how topics build on one another. The design of the curriculum is a critical factor in 

student achievement in mathematics (Crawford & Snider, 2000), in which information should 

be linked directly back to the previous time it was visited both to reinforce what was learned 

previously and to create links between the information (Dowding, 1993).  

Primary Mathematics National Curriculum in the UK 

The National Curriculum in the UK is divided into four key stages, however, here I will 

focus on Key Stages One and Two as these span primary school. The aims of the National 

Curriculum are as follows: 

1. “Become fluent in the fundamentals of mathematics, including varied and frequent 

practice with increasingly complex problems over time, so that pupils develop 

conceptual understanding and the ability to recall and apply knowledge rapidly and 

accurately”. This first aim shows a clear link to the idea of a spiral curriculum, 
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building on previous knowledge to develop understanding, however, one important 

aspect of this to be mindful of is that children who have not achieved proficiency in 

one stage will not be able to build upon their knowledge effectively at a later stage 

(Department for Education, 2013). This is akin to building a house without solid 

foundations; the structure of the resulting building will not be sound.  

2. “Reason mathematically by following a line of enquiry, conjecturing relationships 

and generalisations, and developing an argument, justification or proof using 

mathematical language”. This aim requires sound mathematical understanding at 

each stage to achieve as it relies heavily on abstract concepts. Further, “following a 

line of enquiry” is likely to load heavily on working memory so may prove 

incredibly difficult for those children with very poor working memory capacity.  

3. “Can solve problems by applying their mathematics to a variety of routine and non-

routine problems with increasing sophistication, including breaking down problems 

into a series of simpler steps and persevering in seeking solutions”. In order to do 

this, children must have a thorough understanding of abstract concepts to be able to 

apply them to novel situations. Breaking tasks down into simpler steps does suit 

those with poor working memory, however, not necessarily so if they must form 

these smaller steps themselves.  

These aims highlight how interleaved the topics taught on the National Curriculum are. 

They are separated necessarily for teaching purposes, but children should be in a position to 

“make rich connections” across ideas once they have understood each topic. There is a certain 

degree of flexibility for when each topic is introduced, as long as they are introduced by the 

end of the relevant key stage, which allows teachers to determine how they believe their 

children will learn best. This also provides support for Gibbs’ (2014) suggestion of collective 

planning within a working spiral curriculum. The use of practical resources is encouraged in 
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the curriculum, for example concrete aids such as blocks and counters, however, there is an 

emphasis placed on practice, especially with regard to fluency. A further clause in the National 

Curriculum states that “pupils should read and spell mathematical vocabulary, at a level 

consistent with their increasing word reading and spelling knowledge”. This may disadvantage 

children with specific difficulties, especially those who show discrepancies between non-

verbal and written ability as it seems to presume that all children progress equally in all areas. 

This is not the case for those with specific difficulties, for example reading difficulties, who 

may be able to complete more advanced tasks than their reading ability allows them to access 

independently. This is something teachers should be mindful of when giving children 

assistance to complete tasks.  

The National Curriculum is divided into topic areas, and further subdivided into 

statutory and non-statutory elements. Statutory requirements must be met by all children, 

however non-statutory requirements and specific examples need not be met or used word for 

word. It is the statutory requirements that will be discussed for the remainder of this chapter. 

With regard to teaching methods, very few are prescribed. These are the “formal” methods for 

the four operations: column method for addition and subtraction, short multiplication and 

division, and long multiplication and division.  

Number 

The number portion of the curriculum begins in Year 1 with establishing fluency in 

counting to 100, with some counting in basic numerals, however, this is revisited more 

thoroughly in Year 2. The characteristics of a spiral curriculum can be seen throughout this 

development of number fluency from Year 1 to Year 6, by which time the topics included have 

expanded to include numbers and place value (introduced in Year 2), counting in multiples e.g. 

of 4, 8, 25, 1000 (Years 3 and 4), negative numbers (Year 4), and rounding (Year 4). By Year 

5, children are also expected to understand Roman numerals to 1000, hence requiring a 
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thorough understanding of how the number system works, and by Year 6 to handle numbers to 

10,000,000. Year 1 children are expected to develop an understanding of basic addition and 

subtraction to 20, which again develops over the primary school years to include rule of 

addition and subtraction (Year 2), using mental methods of calculation (Year 3), and written 

addition and subtraction with more than four digits by Year 5. Multiplication and division, and 

fractions/decimals/percentages progress in a similar way from Year 1 to Year 6, with each year 

building on the previous and increasing the volume of content, however, space must also be 

made for ratio and algebra by the time children are in Year 6. By this age, the number element 

of the curriculum alone has over 20 individual elements that children are required to 

understand, many of which draw heavily on working memory resources which may prove 

challenging for a number of children, particularly when coupled with the increasing depth of 

knowledge required at each stage. Whilst number is not alone in its increasing volume of 

material children are expected to master before leaving primary school, it does show the vastest 

increase.  

Measurement 

Measurement follows a similar structure to number, with children in Year 1 being 

introduced to a relatively small number of practical problems, money, and time, before these 

areas of enquiry are expanded through to Year 6. Perhaps one of the clearest overlaps in 

curriculum areas is evident in measurement as it concerns the perimeter, area, and volume of 

shapes. When working on these components of the curriculum, beginning in Year 3 with 

perimeter, overlap with geometry should be evident to children. Those who have fully 

understood previous work on geometry should, theoretically, be in a position to use this 

knowledge to inform their current learning. However, it can prove difficult to encourage 

children to make abstract links such as these so often additional help is required. Also included 

in measurement is the concept of time, which is arguably the most abstract topic to teach to 
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children, with no real clear concrete aids available. Children are, nonetheless, introduced to 

time in Year 1, and expected to tell the time in Year 2, before being required to convert units 

of time and solve time-based problems in Years 3, 4, and 5. Teaching such an abstract concept 

with children as young as 5 years of age poses the risk that they will not be able to grasp the 

basics, meaning any future work will not be building on sound foundations, as is the aim of 

any spiral curriculum.  

Geometry  

Geometry is introduced in much the same way as number and measurement, with the 

basic naming of shapes and directional commands in the first instance. The curriculum then 

circles back to discuss properties of these shapes in increasing levels of complexity in the 

following years. By Year 6, children are expected to be able to draw 2D shapes, describe 3D 

shapes, and compare and classify geometric shapes. This progression in expectations is rapid, 

particularly in relation to understanding the more abstract nature of 3D shapes that cannot be 

easily visualised by some.  Children are introduced to the properties of shapes in Year 3, where 

they are expected to be able to recognise angles and parallel and perpendicular lines. This is, 

again, revisited to expand their knowledge of angles and regular/irregular polygons in 

subsequent years. The final element of geometry covered over a number of years on the 

National Curriculum is grid co-ordinates, and transitions and transformations, beginning with 

descriptions and later moving on to carrying out transformations and plotting shapes.  

Statistics  

The fourth and final element of the Primary Mathematics National Curriculum is 

statistics. This element is not introduced until Year 2 and contains the fewest topics throughout. 

Statistics begins with constructing and interpreting basic graphs and charts, moves on to 

presenting and interpreting different types of data (discrete, continuous) from graphs and 

charts, and has a final expectation that children will be able to construct and interpret pie charts 
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and line graphs by Year 6. Concurrently, children are to be taught to answer basic statistical 

questions, initially through counting. In the style of a spiral curriculum, these questions and 

methods develop, upon revisiting the topic, into multistep questions including sum, difference, 

and means as an average.  

It is important to consider, however, that, whilst considered for the purposes of the 

curriculum as distinct areas of skill, they are not, in fact mutually exclusive, and basic numeracy 

skills are required for each (as discussed in Holmes & Adams, 2006). Therefore, children’s 

basic ability in this area is likely to be influential in all other areas of mathematics.  
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4 

Using Working Memory to Predict Mathematics 

Our current understanding is that working memory is a distinct cognitive correlate of 

academic achievement, that accounts for a larger proportion of the variance of academic 

performance than IQ (Alloway & Alloway, 2010). Working memory correlates most strongly 

with measures of intellect and cognitive aptitude (Cowan, 2008), acting as a mediator for IQ in 

predicting mathematics in first grade (Passolunghi, Mammarella, & Altoè, 2008). Passolunghi 

et al. (2008), importantly, demonstrated that working memory predicts mathematics 

achievement longitudinally when performance IQ does not. Ashcraft & Krause (2007) extend 

our understanding of this relationship further by suggesting working memory is critical for 

mathematics performance for any activity beyond simple memory retrieval. This relationship 

between working memory and mathematics appears to remain consistent across the lifespan, 

with no difference in magnitude between adults and children (Wilson & Swanson, 2001), hence 

indicating its use as a long-term predictive measure of later attainment.  

Working memory tasks cover a number of different abilities from basic recall (though 

purists argue that this ability is a reflection of short-term, rather than working, memory ability; 

Cowan, 2008), recall following a manipulation of the information, and recall of information 

from a primary task under the load of a concurrent secondary task (dual task). These complex 

span tasks, performed with the additional memory load are associated with mathematics 

performance at seven and 14 years of age (Gathercole, Pickering, Knight, & Stegmann, 2004) 

when mathematics is assessed using National Curriculum assessments. Van den Bos, van der 

Ven, Kroesbergen, & van Luit (2013) highlighted the importance of noting the mathematics 

measure used since even though all components of working memory are associated with 

mathematics, the strength of the relationship can be “explained by the type of mathematics 

measure used”. They argued that more general measures of mathematics yielded stronger 
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correlations, perhaps due to the larger variety of questions drawing more heavily on each 

working memory component. The contributions of verbal and visuospatial working memory 

components to mathematics are distinguishable (Giofrè, Donolato, & Mammarella, 2018a), 

with each showing unique links to mathematics at Key Stage 2 and 3 (Jarvis & Gathercole, 

2003).  

Involvement of working memory components in mathematics 

Results revealing the differential involvement of working memory components in 

mathematics are mixed. There are a handful of studies suggesting a greater influence of verbal 

working memory, however, the majority are in support of a larger proportion of visuospatial 

working memory. Wilson & Swanson (2001) demonstrated that verbal working memory 

predicted a greater proportion of the variance of mathematics when entered before age, 

suggesting that the proportional influence of each of the components may alter depending on 

age. This finding was, however, the result of using arithmetic and mathematical computation 

tasks, which could demonstrate a greater reliance on verbal working memory if heavily word-

based. Especially since children with arithmetic difficulties have lower phonological span 

scores than their typically developing peers (Hitch & McAuley, 1991; Siegel & Ryan, 1989; 

see McLean & Hitch, 1999 for an opposing argument). Supporting the suggestion of age-

related differences, De Smedt et al. (2009) identified the unique influence of the phonological 

loop in second grade mathematics, whereas first grade was predicted uniquely by visuospatial 

working memory.  

Visuospatial working memory and measures of central executive have been 

consistently linked to mathematics performance in young children (e.g. Gathercole & 

Pickering, 2000; St Clair-Thompson & Gathercole, 2006), with children with arithmetic 

deficits and/or developmental dyscalculia showing deficits on tasks of visuospatial working 

memory (Fletcher, 1985; Mammarella, Hill, Devine, Caviola, & Szucs, 2015). With regard to 
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measures of visuospatial working memory, poor mathematics performance is related to poor 

performance on simultaneous and sequential measures, with those with mathematical learning 

difficulties the worst affected, followed by those of low mathematical ability, then typically 

developing children (Mammarella, Caviola, Giofrè, & Szűcs, 2018). Ashkenazi, Rosenberg-

Lee, Metcalfe, Swigart, & Menon (2013) demonstrated similar findings of a specific deficit in 

visuospatial working memory in children with mathematics difficulties when compared to 

typically developing children.  

Using working memory to predict academic attainment has gained a significant amount 

of traction over the past two decades, with the majority of studies highlighting the strong 

predictive nature of visuospatial working memory in mathematical attainment. An early study 

by Holmes & Adams (2006) investigated the relationships between working memory measures 

and mathematical performance in children in year three and year five in the UK (ages 7-8 and 

9-10). Their findings demonstrated that visuospatial working memory was able to predict a 

greater proportion of unique variance in younger children when mathematics was broken down 

into “performance-related factors”. However, importantly, even when mathematics was broken 

down according to the key areas of the National Curriculum, the phonological loop was not 

predicting unique variance, only the visuospatial sketchpad measures were. These findings are 

supported by a number of further papers presenting visuospatial working memory as a unique 

predictor of mathematics (e.g. Giofrè, Donolato, & Mammarella, 2018b), particularly in 

younger children (e.g. Bull, Espy, & Wiebe, 2008; De Smedt et al., 2009).  

Subsequently, visuospatial working memory has been subdivided into visual and spatial 

measures, suggesting children who are poor at solving problems in mathematics fail 

specifically on spatial, but not visual or verbal, tasks (Passolunghi & Mammarella, 2010). This 

was supported in 2012 by further findings by Passolunghi & Mammarella highlighting the same 

pattern of failures in children with mathematics learning difficulties. This pattern does not, 
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however, appear limited to those with mathematical difficulties, as mathematics is also 

predicted by spatial working memory, but not visual, at the beginning of first grade (Fanari, 

Meloni, & Massidda, 2019). Although these results did highlight an age-dependent change in 

influence, with domain general predictors becoming the only significant predictors by the end 

of second grade. This indicates that visual and spatial working memory are equally influential 

at the end of second grade, however, the study does not take account of verbal factors, focusing 

only on the subcomponents of the visuospatial component.  

Domain generality and domain specificity 

Domain generality and specificity has been a consistent debate in research into the 

influence of working memory on mathematics. Since the investigation into the specific 

relationships between working memory and mathematics continues, there is no resolution to 

the specificity/ generality debate as yet. Domain specificity suggests that the influential 

working memory components will be dependent on the domain or subdomain of academic 

performance in question, whereas, the domain general approach suggests no such specific 

relationships, particularly with relation to academic subdomains. Working memory is often 

seen as a domain general vulnerability (as in Ashkenazi et al., 2013) as it does not vary 

depending on whether the subject researchers are assessing its relationships with is reading or 

mathematics. This explanation aligns well with some other models of working memory, for 

example that by Engle (2002) regarding the role of working memory in the control of attention. 

However, there is an increasing body of literature examining the specificity of the relationships 

between academic performance and its components. Recent research concerning the unique 

contributions of working memory components and subcomponents to various domains and 

subdomains of academic performance seems to indicate a leaning toward the importance of 

specific interactions. This is potentially due to prediction studies and the specificity of the 

multicomponent model of working memory (Baddeley & Hitch, 1974). Particularly, studying 
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children with specific deficit profiles, allows researchers to examine the specificity of the 

associated working memory impairments in learning difficulties (e.g. Siegel & Ryan, 1989).  

Engle, Cantor, & Carullo (1992) suggest domain generality is evidenced when verbal 

and visuospatial components both contribute to a higher order performance task as it is drawing 

on a common resource that is not split into different modalities. For example, we see high levels 

of association between the visuospatial sketchpad and the phonological loop in complex span 

measures of visuospatial working memory (Gathercole, Pickering, Ambridge, & Wearing, 

2004), which potentially stems from the function of the central executive. In line with this idea, 

Wilson & Swanson (2001) found some unique variance of task performance was accounted for 

by the central executive measures that was not otherwise explained by verbal and visuospatial 

measures. They claim that mathematics drawing on both verbal and visuospatial working can 

be justified as evidence for domain generality because they are drawing on executive skills that 

are not from a specific modality. Interestingly, Swanson & Sachse-Lee (2001) examined 

subgroups of individuals with and without reading difficulties and identified no significant 

differences in recall of different types of information when groups were matched for executive 

function abilities. This pattern was echoed by comparisons of groups with high and low 

executive function abilities showing greater or worse recall on measures, respectively. These 

differences also remained after controlling for phonological ability, with no significant 

differences in working memory performance between the groups. These findings are 

suggestive of a mechanism that operates entirely independently of those required for task 

completion, in which case, there is a very definite scope for a domain general influence, which 

may act as a controlling mechanism over more domain-specific measures of the working 

memory measures.  

Further, De Smedt et al. (2009) identified a similar pattern of relationships between the 

central executive and mathematics in first and second grade. They found that measures of the 
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central executive were predictive of unique variance of first and second grade mathematics 

when working memory was measured at the beginning of first grade. From this finding, it is 

reasonable to suggest that the involvement of the central executive in mathematics tasks shows 

some longitudinal stability. However, with regard to predicting mathematics attainment, it is 

important to determine whether this relationship exists only for the central executive or for the 

other working memory components as well. To examine this, a number of studies have been 

carried out with increasing specificity to identify the cognitive correlates of mathematics 

performance, with a number of these studies highlighting specific deficits in working memory 

relating to poor mathematics. One such example is the 2013 paper by Ashkenazi et al. who 

identified a specific deficit in visuospatial working memory in children with mathematics 

difficulties compared to typically developing children. They did, however, justify this deficit 

as a domain general deficit because they argued the deficit had an equal influence on all areas 

of mathematics. This is unclear, though, and leaves scope for further research in this thesis as 

it seems logical that mathematics questions assessing spatial skill and understanding would 

draw more heavily on visuospatial working memory than those assessing numerical 

manipulations and word problems. In line with this assumption, there is evidence available that 

children with arithmetic difficulties showed deficits on non-verbal tasks only (Fletcher, 1985). 

This is indicative of an underlying deficit in the visuospatial domain.  

A number of other studies have also been conducted that indicate a specific deficit in 

particular components of working memory. Siegel & Ryan (1989) showed that children with 

reading difficulties and arithmetic difficulties showed different working memory profile to 

each other and from typically developing children. In addition, different mathematics tasks 

have been shown to be hindered by tasks targeted to occupy components of working memory 

intended to interfere in its capacity to assist in the completion of tasks (Lee & Kang, 2002). 

They identified that verbal dual tasks interfered with the completion of multiplication, whereas, 
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subtraction was hindered by a spatial dual task, suggesting the differential influence of 

components depending on the area of mathematics being assessed. However, this was not found 

when the tasks were matched for set size and difficulty. The influence of working memory 

domain may then be reduced when task demands are accounted for (Cavdaroglu & Knops, 

2017). We must be cautious though that it is not likely possible to account for task demands 

when assessing working memory contributions in relation to National Curriculum assessment, 

and as such, there may be greater demands on components of working memory depending on 

the mathematical component being assessed by each question. Therefore, we should be 

conscious of the demands these measures are placing on working memory components.  

Other known links between cognitive measures and mathematics performance 

Number Sense 

Number sense (Greeno, 1991) refers to “elementary intuitions about quantity, including 

rapid and accurate perceptions of small numerosities and the ability to compare numerical 

magnitudes, to count, and to comprehend simple arithmetic operations” (Berch, 2005, pp. 334), 

hence is a logical potential predictor of mathematics attainment. It is an imprecise, nonverbal 

system that supports basic computation (Feigenson, Libertus, & Halberda, 2013).  Jordan, 

Kaplan, Locuniak, & Ramineni (2007) examined this relationship and identified that number 

sense at the beginning of first grade is highly correlated with mathematics performance at the 

end of first grade. They also identified that growth in number sense was predictive of better 

performance in mathematics. Number sense is a potential predictor of mathematics that can be 

explored as early as in preverbal infants. Starr, Libertus, & Brannon (2013) took advantage of 

these early measurement opportunities and examined preverbal number sense at six months 

old. They identified that number sense ability at 6 months old predicted formal mathematics 

performance at three and a half years old, thus raising the question does sound early number 
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sense predispose an individual to developing better mathematics skills? This has been 

demonstrated to be the case on a number of occasions (e.g. Feigenson et al., 2013), however, 

despite being a “strong longitudinal correlate of arithmetic skills”, by the age of six, only 

knowledge of numerals predicted arithmetic growth (Göbel, Watson, Lervåg, & Hulme, 2014). 

One suggestion for why this is the case is that the strength of the approximate number system 

is less important than a good grounding in number knowledge. The prediction of mathematics 

from number sense shows further flaws when used to predict National Curriculum test scores, 

with approximate number system acuity measured in preschool being unable to predict non-

numerical mathematics ability at age six (Mazzocco, Feigenson, & Halberda, 2011). Again, 

this suggests the limited potential use of number sense as a long-term predictor, which is 

perhaps better suited to predicting a child’s ability to develop sound number knowledge, which 

is in turn predictive of their future mathematical ability.  However, it is important to note that 

children with mathematical learning disability were identifiable using a number sense measure 

(Geary, Bailey, & Hoard, 2009), but that this measure was not able to predict response bias. 

On balance, number sense has been shown to be predictive of mathematics in young children, 

however, does not demonstrate capacity to predict over extended periods of time.  

Speed of Processing 

Processing speed refers to “the speed with which children and adults execute basic 

cognitive processes” (Kail & Ferrer, 2007, pp. 1760) and as such should be considered as 

potentially important in relation to mathematical performance. A number of studies have found 

an association between speed of processing and mathematical performance, including when 

other factors have also been taken into account. For example, Vanbinst, Ghesquière, & De 

Smedt (2015) identified that speed of processing did not mediate the association between 

numerical processing and arithmetic, whilst Swanson & Kim (2007) demonstrated that speed 

of processing is independent of working memory in predicting mathematics performance, but 
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still correlates significantly. Similarly, processing speed has been shown to account for a 

unique portion of the variance of mathematical performance on Standardised Achievement Test 

(SATs) measures when general cognitive ability is accounted for (Rohde & Thompson, 2007), 

as has it been shown to be the best predictor of mathematics after controlling for reading ability 

(Rebecca Bull & Johnston, 1997). Here the literature implies that the speed at which children 

are able to process information is highly influential in their learning. Taken together, these 

findings indicate the potential for using this measure as a long-term predictor of mathematics 

performance, however, since it does not mediate the involvement of working memory, it should 

not be used alone; there is potential to use speed of processing to predict mathematics in 

conjunction with working memory once this relationship is understood fully.  

General Intelligence (g) 

General intelligence is often included in studies as a logical cognitive correlate of 

achievement, but also to investigate whether it mediates the relationship between the chosen 

cognitive correlate and the academic component being tested (as in Kyttälä & Lehto, 2008). If 

g mediates the relationship between the two, it is more likely that the initially observed 

relationship was actually the result of general intelligence, rather than the specific cognitive 

correlate examined. G factor has been demonstrated to correlate significantly with mathematics 

(as would be expected since mathematical ability is a component of a standard IQ test; Campos, 

Almeida, Ferreira, Martinez, & Ramalho, 2013), as well as predict growth in mathematical 

competency (Chu, vanMarle, & Geary, 2016), hence is an important measure to consider here. 

Similarly, variance in working memory has been shown to correlate with g once the shared 

variance has been factored out (Engle, 2002; Engle et al., 1999), though this was not the case 

for short-term memory variance. Examining its specific relationship with mathematics, Kyttälä 

& Lehto (2008) found a predictive relationship between fluid intelligence and mathematics, 

where g predicted unique variance in mathematics and mediated the influence of active 
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visuospatial working memory. Hornung, Schiltz, Brunner, & Martin (2014) also demonstrated 

that intelligence predicts arithmetic and number line estimation once early number 

competencies have been controlled for. However, they identified that this relationship was not 

present for shape-based skills. This suggests that shape-based mathematics relies on a different 

cognitive correlate than g.  

Given these findings, there is a need to understand the relationships identified further 

to understand how they relate to mathematics over the primary school years and to ascertain 

whether these relationships remain stable over time. Only once we have a thorough 

understanding of these relationships longitudinally will we be in a position to make effective 

use of the knowledge for the early identification of children who are likely to struggle.  

  



77 
 

5 

Introduction to the Systematic Review 

Before conducting any additional research on the relationship between working 

memory and mathematics, it is first important to understand the existing literature, and what 

this means for the current project, in a meaningful way. There is a growing body of literature 

available that investigates the working memory-mathematics link (Alloway & Alloway, 2010; 

Rebecca Bull et al., 2008; Giofrè & Mammarella, 2014), including distinguishing between 

verbal and visuospatial working memory. This differentiation has been made by a number of 

researchers, for example by Mammarella et al. (2006) and Passolunghi & Mammarella (2010), 

who demonstrated evidence for subdivisions within the working memory domain. However, 

there is very little thus far that examines this link with respect to the differential contributions 

of the types of visuospatial working memory: simultaneous and sequential. It is possible to 

subdivide visuospatial working memory into simultaneous and sequential tasks easily, 

depending on the presentation of information, given these types of tasks allow for such 

differences in presentation format. When presented simultaneously, all visual information is 

made available at the same time for the given duration, before disappearing to allow for the 

recall phase of the task. In contrast, sequential tasks present the visual information in series, 

meaning each element of the stimulus set is presented one at a time before disappearing to 

make way for the next. Participants are instructed to recall the sequence in whichever way was 

requested upon the completion of the presentation of the sequence. Differentiating between 

simultaneous and sequential presentation would be much more difficult with verbal (spoken) 

information, as verbal information is, by default, sequential since only one word can be said at 

any one time. If the definition of verbal information is extended to include written information, 

it is possible to present the information simultaneously much more easily, however, this 

introduces additional potential confounds, such as reading ability. The following systematic 



78 
 

review seeks to understand the current literature on the relationship between mathematics and 

working memory, including the subdivision of visuospatial working memory and mathematics. 

The following paper is published in Educational Psychology Review (Allen, K., Higgins, S., 

& Adams, J. (2019). The relationship between visuospatial working memory and mathematical 

performance in school-aged children: A systematic review. Educational Psychology Review. 

doi:10.1007/s10648-019-09470-8; Appendix I). It was authored by myself with guidance from 

Prof. S. Higgins and Dr. J. Adams.  
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6 

The relationship between visuospatial working memory and mathematical performance in 

school-aged children: A systematic review 

Abstract 

The body of research surrounding the relationship between visuospatial working 

memory and mathematics performance remains in its infancy. However, it is an area 

generating increasing interest as the performance of school leavers comes under constant 

scrutiny. In order to develop a coherent understanding of the literature to date, all available 

literature reporting on the relationship between visuospatial working memory and 

mathematics performance was included in a systematic, thematic analysis of effect sizes. 

Results show a significant influence of the use of a standardised mathematics measure, 

however, no influence of the type of visuospatial working memory or mathematics being 

assessed, on the effect sizes generated. Crucially, the overall effect size is positive, 

demonstrating a positive association between visuospatial working memory and 

mathematics performance. The greatest implications of the review are on researchers 

investigating the relationship between visuospatial working memory and mathematics 

performance. The review also highlights as yet under-researched areas with scope for future 

research.  

Introduction 

Development of children’s mathematical skills 

Informal mathematical development begins much before children reach the age of 

formal education with the development of number sense. Inherent in this is the existence of 

a mental number line (Berch, 2005; Schneider, Grabner, & Paetsch, 2009). As a precursor to 
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the development of this mental number line, research postulates an innate sense of number 

by which humans are able to distinguish between sets to judge which has more (the 

approximate number system; Dehaene, 2001). Additionally, young children demonstrate the 

ability to perceptually determine the exact number of items in small sets (Clements, 1999); 

an ability known as subitizing (Benoit et al., 2004; Ginsburg, 1978). This innate sense of 

number is a skill that evolutionary psychologists attribute survival to, for example where one 

can find more food (De Cruz, 2006). Many habituation studies (e.g. Starkey, Spelke, & Gelman, 

1990; Xu & Spelke, 2000), have provided evidence for number sense in young infants, 

demonstrating a renewed interest upon alteration of the number of items in the presented 

array, as long as a critical ratio criterion is met (according to Weber’s Law; Feigenson, 

Dehaene, & Spelke, 2004).  

Once children become verbal, they learn a counting list which functions in the form of 

a “placeholder structure” (Sarnecka & Wright, 2013), carrying little numerical context. This 

suggests that children develop a knowledge of a specific set of number words, in a fixed order, 

before their knowledge develops into a deeper understanding of number as an abstract 

principle (Sarnecka & Gelman, 2004). A further milestone in the development of number 

sense occurs when young children are taught to attribute specific quantities to Arabic 

numerals (Krajewski & Schneider, 2009a). Wynn (1990) previously described specificity as the 

knowledge that every number word describes a specific numerosity. Importantly, the 

attribution of specific quantities to individual numerals paves the way for children 

establishing understanding of a set of rules: cardinality (the final numeral used represents the 

total number in the set), abstraction (sets of any nature can be counted, including entirely 

mental constructs), one-to-one correspondence (each item in a set should be counted once 

and only once), stable order (numerals should be used in a fixed order), and order irrelevance 
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(items in a set can be counted in any order without changing the cardinality of the set; 

Baroody, 1984; Dehaene, 1992; Thompson, 2010). Upon reaching this stage children are 

deemed to have developed a “mental number line”, which, over time, becomes increasingly 

linear after initially following a somewhat logarithmic structure (Stanislas Dehaene, 2003; 

Siegler & Booth, 2004), whereby numbers outside of the child’s counting range may be viewed 

only as “big” or “lots”. From this foundation, children can begin to understand the formal 

manipulations of numbers required to gain proficiency in mathematics through formal 

instruction, as identified by Libertus, Feigenson and Halberda (2011) who demonstrated that 

ANS acuity in infants predicts early maths achievement.   

The development of mathematical skills, upon the commencement of formal 

schooling, can be considered to pertain to two broad stylistic categories, as adopted by 

Weschler assessments: Numerical Operations and Mathematical Reasoning. Whilst the 

National Curriculum has four areas (number, measurement, geometry, and statistics) it is 

these categories that will be considered in this review as they succinctly describe the 

fundamental understanding of mathematics (Numerical Operations) and its application 

(Mathematical Reasoning). Numerical Operations concerns procedures that may best be 

described as numeracy, involving number knowledge, basic numerical manipulations, and 

mental arithmetic (Geary, Hoard, Byrd-Craven, Nugent, & Numtee, 2007). Tests of Numerical 

Operations typically comprise of explicit mathematical equations with basic operations for 

children to solve using a written format, as well as assessments of counting, identifying 

numbers, and written calculations (Pearson Clinical; Wechsler, 2017). By contrast, 

Mathematical Reasoning is defined by Thompson (1996) as the ability to carry out “purposeful 

inference, deduction, induction, and association in the areas of quantity and structure”. Such 

a definition aligns well with the nature of the tasks used to assess the construct, which 
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comprise mainly of single- and multi-step contextual story problems that the children are 

required to solve using the information provided. Examples of such problems are those 

involving whole numbers, fractions and decimals, graphs, and probability (Wechsler, 2017).  

A broad range of assessments are employed in both research and educational settings 

when establishing a child’s understanding of mathematics. Such assessments range from 

simple, individually derived series of calculations and equations to subtests of standardised 

test batteries. As a result of this wide-ranging variety, it is imperative to note whether the 

assessment in question provides a standardised score or should only be considered in an 

isolated manner. One should take care to consider the structure and content of the 

assessment used in relation to the research question in order to determine its suitability 

regarding content and intended statistical analysis. This is particularly important when 

critiquing studies utilising non-standardised measures of mathematics over those taken from 

standardised batteries.  

In summary, mathematical development begins before, and continues throughout, 

formal schooling. However, careful attention should be paid to the measures used to assess 

mathematics for research and educational purposes as their structure and content may 

influence the conclusions that can be drawn.  

Theory of visuospatial working memory 

Baddeley and Hitch (1974) first developed the concept of the visuospatial sketchpad 

as one of two slave systems in working memory, outlining its responsibility for storing and 

manipulating visual and spatial information. Researchers in the field of working memory have 

long since adopted the most recent revision of this model (Baddeley, 2000) as it has been 

demonstrated to accurately conceptualise findings (e.g. Andersson & Lyxell, 2007; Ashkenazi, 
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Rosenberg-Lee, Metcalfe, Swigart, & Menon, 2013; Holmes & Adams, 2006) and to be robust 

to developments in understanding resulting from neuropsychological and dual task studies 

(e.g. Henson, 2002; Logie, 1995). As such, this model still holds as an appropriate explanation 

of working memory and is the model adopted by the studies included in this review. Currently, 

a focus on the emergence of simultaneous and sequential visuospatial working memory (see 

Mammarella et al., 2006 and Mammarella, Borella, Pastore, & Pazzaglia, 2013 for evidence of 

a double dissociation) is evident, in a move to understand the finer nuances of using 

visuospatial working memory as an academic predictor.  

Simultaneous visuospatial working memory tasks are defined as such tasks whereby 

all information is presented to the participant at the same time (Mammarella et al., 2006). 

Following this presentation, the participant is asked to recall the positions of the stimuli they 

saw previously; an example of this type of task is the visual patterns task. In contrast, 

sequential tasks involve the presentation of stimuli in a sequence to the participant (as in 

Passolunghi & Mammarella, 2011). Participants are then required to recall the positions of 

the stimuli, typically in the correct order, as in the Corsi block task (Mammarella et al., 2006). 

There is evidence for the dissociation of these tasks (Mammarella et al., 2008), supporting the 

need for their independent investigation in order to assess their predictive power.   

In line with these observations, a number of different visuospatial working memory 

tasks are used to tap into each of these components. As elements of standardised test 

batteries, a small number of visuospatial working memory tasks are standardised, however, 

a large proportion of the tasks used are designed for the purpose of the study in question. As 

such, it is imperative to assess the characteristics of the test in relation to the research 

question and statistical procedures applied before accepting the conclusions drawn from the 
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results. This is of particular importance when studies employ a non-standardised visuospatial 

working memory measure.  

Relationship between visuospatial working memory and mathematics 

Importantly, visuospatial working memory is described by Ashkenazi et al. (2013) as a 

“source of domain general vulnerability in arithmetic cognition”, indicating its position as one 

of a number of mechanisms in the brain which function to support learning in a broad range 

of areas. Such a definition also follows that knowledge is cumulative and so builds up over 

time to form our overall knowledge structure. As evidenced by the results of previous studies, 

age appears to be crucial to the extent of the involvement of visuospatial working memory in 

mathematics performance (Li & Geary, 2013), with the suggestion of a cyclical pattern of 

involvement between visuospatial working memory and verbal working memory. One could 

reasonably question the potential for an emerging relationship between novelty and mastery 

inherent in a cyclical relationship. Visuospatial working memory is more strongly predictive 

of mathematics performance in younger children (Holmes & Adams, 2006; Holmes, Adams, & 

Hamilton, 2008) which is, arguably, the period in which children are acquiring new 

mathematical skills at an increased rate. Therefore, it is possible that visuospatial working 

memory is employed to a greater extent during the procurement of new skills, and to a lesser 

extent once children achieve mastery of such skills (Andersson, 2008).   

It may be possible to identify the age at which young children’s mathematics ability is 

most strongly influenced by visuospatial working memory, and hence use this information to 

make predictions regarding future attainment. Research is currently moving to exploit this 

relationship further in order to train working memory to improve academic attainment (eg 

Holmes & Gathercole, 2014; see Sala & Gobet, 2017 for a review), however, this will only be 
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possible when the intricacies of the relationship between the two factors are fully 

understood. Similarly, the potential to mediate vulnerability to mathematical difficulties as a 

result of poor working memory before they occur is hindered by a lack of detailed knowledge 

in this area. Before research in this area can progress, a clear representation of what is 

currently known in the literature is necessary. This review aims to provide this comprehensive 

picture.  

In doing so, it is necessary to ensure that confounding factors are limited as far as 

possible. Often, studies employ tasks previously designed either to investigate a particular 

aspect of visuospatial working memory or mathematics, or those which form a component of 

a standardised battery. When appraising potential measures for a study, the age group for 

which the task was designed and, potentially standardised, is crucial. Only by considering the 

target age and that of the participants is it possible to make reasonable adjustments to 

prevent floor and ceiling effects. This is of particular importance when considering 

appropriate mathematics tasks as it is imperative that tasks administered align with concepts 

children have been exposed to through the curriculum. More leniency can be afforded to 

visuospatial working memory tasks as such tasks present fewer barriers to achievement 

should a child not have completed a similar task before. Further, given the nature of the 

research seeking to extend scientific understanding of the components of visuospatial 

working memory, novel tasks are required to access each component individually.  

In summary, using visuospatial working memory as a means to predict pupil’s future 

attainment in mathematics is a topic that has gained a significant amount of traction in recent 

years. Driven by the desire to improve academic performance, it is necessary to first ensure 
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a clear understanding of the relationship between the two components before steps can be 

taken to use visuospatial working memory as a predictive tool.  

Importance of this review 

Given the relative infancy of this field of research, no other reviews concerning the 

relationship between visuospatial working memory and mathematics attainment have been 

identified. Szűcs (2016) completed a review on a similar field, identifying the relationships 

between subtypes of mathematical difficulties and elements of working and short-term 

memory. The available literature demonstrates both comparable and contrasting results 

which can only be adequately understood by appraising the results of the studies alongside 

their methodologies. In doing so it is possible to begin to explain the variations in results as 

features of the methodological differences. To this end, this review is necessary to consolidate 

the findings of previous research in order to provide a comprehensive understanding of the 

relationship between visuospatial working memory and mathematical performance. The 

results have a number of implications with regard to using visuospatial working memory as a 

predictive tool for future mathematical attainment, something which cannot be achieved 

without a streamlined understanding of the relationship central to forming these predictions, 

including, but not limited to, early intervention to improve attainment.   

Objectives of the review 

The aim of this review is to examine the literature surrounding the relationship 

between visuospatial working memory and mathematical attainment in children. Four key 

issues will be addressed; these are the influences of the age of the participants, the type of 

mathematics being assessed, the type of visuospatial working memory being assessed, and 

the nature of the tasks used (standardised/non-standardised). It is broadly understood that 
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visuospatial working memory plays both an influential and predictive role in children’s 

mathematical performance (Bull et al., 2008; Holmes & Adams, 2006), however, the exact 

relationship between these elements remains, as yet, unclear. The existing literature alludes 

to a number of factors that are influential in establishing a clear and coherent understanding 

of the role visuospatial working memory plays in mathematical development. This review will 

explore these potential confounds in a move to consolidate the existing knowledge on this 

issue. Focusing on the age of the participants, the components of mathematics being 

assessed, and the components of visuospatial working memory being measured, it is possible 

to begin to develop a more detailed understanding of the specific influences of each of these 

elements.  

Method 

Criteria for study inclusion 

Studies eligible for inclusion in the analysis met all of the criteria outlined below. 

Study design  

Studies utilising all methodological designs were included in the review due to the 

nature of both the current literature and the review. Before inclusion, research must, 

however, have explicitly stated their intention to investigate the relationship between 

visuospatial working memory and mathematical attainment. Despite using studies with any 

design, before a study was included in the review, sufficient control and operationalisation of 

the variables must have been established. Testing should have been conducted in a controlled 

environment, with an emphasis on maintaining consistency between sessions in order to 

exert control in the absence of randomised control trials.  
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Type of participants 

Studies of children attending mainstream schools, between the ages of 0 years and 16 

years, were considered in this review. Three exclusion criteria applied: those investigating 

atypical populations, adults and young people over the age of 16 years old, and preterm 

children specifically. All ethnicities, socio-economic statuses, and genders were included.   

Mathematics measures 

The review included mathematics measures assessing elements of mathematics 

relating to numerical operations, mathematical problem solving, and/or mathematics as a 

whole; those utilising measures of number sense, numerosity, and other such related 

components were excluded. Whilst the majority of studies included in the review used 

standardised measures of mathematics, including the WIAT and WOND, a proportion used 

specifically designed measures. Studies of this nature were included so long as an observable, 

clear focus on one or more of the aforementioned components of mathematics was present.  

Where mathematics measures had been derived for the purpose of the study, this was 

typically in line with the curriculum outlined for children of the specified age in the given 

country.  

Memory measures 

Only studies published reporting visuospatial working memory as an explicit individual 

concept met the criteria for the review. Those reporting on working memory as a whole only, 

without further subdivision, were not included in the final sample. A number of standardised 

visuospatial working memory measures were employed, however, as a result of attempts to 

further subdivide visuospatial working memory, many measures were designed for the 
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purposes of the study. As such, all measures specifically of visuospatial working memory were 

accepted.  

Location of study 

Studies may have been conducted in any country utilising an alphabetic language 

system to be eligible for inclusion, however, the final paper must be available in English. Only 

nations with alphabetic language systems were included due to the potential influence of 

logographic writing systems on the development of visuospatial working memory (Tan et al., 

2001).  

Additional criteria 

Criteria were identified which led to the exclusion of a study. These exclusion criteria 

were studies concerning:  

 Neuroimaging 

 Mathematics anxiety 

 Number sense/ numerosity 

 Visual perception 

 Working memory training 

 Strategy use 

 Interventions/ teaching methods 

 Transcoding 

Additional criteria for exclusion were texts from book chapters (serving only to 

summarise findings from included empirical studies) or other review articles.  
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Search methods for study identification (Search strategy) 

Electronic searches 

Searches were conducted of the databases listed below (using the ‘all databases’ 

option for each), with search terms defined as “visuospatial”, “working memory”, and 

“math*”. Only articles where the full text was available were included. These terms were 

defined so as to identify all available studies that use these terms either in the title, abstract, 

or main body. Given the specificity of the desired work, simple, clearly defined search criteria 

were most appropriate.   

 Web of Science 

 JSTOR 

 Science Direct 

 Medline/ NCBI 

 Scopus 

 FirstSearch 

 EBSCOhost 

Search of other sources 

Reference lists of the included papers were scrutinised to identify any further 

appropriate papers.  

Data collection and analysis 

Determining eligibility and data extraction 

All data was extracted by the same author. Before any coding began, a stringent set 

of inclusion and exclusion criteria were clearly defined and periodic checks throughout data 

extraction were carried out to ensure criteria were adhered to at all times. Should a study be 
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found to be ineligible upon full reading, the reasons for its exclusion were documented. 

Before beginning synthesis of results, the main statistic for each study was extracted and 

recorded.  

Study coding categories  

Any study that met the criteria for inclusion based on title, abstract, and full text 

reading was coded to extract the same information. This information included details 

regarding methodology, measures taken, participant details, the area of visuospatial working 

memory and mathematics being assessed, statistical method used and the main reported 

statistic, and a quality judgement of the study fit for the review (1 = very good fit; 2 = good 

fit; 3 = not very good fit e.g. Vanbinst, Ceulemans, Peters, Ghesquière and De Smedt (2018) = 

1, very good fit, Caviola, Mammarella, Cornoldi and Lucangeli (2012) = 3, not very good fit).  

Once this information was compiled for each study, where not already given by the paper, an 

effect size was calculated and a quality judgement of the effect size calculation noted (1 = 

exact calculation, 2 = good approximation, 3 = rough approximation e.g. Campos et al (2013) 

= 1, exact calculation, Pina, Fuentes, Castillo and Diamantopoulou (2014) = 2, good 

approximation).  

Determining effect sizes  

Common effect sizes were calculated (r) for each paper so as to allow for direct 

comparison between studies. R was chosen as an appropriate effect size due to the 

assessment of overlap between the variables, rather than the difference between 

experimental groups. Where this was reported in the paper, this is the effect size reported, 

however, in other cases, this was calculated using an accessible effect size calculator from the 

Campbell Collaboration (Wilson, n.d.), alongside a second freely available calculator from 
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Psychometrica (Lenhard & Lenhard, 2016). These calculators allow calculation of effect sizes 

from a comprehensive range of study designs and so provide the most appropriate 

calculations of any given effect size. The use of two independent calculators allowed 

calculation of effect sizes from a greater variety of study design, where one calculator 

provided a means to convert a statistic in its absence from the other, as well as corroboration 

of calculations by using both calculators.  

Dealing with missing data 

In cases where sufficient data were not available to calculate effect sizes, where 

possible this information was calculated from other available data, for example the use of 

reported correlations from studies using multi-level models. As such, it was possible to 

calculate all of the required effect sizes, though the basis of such calculations on good 

approximations of the exact data was recorded in the quality judgements of the effect size 

calculations made for each study.  

Assessment of heterogeneity 

Due to the varied nature of the research available, it was unlikely that a meta-analysis 

would be possible. Studies included in the review demonstrated important differences 

between crucial aspects of their design, such as measures, methods used, and participants 

included. As a result, a thematic analysis using inferential statistics was concluded to be the 

most appropriate method for synthesis so as not to introduce error through drawing 

comparisons between dissimilar studies. An I2 statistic of 89.81%, much higher than the 

recommended maximum of 25% when undertaking a meta-analysis, supports not completing 

a meta-analysis on the current data. Following findings by von Hippel (2015), it is important 

to consider the I2 statistic in relation to the number of studies included in the meta-analysis, 
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however, 35 studies should be sufficient to mitigate the potential for bias with a small number 

of studies.   

Data synthesis 

Due to the large variation in the studies included, and a number of confounding 

factors, including sample size and the use of unstandardized measures, a quantitative 

synthesis was completed using inferential statistics. As such, thematic analysis of the 

components of interest was completed, addressing issues of participant age, type of 

mathematics being assessed and component of visuospatial working memory being assessed, 

sample size, and the use of standardised measures. 

Detecting and adjusting for publication bias 

Most of the studies in this review concentrate on correlational relationships between 

the measured variables. As such, it is not unreasonable to suggest that publication bias may 

affect publication of these studies to a lesser extent as there is less of a drive to demonstrate 

a particular outcome. One must remain vigilant, however, as it remains the case that negative 

or more difficult to interpret results will be less easy to publish. In order to reduce publication 

bias introduced to this review, databases that include work such as theses and dissertations 

were also included when the literature search was conducted (see below for funnel plot). The 

non-significant Egger’s regression (p=0.21), alongside the randomly distributed funnel plot, 

suggests there is no evidence of publication bias.  
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Figure 1. Funnel plot showing a random distribution, suggesting no evidence of publication 
bias. 1 

Results 

Description of the studies 

Results of the search 

The search of the above listed databases returned 590 records (search terms: 

“visuospatial” “working memory” and “math*”). Along with the electronic database searches, 

an additional 34 records were found as a result of the manual searches of reference lists 

completed.  

52 of the records identified throughout the entire search process were duplicates and 

so were removed; 538 remained after this stage. Following screening of the titles and 

abstracts for irrelevant records, 469 records were excluded in accordance with the exclusion 

criteria, leaving 69 records. The remaining articles were read in full and the relevant data from 

35 articles deemed appropriate, according to the inclusion and exclusion criteria, was 

extracted for analysis in the current review. Data was extracted from 35 articles in total.  
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Description of included studies 

The studies included were conducted in a number of countries, and as such allow for 

a clearer understanding of the relationships between visuospatial working memory and 

mathematics performance globally, as opposed to solely in relation to the National 

Curriculum followed in the UK. Further, the broad age range of participants allows for an 

understanding to be established regarding the potential fluctuations in this relationship as 

children mature and undergo more formal schooling in mathematics.  

The studies included adopted a number of methodological designs, however, no 

specific inclusion and exclusion criteria were defined regarding methodology as it was 

anticipated that a broad range of designs would be used. As a result, all study designs were 

included. Owing to the variety of methodological designs used, the resulting statistical 

analyses employed by the included studies also varied greatly. Whilst a vast majority of 

studies employed, at least as part of their analysis, ANOVA, correlation, and regression 

techniques, additional techniques including factor analysis, structural equation modelling, 

and multi-level modelling were used to further explain the data gathered. For this review, the 

main result from each study was converted to a correlation co-efficient, r, in order to make 

accurate comparisons between studies.   

Quantitative synthesis of results 

Overall findings  

Sufficient data were provided by each of the studies included in the analysis to be 

included in the quantitative synthesis. As noted above, a full meta-analysis of the data was 

not conducted due to the vast differences inherent in the study designs. It was deemed that 

there were insufficient similarities within the studies for a meta-analytical comparison to be 
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tangible due to the impact on the subsequent interpretation of the results. Rather, inferential 

statistics were employed, where possible, to achieve an objective assessment of the 

relationships within the data. Analyses were conducted on a number of subsections of the 

data by way of identifying the possible sources of the aforementioned heterogeneity in order 

to better understand the relationship between visuospatial working memory and 

mathematics performance.  

As previously mentioned, effect sizes were calculated based on the most relevant 

result to the review topic, with an average effect size taken in situations when more than one 

statistic was equally relevant. Since all effect sizes calculated resulted from different studies, 

they can be considered independent. The results demonstrated an overall positive 

relationship between visuospatial working memory and mathematics, as evidenced by the 

forest plot in figure 2, below. From the funnel plot, figure 1, publication bias appears minimal 

in the studies available on this subject.  
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Figure 2. Forest plot showing an overall significant positive relationship between visuospatial 
working memory and mathematics. 2 

Subsection analysis 

Sample size 

Upon investigation, a relationship between sample size and effect size is present 

within the data. This section strives to investigate this relationship further to understand the 

potential ways in which sample size may influence the effect sizes found.  

Larger effect sizes appear concurrent with smaller sample sizes (rs = .340, p = .046), as 

previously demonstrated in the literature as a common phenomenon and indicative of 



98 
 

potential publication bias (Kühberger, Fritz, & Scherndl, 2014; Levine, Asada, & Carpenter, 

2009). The correlation between sample size and effect size is stronger following removal of 

one study with an extremely large sample size (Van de Weijer-Bergsma, Kroesbergen, & Van 

Luit, 2015; rs = .404, p = .018), however caution should be applied when interpreting this 

finding due to issues of statistical power (Button et al., 2013). A medium-large effect size 

resulting from the study with the largest sample size (4337; Van de Weijer-Bergsma et al., 

2015) sits comfortably within the range of effect sizes, hence reducing the potential influence 

of sample size on effect size (Button et al., 2013).  

Sample sizes were divided into two groups for further analysis: small (mean = 115.82, 

sd = 65.84, lower bound = 24, upper bound = 308) and large (mean = 1627.75, sd = 1809.21, 

lower bound = 597, upper bound = 4337). No significant difference was found between the 

two groups (t(33) = -1.357, p-.184), suggesting a lesser influence on sample size than indicated 

by Button et al. (2013). Finally, once negative effect sizes were transformed into positive (via 

a reflection of the original due to the +/- difference resulting from the labels assigned to 

M1/M2), they did not deviate from the core cluster and, hence, show no significant 

differences from the remaining effect sizes.  

Type of mathematics 

Approximately equal numbers of studies investigated Numerical Operations and both 

Numerical Operations and Mathematical Reasoning (17 and 16, respectively), however only 

two studies considered purely Mathematical Reasoning. Interestingly, the largest mean effect 

size was produced by studies concerning Mathematical Reasoning (mean=0.49), with studies 

using small-average samples (n=30 and n=103), suggesting that this result cannot be 

explained by sample size alone. Those studies investigating both types of mathematics 



99 
 

demonstrated the next largest effect size (mean=0.43), followed by Numerical Operations 

only (mean=0.35), indicating that visuospatial working memory may be more of an influencing 

factor in Mathematical Reasoning than Numerical Operations. Despite the aforementioned 

differences being present in the data, the between group differences were not statistically 

significant (F(2)=1.380, p=0.266). It is evident from the data that Numerical Operations and a 

combination of both Numerical Operations and Mathematical Reasoning showed greater 

spread of effect sizes (range=0.55 and 0.52, respectively), though only 2 studies looked at 

Mathematical Reasoning alone (range=0.20). It is to be expected that the range of effect sizes 

resulting from studies of Mathematical Reasoning would have been greater if more studies 

had investigated Mathematical Reasoning alone.  

Two studies (Maennamaa, Kikasb, Peets, & Palu, 2012; Wiklund-Hörnqvist et al., 2016) 

investigated both types of mathematics using large samples, which may have skewed the 

average effect size generated for this subgroup as 13 studies used small samples. However, 

as suggested by Button et al. (2013), it may be the case that these larger samples provide the 

power to detect effects within the data and increase the likelihood that statistically significant 

results are reflective of true effects. Both studies assessing Mathematical Reasoning (Campos 

et al., 2013; Passolunghi & Mammarella, 2010) had only small sample sizes (103 and 59, 

respectively) and as such, according to Button et al. (2013), the large effect sizes may be less 

likely to be representative of the true population effect.  

Type of visuospatial working memory 

Studies were broken down according to the type of visuospatial working memory they 

assessed: simultaneous, sequential, or both. The largest mean effect size was observed for 

studies concerning both simultaneous and sequential working memory (mean=0.44), 
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followed by sequential (mean=0.37), and simultaneous (mean=0.25). Whilst this difference is 

marginally non-significant (F(2)=2.727, p=0.081), it is suggestive of a bias in the level of 

influence of each type of visuospatial working memory on mathematics performance.  

The largest range of effect sizes can be seen in the data for both types of visuospatial 

working memory (range=0.65), with smaller ranges seen for sequential and simultaneous 

(range=0.44 and 0.29, respectively). Such a finding alludes to other influencing factors in 

studies measuring both types of visuospatial working memory due to the large range of effect 

sizes displayed. Further, it may suggest the more stable development of simultaneous 

visuospatial working memory by the age of children included in these studies (5 and 6 years, 

respectively, for both types of visuospatial working memory and simultaneous only). All four 

studies involving large sample sizes (Maennamaa et al., 2012; Mix et al., 2016; Van de Weijer-

Bergsma et al., 2015; Wiklund-Hörnqvist et al., 2016) concerned both types of visuospatial 

working memory, which may explain, in part, the large range of effect sizes for this category 

(14 used small samples), whereas all studies concerning only simultaneous or sequential 

visuospatial working memory used small sample sizes.  

Type of visuospatial working memory was measured alongside type of mathematics 

to ascertain further detail on more specific relationships between the two components. No 

studies investigated the influence of sequential visuospatial working memory on 

Mathematical Reasoning, highlighting a gap in the research requiring additional investigation. 

An ANOVA showed no significant effects when using type of working memory and type of 

mathematics as fixed effects. Simultaneous visuospatial working memory shows the lowest 

mean effect sizes for both Numerical Operations and both types of mathematics (mean=0.28 

and 0.23, respectively), suggesting that simultaneous visuospatial working memory has the 
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smallest influence on mathematical performance in these areas of mathematics 

(simultaneous visuospatial working memory alone was not measured for Mathematical 

Reasoning). The largest mean effect size (mean=0.49) was identified for both types of 

visuospatial working memory in Mathematical Reasoning tasks. A large mean effect size here 

implies a large influence of visuospatial working memory in Mathematical Reasoning tasks, in 

line with the additional demands of such tasks, however, only two studies (Campos et al., 

2013; Passolunghi & Mammarella, 2010) measured this combination and so caution should 

be exercised when generalising the result. As may be expected, studies measuring both types 

of visuospatial working memory showed the largest mean effect size, regardless of the type 

of mathematics being investigated (Numerical Operations, Mathematical Reasoning, or both). 

One potential explanation for this may be the need to combine information and/or the 

complexity of the tasks used, particularly in the case of studies assessing Mathematical 

Reasoning and both types of mathematics.  

Age of participants 

The age of participants at the beginning and end of each study was extracted for in 

depth analysis. Neither showed a significant correlation with effect size (rs(35)=-0.025, 

p=0.885; rs(35)=-0.178, p=0.307, respectively). The mean age at the beginning of the included 

studies was 7.89 years, with a range from 4-15 years (sd=2.44). Once all studies had reached 

their conclusion, the mean age showed an increase to 9.86 years, ranging from 7-16 years 

(sd=2.35). Studies concerning Numerical Operations showed the lowest mean age at the 

beginning of the study (mean=7.29 years; range=4-12), therefore, it is conceivable that the 

effect sizes generated for this type of mathematics might be affected by the involvement of 

such young participants. Further, the involvement of younger participants in studies 

surrounding Numerical Operations aligns with methods for teaching mathematics, whereby 
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arithmetic skills are taught before any reference to word problems or other such questions 

linking to Mathematical Reasoning. Studies investigating both types of mathematics involved 

the largest age range of participants (mean=8.44 years, range=5-15 years). Such a large range 

of ages, and the combination of styles of mathematics questions, may have influenced the 

effect sizes collected due to the demand of the questions, particularly those relating to 

Mathematical Reasoning. Mathematical Reasoning questions requiring a high level of 

proficiency in reading may have proven particularly detrimental to young children’s 

Mathematical Reasoning scores. A further potential influence on results concerns whether an 

age appropriate/ standardised measure of mathematical ability was taken to assess 

performance.  

Studies assessing sequential working memory involved the youngest mean age of 

participant (mean=6.85 years), with an age range of 4-9 years. The mean age at the beginning 

of studies for those assessing simultaneous working memory was non-significantly higher 

than sequential working memory (mean=7.25 years, p=0.955). It would not be expected that 

an age difference as small as can be observed in the given data would have a significant impact 

on working memory and mathematics performance. The largest observable age range can be 

seen for studies examining both types of working memory (range=5-15 years), with a mean 

age of 8.78 years. This is also the group of studies with the oldest mean age. All studies using 

older children, of secondary school age, fall into this category, which would be expected to 

influence the results as it is expected that older children will have a larger working memory 

capacity (Gathercole, Pickering, Ambridge, et al., 2004).  
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Standardised measures 

Studies were examined according to whether they had employed a standardised 

measure of visuospatial working memory or not. The mean effect size for studies using a 

standardised measure was higher, but not statistically significantly so, than that found for 

those using non-standardised measures (mean=0.40 and mean=0.38, respectively; 

t(33)=0.212, p=0.833). A non-significant finding here indicates that standardised and non-

standardised measures appear to be equally effective at measuring visuospatial working 

memory in relation to mathematics performance. Further, there was no significant 

relationship between the size of the sample used and the use of a standardised measure 

(t(12.154)=-1.143, p=0.275). As such, the use of a standardised measure and sample size are 

unlikely to have a compound influence on effect size.  

Studies were then examined according to their use of a standardised mathematics 

measure. The mean effect size gathered for studies using a standardised mathematics 

measure (mean=0.44) was significantly higher than those using unstandardized measures 

(mean=0.25, t(33)=3.587, p=0.001). Such a finding highlights the importance of using 

standardised mathematics measures in order to uncover the true extent of any relationship 

between mathematics performance and visuospatial working memory. As with measures of 

visuospatial working memory, the data do not show a significant relationship between the 

size of the sample used and the use of a standardised measure (t(33)=0.125, p=0.901). 

Therefore, the size of the sample is unlikely to have a compound effect on the already 

significant influence of the use of a standardised measure.  

Overall, the results indicate the importance of using a standardised measure of 

mathematics when investigating the relationship between visuospatial working memory and 
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mathematics performance. However, they also suggest that the use of a non-standardised 

measure of visuospatial working memory does not necessarily prove detrimental to the 

integrity of the study.  

Table 1. Number of study participants, age of participants, mathematics measures used, and 
visuospatial working memory measures used for each study included in the analysis. 1 

 Author(s) 
Date N Age (in 

years) 

Mathematics 

measures 

Visuospatial working 

memory measures 

Vanbinst et al. 2018 51 5-8 Standardised addition 

and subtraction task 

Corsi block task  

Vandenbrouck

e et al.  

2018 107 6-7 Standardised 

achievement test 

Dot matrix; block 

recall; odd one out; Mr 

X  

Bresgi, 

Alexander, & 

Seabi  

2017 80 7-8 Group mathematics 

test  

Spatial recall; spatial 

processing recall  

Li & Geary 2017 145 12-15 Weschler individual 

achievement test 

(WIAT)  

Block recall; mazes 

memory 

Mammarella, 

Caviola, 

Giofrè, & Szűcs 

2017 72 9-10 AC-MT 11-14 

standardised 

arithmetic battery, 

AC-FL, BDE-2 battery  

Visual memory 

houses/balloons, 

spatial-simultaneous 
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and spatial-sequential 

matrices 

Mix et al. 2016 854 6-11 Place value, word 

problems, calculation, 

missing term 

problems/ algebra, 

number line 

estimation, fractions 

Adaptation of dot 

matrix  

Wiklund-

Hörnqvist et 

al.   

2016 597 9 Swedish national test 

in mathematics for 

grade 3 pupils 

Adaptation of WISC-IV 

block span  

Soltanlou, 

Pixner, & 

Nuerk 

2015 77 8-11 Multiplications Corsi block task 

forwards/ backwards 

Van de Weijer-

Bergsma et al. 

2015 4337 5-10 Arithmetic tempo test Lion game 

Martin, Cirino, 

Sharp, & 

Barnes  

2014 193 6-7 Procedural counting; 

conceptual counting; 

symbolic number 

identification (K); 

small sums addition & 

subtraction; WJ-3 

Adaptation of dot 

matrix  



106 
 

calculation; WRAT-3 

arithmetic; WJ-3 

applied problems 

subtest; single digit 

story problems (1st 

grade) 

Nath & Szücs 2014 66 7 Numerical operations 

subtest (WIAT)   

Dot matrix; odd one 

out  

Pina et al.  2014 102 9-10 Fluency and 

quantitative concepts 

tests from Spanish 

version of WJ-III ACH; 

arithmetic test from 

Spanish WISC 

Computerised Corsi 

block task forwards 

and backwards 

Ashkenazi et 

al.  

2013 34 7-9 Numerical operations 

and mathematical 

reasoning subtests 

(WIAT)   

Block recall  

Li & Geary 2013 177 6-11 WIAT  Block recall; mazes 

memory  
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Szucs, Devine, 

Soltesz, Nobes, 

& Gabriel 

2013 24 9 Mathematical 

assessment for 

learning test; 

numerical operations 

subtest (WIAT)   

Dot matrix; odd one 

out  

Campos et al. 2013 103 8-9 Arithmetic word 

problems; 

measurements 

Block recall; mazes 

memory 

Caviola et al. 2012 263 8-9 Standardised 

arithmetic battery 

Dot matrix  

Maennamaa et 

al. 

2012 723 8-9 Maths test designed 

in line with the third 

grade Estonian 

curriculum 

Figure recognition test 

Alloway & 

Passolunghi 

2011 206 7-8 AC-MT, WOND Dot matrix; mazes 

memory; block recall; 

odd one out; Mr X; 

spatial recall  

Geary 2011 177 7-10 Numerical operations 

subtest (WIAT)   

Block recall; mazes 

memory  

Meyer, 

Salimpoor, 

2010 98 7-8 Numerical operations 

and mathematical 

Block recall 
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Wu, Geary, & 

Menon 

reasoning subtests 

(WIAT)   

Passolunghi & 

Mammarella 

2010 59 9 12 item standardised 

mathematics test; 

WRAT calculation 

subscale 

Corsi block task; spatial 

matrix; houses 

recognition task; 

pathway span 

Alloway & 

Alloway 

2009 308 5-9 Weschler objective 

numerical dimensions 

(WOND) 

Odd one out; Mr X; 

spatial recall; dot 

matrix; mazes 

memory; block recall 

De Smedt et 

al.  

2009 106 6-7 Flemish Student 

Monitoring System  

Block recall; visual 

pattern task   

Andersson   2008 141 9-11 Horizontally 

presented addition, 

subtraction, and 

multiplication 

problems; arithmetic 

fact retrieval 

Visual matrix; Corsi 

block task 

Bull et al. 2008 104 4-7 Performance 

indicators in primary 

school (PIPS) 

Corsi block task 

forwards and 

backwards 
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Holmes et al. 2008 107 7-10 Maths tests designed 

to test the 4 elements 

of the national 

curriculum 

Visual patterns test; 

block recall  

Kyttälä & 

Lehto 

2008 128 15-16 The Mathematics Test 

(Finland)  

Visual patterns test; 

Corsi block task; 

mental rotation  

Andersson & 

Lyxell  

2007 138 9-10 Simple addition Dot matrix; Corsi block 

task  

Holmes & 

Adams 

2006 148 7-10 Maths tests designed 

to test the 4 elements 

of the national 

curriculum  

Mazes memory 

Bayliss, 

Jarrold, 

Baddeley, & 

Gunn 

2005 56 7-9 NFER-Nelson 

mathematics 

Target search; 

adaptation of dot 

matrix  

D’Amico & 

Guarnera 

2005 28 9-11 ABCA Matrix task; corsi block 

task 

Jarvis & 

Gathercole 

2003 128 10-14 National curriculum 

composite results  

Visual patterns test; 

dot matrix; spatial 
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span task; odd one out 

task  

Maybery & Do 2003 49 9-10 Wood & Lowther 

Easymark Diagnostic 

Mathematics Test 

Fixed spatial span; 

running spatial span  

Reuhkala 2001 115 15-16 National mathematics 

test 

Matrix pattern task; 

Corsi block task  
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Table 2. Effect size (r), confidence interval for effect size, type of mathematics, and type of 
visuospatial working memory for each study included in the analysis. 2 

Author(s) Date r 
Lower 

CI 

Upper 

CI 

Type of 

mathematics 

Type of 

visuospatial 

working memory 

Vanbinst et al. 2018 0.527 0.294 0.701 Numerical 

operations 

Sequential 

Vandenbroucke et 

al.  

2018 0.600 0.463 0.709 Numerical 

operations & 

mathematical 

reasoning 

Sequential  

Bresgi et al. 2017 0.446 0.251 0.606 Numerical 

operations 

Sequential 

Li & Geary 2017 0.428 0.285 0.553 Numerical 

operations 

Simultaneous & 

sequential 

Mammarella et al.  2017 0.323 0.099 0.516 Numerical 

operations 

Simultaneous & 

sequential 

Mix et al.  2016 0.137 0.071 0.202 Numerical 

operations & 

mathematical 

reasoning 

Simultaneous 
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Wiklund-Hörnqvist 

et al. 

2016 0.230 0.153 0.305 Numerical 

operations & 

mathematical 

reasoning 

Sequential 

Soltanlou et al. 2015 0.268 0.047 0.464 Numerical 

operations 

Sequential 

Van de Weijer-

Bergsma et al. 

2015 0.520 0.498 0.541 Numerical 

operations 

Sequential 

Martin et al 2014 0.163 0.022 0.297 Numerical 

operations 

Sequential  

Nath & Szücs 2014 0.357 0.126 0.551 Numerical 

operations 

Sequential  

Pina et al. 2014 0.231 0.038 0.407 Numerical 

operations 

Sequential  

Ashkenazi et al. 2013 0.469 0.156 0.697 Numerical 

operations & 

mathematical 

reasoning 

Sequential 

Li & Geary 2013 0.380 0.246 0.500 Numerical 

operations 

Simultaneous & 

sequential 
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Szucs et al. 2013 0.610 0.274 0.813 Numerical 

operations & 

mathematical 

reasoning 

Simultaneous & 

sequential 

Campos et al. 2013 0.586 0.443 0.700 Mathematical 

reasoning 

Sequential & 

simultaneous  

Caviola et al. 2012 0.425 0.321 0.520 Numerical 

operations 

Simultaneous 

Maennamaa et al.  2012 0.280 0.211 0.346 Numerical 

operations & 

mathematical 

reasoning 

Simultaneous 

Alloway & 

Passolunghi 

2011 0.520 0.413 0.614 Numerical 

operations 

Simultaneous & 

sequential 

Geary 2011 0.253 0.109 0.386 Numerical 

operations 

Simultaneous & 

sequential 

Meyer et al. 2010 0.365 0.180 0.526 Numerical 

operations & 

mathematical 

reasoning 

Sequential 
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Passolunghi & 

Mammarella 

2010 0.391 0.150 0.588 Mathematical 

reasoning 

Simultaneous & 

sequential 

Alloway, 

Gathercole, 

Kirkwood, & Elliott 

2009 0.639 0.567 0.701 Numerical 

operations & 

mathematical 

reasoning 

Sequential & 

simultaneous  

De Smedt et al. 2009 0.510 0.354 0.639 Numerical 

operations & 

mathematical 

reasoning 

Simultaneous & 

sequential 

Andersson   2008 0.040 -0.126 0.204 Numerical 

operations 

Simultaneous & 

sequential 

Bull et al.  2008 0.230 0.039 0.405 Numerical 

operations 

Sequential  

Holmes et al. 2008 0.300 0.117 0.463 Numerical 

operations & 

mathematical 

reasoning 

Simultaneous & 

sequential 

Kyttälä & Lehto 2008 0.412 0.257 0.547 Numerical 

operations & 

Simultaneous & 

sequential 
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mathematical 

reasoning 

Andersson & Lyxell 2007 0.360 0.205 0.497 Numerical 

operations 

Simultaneous & 

sequential 

Holmes & Adams 2006 0.173 0.012 0.325 Numerical 

operations & 

mathematical 

reasoning 

Simultaneous  

Bayliss et al. 2005 0.690 0.521 0.806 Numerical 

operations & 

mathematical 

reasoning 

Simultaneous & 

sequential 

D’Amico & Guarnera 2005 0.595 0.285 0.792 Numerical 

operations 

Simultaneous & 

sequential 

Jarvis & Gathercole 2003 0.320 0.155 0.468 Numerical 

operations & 

mathematical 

reasoning 

Simultaneous & 

sequential 

Maybery & Do 2003 0.381 0.112 0.598 Numerical 

operations & 

Sequential 
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mathematical 

reasoning 

Reuhkala 2001 0.574 0.437 0.685 Numerical 

operations & 

mathematical 

reasoning 

Simultaneous & 

sequential 

 

Discussion 

Systematic review results summary 

This review concerned 35 independent studies, following thorough examination of 

each document to ensure no overlaps between studies were present. The review was 

conducted with the aim of producing a comprehensive overview of the current knowledge 

base relating to the relationship between visuospatial working memory and mathematics. 

The included studies comprised of a number of designs and involved a variety of assessments 

of both mathematics and visuospatial working memory. Whilst this is a relatively small sample 

of studies for the purposes of a review, there were a sufficient number to conduct further 

analysis. A forest plot and funnel plot (figures 1 and 2) were generated to give an overview of 

the data before inferential statistics were applied in the absence of a meta-analysis.  

The number of studies analysed for this review is reflective of the current 

understanding of the relationship between visuospatial working memory and mathematics. 

Research remains in its relative infancy, therefore, the intricacies of the relationship are as 



117 
 

yet unknown. For example, the earliest study in this review demonstrates the first published 

study documenting the specific relationship as taking place in 2001 (Reuhkala, 2001).  

No other systematic reviews on this area of the research have been published, to our 

knowledge, up to the date of writing, hence there is great scope for collating the findings of 

the research to date. As such, it is not possible to draw comparisons with the findings of 

reviews of other aspects of this area of research. The lack of reviews previously completed in 

this area indicates the need to develop a comprehensive understanding of the given 

relationship before continuing with further research.  

Quantitative analysis results summary 

The review results highlight the importance of a sufficiently large sample in order to 

detect any effect within the data and accurately determine its significance, as evidenced by 

the negative correlation identified between effect size and sample size. The inclusion of only 

two studies exploring solely Mathematical Reasoning demonstrates an evident lack in the 

literature of such focused work, however, a further 16 studies investigated Mathematical 

Reasoning in conjunction with numerical operations.  

From the evidence, it appears that numerical operations and mathematical reasoning 

are both influenced to a similar extent by visuospatial working memory, however, the level 

of influence within each of these types of maths is variable. The greatest variation can be seen 

for numerical operations. A bias in the amount of influence of the type of visuospatial working 

memory is suggested from the data. Nevertheless, once the type of mathematics being 

assessed is included in the analysis, the difference is not significant. Further, age did not have 

a significant impact on the effect sizes generated, nor did the use of a standardised 

visuospatial working memory measure. On the contrary, the use of a standardised 
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mathematics measure resulted in a significantly larger effect size. One possible reason for 

such a difference may be the design of standardised measures to rigorously assess specific 

areas of mathematics and address all areas of the curriculum.  

Quality of the evidence 

590 studies were screened before arriving at the final sample of 35, suggesting that a 

sufficiently scoping search was completed to identify all relevant available literature, in line 

with the inclusion criteria. This suggestion is supported as all relevant studies were available 

in full.  

As previously mentioned, the studies included employ a number of designs, measures, 

and methods of analysis. This emphasises the need to apply caution when attempting to 

directly compare across studies. However, sufficient data was provided within each 

manuscript to allow for the calculation of effect sizes, thus allowing less problematic, direct 

comparisons due to the common scale. Comparisons have also been drawn regarding the 

variance accounted for, in order to examine the extent of the influence, as well its 

significance, so as to reduce the probability of making type 2 errors, given the potential for 

the small studies included to be underpowered. As a result, the conclusions drawn from the 

data in this review seem relatively robust.  

Conclusions 

This review analysed the available literature on the relationship between visuospatial 

working memory and mathematics and proposes that the type of visuospatial working 

memory and mathematics being assessed do not have significant influence, however, the use 

of a standardised mathematics measure demonstrates significant influence on the effect size 
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generated. Overall a positive influence of visuospatial working memory on mathematics 

attainment is evident.  

Implications for research 

The findings presented above suggest the greatest implications for those seeking to 

develop visuospatial working memory research in relation to mathematics performance. 

Since there is the suggestion that the use of a standardised mathematics measure significantly 

influences the estimation of the level of effect, researchers ought to be cautious of devising 

their own measures of mathematics attainment where a suitable standardised measure is 

available.  

There is a great deal of scope for further research suggested by the findings of this 

review, as well as the gaps in the research identified throughout. Additional research is 

necessary to determine the stability of the relationship as identified over the years children 

spend at school. For example, in order for preventative measures for mathematical difficulties 

to be devised, it is first necessary to understand the intricacies of the relationship. 

Additionally, further research should seek to identify whether the relationship identified 

throughout is specific to components of mathematics, or whether the explanation satisfies 

mathematics in general.  
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7 

Study 1 Introduction 

The systematic review presented above highlighted a number of areas that required 

further investigation upon continuation of this project. Spatial-simultaneous and spatial-

sequential working memory appear to show different relationships with mathematics, with 

spatial-sequential demonstrating a stronger relationship to mathematics than spatial-

simultaneous (difference in r=.12). It is important to consider that the review covered a broader 

range of school-aged children, and as such it is necessary to further investigate this relationship 

with regard to the target age range for this project. In order to establish a more thorough 

understanding of how the subcomponents of visuospatial working memory relate to 

mathematics, specifically in primary school aged children, we decided to conduct a study that 

distinguished between the two. In doing so, it was possible to look into the differential influence 

on maths of spatial-simultaneous and spatial-sequential working memory. We further 

subdivided spatial-sequential working memory to differentiate between those tasks that 

required participants to adhere to the given order of stimuli during the recall phase, and those 

that did not. This ensured a fully crossed design. Year three (7-8 year olds) was chosen due to 

the ages at which standardised testing is conducted within schools, since Year three is generally 

a year group with less pressure attached as no external testing is required in this year group. 

Further, using Year three as the test group left scope for extending the findings into younger 

children in order to understand the malleability of the relationship developmentally. The paper 

that follows is published in the Quarterly Journal of Experimental Psychology (Allen, K., 

Giofrè, D., Higgins, S., & Adams, J. (2020). Working memory predictors of written 

mathematics in 7-to 8-year-old children. Quarterly Journal of Experimental Psychology, 73(2), 

239–248.; Appendix J). It was authored in collaboration with Dr. David Giofrè, and allowed 

me to develop more advanced analysis skills, including using R for data analysis and using 
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structural equation modelling as a technique to understand the data beyond the capabilities of 

standard regression models. We established the collaboration following meeting at the Annual 

Working Memory Discussion Meeting in June 2018 and have maintained the collaboration 

since. In this instance, I had designed and conducted the study, Dr. David Giofrè joined the 

project during the analysis phase.  
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8 

Study 1: Working Memory Predictors of Written Mathematics in 7-8 Year Old Children 

Abstract 

There is extensive evidence for the involvement of working memory in mathematical 

attainment This study aims to identify the relative contributions of verbal, spatial-

simultaneous, and spatial-sequential working memory measures in written mathematics. 

Year 3 children (7-8 years of age, n=214) in the UK were administered a battery of working 

memory tasks alongside a standardised test of mathematics. Confirmatory factor analyses 

and variance partitioning were then performed on the data to identify the unique variance 

accounted for by verbal, spatial-simultaneous, and spatial-sequential measures. Results 

revealed the largest individual contribution was that of verbal working memory, followed by 

spatial-simultaneous factors. This suggests the components of working memory underpinning 

mathematical performance at this age are those concerning verbal-numeric and spatial-

simultaneous working memory. Implications for educators and further research are 

discussed.  

Introduction 

There is some discrepancy in the literature with regard to the proportional influence 

of components of the Baddeley and Hitch working memory model (1974) on mathematics 

achievement. Whilst there are suggestions of a stronger influence of visuospatial working 

memory (e.g., Caviola, Mammarella, Lucangeli, & Cornoldi, 2014; Clearman, Klinger, & Szucs, 

2017; Holmes, Adams, & Hamilton, 2008; Li & Geary, 2017), there is also evidence of 

developmental shifts in the respective contributions and the potential for a cyclical 

relationship (e.g., Li & Geary, 2013; Soltanlou, Pixner, & Nuerk, 2015; Van de Weijer-Bergsma, 

Kroesbergen, & Van Luit, 2015). Additionally, there is some evidence for a greater influence 
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of verbal working memory (e.g., Wilson & Swanson, 2001) on mathematics. Visuospatial 

working memory is implicated in mathematics performance in a number of areas, including, 

but not limited to arithmetic (Ashkenazi et al., 2013; Caviola et al., 2012; Passolunghi & 

Cornoldi, 2008), word problem solving (Swanson & Beebe-Frankenberger, 2004; Swanson & 

Sachse-Lee, 2001; Zheng, Swanson, & Marcoulides, 2011), and geometry (Giofrè, 

Mammarella, & Cornoldi, 2014a; Giofrè, Mammarella, Ronconi, & Cornoldi, 2013), as well as 

mathematical difficulties (Andersson & Lyxell, 2007; D’Amico & Guarnera, 2005; McLean & 

Hitch, 1999; Passolunghi & Cornoldi, 2008; Szucs et al., 2013). It is, therefore, important to 

understand the intricacies of this relationship in order to mediate difficulties associated with 

mathematics to the fullest extent possible.  

Some authors argued that the visuospatial working memory system is not unitary 

(e.g., Logie, 1995). An alternative approach that has recently received some support is one 

that distinguishes between spatial-sequential tasks requiring the recall of a sequence of 

spatial locations, and spatial-simultaneous tasks demanding the recall of an array of 

simultaneously-presented locations (see Cornoldi & Vecchi, 2003; Mammarella, Borella, 

Pastore, & Pazzaglia, 2013; Mammarella, Caviola, Giofrè, & Szűcs, 2018).  

Mammarella et al. (2006, 2018) identified a double dissociation between spatial-

simultaneous and spatial-sequential working memory, which has been further investigated 

for its relationship with mathematics, thus providing reason for differentiating between 

spatial-simultaneous and spatial-sequential formats of visuospatial working memory tasks. 

Since spatial-simultaneous and spatial-sequential visuospatial working memory can be 

uniquely affected in visuospatial learning difficulties, it is logical that these two components 

may demonstrate differential relations with mathematics attainment in young children.  
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Various measures are available for assessing mathematical performance, ranging from 

single-step calculations to multi-step contextual story problems. A number of these measures 

have been standardised for their use with children within a particular age range (e.g., 

Wechsler Individual Achievement Test, Pearson Clinical, 2017), however, a large number of 

the measures used are measures derived by researchers for the purpose of research. 

Measures designed for research purposes should be considered carefully when applying the 

findings to any context other than that it was originally designed for since direct comparisons 

are not possible from unstandardised data. Furthermore, such measures can lead to concerns 

regarding reliability and validity since the number of applications of the measures is generally 

fewer than that of standardised measures. To combat these issues, a standardised written 

mathematics measure was used in this study to ascertain how children performed compared 

to age norms. The measure is designed to map on to current England and Wales SATs papers 

and so is directly related school attainment data. 

The principal aim of this study is to examine the relationship between different 

working memory components and mathematics attainment. Here we aimed to further this 

knowledge by identifying the unique contributions of verbal, spatial-simultaneous, and 

spatial-sequential factors to written mathematics in Year 3 children (7-8 years of age). In doing 

so, this knowledge will allow us to understand more deeply the predictive nature of this 

relationship and understand where best to target preventative measures for mathematics 

difficulties, for example by identifying the age group most likely to benefit from an 

intervention. This age group was chosen based on previous evidence highlighting a stronger 

influence of visuospatial working memory on mathematics attainment in this age group 

(Holmes & Adams, 2006; Holmes et al., 2008). The age group chosen also aligns with a period 
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of intensive skill acquisition; a time when visuospatial working memory is most likely 

employed (Andersson, 2008).  

Spatial-sequential tasks requiring order during the recall phase, as well as those that 

do not require order during recall, were used in order to ensure the model was fully crossed. 

The main research question being asked was “how do the subcomponents of working 

memory relate to the performance of written mathematics?”. Previous meta-analytic findings 

indicate different subcomponents of working memory do not tend to make different 

contributions to mathematical performance (Peng, Namkung, Barnes, & Sun, 2016). Such a 

finding, however, might be determined by a heterogeneous number of measures in use in 

different studies and by the fact that the aforementioned meta-analysis did not distinguish 

between simultaneous and sequential subcomponents of working memory. In addressing this 

issue, a recent systematic review by Allen, Higgins and Adams (2019) identified no influence 

of spatial-sequential versus spatial-simultaneous working memory on mathematical 

performance. Similarly to Peng, Namkung, Barnes and Sun (2016), this review compared 

studies with a wide range of measures both for mathematics and working memory. Further, 

verbal components of working memory were not considered, which may have influenced the 

results. This work will expand on the understanding of previous papers by including the 

unique contributions of spatial-simultaneous and spatial-sequential measures to children’s 

mathematics.  

Method 

Participants 

The sample initially included 214 7-8 year old children. Some children were absent 

during the second administration and were excluded from the final sample. The final sample 
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included a total of 197 children (95 male and 102 female, M age = 95.99 months, SD = 3.63). 

An opportunity sample of Year 3 pupils in each of the five schools was used, using opt-out 

parental consent to reduce bias in the sample (Krousel-Wood et al., 2006). The study was 

approved by the School of Education Ethics Committee at the University of Durham. Parental 

consent was obtained. Children with special educational needs, intellectual disabilities, or 

neurological and genetic conditions were not included in the study. 

Design & Procedure 

All children were tested individually in a quiet area of their school. The six working 

memory measures were administered in a randomised order so as to reduce the influence of 

rehearsal or fatigue (ɑ = .80). However, the size of the grids used in the derived measures of 

visuospatial working memory were administered in a fixed order (3 × 3 then 4 × 3, and 4 × 3 

then 4 × 4, for spatial-sequential and spatial-simultaneous, respectively). A correlational 

design was adopted to explore the relationships between visuospatial working memory and 

maths performance. Measures were administered as per the administration instructions 

provided with the WMTB-C where standardised measures were used. Where measures were 

derived for the purposes of the study, administration procedures paralleled those set out for 

standardised measures. The mathematics test was presented in paper format. Children could 

ask for a question to be read aloud in order to not place children of lower reading ability at a 

disadvantage.  

Measures 

Verbal working memory 

Working Memory Test Battery for Children (WMBT-C): Three subtests of the WMTB-C 

were administered to children: digit recall (children recall a list of digits presented to them 
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verbally), backwards digit recall (children recall a list of digits presented to them verbally in 

reverse order), and counting recall (children count aloud the number of dots on a page then 

recall the list of totals, in the correct order, once all pages in the sequence have been 

counted). All subtests were administered in accordance with the instructions set out for the 

WMTB-C, hence sequences were presented at a rate of one item per second. Blocks of six 

trials of each sequence length were employed, however, following four correct trials, testing 

moved on to the next block. Testing was discontinued following three mistakes within one 

block, however, if this was the first block of trials, the previous block was administered to 

ascertain the child’s span score. The child’s raw score was recorded for each subtest.   

Visuospatial working memory 

Spatial-simultaneous: A grid was presented to the child (firstly a 4 × 3 grid was used, 

followed by a 4 × 4 grid; all children completed both grid sizes) containing dots. The dots were 

displayed for 3s before disappearing to leave a blank grid. Immediately following the 

disappearance of the dots, children were asked to tap on the screen of the laptop being used 

to indicate where the dots had been. They were instructed that this could be done in any 

order or pattern. The number of dots per grid ranged from two to eight dots, with blocks of 

six trials of each number of dots. This reflects the procedure of the WMTB-C. Additionally, the 

same discontinuation rule was applied. Unlike the subtests of the WMTB-C, a moving-on rule 

was not employed in this test.  

Spatial-sequential, no order: The same format of test was used as that for spatial-

simultaneous working memory. However, dots were presented one at a time for a period of 

1s each on grid sizes 3 × 3 then 4 × 3. All children completed both grid sizes. Again, blocks 

consisted of six trials, and contained between two and eight dots. Recall in this test was also 

immediate, with the children being required to tap the screen where the dots had appeared 
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previously. Importantly, children were instructed that they could indicate the location of the 

dots in any order they wished.  This test was designed to determine the role of order during 

the recall phase in the number of dot positions correctly recalled.  

Block recall (Corsi, 1972): The block recall task from the WMTB-C was used to assess 

spatial-sequential working memory with order. A sequence of blocks is tapped at a rate of 

one block per second which children must recall in the correct order. Only forwards order 

recall was required. This test was administered in accordance with the instructions set out by 

the WMBT-C, as with those used for verbal working memory, hence administration and 

scoring were as described above.  

Mathematics 

Access Mathematics Test (AMT): The AMT is a standardised measure of mathematics, 

available for use with children between the ages of 6 and 12 years. As such it provides a 

comprehensive profile of how children perform when faced with different aspects of maths. 

The AMT is aligned to the areas of maths taught on the England and Wales national 

curriculum, with requirements for children to develop an understanding in the areas of 

number, measurement, geometry, and statistics, hence providing a valid measure. Questions 

include those concerning using and applying mathematics (e.g. “tick the two division facts 

that give the same answer”), counting and understanding number (e.g. “one part of the circle 

is shaded. How many more parts do you need to shade so exactly one half of the circle is 

shaded?”), knowing and using number facts (e.g., “what is half of 24?”), calculating (e.g. 

“complete this calculation and show the remainder: 721 ÷ 2 = __ remainder __”), 

understanding shape (e.g. “shade in the squares to show the reflection of the shape”), 

measuring (e.g. “what time does this clock show, in digital form?”), and handling data (e.g. 
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“the table gives the ages of the members of a golf club. How many members are 55 or 

older?”).  

Children were read the instructions set out for the AMT, which included a time limit 

of 45 minutes, clarification of where to write their answer on the paper, and explanation that 

workings were allowed on the paper, providing their answer was clearly written in the correct 

space. Typical classroom test conditions were adopted throughout. Children were permitted 

to request questions be read aloud to them should they have difficulties so as not to 

disadvantage those with weaker reading abilities, however, no further explanation of the 

question, or what was required, was given. No discontinuation rule was employed as children 

were instructed to complete as many questions as they could, but that questions were also 

included for children much older than they were so not to worry if they could not complete 

them all.  The total number of test items for this test is 60, with a maximum score of 60.  

Data analysis  

The R program (R Core Team, 2018) with the “lavaan” library (Rosseel, 2012) was used. 

Model fit was assessed using various indexes according to the criteria suggested by Hu and 

Bentler (1999). We considered the chi-square (χ2), the comparative fit index (CFI), the non-

normed fit index (NNFI), the standardized root mean square residual (SRMR), and the root 

mean square error of approximation (RMSEA).  

Results 

Preliminary analyses 

Age (in months) was partialled out of all analyses to remove its influence on the data 

(see Giofrè, Mammarella, & Cornoldi, 2013 for a similar procedure). Descriptive statistics and 

correlations are presented in Table 1. There is little variation evident between the raw and 
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covaried correlations, with r values of a similar order in both cases, e.g. r = .398 and r = .399 

for the raw and covaried correlations between spatial-simultaneous 4 × 4 and knowing and 

using number facts, respectively. Asymmetry and kurtosis were tested on all variables. 

“Measuring”, a single component of mathematics, was skewed and presented with extremely 

high values of kurtosis, therefore, this component was removed from further analysis. All 

other measures had skewness and kurtosis values lower than 1. All the analyses were 

performed again including measuring and results were extremely similar.  
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Table 1. Correlation matrix with raw score correlations below the leading diagonal and covaried scores above, including means and standard 
deviations for each measure. 3 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1. Simultaneous 4 x 3 ―  .685 .471 .420 .375 .339 .330 .143 .302 .312 .363 .238 .323 .315 

2. Simultaneous 4 x 4 .681 ― .408 .425 .409 .297 .335 .091 .283 .251 .399 .285 .300 .296 

3. Sequential 3 x 3  .470 .408 ― .550 .300 .266 .254 .086 .212 .230 .275 .195 .165 .197 

4. Sequential 4 x 3 .418 .425 .550 ― .312 .185 .259 .093 .207 .190 .227 .212 .145 .224 

5. Block recall .379 .409 .301 .313 ― .238 .264 -.026 .224 .116 .175 .159 .030 .140 

6. Counting recall .343 .298 .267 .185 .241 ― .416 .294 .348 .331 .299 .224 .250 .206 

7. Backward digit  .333 .336 .255 .259 .266 .418 ― .253 .287 .313 .342 .240 .122 .131 

8. Digit recall .143 .091 .086 .093 -.025 .295 .253 ― .098 .182 .164 .088 -.050 .112 

9. Understanding and app  .322 .278 .213 .204 .234 .351 .289 .099 ― .480 .512 .459 .378 .434 

10. Count. and underst.  .318 .251 .231 .191 .121 .334 .315 .183 .483 ― .618 .590 .407 .511 

11. Knowing and using  .370 .398 .276 .227 .180 .302 .344 .165 .517 .621 ― .645 .378 .470 

12. Calculating .221 .282 .191 .209 .150 .216 .234 .086 .418 .577 .629 ― .359 .403 
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13. Understanding shape .322 .300 .165 .145 .031 .250 .123 -.050 .372 .408 .378 .354 ― .200 

14. Handling data .304 .295 .195 .223 .136 .201 .128 .111 .407 .504 .462 .406 .198 ― 

M 28.5 2.25 18.84 15.42 21.86 16.47 1.56 26.69 1.77 3.18 2.17 1.66 .9 1.36 

SD 5.98 6.93 4.76 4.15 3.55 3.92 2.93 3.14 1.24 1.89 1.43 1.24 .98 1.18 

Min. 5 1 7 2 6 6 1 17 0 0 0 0 0 0 

Max. 42 39 38 29 32 26 19 47 6 9 6 5 4 5 

Note. Correlations greater than .14 are statistically significant at the .05 level. All correlations greater than .18 are significant at the .01 level.  
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Confirmatory Factor Analysis (CFA) 

To confirm the reliability of the structure of the variables, a CFA was conducted. We 

hypothesized the existence of three separate working memory factors, spatial-simultaneous, 

spatial-sequential and verbal, and one mathematics factor. The fit of the model was 

acceptable, χ2(71) = 94.23, p = .03, RMSEA = .04, SRMR = .05, CFI = .97, NNFI = .97, and so this 

model was adopted for the remainder of the analysis (Table 2 and Figure 1). The CFA showed 

that mathematics is highly correlated with both spatial-simultaneous and verbal working 

memory, while the correlation with spatial-sequential working memory was moderate. 

Reliabilities were also calculated from the CFA model using omega, as this is shown to be a 

more robust measure of reliability at this level (Deng & Chan, 2016; Peters, 2014; Zinbarg, 

Revelle, Yovel, & Li, 2005; verbal: ω = .60, spatial-simultaneous: ω = .81, spatial-sequential: ω 

= .70)  
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Table 2. Factor loadings, inter-factor and residual correlations for measures included in the 
model 4 

  Simultaneous Sequential Verbal Math 

Simultaneous     

1. Simultaneous 4 x 3 . 845**    

2. Simultaneous 4 x 4 . 811**    

Sequential     

3. Sequential 3 x 3  .727**   

4. Sequential 4 x 3  .705**   

5. Block recall  .486**   

Verbal     

6. Counting recall   .670**  

7. Backward digit recall   .653**  

8. Digit recall   .370**  

Mathematics     

9. Understanding and applying     .648** 

10. Counting and understanding number    .778** 

11. Knowing and using number facts    .817** 

12. Calculating    .742** 
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13. Understanding shape    .491** 

14. Handling data    .593** 

Inter-factor correlation matrix     

Simultaneous 1    

Sequential .758** 1   

Verb .575** .518** 1  

Math .518** .418** .568** 1 

 

Note.  

** p < .01. 
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Figure 1. CFA model for spatial-simultaneous, spatial-sequential, verbal and mathematics 
Coefficients are statistically significant (p < .05). 3 
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Variance partitioning 

In the final set of analyses, we used variance partitioning to examine the unique and 

shared portion of the variance of mathematics explained by the spatial-simultaneous, spatial-

sequential and verbal factors. A series of regression analyses were conducted to understand 

the unique and specific contribution of spatial-simultaneous, spatial-sequential, and verbal 

working memory (see Chuah & Maybery, 1999; Giofrè, Donolato, & Mammarella, 2018, for a 

similar procedure). As shown in Figure 2, only verbal (10.8%) and spatial-simultaneous (3.4%) 

factors were explaining a unique portion of the variance of mathematics. Not surprisingly, the 

larger portion of the variance was shared by the three predictors (15.3%). The total amount 

of variance accounted for by the model was 37.8%. These findings suggest that a large portion 

of the explained variance in mathematics is shared, however, some domains, i.e. verbal and 

spatial-simultaneous working memory, are uniquely predicting mathematics, over and above 

the effect of the other working memory domains.  
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Figure 2. Venn diagram indicating the shared and unique variance explained in mathematics 
by spatial-simultaneous, spatial-sequential and verbal factors. 4 

Additional analyses 

All the analyses were replicated also including “measuring” and the results, not 

reported, changed very little. Alternative models were tested for working memory. In 

particular, we tested a single working memory factor, χ2(20) = 71.91, p < .001, RMSEA = .12, 

SRMR = .08, CFI = .87, NNFI = .82, and a three factor solution, χ2(22) = 22.50, p = .16, RMSEA 

= .04, SRMR = .05, CFI = .99, NNFI = .98. These analyses confirm that the fit of the three factor 

solution, which was adopted in the current paper, was superior when compared to the other 

two models.  

Discussion 

This paper aimed to investigate the independent contribution of verbal, spatial-

simultaneous, and spatial-sequential working memory to written mathematical performance 

in 7- and 8-year old children.  
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From the correlation matrix (Table 1), it is evident that all elements of working 

memory (besides those correlations between digit recall and spatial-simultaneous 4 × 4, 

spatial-sequential 3 × 3, spatial-sequential 4 × 3, and block recall) are significantly correlated. 

All other correlations between each of the measures taken for verbal, spatial-simultaneous, 

and spatial-sequential working memory were statistically significant, both before and after 

covarying for age. Results of this nature suggest digit recall may be measuring a different 

construct to the other measures used to assess working memory, potentially relating to the 

division of working memory tasks into active and passive tasks (as explained by Passolunghi 

& Cornoldi, 2008).  

In relation to our research question, variance partitioning demonstrates that 15.3% of 

the variance of maths is shared between the three factors of working memory concerned. 

The next largest proportion of variance explained is uniquely explained by verbal measures, 

explaining 10.8% of the variance. This is interpreted as the amount of variance in mathematics 

accounted for by verbal measures over and above the influence of all other variables 

measured. This relationship with verbal working memory is consistent with studies suggesting 

numerically-based verbal tasks are distinguishable from non-numerical verbal tasks and are 

directly related to children’s mathematical performance (see Raghubar, Barnes, & Hecht, 

2010 for a review of this literature).  

Caution must also be exercised that reading was not measured alongside 

mathematics, though previous research suggests that the relationship with verbal working 

memory remains after partialling out reading ability (Wilson & Swanson, 2001; see Simmons, 

Willis, & Adams, 2012 for a similar argument in relation to elements of mathematics). In the 

current study, the extent of the impact of this was limited by allowing children to have 

questions of the mathematics test read aloud to them if they wished. Whilst uptake of this 
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offer was not recorded explicitly, children did make use of the adults present to read the 

questions for them. In line with previous findings, 37.8% of the variance of mathematical 

ability was accounted for by verbal and visuospatial measures in total (see Giofrè et al., 2018 

and Kyttälä & Lehto, 2008 for similar results).  

Interestingly, the results did not show any unique variance explained by spatial-

sequential working memory. We had anticipated a larger involvement of spatial-sequential 

working memory due to the additional active component, however were unsure what the 

extent of this involvement would be. There are a number of potential explanations for this. 

The first possible explanation is the ease with which such young children could perform the 

tasks they were required to do. Whilst unlikely as the sole explanation, as we did not see a 

floor effect in the data, the results did show positive skew, indicating that the majority of 

children were performing at the lower end of the scale, therefore, they may have 

encountered some difficulties with the instructions of the tasks. Note that the spatial-

sequential task did not require order during the recall phase, whereas the block recall task 

did, which may have contributed to the floor effect seen. Secondly, there is evidence that 

children with high and low mathematical ability are not distinguishable based on their spatial-

sequential working memory scores (Bull, Johnston, & Roy, 1999; but see Andersson & Lyxell, 

2007; D’Amico & Guarnera, 2005; McLean & Hitch, 1999 for a different argument).  

With regard to the contribution made by spatial-simultaneous working memory to 

mathematics performance, a unique contribution of 3.4% is higher than expected, based on 

previous literature (e.g., Kyttälä & Lehto, 2008; Swanson & Kim, 2007). This result is a 

potential by-product of the way in which written mathematics questions are presented in a 

standard testing procedure. In such a procedure, all information is presented to the child at 

once and so is available to the child at all times, hence presentation is in line with that of 
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simultaneous working memory measures. Future research could seek to mitigate this effect 

by presenting a selection of mathematics questions in a sequential format (see Szűcs & Csépe, 

2004b, 2004a), to ascertain whether this has any influence over the results gathered. It should 

be noted that the sample here comprised typically developing children attending mainstream 

primary schools, none of whom had been identified as exhibiting specific mathematical 

difficulties. Previous research has identified a relationship between the spatial component of 

working memory and mathematics (Passolunghi & Mammarella, 2010, 2012), however, this 

effect has been shown to be stronger in those with a mathematical difficulty (e.g. 

Mammarella et al., 2018; Peng et al., 2016). As such, it would be reasonable to suggest that a 

more distinct profile may have resulted from the current study had children with 

mathematical difficulties been included in the sample.  

There are some limitations inherent in this study that it will be necessary to address 

in future work. Regarding the measures used, verbal measures involved the use of number 

words, which could feasibly have altered the predictive relationship between verbal working 

memory and mathematics performance. This is of particular significance in an age group in 

which one would expect dramatic developmental changes. However, the use of such 

measures is in line with previous work suggesting a component of working memory 

responsible for numerical information (as reviewed by Raghubar et al., 2010), hence the 

results generated are not entirely unexpected.  

Continuing on from this, the study concerned only a narrow age group of typically 

developing children. As such, it is not possible to examine any longitudinal changes relating 

to age, or to highlight any differences between typical and atypical populations. In fact, from 

7 years of age, there is a shift in mnemonic strategy with the emergence of rehearsal in 

children (Flavell, Beach, & Chinsky, 1966; Susan E Gathercole, 1998; Henry, Messer, Luger-
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Klein, & Crane, 2012). It is possible that some children might have used some sort of 

mnemonic strategy during working memory tasks. For this reason, the relationship between 

verbal-numeric working memory and mathematic performance may have been underpinned 

by some sort of a subvocalization process (e.g., rehearsal or other verbal strategies). Overall, 

it would appear incorrect to assume that children approach the task in the same way (Flavell 

et al., 1966; Gathercole, 1998). For all these reasons, future studies should be performed to 

tackle this issue, for example by trying to reduce the use of strategies during working memory 

tasks.  

For tasks that require serial recall there is some suggestion that a common order 

mechanism is at play (Guérard & Tremblay, 2008). For verbal tasks, it is argued that 

participants use subvocal rehearsal (e.g., speech-based motor-planning) to maintain the 

order of to-be-remembered items (e.g., Jones, Hughes, & Macken, 2006). Children involved 

in this study did appear to use sub-vocal/ vocal rehearsal during the presentation stage, in 

line with these findings. For visuo-spatial material, the sequence could be maintained via 

ocular movements (Morey, Mareva, Lelonkiewicz, & Chevalier, 2018; Tremblay et al., 2006). 

There is some evidence (through similar error patterns; Guérard & Tremblay, 2008) and 

susceptibility to interference from secondary tasks (Jones, Farrand, Stuart, & Morris, 1995) 

that the two forms of sequential-order memory have similar underpinnings. It is quite 

surprising that the verbal sequential task correlated with mathematical performance, but the 

spatial-sequential task did not. If children are indeed sub-vocally rehearsing, then the 

relationship to mathematical performance may be attributable to some sort of speech-motor 

planning (inner speech) that participants engage in when attempting to solve mathematical 

problems (Rohrkemper, 1986), and not a domain general ordering mechanism (otherwise the 

spatial-sequential task should have been related to mathematical performance). In a similar 
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vein, several studies indicate that the spatial-sequential working memory component tends 

to be more strongly related to the mathematical performance in both children with typical 

development and children with dyscalculia (Mammarella et al., 2018; Passolunghi & 

Mammarella, 2010, 2012). 

One possible explanation for this contradictory finding is that, in the particular 

mathematical task used, simultaneous processes might take precedent over sequential 

processing. The mathematical test that we decided to use encompassed several abilities, e.g., 

geometry and there is some evidence indicating that some simultaneous tasks tend to have 

a greater contribution as compared to other sequential tasks (see Giofrè, Mammarella, 

Ronconi, et al., 2013 on this point). This observation is in line with other evidence indicating 

that the active manipulation of the stimuli tends to be crucial later on in the curriculum, but 

not in the early stages (see Giofrè, Mammarella, & Cornoldi, 2013 on this point). This is also 

coherent with the observation that in some tasks, such as fractions, holistic strategies, which 

require the simultaneous manipulation of visual objects, seem to be very effective as 

compared to other strategies (e.g., Fabbri, Caviola, Tang, Zorzi, & Butterworth, 2012). 

Consistently, evidence shows developmental differences indicating that different 

mathematical training is effective in different age groups (e.g., Caviola, Gerotto, & 

Mammarella, 2016). Finally, there is some evidence that younger children tend to use less 

reliable and less efficient strategies prior to a declarative shift in strategy use (see Schneider, 

2008 for a review of this), which might have influenced the pattern of results we observed 

(e.g., Caviola, Mammarella, Pastore, & LeFevre, 2018). For all these reasons, the present 

findings should be replicated using a more diverse sample including children at different levels 

of the mathematical curriculum.  
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The findings from this study have important implications for educational research. An 

understanding of the elements of working memory that support mathematics development 

is fundamental for educators aiming to improve children’s mathematical attainment. 

Research is currently trying to exploit this relationship to generate working memory training 

programmes (e.g., Alloway, 2012; Holmes & Gathercole, 2014). However, at present, 

randomised controlled trials have not identified evidence of transfer of effects onto academic 

tasks (e.g., Dunning, Holmes, & Gathercole, 2013), though evidence is mixed (see Morrison & 

Chein, 2011 for a review of this literature). A recent randomised controlled trial by the 

Education Endowment Foundation (Wright et al., 2019) identified a non-significant positive 

influence of working memory training programmes on working memory capacity and 

mathematics performance when teaching working memory strategies. Caution should be 

applied when interpreting these results, however, as measures of working memory capacity 

involved predominantly numerical recall tasks, though children did show additional progress 

on mathematics measures. It would be of great benefit to educators to understand the 

predictive nature of working memory for individual components of mathematics as this would 

enable educators to highlight potential areas of vulnerability in their students. In which case, 

there is scope for the provision of appropriate aids and alternative methods to be put in place 

in an attempt to alleviate some of the child’s difficulties in that particular area.  

In conclusion, this study confirmed a positive relationship between working memory 

tasks and mathematics attainment. Further verbal-numeric tasks appear to be more 

predictive of mathematics performance when compared directly to spatial-simultaneous and 

spatial-sequential tasks, suggesting numerical information is of higher predictive value than 

visual information when the two are compared directly.   
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9 

Study 1, Paper 2 Introduction 

The results of the first empirical paper of this project demonstrated the most sizeable 

contribution to maths was from verbal working memory, followed by simultaneous 

visuospatial working memory. There was no unique contribution of sequential visuospatial 

working memory, despite what may be expected due to the usual predictive powers of more 

complex tasks, for example those measuring an executive component (e.g. Bull, Johnston, & 

Roy, 1999; Holmes & Adams, 2006). The contribution made by verbal working memory was 

highly unexpected, given the literature available suggesting that visuospatial working memory 

is highly predictive of mathematical attainment in young children (e.g. Fanari, Meloni, & 

Massidda, 2019; Geary, 2011; Hilbert, Bruckmaier, Binder, Krauss, & Bühner, 2019; Kyttälä 

& Lehto, 2008; van der Ven, van der Maas, Straatemeier, & Jansen, 2013). Though it is 

important to consider that the paper considered verbal-numeric stimuli as the verbal stimuli, a 

relationship that has been found previously to be stronger than that with non-numeric verbal 

stimuli (as in Raghubar, Barnes, & Hecht, 2010). The misalignment of these results with the 

literature raised questions regarding whether this relationship was stable for each mathematical 

component, or whether this could be an influencing factor. As a result, the analysis was re-ran 

using only verbal and visuospatial factors of working memory (due to the lack of distinct 

contributions of simultaneous and sequential visuospatial working memory measures), but 

instead relating these measures to individual components of mathematics. The paper that 

follows is in press in Educational Psychology and was written in collaboration with Dr. David 

Giofrè. In this instance, I had designed and conducted the study, Dr. David Giofrè supported 

the analysis phase. We wrote the paper following questions that arose from the analysis 

included in the previous paper.  
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10 

Study 1, Paper 2: A distinction between Working Memory Components as Unique 

Predictors of Mathematical Components in 7-8 Year Old Children 

Abstract 

Despite evidence for the involvement of working memory in mathematics attainment, the 

understanding of its components to individual areas of mathematics is somewhat restricted. 

This study aims to better understand this relationship. 214 year 3 children in the UK were 

administered tests of verbal and visuospatial working memory, followed by a standardised 

mathematics test. Confirmatory factor analyses and variance partitioning were then 

performed on the data to identify the unique variance accounted for by verbal and 

visuospatial working memory measures for each component of mathematics assessed. 

Results revealed contrasting patterns between components, with those typically visual 

components demonstrating a larger proportion of unique variance explained by visuospatial 

measures. This pattern reveals a level of specificity with regard to the component of working 

memory engaged depending on the component of mathematics being assessed. Implications 

for educators and further research are discussed. 

Introduction 

Mathematics is a very heterogeneous concept, including several different sub-

domains. Dating back to the prehistoric times of the hunter-gatherer, the use of mathematics 

in the forms of number, magnitude, and form can be seen (Boyer & Merzbach, 2011; De Cruz, 

2006), however, the term itself is not used until the time of the Greeks. Since its first use by 

the Ancient Greeks (Boyer & Merzbach, 2011), mathematics has been used as an umbrella 

term, seemingly accounting for pure arithmetical concepts, as well as other more specific 

concepts, such as geometry. Boyer and Merzback (2011) describe how the term was coined 
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by the Pythagoreans, and used by those who first began to study mathematics for its own 

sake. In literature surrounding these times, one can clearly see a distinction between 

arithmetical and geometrical mathematics.  

This sharp distinction between arithmetic and geometry was maintained for several 

centuries. For example, in the medieval age, arithmetic and geometry were distinguished and, 

alongside music and astronomy, were included in the so called qudrivium, encompassing 

these four “mathematical” subjects (Grant, 1999). Nowadays, curricula around the world 

have somewhat abandoned this distinction and we usually refer to mathematics, although a 

variety of different forms of mathematics exist and seem to be very different from one 

another.  

Different predictors of mathematics performance have been identified but – among 

several others – working memory, a system for the short-term storage and manipulation of 

information, has been repeatedly associated with several different mathematic skills. It has 

been shown that working memory predicts performance on tests of approximate mental 

addition (Caviola et al., 2016, 2012; Kalaman & Lefevre, 2007; Mammarella, Caviola, Cornoldi, 

& Lucangeli, 2013), written subtractions (Caviola et al., 2016, 2018), number facts (Steel & 

Funnell, 2001), multi-digit operations (Heathcote, 1994), magnitude representation 

(Pelegrina et al., 2015), arithmetical problems (Passolunghi & Siegel, 2001; Passolunghi & 

Mammarella, 2010), quantitative central conceptual structures (Morra, Bisagno, Caviola, 

Delfante, & Mammarella, 2019), and geometrical achievement (Giofrè, Mammarella, & 

Cornoldi, 2014b; Giofrè, Mammarella, Ronconi, et al., 2013). Importantly, working memory is 

a generic term, for which we also see alternative models.  

Several alternative working memory models have been proposed, but the classical 

tripartite working memory model (Baddeley & Hitch, 1974), which includes a central 
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executive, responsible for controlling resources and monitoring information, and two 

domain-specific modules for either verbal or visuospatial information, tends to be one of the 

most well-known (see Baddeley, 2010 for a review). Other accounts postulate the existence 

of a sharp difference between a working memory factor, which requires cognitive control to 

a large extent, and a short-term memory factor, which requires less cognitive control (i.e., 

fewer attentional resources; Kane et al., 2004). Finally, there is a domain-specific factors 

model, only distinguishing between verbal and visuospatial modalities (Shah & Miyake, 1996). 

The distinction between verbal and visuospatial working memory, has recently received 

broader attention and might be of particular importance when considering mathematics as it 

aligns well with the historical argument that geometry is distinct from arithmetic, dealt with 

by visuospatial and verbal working memory, respectively, given the nature of the 

requirements of each.  

Only a few studies consider the relationship between verbal and visuospatial working 

memory in mathematics or in typically developing children. The literature is rife with debate 

regarding the specific contributions of working memory to academic performance in both 

typically and atypically developing children (e.g. Alloway & Alloway, 2010; Geary, Hoard, Byrd-

Craven, & DeSoto, 2004). Studies have found evidence in support of the stronger influence of 

visuospatial working memory (e.g., Caviola et al., 2014; Clearman et al., 2017; Holmes et al., 

2008; Li & Geary, 2017), however, evidence for the influence of verbal working memory can 

also be found (e.g., Hitch & McAuley, 1991; Wilson & Swanson, 2001), particularly verbal-

numeric working memory (see Raghubar et al., 2010 for a review). Such diverse findings, 

however, might be attributable to the particular mathematical tasks used in different studies, 

and it appears plausible to hypothesize that different mathematical subdomains might 

require verbal and visuospatial working memory resources to a different extent.  
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The particular relation of the components of working memory to the components of 

mathematics is as yet a relatively under-researched topic, with much of the literature 

concerning the relationship between working memory components and mathematics 

performance as a whole. These particular relationships are not considered in recent meta-

analyses, for example by Friso-van den Bos et al. (2013), and Peng et al. (2016). Whilst there 

have been studies investigating the relationship between working memory and particular 

elements of mathematics (e.g. arithmetic: Ashkenazi et al., 2013; Caviola et al., 2012; 

Passolunghi & Cornoldi, 2008, word problem solving: Swanson & Beebe-Frankenberger, 2004; 

Swanson & Sachse-Lee, 2001; Zheng et al., 2011), this remains an area that requires 

development. Research into the relationship between working memory and geometry has 

also received attention (e.g., Giofrè et al., 2014b; Giofrè, Mammarella, & Cornoldi, 2013, as 

has its relationship with mathematical difficulties (Andersson & Lyxell, 2007; D’Amico & 

Guarnera, 2005; McLean & Hitch, 1999; Passolunghi & Cornoldi, 2008; Szucs et al., 2013).  

A more intricate understanding of the relationships between working memory and the 

components of mathematics is fundamental before future work can begin on developing 

interventions targeting children vulnerable to mathematics difficulties. This paper aims to 

further the debate discussed above by highlighting the differential contributions of 

components of working memory to different forms of mathematics. In this study, working 

memory will be divided into verbal and visuospatial components, whilst arithmetic will 

comprise using and applying mathematics, counting and understanding number, knowing and 

using number facts, and calculating. Geometry will consist of understanding shape, and 

handling data in order to encompass tasks that are inherently move visual in nature. These 

tasks rely heavily on diagrams and mental images of space, hence are intuitively more likely 
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to draw on the visuospatial component of working memory. By assessing each of these areas 

with regard to the relative contributions of verbal and visuospatial working memory, it will be 

possible to understand more specifically how mathematics and working memory are related, 

as well as where to target mathematics interventions for the greatest effect. This analysis is 

performed on a data set previously analysed in Allen, Giofrè, Higgins and Adams (2020), which 

demonstrates the strongest unique influence of verbal-numeric working memory on 

mathematics, followed by spatial-simultaneous working memory (spatial working memory 

tasks during which all to-be-remembered information is presented simultaneously). This 

paper seeks to further this understanding to address how the balance of influence identified 

may be affected by the area of mathematics in question. It is important to note that no 

overlapping analyses are reported in either paper. We hypothesise that visuospatial working 

memory will be more influential in geometry due to the inherent visual nature of the tasks, 

whilst verbal working memory will remain more influential in arithmetic tasks since verbal 

working memory seems to be involved in tasks requiring fact recall and basic mathematical 

skills.  

Method 

Participants 

The sample initially included 214 7-8 year old children. Some children were absent 

during the second administration and so were excluded from the final sample. The final 

sample included a total of 197 children (95 males and 102 females, Mage = 95.99 months, SD 

= 3.63). An opportunity sample of Year 3 pupils in each of the five schools was gathered, using 

opt-out parental consent to reduce bias in the sample (Krousel-Wood et al., 2006). The study 

was approved by the School of Education Ethics Committee at the University of Durham. 
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Parental consent was assumed if opt-out forms were not returned. Children with a diagnosis 

of a special educational need, including intellectual disability, or neurological or genetic 

disorder, were not included in the study. Children classed as low functioning or “gifted” are 

routinely included in typical classes in the UK and were not therefore excluded from our 

sample.  

Procedure 

All children were tested individually, in a quiet area of their school. Measures were 

administered in a randomised order, so as to account for any order effects, however, the size 

of the grids used in the derived measures of visuospatial working memory were administered 

in a fixed order (3 × 3 then 4 × 3, and 4 × 3 then 4 × 4, for sequential and simultaneous, 

respectively). A correlational design was used to explore the relationships between 

visuospatial working memory and maths performance. Working memory measures were 

administered as per the administration instructions provided with the WMTB-C, in their 

original format. Additional visuospatial measures were derived for the purposes of the study, 

for which administration procedures paralleled those set out for standardised measures, 

however, were presented using a Windows laptop computer, as opposed to in physical form. 

The battery of measures used was chosen in order to ensure a fully crossed model for each 

type of verbal and visuospatial working memory. The mathematics test was presented in 

paper format, however, children could ask for questions to be read aloud in order to not place 

children of lower reading ability at a disadvantage.  
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Measures 

Verbal Working Memory  

Working memory test battery for children (WMBT-C). Three subtests of the WMTB-C 

were administered: digit recall (children recall a list of digits presented to them verbally), 

backwards digit recall (children recall a list of digits presented to them verbally in reverse 

order), and counting recall (children count aloud the number of dots on a page then recall the 

list of totals, in the correct order, once all pages in the sequence have been counted). All 

subtests were administered in accordance with the instructions set out for the WMTB-C, with 

items presented at a rate of one item per second. Trials were administered in blocks of six 

trials of the same length. Following four correct trials, testing moved on to the next block. 

Testing was discontinued following three mistakes within one block, unless this was the first 

block of trials, in which case the previous block was administered to ascertain the child’s span 

score. A raw score, standard score, and span score was recorded for each child on each 

subtest.   

Visuospatial Working Memory  

Children were presented with three visuospatial working memory tasks 

(simultaneous, sequential without order during recall, and sequential with order during 

recall). For simultaneous and sequential without order tasks, a grid was presented containing 

dots. The dots were either presented all at the same time (simultaneous) or one at a time 

(sequential) for 3s and 1s each, respectively. Children were required to observe the positions 

of the dots and recall these positions following removal of the stimulus. For sequential 
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visuospatial working memory with order, the block recall subtest from the Working Memory 

Test Battery for Children was employed. 

Mathematics  

Access mathematics test (AMT). The AMT was employed as a standardised measure of 

mathematics, available for use with children between the ages of 6 and 12 years. As such it 

provides a comprehensive profile of how children perform when faced with different aspects of 

maths. Further, the same measure can be given to older children in order to understand how 

this relationship with visuospatial working memory may develop over time. The AMT is aligned 

to the areas of maths taught on the curriculum, hence providing a valid measure whereby 

performance on the test demonstrates likely performance on Government-prescribed 

mathematics tests. “Children were read the instructions set out for the AMT, which included a 

time limit of 45 minutes, clarification of where to write their answer on the paper, and 

explanation that workings are allowed on the paper, providing their answer is clearly written in 

the correct space. Typical test conditions were adopted throughout. Children were permitted to 

request questions be read aloud to them should they have difficulties so as not to disadvantage 

those with weaker reading abilities, however, no further explanation of the question, or what 

was required, was given. No discontinuation rule was employed as children were instructed to 

complete as many questions as they could, but that questions were also included for children 

much older than they were so not to worry if they could not complete them all” (Allen, Giofrè, 

Higgins, & Adams, 2020, p. 241). All mathematics testing was carried out after completion of all 

working memory testing. The two testing phases were on different days for all children. The 

components of mathematics included were as follows: using and applying mathematics (8 

questions), counting and understanding number (12 questions), knowing and using number 
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facts (8 questions), calculating (8 questions), understanding shape (8 questions), and handling 

data (8 questions) ( = .96 and  = .97 for test forms A and B, respectively).  

Questions include those concerning using and applying mathematics (e.g. “circle the 

two addition facts that give the same answer”), counting and understanding number (e.g. 

“Circle the number that is nearest in value to 75”), knowing and using number facts (e.g., 

“what is double 32?”), calculating (e.g. “complete this calculation and show the remainder: 

659 ÷ 5 = __ remainder __”), understanding shape (e.g. “a tetrahedron has four corners and 

four faces. How many edges does a tetrahedron have?” [a picture of a tetrahedron is included 

for reference] and see figure 1a for a further example), and handling data (see figure 1b for 

an example). Arithmetic tasks are presented in a variety of ways and ask children to do a 

number of things from completing calculations to selecting from multiple choice options. 

Geometric tasks also concern a number of skills, with handling data questions mainly 

concerning the construction and interpretation of graphs and charts, and understanding 

shape tasks including tasks encompassing a range of skills such as transformations and 

properties of shapes.  
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a) The point A is moved two squares to the left and four squares up. Write the 

coordinates of the new point A.  

The bar chart, from a spreadsheet, shows the number of pets each pupil owns. How many 

pupils own 3 or more pets? 

 

Figure 1. Diagrams showing example questions for understanding shape and handling data 
subscales of AMT (a and b, respectively). 5 

 

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 more
than 5

N
um

be
r o

f p
up

ils

Number of pets



 
 

156 
 

Data Analysis  

The R program (R Core Team, 2018) with the “lavaan” library (Rosseel, 2012) was used. 

Model fit was assessed using various indexes according to the criteria suggested by Hu and 

Bentler (1999). We considered the chi-square (χ2), the standardized root mean square residual 

(SRMR), the root mean square error of approximation (RMSEA), and the comparative fit index 

(CFI), This data set has been previously analysed in Allen et al. (2020c), however, previous 

analysis was concerned only with the relationship between verbal and visuospatial working 

memory and mathematics, but without distinguishing between different mathematic 

subcomponents. Analyses in the variance partitioning section were performed using the latent 

correlation matrix for each model. This matrix was used for calculating the R2 for multiple 

regressions using the “mat.regress” function available for the “psych” package (Revelle, 2017; 

see Cohen, Cohen, West, & Aiken, 2013 for the statistical rationale).  

Results 

Descriptive Statistics 

Descriptive statistics and age-covaried correlations are provided in table 1. Age-covaried 

values were obtained using regressions in which age was entered as a predictor and residuals, 

controlling for age, were obtained. Age controlled values were then used for all subsequent 

analyses (see Allen et al., 2020c; Giofrè & Mammarella, 2014; for as similar procedure).  
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Table 1. Means and standard deviations, with age -controlled correlations for each measure. 5 

  1 2 3 4 5 6 7 8 9 10 11 12 
1. Simultaneous 1 

           
2. Sequential  .53* 1 

          
3. Block recall .43* .35* 1 

         
4. Counting recall .34* .26* .24* 1 

        
5. Backward digit .36* .29* .26* .42* 1 

       
6. Digit recall .13 .10 -.03 .29* .25* 1 

      
7. Understanding and app. math. .32* .24* .22* .35* .29* .10* 1 

     
8. Count. and under. number. .30* .24* .12 .33* .31* .18* .48* 1 

    
9. Knowing and using num. facts .42* .29* .18* .30* .34* .16* .51* .62* 1 

   
10. Calculating .29* .23* .16* .22* .24* .09 .46* .59* .65* 1 

  
11. Understanding shape .34* .18* .03 .25* .12 -.05 .38* .41* .38* .36* 1 

 
12. Handling data .33* .24* .14* .21* .13 .11 .43* .51* .47* .40* .20* 1 

M 48.75 34.26 21.86 16.47 10.56 26.69 1.77 3.18 2.17 1.66 0.9 1.36 
SD 11.84 7.84 3.55 3.92 2.93 3.14 1.24 1.89 1.43 1.24 0.98 1.18 

Note. * p < .05  
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Confirmatory Factor Analysis (CFA) 

In model (CFA00) the factorial structure of working memory, including two 

components (verbal and visuospatial) was evaluated, results indicated that the fit for this 

model was adequate (see also Giofrè et al., 2018a for a similar result) and this factor structure 

has therefore been maintained for subsequent analyses. Successively, we performed a series 

of CFA analyses, one for each component of mathematics, using the overall scores, and 

following the general guidelines for SEM with observed indicators (Kline, 2011). Importantly, 

the fit index of each individual model was good, indicating that a distinction between verbal 

and visuospatial working memory was adequate. We decided to use CFA because we were 

mainly interested into the relationship between constructs at the latent level (i.e., verbal vs. 

visuospatial working memory). Moreover, CFA allows a more precise estimate of the 

relationship between the construct of interest, reducing problems related to the unreliability 

of individual predictors (Kline, 2011). Several different models for each individual task were 

tested in order to obtain baseline estimates (i.e., correlation matrices) to be used in 

subsequent analyses (see below).  
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Table 2. Fit indices for different CFA models. 6 

Model  χ2(df) p RMSEA SRMR CFI AIC 

CFA00 WM 8.36(8) .371 .021 .041 .997 6858 

CFA01 UA  10.657(12) .559 .000 .038 1.000 7458 

CFA02 CN 10.608(12) .563 .000 .038 1.000 7633 

CFA03 NF 11.377(12) .497 .000 .038 1.000 7511 

CFA04 Ca 9.103(12) .694 .000 .036 1.000 7480 

CFA05 Sh 27.756(12) .006 .082 .056 .934 7394 

CFA06 HD 11.518(12) .485 .000 .039 1.000 7464 

Note. χ2= chi-square, RMSEA=root mean square error of approximation, SMSR=standardized 
root mean square residuals, CFI=comparative fit index, AIC=Akaike information criterion. 
UA=using and applying mathematics, CN=counting and understanding number, NF=knowing 
and using number facts, Ca=calculating, Sh= understanding shape, HD=handling data.  

Variance partitioning 

In the final set of analyses, starting from the correlation matrices obtained in the CFA, 

we used variance partitioning to examine the unique and shared portion of the variance of 

mathematics explained by the verbal and visuospatial factors. A series of regression analyses 

were conducted (see Chuah & Maybery, 1999; Giofrè et al., 2018a for a similar procedure). 

To derive the R2 components for the various tasks, a number of regression analyses must be 

conducted (Chuah & Maybery, 1999). In this specific case, if verbal working memory is 

included in the first step (Model 1), while spatial working memory is included in the second 

step (Model 2), the resulting ΔR2 corresponds to the unique contribution of spatial working 

memory over and above the effect of verbal working memory (i.e., R2 of Model 2 – R2 of Model 

1). Vice versa, if spatial working memory is included in the first step, while verbal working 

memory is included in the second step, the resulting ΔR2 corresponds to the specific 
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contribution of spatial working memory over and above the effects of verbal working 

memory. Finally, the shared variance between verbal and visuospatial working memory can 

be obtained by subtracting the unique portion of variances uniquely explained by verbal and 

visuospatial working memory from the overall portion of the variance explained when these 

indicators are included simultaneously into the equation (i.e., the overall R2 – unique variance 

of both verbal and visuospatial working memory).  

The variance partitioning analysis is particularly useful for distinguishing shared 

variance, i.e., the portion of the variance that is common to two or more predictors, and 

unique variance, i.e., the portion of the variance which is uniquely predicted by one indicator 

(verbal or visuospatial working memory in this case). 

Some mathematics components, i.e., using and applying mathematics, counting and 

understanding number, are more heavily influenced by verbal working memory (Figure 2), 

whereas understanding shape and handling data demonstrate a larger visuospatial 

component (Figure 3).  
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Figure 2. Venn diagram indicating the shared and unique variance explained in using and 
applying mathematics, counting and understanding number, knowing and using number 
facts, and calculating by visuospatial and verbal factors. The overall area is proportional within 
each task, but not across tasks. 6 

 

* = p < .05, calculated using semi-partial correlations. 
ns = not statistically significant, calculated using semi-partial correlations. 
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Figure 3. Venn diagram indicating the shared and unique variance explained in understanding 
shape, and handling data by visuospatial and verbal factors. The overall area is proportional 
within each task, but not across tasks. 7 

 

 

* = p < .05, calculated using semi-partial correlations. 

ns = not statistically significant, calculated using semi-partial correlations. 

Discussion 

The principal aim of this paper was to further understand the individual contribution 

of verbal and visuospatial working memory to several distinct aspects of mathematic 

achievement. Previous evidence tends to be limited to the analysis of the overall performance 

in mathematics while an intricate understanding of the relationships between working 

memory and the components of mathematics might have important implications for 

developing interventions targeting children with mathematics difficulties. 

From the variance partitioning diagrams, it is evident that the percentage variance 

accounted for by working memory components varies dependent on the element of 

mathematics in question. Consistently, the largest percentage is accounted for by shared 

variance between verbal and visuospatial measures. With regard to using and applying, and 

counting and understanding number, the next largest percentage is accounted for by verbal 
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measures (7.9% and 11.9%, respectively). This can be interpreted as the amount of variance 

in these components of mathematics accounted for by verbal-numeric measures over and 

above the influence of all other variables measured. Such a relationship is in line with previous 

literature relating verbal-numeric measures to mathematics performance (see Raghubar et 

al., 2010).  

One potential explanation for this relationship emerging for these components is the 

mental maturation of the children, here accounted for by age. Age appears critical when 

considering the relationship between visuospatial working memory and mathematics 

(Holmes & Adams, 2006; Holmes et al., 2008; Li & Geary, 2017) with a stronger relationship 

demonstrated with younger children. Hence, by the age of the children involved in this study, 

there may have been a shift to verbal strategies, as suggested by Soltanlou, Pixner and Nuerk 

(2015). Further, the suggestion of a cyclical relationship between visuospatial working 

memory and verbal working memory conforms to the assumption that visuospatial working 

memory relates more strongly to the acquisition of new skills (Andersson, 2008). 

Consequently, once children reach 7-8 years of age, they may have sufficient experience with 

the material required for answering questions of this nature that they do not need to rely on 

visuospatial supports. 

When considering knowing and using number facts, and calculating, a different 

relationship is evident. Whilst verbal-numeric measures technically continue to explain the 

second greatest portion of unique variance, this difference with visuospatial measures is 

negligible. One potential explanation for the influence of visuospatial measures on these tasks 

is the format of the questions. All mathematical questions were presented to children in 

written format; a format which may inherently engage the visual component (e.g., Wong & 

Szücs, 2013). This may be particularly potent for measures of calculating as question format 
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has been shown to influence strategy choice (Katz, Bennett, & Berger, 2000). Strategy choice 

may be more or less “fixed” in different areas of mathematics, depending on children’s 

familiarity and experience with the component. For areas such as calculating that are taught 

from an early age and where children have more experience, they may have a greater variety 

of strategies at their disposal which may be better or worse fit for a question depending on 

the style of presentation. However, this is speculation in this case as it is beyond the realms 

of this paper to answer this question. Whilst this may affect written over verbal question 

presentations, the influence of strategy choice dependent on the layout of written questions 

(as shown by O’Neil Jr. & Brown, 1998) should be minimal in this study as questions were 

presented in a variety of ways e.g. multiple choice, open questions. Future research should 

be mindful of this influence, and could seek to investigate how the layout of the questions 

themselves may influence method choice, and thus the extent of the involvement of 

visuospatial working memory (Cragg & Gilmore, 2014).  

Perhaps the starkest difference is present between these previous four components 

of mathematics and the shape and data handling components. In these cases, a shift towards 

a much larger influence of visuospatial working memory is clear. This shift is as expected, 

given the visual nature of the tasks, and confirms the heavy involvement of visuospatial 

working memory in those tasks wherein visual information is paramount to success. Previous 

work has identified a similar relationship between visuospatial working memory and 

geometry (e.g., Kyttälä & Lehto, 2008), with complex visuospatial working memory tasks 

demonstrating predictive power for academic achievement in geometry (Giofrè, 

Mammarella, Ronconi, et al., 2013), as well as accounting for group differences in 

performance in geometry between typically developing children and those with a non-verbal 

learning difficulty (Mammarella, Giofre, Ferrara, & Cornoldi, 2013). Our findings mirror these 
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results, suggesting that further research should be conducted in this area to determine the 

specific nature of the relationship between visuospatial working memory and shape in order 

that preventative and/or restorative measures can be devised.  

Importantly, evidence of the distinct contributions of elements of working memory to 

geometry performance has been shown for both typically (Bizzaro, Giofrè, Girelli, & Cornoldi, 

2018; Giofrè et al., 2014b; Giofrè, Mammarella, & Cornoldi, 2013) and atypically developing 

(Mammarella, Giofre, et al., 2013) children, distinct from measures of pure arithmetic. The 

aforementioned work revealed that academic achievement in geometry was influenced by 

working memory, with exaggerated differences between typically and atypically developing 

children in terms of Euclidian geometry as a result of visuospatial working memory 

performance.  

In a meta-analysis focused on working memory updating and its relation with 

mathematics, it was found that the comparison between verbal and visuospatial working 

memory subdomains was in fact statistically significant (see Table 4 of the original report), 

albeit modest in term of magnitude (Friso-van den Bos et al., 2013). Intriguingly, arithmetic, 

counting and conceptual skills showed lower correlations with visuospatial updating. It is 

worth noting, however, that Peng and co-authors (2016) in their recent meta-analyses did not 

find significant differences between verbal and visuospatial working memory regarding their 

relationship with mathematics. It is also worth mentioning that concerning geometry, these 

results were based on a very limited number of observations, i.e., seventeen effect sizes for 

visuospatial working memory and sixteen for verbal working memory, with a very small 

number of studies overall, thus making it hard to test other moderating effects (e.g., the 

school Year). Taking these results overall, we can confirm that more research is needed, 
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confirming the importance of evaluating the unique contribution of verbal and visuospatial 

working memory on each mathematical subdomain.  

It is important to note that the relationship identified here, specific to geometry, 

shows some variation from relationships identified between pure arithmetic components and 

working memory (e.g., arithmetic: Ashkenazi et al., 2013; Caviola et al., 2012; Passolunghi & 

Cornoldi, 2008, word problem solving: Swanson & Beebe-Frankenberger, 2004; Swanson & 

Sachse-Lee, 2001b; Zheng et al., 2011, mathematical difficulties: Andersson & Lyxell, 2007; 

D’Amico & Guarnera, 2005; McLean & Hitch, 1999; Passolunghi & Cornoldi, 2008; Szucs et al., 

2013). Here we see a greater contribution made by verbal working memory (e.g., Wilson & 

Swanson, 2001), over that contributed by visuospatial working memory (e.g., Caviola et al., 

2014; Clearman et al., 2017; Holmes et al., 2008; Li & Geary, 2017), which is not entirely 

unexpected, given the types of questions associated with assessments of each type of 

mathematics.  

With regard to the alternative models described in the introduction, the findings 

refute the model by Kane et al. (2004) as we see domain specific contributions despite the 

inclusion of working memory measures. This model postulates that only short-term memory 

is domain specific, whilst working memory tasks represent a domain general executive 

component, though this does not seem to be the case with the results here. In contrast, the 

results do seem to align with the domain specific findings of the model by Shah and Miyake 

(1996), however, their measure of verbal working memory involved reading span. Hence, we 

cannot be sure our findings have not been influenced in some way by the numeric component 

of the verbal tasks used, which may have increased the strength of the relationships with 

verbal working memory (see Raghubar, Barnes, & Hecht, 2010 for a review of the influence 

of verbal-numeric tasks).  
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In conclusion, this paper highlights a differential relationship between working 

memory tasks and mathematics attainment, dependent on the component of mathematics 

in question. Verbal-numeric tasks appear to be more predictive of performance on tasks more 

closely linked to factual recall and basic mathematical skills. In contrast, we see a stronger 

influence of visuospatial working memory in components of mathematics with a clear visual 

element: understanding shape and handling data. This is also in line with evidence indicating 

that different brain areas are activated in tasks requiring the manipulation of number or space 

(Arsalidou & Taylor, 2011; Kanayet et al., 2018).  

To sum up, mathematics is a very broad term which encompass several different 

domains, which are probably distinguishable. This should be taken into account in future 

research, in fact talking about “mathematics” might not make sense, and research should 

focus on a more in depth understating of different mathematics subdomains. Finally, 

practitioners working with children with mathematical problems, should try to understand 

the causes of these problems, trying for example to understand whether or not the 

impairment is confined to the visual domain (and hence difficulties in tasks requiring the 

manipulation of visual materials) or in the verbal domain (and hence in tasks which are 

prevalently requiring the maintenance of words). 
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11 

Study 2 Introduction 

Following the findings of Study 1 indicating that the larger portion of the variance of 

mathematics was accounted for by verbal-numeric working memory, the next step was to 

investigate whether this relationship remained constant when non-numeric measures of verbal 

working memory were used, or whether it was specific to verbal-numeric measures. In 

addition, study 1 included only children in Year 3. As such, there was no way of ascertaining 

whether the relationship we identified also remained consistent with age or whether there were 

developmental differences. Previous literature indicates that children undergo a developmental 

shift at around 7-8 years old (Schneider, 2008), therefore, we would expect to see that the 

proportional influence of different components of working memory on mathematics would 

change in line with this. In order to investigate this, we used a year group specific mathematics 

test, as opposed to the mathematics test in study 1, so that children were able to attempt a 

greater number of questions for each component of mathematics, regardless of their age, and 

dependent on their exposure to mathematics teaching. The tests came from a standardised 

battery designed to be of equal difficulty for each year group, thus making the level of challenge 

equal between all children involved. With regard to working memory measures, computerised 

measures were used in this study to reduce human influence during the administration on things 

such as rate of presentation and intonation. Dual tasks were also included in the new battery to 

assess true working memory and allow for its differentiation from short term memory in 

forward recall tasks. The paper that follows is published in the British Journal of Educational 

Psychology (Allen, K., Giofrè, D., Higgins, S., & Adams, J. (2020). Working memory 

predictors of mathematics across the middle primary school years. British Journal of 

Educational Psychology, n/a(n/a). doi:10.1111/bjep.12339; Appendix K). It was written with 

collaboration from Dr. David Giofrè, who was involved from the conception of the study, 
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collaborating on study design, analysis and aspects of the writing up of the paper, as the 

questions had arisen from the analysis of study 1.   
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12 

Study 2: Working memory predictors of mathematics across the middle primary school 

years 

Abstract 

Work surrounding the relationship between visuospatial working memory and mathematics 

performance is gaining significant traction as a result of a focus on improving academic 

attainment. This study examined the relative contributions of verbal and visuospatial simple 

and complex working memory measures to mathematics in primary school children aged 6 – 

10 years. A sample of 111 children in years 2 to 5 were assessed (Mage = 100.06 months, SD 

= 14.47). Children were tested individually on all memory measures, followed by a separate 

mathematics testing session as a class group in the same assessment wave. Results revealed 

an age-dependent relationship, with a move towards visuospatial influence in older children. 

Further analyses demonstrated that backward word span and backward matrices contributed 

unique portions of the variance of mathematics, regardless of the regression model specified. 

We discuss possible explanations for our preliminary findings in relation to the existing 

literature alongside their implications for educators and further research.  

Introduction 

There is an increasing wealth of literature on the relationship between working 

memory and academic attainment in school-aged children. Working memory can be 

operationally defined as the capacity to temporarily store and manipulate information, 

necessary for the completion of complex tasks (Baddeley, 1992). The model of working 

memory proposed by Baddeley and Hitch (1974) has been developed since its conception to 

include two slave systems, the visuospatial sketchpad and the phonological loop, responsible 
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for the storage and manipulation of visual and verbal information, respectively (Baddeley, 

2000). The visuospatial sketchpad, therefore, supports visuospatial working memory, whilst 

the phonological loop supports verbal working memory. This working memory model 

continues to be robust to methodological advances and research findings, and has repeatedly 

been used in studies conducted with typically developing children (Alloway, Gathercole, & 

Pickering, 2006; Giofrè, Borella, & Mammarella, 2017; Giofrè, Mammarella, & Cornoldi, 2013).  

Several authors suggest that working memory is differentially related to tasks 

depending on their content, e.g., to specific areas of mathematics (Peng et al., 2016). In 

particular, numeric verbal working memory seems to be more closely related to number-

based mathematical tasks (as in Raghubar, Barnes, & Hecht, 2010), whilst visuospatial working 

memory shows a stronger relationship with tasks with a clearer visuospatial element, for 

example geometry (Giofrè, Mammarella, Ronconi, et al., 2013). Allen and Giofrè (2019) 

demonstrated results of this nature in 7-8 year old children, suggesting one influencing factor 

on the extent of the influence of working memory on mathematical performance lies in the 

working memory tasks administered. Similar findings indicating the differential influence of 

working memory components on mathematics can be found in Andersson and Lyxell (2007), 

Holmes and Adams (2006), Holmes, Adams and Hamilton (2008), and Nosworthy, Bugden, 

Archibald, Evans and Ansari (2013).  

With regard to mathematics as a whole, results appear largely mixed, seemingly 

dependent on the measure of working memory adopted. Working memory tasks can be 

divided into those that measure simple span (whereby participants are required to recall a list 

of target words/letters/digits/shapes immediately after presentation; Unsworth & Engle, 

2007), complex span (whereby participants complete an unrelated processing task alongside 

the recall task; Unsworth & Engle, 2007), and dual tasks (tasks requiring the active 
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manipulation of the presented stimuli before recall of any kind; McDowell, Whyte, & 

D’Esposito, 1997). Simple measures of span (sometimes referred to as short-term-memory 

tasks) do not require an extensive manipulation of the stimuli, while the so called complex 

span (sometimes referred to as working memory tasks), require some sort of manipulation of 

the stimulus and generally higher levels of cognitive control (see Engle, 2010 for more 

information about this distinction). On occasion, those measuring only simple span are 

considered to be representative of short-term memory processes only (as in Kail & Hall, 2001), 

however, they are often included in working memory batteries to develop a complete 

understanding of an individual’s memory capacity, particularly when working with young 

children. Alternative formulations of working memory do not postulate a clear distinction 

between simple (i.e., short-term-memory) and complex (i.e., working memory) tasks, but 

advanced the idea that different tasks can be differentiated on a sort of continuum between 

simple and complex tasks (see Cornoldi & Giofrè, 2014 and Cornoldi & Vecchi, 2004 for a 

review). It is also noteworthy that very young children might present with some difficulties in 

dealing with complex tasks, hence simple span tasks could probably provide an insight into 

their ability to complete tasks of this nature, with fewer task demands.  

A recent systematic review by Peng et al. (2016) found a significant positive 

relationship between working memory and mathematics, however, interestingly, no 

differences between the contributions of working memory components to mathematics. It is 

important here to consider that the study compared verbal, numeric, and visuospatial 

working memory tasks only, using a stringent definition of working memory tasks as only 

complex span or dual tasks, which are supposed to require more attentional resources (or 

cognitive load) as compared to simple memory tasks (Engle et al., 1999; Kane et al., 2004). 

Taking a longitudinal approach is valuable for showing the stability of the existence of a 
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relationship between working memory and mathematics (as suggested by studies proposing 

a developmental shift during childhood e.g. De Smedt et al., 2009; Van de Weijer-Bergsma, 

Kroesbergen, & Van Luit, 2015), however, the influence of simple tasks was neglected, which 

may be especially important for understanding the relationship in younger children (as seen 

in Holmes et al., 2008).  

Allen, Higgins and Adams (2019) addressed this issue with regard to visuospatial 

working memory, similarly identifying a positive relationship between working memory and 

mathematics when considering school aged children. This paper further elaborates on the 

important role of age in the relationship between working memory and mathematics (e.g., Li 

& Geary, 2013; Soltanlou, Pixner, & Nuerk, 2015; Van de Weijer-Bergsma et al., 2015), 

highlighting the cumulative nature of knowledge. Hence, mastery is sought in individual 

aspects of mathematics, rather than in mathematics as a whole. Further, it follows that there 

is evidence of a declarative shift in strategy use which may influence the components of 

working memory accessed by mathematics questions (see Schneider, 2008 for a review of 

this). As such, the age of the participants will be crucial to the expected extent of involvement 

of each component as the pattern of involvement of working memory components in 

mathematics varies as a function of age (Friso-van den Bos et al., 2013).  

Taking a more holistic approach to the types of working memory tasks used, Friso-van 

den Bos et al. (2013) conducted a further meta-analysis identifying an association between 

working memory and mathematics in 4 – 12 year olds. In doing so, they identified an influence 

of age on the component of working memory with the strongest influence, i.e., visuospatial 

working memory tasks were more highly correlated in younger children, with verbal working 

memory becoming more influential as children grew older. Similarly, visuospatial working 

memory was found to be the dominant deficit in developmental dyscalculia (Mammarella et 
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al., 2018; Szucs et al., 2013). Likewise, a study by McKenzie, Bull and Gray (2003) found 

comparable results, showing that visuospatial working memory is more strongly related to 

whole-number calculations in younger children, whilst visuospatial and verbal working 

memory was related to calculations in older children. Conversely, as previously mentioned, 

one important influence on the extent of the involvement of working memory tasks may be 

the individual task demands as the demands of more complex working memory tasks may be 

quite difficult for younger children. Sweller (1994) suggested that the extent to which working 

memory components contribute may be a result of the cognitive load of each task, with 

multistep- and word-problems demanding more working memory resources due to the need 

for more placeholding and knowledge integration. There is a clear gap in the literature here in 

exploring the link between task complexity, the age of the children assessed, and the 

predictive value of such tasks for mathematics performance. 

This paper aims to address the gaps in the literature identified above by investigating 

which components of working memory are more influential in mathematics performance at 

different ages across the primary school years. The cognitive control required by each 

individual task has been manipulated. We used simple tasks, i.e., forward span, which 

required a lower level of attentional control, backward span, which additionally requires 

children to recall the information in backwards order, and dual tasks, which require children 

to perform two tasks at the same time and is thought to require higher levels of attentional 

control. In fact, some working memory models distinguish between a horizontal continuum, 

for example differentiating between the verbal and visuospatial modalities, and a vertical 

continuum, in which tasks are differentiated based on different levels of attentional control 

required (Cornoldi & Vecchi, 2000, 2004). The use of tasks tapping different levels of 

attentional control and targeting the visuospatial and verbal components was necessary in 
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order to highlight the crucial relationships with mathematics over development. Based on 

previous work in this area (e.g., Allen, Giofrè, Higgins, & Adams, 2020; Holmes & Adams, 2006) 

we would expect to see a relatively stable influence of visuospatial working memory, with a 

shift in the strength of the relationship with verbal working memory. This paper will combine 

both simple and complex tasks that access the verbal and visuospatial components of working 

memory in order to provide the basis for developing a more thorough understanding of the 

influence of such measures on mathematical performance in children aged 6-10 years.  

Method 

Participants 

The sample consisted of 111 6-10-year-old children. All children completed both 

phases of the administration within the same assessment wave; hence the final sample was 

of 28 Year 2 (6 -7 years), 26 Year 3 (7 – 8 years), 30 Year 4 (8 – 9 years), and 27 Year 5 (9 – 10 

years) children (61 male and 50 female, Mage = 100.06 months, SD = 14.47). An opportunity 

sample of the four year groups from one primary school was used, using opt-out parental 

consent to reduce bias in the sample (Krousel-Wood et al., 2006). The study was approved by 

the School of Education Ethics Committee at the University of Durham. Parental consent was 

assumed if no opt-out slip was received. Children with special educational needs, intellectual 

disabilities, or neurological and genetic disorders were not included in the study. 

Design and Procedure 

All children were tested individually in a quiet area of their school. The six working 

memory measures were administered in a randomised order, using counterbalancing to 

reduce the effects of fatigue and practice. A correlational design was adopted to explore the 

relationships between working memory and maths performance. All working memory 
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measures were administered in a computerised format, using E-Prime. Two trials of each span 

length were used, with children completing the whole test to provide a fully saturated 

measure of their working memory capacity. The mathematics test was presented in paper 

and pencil format. Children could ask for a question to be read aloud in order to not place 

children of lower reading ability at a disadvantage. Partial credit score was used for all working 

memory tasks (as in Giofrè & Mammarella, 2014) whereby participants are credited for all 

correct responses made in the correct serial position irrespective of whether the full response 

list was recalled accurately. This measure provides a fully saturated picture of an individual’s 

working memory capacity and allows us to take into account the information from partially 

accurate lists. The partial credit score is more reliable and accurate as compared to traditional 

scoring methods, such as absolute credit score (Giofrè & Mammarella, 2014; Unsworth & 

Engle, 2007). 

Measures 

The working memory measures used in this paper demonstrated very good 

psychometric properties and were previously used in other studies with similar populations 

to the current study (e.g., Giofrè et al., 2017). 

Verbal working memory 

Three measures of verbal working memory were taken: forward word span, backward 

word span, and a verbal dual task. Forward and backward word span tasks required children 

to repeat the list of words they had heard in either forwards or backwards order, respectively 

(Cronbach`s alpha .71 and .83, respectively). The dual task required children to listen to a 

number of word lists, all of length 4. Children were required to press the spacebar when they 

heard the name of an animal, as well as retaining the final word in each list (see Figure, 1 for 
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an example). None of the word lists used contained mathematical and or geometrical words, 

e.g., rectangle or multiplication. Once they had heard all of the lists for that trial, children 

were asked to recall the final word from each list in the correct order (alpha = .83). All tasks 

presented words at a rate of one word every 2 seconds. 

 

For example, if you hear these words: 

Cut, crocodile, race, song 

 

Rabbit, sun, street, cloud 

 

??? 

You should say the words “song” and “cloud”. 

Figure 1. Instructions for the verbal dual task. 8 
 

Visuospatial working memory 

Three measures of visuospatial working memory were taken: forward matrices, 

backward matrices, and a visuospatial dual task, using 4 × 4 grids. Forward (alpha = .72) and 

backward (alpha = .87) matrices required children to repeat the sequence of black squares 

they had seen in either forwards or backwards order, respectively. The dual task presented a 

series of grids with a number of squares coloured grey. In each grid, children saw three black 

dots one after the other. Children were required to press the spacebar if they saw a dot in a 

grey square, as well as remembering the position of the last (3rd) dot in each grid. Once they 

had seen all of the grids for that trial, children were asked to recall the positions of the last 
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dots in the correct order (alpha = .82). All tasks presented stimuli at a rate of one dot/square 

per 2 seconds.  

Mathematics 

Head Start Primary Mathematics: The Head Start Primary Mathematics test is a 

standardised measure of mathematics, providing a year group specific measure of 

mathematical performance, in line with the objectives of the National Curriculum. Children 

are required to develop an understanding of number (e.g. Fill in the answer boxes. a) 2 twos 

are __? b) 11 twos are __?), measurement (e.g. A bag of apples should weigh 22kg. One bag 

weighs 23.5kg, another weighs 24kg. How much are the bags overweight altogether?), 

geometry (e.g. Mrs Pott’s garden lawn is rectangular. The lawn measures 8m by 9m. What is 

the perimeter of the lawn?), and statistics (e.g. Look at the bar chart below. How many fewer 

people like rabbits than hamsters?) according to the National Curriculum in the United 

Kingdom. The number of questions addressing each of these topic areas was equal across 

tests. As such, it provides a comprehensive profile of how children perform when faced with 

questions relating to different aspects of maths. Additionally, each mathematics test is 

designed to be of equal difficulty, relative to the National Curriculum expectations of each 

year group. Children were read the instructions for the Head Start Primary Mathematics test 

before beginning and were allowed a maximum of 1 hour to complete the test. Each test 

contained 25 questions, thus 60 minutes provided sufficient time for completion. The 

instructions given included clarification of where to write their answers, explanation that they 

must follow the individual instructions given for each question (e.g. use a mental/ written 

method), and that questions may be read to them should they wish. However, no further 

explanation of the question, or what was required, was given. Typical classroom test 

conditions were adopted throughout.   
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Data analytic plan 

All analyses were performed using R (R Core Team, 2018). The package “psych” was 

used to perform regressions (Revelle, 2017) and the package “VennDiagram” for producing 

Venn diagrams (Chen, 2018). To obtain a more precise picture of the proportion of unique 

and shared variance among the variables, we utilized variance partitioning methods, which 

have been successfully used in similar studies (Giofrè et al., 2014a; Unsworth & Engle, 2006). 

Variance partitioning, also known as commonality analysis, attempts to partition the overall 

R2 of a particular criterion variable into portions that are shared and unique to a set of 

independent predictor variables (Pedhazur, 1997; Unsworth & Engle, 2006). 

Results 

Preliminary analyses 

Descriptive statistics revealed all skewness and kurtosis values were within the bounds 

of +/- 1, hence parametric tests were used throughout. Correlations (covarying for age) and 

descriptive statistics are presented in Table 1. We also performed the analyses for each year 

group. We performed a series of correlations between age in months and each working 

memory task, and these were not statistically significant.  
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Table 1. Correlation, means and standard deviations for each measure. 7 

  1 2 3 4 5 6 7 

1. forward word span  1 
      

2. backward word span .514** 1 
     

3. verbal dual task .533** .347** 1 
    

4. forward matrices .443** .391** .376** 1 
   

5. backward matrices .426** .453** .330** .569** 1 
  

6. visuospatial dual task .341** .282** .427** .491** .437** 1 
 

7. mathematics .439**+ .613**+ .282**+ .405**+ .533**+ .375**+ 1 

M 24.1 26.48 13.95 35.32 26.77 13.26 97.61 

SD 7.48 6.22 7.12 9.18 12.7 7.77 13.89 

Note. False-Discovery Rate (FDR; Benjamini & Hochberg, 1995) correction of the p-values 
(implemented using the p.adjust function in R) was applied across the six bivariate 
associations of interest, i.e., between mathematics and each individual working memory task. 

** p < .01, one tail.  

+ p < .05, one tail, FDR correction.  

Analyses on the overall sample 

We performed a series of regressions to understand the specific contribution of our 

predictor to mathematics for the overall group without distinguishing between different age 

groups. 

In the first regression, verbal working memory tasks (forward word span, backward 

word span, and a verbal dual task) were predicting mathematics. This model was statistically 

significant, F(3, 107) = 23.52, p < .001, R2 = .40. In this model, backward word span, β = .53, 

95% CI [.35, .70], was predicting a significant portion of the variance of mathematics while 
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forward word span β = .16, 95% CI [-.03, .35], and verbal dual task, β = .01, 95% CI [-.16, .19], 

were not predicting significant portions of the variance of mathematics.  

We also performed a similar regression analysis in which visuospatial working memory 

tasks (i.e., forward matrices, backward matrices, and a visuospatial dual task) were predicting 

mathematics. This model was statistically significant, F(3, 107) = 16.39, p < .001, R2 = .31. In 

this model, backward matrices, β = .41, 95% CI [.22, .61], was predicting a significant portion 

of the variance of mathematics while, forward matrices, β = .10, 95% CI [-.11, .30], and 

visuospatial dual task, β = .15, 95% CI [-.04, .33], were not predicting significant portions of 

the variance of mathematics.  

In a final regression, verbal and visuospatial tasks were entered simultaneously as 

predictors of mathematics. This model was statistically significant, F(6, 104) = 15.81, p < .001, 

R2 = .48. In this model, backward word span, β = .43, 95% CI [.26, .60] and backward matrices, 

β = .26, 95% CI [.07, .44] predicted significant portions of the variance of mathematics, while 

the other predictors were not statistically significant (βs < .13, ps > .05).  

In order to partition the variance, a series of regression analyses was carried out to 

obtain R2 values from different combinations of the predictor variables (see Table 2). The 

results showed that a large portion of the variance was shared (Figure 2). However, both 

verbal and visuospatial tasks were also predicting portions of unique variance. Variance 

inflation (VIF) in each individual regression, presented in Table 2, was generally low, i.e., lower 

than 2.  
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Table 2. R2 values for regression analyses predicting mathematics for various predictor 
variables. 8 

Predictor Variables R2 F 

Visuospatial working 

memory 

.31 16.39 

Verbal working memory .40 23.52 

Verbal and visuospatial 

working memory 

.48 15.81 

Note. All R2 values are significant at p < .001. 

 

Figure 2. Variance decomposition. WM-V = verbal working memory, WM-VS = visuospatial 
working memory. 9 
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Analyses per age-group 

The data were broken down by year group before performing correlational analyses 

to investigate the strength of the respective relationships between mathematics and each 

working memory measure, depending on the age of the children (Table 3, see also the 

Supplementary Materials). Results showed the strongest relationships between mathematics 

and verbal span backwards in Year 2, backwards matrices and verbal span backwards in Year 

3, forward matrices and verbal span backwards in Year 4, and backward matrices and 

visuospatial dual task in Year 5 (Table 3).  
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Table 3. Correlations, means and standard deviations for each measure, distinguished by year. 
9 

Year 2 
       

  1 2 3 4 5 6 7 

1. forward word span         

2. backward word span .346*       

3. verbal dual task .585** .296      

4. forward matrices .124 .068 .189     

5. backward matrices .325* .308 .168 .479**    

6. visuospatial dual task .470** .047 .422* .096 .235   

7. mathematics .274 .738**+ .225 .145 .445**+ .197   

M 19.32 22.00 11.39 28.54 19.00 11.54 93.68 

SD 7.53 5.00 7.56 7.63 11.07 5.66 9.85 

        
Year 3 

       
  1 2 3 4 5 6 7 

1. forward word span         

2. backward word span .488**       

3. verbal dual task .621** .245      

4. forward matrices .441* .405* .364*     

5. backward matrices .618** .514** .341* .694**    

6. visuospatial dual task .417* .320 .335* .524** .589**   

7. mathematics .559**+ .718**+ .277 .409*+ .682**+ .299   

M 24.96 27.69 13.23 36.31 30.38 10.15 99.85 
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SD 7.15 6.23 6.86 9.24 12.01 8.09 18.36 

        
Year 4 

       
  1 2 3 4 5 6 7 

1. forward word span         

2. backward word span .364*       

3. verbal dual task .436** .330*      

4. forward matrices .417* .353* .411*     

5. backward matrices .119 .055 .306* .417*    

6. visuospatial dual task .010 .203 .203 .500** .313*   

7. mathematics .350*+ .614**+ .333*+ .625**+ .428**+ .535**+   

M 25.67 27.97 13.47 38.17 27.90 14.87 99.67 

SD 5.71 5.73 5.54 6.86 12.02 7.87 12.24 

        
Year 5 

       
  1 2 3 4 5 6 7 

1. forward word span         

2. backward word span .495**       

3. verbal dual task .357* .321      

4. forward matrices .364* .169 .357*     

5. backward matrices .305 .560** .329* .424*    

6. visuospatial dual task .371* .372* .608** .670** .615**   

7. mathematics .458**+ .422*+ .348*+ .335*+ .500**+ .500**+  

M 26.48 28.30 17.81 38.26 30.07 16.26 97.26 
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SD 7.65 5.89 7.22 9.63 12.83 8.05 14.05 

Note. False-Discovery Rate (FDR; Benjamini & Hochberg, 1995) correction of the p-values 
(implemented using the p.adjust function in R) was applied across the six bivariate 
associations of interest, i.e., between mathematics and each individual working memory task. 

* p < .05, one tail. 

** p < .01, one tail. 

*** p < .008, one tail. 

+ p < .05, one tail, FDR correction.  

Additional Analyses 

All the analyses were replicated using a latent modelling approach. In the first step, a 

CFA was fitted with two factors, verbal and visuospatial working memory. The fit of the model 

was satisfactory, χ2(8) = 9.90, p = .272, RMSEA = .05, SRMR = .04, CFI = .99, all loadings were 

statistically significant as well as the correlation between verbal and visuospatial working 

memory (Figure 3). Alternative models were tested, we fitted a model creating a latent factor 

including forward span (both verbal and visuospatial tasks), backward span (both verbal and 

visuospatial tasks), and dual span (both verbal and visuospatial tasks) (Model 2, Figure 4). 

However, in this model the latent correlation between forward and backward was exceeding 

one, meaning that these two aspects are very strongly related and should be included in the 

same factor (Figure 4). For this reason, the distinction between two factors, verbal and 

visuospatial working memory, was maintained. We therefore decided to go further and test 

an additional model including a third factor, i.e., mathematics. To do so, we first created an 

individual score for each topic and the resulting scores were used to create a latent variable, 

i.e., mathematics. The fit of the model (Model 3) was adequate, χ2(62) = 107.09, p < .001, 

RMSEA = .081, SRMR = .068, CFI = .914 (Model 3; Figure, 5). The correlation matrix obtained 

in Model 3 was used to perform variance partitioning (see Giofrè et al., 2014 for a similar 
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procedure). Results were very similar to those obtained using the observed variables, with 

visuospatial working memory only explaining 7.7% of the variance, while verbal working 

memory was explaining about 15.6% of the total variance, while most of the variance was 

shared between these two variables, i.e., 23.8%. These results, although based on a relatively 

small sample size, confirm the results obtained above using observed variables, rather than 

latent factors. The VIF for the model including both verbal and visuospatial working memory 

was lower than 2. 

The effect of age is moderate and statistically significant when the overall sample is 

considered (rs > .245, ps < .01) (see also Logie & Pearson, 1997; Huizinga, Dolan, & van der 

Molen, 2006).Therefore, analyses on the overall sample were repeated controlling for age in 

months, i.e., for each individual working memory task, we performed a regression including 

age as a predictor and each individual working memory task as the responding variable, 

residuals were then saved and used in subsequent analyses. Results varied very little, 

significant paths remained significant and changed very little in terms of magnitude. The 

effect of age was not statistically significant within each year of assessment, and when 

performing a series of partial correlations controlling for age in months in each year of 

assessment results were very similar in terms of magnitude and changed very little. As for the 

variance partitioning, results were very similar: 22.2% of the variance was shared, 18.5% was 

explained by verbal working memory, and 9.1% was explained by visuospatial working 

memory.  

There is a disagreement in the current literature on whether the performance on the 

forward and backward version of the span (both verbal and visuospatial) is similar or different, 

with children recalling fewer items in the backward version of the span, which should require 

more attentional resources (see Donolato, Giofrè, & Mammarella, 2017 for a review). We 
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therefore decided to compare the performance in the forward and backward visuospatial and 

verbal span in the current sample using a series of repeated measures ANOVAs. As for the 

visuospatial span, we found a statistically significant difference between the two version of 

the span, F(1, 100) = 72.07, p < .001, Cohen’s d = 0.77, with children recalling more items in 

the forward version of the span than in the backward. The opposite pattern was found for the 

verbal span, F(1, 100) = 13.41, p < .001, Cohen’s d = -0.34, with children recalling more items 

in the backward version of the span, but these differences were somewhat smaller in terms 

of the effect size compared to the visuospatial working memory ones.  

The correlation between Age and Grade was very high (r = .94), meaning it is very hard 

to distinguish between the two. However, it could be argued that the shown pattern of links 

between working memory and mathematics might reflect the test content rather than be 

evidence of a developmental shift. We originally decided to use grades rather than the actual 

age of the children in the analysis as this reflects the mathematics they have experienced. To 

address this issue, however, we performed a series of meta-analyses dividing the sample into 

different ages, rather than grades, and comparing the correlations within the age groups, i.e. 

within seven-year-olds, eight-year-olds, etc. In this analysis the effect of Age as a moderator 

was investigated. The analytic strategy adopted in this meta-analysis, followed the guidelines 

proposed by Borenstein, Hedges, Higgins and Rothstein (2009), and by Schwarzer, Carpenter 

and Rücker (2015). R was used in all the analyses (R Core Team, 2018) and meta-analyses 

were performed using “metafor” (Viechtbauer, 2010). All values were transformed into the 

Fisher’s Z scale before computing the meta-analysis (see Borenstein et al., 2009 for more 

details). Estimated coefficients were obtained using the “restricted maximum likelihood” 

method, which is set by default in the “metafor” package functions. Age did not reach 

statistical significance as a moderator of the relation between math performance with 
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forward word span, backward word span, verbal dual task, forward matrices, and backward 

matrices (ps > .302). However, as far as the dual task spatial is concerned, we found a 

statistically significant effect of Age, B = .016, p = .0318 (Figure 6). Showing that pattern of 

relationship tends to be higher with older children.  
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Figure 3. Loadings and correlations for Model 1. 10 

 

Figure 4. Loadings and correlations for Model 2. Correlations of 1 or higher indicate that 
factors are not empirically distinguishable. 11 



 
 

191 
 

 
Figure 5. Loadings and correlations for Model 2. Correlations of 1 or higher indicate that 
factors are not empirically distinguishable. 12 
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Figure 6. Fisher's Z transformed correlations for the relationship between mathematics and 
dual task spatial as a function of age. Error bars represent 95% confidence intervals while grey 
diamonds represent predicted effects at each age. 13 

Discussion 

This paper aimed to investigate the independent contributions of visuospatial and 

verbal working memory to mathematical performance in 6 - 10-year-old children (Years 2 – 5 

in the United Kingdom).  

From the correlation analyses (Table 1), we can see that all elements of working 

memory are correlated both with each other and with mathematics, with mathematics being 

most strongly correlated with backward word span and backward matrices. These 

correlations were determined after covarying for age, indicating that the relationship with 

these working memory components is relatively stable. These results suggest that there is an 

element of the task inherent in backwards tasks that lend them to being more highly related 

to mathematics than forwards tasks. This is potentially the need for more active processing 

than required for forwards tasks, which are often viewed as requiring fewer attentional 

resources (e.g. Passolunghi & Cornoldi, 2008; for a description of tasks whereby active tasks 

require an additional level of manipulation see Vecchi & Cornoldi, 1999; Vecchi, Richardson, 

-0.5 0 0.5 1 1.5

Observed Outcome

10

9

8

7
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& Cavallini, 2005). Further, backwards tasks facilitate rehearsal (Conway et al., 2005), with 

the stimuli being repeated sub-vocally (for verbal tasks; Baddeley, 1992; Smith, Jonides, 

Marshuetz, & Koeppe, 1998) or in terms of ocular movements (for visuospatial tasks; 

Tremblay, Saint-Aubin, & Jalbert, 2006) a number of times in order for the participant to 

accurately reverse the order, producing the final item each time (i.e. n, n – 1, n – 2, etc.) until 

the entire list has been reversed. This would in itself improve recall if children were afforded 

the opportunity to rehearse the sequences.  

Looking more specifically at the aim of the research, results show that 47.4% of the 

variance of mathematics performance can be explained by the working memory measures 

used. Variance partitioning demonstrates that this can be broken down into 15.9% unique 

variance explained by verbal working memory, 7.7% unique variance explained by 

visuospatial working memory, and 23.8% shared variance between verbal and visuospatial 

working memory. Unique variance is interpreted as the amount of variance explained by 

measures of that component of working memory, over and above the influence of all other 

variables measured e.g. that of verbal working memory is the variance accounted for by 

verbal measures over and above the influence of all other measures taken. Here we see the 

greatest proportion of unique variance accounted for by verbal measures, followed by 

visuospatial measures. The largest proportion of variance accounted for by the model is that 

of shared variance between measures that cannot be attributed solely to verbal or 

visuospatial measures. This pattern of results is consistent with the findings of (Allen et al., 

2020b), but suggests that the influence of verbal-numeric tasks may not be as great as 

suggested by Raghubar et al. (2010) in their review, beyond the influence of non-numeric 

verbal tasks, as non-numeric verbal tasks also account for a portion of unique variance in 

mathematics of a similar magnitude (Allen et al., 2020b). Allen et al. (2020) used a numeric 
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span, making the findings difficult to generalise to verbal working memory as a whole. The 

magnitude of the influence of working memory measures remains stable compared to other 

studies in the field who identify a similar percentage of variance accounted for (see Giofrè, 

Donolato, & Mammarella, 2018 and Kyttälä & Lehto, 2008 for similar results). The amount of 

shared variance evident in the model may also be related to the previously mentioned 

strategy choices made by the children (Hecht, 2002; Keeler & Swanson, 2001), for example 

visuospatial tasks where children recode the locations as words may draw on both sources of 

working memory. Without recording strategy choice it is impossible to take this explanation 

beyond speculation, leaving the potential for future research to investigate whether strategy 

choice influences the amount of shared variance explained in the models. It is worth noting, 

however, that this conclusion is very tentative since this study did not differentiate between 

numeric and non-numeric verbal tasks, and hence the percentages of explained variance are 

compared across studies that use different methods and tasks.  

A further aim of the study was to assess whether the working memory contributions 

to mathematics changed with the age of the child as a result of a developmental shift around 

this time (e.g., De Smedt et al., 2009). We chose to divide the children based on their year 

group for the analysis because this would be the most appropriate way of controlling for the 

level of schooling of each child, and thus their exposure to different mathematical concepts. 

Introducing bias in this is lessened as the year group-based mathematics tests each contained 

an equal number of questions relating to the areas outlined by the National Curriculum 

(number, place, and value [n=4]; multiplication and division [n=4]; addition and subtraction 

[n=4]; fractions, decimals, and percentages [n=4]; geometry [n=3]; measurement [n=3]; 

statistics [n=3]) and were designed to test the specific requirements of the National 

Curriculum for each year group. Hence, two children, both aged seven, but in years two and 
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three, would each receive a mathematics assessment relating to the topics they had been 

taught to that point. This helps to establish an understanding of learning in relation to 

teaching, which could not be accurately compared otherwise. Chronological age comparisons 

would be less appropriate in this situation given the different topics each child has been 

taught, based on their month of birth. Drawing a cut-off for age between January and 

December or September and August is an arbitrary designation, particularly when the 

difference in age may be of less than a month. Therefore, using the academic calendar in this 

situation is more appropriate as the children assigned to each year group will have 

experienced the same level of schooling.  

Interestingly, verbal span backwards showed the strongest correlation with 

mathematics from Year 2 to Year 4; only in Year 5 was this correlation overtaken by 

visuospatial tasks. This is contrary to our initial prediction and to previous work that has 

identified a strong influence of visuospatial working memory in younger children (e.g., Bull, 

Espy, & Wiebe, 2008; Holmes & Adams, 2006). One possible explanation for this is that all 

information is presented as words in a written mathematics test, potentially confounded by 

research showing the presence of reading difficulties relating to difficulties in areas of 

mathematics (Gersten, Jordan, & Flojo, 2005). Whilst we attempted to mediate the influence 

of reading ability by offering children the opportunity to have questions read aloud, the only 

way to negate this influence completely would be to present all questions only orally, 

providing written copies of diagrams where necessary (see Booth & Thomas, 1999 for an 

example of this method). However, this method of presentation would still draw heavily on 

verbal working memory as children would be required to recall larger amounts of verbal 

information, for which they only had the opportunity to hear once. As regards formal 

mathematical testing, written presentation is the preferred method in schools, hence 
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understanding the influence of working memory components when problems are presented 

in this way will be more beneficial in the long term to the development of interventions, as 

this will develop an understanding of a child’s ability to work in the manner in which they will 

be tested.  

Following on, considering the later influence of dual tasks on mathematics, as children 

get older, the type of questions they are asked to complete become more demanding, often 

containing multiple steps within one question. Inherent in this is the requirement to process 

larger volumes of information simultaneously for each question, and this requires attentional 

control resources and higher cognitive processing to a greater extent (see Giofrè, 

Mammarella, & Cornoldi, 2013 for a similar argument). As such, it follows that a working 

memory task that requires an additional level of manipulation is likely to be more 

representative of the kinds of processes required for mathematics questions written for older 

children. Geary, Hoard, Byrd-Craven, Nugent and Numtee (2007) identified a number of 

working memory mediators for both simple and complex mathematics questions relating to 

this idea. Further, visuospatial tasks became more strongly correlated with mathematics from 

Year 3 onwards. The relationship with backwards matrices in Years 3 and 5 fits with the 

assumption that a more active task aligns more readily with demanding mathematics tasks, 

which require more than simple repetition to complete (Friso-van den Bos et al., 2013; Giofrè, 

Mammarella, & Cornoldi, 2013). This finding is consistent with the observation that highly 

controlled working memory processes tend to be more strongly related to higher cognitive 

abilities both in typically developing children (Cornoldi, Orsini, Cianci, Giofrè, & Pezzuti, 2013) 

and in particular populations (Cornoldi, Giofrè, Calgaro, & Stupiggia, 2013). Further, questions 

presented to older children often contain additional information in the form of tables and 



 
 

197 
 

diagrams, which would serve to engage the visuospatial components of working memory 

more readily than the simpler presentations (see Reuhkala, 2001 for a similar argument).  

There are limitations intrinsic to the study design that further research should seek to 

address, alongside the above suggestion regarding strategy choice. The main difficulty when 

administering the tests was the selection of dual tasks used with such young children. Children 

in Year 2 (6-7 years) struggled considerably to comprehend the dual tasks, and as such did not 

manage to successfully complete the secondary task alongside the primary task in most cases. 

In future, it would be beneficial to develop a more easily comprehensible dual task that 

younger children are able to understand sufficiently well as to be able to complete both 

elements in order to establish an accurate measure of their capabilities in these kinds of tasks. 

Further, a sample only containing typically developing children is unable to highlight any 

potential differences between typical and atypical populations. Given the known differences 

in working memory capacity between typical and atypical populations (e.g., Swanson, 1993), 

it would be informative to collect data demonstrating the longitudinal differences in the 

contributions of working memory to mathematics in these populations to understand 

whether these are entirely distinct from typical populations or whether they exhibit any 

overlap. From such work, it would be possible to further understand whether those with 

mathematical difficulties demonstrate a pattern of developmental delay, or a distinct 

cognitive profile to typically developing children.  

We used regressions in order to control for shared variance between variables for the 

year-to-year assessment (Loehlin & Beaujean, 2016). However, more sophisticated methods 

are also available (e.g., Gaussian Graphical Model), which allow accessing a conditional 

dependence/independence of several variables within one model in each group (Costantini 

et al., 2015; Epskamp & Fried, 2018). In the present report, we decided not to use these 



 
 

198 
 

methods because of the relatively small sample size, but these methods could successfully be 

used in future studies with larger samples. Due to the limited sample size within we decided 

not to statistically compare correlations coming from independent samples. Future studies 

with larger sample sizes should be performed to address this issue, for example using more 

sophisticated techniques such as Multigroup Confirmatory Factor Analyses or Multigroup 

Structural Equation Modelling. Finally, future studies should try to compute separated scores 

for different mathematical subareas, such as, number and geometry. We decided not to 

perform such analyses here because this would have increased the number of statistical 

comparisons, and this was not ideal with the current sample size. Given that we used the 

same working memory measures for all ages, but year-specific maths tasks, it could be argued 

that the different tasks on a same topic still differed on allocation of visuospatial and verbal 

working memory resources for task completion and caused the reported correlational 

patterns, e.g., Year 2 statistics might have differed from Year 5 statistics and required 

different cognitive effort in comparison to tasks for other year groups. Future studies should 

test this hypothesis. 

The findings presented above have important implications for educational research as 

well as for educators in terms of developing interventions to improve mathematical 

attainment in those with poor mathematical attainment. In order to improve mathematical 

attainment for those children who demonstrate mathematical difficulties, first a 

comprehensive understanding of the ways in which working memory supports mathematical 

development is necessary. The results of this study indicate some potential longitudinal 

changes in the influence of working memory components on mathematical attainment, 

however, also suggest stable elements of influence. Although this paper is only able to identify 

age-related differences in the contributions of working memory components to mathematical 
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performance at a single point in time in children of different ages, it suggests that future work 

may seek to identify whether these changes also occur within individuals over development. 

In a similar vein, we decided to use grade-specific math assessments in different grades, which 

is the standard in studies investigating mathematics. However, there is no guarantee on how 

the math outcomes of one grade are comparable to those of another grade. Whilst the exact 

amount of unique variance accounted for by verbal and visuospatial working memory 

components at each of the age groups assessed here remains unknown, due to the 

constraints of sample size, educators would benefit greatly from understanding how these 

influences change over the primary schools years. In doing so, interventions can be more 

specifically targeted to provide children with alternative methods that may be better able to 

support their mathematical development by employing different elements of their working 

memory.  

In conclusion, these preliminary results echo those derived from our previous data 

(Allen et al., 2020b) that verbal and visuospatial working memory both make unique 

contributions to mathematical attainment. Further, verbal tasks continue to account for a 

larger proportion of unique variance, despite the largest proportion being shared variance 

between both verbal and visuospatial working memory. Finally, this work demonstrated a 

change in the strength of the correlations between measures with age, showing that more 

complex visuospatial tasks become more highly correlated with mathematics as children 

become older, whilst verbal task correlations remain relatively stable.   
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13 

Study 3 Introduction 

Study 2 revealed nine children in Year 3 and 4 who performed 1SD or more below age 

expectations in the given mathematics test and were categorised, for the purposes of the 

following study, as atypically developing performers in mathematics. From their results a 

further question arose which was whether it was possible to identify this same group of children 

through a reduced battery of the working memory measures used in study 2. A reduced battery 

will be used as not all measures used previously were significantly related to mathematics. We 

also sought to identify any fundamental cognitive differences between low achievers and the 

remainder of the sample in order to begin to understand whether there are any consistent 

cognitive correlates of poor mathematics. As previously mentioned, children were tested on a 

subset of the working memory measures shown to be the most highly related to mathematics 

in study 2, with the addition of speed of processing and number sense measures, and a proxy 

measure for general intelligence (g factor).  The principle aim of this study was to determine 

whether identifying children who are likely to be poor performers in mathematics is feasible 

from understanding their cognitive profile. This paper was written by myself, with the guidance 

of Prof. S. Higgins and Dr. J. Adams.  
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14 

Study 3: Using cognitive predictors to predict poor mathematics performance in 7 and 

8-year-old children: a feasibility study 

Abstract 

There is a large body of literature highlighting the role of working memory in 

mathematics attainment, however, it is unclear whether this relationship remains stable when 

other cognitive predictors are included. This study aims to investigate this by simultaneously 

measuring working memory, speed of processing, g, and number sense. 28 children were 

assessed on all measures. Results show that none of the regression models generated were 

significant, with no suggestions of fundamental differences between children who performed 

poorly in mathematics and their peers. Further, analysis at the individual level revealed a great 

deal of heterogeneity in the cognitive profiles of children showing a cause for concern in 

mathematics. These results are discussed in relation to existing literature. We conclude that the 

approach is feasible as long as the chosen measures thoroughly explore the child’s cognitive 

profile. Consideration is also given to the prescription of remediation strategies for poor 

mathematical performance. 

Introduction 

 A range of cognitive measure have been demonstrated to be influential in children’s 

mathematical attainment (e.g. Fuchs et al., 2006; Geary, 2011). Working memory is one of 

these measures (see Raghubar, Barnes, & Hecht, 2010 for a review), with a host of studies 

confirming its predictive power in a number of mathematical skills, such as arithmetic (e.g. 

Logie, Gilhooly, & Wynn, 1994; Rasmussen & Bisanz, 2005), problem solving (e.g. Swanson 

& Beebe-Frankenberger, 2004; Swanson, Jerman, & Zheng, 2008), and geometry (e.g. Giofrè, 

Mammarella, & Cornoldi, 2014; Giofrè, Mammarella, Ronconi, & Cornoldi, 2013). Other 

measures that have demonstrate these abilities also include speed of processing (e.g. Geary, 
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2011), general intelligence (e.g. Aluja-Fabregat, Colom, Abad, & Juan-Espinosa, 2000), and 

number sense (e.g. Nosworthy, Bugden, Archibald, Evans, & Ansari, 2013). Allen, Giofrè, 

Higgins and Adams (2020a) demonstrated a predictive relationship between two backwards 

span working memory tasks (backward word span and backward matrices) and mathematics 

across a group of children aged 6-10, hence we aim here to identify whether this relationship 

remains following the inclusion of a series of control measures also known to be related to 

mathematics. The study was designed as a feasibility study (Bowen et al., 2009) to evaluate the 

practicality and likely utility of exploring this relationship with a view to designing a diagnostic 

assessment for a group of children whose performance raised concerns. 

Speed of processing  

Speed of processing relates to the length of time it takes for an individual to process 

information, which is known to improve as children get older (Fry & Hale, 1996; Kail, 1991; 

see Fry & Hale, 2000 for a review). Processing speed relates to measures of short-term 

(Rebecca Bull & Johnston, 1997) and working memory (Fry & Hale, 2000), with the suggestion 

being that a slower rate of processing leads to an increased level of decay from memory (Case 

et al., 1982; Towse et al., 1998). Speed of processing has been demonstrated on a number of 

occasions to predict mathematical ability in children (Bull & Johnston, 1997; Floyd, Evans, & 

McGrew, 2003; Geary, 2011), with Rohde & Thompson (2007) showing the specificity of this 

predictive value to mathematics. It is noteworthy that Hoard, Geary, Byrd-Craven and Nugent 

(2008) identified no significant improvements for mathematically precocious children with 

regard to speed of processing, suggesting the influences of this cognitive ability may be limited 

beyond a certain point. It suggests a deficit related to poor speed of processing, but no 

associated benefit of improved speed of processing beyond that of typical mathematical 

achievement. Importantly, Berg (2008) demonstrated that speed of processing did not negate 

the influence of working memory on arithmetic, suggesting that the current study may still 
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show a significant predictive relationship between working memory and mathematics, despite 

the inclusion of additional cognitive measures.  

General intelligence (g) 

General intelligence, often referred to as g, is known to be highly related to working 

memory (Colom, Abad, Rebollo, & Chun Shih, 2005), with some studies even suggesting the 

two are isomorphic, given the high correlations reported (Kyllonen & Christal, 1990). Results 

from Conway, Cowan, Bunting, Therriault and Minkoff (2002) highlight this relationship 

further, demonstrating that working memory capacity can be used to predict g. However, 

Colom et al. (2005) suggest that when the storage component of working memory is factored 

out, the isomorphism of the two constructs disappears. This is echoed by Conway, Kane and 

Engle (2003), who highlight the differential executive component inherent in working memory 

tasks. This finding indicates that the underlying constructs are different, although the 

mechanisms by which g functions are not yet fully operationalised.  

There are a host of studies that seek to understand how g relates to academic 

achievement. General cognitive ability has been shown to add to the prediction of academic 

achievement (Rohde & Thompson, 2007), with fluid intelligence contributing specifically to 

mathematical attainment, showing a somewhat mediating effect on visuospatial working 

memory (Kyttälä & Lehto, 2008). More specifically, fluid intelligence appears related to early 

abilities in arithmetic (Hornung et al., 2014). From such results, it is conceivable that g may 

mediate the influence of working memory in this group of children, given the specific 

relationships identified between g and mathematics.  

Number sense 

Finally, number sense has also demonstrated a relationship with later mathematical 

performance (Jordan, Glutting, & Ramineni, 2010; Nosworthy et al., 2013), though its 
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investigation is not without controversy (Berch, 2005). Number sense describes an individual’s 

ability to make rapid judgements regarding the quantity of different sets (Feigenson et al., 

2013). It has been used to explain behaviours as far back as the hunter gatherer who was able 

to identify where was ‘more’ for hunting purposes (De Cruz, 2006). More recently, and in 

terms of academic achievement, number sense has demonstrated predictive power for 

mathematics over a time span of a number of years (Mazzocco et al., 2011; Starr et al., 2013), 

particularly when children were required to compare numerals (Sasanguie, Göbel, Moll, Smets, 

& Reynvoet, 2013). This relationship was also demonstrated to be independent of measures of 

g (De Smedt et al., 2009). Therefore, it is reasonable to suggests that this measure either 

contributes to explaining additional variance in mathematics performance or could serve to 

mediate the relationship identified with working memory. This will be dependent on whether 

the underlying mechanisms for completing number sense and working memory measures are 

the same of different.  

This study aimed to assess whether the relationship highlighted by Allen et al. (2020a) 

is sufficiently stable and unique as to remain when additional cognitive control measures are 

included. We included measures of speed of processing, g, and number sense to assess whether 

the inclusion of these measures negates the influence of working memory on mathematics. This 

study was conducted as an exploratory study to further understand the nature of the predictive 

relationship between cognitive measures and mathematics and to assess the feasibility of the 

approach. 

Method 

Participants 

The sample consisted of 28 seven- to eight-year-old children, from Years 3 and 4 at a 

local primary school. The children were identified based on their mathematics score for Allen 
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et al. (2020a), and had been selected due to falling in the lowest scoring half of their classes on 

the mathematics test used in Allen et al. (2020a). The final sample was of 13 males and 15 

females, with a mean age of 105.5 months. With regard to the mathematics scores from the 

previous study, this sample included a minimum mathematics score of 12% and a maximum 

of 62% (mean = 42.86%, SD = 15.19%). Of these children, nine were identified as performing 

1SD below age expectations and so were identified as the concern group. A systematic sample 

was used from two year groups used in the Allen et al. (2020a) study, using opt-out parental 

consent to avoid introducing bias into the sample (Krousel-Wood et al., 2006). The study 

received ethical clearance from the University of Durham School of Education Ethics 

Committee. No children with formal diagnoses of special educational needs, intellectual 

disabilities, or neurological or genetic disorders were included in the final sample. This was to 

provide as typical an overall sample as was possible and practical.  

Design & Procedure 

Testing was completed on an individual basis in a quiet area of the child’s school. The 

cognitive measures included were administered in a counterbalanced order to reduce the 

influence of fatigue and practice. For the whole sample analysis, a correlational design was 

adopted to explore the relationships between the cognitive measures and mathematics. For the 

subsample analysis, mean difference testing was performed to highlight any fundamental 

differences in the cognitive profiles of children selected into the concern group, relative to their 

peers. Measures of working memory were administered in a computerised format, using E-

Prime, whereas measures of speed of processing, g, and number sense were administered in a 

paper and pencil or verbal format in accordance with the administration instructions of the 

WISC-IV and the Numeracy Screener. In the case of working memory measures, two trials of 

each span length were administered, with no cut off criterion to ensure a fully saturated measure 

of a child’s working memory capacity. Partial credit score was used for these tasks (as detailed 
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in Allen et al., 2020a) to account for partially accurate recall of some items. The structure of 

all other measures, including scoring and cut off criteria, was predetermined by the 

standardised measures used.   

Measures 

The measures used in this study demonstrate very good psychometric properties, having 

been used in other studies with similar population (e.g. Giofrè, Borella, & Mammarella, 2017) 

in the case of the working memory measures, or having been standardised on large populations 

that are reflective of the population in question.  

Working memory 

Allen et al. (2020a) identified backward word span, and backward matrices as 

significant predictors of mathematical performance in this age group. Backward word span 

required children to repeat a list of words they had heard in backwards order (Cronbach’s alpha 

= .83). Backward matrices required children to repeat the sequence of black squares they had 

seen in backwards order (Cronbach’s alpha = .87). Both tasks presented stimuli at a rate of one 

item per 2 seconds, and Cronbach’s alpha scores are taken from Allen et al. (2020a) where they 

were calculated on a larger sample, which included the children in this sample.  

g 

 Two measures from the WISC-IV were taken to form a measure of g: matrix reasoning 

and vocabulary. Matrix reasoning presents children with a series of tiles and requires them to 

select which tile from the selection at the bottom of the page completes the pattern above. These 

patterns are relatively easy to complete to begin with and get progressively harder as the test 

progresses. The vocabulary subtest presents children with a series of words that they are 

required to provide the definition for. Again, this test begins with relatively easy objects/words 

to define, with words becoming more difficult to define as the test progresses. Psychometric 

properties for these measures can be found in the WISC-IV manual.  
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Speed of processing 

Two further measures from the WISC-IV were administered to measure speed of 

processing: coding and symbol search. Both tests are time limited to two minutes for the child 

to complete as many items as they are able to. Coding presents children with a series of boxes 

with a number in the top and a blank space below. A key is presented above the stimulus 

material to indicate which symbol should be written in the blank space depending on the 

number. Children are instructed to complete as many of these as they are able to in the time 

limit, whilst also working as carefully as they can. Symbol search presents children with a 

target symbol in one column and a selection of symbols in an adjacent column. For each trial, 

the child must identify if the target symbol is present in the selection of symbols in the adjacent 

column. Again, children should complete as many items as possible in the time limit, whilst 

being careful not to make mistakes.  

Number sense 

To measure number sense, the Numeracy Screener (Nosworthy et al., 2013) was used. 

The screener presents children with pairs of boxes. Children must decide which of the boxes 

in each pair contains more; more dots or the number that is larger in value. This measure is 

timed to allow children one minute per part (numerals or dots) and they are instructed to work 

as quickly, but as accurately, as they can. Details of the development and standardisation 

procedure can be found in Nosworthy et al. (2013).  

Data analysis  

All data were analysed using R (R Core Team, 2018). The main packages used for the 

analysis were “lavaan” (Rosseel, 2012) and “psych” (Revelle, 2017), along with “ggplot2” 

(Wickham, 2016).  
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Results 

Preliminary analyses 

In order to remove its influence on the data, age in months was partialled out before 

beginning any analysis. Table 1 presents the descriptive statistics and correlations for all of the 

measures taken. All skewness and kurtosis values fell within reasonable bounds of ±1.5, 

therefore, parametric tests were used throughout the analysis. Given the size of the sample, it 

is important to note that all of the following analyses are tentative and preliminary in nature. 

The study is designed to examine the feasibility of using these measures to predict mathematics 

only, not to draw any firm conclusions from the data.  
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Table 1. Correlations, means, and standard deviations for each measure taken. 10 

  1 2 3 4 5 6 7 8 9 

1 Symbolic NS          

2 Non-symbolic NS .696**         

3 Symbol search .326 .218        

4 Vocab .014 .006 .091       

5 Matrix .301 .350 -.084 .263      

6 Coding .201 .058 .514** -.021 -.203     

7 Backward matrix -.150 -.027 .148 .437* .052 .326    

8 Backward word .000 .071 .129 .511** .075 .216 .472*   

9 Maths .190 .230 .259 .228 .407* .157 .342 .294  

 Mean 35.43 35.54 21.39 28.21 14.68 38.82 30.75 25.64 21.50 

 SD 6.49 5.06 5.76 5.31 4.23 9.60 12.09 5.66 7.58 

** p < .001   *p < .05 



 
 

210 
 

Analysis on the whole sample 

We began the whole sample analysis by examining the correlations table (Table 1). 

Measures of number sense, speed of processing, and working memory correlate significantly 

with each other (p < .05 in all cases) as would be expected for measures tapping the same 

underlying component. Backward word span and backward matrices also correlated with 

vocabulary measures (p < .01 and p < .05, respectively). Interestingly, matrix reasoning was 

the only measure to correlate significantly with mathematics (r = .407, p < .05).   

We conducted a series of regressions to understand the contributions of our predictors 

on mathematics. In the first model all measures were entered individually to predict 

mathematics. This model was not statistically significant, F(8,19) = 1.274, p = .313, R2 = .349. 

The second model included only the measures regarded as control measures. Again, this model 

was non-significant, F(6,121) = 1.363, p = .275, R2 = .280. Finally, the third model included 

only the working memory measures. This final model was also non-significant, F(2,25) = 

2.028, p = .153, R2 = .140.  

Scatterplots of the data, Figure 1, suggest that the relationships between the cognitive 

measures and mathematics are not linear in every case, hence may explain some of the findings 

from the regression models.  
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Figure 1. Scatterplots showing the distribution of each variable against mathematics scores. a) Symbolic NS b) Non-symbolic NS c) Symbol search 
d) Vocabulary e) Matrix reasoning f) Coding g) Backward matrices h) Backward word span 14
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Subgroup analysis 

The nine children that had been highlighted from previous analyses (Allen et al., 2020a) 

as the concern group were gender matched with children in the remaining sample to create a 

control group. These two groups were then compared against each other.  

We ran a series of exploratory logistic regressions to see whether it was possible to 

predict group membership from the cognitive measures taken. The first model included each 

cognitive predictor individually to predict group membership. The model did not contain any 

significant predictors, AIC = 37.344. The second model included number sense, speed of 

processing, and g as composite scores, and each working memory measure individually. As 

with the first model, there were no significant predictors, AIC = 33.079. The third model 

included only the composite control measures to assess whether these measures alone could 

differentiate between the groups. The model contained no significant predictors, AIC = 32.024. 

We then combined the speed of processing and number sense measures into a single measure, 

as they all rely on timely processing, and included this along with g and working memory 

measures. Again, this model did not result in any significant predictors, AIC = 32.156. The 

final model considered only verbal (symbolic NS, vocabulary, backward word span) and 

visuospatial (non-symbolic NS, symbol search, matrix reasoning, coding, backward matrices) 

predictors. Similarly, there were no significant predictors returned, AIC = 29.18.  

We then ran a series of ANOVAs to ascertain whether the data showed any significant 

differences between the groups on any of the cognitive measures included. The results of the 

ANOVAs are included in table 2, however, showed no fundamental underlying differences 

between the two groups in this sample.  
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Table 2. Mean and SDs for each measure for each group, F and p values for ANOVAs 
calculated between concern and control group, and Cohen’s d effect sizes. 11 

 Concern group  

Mean (SD) 

Control group  

Mean (SD) 

F(16) p d 

Symbolic NS .494 (3.696) -.526 (4.017) .314 .583 0.26 

Non-symbolic NS -.059 (3.168) .789 (3.587) .282 .603 -0.25 

Symbol search -1.671 (6.560) 1.276 (5.646) 1.043 .332 -0.48 

Vocabulary -1.256 (6.532) -.153 (4.067) .185 .673 -0.20 

Matrix reasoning -1.642 (3.319) -.503 (3.167) .555 .467 -0.35 

Coding -.587 (11.375) .066 (9.345) .018 .896 -0.06 

Backward matrices -4.095 (12.338) 1.813 (11.861) 1.072 .316 -0.49 

Backward word span -1.347 (4.425)  -1.867 (5.977) .044 .836 0.10 
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Individual profile analysis 

Before beginning this section of analysis, all scores were standardised to centre on a 

mean of 0. For the working memory measures, means and SDs from the previous, larger data 

set were used (see Allen et al., 2020a). The mean z scores for each measure, along with their 

respective 95% CIs, can be found in table 3. Note, number sense is not included in this section 

as the only available standard measure of performance is percentile rank, normed only on 

children in the Canadian education system in Ontario. Interestingly, matrix reasoning is the 

only measure for this sample where both the upper and lower CI boundaries lie below age 

norms. The children included in this section of analysis are those who were included in the 

concern group previously.  

 

Table 3. Standardised means and 95% CIs for this sample. 12 

 Mean  Lower CI Upper CI 

Symbol search .107 -.172 .386 

Vocabulary  .071 -.259 .402 

Matrix reasoning  -.726 -1.053 -.400 

Coding  -.083 -.434 .268 

Backward matrices .141 -.249 .532 

Backward word span -.364 -.736 .009 

 

From these means and CIs, we assessed whether the individual normed score for each 

child fell within, above or below the 95% CI for the group. As can be seen from table 4, there 

were no obvious patterns to the data. In various combinations, children showed evidence of 
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deficits in all included areas (speed of processing, g, and working memory). Some children 

showed no clear evidence of deficit in any of the areas measured. Profile plots can be seen in 

figure 2 to highlight the heterogeneity seen in the cognitive profiles of a sample of children 

who are all performing at least 1SD below age expectations in mathematics. Though caution 

should be applied in interpreting limited conclusions from feasibility data, the data shows that 

6/9 children show some evidence of some kind of working memory difficulty, 5/9 show some 

evidence of some kind of speed of processing deficit, and 4/9 show some evidence of some 

kind of deficit in g.  

 

Table 4. Children’s cognitive profiles showing whether their performance on each task falls 
above, within, or below the 95% CI for this sample. Also included for reference is their maths 
score. 13 

Symbol 

search 

-1.33 

Below 

-1.00 

Below 

-.33 

Below 

.00 

Within 

.66 

Above 

-.67 

Below 

1.00 

Above 

-.33 

Below 

-.33 

Below 

Vocab  .33 

Within 

-.33 

Below 

-.33 

Below 

2.00 

Above 

-.66 

Below 

.67 

Above 

-.33 

Below 

.33 

Within 

-1.66 

Below 

Matrix 

reasoning 

.00 

Above 

-2.00 

Below 

-1.33 

Below 

-1.00 

Within 

-1.00 

Within 

.00 

Above 

-1.33 

Below 

-1.00 

Within 

-1.33 

Below 

Coding  -1.33 

Below 

2.00 

Above 

-1.33 

Below 

.00 

Within 

1.33 

Above 

-.33 

Within 

-.33 

Within 

-.67 

Below 

-.33 

Within 

Backward 

matrices 

-1.28 

Below 

-1.61 

Below 

-1.7 

Below 

.47 

Within 

.72 

Above 

1.42 

Above 

.42 

Within 

-.32 

Below 

-.16 

Within 

Backward 

word span 

-1.88 

Below 

-.91 

Below 

-1.07 

Below 

-.59 

Within 

-.75 

Below 

.88 

Above 

-.69 

Within 

.53 

Above 

-.87 

Below 

Maths  14 7 7 6 14 18 18 10 15 

Note. Each column denotes an individual child. 
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Figure 2. Profile plots showing the scores for each individual in the concern group on the cognitive measures taken and their mathematics score. 
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Discussion 

Before thorough discussion of the findings of this study, it must again be emphasised 

that all analyses are done on a preliminary, exploratory basis to identify any potential 

differences in the cognitive profiles of children who performed poorly on a mathematics test 

conducted earlier in the same academic year. In addition, we remind readers that these findings 

cannot be taken to be robust with such a small sample, however, they do give an important 

insight into the cognitive profiles of the children of interest. Further, they highlight the finer 

nuances that practitioners must be aware of when working with children who are struggling 

with mathematics.  

As previously mentioned, the aims of this study were to conduct a feasibility analysis 

to explore whether the inclusion of cognitive measures known to correlate highly with 

mathematics (Anobile et al., 2018; Fuchs et al., 2006; Geary, 2011; Odic et al., 2016) negated 

the predictive powers of working memory tasks as identified in Allen et al. (2020a), or whether 

these relationships were maintained. In short, we hoped to ascertain whether this reduced 

battery of working memory measures continues to highlight the same children as a cause for 

concern as the battery used in Allen et al. (2020a) when used alongside control measures. By 

doing so, we hope to give an indication of whether these relationships are robust when a fuller 

range of measures are included in the model. Secondly, we aimed to assess whether there were 

any significant differences in performance on cognitive measures between the concern group 

and gender-matched controls. As such, we hoped to identify the potential for any underlying 

fundamental differences between the groups that could explain the differences in performance 

on the mathematics test. Finally, we sought to explore the individual profiles of the children in 

the concern group to understand whether any patterns in performance were present.   
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Whole group analysis 

Beginning with the analysis of the whole sample, the individual measures that form the 

composite measures of working memory, speed of processing, and number sense correlate 

significantly. However, we do not see the same correlation between the individual measures 

for the composite score of g. No significant correlation is seen here, suggesting that the 

vocabulary and matrix reasoning measures may be assessing different underlying elements of 

cognition. This is not unreasonable, given vocabulary relates to verbal intelligence (Bornstein 

& Haynes, 1998; Goldstein, Allen, & Fleming, 1982; Regard, Strauss, & Knapp, 1982) and 

matrix reasoning relates to visuospatial intelligence (Haavisto & Lehto, 2005), however, it 

would be expected that these measures would correlate with each other should they be 

measuring the same underlying construct: intelligence.   

Matrix reasoning is the only variable to correlate significantly with mathematics, with 

all other correlations remaining relatively low. This is curious, given previous research 

identifying strong and significant correlations between mathematics and working memory 

(Andersson & Lyxell, 2007; De Smedt et al., 2009; Meyer et al., 2010; Swanson & Kim, 2007), 

speed of processing (Rebecca Bull & Johnston, 1997; Lambert & Spinath, 2017; Vanbinst et 

al., 2018), number sense (Halberda, Mazzocco, & Feigenson, 2008; Jordan, Kaplan, Locuniak, 

& Ramineni, 2007; Starr et al., 2013; see Gilmore et al., 2013 for an alternative argument), and 

other measures of g (Kyttälä & Lehto, 2008; Primi, Ferrão, & Almeida, 2010). One potential 

explanation is that matrix reasoning here encapsulates some of the skills necessary for the 

emergence of the relationship between backwards matrices and mathematics seen in Allen et 

al. (2020a), being a visually-based measure, and also potentially incorporating an executive 

component (Decker, Hill, & Dean, 2007). Executive components are argued by some to be the 

defining characteristic of working memory measures (see Baddeley, 1996 for an explanation), 

hence a more demanding executive component, greater than that in backwards matrices tasks, 
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may be driving the relationship seen here. We also see a significant correlation between verbal 

working memory and vocabulary, hence a similar explanation could be applied here. Two final 

correlations that piqued our interest are those between both backward matrices and backward 

word span and vocabulary. A significant result here was unexpected, however, may reflect the 

strategies selected by the children to complete the tasks. If children chose verbal strategies to 

complete these tasks, then it would be reasonable for these tasks then to be correlated with a 

measure of verbal intelligence as verbal rehearsal strategies begin to appear around this age 

(Flavell et al., 1966; Gathercole, 1998; Henry et al., 2012).  

The lack of significant predictors in any of the regression models is likely due to the 

small sample size used, however, raises some questions over the combination of measures used 

to screen children, despite the approach itself being feasible. As such, future research should 

seek to replicate the study with a larger sample so that firmer inferences can be drawn from the 

analysis.  In addition, a larger sample would allow researchers to investigate potential 

mediators further. We aimed to scope whether the relationships identified in Allen et al. 

(2020a) remained following the inclusion of other well-known predictors of mathematics, with 

preliminary analysis suggesting the effect is negated. It is not possible to assess mediators with 

the current sample size to ascertain which measures are the cause of this. Finally, future 

research should seek to investigate the potential for non-linear relationships between the 

variables. The scatterplots in figure 1 suggest non-linear relationships, indicating scope for 

future analysis on a larger sample, particularly in relation to symbolic number sense, non-

symbolic number sense, vocabulary, and backward matrices.  

In conclusion, the data on the whole sample suggest the unique influence of backward 

matrices and backward word span on mathematics is diminished when other known cognitive 

predictors of mathematics are included. However, the sample size here is too small to draw 

firm conclusions, giving scope for future research to investigate further.  
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Subgroup analysis 

When considering the subgroup analysis, as with the whole group analysis, the main 

reason for the lack of significant predictors in the regression models is likely to be the sample 

size. When we consider the fit index (AIC) for the models generated, the model with the best 

fit is that including two measures: a composite measure for verbal working memory and a 

composite measure for visuospatial working memory. This is harmonious with a large body of 

literature suggesting that working memory is a reliable predictor of educational attainment (e.g. 

Alloway, 2006; Alloway & Alloway, 2010), particularly in mathematics (e.g. Bull, Espy, & 

Wiebe, 2008).  

We then went on to examine whether there was any evidence for any fundamental 

differences underpinning those who are a cause for concern due to their underperformance and 

their peers. None of the ANOVAs performed were significant, suggesting that there are no 

fundamental differences between the two groups in this sample. Further, the effect sizes were 

consistently small, apart from symbol search and backward matrices, which showed medium 

effects, and matrix reasoning, which showed a small-medium effect. In contrast, Andersson 

and Lyxell (2007) suggest that, compared to typically developing children, those with 

mathematics difficulties show a clear working memory deficit. They do, however, state the 

deficit appears to relate to the function of the central executive. It is, however, necessary to 

note that the children in the concern group were compared to a control group of children 

selected because they performed in the lower half of their class on the mathematics test, hence 

they are relatively low scoring themselves. These results reflect the argument made by Julian 

Elliott regarding dyslexia. 

In “The Dyslexia Debate”, Elliott amd Grigorenko (2014) argue that there are no 

fundamental differences between those children with a reading difficulty and those diagnosed 

as dyslexic. Nor are there any differences in the way these problems are remediated (Elliott & 
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Gibbs, 2008; Gibbs & Elliott, 2015). In short, the difference between the two groups is likely 

to be a matter of severity. Based on the results of this study, we would argue a similar 

perspective for those with mathematics difficulties. Although children in this sample were not 

diagnosed as dyscalculic (a specific developmental problem relating to counting and number, 

Kadosh & Walsh, 2007), the scores of the concern group reflect those that would be expected 

for dyscalculics, particularly depending on the area the child attends school. Dyscalculia is 

often diagnosed at different rates, and for children showing different levels of severity of 

mathematics difficulty, because children are diagnosed based on deviations from norms based 

on cognitive performance or observed behaviour, depending on the basis of the assessment 

(Adams, 2007; Devine, Soltész, Nobes, Goswami, & Szűcs, 2013). For example, a child from 

an area where most children thrive in mathematics would not necessarily have to be struggling 

to the same extent as a child from an area where children are generally weaker in mathematics 

(Peterson & Shinn, 2002). Socioeconomic status has also been shown to be an influencing 

factor in dyscalculia diagnoses (Gross-Tsur, Manor, & Shalev, 1996). Part of this difference 

must be attributed to how likely a child is to stand out as having profound difficulties depending 

on their peer group, of course.  

In summary, based on analysis of the subgroup, no unique predictors emerge from the 

data for group belonging based on any of the cognitive measures taken. These results again 

indicate that the approach taken is feasible for predicting poor performance, however, further 

work is required to identify the appropriate predictors to include. Similarly, we see no 

significant differences in performance on the cognitive measures between the groups. As such, 

these preliminary findings suggest a preliminary conclusion that no fundamental differences 

underlie more pronounced mathematical difficulties when compared with other poor 

performing children. Thus, using the measures included here to highlight poor performing 

children may not be the most appropriate approach. However, we must be aware that these 
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comparisons were made to children who also show relatively poor performance, hence findings 

may be different if using average or good performers as the comparison group. These findings 

lead us to question more the individual differences between children to understand the potential 

causes of their difficulties.  

Individual analysis 

Finally, we considered the individual profiles of the nine children previously identified 

as performing at least 1SD below age expectations in mathematics. When generating the group 

means and CIs necessary for individual comparison against, it was striking that the only 

measure that presented a mean and CI for the group that remained consistently below 0 was 

matrix reasoning. Taking this result with the significant correlation between matrix reasoning 

and mathematics from the whole group analysis suggests that the skills required to complete 

the matrix reasoning task may map well onto those required for mathematics tests. One 

possibility is the level of abstraction required for pattern completion (Bennett & Müller, 2010). 

Mathematics tests also represent a number of abstract concepts, thus being competent at this 

skill may be of benefit. A second potential explanation is as explained above, with matrix 

reasoning representing a predominantly visual skill, echoing the findings of a number of studies 

that visuospatial working memory is heavily implicated in mathematics (e.g. Mammarella, 

Caviola, Giofrè, & Szűcs, 2018; see Allen, Higgins, & Adams, 2019 and Passolunghi & Costa, 

2019 for reviews).  

Similarly, and as previously mentioned, when drawing comparisons between the 

concern and control groups, the individual profiles of the nine cause for concern children reflect 

the argument made in dyslexia research (Gibbs & Elliott, 2015). There does not appear to be a 

consistent deficit in the cognitive profiles of these children, particularly not one that 

distinguishes them from their poorly performing peers. This finding has major implications for 
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educators by highlighting the problems with single word diagnoses. While this sample did not 

contain any children with a formal diagnosis of dyscalculia, it clearly demonstrates the extent 

of the heterogeneity inherent in diagnosing all children with sufficiently severe mathematics 

difficulties as dyscalculic. Further, a single word diagnosis suggests that all children with this 

diagnosis will be responsive to the same remediation strategies, however, it is apparent by 

considering the profiles illustrated in table 4 and figure 2 that this is extremely unlikely.  

Finally, whilst there is a host of evidence for the influence of working memory, speed 

of processing, and general intelligence on mathematics, as mentioned previously, it is 

surprising that the child with the lowest score for the mathematics test did not show a specific 

deficit in any one of these areas. This is particularly interesting as the children in this group 

with the highest mathematics scores showed some indication of deficits. All other children did, 

however, show at least an indication of a potential deficit in one or more of these areas. There 

are, of course, other possibilities to consider regarding why such a low score may have been 

obtained, for example lack of investment in the study or a lack of co-operation. However, the 

test was completed in test conditions, in the classroom, with the child’s teacher present, hence 

these are unlikely to be complete explanations. Further, no children appeared to be exhibiting 

these behaviours when tested, despite this not being formally recorded.  

In conclusion, the present data suggest that this approach is feasible, provided that the 

measures included give a sufficiently accurate picture of the child’s profile in order to make 

specific predictions about likely ability. The data suggests no clear and consistent deficits 

defining poor performance on mathematical tests, though most children do show at least some 

evidence of deficit in one or more of the areas measured. Further, matrix reasoning seems to 

have posed the greatest challenge for this group, indicating a potential influence associated 

with task demand. Finally, we conclude that remediation strategies for poor mathematical 

performance should be prescribed based on a thorough understanding of the child’s cognitive 
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profile and capabilities, rather than attempting to apply a ‘one size fits all’ model to the 

problem. 
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15 

Study 4 Introduction: Follow Up From Study 1 

This final study of the series is the two-year follow up to study 1 time 1. The question 

we are asking is whether it is still possible to use the working memory measures taken when 

the children were in Year 3 to predict their mathematics performance now that they are in Year 

5.  Does the model still predict unique variance in mathematics using the working memory 

measures? And has this relationship changed with time? There is existing evidence that 

working memory can be used to predict mathematics performance over time (e.g. De Smedt et 

al., 2009; Geary, 2011; Kyttälä, Kanerva, Munter, & Björn, 2019), with many of the findings 

indicating a relative shift in the contribution of the components of working memory. As such, 

we predicted such a shift in contributions, but were mindful to include previous mathematics 

performance in the model to allow us to determine how much of the variance in mathematics 

at time 2 can be accounted for by working memory measures  that cannot be accounted for by 

mathematics at time 1. The following paper is published in Psychological Research (Allen, K., 

Giofrè, D., Higgins, S., & Adams, J. (2020). Using working memory performance to predict 

mathematics performance 2 years on. Psychological Research. doi:10.1007/s00426-020-

01382-5; Appendix L) and was written with collaboration from Dr. David Giofrè. The paper 

follows the study design used in study 1, which was designed and data collected before Dr. 

David Giofrè joined the project.  

 

  



 

226 
 

16 

Study 4: Using working memory performance to predict mathematics performance 2 years 

on 

Abstract 
A number of previous studies have used working memory components to predict 

mathematical performance in a variety of ways, however, there is no consideration of the 

contributions of the subcomponents of visuospatial working memory to this prediction. In this 

paper we conducted a two year follow up to the data presented in Allen et al. (2020c) to 

ascertain how these subcomponents of visuospatial working memory related to later 

mathematical performance. 159 children (M age = 115.48 months) completed the maths test 

for this second wave of the study. Results show a shift from spatial-simultaneous influence to 

spatial-sequential influence, whilst verbal involvement remained relatively stable. Results are 

discussed in terms of their potential for education and future research. 

Introduction 
Using working memory to predict mathematical attainment is an area of study that 

has gained a significant amount of traction in recent years. Mathematics is a broad field and 

there has been extensive research across a number of aspects of mathematics and working 

memory which has been summarised in reviews and meta-analyses, from studies of typically 

developing populations (Friso-van den Bos et al., 2013; Raghubar et al., 2010), to the 

relationship with learning difficulties in mathematics generally (David, 2012; Swanson & 

Jerman, 2006) and in terms of the verbal and numerical domains in particular (Peng & Fuchs, 

2016). According to the multicomponent model (Baddeley & Hitch, 1974), working memory 

involves subcomponents relating to the processing of visuospatial and phonological stimuli. 

The components of working memory have been reliably linked to academic performance on 

a number of occasions (e.g. Alloway & Passolunghi, 2011; Holmes & Adams, 2006; Van de 
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Weijer-Bergsma, Kroesbergen, & Van Luit, 2015; see Peng, Namkung, Barnes, & Sun, 2016 for 

a review of this literature) with a reasonable amount of evidence suggesting visuospatial 

working memory is more influential in younger children (e.g. Caviola, Mammarella, Lucangeli, 

& Cornoldi, 2014; Clearman, Klinger, & Szucs, 2017; Holmes, Adams, & Hamilton, 2008). There 

is also a smaller, though not insignificant, amount of evidence indicating the involvement of 

verbal working memory (e.g. Kyttälä, Kanerva, Munter, & Björn, 2019; Wilson & Swanson, 

2001); a finding we replicated at time 1 (T1) of this study (Allen et al., 2020b).  

At T1, results revealed that, when compared directly to spatial-simultaneous and 

spatial-sequential measures, verbal numeric tasks were more predictive of mathematics in 7-

8-year-old children. Similarly, Allen, Giofrè, Higgins and Adams (2020a) demonstrated that 

verbal working memory (non-numeric) was more predictive of mathematical performance in 

younger children, with a move toward visuospatial influence in older children. It is not yet 

fully understood, however, how these components relate specifically to mathematical 

attainment on a longitudinal basis. There is some evidence suggesting visuospatial working 

memory is influential in the prediction of mathematics over a number of years (e.g. Bull, Espy, 

& Wiebe, 2008; De Smedt et al., 2009; Fanari, Meloni, & Massidda, 2019; Geary, 2011; Hilbert, 

Bruckmaier, Binder, Krauss, & Bühner, 2019; Li & Geary, 2017), however, as indicated by 

Hilbert et al. (2019), it is necessary to consider the mathematics test used for the purposes of 

these studies. In some cases, standardised measures, in line with the curriculum of the 

country are used, in which case more credence can be given to the real-life applicability of 

the finding. However, oftentimes researchers use tests designed specifically for the purposes 

of their study, in which case they lack the necessary real-world application of the findings. 

There are also findings to the contrary indicating the importance of verbal working memory 

(e.g. Geary, Nicholas, Li, & Sun, 2017; Kyttälä et al., 2019), the varying influence of the 
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subcomponents depending on the area of mathematics in question (van der Ven et al., 2013), 

and even that working memory is not directly predictive of mathematics (Gathercole, Brown, 

& Pickering, 2003), especially when other precursor measures of mathematics are included 

(Krajewski & Schneider, 2009b). One area that these studies do not account for is the format 

of the testing in each of the domains of working memory, for example, visuospatial stimuli 

can be shown both simultaneously and sequentially, which may have an influence on their 

predictive value, particularly when considering different areas and levels of mathematics.   

There is growing evidence for the subdivision of visuospatial working memory into 

spatial-simultaneous and spatial-sequential categories, based on the presentation of the 

information during the encoding phase (e.g. as in Blalock & Clegg, 2010; Lanfranchi, Carretti, 

Spanò, & Cornoldi, 2009). Spatial-simultaneous tasks require participants to recall a visual 

array when all items are presented simultaneously, while spatial-sequential tasks require 

recall of visual locations presented sequentially, generally in a given order (e.g. Mammarella 

et al., 2006; Mammarella, Pazzaglia, & Cornoldi, 2008). Evidence for a double dissociation 

between the two subtypes of visuospatial working memory (Mammarella et al., 2006, 2018; 

Wansard et al., 2015) presents the possibility that deficits in these subcomponents act as a 

specific vulnerability for mathematical difficulties. This is particularly pertinent if there is 

evidence of a longitudinal predictive relationship between the subcomponents and 

mathematics. The relationships between the subcomponents of visuospatial working memory 

and mathematics are not, as yet, thoroughly understood, therefore, this paper aims to 

contribute to this understanding in order to develop our ability to predict mathematics 

performance from working memory capacity.  

There are a number of issues associated with the selection of a measure of 

mathematics for research purposes, including, but not limited to, the applicable age range, 
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the standardisation procedure for the test, and design purely for research purposes, all of 

which increase the risk of a lack of reliability and validity of the measure in a classroom setting. 

To bypass some of these issues, a standardised measure was chosen which was suitable for 

an appropriate age range, which was standardised on a UK sample, and which was designed 

to map directly on to the current National Curriculum for England and Wales. Mapping onto 

the National Curriculum means that all children involved in the study have been exposed to 

the same mathematical content, therefore, should have similar background experience in 

terms of answering the questions. The same mathematics test was used as at T1 (Access 

Mathematics Test). This test was selected as it covered topics appropriate for children aged 

6-12, therefore, the same measure could be administered at both time points to make a direct 

comparison. The test has two forms, A and B, which are designed to be equal to each other 

in terms of both difficulty and the distribution of topics assessed (see Access Mathematics 

Test Handbook for this information). At T2, the alternate form was administered to that which 

the children had done at T1 (if form A was used at T1, form B was used at T2, and vice versa) 

such that children had not had previous exposure to the same questions so that their 

performance was not skewed in any way.  

This study aims to identify whether there is a relationship between working memory 

measures taken in Year 3 and a mathematics measure taken in Year 5, and if so, whether the 

nature of this relationship is the same as when the mathematics measure was also taken in 

Year 3. We aim to identify which working memory predictors can predict mathematical 

performance in Year 5 when mathematical performance in Year 3 is taken into account. We 

expect to see a shift in the extent of the relative contributions of the elements of working 

memory, particularly between the verbal and visuospatial elements given the suggestion of a 

developmental shift between the two ages the children were tested at.  
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Method 

Participants 

The initial sample included 214 7-8-year-old children, however, subject attrition over 

the two-year period resulted in a final sample of 159 9-10-year-old children (76 male and 83 

female, M age = 115.48 months, SD = 3.43). We strove to re-test as many of the original 

opportunity sample of children, now in Year 5, as possible. Opt-out parental consent was 

obtained, as with the first administration of the study, to reduce bias in the sample (Krousel-

Wood et al., 2006). The study was approved by the School of Education Ethics Committee at 

the University of Durham. Children with special educational needs, intellectual disabilities, or 

neurological and genetic conditions were not included in the study. Those who did not 

complete the first administration phase of the study were not included in the analysis, such 

as children who had entered the school within the last two years.  

Design & Procedure 

Previously, children had been tested individually on working memory measures 

(spatial-simultaneous, spatial-sequential, and verbal) and mathematics as a class group in 

Year 3 (see Allen et al., 2020b for a full description of this phase) to form Time 1 of the study. 

This second phase (Time 2) of the study required only a mathematics test, therefore, children 

were tested as a class group. Working memory measures were not administered at this stage 

as the intention was to understand whether it is possible to design a measure to be 

administered at the beginning of formal schooling to predict whether a child is likely to 

encounter mathematics difficulties in the future, hence this would only be measured once. 

Testing was done in the child’s usual classroom and with their class teacher present to 

minimise stress, but was completed under typical test conditions. The test was administered 

according to the instructions in the testing manual (see below for further explanation), with 
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a 10-minute warning prior to the end of the test. Paper and pencil format was used and 

children could request a question be read aloud in order to account for those children with a 

lower reading ability. No further help was given as part of the reading process, nor were any 

numbers that may have been particularly pertinent to the question, for example “The River 

Nile is 3256km long. Round this to the nearest 1000km.” would be read as “The River Nile is 

this long (point to number). Round this to the nearest this distance (point to number)”. We 

used a correlational design to investigate the relationships between earlier working memory 

measures and current mathematics performance.  

Measures 

Working Memory 
Working memory measures from T1 were used for this analysis. At T1, measures of 

verbal working memory (digit recall, backwards digit recall, and counting recall, as presented 

in the Working Memory Test Battery for Children; Gathercole & Pickering, 2001)), spatial-

simultaneous working memory (4 × 3 and 4 × 4 dot matrices tasks - children were presented 

grids containing dots and were required to recall the positions of the dots), and spatial-

sequential working memory (3 × 3 and 4 × 3 dot matrices tasks - children were presented grids 

in which dots appeared sequentially and were required to recall the positions of the dots in 

no specific order - and block recall; Corsi, 1972) were administered to all children prior to the 

mathematics test. See Allen, Giofrè, Higgins and Adams (2020b) for a full description of the 

measures taken during phase one.  

Mathematics 
Access Mathematics Test (AMT): The AMT is a standardised measure of National 

Curriculum mathematics, designed to test children aged 6 - 12 years. It, therefore, provides 

clear evidence for how well each child performs in individual areas of mathematics, as well as 
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overall. The AMT covers the requirements of the National Curriculum in England and Wales, 

where children are required to understand number, measurement, geometry, and statistics, 

hence providing an ecologically valid measure of a child’s school performance. Questions 

cover number (e.g. “the distance from New York to London is 3457km. Write this distance to 

the nearest 1000 kilometres”), operations (e.g. “write the missing number. __ ÷ 5 = 35”), 

fractions, including ratio (e.g., “peanuts cost 40p for 100g. How much does 120g of peanuts 

cost?”), geometry (e.g. “the point A is moved three squares to the right and two squares 

down. Write the coordinates of this new point A”), measures (e.g. “how many 20p coins are 

there in £13?”), and statistics (e.g. “this bar chart, from a spreadsheet, shows the number of 

pets each pupil owns. How many pupils own 2 pets or more?”).  

Children were read the instructions set out for the AMT, which included a time limit 

of 45 minutes, clarification of where to write their answer on the paper, and explanation that 

workings were allowed on the paper, providing their answer was clearly written in the correct 

space. Typical classroom test conditions were adopted throughout. Children were permitted 

to request questions be read aloud to them should they have difficulties so as not to 

disadvantage those with weaker reading abilities, however, no further explanation of the 

question, or what was required, was given. No discontinuation rule was employed as children 

were instructed to complete as many questions as they could, but that questions were also 

included for children much older than they were so not to worry if they could not complete 

them all.  The total number of test items for this test is 60, with a maximum score of 60.  

Data Analytic Strategy 

All analyses were performed using R (R Core Team, 2018). The R program (R Core 

Team, 2018) with the “lavaan” library (Rosseel, 2012) was used to conduct structural equation 
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modelling (SEM). Model fit was assessed using a variety of indices according to the criteria 

suggested by Hu & Bentler (1999). In particular, the chi-square (χ2), the comparative fit index 

(CFI), the non-normed fit index (NNFI), the standardised root mean square residual (SRMR) 

and the root mean square error of approximation (RMSEA) were used to evaluate model fit, 

while the Akaike information criterion (AIC; the lower the better) and the chi-square 

difference (with results not statistically significant favouring more parsimonious models) 

were used to compare the fit of alternative models.   

Full-information maximum likelihood (FIML) estimation was used to handle missing 

data in our analyses. This method offers unbiased estimates under missing data patterns such 

as missing completely at random (MCAR) or missing at random (MAR). The pattern of 

missingness was tested using correlations (see Kabacoff, 2015 for the rationale). Missing 

values at T2 were coded 1 for missing and 0 for present. This dummy variable was then 

correlated with our measures at T1 (i.e., working memory and mathematics). None of the 

correlations were particularly large or striking (rs < .17), which suggests that the data deviate 

minimally from MCAR and may be MAR. Therefore, the assumption that data are either MCAR 

or MAR is justified. Maximum likelihood estimation with robust (Huber-White) standard 

errors and a scaled test statistic was used for the analyses. This test provides robust estimates 

and should be preferred in every normal application using SEM (Rosseel, 2010).  

The influence of age in months was taken into account by calculating standardised 

residuals for each variable included in this study. Residuals were calculated entering each 

score as the dependent variable and age as predictor (see Allen, Giofrè, Higgins, & Adams, 

2020b and Giofrè & Mammarella, 2014 for a similar method).  
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Results 
Table 1 shows correlations among variables at T1 and at T2 together with descriptive 

statistics for these variables.  
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Table 1. Pairwise correlation matrix with raw score correlations below the leading diagonal and age covaried correlations above the diagonal, 
including means and standard deviations for each measure. 14 

 1 2 3 4 5 6 7 8 9 10 
1. Simultaneous 4 x 3 ― .685* .484* .437* .407* .352* .321* .180* .410* .430* 

2. Simultaneous 4 x 4 .681* ― .416* .433* .407* .305* .289* .122* .397* .408* 

3. Sequential 3 x 3 .488* .415* ― .573* .343* .301* .257* .112 .308* .414* 

4. Sequential 4 x 3 .440* .430* .576* ― .363* .257* .277* .139* .300* .372* 

5. Block recall .416* .406* .349* .368* ― .287* .239* .077 .242* .238* 

6. Counting recall .358* .308* .300* .253* .289* ― .444* .322* .385* .420* 

7. Backward digit .325* .290* .259* .279* .243* .445* ― .325* .318* .390* 

8. Digit recall .180* .123* .110* .135* .076 .325* .325* ― .156* .204* 

9. Math Assessment Y3 .417* .399* .310* .302* .248* .390* .320* .158* ― .832* 

10. Math Assessment Y5 .420* .407* .411* .369* .232* .413* .387* .202* .823* ― 

M 28.28 20.11 18.7 15.36 21.5 16.33 10.52 26.61 11.72 24.19 
SD 5.99 6.85 4.72 4.23 4.09 3.99 3.08 3.51 6.64 10.140 

Note. * p < .05 one tail.  
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The main aim of this longitudinal paper was to evaluate the impact of working memory 

on mathematics, controlling for the effects of mathematics at T1. To achieve this aim, SEM 

was used, fitting a model with three latent variables for working memory (spatial sequential, 

spatial simultaneous, and verbal), and two observed variables for mathematics at T1 and T2. 

In this model, the three correlated working memory factors were predicting mathematics at 

T1 and T2, while mathematics at T1 was also predicting mathematics at T2. This latter path 

allows us to control for potential autoregressive effects, i.e., the performance in mathematics 

at T2 is controlled for the performance in mathematics at T1. This model design allows us to 

control for the shared contribution of working memory, i.e., the effect of each working 

memory factor is over and above the effect of the other predictors.  

The fit of the model was good, χ2(27) = 20.73, p = .799, RMSEA = .000, SRMR = .029, 

CFI = 1.00, NNFI = 1.014 (Figure 1). In this model, paths from simultaneous and verbal working 

memory factors to mathematics at T1 were statistically significant, while the path from 

sequential working memory was not. As for mathematics at T2, the path from mathematics 

at T1 as well as paths from sequential and verbal working memory, were statistically 

significant albeit with a small effect size, while the path from simultaneous working memory 

was not.  
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Figure 1. SEM model for working memory, mathematics T1 and T2. Solid lines represent statistically significant paths (p < .05). 16 
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Additional analyses 

Mathematics is a broad concept, addressing for example measurement, properties, 

and relations of quantities (Peng et al., 2016). The test we used to evaluate mathematics 

includes different components, making it possible to distinguish among them. This 

comparison is of particular interest because it can be argued that the relation between verbal, 

spatial-simultaneous and spatial-sequential working memory can potentially be affected by 

different types of mathematics skills. It can also be argued that there might be a shift in this 

relationship due to a change in the curriculum (i.e., different proportions of the different 

domains). According to this hypothesis, one could assume that verbal-numeric working 

memory could have a stronger relation to word-problem-solving or to number-based 

mathematics skills (e.g., calculation), and visuospatial working memory to visual-related 

mathematics skills (e.g., geometry). To investigate this issue, we performed some additional 

analyses.  

In a fist SEM model, similar to what we did in the aforementioned SEM model, three 

exogenous working memory factors (i.e. variables that are not caused by another variable in 

the model) were calculated (i.e., simultaneous, sequential and verbal). These working 

memory factors were allowed to correlate. As for the endogenous variables (i.e. variables that 

are caused by one or more variable in the model), rather than including the overall score for 

mathematics as we did before, all subdomains were included separately (i.e., number, 

operations, fractions including ratio, geometry, measures, statistics including probability). 

Residual errors of mathematics domains were also allowed to correlate, this is normal 

practice in SEM when tasks, as in this case, belong to the same constructs and are intrinsically 

related in nature, that is they share a significant portion of the variance over and above what 
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is accounted for by working memory factors in this case. In the model, each working memory 

factor was independently predicting each mathematic variable. In this first model all betas 

were freely estimated (i.e. were supposed to be independent from each other). The fit of this 

model was satisfactory, χ2(47) = 48.70, p = .405, RMSEA = .013, SRMR = .029, CFI = .998, NNFI 

= 0.997, AIC = 13200.  

Having established that the model provided a satisfactory fit we tested several 

alternative nested models in which the betas from working memory to each mathematic 

domain were constrained to be equal across the tasks (i.e. the relationship to working 

memory was considered to be similar in each individual mathematic subdomain). We took a 

multi-step approach, fixing one group of betas at a time. In the first model, betas from 

simultaneous working memory to each mathematic domain were constrained to be equal 

(assumed to be similar across each individual math variable). The fit of this model was similar 

to the previous model, χ2(52) = 53.24, p = .426, RMSEA = .011, SRMR = .030, CFI = .999, NNFI 

= 0.998, AIC = 13195. Importantly this latter model had a lower AIC, was more parsimonious 

(i.e. had a higher number of degrees of freedom), and was not statistically different from the 

previous one, Δχ2(5) = 4.38, p = .4958, meaning that this model should be preferred over the 

previous one. This finding indicates that increasing the complexity of the model and assuming 

different betas (i.e., different relationships) from the simultaneous working memory factor to 

each mathematic subdomain was not necessary (i.e. the simultaneous working memory 

factor had a similar impact on each individual mathematic task).  

In a further model, we went on constraining betas from the sequential working 

memory factor to each mathematic subdomain to be equal. The fit of this model was similar 

to the previous model, χ2(57) = 61.88, p = .306, RMSEA = .020, SRMR = .035, CFI = .996, NNFI 

= 0.993, AIC = 13194. Also, in this case, this latter model had a lower AIC, was more 
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parsimonious, and was not statistically different from the previous one, Δχ2(5) = 7.85, p = 

.1645. These findings taken overall indicate that increasing the complexity of the model and 

assuming different betas (i.e., different relationships) between the simultaneous and 

sequential factor to each mathematic subdomain was not necessary.  

In a further model, we went further on constraining the betas from the verbal working 

memory factor to each mathematic task. The fit of this model was somewhat poorer as 

compared to the previous one, χ2(62) = 89.36, p = .013, RMSEA = .046, SRMR = .081, CFI = 

.975, NNFI = 0.964, AIC = 13211, Δχ2(5) = 25.55, p = .0001. Such a finding indicates the possible 

presence of misfit, which was examined looking at modification indices and residuals. The 

inspection of the model led us to free one of the betas (i.e., the link from the verbal working 

memory factor to the operations component). This resulted in a considerably better fit, χ2(61) 

= 68.96, p = .226, RMSEA = .025, SRMR = .052, CFI = .993, NNFI = 0.989, AIC = 13192. 

Comparing this model with all the previous one we also established that this was the best 

fitting model as it had a lower AIC and was statistically superior as compared to all previous 

models. These findings taken together indicate that betas from simultaneous, sequential and 

verbal factors to each individual mathematic subdomain are similar, with only one exception 

(Figure 2). 
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Figure 2. Theoretical model for the relationship between working memory factors with observed mathematical subtests. 17
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Discussion 

This study aimed to investigate the contributions to written mathematics made by 

verbal, spatial-simultaneous, and spatial-sequential working memory over the period of two 

years. Previous results (Allen et al., 2020c) highlighted a significant relationship between 

mathematics and spatial-simultaneous and verbal working memory in 7-8 year old children. 

Therefore, we aimed to assess whether this relationship remained stable two years later or 

varied as a function of age.  

From the correlations table, all correlations (both normal and after covarying for age) 

between mathematics, measured at T1 and T2, and working memory measures were 

statistically significant. This suggests that working memory is related to mathematics, both at 

T1 and T2. With regard to our specific research question for this paper, we identify a shift in 

the influence of the components of working memory on mathematics. Whilst verbal working 

memory remains a significant predictor, spatial-simultaneous becomes non-significant and is 

taken over by spatial-sequential. The relationship between spatial-sequential working 

memory and mathematics is stronger than that between verbal working memory and 

mathematics, though not significantly so, however, the strongest relationship remains 

between mathematics at T1 and T2. It was anticipated that this would be the case, therefore, 

the model was built in such a way that the significant relationships identified between spatial-

sequential and verbal working memory and mathematics remain after accounting for the 

relationship between mathematics at T1 and T2. That is, these relationships reveal the 

amount of variance in mathematics that we are able to account for over and above that which 

is predicted by previous mathematical ability. As discussed in Allen et al. (2020b), the 

presence of a significant relationship with verbal working memory is supported by literature 
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suggesting verbal-numeric tasks, as are those used in this study, show a direct relation to 

mathematical performance (as reviewed by Raghubar, Barnes, & Hecht, 2010).  

There is a possibility that the influence of spatial-sequential working memory at T2 

could be due to the complexity of the task. In order to complete sequential tasks, children are 

required to hold the initial elements of the stimuli sequence in mind for longer before recall, 

which could be considered more demanding than spatial-simultaneous tasks (Rudkin, 

Pearson, & Logie, 2007). This requirement to hold information for longer periods of time 

when encoded at different time points may replicate the child’s ability to handle sequentially 

derived information resulting from multi-step mathematics problems. Older children are 

more likely to encounter these types of problems in mathematics (Department for Education, 

2013), therefore, spatial-sequential tasks may be more predictive of older children’s 

mathematical ability (Allen et al., 2020b), particularly if the proportion of multi-step versus 

single-step problems encountered also increases with age, as is often the case. As a result, it 

may be that spatial-sequential working memory is more strongly related to mathematics than 

verbal working memory due to the way the information is encoded. Similarly, Caviola, Colling, 

Mammarella and Szűcs (2020) suggest that spatial working memory may provide the mental 

workspace required to complete mathematics tasks, which is likely to be increasingly 

important in multi-step tasks.  

Understanding the task demands of the working memory tasks themselves, 

particularly the spatial-sequential tasks, cannot be an influencing factor in their relationship 

with mathematics in this study because working memory measures were taken at T1 only, as 

opposed to being repeated at T2. Only the mathematics measure was repeated at T2. This 

calls into question the evidence that high and low ability children in mathematics are not 

distinguishable by their spatial-sequential working memory (Bull, Johnston, & Roy, 1999), as 
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the current result would suggest this may be possible. There is, however, an alternative 

argument by Andersson and Lyxell (2007), D’Amico and Guarnera (2005), McLean and Hitch 

(1999) that our current results support. Caution should be applied when trying to define 

distinct groups of children in mathematics based on their cognitive profile, as Allen, Higgins 

and Adams (2020) suggest there is little evidence of a distinct profile of poor performers in 

mathematics in those without a diagnosis of mathematics difficulties.  

Based on previous research suggesting a declarative shift (see Schneider, 2008 for a 

review of this literature), it is surprising that spatial-sequential working memory remains so 

influential in 9-10 year old children. It has long been considered that younger children rely on 

using visuospatial working memory for mathematics (Van de Weijer-Bergsma et al., 2015), 

potentially because it acts as a mental ‘checker’ or allows them to use visual strategies that 

young children rely on so heavily. When children are first introduced to mathematical 

concepts, wherever possible the concept is made concrete through the use of tangible 

examples with blocks or counters, for example. This is done to give the children a concrete, 

visible reference point for the concept that they are able to interact with (e.g. draw on, 

rotate). Once they understand the material well enough, the scaffolding of concrete examples 

is slowly removed to make the work more abstract, using less tangible representation. By 

following this pattern, it is clear to see why the suggestion is made that children will rely more 

on visuospatial working memory in their younger years, before making the transition to using 

verbal working memory resources when they are older. However, the group of children used 

in this study are older than the age at which this declarative shift is predicted to take place 

(around 7 years of age, Schneider, 2008), therefore suggesting a shift of this nature may not 

tell the whole story.  
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One potential explanation relates to the relative lack of evidence regarding the 

individual contributions of the subtypes of visuospatial working memory to mathematical 

performance. Although not a definitive claim, a meta-analysis by Allen, Higgins and Adams 

(2019) suggests some influence of the type of visuospatial working memory measured on the 

magnitude of the effect size measured in studies relating to mathematics. This synthesis 

identified that the relationship between spatial-sequential working memory and 

mathematical reasoning (problem solving; a large portion of the mathematics test used in this 

study) had not previously been investigated. As such, this paper may go some way to shedding 

light on this relationship, highlighting a lack of a thorough understanding of the interplay 

between mathematics and the subtypes of visuospatial working memory previously. This is 

notable because the involvement of elements of visuospatial working memory in older 

children is supportive of other recent findings (Allen et al., 2020b). Unlike previous work 

suggesting a fundamental shift in the reliance on components of working memory for 

mathematics, the results of this study, taken as a whole, suggest verbal working memory 

makes a relatively stable contribution to performance, with the variability emerging from the 

involvement of the components of visuospatial working memory, shifting from simultaneous 

to sequential influence (see Allen et al., 2020b for further information on T1 of this study). 

It is unlikely, though not impossible, that the shift we see in the involvement of 

working memory is due to the cognitive load imposed by the task as tasks are always visible 

and children have the opportunity to write down any workings or intermediate results, and 

so are not required to hold these items in mind. However, there is the possibility that children, 

particularly those who are anxious for example, may face more difficulties under timed 

conditions (Ashcraft & Moore, 2009; Carey, Hill, Devine, & Szücs, 2016; Onwuegbuzie & 

Seaman, 1995). There is also some evidence that children who have poor working memory 
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are also poor at comprehending text (e.g. Carretti, Cornoldi, De Beni, & Palladino, 2004). 

Similarly, task instructions are always present meaning children have the opportunity to break 

tasks down into smaller chunks, though those with particularly poor working memory may 

have difficulties with keeping their place in the instructions (Alloway, 2006; Gathercole & 

Alloway, 2004). Due to the nature of the paper layout, extraneous cognitive load is relatively 

low as information is presented alongside the associated question and graphs and diagrams 

are interspersed through the text in the most appropriate place. There may be some influence 

of cognitive load due to the increased number of multi-step questions designed for older 

children requiring the maintenance of intermediate steps (Sweller, 1994), but this should be 

minimal in this case and is unlikely to fully explain the results found.   

The proportions of questions concerning the different domains of mathematics could 

potentially influence the results over time, even though children completed the same 

longitudinal test (albeit the opposite paper at T2, balanced exactly for difficulty and 

weightings towards the different domains). All of the questions were included on the paper 

at T1, and some children made attempts at these, however, children will have been able to 

access a greater number of these questions at T2 following two years of extra schooling. There 

is no evidence from a visual search of the frequency of questions relating to each question 

type that this changes over the course of the test. If this were the case, it may be that working 

memory influence shifts as a direct consequence of more questions being asked that tap 

different working memory components later in the paper, thus only older children will be able 

to access them. This is not the case. As such, it follows that, when developing a screening 

measure, children should be screened on measures that are predictive over longer periods of 

time. It is important to include shorter term predictors of mathematics as well to pick up 
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children who are likely to fall behind immediately, however, the focus should be on longer 

term predictors.  

As with T1 of this study, there are some inherent limitations. Primarily, the use of a 

verbal-numeric measure of verbal working memory. Verbal numeric working memory has 

been shown to demonstrate a different relationship to mathematics than verbal working 

memory measures using stimuli not relating to numbers (see Raghubar et al., 2010 for a 

review of this literature). After highlighting this as an issue at T1, Allen et al. (2020a) found a 

similar pattern of results using non-numeric verbal stimuli. The inclusion of only typically 

developing children has not, however, been addressed at this time as a clear understanding 

of typical development is necessary before investigating the nature of the relationship in 

atypical samples, such as those with diagnosed mathematics difficulties. As a result, we 

therefore remain unable to compare the development of typical and atypical populations to 

assess any differences.  

In this paper we have also attempted to distinguish between different mathematics 

domains at Y5. Intriguingly, the relationship between simultaneous and sequential working 

memory factors with the different mathematic subdomains seems to be quite similar. A 

recent meta-analysis by Peng et al. (2016) tested the relationship between working memory 

and different mathematics domains, demonstrating some small variations in terms of the 

correlations between mathematic subdomains (from .23 to .37). In fact, one could expect, for 

example, geometry to draw more on visuospatial skills. However, geometry seems to be a 

very complex domain involving several complex abilities (Mammarella, Giofrè, & Caviola, 

2017). One possibility is that our results at Y5 are influenced by the nature of the geometry 

tasks at this stage in the curriculum. In a similar study, Giofrè, Mammarella and Cornoldi 

(2014), with a sample of 4th and 5th graders, found that working memory, independent of the 
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modality, had the highest correlation with geometry. This finding was explained by the 

authors arguing that formal education in geometry, at this stage, involves both visuospatial 

and verbal materials (such as texts, definitions, formulae, and theorem). Therefore, the 

absence of the stronger influence of visuospatial working memory is not necessarily 

surprising. As for the verbal working memory factor, the pattern was rather similar but with 

one exception.  

Results reported in the present paper show that verbal working memory has 

explanatory power in all mathematics domains. Intriguingly, the link between verbal working 

memory and a specific component (i.e. operations) seemed to be higher as compared with 

the other tasks. It could be argued that the manipulation of operations could draw on verbal 

and visuospatial working memory to a large extent (Caviola et al., 2012; Van de Weijer-

Bergsma et al., 2015). 

Future research should seek to continue to address the limitations presented here, as 

well as to build upon the findings presented to continue to develop our understanding of the 

relationships between the components and subcomponents of working memory and 

mathematics. Once this understanding has been developed, researchers can begin to work 

with atypical populations to try to ascertain whether these populations differ from typical 

populations in the ways in which working memory contributes to task completion. There are 

clear implications for education providers and researchers as, in developing our 

understanding of this area, we will be able to use this knowledge to support children who 

have difficulties in mathematics through supporting their working memory. By understanding 

which elements of working memory are most important for mathematics at different ages, 

educators will be able to provide targeted support for children in the form of aids and 

alternative methods where necessary.  
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In conclusion, this study confirmed that it is possible to predict mathematics using 

working memory data gathered two years previously, however, that the specific nature of the 

relationship changes over time. Spatial-sequential and verbal working memory tasks are 

predictive of 9-10-year old’s’ performance in mathematics, as opposed to spatial-

simultaneous and verbal measures in the same children at 7-8 years of age.  
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17 

Discussion of the Findings of the Studies 

This project comprised a number of individual studies in order to achieve the main 

research aim of furthering our understanding of the relationship between working memory and 

mathematics in primary school aged children. The results showed some consistency with 

previous literature, but simultaneously indicated some discrepancies that warrant further 

investigation.  

Review of this project – first steps  

Initially, a systematic review (see chapter 6) was carried out to better understand the 

existing literature. This review highlighted the importance of sample size in determining an 

accurate estimate of effect size. It also demonstrated that standardised mathematics measures 

are associated with larger effect sizes. This is atypical as researcher designed tests tend to lead 

to larger effect sizes (Cheung & Slavin, 2016) and is likely to be due to the thorough testing 

applied to each specific area of mathematics. It is also likely associated with the rigorous 

procedures employed when standardising a measure. This is, however, speculation as the paper 

did not cover a full content analysis of standardised mathematics tests. Overall, this is 

encouraging evidence for the use of standardised measures in both research and academic 

assessment. Further, the systematic review suggested that the type of visuospatial working 

memory (simultaneous or sequential; e.g. Maennamaa, Kikasb, Peets, & Palu, 2012; Mix et al., 

2016 for simultaneous or Soltanlou, Pixner, & Nuerk, 2015; Wiklund-Hörnqvist, Jonsson, 

Korhonen, Eklöf, & Nyroos, 2016 for sequential) or maths (numerical operations or 

mathematical reasoning; e.g. Bresgi, Alexander, & Seabi, 2017; Martin, Cirino, Sharp, & 

Barnes, 2014 for numerical operations or Campos, Almeida, Ferreira, Martinez, & Ramalho, 

2013; Passolunghi & Mammarella, 2010 for mathematical reasoning) do not influence the 

magnitude of the effect size, thus suggesting that their influence is stable across these areas. 
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However, this highlights the need to understand the relationships between subdomains of 

mathematics over time to ascertain whether they are stable or fluctuate, as would be expected 

as children learn and change strategies (e.g. Van de Weijer-Bergsma, Kroesbergen, & Van 

Luit, 2015; van der Ven, van der Maas, Straatemeier, & Jansen, 2013).  

In order to do this, study one (see chapter 8) was established as time one of a 

longitudinal study investigating the relationships between the components of working memory 

and mathematics. In order to understand which elements of working memory are important for 

inclusion in a screening measure designed to be administered early in a child’s school career 

to predict their later mathematics ability, we needed to establish a clear picture of the changes 

in the predictive ability of each component over time in the same children. By understanding 

these changes, we will then be able to target the screening measure at the necessary cognitive 

abilities for a more accurate long-term prediction of mathematical ability. Results of this time 

point, with children aged seven and eight years old (Year 3 of Primary School), showed that 

verbal measures contribute the largest portion of unique variance of mathematics, with spatial-

simultaneous measures showing some predictive contribution, but not spatial-sequential. We 

also assessed how each of the components of working memory related to each of the 

components of mathematics (see chapter 10). This analysis confirmed the pattern we had 

anticipated seeing in the data, with verbal working memory having a greater influence on 

mathematics topics typically dependent on words and numbers, for example understanding and 

applying mathematics, and counting and number. On the other hand, for those more typically 

visual components, visuospatial working memory accounted for a larger portion of the 

variance. The tasks used in this study may not have been ideal as the young children did 

struggle to understand some of the instructions, however, we saw no floor effects so this 

explanation is unlikely to fully explain the findings. This study led us to suggest future research 

should follow a similar structure using non-numeric stimuli as the numeric stimuli used here 
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may have influenced the relationships, particularly since the academic discipline in question 

was maths, which is predominantly based on numbers in primary school.  

Verbal-Numeric Working Memory 

The debate of the influence of verbal versus verbal-numeric working memory on 

mathematics is one that shows no coherence as yet and so requires further investigation (see 

Raghubar, Barnes, & Hecht, 2010 for a review of this literature). The disagreement arises 

because many verbal working memory tasks used to assess capacity involve numbers. Whilst 

this is commonplace, it is also potentially tapping a domain specific ability, therefore, a closer 

relationship with other number-based tasks (here mathematics) would be expected. There are 

a small number of studies available on the predictive nature of verbal-numeric working 

memory, lending support to verbal-numeric working memory being more predictive of 

mathematics, as well as showing no difference from the predictive ability of verbal working 

memory. Peng and Fuchs (2014) stated that verbal-numeric working memory deficits were 

shown in all learning difficulty groups in their sample, however, that those with specific 

mathematics difficulties showed more severe verbal-numeric working memory deficits. They 

argue that this is indicative of a distinct underlying component of working memory that 

predisposes an individual to mathematics difficulties. It also suggests that a specific verbal-

numeric deficit in those with mathematics difficulties highlights the domain-specific nature of 

working memory. Though this is also contested, (see Chapter 4, p.68 for an explanation). 

Interestingly, learning difficulty severity did not mediate the relationship, nor did the type of 

academic screening, indicating that the underlying deficit may not be entirely attributable to a 

verbal-numeric deficit. With regard to prediction studies, better digit span has been linked to 

children having a “head start” in mathematics that is maintained over the first three years of 

school (Bull et al., 2008). However, Rasmussen and Bisanz (2005) suggest that the relationship 

is not stable and shifts from visuospatial to verbal-numeric by grade one. In which case, this so 
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called “head start” would not be visible on the child’s entry to school. It also lends support to 

the argument that we see a developmental shift in working memory involvement from 

visuospatial to verbal, however, that this happens much earlier than first thought and is more 

influenced by numeric information. As such, children may be relying on verbal-numeric 

working memory from much earlier than previous findings suggest verbal working memory 

becomes important.  

Similarly, Dark and Benbow (1994) identified a positive relationship between 

mathematics SATs tasks and working memory tasks involving digits, however, verbal SAT 

measures only correlated with word-based working memory tasks. They identified a strong 

relationship between verbal-numeric tasks and mathematical precocity, suggesting that there 

are “underlying differences between verbally and mathematically precocious youth in how 

different types of stimuli are represented in memory”. This study is influential in suggesting 

that mathematical precocity could also be predicted by advantages in verbal-numeric working 

memory as well as mathematical difficulties. In older children though, visual and verbal 

working memory are predictive in seven year-olds when verbal working memory is measured 

using a combination of numeric and non-numeric measures (Alloway & Passolunghi, 2011). 

However, this relationship is not maintained in eight-year-olds where verbal working memory, 

including some verbal-numeric measures, is not predictive of mathematical performance. Even 

with non-numeric verbal working memory tasks, mathematical computation can be predicted 

by verbal working memory, according to Wilson and Swanson (2001), who demonstrated that 

this relationship was not age-dependent. Findings of this nature, suggest that verbal-numeric 

working memory is no more predictive of mathematics performance than non-numeric verbal 

working memory and that the differences stem from underlying differences in the tasks 

administered, rather than the component of working memory they are accessing. This 

suggestion is supported by other findings, such as those of Simmons, Willis, and Adams (2012) 
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who demonstrated the predictive ability of non-numeric verbal working memory for predicting 

Year 3 multiplication. Their findings suggest the relationship may be mediated by the 

component of mathematics being investigated and that further exploration of the relationship 

between verbal-numeric working memory and the components of mathematics could help to 

establish a sense of coherence in this debate. Further work should also seek to investigate the 

longitudinal stability of the relationship, which could be contributing to the lack of consensus 

in the literature.  

Review of this project – moving on 

Following the conclusions from the first study that future research should seek to 

understand the relationships with non-numeric working memory, we designed the second study 

to do just that, this time with children aged six to 10 years. As previously mentioned, there is 

considerable debate around the potential differences in the contributions of verbal (e.g. 

Simmons et al., 2012; Wilson & Swanson, 2001) and verbal-numeric (e.g. Peng & Fuchs, 2014; 

Rasmussen & Bisanz, 2005) working memory to mathematics. Therefore, we included only 

word-based verbal working memory measures in this study (see chapter 12) to understand how 

the change in stimuli affected the variance accounted for by the components of working 

memory in primary school children. We also sought to understand whether this specific 

relationship changed over the course of primary school. The results echoed those from study 

1, paper 1 (see chapter 8), showing that both verbal and visuospatial working memory make 

unique contributions to mathematics performance. We suggested here that the influence of the 

numeric component might not be as great in comparison to non-numeric verbal tasks as some 

literature suggests (e.g. Raghubar et al., 2010), meaning that the use of either kind of stimulus 

is not likely to be detrimental. Verbal working memory accounted for a larger proportion of 

the variance over the whole sample, however, the magnitude of the correlation changes with 

age. Complex visuospatial working memory tasks become more strongly correlated with 
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mathematics in older children. The magnitude of the verbal working memory correlations 

remains relatively stable with age. These results are indicative of some potential longitudinal 

changes in the influence of working memory, in line with suggestions made by De Smedt et al. 

(2009) that we see a developmental shift in the contributions of working memory to 

mathematics. However, we demonstrated the opposite shift to that predicted by Bull et al. 

(2008) and Holmes and Adams (2006) as the shift appeared to be from verbal towards 

visuospatial involvement. Holmes and Adams (2006) suggested that this may be due older 

children reverting to visuospatial strategies for more complex tasks, stemming from the idea 

of using a mental model to support their performance. It is likely that the results were 

influenced somewhat by the difficulty of the tasks as the younger children struggled to 

understand the instructions for the dual tasks, however, this is unlikely to be the sole 

explanation for the findings. The study does, however, highlight the need to follow the same 

children over time to identify the individual differences in the involvement of working 

memory.  

From this sample of children, a subsample of poorly performing children in 

mathematics was selected to establish whether it was possible to identify a subset of extremely 

week children from their cognitive profile (see chapter 14). This does appear to be a feasible 

method, though the study highlights the need to assess the full cognitive profile to fully 

understand their deficits. We saw no consistent deficits in the profiles of the children 

highlighted as a cause for concern that set them apart from those who performed poorly, but 

were not in this group. There was, however, a general pattern of deficit on more than one 

cognitive subtest across all nine children who presented as a cause for concern. From these 

results we suggest that remediation strategies should be administered on the full understanding 

of the child’s cognitive profile in order to suit their strengths and weaknesses.  



 

256 
 

The final study (see chapter 16) formed time two of the initial longitudinal study to 

assess whether predicting mathematics performance from working memory measures 

completed two years earlier was possible. The results show that the specific relationships 

between working memory components and mathematics change over time; spatial-

simultaneous is no longer a significant predictor of mathematics, however, spatial-sequential 

is. We argue that one possible explanation for this finding is the way information is encoded 

during mathematics tasks with visuospatial working memory providing the required mental 

workspace (Caviola et al., 2020). As was the case for time one, verbal working memory 

remained a significant predictor, though the strength of its relationship with mathematics 

weakened slightly.   

Differentiating visual from spatial working memory 

The terms visual, spatial, and visuospatial have been used interchangeably throughout 

this thesis, however, there is an unresolved debate in the literature that visual and spatial 

working memory can be separated. Researchers who argue for a differentiation between visual 

and spatial working memory generally define visual working memory as that which concerns 

the sensory, visual appearance of an object, versus the location or the “environmental co-

ordinates” used to define spatial working memory (Ventre-Dominey et al., 2005; Zimmer, 

2008). It follows that spatial relations differ from visual properties, however, it is difficult to 

extend the differentiation through to execution as executing one without the other is not 

possible. Whenever visual stimuli are presented, the participant will encode both the visual and 

spatial properties of the stimuli, even if that is only to note that all stimuli are randomly filled 

black squares. Darling, Della Sala and Logie (2007) argue that there is evidence for an 

experimental double dissociation between visual and spatial working memory, using memory 

for appearance and location, using a dual task paradigm. This suggests that it is experimentally 

possible to access visual and spatial working memory in isolation, however, it is unclear 
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whether this finding is generalisable to the real world when stimuli are not presented in such a 

controlled manner.  

A similar finding was presented for interference, demonstrating that spatial tasks were 

more disrupted by spatial interference and visual tasks were more interrupted by visual 

interference (Klauer & Zhao, 2004). This study also presented a double dissociation, however, 

interpreting these results as evidence for a double dissociation between visual and spatial 

working memory depends on being able to reliably and clearly differentiate between the types 

of tasks used as visual and spatial. In an attempt to do this, Tresch, Sinnamon and Seamon 

(1993) used a movement discrimination task as spatial interference and colour discrimination 

as visual interference. They found similar evidence to Darling et al. (2007) and Klauer and 

Zhao (2004) regarding a double dissociation whereby spatial tasks suffered more interference 

as a result of movement discrimination tasks and visual tasks suffered more interference from 

colour discrimination tasks. This finding agrees with other research that the two types of 

working memory may be performed by different systems, but provides no concrete evidence 

that it is possible to display one type of information without the other as both rely on the same 

perceptual system. That is, the visual field and the visual representation are distinct, however, 

they are processed through the same perceptual system.  

Neuroscientific evidence supports the idea that visual and spatial working memory are 

processed through different systems within the brain. Previous to their paper on a behavioural 

double dissociation, Darling, Della Sala, Logie and Cantagallo (2006) found evidence for this 

idea of retention in different subsystems for visual and spatial information, as did Vergauwe, 

Barrouillet and Camos (2009). Rather than presenting information in a different manner, they 

employed different tasks for measuring visual and spatial working memory, using symmetry 

judgement as a spatial task and colour discrimination for visual. Contrary to the findings of 

Tresch et al. (1993), Vergauwe et al. (2009) demonstrated that visual processing interferes with 
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spatial maintenance and vice versa, thus suggesting that it is difficult to differentiate between 

the two. This is even more likely outside of the laboratory where conditions are not controlled 

as tightly. Their findings occurred when more information was required to be processed in the 

same time frame, meaning cognitive load was high, and lends support to the domain general 

view of working memory. Taken together, this pattern of interference suggests that there may 

be different neurological pathways for visual and spatial working memory, but resources for 

processing and storage are shared.  

In further support of this Rudkin, Pearson and Logie (2007) demonstrated that 

sequential and simultaneous visuospatial tasks suffer interference from verbal tasks, indicating 

the likelihood that their response is co-ordinated by a common mechanism. It is possible, given 

the findings of Vergauwe et al. (2009) that the same is true within the visuospatial domain. 

There are studies available that specify the brain regions identified as responsible for the visual 

and spatial elements of visuospatial working memory, though these studies don’t always cohere 

entirely. For example, Zimmer (2008) suggests spatial working memory is controlled by the 

parietal cortex, whereas, Ventre-Dominey et al. (2005) states it is the dorsal parieto-occipital 

and prefrontal cortices. Similarly, there are discrepancies for visual working memory, with 

Zimmer (2008) suggesting the ventral occipital cortex, while Ventre-Dominey et al. (2005) 

quotes the ventral stream of the temporo-occipital cortex, prefrontal cortex, and the striatum. 

Zimmer (2008) therefore suggests that the neurological underpinnings of visual and spatial 

working memory lie in the activation of either the ventral occipital or parietal cortex, 

respectively, versus the distinction made by Ventre-Dominey et al. (2005) regarding ventral or 

dorsal activation. Interestingly, the papers agree on the involvement of the prefrontal cortex 

which Zimmer (2008) explicitly states controls both visual and spatial working memory. The 

consistency of these findings lends support to the argument that it is difficult to differentiate 

between the two when the information is brought together to be processed.  
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We may also consider whether these types of working memory can be distinguished 

through assessment and, therefore, whether it is a useful distinction to make. Vicari, Bellucci 

and Carlesimo (2003) considered how well adults with Williams Syndrome performed on tasks 

of visual and spatial working memory compared to typically developing controls. They used a 

computerised adaptation of the Corsi block task (1972) for accessing spatial memory, and a 

colour discrimination task for visual memory. Interestingly, Williams Syndrome adults 

performed significantly worse on tasks of spatial span compared to the typically developing, 

age-matched controls. However, their visual span was equal to controls. These results suggest 

that it may be possible to use spatial span to identify specific learning difficulties if a similar 

pattern emerges for these kinds of difficulties. To this end, Passolunghi and Mammarella  

(2010) found that poor problem solvers failed spatial tasks, but did not show deficits on visual 

or phonological tasks. They argue that this finding is due to the participants’ ability to 

manipulate information, rather than their recall of visual details, however, matrix tasks were 

used for both conditions. Using the same tasks for both conditions, requiring participants to 

recall to location of a specific object in the matrix for visual tasks, suggests this explanation 

might not be completely accurate and that visual and spatial working memory may be much 

more difficult to distinguish. 

On balance of the evidence presented above, it seems likely that visual and spatial 

working memory can be distinguished based on neuroscientific evidence and some behavioural 

evidence, however, further research is necessary to determine the accuracy and usefulness of 

this distinction with regard to educational performance.  

The findings presented in this series of studies demonstrate the consistent positive 

influence of working memory on mathematics, showing how this contribution remains both 

stable across age (when considering verbal working memory) and fluctuates (when considering 

simultaneous and sequential visuospatial working memory). Study 2 particularly highlights the 
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need for further research to understand the relationship over development in the same sample 

longitudinally to ascertain how best to use early working memory as a predictive measure for 

future mathematical attainment.  

Future Research 

One logical direction to move forward with research using cognitive measures to 

predict academic attainment is to develop an early screening measure. There are a small number 

of studies available that have already started to investigate this avenue, however, none have 

done so entirely successfully to date. The current screeners available rely on number-based 

measures as predictors of mathematics, for example number sense or basic number processing 

(e.g. Chard et al., 2005; Geary, Bailey, & Hoard, 2009; Gliga & Gliga, 2012; Jordan, Glutting, 

& Ramineni, 2008; Jordan, Glutting, Ramineni, & Watkins, 2010; Olkun, Altun, Gocer Sahin, 

& Kaya, 2016; Seethaler & Fuchs, 2010). Some of these studies even claim that these measures 

are better than alternatives (Geary et al., 2009; Gliga & Gliga, 2012), or that direct measures 

are better at predicting mathematics performance and differentiating students (Chard et al., 

2005; Kelly & Peverly, 1992). Aside from the measures used, another problem presented by 

some of the screening studies available to date is the age of the children they screen. Number-

based tasks require a degree of numeracy to have developed in the child, potentially 

confounding their use in a screening measure for mathematics. A number of the studies screen 

children who have been in school for a number of years (Fuchs et al., 2011; Gliga & Gliga, 

2012), meaning that it is likely too late to prevent the child developing mathematics difficulties. 

The problem is likely to have already developed by the time children have been in school for a 

number of years, so it is better to screen early and put teachers in a position of being able to 

prevent problems from developing. Further, Olkun et al. (2016) also demonstrate that screening 

on number ability does not predict first grade mathematics performance, so is not predictive 

until the children are older. Whilst this is useful for long-term predictions, it suggests that these 
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kinds of screening measures are unable to access the underlying abilities children’s 

mathematical development relies on sufficiently well enough to effectively screen.  

The main drawback of using number-based measures for screening for mathematics 

difficulties that is likely to cause a problem for effective screening is the lack of resolution of 

the debate around verbal-numeric and verbal working memory, as discussed above. Since there 

is no clear understanding of how verbal and verbal-numeric working memory may relate to 

mathematics differently, it is preferable to use measures that are unrelated to mathematics. 

Measures such as those used in the feasibility study of this project present one potential solution 

to this problem by using entirely word-based measures of verbal working memory in order to 

avoid any exaggerated predictions arising from the use of verbal-numeric measures until their 

influence is better understood. By using non-numeric, non-mathematical measures, and instead 

accessing the child’s cognitive profile, these measures are able to be used to identify where 

interventions may be most effective. Such a profile will also help to isolate the underlying 

causes of the child’s mathematical difficulties. Developing our understanding of the underlying 

cognitive correlates of poor performers in mathematics will also further our understanding of 

the potential causes of mathematics difficulties, or dyscalculia as it is sometimes diagnosed.   
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Appendix B: Ethical approval for study 2 
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Appendix C: Ethical approval for study 3 

Dear Katie, 

The following project has received ethical approval: 

Project Title: Feasibility study for the generation of a screening measure for future 
mathematic attainment ; 
Start Date: 10 June 2019; 
End Date: 19 July 2019; 
Reference: EDU-2019-04-19T10:26:42-pdgf74 
Date of ethical approval: 24 May 2019.  
 
Please be aware that if you make any significant changes to the design, duration or delivery 
of your project, you should contact ed.ethics@durham.ac.uk for advice, as further 
consideration and approval may then be required. 

If you have any queries regarding this approval or need anything further, please contact 
ed.ethics@durham.ac.uk 
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Appendix D: Ethical approval for study 4 

Dear Katie, 

The following project has received ethical approval: 

Project Title: Predicting mathematics attainment from previous working memory 
performance: 2 year mathematics follow up ; 
Start Date: 01 September 2019; 
End Date: 01 October 2019; 
Reference: EDU-2019-07-17T08:41:05-pdgf74 
Date of ethical approval: 19 August 2019.  
 
Please be aware that if you make any significant changes to the design, duration or delivery 
of your project, you should contact ed.ethics@durham.ac.uk for advice, as further 
consideration and approval may then be required. 

If you have any queries regarding this approval or need anything further, please contact 
ed.ethics@durham.ac.uk 
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Appendix E: Permission letter for study 1 
Dear parent/ guardian, 

 

I am a postgraduate student at Durham University, studying for my PhD. For my project, I am 
investigating the relationship between working memory and the different elements of maths. I 
am hoping to test the children in Year 3 at [SCHOOL NAME] and request your permission for 
your child’s participation in the study. The study complies with the ethical guidelines of the 
British Psychological Society for psychological research and the British Education Research 
Association (BERA).  

 

The aim of the research is to explore ways in which working memory relates to maths 
performance in children over development. Your child will be asked to complete subtests from 
a working memory battery which will assess their verbal and visual working memory. The 
children will also be asked to complete an age appropriate assessment relating to the different 
elements of maths. These tasks will be completed over two sessions on different days. The 
complete test will take approximately 45 minutes, with the opportunity for them to withdraw 
at any point, should they feel they do not wish to continue, without giving reason and without 
any repercussions. Particular attention will be paid to any visible distressed shown by the 
children, at which point they will be removed from the study environment and their data 
destroyed. All information will be held confidentially in accordance with the Data Protection 
Act and will be anonymously coded. Any parents/ guardians/ children wishing for data to be 
removed from the study may contact one of the researchers and their data will be destroyed.  

 

If you DO NOT give permission for your child to participate, please return the following 
consent form to the school before [DATE]. If the consent form is not returned before this date, 
I will assume your permission has been granted for your child’s participation.  

 

For further information, or to ask any questions, contact details are provided below. 

 

Yours sincerely, 

Katie Allen  

katie.allen@durham.ac.uk 
s.e.higgins@durham.ac.uk (Professor Steve Higgins, Supervisor) 

 

I DO NOT give permission for (name of child) ____________________ to participate in the 
above study 
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Name of parent/ guardian: _____________________ 

Parent/ guardian signature: _________________ 

Date: ________________ 
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Appendix F: Permission letter for study 2 
Dear parent/ guardian, 

 

I am a postgraduate student at Durham University, studying for my PhD. For my project, I am 
investigating the relationship between working memory and the different elements of maths. I 
am hoping to test the children in Years 2, 3, 4, and 5 at [SCHOOL NAME] and request your 
permission for your child’s participation in the study. The study complies with the ethical 
guidelines of the British Psychological Society (BPS) for psychological research and the 
British Education Research Association (BERA).  

 

The aim of the research is to explore ways in which working memory relates to maths 
performance in children over development. Your child will be asked to complete working 
memory tasks which will assess their verbal and visual working memory. The children will 
also be asked to complete an age appropriate assessments relating to the different elements of 
maths. These tasks will be completed over two sessions on different days. The complete test 
will take approximately 45 minutes, with the opportunity for them to withdraw at any point, 
should they feel they do not wish to continue, without giving reason and without any 
repercussions. Particular attention will be paid to any visible distress shown by the children, at 
which point they will be removed from the study environment and their data destroyed. All 
information will be held confidentially in accordance with the Data Protection Act and will be 
anonymously coded. Any parents/ guardians/ children wishing for data to be removed from the 
study may contact one of the researchers and their data will be destroyed.  

 

If you DO NOT give permission for your child to participate, please return the following 
consent form to the school before [DATE]. If the consent form is not returned before this date, 
I will assume your permission has been granted for your child’s participation.  

 

For further information, or to ask any questions, contact details are provided below. 

 

Yours sincerely, 

Katie Allen  

katie.allen@durham.ac.uk 
s.e.higgins@durham.ac.uk (Professor Steve Higgins, Supervisor) 

 

I DO NOT give permission for (name of child) ____________________ to participate in the 
above study 
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Name of parent/ guardian: _____________________ 

Parent/ guardian signature: _________________ 

Date: ________________ 
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Appendix G: Permission letter for study 3 
Dear parent/ guardian, 

 

I am a postgraduate student at Durham University, studying for my PhD. For my project, I am 
investigating the relationship between working memory and the different elements of maths. I 
am hoping to test a group of children in Years 3 and 4 at [SCHOOL NAME] and request your 
permission for your child’s participation in the study. The study complies with the ethical 
guidelines of the British Psychological Society (BPS) for psychological research and the 
British Education Research Association (BERA).  

 

This work is a continuation of the research I completed with these children previously, and 
aims to explore whether it is possible to predict children’s mathematics performance from their 
individual working memory profile. The children completed a mathematics measure previously 
so will not be required to do this again. Your child will be asked to complete subtests from a 
working memory battery. The complete test will take approximately 40 minutes, with the 
opportunity for them to withdraw at any point, should they feel they do not wish to continue, 
without giving reason and without any repercussions. Particular attention will be paid to any 
visible distress shown by the children, at which point they will be removed from the study 
environment and their data destroyed. All information will be held confidentially in accordance 
with the Data Protection Act and will be anonymously coded. Any parents/ guardians/ children 
wishing for data to be removed from the study may contact one of the researchers and their 
data will be destroyed.  

 

If you DO NOT give permission for your child to participate, please return the following 
consent form to the school before [DATE]. If the consent form is not returned before this date, 
I will assume your permission has been granted for your child’s participation.  

 

For further information, or to ask any questions, contact details are provided below. 

 

Yours sincerely, 

Katie Allen  

katie.allen@durham.ac.uk 
s.e.higgins@durham.ac.uk (Professor Steve Higgins, Supervisor) 

 

I DO NOT give permission for (name of child) ____________________ to participate in the 
above study 
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Name of parent/ guardian: _____________________ 

Parent/ guardian signature: _________________ 

Date: ________________ 
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Appendix H: Permission letter for study 4 
Dear parent/ guardian, 

 

I am a postgraduate student at Durham University, studying for my PhD. For my project, I am 
investigating the relationship between working memory and the different elements of maths. I 
am conducting a 2 year follow up to my original study and am hoping to test the children in 
Year 5 at [SCHOOL NAME] so request your permission for your child’s participation in the 
study. The study complies with the ethical guidelines of the British Psychological Society 
(BPS) for psychological research and the British Education Research Association (BERA).  

 

This work is a continuation of the research I completed with these children previously, and 
aims to explore whether it is possible to predict children’s mathematics performance from their 
earlier individual working memory profile. The children completed the working memory 
measures previously so will not be required to do this again. Your child will be asked to 
complete a single mathematics test. The complete test will take approximately 45 minutes, with 
the opportunity for them to withdraw at any point, should they feel they do not wish to continue, 
without giving reason and without any repercussions. Particular attention will be paid to any 
visible distress shown by the children, at which point they will be removed from the study 
environment and their data destroyed. All information will be held confidentially in accordance 
with the Data Protection Act and will be anonymously coded. Any parents/ guardians/ children 
wishing for data to be removed from the study may contact one of the researchers and their 
data will be destroyed.  

 

If you DO NOT give permission for your child to participate, please return the following 
consent form to the school before [DATE]. If the consent form is not returned before this date, 
I will assume your permission has been granted for your child’s participation.  

 

For further information, or to ask any questions, contact details are provided below. 

 

Yours sincerely, 

Katie Allen  

katie.allen@durham.ac.uk 
s.e.higgins@durham.ac.uk (Professor Steve Higgins, Supervisor) 

 

I DO NOT give permission for (name of child) ____________________ to participate in the 
above study 
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Name of parent/ guardian: _____________________ 

Parent/ guardian signature: _________________ 

Date: ________________ 
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Appendix I: Title page of Allen, Higgins, et al. (2019) 
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Appendix J: Title page of Allen et al. (2020c) 
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Appendix K: Title page of Allen et al. (2020b) 
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Appendix L: Title page of Allen, Giofrè, Higgins and Adams (2020a) 

 
 


