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Abstract 

In this thesis I present the outcomes of genetic analyses of several reindeer and roe 

deer datasets, using two types of data: single nucleotide polymorphism (SNP) data 

and whole genome sequencing data. I assess the population structure, genetic 

diversity and demographic history of the study populations and study species, but 

the main focus is on selection analyses: the detection of genetic signals of selection.  

 In Chapter 2 I present SNP data analysis outcomes which are suggestive of a 

shared positive selection event in two reindeer founder populations on the South 

Atlantic island South Georgia. This finding therefore possibly provides empirical 

evidence that positive selection can overcome drift in heavily bottlenecked founder 

populations, and can be detected despite elevated background neutral variation. In 

addition, I report a new selection scan called Genome Wide Differentiation Scan 

(GWDS).  

 In Chapter 3 I infer from a SNP dataset that the effective population size of 

the native UK roe deer population has numbered several thousand individuals 

throughout the Holocene. The dataset suggests that neither drift nor positive 

selection has caused fixed differences between the UK population and the European 

mainland population, despite a split time of ~1500 generations. 

 In Chapter 4 I investigate the demographic and evolutionary history of the 

extant roe deer sister species: the European roe deer (C. capreolus) and the Siberian 

roe deer (C. pygargus). Whole genome sequences analyses suggest that the two 

species split maximum 1.6Mya and show pronounced differences in terms of genetic 

diversity and effective population sizes (Ne). In the species with lower genetic 

diversity and lower historical Ne, C. capreolus, I find higher proportions of lineage 

specific amino acid substitutions. This negative relationship between Ne and 

number of non-synonymous substitutions is suggestive of relaxation of purifying 

selection, but alternative explanations (such as episodes of positive selection and 

data artifacts resulting from differences in genome quality) can not be excluded.  

 In Chapter 5 I discuss the results presented in this thesis in the light of the 

neutral theory of molecular evolution. 
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Chapter 1  

General Introduction 

 

Overview 

This thesis investigates the genetic divergence of populations and species over time. 

More specifically, it investigates to what extent genetic divergence is driven by 

genetic drift and to what extent by natural selection.  

Although the thesis does include some modelling and simulations, it is 

centred around the analysis of empirical datasets. These datasets comprise whole 

genome sequences and single nucleotide polymorphism (SNP) datasets derived 

from wild populations of deer, more precisely reindeer (Rangifer tarandus), the 

western aka European roe deer (Capreolus capreolus), and the eastern aka Siberian 

roe deer (Capreolus pygargus). The thesis is built around three such datasets, all of 

which have in common that they allow for comparisons between sister taxa (i.e. 

closely related populations or species that together with their ancestral 

population/species constitute a monophyletic taxon).  

The main difference between the three datasets is the age of the sister taxa, 

also known as the time to the most recent common ancestor (TMCRA). The TMRCA 

of the sister populations in the three datasets ranges over orders of magnitude, from 

102 years to 106 years. This enables an exploration of genetic divergence – and the 

contribution of natural selection – on various time scales and consequently of 

various evolutionary stages of cladogenesis, from incipient population 

differentiation to post-speciation differentiation.  

Research on the role of natural selection in driving the genetic divergence of 

populations and species is needed to settle a long-standing debate within the 

reseach field of evolutionary biology. According to the neutral theory of molecular 

evolution, first posed in 1968, most genetic differences between populations and 

species within protein-coding DNA are due to neutral substitutions instead of 

adaptively driven substitutions (Kimura, 1991). Although the theory exists for half 

a century, evolutionary biologists are still divided over the validity of this claim 

(Jensen et al., 2019; Kern and Hahn, 2018). In this first Chapter of my thesis, the 
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general introduction, I will discuss the neutral theory in detail and explain how 

studies such as the ones presented in this thesis, can contribute to the discussion.  

 

Drift or selection? 

Whenever a population splits into geographically separated sister populations, 

these sister populations will start to diverge both genetically and phenotypically. 

The genetic differences, which are the focus of this thesis, can range in size from 

whole chromosome duplications and rearrangements to single nucleotide 

variations (SNVs).  

The origin of new genetic variation – the first appearance of a new genetic 

variant (i.e. allele) in the population or of new combinations of genetic variants – 

depends on stochastic processes solely: mutations and recombinations. The fate of 

the differences – whether or not they spread throughout the population – is 

governed by an interplay of two processes, one of which is deterministic and the 

other stochastic: natural selection (Darwin and Wallace, 1858) and genetic drift 

(Wright, 1931) respectively. Genetic drift is defined as allele frequency change 

through random sampling. Random sampling refers to random survival and 

reproduction of individuals. Natural selection is the opposite of random sampling, 

and occurs when certain individuals have a higher survival and reproduction 

probability due to a certain beneficial phenotypic trait. As populations are finite by 

nature, selection never works completely in isolation from genetic drift, but the 

bigger the number of breeders, the smaller the influence of drift (Hartl and Clark, 

1997).  

The advent of sequencing techniques has allowed us to characterize the 

structure and extent of genetic variation among populations and species in detail. 

The current challenge for molecular and evolutionary biologists is to identify which 

genetic variation is functional as well as which genetic variation is non-neutral. 

Questions which can be posed are: 1.) Which genetic differences cause the observed 

phenotypic differences between populations and/or species?; and 2.) How, why and 

when did these differences establish? (Varki and Altheide, 2005).  

Whereas the findings of functional genomics clarify which parts of the 

genome affect the phenotype, it is the aim of selection analysis to infer which genetic 

changes in those regions are driven by selection and which by genetic drift. The 
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investigations of my PhD thesis fall within this latter research field of selection 

analysis (and hence not in the field of functional genomics).  

 

Bridging the gap 

The questions about the genetic divergence of populations and species over time, 

and the relative importance of selection and drift in driving this divergence process, 

touch upon a deep gap in our understanding of the inner workings of evolution: the 

translation from microevolution to macroevolutionary phenomena (Reznick and 

Ricklefs, 2009; Uyeda et al. 2011; Pennell et al. 2013). Although macroevolution 

entails both the diversification (cladogenetic speciation) and succession (anagenetic 

speciation and evolutionary innovations) of life on Earth, here I will focus mostly on 

cladogenetic speciation, because this is what my datasets allowed me to investigate.  

Despite the book’s title ‘On the Origin of Species’, Darwin did not solve the 

riddle of speciation (Mayr, 1999) but rather the riddle of adaptation. Rather than 

describing the entire speciation process, he described a fundamental, repetitive step 

of the process, a step which can be defined as the fixation of genetic mutations by 

selection. This left open many follow-up question, including the question how many 

of these adaptive steps are needed to progress through speciation (Via, 2009).  

We know now that the process of speciation contains at least one more 

building block: the fixation of genetic mutations by genetic drift. The speciation 

process can therefore be envisioned as a cumulative process of both selective and 

neutral substitution events, with speciation as ultimate outcome. Hence the 

question refines to: how many steps make up the speciation process, and how many 

of those steps are adaptive steps and how many are neutral steps? The addition of a 

second building block in the process of speciation furthermore opens up the 

possibilities for different modes of speciation, characterized by different 

proportions of neutral and adaptive steps.  

According to Mayr’s biological species concept (BSC, Mayr, 1999), the 

speciation process is completed once individuals from both sister populations can 

no longer interbreed. A common implicit assumption behind speciation models is 

that the establishment of reproductive isolation, and hence the formation of a 

species, is a ‘by-product’ of neutral and adaptive genetic and phenotypic divergence 

(Schluter, 2001; Sobel et al., 2010). Natural selection does not directly favour genetic 
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incompatabilities (Seehausen et al., 2014) or phenotypic traits that prohibit gene 

flow. Instead, reproductive isolation is the indirect consequence of the genetic and 

phenotypic divergence of sister populations over time (Via, 2009), possibly 

catalyzed by sexual selection (Wellenreuther and Sánchez-Guillén, 2016). The 

alternative model, according to which selection disfavours hybrids, is called 

speciation by reinforcement (Hoskin et al., 2005). 

A debate has been ongoing for decades about the exact nature of the 

adaptations driving speciation and species replacement. Natural selection is an 

umbrella term for a myriad of selective pressures, and can be categorized in distinct 

classes such as biotic and abiotic driven selection, interspecies interactions and 

intraspecies competition selection, resource and predator driven selection, and 

intrasex and intersex sexual selection. Whereas originally interspecies competition 

was and still is regarded as a main driver of macroevolution, paleontologists have 

argued in favour of abiotic factors rather than biotic factors being the main drivers 

(Benton, 2009). Another open question is whether natural selection mostly works 

on new mutations in stable environments (mutation driven selection), or on 

standing variation following environmental change or migration into new 

environments (Van Valen, 1963; Barrett and Schluter, 2008). In this thesis I will 

ignore all these subcategories of natural selection, and discriminate between neutral 

events and selective events without considering or questioning the exact nature of 

the selective events.  

 

Speciation modes 

Our limited understanding of macroevolution illustrates the existence of boundaries 

of empirical research. Whereas the process of adaptation lays within the realm of 

direct observation and/or experimental manipulation, the process of speciation lays 

outside this realm. Although there is some evidence for the generation of 

reproductive barriers within ecological time frames (Hendry et al., 2007; 

Lamichhaney et al., 2018; McKinnon et al., 2004; Montesinos et al., 2012), there is 

reason to believe that speciation – apart from polyploidy speciation – typically 

requires timespans of 105-106 years (Avise, 2000; Avise et al., 1998; Curnoe et al., 

2006; Lister, 2004). In addition, whereas microevolutionary events follow relatively 

few and simple rules, the process of macroevolution has many unknowns, 
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prohibiting insights from mathematical and modelling studies. As a result, the study 

of macroevolution is a historic science (Kemp, 2007), relying on incomplete 

evidence.  

Inferences about the process of speciation can be drawn from 

biogeographical data. During the 19th century naturalists such as Moritz Wagner and 

Alfred Wallace observed that sister species often occur in adjacent regions which 

are separated by a geographical barrier such as a river or a mountain range. From 

these observations Wagner deduced his natural law of allopatric speciation. He 

wrote: ‘The formation of an incipient species can succeed in nature only when some 

individuals can cross the previous borders of their range and segregate themselves 

for a long period from other members of their species.’ (Schilthuizen, 2002) 

The universality of allopatric speciation has been questioned by Darwin 

(Schilthuizen, 2002) and many other evolutionary biologists since, who argued in 

favour of either parapatric (Endler, 1977) or sympatric speciation (Schilthuizen, 

2002). A fourth demographic mode of speciation, which can be regarded as a 

subcategory of allopatric speciation, was suggested by Mayr. Mayr observed that 

islands hold a disproportional number of endemic species, which led him to induce 

the peripatric or bottleneck speciation model, according to which founder events 

facilitate speciation (Mayr, 1999; Templeton, 2008). Metastudies seem to point to 

allopatric speciation as the main geographic mode of speciation (Barraclough and 

Vogler, 2000), but have also provided some evidence for alternative modes, 

including bottleneck speciation (Barraclough and Vogler, 2000; Vrba and DeGusta, 

2004). 

Different geographical modes of speciation might involve different relative 

contributions of drift and selection. Drift is presumably especially dominant in 

bottleneck speciation. Mayr put forward his ‘genetic reconstruction’-hypothesis 

which states that founder events facilitate speciation through stochastic factors 

(Mayr, 1954). He argued that by randomly altering allele frequencies, bottleneck 

events affect epistatic effects (i.e. gene-gene interactions), resulting in a genetic and 

phenotypic ‘revolution’ (Barton and Charlesworth, 1984). Hampton Carson 

expanded the bottleneck speciation model to the founder-flush speciation model by 

suggesting an additional explanation for bottleneck speciation. He hypothesized 

that during the population expansion phase – the time window spanning from the 
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founder bottleneck to the moment the founder population reaches its carrying 

capacity – purifying selection is relaxed, facilitating the fixation of slightly 

deleterious alleles (Templeton, 2008). In short, both Mayr and Carson attributed 

bottleneck speciation to genetic drift, not to natural selection.  

Mayr also hypothesized a mechanism behind the presumably more prevalent 

mode of allopatric speciation. Again, he considered an important role for drift. Like 

Wagner, he noted that extant sister species often occur in geographically isolated 

habitats. These habitats were, although geographically isolated, often 

environmentally similar. This observation potentially questions the importance of 

adaptation in driving speciation. It can be argued that sister populations which 

occur in similar environments can evolve in different directions, because mutations 

arise randomly and populations therefore can adapt in different ways to similar 

environmental conditions (mutation-order speciation – see definition below). But 

an alternative explanation is that speciation can occur without the help of natural 

selection, through drift only.  

Speciation modes can thus be defined not only based on geographical 

distribution of the incipient sister species, but also on the driving forces behind the 

divergence process. As such, a distinction can be made between two hypothetical 

extremes: ecological speciation and neutral speciation (aka non-ecological 

speciation) (Baptestini et al., 2013; Gittenberger, 1991; Reaney et al., 2018; Rundell 

and Price, 2009; Stuessy et al., 2006).  

In the neutral speciation model populations diverge and eventually speciate 

through random fixation of mutations rather than selective driven fixation. In this 

model, the role of natural selection is downgraded from main driver of change to 

that of catalyst. Geographical separation in itself is sufficient for populations to 

diverge, and, given enough time, to result in speciation. Natural selection, in 

particular sexual selection, can speed up the process and cause reproductive 

isolation, but is not strictly needed (Czekanski-Moir and Rundell, 2019; Janecka et 

al., 2012; Wellenreuther and Sánchez-Guillén, 2016).  

In the ecological speciation model populations diverge and eventually 

speciate through selection driven fixation of mutations (Schluter, 2009). Ecological 

speciation can be grouped in two broad categories: divergence of sister populations 

adapting to contrasting environments (the narrow definition of ecological 
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speciation), and divergence of sister populations adapting in different ways to 

similar environments, termed mutation-order speciation, non-ecological speciation 

(Schluter, 2009), or uniform selection speciation (Sobel et al., 2010). This latter 

scenario might be especially likely if adaptation is many driven by abiotic selection 

pressures, such as intraspecies and interspecies competition, which are supposedly 

less dependent on geographical distribution as adaptations to abiotic selection 

pressures.  

Neutral speciation and ecological speciation are potentially theoretical 

constructs which do not exist in nature. Rather, they might represent the opposite 

ends of a speciation spectrum in which neutral forces and selective pressures 

contribute in varying relative strengths to species divergence, resulting in different 

proportions of selective driven substitutions (i.e. different estimates of alpha, 

discussed below). As environments are highly multi-dimensional, sister populations 

are presumably rarely exposed to identical selection pressures, meaning that the 

divergence of populations is rarely driven by drift alone, and that some substitutions 

will be pushed, perhaps only marginally, by selection. Likewise, even when selection 

is a main driver of population divergence, it still holds that parts of the genome are 

non-functional nor tightly linked to adaptive functional regions, and therefore that 

a certain proportion of substitutions will be driven by drift. 

 

The neutral theory of molecular evolution 

In the 1960’s the development of protein sequencing methods (Chadarevian, 1999) 

and gel electrophoresis (Smithies, 2012) enabled direct inference about genomic 

evolution, rather than from indirect lines of evidence such as biogeography. The new 

insights inspired a theory about genomic evolution which has never been free from 

controversy but yet has remained the dominant theory to the present day: the 

neutral theory of molecular evolution.  

 The neutral theory was nearly simultaneously proposed in two papers, one 

published in Nature (Kimura, 1968), the other shortly after in Science (King and 

Jukes, 1969). The rather uninspiring title of Kimura’s paper, ‘Evolutionary rate at 

the molecular level’, obscured its main and controversial selling point, namely that 

most substitutions are driven by drift and not by selection. The King and Jukes 

(1969) paper, in contrast, was provocatively titled ‘Non-Darwinian Evolution’. It 
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was meant to provoke, and so it did (King, 1983). The controversy started even 

before publication, during the review process. The King and Jukes (1969) paper was 

accepted only after rebuttal. The reasons for the initial rejection were contradictory. 

Jack King, one of the two authors, later recalled: ‘One referee said that we had merely 

set up and demolished a straw man and that the idea was obviously true and 

therefore trivial. The other said the idea was obviously false.’ (King, 1983)  

 The short abstracts of both papers capture the essence of the neutral theory. 

The abstract of Kimura (1968) reads: ‘Calculating the rate of evolution in terms of 

nucleotide substitutions seems to give a value so high that many of the mutations 

involved must be neutral ones.’ The abstract of King and Jukes (1969) was even 

shorter: ‘Most evolutionary change in proteins may be due to neutral mutations and 

genetic drift.’ This is the neutral theory stripped down to its bare essence: a single 

proposition, stating that most nucleotide substitutions are neutral, not adaptive.  

 

Table 1.1 The (nearly) neutral theory of molecular evolution  

class Mutation proportion Fixation probability Substitution proportion 

beneficial very low high low 

neutral K68: high 
KJ69: low (≤10%) 
KO71: low 
O73: low 

1/(2·Ne) K68: high 
KJ69: high 
KO71: high 
O73: low if |s| << 1/(2·Ne), 
high if |s| >> 1/(2·Ne) 

deleterious K68: low 
KJ69: high 
KO71: high 
O73: high 

K68: very low 
KJ69: very low 
KO71: very low 
O73: 1/(2·Ne) if |s| << 
1/(2·Ne), 
very low if |s| >> 1/(2·Ne) 

K68: low 
KJ69: low 
KO71: low 
O73: high if |s| << 1/(2·Ne), 
very low if |s| >> 1/(2·Ne) 

K68: Kimura, 1968; KJ69: King and Jukes, 1969; KO71: Kimura and Ohta, 1971; O73: Ohta, 1973  

 

 But the neutral theory also provides an explanation, a mechanism, for the 

prevalence of neutral substitutions. This explanation rests upon the concepts of 

mutation rate and fixation probability, and how these factors differ among three 

classes of mutations: beneficial, neutral and deleterious mutations (Table 1.1). The 

theory holds that deleterious mutations occur frequently but that only a very small 

proportion manages to escape purifying selection and to reach fixation. Beneficial 

mutations behave in the opposite way: they occur rarely, but if they do, they 

ordinarily reach fixation, due to the workings of positive selection. Neutral alleles 
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have a winning intermediate strategy: their fixation probability is relatively low 

compared to beneficial mutations but high compared to deleterious mutations, and 

since they occur frequently, this still adds up to a high number. As I will discuss 

below, refinements of the neutral theory have led to slightly different versions of the 

neutral theory (Table 1.1). The main conclusion remains however unchanged: The 

net effect of the two factors, mutation rate and fixation probability per mutation 

class, is that only a small proportion of all substitutions are adaptive (Table 1.1).  

The major argument provided by Kimura (1968) in favour of the proposition 

that most substitutions are neutral, was that the observed substitution rate in 

nature was so high it could not be explained by selection. Kimura (1968) 

furthermore claimed that the observed level of genetic variation within populations 

also agreed with the proposition. He would elaborate this argument in a second 

paper (Kimura and Ohta, 1971). Whereas Kimura supported the proposition using 

considerations from the field of theoretical population genetics, King and Jukes 

(1969) came up with a list of arguments from the field of molecular biology. As a 

result, the thinking about the dominance of neutral mutations and random drift 

expanded to a coherent set of ideas, worthy of the label theory – the ‘neutral 

mutation-random drift theory’, as Kimura and Ohta (1971) originally called it. The 

core of this theory, the main proposition and the underlying mechanism, became 

framed by a set of testable predictions which were deduced from either the 

proposition or the underlying mechanism, and which could be tested against the 

growing amount of available sequence data. In the words of Kimura and Ohta 

(1971): ‘The neutral mutation-random drift theory allows us to make a number of 

definite quantitative as well as qualitative predictions by which the theory can be 

tested. We hope that through this process we will be able to gain deeper 

understanding of the mechanism of evolution at the molecular level and will be 

emancipated from a naïve pan-selectionism.’  

The growing complexity of the theory cultivated several misunderstandings 

which confound the debate about the theory. The essence of the neutral theory is for 

example not that many mutations are neutral or deleterious – few selectionists 

would argue with this (Kern and Hahn, 2018). The essence is that the majority of 

substitutions are the result of stochastic fixation of these neutral mutations, rather 

than the result of selective driven fixation of adaptive alleles (Table 1.1).  
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The neutral theory has been interpreted to mean that differences between 

species are caused by these non-adaptive substitutions (Kern and Hahn, 2018), but 

this is not what the founders of the theory believed. The neutral theory of molecular 

evolution is a theory about genomic evolution, not about phenotypic evolution. 

Although the neutral theory holds that most substitutions are neutral (or slightly 

deleterious), it does not rule out the possibility that the phenotypic differences 

observed between species is caused by the minority of adaptive substitutions. This 

decoupling of genomic and phenotypic differences was stressed by King and Jukes 

(1969). From their introductory remarks it is evident that even though they argued 

that most nucleotide substitutions in proteins are neutral, they believed that most 

species differences at the phenotypic level are adaptive. ‘Evolutionary change at the 

morphological, functional and behavioral levels,’ they wrote, ‘results from the 

process of natural selection, operating though adaptive changes in DNA. It does not 

necessarily follow that all or most evolutionary change in DNA is due to the action 

of Darwinian natural selection.’ 

 Another misunderstanding is that the neutral theory partly rests upon the 

vast majority of the genome being non-coding (Kern and Hahn, 2018; Jensen et al., 

2019). This was however not part of the original argumentation. Although King and 

Jukes (1969) did discuss the presence of non-coding DNA, they did so in a different 

context, as will be discussed below. The neutral theory was developed in a time that 

actual sequence data was sparse and limited to proteins. The theory was developed 

to explain observed patterns in these data sets. As a consequence, the original 

arguments for the neutral theory pertained to proteins, not to full genomes. This is 

reflected in the abstract of Kimura and Ohta (1971), which reads: ‘It is proposed that 

random genetic drift of neutral mutations in finite populations can account for 

protein polymorphisms.’ And similarly, in the abstract of King and Jukes (1969), 

which reads: ‘Most evolutionary change in proteins may be due to neutral mutations 

and genetic drift.’ It is therefore a fallacy to argue that most substitutions are neutral 

because the majority of the genome is non-coding.   

 Because it is my personal belief that a theory is best understood by knowing 

the history of the theory, I will discuss the theory by means of a historical account. I 

will first lay out the original reasoning which led Kimura (1968), King and Jukes 
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(1969) and Kimura and Ohta (1971) to propose the theory, and afterwards describe 

the counterarguments. 

 

Haldane’s dilemma 

In his landmark 1968 paper, which laid the basis of the neutral theory, Kimura made 

two main statements. First, he calculated that amino-acid and nucleotide 

substitution rates occurred in nature in much higher rates than previously thought 

or even held possible. Second, he argued that this rate could not exist if most 

mutations were adaptive. This led him to reject this hypothesis and instead 

formulate an alternative hypothesis that was consistent with the observed 

substitution rate – namely the hypothesis that most substitutions are neutral.  

The dilemma addressed by Kimura is now known as Haldane’s dilemma, 

named after John Haldane, who in 1957 had published an influential paper titled 

‘The cost of natural selection’. In here Haldane had put forward ‘the fairly obvious 

statement’ that since adaptation comes with the cost of additional mortality, the 

reproductive capacity of organisms puts an upper limit to the rate of evolution 

(Haldane, 1957) and therefore to the amount of genetic differences between species. 

The exact nature of Haldane’s calculations, and whether they led to the right 

conclusions, go too much into detail to be discussed here. It suffices to say that 

Haldane concluded that for animals with relatively low reproductive capacities (i.e. 

low number of offspring per adult per generation), such as most vertebrates, the 

upper rate of molecular evolution was limited to 1 nucleotide substitution per 300 

generations (Haldane, 1957).  

Haldane’s upper limit stood in sharp contrast to insights obtained from the 

new data on genetic divergence between species, acquired through protein gel 

electrophoresis. Kimura calculated, based on at the time available data of three 

proteins (haemoglobin, cytochome c and triosephosphate dehydrogenase) that the 

average interval time between two subsequent nucleotide mutations was 1.8 years, 

much lower than the minimum interval time of 300 years calculated by Haldane 

(Kimura, 1968). 

To reconcile the observed high proportion of genetic differences with 

Haldane’s calculations, Kimura proposed his ‘mutation-random drift theory’, now 

better known as the neutral theory of molecular evolution (Kimura, 1968, 1991). 
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The theoretical problem presented by Haldane’s calculations, Kimura argued, 

dissolved if most substitutions were driven by drift rather than by selection. His 

assumption was that drift did not involve differential mortality, and therefore would 

put less strain (i.e. lower death toll) on a population. Kimura: ‘For a nearly neutral 

mutation the substitutional load can be very low and there will no limit to the rate 

of gene substitution in evolution.’ (Kimura, 1968). 

Kimura, whose many contributions to science included mathematical work 

on allele fixation probabilities (Kimura, 1962; Kimura and Ohta, 1969), showed that 

the substitution rates of neutral alleles equals the mutation rate (Kimura, 1968). 

Therefore, an estimate of the neutral substitution rate could be obtained by simply 

multiplying the mutation rate by the genome size. This led to the conclusion that 

neutral substitutions must occur very frequently, close to Kimura’s estimate of 1 

substitution every 1.8 year. (Or in fact more frequent even. For example, given a 

genome size of 3 Gb and a mutation rate of 2.2*10-9 per year (Kumar and 

Subramanian, 2002), the substitution rate is 6.6 substitutions per year).  

The implication was that observed substitution rates made for a closer match 

with neutral expectations than with theories based on selection. Kimura therefore 

argued that, contrary to the perception of the time, genetic drift was a dominant 

force in driving genomic evolution. ‘The significance of random genetic drift has 

been deprecated during the past decade’, Kimura wrote towards the end of his 

paper. ‘This attitude has been influenced by the opinion that almost no mutations 

are neutral, and also that the number of individuals forming a species is usually so 

large that random sampling of gametes should be negligible in determining the 

course of evolution, except possibly through the founder principle.’ (Kimura, 1968) 

It was time to rethink the role of drift, Kimura stated. ‘To emphasize the founder 

principle but deny the importance of random genetic drift due to finite population 

number is, in my opinion, rather similar to assuming a great flood to explain the 

formation of deep valleys but rejecting a gradual but long lasting process of erosion 

by water as insufficient to produce such a result.’ (Kimura, 1968) 

 

Substitutional load 

A key argument in Kimura’s 1968 paper is that fixation of alleles through drift does 

not involve additional mortality caused by selection. Although this assumption 
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seems self-explanatory and not in need of further evidence, Kimura did back up this 

argument mathematically by presenting a new formula he had derived in the 

previous months. Kimura promised to publish the derivation of this formula 

elsewhere, and he did so one year later, in the journal Heredity (Kimura and 

Maruyama, 1969).  

 Apart from a previously published formula on fixation probability (Kimura, 

1957), it is the only formula in his 1968 landmark paper. The explanatory variables 

were the selection coefficient and effective population size. The dependent variable 

was the substitutional load, which Kimura defined as the temporary lowering of the 

mean population fitness during the substitution process. Between brackets Kimura 

mentioned that this substitutional load was his ‘terminology’ for Haldane’s 

‘selection intensity’ (Haldane, 1957), the proportion of deaths which are selective. 

The two concepts are indeed closely related: a fitness difference (substitutional 

load) quantifies the proportional difference in surviving offspring (selection 

intensity).  

Kimura’s formula showed the obvious, namely that the substitutional load of 

neutral alleles equals zero. However, importantly, the formula also showed that 

even alleles which are not completely neutral, can still be effectively neutral, 

depending on the population size. The magnitude of drift is inversely related to the 

effective population size. The lower the selection coefficient in comparison to the 

effective population size, the smaller the substitutional load. For alleles for which 

the selection coefficient was smaller than the inverse of the effective population size, 

the substitutional load converged to zero. Kimura referred to these nearly neutral 

alleles as ‘the special case of 2·Ne·s << 1’. He concluded: ‘For a nearly neutral 

mutation the substitutional load can be very low and there will no limit to the rate 

of gene substitution in evolution.’ (Kimura, 1968).  

Although this interplay between drift, selection and the population size is 

nowadays part of mainstream thought, at the time this was a novel insight, even to 

Kimura. Investigation of Kimura’s earlier work on the substitutional load might help 

us to understand better what led Kimura to understand the importance of drift.  

In 1960, eight years before his landmark 1968 paper, Kimura had published 

his first paper on the subject (Kimura, 1960). In this paper Kimura set out to 

mathematically derive the optimum mutation rate. He noted that most mutations 
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are deleterious, and therefore that the occurrence of mutant alleles in a population, 

maintained in a mutation-drift equilibrium, generally decreases individual fitnesses. 

On the other hand, if a population was devoid of any genetic variation, then this 

population did not contain standing genetic variation needed for adaptation when 

confronted with environmental change. In Kimura’s own words: ‘The higher the 

mutation rate, the more the reproductive potential of a species will be impaired. Yet, 

without heritable variation, adaptive evolution by natural selection will be 

impossible. If gene mutation ceases to occur, the store of genetic variability of a 

species will soon be depleted; and when environmental conditions change, the 

species will no longer be able to readjust itself to the new environment.’ (Kimura, 

1960)  

Kimura reasoned that the trade-off between these conflicting costs should 

have resulted in an optimum mutation rate. He wrote: ‘These considerations 

inevitably suggest that there must be an optimum mutation rate for the survival of 

a species under a given rate of environmental change. If the mutation rate is too high 

the species will be crushed under a heavy mutational load; if it is too low the species 

will not be able to cope with adverse environmental changes. The species that have 

managed to survive up to the present must be such that have been able to adjust 

their mutation rate to the optimum level through inter-group as well as intra-group 

selection.’ 

Kimura derived formulas to predict this optimum mutation rate, and then 

revisited the subject in a second paper, in which he considered the optimum 

mutation rate in a slowly changing environment (Kimura, 1967). At certain point he 

realized however that his formulas were too deterministic, because they did not 

incorporate the effect of drift. When he plugged the effect of drift into the equation, 

he was in a for a surprise. It turned out that ‘random sampling of gametes has a very 

significant effect on the substitutional load’ (Kimura and Maruyama, 1969).  

 

The neutral theory and genetic variation within populations 

In his 1968 paper Kimura noted in passing that genetic drift could not only account 

for the genetic differences between species, but also for the genetic differences 

within species: ‘The fact that neutral or nearly neutral mutations are occurring at a 

rather high rate is compatible with the high frequency of heterozygous loci that has 
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been observed recently by studying protein polymorphism in human and Drosophila 

populations.’  

In 1971 Kimura published, together with Tomoko Ohta, another paper on his 

budding neutral theory (Kimura and Ohta, 1971). In contrast to the 1968 paper, this 

paper focused on genetic variation within rather than between populations. It was 

a reply to critiques on his loose statement that not only genetic divergence but also 

polymorphism could be explained by drift.  

In his 1968 paper, Kimura referred to the polymorphism studies of Lewontin 

and Hubby (1966) and Harris (1966). Lewontin and Hubby (1966) had studied 18 

enzyme proteins in populations of Drosophila pseudoobscura, and found that 30 

percent of the loci were polymorphic, with a heterozygosity of 12 percent. Harris 

(1966) studied human populations and found remarkably similar estimates: 30 

percent polymorphism, and 9.9 percent heterozygosity. The claim of Kimura (1968) 

that these findings suggested that most mutations were neutral, had attracted two 

main objections. 

One objection was that the data indicated that isolated populations often 

contained the same alleles. This observation was in agreement with balancing 

selection but not with drift, especially considering that apart from sharing the same 

alleles, isolated population also contained those alleles in similar frequencies. The 

second objection was that the observed genetic variation (measured as either 

heterozygosity or number of alleles per site) in large populations seemed to be 

lower than expected based on neutral dynamics, but were again in agreement with 

expectations based on balancing selection (Kimura and Ohta, 1971).  

In reply to the first objection, Kimura and Ohta argued that gene flow is 

ubiquitous in highly mobile species such as Drosophila, mice and humans, leading to 

panmixia and hence to similarities in gene pools across populations. Kimura and 

Ohta investigated the validity of the second objection by mathematically deriving 

the expected heterozygosity given effective population sizes and assuming neutral 

forces (Kimura and Ohta, 1971). They did so by walking the opposite way: by 

estimating historic effective population sizes (Ne) of mice and humans from 

heterozygosity estimates. Based on available data on protein polymorphism across 

species (compiled by Selander et al., 1970), Kimura and Ohta assumed an average 

heterozygosity of 0.1. Next, they referred to a formula which Kimura published in a 
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previous paper (He = 4∙Nug/(4∙Ne∙ug + 1)) (Kimura and Crow, 1964) to conclude 

4∙Ne∙ug ≈ 0.1, and hence Ne∙ug ≈ 0.025. All that was left to do in order to derive Ne 

was to divide 0.025 by ug.  

Kimura and Ohta obtained the mutation rate per site per generation (ug) from 

available data on mutation rate per site per year (us). They did so by correcting for 

generation time, the number of years per generation. In their own words: ‘For 

species such as the mouse, with possibly two generations per year, the mutation rate 

per generation [...] is half as large [as the mutation rate per year], while for man it 

should be some twenty times as large.’ (Kimura and Ohta, 1971) By plugging the 

obtained estimates of ug into the equation 4∙Ne∙ug ≈ 0.1, they arrived at the 

conclusion that the (historical) effective population sizes (Ne) equalled 500,000 for 

mice and 13,000 for humans. As these estimates seemed to be roughly in accordance 

with reality, Kimura and Ohta argued that the observed genetic variation in natural 

populations was not in conflict with neutral theory expectations. 

The mainstream perception at the time held that the divergence of 

populations and the polymorphism within populations were driven by two different 

types of selective processes. Divergence was thought to result from positive 

selection, whereas polymorphism arose through balancing selection. In contrast, 

Kimura and Ohta stated that divergence and polymorphism reflected two sides of 

the same coin: ‘In our view, protein polymorphism and molecular evolution are not 

two separate phenomena, but merely two aspects of single phenomenon caused by 

random frequency drift of neutral mutants in finite populations.’ (Kimura and Ohta, 

1971) 

If both polymorphism and divergence were indeed two aspects of a single 

phenomenon (being random drift of neutral mutations), a strong correlation 

between both aspects was to be expected because under neutrality both the level of 

polymorphism (θ = 4∙Ne∙ug) and the level of divergence (k = ug, k = substitution rate) 

depend on the mutation rate. A positive correlation between polymorphism and 

divergence was indeed observed, providing additional support for the neutral 

theory.  
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Two sides of the same coin? 

The statement that genetic polymorphism largely reflects genetic drift of neutral 

mutations, has been criticized on several grounds. An early objection was based on 

the variation of levels of genetic polymorphism across loci within species (Lewontin 

and Krakauer, 1973). (In contrast, Lewontin’s paradox, which I will discuss in the 

next section, is about variation of genetic polymorphism across species).  

As mentioned above, as an argument against the neutral theory it was noted 

that isolated populations seem to contain the same alleles in similar frequencies. 

Lewontin and Krakauer quantified the allele frequency differences of various genes 

across human populations by calculating Fst-values (Lewontin and Krakauer, 1973). 

They argued that if the differences in allele frequencies between populations were 

caused by demography and not by selection, all loci should have generally similar 

Fst-values. In contrast, they found significant heterogeneity in locus specific Fst-

values. Lewontin and Krakauer argued that this heterogeneity demonstrated that at 

least some loci were affected by selection (Lewontin and Krakauer, 1973).  

Lewontin and Krakauer’s test (the LK test) was severely criticized and 

quickly fell out of use (Beaumont, 2005). But of lasting importance for future 

selection analyses was Lewontin and Krakauer’s proposition that demography 

affects the entire genome whereas selection affects specific genomic regions only. 

(In their own words: ‘While natural selection will operate differently for each locus 

and each allele at a locus, the effect of breeding structure is uniform over all loci and 

all alleles.’(Lewontin and Krakauer, 1973)) This assumption, the ‘Lewonton-

Krakauer axiom’ (Hahn, 2008), has become the implicit assumption of present day 

genome wide selection scans, which search for genomic regions which stand out 

from genome wide averages.  

Another objection against the neutral theory revolves around the observed 

positive correlation between levels of polymorphism and levels of divergence. 

Begun et al. (2007) published the ‘first true population genomic dataset’ (Hahn, 

2008), a dataset containing entire genomes of multiple individuals belonging to the 

same species (D. simulans). This dataset indicated that, contrary to previous belief, 

a positive correlation between polymorphism and divergence does in fact not exist. 

Instead, a comparison of genetic polymorphism within D. simulans and genetic 

divergence between D. simulans and D. melanogaster, showed a negative rather than 
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a positive correlation: genomic regions with high between species divergence, 

contained less within species variation (Hahn, 2008). As the neutral theory predicts 

a positive correlation between polymorphism and divergence, the finding of Begun 

et al. (2007) is at odds with the neutral theory.  

 

Lewontin’s paradox 

Implicit in their calculations, and as they explicitly noted at the end of their 1971 

paper, Kimura and Ohta provided a potential explanation for another puzzling 

observation: the relatively constancy of levels of genetic variation (He) across 

species. Data comparison (Selander et al., 1970) not only showed that the average 

heterozygosity across species was close to 0.1, but also that the variation around the 

mean was low: all species had an average heterozygosity close to 0.1. This could be 

considered surprising given the wide variation of species traits, including the 

supposedly relevant traits such as generation time and effective population sizes 

(after all: He = 4∙Nug/(4∙Ne∙ug + 1)).  

Kimura and Ohta argued that the observed uniformity of levels of genetic 

variation resulted from the inverse relation between population size and generation 

time. Humans had a generation time of 20 years and a Ne of 13,000, whereas mice 

had a generation time of 0.5 years and a Ne of 500,000. The net outcome was that 

both species had the same level of heterozygosity. ‘The species with short 

generation time [and hence lower ug] tends to have small body size and attain a large 

population number, while the species which takes many years for one generation 

[and hence has higher ug] tends to have a small population number.’ Therefore, the 

product 4∙Ne∙ug ‘should be less variable among different organisms than its 

components.’ (Kimura and Ohta, 1971)  

Many population geneticists, neutralists and selectionists alike, do not 

consider this explanation satisfactory, and the absence of correlation between 

population size and theta is still known as the ‘paradox of variation’ or ‘Lewontin’s 

paradox’ (Corbett-Detig et al., 2015; Hahn, 2008; Lewontin, 1974).  

 

The nearly neutral theory of evolution 

On the last page of their 1971 paper, Kimura and Ohta addressed an apparent 

discrepancy between theory and facts. Their estimates of average rate of amino acid 
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substitutions per generation (ug) (0.5∙10-7 for mice and 2∙10-6 for humans) were 

considerably lower than 10-5, which they quoted as the standard figure (without 

providing a reference). This led Kimura and Ohta to suggest an important 

modification to the neutral theory: ’10-7 per year is much lower than the standard 

figure of 10-5 per generation [...] and this suggests that, in general, neutral mutants 

constitute a small fraction of all the mutants [...]. Thus, we consider this as one 

important revision to earlier work.’ (Kimura and Ohta, 1971) 

This revision would in subsequent years be elaborated upon by Ohta but not 

so much by Kimura, leading to two opposing theories: the neutral theory of 

molecular evolution (Kimura’s), and the nearly neutral theory of molecular 

evolution (Ohta’s). Kimura’s neutral theory holds that the majority of mutations fall 

into two categories. Either mutations are strongly deleterious or they are neutral. 

Otha’s nearly neutral theory, in contrast, assumes that the majority of mutations fall 

into three categories: strongly deleterious, mildly deleterious and neutral. Both 

theories agree that the neutral mutations are mostly responsible for the observed 

genetic variation within populations. Kimura and Ohta: ‘We must emphasize, 

however, that most mutants that spread into the species are neutral, even if the 

neutral mutants constitute a small fraction of all the mutants.’ (Kimura and Ohta, 

1971)  

A main difference between the neutral and the nearly neutral theory 

concerns considerations around the relationship between uy and ug (i.e. the 

mutation rate per site per year vs the mutation rate per site per generation). In their 

1971 paper, Kimura and Ohta assumed, as discussed above, a linear and 

proportional relationship and calculated ug using the formula ug = uy∙g, with g 

denoting generation time (measured in years per generation). The number of 

germline DNA replication events is however not proportional to generation time, 

and therefore the relationship between ug and uy is not necessarily proportional. 

ug/g (= uy) could be smaller for species with long generation times compared to 

species with short generation times. If so, the speed of the molecular clock would 

depend on the generation time. More precisely, if would run slower in species with 

longer generation times. This hypothetical effect is called the ‘generation-time 

effect’. 
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A generation-time effect was not apparent from the earliest protein studies. 

According to the ‘genetic equidistance rule’ (discussed below) the extent of genetic 

divergence between any two species depends almost exclusively on the time to the 

most recent common ancestor (TMRCA), and hence not on species traits. However, 

a study was published in 1969 in which the authors did report the detection of a 

generation time effect. They had detected differences in genetic divergence rates 

between rodents and primates (Laird et al., 1969). They wrote: ‘The initial rate of 

nucleotide sequence variation among rodents is ten-fold higher than that among 

artiodactyls when divergence time is estimated in years. This difference 

diminishes if generations, rather than years, represent the appropriate interval of 

evolutionary divergence.’ (Laird et al., 1969) Interestingly, and perhaps tellingly, 

whereas previous studies analysed proteins, Laird et al. (1969) analysed non-

coding DNA. This suggested that non-coding DNA exhibited a generation time 

effect, whereas coding DNA did not (Ohta, 1995).  

Why should non-coding DNA behave differently from coding DNA? Ohta’s 

nearly neutral theory provides a potential explanation. Ohta (1992) argued that the 

absence of the generation time effect in proteins was ultimately caused by the 

interplay between selection and drift. Her reasoning was based on the assumption 

that mutations in protein coding sites are not neutral but instead slightly 

deleterious. One consequence is that fixation probabilities for these sites do not 

equal the inverse of the effective population size, and therefore that substitution 

rates for these sites do not equal mutation rates (i.e. k ≠ ug). Instead, the fixation 

probability of these slightly deleterious mutations are determined by the selection 

coefficient and the effective population size. The mutations are effectively 

eliminated in large populations, but less effectively in small populations, in which 

drift is more dominant.  

Species with short generation times tend to have big population sizes. In 

contrast, species with long generation times generally have relatively low effective 

population sizes and thus experience more genetic drift. As a result, a certain 

proportion of slightly deleterious alleles fixates despite being negative selected 

against. The net effect is that although over time species with short generation times 

accumulate more mutations in protein coding sites than species with long 
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generation times, substitution rates will vary to a lesser extent. (Empirical evidence 

for this hypothetical mechanism has been reported by Galtier, 2016). 

More recent and more refined investigations have analysed variation in 

substitution rates among synonymous and non-synonymous sites. If Ohta’s (1992) 

reasoning is correct, a generation time effect should be present in synonymous sites 

but less so in non-synonymous sites, and this is indeed what has been reported by 

several studies (Ohta, 1993; Wu and Li, 1985). However, other studies have found 

contrasting results, pointing both at the presence of a generation time effect in 

non-synonymous sites (Thomas et al., 2010), and conversely on the absence of a 

generation time effect in synonymous sites (Kumar and Subramanian, 2002).  

 

The molecular clock 

As discussed above, the original motivation for Kimura to develop his neutral theory 

of molecular evolution was Haldane’s dilemma. In his view, the neutral theory 

solved the mismatch between expected substitution rates and observed substitution 

rates by stating that most substitutions were driven by drift rather by than selection. 

By doing so, Kimura demonstrated strong confidence in Haldane’s reasoning. The 

alternative and perhaps more obvious implication of the mismatch between 

observations and expectations was that Haldane’s theoretical framework was 

flawed.  

Many authors have indeed argued that Haldane’s upper limit of 1 substitution 

per 300 generations is incorrect (Brues, 1964; Dodson, 1962; Felsenstein, 1971; 

Maynard-Smith, 1968; Sved, 1968; Van Valen, 1963). These critiques came out both 

before and after Kimura published his 1968 paper and were based on various 

grounds. One famous objection is that Haldane’s upper limit of 1 substitution per 

300 generations seems to be too restrictive when compared to the numerous 

phenotypic differences between species (Dodson, 1962). Haldane’s limit allows for 

example for around 800 selective driven substitutions in the human lineage since 

the split from chimpanzees, a number which seems low compared to the observed 

phenotypic differences between both species. More recently, Haldane’s limit has 

also been challenged by simulation studies which provide evidence for substitutions 

rates several orders of magnitudes higher than Haldane’s limit of 1 substitution per 
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300 generations (Hickey and Golding, 2019; Nunney, 2003; Weissman and Barton, 

2012).  

But although Kimura’s original argument was based on the concept of the 

cost of selection, the neutral theory has become independent of cost of selection 

considerations, such that a refutation of Haldane’s limit does not equal refutation of 

the neutral theory (Ohta and Gillespie, 1996). Even in 1968, just months after 

Kimura published his paper and before Kimura provided additional evidence for the 

neutral theory in later papers, Maynard-Smith wrote in reply: ‘I do not want to query 

the conclusion that drift has been important, but Kimura’s conclusion that the rate 

of evolution is too great to be explained by natural selection can be queried.’ 

(Maynard-Smith, 1968). 

The independency of the neutral theory of Haldane’s cost of selection 

argument arises from the fact that the theory rests on multiple lines of evidence. 

Arguably the most important of them, at least when only considering arguments 

from within the field of population genetics, is the molecular clock hypothesis. Even 

though Kimura developed his theory on different grounds, he soon regarded the 

existence of a molecular clock as the main fundament of the neutral theory. Kimura 

and Ohta (1971) wrote in the beginning of their paper: ‘Probably the strongest 

evidence for the theory is the remarkable uniformity for each protein molecule in 

the rate of mutant substitutions in the course of evolution.’  

The existence of a molecular clock was first discovered through analyses of 

single proteins. Margoliash (1963), studying cytochrome c, concluded: ‘It appears 

that the number of residue differences between cytochrome c of any two species is 

mostly conditioned by the time elapsed since the lines of evolution leading to these 

two species originally diverged.’ From this observation Margoliash (1963) induced 

the ‘genetic equidistance rule’, stating that all species pairs with a similar TMCRA 

have a similar genetic distance. Zuckerkandl and Pauling (1965) independently 

arrived at the same conclusion by studying a different gene, namely haemoglobin. 

They found that although a pair of species differed on average more in their 

heamoglobin sequence than in their cytochrome c sequence, the genetic 

equidistance rule held true for heamoglobin as well: the number of heamoglobin 

sequence difference for any species pair was proportional to the TMRCA of the 

species pair. Zuckerkandl and Pauling (1965) argued that the genetic equidistance 
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rule implies a constant rate of molecular change (i.e. substitution rate) over time, a 

conjecture now known as the molecular clock hypothesis (Wilson and Sarich, 1969; 

Zuckerkandl and Pauling, 1965). 

The differences in substitution rate across proteins has been attributed to 

differences in protein functional constraints, resulting in different proportions of 

deleterious and neutral (i.e. silent and conservative) mutations (Dickerson, 1971). 

The constancy of substitution rates within proteins across lineages provided 

evidence for the (near) absence of advantageous mutations, because there is no 

reason to believe that adaptive changes would occur in a clock-like manner. 

Mutation and random drift, on the other hand, make for a plausible mechanism 

behind constant substitution rates. Selectionists argue however that the molecular 

clock hypothesis has been proven incorrect, and that the data shows that 

substitution rates vary considerably, both over time and between lineages (see 

(Kern and Hahn, 2018). 

The existence of a molecular clock was first induced from and confirmed 

using data on just a handful of proteins (e.g. Dickerson, 1971). When in subsequent 

years data on protein and DNA sequences accumulated, it became increasingly clear 

that the perception of a steady and constant clock was an oversimplification. In 

modern day phylogenetics, a fixed clock is known to causes bias in estimates of 

divergence times as well as bias in inferences of deep relations (Drummond et al., 

2006). The standard practice when constructing phylogenetic trees is therefore to 

apply relaxed clocks rather than a fixed clock. These relaxed clocks allow for rate 

heterogeneity, both across lineages and across clades.  

But does the existence of rate heterogeneity reject the neutrality model? If 

substitution rates are driven by stochastic processes, some stochastic variability in 

substitutions rates among lineages and through time is to be expected. When are 

observed deviations too strong to fit neutral model expectations? Theoretically, this 

question can be answered by generating a probability distribution of number of 

substitutions per time interval (i.e. branch length in years) given an average 

substitution rate.  

An early attempt to statistically test the constancy of the molecular clock was 

published in 1974 (Langley and Fitch, 1974). The underlying assumption of the 

study was that the expected probability distribution of substitution rates, given 
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neutral dynamics, resembles a Poisson distribution. The authors, Langley and Fitch, 

compiled the available data on amino acid sequences of four proteins (alpha and 

beta hemoglobins, cytochrome c, fibrinopeptide a) for vertebrate species, and 

calculated the minimum number of nucleotide substitutions required to explained 

the observed amino acid differences (using the ‘minimum phyletic distance method’, 

Langley and Fitch, 1974) given an a priori phylogenetic vertebrate tree. Next they 

compared these observed estimate to expected values, calculated with a Poisson 

function (i.e. number of occurrences given number of years, given the average 

mutation rate). They tested the goodness of fit using a chi-squared test and a 

likelihood ratio test. Both methods returned highly significant p-values, leading 

them to reject the null model of constant overall substitution rates, and to conclude 

that substitutions rates vary both within genes across lineages and within lineages 

across genes.  

Some aspects of the Langley and Fitch (1974) study were however criticised 

by Hudson (1981). Hudson argued that the analysis of Langley and Fitch (1974) did 

not truly test the neutral theory, which he referred to as the ‘constant-rate neutral 

model’ (Hudson, 1981). Hudson argued that, as acknowledged by Langley and Fitch 

(1974), their chi-squared distribution was positively correlated to the population 

genetic parameter θ, defined as 4·Ne·u. Therefore, as Hudson pointed out, ‘no matter 

how large the observed value of X2LF, a sufficiently large value of θ could account for 

the observation.’ In here X2LF denoted the chi-squared test values obtained by 

Langley and Fitch (1974).  

Hudson therefore performed Monte Carlo simulations to determine the exact 

relationship between X2LF and θ, which in turn he used to estimate the values of θ 

needed to explain the observed X2LF. Hudson found that the observed X2LF could only 

be explained with θ values higher than 10, which, as Hudson pointed out, were 

‘incompatible with the low levels of heterozygosity observed at the hemoglobin loci 

in humans’. Hudson arrived therefore at the same conclusion as Langley and Fitch 

(1974): ‘The constant-rate neutral model is highly improbable. Other neutral 

models and models involving natural selection need to be considered.’  

The disparity between expected rates and observed rates can be quantified 

using the dispersion index, which is the ratio (R)of the variance (V)of the number of 

substitutions on a lineage to the mean (M) number per lineage. One of the 
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characteristics of a Poisson distribution is that the variance V is equal to the mean 

M, and therefore that the ratio equals one (i.e: R = V/M = 1). Gillespie (1989) 

analyzed 20 proteins and found R values ranging between 0.32 and 43.82, of which 

12 values were significantly above 1, as was the average. Several hypotheses have 

been proposed since to account for an overdispersed molecular clock (Ayala, 2000; 

Cutler, 2000; Bedford and Hartl, 2008). One explanation is that overdispersion 

results from purifying selection (Cutler, 2000), in which case overdispersion of the 

molecular clock would not be at odds with the neutral theory.  

In the wake of the disparity index, several other methods have been proposed 

to test the existence of a global molecular clock. From these tests it became 

increasingly clear that the perception of a steady and constant clock was an 

oversimplification. This finding called for new methods were developed to estimate 

divergence times in the absence of a molecular clock.  

Divergence times are easy to calculate when assuming a global molecular 

clock with known fixed rate. Divergence times are difficult to calculate if assuming 

that the substitution rate can differ among lineages. To do so one first needs to 

convert an additive tree into ultrametric (linearized) tree. In other words: convert a 

tree with branch lengths proportional to the number of substitutions, to a tree in 

which nodes are dated, and in which all branches line up. Langley and Fitch (1974) 

had presented an early method. In the 90’s this method was surpassed by the non-

parametric rate smoothing approach (NPRS, Sanderson, 1996), with other methods 

such as penalized likelihood (PL) and Bayesian methods (Thorne et al. 1998) 

following shortly (Britton et al., 2007). The use of fixed global clocks fell out of use, 

and was replaced by ‘relaxed phylogenetics’, in which phylogenies are inferred using 

either local clock models of models in which rates vary across lineages in an 

autocorrelated manner (Yoder and Yang, 2000; Drummond et al., 2006). (Note: this 

is different from rate heterogeneity across sites, which is controlled by selecting the 

appropriate substitution model.) 

 In his monograph on the subject, Kimura stated that ‘emphasizing local 

fluctuations as evidence against the neutral theory, while neglecting to inquire why 

the overall rate is intrinsically so regular or constant is picayunish. It is a classic case 

of ‘not seeing the forest for the trees’ (Kimura, 1983). Even so, it is an interesting 
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and legitimate question to ask to what extent deviations from a steady molecular 

clock reflect stochastic variability or instead perturbations due to selective events.  

As I will discuss in the next section, proteins consist of both functional and 

non-functional sites. Deviations from constant rates are expected for functional sites 

but not for non-functional (and hence neutral) sites. The constancy of the molecular 

clock has indeed been confirmed when studying neutral sites only. Kumar and 

Subramanian (2002) analysed fourfold degenerative sites in a mammalian dataset 

of over 5000 genes and found that divergence time strongly correlates with 

evolutionary distance (number of nucleotide differences), with a correlation 

coefficient of 0.97 (but for a contrasting result, see: Green et al., 2014). 

 

Evidence for the neutral theory from molecular biology 

The main conjecture of the original neutral theory is that most mutations are either 

neutral or strongly deleterious (Kimura, 1968; Kimura and Ohta, 1971). Kimura 

arrived at this conclusion using considerations from the field of theoretical 

population genetics. Arguably, the most intuitive evidence in favour or against 

neutral molecular evolution is however not to be found within the field of population 

genetics, but within the field of molecular biology.  

The first scientists to systematically pursue this line of evidence were 

Thomas King and Thomas Hughes Jukes, who published a paper on the subject in 

1969 (King and Jukes, 1969). In here, King and Jukes provide an in depth analysis of 

DNA and proteins to arrive at the same conclusion as Kimura, namely that ‘the 

stream of spontaneous alternations in DNA, constantly fed into the genetic pool, 

should include far more acceptable changes that are neutral than changes that are 

adaptive’ (King and Jukes, 1969).  

King and Jukes’ 1969 paper was built around several arguments. One 

argument was that due to the redundancy of the genetic code, many substitutions 

within genes do not result in an amino acid replacement and therefore are silent or 

synonymous. Of all possible single nucleotide substitutions, 25 percent are non-

synonymous, and yet they represent the vast majority of actual substitutions within 

genes. King and Jukes (1969) argued that this observation implied that most non-

synonymous mutations are deleterious, as stated by the neutral theory.  
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A second argument was that even non-synonymous substitutions might not 

cause differences in the structure and/or functionality of proteins. These so called 

conservation substitutions, of which King and Jukes (1969) provided numerous 

examples, are therefore effectively neutral, just like synonymous mutations.  

A third argument involved the relative frequencies of each type of amino acid 

within proteins (i.e. amino acid composition). King and Jukes (1969) showed that 

these relative frequencies were proportional to the number of redundant DNA 

codons coding for each amino acid. For example, the amino acid serine, which is 

coded for by six DNA codons (TCT, TCC, TCA, TCG, AGT, AGC) is three times more 

abundant than the amino acid lysine, which is coded for by two DNA codons (AAA, 

AAG). This correlation is expected if neutral forces are at play, but hard to explain 

from a selectionist’s point of view.  

The argumentation of King and can thus be summarized as follows. 

Substitutions in protein coding regions are mostly either deleterious (non-

conservation non-synonymous substitutions) or neutral (synonymous substitutions 

or conservation substitutions). The low proportion of positively selected sites 

within protein-coding regions is evident from the disproportionally high ratio of 

synonymous vs non-synonymous substitutions as well as from the amino acid 

composition of proteins.  

 

King and Jukes (1969) on non-coding DNA 

King and Jukes (1969) also mentioned a potential shortfall in Kimura’s reasoning 

which so far had not been spotted by other authors. Kimura (1968) had extrapolated 

the observed substitution rate in a few proteins to derive an estimate of the 

substitution rate genome wide. Because ‘Kimura’s argument was deliberately 

conservative in some respects’, King and Jukes (1969) redid some of the calculations 

and arrived at an estimate of ‘about two allele substitutions per year’, slightly higher 

than Kimura’s estimate of one substitution per two years. (In contrast to Kimura 

(1968), King and Jukes (1969) refer to amino acid substitutions rather than 

nucleotide substitutions. Because one amino acid substitution corresponds to ~1.25 

nucleotide substitutions, these estimates are roughly similar.)  

King and Jukes (1969) then argued that both estimates appeared ‘much too 

high’, because these substitution rates would be associated with high mutation loads 
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(which is different from Kimura’s ‘genetic load’). Reconsidering their equations, 

King and Jukes (1969) realized that they had overlooked something – and Kimura 

(1968) as well. The calculation was based on ‘the assumption that all or most 

mammalian DNA consists of structural genes’. But, as King and Jukes (1969) pointed 

out, both theoretical considerations and empirical evidence indicated that most 

genomes contained less than 40.000 genes. Given that proteins consisted generally 

of only a few hundred or thousands amino acids, it appeared that only a small 

proportion of the genome – ‘not much more than 1 percent’ – coded for proteins. 

When multiplying the estimated substitution rate per codon with the combined gene 

length rather than with the genome length, King and Jukes (1969) arrived at a much 

lower estimate of the substitution rate: ‘If the average gene consists of 1000 

nucleotide pairs, extrapolation from the estimated 16·10-10 substitutions per codon 

per year gives one amino acid substitution per species per 50 years. This is a far 

more believable figure.’ 

 The conclusion that the majority of the genome did not code for proteins, was 

a side finding, but a remarkable and relevant finding nevertheless. King and Jukes 

(1969) wrote: ‘Either 99 percent of mammalian DNA is not true genetic material, in 

the sense that it is not capable of transmitting mutational changes which affect the 

phenotype, or 40.000 genes is a gross underestimate of the total genome.’  

The idea that the majority of the genome does not code for proteins is now 

part of mainstream thought (Lander et al., 2001). Unbeknownst to King and Jukes, a 

fraction of non-protein coding DNA operates in regulating gene expression, but this 

does not alter the overall conclusion that large proportions of the genome are non-

functional and therefore neutral. This conclusion is nowadays occasionally used as 

an argument in favour of the neutral theory (Jensen et al. 2019). However, this was 

not how it was intended by King and Jukes (1969), who strived to obtain a better 

estimate of amino acid substitution rates.  

The neutral theory was developed in a time when actual sequence data was 

limited to proteins, and meant to explain observed patterns in these data sets. As a 

consequence, the original arguments for the neutral theory pertained to proteins, 

not to full genomes. This is reflected in the abstract of King and Jukes (1969), which 

reads: ‘Most evolutionary change in proteins may be due to neutral mutations and 

genetic drift.’ From a historical perspective, it is therefore incorrect to argue that the 
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main proposition of the neutral theory – that most substitutions are nonadaptive – 

is true simply because the majority of the genome is non-coding.  

 

Genetic draft 

Selectionists do not question the neutrality of intergenic sites, only the neutrality of 

mutations that affect the phenotype (Hahn, 2008). Still, they do argue that even non-

functional sites might not be free from the influence of selection, as selection on 

functional sites might indirectly affect the genetic variation of non-functional 

neighbouring sites, namely through linkage.  

The process of indirect selection driven allele frequency change through 

linkage is known as genetic draft (Gillespie, 2000). When genetic draft causes a 

frequency increase of neutral or slightly deleterious alleles due to linkage to 

beneficial alleles, it is also known as genetic hitchhiking (Maynard-Smith and Haigh, 

1974). The opposite, the removal of neutral or slightly beneficial mutation linked to 

deleterious alleles, is known as background selection (Charlesworth, 2012; 

Charlesworth et al., 1993). Genetic draft, whether through a selective sweep or 

through background selection, has the potential to influence both genetic 

divergence and genetic polymorphism, and as such cause deviations from values 

predicted by the neutral theory.  

The extent to which genetic draft causes deviation in divergence levels 

depends on the relative proportions of neutral and non-neutral mutations which are 

affected by genetic draft. Because genetic draft has the same net effect as genetic 

drift – i.e. the random fixation or loss of a mutation – linkage to advantageous or 

deleterious mutations affects the substitution rate of non-neutral mutations (i.e. 

decreased substitution rates of advantageous mutations and increased substitution 

rates of deleterious mutations), but not the substitution rates of neutral mutations 

(Birky and Walsh, 1988). In non-coding regions, where mutations are neutral, 

linkage should therefore not cause deviations from substitution rates predicted by 

the neutral theory (Jensen et al., 2019).  

The extent to which genetic draft causes deviation in divergence levels 

largely depends on recombination rates (Cutter and Payseur, 2013): the higher the 

recombination rates, the narrower the window of selective sweeps and background 

selection. As both a selective sweep and background selection lead to reduced 



46 
 

variation in genomic regions surrounding a positively or negatively selected allele, 

a relationship is to be expected between recombination rates and polymorphism 

levels. Multiple studies have indeed reported that genomic regions with low 

recombination rates have less genetic variation than genomic regions with high 

recombination rates (Begun and Aquadro, 1992; Corbett-Detig et al., 2015; Cutter 

and Payseur, 2013; Lohmueller et al., 2011). Another observed trend is that the 

genetic variation within genomes is lowest close to coding or conserved non-coding 

sites (Cutter and Payseur, 2013; Lohmueller et al., 2011). 

Selectionists argue that the correlation between recombination rates and 

genetic variation may provide an explanation for Lewontin’s paradox, the observed 

narrow range of levels of genetic diversity across species with widely different 

population size (Corbett-Detig et al., 2015; Hahn, 2008; Kern and Hahn, 2018). They 

also argue that the correlation disagrees with the neutral theory (Hahn, 2008; Kern 

and Hahn, 2018). Neutralists however point out that the observed correlation might 

be mostly due to purifying selection (background selection) rather than to positive 

selection (selective sweep, Lohmueller et al., 2011), and therefore are in fact 

consistent with the statement that most mutations are either neutral or deleterious 

(Jensen et al., 2019). 

The mathematical work of Kimura and Ohta (Kimura and Ohta, 1971) on 

expected levels of polymorphism (captured in the formula: theta = 4∙Ne∙ug), did not 

consider the effect of genetic draft, as it assumes sites to be unlinked. The alternative 

to a rejection of the neutral theory, if mainly based on this ground, would be to 

incorporate the effect of genetic draft into the neutral theory, thereby creating a 

model which accounts for the indirect effects of purifying selection (Comeron, 2017; 

Jensen et al., 2019). 

 

McDonald-Kreitman test 

The molecular clock hypothesis and the neutral theory were both proposed in a time 

that actual DNA-sequence data was non-existent. The molecular clock hypothesis 

was based on amino acid sequence data, not on nucleotide sequence data. So was 

the neutral theory. Kimura (1968) derived his estimate of 1.8 nucleotide 

substitutions per year indirectly from data on amino acid substitutions. He 

reasoned: ‘Because roughly 20 per cent of nucleotide replacement caused by 
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mutation is estimated to be synonymous, [...] one amino-acid replacement may 

correspond to about 1.2 base pair replacements in the genome.’  

One of the first studies which analysed genetic variation within a natural 

population using actual DNA-sequences rather than using amino acid sequence data 

was published in 1983 by Martin Kreitman (Kreitman, 1983). Kreitman (1983) 

sequenced the alcohol dehydrogenase (Adh) gene of 11 Drosophila melanogaster 

individuals, belonging to 5 different populations divided over continents. Within 

coding regions, Kreitman found 14 polymorphic nucleotide sites, of which 1 resulted 

in a polymorphic amino acid. So although only 25 percent of all possible nucleotide 

substitutions are synonymous, they represented (13/14 =) 93 percent of observed 

polymorphic sites. Kreitman: ‘The implication is that most amino acid changes in 

Ahd would be selectively deleterious.’ (Kreitman, 1983)  

The nature of the non-synonymous substitution was however unclear. Any 

non-synonymous substitution can either be a conserving substitution, a slightly 

deleterious substitution which was overruled by drift, or a positively selected 

substitution. In 1987 and 1991 Kreitman published another two papers on Ahd gene 

sequence analysis (Hudson et al., 1987; McDonald and Kreitman, 1991). In both 

papers the authors introduced a method to test whether observed non-synonymous 

substitutions were driven by selection.  

The HKA (Hudson, Kreitman, Aguade) test compared levels of polymorphism 

(number of segregating sites) and divergence (number of substitutions) among two 

genomic regions, such as the Adh coding region and a flanking region. The rationale 

behind the test is that different trends across loci can be indicative of selection.  

Although the HKA test is still being used (e.g. Liu et al., 2014), the second test 

introduced by Kreitman, the McDonald-Kreitman (MK) test (McDonald and 

Kreitman, 1991), is the more popular among the two. The MK test involves an 

analysis of a single gene, rather than a comparison between multiple genes as for 

the HKA test. The test is based on a comparison between the number of segregating 

and fixed degenerate and non-degenerate sites.  

McDonald and Kreitman (1991) argued that if mutations in non-degenerate 

sites (i.e. non-synonymous mutations (N)) are regulated by neutral dynamics only, 

they should have equal probabilities of fixation or loss as mutations in degenerate 

sites (i.e. as synonymous mutations (S)), as well as equal times of segregating before 
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going to fixation or loss. Therefore, we would expect the ratio Nfix/Sfix (= ωdivergence) 

to equal the ratio Npoly/Spoly (= ωpolymorphism). As mutations under positive selection 

fixate quickly, positive selection on N mutations would result in: Nfix/Sfix > Npoly/Spoly. 

Puryfing selection on N mutations would result in: Nfix/Sfix < Npoly/Spoly.  

McDonald and Kreitman (1991) compared the Adh locus of three Drosophila 

species, and found overall 44 segregating sites, containing 42 synonymous and 2 

non-synonymous mutations. They also found 24 fixed differences between the 

species, of which 17 were synonymous and 7 non-synonyymous. In other words, 

around 29 percent of the fixed differences between species were non-synonymous, 

whereas this category made up only 5 percent of the total number of segregating 

sites. The deviation from equal ratios was significant (according to a G-test of 

independence), providing compelling evidence for positive selection.  

Because relaxation of purifying selection can cause the MK test to wrongly 

infer positive selection, it is advised to first compare the polymorphism levels 

between species (He et al., 2018).  

 

dN/dS tests 

Both the HKA test and the MK test require genetic data not only from two species, 

but also for multiple individuals for at least one of those species. Many genetic 

datasets don’t meet these requirements, because they contain either data on one 

individual for multiple species, or data for multiple individuals for one species. To 

be able to test for neutrality in these types of datasets, other methods have been 

developed. 

Fumio Tajima published a paper in 1989 in which he introduced a method to 

test for neutrality based solely on patterns of genetic variation within 

populations/species (Tajima, 1989). This method tests for deviation from the 

expected relationship between the number of segregating sites and nucleotide 

diversity (i.e. the average number of differences between two randomly drawn 

sequences) (Watterson, 1975). Modifications have been published in subsequent 

years (Fay and Wu, 2000; Fu and Li, 1993), but Tajima’s D has remained popular, as 

it is a relatively robust and easy test to apply.  

Whereas Tajima’s D is based solely on polymorphism data, another test 

originally developed in the 1980’s, the dN/dS test, is based solely on divergence 
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data. Another difference is that Tajima’s D test can be applied to both protein coding 

and non-protein coding data, whereas the dN/dS test requires protein coding data.  

dN is the ratio between the actual number of non-synonymous substitutions 

and the potential number of non-synonyymous substitutions. Similarly, dS is the 

ratio between the actual number of synonymous substitutions and the potential 

number of synonymous substitutions. Several methods have been proposed to 

obtain reliable estimates (Li et al., 1985; Nei and Gojobori, 1986).  

It was initially reasoned that a dN/dS ratio of 1 implies the gene is evolving 

neutrally, whereas values below 1 indicate purifying selection and values above 1 

positive selection (Hughes and Nei, 1988). However, most non-synonymous 

mutations are under puryfing selection (Hughes et al., 2003), and therefore 

observed dN/dS ratios are generally below 1, with typical gene wide average values 

of dN/dS ranging between 0.2 and 0.3, meaning that on average 80-90 percent of 

non-synonymous mutations are deleterious (Fay et al., 2001; Mugal et al., 2014; 

Nielsen and Yang, 1998). As a consequence, positively selected nonsynonymous 

mutations, which comprise the minority of nonsynonymous mutations, will be 

overlooked when assessing gene wide averages. 

The identification of this problem has led to the development of more 

sophisticated dN/dS tests with increased power. These tests execute sliding window 

analyses of dN/dS, rather than calculating a single estimate for the entire gene 

(Nielsen and Yang, 1998). The obtained distribution of dN/dS values across the gene 

is used to test the performance of so called ‘site-models’. The null model holds that 

the obtained dN/dS ratios (also denoted omega ω) across the gene are either 1 or 

negative (reflecting respectively drift and purifying selection). The alternative 

model holds that in addition at least one region within the gene has a dN/dS ratio 

above 1, indicative of positive selection.  

Whereas dN/dS tests and MK tests were initially executed on single genes 

(Hughes and Nei, 1988; McDonald and Kreitman, 1991), now it is routine practice to 

analyse datasets containing thousands of genes. Although some studies still apply 

candidate gene approaches (Liu et al., 2010; Xu et al., 2013), these whole genome 

comparisons have become mainstream (Agaba et al., 2016; Foote et al., 2015; Kumar 

et al., 2015; Tsagkogeorga et al., 2015; Zepeda Mendoza et al., 2018).  
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The rate of adaptive molecular evolution (alpha) 

Apart from providing an objective way to test for deviations from neutrality, the MK 

test and the dN/dS tests also provide ways to estimate the proportion of neutral, 

advantageous and deleterious non-synonymous mutations.  

When assuming that there are no advantageous non-synonymous mutations, 

the proportion of neutral non-synonymous mutations simply equals the dN/dS ratio 

(ω), and the proportion of deleterious non-synonymous mutations simply equals 1 

– ω. For example, a typical dN/dS value of 0.2 indicates that 20 percent of non-

synonymous mutations behaved similar to synonymous mutations, whereas 80 

percent of non-synonymous mutations have been under purifying selection (Eyre-

Walker and Keightley, 2007).  

The proportion of adaptive substitutions is known as alpha (α), or the rate of 

adaptive molecular evolution (Smith and Eyre-Walker, 2002), and can be derived, 

using a method based on the MK test, as follows: α = 1 - (Sfix*Npoly)/(Nfix*Spoly). For 

the dataset analysed by McDonald and Kreitman, alpha equals: 1 - (17*2)/(7*47) = 

0.88. This suggests that 88 percent of all non-synonymous substitutions within the 

Adh gene of the sampled Drosophila species were driven by selection.  

The MK test traditionally divides synonymous and non-synonymous sites 

into segregating and fixed sites. MK test-based methods have been developed which 

don’t consider just the frequency of fixed and segregating sites, but also the the 

minor allele frequencies (MAF) within segregating sites. This improvement was 

initiated by Fay et al (2001), who noted that the dN/dS ratio of sites with low minor 

allele frequencies (MAF < 0.05) is considerably higher than the dN/dS ratio of sites 

with higher minor allele frequencies. It is thought that this excess of non-

synonymous sites with low MAF is caused by slightly deleterious mutations, which 

can segregate for a while at low frequencies before getting lost. As these mutations 

cause an increase in Spoly/Npoly without affecting Sfix/Nfix, they can lead to an 

underestimation of alpha. Some authors therefore omit from their calculations 

polymorphisms segregating at low levels. (Charlesworth and Eyre-Walker, 2008; 

Eyre-Walker and Keightley, 2009; Fay et al., 2001; Galtier, 2016).  

Another important insight is that the application of the MK and dN/dS tests 

is not restricted to protein coding regions. Both tests compare patterns of functional 

and non-functional sites. The subdivision between functional and non-functionally 
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sites typically consists of a subdivision in non-synonymous (N) and synonymous 

sites (S) within a gene. But in principle any subdivision between coding and adjacent 

non-coding sites, such as conserved regions and non-conserved flanking regions, 

can be used as input to the MK or dN/dS test (Jenkins et al., 1995). Analyses on these 

types of datasets provide insight into the question of to what extent adaptive 

molecular evolution involves changes in protein coding regions and to what extent 

changes in regulatory sequences.  

 

Distribution of fitness effects (DFE) 

Traditionally, mutations have been divided into three categories: advantageous 

(w>1), neutral (w=1), and deleterious (w<1), where ‘w’ denotes fitness. If plotted as 

a frequency histogram, this would result in three bars, with, according to the neutral 

theory, two relatively high bars (for classes: w<1 and w=1), and one low bar (for 

class: w>1). Such a histogram of fitness effect is called a distribution of fitness effects 

(DFE). Eyre-Walker et al. (2006) introduced a new method to estimate this 

distribution. Whereas DFE had previously been estimated from mutagenesis and 

mutation accumulation experiments (Eyre-Walker and Keightley, 2007), the 

method proposed by Eyre-Walker and colleagues was based on polymorphism data. 

This method infers the DFE from deviation of the observed allele frequency 

distribution (i.e. site frequency spectrum (SFS)) of non-synonymous SNPs from the 

expected SFS based on neutral dynamics. The method produces a more fine-scaled 

DFE than the traditional 3-class categorization, and provides an alternative method 

to estimate the rate of adaptive molecular evolution (alpha). In contrast to the MK 

test, which requires both polymorphism and divergence data, the method of Eyre 

Walker et al (Eyre-Walker et al., 2006) is solely based on polymorphism data 

(Tataru et al., 2017).  

 

Are most non-synonymous mutations indeed either neutral or deleterious? 

The neutral theory states that ‘most’ mutations are either neutral or strongly 

deleterious, If taken literally, this means that alpha, the proportion of adaptive 

substitutions, is generally below 50 percent. Kimura has however also used the term 

‘overwhelming majority’ instead of ‘most’ (Kimura, 1991), implying he envisioned 
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alpha to be closer to 0 percent. Which percentages have been estimated from 

genomic datasets, and how do these estimates reflect on the neutral theory?  

Fay et al. (2001) analysed 182 orthologous humans and old world monkey 

genes and found estimates of ωdivergence = 0.34 and ωpolymorphism = 0.2, leading them to 

conclude that 35% of observed non-synonymous substitutions between humans 

and old world monkeys have been driven by positive selection. In 2005, following 

the completion of a whole genome sequence of a chimpanzee, Waterson et al (2005) 

repeated this analysis using a bigger gene set and with as reference species 

chimpanzee rather than old world monkeys. They obtained statistically 

indistinguisable values of ωdivergence = 0.23 and ωpolymorphism = 0.21-0.23, leading to an 

estimate of alpha close to 0 (Waterson et al., 2005).  

What caused the difference between the outcomes of these two studies? 

Waterson and colleagues suspect that the estimate of Fay et al. ( 2001) was inflated 

due to methodological issues: ‘Because the previous results involved comparison to 

Old World monkeys, it is possible that they reflect strong positive selection earlier 

in primate evolution; however, we suspect that they reflect the fact that relatively 

few genes were studied and that different genes were used to study polymorphism 

and divergence.’ (Waterson et al., 2005) Further studies have indeed confirmed the 

near absence of adaptive substitutions in humans (Eyre-Walker and Keightley, 

2009; Zhang and Li, 2005).  

Meta-analyses have however indicated that alpha is not universally low 

across species, but instead varies widely. Estimated alpha values are close to zero in 

humans, other primates, giant Galapagos tortoise, yeast, fungi, and nine plant 

species, but above 0.5 in fruitfly, mouse, rabbit, sea squirt, sunflower and 

enterobacteria (Fay et al., 2001; Galtier, 2016; Gossmann et al., 2010). The observed 

variation in alpha values is thought to be related to differences in effective 

population size (Galtier, 2016; Gossmann et al., 2012).  

Ignoring the variation between species, average values of alpha have been 

found to be above 0.5 or just under 0.5 for almost all studied groups of animals (i.e. 

mammals, reptiles, birds, arthropods, molluscs, echinoderms). These estimates of 

alpha do not correspond with Kimura’s statement that the ‘overwhelming majority’ 

of mutations are either neutral of deleterious.  
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Concerns have been raised about the reliability of the estimates of alpha 

(Hughes, 2007; Nei et al., 2010). One potential flaw is in the assumption that sites 

are independent. Fay (2011) has argued that ‘the common assumption of 

independence among sites must be relaxed before abandoning the neutral theory of 

molecular evolution’.  

Neutralists have also argued that there is a certain circularity involved in 

concluding high proportions of adaptive mutations from studies focussing on 

functional regions. Functional sites – coding regions and regulatory sequences – 

make up a small and biased proportion of entire genome, and therefore provide a 

strongly inflated estimate of the proportion of adaptive driven substitutions across 

the genome (Jensen et al., 2019). n that sense, whole genome scans provided a more 

reliable way to estimate the obiquity of positive selection events within the genome. 

 

From candidate gene studies to whole genome scans  

During the 2000s, the reduction in sequencing costs and the associated increase of 

genetic data led to a shift from candidate gene studies to whole genome scans. Until 

then selection tests were executed using a top-down approach, in which the 

detection of phenotypic traits under selection triggers the search for the underlying 

genotypic variation. With the advent of next generation sequencing, the focus 

shifted from top-down to bottom-up approaches, in which the detection of genetic 

signals of selection triggers the search for associated phenotypic traits. This concept, 

also known as reverse ecology, directly uncovers the genetic basis of adaptation, 

rather than first identifying phenotypic traits that are acted upon by natural 

selection (Li et al., 2008; Lotterhos and Whitlock, 2015). 

Whole genome scans can either be based on entire genomes or on reduced 

representation libraries (RRLs), which contain subsets of random or targetted 

subset of snps scattered throughout the genome. Initially mostly applied to human 

datasets (Akey, 2009; Akey et al., 2002), following the generation of new lab 

protocols such as RADseq (Baird et al., 2008), RRLs became also available for non-

human and non-model species (review: Haasl and Payseur, 2016; example of an 

early paper: Hohenlohe et al., 2010; for a list of whole genome selection scan studies 

and their findings, see appendix A1).  
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Whole genome scans typically find that levels of genetic variation and levels 

of genetic divergence fluctuate stochastically across the genome. Plots with levels of 

genetic polymorphism/divergence on the y-axis and genomic position on the x-axis 

often resemble irregular seismic waves diagrams, even after applying smoothing 

methods. The assumption is generally that this noise reflects the backdrop of neutral 

variation from which selected loci might or might not stand out. The smaller the 

effective population size and the consequent larger effect of drift, the wider the 

backdrop of neutral variation, and the more difficult it becomes to discrimate loci 

under selection (Bamshad and Wooding, 2003).  

Genome wide selection scans search for genomic regions under selection 

generally in either of two ways (for a more detailed classification, see (Oleksyk et al., 

2010; Weigand and Leese, 2018): 

- by searching within populations/species for genomic regions with depleted 

genetic variation; or 

- by searching for genomic regions with accelerated levels of genetic 

differentiation between populations or species.  

Both approaches can potentially be used in combination with the comparative 

method, which entails searching for consistent signals of selection in populations 

which have likely been under similar selection pressures (e.g. Hohenlohe et al., 

2010; Parker et al., 2013).  

Genomic regions with depleted genetic variation can be detected by 

generating locus specific or sliding window estimates of polymorphism measures 

such as theta (Diller et al., 2002), heterozygosity (Oleksyk et al., 2008), runs of 

homozygosity (ROH) length, Tajima’s D, LD extent (Hawks et al., 2007) and 

haplotype length/frequency statistics. 

The estimate used to detect genomic regions with elevated levels of genetic 

differentiation depends on the TMRCA (Sabeti et al., 2006). When comparing species 

(i.e. when searching for selection on derived mutations), genomic regions with 

accelerated levels of genetic differentiation can be detected by generating locus 

specific or sliding window estimates of sequence dissimilarity when comparing 

species (for example: Sackton et al., 2019). In contrast, when comparing populations 

(i.e. when searching for selection on ancestral alleles), genomic regions with 

accelerated genetic differentiation can be detected by generating locus specific or 
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sliding window estimates of allele frequency differences, most commonly measured 

with a Fst metric (Akey et al., 2002; Beaumont, 2005; Wolf and Ellegren, 2017). 

The assumption behind genome wide selection scans on reduced 

representation libraries is that even though random subsets of SNPs are unlikely to 

contain some – let alone all – sites under selection, selected loci will be within 

linkage disequilibrium of the sites within the dataset, and these linked sites will 

exhibit the signal of selection. Dense catalogues, comprising a sufficient number of 

snps, are needed to reliably screen the entire genome to acquire statistical power in 

detecting genomic regions under selection (Storz, 2005). Once genomic regions of 

interest have been detected, the next step is to determine which functional loci – 

either coding or regulatory sequences – are located within these regions, as these 

functional loci are the ones possibly under selection.  

 

Research aim of this thesis 

In this PhD thesis I will perform whole genome scans to search for genetic 

fingerprints of selection in genomes of natural populations of deer species. My main 

aim is to determine if the genomes of my study populations and study species 

contain evidence of past and/or ongoing events of natural selection. I will do so by 

investigating the genetic divergence of: 

- introduced South Georgia reindeer and their ancestral Norwegian 

population, which separated ~102 YBP (Chapter 2) 

- mainland and UK roe deer populations, which separated ~104 YBP (Chapter 

3) 

- extant roe deer species (the European roe deer and the Siberian roe deer), 

which separated ~106 YBP (Chapter 4)  

My deeper, ultimate aim is to provide, through analyses of these particular 

populations and species, more insight into the relative roles of selection and drift 

under various demographic and environmental scenarios, and as such contribute to 

the scientific debate about the neutral theory of molecular evolution.  

Although the three genomic datasets presented in this thesis total up to an 

enormous amount of data, these datasets do not suffice to statistically test 

hypotheses. Many studies such as these, for a wide range of populations and species, 
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are needed to eventually perform a meta-analysis and obtain an overall emerging 

picture. Still, I will be able to test some predictions for my particular datasets. 

The roe deer populations and species occurred in environmental similar 

habitats. Although ecological differences can be subtle, diversifying selection can be 

expected to have been weak or moderate compared to population/species with 

more pronounced ecological divergence. Although roe deer are provincial (Baker 

and Hoelzel, 2012), effective population sizes have been found to be relatively high 

(~10K, Baker and Hoelzel, 2014), providing potential for the manifestation and 

detection of signatures of selection (because of relatively low levels of genetic drift). 

Summarized, diversifying selection could be expected to play a minor role in shaping 

the genetic divergence of roe deer populations/species, but if it did have a role, we 

should expect to be able to detect the signatures.  

Exactly the opposite is presumably true for the South Georgia reindeer 

founder populations. Having been introduced in an alien environment, there is 

reason to believe these populations experienced selective pressures to adapt to this 

new environment. Low effective population sizes, during and following the founder 

bottleneck, might however have caused dominant drift, overriding the effect of 

selection, and furthermore complicating the detection of selected loci which did 

manage to overcome drift. Hence, even though the South Georgia populations might 

be expected to have experienced positive selection, it is unclear whether this has left 

detectable signatures of selection, especially given the short time frames.  

 

Outline of this thesis 

In this thesis I investigate the extent and causes of genetic divergence of allopatric 

sister populations on three different time scales. I will discuss each of the three 

datasets in ascending order of their TMRCA.  

In Chapter 2 I study genetic divergence over a time span of 102 years (~20 

generations). This study centres around SNP datasets from two reindeer (R. 

tarandus) founder populations which were established at the start of the 20th 

century. Apart from an investigation of genetic divergence on a short time scale, this 

Chapter focuses on the interplay between selection and drift in founder populations, 

with the main research question being whether selection can overcome drift in 

heavily bottlenecked populations.  
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In Chapter 3 I study genetic divergence over a time span of 104 years (~2,000 

generations). This study centres around SNP datasets of three western European 

roe deer (C. capreolus) populations. Two of those populations occur on the 

mainland, whereas a third population represents the native British population, 

which got cut off from the mainland during the flooding of Doggerland, around 6∙103 

ya. An additional dataset from a fourth population, derived from a recently 

established founder population in East-Anglia (UK), has been included to provide 

deeper insight in the relation between TMRCA, population size and genetic 

divergence.  

In Chapter 4 I study genetic divergence over a time span of 106 years 

(~200,000 generations). Whereas in the previous Chapters I investigate differences 

between populations within the same species, in this Chapter I study differences 

between different species. I apply a comparative genomics approach by comparing 

a whole genome sequence of the western roe deer (C. capreolus) with a whole 

genome sequence of its sister species, the eastern roe deer (C. pygargus).  

In Chapter 5, the general discussion, I will reflect how the findings of the data 

Chapters reflect on the neutral theory of molecular evolution.  

In this thesis I will execute a wide variety of analyses. As the type of the 

analyses depends on the nature of the dataset, the analyses will differ to a certain 

extant between thesis Chapters. Whole genome sequences, which are analysed in 

Chapter 4, allow for example for synteny and gene analyses, which is not possible 

with SNP data (Chapter 2 and Chapter 3). Still, there are two consistent threads 

among all three data Chapters: 

- For each dataset (i.e. in each Chapter), I will calculate the sequence 

dissimilarity between sister populations (or sister species). 

- For each dataset (i.e. in each Chapter), I will search for genetic differences 

which are caused by selection, in order to obtain an estimate of the 

proportion of selective driven genetic differences (alpha).  

The analyses applied in all Chapters are generally consistent and can be broadly 

divided in three categories. The first group of analyses investigate modern and 

historical population demography and address questions about TMRCA, population 

sizes and gene flow between the sister populations. The second group of analyses 

investigates the extent of genetic divergence between the sister populations. This is 
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expressed in population differentiation estimates (i.e. Fst and Nei’s genetic distance) 

when using SNP datasets, and sequence (dis)similarity indices when using whole 

genome sequences. The third group of analyses aims to detect which genetic 

differences result from natural selection as opposed to solely from stochastic forces.  

The third and last group of analyses therefore addresses the main question 

of my thesis: do the genomes of my study populations and study species contain 

signatures of past and/or ongoing events of natural selection? 
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Chapter 2 

 

Genetic evidence for parallel insular evolution in the South 

Georgia reindeer founder populations 

 

Abstract 

Founder populations are of special interest to both evolutionary and conservation 

biologists, but the detection of genetic signals of selection in these populations is 

challenging due to their demographic history. Geographically separated founder 

populations subjected to the same selection pressures provide an ideal but rare 

opportunity to overcome these challenges. I generated an 80K SNP database of two 

parallel deer founder populations and screened this dataset for signatures of soft 

sweeps. I find evidence for two genomic regions under selection shared among both 

populations. I support my findings with Wright-Fisher model simulations to assess 

the power and specificity of interpopulation selection scans – i.e. Bayescan, 

OutFlank, PCadapt and a custom-built tool called GWDS – in the context of founder 

populations. My simulations indicate that loci under positive selection in non-

communicating sister founder populations are most confidently detected by GWDS, 

and provide evidence that the observed outlier regions are true loci under selection. 

In conclusion, I report a novel selection scan and present empirical evidence for 

positive selection overcoming drift in heavily bottlenecked founder populations.  

 

Related peer-reviewed publication: 

De Jong, M.J., Lovatt, F., Hoelzel, A.R., under review by Molecular Ecology, Detecting 

genetic signals of selection in heavily bottlenecked founder reindeer populations by 

comparing parallel founder events 

Author contributions: 

ARH conceived the study and MdJ & ARH wrote the paper. MdJ undertook data, 

simulation and lab analyses, and developed the selection scan GWDS. FL provided 

field work and some of the DNA extractions.  
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Introduction 

One of the major current challenges of population geneticists is to discriminate loci 

under selection from the backdrop of neutral genetic variation (Beaumont, 2005; 

Oleksyk et al., 2010). For founder populations, which are of special interest to both 

conservation biologists (Allendorf and Lundquist, 2003) and evolutionary biologists 

(Templeton, 2008), loci under selection are especially hard to detect due to their 

demographic history. Genetic drift during and following a founder bottleneck 

spreads out the backdrop of neutral variation, obscuring the typically weak signals 

of incomplete selective sweeps (Hermisson and Pennings, 2005) and elevating the 

false negative and positive rates of selection scans.  

Although empirical evidence for adaptation to novel environmental 

conditions on short, observable time-scales has accumulated in past decades 

(reviews on contemporary evolution: Carroll et al., 2007; Endler, 1986; Hendry and 

Kinnison, 1999; Reznick and Ghalambor, 2001; Schoener, 2011; famous examples: 

Hof et al., 2016; Johnston and Selander, 1964; Lamichhaney et al., 2015; Reznick and 

Ghalambor, 2001; climate change adaptation studies: Bradshaw and Holzapfel, 

2010; Brakefield and de Jong, 2011; Karell et al., 2011; Schilthuizen, 2018), evidence 

for adaptation specifically in founder populations has so far remained elusive 

(Colautti and Lau, 2015; Vandepitte et al., 2014). The rarity of empirical evidence for 

selection in founder populations will in part reflect adaptive constraints of founder 

populations (Willi et al., 2006), but also the difficulty of detecting the (genetic) 

signatures of selection within founder populations.  

 A unique but rare opportunity to overcome the challenges associated with 

selection analysis in founder populations arises when two or more sister 

populations (i.e. populations deriving from the same ancestral population) are 

independently founded in environmentally similar sites (Lee and Coop, 2019). I 

capitalized on such a system by searching for evidence of selection in two parallel 

founder deer populations. These founder populations originated in the early 20th 

century (1911 and 1925), when two small (≤ 10) herds of reindeer (Rangifer 

tarandus) were shipped from Filefjell, Norway, to two peninsula separated by a 

glacier (Leader-Williams, 1988, page 43) on the island of South Georgia in the South 

Atlantic Ocean (Leader-Williams, 1980). Despite facing an environment which 
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differed from their native grounds, both populations established successfully until 

their cull in 2013 (Leader-Williams, 1988).  

 As is true for invasive species in general (Allendorf and Lundquist, 2003; 

Colautti and Lau, 2015), it is not known whether the success of the South Georgia 

reindeer was aided by adaptation to their novel environment. I reasoned however 

that if the South Georgia reindeer populations did adapt to their novel environment, 

the two founder populations potentially underwent parallel evolution. Both 

populations experienced the same environmental conditions and therefore were 

subjected to similar selective pressures. If during the founder bottleneck they 

preserved shared adaptive alleles, this could lead to shared genetic signals of 

selection. The South Georgia reindeer populations were separated by a glacier 

(Leader-Williams, 1988, page 43), and therefore shared signals of selection could 

not have established through gene flow. Since shared signals of selection are easier 

to distinguish from the background of neutral variation than adaptive loci selected 

in single populations, the South Georgia reindeer populations provide a promising 

study system for the detection of genomic signals of selection within founder 

populations.  

I generated an 80K SNP database for both founder populations as well as 

their common source population, and searched for genetic signals of selection in 

both founder populations using interpopulation selection scans (Oleksyk et al., 

2010). I made use of published selection scans (i.e. Bayescan, OutFlank and PCadapt) 

as well as of a custom-built tool which I named GWDS, an acronym for Genome Wide 

Differentiation Scan.  

I evaluated the empirical findings by running simulations using a Wright-

Fisher model. The main purpose of these simulations was to estimate the probability 

that the loci marked as outliers by the selection scans were true loci under selection 

rather than false positives. I did so by assessing the power and specificity of 

selection scans, including GWDS, in the context of study populations, and specifically 

in the context of the demographic history of my study populations.  
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Methods 

Library Construction. I selected 120 reindeer samples from an existing DNA 

archive (Lovatt and Hoelzel, 2014), evenly divided over both South Georgia founder 

populations and their Norwegian source population. DNA samples were selected 

based on Qubit quantification scores and molecular weight of the DNA assessed by 

gel electrophoresis. I constructed two sequencing libraries each of 60 samples 

following the ddRADseq protocol (Peterson et al., 2012).  

Following in silico simulations with the R package SimRAD (Lepais and Weir, 

2014), I decided to use a 6 bp cutter (HindIII: AAGCTT) and a 4 bp cutter (MspI: 

CCGG), with a fragment size selection window of 250 bp width (by including all 

fragments with a length of 275 to 525 bp, excluding the adapters), targetting 

120,000 loci with an average read depth of 30. By multiplying this expected number 

of loci against with their average length (250 bp), as well as with a conservative 

estimate for nucleotide diversity (1/2000), and with an approximation for the 

harmonic number of Watterson’s estimator (Watterson, 1975), I estimated that this 

size selection window would yield ~50,000 SNPs with a minor allele frequency 

(MAF) >= 0.05.  

The actual size selection was executed with a Sage Science PippinPrep 

machine. The Phusion High-Fidelity kit was used for a 13 cycle PCR (denaturation 

step: 62°C for 20sec; annealing step: 72°C for 45 sec; extension step: 72°C for 5 min). 

Libraries were paired-end sequenced on an Illumina HiSeq_2500 (version 4 

chemistry) machine. 

 

SNP calling and filtering. Reads were trimmed to 110 bp and demultiplexed and 

filtered using STACKS1.35 (Catchen et al., 2013). Unpaired reads were discarded. 

Paired reads were aligned using the very-sensitive mode of Bowtie version 2.2.5 

(Langmead and Salzberg, 2012), against both the reindeer (Rangifer tarandus) 

genome (Li et al., 2017) as well as the cow (Bos taurus) genome (Zimin et al., 2009) 

– cow being at the time the species closest to reindeer with a genome assembly up 

to the chromosome level. Samtools version 1.3.3 (Li et al., 2009) was used to filter 

out reads which aligned disconcordantly, reads with a mapping quality below 3, as 

well as reads which aligned to more than one location in the genome.  
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SNPs were called using the STACKS refmap pipeline with default settings. 

Loci for which at least 30 percent of all individuals had a read depth below 8 were 

removed. I accepted multiple SNPs per read (i.e. I did not set the –write-single-SNPs 

flag when running the ‘populations’-command), as I opted to optionally ‘thin’ the 

datasets downstream.  

PGDSpider (Lischer and Excoffier, 2012) and PLINK v1.90 (Purcell et al., 

2007) were used to convert the output from genepop or vcf format to a genlight 

object, supported by the R package Adegenet (Jombart, 2008; Jombart and Ahmed, 

2011). All samples with more than 25 percent missing data were removed. I 

discarded SNPs which met any of the following criteria : 1.) >10% missing data (after 

removal of low quality individuals); 2.) minor allele count (MAC) = 1; 3.) excessive 

heterozygosity excess (he > (2pq + ½q)); and 4.) excessive read depth. I also filtered 

out a few SNPs which mapped to the same site of the reindeer genome and yet 

belonged to different STACKS loci. I optionally thinned the data by selecting one SNP 

per 500 bp region.  

 

Structure and diversity analyses. For population genetic analyses, I used a filtered 

and thinned dataset derived from alignment to the reindeer genome. Linkage 

disequilibrium analysis was executed on reduced datasets excluding SNPs with 

MAC<5. For selection analyses, I used a filtered, non thinned dataset derived from 

alignment to the reindeer genome. For genome wide genetic analyses, I used a 

filtered, non-thinned dataset derived from alignment to the cow genome.  

All population structure analyses (PCA, DAPC, admixture analyses) were 

executed in R, using functions implemented in the Adegenet, Ape (Paradis and 

Schliep, 2019; Paradis et al., 2004), and LEA (Frichot and François, 2015) packages. 

For DAPC (run in Adegenet) I set the number of PCs to 1/3th the number of 

individuals, the number of clusters equal to the number of populations in the dataset 

(i.e. 3), and the number of discriminant functions to 3.  

For admixture analysis in LEA I set K (number of populations) to 2-6, alpha 

to 10, tolerance to 0.00001, and the number of iterations to 200. To quantify 

population differentiation I calculated Nei’s D (Nei, 1972) using a function 

implemented in StAMPP (Pembleton et al., 2013), as well as Weir & Cockerham’s FST 

(Weir and Cockerham, 1984). I assessed genetic diversity by generating site 
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frequency spectra, MAF histograms, and estimates of sample genome wide 

heterozygosity.  

To estimate sample genome wide heterozygosity, I first determined ‘N_seg’, 

the number of segregating sites within the population to which the individual 

belonged. Second, I calculated for each individual ‘He_seg’, the proportion of those 

segregating sites being heterozygous. Finally, I calculated genomeHe using the 

formula: genomeHe = (He_seg * N_seg)/N_total, in which N_total equals the 

combined length of all loci/stacks which passed filter settings. This provides an 

estimates of the proportion of heterozygous sites across all sequences sites, which 

is a proxy of genome wide heterozygosity.  

LD analyses were executed by calculating squared correlation coefficient 

estimates for unphased data using the software PLINK. I generated LD estimates for 

all SNP pairs occurring on the same contig at maximum 5Mb apart. Contemporary 

gene flow was estimated using BayesAss3-SNPs (Mussmann et al., 2019). The 

number of iterations was set to 1,000,000, burn-in to 100,000, seed to 10, and delta 

values to 0.1.  

 

Selection analyses. I screened the SNP dataset for loci under selection using two 

approaches: a pooled approach and an independent approach. In the pooled 

approach I pooled the data of both founder populations and executed selection scans 

by contrasting the source population to the pooled founder populations (i.e. 

‘Norway vs Busen & Barff’). In the independent approach I executed selection tests 

for both founder populations independently by running pairwise comparisons 

between source and founder (‘Norway vs Busen’ and ‘Norway vs Barff’).  

To identify positively selected loci, I used a custom-built tool (GWDS; 

discussed below) as well as three published selection scans: Bayescan (Foll and 

Gaggiotti, 2008), OutFLANK (Lotterhos and Whitlock, 2015), and PCadapt (Duforet-

Frebourg et al., 2014; Luu et al., 2017).  

Bayescan is a FST outlier test which simulates a null distribution of locus 

specific FST values and subsequently detects loci which stand out from this simulated 

distribution. Although not specifically designed for pairwise population 

comparisons, it could be argued that it is better suited to detect loci under selection 

in pairwise population comparisons than in study systems consisting of more than 
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two populations. The reason is that Bayescan implements a method which assumes 

that all populations are equally related. If there is only a single pair of populations 

in the data, there is no possibility that one pair of populations is more related than 

another pair (Lotterhos and Whitlock, 2015), and therefore no possibility that this 

assumption of Bayescan is violated.  

OutFLANK is also a FST outlier test, but unlike Bayescan it infers the 

distribution of FST values from the observed data (rather than simulating it). The 

software trims from the observed data the top 5% and bottom 5% FST values (or any 

other user defined, non-default percentage), fits a chi-squared distribution to the 

remaining data (the ‘core’ or ‘trimmed’ distribution), and subsequently uses the 

inferred distribution to calculate the right hand sided p-value for each locus 

(Lotterhos and Whitlock, 2015).  

PCadapt is not a FST outlier test and is based on individuals rather than on 

populations. Whereas Bayescan and OutFLANK require samples to be a priori 

assigned to populations, PCadapt infers population clustering from the data by 

principal component analyses. Subsequently the software regresses each SNP to the 

principal components, and standardizes the obtained regression coefficients to z-

scores. To find outlier SNPs, the obtained vectors of z-scores are translated into 

Mahalanobis distances. These Mahalanobis distances are subsequently assigned p-

values assuming they are chi-squared distributed. The underlying reasoning of 

PCadapt is that outlier loci suggest aberrant population clustering and therefore 

have fit less with the principal components than neutral loci. (For more information, 

see: Duforet-Frebourg et al., 2014; Luu et al., 2017).  

Bayescan’s false discovery rate (FDR) was set to 0.01, and focus on outlier 

loci with positive alpha scores, with are indicative of positive/diversifying selection 

rather than on of balancing/purifying selection. OutFlank outliers were scored 

based on Holm corrected p-values rather than on q-values, which is the default 

setting. PCadapt outliers were scored based on Bonferroni corrected p-values, with 

K set to 2. My simulations (discussed below) showed that above settings resulted in 

optimal combinations of power and sensitivity. For both the empirical and the 

simulated datasets, and for both the pairwise and the pooled approach, I ran 

PCadapt with K equals 2.  
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I visually assessed the outlier loci by comparing the locus specific Weir and 

Cockerham He and FST estimates (Weir and Cockerham, 1984) of outlier loci to those 

of remaining loci in a He-FST plot (Beaumont and Nichols, 1996).  

 

GWDS. Next to using published selection tests I also developed a new tool to search 

for loci under positive selection: GWDS or Genome Wide Differentiation Scan. 

Similar to GWAS, GWDS compares allele frequencies on a SNP by SNP basis. GWDS 

differs however from GWAS in two ways. The first difference is that GWDS searches 

for locus specific associations between allele frequencies and population division, 

rather than for locus specific associations between allele frequencies and 

phenotypic traits. This could concern pairwise comparisons between population 

pairs, but more statistical power is provided by comparisons between sets of 

multiple populations subjected to contrasting environmental pressures.  

The major assumption behind GWDS is that whereas allele frequencies of 

neutral loci differ randomly among populations, selection will temporarily cause the 

allele frequencies of positively selected loci to differ more strongly. This reasoning 

especially holds if both populations are sister populations (i.e. derived from the 

same ancestral populations), since their allele frequencies are initially correlated. A 

requirement is that the TMCRA of the sister populations is considerably less than 

4*Ne generations, as greater split times will result in fixation of alleles through drift.  

Allele frequency differences are scored as p-values outputted by Fisher exact 

tests executed on contingency tables of allele counts. These p-values are calculated 

using R’s built in fisher.test function, which outputs p-values which are up to 4 

decimals identical to p-values outputted by PLINK’s fisher’s exact test. 

The second difference between GWDS and GWAS – as well as between GWDS 

and methods applied in Hendrickson ( 2013), Cammen et al. (2015), Shultz et al. 

(2016) – is in the method of outlier detection. GWDS considers the p-values in itself 

to be uninformative, as those values depend on sample size, the demographic 

history (i.e. Ne) of the populations, and the relatedness and connectiveness of the 

populations. Instead, GWDS searches for loci with p-values which stand out from the 

overall distribution of test scores. It does so by calculating a Bonferroni corrected 

right tail value. 
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 GWDS assumes that the distribution of the negative natural log of obtained 

p-values fits an exponential distribution, and therefore that right tail values can be 

derived from the observed mean (i.e.: rate = 1/mean). This assumption of GWDS 

holds if and only if both sister populations split less than 4∙Ne generations ago. 

Longer split times will result in a bimodal distribution, with the modi reflecting 

fixation and loss of alleles due to drift. Another assumption is that the vast majority 

of SNPs will be neutral, and that the observed mean will not be inflated by a few loci 

under selection.  

The right tail threshold p-value is subsequently calculated for an Bonferroni 

corrected alpha value (i.e. alpha/n_snps, with alpha set to 0.05). SNPs with a –ln(p-

value) greater than this right tail value are marked by GWDS as outliers, possibly 

representing loci under positive selection.  

Although GWDS has been developed to detect soft sweeps (i.e. selection on 

standing variation, Hermisson and Pennings, 2005, 2017), it has the potential to 

detect selection on new mutations as well, provided the migration rate between 

populations does not equal zero. In the absence of gene flow, genetic drift will 

ultimately cause fixation or loss of neutral alleles in both populations, resulting in a 

bimodal distribution of Fisher’s exact test scores. GWDS will not be able to fit an 

exponential distribution to this bimodal distribution, and likely return either zero 

outliers or high false positive rates. GWDS is therefore applicable only to recently 

diverged isolated sister populations, or to ancient sister populations with correlated 

allele frequencies due to gene flow. 

As can be inferred from the explanation on the inner workings of GWDS, 

several key differences exist between GWDS and existing selection scans. These 

differences have consequences for the applicability of the method, and are therefore 

worth to mention explicitly:  

- One key difference between GWDS and FST outlier tests is that GWDS 

measures the differentiation of loci between populations using p-values 

outputted by rfisher exact test on allele counts contingency tables. These 

p-values are a measure of differences in relative proportions of minor and 

major alleles, and not a measure of the likelihood that a locus is an outlier, 

and a measure of the likelihood that a locus is an outlier.  



70 
 

- A second key difference between GWDS and FST outlier tests (except 

OutFLANK) is that GWDS does not simulate a null distribution. Instead 

GWDS fits a probability distribution to the observed dataset, similar to 

OutFLANK. Unlike OutFLANK, GWDS fits an exponential distribution to 

(the negative log of) rfisher exact test p-values (rather than a chi-squared 

distribution to FST values) and does not trim the dataset (i.e. no removal 

of top 5% and bottom 5% values). Furthermore, whereas OutFLANK uses 

the obtained probability distribution to assign right tail p-values to loci, 

GWDS uses the obtained probability distribution to determine the right 

tail threshold value. Because GWDS does not attempt to simulate a null 

distribution, changes in population size through time (e.g. population 

expansions) do not compromise the power and specificity of GWDS, as 

has been reported for several existing selection scans, including Bayescan 

(i.e. figure 3 in Luu et al., 2017). 

- A third key difference between GWDS and FST outlier tests (except 

OutFLANK) is the underlying demographic model. Originally FST outlier 

tests simulated the null distribution of FST values assuming an island 

model consisting of an infinite number of equally sized populations 

(‘demes’) with equal migration rates between populations and with no 

hierarchial structure (i.e. all population pairs are equally related) 

(Beaumont and Nichols, 1996). New, more sophisticated methods, such 

as the one implemented in Bayescan, liberated FST outlier tests from the 

first two constraints and allowed the study system to contain a limited 

number of populations of various sizes and with unequal migration rates 

among pairs of populations (Beaumont and Balding, 2004; Foll and 

Gaggiotti, 2008). The underlying demographic model of Fst outlier tests 

has remained however unchanged and still comprises an island model 

consisting of several (two or more) populations which are derived from a 

common ancestral gene pool and which potentially exchange migrants. 

The underlying demographic model of GWDS, in contrast, is limited to the 

specific case of two (either equal or unequally sized) populations which 

are derived from a common ancestral gene pool (with or without gene 

flow). In short, GWDS is specifically designed for pairwise comparisons 
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between populations, whereas existing selection scans, including 

Bayescan, OutFLANK and PCadapt, can also detect signals of selection in 

study systems which consists of more than two populations.  

 

Unlinked SNPs simulations tool. Simulated datasets of founder and source 

populations were generated using custom R functions describing a Wright-Fisher 

model. The demographic scenario consisted of a source population with a constant 

Ne of 1000 individuals which buds at t0 a founder population. Both the source and 

the founder population are subsequently allowed to drift for a certain number of 

generations. The source and the founder population do not exchange migrants (i.e. 

no gene flow).  

 The simulation tool simulates changes in allele frequences through 

generation of standing variation. It does not incorporate new mutations. The 

starting allele frequencies in the source population were set to 0.15 and allowed to 

drift for 200 generations before the founder event. Founder events and genetic drift 

subsequent and prior to the founder event were simulated with the rbinom function, 

which outputs the number of successes (number of allele copies in next generation) 

given a sample size (2∙Ne) and a success probability (allele frequency in current 

generation).  

 Selection was simulated in two ways. For selection coefficients of s>0.05, I 

simulated selection as a continuous process by multiplying each generation the 

rbinom output with the selection factor (1+s). For s<=0.05, I opted for a different 

way because the effect of selection was counteracted by rounding. Here I simulated 

a selective event as a doubling of the number of adaptive alleles, with a probability 

of occurrence of s per generation. Neutral loci were defined as SNPs which allele 

frequencies were affected by drift only. Loci under selection were defined as SNPs 

which allele frequencies were affected by both drift and selection. It was assumed 

that adaptive alleles were minor alleles in the source population, being (nearly) 

neutral in the source population habitat but advantageous in the founder population 

habitat. The opposite scenario, in which a (nearly) neutral major allele becomes 

detrimental in the founder population habitat, would produce the same outcome of 

high allele frequency differentiation. 
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The output of the simulations were allele frequencies/counts of a source and 

two founder populations, both directly following the founder event (t0) and after a 

certain number of generations (tgen). To incorporate observer’s error related to 

limited sampled sizes (i.e. deviation between population allele frequencies and 

observed allele frequencies), I generated sample allele frequencies using the rbinom 

function, with number of successes representing the number of allele copies in the 

genotyped individuals given, sample size equalling 30 individuals, and with success 

probability being defined as the population allele frequency. Sampled tgen output 

vectors served as simulated input for selection scans.  

 

Validation of unlinked SNPs simulation tool. I validated my Wright-Fisher 

simulator by comparing three simulation output scores with theoretical 

expectations: 1.) the proportion of retained variation directly after a founder event; 

2.) the fixation probability of neutral and adaptive alleles; 3.) time to fixation. 

Consistent with expectations, the observed proportion of retained variation 

depended on the number of founder (Nf) and allele frequencies in the source 

population as follows: 1-(1–maf)2∙Nf (Fig. 2.4A). Fixation probabilities approximated 

(1 – e-2∙Ne∙s∙p)/(1 – e-2∙Ne∙s) (Fig 2.1B in Kimura, 1962), which for nearly neutral alleles 

(s -->> 0) corresponded to the mean frequency of alleles directly following the 

founder event, as expected for neutral alleles (s=0) (Fig 2.1B). I also confirmed that 

fixation times were less than 4Ne generations for neutral alleles (Fig. 2.1C) and 

fixation times of less than (2/s)∙ln(2∙Ne) generations for adaptive alleles (Fig 2.1D, 

Kimura and Ohta, 1969). This is consistent with expectations, because the fixation 

time of standing variation should fall below the fixation time of new mutations.  

 

Unlinked SNPs simulation analyses. After validation of my simulator, I used it to 

assess the performances of GWDS in comparison to PCadapt and OutFLANK. 

(Bayescan, which runs on Linux rather than in R and has relatively long computation 

times, was excluded from this part of the analysis.) For each test – GWDS, OutFlank 

and PCadapt – I calculated the false positive rate (1 – specificity) as the number of 

neutral SNPs marked as outliers divided by the number of neutral SNPs with MAF > 

0 at t0. Similarly, for each test I calculated the power (1 – false negative rate) as the 

number of selected SNPs marked as outliers divided by the number of selected SNPs 
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with MAF > 0 at t0. (In other words: adaptive loci which were lost during the founder 

bottleneck event were excluded from the power and specificity calculations.)  

To evaluate the best approach for multiple testing correction, I corrected the 

p-values generated by each test using three correction methods: Benjamini-

Hochberg, Bonferroni, and Holm correction. I also evaluated the performance of 

each test without correcting the p-values, resorting to q-values in the case of 

OutFLANK (default setting). 

I first ran simulations for a range of demographic scenarios, for 9000 neutral 

loci and 1000 adaptive loci per scenario. Demographic scenarios included all 

combinations of selection coefficients ranging between 0 and 0.2 (step size 0.025) 

and constant effective founder population sizes of 10, 20, 30, 50, 100, 200, 300, 500, 

and 1000. The number of founders was set equal to the effective population size, 

and the number of generations of the founder population (starting at the founder 

event) was set to 20.  

This first round of simulations was executed to evaluate the power and 

specificity of the three selection scans (GWDS, Outflank and PCadapt) under various 

demographic scenarios and using various correction methods for multiple testing 

(i.e. none (FDR-rate approach in the case of OutFlank), Benjamini-Hochberg, 

Bonferroni, and Holm method). GWDS and OutFlank were instructed to calculate the 

neutral distributions based on the neutral loci only. Because this option is not 

available for PCadapt, and so that PCadapt could reliably obtain a neutral 

distribution, I set the proportion of adaptive alleles to a maximum of 0.1 (i.e. 

1000/10000).  

Following the outcome of this initial round of simulations, I ran a final 

simulation to estimate the power and specificity (and hence false discovery rate) of 

selection scans given the demographic scenario of the South Georgia reindeer 

populations. As the neutral distributions depend on the number of loci, I ran this 

simulation with the same number of loci as the empirical datasets (i.e. 80000 loci). I 

used an unrealistic number of 1000 adaptive loci to obtain a precise estimate  
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Fig. 2.1. Validation of simulation model. Retained variation (A) and fixation 
probabilities (B-D) in founder populations, as inferred from my simulation tool, 
depending on the number of founders, the effective population size (Ne), the age of the 
population (number of generations (G), the selection coefficient (s), and the mean of 
an uniform distribution of minor allele frequency in the source population (maf or q). 
All estimates are obtained from 1000 SNPs. A. Retained variation. Simulated (points) 
and expected (lines) retained variation in diploid founder populations directly 
following the founder event given the number of founders and given the mean allele 
frequency in the source population. B. Fixation probability. Simulated (points) and 
expected (lines) fixation probabilities in diploid founder populations given the 
selection coefficient and given the mean allele frequency in the source population. 
Number of generations is set to 500. Ne is set to 50. C. Time to fixation for neutral 
alleles. Simulated fixation probabilities in founder populations given a fixed effective 
population size (Ne = 25, 50, 100, 200, 500) and given the age of the founder population 
(G = 25, 50, 100, 200, 500). s is set to 0. q is set to 0.15. Theoretical populations genetics 
predicts a fixation time of a neutral newly mutated allele of 4Ne generations. D. Time 
to fixation for positively selected alleles. As C, but with s to 0.1. Expected fixation 
time of adaptive neutral allele equals 2/s * ln (2*Ne) generations.  
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of the false negative rate. (Whilst running the selection GWDS and OutFlank, neutral 

distributions were derived from datasets which excluded the 1000 adaptive loci.) 

The demographic scenario settings were 10 founders and a constant effective 

founder population size of 50 individuals during 20 generations. Based on the 

outcome of the first round of simulations (see results section), I adjusted PCadapt p-

values using the Bonferroni correction, and OutFlank p-values using the Holm 

method. GWDS p-values were not adjusted.  

  

Gene identification. Genes and other genomic features close to outlier SNPs were 

identified based on both a cow genome annotation (ref Bos_taurus_UMD_3.1.1, 

Zimin et al., 2009) and a reindeer genome annotation (Li et al., 2017), using the 

software BEDtools v2.26.0 (Quinlan and Hall, 2010). I decided to use the average 

spacing between SNPs as the maximum accepted distance between the outlier SNP 

and gene. Genes were considered potentially linked to an outlier SNP if they were 

within 150 kb distance from the outlier SNP, and if no non-outlier SNP was present 

in between.  

 

Results 

SNP calling and filtering. Both sequencing lanes combined produced 692.7 million 

(320.3 + 372.4) single-end reads. Over 13.0 million reads had to be discarded due to 

either low quality, an ambiguous radtag, or a missing read mate, resulting in an 

average number of 2.8 million read pairs per sample (stdev: 1.6 million, min: 0.2 

million, max: 7.4 million) (Table A2.1, Fig. A2.1). Mean alignment rates equalled 95% 

and 65% respectively, with 85% and 43% of the reads aligning concordantly to one 

location (Fig. A2.2).  

From the reindeer aligned dataset, STACKS obtained 418,286 loci/stacks, of 

which 87,552 loci/stacks passed the filters, consisting of 9,627,420 sites, of which 

87,876 (0.91%) sites were bi-allelic SNPs – 47,152 of which with MAF >= 0.05 – 

concentrated on 50,967 loci/stacks. The mean sequence depth per per individual 

ranged from 0 to 67 reads per locus, with an average of 26 reads per individual (Fig. 

A2.3). Individuals with less than 1, 0.5 and 0.25 percent missing data had a minimum 

cover of respectively 26, 32 and 35 reads per locus (Fig. A2.3). I retained 95 

individuals (30-34 individuals per population) and 83,406 SNPs after  
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Fig. 2.2. Genetic clustering analyses of reindeer samples belonging to both South 
Georgia populations (Busen and Barff) and their Norwegian source population. 
Colour coding (except for D): blue = Busen, green = Barff, red = Norway. A. Fixation 
index ((He – Ho)/He) per population, displaying absence of Wahlund effect. B. 
Principal coordinates analysis based on Nei’s genetic distance. C. Nei’s genetic distance 
between samples. D. Admixture analyses for 2 <= K <= 6, with random colour coding. 
E. Discriminant analysis of principal components. F. Migration rates between the three 
populations, as inferred by Bayesass3-SNPs.  
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filtering and 27,690 SNPs after thinning. The GC-content equalled 0.6, and 

‘transversion vs transition’-ratio ranged between 1.96 and 2.16, depending on the 

filter settings (Fig. A2.4, Table A2.2).  

From the cow aligned dataset, STACKS obtained 205,076 loci/stacks, of 

which 36,273 loci/stacks passed the filters (‘sample/population constraints’), 

consisting of 3,990,030 sites (STACKS claims 3,969,066), of which 29,037 (0.72%) 

sites were bi-allelic. These biallelic sites were concentrated on 18,762 loci/stacks. I 

retained 95 samples and 20.184 SNPs after filtering and thinning. The SNPs were 

evenly spread over chromosomes (Fig. A2.5), with a median and average spacing of 

respectively 0.2 and 23 kb for the filtered dataset and 38 and 60 kb for the thinned 

dataset (Table A2.2). 

 

Structure and diversity analyses. Population structure analyses (i.e. PCA, DAPC, 

admixture analyses) verified the existence of three distinct clusters, and therefore 

the assumption that the two founder populations were geographically isolated (i.e. 

no gene flow; Fig. 2.2A-E, A2.6). Absence of migration was furthermore confirmed 

with the software BayesAss3-SNPs (Fig. 2.2F, Table A2.3). Population specific 

genetic diversity estimates showed strong signatures of recent bottleneck events, 

with both founder populations displaying site frequency spectra (SFS) typical for 

bottlenecked populations: reduced nucleotide diversity coupled with high 

proportions of common SNPs, testifying that many alleles, mostly of low frequency, 

were lost during and/or after the founder bottlenecks (Fig. 2.3). 

 Estimates of genome wide proportions of segregating sites equalled 0.43%, 

0.49%, and 0.83% respectively for Busen, Barff and Norway (Fig. 2.3E). The 

equation 1-(1–maf)2∙Nf can be used to calculate expected proportions of segregating 

sites directly following the founder bottleneck. Given that the average MAF within 

Norway equalled 0.17, and assuming the number of founders (Nf) of the Busen and 

Barff populations were respectively 7 and 10 individuals (Leader-Williams, 1988), 

the proportion of segregating sites directly following the bottleneck will have been 

around respectively 0.77% and 0.81%, much higher than 0.43% and 0.49%. The 

implication is that the majority of genetic variation was lost due to genetic drift 

during subsequent generations rather than during the founder event itself.  
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Fig. 2.3. Genetic diversity estimates for both South Georgia reindeer populations 
(Busen, Barff) and their Norwegian source population. Colour coding: blue = 
Busen, green = Barff, red = Norway, white = metapopulation. A. Histograms of minor 
allele frequencies. B. Boxplots of linkage disequilibrium estimates (squared Pearson 
correlation coefficients based on genotype scores) per physical distance class (100 kB 
bins). White dots indicate mean values. C. Percentage of segregating sites per minor 
allele frequency class. D. Observed theta versus Watterson’s estimate of theta. Inset: 
Tajima’s D, scaled to 1bp. E. Proportion of segregating sites over all sequenced sites. F. 
Estimates of sample heterozygosity, obtained by only considering sites which are 
segregating in the population to which the sample belongs. G. Estimates of sample 
heterozygosity, over all sequenced sites.  
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Similar conclusions can be drawn from heterozygosity estimates. Mean locus 

heterozygosity estimates per population, when considering both segregating and 

non-segregating sites), were 0.19, 0.17 and 0.24 (Fig. A2.7) for Barff, Busen and 

Norway. These relative values (differences between populations) are in agreement 

with conclusions previously drawn based on microsatellite analyses (Lovatt and 

Hoelzel, 2014). Expected heterozygosity (He) depends on Ne and He in the previous 

generation as described by the function: Het = 1 - 1/(2∙Ne)∙Ht-1 (Nei et al, 1975). 

Expected mean locus heterozygosity of the Busen and Barff founders therefore 

equals respectively 0.22 and 0.23, much higher than 0.17 and 0.19. Again the 

implication is that the majority of genetic variation was lost due to genetic drift 

during subsequent generations, rather than during the founder event itself.  

 

Selection analyses. The number of outliers identified by Bayescan, GWDS, OutFlank 

and PCadapt for the pooled approach were respectively 10, 3, 5 and 15 (Fig. 2.4C-D, 

A2.8A). None of the outliers detected by Bayescan had a negative alpha value (Fig 

A2.8B). Overlap between the sets of outliers identified by different scans was 

restricted to three outliers marked by both Bayescan and GWDS, of which one was 

also identified by PCadapt (Fig 2.4C). Two of those overlapping outliers were, 

according to alignments to both the cow genome and the reindeer genome, adjacent 

SNPs 80-85 kB apart.  

The two adjacent SNPs mapped to a genomic region of cow chromosome 25 

displaying a weak peak-valley-peak signature indicative of positive selection in 

sister populations: FST peaks for both source-founder comparisons, and an FST valley 

for the founder-founder comparison (Fig 2.4B, A2.9-A2.10, Roesti et al., 2014). As 

expected for a soft and incomplete selective sweep (Hermisson and Pennings, 2005) 

sliding window Tajima’s D analyses did not reveal a signal of selection for this 

genomic region (Fig. A2.11).  

The population specific MAFs (with the minor allele defined respective to the 

metapopulation) of the most confidently marked outlier SNP equalled 0.03, 0 and 

0.68 for respectively Busen, Barff, and the Norwegian source population. The  
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Fig. 2.4. Selection analysis. A. Conceptual model of the two approaches used when 
running selection analysis. B. Peak-valley signal around position 14Mb on 
chromosome 25, the location of the 2 adjacent outlier SNPs. C. Venn diagrams of outlier 
sets outputted by the selection scans Bayescan, GWDS, PCadapt and OutFlank, for both 
the pooled approach as well as both comparisons of the pairwise approach. D. Fdist 
plots showing the location of neutral the outliers outliers outputted by the selection 
scans Bayescan, GWDS, PCadapt and OutFlank, for the pooled approach as well as both 
comparisons of the pairwise approach. 
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adjacent SNP had MAFs of 0.1, 0.04 and 0.77. The third outlier SNP had a MAF of 

0.07, 0.03, and 0.73. Hence, the three outlier SNPs show a consistent signal of 

positive selection on an allele with a low frequency in the source population.  

However, none of the three outliers identified by GWDS in the pooled 

approach were identified by any of the selection scans for pairwise population 

comparisons. Overlap between selection scan outlier sets per pairwise comparison 

was restricted to the Barff-Norway comparison, with one SNP marked as outlier by 

both GWDS and Bayescan, and two SNPs marked by both GWDS and Bayescan (Fig. 

2.4). 

 He-FST scores of outlier loci clustered by selection scan (Fig 2.4D). For 

pairwise comparisons (i.e. Barff-Norway and Busen-Norway), the He-FST of outlier 

loci did generally not stand out from the observed overall He-FST distribution (Fig 

2.4D). The opportunity for outlier loci to stand out from neutral loci was limited 

because the overall He-Fst distribution filled the entire spectrum of possible He-FST 

values for pairwise population comparisons. This spectrum of possible He-FST 

values has the shape of a shark fin, of which the left boundary is described by FST = 

He and represents loci which are segregating in one population only. The right 

boundary of the ‘shark fin’-spectrum represents loci with opposing allele 

frequencies in either population (e.g 0.3-0.7 in one population and 0.7-0.3 in the 

other population).  

  The overall distribution of He-FST estimates was less inflated for the pooled 

dataset compared to either pairwise datasets (Fig 2.4D), increasing the opportunity 

for loci under selection to stand out from the neutral distribution and hence to be 

detectable by selection scans. Indeed, the outliers detected with the pooled 

approach (i.e. both founders vs source) did stand out from the overall distribution, 

except for the majority of outlier loci detected by PCadapt (Fig 2.4D).  

   

Simulation analyses unlinked SNPs. I used the Wright-model simulator for 

unlinked loci to address several questions about my empirical findings. The main 

purpose was to assess whether and/or which loci marked as outliers were true loci 

under selection (questions 4-6). To answer these questions, I required a better 

understanding of the observed inconsistencies in results obtained from different 

selection scans and different approaches. The first purpose of my simulations was  
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Fig.2.5. Selection scan power analysis. Power and specificity of the selection scans 
GWDS, OutFlank and PCadapt in recently established founder populations given a 
population age of 20 generations,a sample size of 30 individuals per population, a 
selection coefficient s, and a constant effective population size Ne (i.e. no founder 
bottleneck). OutFlank and PCadapt p-values were corrected using respectively the 
Holm and the Bonferroni method. Scores based on 9000 neutral SNPs and 1000 
adaptive SNPs.Number of founders equals founder Ne (i.e. no bottleneck). 
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therefore to evaluate the performances (i.e. power and specificity) of selection 

scans, including GWDS, in the context of founder populations (questions 1-3).  

The first question I needed to answer in order to be able to compare selection 

scans, was: Which multiple test correction method maximized the performances of 

the selection scans used in my simulations? I found that OutFlank and PCadapt 

generally perform best when using respectively the Holm method and the 

Bonferroni method for multiple test correction (and hence not q-values, which is the 

default setting of OutFlank) (A2.12). I also found that the specificity of Bayescan 

quickly drops when increasing the false discovery rate (FDR), whereas the power of 

Bayescan only marginally increases (Fig A2.13). I therefore set the FDR of Bayescan 

to a low value of 0.01, for both simulated and empirical datasets.  

My second question was: What is the power and specificity of GWDS under 

various demographic scenarios of recently established founder populations 

(TMRCA <= 20 generations), and how do these test scores compare to the power 

and specificity of other selection scans, more specifically OutFlank and PCadapt? I 

found that GWDS generally has higher specificity scores (i.e. lower false positive 

rates) than PCadapt, and higher power scores (i.e. lower false negative rates) than 

OutFlank (Fig 2.5). This is especially true for scenarios involving relatively low 

effective population sizes (Ne < 50), as low Ne negatively affects the power of 

OutFlank and negatively affects the specificity of PCadapt (Fig 2.5). Each of the three 

selection scans (GWDS, OutFlank, PCadapt) failed to detect the majority of positively 

selected loci in founder populations which are founded recently (<20 generations 

ago) and which are small to moderate in size (Ne<100) (Fig 2.5).  

My third question was: to what extent do these high false negative rates of 

selection scans in small founder populations reflect poor test design, and to what 

extent the outcome of drift overriding and obscuring positive selection? In other 

words: to what extent do loci under selection stand out from the backdrop of 

variation found within neutral loci? I addressed this question by visual inspection of 

the He-FST distribution of neutral loci.  

Simulated He-FST plots indicated that whether selected loci stand out from 

neutral loci, depends both on the sample size (number of genotyped individuals  
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Fig.2.6A-B. Overlap between approaches. Scatterplots showing the overlap between 
outliers scored using different approaches (pooled vs pairwise approach) of both 
simulated (A, upper row) and empirical (B, lower row) datasets. All simulations are 
based on 79000 neutral loci and 1000 loci under selection (s=0.1), and a two-step 
demographic scenario consisting of a bottleneck of 10 individuals for 1 generation,and 
a fixed Ne of 50 individuals during 20 subsequent generations. A. Scatterplots 
comparing simulated -log10(p-values) of Fisher exact tests performed on 
contingencies tables of minor allele counts) for simulated datasets using different 
approaches. First plot: pooled (Founder vs Source) vs pairwise (F_pop2 vs Source). 
Second plot: pairwise1 (F_pop1 vs Source) vs pairwise2 (F_pop2 vs Source). B. Idem as 
D, but for empirical datasets. The pooled approach is denoted as ‘Founder vs Source’.  
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per population) and on the long-term effective population size (Ne) of the founder 

population (Fig A2.14). For Ne <= 20, the distribution of neutral alleles fills the entire 

shark fin shaped He-FST spectrum, obscuring all loci under selection. For Ne >= 50, 

the distribution does not fill the entire He-FST spectrum (Fig A2.14). This provides 

the opportunity for loci under selection to stand out from neutral loci, and therefore 

to be detectable by selection scans (Fig A2.14). 

I furthermore observed that in small founder populations (e.g. Ne = 20), in 

which drift is dominant, the selected loci have a bimodal distribution on the line 

He=FST (Fig A2.14). The group with low He and FST scores represent loci which were 

lost in the founder population after the founder event, due to genetic drift. The group 

with high He and FST scores represent loci which reached fixation in the founder 

population. The proportion of selected loci belonging to the first group decreases 

with increasing Ne (Fig A2.14). 

My fourth question was: which demographic model fits the demographic 

history of the Busen and Barff populations? The answer to this question was needed 

in order to be able to address the remaining questions. I inferred this model visually 

by comparing the fit between observed (Fig 2.4) and simulated (Fig. A2.14) 

distributions (under various demographic scenarios) of locus specific He-FST 

estimates, as well as between observed and simulated distributions of GWDS scores 

(Fig. A2.15B). From these comparisons, I inferred that the demographic history of 

the Busen and the Barff populations can be roughly described by a two-step 

demographic scenario, consisting of a bottleneck of 10 effective founders for 1 

generation, and a fixed Ne of 50 individuals during 20 subsequent generations. 

My fifth question was: Given the demographic history of the South Georgia 

reindeer populations, which approach (i.e. pooled or independent/pairwise 

approach) maximizes the performance of selection scans? I found that for the 

demographic scenario described above, selection scans scored both higher power 

(Fig A2.15) and specificity (Fig. 2.6A) with the pooled approach compared to the 

pairwise approach. I also observed that the majority of adaptive loci which were 

marked as outliers with the pooled approach were not marked as outlier with the 

independent approach, and vice versa (Fig. 2.6A).  
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Fig.2.6C-F. Overlap between selection scans. Overlap between outliers scored by the 
selection scans Bayescan, GWDS, OutFLANK and PCadapt in simulated (C,E) and 
empirical (F) datasets. Simulations are based on 59000 neutral loci and 1000 adaptive 
loci (s=0.1), and a two-step demographic scenario meant to reflect historical Ne of both 
St Georgia reindeer populations: a bottleneck of 10 individuals for 1 generation,and a 
fixed Ne of 50 individuals during 20 subsequent generations. C. Venn diagram showing 
the simulated overlap between outlier sets and true loci under positive selection. D. 
Expected number of false positives (black line), calculated as (1-specificity)*56079 
SNPs, versus the number of putative outliers outputted by selection scans for all three 
comparisons (i.e. Barff vs Norway, Busen vs Norway, and Barff & Busen vs source. 
Specificity estimates were calculated from simulated data (see 2.6C) using the formula 
(1-false positives)/79000. The estimate for GWDS was lowered from 100% to 99.95% 
based on results presented in Fig. 2.5. E. Scatterplots comparing negative log(p-values) 
of selection scans for simulated neutral (black) and positively selected (red) SNPs using 
the pooled approach. Dashed lines indicate Bonferroni threshold for 60K SNPs. . F. 
Idem as E, but for empirical rather than simulated datasets. Red dots indicate SNPs 
marked by the selection scans as outliers.  
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Furthermore, in a 2D-Manhattan plot displaying GWDS test scores for both 

independent pairwise comparisons, the three outlier SNPs were positioned in a plot 

region which according to my simulations holds adaptive loci exclusively (Fig 2.6B).  

My sixth and final question was: Given the demographic history of the study 

populations, what is the probability that the outliers detected by the selection scans 

are true loci under selection? When applying the pooled approach to a simulated 

dataset generated with the demographic scenario described above, Bayescan, 

GWDS, OutFLANK and PCadapt marked respectively 18, 0, 0 and 37 out of 79000 

neutral loci as false positives, translating to specificity scores of respectively 

99.98%, 100%, 100% and 99.96% (Fig 2.6C). The total number of outlier SNPs 

marked by the four selection scans in my empirical datasets fit the expected number 

of false positives based on these specificity scores and the size of my dataset (Fig 

2.6D), suggesting that all outlier SNPs could represent false positives. I however also 

found that nearly all SNPs detected by more than two outlier scans were true 

adaptive loci (Fig 2.7E), suggesting that the three outlier loci detected by multiple 

selection scans (Fig 2.7F), were true loci under selection.  

 

Gene identification. As mentioned above, among the three identified outlier SNPs 

two were on the same contig and the third (‘non-adjacent’) SNP was on a different 

contig. The closest known gene to the non-adjacent outlier SNP is HAO1, which 

codes for the protein hydroxyacid oxidase. This gene is however separated from the 

outlier SNP by a stretch of 200kB containing four non-outlier SNPs, and is therefore 

unlikely to be of interest (Fig. 2.7).  

 In contrast, I did find a gene relatively close to the two adjacent outlier loci. 

Alignments to both the reindeer and the cow genome indicated the presence of an 

exon in between the two adjacent outlier SNPs (Fig. 2.7). This exon is part of a gene 

coding for myocardin-related transcription factor B, known as both MRTF-B and 

MKL2. MKL2, short for megakaryoblastic leukemia 2, is a member of the myocardin 

family (Selvaraj and Prywes, 2003). This family contains the protein myocardin 

(MYOCD), the transcription factors A and B (MKL1 and MKL2), and MASTR (Swärd 

et al., 2016).  
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Fig.2.7. Genomic features close to outlier SNPs. Genomic features within 200kB 
distance of the 3 outlier SNPs, according to alignment to both the cow genome. A. and 
the reindeer genome B.. Shading and lines show population specific minor allele 
frequencies of each SNP. Outlier SNPs are indicated with an asterix. Detected genomic 
features are uncharacterized loci LOC509226, LOC104975849, LOC100B49885, RNA 
sequences TRNAT_CGU, MIR193B, MIR365_1, and two protein coding genes: MKL2 and 
HAO1.  
 

A 
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MKL2 is a transcriptional coactivator of the serum response transcription 

factor (SRF). SRF controls the expression of muscle-specific genes, and is required 

for both striated and smooth muscle differentiation (Selvaraj and Prywes, 2003; 

Swärd et al., 2016). MKL2 is also implicated in E-cadherin-mediated cell-cell 

adhesion and signaling, which plays an essential role in development and 

maintenance of healthy epithelial tissues (Guo et al., 2014). 

 

Discussion 

In this study I capitalized on a semi-natural experiment to search for shared signals 

of selection in two sister populations which were simultaneously founded in 

geographically isolated but environmentally similar habitats. I additionally 

performed simulations to evaluate and provide additional support for my empirical 

findings. My overall aim was to gather empirical evidence that founder populations 

can start adapting directly following a founder event. 

I screened the genomes of the study populations using four selection scans 

(i.e. Bayescan, GWDS, OutFlank and PCadapt) and two different approaches (i.e. 

pooled and pairwise approach) and found limited overlap in sets of loci marked as 

outliers. Most loci marked as outliers with the pooled approach were not marked as 

outliers with the pairwise/independent approach and vice versa. In addition, and as 

reported in previous studies (e.g. figure 2a in Andrew et al., 2018; figure 3a in Chen 

et al., 2018), most loci marked as outliers by one selection scan were not marked as 

outliers by other selection scans.  

To better understand the observed inconsistencies, I ran simulations using a 

custom-built Wright-Fisher model simulator. This tool was specifically designed to 

simulate unlinked neutral and adaptive allele frequencies in founder and source 

populations following a founder event. I validated the model by comparing 

simulation results (i.e. proportion of retained alleles and fixation probability and 

time) with established equations from theoretical population genetics (Fig 2.4) 

based on the Wright-Fisher model. 

My simulations provided estimates of the power and specificity of three R 

software packages for selection analysis (GWDS, PCadapt and OutFlank) in the 

context of pairwise source and founder population comparisons in the absence of 

gene flow. I evaluated the performance of each test for various combinations of 
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selection coefficients (s) and founder effective population sizes (Ne) (Fig 2.5) in 

recently diverged populations. The focus of this simulation study differs both in the 

methodology and aim from earlier simulation studies, which mainly evaluated the 

performance of selection scans under varying demographic models (De Mita et al., 

2013; Lotterhos and Whitlock, 2014; Luu et al., 2017; Narum and Hess, 2011). The 

outcome of my simulations are only informative for the particular case of 

heterogeneous selection on standing variation in source-founder populations in the 

absence of gene flow, and caution should be exercised when extrapolating the 

results to other demographic scenarios. 

My simulations indicated strong dependency of the performance of all three 

selection scans on both factors (s and Ne), with poor power resulting from low Ne 

and/or low s, exarcebated by the sampling effect. For Ne <= 50, the majority of 

positively selected loci were not detected by any selection test, unless the selection 

coefficient was very high (s >= 0.15). My simulations suggest relatively low power 

in small founder populations for the software OutFLANK. Zero power for OutFLANK 

under certain scenarios has been reported previously (e.g. figure 5 in Bernatchez et 

al., 2016; Luu et al., 2017). For founder populations with Ne ≥ 50, my simulations 

confirmed the claim of OutFLANK developer’s that OutFLANK has high specificity 

without greatly compromising power (Lotterhos and Whitlock, 2015).  

Visual examination of He-FST plots reveal that the low power of selection 

scans in small isolated founder populations does not reflect flawed test designs, but 

rather the confounding effects of genetic drift both during (bottleneck sampling) 

and after the bottleneck. Genetic drift can make selected loci indistinguisable from 

neutral loci in two ways: by affecting the detectability of selected loci directly and 

indirectly. Drift works directly on the selected loci itself, and can moderate or even 

counteract selective driven allele frequency change. In addition drift affects neutral 

loci and as such the backdrop of neutral variation from which selected loci need to 

stand out in order to be detected by selection scans (Lotterhos and Whitlock, 2015).  

The indirect obscuring mechanism is especially relevant under two 

conditions: low Ne, and no gene flow. In small isolated populations the time window 

in which positively selected loci can stand out from the backdrop of neutral variation 

(i.e. approach and reach fixation before neutral alleles do so) is limited or near 

absent (Fig. A2.12). In big populations, in contast, neutral alleles take a long time to 
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reach fixation, which provides a wide time window for adaptive loci to stand out. In 

communicating populations (i.e. in the presence of gene flow), the allele frequencies 

in populations are correlated, and FST values do not converge to 1, resulting in an 

infinite time window in which heterogeneous selection can make adaptive loci stand 

out (figure 3a in Beaumont and Nichols, 1996).  

The direct obscuring mechanism operates regardless of population size and 

gene flow, and can make selected loci indistinguisable from neutral loci despite the 

potential to stand out (Fig. A2.12). This effect can be either temporary or, if caused 

by loss of the adaptive allele, permanent, the latter possibility especially likely in 

small populations (Fig A2.12). Negative results from outlier tests could reflect the 

absence of selection, but also the influence of direct and indirect obscuring 

mechanisms, and should therefore not be overinterpreted (Lotterhos and Whitlock, 

2015).  

The direct and indirect obscuring mechanisms explain the presence of false 

negatives. It is less clear how the effect of drift causes false positives. I found that the 

majority of the loci marked as outliers by the selection tests for the empirical 

datasets were indistinguisable from neutral loci with regard to locus specific Weir 

& Cockerham He-FST scores (Fig 2.3D). My simulations indicate that false negatives 

are predominantly found on or in proximity to the lower left boundary of the He-FST 

spectrum (Fig. A2.14), the boundary reflecting fixation or loss in either population. 

In contrast, the empirical outlier SNPs are more widely scattered across the He-FST 

spectrum (Fig 2.3D).  

It could be argued that a positively selected locus can have an ordinary He-

Fst score and yet stand out in other respects. The finding that outlier He-FST scores 

cluster by selection scan (Fig 2.3D), suggests the probability of a locus being marked 

as outlier depends partly on the selection test used (i.e. Bayescan, GWDS, PCadapt 

or OutFlank). This might be suggestive of flawed test designs, but it might also 

indicate complementarity among selection scans. As evidenced by the existence of 

many different types of selection scans (Oleksyk et al., 2010), selected loci can 

exhibit various sorts of signals of selection. If these signals are uncorrelated, 

selection scans which query different signals will output different (i.e. 

complementary) sets of outliers. 
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My simulations however indicate that the inconsistencies between outputs 

of different selection tests do not result from complementarity, but are more 

generally indicative of type I errors. My simulations indicated that loci marked as 

outliers by only one test are predominantly false positives. In contrast, loci marked 

as outliers by multiple tests are predominantly true loci under selection. In a 

simulation of founder populations with a demographic scenario mirroring the 

demographic history of South Georgia study populations, and given a sample size of 

30 individuals per population, most loci identified as outlier by only one test were 

false positives, whereas most loci identified by at least two selection scans were true 

adaptive loci (Fig 2.6C). More specifically, all loci identified as outlier by all selection 

scans were true adaptive loci (Fig 2.6C). 

My simulations also provided insights into the observed inconsistencies 

between the pooled and pairwise approach, and suggested that these 

inconsistencies are more commonly indicative of false negatives than of false 

positives. In simulated populations with demographic histories similar to that of my 

study populations, only a minority of simulated adaptive loci were detected by both 

approaches (Fig 2.6A). This implies that a locus does not have to be detected by both 

approaches in order to be considered a true outlier.  

I reasoned a priori that since the South Georgia reindeer populations might 

have underwent parallel evolution, they potentially shared genetic fingerprints of 

selection, which would increase the ability to differentiate true loci under selection 

from false positives. I realize that focusing on shared signals comes at the expense 

of overlooking private signals. Given the substantial loss of genetic variation in both 

populations (i.e. less than 65% retained variation, Fig 2.2E), a minority of adaptive 

alleles (i.e.: 0.652 = 0.4225) is expected to be present in both populations. The 

implication is that most selective events are expected to be private events, occurring 

in either population but not both. My analyses however revealed a lower specificity 

of selection scans when applying the pairwise approach compared to applying the 

pooled approach (Fig 2.6A), offering less confidence in differentiating between false 

positives and true unshared loci under selection. As the main aim of my study was 

to provide compelling empirical evidence for selective events in founder 

populations, I therefore focused on results obtained with the pooled approach. In 
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other words: I directed my attention towards firmly established outliers, at the 

expense of overlooking less well-established outliers.  

The insights gained from my simulations assist the interpretation of my 

empirical findings. The pooled approach resulted in three loci which were marked 

as outliers by two or more selection scans. Two of these loci were detected by both 

Bayescan and GWDS, whereas the third was identified by Bayescan, GWDS and 

PCadapt (Fig 2.3C). My simulations indicated that false positives are uncommon 

among loci detected by two and especially by three selection scans (i.e. Bayescan, 

GWDS and PCadapt), and therefore imply these three loci are most likely true loci 

under selection (Fig 2.6E-F). My simulations furthermore show that this conclusion 

is not contradicted by the fact that these loci were not detected by either of the 

pairwise comparisons (i.e. Busen-Norway and Barff-Norway, Fig 2.6A).  

A potential confounding factor which cannot be assessed through 

simulations is the effect of genotyping errors. However, the relative positioning of 

the outlier loci argues against explanations involving genotyping errors, at least for 

the two adjacent SNPs. These two adjacent SNPs share a congruent signal of 

selection (Fig. 2.7) despite being located on different sequencing reads. The 

improbability of any pair of unrelated outlier SNPs being adjacent by chance, given 

the small proportion of outlier SNPs (3 out of 67.718 SNPs in total), greatly 

diminishes the chance that their unusual high FST values result from sequencing 

errors.  

I observed that one of the reads containing an adjacent outlier SNP, contained 

next to the outlier SNP a neutral SNP. This neutral SNP, 34 bp distant from the outlier 

SNP, had population specific MAFs of 0, 0, and 0.01 for respectively Busen, Barff and 

Norway (source population) (Fig 2.7). The minor allele was possibly linked to the 

adaptive allelle, as the only copy in the source population occurred in an individual 

which was heterozygous for both the neutral SNP and the outlier SNP. But even if it 

was linked, the low number of copies within the source population makes it likely 

that this allele was lost in both founder populations, either due to the bottleneck or 

due to genetic drift in subsequent generations, before it could rise in frequency due 

to linkage. Hence, the presence of this neutral locus in the close vicinity of an outlier 

SNP, does not question the integrity of the outlier SNP.  
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Based on the analyses of my empirical and simulated datasets, I conclude that 

my study provides compelling empirical evidence that founder populations can 

adapt to their novel environment within ecological time scales. Theory predicts that 

founder populations have constrained adaptive capacities as a consequence of the 

founder bottleneck, which causes both a reduction of genetic variability (i.e. 

reduction of adaptive potential) (Willi et al., 2006) and a temporal increase of the 

magnitude of genetic drift. My simulations indeed indicate severe loss of genetic 

variation within the South Georgia founder populations, which makes that only a 

minority of potential adaptive alleles – less than 0.4225, as explained above – can be 

expected to have been retained both South Georgia founder populations (instead of 

in one population only). Depending on the level and nature of genetic variation 

within the source population, this can however still provide plenty of potential for 

parallel adaptive evolution.  

 With regard to the second adaptive constraint of founder populations – 

increased magnitude of genetic drift due to small population size – my simulations 

indicate that even in the face of strong genetic drift, selection of sufficient strength 

(e.g.: s = 0.1) can drive a proportion of adaptive alleles to fixation within a relatively 

short timeframe (i.e. 20 generations) (Fig A2.12; A2.14). In fact, it can even be 

argued that under certain conditions adaptive alleles have relatively high fixation 

probabilitys in founder populations. Imagine for example an adaptive allele (s = 

0.01) which is represented by 10 copies in a diploid population of 1000 individuals, 

and which after a founder event is represented by 2 copies in a population of 5 

individuals. According to Kimura’s fixation probability function – i.e. u(p) = (1-exp(-

4*N*s*p))/(1-exp(-4*N*s) (Kimura, 1962)– the fixation probability of this allele 

went up from 0.18 in the source population to 0.21 in the founder population. The 

reason of this increase is biased sampling: even though only 2 out of 10 adaptive 

allele copies were retained in the founder, the frequency of the allele went up from 

0.5% to 20%. Because the fixation probabilities of deleterious alleles are especially 

likely to go up during a founder event (if retained in the founder population), 

purging of slightly deleterious alleles might represents a big challenge for 

bottlenecked (founder) populations (Feng et al., 2019). 

If the identified outlier region(s) are indeed true loci under positive selection, 

the next question is: what were the associated phenotypic traits under selection? 



95 
 

Insular populations, such as the South Georgia reindeer, exhibit evolutionary trends 

in both morphological and behavioural traits (Losos and Ricklefs, 2009). One of 

these trends, the island rule or Foster’s rule, involves changes in body size and 

predicts dwarfing of big species and gigantism of small species (Foster, 1964; 

Lomolino et al., 2013; Rozzi and Lomolino, 2017). Case studies of both extinct (e.g.: 

Lister, 1989) and extant species (e.g: Gray et al., 2015) illustrate that these changes 

can occur rapidly.  

Cervidae are among the taxonomic groups which are particularly susceptable 

for insular dwarfing (Lomolino et al., 2013). Insular populations of reindeer are 

often characterized by reduced leg length, most extremely the Svalbard reindeer 

(Klein et al., 1987). Mainland populations adhere to Allen’s rule by exhibiting a 

latitudinal gradient of decreasing leg length from south to north (Klein et al., 1987). 

These mainland and insular trends are thought to represent a trade-off between 

costs and benefits associated with long legs. Long legs provide increased locomotion 

efficiency and speed, which aids migration and predation avoidance, especially in 

deep snow cover. Long legs are however costly to build and to maintain, and 

complicate thermoregulation and foraging at ground level (Klein et al., 1987). There 

is however no evidence for decreased leg lengths in the South Georgia populations 

(Leader-Williams, 1988). 

Rather than being associated with insularity, it is also possible that the trait 

under selection in the South Georgia populations were associated with factors 

specific for the South Georgia habitat. Environmental differences between South 

Georgia and the habitat of the Norwegian source population included a higher 

salinity (sea spray and greater proportion of marine grasses), the absence of 

predators, a milder climate (although with more heavy winds, (Leader-Williams, 

1988, page 36), and dietary changes due to vegetation differences. According to 

investigations by Leader-Williams (1988), this latter category might have led to 

increased mortality rates among the South Georgia reindeer.  

South Georgia reindeer mortalities followed patterns typical for deer, with 

females dying mostly in late winter and males mostly dying in early winter, after the 

rut (Leader-Williams, 1988). There were, however, two unusual mortality factors, 

not commonly observed in for insular populations, nor in the Norwegian source 

reindeer population. One unusual mortality factor consisted of falls over cliffs 
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(Leader-Williams, 1988). This occurred among all age classes, but especially in 

calves (Leader-Williams, 1988). The second unusual mortality factor was from 

dental disease.  

Both South Georgia reindeer populations were affected by dental and 

mandibular abnormalities (Leader-Williams, 1988). Symptoms varied from missing 

to split or broken mandibular premolars and molars, regularly accompanied by 

mandibular swellings (Leader-Williams, 1982). These mandibular swellings 

affected 9-19 percent of all individuals within both populations (Leader-Williams, 

1982, table 1). As mandibular swellings are likely to reduce the efficiency of chewing 

and therefore energy uptake, they could affect survability. Indeed, significant 

differences in both body condition and mortality rates were observed between 

affected and unaffected individuals (Leader-Williams, 1982).  

Leader-Williams (Leader-Williams, 1982, table 3) found that 22.9% of over 

100 examined carcassed were affected, whereas based on the prevalence in either 

population a percentage of 15.1% was expected. Field observation also suggest that 

affected individuals coupled their higher mortality rates with lower fecundity 

(Leader-Williams, 1988, page 177).  

Both radiographic and chemical analyses show severe osteoporosis of 

mandibles, increasing with age and being more pronounced in individuals with 

mandibular swellings (Leader-Williams, 1988, page 174). Leader-Williams (1988) 

hypothesized a scenario in which a combination of overpopulation and limited 

availability of nutrient rich vegetation led to mineral deficiencies in the South 

Georgia reindeer. This caused osteoporosis in mandibulars, and increased 

suspectibility for tooth damage and tooth loss (Darcey et al., 2013). Tooth damage, 

which in turn predisposed affected individuals to swellings, may have been caused 

by increased suspectibility for infections by micro-organisms (Leader-Williams, 

1988, page 175). I hypothesize that the South Georgia reindeer possessed heritable 

variation in susceptibility for mandibular osteoporis and tooth damage, resulting 

from the presence of a polymorphism within MKL2 itself or within a cis-regulatory 

element. Although I underscribe that mineral deficiencies in the newly colonized 

environment could explain the sudden manifestation of a previously unseen 

condition, I also remark that genomic stress resulting from bottlenecks can impact 

morphology as well (Lovatt and Hoelzel, 2011).  
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The exact mechanism through with an MKL2 allele could have counteracted 

mandibular osteoporosis and tooth damage despite mineral deficiencies, is 

unknown, and hypothesized mechanisms are speculative by nature. However, I 

propose that MKL2 variants might infer increased resistance to tooth disease by 

acting upon E-adherin (Guo et al., 2014). E-cadherin-mediated cell-cell adhesion and 

signaling plays an essential role in development and maintenance of healthy 

epithelial tissues (Guo et al., 2014). Teeth have a mesenchymal as well as an 

epithelial component, and E-cadherin is thought to regulate odontogenesis 

(Heymann et al., 2002; Li et al., 2012).  

The proposed scenario corresponds to the type of substitution events 

envisioned by Haldane (1957), which considered a population which ‘due to 

deteriorating circumstances, finds a previously satisfactory gene inadequate so that 

it comes to be replaced by a previously neutral or undesirable allele which had 

remained rare’ (Brues, 1964). In this scenario, the genetic load (i.e. the difference 

between reference optimal fitness and actual fitness) experienced by the population 

does not result from mutation pressure, but instead from external factors, namely 

environmental change. The proposed scenario does therefore not imply a genetic 

load in the reindeer source population, as the genetic polymorphism could have 

been neutral prior to the colonization of the new environment.  

As pointed out by Haldane (1957), fitness reduction due to environmental 

change is accompanied by a reduction in population size. The extent and duration of 

the population size decrease depends on the presence of potentially adaptive 

standing genetic variation and/or waiting time to arrival of new beneficial 

mutations. If a population contains a genetic variant which, given the new 

environmental circumstances, has a higher fitness than the originally dominant 

allele, fixation of this new allele would be accompanied by a population size increase. 

The net outcome of these dynamics – on the one hand the lowering of the fitness of 

‘wildtype’ individuals which leads to a population size decrease, and on the other 

hand the fitness gain of ‘mutant’ individuals causing a population size increase – 

depends on the magnitude of change of both selection coefficients. If the fitness gain 

of the mutant phenotype is higher than the fitness loss of the wildtype phenotype, 

the population will eventually increase in size. But whereas reproduction and 

population growth of reindeer populations occur over a time-scale of years, 
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mortality associated with environmental change can occur instantly. It is therefore 

likely that even if the net long-term outcome would be a population size increase, 

the initial response would be a population size decrease. 

In the case of founder populations, such as the South Georgia reindeer, the 

population dynamics are affected by the bottleneck event. It has been argued that 

underpopulation can lead to a relaxed selection regime, and that during a population 

expansion following a bottleneck event (the so called ‘flush’ – Carson, 1968) a low-

fitness alleles can rise in frequency (Carson, 1968). However, although during 

underpopulation (in which a population is below it’s carrying capacity) the absolute 

fitness of negatively selected individuals can indeed exceed 1, the relative fitness of 

these individuals will be below 1. Individuals carrying the deleterious allele will 

multiply more slowly than individuals carrying the advantageous allele, and 

therefore the frequency of the deleterious allele will decrease (as long as not 

counteracted by drift). Eventually, when approaching the population carrying 

capacity, the absolute fitness of negatively selected individuals will drop below 1, 

and their numbers will decrease. Possibly, the results presented in this study 

provide empirical evidence for such a substitution process during a population size 

expansion.  

 

Conclusions 

My simulations show that for sister founder populations subjected to similar 

environmental conditions, positively selected loci are more confidently detected by 

the newly developed selection scan GWDS compared to the widely used selection 

scans Bayescan, OutFlank or PCadapt. I detected 3 SNPs - 2 of which were adjacent 

to each other, and all three marked as outlier by two or more selection scans – with 

fingerprints of positive selection in two heavily bottlenecked deer founder 

populations of less than 102 years old. Wright-Fisher model simulations provide 

further support that these 3 outlier SNPs are true loci under selection. The genetic 

signals of selection could correspond to differential survival rates among individuals 

with and without mandibular swellings resulting from dental disease. This study 

therefore provides empirical evidence that despite their adaptive constraints 

founder populations can start adapting to their novel environment directly 

following a founder event.  
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Chapter 3 

 

Demographic and evolutionary history of the native UK roe deer (C. 

capreolus) population inferred from ddRADSEQ SNP data 

 

Abstract 

The British mammalian fauna is similar to that of north western mainland Europe, 

both in terms of species composition and in terms of species characteristics. The 

similarity in species composition can be traced back to the existence of a Holocene 

land bridge, Doggerland, which allowed recolonisation of the British Isles following 

the Younger Dryas. The apparant similarity in species characteristics might reflect 

absence of diversifying selection, but adaptive traits are often obscure. In this study 

I harnassed the ddRADseq protocol to generate SNP datasets of European roe deer 

populations occuring on either side of the North Sea in order to analyse the extent, 

and causes, of the genetic differentiation of the native UK roe deer population from 

the mainland population. My analyses indicate that the effective population size of 

the native UK roe deer population has numbered a few thousand individuals 

throughout its separate history, resulting in moderate levels of genetic drift which 

have led to moderate loss of standing genetic variation. Selection scans revealed the 

existence of two adjacent outlier SNPs (out of over 50K SNPs in total) which possibly 

experienced diversifying selection. Neither genetic drift nor diversifying selection 

has however been sufficient to cause fixed differences between the native UK and 

mainland roe deer populations.  

 

Related peer-reviewed publication: 

De Jong, M.J., Li., Z., Qin, Y., Quemere, E., Baker, K., Wang, W. 2020. Demography and 

adaptation promoting evolutionary transitions in a mammalian genus that diversified 

during the Pleistocene, Molecular Ecology  

Author contributions: 

ARH conceived the study and MdJ & ARH wrote the paper. MdJ undertook data and 

lab analyses. EQ provided a subset of the RADseq data. ZL, YQ and WW generated the 

C. pygargus genome assembly and annotation.  
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Introduction 

Continental islands that are presently separated from the adjacent mainland by 

seaways shallower than 120m, were connected to the mainland during the Last 

Glacial Maximum (LGM; Burridge et al., 2013). As the timing of sea level changes is 

generally well known (Lambeck and Chappell, 2001), the maximum age of insular 

populations on continental islands can be precisely estimated, which facilitates 

inferences about the evolutionary history of these populations and about 

evolutionary processes in general (Comes et al., 2008; Lister, 2004; Velo-Antón et 

al., 2012).  

 Continental islands which formed after the LGM contain few endemic species 

and exceptions often represent relict endemics (e.g. Brown, 2006), indicating that a 

typical speciation duration exceeds 2∙104 y (Lister, 2004). Endemic subspecies, in 

contrast, are common on continental islands, illustrating that subspecies can form 

within relatively short time spans. An abundance of dwarfed and giant (sub)species 

on continental islands showcase selection driven ecological divergence between 

mainland and insular population (Lomolino et al., 2013). Although continental 

islands have experienced multiple cycles of sea level changes throughout the 

Pleistocene (Burridge et al., 2013), in many instances it can be inferred that present 

day variation became established after the LGM. Well studied cases include the 

Svalbard reindeer (Klein et al., 1987), the Tasmanian emu (Thomson et al., 2018), 

the Channel island fox (Funk et al., 2016; Hofman et al., 2015; Robinson et al., 2016), 

the Cozumel pygmy raccoon and dwarf coati (McFadden et al., 2008), and Australian 

tiger snake (Keogh et al., 2005).  

Body size ranks amongst the most easily identifiable species traits. In theory 

these observed body size differences might represent the top of the adaptation 

iceberg, and other more obscure adaptive traits might remain to be discovered. 

Dense SNP catalogues allow to screen genome wide genetic variation and to search 

for adaptive driven differences between insular and mainland populations (Haasl 

and Payseur, 2016).  

The British Isles are landbridge islands which were cut off from continental 

Europe after the LGM. Unlike Ireland, which became an island around 15 kya 

(Montgomery et al., 2014), Great Britain was connected to the mainland until 

relatively recent. This connection comprised a landbridge known as Doggerland, 
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which is nowadays submerged under the southern North Sea and which was flooded 

approximately 6-7 kya (Coles, 1998; Sturt et al., 2013). Doggerland facilitated the 

recolonization of Great Britain by temperate species after the Younger Dryas (i.e. < 

11.7 kya; (Coles, 1998). As a result, the faunal composition of Great Britain is very 

similar to the faunal composition of north western Europe (Montgomery et al., 2014; 

Stuart, 1995).  

The faunal similarity on either side of the North Sea includes similarity in 

species appearance. This phenotypic similarity of native British populations to their 

mainland counterparts could reflect the absence of diversifying selection. Adaptive 

differences can however be subtle and obscure, and therefore the influence of 

diversifying selection can not be ruled out based on apparent absence of phenotypic 

and niche differentiation alone. Scrutinious examination of genomic wide genetic 

differentiation has previously identified putative adaptive traits within a British 

population which otherwise might have remained undetected (Bosse et al., 2017).  

 In this study I aimed to obtain more insight into the evolutionary history of 

native British populations by focussing on one of the biggest extant native British 

mammals: the European roe deer (Capreolus capreolus). This species has been 

present in Europe for at least 600 ky (Andersen et al., 1998), of which in Britain 

during interglacials (Stuart, 1995). As typically observed for temperate Pleistocene 

mammals, the roe deer fossil record provides evidence for range contractions to 

refugia during glacials and subsequent range expansions during interglacials 

(Sommer and Zachos, 2009; Sommer et al., 2009). Mitochondrial DNA and 

microsatellite DNA studies have indicated that during the LGM at least four such 

refugia were present and that a refugium in central Europe served as the main base 

for recolonization of north western Europe and Great Britain (Baker and Hoelzel, 

2014; Hewitt, 1999; Randi et al., 2004). The fossil record furthermore suggests that 

roe deer were absent from Doggerland and Great Britain during the Boling-Allerod 

interstadial and the Younger Dryas and first appeared during the early Holocene 

(Van Kolfschoten and Laban, 1995), perhaps dictated by the spread of broadleaved 

forests (Baker and Hoelzel, 2014; Petit et al., 2003). 

In this study I applied the double digest restriction-site associated (ddRAD) 

sequencing protocol to generate genome wide SNP datasets of four roe deer 

populations distributed on either side of the North Sea. My aim was to obtain better 
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insight in the demographic and evolutionary history of the native UK roe population. 

I was particularly interested in two questions: 1.) what was the effective population 

size of the roe deer population which colonized Great Britain?; and 2.) has the 

genome wide genetic divergence of the British and mainland roe deer populations 

been affected by natural selection?  

 

Methods 

Sample collection. I collected tissue samples of roe deer from four sampling 

localities of comparable size, of which two were located in western mainland Europe 

and two in the United Kingdom. I chose a sampling location in Wurttemberg, 

Germany, to represent the central European roe deer lineage from which the native 

UK roe deer population derived. I chose a sampling location in Ayrshire, Scotland, to 

represent the native UK population. Roe deer were hunted to local extinction in 

England during medieval times and have recolonized England since, both naturally 

(through migration out of Scotland) and artificially (through anthropogenic 

reintroductions, stocked from mainland Europe) (Baker and Hoelzel, 2014). The 

native UK roe deer population is therefore better represented by a Scottish 

population than by a English population.  

 The other two sampling locations were included for contrast. I included a 

sampling location in southern France, Aurignac, which allowed us to compare the 

genetic differentiation of the UK roe population to the genetic differentiation 

between mainland populations. Secondly, I also collected samples from a roe deer 

population which split from the Wurttemberg population recently and which was 

affected by a severe population bottleneck. This human-made population was 

founded around 1880 with the translocation of 10 individuals from Wurttemberg to 

East Anglia, England (Baker and Hoelzel, 2014). I included this population to gain 

insights into the genetic differentiation of a heavily bottlenecked population, 

providing a contrast to the genetic differentiation of native the UK population, and 

allowing to assess the impact of a well documented bottleneck on genome wide 

variation.  

Samples were collected during culls, or reused from earlier studies (Baker 

and Hoelzel, 2014; Gervais et al., 2019). No animals were killed specifically for either 

of these studies, and all animals were killed by certified stalkers.  
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DNA Extraction and Library Construction. Libraries were constructed following 

the ddRADseq protocol and paired-end sequenced using an Illumina HiSeq_2500 

(version 4 chemistry) machine. For the Ayrshire, East Anglia and Wurttemberg 

(AEW) dataset I used a 6 bp cutter (HindIII: AAGCTT) and a 4 bp cutter (MspI: CCGG), 

with a fragment size selection window of 250 bp width (including all fragments with 

a length of 275 to 525 bp, excluding the adapters). Based on in silico simulations 

with the R package SimRAD, I expected to extract 120,000 loci with an average read 

depth of 30. By multiplying this expected number of loci against their average length 

(250 bp), a conservative estimate for nucleotide diversity (θ = 1/2000), and an 

approximation for the harmonic number of Watterson’s estimator, I estimated that 

this size selection window would yield at maximum ~50,000 SNPs with MAF > 0.05. 

The actual size selection was executed with a Sage Science PippinPrep machine. The 

Phusion High-Fidelity kit was used for a 13 cycle PCR (denaturation step: 62°C for 

20sec; annealing step: 72°C for 45 sec; extension step: 72°C for 5 min).  

The Aurignac dataset, which was created independently for another study 

(Gervais et al., 2019), was generated with the same frequent 4 bp cutter (MspI) but 

with a different 6bp cutting enzyme (EcoR1), and with a fragment size selection 

window of 60 bp width (including all fragments with a length of 270 to 330 bp, 

excluding the adapters).  

 

SNP calling and filtering. Reads were demultipled and trimmed to 110 bp (or 

117bp in the case of the Aurignac dataset (Fig S.3.1) using the software STACKS 

version 1.35 (Table A3.1). Unpaired reads were discarded. Paired reads were 

aligned against both the newly generated Capreolus pygargus genome (see Chapter 

4 of this thesis) as well as the Cervus elaphus genome (Bana et al., 2018) using the 

software Bowtie version 2.2.5. I chose the red deer genome as a second reference 

genome because red deer is the species closest to Capreolus with a genome assembly 

up to chromosome level. Samtools version 1.3.3 was used to filter out reads which 

aligned to more than one location in the genome, which aligned disconcordantly; 

and those with a mapping quality below 20.  

SNPs were called using the STACKS refmap pipeline with default settings. 

Loci for which at least 30 percent of all individuals had a read depth below 8 were 
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removed. I accepted multiple SNPs per read (i.e. I did not set the –write-single-SNPs 

flag when running the ‘populations’-command), as I opted to ‘thin’ the dataset 

downstream.  

PGDSpider and PLINK v1.90 were used to convert the output from genepop 

format to a genlight object, implemented in the R package Adegenet, and the tool 

‘depth’ of vcftools (Danecek et al., 2011) was used to calculated read depth among 

samples and among SNPs.  

I filtered the SNP datasets on proportion of missing data, heterozygosity 

excess, minor allele count and on read depth. To be more precise, I excluded samples 

with more than 25 percent missing data, and subsequently sites with more than 10 

percent missing data, sites with unusual high deviation from Hardy Weinberg 

expectations (Fig. A3.3), sites with only one copy of the minor allele. and all sites 

belonging to the 1% class of loci with the highest read depths (Fig. A3.4). I also 

filtered out a small number of SNPs which mapped to the same location of the 

reference genome, even though they belonged to different STACKS loci. I 

additionally thinned the dataset by selecting at maximum 1 SNP per 500 bp window.  

I extracted the intersect of the two SNPs datasets (i.e. the dataset containing 

Ayrshire, East Anglia and Wurttemberg samples vs dataset containing Aurignac 

samples) based on the locations of the SNPs in the reference genome (Capreolus 

pygargus genome, see Chapter 4 of this thesis).  

For the selection analyses, I used the filtered, non thinned roe deer aligned 

AEW dataset. For genetic diversity analyses, I used the filtered and thinned datasets 

of both the AEW and Aurignac datasets. For genome wide genetic diversity analyses, 

I used the filtered, non thinned red deer aligned AEW dataset. For population 

structure analyses, I used the filtered and thinned datasets of the AEW dataset and 

the intersect dataset. 

 

Population genetic analyses. Nei’s genetic distance, admixture and structure 

analyses, as well as site frequency spectra (SFS) and genotype network construction, 

were executed in R, using either in-house-built functions or functions implemented 

in the adegenet, Ape, StaMPP, LEA, Poppr (Kamvar et al., 2014) and PEGAS packages. 

The package adegenet was used for data management and DAPC analyses, the 

package StaMPP for the calculation of Nei’s genetic distance, the package LEA for 
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admixture analyses, the package Poppr for the calculation of Hamming’s genetic 

distance, and the package PEGAS for the construction of genotype networks. 

 For DAPC analyses, executed using adegenet, I set the number of PCs to a 

third of the number of individuals – thereby ignoring the a-value, which suggested 

to retain 1 PC only –, the number of clusters to the number of populations, and the 

number of discriminant functions to 3. For admixture analyses, executed using LEA, 

I set K (number of clusters) to 2-6, alpha to 10, tolerance to 0.00001, and number of 

iterations to 200.  

Contemporary gene flow was estimated using BayesAss3-SNPs. The number 

of iterations was set to 1,000,000, burn-in to 100,000 and delta values to 0.1. 

Relatedness between samples was calculated using plink version 1.90b3.38. 

 

Population assignment test. I constructed and conducted within R a population 

assignment test using an approach similar to (but on same aspects different from) 

the approach described in Paetkau et al. (1995) and Pritchard et al. (2000). My 

approach calculates the probability that an individual belongs to a certain 

population given its observed genotype and given the minor allele frequencies 

within that population, as follows:  

Pr(popA|genotype) = Pr(genotype|popA)/(Pr(genotype|popA)+Pr(genotype|popB)) 

Pr(popB|genotype) = Pr(genotype|popB)/(Pr(genotype|popA)+Pr(genotype|popB))  

For example, given two populations (A and B) which have for a particular locus a 

minor allele frequency of respectively 10 percent and 1 percent, the probability that 

an individual which is homozygous for both major alleles belongs to either popA or 

popB is estimated as: 

Pr(popA|0) = Pr(0|popA)/(Pr(0|popA)+Pr(0|popB))=(0.9∙0.9)/(0.9∙0.9+0.99∙0.99)= 

0.45  

Pr(popB|0)= Pr(0|popB)/(Pr(0|popA)+Pr(0|popB))=(0.99∙0.99)/(0.9∙0.9+0.99∙0.99)= 

0.55 

For k loci, I calculated the probabilities Pr(geno|popA) and Pr(geno|popB) by 

multiplying each locus specific probability (assuming they are independent) as:  

Pr(geno|popA) = Pr(locus_1|popA)∙Pr(locus_2|popA)∙...∙Pr(locus_k|popA)  

Pr(geno|popB) = Pr(locus_1|popB)∙Pr(locus_2|popB)∙...∙Pr(locus_k|popB)  
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Excluded from the calculations were snps for which one of either alleles were not 

represented in either of the populations. Those loci would make the probability 

converge to 0 or 1, and hence were omitted.  

 

Calculation of theta and genome wide heterozygosity. I estimated genetic 

diversity within the study populations by calculating pairwise sequence 

dissimilarity, the proportion of differences between two haplotypes. This metric can 

be derived from almost any population genomics datasets, and can be used to 

estimate genetic diversity within single individuals (i.e. heterozygosity) and within 

populations (i.e. nucleotide diversity (π) (Nei and Li, 1979) as well as genetic 

divergence between populations and even between species (see for example Table 

S5.2 in Malinsky et al., 2018; Fig 1B in Prado-Martinez et al., 2013). The use of this 

metric therefore facilitates comparisons among genomic datasets of various nature 

(as also stressed in Funk et al., 2016).  

I calculated pairwise sequence dissimilarity as the average number of 

differences between haplotypes (as derived from genotype information). If 

haplotypes represented the two haplotypes of one individual, the pairwise sequence 

dissimilarity was effectively heterozygosity. In this latter case, I first calculated 

‘He_seg’, the proportion of heterozygous sites within an individual relative to all 

sites which were segregating within the population to which the individual 

belonged. Second, I calculated genomeHe using the formula: genomeHe = 

(He_seg∙N_seg)/N_total, in which N_seg equals the number of segregating sites and 

N_total equals the combined length of all loci/stacks which passed the STACKS filter 

settings. As value for N_total I used the value provided by STACKS in the 

sumstats_summary.tsv file. The total number of sites is listed in the third column 

(‘Variant sites’) of the second part of this file, after the line ‘# All positions (variant 

and fixed)’. Nucleotide diversity was calculated similarly, by calculating the mean 

number of differences for all possible pairwise sequence comparisons.  

 

Stairway plots. The demographic histories of the study populations were inferred 

using the Stairwayplot analysis (Liu and Fu, 2015). I set the generation time to 5 

years (Nilsen et al., 2009), and the mutation rate per site per generation to 1.1∙10-8. 

This estimate is based on the assumption that the mutation rate per year equals 
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2.2∙10-9 (Kumar and Subramanian, 2002) and on the assumption that the mutation 

rate per generation relates linearly to the mutation rate per year. The population 

specific folded site frequency spectrum (SFS) vectors were generated with a custom-

built script which binned SNPs in classes based on their number of copies of the 

minor allele, and subsequently calculated the size of each bin. 

 

Selection analyses. Selection analyses were carried out according to the approach 

described in Chapter 2 of this thesis. One difference with the analyses in Chapter 2 

was that I excluded Bayescan, and included a selection scan which is implemented 

in the R package Fsthet (Flanagan and Jones, 2017). As in Chapter 2, I applied both 

the independent and the pooled approach. For the pooled approach I used two 

different variants. In the first variant, which I labelled the modern UK-mainland 

comparison, I grouped samples from the Ayrshire and East Anglia population 

together and compared them against the German population. In the second variant, 

which I labelled the native UK-mainland comparison, I compared the Ayrshire 

samples against a group of samples belonging to both the East Anglia and the 

German population. Since GWDS, OutFlank and PCadapt are interpopulation scans 

which require high numbers of SNPs shared across two (or more) populations, I 

necessarily excluded the Aurignac population from selection analyses.  

Genes nearby outlier SNPs were detected using the software bedtools2 and 

using the annotation file of the C. pygargus reference genome (see Chapter 4 of this 

thesis).  

For simulations of expected locus specific He-Fst distributions of the native 

UK versus mainland comparison, I followed the same procedure as described in 

Chapter 2. Based on results obtained with the Stairwayplot analyses, I set the Ne of 

the founder UK population to 5000 (with no founder bottleneck) and the Ne of the 

European mainland population to 10000. The TMCRA of both populations was  
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Fig. 3.1. Genetic clustering analyses of roe deer samples from three populations 
on either side of the North Sea. Colour coding (except for D): blue = EastAnglia 
(introduced UK), green = Ayrshire (native UK), red = Wurttemberg (Germany), orange 
= Aurignac (France) . A. Principal coordinates analysis based on Nei’s genetic distance 
(excluding Aurignac). B. Nei’s genetic distance between samples (excluding Aurignac). 
C. Genotype network based on 286 snps among all four populations. D. Admixture 
analyses for 2 <= K <= 6, with random colour coding. E. Migration rates between the 
four populations, as inferred by Bayesass3-SNPs. F. DA1 vs DA2 of discriminant 
analysis of principal components, with nclusters set to 3.  
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set to 1500 generations, which, assuming a generation time of 5 years, precedes the 

flooding of Doggerland, which is dated at ~6-7 kya (Coles, 1998; Sturt et al., 2013).  

 

Selection analyses on a control dataset. For comparison, selection analyses (again 

according to the approach described in Chapter 2 of this thesis) were performed on 

a control dataset containing a locus which experienced a confirmed episode of 

positive selection. This control SNP dataset was a dataset of human samples and of 

SNPs of chromosome 2, obtained from the International Genome Sample Resource 

(IGSR, https://www.internationalgenome.org/data-portal). Chromosome 2 

contains the gene responsible for lactose tolerance in north western European 

populations. Analyses were performed on a dataset of 30 GBR (Great-Britain), 30 

FIN (Finland) and 30 TSI (Toscane) individuals, for a pooled comparison (GBR and 

FIN combined vs TSI) as well as two pairwise comparisons (FIN vs TSI, GBR vs TSI). 

  

Results 

SNP calling and filtering. The two sequencing lanes of the AEW dataset produced 

a combined number of 602.6 million single-end reads (Table A3.1). Almost 5.5 

million reads had to be discarded due to either low quality or an ambiguous radtag, 

resulting in an average number of 6.8 million read pairs per sample (stdev: 5.2 

million, min: 0.7 million, max: 23.4 million) (Table A3.1).  

For the AEW dataset aligned to the roe deer genome, STACKS obtained 

686,859 loci/stacks, of which 74,518 loci/stacks passed the filter settings 

(‘sample/population constraints’), consisting of 8,196,980 sites, of which 52,364 

(0.64%) sites were bi-allelic. The bi-allelic sites were concentrated on 34,250 

loci/stacks. For the AEW dataset aligned to the red deer genome, STACKS obtained 

434,524 loci, of which 44,934 loci passed the filter settings (‘sample/population 

constraints’), consisting of 4,942,740 sites, of which 27,298 sites (0.55%) were 

biallelic, with on average (excluding SNPs aligned to Y-chromosome) 793 SNPs per 

chromosome (sd = 293).  

For the Aurignac dataset STACKS obtained 259,987 loci, of which 50,975 loci 

passed the filters (‘sample/population constraints’), consisting of 5,607,250 sites, of 

which 29,488 (0.53%) sites were bi-allelic. The bi-allelic sites were concentrated on 

19,772 loci/stacks.  
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Fig. 3.2. Genetic clustering analyses of roe deer samples from four populations 
on either side of the North Sea. Colour coding (except for D): blue = EastAnglia 
(introduced UK), green = Ayrshire (native UK), red = Wurttemberg (Germany), orange 
= Aurignac (France) . A. Principal coordinates analysis based on Nei’s genetic distance 
(excluding Aurignac). B. Nei’s genetic distance between samples (excluding Aurignac). 
C. Genotype network based on 286 snps among all four populations. D. Admixture 
analyses for 2 <= K <= 6, with random colour coding. E. Migration rates between the 
four populations, as inferred by Bayesass3-SNPs. F. DA1 vs DA2 of discriminant 
analysis of principal components, based on ~300 loci shared among all four 
populations, with nclusters set to 3. 
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The coverage of the 52,364 SNPs of the AEW dataset followed a normal 

distribution, with a mean and median read depth of respectively 2727 (sd = 2314) 

and 2589, corresponding to a mean read depth per locus per individual of 29. The 

coverage of 29,488 SNPs of the Aurignac dataset also fit a normal distribution, with 

a mean and median read depth of respectively 2325 (sd = 1779) and 2169, 

corresponding to a mean read depth per SNP per individual of 78. The difference in 

read depths between both datasets reflected the differences in window size 

selection, and indicate that a size selection window of 250 width makes more 

efficient use of available sequencing resources than a size selection window of 60 bp 

width.  

In line with expectations for paired-end sequencing data, the spacing 

between adjacent SNPs followed bimodal distributions. One modus represented 

SNPs occuring on read mates and another represented SNPs occuring on the same 

read (Fig. A3.2). The mean and median distances between adjacent SNPs per 

chromosome equalled 130.0±46.5 and 16.0±9.5 kbp respectively (±1 sd) (Table 

A3.2). 

After filtering, I retained 107 samples, distributed over populations as 

follows: Ayrshire (Scotland) = 25, East-Anglia (England): 23, Wurttemberg 

(Germany) =30 and Aurignac (France) =29. For the AEW dataset I retained 31,459 

SNPs after filtering and 15,697 SNPs after thinning (Table A3.3, Fig. A3.5-A3.7). For 

the Aurignac dataset I retained 19,992 SNPs after filtering and 10,732 SNPs after 

thinning (Table A3.5, Fig. A3.5-A3.7).  

 

Overlap between datasets. The AEW and the Aurignac dataset were generated 

using the same frequent 4 bp cutter (i.e. MspI), but with different less frequent 6 bp 

cutter (i.e. HindIII and EcoR1). As the less frequent cutter determines which regions 

in the genome will be sequenced, overlap between both datasets was expected to be 

limited.  

I found that the intersect of both datasets (i.e. 52,364 SNPs from AEW and 

27,298 SNPs from Aurignac) consisted of 286 SNPs (≤1% of the SNP datasets). All 

286 SNPs had the same allele pairs across both datasets, providing strong evidence 

that they were true shared SNPs. Out of the 286 SNPs, 258 SNPs were retrieved from 

the same position in the sequence read generated for either datasets, indicating that  
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Fig. 3.3. Structure analyses on data subsets. Principal Coordinate Analyses based 
on A. Hamming’s genetic distance and B. Nei’s genetic distance, for various sizes of 
random subsamples of SNPs.  
 

 

 

Fig. 3.4. Bayesian population assignment probabilities. Colour coding: blue = 
EastAnglia (introduced UK), green = Ayrshire (native UK), red = Wurttemberg, orange 
= Aurignac (France). Above: results based on intersect dataset of 250 SNPs. Below: 
results based on full dataset of 15,697 SNPs. The scatterplot shows the proportion of 
heteryzogous and minor homozygous genotype calls per sample, both for samples 
which were assigned to the correct population (cirkels) and samples which were 
assigned to the incorrect population or were assigned to the correct population but 
with a probability below 1 (triangles).  
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in either dataset the reads were sequenced starting from the frequent cutter (MspI) 

cut site. In 40 out of 286 SNPs the major allele in the AEW dataset was the minor 

allele in the Aurignac dataset. After filtering and thinning 250 SNPs were retained.  

  

Structure analyses. Population structure analyses (i.e PCA, DAPC, genotype 

network, Nei’s genetic distance and admixture analyses) indicated distinct 

population structuring, with each sampling locality clustering as a separate entity 

(Fig 3.1-Fig 3.2; Fig A3.8). This result was observed both for the AEW dataset (i.e. 

15,697 SNPs, Fig 3.1) as for the intersect dataset (i.e. 250 SNPs, Fig 3.2). Reruns of  

PCA analyses on random subsamples of the AEW dataset confirmed that a relatively 

small number of biallelic SNPs (i.e >=125) suffices to infer main clusters within this 

particular dataset (Fig. 3.3). PCA analyses executed on variously sized subsample 

datasets of the AEW dataset confirm that a relatively small number of markers 

suffices to discern the correct population structure for the roe deer samples (Fig. 

3.3).  

 A few samples did not cluster according to a priori expectations. Two East 

Anglia samples stood out by sharing similarities with Wurttemberg (Germany) 

samples, and three Ayrshire samples stood out by sharing similarities with East 

Anglia samples (Fig 3.1A, Fig 3.1F). The Bayesian population assignment test 

confirmed that based on the population allele frequencies and based on the 

genotype scores of the individuals, two East Anglia samples were more likely to 

belong to the Wurttemberg (Germany) population, and two Ayrshire samples were 

more likely to belong to the East Anglia population (Fig 3.4).  

 PCA and DAPC analyses indicated that the Ayrshire population is genetically 

more similar to the Wurttemberg (Germany) population (D = 0.061) than to the 

Aurignac population (D = 0.069), and that the Wurttemberg population is more 

similar to the Aurignac population (D = 0.048) than to East Anglia population (D = 

0.069) (Fig 3.2, Fig 3.5). Around 30 percent of all SNPs were represented by private 

alleles in the Germany population, compared to 9% and 3% private alleles in 

respectively Ayrshire and EastAnglia (Fig 3.5B). 

 

Genetic diversity. The highest proportion of segregating sites was observed within 

the Wurttemberg (Germany) population, both before and after correcting for  
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Fig. 3.5. Genetic distance and genetic diversity. A. Multilocus Weir & Cockerham 
Fst-values for pairwise population comparisons in the AEW (right)and intersect (left) 
datasets. B. Nei’s genetic distance for pairwise populations comparisons in the AEW 
(rigth) and intersect (left) datasets. C. The number of private alleles in the unfiltered 
(right above) and filtered (right under) AEW dataset. D. Folded site frequency 
spectrum (SFS) histograms. E. Two dimensional folded SFS spectra.  
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differences in sample sizes. Watterson’s estimates of theta (θW) ranged from 0.125% 

for the German population to 0.12%, 0.07%, and 0.05% for respectively the 

Aurignac, Ayrshire and East Anglia populations (Fig 3.6A). Nucleotide diversity (π) 

and genome wide heterozygosity (He) estimates ranged among populations 

between 0.04% and 0.16% (Fig 3.6), with π estimates being on average slightly 

below He estimates (Fig 3.6F). The mean He estimate in the German population was 

0.12% (Fig. 3.6E-F), whereas the estimate obtained from a whole genome sequence 

analysis (of a sample derived from the same locality) equals 0.15% (this thesis, 

Chapter 4). This difference might suggest that our approach of estimating of He (and 

π) from RADseq datasets leads to an underestimate (for example due to missing 

data), or alternatively might represent a genome sampling bias.  

 Whereas θW estimates indicated that the German population harboured the 

highest genetic diversity, He and π estimates indicated instead that the Aurignac 

population was genetically the most diverse (Fig 3.6A, E-F). The difference between 

π estimates and θW estimates for the Aurignac population was reflected by a high 

Tajima’s D score (Fig. 3.6A), and caused by an unsual high heterozygosity per 

segregating site (Fig 3.6D). This higher genetic diversity per segregating site 

outweighed the lower proportion of segregating sites, causing the nucleotide 

diversity of Aurignac to exceed the nucleotide diversity of the German population 

(Fig 3.6B,D,E,H). The Aurignac population did not contain population substructure 

(Fig. A3.8B), ruling out the Wahlund effect as potential explanation for the high 

genetic diversity within this population.  

The East Anglia populations exhibited a signal typical for bottlenecked 

populations: reduced nucleotide diversity coupled with high proportions of 

common SNPs (Fig. 3.5D,E, 3.6G), indicating that many alleles, mostly of low 

frequency, were lost during and/or after the founder bottleneck. The Ayrshire and 

Aurignac population had different proportions of segregating sites (despite a 

roughly equal number of samples), but exhibited very similar site frequency spectra 

within those segregating sites. All populations except Wurttemberg (Germany) 

scored positive Tajima’s D estimates, suggestive of a lack of rare alleles (Fig. 3.6A-

B), potentially caused by population bottlenecks (and subsequent expansions). 

Genetic diversity estimates of the Ayrshire population were intermediate to 

that of East Anglia and Wurttemberg (Germany) (Fig. 3.6D-F), indicating a similar  
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Fig. 3.6. Genetic diversity. Colour coding: blue = EastAnglia (introduced UK), green = 
Ayrshire (native UK), red = Wurttemberg (Germany), orange = Aurignac (France). A. 
Watterson’s theta, observed theta, and Tajima’s D. All estimates are scaled per bp. B. 
Genotype proportions. Grey: major homozygous, light colour: heterozygous; dark 
colour: minor homozygous. (C) Proportion of genome identical by descent (pi_hat 
score, calculated with PLINK). D. Sample specific heterozygosity per segregating site. 
E. Sample specific genome wide heterozygosity. F. Sample specific gemome wide 
heterozygosity vs sample nucleotide diversity scores. G. Site frequency spectrum. 
Percentage of segregating sites per minor allele frequency class. H. Proportion of 
segregating sites. I. Sequence dissimilarity within and across populations.  
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but less pronounced signal as observed for the East Anglia population: a loss of 

alleles, mostly of low frequency, likely due to genetic drift (Fig 3.6G). Although the 

SFS of Ayrshire was less distorted than the SFS of East Anglia (Fig 3.5Fig 3.9D), the 

Ayrshire population had a slightly higher Tajima’s D score than the East Anglia 

population (Fig 3.6A), reflecting a stronger deviation of nucleotide diversity from 

Watterson’s theta estimate, caused by differences in the distribution of the minor 

allele over minor homozygous and heterozygous genotypes (Fig. 3.6B). 

   

Demographic history. The stairway plot analyses for East Anglia identified a strong 

recent population bottleneck event, wrongly dated to around 1kya rather than 

0.15kya. The stairway plot analysis furthermore pointed to a common size reduction 

in the other three populations between 10kya to 5 kya, with the Ayrshire and the 

Aurignac population being most heavily affected (Fig. 3.7). During that bottleneck, 

both the Ayrshire and Aurignac populations saw their Ne decrease from over 10k 

individuals to around 5K individuals. The historic effective population size of the 

Ayrshire population, which in this study represents the native UK population, is 

estimated to have been between 2,000 and 10,000 individuals, with a most likely 

value of 6,000 individuals (Fig 3.7).  

Assuming a mutation rate of 1.1*10-8 per site per generation and a 

generation time of 5 years, the most likely onset of the Aurignanc population size 

decline seems to coincide with the end of the LGM (Fig 3.7). For Ayrshire, the most 

likely onset of the population decline seems to coincide with the end of the Younger 

Dryas (Fig 3.7). However, confidence intervals are wide, preventing exact timing of 

the population decline events (Fig 3.7).  

 

Selection analyses. For all three pairwise comparisons (i.e. Ayrshire vs East Anglia, 

Ayrshire vs Germany, and East Anglia vs Germany), the distribution of locus specific 

Weir & Cockerham He-Fst estimates followed the same ‘shark fin’-pattern as 

observed in Chapter 1 (Fig 3.8). The selection scans Fsthet, GWDS, and PCadapt did 

not detect outlier loci. PCadapt, in contrast, did mark a number of loci as outliers 

(Fig. 3.8). The Bonferroni corrected approach flagged up 16, 10 and 156 outliers for 

respectively the Ayrshire-East Anglia, the Ayrshire-Germany and the East Anglia-  
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Fig. 3.7. Demographic histories. Stairway plots showing demographic histories 
(mutation rate: 1.1e-8 per site per generation, generation time: 5 years), depicted using 
combinations of linear and log scales on the x- and y-axes. Grey shaded areas indicate 
from left to right: the flooding of Doggerland (~6 kya), the Younger Dryas (11.7-12.9 
kya), and the last glacial maximum (16-31 kya). Solid lines indicate median values, 
whereas dashed line indicate 12.5% and 87.5% percentile values. Colour margins 
indicate 2.5% and 97.5% percentile values.  
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Germany comparisons (Fig 3.8). My simulations indicated that given the 

demographic history of the native UK population, and assuming a selection 

coefficient of 0.01, most loci marked by PCadapt as outliers are false positives (Fig 

3.9).  

Similarly, running selection scans on a pooled comparison of modern UK 

populations (i.e. East Anglia and Ayrshire samples combined) vs the modern 

mainland (i.e. German) population, did not return outliers, except for PCadapt (Fig 

3.8). In contrast, the pooled comparison of the native UK population vs the native 

mainland populations (i.e. East Anglia and Germany samples combined), flagged up 

two SNPs which were marked as outliers by both PCadapt and GWDS (Fig. 3.8). 

These two SNPs, which according to alignments to the C. pygargus genome occur 

alongside each other on contig 18718 on positions 1441634 and 1668556, both had 

a Weir & Cockerham Fst score of 0.85. Both SNPs had a minor allele frequency of 

0.94 in the Ayrshire population and 0.05 and 0.1 in the East Anglian and German 

population (Fig 3.10).  

 Genes within 200kB distance of both outlier SNPs were genes coding for 

olfactory receptor 6C74-like protein, ras association domain containing protein 4, 

transmembrane protein 72, stromal cell-derived factor 1 protein, and two 

hypothetical, uncharacterized proteins (Fig 3.10). However, only one of the 

uncharacterized genes were however located within the outlier region (Fig 3.10). 

The other genes were separated from the outlier SNPs by multiple non-outlier SNPs 

(Fig 3.10).  

 

Selection analyses control dataset with known selective sweep. The three 

selection scans (GWDS, OutFLANK and Pcadapt detected a locus under selection, 

signalled by multiple adjacent SNPs (Fig A3.10). The outlier region was detected for 

the pooled comparison as well as for both pairwise comparisons (Fig A3.10). 

  

Discussion 

In this study I harnessed the ddRADseq method to examine the degree and the 

causes of the genetic divergence of the native UK roe deer population, which got cut-

off from European mainland populations due to Holocene sea level rise. In addition, 

I studied the historical demography and population structure of roe deer  
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Fig. 3.8. Selection analyses. A-B. Venn diagrams (A) and scatterplots of locus specific 
Weir and Cockerham heterozygosity and Fst values (B) depicting the number and 
overlap of outliers scored by selection scans Fsthet (purple), GWDS (blue), PCadapt 
(green) and OutFlank (yellow), for the comparison between modern UK populations 
(i.e. Ayrshire and East Anglia samples combined) and the modern mainland (i.e 
German) population.. C-D. Venn diagrams (C) and scatterplots of locus specific Weir 
and Cockerham heterozygosity and Fst values (D) depicting the number and overlap 
of outliers scored by selection scans Fsthet (purple), GWDS (blue), PCadapt (green) and 
OutFlank (yellow), for the comparison between the ancient UK population (i.e. 
Ayrshire) and the ancient mainland populations (i.e samples from East Anglia and 
Germany combined). 
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populations on either side of the North Sea, and assessed the impact of a population 

bottleneck on the genetic variation in an introduced population.  

Ordination analyses identified the four study populations as distinct clusters 

and indicated that the Ayrshire population, which in this study represents the native 

UK population, is more closely related to the Wurttemberg (Germany) population 

than to the Aurignac (France) population (Fig. 3.2). This outcome appears to be in 

agreement with mitochondrial-DNA studies (Baker and Hoelzel, 2014; Fig. 2 in 

Randi et al., 2004) which indicated that after the LGM roe deer recolonized 

northwestern Europe and the British Isles from a central European lineage 

advancing through Germany, rather than from a southwestern European lineage 

advancing through France. Caution should however be exercised not to 

overinterpret these findings, because the ancestry of the Aurignac population is at 

present unclear, and also because the samples used in this study are derived from a 

limited number of populations which only partially represent European mainland 

populations. 

The estimated genetic differentiation of the Ayrshire and Wurttemberg 

population (Fst: 0.123-0.14, Fig. 3.4A) is lower than the estimated differentiation of 

British and mainland European bank voles (Myodes glareolus; Fst: 0.229-0.358; 

Table S2 in Kotlík et al., 2018), but higher than the estimated differentiation of 

British and mainland European great tits (Parus major; Fst: 0.003-0.006, Fig. 1 in 

Bosse et al., 2017). These among species differences in observed Fst-values is likely 

partly accounted for by species traits, most specifically the combination of 

generation time and effective population size (Ne). Great tits have exceptionally high 

effective population sizes (i.e. Ne > 500,000 individuals, Fig 1B in Laine et al., 2016) 

which minimalizes genetic drift. Given the differences in body size, the Ne of bank 

voles will also likely be higher than the Ne of roe deer, but possibly not as high as 

those of great tits. The shorter generation time of bank voles, in addition to an earlier 

establishment in the UK (Searle et al., 2009), might explain why British bank voles 

are genetically more diverged from their mainland counterparts than British roe 

deer are from their mainland counterparts. 

The effect of Ne on genetic divergence, through the workings of drift, is 

illustrated by the bottlenecked East Anglian population. Although the East Anglia 

population split from the Wurttemberg (i.e. German) population less than 150 ya,  
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Fig. 3.8. Selection analyses cont. E. Piecharts of allele frequencies in each of the 
populations. Green piechart indicates SNPs marked by PCadapt as outlier loci for the 
native UK vs mainland comparison. Blue: SNPs which are marked as outliers by both 
PCadapt and GWDS. The allele frequencies of the two outlier SNPs which are marked 
by both PCadapt and GWDS are 0.94 in the Ayrshire population and 0.05 and 0.10 in 
the East Anglian and German population.  
 

 

 

 

 
Fig. 3.9. Detectability of loci under diversifying 
selection according to simulations. Simulation 
output showing the detectability of 100 SNPs 
under diversifying selection (out of 10,000 SNPs in 
total) for pairwise population comparison. 
Demographic scenario: mainland roe deer 
population Ne = 10,000, native UK roe deer 
population Ne = 5000, TMRCA = 1500 generation, 

with a sample size of 30 individuals per population. It is assumed that the ancestral 
population was panmictic (i.e. no isolation by distance). A. Simulated He-Fst 
distributions for pairwise population comparison. Black: 10,000 neutral loci. Red: 100 
loci under weak diversifying selection (s=0.01) (left panel) or loci marked as outliers 
by the selection scans PCadapt, OutFLANK and GWDS (other panels) B. Venn diagram 
showing the number of simulated adaptive loci (out of 100 in total) correctly marked 
as outliers by PCadapt, OutFLANK and GWDS in the pairwise population comparison. 
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this population is more differentiated (i.e. Fst = 0.19-0.224, Fig. 3.4A) from the 

German population than the native UK population, which has been separated for 

over 6000y. Sequence dissimilarity estimates convey a different message (i.e. lower 

dissimilarity scores for EastAnglia-Germany than for Ayrshire-Germany, Fig. 3.6I), 

but this is likely due to the increased loss of low frequency alleles within the heavily 

bottlenecked East Anglia population, which increases sequence similarity between 

East Anglia samples and the majority of German samples.  

Landbridge island populations, in particular those occuring on smaller 

islands, typically contain less genetic variation than closely related mainland 

populations (Bell et al., 2012; Hurston et al., 2009; Lourenço et al., 2018; Robinson 

et al., 2016; Velo-Antón et al., 2012; Wang et al., 2014). In agreement with findings 

based on mt-DNA comparisons (Baker and Hoelzel, 2014), I found that the native 

UK population (i.e. Ayrshire population) harbours less genetic diversity than the 

central European roe deer lineage (i.e. German population). In contrast, genomic 

studies on great tits (Bosse et al., 2017) and bank voles (Kotlík et al., 2018) do not 

indicate marked lower genetic variation of UK populations compared to European 

mainland populations, and neither do mitochondrial and microsatellite-DNA studies 

on red fox (Vulpes vulpes, Atterby et al., 2015; Edwards et al., 2012) and badgers 

(Meles meles, Fig S1 in Frantz et al., 2014). The comparatively low genetic diversity 

of the native UK roe deer population is therefore in need of explanation. This 

explanation might be anthropogenic influence, but overhunting during medieval 

affected the English roe deer population in particular (Baker and Rus Hoelzel, 2012).  

A well established signature of drift is a negative relationship between 

genetic diversity and divergence, with the least genetically diverse populations 

being most diverged from the ancestral population (Funk et al., 2016). Consistent 

with this expectation, I found that the East Anglia population has lower nucleotide 

diversity than the Ayrshire population. Some microsatellite DNA studies suggest 

that bottlenecks (i.e. founder sampling) affect allelic diversity more than they affect 

heterozygosity (Lampert et al., 2007). As observed and discussed in Chapter 2 of this 

thesis as well, I found that, probably likely due to the loss of low frequency alleles, 

individuals in the bottlenecked East Anglia population contained higher 

heterozygosity for segregating sites than individuals from non-bottlenecked  
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Fig.3.10. Genes close to outlier SNPs. Genes within 200kB distance of the two SNPs 
marked as outliers in the nativeUK vs mainland comparison by both GWDS and 
PCadapt, according to alignment to the C. pygargus genome (see Chapter 4 of this 
thesis). Shading and lines show population specific minor allele frequencies of each 
SNP. Outlier SNPs are indicated with an asterix. Detected genes are olfactory receptor 
6C74-like, ras association domain containing protein 4, transmembrane protein 72, 
stromal cell-derived factor 1, and two hypothetical, uncharacterized proteins.  

 

populations do (Fig 3.6D). The picture reverses when heterozygosity is averaged 

over all sites (i.e. both segregating and non-segregating sites, Fig 3.6E), as this 

estimate also takes into account the loss of these low frequency alleles.  

The loss of low frequency alleles within the East Anglia population is 

reflected by a flat site frequency spectrum (SFS, Fig 3.5B, 3.6G). Stairway plot 

analysis correctly infers a recent population bottleneck (Fig 3.7) from this SFS, 

which serves as a proof of method. The Stairwayplot analyses on the other study 

populations indicate that the Ayrshire, Aurignac and Germany population 

experienced a shared population size reduction at the start of the Holocene (Fig 3.6). 

The timing of this event is imprecise (Fig 3.6) and depends on settings (i.e. mutation 

rate and generation time), but potentially coincides with a period of rapid warming 

following the Younger Dryas.  

The fossil records suggest that roe deer were absent north of the Alps during 

the Younger Dryas (Sommer et al., 2008). One possible scenario is that the common 

reduction in population size reflects a founder effect caused by range expansions 

(Eckert et al., 2008), more specifically the recolonization of northwestern Europe in 

a period of rapid warming following the Younger Dryas.  
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This scenario would explain why the German population is less affected by 

the bottleneck than the Ayrshire population, as the German sampling area was 

located closer to roe deer refugia during the Younger Dryas (Sommer et al., 2009). 

According to this interpretation the lower levels of genetic diversity within the 

Ayrshire population are due to natural causes, and not to antrophogenic events. An 

alternative explanation of the observed population declines is a shared response to 

an environmental driver. 

The distributions of locus specific He-Fst estimates for pairwise population 

comparisons (i.e. Ayrshire vs Germany, East Anglia vs Germany, and Ayrshire vs East 

Anglia) resembles a ‘shark fin’ which was also reported in Chapter 2 of this thesis 

and in a study by Zucchi et al.,(2019). Flanagan et al (2017) have shown that this 

type of distribution can not confidently be screened by Fdist selection scan methods 

such as Lositan (Antao et al., 2008) and Fdist2 (Excoffier and Lischer, 2010). Fdist 

methods assume an island model with potentially ongoing gene flow between 

populations. Absence of gene flow – as in the case for roe deer populations occurring 

on either side of the North Sea – may lead to discrepancy of the expected and 

observed distribution of locus-specific He-Fst values (Fig 1B and Fig. 3 in Flanagan 

and Jones, 2017) and consequently to high false positive rates.  

Both observed and simulated He-Fst distributions illustrate that given a split 

time of ~6ky (flooding of Doggerland) and a generation time of 4 years, genetic drift 

alone is not sufficient to drive segregating alleles, let alone newly derived alleles, to 

fixation. Whereas genetic drift causes populations to diverge slowly (Watterson, 

1975), selection can cause fixation of adaptive alleles within a few hunderd 

generations, depending on the magnitude of the selection coefficient (Kimura and 

Ohta, 1969). Although I didn’t find fixed differences between the native UK 

population (i.e. Ayrshire) population and the native mainland (i.e German) 

population (Fig 3.5E), the selection scans did mark two adjacent SNPs with near 

fixed differences as outliers. This SNPs had a minor allele frequency of 0.94 in the 

Ayrshire population and of 0.05 and 0.1 in the East Anglian and German population 

(Fig 3.10) and were highlighted by both GWDS and PCadapt in the native UK vs 

native mainland comparison (Fig 3.8). 

In comparison to the outlier locus detected (Fig A3.10) for the control human 

chromosome-2 SNP dataset (known to harbour a locus responsible for lactose 
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tolerance in north-western European populations), the evidence for a positive 

selection event in the native UK population appears weak, for two reasons. First, the 

outlier locus in the human dataset is signalled by >30 out of 80.000 SNPs, whereas 

the outlier locus in the roe deer dataset is signalled by two SNPs only. This difference 

can (partly or wholly) be attributed to the difference in density of the SNP catalogue 

(on average 1 SNP per ~2Kb for the human dataset vs 1 SNP per ~40 Kb for the roe 

deer dataset). Second, the outlier SNPs in the human dataset differ more strongly 

from the neutral distribution (i.e. higher selection scan test scores and higher 

difference in Fst-values) than the outlier SNPs in the roe deer dataset. Due to the 

relatively wide neutral Fst-distribution of the roe deer dataset, outlier SNPs have 

less potential to stand out from the neutral distribution. The inflated neutral 

distribution, which leads to the relatively low test scores of the roe deer SNP 

outliers, therefore does not allow to rule out that the SNP outliers are false positives 

caused by a stochastic abberation of drift affecting one particular locus more 

strongly than other loci. This effect highlights the limited applicability of Fst-outlier 

tests, which in the absence of gene flow loose power if the TMCRA approaches 4·Ne 

generations.  

To my knowledge, this study is the second study to present potential 

evidence for outlier regions possibly under diversifying selection between UK and 

European mainland populations, inferred from SNP datasets. Previously, a high 

density SNP catalogue revealed several putatitive outlier genomic regions under 

anthropogenic diversifying selection between British and Dutch populations of 

great tits (Fig S3A,B in (Bosse et al., 2017). Locus specific Fst values of SNPs in these 

outlier regions were at maximum 0.15, which is much higher than genome wide 

averages (Fst = 0.006, Bosse et al., 2017) but also seems to indicate that the adaptive 

alleles are still segregating (i.e. no fixed differences).  

Ample evidence for post-LGM diversifying selection is found in post-glacial 

lakes and seas, which – as famously illustrated by the threespine stickleback – are 

often home to various ecotypes despite the lack of obvious geographical boundaries 

which could limit gene flow (Hohenlohe et al., 2010; Schluter et al., 2010). Genome 

wide selection analysis resulted in 48 (1.22%) out of 3925 SNPS being highlighted 

as being possibly under diversifying selection between two morphologically and 

ecologically differentiated ecotypes of trout occurring in a post-glacial lakes in 
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Canada (Bernatchez et al., 2016). Arlequin, Bayescan and OutFLANK detected 8 out 

of 2,051 SNPs (0.39%) as divergent between pelagic and demersal spawning 

European flounders in the postglacial Baltic Sea (Momigliano et al., 2017). None of 

the studies reported outliers characterized by fixed differences.  

 One of the most studied phenotypic differences between insular and 

mainland populations are differences in body size (Losos and Ricklefs, 2009). These 

body size differences have been argued to be driven by abiotic factors, particularly 

community structure (Keogh et al., 2005; Lomolino et al., 2013). The extent of 

dwarfism in ungulates depends on the existence of competitors and to a lesser 

extent on the presence of predators. In carnivores, body size has been found to be 

associated with prey abundance and prey size (Raia and Meiri, 2006). The theory of 

island biogeography predicts that due to the dependency of migration and 

extinction probabilities on island size, smaller islands contain less species (Itescu et 

al., 2019; MacArthur and Wilson, 2001) and therefore that differences in community 

structure between islands and mainland, and hence selective pressures on body 

size, depend on island size. Measuring over 200,000 km2, Great Britain is among the 

biggest islands worldwide, and consequently the faunal composition of Great Britain 

is very similar to the faunal composition of north western Europe (Montgomery et 

al., 2014; Stuart, 1995). This faunal similarity might equate to the absence of biotic 

diversifying selection. 

The fact that the two outlier SNPs are adjacent – mirroring results presented 

in Chapter 2 of this thesis – and furthermore have identical genotype scores, makes 

it highly unlikely that that these SNPs stand out due to genotyping errors. As I did 

not detect any known genes or other genomic features within the outlier region, any 

inferences about the exact nature of the selective event are purely speculative. Given 

the faunal similarity between Britain and the European mainland, it seems 

reasonable to assume that the selective driver is abiotic. Islands and adjacent 

mainlands are environmentally and climatically highly heterogeneous (Weigelt et 

al., 2013). The British Isles have an unique climate, and it has for example been 

hypothesized that the distinct morphology of the Irish bee aids survival in the damp 

cool climate of Ireland (Hassett et al., 2018). At the same time, due to the size of 

Great Britain, many climatic factors differ within Great Britain as much as they differ 

between Great Britain and the mainland. The outlier region might therefore 
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represent local adaptation instead of a British or mainland adaptation, but 

additional sampling across Scotland would be needed to exclude either scenario. 

  

Conclusions 

In this study I provide evidence that the Ne of the British roe deer population has 

numbered several thousand throughout the Holocene, resulting in moderate levels 

of genetic drift which have led to moderate loss of standing genetic variation. Based 

on comparisons of the study populations (i.e. Ayrshire, Aurignac and Wurttemberg 

populations), genetic diversity within the native British roe deer population falls 

below the genetic diversity of the mainland roe deer population. Selection scans 

identified 2 adjacent outlier SNPs out of over 50K SNPs in total. The genomic region 

in which these SNPs occur potentially experienced diversifying selection in either 

the native UK or the mainland roe deer population, possibly associated with climatic 

differences.  
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Chapter 4  

 

Demographic and evolutionary history of roe deer sister species 

(Capreolus spp) inferred from whole genome sequencing data  

 

Abstract 

Species that evolved during the Pleistocene in temperate regions experienced 

periods of extreme climatic transitions, but it is still unclear how these climatic 

events impacted their evolutionary histories. The parapatric distribution of the two 

extant roe deer species, the European roe deer (C. capreolus) and the Siberian roe 

deer (C. pygargus), suggests secondary contact following allopatric speciation, 

possibly facilitated by climatic transitions. Here I make use of a new high-coverage 

reference genome for C. pygargus in combination with publicly available deer 

genomes, including the low quality reference genome of C. capreolus, to infer the 

demographic and evolutionary history of extant roe deer. My analyses suggest a 

more recent split time (≤1.6Mya) of the Capreolus sister species than previously 

suggested by mtDNA studies (~2-4Mya), pronounced differences in terms of their 

genetic diversity and effective population sizes, and contrasting demographic 

trajectories. In the species with lower genetic diversity and lower historical Ne 

estimates, C. capreolus, I find higher proportions of lineage specific amino acid 

substitutions. I hypothesize that these elevated dN/dS rates in C. capreolus reflect 

episodic positive selection events, enhanced by low effectiveness of puryfing 

selection typical for small populations. In conclusion, I suggest that both selective 

and neutral processes have influenced the divergence of the two sister taxa.  

 

Related peer-reviewed publication: 

De Jong, M.J., Li., Z., Qin, Y., Quemere, E., Baker, K., Wang, W. 2020. Demography and 

adaptation promoting evolutionary transitions in a mammalian genus that diversified 

during the Pleistocene, Molecular Ecology  

Author contributions: 

ARH conceived the study and MdJ & ARH wrote the paper. MdJ undertook data and 

lab analyses. EQ generated the RADseq data for the Aurignac population. ZL, YQ and 

WW generated the C. pygargus genome assembly and annotation.  
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Introduction 

The climatic oscillations in the Pleistocene (2.59–0.01Mya) serve as natural 

experiments which provide insights into the evolution of populations in the face of 

rapidly changing environmental conditions (Hofreiter and Stewart, 2009). One 

major finding is niche conservatism. Populations predominantly respond to 

changing environmental conditions by habitat tracking (and/or phenological shifts) 

rather than genetic tracking, resulting in tidal-like fluctuations of range limits 

(Hewitt, 2000, 2004; Nadachowska-Brzyska et al., 2015; Stewart et al., 2010)  

When environments change, niche conservatism can cause fragmentation of 

populations and hence facilitate allopatric speciation (Avise et al., 1998; Wiens, 

2004). Pleistocene climatic oscillations have therefore been hypothesized to drive 

speciation, both in temperate and non-temperate regions (Haffer, 1969; Klicka and 

Zink, 1997). But despite the increased potential for population fragmentation, 

Pleistocene speciation rates do no stand out from other geological era, not do they 

exhibit pulses correlated with climatic transitions, suggesting that speciation is 

neither facilitated nor inhibited by the glaciation cycles (Barnosky, 2005; Bibi and 

Kiessling, 2015; Klicka and Zink, 1997, 1999; Lister, 2004).  

These ordinary and continuous speciation rates in an era of increased 

climatic instability can be seen as evidence favouring the hypothesis that 

evolutionary change is driven by biotic interactions rather than by abiotic factors 

such as climatic change (Benton, 2009). An alternative explanation is however that 

populations generally need to be isolated for longer than the typical duration of 

glacial-interglacial cycles in order to complete the speciation process (Barnosky, 

2005).  

In this study I performed comparative genomic analyses of two mammalian 

sister species which evolved during the Pleistocene: the European/western roe deer 

(Capreolus capreolus) and the Siberian/eastern roe deer (Capreolus pygargus). 

These two sister species are phenotypically very similar, C. pygargus being bigger 

and bearing greater and more branched antlers (table 1 in Plakhina et al, 2014). A 

large part of the morphological, ethological and ecological variability of roe deer can 

be contributed to within species differences rather than between species differences 

(Danilkin, 1995).  
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On the genetic level European roe deer have a fixed chromosome number 

(2n=70) whereas Siberian roe deer have various chromosome numbers 

(2n=70+(2B/4B/14B), Xiao et al., 2007). Mitochondrial DNA control region studies 

have indicated that the range of pairwise sequence dissimilarity between 

individuals of either species ranges around 4.9-5.8% (Randi et al., 1998; Xiao et al., 

2007). These estimates lies firmly within the range reported for other deer species 

pairs (i.e. 4.7% to 6.9%; (Douzery and Randi, 1997, cited in Xiao et al., 2007) and 

contrasts with the pairwise sequence dissimilarity between individuals within 

species, which ranges below 3.0% (Xiao et al., 2007). Further evidence for the 

species status of both roe deer types comes from the observation that most captivity 

born hybrid males are sterile (Sokolov and Gromov, 1990). 

Based on their mtDNA control region differentiation the two species are 

thought to have diverged between 2 to 3.7 mya (i.e. 2.2-3.7 mya according to 

Douzery and Randi, 1997) and 2-3 mya according to Randi et al. (1998); both 

estimates cited in Xiao et al. (2007). At present the two species maintain a parapatric 

distribution in the temperate zone of the Eurasian continent and share a border 

which runs in longitudinal direction through southwestern Russia (Fig. 1). The 

hybrization zone surrounding this border is thought to extend from the right side of 

the Volga river up to Eastern Poland (Plakhina et al., 2014). The border between the 

two species lacks obvious geographical boundaries which could limit gene flow, and 

does not overlap with obvious environmental boundaries. The location and 

orientation of the species border, as well as the sizes of both species distribution 

ranges, suggest that environmental variables vary more within than between 

ranges.  

In theory, parapatric distributions of sister species can originate through 

either speciation with ongoing gene flow (Martin et al., 2013; Morales et al., 2017; 

Wang et al., 2019; Winker et al., 2019) or through secondary contact following 

allopatric speciation (Pastene et al., 2007; Poelstra et al., 2014). The first scenario 

entails divergence through diversifying selection in heterogeneous environments 

despite the homogenizing effect of gene flow. Binary phenotypic divergence along 

environmental gradients can potentially result from a threshold response, an abrupt 

change in favoured phenotype along the gradient (Riesch et al., 2018).  
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The second scenario entails a three step process of range fragmentation due 

to a vicariance event, divergence in isolation, and range reunion. This three step 

process potentially facilitates a non-adaptive diversification event, in which 

diversification of a lineage is not accompanied by relevant niche differentiation 

(Comes et al., 2008; Gittenberger, 1991; Lambert et al., 2019). Non-adaptive 

diversification can be driven by either mutation-order speciation (i.e. selective 

driven fixation of mutations; (Czekanski-Moir and Rundell, 2019; Schluter, 2009) or 

by neutral speciation (i.e. fixation of new mutations and/or standing variation by 

drift (Orr and Orr, 1996).  

Given the apparant absence of relevant niche differentiation between C. 

capreolus and C. pygargus, it seems plausible that the current parapatric distribution 

of the two extant roe deer species is a vestige of a diversification event driven by 

climate change induced range fragmentation and subsequent reunion. Unknown is 

however whether this diversification event was driven by mutation-order 

speciation or by neutral speciation.  

In this study I compared a new, high quality genome assembly of the Siberian 

roe deer (C. pygargus) to available genomes of other cervid species, including the 

low quality genome assembly of it’s sister species, the European roe deer (C. 

capreolus). My objectives were twofold. My first objective was to gain more insight 

in the demographic history of C. capreolus and C. pygargus through estimating their 

historical Ne and their TMRCA. My second objective was to assess to what extent the 

divergence of C. capreolus and C. pygargus has been driven by diversifying selection, 

which could reflect mutation-order speciation. To that end I searched for genes 

which experienced episodic positive selection in either sister species using PAML’s 

codeml as well as custom-built tool to detect accelerated dN/dS rates within 

foreground lineages.  

Although PAML’s codeml is a very popular method to search for adaptive 

substitutions within genes, only a minor subset of studies has screened full exomes 

for species specific adaptive substitutions (rather than clade specific adaptive 

substitutions), the reason being that many whole genome sequences have only 

recently become available. For studies which do not contain multiple species per 

genus or per subfamily, it is not clear whether outlier genes reflect episodic selection 

in the lineage leading to the species, or earlier episodic selection on earlier lineages. 
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In this study I compared exomes of >10 Cervidea species, including C. pygargus, C. 

capreolus and the sister lineage H. inermus, allowing us to differentiate between 

genus specific selective events and species specific selective events.   

 

Methods 

Acquisition of raw reads and genome assembly of C. capreolus. The raw reads 

and genome assembly of C. capreolus were generated for a previous study 

(Kropatsch et al., 2013) and kindly provided to us by the authors. The authors 

collected a blood sample from a male roe deer from Hohenstein-Born (Germany; 

50’09’’ N, 8’05’’ E) and prepared this sample for paired end sequencing on an 

Illumina 1.9 platform. The full details of the sequencing protocol are described in 

Kropatsch et al (Kropatsch et al., 2013). The C. capreolus assembly has a total length 

of 2,785,377,831 bp, distributed over 314,210 scaffolds (of 1kb or longer), with a 

median (N50) scaffold length of 10,458 bp.  

Of the 422,979,622 + 422,818,638 C. capreolus forward and reverse reads, I 

dropped respectively 142,876 and 124,768 reads which were contaminated with 

adapter sequences, retaining 422,836,746 forward and 422,693,870 reverse reads. 

I used the software Trimmomatic (Bolger et al., 2014) to discard all Capreolus 

capreolus reads with an average PHRED33-quality score below 20, retaining 

412,716,619 read pairs. All reads were trimmed to a length of 101 bp. 

 

Acquisition of raw reads and genome assembly of C. pygargus. The raw reads 

and genome assembly of C. pygargus were generated by the Center for Ecological 

and Environmental Sciences of the Northwestern Polytechnical University in 

cooperation with the Department of Special Animal nutrition and Feed Science of 

the Institute of Special Animal and Plant Sciences of the Chinese Academy of 

Agricultural Sciences, and kindly provided to us before publication. DNA was 

extracted from liver tissue of a 7 month old male roe deer from the Er He wild animal 

farm at Shulan, Jilin city, Jilin province, in northeastern China (126’58’’ N, 43’855’’ 

E), and subsequently prepared for 10X Genomic Chromium system sequencing. The 

C. pygargus assembly has a total length of 2,607,875,777 bp, distributed over 92,100 

scaffolds, with a median (N50) scaffold length of 6,607,211 bp.  
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Genome wide heterozygosity. I used Bowtie version 2.2.5 to map the retained 

sequence reads of both species to their reference genomes. I used Samtools version 

1.3.3 to filter out reads with a mapping quality below 20 and applied the command 

‘grep –v ‘XS:i’’ to filter out reads which mapped to multiple locations, retaining 

676,985,798 C. pygargus and 522,854,805 C. capreolus reads. I subsequently called 

SNPs using samtools, bcftools (Narasimhan et al., 2016) and vcftools (Danecek et al., 

2011), and used tcsh command line tools to count on a per contig basis the number 

of heterozygous sites, the total number of sites with genotype information and the 

spacing between adjacent heterozygous sites. For comparison I used the same 

approach to generate He estimates for two other deer species, namely white tailed 

deer (O. virginianus) and red deer (C. elaphus).  

Average read depths after filtering, calculated using the samtools depth tool, 

equalled 22.1 for C. capreolus and 39.7 for C. pygargus. To investigate the 

dependency of genetic diversity estimates on average read depth, I randomly 

downsampled the C. pygargus bam file, using the samtools view tool with the -s flag 

set to 0.53. The value of s was derived using the following formula: (522,854,805 C. 

capreolus reads x 101 bp per C. capreolus read)/(676,985,798 C. pygargus reads x 

150 bp per C. pygargus read).  

 

Runs of homozygosity. I used two methods to screen the C. capreolus and C. 

pygargus genomes for runs of homozygosity (ROHs). The first method was based on 

the distance between adjacent SNPs. Because of the low contig sizes for the C. 

capreolus genome, I used the C. pygargus genome as the reference genome for both 

species, assuming highly conserved synteny. The assumption of synteny among 

cervids was verified with dot plots (Fig. A4.1), which I generated by mapping all C. 

pygargus contigs of 10 Mb or longer to C. elaphus chromosomes using the software 

Lastz version 1.02.00 (Harris, 2007) using the ‘gfextend’, ‘chain’ and ‘gapped’ –

options. 

He-spacing statistics were calculated as the distance between heterozygous 

sites. Inter-He-regions which were truncated at the start or the end of a contig (and 

hence were flanked by one rather than two heterozygous sites), were included in 

the analysis. After calculation of the distance between heterozygous sites, a sliding 

window approach was used to screen the C. capreolus and C. pygargus genomes for 
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regions with above average spacing between heterozygous sites (i.e. genomic 

regions with depleted genetic variation), using the rollapply function of the R-

package ‘zoo’ (Zeileis, 2005). I set both stepsize and windowsize to 100 datapoints 

(i.e. 100 adjacents inter-He-regions). I excluded from the analysis all inter-He-

regions with 10 percent or more missing data points. 

 A window was marked as an outlier window if it met two criteria: a) the 

window should contain at least 1 inter-He-region in the top 0.05% 

(5%/windowsize) of all regions; and b) the window should contain at least n regions 

in the top 5% of all regions located on the respective contig, with n averaging 15, the 

exact number being dependent on the number of windows (nwin) on the contig, as 

described by the following R function qpois: n = qpois((1-0.05/nwin), 

(windowsize/20)). Contigs with a size below 5 Mb were not considered, retaining 

164 contigs with a median and mean length of respectively 8.0 Mb and 9.3 Mb (sd = 

4.4 Mb) and a combined length of 1519.4 Mb, spanning roughly half of the genome.  

 The second approach used to detect ROHs involved calculation of 

heterozygosity on a sliding window basis using various window sizes, ranging from 

10Kb to 3Mb, and using non-overlapping windows (i.e. step size equalled window 

size). These estimates were generated using a combination of windows command 

line tools, as well as the software tabix (Li, 2011) to subselect vcf files. R command 

line tools were subsequently used to calculate the proportion of windows with a 

heterozygosity below a specified threshold (namely 0.1%, 0.05% and 0.01%). FROH 

was defined as the total length of windows below the He-threshold, divided by the 

total length of all windows, excluding missing data points. Contigs shorted than 

10Mb, and windows with more than 20 percent data, were excluded from the 

analyses.  

 

PSMC analyses. I generated a diploid fasta file of both genomes by mapping the raw 

reads of both species to their respective genomes, calling snps using samtools 

mpileup and bcftools, and by converting to fastq files using the vcfutils.pl executable 

of bcftools. To correct for differences in read depth between datasets, I 

downsampled the C. pygargus data to match the read depth of C. capreolus.  

Sequentially Markov coalescent modelling (McVean and Cardin, 2005) was 

executed using the software PSMC (Li and Durbin, 2011), with the default settings 
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of 64 time intervals defined by 28 parameters (-p "4+25*2+4+6"), and a maximum 

number of 25 iterations (-N25). I also used the default settings of -t15 and -r5. 

Maximum read depth was set to twice the average read depth (i.e. D = 42), and 

minimum read depth was set to one third the average read depth (i.e. d = 7). A 

minimum read depth of 7 is slightly below the minimum read depth of 10 

recommended by Nadachowska-Brzyska et al (2016). The mean read depth of 21x 

is, in contrast, above the recommended coverage of 18x (Nadachowska-Brzyska et 

al., 2016). The C. capreolus assembly has limited contiguity, with a reported scaffold 

N50 of 10.458 bp (Kropatsch et al., 2013). Simulation analyses have shown that 

PSMC analyses are relatively robust for scaffold sizes down to 10kb, depending on 

the demographic history (figure 1 in Chapter 3 of Gower, 2019).  

I set the generation time parameter to 4-6 years (Nilsen et al., 2009). I 

assumed a mammalian mutation rate per site per year of 0.22∙10-8 (Fig. S29 in Chen 

et al., 2019; Kumar and Subramanian, 2002) and, assuming a linear relation, a 

mutation rate per site per generation (5 years) of 1.1∙10-8. For bootstrapping I used 

100 replicates. 

 

Genome wide genetic divergence. I calculated sequence (dis)similarity between 

both Capreolus sister species by crossmapping raw reads to whole genome 

sequences (i.e. C. capreolus reads to C. pygargus genome, and C. pygargus reads to C. 

capreolus genome) using Bowtie2, and subsequently calling SNPs and indels using 

samtools, bcftools and vcftools. I filtered out reads with a mapping quality below 20 

and applied the command ‘grep –v ‘XS:i’’ to filter out reads which mapped to more 

than one location, as well as sites with a read depth below 8. I counted the total 

number of sites and SNVs on a per contig basis using tcsh command line tools. 

Sequence dissimilarity was estimated as the proportion of fixed differences plus half 

the proportion of segregating sites.    

 

Split time estimation using a random walk Markov chain model. I calculated the 

TMRCA by estimating the time (in years or generations) needed to obtain the 

observed genome-wide pairwise sequence dissimilarity. I estimated the duration of 

this time interval by applying a custom-built random walk Markov chain model in 
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which I simulated the proportion of single nucleotide differences between two sister 

taxa after a vicariance event.  

For simplification I assumed that a mutation will fixate instantly, within a 

single generation, meaning that substitution equals mutation, and that a site is 

always fixed (i.e. no segregating sites). In reality it will take a newly arisen allele on 

average 4Ne generations to fixate within a diploid population (Kimura and Ohta, 

1969), suggesting that the TMCRA estimates generated by my Markov chain method 

underestimates the true TMCRA. For simplicity I also assumed equal substitution 

rates, and equal mutation rates between pyrimidines and purines (i.e. the model 

assumes transversion rates to equal transition rates). The model assumes the 

absence of admixture (i.e. no gene flow), but does take into account the affect of 

incomplete lineage sorting, by assuming random fixation or loss of the standing 

variation within either sister taxa.  

Let the symbol ‘u’ denote the probability of a point mutation per site per 

generation. For each moment in time (and therefore independent of the number of 

generations since the vicariance event) I can make the following argument: If for a 

given locus both taxa have the same DNA base (S for Similar), then the probability 

that in the next generation they will differ for that particular locus, is the sum of two 

probabilities: 

- the probability that one taxon experiences a mutation and the other does not: 

2u(1-u) 

- the probability that both taxa have a mutation, but to different bases: (1/3)u2.  

Combined probability = 2u – (5/3)u2. 

If for a given locus both taxa have a different DNA base (D for Dissimilar), then the 

chance that in the next generation the taxa will be similar for that particular locus, 

is again the sum of two probabilities:  

- the probability that one taxon mutates towards the other taxon (so: one 

taxon mutates, the other doesn’t): 2(1/3)u(1-u) 

- the probability that both taxa happen to mutate to the same DNA letter: 

(1/2)u2. 

Combined probability = (2/3)u – (1/3)u2. 
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This Markovian model, which consists of two states (S and D) and two transition 

probabilities (PrS=>D = 2u – (5/3)u2 and PrD =>S = (2/3)u – (1/3)u2), can be described 

by the following recursive formula:  

S(n+1) =  S(n) + ((2/3)u – (1/3)u2)(1 – S(n)) – (2u – (5/3)u2)S(n) 

Now, let C denote ((2/3)u – (1/ 3)u2) and let k denote (2u – (5/3)u2): 

S(n+1) =  S(n) + C(1-S(n)) – kS(n) 

This can be rewritten to: 

S(n+1) =  (1 – k – C)(S(n) + C) 

Now let r denote (1 – (k – C)): 

S(n+1) =  rS(n) + C 

This can be rewritten to the following decay function: 

S(n)  =  S(0)rn + C(rn-1)/(r-1)  

in which: 

r  = 1 – (8/3)u + 2u2  

C  = (2/3)u – (1/3)u2 

S(0)  = the initial value of the similarity of the sister taxa after random 

fixation or loss of standing variation (approximated by theta of ancestral 

population) 

n  =  number of years/generations 

u  = mutation rate per site per years/generation 

I solved this formula for sequence similarity estimates derived from cross 

mapping raw reads to the genomes of the sister species. I assumed a predefined 

mutation rate (u) of 1.1∙10-8 per site per generation and 0.22*10-8 per site per year 

(Fig S29 in Chen et al., 2019; Kumar et al., 2015). I also ran forward time simulations 

to derive 95% confidence intervals. I tested the validity of the model by comparing 

predicted TMRCA estimates with published estimates on great ape divergence times 

and sequence dissimilarity.  

 

Gene alignment and exome species trees. I blasted the exons of the 21,777 

annotated C. pygargus genes to the Bos taurus genome (Bovine Genome Sequencing 

and Analysis Consortium et al., 2009; Zimin et al., 2009; GCA_002263795.2), to the 

C. capreolus genome and to other published cervid genomes, namely: Rangifer 

tarandus (Li et al., 2017; PRJNA391754), Odocoileus virginianus (Seabury et al., 
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2011; GCA_003697985.1, Elaphurus davidianus (Zhu et al., 2018; 

GCA_002443075.1), Cervus elaphus (Bana et al., 2018; GCA_002197005.1), 

Odocoileus hemonius (GCA_003697985.1), Hydropotes inermus (GCA_006459105.1), 

Muntiacus muntjak (GCA_006409035.1), Muntiacus crinifrons (GCA_006408485.1), 

Muntiacus reevesi (GCA_006408525.1) and Cervus albirostris (GCA_006408465.1) 

(Chen et al., 2019). During a second round of analyses I blasted the genes to five 

additional ruminant genomes, namely Bison bison (GCA_000754665.1), Bison 

bonasus (Wang et al., 2017), Bos grunniens (GCA_005887515.2), Bubalus Bubalis 

(GCA_003121395.1, Low et al., 2019), Cervus canadensis (Mizzi et al., 2017), and 

Syncerus caffer (Glanzmann et al. 2016). For each exon I selected the first hit only, 

giving preference to exons residing on the same contig or chromosome. 

I used the getFastaFromBed tool from the bedtools (Edgar, 2004)version 

2.19.1 to extract the blast hits from the reference genomes, and subsequently 

concatenated exons into whole genes (using the bash ‘paste’ command). I used 

Muscle (Edgar, 2004) version 3.8.31 for multiple alignments on the obtained gene 

sequences. 

The credibility of the gene alignments was verified by visual inspection of a 

random subset of genes, as well as by using the concatenated alignments to generate 

a maximum likelihood species tree with 100 bootstrap replications using the 

software RaxML (Stamatakis, 2014) with Bos taurus as the outgroup, and with 

partitioning into first and second codon positions vs third codon positions. 

 

dN/dS rates. I calculated gene specific dN/dS rates using PAML yn00 (Yang, 2007), 

opting for the yn method rather than the lwl85 method. For each gene, a species was 

excluded from the analysis if it contained a stop codon or 50 percent or more 

missing data points. I excluded genes of which the lengths were not multiples of 3.  

 

Codeml branch site tests. I used PAML’s CodeML to test for evidence of positive 

selection by comparing for each gene the performance of two branch-site models: 

model A (ω0 < 1, ω1 = 1, ω2 > 1), with the corresponding null model (ω0 < 1, ω1 = 

1, ω2 =1), by setting model = 2 and Nssites = 2 for both models, and fix_omega = 1 

and omega = 1 when running the null model. Significance was evaluated using the 

chisq. test implemented in R, applying a Bonferroni correction for multiple testing. 
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I used three different foreground branches: C. capreolus, C. pygargus and the genus 

Capreolus (i.e. C. capreolus + C. pygargus). 

 To facilitate interpretation of outcomes and compare the findings to findings 

for other species pairs, in a second round of analyses I used additional foreground 

branches, namely: B. bison, B. bonasus, genus Bison, C. elaphus, C. canadensis, C. 

albirostris, genus Cervus, B. bubalis, S. caffer, subtribe Bubalina, O. hemionus, O. 

virgianus, and genus Odocoileus.  

 

Accelerated dN/dS rates tests. PAML’s codeML tests for the presence of positively 

selected codons within genes. It does so by comparing the likelihood of the null 

model that all codons within the gene are either evolving neutrally (i.e. dN/dS = 1) 

or under puryfing selection (i.e. gene wide dN/dS < 1) against the likelihood of the 

alternative model that in addition some codons are under diversifying selection 

(dN/dS > 1). Another way to search for positive selection is a relative rate test 

(Sarich and Wilson, 1973) which compares lineage specific gene specific dNdS rates 

to the background dNdS rates (i.e. gene specific dNdS rates in other lineages). If for 

a particular lineage multiple codons within a gene are under positive selection, the 

proportion of non-synonymous mutations in this lineage will be accelerated 

compared to other lineages.  

I searched for genes with accelerated dNdS rates in C. capreolus, C. pygargus, 

and the Capreolus genus (i.e. C. capreolus + C. pygargus) using an ingroup-outgroup 

approach, which can be denoted in newick format as ((AB),C). For each of the three 

pairwise comparisons (A vs B, A vs C, and B vs C), I calculated the number of 

nucleotide and the number of amino acid differences. To search for accelerated 

dN/dS rates in species A, I contrasted the sums of the AB- and AC-scores to the BC-

scores using Fisher exact tests.  

Evidence for accelerated selection in C. capreolus, C. pygargus and the 

Capreolus genus was assessed using respectively the following ingroup-outgroup 

models: ((C. capreolus, C. pygargus), H. inermus), ((C. pygargus, C. capreolus), H. 

inermus) and ((C. pygargus, H. inermus), R.tarandus).  

 

GO enrichment analysis. GO enrichment analysis was executed using the R 

package systemPipeR (Backman and Girke, 2016). I downloaded the human GO 
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annotation file (i.e. goa.human.gaf) from the gene ontology consortium website (i.e. 

http://current.geneontology.org/products/pages/downloads.html) and used this 

dataset to create a catDB (using the function ‘makeCATdb’). I chose the human GO 

annotation file because some genes of interests were missing from the cow GO 

annotation file. I executed GO enrichment tests using the functions GOHyperGALL 

and GOHyperGALL_Subset (GO slim analysis). Hugo gene ID’s were converted to 

Swisprot gene ID’s using the R package BiomaRt (Durinck et al., 2009). 

 

Results 

Genome wide heterozygosity. Genome wide heterozygosity estimates for C. 

capreolus and C. pygargus ranged between respectively 0.14-0.156% and 0.297-

0.324%, depending on filter settings on mapping approach (Table A4.1, Fig. 4.1A-

C,G). 

Downsampling the C. pygargus dataset to the same read depth as the C. 

capreolus dataset lowered the He estimate of C. pygargus from 0.32% to 0.297% 

(Table A4.1). This outcome is suggestive of a false negative rate of heterozygous 

sites within C. capreolus (compared to C. pygargus) of 1 – (0.297/0.320) = 7.2%. 

Therefore, levelling the read depth of C. capreolus with the read depth for C. 

pygargus would potentially increase its He estimate from 0.143% to 0.154%.  

Crossmapping sequencing reads to the reference genome of the sister 

species, returned heterozygosity estimates of 0.156% for C. capreolus and 0.324% 

for C. pygargus (Table A4.2).  

  

Runs of homozygosity. Mean and median spacing between heterozygous sites was 

respectively 321 and 151 bp for C. pygargus and 761 and 240 bp for C. capreolus (Fig 

4.1B). The two ROH-analysis methods produced consistent results (i.e. highlighted 

the same regions, Fig A4.6A-B). Using the He-spacing approach, we observed 23 

genomic regions within the C. pygargus genome with low density of heterozygous 

sites, varying in length from 97.8 kb to 10.8 Mb, with mean spacing between 

heterozygous sites varying between 951.5 bp to 24.6 kb, and with a maximum  
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Fig. 4.1. Genetic diversity, genetic divergence and demographic history. Red: 
European roe deer (C. capreolus), blue: Siberian roe deer (C. pygargus). A. Proportion 
of heterozygous sites per contig. B. Mean spacing between heterozygous sites. Left: all 
contigs. Right: contigs longer than 100kb. C. Historical Ne estimates inferred by PSMC 
analyses (Li & Durbin, 2011). Dashed coloured lines are relative to y-axis on the 
righthand size of the plot, full lines are relative to y-axis on the left hand side. Lightgrey 
area: Last Glacial Period (11.7-115kya) and Penultimate Glacial Period (130-194kya). 
Darkgrey area: Last Glacial Maximum (16.3-31kya).Dashed vertical line: Brunhes–
Matuyama paleomagnetic reversal.Light grey line: magnetic susceptibility (/100), 
Lingtai Loess data (Sun et al. 2010). Black line: atmosphoric CO2/ppm/10, EPICA 
Dome C Ice Core 800kyr carbon dioxide data (Luthi et al, 2008). D.Geographic 
distribution of C. capreolus and C. pygargus. Data from IUCN website. Black dots 
indicate origins of samples from which whole genome sequences were obtained. E. 
Barplot of single nucleotide variations (SNVs) in C. capreolus compared to C. pygargus 
(left), and conversely C. pygargus compared to C. capreolus (right). Grey: 
segretating/heterozygous sites, colour: fixed sites. F. Piecharts of compostion of SNVs 
for C. capreolus compared to C. pygargus (left), and conversely C. pygargus compared 
to C. capreolus (right). G. Genome wide heterozygosity (percentage observed number 
of heterozygous sites of the total length of the genome assembly) of Capreolus species 
compared to other cervids. The estimate for E. davidianus was obtained from Zhu et 
al. 2018. 
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spacing of 269.9 kb. Within the C. capreolus genome, I observed 101 genomic regions 

with low density of heterozygous sites, varying in length from 56.0 kb to 3.8 Mb, 

with mean spacing between heterozygous sites varying between 822.3 bp to 12.2 

kb, and with a maximum spacing of 230.5 kb. Genomic regions with low density of 

heterozygous sites in C. pygargus did not overlap with those of C. capreolus (Fig. 

A4.2). The two species had similar variance in window He estimates (Fig. A4.6E), 

and the presence of a higher number of short ROHs in C. capreolus appeared 

consistent with the lower genome wide mean heterozygosity (Fig. A4.6E-F). When 

ignoring ROHs with lengths below 500Kb, the FROH estimates obtained for both 

species were close to zero (Fig A4.6D).  

 

PSMC analyses. The output of the PSMC analysis indicated that throughout the 

separate histories of both sister species the historic effective population sizes (Ne) 

of C. capreolus has been consistently lower than the Ne of C. pygargus (Fig. 4.1, A4.3). 

The Ne of C. capreolus has remained roughly similar to the Ne of the ancestral 

population (i.e. ~20,000 individuals), whereas the Ne of C. pygargus has increased 

over time. Assuming a mutation rate of 1.1∙10-8 mutations per site per generation 

and a generation time of 5 years, C. pygargus Ne reached a maximum of ~175,000 

individuals during the Last Glacial Maximum (i.e. 16-31 kya) (Fig. 4.2). Based on the 

same settings, the Ne estimates of the two species started to diverge around 1.5-1.6 

Mya (Fig 4.2), suggesting C. pygargus and C. capreolus split before or at that time.  

Higher mutation rates lead to more recent estimates of TMCRA, whereas 

longer generation times lead to less recent estimates of TMRCA (Fig A4.2). A rate of 

2.5∙10-8 mutations per site per generation suggested a lower limit of the TMRCA of 

both sister species of 0.6 Mya, whereas a rate of 0.5∙10-8 mutations per site per 

generation suggested a lower limit of 3 Mya (Fig A4.3). A generation time of 3 years 

suggested a TMCRA lower limit of 0.7 Mya, whereas a generation time of 6 years 

suggested a TMRCA lower limit of 1.5 Mya (Fig A4.3).  

 

Genome wide genetic divergence. Crossmapping C. pygargus sequencing reads to 

the C. capreolus reference genome yielded a pairwise sequence dissimilarity 

estimate of 0.60% (Table A4.2, Fig 4.1E-F). Crossmapping C. capreolus sequencing 

reads to the C. pygargus reference genome yielded a pairwise sequence dissimilarity  
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Fig. 4.2. Conceptual visualisation, simulation results and roe deer TMRCA 
estimate of the random walk Markov chain model. A. Conceptual visualisation of 
the random walk Markov chain model. ‘m’ denotes a mutation event, ‘u’ denotes 
mutation probability per site per year or per generation,’i’ and ‘n’ denote a single year 
or generation, ‘pop1’ and ‘pop2’ denote sister taxa which split at n=0 from ancestral 
population, ‘D’ denotes the sequence dissimilarity probability, ‘S’ denotes similarity 
similarity probability, ‘S[0]’ denotes sequence similarity probability directly after the 
vicariance event, and after fixation/loss of standing variation. B. Upper TMCRA 
estimate of C. pygargus and C. capreolus. C.pyg-C.cap: estimate derived from mapping 
C. pygargus reads to C. capreolus genome. C. cap-C.pyg: estimate derived from 
mapping C. capreolus reads to C. pygargus genome. Sequence similarity estimates 
(0.993-0.994)are based on analyses presented in 4.1E-F. S[0] is set to 1, resulting in 
upper TMRCA estimates. C. Sequence similarity decay predicted by the random walk 
Markov chain model. Sequence similarity converges as expected to 0.25, which is the 
sequence similarity of two unrelated DNA-sequences. D. Simulated confidence interval 
of sequence similarity estimates given a sequence of 100 bp. Sequence similarity 
estimates are generated with the recursive formula S[i+1] = S[i] + C*(1 – S[i]) – kS[i], 
in which C and k contain a stochastic element (i.e. occurence of mutation event). Shown 
are the mean and standard deviation obtained from 10,000 simulations with a 100 bp 
sequence, for a range of mutation rates (i.e. 0.1, 0.01, 0.001, and 0.0001). E. The 
relation between simulated sequence length and the maximum standard deviation of 
10,000 simulated sequence similarity estimates. Simulated confidence interval of 
sequence similarity estimates given a sequence of 100 bp. Sequence similarity 
estimates are generated with the recursive formula S[i+1] = S[i] + C*(1 – S[i]) – kS[i], 
in which C and k contain a stochastic element (i.e. occurence of mutation event).  
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estimate of 0.70% (Table A4.2, Fig 4.1E-F). Depending on the approach used, 

pairwise sequence similarity between C. capreolus and C. pygargus therefore equals 

either 99.3% or 99.4%.  

 Blasting C. pygargus genes to the C. capreolus genome resulted in pairwise 

alignments of in total 31,692,647 non-missing data points (sites with sequence 

information in both species), of which 170,596 sites were dissimilar, resulting in a 

exome dissimilarity score of 0.54%. This score is therefore approximately 10 

percent lower than the genome wide dissimilarity score of 0.6% obtained from 

blasting C. pygargus reads to the C. capreolus genome.  

Given the C. capreolus assembly measures 2,051,852,399 bp (Table A4.2), the 

exome made up (31,692,647/2,051,852,399*100=) 1.54% of the assembly. In 

contrast, exomic single nucleotide variations made up 

(170,596/(2,051,852,399*0.006)*100=) 1.39% of the genome wide number of 

single nucleotide variations.  

 

Performance of split time estimation model. In line with expectations, the 

random walk MC model (Fig 4.2A) predicts a long term equilibrium neutral 

sequence similarity of 25% (Fig 4.2C). My similations indicate that the standard 

deviation from the expected similarity is independent of the mutation rate (Fig. 

4.2D) and dependent on the length of the sequence (Fig. 4.2E) as well as the mean 

similarity. The maximum standard deviation is observed for a mean similarity of 

50%, and is approximately described by the function: log(sd) = 1.7 – 

0.5*log10(sequence_length) (Fig 4.2E). Therefore, given a genomic sequence of >1 

Gb, the maximum standard deviation is 0.0016%, amounting to a very narrow 95% 

confidence interval of 0.0032%. This confidence interval is so narrow that I excluded 

it from the output plots. However, other factors do cause considerable uncertaincy 

in the estimation of divergence time, most notably mutation rate estimate error 

margins and sequence dissimilarity estimate error margins (Fig A4.5).  

I validated the model by comparing the fit between expected (i.e. published) 

divergence time estimates for great ape species pairs with divergence time 

estimates outputted by the random walk MC model. Different outcomes were 

observed when using yearly mutation rates (uy) versus generation specific mutation 
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Fig 4.3. dN/dS analyses. C_cap = C. capreolus (western roe deer), R_tar = R. tarandus 
(reindeer), O_vir = O. virginianus (white tailed deer), E_dav = E. davidianus (Pere 
David’s deer), C_ela = C. elaphus (red deer), B_tau = B. taurus (cattle), H_ine = H. 
inermus (water deer), O_hem = O. hemonius (mule deer), M_mun = M. muntjak 
(common muntjac), M_cri = M. crinifrons (black muntjac), M_ree = M. reevesi (Reeves’s 
muntjac), C_alb = C. albirostris (Thorold’s deer). A. Barplots showing dN and dS values, 
calculated using PAML’s yn00, for pairwise comparisons between C. pygargus and 5 
other cervid species and cattle, for up to 14,512 genes. Bar heights indicate mean gene 
specific values. Error bars indicate standard deviation.B. Scatterplot of dN and dS 
values, calculated using PAML’s yn00, for pairwise comparisons between C. pygargus 
and 3 other cervid species and cattle. C. Lineage sorting (LS) in Capreolus and 
Hydropotes depicted by frequency histogram of gene specific phylogenies for 21.325 
genes, with R_tar as outgroup. Purple: ((C_cap,C_pyg),H_ine), red: 
((C_cap,H_ine),C_pyg)), ((C_pyg, H_ine),C_cap). D. RaxML phylogeny based on full 
exomes with 100% bootstrap support at all nodes. I generated this phylogenetic tree 
to verify the gene alignments. E. Barplots of number of genes marked by codeml as 
neutrally evolving or positively selected genes (PSG). Light colour: neutral genes. 
Purple, red, and blue: PSG’s for respectively genus, C. capreolus and C. pygargus as 
foreground lineages. F.-G. For all pairwise species comparisons, median dN and 
median dS values (as well as mean dN and dS values) are highly correlated, explaining 
the uniform dN/dS estimates across species, independent of TMRCA. Shown are 
adjusted squared explained variance and Spearman’s correlation coefficient. Colour 
coding as in A. H. Barplot showing frequency of number of adjacent mutations in 
mutation clusters in genes marked by codeml branch site tests as outlier genes. Not 
counted are mutation clusters with gaps between the mutations.  
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rates (ug) (Fig A4.4). Given the 1.23% sequence dissimilarity reported for human 

and chimp genomes (Varki and Altheide, 2005), uy = 0.22∙10-8 results in a TMRCA 

estimate of 2.73 My and ug = 2.5∙10-8 results in a TMRCA estimate of 4.8 My (Fig. 

A4.4). Given the 0.6% sequence dissimilarity reported for bonobo and chimp 

genomes (Prüfer et al., 2012), uy = 0.22∙10-8 results in a TMRCA estimate of 1.26 My 

and ug = 2.5∙10-8 results in a TMRCA estimate of 2.2 My (Fig. A4.1). Given the 0.32% 

sequence dissimilarity reported for Sumatran and Bornean orangutans (Locke et al., 

2011; Prado-Martinez et al., 2013), uy = 0.22∙10-8 results in a TMRCA estimate of 0.62 

My and ug = 2.5∙10-8 results in a TMRCA estimate of 1.0 My (Fig. A4.4).  

As for relatively similar species (i.e. sequence similarity > 99%) the random 

walk Markov chain model returned more faithful estimates using yearly rather than 

generation specific mutation rates (see results above), I decided to calculate the 

TMCRA of the Capreolus sister species using a yearly mutation rate (i.e.: uy = 0.22∙10-

8). 

 

Divergence time estimation. Uncertaincy in the estimate of the time to most recent 

common ancestor (TMRCA) of C. capreolus and C. pygargus arises from uncertaincy 

of three input variables: the estimate for sequence similarity shortly after the 

vicariance event (i.e. S(0) = 99.75 – 100%), the present day sequence similarity (i.e. 

S(n) = 99.3 – 99.4%), and the mutation rate. Assuming a yearly mutation rate of uy =  

0.22∙10-8, the TMRCA of C. capreolus and C. pygargus ranges from 0.7-1.6 Mya, 

depending on combinations of S(0) and S(n) (Fig. 4.2B, Fig. A4.5).  

 

Exome species tree. A species tree based on full exomes (with partitioning in first 

and second codon vs third codon positions) confirmed established relationships 

between cervid species, with Capreolus grouping together with Hydropotes in the 

New World Deer clade (Capreolinae) (Fig 4.3D, Fig A4.6). The Capreolus/Hydropotes 

clade contained the highest branch lengths, with C. capreolus having a higher branch 

length than C. pygargus (i.e. 0.0032 vs 0.0023) (Fig A4.6). Out of 21,325 gene trees 

with data for all three species, 86.7% (19,068 gene trees) corresponded to the 

species tree (i.e. ((C.capreolus,C.pygargus),H.inermus)), whereas 4.2% (910 gene  
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Fig 4.4. Accelerated dN/dS rates. Gene specific proxies of dN/dS rates of foreground 
branches contrasted to gene specific proxies of dN/dS rates of background branches. 
Investigated foreground branches are C. pygargus (blue), C. capreolus (red), Capreolus 
genus (purple), and Hydropotes genus (green). All results are based on comparisons 
between three species, of which one species is defined as an outgroup species, as 
denoted in Newick format by ((A,B),C). Evidence for accelerated selection in C. 
capreolus, C. pygargus and the Capreolus and Hydropotes genera was assessed using 
respectively the following ingroup-outgroup models: ((C. capreolus, C. pygargus), H. 
inermus); ((C. pygargus, C. capreolus), H. inermus); ((C. pygargus, H. inermus), 
R.tarandus); and ((H. inermus, C. pygargus), R.tarandus). (A).For each of the three 
pairwise comparisons (A vs B, A vs C, and B vs C), I calculated proxies of dNdS ratios by 
counting the number of nucleotide and the number of amino acid differences. For each 
gene I summed the AB- and AC-scores (foreground dN/dS proxy), and contrasted these 
sums to the BC-scores (background dN/dS proxy). Colour coding indicates the sum of 
the observed nucleotide differences per gene. Inflated dots indicate genes marked as 
outliers (see 4.4C). (B). Gene specific AB/AC-scores were contrasted to BC-scores in a 
2x2 contingency table, on which I subsequently executed Fisher exact tests. I found that 
the negative log of the Fisher exact p-values fits a lognormal distribution. Log mean 
and log standard deviations were respectively -1.22 and 0.53 for C. pygargus as 
foreground branch, -1.08 and 0.6 for C. capreolus as foreground branch, -1.17 and 0.58 
for Capreolus genus as foreground branch, and -1.10 and 0.63 for Hydropotes as 
foreground branch. (C). I defined observed scores as outliers if they exceeded the 1-
0.05/ngenes quantile threshold, with ngenes equalling 21777, and the threshold 
depending on the log standard deviation of the observed distribution (see 4.4B).  
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trees) favoured C. pygargus as outgroup (i.e. ((C_capreolus,H.inermus),C.pygargus))), 

and 6.2% (1.347 gene trees) favoured C. capreolus as outgroup (i.e. ((C_pygargus, 

H.inermus),C.capreolus)) (Fig. 4.3C).  

 

dN/dS rates. Mean and median dN and dS values for pairwise comparisons between 

C. pygargus and other cervids were strongly correlated (Fig. 4.3E-F) and dependent 

on TMRCA, with the pairwise comparison between C. pygargus and C. capreolus 

returning the lowest dN and dS values, and the pairwise comparison between C. 

pygargus and B. taurus returning the highest dN and dS values (Fig 4.3B,E-F). Due to 

the strong correlation between dN and dS values, dN/dS values were independent 

of the TMRCA. Mean and median dN/dS values for pairwise comparisons between 

C. pygargus and other cervids were relatively constant, ranging respectively 

between 0.26 and 0.32 (Fig 4.3) and between 0.14 and 0.16 (Fig A4.7), the mean 

values being roughly consistent with the expected long term equilibrium of 0.313 

for genes under purifying selection, as inferred from simulations and modelling 

approaches (Mugal et al., 2014).  

  

Codeml branch site tests. Codeml branchsite tests with the genus Capreolus as 

foreground branch (i.e. C. capreolus and C. pygargus combined) returned 18 out of 

19318 genes with p-values below the Bonferroni threshold (Fig 4.3E,H; Table 

A4.3A). Visually examination of the gene alignments and the BEB-scores revealed 

that at least 10 genes were false positives due to either misalignments, missing data  

or paralog comparisons, leaving 8 genes (0.04%) with at least 1 or more lineage 

specific amino acid mutations with a BEB-score of 0.5 or higher for class2a or 

class2b (Table A4.3B-C; Fig A4.8). The 8 potentially positively selected genes were 

ARHGAP33, NLK, PAXBP1, MDN1, KLHL29, BOLA, ZCCHC18 and one undetermined 

loci.  

 Codeml branchsite tests with the species C. capreolus as foreground branch 

returned 70 out of 21,231 genes with p-values below the Bonferroni threshold 

(Table A4.4A). Visually examination of the gene alignments and the BEB-scores 

revealed that at least 39 genes were false positives due to either misalignments, 

missing data or paralog comparisons, leaving 34 genes (0.16%) with at least 1 or 

more lineage specific amino acid mutations with a BEB-score of 0.5 or higher for 
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class2a or class2b (Table A4.5B-C; Fig. 4.3E; Fig A4.9). Of those 34 genes, 25 genes 

were characterized by clusters of two or more adjacent amino acid mutations (i.e. 

>6 adjacent nucleotide mutations, Fig 4.5H), rather than by single mutations spread 

throughout the gene. Examples of these mutation cluster are depected in Fig A4.12. 

For 9 genes, these clusters of adjacent amino acid mutations were encoded for by 

DNA-sequences of 7 bp or longer which occurred once or multiple times elsewhere 

in the gene.  

Codeml branchsite tests with the species C. pygargus as foreground branch 

returned 10 of 21152 genes with p-values exceeding the Bonferroni threshold 

(Table A4.6). Visually examination of the gene alignments and the BEB-scores 

revealed that at least 6 genes were false positives due to either misalignments, 

missing data or paralog comparisons, leaving 4 genes (0.02%) with at least 1 or 

more lineage specific amino acid mutations with a BEB-score of 0.5 or higher for 

class2a or class2b (Table A4.6B-C; Fig 4.3E; Fig A4.10). The 4 potentially positively 

selected genes were MAP1A, MUC2, NAP1L1, ZADH2. The gene MUC2 contained 47 

amino acid mutations unique to C. pygargus (within the 14 species dataset), of which 

3 adjacent codons, coded for by the 9-bp DNA-sequence ‘CCACAACCA’, which occurs 

at four other locations within this gene. The gene ZADH2 contained 5 amino acid 

mutations characteristic for C. pygargus, of which 3 adjacent, partly coded for by the 

6-bp DNA-sequence GATGCA, which occurs at two other locations within this gene.  

The outlier genes for C. pygargus and C. capreolus were not located in 

genomic regions with low density of heterozygous sites in the respective genomes.  

 

Accelerated dN/dS rates. In line with expectations, gene specific foreground 

dN/dS rates generally correlated with gene specific background dN/dS rates (Fig 

4.4A). The negative log of obtained Fisher exact test p-values (derived from 

comparing background dN/dS rates to foreground dN/dS rates) fitted a lognormal 

distribution (Fig 4.4B). I defined observed p-values as outliers if they exceeded the 

quantile threshold with a Bonferroni corrected p-value of 1-0.05/ngenes, with 

ngenes equalling 21777, and with the quantile threshold depending on the log 

standard deviation. I observed one outlier gene for C. pygargus, nine for C. capreolus, 

one for the Capreolus genus, and zero for the Hydropotes genus (Fig 4.4C).  
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Visual examination of the gene alignments revealed that two outlier genes 

were false positives due to paralog comparisons (Table A4.7). CodeML BEB-scores 

confirmed the abundant presence of codons with high class2a and class2b 

probabilities, but none of them were significant (Table A4.8, Fig A4.9), and the 

CodeML chi-squared p-values for these genes were highly insignificant (Table A4.7). 

The genes with accelerated dN/dS values were TMCC1 for the genus, DAGLB for C. 

pygargus, and SF3B1, MFAP1, EEF2, SLC16A7, SCN2A, SCN3A and PCSK2 for C. 

capreolus.  

The outlier genes for C. pygargus and C. capreolus were not located in 

genomic regions with low density of heterozygous sites in the respective genomes.  

  

GO enrichment analysis. GOslim analyses returned zero significant results for any 

of the gene outlier subsets. GO analyses returned 3 BP, 3 CC, and 3 MF GO terms with 

a p-value below 0.05 (after type 1 error correction) for C. capreolus codeml outliers; 

9 BP terms for C. pygargus codeml outliers; and 1 CC and 1 MF term for the genus 

Capreolus codeml outliers (Fig $4.13A).  

GO enrichment analysis for genes with accelerated dN/dS rates in C. 

capreolus returned respectively 7 BP, 8 CC and 7 MF GO terms with a p-value below 

0.05 (after type 1 error correction, Fig A4.13B). The accelerated dN/dS rate tests 

resulted in less than three outlier genes for C. pygargus and the genus Capreolus, and 

did not return significant gene enrichment scores.  

 The majority of enriched GO terms for C. capreolus were represented by the 

gene pair SCN2A (g18675.t1, Uniprot: Q99250) and SCN3A (g18676.t1, Uniprot: 

Q9NY46) (Fig. A4.13A-B). These genes are also known as sodium-voltage gated 

channel alpha subunit 2 and sodium voltage-gated channel alpha subunit 3, and are 

predominantly expressed in the brain. Neither gene contained amino acid 

substitutions spread throughout the gene rather than clusters of substitutions. 

Closer inspection of the alignments revealed that parts of the sequences were 

shared between both genes and were suggestive of misaligned sections.  

 The majority of the enriched GO terms (all but one) for C. pygargus were 

represented by the gene pair NAP1L1 (g10234.t1, Uniprot: P55209) and MAP1A 

(g01212.t1, Uniprot: P78559), respectively known as assembly protein 1 like 1 and 
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microtubule associated protein 1A, which did not contain clusters of mutations (Fig. 

A4.13B).  

 The enriched GO terms for the genus Capreolus were ‘cytosol’ and 

‘transcription factor binding’, represented by respectively four and two genes (out 

of a total of seven) known genes (Fig. A4.13A). 

 

Discussion 

This study compares the newly generated high quality reference genome of the 

Siberian roe deer (C. pygargus) to genomes of other deer species, most particularly 

the lower quality genome of it’s sister species, the European roe deer (C. capreolus, 

NCBI assembly GCA_000751575.1, Kropatsch et al., 2013).  

 

Genetic diversity. The genome comparison demonstrates a strong difference in 

nuclear genetic diversity between the two roe deer species, a finding which deviates 

from expectations based on comparisons of mtDNA studies. Reported control region 

nucleotide diversity estimates are 0.75% and 0.94% for respectively southwestern 

Germany (i.e. central European lineage (Baker and Hoelzel, 2014) and northeastern 

China (Lee et al., 2016), which are the sampling locations of the two whole genome 

sequences. The interspecies difference in nuclear DNA genetic diversity reported in 

this thesis (i.e. 0.14% and 0.32% heterozygosity in respectively C. capreolus and C. 

pygargus) is therefore almost twice the magnitude of genetic difference seen for 

mtDNA.  

 Given the relatively limited size of the mitochondrial control region (<1kb) 

in comparison to whole nuclear genome sequences (>2Gb), genome wide estimates 

provide more reliable estimates of genetic diversity. The comparatively weak 

difference in mtDNA genetic diversity likely reflects a genomic sampling bias. The 

contig specific estimates of heterozygosity confirm the presence of variation in 

genetic diversity along genomes, with some C. capreolus contigs containing equal or 

even higher genetic diversity than some C. pygargus contigs (Fig 4.1A-C).  

Read depth has been shown to affect genotype calling. Homozygous SNVs are 

reliably detected at 15x coverage, whereas reliable detection of heterozygous SNVs 

requires a minimum depth of 18-20x (Meynert et al. 2014). Although the average 

read depth of C. capreolus was above 20, read depth varies stochastically across 
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sites, and in theory inaccurate genotyping calling at sites with read depths below 20 

might have caused an underestimate of C. capreolus heterozygosity. However, 

downsampling of the C. pygargus dataset to the same average read depth as C. 

capreolus, only marginally lowered the He estimate for C. pygargus (Table A4.1), 

indicating that the strong difference in genome wide heterozygosity between both 

species is not a data artifact.  

Given the wide geographical distribution of both species (Fig 4.1D) and the 

presence of isolation by distance effects (Baker and Hoelzel, 2012), the observed 

difference in genetic diversity does not necessarily reflect the species as a whole. 

MtDNA studies on C. capreolus and C. pygargus indicate considerable variation in 

genetic diversity across populations. Estimates of nucleotide diversity of the control 

region range between 0.00-0.82% for C. capreolus (Table 1 in Wiehler and 

Tiedemann, 1998; Table 2 in Baker and Hoelzel, 2014) and between 0.28-1.26% for 

C. pygargus (Table 2 in Lee et al., 2016). These figures indicate that although on 

average C. pygargus populations contain higher genetic diversity than C. capreolus 

populations, there is also considerable overlap.  

Although the genome wide heterozygosity of C. capreolus is half the genome 

wide heterozygosity of C. pygargus, it is not exceptionally low, as it falls firmly within 

the range reported for other mammal species (see Fig 4A in Cho et al., 2013; Fig 1C 

in Robinson et al., 2016; Table S3 in Brüniche-Olsen et al., 2018; Fig 4A in Beichman 

et al., 2019). Also, pronounced differences in genome wide heterozygosity between 

closely related sister taxa have reported previously for other species, including great 

apes (Fig 1B in Prado-Martinez et al., 2013) and the extant two bison species (Wang 

et al. 2017; Brüniche-Olsen et al. 2018).  

 

Run of homozygosity. Runs of homozygosity (ROH) analyses were performed to 

access whether the difference in genetic diversity between C. pygargus and C. 

capreolus could reflect a difference in inbreeding levels. The C. pygargus sample was 

obtained from a deer farm, and hypothetically the relatively high genome wide 

heterozygosity could have resulted from outcrossing between C. pygargus 

individuals originating from different geographic regions. Alternatively, the C. 

capreolus individual could have been an inbred individual. This latter explanation 

appears however unlikely, because the sample was obtained from a wild-caught 
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individual from a non-isolated population, and furthermore because the observed 

level of genome wide heterozygosity (~0.14%) corresponds with estimates 

obtained for >100 C. capreolus individuals from ddRADseq data (Chapter 3 of this 

thesis).  

 The outcome of the the ROH analyses also do not support the hypothesis that 

the C. capreolus individual was inbred. Although the C. capreolus genome does 

contain a higher proportion of regions with low heterozygosity (<0.01%) than the 

C. pygargus genome (Fig. A4.6C-D), this is likely not the result of inbreeding. Unlike 

long ROHs, which are likely to be autozygous as a result of recent inbreeding, short 

ROHs can also be caused by other factors, including historical population 

demography (Bruniche-Olsen, 2018). The vast majority of the ROHs detected in the 

C. capreolus genome were below 1Mb, and all were below 3Mb (Fig. A4.6C-D). In fact, 

the longest observed ROH, measuring 2Mb, did not occur in the C. capreolus but in 

the C. pygargus sample (namely on contig 16145, Fig. A4.6A-B). For comparison, 

samples with known history of recent inbreeding, such as cattle, contain ROHs 

stretching over 30Mb (Fig. 1 in Purfield et al., 2012). For both C. capreolus and C. 

pygargus, FROH estimates inferred from runs of homozygosity longer than 0.5Mb 

(Fig. 3 in Purfield et al. 2012) were (near) zero (Fig. A4.6C-D).  

The more likely explanation for the difference in FROH estimates observed 

between the two Capreolus species is the difference in genome wide heterozygosity. 

Stochastic variation across genome translates into occurence of short ROHs in C. 

capreolus but not in the more genetically diverse C. pygargus (Fig A4.6E).  

Because FROH estimates are defined as the proportion of ROH within genomes 

and hence can not be negative, FROH estimates do unfortunately not provide means 

to exclude the possibility of outbreeding (which would be relevant for the C. 

pygargus sample). However, it could be argued that an outbred individual will likely 

not contain a ROH of 2Mb.  

 

Demography. Strict neutrality predicts that He = θ/(1+θ) ≈ θ and that θ = 4∙Ne∙ug 

(Kimura, 1968; Kimura & Ohta, 1971). Therefore, under strict neutrality , genome 

wide He estimates can be converted directly into estimates of effective population 

sizes (Ne). Assuming a mutation rate per generation of 1.1∙10-8, the observed 

heterozygosities of 0.14% and 0.32% correspond with Ne estimates of respectively 
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32,000 and 73,000 individuals. Differences in the genomic distribution of 

heterozygous sites within the genome (Fig 4.1A) can reflect selective sweeps and/or 

differences in historic Ne, of which the latter can be inferred using coalescent 

modelling. The expected number of 32,000 individuals for C. capreolus falls slightly 

above the historical range of Ne values inferred by coalescent modelling (i.e. 8,000 - 

25,000 individuals in the past 1 My, Fig 4.1C). In contrast, the expected number of 

73,000 individuals for C. pygargus falls within the historical range inferred by 

coalescent modelling (i.e. 25,000 - 175,000 individuals in the past 1 My, Fig 4.1C).  

The near convergence of the demographic trajectories of C. capreolus and C. 

pygargus around 1.5-1.6Mya provides a TMRCA estimate (Fig. 4.2B) which is in 

accordance with estimates obtained with the random walk Markov chain model. An 

upper estimate of 1.6 Mya differs from estimates based on mtDNA-studies, which 

resulted in lower and upper boundaries of respectively 2 and 4 Mya (Douzery and 

Randi, 1997; Randi et al., 1998; Xiao et al., 2007). MtDNA studies have previously 

been suggested to overestimate TMCRA (Lister, 2004) and my findings seem to 

support this conclusion.  

TMRCA estimates inferred by the random walk Markov chain model span a 

wide range (0.7-1.6 My), which is mostly due to uncertaincy of the present-day 

sequence dissimilarity estimate. The sequence dissimilarity estimates calculated in 

this study depend on the cross mapping approach. The approach in which C. 

capreolus sequencing reads are mapped to the C. pygargus genome returns a higher 

sequence dissimilarity estimate (0.70%, Table A4.2) than the approach in which C. 

pygargus sequencing reads are mapped to the C. capreolus genome (0.60%, Table 

A4.2). The explanation for the observed discrepancy can perhaps be found in the 

differences in fixation time of mutant alleles in C. pygargus and C. capreolus as a 

result of different effective population sizes. An alternative explanation is that the 

number of fixed SNVs in C. capreolus is overestimated (and the number of 

segregating sites underestimated) due to the relatively low read depth of the C. 

capreolus dataset (Meynert et al. 2014).  

Prado-Martinez et al (2013) used a similar approach to calculate sequence 

dissimilarity estimates between great apes population and species, and arrived at 

estimates of 0.32% for Bornean and Sumatran orangutan and 0.35-0.37% for 

chimpanzees and bonobos (Table S5.2 in Prado-Martinez et al., 2013). Divergence 
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times of these species pairs are estimated at ~1Mya (Fig 2 in (Prado-Martinez et al., 

2013), suggesting that roe deer species (0.6-0.7% sequence dissimilarity) 

divergence time is more ancient.  

The PSMC analyses suggest that the onset of the last glacial period (LGP) 

coincided with a decrease of C. capreolus Ne and in contrast an increase of C. 

pygargus Ne (Fig 4.1C). Contrasting historical demographic trends for closely 

related sister taxa have previously been reported for other species pairs, including 

common minke whales vs Antarctic minke whales (Kishida, 2017), common vs Indo-

pacific bottlenose dolphins (Vijay et al., 2018), Bornean and Sumatran orangutans 

(Mattle-Greminger et al., 2018), northern and southern white rhino’s (Tunstall et al., 

2018) and chimpanzee and bonobo populations (Prado-Martinez et al., 2013). It is 

not clear why the demographic trajectories of the roe deer sister species should have 

been so different, but one possibility could be the differential impact of glaciations 

in the two regions. For example, in parts of Mongolia glaciers apparently retreated 

during the last glacial maximum due to the dry climate, in contrast to the expanding 

glaciers in Europe (Batbaabtar et al., 2018). Ancient DNA from a region nearby (the 

Denisova cave) confirms the presence of C. pygargus 21-50 kya (Vorobieva et al., 

2011).  

If climatic factors explain the different trajectories of the roe deer sister 

species, similar trends can perhaps be observed for other Eurasian mammals. 

Similar to the findings for Capreolus, PSMC analyses on S. scrofa genomes suggest a 

decrease of Ne in European populations with the onset of the LGP, and a concurrent 

temporary increase in Ne of Asian populations (Frantz et al., 2015; Groenen et al., 

2012; Li et al., 2013). (The similarities in PSMC trajectories of C. capreolus and 

European S. scrofa sequences reflect similarities in the shape of the genome wide 

distributions of heterozygosity, consisting of a major frequency peak and two low 

diversity satellite peaks at at 0.02% and 0.005% heterozygosity (Fig 4.1A in this 

thesis, Fig. 2 in Groenen et al., 2012).) In contrast, the onset of the LGP does not 

coincide with a decrease in Ne for neither wisent (Fig 1. in Gautier et al., 2016; Fig 

S1 in Wu et al., 2018) nor red deer (Fig A4.2E), and also does not coincide with an 

increase in Ne of temperate Central and East-Asian deer species (i.e. Chinese 

muntjac, forest musk deer, white lipped deer and Pere David’s Deer (Chen et al., 

2019).) 
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The difference in demographic trajectory between C. capreolus and other 

European ruminants (i.e. wisent and red deer) might result from differences in 

feeding strategy. Whereas red deer and wisent are classified as intermediate 

feeders, roe deer are extreme concentrate selectors (Hofmann, 1989). Although the 

fossil record does not indicate strong differences between range shifts of C. 

capreolus (Sommer et al., 2009) and range shifts of red deer (C. elaphus) (Sommer 

et al., 2008), the different feeding strategies might have been differently impacted 

by the changing vegetation structures within the shifting ranges. 

Chen et al. (2019) argue that a world wide trend of population declines in 

ruminants in the last 100 kya does not reflect climatic changes, but instead an 

increase of human activities around the globe. The observed decrease in C. pygargus 

Ne, around 25 kya, coincides with the colonization of H. sapiens of north eastern 

Eurasia (ref). In contrast, the observed decrease of C. capreolus in Europe, which sets 

in around 80 kya (Fig 4.1C), predates the arrival of modern humans.  

The example of human-wildlife interactions illustrates that changes in 

effective population sizes do not necessarily reflect climatic changes, but can also 

result from ecological changes (i.e. different species interactions). Geographically 

separated environments typically contain different species assemblages even if they 

are environmentally similar. Differences in species community structures between 

western and eastern Eurasia could be implicated in driving the disparity of Ne 

estimates of C. capreolus and C. pygargus, rather than climatic conditions. A third 

possibility is that demographic fluctuations through time reflect selective events, as 

the ultimate response of adaptation is population size growth or decrease.  

Apart from the coincidence of population size changes with climatic events 

in the past 100 kya (Fig 4.2B, Chapter 3 of this thesis), I find in general little relation 

between climatic transitions and Capreolus Ne (Fig 4.2B). No demographic changes 

are for example observed during the Penultimate Glaciation Period (Fig 4.1, Fig 

A4.2). This might suggests that the co-occurence of demographic and climatic 

changes in the past 100 kya is coincidental and should not be overinterpreted. An 

alternative explanation is that PSMC analysis lacks the resolution to detect 

demographic oscillations on the time frame of glacial-interglacial cycles, especially 

in distant times. Simulation studies indicate that Ne estimates of PSMC analyses do 

not faithfully represent recent (<100 kya) sharp and short lived (<50 kya) 
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bottlenecks, but instead suggest a constant intermediate Ne value for the bottleneck 

and pre-bottleneck time period (Spence et al., 2018). Short lived bottlenecks are 

more faithfully detected with SMC++ analyses (Spence et al., 2018). 

 

Effect of data quality and reference genome on demographic reconstruction. 

Historic Ne-values estimated by PSMC analyses have previously been shown to be 

more affected by read depth (Nadachowska-Brzyska et al. 2016) than by genome 

assembly quality (Patton et al. 2019). Consistent with previously published findings 

(Fig. 2 and 3 in Nadachowska-Brzyska et al. 2016), downsampling of the C. pygargus 

dataset to an average depth of 21 (and afterwards excluding all sites with a depth 

below 7) caused a downward and leftward shift of the inferred demographic curve, 

but did not affect the overall shape of the curve (Fig. A4.3A). In this study the lowest 

accepted read depth was set to 7. More accurate demographic trajectories would 

possibly have been obtained with a higher threshold of 10 or higher, even if as a 

consequence more data points would have been sacrifized (Fig 2 in Nadachowska-

Brzyska et al. 2016).  

 PSMC curves generated by mapping C. capreolus reads to the C. pygargus 

genome assembly resulted in a different demographic trajectory compared to the 

demographic trajectory obtained by mapping C. capreolus reads to the C. capreolus 

assembly (Fig A4.3B). Simulation studies indicate that genome assembly quality (i.e. 

scaffold lengths) does not not impact inference of population size history (Fig. 3 in 

Patton et al. 2019), which suggests that the different trajectories observed for C. 

capreolus do not result from the difference in assembly qualities between the C. 

capreolus genome and the C. pygargus genome. A difference was observed in the 

proportion of heteroyzygous sites inferred from mapping C. capreolus reads to the 

C. pygargus genome (0.156%) compared to the estimate obtained from mapping C. 

capreolus reads to the C. capreolus genome (i.e. 0.143%). This difference of nearly 

10% could explain the different trajectories, but it is unfortunately not clear what 

caused the difference in He estimate, and neither why as a result Ne estimates would 

differ most strongly in most recent and most distant times (Fig A4.3B).  

  

Exome evolution. Whatever caused the difference in Ne between the Capreolus 

sister species, one interpretation of the exome tree and the results of the genic 
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selection analyses is that the difference in Ne impacted genic evolution in the 

Capreolus sister species. The exome species tree indicates a higher branch length for 

C. capreolus than for C. pygargus (i.e. 0.0032 vs 0.0023, Fig A4.6). Similarly, the 

accelerated dN/dS tests indicate a higher proportion of non-synonymous changes 

within C. capreolus than for C. pygargus throughout the exome (as indicated by 

differences in the shape of the Fisher exact test p-value distribution, Fig 4.4B-C).  

Whereas positive selection targets specific or subsets of genes only, 

demography affects the entire genome (Lewontin and Krakauer, 1973). Observed 

exome wide differences are therefore likely accounted for by demographic 

differences rather than by positive selection, in which case the elongated exome 

branch length of C. capreolus reflects relaxed purifying selection of nearly neutral 

(i.e. mildly deleterious) mutations in C. capreolus due to its relatively low historic 

population sizes (Kimura et al., 1963; Ohta, 1992; Ohta and Gillespie, 1996). 

Consistent with this explanation, the exome species tree (Fig. A4.6) predicts higher 

branch lengths (i.e. 0.0032 vs 0.0018) for C. elaphus (red deer, long term Ne <= 

25000, Fig A4.3) than for the historically more abundant sister species C. albirostris 

(white lipped deer, long term Ne ≈ 100,000, Fig S31 in Chen et al., 2019. However, if 

the observed violation of a steady global molecular clock is indeed caused by 

differential fixation of deleterious mutations, this violation can be expected to be 

attenuated when branch lengths are calculated for third codon positions only. In 

contrast, the variation in substitution rates among branches observed for 3rd codon 

positions did not differ from whole codon substitution rates (Fig A4.6). Additional 

comparisons between sister species with contrasting Ne, as well as a more robust 

estimate of tree topology and statistical testing, would be needed to confirm the 

hypothetical relationship between exome branch length and effective population 

size.  

Kimura (1962) estimated the fixation probability of a negatively selected 

allele as: exp(4*Ne*s*(1/Ne))-1)/(exp(4*Ne*s)-1). For Ne = 1000 and s = 0.0001, 

the fixation probability equals 3.2*10-4, whereas for a population with Ne = 100000, 

the fixation probability equals 1.7*10-20. This means that in a population with Ne = 

1000, 1 out of 3000 nearly neutral mutations will fixate, whereas in a population of 

Ne = 100000, fixation of any mutation is highly unlikely.  
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It was found that the the exome-wide average ratio between the non-

synonymous (replacement) and synonymous (silent) substitution rate (i.e. dN/dS 

or ω), was independent of divergence time, and equalled around 0.3 for all 

investigated species pair comparisons (Fig 4.3A). The observed absence of 

correlation between average dN/dS and TMRCA corresponds with previously 

published findings (Fig 1 in Nei, Suzuki and Nozawa, 2010). Based on fixation 

probability equations for selected and neutral alleles (Kimura, 1962), it can be 

mathematically shown that following the split of two sister populations/species, 

their average pairwise dN/dS ratio will converge within 20·Ne generations to an 

asymptotic value determined by the scaled selection coefficient, which is the 

product of the effective population size and the average selection coefficient acting 

on replacement sites (i.e. ϒ = Ne·s, Mugal et al., 2014, Why time matters).  

An average exome wide dN/dS value of 0.3, and an associated scaled 

selection coefficient of -1, is close to previously published estimates. Comparisons 

between giraffe, okapi, and cattle genomes generated average dN/dS estimates of 

0.22 (Agaba et al. 2016). A meta-analysis on pairwise comparisons between humans 

and a range of other vertebrate species resulted in average dN/dS ratios below 0.3, 

converging to approximately 0.1 for species pairs with the deepest divergence times 

(Wolf et al. 2009). (The observed correlation between dN/dS and TMRCA might 

result from a correlation between TMCRA and effective population.)  

Expected dN/dS-values depend on proportions of deleterious, neutral and 

adaptive mutations (defined as respectively prop(d), prop(n), and prop(a)), and can 

be calculated for various scenarios using fixation probability functions (Fig. A4.14, 

Kimura, 1962, Mugal et al. 2014). From comparison between the observed dN/dS 

values (which range between 0.1 and 0.3) and expected dN/dS-values, three 

conclusions can be drawn:  

1. Observed dN/dS-values are not consistent with prop(s) ≥ 0.0025, indicating 

that the proportion of positively selected non-synonymous mutations is 

below 0.25%.  

2. Observed dN/dS-values are not consistent with prop(n) ≥ 0.5, indicating the 

majority of neutral non-synonymous mutations are deleterious and under 

purifying selection.  
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3. Observed dN/dS values are not consistent with Y > -1, indicating that the 

magnitude of the selection coefficient acting on deleterious mutations is 

bigger than the inverse of the effective population size (i.e. |s| > 1/N).  

The first two conclusions are consistent with the neutral theory, which holds that 

most non-synonymous mutations are deleterious (King and Jukes, 1969; Kimura 

and Ohta, 1971). The latter conclusion is consistent with the nearly neutral theory, 

which holds that deleterious mutations of which the magnitude selection coefficient 

is smaller than the inverse of the effective population size, are effectively neutral.  

 

False positive rates of codeml selection scans. The genes marked by codeml as 

possibly having experienced episodic selection in either of the three roe deer 

lineages, could be divided into two groups: genes containing lineage specific single 

nucleotide substitutions spread throughout the gene, and genes containing clusters 

of directly adjacent nucleotide substitutions. The minority of genes belonging to the 

first category predominantly surfaces in the GO enrichment analyses (Fig A4.13).  

The majority of codeml outlier genes, namely 34 out of 46 genes, belonged to 

the second category, Positive selection has been argued to be able to cause multiple 

amino acid substitutions in close proximity (Wagner, 2007; Zhou et al., 2008). 

However, two alternative explanations exist: data artifacts, and relaxation of 

purifying selection.  

Data artifacts in codeml input datasets can originate from four potential 

sources, namely from genome sequencing errors (Mallick et al., 2009; Schneider el 

al. 2009), annotation errors, blasting errors and alignment errors (Fletcher and 

Yang, 2007; Jordan et al. 2012; Harrison et al. 2014). The codeml false positive rate 

due to blasting, annotation and alignment errors is presumably independent of the 

selected foreground branch, whereas in contrast false positive rates can be expected 

to depend on the quality of the genome assembly of the species selected as 

foreground branch. Mallick et al. (2009) concluded for example that the initially 

relative high number of inferred genes under positive selection in the chimpanzee 

lineage was caused by the relatively low quality of the chimpanzee genome 

sequence, and that the signal of selection for most outlier genes disappeared after 

generating a higher quality chimpanzee genome assembly. Schneider el al. (2009) 

found that genes with low coverage, annotation and alignment scores were 
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considerably more likely to be marked by codeml as outlier than genes with high 

scores. Fletcher and Yang (2010) found that the codeml false positive rate due to 

alignment errors depended on the alignment tool, and that the lowest false false 

positive rate is obtained when using the alignment tool PRANK. Alignment filters, 

such as SWAMP (Harrison et al. 2014) can mitigate false positive rates to a certain 

extent (Jordan et al., 2012). 

Because the gene datasets in this study were generated with the alignment 

tool MUSCLE (rather than with the alignment tool PRANK), and because no 

alignment filter was applied, false positive rates are likely high. Furthermore, 

because the C. capreolus genome is of lower quality than the C. pygargus genome 

(e.g. 24x coverage vs 100x coverage), higher false positive rates could be expected 

for C. capreolus than for C. pygargus, which might explain the differences in number 

of codeml outlier genes found for both lineages. If this explanation is true, the 

observed clusters of adjacent substitutions are not adaptive gene modifications, but 

instead data artifacts, which originated from sequencing errors, and which do not 

truly exist in nature. This hypothesis is supported by the observation that some of 

the amino acid substitutions are highly unlikely according to Dayhoff matrices of 

amino acid transition probabilities. The hypothesis was investigated by generating 

counts of codeml outlier genes for a range of foreground lineages with various 

genome sequence qualities, estimated by average coverage. If a relationship exists 

between number of outlier genes and sequencing depth, this relationship is non-

linear and confounded by other factors (Table A4.9; Fig. A4.15).  

 

Positive selection vs relaxed purifying selection. Even if the observed clusters of 

adjacent substitutions are not data artifacts, these substitutions are not necessarily 

driven to fixation by positive selection. Substitutions can also occur due to 

relaxation of purifying selection (He et al., 2018). Both the codeML branchsite tests 

(Fig 4.3D,G) and accelerated dN/dS rate tests (Fig 4.4) identified more potentially 

positively selected genes (PSGs) in the C. capreolus lineage than in either the C. 

pygargus lineage or the genus Capreolus lineage. Branch site test with other 

ruminant species and genera as as foreground branch, consistently produced the 

same results: less outlier genes were found for genera than for species (Table A4.9).  
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Finding more lineage specific outlier genes in species than in genera seems 

to contradict expectations based on ecological and phenotypic comparisons. C. 

capreolus and C. pygargus species, for example, differ from other cervids, including 

the sister genus Hydropotes, more strongly than they differ from each other. 

Therefore most functional changes within the genome – within either genes or 

regulatory sequences – should be expected to have occurred before rather than after 

the split of C. capreolus and C. pygargus. It seems therefore reasonably to expect 

higher dN/dS rates (and hence a higher number of codeml outliers) if the genus 

lineage rather than for either of species lineages. (See for example observed 

lysozymes dN/dS rates between and within lineages of foregut fermenting and non-

foregut fermenting primates (Messier and Stewart, 1997.)) In contrast, the ‘relaxed 

purifying selection hypothesis’ does not predict such a correlation between 

phenotypic and genomic divergence. 

Substitution clusters can arise through single multinucleotide mutation 

(MNM) events (Schrider et al., 2011). Recently it has been reported that these MNMs 

cause codeml to incorrectly infer positive selection (Venkat et al., 2018), and I 

independently considered the same conclusion. Genes with high density of 

independent amino acid mutations are more likely to be driven by positive selection 

than by relaxed purifying selection, but this is not necessarily the case for genes 

which stand out because of a single mutation, such as a single multinucleotide 

mutation event. It is therefore not impossible that the majority of genes (34 out of 

46) marked by codeml as having experienced positive selection could in fact be 

accounted for by relaxation of purifying selection.  

Characterisation of MNMs in human genomes indicated that the vast 

majority of MNM’s are 2-bp mutations, followed by 3-bp, 5-bp, 4-bp mutations, with 

a small minority representing 7-bp and 8-bp mutations (Fig 2b in Besenbacher et 

al., 2016). The mutation clusters in codeml outlier genes observed in this study 

generally ranged between 5 and 10 bp (Fig 4.3H), and the mutations in these clusters 

were all directly adjacent (i.e. no spacing in between). In several cases I found the 

nucleotide sequences coding for the observed clusters of amino acid substitutions 

to occur once or several times in other parts of the gene. In one extreme case, I found 

a 9 bp sequence responsible for 3 adjacent amino acid substitutions (CCACAACCA) 

to occur four times elsewhere in a gene of 7kb. This could suggest that the source of 
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the adjacent non synonymous substitutions were single events of translocations of 

sequence blocks of ~5-10 bp length, rather than accumulations of single nucleotide 

mutations. However, insertions of a sequence block often leads to a frame shift 

mutations, and this was not observed in the outlier genes. Furthermore, if relaxed 

purifying selection is responsible for the accumulation of the substitution clusters 

and for the relatively high number of codeml outlier genes in C. capreolus, a negative 

correlation is expected between estimates of genetic diversity for a certain 

foreground branch and the number of codeml outlier genes. No such relation was 

observed for the small ruminant dataset generated in this study (Table A. 4.9; Fig. 

A4.15).  

 

The relation between Ne and genetic load. The ‘relaxed purifying selection’-

hypothesis holds that the fixation probability of slightly deleterious mutations is a 

function of effective population size (Ohta, 1992), and hence that genetic load is a 

function of effective population size (Ne). However, causality runs both ways, as 

population size (both effective and census) are a function of fitness and thus of 

genetic load.  

In a non-changing environment and in the absence of genetic drift, the arrival 

of an adaptive mutant allele will lead to a population size increase, because the 

affected individual has the potential to produce more offspring than other members 

in the population. This population size increase will until all individuals in the 

population contain the adaptive allele, at which point all individuals have a higher 

reproductive rate than prior to the mutation event.  

The same logic applies, conversely, to the effect of deleterious alleles. An 

individual which carries a mutant deleterious allele has a deterministically lower 

reproductive output than other members of the population. If through stochastic 

factors (i.e. genetic drift and/or genetic hitchhiking) this deleterious allele becomes 

fixated in the population, all individuals in the population have a lower reproductive 

rate than prior to the arrival of the deleterious allele.  

  Therefore, an alternative explanation for the observed differences between 

C. capreolus and C. pygargus (i.e. lower Ne and higher exome branch length for the 

C. capreolus lineage). Apart from being a data artifact or resulting from relaxed 

purifying selection, the inverse correlation between Ne and number of amino acid 
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substitutions could perhaps be caused by the concept of genetic load. This 

alternative explanation involves a hypothetical scenario in which shortly after the 

split of both incipient sister species, C. capreolus experiences a population 

bottleneck with stochastic fixation of deleterious mutations. Theoretically, the 

presence of these deleterious mutation could cause a permanent reduction in Ne, 

even when the cause of the population size bottleneck has disappeared.  

 This hypothesis, although admittingly highly speculative, could potentially 

explain the puzzling differences in effective population sizes observed between 

closely related and ecologically similar sister species, such as C. capreolus and C. 

pygargus. Given the possibility of back mutations, it appears questionable if the 

duration of the fitness effect reduction could have persisted throughout the life span 

of C. capreolus. In theory, a positive feedback loop consisting of relaxation of 

purifying selection, increase of genetic load and decrease of population size could 

dwindle a population towards extinction. In contrast, PSMC analyses suggest that C. 

capreolus Ne remained relatively constant. Furthermore, if C. capreolus individuals 

would indeed have had a lower fitness than C. pygargus individuals, C. pygargus 

individuals could be expected to replace C. capreolus individuals at the hybrid zone, 

leading to a gradual shift of range boundaries, leading to the eventual disappearance 

of C. capreolus. Simulation studies – for example with the software SLIM (Haller and 

Messer, 2019) – could serve to test these expectations, and more generally to 

investigate the interaction between Ne and genetic load.    

  

Number of positively selected genes (PSGs). The proportions of genes marked by 

codeml branch site tests as outliers for the three foreground branches (i.e. 0.02% 

for C. pygargus, 0.16% for C. capreolus and 0.04% for Capreolus genus) are 

consistent with published estimates. For example, codeml branch site tests with as 

foreground branches Bornean and Sumatran orangutans, which split ~1 Mya and 

like C. capreolus and C. pygargus exhibit limited ecological differentiation, resulted 

in respectively 46 (0.14%) and 33 (0.10%) outlier genes out of 34,379 exonic 

sequences (Mattle-Greminger et al., 2018).  

If ecological and phenotypic differentiation is driven by substitutions within 

genes, higher proportions of outlier genes were to be expected for the comparison 

between species with high niche differentiation. In reality, the reported number of 
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genes marked by codeml as having experience episodic positive selection in species 

with high niche differentiation do generally not differ from the findings for C. 

capreolus and C. pygargus. Transcriptome sequencing of red fox and arctic fox, which 

diverged ~3 Mya, revealed 4 genes (0.08%) marked as outliers by codeml branch 

site tests in red fox and another 8 (0.16%) in arctic fox, out of 4,937 genes in total 

(Kumar et al., 2015). Another study reported 10 (0.07%) and 18 (0.12%) genes out 

of 14,558 genes being marked by codeml as outliers in respectively humans and 

chimpanzees, with an additional 7 (0.06%) out of 10,980 genes being marked as 

outliers for the most recent common ancestor of humans and chimps (Kosiol et al., 

2008). In a study on big cats, codeml identified 31 (0.24%) outlier genes in jaguar, 4 

(0.03%) in lion, 3 (0.02%) in snow leopard, and 149 (1.13%) in tiger, out of 13,183 

genes in total (Figueiró et al., 2017). This latter estimate is below the outcome of an 

earlier study, which reported 178 (2.40%) outlier genes out of 7,415 genes (Cho et 

al., 2013).  

The overlap in number of codeml outlier genes between phenotypically 

conserved and phenotypically diverged species might indicate that phenotypic 

divergence is marginally driven by substitutions within genes, and predominantly 

by other genomic changes such as gene copy number variations (Rinker et al., 2019), 

mutations in regulatory sequences (Brawand et al., 2014; King and Wilson, 1975; 

Sackton et al., 2019), de novo gene evolution (Baalsrud et al., 2018) and gene 

silencing through genomic translocations (Hof et al., 2016).  

The power of codeml branch-site tests has been shown to depend on multiple 

factors, and to be strongly positively correlated to gene sequence length, the 

proportion of codons under positive selection (defined as p2), the strength of 

positive selection, and weakly to the length of the foreground branch and the 

number of included sequences (Yang and Reis, 2010). Simulation analyses have 

shown that for an average sized gene (500 codons, Yang and Reis, 2010), a 

proportion of 10 percent positively selected codons (i.e. p=0.1), and a scaled 

selection coefficient of 2 (i.e. s = 2/Ne and dN/dS = 4), codeml power estimates range 

between 0.6 and 0.8 (Table 3), depending on the length of the foreground branch 

and the number of sequences (8 or 16) included in the analysis (Table 3 in Yang and 

Reis, 2010). For the Capreolus study species (Ne > 25000), a scaled selection 

coefficient of 2 roughly corresponds to a selection coefficient of 0.0001, with is 
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reasonably low. However, the proportion of codons under positive selection is likely 

lower than 10%, and for proportions below 5%, (i.e p2 < 0.5), codeml power 

estimates drop below 0.2 (Fig. 4c in Yang and Reis, 2010). Therefore, if the 

proportion of codons under positive selection within a positively selected gene is 

generally below 5%, the number of codeml outlier genes might be considerably 

lower than the true number of positively selected genes. Codeml false positive rates 

appear unrelated to sequence length, number of sequences and length of the 

foreground branch, and deviates, according to simulations, around 5% (Table 2 in 

Yang and Reis, 2010).  

One limitation of branch-site models implemented in codeml is that they do 

not account for variation in synonynomous and non-synonymous substitution rates 

within foreground branches and/or within background branches (Murrell et al. 

2015). This limitation has been put forward as explanation for the counterintuitive 

observation that inclusion of additional sequences can cause codons to be no longer 

marked as being putatively under selection (Murrell et al, 2012). It might also 

explain why the number of outlier genes inferred for genera is generally below the 

number of outlier genes inferred for species lineages (Table A4.9), although an 

alternative explanation is that genotyping errors are unlikely to cause the same data 

artifacts in different genome sequences. New selection scans tests have been 

developed which make use of improved underlying models which assume that 

substitution rates can vary between each lineage and between each site (Murrell et 

al. 2012; Murrell et al. 2015). These tests are claimed to have higher power than 

codeml (Murrell et al. 2015), and therefore to provide a more accurate picture (i.e. 

lower false negative rate) of the number of genes under positive selection.  

Another assumption of codeml branch-site tests which is likely frequently 

violated, is the assumption that variation in non-synonymous substitution rates is 

negligible (Wisotsky et al. 2020). Relaxation of this assumption leads to lower false 

positive rates (Wisotsky et al. 2020), and thereby can furthermore increase the 

accuracy of the estimate of the number of genes under positive selection.  

 

Recommendations for future selection scan studies. In conclusion, the results of 

the selection analyses are suggestive of positive selection events, but can also not 

exclude the possibility of relaxation of purifying selection and false positives due to 
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data artifacts. Additional comparative genomics studies of species diversifications 

are needed to make stronger inferences.  

Future studies aiming to employ branch-site tests to assess the influence of 

natural selection on protein coding DNA during the formation of species and genera, 

should consider the following recommendations: 

- Usages of high quality genome sequencing datasets minimizes false positive 

rates. Unreliable genotype calls should be filtered out by masking all sites 

within a genome with a coverage below 18-20 (Meynert et al. 2014). If site-

specific read depth information is not available, genomes included in 

analyses should have a read depth well above 20, to ensure that sufficient 

read depth for the vast majority of sites.  

- Each lineage/species should be represented by multiple 

samples/individuals. Including multiple samples per lineage provides a 

certain leverage to discriminate false positives (for example genotyping 

errors) from true codons under selection. 

- Future comparative genomic studies should ideally not only encompass 

comparisons of coding sequence but also comparisons of regulatory 

sequences. 

- To minimize false positives caused by alignment errors, genes should be 

aligned with the alignment tool PRANK (Fletcher and Yang, 2010; Jordan et 

al. 2012). 

- Gene alignments should subsequently be filtered using alignment filtering 

tools, such as SWAMP (Harrison et al., 2014).  

- Each gene marked by codeml as outlier, should be inspected visually, 

specifically the codons which are putatively under selection (as can be 

inferred from the codeml BEB-tables).  

- Apart from the model implemented in PAML codeml, new models have been 

developed to detect PSGs. A range of models – including BUSTED for gene-

wide selection, aBSREL for lineage-specific selection, MEME for site-specific 

episodic selection and FUBAR for site-specific pervasive selection – are 

implemented in the software HyPhy (Pond et al. 2005; Murrell et al., 2012; 

Wisotsky et al. 2020). These models are more sophisticated, and are thought 
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to give both lower false negative rates (Murrel et al. 2012) and lower false 

positive rates (Wisotsky et al. 2020). 

-  In addition to using multiple codon-based selection scans, it is also advisable 

to use other types of selection scans. Genes can stand out in various ways, 

ranging from the presence of individual lineage specific codons to genes with 

substitution clusters, and to the presence of genic regions with accelerated 

dN/dS rates or accelerated substitution rates in general (i.e. accelerated dN 

rates paired with accelerated dS rates). As these genes exhibit different 

signals, complementary selection scans are needed to identify all of them. In 

the case of accelerated substitution rates, relative rates tests such as the one 

presented in this thesis Chapter could proof useful.  

- Finally, it should not be assumed that substitutions are driven by positive 

selection without considering the alternative explanation of relaxation of 

purifying selection (He et al., 2018). A tool specifically designed to 

discriminate relaxed purifying selection from increased positive selection is 

the software RELAX (Wertheim et al. 2015). The extent of relaxed purifying 

selection can also be estimated using the GERP-score (genomic evolutionary 

rate profiling, Cooper et al, 2005), implemented in the software GERP++ 

(Davydov et al., 2010). The GERP score quantifies the difference between the 

observed and the expected number of substitutions within a lineage. The 

expected number of substitutions are estimated based on a multi-species 

sequence alignment and a given phylogeny containing TMRCA estimates 

between aligned species. Because a GERP-score is effectively an estimate of 

the number of rejected substitutions, it quantifies the strength of past 

purifying selection, and hence can be used to assess the likelihood that 

substitutions within outlier genes are caused by relaxed purifying selection 

rather than by positives selection.  

 

Conclusions 

I estimate that C. capreolus and C. pygargus started to diverge at maximum 1.6Mya. 

Genome wide heterozygosity in C. pygargus is twice as high as genome wide 

heterozygosity in C. capreolus. PSMC analyses indicate that after the split, C. 

pygargus Ne gradually increased from 20k to a maximum of 170k, whereas C. 
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capreolus Ne has fluctuated around 15-20k. Correlations between climatic 

transitions and demographic changes inferred by PSMC are restricted to the last 100 

ky. C. capreolus genes contain a higher proportion of both synonymous and non-

synonymous substitutions compared to C. pygargus genes, which might reflect data 

artifacts or a combination of episodic positive selection and relaxation of purifying 

selection commonly associated with small population sizes.  
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Chapter 5  

General discussion 

 

In this thesis I have presented the outcomes of genetic analyses of several reindeer 

and roe deer datasets, using two types of data: single nucleotide polymorphism 

(SNP) data and whole genome sequencing data. Although my analyses also assessed 

the population structure, genetic diversity and demographic history of the study 

populations and study species, the focus was on selection analyses – the detection 

of genetic signals of selection.  

In this last Chapter I will discuss how the findings presented in this thesis 

compare to expectations of the (nearly) neutral theory, which holds that most 

differences between populations and between species in protein-coding and 

regulatory DNA are caused by fixation of (nearly) neutral alleles rather than by 

fixation of adaptive alleles. 

 

Overview of results presented in this thesis 

In Chapter 2 I described a study in which I searched for shared signals of selection 

in two reindeer founder populations. These two populations were founded at the 

start of the 20th century, when whalers released two small herds of reindeer on 

geographically separated peninsula of the South Atlantic island South Georgia. 

Because the populations were founded in parallel in similar environments without 

the possibility of gene flow, they provided a suitable study system to overcome the 

complications associated with the detection of empirical evidence for natural 

selection in bottlenecked founder populations.  

I harnessed the double digest restriction-site associated DNA sequencing 

(ddRADseq) protocol to generate an 80K SNP dataset of both founder populations 

as well as of their common Norwegian source population. I screened this dataset for 

signals of selection using four different selection scans: Bayescan, OutFLANK, 

PCadapt and a custom-built tool which I named Genome Wide Differentiation Scan 

(GWDS). Three SNPs were identified as outliers by two or more selection scans. 

Alignment to a reindeer reference genome indicated that two outlier SNPs were 

adjacent and 80 kB apart.  
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To evaluate the possibility of false positives, I performed forward-in-time 

simulations of frequencies of neutral and adaptive alleles in order to estimate the 

power and specificity of selection scans in the context of founder populations. These 

simulations indicated that loci under positive selection in non-communicating sister 

founder populations are most confidently detected by GWDS, and that SNPs marked 

as outliers by multiple selection scans are most likely true loci under selection. In 

summary, in Chapter 2 I reported a novel selection scan as well as empirical 

evidence that positive selection can overcome drift in heavily bottlenecked founder 

populations.  

In Chapter 3 I described a study in which I analysed ddRADseq SNP datasets 

aiming to draw inferences about the demographic and evolutionary history of the 

native UK roe deer (Capreolus capreolus) population. This population, which was 

cut-off from mainland Europe due to rising sea levels at the start of the Holocene 

(i.e. 6-7 kya), was represented by roe deer samples collected from Ayrshire 

(Scotland). The European mainland roe deer population was represented by roe 

deer samples collected from Wurttemberg (Germany) and Aurignac (France). 

Included in the study were also samples from the introduced roe deer population in 

East Anglia, which was founded at the end of the 19th century, when 12 individuals 

were translocated from Wurttemberg to East Anglia.  

Genetic distance and genetic diversity estimates indicated that, despite the 

Ayrshire population being isolated for ~6,000 year and the East Anglia population 

for less than 150 years, the East Anglia population is genetically more diverged from 

the mainland population and contains less segregating sites than the Ayrshire (i.e. 

native UK) population. Stairwayplot analyses indicated that the effective population 

size of the native UK roe deer population has numbered a few thousand individuals 

throughout the Holocene. These findings indicate moderate levels of genetic drift 

within the native UK roe deer population, leading to limited loss of standing genetic 

variation.  

Whereas the selection scans FSTHet and OutFLANK did not report outliers, 

two SNPs were identified by both GWDS and Pcadapt as outliers potentially under 

positive selection in the native UK population. Alignment to the C. pygargus 

reference genome indicated that these two outlier SNPs were adjacent and 200 kB 

apart, and segregating in all populations. I concluded that neither genetic drift nor 
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diversifying selection has been of sufficient magnitude to cause fixed differences 

between the native UK and mainland roe deer populations, despite ~1,500 

generations of isolation. I also presented a Bayesian method for population 

assignment.  

In Chapter 4 I described a study in which I analysed whole genome 

sequencing data to draw inferences about the demographic and evolutionary 

history of the extant roe deer sister species: the European roe deer (C. capreolus) 

and the Siberian roe deer (C. pygargus). To infer the demographic history of these 

species, I used the PSMC software as well as a custom-built tool which estimates the 

time to the most recent common ancestor (TMRCA) based on a naive random walk 

Markov chain model. For selection analyses, I extracted and aligned the exomes of 

C. pygargus and C. capreolus, as well of those of 12 other deer species, and 

subsequently executed both codeml branch site tests and a custom-built tool which 

aims to detect genes with accelerated dN/dS rates within foreground branches. 

 The demographic analyses indicated a split time of of maximum 1.6 Mya – 

more recent than published estimates (2-4 Mya) previously inferred from 

mitochrondrial-DNA comparisons – and a strong difference in effective population 

size (Ne) throughout the separate lifespan of the sister species. The selection 

analyses indicated that the species with the lower historical Ne estimates, C. 

capreolus, contains higher proportions of lineage specific amino acid substitutions. 

Codeml branchsite tests marked 4 and 34 out of >20K genes as outlier genes in C. 

pygargus and C. capreolus respectively, of which the majority contained clusters of 

adjacent mutations in the foreground lineage.  

dN/dS analyses indicated that purifying selection left a strong signature on 

the exomes of Capreolus species and of deer species in general. When ignoring the 

relatively minor contribution of diversifying selection, the proportion of neutral 

non-synonymous mutations equals the dN/dS ratio (ω), and the proportion of 

deleterious non-synonymous mutations equals 1 – ω (Eyre-Walker and Keightley, 

2007). I found that the mean dN/dS values for various pairwise deer species 

comparisons range between 0.26 and 0.32 (Fig. 4.3), suggesting that approximately 

70 percent of non-synonymous mutations have been purged by purifying selection. 
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On the power of selection scans 

In summary, the selection analyses in Chapter 2 resulted in 3 out of ~80K SNPs 

(~0.004%) being marked as outliers, possibly being under diversifying selection. 

The selection analyses in Chapter 3 resulted in 2 out of ~50K SNPs (~0.004%) being 

marked as outliers, possibly being under diversifying selection. In Chapter 4, I found 

that respectively 4 and 34 out of >20K genes (~0.02% and ~0.17%) were marked 

by codeml branch site tests as positively selection genes (PSGs) in C. pygargus and 

C. capreolus respectively. After exclusion of genes which contained multinucleotide 

mutation clusters, which have been shown to cause false inference of positive 

selection(Venkat et al., 2018), the number of PSGs went down to 2 (0.01%) and ~6 

genes (0.03%) respectively. 

 The observed proportions of codeml outlier genes (~0.02% and 0.17%) falls 

within the range reported by previous studies (see discussion Chapter 4, and 

references within). In contrast, the observed proportions of outlier SNPs fall slightly 

below the range reported in other genome wide selection analyses studies, with 

proportions of outlier SNPs ranging from 0.02% to 7.6%, with a median around 

1.0% (see Appendix 1A, and references within). The relatively small size of the 

outlier SNP subsets presented in this thesis might reflect a conversative approach. I 

required SNPs to be marked by multiple selection scans in order to be considered 

true outliers.  

 The obtained proportions of SNPs and genes which have possibly 

experienced positive selection, seems consistent with the neutral theory, which 

holds that the majority of differences between populations and species are driven 

by neutral substitutions (Kimura, 1991). But how reliable are the obtained 

estimates? Does a low number of outliers indicate the absence of adaptive loci or 

instead a high false negative rate? (Weigand and Leese, 2018). 

For my SNP datasets (Chapters 2 and 3), I answered this question by 

supporting the empirical data analysis with simulations which assess the power and 

specificity of selection scans under the given demographic settings and study design 

settings. Several simulation studies compare the performance of SNP based 

selection scans (e.g. Lotterhos and Whitlock, 2014; Luu et al., 2017) but these studies 

assess the performance of selection scans under a limited number of scenarios, and 

the results are difficult to extrapolate to specific study systems.  
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The simulations in Chapter 2 and Chapter 3 generated estimates of the power 

of selection scans under various combinations of effective population size (Ne) and 

selection coefficient magnitude (s) for populations with a TMRCA of 20 generations 

and a sample size of 30 individuals per population. These simulations suggested that 

due to the workings of genetic drift – which causes elevated levels of background 

neutral loci which make it harder for adaptive loci to stand out – the majority of 

positively selected loci within the South Georgia populations (Chapter 2) can not be 

detected by the selection scans (Fig 2.5, 2.6C), implying potentially higher numbers 

of positively selected regions than detected by our selection scans. The simulations 

also indicated that SNPs marked as outliers by multiple selection scans are likely 

true loci under selection. For a demographic scenario which resembles the 

demographic history of the native UK roe deer population (Chapter 3), the 

simulations indicated that almost all loci under positive selection (s≥0.01) are 

detected by GWDS (Fig 3.9). If the assumptions of the simulation model hold true, it 

is unlikely that loci under positive selection were overlooked.  

 Concerns have been raised about the performance of the codeml branch site 

test (Nozawa et al., 2009), but subsequent simulation studies have confirmed that 

the branch site test is generally a robust test with low false positive and false 

negative rates (Diekmann and Pereira-Leal, 2016; Gharib and Robinson-Rechavi, 

2013; Yang and dos Reis, 2011) as long as the proportion of missing data is low 

(Yang and dos Reis, 2011), the number of species within the dataset sufficiently high 

(Delsuc and Tilak, 2015), and the proportion of selected codons within a gene equal 

or above 0.1 (Yang and Reis, 2011). However, violation of this latter condition might 

occur frequently, and lower proportions of codons under selection are associated 

with high (>0.8) false negative rates.  

I did not test the performance of codeml branch site tests in the context of C. 

capreolus and C. pygargus demographies, and neither evaluated how inclusion or 

exclusion from other cervid species affected the outcome. Simulation studies 

indicate that the composition of the species tree affects the outcome of the codeml 

branch site test (Diekmann and Pereira-Leal, 2016). Hence, it is uncertain how well 

the codeml branch site test performs for the gene alignments presented in this 

study.  
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Recently it has been found that multi nucleotide mutations (MNM) cause 

branch site tests to incorrectly infer positive selection (Venkat et al., 2018) and 

indeed I found that the majority of genes marked as PSG’s by codeml branch site 

tests contained clusters of adjacent mutations in the foreground branches. Exclusion 

of PSGs with MSMs reduced the number of outlier genes from 4 and 34 to 

respectively ~2 genes (0.01%) and ~6 genes (0.03%).  

 

On the potential number of episodic positive selection events 

The theory of the cost of natural selection holds that selection can act on a limited 

number of adaptive loci at a time, due to mortality costs associated with substitution 

events (Haldane, 1957). Haldane argued that fixation time is proportionally related 

to the number of adaptive loci: if it takes t generations to fixate an adaptive allele at 

one locus, it should take Lt generations to fixate adaptive alleles at L loci (Hickey and 

Golding, 2019). Although simulations do not support these theoretical constraints 

(Nunney, 2003), it still seems intuitive and reasonable to assume that if multiple 

adaptive alleles are present within a population, chances are they occur in different 

individuals and therefore will compete against each other, slowing down the 

adaptation process by prolonging fixation times (Weissman and Barton, 2012). A 

recent simulation study however indicates that the frequency of adaptive alleles can 

respond simultaneously at many loci to independent selection at rates similar to the 

predicted rate for single locus selection (i.e. within several hunderd generations 

given a selection coefficient of 0.02, Hickey and Golding, 2019). This finding suggests 

that natural selection can drive many adaptive alleles to fixation within ecological 

time scales.  

Given the age of the South Georgia reindeer populations (~100 years or ~20 

generations), limited time has been available for natural selection to drive alleles to 

fixation. If assuming that the average effective population size of the South Georgia 

founder populations equalled 25 individuals, then the fixation time of a neutral 

alleles averages 100 generations (4*Ne, Kimura and Crow, 1964). Soft sweeps 

require less generations to complete, because selection speeds up the fixation 

process and also because the original founders might carry multiple copies of the 

adaptive allele, but likely not less than 20 generations. It can therefore be argued 

that the observed differences in minor allele frequencies of the outlier SNPs between 
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the South Georgia reindeer populations and their source population are consistent 

with expectations for a locus under strong diversifying selection regime, as the age 

of the founder populations have not been sufficient to drive alleles to fixation.  

Evaluation of the outcome of the selection analyses on UK and mainland roe 

deer populations (Chapter 3) leads to a different conclusion. Assuming an average 

generation time of 5 years (Nilsen et al., 2009) and assuming that the UK roe deer 

got cut-off from the mainland population around 6-7 kya (Coles, 1998; Sturt et al., 

2013), the UK roe deer population has been isolated for at most 1500 generations. 

Stairway plot analyses indicate that the effective population size of the native UK 

roe deer population equalled approximately 5000 individuals throughout the 

Holocene (Fig 3.7). Since roe deer are provincial (Baker and Rus Hoelzel, 2012) and 

since all native UK roe deer samples analysed in Chapter 3 derived from Ayrshire, 

fixation of alleles within this local population might require a less extensive sweep. 

In either case, there has been ample time for positive selection to drive adaptive 

alleles to fixation, at many loci. Despite this potential, I only found one genomic locus 

to be possibly under diversifying selection, represented by SNPs which are 

segregating in all three study populations (i.e. no fixed differences). This finding 

suggests the near absence of genomic regions (and hence phenotypic traits) which 

differential fitness effects between the UK and mainland roe deer populations in the 

past 6-7 ky, and furthermore that the only potential exception – the genomic region 

which harbours the two outlier SNPs – has been under very weak selection at most. 

Similarly, the observed number of positively selected genes (PSGs) in C. 

pygargus and C. capreolus (Chapter 4) lags far behind the potential number of PSGs. 

Although the TMRCA of these species is more than 1 Mya, less than 10 genes contain 

codon substitutions driven by positive selection in either of the two species. These 

PSGs contained each just a few non-synonymous substitutions driven by positive 

selection, out of a total of 170,596 exomic single nucleotide differences between the 

two species. 
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On the difference between observed and potential number of positive 

selection 

What explains the apparant difference between the observed number of 

SNPs/genes under diversifying selection and the potential number of SNPs/genes 

based on theoretical expectations? Potential explanations are: 

i. Low power of selection scans 

ii. Genomic regions/features targetted by diversifying selection are not 

represented in the datasets 

iii. Selection is not pervasive but episodic  

iv. Absence of diversifying selection  

The first explanation – low power of selection scans – is not supported by 

simulations studies (but see explanation iii). Simulations in Chapter 2 and Chapter 

3 of this thesis indicated high power of GWDS in the context of the demographic 

scenario of the native UK roe population (Fig. 3.9). Similarly, simulation studies 

suggest that the codeml branch site test generally has low false negative rates 

(Diekmann and Pereira-Leal, 2016). However, violation of assumptions of the 

simulation models might affect the outcome. The same is true for data artifacts, such 

as genotyping and alignment errors.  

 The second potential explanation is that the datasets analysed in this thesis 

do not include the genomic loci and/or features under selection. The extent to which 

genome wide selection scans screen the entire genome depends on the density of 

the SNP catalogue as well as to the level of linkage disequilibrium within the study 

population. The higher the number of SNPs, the higher the probability that high 

proportions of linkage blocks are represented by one or more SNPs. The absence of 

stacked outlier SNPs in Manhattan plots (Fig A3.9) is suggestive of sparse sampling 

of genome wide genetic variation.  

 The second potential explanation – which holds that the datasets analysed in 

this thesis do not include the genomic loci and/or features under selection – might 

also account for the observed low number of PSGs in C. capreolus and C. capreolus 

(Chapter 4), and might suggest that the divergence between these species is not 

driven by changes within genes, but instead by other changes within the genome 

(Hughes, 2007), such as gene copy number variations (Rinker et al., 2019), 

mutations in regulatory sequences (Brawand et al., 2014; King and Wilson, 1975; 
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Sackton et al., 2019), de novo gene evolution (Baalsrud et al., 2018) and gene 

silencing through genomic translocations (Hof et al., 2016). 

A third potential explanation for the discrepancy between the observed and 

potential number of adaptive changes is that selection is episodic rather than 

pervasive, and that this temporal variation in the magnitude and direction of the 

selection coefficient might complicate detection of positive selection. The 

fluctuating nature of selection coefficients is demonstrated by two of the most well-

studied cases of contemporary evolution: industrial melanism of peppered moths 

(Cook and Saccheri, 2012) and beak morphology changes in Darwin finches 

(Weiner, 1994). Fst-based selection scans implicitly assume that positive selection 

acts for a sufficient period of time in the same direction in order for alleles to stand 

out from the background of neutral variation and to eventually cause permanent 

fixation in the population on which positive selection is acting. However, 

environmental conditions fluctuate continuously, meaning that the assumption of 

fixed and directional selection is routinely violated. Extreme examples are provided 

by the study cases of the peppered methods and the Darwin finches, in which the 

effects of positive selection are erased due following fluctuations in environmental 

changes. These examples illustrate that limited time windows may exists for 

selection scans to detect a positive selection event. The power and specificity 

estimates presented in Chapter 2 are generating using simulations assuming a fixed 

selection coefficient, and therefore provide no insight into the detectability of 

adaptive SNPs under a regime with fluctuating selection pressures. 

Temporal variations of selection coefficients may also affect false positive 

and false negative rates of codeml branch-site tests. Lineage specific dN/dS ratios 

and codeml branch-site tests can generate evidence for episodic selection events, if 

episodic selection is defined as directional selection experienced within a specific 

lineage. However, reversal of fixation of temporally adaptive non-synonymous 

mutations can mask fingerprints of selection. This is especially problematic if 

reversal occurs in a subset of foreground branches, as codeml branch-site test do 

not allow for substitution rate variation within foreground branches.  

The fourth potential explanation for the discrepancy between the observed 

and potential number of adaptive changes is a scarcity of positive selection events, 

as predicted by the neutral theory (Kimura, 1991) and the nearly neutral theory 
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(Ohta, 1995). The findings presented in Chapter 4 could be argued to fit particularly 

well with the neutral theory, which holds that many mutations are slightly delerious. 

In Chapter 4 it was shown that codeml branch site tests marked considerably more 

genes as PSGs in the species with relatively low Ne (i.e. C. capreolus) compared to 

the species with higher Ne (C. pygargus). Slightly deleterious mutations are less 

effectively purged in small populations, and the higher number of PSGs in C. 

capreolus compared to C. pygargus might reflect relaxation of purifying selection 

(Hughes, 2007). More whole exome comparisons between closely related sister 

species are needed to evaluate the plausibility of the relaxed purifying selection 

hypothesis. In addition, studies into the deleteriousness of the observed mutation 

clusters in the C. capreolus exome could clarify whether these clusters are 

deleterious, neutral or adaptive by nature (see for example Feng et al., 2019). 

 

Conclusion 

In this thesis I executed selection analyses on genomic datasets of reindeer and roe 

deer populations. For each of the three study systems I found evidence for positive 

selection, including in the heavily bottlenecked South Georgia reindeer founder 

populations. This finding provides empirical evidence that founder populations can 

adapt to novel environments even in the face of pronounced genetic drift. Due to the 

uncertaincy of the performance of selection scans for each specific dataset and due 

to the reduced representation of genome wide variation by SNP and exome datasets, 

it is unknown how faithfully the number of outlier SNPs and outlier genes outputted 

by selection scans reflect the number of episodic positive selection. Caution should 

therefore be exercised when comparing the outcomes of selection scans to 

predictions of the (nearly) neutral theory. The finding that codeml branch site tests 

marked considerably more genes as positively selected in a species with relatively 

low Ne (i.e. C. capreolus) compared to the species with higher Ne (C. pygargus), is 

suggestive of relaxation of purifying selection. 
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APPENDICES CHAPTER 1  

 

Supplementary information. Reported numbers of outlier SNPs in a random 

subset of published genome wide selection analyses studies 

 

Mammals and birds. PCadapt marked 59 out of 22,935 SNPs (0.25%) as outliers 

putatively under diversifying selection between populations of eastern coyote 

occuring in historical pre-1900 range and populations occurring in newly colonized 

habitat (Heppenheimer et al., 2018). Bayescan marked 178 SNPs out 67,000 SNPs 

(0.26%) as being under putative diversifying selection in grey wolf populations 

spread throughout Eurasia (Stronen et al., 2015). Bayescan also marked up to 140 

out of 5820 SNPs (2.4%) as divergent between samples of living and diseased 

bottlenose dolphin (Cammen et al., 2015). For a pairwise population comparison 

between house finch populations sampled before and after an epizootic outbreak, 

Bayescan marked 4 out of 18,000 SNPs (0.02%) as outliers (Shultz et al., 2016).  

 

Marine invertebrates. Many genome wide selection scan studies focus on marine 

datasets. Arlequin and Bayescan marked 112 out of 7163 SNPs (1.6%) as outliers in 

marine bivalves off the coast of Northern America, and these SNPs exhibited 

enhanced isolation by distance effect outliers (Van Wyngaarden et al., 2016). The 

same trend of increased isolation by distance effects were observed for 129 out of 

41,159 SNPs (0.31%)which were marked as outliers by at least two selection scans 

(among them OutFLANK, Bayescan and PCadapt, (Silliman, 2019). 34 out of 55,409 

SNPs (0.06%) were marked by both Bayescan and PCadapt in closely related 

populations among the west coast of South Africa (Nielsen et al., 2018). 44 out of 

5,484 SNPs (0.8%) were marked by both Bayescan and Arlequin in coral reefs 

populations subjected to an environmental (temperature) gradients along the west 

coast of Australia (Thomas et al., 2017).  

 

Fish. Arlequin (Excoffier and Lischer, 2010) marked at most 139 out of 6,167 SNPs 

(2.3%) as putatively being under diversifying selection in Atlantic salmon 

populations (Bourret et al., 2013) and 59 out of 3737 SNPs (1.6%) as putatively 

under divergent selection in the reef fish occuring around Marquesas islands, which 
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split from the widespread pacific reef fish form around 0.5 Mya (Gaither et al., 2015). 

In another study on reef fish populations occurring in the Indian Ocean, Arlequin 

and Bayescan marked 26 out of 1174 SNPs (2.2%) as outliers (Salas et al.)  

Arlequin and Bayescan marked 17 out of 381 SNPs (4.5%) as putatively 

under diversifying selection between Atlantic and Mediterrean hake (Milano et al., 

2014) and 47 out of 13,674 SNPs (0.34%) putatively under diversifying selection 

between Red Sea and Mediterranean cornet fish, the latter having colonized the 

Mediterrean Sea in the year 2000 (Bernardi et al., 2016). Arlequin marked 150 out 

of 4439 SNPs (3.4%) as outliers in data on lamprey populations in rivers in North 

America (Hess et al., 2013) and PCadapt marked 88 out of 1153 SNPs (7.6%) as 

outliers in Mediterrean striped red mullet (Dalongeville et al., 2018). A study 

comparing redband trout populations occurring in desert and montane streams, 

resulted in 821 (0.16%), 973 (0.19%) and 865 (0.16%) out of 526,301 SNPs being 

marked as outliers under putative diversifying selection by respectively Bayescan, 

OutFLANK, and PCadapt, of which 435 SNPs (0.08%) were identified by at least two 

scans (Chen et al., 2018).  

 

Plants. Bayescan also marked up to 38 loci out of 15,000 SNPs (0.25%) as outliers 

for comparisons between populations representing various plant ecotypes (i.e. 

populations occurring on beaches, in estuaries and springs) in Scandanivia 

(Brandrud et al., 2017).  
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APPENDICES CHAPTER 2  

 

Table A2.1. Sequencing output. STACKS demultiplexing output. 

Sequencing 
Date ID 

Total 
Reads 

No 
RadTag 

Low 
Quality Retained 

Read 
pairs 

U 
fod 

U 
rev Barcode Pool 

Dec-15 6 3953892 21639 10271 3921982 1952198 8121 9465 GCATG Pool1 

Dec-15 10 898478 8172 2082 888224 442833 1283 1275 AATCG Pool1 

Dec-15 13 3080760 12551 8396 3059813 1526009 6252 1543 ACAGA Pool1 

Dec-15 18 6480662 7916 16414 6456332 3223980 5881 2491 AAGTGA Pool1 

Dec-15 19 2819058 3769 6418 2808871 1402746 2374 1005 ATTACA Pool1 

Dec-15 24 758834 2766 1804 754264 376389 1155 331 CAGGCG Pool1 

Dec-15 25 9746726 10276 23994 9712456 4849721 9802 3212 AGAATGA Pool1 

Dec-15 26 13263556 12116 41212 13210228 6596466 12849 4447 AGTTAAT Pool1 

Dec-15 27 11001960 42074 44049 10915837 5439714 25115 11294 GCATG Pool2 

Dec-15 28 3233724 16879 13333 3203512 1598019 4818 2656 AATCG Pool2 

Dec-15 29 7048322 24361 29762 6994199 3488312 14412 3163 ACAGA Pool2 

Dec-15 30 10137206 23899 44833 10068474 5021636 20126 5076 AAGTGA Pool2 

Dec-15 32 7119006 17401 27918 7073687 3527733 15475 2746 ATTACA Pool2 

Dec-15 33 3642716 8784 15836 3618096 1805048 6230 1770 CAGGCG Pool2 

Dec-15 34 8115326 17280 23779 8074267 4027557 16275 2878 AGAATGA Pool2 

Dec-15 36 11146988 26766 37437 11082785 5525879 26332 4695 AGTTAAT Pool2 

Dec-15 37 9161318 38562 24875 9097881 4531677 22615 11912 GCATG Pool3 

Dec-15 41 2747378 14390 7946 2725042 1358601 5425 2415 AATCG Pool3 

Dec-15 42 5535034 12851 73426 5448757 2716518 11320 4401 ATTACA Pool3 

Dec-15 43 2409390 5511 31003 2372876 1183611 3068 2586 CAGGCG Pool3 

Dec-15 46 9481348 22091 19772 9439485 4707538 21655 2754 AGAATGA Pool3 

Dec-15 48 9001682 32809 21393 8947480 4455849 32842 2940 AGTTAAT Pool3 

Dec-15 49 7198404 30050 29337 7139017 3556645 14177 11550 GCATG Pool4 

Dec-15 50 1576452 10663 6636 1559153 777475 2551 1652 AATCG Pool4 

Dec-15 51 7183866 20763 29968 7133135 3558224 13787 2900 ACAGA Pool4 

Dec-15 52 6941282 12986 29788 6898508 3442228 10841 3211 AAGTGA Pool4 

Dec-15 53 4376460 9375 17468 4349617 2169946 8109 1616 ATTACA Pool4 

Dec-15 54 2521742 5825 10108 2505809 1250284 4170 1071 CAGGCG Pool4 

Dec-15 55 8743296 16175 27377 8699744 4340252 15935 3305 AGAATGA Pool4 

Dec-15 56 6536100 10780 21825 6503495 3245047 10704 2697 AGTTAAT Pool4 

Dec-15 57 5363876 18364 14649 5330863 2657800 9928 5335 GCATG Pool5 

Dec-15 61 2236470 9119 5896 2221455 1108568 2232 2087 AATCG Pool5 

Dec-15 62 5635602 15088 16334 5604180 2796177 10184 1642 ACAGA Pool5 

Dec-15 65 7065040 14521 21739 7028780 3506673 12830 2604 AAGTGA Pool5 

Dec-15 66 5268192 12969 15126 5240097 2613206 12119 1566 ATTACA Pool5 

Dec-15 69 8932100 25721 25344 8881035 4429566 19244 2659 ACAGA Pool3 

Dec-15 72 6869500 78453 30067 6760980 3340909 73350 5812 AAGTGA Pool3 

Dec-15 74 2000950 3920 5478 1991552 994161 2574 656 CAGGCG Pool5 

Dec-15 77 4458660 12138 8670 4437852 2212522 11522 1286 AGAATGA Pool5 

Dec-15 79 5720182 9823 12194 5698165 2843361 9796 1647 AGTTAAT Pool5 
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Dec-15 N15 4341730 3140 12308 4326282 2160768 3186 1560 CCACTGG Pool1 

Dec-15 N16 11027632 26852 38668 10962112 5465133 25972 5874 CCACTGG Pool2 

Dec-15 N26 4655634 12238 10900 4632496 2309372 12119 1633 CCACTGG Pool3 

Dec-15 N30 2707412 9956 10022 2687434 1338159 9436 1680 CCACTGG Pool4 

Dec-15 N34 5592944 11194 11624 5570126 2778550 11263 1763 CCACTGG Pool5 

Dec-15 N35 2552716 4314 6536 2541866 1268353 2688 2472 AGTCAAGA Pool1 

Dec-15 N36 3063728 10309 9803 3043616 1516053 8836 2674 AGTCAAGA Pool2 

Dec-15 N37 4822116 16382 11120 4794614 2388237 14981 3159 AGTCAAGA Pool3 

Dec-15 N38 2288548 7709 8952 2271887 1131537 6691 2122 AGTCAAGA Pool4 

Dec-15 N39 5005648 10857 10837 4983954 2485718 10228 2290 AGTCAAGA Pool5 

Dec-15 N40 2141908 3690 5297 2132921 1064364 3072 1121 AGTGTTAA Pool1 

Dec-15 N41 5655788 15176 17566 5623046 2802919 14162 3046 AGTGTTAA Pool2 

Dec-15 N42 6583760 16454 14186 6553120 3267241 15865 2773 AGTGTTAA Pool3 

Dec-15 N43 4061154 10538 13843 4036773 2012171 10086 2345 AGTGTTAA Pool4 

Dec-15 N44 1147684 3685 2387 1141612 568893 3230 596 AGTGTTAA Pool5 

Dec-15 N45 3845336 5682 9353 3830301 1911662 5756 1221 CACGACCA Pool1 

Dec-15 N46 4620888 12668 13237 4594983 2290253 12584 1893 CACGACCA Pool2 

Dec-15 N48 1331872 4301 3337 1324234 659834 4030 536 CACGACCA Pool3 

Dec-15 N49 3200932 9538 11527 3179867 1584464 9366 1573 CACGACCA Pool4 

Dec-15 N50 2252732 6976 4614 2241142 1116784 6837 737 CACGACCA Pool5 

Jun-16 7 5665606 64094 60515 5540997 2751705 19824 17763 GCATG Pool1 

Jun-16 8 1110248 39822 10620 1059806 525417 4225 4747 AATCG Pool1 

Jun-16 14 8309212 76807 115745 8116660 4032374 42389 9523 ACAGA Pool1 

Jun-16 15 10168782 54867 126152 9987763 4967964 40939 10896 AAGTGA Pool1 

Jun-16 16 8424024 65368 127965 8230691 4082654 53071 12312 ATTACA Pool1 

Jun-16 20 808404 11515 7541 789348 393024 2146 1154 CAGGCG Pool1 

Jun-16 21 9542184 27626 106757 9407801 4689072 20657 9000 AGAATGA Pool1 

Jun-16 22 9343570 22366 121077 9200127 4586363 18622 8779 AGTTAAT Pool1 

Jun-16 23 5465414 13069 64248 5388097 2686066 10554 5411 CCACTGG Pool1 

Jun-16 35 6959646 24699 99032 6835915 3402345 19380 11845 AGTCAAGA Pool1 

Jun-16 38 10567088 82615 167703 10316770 5112011 71456 21292 AGTGTTAA Pool1 

Jun-16 39 10477990 46825 119327 10311838 5128782 42233 12041 CACGACCA Pool1 

Jun-16 40 3472424 61027 69987 3341410 1655747 18647 11269 GCATG Pool2 

Jun-16 67 916990 49192 14701 853097 421572 3845 6108 AATCG Pool2 

Jun-16 68 6058844 63591 103262 5891991 2929340 24653 8658 ACAGA Pool2 

Jun-16 70 10706444 53490 175673 10477281 5212854 37216 14357 AAGTGA Pool2 

Jun-16 71 7759316 45168 139865 7574283 3764860 33004 11559 ATTACA Pool2 

Jun-16 91 335224 11285 4723 319216 158605 879 1127 CAGGCG Pool2 

Jun-16 94 2897684 24962 134209 2738513 1356428 16745 8912 AGAATGA Pool2 

Jun-16 98 5579306 19839 92442 5467025 2722395 15000 7235 AGTTAAT Pool2 

Jun-16 101 6556984 19259 101441 6436284 3205953 15489 8889 CCACTGG Pool2 

Jun-16 102 8974316 23939 143990 8806387 4385731 19070 15855 AGTCAAGA Pool2 

Jun-16 105 14200126 43968 230603 13925555 6932319 38572 22345 AGTGTTAA Pool2 

Jun-16 58 7650832 19265 118791 7512776 3742623 17245 10285 CACGACCA Pool2 

Jun-16 59 5298956 48177 124175 5126604 2548429 12097 17649 GCATG Pool3 

Jun-16 60 1043490 35260 20752 987478 489823 2655 5177 AATCG Pool3 
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Jun-16 63 6869100 43450 166632 6659018 3316230 14849 11709 ACAGA Pool3 

Jun-16 64 9719836 31937 239994 9447905 4704244 21090 18327 AAGTGA Pool3 

Jun-16 75 8939390 30477 211218 8697695 4329658 22073 16306 ATTACA Pool3 

Jun-16 80 705486 9431 14704 681351 338895 1849 1712 CAGGCG Pool3 

Jun-16 82 7821014 22217 181080 7617717 3792667 16520 15863 AGAATGA Pool3 

Jun-16 81 5324900 14361 129594 5180945 2579449 10973 11074 AGTTAAT Pool3 

Jun-16 84 4505818 11530 103603 4390685 2186021 9119 9524 CCACTGG Pool3 

Jun-16 85 8032706 15741 194957 7822008 3894573 13579 19283 AGTCAAGA Pool3 

Jun-16 86 10376158 29672 259746 10086740 5017433 25258 26616 AGTGTTAA Pool3 

Jun-16 88 5304834 13697 122955 5168182 2572126 12304 11626 CACGACCA Pool3 

Jun-16 89 4992548 43635 32970 4915943 2448028 11845 8042 GCATG Pool4 

Jun-16 90 1076870 32789 7054 1037027 515448 2796 3335 AATCG Pool4 

Jun-16 N17 9255604 55772 70773 9129059 4547055 27228 7721 ACAGA Pool4 

Jun-16 N51 10778820 38834 90271 10649715 5306017 27176 10505 AAGTGA Pool4 

Jun-16 N52 10602902 35022 83733 10484147 5223997 27074 9079 ATTACA Pool4 

Jun-16 N53 711882 9925 5139 696818 346833 2127 1025 CAGGCG Pool4 

Jun-16 N55 4029460 15878 32165 3981417 1983363 10523 4168 AGAATGA Pool4 

Jun-16 N57 7458572 18224 58318 7382030 3680180 14884 6786 AGTTAAT Pool4 

Jun-16 N59 4390230 11112 35004 4344114 2165260 9188 4406 CCACTGG Pool4 

Jun-16 N64 2543196 7348 22841 2513007 1251778 5455 3996 AGTCAAGA Pool4 

Jun-16 N66 14264594 34227 111523 14118844 7036282 30115 16165 AGTGTTAA Pool4 

Jun-16 N67 5620068 14069 40965 5565034 2773369 12891 5405 CACGACCA Pool4 

Jun-16 N68 5263906 39625 139445 5084836 2529099 11991 14647 GCATG Pool5 

Jun-16 N69 1373022 30596 35130 1307296 649320 3840 4816 AATCG Pool5 

Jun-16 N71 5236678 43263 153825 5039590 2504763 19364 10700 ACAGA Pool5 

Jun-16 N74 6460676 29189 190103 6241384 3103354 19762 14914 AAGTGA Pool5 

Jun-16 N75 7810984 31105 223119 7556760 3757823 24442 16672 ATTACA Pool5 

Jun-16 N80 653046 8038 20784 624224 310283 1750 1908 CAGGCG Pool5 

Jun-16 N81 4449352 14121 122045 4313186 2146732 9400 10322 AGAATGA Pool5 

Jun-16 N83 6740164 16937 203042 6520185 3244698 14122 16667 AGTTAAT Pool5 

Jun-16 N84 2866206 6623 97831 2761752 1374362 5153 7875 CCACTGG Pool5 

Jun-16 N85 4031692 8194 141151 3882347 1931266 6744 13071 AGTCAAGA Pool5 

Jun-16 N87 10802312 23616 337899 10440797 5193544 20505 33204 AGTGTTAA Pool5 

Jun-16 N89 5088996 14385 143432 4931179 2452429 13054 13267 CACGACCA Pool5 

Sum  692705826 2754390 7704415 682247021 
3398125

78 
178752

2 834343   

% total reads 100 0.4 1.1 98.5 98.1 0.3 0.1   

Average  5772549 22953 64203 5685392 2831771 14896 6953   

Stdev  3257785 17545 69668 3213602 1600722 12542 6227   
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Table A2.2. SNP dataset summary statistics 

 Before filtering After filtering After thinning 

Number of individuals 120 95 95 
Number of SNPs 87876 67481 27690 
Percentage of SNPs with maf >= 0.05 53.66 66.09 65.56 
Mean spacing between SNPs 23374.05 23326.16 60302.78 
Median spacing between SNPs 229 235 38024 
Mean proportion of missing data per individual 0.17 0.04 0.04 
GC content 0.61 0.6 0.61 
Transition vs transversion ratio 1.96 2.08 2.16 

 
Table A2.3. Bayesass3-SNPs migration rates 

 Busen Barff Norway 

Busen 0.9796(0.0139) 0.0100(0.0099) 0.0103(0.0100) 
Barff 0.0097(0.0095) 0.9806(0.0131) 0.0097(0.0094) 
Norway 0.0092(0.0090) 0.0091(0.0088) 0.9817(0.0122) 
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Fig. A2.1. Retained reads per sample. A. Proportion of retained read pairs after 
removing low quality reads and reads with missing radtag of missing mate pair. B. 
Number of retained read pairs per sample.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. A2.2 Sample specific alignment rates. Closed circles: all alignments. Open 
circles: concordant alignments. Black: alignment to cow genomes. Grey: alignment to 
reindeer genome. 
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Fig. A2.3. SNP spacing and data quality control. Spacing between SNPs (A) and 
quality control assessment (B-D). For B-D: black indicates retained loci/samples and 
red indicates filtered loci/samples. A-B. Spacing between SNPs. C. Sample specific read 
depth versus number of retained read pairs per sample . D. Missing data per sample 
versus mean read depth per sample. E. Locus specific heterozygosity versus locus 
specific minor allele frequency. Excessive heterozygosity excess is indicative  
of paralogous loci. F. Mean read depth per locus.  

A B 

C D 

E F 
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Fig.A2.4. GC content. GC content and transition vs transition ratios for unfiltered, 
filtered and thinned SNP datasets. 
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Fig.A2.5. Distribution of SNPs over chromosomes. SNP spacing per chromosome 
for filtered (above) and thinned (below) SNP datasets. Estimates based on alignment 
against cow genome.  
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Fig.A2.6. DAPC analysis. (A) DAPC summary statistics: a-score, number of retained 
PC’s, and bic value. Because the ‘a-score optimisation – spline interpopulation’-
method returned an optimum number of 1 retained PCs, I opted for another 
approach and selected a number of PCs which explained 80 percent of cumulated 
variance. (B). Expected population clustering (Busen, Barff, Norway) vs DAPC 
inferred clusters for K = 2-5.  
 
  

A 

B 
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Fig.A2.7. Boxplots of locus specific heterozygosity per population. White dots 
indicate means. Based on filtered and thinned dataset.  
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Fig.A2.8A. Distribution of negative natural log of GWDS fisher exact test scores. 
Grey bars: observed distribution. Red lines: exponentional distributions fitted to the 
data by GWDS.  
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Fig.A2.8B. Bayescan test results. Red scores are loci scored as outliers by Bayescan 
with a false discovery rate of 0.1. All candidate outlier loci have a positive alpha value, 
indicating that none of the putatitive outliers are under purifying/balancing selection, 
but instead under positive selection.  
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Fig.A2.9. Sliding window Fst. Sliding window Weir & Cockerham Fst plots for 
pairwise population comparisons between both founder populations and their source 
population. Window size is 20 SNPs, equalling approximately 0.5 Mb.  
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Fig.A2.9 continued. 
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Fig. A2.10. Peak-peak-valley signal . Sliding window Weir & Cockerham Fst plot of 
chromosome 25. Fst is calculated both including (above) and excluding (below) both 
adjacent outlier SNPs. Dotted lines indicate the positions of the two outlier SNPs. The 
peak-valley signal (a peak for both Busen-Norway and Barff-Norway comparison, and 
a valley for the Busen-Barff comparison) flattens out when removing both outliers.  
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Fig.A2.11. Sliding window Tajima’s D analysis. Sliding window Tajima D scores for 
various window sizes (step size = 0.2 Mb) for chromosome 25 for the three study 
populations: Busen (blue), Barff (green), Norway (red). Grey shading indicates the 
number of SNPs per window. 
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Fig. A2.12. False discovery rates (FDR) of selection scans in young founder 
populations. Power, specificity and false discovery rate (FDR) estimates of the 
selection scans GWDS, OutFLANK and PCadapt in recently established founder 
populations (population age of 20 generations) given a sample size of 30 individuals 
per population, a selection coefficient s of strength 0.1, various constant effective 
population sizes (Ne) without founder bottleneck, and using either the Bonferroni or 
Holm multiple test correction method. Power estimates give the inverse of the false 
negative rate (FN), i.e. the proportion of alleles under positive selection that are 
correctly marked by selection scans as outliers. Specificity estimates give the inverse of 
the false positive rate (FP), i.e. the proportion of neutral alleles that are not marked by 
selection scans as outliers. The power and specificity scores are based on simulations 
with 90000 neutral SNPs and 10000 adaptive SNPs. FDR estimates, the proportions of 
false positives in the outlier set, are based on the Bonferroni power and specificity 
estimates and are calculated for various proportions of adaptive SNPs (p_adaptive), 
ranging from 10% to 0.01%, using the formula: (FP*(1-p_adaptive))/ (FP*(1-
p_adaptive) + ((1-FN)*p_adaptive)). Left: pairwise approach. Right: pooled approach.  
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Fig. A2.13A. Bayescan power analysis. Simulation results of Bayescan power 
analyses, showing power and specificity (left) and observed false discovery rates 
(right) in founder populations given a demographic scenario of 10 founders, a fixed Ne 
of 50, a population age of 20 generations. Above: pairwise approach, below: pooled 
approach. Analysis based on 79000 neutral and 1000 selected loci.  
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Fig.A2.14. Effect of effective population size and sampling size on Fdist 
distributions. Simulated distributions of locus specific He-Fst estimates in founder 
populations, given a population age of 20 generations, a sample size of 30 individuals 
(lower row), and an uniform distribution of minor allele frequency in the source 
population of 0.15.Black dots are neutral SNPs; red dots are SNPs under selection 
(s=0.1). Number of founders equals effective population size. Red dots which are 
surrounded by black dots can not be detected by selection scans.  
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Fig.A2.15A. Detectability of outlier SNPs in pairwise versus pooled approach. 
Fdist plots showing distribution of 79000 neutral (black) and 1000 selected loci (red, 
s=0.1) or loci marked as outlier by PCadapt, Bayescan or GWDS given a demographic 
scenario of 10 founders, a fixed Ne of 50, and a population age of 20 generations. 
Above: pairwise approach, below: pooled approach.  
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Fig.A2.15B. Simulated Fisher exact test scores test scores. Negative log of Fisher 
exact test p-values on contingency tables of allele counts in simulated source and 
founder populations given a demographic scenario of 10 founders, a fixed Ne of 50, and 
a population age of 20 generations, for a dataset of 70K neutral SNPs. The ranges of 
the values is roughly similar to the range of values observed in the empirical dataset 
(see below). 
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APPENDICES CHAPTER 3 

 

Table A3.1 Sequencing output. STACKS demultiplexing output 
Sequencing  

Date ID 
Total  

Reads 
No  

RadTag 
Low 

Quality Retained Barcode Pool 

Jul-17 G30 4720534 56228 5226 4659080 GCATG pool1 

Jul-17 G35 1757646 90512 2968 1664166 AATCG pool1 

Jul-17 G37 2140416 42458 4065 2093893 ACAGA pool1 

Jul-17 G51 4910058 63082 5864 4841112 AAGTGA pool1 

Jul-17 G54 3913612 22463 6456 3884693 ATTACA pool1 

Jul-17 G58 1726940 12046 2016 1712878 CAGGCG pool1 

Jul-17 G59 3480726 12963 3925 3463838 AGAATGA pool1 

Jul-17 8 4894792 19712 4749 4870331 AGTTAAT pool1 

Jul-17 9 2496184 7194 2960 2486030 CCACTGG pool1 

Jul-17 12 9781098 18978 10091 9752029 AGTCAAGA pool1 

Jul-17 13 8307972 20719 8284 8278969 AGTGTTAA pool1 

Jul-17 390 1025954 44599 825 980530 GCATG pool3 

Jul-17 391 2234458 62636 1467 2170355 AATCG pool3 

Jul-17 393 2071070 44902 1749 2024419 ACAGA pool3 

Jul-17 394 3946800 73517 2694 3870589 AAGTGA pool3 

Jul-17 396 3242952 25285 2872 3214795 ATTACA pool3 

Jul-17 400 1300134 10877 786 1288471 CAGGCG pool3 

Jul-17 G2 3818516 18907 3731 3795878 AGAATGA pool3 

Jul-17 G4 17348018 39769 13781 17294468 AGTTAAT pool3 

Jul-17 G8 2377182 7567 1909 2367706 CCACTGG pool3 

Jul-17 G9 4379878 14156 2966 4362756 AGTCAAGA pool3 

Jul-17 G10 4133644 12785 2726 4118133 AGTGTTAA pool3 

Jul-17 G14 3764698 78711 1978 3684009 GCATG pool4 

Jul-17 G15 2233890 78535 1032 2154323 AATCG pool4 

Jul-17 G17 3865910 70699 2499 3792712 ACAGA pool4 

Jul-17 G19 5195706 85217 2684 5107805 AAGTGA pool4 

Jul-17 G20 4666442 28656 2910 4634876 ATTACA pool4 

Jul-17 G32 1225094 16403 752 1207939 CAGGCG pool4 

Jul-17 G36 3227370 17861 1924 3207585 AGAATGA pool4 

Jul-17 G52 6919062 31703 3392 6883967 AGTTAAT pool4 

Jul-17 G53 3790266 13720 2183 3774363 CCACTGG pool4 

Jul-17 G60 3500648 21123 1829 3477696 AGTCAAGA pool4 

Jul-17 5 5628972 16518 2472 5609982 AGTGTTAA pool4 

Jul-17 10 2184836 51297 1495 2132044 GCATG pool5 

Jul-17 372 3138998 47062 2139 3089797 AATCG pool5 

Jul-17 373 2431668 34676 1927 2395065 ACAGA pool5 

Jul-17 451 9787158 57468 7354 9722336 AAGTGA pool5 

Jul-17 452 2616888 12310 1706 2602872 ATTACA pool5 

Jul-17 455 1486302 8308 883 1477111 CAGGCG pool5 

Jul-17 457 3722198 16385 2737 3703076 AGAATGA pool5 

Jul-17 M1 2535454 17111 1927 2516416 AGTTAAT pool5 
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Jul-17 M3 685224 3036 596 681592 CCACTGG pool5 

Jul-17 M4 2697054 14742 2315 2679997 AGTCAAGA pool5 

Jul-17 M6 3198110 7570 2353 3188187 AGTGTTAA pool5 

Jul-17 M18 6508740 125104 10770 6372866 GCATG pool6 

Jul-17 M22 4205918 212496 6932 3986490 AATCG pool6 

Jul-17 M23 7289462 108046 9793 7171623 ACAGA pool6 

Jul-17 M26 9677048 183973 18128 9474947 AAGTGA pool6 

Jul-17 298 5211008 37274 7147 5166587 ATTACA pool6 

Jul-17 304 3788342 24326 4100 3759916 CAGGCG pool6 

Jul-17 381 10483552 35111 17618 10430823 AGAATGA pool6 

Jul-17 384 23537402 76204 36484 23424714 AGTTAAT pool6 

Jul-17 389 18578926 76254 43676 18458996 AGTCAAGA pool6 

Jul-17 392 16164504 43873 29196 16091435 AGTGTTAA pool6 

Jul-17 397 3633084 57348 1339 3574397 GCATG pool7 

Jul-17 398 3518288 54701 1414 3462173 AATCG pool7 

Jul-17 399 7367408 55452 3301 7308655 ACAGA pool7 

Jul-17 401 7327496 76341 2776 7248379 AAGTGA pool7 

Jul-17 403 7020338 23942 2859 6993537 ATTACA pool7 

Jul-17 406 1601822 10872 607 1590343 CAGGCG pool7 

Jul-17 407 3398426 15596 1470 3381360 AGAATGA pool7 

Jul-17 408 4819320 20825 1894 4796601 AGTTAAT pool7 

Jul-17 416 3125534 10657 1184 3113693 CCACTGG pool7 

Jul-17 417 2178210 10672 816 2166722 AGTCAAGA pool7 

Jul-17 418 2797654 8979 1103 2787572 AGTGTTAA pool7 

Jan-17 G5 15666388 662357 1856 15002175 GCATG pool1 

Jan-17 G11 8982408 126833 1164 8854411 AATCG pool1 

Jan-17 G12 9519226 237572 1182 9280472 ACAGA pool1 

Jan-17 G13 13534136 127336 1495 13405305 AAGTGA pool1 

Jan-17 G21 5833540 77328 689 5755523 ATTACA pool1 

Jan-17 G22 5527488 63375 625 5463488 CAGGCG pool1 

Jan-17 G23 10169118 88730 1316 10079072 AGAATGA pool1 

Jan-17 G24 13809636 162318 1773 13645545 AGTTAAT pool1 

Jan-17 G25 9087920 90647 1242 8996031 CCACTGG pool1 

Jan-17 G26 11935340 76998 1775 11856567 AGTCAAGA pool1 

Jan-17 G27 8622554 63750 1124 8557680 AGTGTTAA pool1 

Jan-17 G29 11312294 94008 1521 11216765 CACGACCA pool1 

Jan-17 G80 14785502 48283 1987 14735232 AGTTAAT pool2 

Jan-17 2 19297550 50745 2641 19244164 CCACTGG pool2 

Jan-17 4 2597432 10673 390 2586369 AGTCAAGA pool2 

Jan-17 6 15588092 36581 2177 15549334 AGTGTTAA pool2 

Jan-17 7 7761282 14653 1120 7745509 CACGACCA pool2 

Jan-17 19 9574892 33287 1248 9540357 CCACTGG pool3 

Jan-17 20 7254572 17363 974 7236235 AGTCAAGA pool3 

Jan-17 367 19445954 41878 2757 19401319 AGTGTTAA pool3 

Jan-17 368 10761344 26864 1428 10733052 CACGACCA pool3 

Jan-17 302 7453278 20169 950 7432159 CCACTGG pool4 
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Jan-17 303 6721314 11194 994 6709126 AGTCAAGA pool4 

Jan-17 379 18333164 33643 2610 18296911 AGTGTTAA pool4 

Jan-17 385 20713594 40595 2854 20670145 CACGACCA pool4 

Jan-17 411 11009192 32933 1431 10974828 CCACTGG pool5 

Jan-17 412 8244678 35905 1194 8207579 AGTCAAGA pool5 

Jan-17 413 8367162 16682 1147 8349333 AGTGTTAA pool5 

Jan-17 414 7006726 21553 983 6984190 CACGACCA pool5 

Sum  643658790 5082765 386451 638189574   

% total reads  100.0 0.8 0.1 99.2   

Average   6847434 54072 4111 6789251   

Stdev  5177234 77231 6821 5151240   
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Table A3.2. Number and spacing of SNPs per chromosome based on alignment 
against C. elaphus (for EastAnglia, Ayrshire and Wurttemberg samples) 

chrom #snps spacing in between adjacent snps    

  mean stdv min 0.25 median 0.75 max 

1 852 121384 265920 1 38 15093 132208 3771863 

10 529 105298 190140 1 58 27399 144332 2003253 

11 1080 128960 240830 1 61 29896 167253 3274209 

12 1105 115413 190579 1 70 20694 166945 1823862 

13 860 103707 182669 1 41 4793 136706 1532109 

14 931 110989 194023 1 58 19159 148807 1523112 

15 1092 114790 221373 1 48 15443 142108 2056297 

16 504 124706 216120 1 67 26845 159649 1918948 

17 487 162985 323549 1 33 4142 199111 2881002 

18 1098 138719 231852 1 65 30552 190461 2047684 

19 935 134826 238129 1 57 23612 171611 1977042 

2 619 101185 202223 1 47 6253 125468 2201572 

20 1319 112982 241913 1 43 8848 134445 4275578 

21 849 126312 224512 1 50 16138 161642 2067827 

22 567 112661 198039 1 51 20995 143018 1350892 

23 1187 90833 182761 1 43 6532 116395 2875907 

24 736 106254 169630 1 51 17424 159048 1281853 

25 756 127430 254696 1 37 11043 161197 3444338 

26 496 110888 192304 1 70 23062 166248 1713723 

27 789 106783 193455 1 50 12716 143034 1898917 

28 584 140090 293676 1 42 3525 180974 3082616 

29 637 125176 233127 1 42 12070 146790 2061521 

3 629 139457 241912 1 49 20471 175374 1554935 

30 849 137923 328622 1 49 21188 148921 4677516 

31 373 201978 353675 1 54 41326 261611 1845100 

32 502 118840 222076 1 51 8982 143224 1545533 

33 777 155295 274170 1 59 24351 186770 1847286 

4 844 95416 171612 1 45 4310 126667 1075264 

5 1670 105966 206628 1 53 11200 135567 2803155 

6 498 143531 271524 1 44 4749 187056 2452052 

7 661 98527 187743 1 50 13370 129682 1880328 

8 475 117420 195229 1 74 23230 162187 1094329 

9 1179 120283 228460 1 49 15083 138311 2718935 

X 500 362326 862053 1 26 400 363220 7751744 

Y 10 40 74 1 1 17 28 234 

contigs 319        

mean 793 129980 247801 1 51 16026 163413 2420891 

stdev 293 46462 117682 0 11 9416 44755 1279768 
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Table A3.3. SNP dataset summary statistics for main dataset (above) and 
Aurignac dataset (below)  

 
Before 
filtering 

After 
filtering 

After 
thinning 

Number of individuals 94 78 78 

Number of SNPs 52364 31459 15697 

Percentage of SNPs with maf >= 0.05 57.9 68.39 66.64 

Mean spacing between SNPs 43897.56 43686.37 89216.5 

Median spacing between SNPs 368 369 54451 
Mean proportion of missing data per 
individual 0.15 0.07 0.07 

GC content 0.62 0.62 0.63 

Transition vs transversion ratio 2.43 2.59 2.66 
 

 
Before 
filtering 

After 
filtering 

After 
thinning 

Number of individuals 30 29 29 

Number of SNPs 29488 19992 10732 

Percentage of SNPs with maf >= 0.05 80.96 91.53 91.4 

Mean spacing between SNPs 75241.85 78510.37 150582.83 

Median spacing between SNPs 1156.5 5017 91906 
Mean proportion of missing data per 
individual 0.06 0.05 0.05 

GC content 0.59 0.6 0.61 

Transition vs transversion ratio 2.44 2.66 2.77 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



217 
 

 
 
 
Fig. A3.1. Distribution of SNPs along sequencing reads. Upper. Ayrshire, EastAnglia 
and Wurttemberg dataset. Lower: Aurignac dataset.  
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Fig. A3.2. SNP spacing. Left: Ayrshire, EastAnglia and Wurttemberg dataset. Right: 
Aurignac dataset.  
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Fig. A3.3. Distribution of SNPs along sequencing reads. Left: Ayrshire, EastAnglia 
and Wurttemberg dataset. Right: Aurignac dataset.  
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Fig. A3.4. Read depth per sample and per locus. 
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Fig. A3.5. Filter statistics. Left: Ayrshire, EastAnglia and Wurttemberg dataset. 
Right: Aurignac dataset.  
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Fig. A3.6. GC-ratio.  
 
 
 

 
 
Fig. A3.7. Transition vs transversion ratio.  
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Fig. A3.8A. DAPC summary statistics. Above: Ayrshire, East Anglia and 
Wurttemberg (AEW) dataset. Below: intersect datasect, which consists of SNPs 
occuring in both the AEW and the Aurignac dataset.  
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Fig. A3.8B. PCoA analyses Aurignac dataset. PCoA analyses based on Hamming’s 
genetic distance and based on a dataset of 10K SNPs, suggest absence of population 
structure in the Aurignac dataset, except for the 2 samples which appear relatively 
unrelated.  
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Fig. A3.9A. Selection scan test scores for modern UK vs modern mainland. 
Negative log of selection scans (i.e. Fsthet, GWDS, OutFLANK and PCadapt) for both 
modern day UK populations (i.e. samples from Ayrshire and EastAnglia combined) vs 
Germany.  
 



226 
 

 
 
Fig. A3.9B. Selection scan test scores for native UK vs native mainland. Negative 
log of selection scans (i.e. Fsthet, GWDS, OutFLANK and PCadapt) for the native UK 
populations (i.e. Ayrshire) vs native mainland populations (i.e. samples from 
EastAnglia and Germany combined).  
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Fig. A3.10A. GWDS test results for the control IGSR human dataset (chromosome 
2) highlighting outlier region associated with lactose tolerance. GBR = Great-
Britain (lac+), FIN = Finland (lac+), TSI = Toscane (lac-). Shown are the negative log 
of Fisher exact test-p-values on allele count tables. An outlier region is detected for the 
pooled comparison (GBR and FIN combined vs TSI) as well as for both pairwise 
comparisons (GBR vs TSI and FIN vs TSI). Red: SNPs marked as outlier for the actual 
comparison. Orange; SNPs marked as outlier in another comparison.  
 

 
Fig. A3.10B. Fdist plots showing selection scan results for the control IGSR 
human dataset (chromosome 2). GBR = Great-Britain (lac+), FIN = Finland (lac+), 
TSI = Toscane (lac-). Shown are locus specific Weir and Cockerham 1987 
heterozygosity and Fst estimates, for the pooled comparison (pheno1: GBR and FIN 
combined; pheno2: TSI) as well as for both pairwise comparisons (GBR vs TSI and FIN 
vs TSI). Blue, orange and green dots indicate SNPs marked as outliers by respectively 
GWDS, OutFLANK and Pcadapt.  
 

 



228 
 

APPENDICES CHAPTER 4 

 

Table A4.1.Genome wide heterozygosity. Number and percentages of observed 
heterozygosite sites after mapping sequencing reads against reference genomes for 
European roe deer (C. capreolus) and Siberian roe deer (C. pygargus). White tailed 
deer (O. virginianus) and red deer (C. elaphus) were included for comparison. 
  

C. 
capreolus 

C. 
pygargus 

C. pygargus 
down-
sampled 

O. 
virginianus 

Cervus 
elaphus 

all read depths      
heterozygous 
sites 3,539,884 7,787,918    

total sites 2,444,157,882 2,511,732,823    

heterozygosity 0.140% 0.310%    

read depth ≥ 8      

mean read depth 21.1 39 21.1   
heterozygous 
sites 3,119,328 7,711,705 6,627,891 10,268,498 2,641,723 

total sites 2,177,801,796 2,409,308,248 2,230,619,899  2,075,403,030 1,876,495,191 

heterozygosity 0.143% 0.320% 0.297% 0.495% 0.141% 
 
 
 
Table A4.2.Single nucleotide variations (SNVs). Number of fixed and segregating 
single nucleotide variations (SNVs) between C. pygargus and C. capreolus, inferred 
from crossmapping raw reads to the reference genome of the sister species. Sequence 
dissimilarity is calculated as: (0.5*segregating SNVs + fixed SNVs)/total sites*100. 

raw reads C. pygargus 
 

C. capreolus 
 

reference genome C. capreolus 
 

C. pygargus 
 

segregating SNVs 6,649,612 0.324 3,291,379 0.156 

fixed SNVs 8,997,247 0.438 13,047,514 0.618 
fixed transitions 6,299,219 70.0 9,364,731 71.8 

fixed transversions 1,130,784 12.6 1,691,780 13.0 

fixed ambiguous 1,467,244 16.3 1,991,003 15.3 

total sites 2,051,852,399 
 

2,112,183,935 
 

sequence dissimilarity (%) 
 

0.600 
 

0.696 
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Table A4.3A. PAML’s codeML likelihood ratio test (LRT) scores of genes marked 
by codeml as under positive selection in the genus Capreolus. Ln0: log likelihood 
of neutral model (i.e. all codons: ω ≤ 1). Ln1: log likelihood of nested model with 
positive selection (i.e. some codons: ω > 1). Np0: number of parameters of neutral 
model. Np1: number of parameters of positive selection model. D-statistic: 2(ln1 – ln0). 
p-value: Chi-squared test p-value associated with D-statistics and 1 degree of freedom 
(np1 – np0). logp: negative log10 of p-value.  

gene ln0 ln1 np0 np1 D-statistic p-value -logp 
g02979.t1 -6733.63 -6722.26 30 31 22.72307 1.87E-06 5.727907 
g03242.t1 -2076.81 -2061.09 30 31 31.44965 2.05E-08 7.688925 
g03905.t1 -4794.54 -4782.87 30 31 23.33693 1.36E-06 5.866574 
g05086.t1 -1193.22 -1171.07 30 31 44.30169 2.81E-11 10.55056 
g06421.t1 -4318.72 -4286.79 30 31 63.85284 1.33E-15 14.87541 
g06831.t1 -2070.1 -2054.18 30 31 31.85099 1.66E-08 7.778677 
g06841.t1 -4929.99 -4910.34 30 31 39.29744 3.64E-10 9.438997 
g07795.t1 -1606.52 -1586.01 30 31 41.00313 1.52E-10 9.818198 
g11691.t1 -38130 -38110.8 30 31 38.3211 6.00E-10 9.221774 
g12098.t1 -8749.9 -8731.18 30 31 37.4581 9.34E-10 9.029663 
g13077.t1 -1646.77 -1635.37 30 31 22.79416 1.80E-06 5.743973 
g13226.t1 -5803.29 -5786.23 30 31 34.13433 5.14E-09 8.288734 
g16296.t1 -1425.03 -1411.3 30 31 27.45362 1.61E-07 6.793424 
g17080.t1 -796.723 -784.594 30 31 24.25775 8.43E-07 6.074341 
g17279.t1 -3280.78 -3265.08 30 31 31.39737 2.10E-08 7.677232 
g20881.t1 -4595.25 -4576.94 30 31 36.60754 1.44E-09 8.840216 
g20973.t1 -13263 -13114.9 30 31 296.1882 0 Inf 
g21474.t1 -2422.03 -2405.53 30 31 33 9.22E-09 8.035462 

 
 
 
Table A4.3C. Names and characteristics of genes marked by codeml as under 
positive selection in the genus Capreolus. Gene codes and names are inferred using 
online blast tool of ncbi webpage. Potential outlier column indicates presence of 1 or 
more lineage specific amino acid mutations (LSAAM) with a BEB-score above 0.5 for 
class2a or class2b.  

gene code name Potenti
al 
outlier 

visual_check 

g02979.t
1 

ARHGAP3
3 

Rho GTPase activating 
protein 33 

TRUE 5 LSAAM with BEB>0.5, of which 1 due to missing data 
in C. capreolus; the other 4 credible  

g03242.t
1 

RAB221 member RAS oncogene 
family 

FALSE No data for H. inermus; codon 5 in C. capreolus is 
stopcodon; sequence is completely different from C. 
pygargus 

g03905.t
1 

NLK nemo like kinase TRUE 5 (possibly 6) LSAAM, two of which adjacent. 

g05086.t
1 

SGO1 shugoshin 1 FALSE This is a dubious one: incomplete data, and most 
LSAAMs with BEB>0.5 due to misalignment; 3 
LSAAMare credible though, no clustering 

g06421.t
1 

DGKA diacylglycerol kinase 
alpha 

FALSE 2 LSAAM, plus region with 16 adjacent LSAAM, but with 
missing data for 9 out of 15 species  

g06831.t
1 

RAB22A member RAS oncogene 
family 

FALSE paralog comparison, C. capreolus as a result completely 
different from C. pygargus 

g06841.t
1 

PAXBP1 PAX3 and PAX7 
binding protein 

TRUE 1 LSAAM with BEB>0.5, plus potentially 12 close to each 
other, but can not be confirmed due to missing data in C. 
capreolus  

g07795.t
1 

unknown unknown FALSE 5 LSAAM at end of gene with BEB>0.5, but due to 
misalignment 

g11691.t
1 

MDN1 midasin AAA ATPase TRUE Definite candidate for gene under positive selection in 
genus. Over 30 LSAAM (of which 2 with BEB>0.5) spread 
throughout gene of 16 kb with many mutations (hence 
not found be accelerated dN/dS test). A proportion of 
LSAAM's are shared with distant clades. The low number 
of LSAAM with BEB>0.5 might be due to paralog 
comparison in C. elaphus and B. taurus. 

g12098.t
1 

ADGRB1 adhesion G protein-
coupled receptor B1 

FALSE 1 LSAAM with BEB>0.5 in end of gene, but in region with 
no data for C. capreolus 
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g13077.t
1 

no_hits no_hits TRUE 5 adjacent LSAAM with BEB>0.5, mutation of A-repeat 
into G-repeat 

g13226.t
1 

KLHL29 kelch like family 
member 29 

TRUE cluster of 5 LSAAM in 6 codons, 4 with BEB>0.5 in 
class2b and 1 with BEB in class2b, in a variable region 
with putative paralogs, but none paralog with same 
sequence as C. capreolus and C. pygargus  

g16296.t
1 

unknown unknown FALSE high proportion of missing data, no BEB>0.5 

g17080.t
1 

BOLA histocompatibility 
antigen alpha chain 
BL3-7 

TRUE cluster of 4 adjacent LSAAM with BEB>0.5, but missing 
data in many other species 

g17279.t
1 

TOP1 topoisomerase FALSE Most likely H. inermus stands out rather than Capreolus, 
but due to missing data in other species difficult to tell 

g20881.t
1 

? PRAME family member 
9 

FALSE paralog comparison, C. capreolus as a result very similar 
to H. inermus and O. hemionus, and very different from 
C. pygargus 

g20973.t
1 

? lysine specific 
demethylase 6A 

FALSE paralog comparison 

g21474.t
1 

ZCCHC18 zinc finger CCHC 
domain containing 18 

TRUE paralogs present, but does not affect the interpretation 
of three LSAAM with BEB>0.95 
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Table A4.4A. PAML’s codeML likelihood ratio test (LRT) scores of genes marked 
by codeml as under positive selection in the species C. capreolus. Ln0: log 
likelihood of neutral model (i.e. all codons: ω ≤ 1). Ln1: log likelihood of nested model 
with positive selection (i.e. some codons: ω > 1). Np0: number of parameters of neutral 
model. Np1: number of parameters of positive selection model. D-statistic: 2(ln1 – ln0). 
p-value: Chi-squared test p-value associated with D-statistics and 1 degree of freedom 
(np1 – np0). logp: negative log10 of p-value.  

gene ln0 ln1 np0 np1 D pvalue logp 
g00068.t1 -2734.05 -2721.13 30 31 25.84505 3.70E-07 6.431854 
g00884.t1 -768.806 -743.406 30 31 50.79874 1.02E-12 11.98995 
g01006.t1 -3258.85 -3245.06 30 31 27.59647 1.49E-07 6.825501 
g01347.t1 -2432.39 -2409.79 30 31 45.1868 1.79E-11 10.74689 
g01369.t1 -1662.24 -1641.09 30 31 42.30389 7.81E-11 10.10714 
g01907.t1 -2600.16 -2574.99 30 31 50.34608 1.29E-12 11.88979 
g01951.t1 -1101.68 -1084.06 30 31 35.23819 2.92E-09 8.534994 
g01978.t1 -3020.26 -3000.17 30 31 40.17492 2.32E-10 9.634118 
g02746.t1 -2278.56 -2260.15 30 31 36.81401 1.30E-09 8.886214 
g03119.t1 -6660.71 -6644.92 30 31 31.57501 1.92E-08 7.716964 
g04152.t1 -15391.1 -15361.2 30 31 59.69658 1.11E-14 13.95459 
g04403.t1 -2732.37 -2718.63 30 31 27.47576 1.59E-07 6.798396 
g04906.t1 -5710.4 -5695.3 30 31 30.20103 3.90E-08 7.409489 
g05061.t1 -28065.1 -28045.6 30 31 38.98903 4.26E-10 9.370392 
g05187.t1 -2653.51 -2637.96 30 31 31.09114 2.46E-08 7.608724 
g05450.t1 -1996.89 -1978.04 30 31 37.70009 8.25E-10 9.083541 
g05700.t1 -7486.2 -7406.72 30 31 158.9567 0 Inf 
g06407.t1 -3319.86 -3298.59 30 31 42.52834 6.97E-11 10.15698 
g06580.t1 -2481.65 -2468.36 30 31 26.58247 2.53E-07 6.597697 
g06951.t1 -4092.69 -4080.52 30 31 24.32439 8.14E-07 6.089365 
g07049.t1 -2996.6 -2975.01 30 31 43.17997 4.99E-11 10.30165 
g07071.t1 -6874.24 -6851.7 30 31 45.08549 1.89E-11 10.72442 
g07241.t1 -2123.87 -2110.74 30 31 26.26559 2.98E-07 6.526449 
g07440.t1 -4906.12 -4894.94 30 31 22.36866 2.25E-06 5.647786 
g07609.t1 -2549.05 -2537.58 30 31 22.93205 1.68E-06 5.775131 
g07689.t1 -4134.23 -4121.45 30 31 25.57091 4.26E-07 6.370162 
g07894.t1 -3013.14 -2999.96 30 31 26.3703 2.82E-07 6.549996 
g08423.t1 -4735.8 -4720.63 30 31 30.33946 3.63E-08 7.440486 
g08732.t1 -10032 -10016.6 30 31 30.91369 2.70E-08 7.569019 
g09357.t1 -10552.1 -10525.5 30 31 53.10246 3.17E-13 12.49944 
g09440.t1 -2662.23 -2644.22 30 31 36.02477 1.95E-09 8.710355 
g09476.t1 -16954.5 -16935.5 30 31 37.89371 7.47E-10 9.126647 
g10392.t1 -12417 -12379.2 30 31 75.49133 0 Inf 
g11268.t1 -2352.5 -2326.77 30 31 51.47516 7.25E-13 12.13961 
g11598.t1 -3712.08 -3700.15 30 31 23.84842 1.04E-06 5.982019 
g11691.t1 -38126.4 -38114.8 30 31 23.15561 1.49E-06 5.825631 
g11849.t1 -770.484 -754.55 30 31 31.86789 1.65E-08 7.782457 
g12015.t1 -1384.84 -1367.13 30 31 35.43809 2.63E-09 8.579571 
g12222.t1 -12357.7 -12338.5 30 31 38.35916 5.89E-10 9.230245 
g12484.t1 -1703.72 -1682.05 30 31 43.3365 4.61E-11 10.33639 
g12563.t1 -4452.8 -4417.27 30 31 71.06437 0 Inf 
g12719.t2 -16482.9 -16470.7 30 31 24.33606 8.09E-07 6.091996 
g12882.t1 -5738.79 -5721.35 30 31 34.89088 3.49E-09 8.457534 
g13700.t1 -5036.86 -5009.28 30 31 55.17739 1.10E-13 12.95808 
g13760.t1 -3485.35 -3472.45 30 31 25.78503 3.82E-07 6.41835 
g13957.t1 -3562.58 -3542.02 30 31 41.11381 1.44E-10 9.842791 
g14096.t1 -1160.5 -1149 30 31 22.99178 1.63E-06 5.788624 
g14583.t1 -1706.58 -1675.72 30 31 61.72818 4.00E-15 14.39829 
g15865.t1 -2558.72 -2538.94 30 31 39.54982 3.20E-10 9.495126 
g16824.t1 -15622.2 -15607.2 30 31 30.01032 4.30E-08 7.366781 
g17856.t1 -2344.38 -2319.82 30 31 49.11296 2.42E-12 11.61683 
g18061.t1 -957.502 -943.288 30 31 28.4278 9.73E-08 7.012073 
g18092.t1 -1766.6 -1753.2 30 31 26.798 2.26E-07 6.646139 
g18276.t1 -6440.45 -6425.12 30 31 30.64572 3.10E-08 7.509046 
g18672.t1 -7095.9 -7077.26 30 31 37.27622 1.03E-09 8.98916 
g18675.t1 -12112.1 -12094.6 30 31 34.9216 3.43E-09 8.464388 
g18676.t1 -11979.2 -11962 30 31 34.24685 4.85E-09 8.313847 
g18726.t1 -39105.6 -39071.2 30 31 68.96616 1.11E-16 15.95459 
g18830.t2 -9656.81 -9625.52 30 31 62.58891 2.55E-15 14.59286 
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g18911.t1 -3315.97 -3284.18 30 31 63.58698 1.55E-15 14.80846 
g19145.t1 -3188.36 -3171.61 30 31 33.49442 7.15E-09 8.145883 
g19891.t1 -16015.4 -15975.6 30 31 79.67064 0 Inf 
g21058.t1 -1071.7 -1056.82 30 31 29.7715 4.86E-08 7.313287 
g21142.t1 -3181.88 -3165.5 30 31 32.77273 1.04E-08 7.984691 
g21241.t1 -12705.6 -12693.2 30 31 24.74592 6.54E-07 6.184375 
g21410.t1 -636.264 -624.084 30 31 24.36092 7.99E-07 6.097601 
g21437.t1 -9974.88 -9947.5 30 31 54.77059 1.35E-13 12.86823 
g21489.t1 -1825.44 -1813.13 30 31 24.62461 6.97E-07 6.157038 
g21541.t1 -3942.78 -3906.83 30 31 71.8951 0 Inf 
g21616.t1 -3179.38 -3159.34 30 31 40.09368 2.42E-10 9.616058 

 
 
Table A4.4C. Names and characteristics of genes marked by codeML as under 
positive selected in C. capreolus. Gene codes and names are inferred using online 
blast tool of ncbi webpage. Potential outlier column indicates presence of 1 or more 
lineage specific amino acid mutations (LSAAM) with a BEB-score above 0.5 for class2a 
or class2b.  

gene code name potenti
al 
outlier 

visual_check 

g00068.t
1 

CCNB1 cyclin B1 TRUE 4 LSAAM with BEB>0.9 throughout gene  

g00884.t
1 

PPP1R14
B 

phosphatase 1 
regulatory inhibitor 
subunit 14B 

TRUE cluster of 4 adjacent LSAAM, of which 3 with BEB>0.8 

g01006.t
1 

? dehydrogenase family 
3 member B1 

FALSE Many LSAAMs, but are surrounded by missing data in C. 
capreolus, suggestive of misalignment. (1 credible 
LSAAM) 

g01347.t
1 

SCTR secretin receptor TRUE cluster of 3 adjacent LSAAM with BEB>0.95 

g01369.t
1 

IL16 pro-interleukin-16 FALSE 7 adjacent LSAAM, but surrounded by missing data in C. 
capreolus, suggestive of misalignment. 

g01907.t
1 

ZFP91 zinc finger protein FALSE Many LSAAMs, but are surrounded by missing data in C. 
capreolus, suggestive of misalignment.  

g01951.t
1 

TMCO1 transmembrane and 
coiled-coil domains 1 

FALSE Many LSAAMs, but are surrounded by missing data in C. 
capreolus, suggestive of misalignment.  

g01978.t
1 

SRRM4 serine/arginine 
repetitive matrix 4 

FALSE Many LSAAMs, but are surrounded by missing data in C. 
capreolus, suggestive of misalignment.  

g02746.t
1 

unknown unknown TRUE 3 adjacent LSAAM with BEB>0.5 for class2b 

g03119.t
1 

PPEF2 protein phosphatase 
with EF-hand domain 2 

TRUE 5 LSAAM, of which 3 adjacent, with BEB>0.5 

g04152.t
1 

MYH8 heavy chain 8 TRUE >22 clustered LSAAM (alongside many silent mutations; 
hence not marked by accelerated dN/dS tests). Clusters: 
5 LSAAM in 12 codons, 5 LSAAM in 16 codons, one 
adjacent pair)  

g04403.t
1 

KRT42 keratin type I 
cytoskeletal 42 

TRUE one cluster of 200 bp with many LSAAMs with BEB>0.5, 
one significant and one highly significant 

g04906.t
1 

SLC12A5 solute carrier family 12 
member 5 

TRUE section of 75 bp with 15 mutations, leading to 3 closely 
located LSAAM 

g05061.t
1 

KMT2D lysine 
methyltransferase 2D 

FALSE several LSAAMs, but none with BEB>0.5 

g05187.t
1 

OPTN optineurin FALSE Many LSAAMs, but are surrounded by missing data in all 
species except C. capreolus, suggestive of misalignment.  

g05450.t
1 

BEAN1 brain expressed, 
associated with NEDD3 

FALSE Section with many LSAAMs, but are surrounded by 
missing data in C. capreolus, suggestive of misalignment.  

g05700.t
1 

HDLBP high density 
lipoprotein binding 
protein 

FALSE Misalignment 

g06407.t
1 

SLC39A5 solute carrier family 39 
member 5 

TRUE cluster of 3 adjacent LSAAM with BEB>0.5 (at the border 
of missing data, perhaps insertion in 
Hydropotes/Capreolus lineage) 

g06580.t
1 

SYT2 synaptotagmin 2 TRUE section of with >10 LSAAM in 30 codons, of which 8 with 
BEB>0.5, of which 3 significant 

g06951.t
1 

SPATA21 spermatogenesis 
associated 21 

FALSE section with several LSAAMs, surrounded by missing 
data in C. capreolus, suggestive of misalignment 

g07049.t
1 

OSGIN1 oxidative stress 
induced growth 
inhibitor 1 

TRUE 6 LSAAM with BEB>0.5, of which 2 due to missing data, 
and the other 4 adjacent and significant 
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g07071.t
1 

GSE1 Gse1 coiled-coil 
protein 

FALSE 3 adjacent LSAAM next to section of missing data in C. 
capreolus 

g07241.t
1 

? elongation of very long 
chain fatty acids 
protein 4 

TRUE cluster of 3 adjacent LSAAM, of which 2 with BEB>0.5 

g07440.t
1 

EFCC1 EF-hand and coiled coil 
domain containing 1 

FALSE section with LSAAMs surrounded by missing data in C. 
capreolus 

g07609.t
1 

ZNF444 zinc finger protein 444 FALSE section with LSAAMs surrounded by missing data in C. 
capreolus 

g07689.t
1 

AMPD2 adenosine 
monophoshate 
deaminase 2 

FALSE 4 adjacent LSAAM next to section of missing data in C. 
capreolus 

g07894.t
1 

? eosinophil peroxidase TRUE 5 LSAAM, of which a cluster of 3 adjacent, with BEB>0.5 

g08423.t
1 

DDX42 DAED-box helicase 42 TRUE cluster of 4 adjacent LSAAM with BEB>0.5, one 
significant 

g08732.t
1 

? complement C3 FALSE section with LSAAMs surrounded by missing data in C. 
capreolus 

g09357.t
1 

DMTF1 cyclin D binding myb 
like transcription 
factor 1 

FALSE section with LSAAMs surrounded by missing data in C. 
capreolus 

g09440.t
1 

FAM189A
2 

family with sequence 
similarity 189 member 
A2 

TRUE 7 LSAAM, of which a cluster of 4 adjacent, with BEB>0.5 

g09476.t
1 

VPS13A vacuolar protein 
sorting 13 homolog A 

TRUE 7 LSAAM, of which 3 adjacent, with BEB>0.5 

g10392.t
1 

TUBGCP2 tubulin gamma 
complex associated 
protein 2 

FALSE section with LSAAMs surrounded by missing data in C. 
capreolus 

g11268.t
1 

? serpin B3 TRUE section of 50 bp with a cluster of 13 LSAAM with 
BEB>0.5, of which 10 adjacent  

g11598.t
1 

ZNF783 zinc finger family 
member 783 

TRUE in first 200bp 9 LSAAM with BEB>0.5, of which a section 
of 50bp with a cluster of 7 LSAAM, of which 5 adjacent 

g11691.t
1 

MDN1 AAA ATPase1 FALSE 19 LSAAM with BEB>0.5 in gene of 16kb, of which 8 
surrounded by missing data in C. capreolus 

g11849.t
1 

SPCS3 signal peptidase 
complex subunit 3 

FALSE cluster of 5 nearly adjacent LSAAM, of which 2 with 
BEB>0.5, most likely due to misalignment, because C. 
pygargus has identical sequence just upstream (with 
missing data for C. capreolus)  

g12015.t
1 

SAMD5 sterile alpha motif 
domain containing 5 

FALSE section with LSAAMs surrounded by missing data in C. 
capreolus 

g12222.t
1 

CABIN1 calcineurin binding 
protein 1 

TRUE 3 LSAAM with BEB>0.5, of which 2 adjacent (in a cluster 
of 4 adjacent LSAAM) 

g12484.t
1 

GNG4 G protein subunit 
gamma 4 

FALSE in first 100bp 8 LSAAM with BEB>0.5; including a cluster 
of 7 LSAAM out of 9 codons most likely due to 
misalignment, because identical sequence for C. 
pygargus upstream (missing data C. capreolus) 

g12563.t
1 

PACS2 phosphofurin acidic 
cluster sorting protein 
2 

FALSE LSAAMs in genomic region for which data is available 
only for C. capreolus and C. pygargus, so not 
characteristic for C. capreolus 

g12719.t
2 

ADGRB2 adhesion G protein-
coupled receptor B2 

FALSE section with LSAAMs surrounded by missing data in C. 
capreolus 

g12882.t
1 

IRS2 insulin receptor 
substrate 2 

FALSE section with LSAAMs surrounded by missing data in C. 
capreolus 

g13700.t
1 

MYOT myotilin FALSE section with LSAAMs surrounded by missing data in C. 
capreolus 

g13760.t
1 

TCF3 transcription factor 3 TRUE cluster of 4 adjacent LSAAM with BEB>0.5 

g13957.t
1 

TKT transketolase TRUE 4 LSAAM, of which a cluster of 3 adjacent and with 
BEB>0.95 (resulting from 9 adjacent nucleotide 
mutations) 

g14096.t
1 

TTC9B tetratricopeptide 
repeat domain 9B 

TRUE cluster of 3 adjacent LSAAM at end of sequence, of which 
2 with BEB>0.95 

g14583.t
1 

GNPTG N-acetylglucosamine-1 
phosphate transferase 
subunit gamma 

TRUE A cluster of 3 adjacent LSAAM with BEB>0.5, and a 
cluster of 4 adjacent LSAAM with BEB>0.5 

g15865.t
1 

CCDC92 coiled coil domain 
containing 92 

TRUE A cluster of 3 adjacent LSAAM, of which 2 with BEB>0.5 
and a stop codon 

g16824.t
1 

ZAN zonadhesin TRUE A cluster of 3 adjacent LSAAM, of which 2 with BEB>0.5 

g17856.t
1 

RBBP7 RB binding protein 7, 
chromatin remodeling 
factor 

FALSE section with LSAAMs surrounded by missing data in C. 
capreolus 
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g18061.t
1 

unknown unknown FALSE LSAAMs in genomic region for which data is available 
only for C. capreolus and C. pygargus, so not 
characteristic for C. capreolus 

g18092.t
1 

unknown unknown TRUE 3 LSAAMs with BEB>0.5, of which a cluster of 2 adjacent 

g18276.t
1 

peptidase 
35 

ubiquitin specific 
peptidase 35 

FALSE Section with many LSAAMs, but are surrounded by 
missing data in C. capreolus, suggestive of misalignment.  

g18672.t
1 

TTC21B tetratricopeptide 
repeat domain 21B 

TRUE 7 LSAAMs with BEB>0.5, of which 3 adjacent 

g18675.t
1 

SCN2A sodium voltage-gated 
channel alpha subunit 
2 

TRUE 44 LSAAMs with BEB>0.5 (last section maybe 
unreliable)  

g18676.t
1 

SCN3A sodium voltage-gated 
channel alpha subunit 
3 

TRUE 40 LSAAMs with BEB>0.5 (last section maybe 
unreliable) 

g18726.t
1 

NEB nebulin TRUE 30 LSAAMs with BEB>0.5 

g18830.t
2 

COL11A2 collagen type XI alpha 
2 chain 

FALSE misalignment, section with many mutations is in fact 
identical sequence occurs in C. pygargus where C. 
capreolus has missing data 

g18911.t
1 

ESF1 ESF1 nucleolar pre-
rRNA processing 
protein homolog 

FALSE missing data in C. capreolus leads to skewed estimate 

g19145.t
1 

WAC WW domain containing 
adaptor with coiled-
coil 

TRUE 4 adjacent LSAAM with BEB>0.5 

g19891.t
1 

UTP20 small subunit 
processome 
component 

TRUE Definite candidate for positive selection: 8 non-adjacent 
LSAAM with BEB>0.5; one section of 70 bp with 5 
LSAAM  

g21058.t
1 

NMD3 NMD3 ribosome export 
adaptor 

FALSE high proportion of missing data in all species 

g21142.t
1 

PRICKLE
3 

prickle planar cell 
polarity protein 3 

FALSE section with LSAAMs surrounded by missing data in C. 
capreolus 

g21241.t
1 

PLXNA3 plexin A3 FALSE paralog comparison 

g21410.t
1 

SHROOM
2 

shroom family member 
2 

FALSE high proportion of missing data in all species, might 
obscure codeml calculations 

g21437.t
1 

DRP2 dystrophin related 
protein 2 

FALSE section with LSAAMs surrounded by missing data in C. 
capreolus 

g21489.t
1 

DEK DEK proto-oncogene FALSE section with LSAAMs surrounded by missing data in C. 
capreolus 

g21541.t
1 

DCAF12L
2 

DDB1 and CUL4 
associated factor 12-
like protein 2 

TRUE 1 LSAAM with BEB>0.5 

g21616.t
1 

PLS3 plastin 3 TRUE 3 adjacent LSAAM with BEB>0.95 
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Table A4.5A. PAML’s codeML likelihood ratio test (LRT) scores of genes marked 
by codeml as under positive selection in the species C. pygargus. Ln0: log 
likelihood of neutral model (i.e. all codons: ω ≤ 1). Ln1: log likelihood of nested model 
with positive selection (i.e. some codons: ω > 1). Np0: number of parameters of neutral 
model. Np1: number of parameters of positive selection model. D-statistic: 2(ln1 – ln0). 
p-value: Chi-squared test p-value associated with D-statistics and 1 degree of freedom 
(np1 – np0). logp: negative log10 of p-value.  

gene ln0 ln1 np0 np1 D pvalue logp 
g00002.t1 -2075.65 -2061.94 30 31 27.40334 1.65E-07 6.782133 
g01212.t1 -15847.3 -15821.8 30 31 50.86592 9.89E-13 12.00481 
g06203.t1 -2622.19 -2610.37 30 31 23.65158 1.15E-06 5.937602 
g06637.t1 -13444 -13399 30 31 89.88716 0 Inf 
g06831.t1 -2070.1 -2054.18 30 31 31.85102 1.66E-08 7.778684 
g06841.t1 -4929.93 -4910.72 30 31 38.41591 5.72E-10 9.242873 
g09420.t1 -2224.84 -2211.85 30 31 25.97843 3.45E-07 6.461862 
g10234.t1 -1618.95 -1601.32 30 31 35.2648 2.88E-09 8.54093 
g20974.t1 -2470.57 -2449.15 30 31 42.85093 5.91E-11 10.2286 
g21474.t1 -2437.78 -2405.53 30 31 64.49819 9.99E-16 15.00035 

 
 
Table A4.5B. Names and characteristics of genes marked by codeML as under 
positive selection in the species C. pygargus. Gene codes and names are inferred 
using online blast tool of ncbi webpage. Potential outlier column indicates presence of 
1 or more lineage specific amino acid mutations (LSAAM) with a BEB-score above 0.5 
for class2a or class2b.  

gene name 
 

logp Potential 
outlier 

visual_check 

g00002.t1 APOL3 apolipoprotein L3 6.78 FALSE No LSAAM present, erroneous LRT-score  

g01212.t1 MAP1A microtubule associated 
protein 1A 

12.0
0 

TRUE section of 8 LSAAM (not clustered) with BEB>0.95 in 
close vicinity (but after stop codon) 

g06203.t1 AK6 adenylate kinase 6 5.94 FALSE all codons with BEB>0.5, of which 2 LSAAM with 
BEB>0.8. Real outlier is C. capreolus, which has a 
stopcodon. 

g06637.t1 MUC2 mucin-2, oligomeric mucus 
gel-forming 

Inf TRUE 47 LSAAMs, of which 3 adjacent (next to an insertion 
in C. pygargus) 

g06831.t1 RAB22A RAS oncogene family 7.78 FALSE paralog comparison 

g06841.t1 PAXBP1 PAX3 and PAX7 binding 
protein 

9.24 FALSE many mutations in first 200 bp, but no data for this 
section for C. capreolus 

g09420.t1 NAP1L1 assembly protein 1 like 1 6.46 TRUE 2 LSAAMs with BEB>0.5, of which one missing data in 
C. capreolus 

g10234.t1 ZADH2 zinc binding alcohol 
dehydrogenase domain 
containing 2 

8.54 TRUE cluster of 5 LSAAM, of which 3 with BEB>0.5, 
possibly in insertion in Capreolus/Hydropotes 
lineage 

g20974.t1 ZRSR2Y CCCH-type zinc finger RNA-
binding motif and 
serine/arginine rich 2Y-linked 
protein 

10.2
3 

FALSE two LSAAM after an indel of one bp, but neither with 
BEB>0.5 

g21474.t1 ZCCHC1
8 

CCHC domain containing 18 15.0
0 

FALSE paralog comparison 
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Table A4.6A. Names and characteristics of genes with accelerated dN/dS rates. 
Gene codes and names are inferred using online blast tool of ncbi webpage. Potential 
outlier column indicates presence of 1 or more lineage specific amino acid mutations 
(LSAAM).  

gene code name Foreground 
branch 

codeM
L-log p 

potential  
outlier 

Visual examination 

g01940.t1 TMCC1 transmembrane and coiled-
coil domain family 1 genus 0.56 

TRUE 16 LSAAM 

g16753.t1 DAGLB diacylglycerol lipase beta 
C_pygargus NA 

TRUE one region with 6 LSAAM 

g00678.t1 SF3B1 splicing factor 3b subunit 1 
C_capreolus 0.49 

TRUE 7 LSAAM in long gene with few 
changes 

g01220.t1  MFAP1 microfibrillar associated 
protein 1 C_capreolus 1.01 

TRUE 21 LSAAM, but including 
stopcodons 

g05064.t1 TUBA1B tubulin alpha 1b 
C_capreolus 0.44 

FALSE paralog in C. elaphus 

g05067.t1 TUBA1A tubulin alpha 1a 

C_capreolus 0.99 

FALSE 35 LSAAM, but including 
stopcodon, and perhaps 
confounded by g05067.t1 

g10584.t1 EEF2 translation elongation 
factor 2 C_capreolus 1.38 

TRUE 13 LSAAM 

g11717.t1 SLC16A7 solute carrier family 16 
member 7 C_capreolus 0.88 

TRUE 7 LSAAM 

g18675.t1 SCN2A sodium voltage-gated 
channel alpha subunit 2 C_capreolus 8.46 

TRUE around 30 LSAAM, plus very 
different last region 

g18676.t1  SCN3A sodium voltage-gated 
channel alpha subunit 3 C_capreolus 8.31 

TRUE 21 LSAAM 

g19134.t1 PCSK2 proprotein convertase 
subtilisin/kexin type 2 C_capreolus 3.13 

TRUE up to 30 LSAAM 

 
 
 
Table A4.7. GO enrichment analysis. InterPro terms identified as under selection by 
codeml branchsite tests with the species C. capreolus as foreground lineage. 

GO term Function Protein p-value adj. p-value 

(IPR001696)  transmembrane transfer of sodium SCN3A,SCN2A 1.26E-05 1.65E-02 

(IPR019734)  protein-protein interactions TTC21B,CABIN1,TTC9B 6.89E-05 4.27E-02 

(IPR010526)  directed movement of sodium ions SCN3A,SCN2A 1.52E-05 1.65E-02 

(IPR003915)  interacting with Ca2+ ions SCN3A,SCN2A 2.14E-05 1.86E-03 

(IPR024583)  cytoplasmic domain in Na+ channel SCN3A,SCN2A 1.01E-05 1.65E-03 

(IRP000048)  non-covalent protein complex MYH18,SCN3A,SCN2A 1.36E-05 1.65E-03 
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Table A4.8A.Non bootstrapped Ne estimates inferred by PSMC for C. capreolus 
Time (ya) Ne (10k) # genomic regions 
0 0.828763 5737.806 
2270.945 0.828763 6003.02 
4715.434 0.828763 6266.931 
7346.265 0.828763 6527.242 
10177.73 1.2264 4609.902 
13225.3 1.2264 4835.953 
16505.36 1.314904 4726.931 
20035.76 1.314904 4948.556 
23835.25 1.369732 4965.783 
27924.98 1.369732 5182.538 
32326.37 1.494386 4953.046 
37063.83 1.494386 5159.514 
42162.66 1.711326 4692.425 
47650.26 1.711326 4886.34 
53556.68 1.975925 4406.689 
59913.78 1.975925 4588.479 
66756.09 2.220665 4249.157 
74120.21 2.220665 4420.115 
82046.05 2.398132 4252.643 
90576.75 2.398132 4412.928 
99758.17 2.485088 4409.883 
109640.3 2.485088 4556.512 
120276.2 2.486963 4689.925 
131723.5 2.486963 4814.816 
144044.1 2.439017 5019.464 
157304.9 2.439017 5109.161 
171577.4 2.385686 5290.441 
186938.8 2.385686 5329.805 
203472.1 2.358425 5401.912 
221266.7 2.358425 5380.617 
240419.2 2.359571 5325.356 
261032.8 2.359571 5239.92 
283218.9 2.358256 5123.423 
307097.6 2.358256 4969.847 
332798.4 2.310301 4876.261 
360459.9 2.310301 4641.153 
390231.7 2.190853 4597.755 
422275.3 2.190853 4258.233 
456763 2.01464 4209.505 
493882.2 2.01464 3749.048 
533833.5 1.827529 3590.103 
576832.9 1.827529 3033.606 
623112.7 1.676017 2712.018 
672923.1 1.676017 2150.082 
726534 1.585467 1744.245 
784235.2 1.585467 1291.079 
846338.3 1.559582 941.1481 
913179.9 1.559582 651.8857 
985120.8 1.589412 430.2785 
1062550 1.589412 280.6734 
1145887 1.662047 170.4399 
1235582 1.662047 105.3716 
1332121 1.762187 59.85486 
1436024 1.762187 35.16724 
1547855 1.890978 18.77424 
1668217 1.890978 10.51752 
1797763 1.890978 5.606703 
1937192 1.890978 2.833433 
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Table A4.8B.Non bootstrapped Ne estimates inferred by PSMC for C. pygargus 
Time (ya) Ne (10k) # genomic regions 
0 12.12489 5469.132 
5873.233 12.12489 5789.408 
12119.84 12.12489 6126.608 
18763.85 12.12489 6481.386 
25829.29 17.51649 4749.126 
33343.88 17.51649 5030.524 
41336.29 16.64186 5606.485 
49836.99 16.64186 5933.966 
58877.43 13.33314 7831.125 
68492.71 13.33314 8271.038 
78718.88 9.978776 11651.03 
89594.76 9.978776 12259.56 
101161.9 8.483758 15146.36 
113463.8 8.483758 15879.46 
126548.5 8.113093 17386.3 
140464.1 8.113093 18179.48 
155264.1 8.327995 18502.94 
171004 8.327995 19313.94 
187744.8 8.678485 19331.58 
205550.2 8.678485 20147.33 
224486 8.678106 20971.35 
244625.9 8.678106 21798.19 
266045.9 8.11289 24178.8 
288826.3 8.11289 25009.31 
313054.9 7.09226 29471.6 
338823.2 7.09226 30229.89 
366229.1 5.901994 37022.77 
395377.2 5.901994 37473.66 
426377.3 4.799074 46205.94 
459346.9 4.799074 45854.81 
494412.6 3.909845 55128.36 
531706.4 3.909845 53235.94 
571369.9 3.253614 60747.66 
613554.6 3.253614 56639.77 
658420.4 2.797239 60208.46 
706137.3 2.797239 53833.16 
756886.5 2.493578 52799.6 
810861.1 2.493578 45044.02 
868265.3 2.299978 40679.39 
929318.3 2.299978 33008.27 
994250.1 2.183493 27522.06 
1063309 2.183493 21202.12 
1136758 2.119937 16399.31 
1214873 2.119937 11978.21 
1297953 2.091629 8635.769 
1386313 2.091629 5970.099 
1480289 2.085603 4025.035 
1580235 2.085603 2626.299 
1686535 2.092368 1657.294 
1799589 2.092368 1016.214 
1919829 2.105159 599.0765 
2047709 2.105159 343.1057 
2183717 2.118791 188.0964 
2328369 2.118791 99.80002 
2482212 2.129558 50.49856 
2645833 2.129558 24.56252 
2819852 2.129558 11.36946 
3004931 2.129558 4.992523 
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Table A4.9. Number of codeml PSGs vs genome quality and genetic diversity 
statistics.  
Number of genes marked by codeml branch-site tests as putatively positively selected 
genes (PSGs) for various foreground branches, compared to genome wide 
heterozygosity (genome He) and genome assembly quality statistics (scaffold N50, 
contig N50, and average genome wide read depth).  
Estimates of genome wide heterozygosity of red deer and white-tailed deer were 
generated in this study; the estimate for American bison and water buffalo are from 
Brüniche-Olsen et al. 2019 and Mintoo et al. 2019. Genome assembly quality statistics 
are obtained from NCBI or from the corresponding publications. Italic entries for 
authors and year refer to NCBI publication instead of journal publication. 
Branch lengths refer to branch lengths in the exome tree (Fig. A.4.6A).  
 
 

Foreground 
branch 

Scaffold/ 
Contig  

N50 

Branch  
Length 

Average  
depth 

Genome 
He (%) 

# PSG Authors year 

 American bison 7192658 
19971 

NA 60 0.35 55 Uni. of Maryland 2014 

Wisent 4690000 
14530 

NA 50 0.08 25 Wang et al. 2017 

Bison genus     15   

Red deer 107358006 
7944 

0.0032 74 0.14  99 Bana et al. 2018 

Thorold deer 3769372 
39627 

0.0016 214 ? 29 Chen et al. 2019 

Wapiti ? 
6855 

NA 40 ? 39 Mizzi et al. 2017 

Cervus genus     10   

Water buffalo 117219835 
22441509 

NA 239 0.20 18 Low et al. 2019 

 Cape buffalo 2400000 
43000 

NA 90 0.06 26 Glanzmann et al. 2016 

Bubalina subtribe     12   

European roe 10458 
4167 

0.0032 24 0.15 34 Kropatsch et al. 2013 

Siberian roe 6067221 
80310 

0.0023 100 0.31 4 De Jong et al.  2020 

Capreolus genus     8   

Mule deer 9678 
9488 

0.0040 26 ? 86 Canada Genome  
Enterprise 

2018 

White-tailed deer 850721 
122019 

0.0035 150 0.50 37 Seabury et al. 2011 

Odocoileus genus     12   

 
 
 
 
 
 
 



240 
 

 
 
Fig. A4.1. Synteny analysis. Dotplots showing output of whole genome alignments 
(using the software Lastz) of a random selection of C. pygargus contigs (minimum 
length: 10 Mb) against C. elaphus chromosomes. Before plotting, alignment results 
were filtered on sequence identity (>95%), alignment length (>300 bp), and number of 
hits per subject_ID (>500). Numbers at the top of the panels denote C. pygargus 
contigs; numbers at the right hand side denote C. elaphus chromosomes. The 
alignments indicate conserved synteny. 
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Fig. A4.2A. Spacing between heterozygous sites in C. capreolus genome (left) and C. 
pygargus genome (right). Solid red line: start of low genetic diversity region. Dashed 
red line: end of low genetic diversity region. Shown are contigs which contain regions 
with low genetic diversity. No overlap of low genetic diversity regions is observed 
between both sister species.  
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Fig. A4.2A cont. Spacing between heterozygous sites in C. capreolus genome (left) 
and C. pygargus genome (right). Solid red line: start of low genetic diversity region. 
Dashed red line: end of low genetic diversity region. Shown are contigs which contain 
regions with low genetic diversity. No overlap of low genetic diversity regions is 
observed between both sister species.  
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Fig. A4.2A cont. Spacing between heterozygous sites in C. capreolus genome (left) and 
C. pygargus genome (right). Solid red line: start of low genetic diversity region. Dashed 
red line: end of low genetic diversity region. Shown are contigs which contain regions 
with low genetic diversity. No overlap of low genetic diversity regions is observed 
between both sister species.  
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Fig. A4.2B. Sliding window heterozygosity estimates for scaffolds 16145 and 
17838. Sliding window heterozygosity analyses of C. capreolus (left, red) and C. 
pygargus (right, blue) genome confirm that regions marked by He-spacing analyses 
(see Fig. A4.2A) contain few heterozygous sites. Shown are here two scaffolds which 
according to the He-spacing analyses contain low diversity regions (see Fig. A4.2A). 
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Fig. A4.2C. F_roh. Percentage of genome with stretches of low heterozygosity 
(<0.01%, <0.005% and <0.001%) – i.e. runs of homozygosity (ROH) – within the C. 
capreolus genome (left, red) and the C. pygargus genome (right, blue), given various 
sizes of non-overlapping windows. E.g.: a F_roh score of 0.1% for a window size of 
100Kb and a max heterozygosity of 0.01%, indicates that 0.1% of non-overlapping 
windows of 100Kb length have a heterozygosity equal or below 0.01%. Excluded from 
the analysis are windows with more than 20% missing data, and windows from 
contigs 19446 and 547919, which contain relatively low heterozygosity levels and 
are therefore possibly non-autosomal. Note that contrary to plink ROH analyses, 
adjacent ROH windows have not been combined into longer windows.  
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Fig. A4.2D. Total ROH length. Idem as Fig. A4.2C, but showing combined length of 
runs of homozygosity (ROH) rather than proportion of the genome. In some case 
higher window size can unintuitively lead to slighlty higher total ROH lengths, 
because total ROH length is summed over window sized. For example, if a 650 kb 
stretch of low heterozygosity causes the average window heterozygosity to be below 
the threshold for both an overlapping 700 Kb and an overlapping 800 Kb window, 
the length will be recorded as respectively 700 Kb and 800 Kb.  
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Fig. A4.2E. Sliding window heterozygosity. Heterozygosity estimates (He) of non-
overlapping windows of various sizes (0.1Mb, 0.5Mb and 1Mb) for C. capreolus (left, 
red) and C. pygargus (right, blue). As expected, the within-species variation of 
heterozygosity among windows depends on the size of the window size. Due to the 
lower genome wide heterozygosity of C. capreolus, more windows have 
heterozygosity levels close to zero, explaining (partly) the difference in Froh score 
between the two Capreolus species (Fig. A4.2B-C).  
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Fig. A4.2F. F_roh versus maximum heterozygosity threshold. Plots showing the 
dependency of the F_roh estimate on the maximum heterozygosity threshold setting, 
given non-overlapping windows of various sizes, for C. capreolus (left) and C. pygargus 
(right, blue). As expected, F_roh equals around 0.5 if the maximum heterozygosity 
threshold (i.e. maximum level of heterozygosity used to define a window as a run of 
homozygosity) is set to the mean genome wide estimate. 
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Figure A4.3.PSMC output under various settings. Scale in y-axes is 10k rather than 
1k, as falsely indicated by the y-axes labels in panels A-G. (A). The effect of 
downsampling the C. pygargus dataset from on average read depth of 39 (mean read 
depth of C. pygargus dataset) to an average read depth of 21 (mean read depth of C 
capreolus dataset) on historic Ne estimates of C. pygargus. (B). Effect of crossmapping 
C. capreolus reads on historic Ne estimates of C. capreolus. (C-D). Effect of generation 
specific mutation rates on historic Ne estimates of C. pygargus and C. capreolus. Note 
the different scales on the y-axes. (E). Demographic histories of C. capreolus compared 
to Cervus elaphus. Generation time of C. elaphus is set to 7 years (Coulson et al, 1998, 
Microsatellites reveal heterosis in red deer). (F-G). The effect of generation time on 
historic Ne estimates of C. pygargus and C. capreolus. (H). Number of genomic regions 
(dashed lines) with inferred TMRCA estimates.  
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Figure A4.4.TMRCA estimates outputted by the random walk Markov chain 
model for great ape species pairs. Dependency of TMRCA estimates of great ape 
species on mutation rate. Left: mutation rate of 2.5∙10-8 mutations per site per 
generation, with a generation time of 20 years. Right: mutation rate of 0.22∙10-8 
mutations per site per year. The different outcomes of both approaches are caused by 
the non-linear relationship between mutation rate per year and mutation rate per 
generation.  
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Figure A4.5.TMRCA estimates outputted by the random walk Markov chain 
model under various settings. Dependency of TMRCA estimates of C. pygargus and 
C. capreolus on start (S0) and end (Sn =0.993 or Sn = 0.994) sequence similarity 
estimates. The mutation rate is set to 2.2∙10-9 mutations per site per year. The start 
sequence similarity defines the sequence similarity of both sister population after 
fixation/ loss of standing variation. 
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Figure A4.6A. Maximum likelihood species tree of cervids based on full exomes with 
100 bootstrap replications using the software RaxML (Stamatakis, 2014) with Bos 
taurus (cattle) as outgroup, and with partitioning into first and second codon positions 
vs third codon positions. All nodes have 100% bootstrap support. Labels indicate 
branch lengths. I generated this phylogenetic tree to verify the gene alignments. Tree 
plot generated on iTOL webpage (Letunic & Bork, 2019, Interactive Tree of Life (iTOL) 
v4: recent updates and new developments). 

Figure A4.6B. Maximum likelihood species tree of cervids based on 3rd codon positions 
with 100 bootstrap replications using the software RaxML (Stamatakis, 2014) with 
Bos taurus (cattle) as outgroup. All nodes have 100% bootstrap support. Labels 
indicate branch lengths. I generated this phylogenetic tree to verify the gene 
alignments. Tree plot generated on iTOL webpage (Letunic & Bork, 2019, Interactive 
Tree of Life (iTOL) v4: recent updates and new developments). 
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Fig A4.7. Pairwise median dN/dS scores. Barplots showing distribution of dN and 
dS values, calculated using PAML’s yn00, for pairwise comparisons between C. 
pygargus and 5 other cervid species as well as cattle, based on a dataset of up to 14,512 
genes. Bar heights indicate median gene specific dN, dS and dN/dS values. Error bars 
indicate 25% and 75% percentiles.C_cap = C. capreolus (western roe deer), R_tar = 
Rangifer = tarandus (reindeer), O_vir = Odocoileus virginianus (white tailed deer), 
E_dav = Elaphurus davidianus (Pere David’s deer), C_ela = Cervus elaphus (red deer), 
B_tau = Bos taurus (cattle). 
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Fig A4.8. Bayesian probability of site class per codon, outputted by codeML 
branch site test, for genes outputted by codeML as having experienced episodic 
positive selection in the genus Capreolus. x-axis: position along gene, y-axis:BEB-
score. Lightgrey: ωfor < 1 and ωback < 1. Darkgrey: ωfor = 1 and ωback = 1. Purple: ωfor > 
1 and ωback < 1. Black: ωfor > 1 and ωback = 1. Note: for long genes (>2000 bp) colours 
of individual codons might be lost. 
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Fig A4.8 cont. Bayesian probability of site class per codon, outputted by codeML 
branch site test, for genes outputted by codeML as having experienced episodic 
positive selection in the genus Capreolus. x-axis: position along gene, y-axis:BEB-
score. Lightgrey: ωfor < 1 and ωback < 1. Darkgrey: ωfor = 1 and ωback = 1. Purple: ωfor > 
1 and ωback < 1. Black: ωfor > 1 and ωback = 1. Note: for long genes (>2000 bp) colours 
of individual codons might be lost. 
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Fig A4.9. Bayesian probability of site class per codon, outputted by codeML 
branch site test, for genes outputted by codeML as having experienced episodic 
positive selection in the species C. capreolus. x-axis: position along gene, y-
axis:BEB-score. Lightgrey: ωfor < 1 and ωback < 1. Darkgrey: ωfor = 1 and ωback = 1. Red: 
ωfor > 1 and ωback < 1. Black: ωfor > 1 and ωback = 1. Note: for long genes (>2000 bp) 
colours of individual codons might be lost. 
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Fig A4.9 cont. Bayesian probability of site class per codon, outputted by codeML 
branch site test, for genes outputted by codeML as having experienced episodic 
positive selection in the species C. capreolus. x-axis: position along gene, y-
axis:BEB-score. Lightgrey: ωfor < 1 and ωback < 1. Darkgrey: ωfor = 1 and ωback = 1. Red: 
ωfor > 1 and ωback < 1. Black: ωfor > 1 and ωback = 1. Note: for long genes (>2000 bp) 
colours of individual codons might be lost. 
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Fig A4.9 cont. Bayesian probability of site class per codon, outputted by codeML 
branch site test, for genes outputted by codeML as having experienced episodic 
positive selection in the species C. capreolus. x-axis: position along gene, y-
axis:BEB-score. Lightgrey: ωfor < 1 and ωback < 1. Darkgrey: ωfor = 1 and ωback = 1. Red: 
ωfor > 1 and ωback < 1. Black: ωfor > 1 and ωback = 1. Note: for long genes (>2000 bp) 
colours of individual codons might be lost. 
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Fig A4.9 cont. Bayesian probability of site class per codon, outputted by codeML 
branch site test, for genes outputted by codeML as having experienced episodic 
positive selection in the species C. capreolus. x-axis: position along gene, y-
axis:BEB-score. Lightgrey: ωfor < 1 and ωback < 1. Darkgrey: ωfor = 1 and ωback = 1. Red: 
ωfor > 1 and ωback < 1. Black: ωfor > 1 and ωback = 1. Note: for long genes (>2000 bp) 
colours of individual codons might be lost. 
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Fig A4.9 cont. Bayesian probability of site class per codon, outputted by codeML 
branch site test, for genes outputted by codeML as having experienced episodic 
positive selection in the species C. capreolus. x-axis: position along gene, y-
axis:BEB-score. Lightgrey: ωfor < 1 and ωback < 1. Darkgrey: ωfor = 1 and ωback = 1. Red: 
ωfor > 1 and ωback < 1. Black: ωfor > 1 and ωback = 1. Note: for long genes (>2000 bp) 
colours of individual codons might be lost. 
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Fig A4.9 cont. Bayesian probability of site class per codon, outputted by codeML 
branch site test, for genes outputted by codeML as having experienced episodic 
positive selection in the species C. capreolus. x-axis: position along gene, y-
axis:BEB-score. Lightgrey: ωfor < 1 and ωback < 1. Darkgrey: ωfor = 1 and ωback = 1. Red: 
ωfor > 1 and ωback < 1. Black: ωfor > 1 and ωback = 1. Note: for long genes (>2000 bp) 
colours of individual codons might be lost. 
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Fig A4.9 cont. Bayesian probability of site class per codon, outputted by codeML 
branch site test, for genes outputted by codeML as having experienced episodic 
positive selection in the species C. capreolus. x-axis: position along gene, y-
axis:BEB-score. Lightgrey: ωfor < 1 and ωback < 1. Darkgrey: ωfor = 1 and ωback = 1. Red: 
ωfor > 1 and ωback < 1. Black: ωfor > 1 and ωback = 1. Note: for long genes (>2000 bp) 
colours of individual codons might be lost. 
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Fig A4.10. Bayesian probability of site class per codon, outputted by codeML 
branch site test, for genes outputted by codeML as having experienced episodic 
positive selection in the species C. pygargus. x-axis: position along gene, y-
axis:BEB-score. Lightgrey: ωfor < 1 and ωback < 1. Darkgrey: ωfor = 1 and ωback = 1. Red: 
ωfor > 1 and ωback < 1. Black: ωfor > 1 and ωback = 1. Note: for long genes (>2000 bp) 
colours of individual codons might be lost. 
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Fig A4.11. Bayesian probability of site classes per codon, outputted by codeML 
branch site test, for genes with accelerated dN/dS rates. x-axis: position along 
gene, y-axis:BEB-score. Lightgrey: ωfor < 1 and ωback < 1. Darkgrey: ωfor = 1 and ωback 
= 1. Colour: ωfor > 1 and ωback < 1 (purple: genus Capreolus as foreground lineage; 
blue: species C. pygargus as foreground lineage; red: species C. capreolus as 
foreground lineage). Black: ωfor > 1 and ωback = 1. Note: for long genes (>2000 bp) 
colours of individual codons might be lost. 
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Fig A4.12. Clusters of lineage specific amino acid mutations. Multiple sequence 
alignments of a subset of genes marked by codeml branchsite tests as containing 
codons which have been under episodic positive selection in the species C. capreolus. 
These example genes illustrate that for most outlier genes, mutations (non-
synonymous and synonymous alike) are clustered together, rather than spread 
throughout the gene, which is suggesting of a single genomic translocation event.  
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Fig A4.12 cont. Clusters of lineage specific amino acid substitutions. Multiple 
sequence alignments of a subset of genes marked by codeml branchsite tests as 
containing codons which have been under episodic positive selection in the species C. 
capreolus. These example genes illustrate that for most outlier genes,substitutions 
(non-synonymous and synonymous alike) are clustered together, rather than spread 
throughout the gene, which is suggesting of a single translocation event.  
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Fig A4.13A. GO enrichment analyses codeML outliers genes. Enrichment GO 
accession terms for list of genes marked by codeML branchsite tests with respectively 
the species C. capreolus, C. pygargus and the genus Capreolus as foreground 
branches. Strings indicate Uniprot gene ID’s, values indicated adjusted p-values. 
Colours indicate GO network categories: green = cellular component; red = biological 
process; blue = molecular function.  
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Fig A4.13B. GO enrichment analyses genes with accelerated dN/dS rates. 
Enrichment GO accession terms for list of genes marked by the accelerated dN/dS 
tests as outlier genes. Strings indicate Uniprot gene ID’s, values indicated adjusted p-
values. Colours indicate GO network categories: green = cellular component; red = 
biological process; blue = molecular function. No significant results were found for C. 
pygargus and the genus Capreolus (as these outlier gene lists contained less than 
three genes.)  
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Fig A4.14. Expected average dN/dS values given various proportions of adaptive 
(s=0.01), neutral and deleterious mutations, and given a range of negative 
selection coefficients experienced by the deleterious mutations.  
Plots depicting the expected relation between dN/dS and the scaled selection 
coefficient Y (Ne*s), assuming that synonymous mutations are completely neutral (i.e. 
no codon usage bias), as described by the formula:  
dN/dS  = f(N)/f(S) 
dN/dS  = (prop(s)*f(s)+ prop(n)*f(n)+ prop(d)*f(d))/f(n) 
In which:  
f(N):   fixation probability of non-synonymous (N) mutations 
f(S):  fixation probability of synonymous (S) mutations = 1/N  
prop(s,n,d): proportion N mutations which are positive selected (s), neutral (n) and 

deleterious (d) 
f(s,n,d): fixation probability s, n and d mutations 
If assuming that all N mutations are deleterious (i.e. s = 0, n = 0 and d = 1), the 
formula simplifies to (Kimura, 1962; Mugal et al., 2013): 
dN/dS = f(d)/f(n) 
dN/dS = ((1–e-2s)/(1-e-2Ns))/(1/N) 
dN/dS = ((1–e-2Y/N)/(1-e-2Y))/(1/N)   
dN/dS ≈ 1/N*2Y/(1-e-2Y))/(1/N) 
dN/dS ≈ 2Y/(1-e-2Y) 
Vertical dashed lines indicate Y = -1 and the associated dN/dS-value given d=1.  
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Figure A4.15. Number of codeml PSGs vs genome quality and genetic diversity.  
Number of genes marked by codeml branch-site tests as putatively positively selected 
genes (PSGs) for various foreground branches (see Table A4.14), compared to genome 
quality (average genome wide read depth) and genome wide heterozygosity. 
Heterozygosity estimates were missing for various species, and hence the lower 
number of data points.  
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