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Abstract 

By the late ‘90s flow chemistry had established itself as a powerful tool for organic synthesis 

in academia and had started to progressively attracted the interest of the industry due to the 

advantages that it could potentially offer compared to batch processing; among these it is 

worth mentioning its intrinsic ability to reduce the solvent usage and to dramatically cut the 

reaction time alongside providing higher purity and selectivity due to the more regulated 

processing conditions. In addition, it provides a safer way to handle dangerous and hazardous 

reagents/intermediates and simplifying the scaling up of the process. 

This thesis presents a series of molecular preparations involving flow chemistry to expedite 

the transformation to generate molecules of interest to the pharmaceutical industry. 

All the work disclosed has been carried out in the Baxendale’s research group at the University 

of Durham, under the supervision of Professor Ian R. Baxendale. The research has been 

partially funded and conducted in collaboration with AbbVie under the supervision of Dr 

Amanda W. Dombrowski and Prof. Stevan W. Djuric. 

Chapter 1 describes the first use of flow chemistry for performing Norrish-Yang reactions. The 

transformation has been exploited to synthetize a range of 3-hydroxyazetidines. The high 

reproducibility and short residence times of the continuous process enables easy scaling of 

the transformation allowing easy access to these valuable chemical entities at synthetically 

useful multi-gram scales. Moreover, a systematic exploration of the constituent structural 

components was undertaken allowing an understanding of the reactivity and functional group 

tolerance of the transformation. 

Chapter 2 details the chemistry of a novel rearrangement of the previously obtained 3-

hydroxyazetidines (Chapter 1) via a Ritter initiated cascade to provide highly substituted 2-

oxazolines in high yields. The reaction conditions and substrate scope of the transformation 

have been studied demonstrating the generality of the process. The derived products can also 

be functionalized in order to undergo further intramolecular cyclization leading to a new class 

of macrocycle. The final cyclization step was shown to be a transformation amenable to 

continuous flow processing allowing for a dramatic reduction in the reaction time and a 

simple direct scale-up. 
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Chapter 3 deals with the nitrosation of several alkanes with tert-butyl nitrite under flow 

processing conditions. The continuous approach enabled a marked reduction in the reaction 

time compared to the analogous batch process. In addition, in order to address the necessity 

for large excesses of the alkane starting material a continuous recycling process was 

developed thus allowing the preparation of larger quantities of material in a more atom 

economic and cost-effective process. 
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1. Chapter 1: 

1.1 Introduction: flow chemistry 
Over the last 20 years synthetic chemistry has seen considerable change brought about by 

the increasing adoption of so called enabling technologies[1]. Among these, flow chemistry 

can reasonable be considerate one of the most influential technologies[1,2]. Broadly speaking 

flow chemistry can be defined as the performing of a chemical transformation by pumping 

the perquisite reagents to meet together and be transported along a pipeline (or equivalent 

processing reactor) whilst reacting to yield the product which exits the reaction chamber at 

the terminus end of the tube/chip/channel. A general flow process can be depicted as follows 

(Scheme 1): 

 

Scheme 1: General flow set up. 

 

 

In this system reagents are pumped by a delivery unit (typically a pump of either HPLC, syringe 

or peristaltic design), in the case of multiple reacting component they can be mixed together 

by a specific in-line mixing element before reaching the main residence time reactor. The 

mixing site can involve active or passive mixing (discussed later). The reactor system can be 

upgraded with multiple tools for analysis and direct purification. All these elements can be 

assembled in different configurations to obtain unique and customised set ups to perform 

different reaction sequences.[1-5] Despite having multiple components the core of the flow 

system is the reactor, a device where the entering reagents undergo reaction within a 

controlled and highly regulated environment. A wide range of activation conditions can be 

applied to the reactor, including thermal heating, photochemistry[6,7], microwave 
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irradiation[8,9], electrochemistry[10,11], ultrasound[12,13] and oscillation[14,15]. Running a reaction 

in flow presents several additional advantages over classical batch chemistry. These include 

better mixing which is easily achieved in a flow system. The Reynold Number (Nre) is used to 

define the flow type and can be generally classified into one of three regimes: laminar, 

transitional or turbulent based on the degree of mixing (Eq. 1). 

𝑁𝑅𝑒 = 𝐷 𝑉 𝜌 𝜇    (Eq. 1) 

where D is the pipe diameter, V is the velocity,  is the density,  is fluid viscosity.  

 

Generally a laminar flow corresponds to a NRE = 2,100 whilst a turbulent flow has a NRE>4000 

(Figure 1). 

 

Figure 1: Laminar and turbulent flow regimes. 

 

Normally, in a standard stirred batch experiment the mixing can be in a laminar or in a 

transitional regime. In this second case what is observed is a turbulent regime near the stirrer 

bar (overhead propeller stirrer) and a laminar one in the more distant regions of the reactor 

with the molecules moving from these regions by diffusion (Figure 2).[16] Inside a pipe reactor 

the diffusion time between the inner and the outlying region is considerably reduced 

therefore resulting in a faster mixing. Nonetheless, the mixing efficiency is not determined 

solely by diffusion, it can be further rationalised using the Damköhler Number (Da; Eq. 2) a 

dimensionless unit which can be briefly defined as a ratio between the reaction rate and the 

mass transfer by diffusion. 
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𝐷𝑎 =
𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒

𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒
 (Eq. 2) 

 

 

Figure 2: Schematic representation of mixing in a reactor. Fluorescent dye in glycerine (20 L 

reactor, impeller mixing). 

 

For Da<1 mixing is almost completely achieved before the reaction occurs whereas for Da>1 

the mass transfer by diffusion is not as fast as the reaction. In this latter scenario the fast 

reaction occurs before the mixture has become fully homogeneous. In such situations a higher 

local concentration of one of the reagents can react further with the product leading to the 

formation of side product or giving incomplete reaction. The higher achievable mixing in flow 

diminishes this issue (Figure 3).[17] 

 

Figure 3: Different scenarios based on Da. (Left): Da number < 1 the solution reaches the 

homogeneity resulting in high selectivity for the reaction A+B → C. (Right): The homogeneity 
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is not reached leading to local concentration gradients of A and B which can react with the 

product C leading to side product (S). 

 

One of the most attractive aspects of flow chemistry is its ability to enable easy scaling up of 

the reaction. Normally, in batch, increasing the dimension of the reaction vessel generates 

problems such as less homogeneous mixing, the production of temperature gradients as heat 

exchange becomes less efficient or the increasing of the reaction time as prolonged heating 

periods are needed for the larger volume. These factors can lead to less efficient reaction and 

the generation of more side products. In flow mode the scaling up of the reaction can be 

achieved in several ways. The simplest is to increase the apparatus size; using a larger reactor 

allows the chemist to directly increase the throughput in what is called sizing up in analogy to 

what is normally performed in traditional batch systems. On the other hand, a flow system 

can facilitate higher throughput by “equalling up” which increases the number of identical 

micro-structures in the reactor or by “numbering up” which is the parallel arrangement of 

identical equipment. This second scaling up strategy can be performed “internally” or 

“externally”: external numbering up entails the replication of the entire system several times 

until it produces the desired quantity of product per unit time. This is achieved by employing 

several reactors with their own pumping system and process control. This method is 

particularly reliable as a potential failure of one of the replicated reactor components does 

not affect the others although it does significantly raise the cost due to the number of 

additional individual components required. Conversely, in the internal numbering up 

approach only the reactor unit is replicated and the pumping system is shared thus 

considerably reducing the cost of the set up although a failure under this scenario would 

affect all the apparatus. 

Directly linked with scaling up is the issue of safety. Increasing the quantity of reagents and 

solvents processed or using greater quantities of toxic or hazardous chemicals is considerably 

easier and safer in flow because of the low active quantity of material involved in the reactor 

at any given time. The risk related to potentially harmful intermediates is therefore reduced 

compared to the batch process where all the chemicals are in the same place at the same 

time. 
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1.2 Instrumentation  

A basic flow system can be divided in three main blocks: one part dedicated to the delivery of 

the reagents, one to the mixing and one to the reaction. Although significant emphasise is 

often placed on the important attributes of the reactor design the delivery pumps are often 

the most critical components of the system. 

1.2.1 Pumps 

 

Figure 4: Type of pumping devices: Syringe pumps A (kdscientific®), peristaltic pump B 

(Pumpsandsystem®), piston pump C. 

 

The selection of a pumping device depends on several factors such as the required flow rate, 

the reactor pressure drop and the nature of the reagents to be delivered. There are three 

main types of pump: syringe pumps (Figure 4, A) which allow a very accurate level of control 

and enable very low flow rates. However, the main drawbacks are that high pressures are not 

easily available and that the limited volume of the syringe barrel does not easily allow a 

continuous and uninterrupted delivery. New systems can use two syringes so that as one is 

used to pump the fluid into the reactor, the second can be refilled enabling a pseudo-

continuous process. Alternatively, HPLC pumps (Figure 4, C) allow for a very accurate flow 

control at higher flow rates and tolerate high fluidic pressure. The main problem with this 

type of pump is in regard to the use of volatile solvents or very viscous materials which can 

cause cavitation (in this case the issue can sometimes be by-passed by the use of an additional 

pressurising the system) and the presence of particles which are not tolerated by piston 

pumps. An alternative pump design is the peristaltic pump (Figure 4, B) through which it is 

possible to handle the pumping of modest precipitates and more viscous materials. The main 

drawback in this case is that they are less accurate and in the main do not tolerate high 

delivery pressures. 
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1.2.2 Mixing  
As indicated previously mixing is a crucial attribute of any reaction, for this reason several 

devices have been developed in order to achieve an optimal homogenization of the reaction 

mixture. Mixing elements can be further divided in two main categories: active and passive 

components. In active devices the source of energy conducting the mixing comes from 

outside the system (an example is the use of ultrasound) in the latter, passive form, the mixing 

depends on the geometric proprieties of the system design itself. 

 

 

Figure 5: different shaped passive mixing elements; A = Y MIXER, B= T mixer, C, D = 

multichannel mixers. 

 

For a single-phase reaction, if the transformation does not require fast mixing (e.g. Da<1), a 

simple T- or Y-connection can be utilised to combine two or more reagent streams (Figure 5 

A and B). When improved mixing is required these standard connections might not be enough 

and for this reason several advanced mixing tools have been developed. In the simplest case 

the inner diameter of the T-mixer can be reduced and this coupled with a high flow rate can 

result in what is called engulfment flow where the fluid from one side reaches beyond the 

centre-line of the T-mixer engulfing the fluid coming from the other side. The engulfment flow 

has been proven to enhance the mixing[18-21] although it requires high Nre (around 200).[22] 

More sophisticated micromixers are also available, one example is the creation of micro-

structured components where the transit of the flow is continuously redirected in order to 

obtain a form of chaotic mixing (Figure 6). 
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Figure 6: Micromixers with different internal microstructures for promoting chaotic mixing. 

 

Another efficient way to induce mixing is the splitting of the flow into multiple thin streams 

with the result that the time required for the streams to mix by diffusion upon recombination 

is considerably reduced.[18-24] This form of mixing falls into what is called passive mixing, which 

implies the achievement of reagent mixing occurs via diffusion within the reaction medium 

within channels or through the use of obstructing objects within the pipe. This second case 

scenario is called static mixing and the flow rate is responsible for the efficiency of the mixing. 

When the system is dealing with biphasic or multiphasic mixture or in a case where there is 

the development of a precipitate (or in case the use of larger channel is required); the use of 

active mixing can be particularly beneficial [17]. It entails the mechanical mixing of the mixture 

and contrary to what occurs in the passive mixing where the mixing efficiency is strictly 

coupled with the residence time in the active mixing these two factors are decoupled. The 

mixing can also be achieved by magnetic stirring or by agitation of dedicated reaction vessels, 

moreover the mixing unit can be submerged in an ultrasonic bath allowing the prevention of 

aggregates leading to the clogging of the system [17]. 
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1.2.3 Reactor 
Among all the components of a flow apparatus the reactor is the place where the chemical 

transformation mainly takes place (reaction starts at the site of mixing and hence the mixing 

element can also be part of or principally the reactor). A great number of reactor devices have 

been developed [17]. Reactors can be placed into one of three general categories: chip-based 

reactors (including falling film systems), coil reactors and packed bed reactors (Figure 7).  

 

 

Figure 7: Different reactors: chip based (A), coil (B), packed bed (C), High temperature tube 

reactor (D), column reactor filled with K2CO3 (E). 

 

 

A chip-based reactor (Figure 6 A, average internal channel dimensions between 0.01 and 0.5 

mm) comprises a series of channels often etched into a flat surface and enclosed with a 

bonding layer to prevent channel crossover. The extremely high surface-to-volume ratio 

makes this type of reactor the best choice when high heat transfer is required.[25,26] The 

material of construction is very important and is chosen depending on the use of the reactor; 

for example, photoreaction requires the use of light transparent material, good heat transfer 

could use silicon carbide, optics might allow glass to be utilised. Despite these great 

advantages this kind of reactor remains quite expensive to construct and issues associated 

with obstruction makes them less useful for the scale up of a reaction. 
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Coil reactors (Figure 6B and 6D) are generally made out of fluorinated polymers (i.e. 

PFA, FEP, PTFE), metal/fused silica or additional polymers such as PEEK. When the reaction 

requires high temperatures and pressures stainless steel or chemically resistant Hastelloy 

(silicon carbide) reactors are used. Normally temperature regulation is obtained by placing 

the coil in a special chamber to enhance thermal transfer. If the material of the reactor is 

chosen correctly then the reactor itself can be used as catalyst for performing transformation 

like coupling reactions or azides synthesis, i.e. using a copper tube coiled reactor.[24] 

In addition packed bed reactors can be assembled using a heterogeneous component 

(a reagent or a catalyst) loaded into the tube, channel or cartridge of the reactor.[25,26] In most 

cases these reactors are made from in-line columns or cartridges which can be easily filled 

and emptied and are constructed from a wide range of materials e.g. glass, metal, and 

polymer. The key aspect of this type of reactor is the very high ratio of catalyst-to-reagent 

that can be produced in flow compared to a classical stirred batch reactor; the result is often 

a significant decrease of the reaction time. Moreover, having the reagent/catalyst confined 

in the cartridge there is a less requirement for purifying the reaction mixture thus reducing 

the number of required steps. Among the many applications catalytic hydrogenation has been 

extensively performed by using reactor packed bed units.[17,27,28] Battilocchio et al. performed 

nitrile hydration in flow using MnO2 solid supported (Table 1) obtaining the desired product 

in high yield (94-100%).[28] Compared to the analogous batch reaction the flow approach 

allows a reduction in the reaction temperature (T > 140 °C in batch, T 30 <T <110 °C in flow) 

and to avoid difficult purification steps and issues linked to the recovery of the catalysts. 

 

Table 1. Solid supported nitrile hydration with MnO2.  

 

 Substrate T 

(°C) 

T 

(min) 

Yield 

(%) 

 Substrate T 

(°C) 

T 

(min) 

Yield  

1a 

 

100 10 99 1f 

 

100 100 99 
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1b 

 

100 15 98 1g 
 

70 70 99 

1c 

 

110 40 96 1h 

 

100 100 98 

1d 

 

110 50 97 1i 

 

30 30 96 

1e 

 

100 3 99 1j 

 

80 80 98 

 

 

Solid supported catalysts have also been used in flow for performing asymmetric aldol 

reactions.[29-35] Pericas et al. reported the use of a proline derivatives supported on a 

Merrifield type resin (Scheme 2). The catalyst was immobilised using a linking Huisgen 

cycloaddition reaction. The author reported excellent catalyst stability with demonstrated use 

over 35 hours with no deterioration of the isolated stereoselectivity.  

 

Scheme 2: Asymmetric aldol reaction performed in flow using solid supported proline 

derivative catalyst. 

 

The Kappe group[36] reported the heterogeneous hydrogenation of substituted pyridine 

performed in flow using an H-Cube reactor (Scheme 3). The methodology allows the reaction 
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to be achieved in good yields using several different metal catalysts (Pd/C, Pt/C, Rh/C) and in 

case of ethyl nicotinate (1-7; Scheme 3) depending on the combination of H2 pressure, solvent 

and catalyst it is possible to discriminate between partial and full hydrogenation (1-8, 1-9 

Scheme 3). 

 

 

Scheme 3: Kappe’s heterogeneous hydrogenation of substituted pyridine in flow using the 

Thales H-cube reactor. 

 

Hawkins and the Ley group [37] performed a high intensification of the partial and full 

hydrogenation of the ethyl nicotinate (Scheme 4). The aim of the group was to develop a 

process able to deliver a throughput exceeding the kilogram per day. The study was 

performed using a commercially available HEL FlowCAT reactor [38]: a benchtop unit which 

allows to perform the scale up of heterogeneous reactions (Figure 8). One of the features of 

the Hel flowCAt reactor is that it can operate both under fixed bed and trickle-flow conditions. 

Fixed bed conditions are characterised by a single-phase flow whilst in the trickle-flow 

conditions the fluid flows in two distinct phases: liquid and gas  

The scale up of the process was performed by using a 3,6 mL RC1 and 12 mL RC2 reactors 

column loaded with Rh and Al2O3T leading to an outstanding throughput of 1959 g d−1. 
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Scheme 4: Continuous Flow Hydrogenation of Ethyl Nicotinate with the HEL FlowCAT reactor. 

 

 
Figure 8: Schematization of the HEL FlowCAT reactor. 

Ley’s group achieved reduction of various imines in flow using 10% Pd/C (Scheme 5). 

Interestingly, the author reported that the process can be carried out in the presence of other 

functional group which would normally be reduced (e.g. pyridines, nitriles).[39-41] 
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Scheme 5: Reduction of imine in flow using packed bed reactor. 

 

Fulop used the Thales H-cube reactor for the preparation of deuterated compounds by using 

deuterated water as a D2 source. This methodology allowed them to reach a deuterium 

incorporation content of 99% (Scheme 6).[42] 

 

 

Scheme 6: Fulop’ preparation of deuterated compounds using the Thales H-cube reactor. 
 

Purification and isolation of the reaction products can also benefit from a flow approach. Of 

particular value has been the use of solid supported reagents and scavenger resins in order 

to assist these vital steps. For example, in the case of a reaction performed with an excess of 

one of the reagents, the purification step can be critical to the point to jeopardise the entire 

transformation. The use of a scavenger resin, if chosen accordingly, allows selective extraction 

of the unreacted reagent without need for any further separations or isolations (Scheme 7).[43-

46] 

 

 

Scheme 7: Schematization of a scavenger process for the removal of excess of one reagent. 

 

Kaldor’s group prepared various ureas, thioureas, amides, sulfonamides and carbamates 

utilising a scavenging agent to remove the excess reagent (Table 2).[47] 
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Table 2: Scavengers used by Kaldor’s group for the removal of excess starting material. 

Limiting 

reagent 

Excess 

reagen

t 

Scavenger Solven

t / 

Temp 

Representative product Yiel

d 

(%) 

Purit

y  

(%) 

R1R2NH R3NCO 

R3COCl 

R3SO2Cl 

 

CHCl3/ 

RT 

 

67 94 

 

R1R2NH 

 

MeOH/ 

RT 

 

94 93 

R3Xb,e R1R2NH 

 

CH3CN/ 

30-

60°C 

 

96 >95 

 

R1NH2 

 

CH3Cl/ 

RT 

 

73 90 

 

R1R2NH 

 

10% 

HOAc-

C2H4CI2/ 

RT 
 

62 >95 

Typically 1.25 - 2 equiv. fold excess; B) piperidinomethyl polystyrene or other supported 

base is added as an acid scavenger; C) acid chloride or chloroformates; D) reaction was 

diluted with 2 volumes of CH2Cl2 prior to scavenging at room temperature; E) X = halide, 

sulfonate ester. 

 

Another crucial step for any chemical process is the ability to analyse the progression of the 

reaction. For any chemical system, the most basic way to check the status of the reaction is 

to manually sample the reaction mixture and analyse it off-line. Although this method remains 

the most used and is sufficient for the requirement of a standard synthetic lab, more detailed 

reaction monitoring may benefit from alternative methods; this is particularly true in cases of 
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kinetics studies, extensive optimization and when toxic/ hazardous compounds or 

intermediates are involved. In such cases the use of on-line and in-line analysis can be 

additionally useful. An on-line analysis refers to a situation when the reaction mixture is 

analysed by automatic sampling with no need of any manual transfer, the sample is 

automatically sent to the analysis device. In case of non-destructive methods IR, UV-vis and 

NMR the testing can be performed directly in-line by integrating the desired analytical device 

directly into the flow system thus offering the chance for what is called “real time analysis”[20] 

(Figure 9). 

 

 

Figure 9: In-line analysis through portable ExemplarLS spectrometer coupled with a Vapourtec 

UV-150 photoreactor providing information through continuous recording of 

emission/transmission spectra. 

1.3 Photochemistry and Flow 
Even as early as the 19th century there was considerable interest in the possibility of using 

sun light to promote organic chemical reactions. One of the first examples to be studied was 

the reduction of quinone to hydroquinone by Cannizzaro and Ciamcian.[48-50] The general 

interest in this field continued to increase in the following century after the discovery of 
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several new reactions such as the [2+2] cycloaddition,[51-53] the photochemistry of ketones [54-

55] and the understanding of new concepts such as the ‘excited state[56]. and the possibility of 

π* transition. [57]. At the same time improving chemical knowledge allowed the development 

of further synthetic applications involving photochemistry, leading to the synthesis of new 

molecules such as caryophillene (1-19)[58] and cedrene (1-20) (Figure 10). 

 

 

Figure 10: Caryophyllene and α-Cedrene structures. 

 

The reasons why photochemistry has received such intense attention are manifold: one of 

them was the possibility to form new bonds which were hard or impossible to obtain in other 

ways and to simplify or reduce the number of steps in the given synthesis of a target structure. 

Moreover, from a modern environmental stance photochemistry is a very attractive field of 

study. Indeed, the simplification of a synthesis and the behaviour of the photon as a traceless 

reagent enhance the environmental characteristics of photochemistry.[59,60] 

Although there have been several examples of industrial synthesis involving 

photochemistry; for example Vitamin A and D3 by Base and Hoffman-La Roche, [61]. the photo-

chlorination of toluene, [62] the synthesis of rose oxide [63] and more recently the preparation 

of Artemisinin by Sanofi[64,65] photochemistry still struggles to find a wider prominence in 

most industry settings. This is partially due to the initial cost of the required instrumentation, 

as the lamps and filters are often expensive as are the auxiliary cooling system required to 

counterbalance the high temperature generated by the industrial lamps. Other important 

considerations also result when switching from a laboratory-based set-up to an industrial 

scale unit. Amongst these can be dramatic change in reactivity, selectivity and kinetics 

brought about due to changes in the dimension of the reactor in order to accommodate the 

large volumes often required.[66] This problem regarding scaling up a photochemical process 

is particularly related to a batch approach where the reactor basically constitutes a sealed 
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light source which is immersed in the reacting solution. From the well-known Lambert-Beer 

equation it is possible to show that light radiation is not uniform in the reactor because of the 

absorption of photons and that light intensity decreases with distance travelled from the lamp 

(Figure 11). 

 

 

Figure 8: Transmittance vs Distance: The fraction of light available for the photoreaction drops 

down increasing the distance from the lamp and the concentration of the solution. 

 

A =  ε c 𝑙  Eq. 3 

The absorption (A) is proportional to the extinction coefficient (ε), the concentration c and the 

path length (l) but can also be expressed as a negative logarithm of the ratio between 

transmitted light (Io) and incident light (I) (Eq. 3 and 4). 

A =  − log10
𝐼

𝐼0
  Eq. 4 

Using equation 4 we can see that when A = 1 corresponds to a situation where I/Io = 0.1 and 

Io = 10I so that 90% of the radiation is absorbed.  

 

To illustrate with an example the photo excitation of valerophenone,[67] which exhibits a 

π→π* transition of 700 M-1 cm-1 at 280 nm, at a concentration 0.05 M. In order to obtain an 

absorption of 90% of the incident light, the path length required is only 0.028 cm. If we 

consider that a π→π* transition can exhibit an ε close to 20000 M-1 cm-1 this would lead to an 

absorption of the 90% of light after 0.01 mm. By considering this example it is easy to 
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understand the main problem for scaling up of a photochemical reaction when using a batch 

reactor. The solution closest to the lamp effectively screens the bulk solution from the light 

with any increase of the concentration resulting in an augmentation of this blocking effect.  

 A solution to this can be to adopt a flow approach.[68-72] The main difference in a flow-

photochemical approach is that at any instant only a small volume of solution, is passing 

through the reactor and hence is being irradiated whereas the intensity of the incident light 

has not changed. Therefore, due to the small diameter of the reactor volume compared to its 

overall surface area, the theoretical light path length has been effectively reduced. This 

therefore generates a uniform distribution of the radiation through the entire sample. At the 

same time the continuous progression of the solution in flow allows scale up of the reaction 

by processing more material through the reactor over time.  

An important parameter which can be useful in understanding the efficiency of a 

reaction is the quantum yield which can be defined as: 

 

 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛𝑠 𝑟𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑡ℎ𝑒 𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡
    Eq. 5 

  

In general,  assumes a value between 0 and 1[73] where  = 1 indicates a chain 

mechanism.[74-77]  The result  is related to the photon flux p: the number of photons 

observed per unit of time. Comparing the p of a batch reaction to a flow process can aid 

understanding of the benefits to a photochemical approach by working in flow. Luobiere et 

al.[78] have calculated that the photon flux achieved for a batch and a flow reactor are similar 

at 4.1 x 10-6 v’s 7.4 x 10-6 Einstein/s. However, dividing these numbers for the associated 

reactor’s volume to obtain the photon flux density, the situation is very different, with 0.033 

for the batch reactor versus 5.02 Einstein for the flow. These results corroborate additional 

observations reported by Cambie and Bottecchia[79] who found a p 100 times higher for their 

flow reactor. This difference explains why a photoreaction is generally accelerated under flow 

conditions and particularly when using a flow micro-reactor.  

 

A third important parameter used to define a photochemical reaction is the photonic 

efficiency : 

 

 =  
𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒

𝑝ℎ𝑜𝑡𝑜𝑛 𝑓𝑙𝑢𝑥
  Eq.6 
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Again, here flow reactors show higher values, whilst the batch  remain in the range between 

0.001-0.0001 a micro reactor can show an increase of 200 times.[79] 

In general, there are two possible approaches which can be adopted when scaling up 

a photo-flow process. The most straightforward is to increase the flow rate or concentration 

of the solution thus resulting in a higher throughput. In the first case, it is necessary to 

maintain the residence time by using a larger reactor volume (extending the reactor length). 

In the second scenario of increased concentration this should be balanced by an increase in 

the photon flux to compensate for the increased number of absorbing molecules. The second 

scaling way is to use more than one reactor run in parallel; called numbering-up (see previous 

introduction section). Depending on the connection between the reactors it is possible to 

subdivide the numbering up strategy into two distinct categories:[79] if each reactor is 

connected with its own pumping system the set-up is called external numbering-up. Despite 

its efficiency it remains the most expensive as often the pump unit is the highest cost part. 

The alternative set-up is the internal numbering-up (Figure 12) in which case the pumps and 

control system are shared. Internal numbering-up is definitely cheaper but in contrast with 

the external set-up where a failure on one reactor does not affect the others, in this case any 

problems in one reactor can jeopardize the entire process. 

 

 
Figure 9: An example of numbering up for reaction scale up. 
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Overall photoreactors fall in two categories based upon their internal dimensions, namely, 

macroflow (also known as mesoflow) and microflow reactors. Microflow reactors are defined 

as having internal channel dimensions between 0.01 and 0.5 mm (inner diameter), they can 

thus generally be used with a flow rate from few microliters to low mL flows. Normally these 

systems are constructed with a series of microchannels etched into a flat surface of glass or 

metal.[68, 80] They are characterised by a low material input which together with their high 

heat and mass transfer proprieties make the microreactor an excellent choice for working at 

a lab scale, especially for the optimization of a process using minimal reagents and for kinetics 

studies. On the other hand, the main disadvantages are a low throughput, a high pressure 

drop and a tendency to experience obstructions of the channels, i.e. easy reactor blocking. 

The characteristic design of a microflow reactor, which generally entails a flat surface, 

effect their ability to capture incident light both because of the radial character of most of the 

light sources but also in the case of a planar light (LED) source as its focus is normally wider 

than the channel dimensions. The main result is that microflow reactors are normally 

inefficient at exploiting the full capacity of the light source. On the other hand, they allow an 

extremely precise control of the reaction condition (temp, residence time) making them a 

powerful tool for reaction screening and for performing transformation on a lab scale.[68] 

A macroflow reactor has a tubing system with an inner diameter higher than 0.5 mm, 

the comprising coil is normally wrapped around a lamp and the device allows the use of flow 

rate > 1 mL min-1 therefore achieving higher throughput and scalability of the process. A great 

benefit of macroflow reactors in the ability to handle solids which is otherwise not possible 

using microreators due to blockages. The main disadvantage is a reduced heath and mass 

transfer properties. The polymer FEP is widely used due to its excellent transmission 

proprieties.[81,82] 

The light source used is generally chosen depending on the absorption range of the 

reactive species involved in the transformation (Table 3) although other factors like costs, 

geometry of the system and life time of the light sources play an important role in its choice 

as well. 
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Table 3. UV absorption range of some functional groups of organic compounds. 

Simple alkene 190-200 nm 

Acylic diene 220-250 nm 

Cyclic diene 250-270 nm 

Styrene 270-300 nm 

Saturated ketones 270-280 nm 

α,β−Unsaturated ketones 310 – 330 nm 

Aromatic ketones/aldehydes 280 – 300 nm 

Aromatic compounds 250 – 280 nm 
 

Mercury light sources and CFL (compact fluorescent light) lamps are used respectively for UV 

and visible light dependent transformations. Their efficiency in terms of lumen per wats 

(lm/W), long life span and their broad range of emission make them a popular choice for 

performing a wide range of photoreactions. Medium and low pressure mercury lamps are 

generally used for performing transformation requiring radiation in the range of 350 - 250 nm 

whilst high pressure lamps allows emissions to reach 600 nm. Fuorescent black lights offer an 

emission between 300 - 450 nm. Generally, CFL lamps are easy to use and have thus gained a 

wide popularity although due to their physical dimension (including hosing) they are not easy 

to apply in respect to microflow applications i.e. being hard to fit with the microchannels size. 

LEDs have become very popular because their reduced physical dimensions allow them to be 

combined with many flow reactors and because their intrinsically reduced emission band 

permits more selective irradiation to be achieved. Moreover, LEDs generally required much 

cheaper cooling systems compared to mercury lamps (often simple CPU fans can be used). 

The use of light filters also permits further tailoring and narrowing of the emission spectra of 

all light sources thereby targeting only selecting areas of interests. 
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Figure 10: Emission range of some common light sources. 

 

 

Figure 11: Emission spectra of a Vapourtec medium pressure mercury lamp with different 

filters (left); UV filters and LED lamps (right). 
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Although there are countless different possibility for assembling a photoflow reactor, 

generally, these can be define as one of two main approaches: either the light source can be 

embedded within the reactor (Figure 15A) or conversely the reactor can be placed adjacent 

to the radiation source (Figure 15B). In the former approach a fine polymer tube is coiled 

around the reactor housing (Figure 15A, section 5) and the lamp is generally surrounded by a 

filter (Figure 15A, section 3) for shielding of the undesired radiation. Between the filter and 

the reactor coil is generally placed a cooling chamber (Figure 15A, section 1) which enables 

control over the temperature of the reaction. The cooling can be performed by fluxing a cold 

liquid or a gas through the chamber. The second setup (adjacent alignment of the light and 

reactor) is often used with chip and microplate reactors where the flat surface of the reactor 

is easier to couple with an external light source. Nonetheless, this set-up has also been used 

with mesoreactors and implemented for industrial processes: one example is the PROPHIS 

plant[83] (Figure 16) used by the German aerospace centre in Cologne which comprises of four 

parabolic troughs for collecting the solar light and obtaining the effect of 20 suns on the 

absorber tube and has a volume of 120 L. 

 

 

Figure 12: Two possible photoflow setups: the light source is embedded in the reactor ( A), 

the reactor is placed adjacent to the lamp (B). 
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Figure 13: The Prophis plant allowing the use of solar light collectors. 
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Oelgemöller, M. Tetrahedron Lett., 2010, 51(36), 4738−4741. 

8) Comer, E.; Organ, M. G. A J. Am. Chem. Soc., 2005, 127, 8160−8167. 

9) Joshua, P. B.; Emiko, K.; Yasuo, N.; Noriyuki, O.; Takeo, Y., Chem., 2019, 19(1), 188−203.  

10) Ian, R. B.; Michael, R. P. Chim. Oggi – Chem. Today, 2006, 24(3), 41−45. 

11) Ana, A. F. A.; Thomas, W. J. Flow Chem., 2017, 7(3), 94−95. 

12) Andrijana, M.;Anita, Š.; Tomislav, G.; Bruno, Z.; Silvana, R. M. RSC Adv., 2017, 7, 

791−800. 

13) Zhengya, D.; Claire, D.; Keiran, M. C.; Aniket, P. U.; Simon, K. Materials, 2020, 13, 

344−369. 

14) Milad, A., Nicholas, C. B.; Klavs, F. J. Chem. Commun., 2015, 51, 8916−8919. 

15) Thomas, M.; Naomi, E. B. B.; Catriona, A. C.; Cameron, J. B.; Jan, S.; Alastair, J. F. 

Org.Process Res. Dev., 2015, 19, 9, 1186–1202. 

16) Ryan, L. H.; Jonathan, P. M.; Klavs, F. Angew. Chem. Int. Ed., 2011, 50, 7502–7519. 

17) Matthew, B. P.; Bartholomäus, P.; Kerry, G.; Peter, H. S. Chem. Rev., 2017, 117, 18, 

11796−11893. 

18) Soleymani, A.; Yousefi, H.; Turunen, I. Chem. Eng. Sci., 2008, 63, 5291–5297. 

19) Ghanem, A.; Lemenand, T.; Della Valle, D.; Peerhossaini, H. Chem. Eng. Res. Des. 2014, 

92, 205−228. 

20) Nagaki, A.; Togai, M.; Suga, S.; Aoki, N.; Mae, K.; Yoshida, J. J. Am. Chem. Soc. 2005, 127, 

11666–11675. 

21) Soleymani, A.; Kolehmainen, E.; Turunen, I. Chem. Eng., 2008, 63, 21,   

https://pubs.rsc.org/en/results?searchtext=Author%3AMilad%20Abolhasani
https://pubs.rsc.org/en/results?searchtext=Author%3ANicholas%20C.%20Bruno
https://pubs.rsc.org/en/results?searchtext=Author%3AKlavs%20F.%20Jensen


34 
 

5291–5297. 

22) Mahmut, B. O.; Mustafa, M. A.; Kim, K. Y. Micromachines, 2018, 9, 5, 210−210. 

23) Jensen, K. F.; Reizman, B. J.; Newman, S. G. Lab Chip 2014, 14, 3206−3212. 

24) Bao, J.; Tranmer, G. K. Chem. Commun. 2015, 51, 3037–3044. 

25) Munirathinam, R.; Huskens, J.; Verboom, W. Adv. Synth. Catal. 2015, 357, 1093–1123. 

26) Frost, C. G.; Mutton, L. Green Chem. 2010, 12, 1687–1703. 

27) Irfan, M.; Glasnov, T. N.; Kappe, C. O. ChemSusChem 2011, 4, 300−316. 

28) Battilocchio, C.; Hawkins, J. M.; Ley, S. V. Org. Lett., 2014, 16, 1060–1063. 
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2. Chapter 2: Photochemical Flow Synthesis of 3-Hydroxyazetidines 

2.1 Azetidines 

Azetidines represent an interesting class of heterocycle possessing valuable chemical and 

biological features. First reported in 1888,[1] the related azetidin-2-ones 2-1 have received 

particular attention due to their structural relationship to  -lactams, the core of several 

important antibiotic compounds, e.g., penicillin, cefalosporin and monobactam (Figure 1, 

compounds 2-4/2-7).[2-17] Azetininones (Figure 1, 2-2) are less prevalent in nature but they 

have received a growing interest, as chemical precursor of other natural compounds such as 

ethylideneazetidin-2-carboxylic acid (Figure 1, 2-2b) which is related to the tripeptide 

antibiotic polyoxine (Figure 1, 122c). The hydrate form of the azetidin-2-one 2-3, namely 3,3-

dihydroxyazetidine (Figure 1, 2-3) has also received particular interest due to its behaviour as 

a promoter of growing factors and as it has been linked to the growth of bifidusbacterium.[18] 

  

Figure1: Examples of azetidine and azetidinone structures. 
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The biological activity of the azetidine ring derivatives was established in 1956 through studies 

on the azetidine-3-carboxylic (Figure 2, 2-8) acid which turned out to be a powerful 

gametocide, leading to an increase in the general interest of this structure.[19-21] Subsequently 

the valuable characteristics of this structure have been found in several other 3-substituted 

azetidines showing a broad range of biological activity (Figure 2). Interestingly, 3-substituted 

azetidines have also found value in the area of material chemistry as demonstrated by TNAZ 

(1,3,3-(trinitroazetidine, Figure 2, 2-16) which has been used as propellant and explosive.[28-

32] 

  



39 
 

 

 

Figure 2: Some application of the azetidinic moiety. 

 

2.1.1 Literature survey of the synthesis of azetidine rings  

2.1.1.1 Nucleophilic substitution strategy 

The most common synthetic approach to the azetidine ring is via nucleophilic attack by the 

nitrogen creating the ring (Scheme 1, 2-18).[43] Normally, a leaving group such as a bromine 
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or chlorine is used although iodine often gives better results being a better leaving group 

(Scheme 1, 2-19).[44] Additionally the leaving group can be made in situ often from an alcohol 

by conversion to the corresponding tosylate (i.e. 2-21) or mesylate (Scheme 1, 2-22).[45] 

 

Scheme 1: Synthesis of azetidine ring through nucleophilic substitution. 

2.1.1.2 Ring expansion strategy 
Opening of epoxides is a valuable synthetic method on route to 3-azetidinols and its 

important derivatives the 3-azetidinone through subsequent oxidation. The protocol as 

developed by Gartner[46] uses primary amines in combination with epichlorohydrin (Scheme 

2, 2-23), to form N-substituted 3-azetidinols, whereas bulky amines react less readily it was 

observed that the use of silyl functionalised amines (i.e. 2-24) increases the reactivity (2-25b). 

Aziridine ring opening has also been used, for example by Nadir[47-52] who reported the use of 

dimethyloxosulfonium methylide (2-27) to achieve a stereospecific reaction where the cis or 

trans aziridine(2-26) leads to the oppositely configured anti or syn azetidine (2-29). 

 

Scheme 2: azetidine ring formation through ring expansion. 
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2.1.1.3 Cycloaddition reaction strategy 
Although cycloaddition reactions are widespread as routes for the synthesis of β-lactams 

(which can be used as precursor for azetidine), only a few examples involving the direct 

synthesis of the azetidine ring by cycloaddition have been developed.[53-56] The 1,2-

dihydroazetidine system has been used in a Diels Alder reaction with substituted 

cyclopentadienes yielding azetidine products in good yields and in photodimerization 

reactions leading to an interesting mixture of diazotricyclooctane (Scheme 3; 2-31, 2-32).[57] 

Cycloaddition between an imine derivate 2-35 and alkoxymethylene cyclopropane 2-34 

turned out to be a very valuable method of preparing spiro-cyclopropane azetidine 

derivatives 2-36 in excellent yield (Scheme 3). 

 

Scheme 3: Azetidine formation through cycloaddition reactions. 

 

2.1.1.4 Ring contraction strategy 
Ring contraction has allowed particular azetidine to be made, for example, ring fused 

structures have been prepared using electrocyclic 6-π rearrangement of cyclooctatrene 

systems (Scheme 4, 2-39).[58] Similarly photo-electrocyclic reaction of dihydropyridine rings 

affords an azobicyclo ring in good yield (Scheme 4, 2-38).[59-61] 
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Scheme 4: Azetidine formation through ring contraction processes. 

2.1.1.5 Reduction of azetidinone strategy 
2-Azetidinones are largely used in the synthesis of azetidines due to their readiness to 

undergo reduction. Diborane,[62] LiAlH4
[62] and Raney nickel[53] have all been widely used as 

reducing agents providing the desired products in high yields. Further examples of DIBAl-H 

and chloroaluminium hydrides (AlH2Cl or AlHCl2) have also been reported by Ojima and 

Alcoide[63-65] (Scheme 5, 2-42, 2-44, 2-46). 

 

 

Scheme 5: Azetidine formations via reduction of azetidinones. 

 

2.2 The Norrish reaction  
Between 1936 and 1938 Ronald George Norrish published a series of seminal works[66-69] in 

which 2 very important photochemical reactions of aldehydes and ketones were presented. 
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In the first of these reactions a carbonyl compound after a photo excitement was fragmented 

to an acyl and alkyl radical pair; this reaction is normally observed in the gas phase and is 

called a Norrish type 1 reaction (Scheme 6). Although it has been intensively studied, so far it 

has not found major synthetic application. In the second reported transformation a carbonyl 

compound was fragmented under photochemical activation generating an enol and an olefin. 

This second process became famous gaining the name a Norrish type 2 reaction (Scheme 6).  

 

Scheme 6: Examples of Norrish type transformations. 

 

These Norrish processes each involve the photon excitation of an electron of the carbonyl 

functionality with promotion of an electron from a ground state to an excited one. Two 

distinct transitions are possible a π−π*(Sg→S2) and n−π*(Sg→S1) (Figure 3). 

 

 

Figure 3: S1 and S2 excited states.( Sg = ground state, Sn = excited states) 

 

The carbonyl group has two electrons in its π bonding orbital and two pairs of electrons in 

non-bonding orbitals on the oxygen. Under photo-excitation an electron can be promoted to 
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the empty π*-orbital leading to an excited state. Depending on which orbital the electron is 

excited from we can distinguish two potential transitions. If the promoted electron comes 

from a non-bonding orbital the transition and resulting excited state have the notation n−π* 

whereas if it involves an electron from the π bonding orbital its definition is a π−π* 

transition.[70] These two excited states give rise to different chemical behaviour; in the n−π* 

the electron which remain in the π orbital provides the oxygen with free radical character, 

this is not true for the π−π* excited state. The free radical character of the oxygen in the n−π* 

state is strictly related with the Norrish type 2 transformation which is characterized by an 

intramolecular hydrogen abstraction (Scheme 7). If a -hydrogen is available a subsequent 

1,5-hydrogen transfer (by oxygen abstraction) can occur generating a bi-radical intermediate 

which can subsequently fragment leading to an enol and an olefin. 

 

 

Scheme 7: Norrish type 2 reaction. 

 

The discovery of this transformation has turned out to have several synthetic applications 

such as the elimination of protecting groups from carbohydrate systems, synthesis of steroid 

derivatives and the preparation of isomerically pure alkanes (Scheme 8).[71-74] 

  

 

Scheme 8: Elimination of protecting group from a carbohydrate system. 

 

 2.3 The Yang reaction 
Once the carbonyl oxygen has abstracted a hydrogen, instead of undergoing a fragmentation 

of the diradical intermediate into an enol and an olefin, it is possible to have a recombination 

of the radicals resulting in the formation of a new cyclic structure (Scheme 9; 2-65).  
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Scheme 9: The Yang Reaction. 

 

This transformation, first reported by Yang in 1958,[75] adopted the name of its discoverer to 

become the Norrish-Yang reaction, although it is often shorted to simple the Yang reaction. A 

key feature of the Yang reaction (and in general of all Norrish type 2 transformations) is that 

they involve a six membered transition state implying a strong preference for the -hydrogen 

activation;[76] this has been confirmed by Ihmels and Schaffer studying the geometric 

parameters of the hydrogen abstraction.[77] According to their investigation, in order to obtain 

an optimal abstraction the following assembly must be met (Figure 4). 

 

Figure 4: Geometrical parameters involved in the H-abstraction. 

Parameters: d, the distance between the carbonyl oxygen and the hydrogen which should be close to the sum of the van 

der Waals radii of oxygen and hydrogen (2.72 A).  the angle between CO and the H should be between 90 °and 120°. 

 the angle between the CH and O should have an optimal value of 180°. , the angle by which the hydrogen lies outside 

the plane of the carbonyl group which has an ideal value of 0°. 

  

Despite the inherent preference for -hydrogen abstraction, if a hydrogen atom is not 

available a larger or smaller sized transition state can be adopted leading to different cyclic 

products. An example of β−abstraction leading to interesting cyclopropane derivatives has 

previously been reported (Scheme 10).[78] 
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Scheme 10: Example of β-abstraction to form cyclopropanes. 

 

Wagner showed how in the case of -alcossy ketone 2-70 the - and  -abstraction compete 

leading to the formation of a mixture of cyclic products 2-71 to 2-74 (Scheme 11).[79] In 

addition, several cases have been reported in which the -hydrogen is not available and thus 

a -H is abstracted leading to the cyclopentanol 2-77 (Scheme 11). 

 

 

Scheme 11: -hydrogen abstraction leading to cyclic. 

 

Further, long distance abstractions are possible. Hasegawa et al. has reported the formation 

of an eight membered lactone ring from 2-(dibenzylamino)ethyl-3-oxo-3-phenylpropanoate 

(2-78, Scheme 12).[80] 

 

 

Scheme 12: Cyclization through long distance abstraction. 
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To increase the synthetic potential of this transformation, a heteroatom can be inserted 

between the carbonyl and the abstraction site; this can lead to the formation of interesting 

heterocyclic rings. Succinamide derivatives, for example, form lactam structures with ring 

enlargement occurring through opening of the azetidine ring initially formed by the Yang 

reaction[81] or gaining access to 3,2-hydroxyazetidinone (2-85) by positioning a second 

adjacent carbonyl group, substrate 2-84[82] (Scheme 13). 

 

Scheme 13: Enriched heterocyclic rings via the Yang reaction. 

2.4 Result and discussion  

2.4.1 Retrosynthesis 

In the Norrish-Yang reaction a carbonyl derivative, under photo-irradiation, is subjected to a 

promotion from the ground state Sg to an excited state (normally S1) by an n→π* transition, 

in which a 2Py non-bonding electron on the oxygen is promoted to the antibonding π*-orbital. 

The excited singlet state can then transition to the triplet state through ISC (intersystem 

crossing). The photoexcitation leads to a di-radical compound (Scheme 13) where the oxygen 

achieves free radical character. If a suitably positioned hydrogen atom is available the oxygen 

can abstract it forming a second di-radical structure which can further react intramolecularly 

forming a cyclohydroxyl derivate (2-89, Scheme 14). Normally the abstraction and the 

cyclization proceed through an open chair transitional state (Figure 4) thus the abstraction 

involves the -proton (favoured by steric factors) leading to a hydroxyl cyclopropane; however 

if no -hydrogen is available the abstraction and succeeding cyclization may give a 3, 5 or even 

larger cyclic derivative. It is easy to see how the presence of an atom different from the C 

between the carbonyl and the site of abstraction would lead to a four-member heterocycle. 
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Scheme 14: General cyclization sequence affording cyclobutanols. 

The 3-hydroxy azetidine ring 2-91 can be derived from the same reaction using as the starting 

material a N-methyl-β-aminoketone 2-90 in one pot sequence. Indeed, more substituted 

azetidines can also be obtained by appropriate decoration of the starting ketone (Scheme 15).  

 

 
Scheme 15: Yang reaction affording the 3-hydroxyazetidine moiety. 

 

Among the examples reported in the literature is work presented by Ishida and co-workers[83] 

who use a photochemical method to build up an azetidinic intermediate which acts as a CO2 

capture system. In their work the Japanese group reported the conversion of a series of α-

amino aryl ketones to their corresponding azetidine ring structures (Scheme 16). The 

reactions were performed using solar light in a Pyrex flask using DMA (N,N-

dimethylacetamide) as the solvent. Very high conversion (>90%) was claimed by the author 

but on a very small scale (30 mg), we decided to adopt the same substrate to investigate a 

photoflow approach. 

 

 
 

Scheme 16: Specific substrate used by Ishida. 
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Although the Yang reaction has been extensively studied over the years the true synthetic 

value of the transformation has not been fully exploited due to the photochemical processing 

conditions required (long reaction times, very dilute reaction conditions being required in 

batch).We embarked on a study of the Yang reaction under flow condition in order to evaluate 

the impact of a flow set up on this transformation. Indeed, flow chemistry due to its intrinsic 

characteristics (see introduction) allows an enhancement of many photochemical processes. 

In this project we aimed to leverage the synthetic potential of the Yang reaction addressing 

some of the common disadvantages of batch photochemistry (longer reaction time, lower 

selectivity and critical scalability). 

The sulfonamide 2-94 was used as representative substrate as it had previously been shown 

to be a viable starting material albeit on a very small scale (30 mg). Our aim was to build a 

collection of derivatives thus studying the effect of structural changes on the reactivity of the 

general formula of 2-94. 

 

2.4.2 Description of the flow set-up 
A Vapourtec E series system with a UV-150 photochemical reactor equipped with a medium 

pressure mercury lamp (maximum of emission at 365 nm) and 3 low pressure mercury lamps 

(peak emissions at 254, 310 and 370 nm) was used. The power of the lamp can be controlled 

from 75-150 W for the medium pressure lamp while the 3 low pressure lamps have an input 

power of 9 W and are between 30-40% efficient providing a fixed power output of 3 W.  

The flow reactor consists of a 10 mL FEP (fluorinated ethylene propylene) coiled tube 

housed in the reactor body which allows the connection with the rest of the E-system and the 

lamp. Moreover, a probe in the reactor body permits the monitoring of temperature and a 

connection with an external cooling system gas (cylinder with dry ice coolant) is established 

as well. The temperature tolerated by the reactor is between -5 and 80 °C. 
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Figure 5: Equipment set-up used in the study. 
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Figure 6: Schematic of the flow reactor set-up. 

 

2.4.3 Solvent system 
The choice of the solvent is a critical aspect of any photochemical reaction as it can strongly 

influence the experiment. There are several requirements that a solvent has to meet in order 

to be used: 1) it must not react with the reagent; 2) it has to dissolve the starting material; 3) 

it has to be transparent toward the wavelength needed by the compound (the solvent has to 

absorb in a different range to the compound). The solvent can act as a sensitizer absorbing 

the radiation and then releasing it to the substrate promoting the desired transition. 

Additionally, whereas in batch the precipitation of the product is normally welcome, in a flow 

system it is undesirable as it can obstruct the tube or deposit on the surface of the reactor 

which might lead to its breakage (blockage) or to a local overheating resulting in melting of 

the tubing/chip.  

Another important factor to bear in mind when choosing the solvent is the effect that 

it can have on the excited state, particular the polarity of the solvent which can affect the 

relative energies of the n→π* and π→π* states of ketone leading to a mixing of the 

n→π*triplets and π→π* triplets. In general, the unreactive π→π* triplet states are more 

stabilised by high dielectric and hydrogen bonding solvents. Zepp and co-workers[84] studied 

the effect of the solvent on aromatic ketones finding a substantial increase in the lifetime of 
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the triplet state when changing the solvent from a hydrocarbon to water. This was found to 

be directly related to the efficiency of the hydrogen abstraction by the oxygen.  

Among the various solvents available, the solubility of the reagents narrows the 

number of possibilities. Water and common alcohols such as methanol, ethanol or iPrOH, are 

normally used in photochemistry due to their low absorption cut-off. Another important 

factor which has to be considered in the selection of a solvent is the scaling up of the reaction: 

whereas at  lab scale the kind of solvent normally does not represent a concern this is not 

true when it comes to increasing the quantities of reagent, especially in industrial settings. 

Hydrocarbon solvents (i.e. pentane, hexane and toluene), or chlorinated (i.e. chloroform, 

DCM, 1,2-dichlorobenzene and CCl4) are normally avoided both for environmental and safety 

reasons.  

A good compromise between solubility, absorption cut-off, simplicity of work-up and 

considerations of safety for scale up of these transformations can be realised using solvents 

such as acetone, acetonitrile and THF. These solvents exhibit reasonable cut-off (330, 190 and 

245 nm respectively) and are compatible with the wavelengths normally involved in carbonyl 

photo-transformations. 

 

2.4.4 Lamps 
Many light sources have been used to perform Yang reactions, from standard mercury 

lamps[85] to the use of laser[86] or excimer lamps[87]. In our case the available lamps were a 

medium pressure mercury lamp and 3 low pressure mercury lamps. The medium pressure 

lamp has an emission spectra (Figure 7) which exhibits a broad range of wavelengths, from 

220-600 nm, while for the others the peaks are more localized (Figure 7, B). In addition, by 

using filters it is possible to partially select the radiation emitted by the medium pressure 

lamp. 
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Figure 7: Medium pressure lamp emission spectra with different filters (A), emission spectra 

of a low-pressure lamp (B), emission with filter used (C). 

 

2.4.5 Light sources screening 
As an indication for the subsequent screening of the light sources, the absorption spectra for 

the starting material 2-94 was recorded and showed two different absorption bands;[88-91] a 

strong band around 250 nm pertaining to the π→π* transition and a weaker absorbance in 

the range of 280-320 nm relating to the synthetically desirable n→π* propagation, which 

would result in the eventual cyclisation reaction (Figure 8). 
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Figure 8: UV spectra of substrate 1-115. Recorded in MeCN. Yellow (0.05 mM), green (0.1 

mM) and pink (0.2 mM). 

 

To perform the flow reaction screening, we utilised a commercially available Vapourtec UV-

150 system based upon the E-series peristatic delivery unit.[92] A 0.15 M acetonitrile (solvent 

wavelength cut-off of 190 nm) stock solution of substrate 2-94 was passed at a specified flow 

rate into a 10 mL photoflow coil reactor and irradiated using a low pressure mercury lamp 

(150 W; 100% of the lamp power) fitted with a filter (‘Gold’ filter with transmission 415-250 

nm). 

 

2.4.6 First approach 

Our first task was to reproduce the original batch process in flow using a long exposure. 

Substrate 2-94 was tested using different flow rates thus subjecting the material to different 

exposure times. After an exposure of 7 h the substrate showed high levels of decomposition 

leading to less than 20% conversion to the desired product. Lower exposure times (achieved 

using higher flow rates) results in a progressive reduction of the decomposition. 

Encouragingly, at a flow rate of 1 mL/min (10 min residence time), 90% conversion and a 75% 

isolated yield following chromatographic purification was achieved. It should be noted that 

this specific flow rate represented an optimal productivity balancing the consumption of 

starting material and conversion against the occurrence of several by-products generated 
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during extended irradiation (decomposition). In addition, it was found to be easier to purify 

samples comprising mainly residual starting material from incomplete conversion rather than 

driving the reaction to completion but subsequently having to separate the product from a 

complex mixture of multiple minor by-products. Indeed, at larger scales purification could be 

readily achieved by simple crystallisation of the incomplete reactions. Once the flow rate was 

optimised a range of solvents was then assessed evaluating them for solubility, absorption 

cut-off, impact on conversion and isolated yield. The solvents DMF, MeCN, THF and MeOH 

were all comparable, providing essentially equivalent results (~75% isolated yield). Acetone, 

although effective, gave a lower conversion (60%), which may be indicative of its absorption 

cut off of 330 nm and hence, competitive absorption. The chlorinated solvents CHCl3 and DCM 

indicated some potential solubility issues and were therefore directly discounted. Ultimately, 

acetonitrile was selected as the primary solvent for convenience of evaporation (discounting 

DMF) and avoidance of potential radical side reactions, such as proton abstraction (THF and 

MeOH). 

Next, to evaluate the impact of the transmission window the reactor filter was 

changed to one with a narrower band (‘Blue’ filter transmission 310-400 nm) which removes 

most of the irradiation overlapping with the indicated n→π* transition. As anticipated, the 

detected conversion (1 mL/min; 10 min residence time) dropped dramatically to only 10%, 

thereby confirming our premise and confirming the preferential filter selection (‘Gold’ 

transmission 415-250 nm, filter 1 Figure 9). It should also be noted that using a simple quartz 

window (‘Silver’ filter, transmission 280-600 nm, filter 2 Figure 9) that essential removes only 

the long wave IR bands led to substantial substrate decomposition even over very short 

residence times. Finally, the four lamps were screened in order to compare their effect (Table 

1). 
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Figure 9: Medium pressure mercury lamp emission spectra with different filters. 

 

 

Table 1: Lamp screening. 

 

 Lamp 1 

(300 / 365 nm) 

Lamp 2 

(370 nm) 

Lamp 3 

(310 nm) 

Lamp 4 

(254 nm) 

2-94 90% conv. 

70 W 

55 °C 

7% conv. 

7.5 W 

25 °C 

23% conv. 

7.8 W 

24 °C 

17% conv. 

6.8 W 

25 °C 

2-122A 90% conv. 

70 W 

55 °C 

10% conv. 

7.5 W 

24 °C 

18% conv. 

7.6 W 

24 °C 

10% conv. 

7.2 W 

25 °C 

 
 

Despite the apparent large gap between the conversions obtained by lamp 1 and the others, 

the use of the low-pressure lamps is still interesting if parameters such as power and 

temperature are considered. Indeed, the conversion obtained with lamp 3 (the most efficient 

of the low-pressure lamps) is less than a quarter that of lamp 1, however, the power used is 
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ten times lower and the heat produced is also less than half. This data would be of particular 

interest if designing an industrial scale reactor specifically for scaling this reaction with a view 

to environmental and economy. 

In addition the results obtained with a selective low-pressure mercury lamp (7.8 W) 

which exhibits a peak emission at 310 nm seemed interesting (Table 1). At the previous 

standardized flow rate of 1 mL/min the reaction proceeded but with a much-reduced 

conversion of 23% in accordance with the lower rated lamp power specification. Slowing the 

flow rate to 0.75, 0.5 or 0.25 mL/min enabled higher conversions of 34, 49 and 59% (for 

compounds 2-95 and 2-122) respectively to be achieved, indicating an essentially linear 

correlation with extended irradiation time. Of particular note was that these reactions were 

very clean showing only starting materials 2-94 and 2-122a and products 2-95 and 2-122. 

Unfortunately, we deemed the overall throughput would ultimately be too low with such a 

system as our challenge was to devise a system which could be used to perform larger 

preparative scale Norrish-Yang reactions. Consequently, although showing high selectivity the 

low power system was deemed inadequate for our needs and we elected to revert to the 

original medium pressure lamp (150 W) for all further reactions. In the hope of improving the 

transformation, we also evaluated the addition of a range of potential photocatalysts (e.g. 

diphenyl ketone, 2-methylthioxanthone and methylene blue at 10 and 40 mol%); however, 

none of the catalysts tested showed any advantageous activity across a range of wavelengths 

for this particular transformation. 

2.4.7 Substrate screening 
The lack of any existing literature substrate studies and inconsistencies in the reaction 

conditions previously reported made it hard to generalize the synthetic scope or anticipate 

new reactivity based upon varying structural functionality. Therefore, we built a collection of 

functionalised starting materials for a systematic investigation (Scheme 17). The general 

synthetic route entails a two-step process involving the bromination of the related 

acetophenone using NBS and p-TSA followed by substitution of the halogen with the 

sulfonamide unit 2-97 by simple nucleophilic substitution carried out in acetonitrile at room 

temperature.  
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Scheme 17: Synthesis of starting material 2-94. 

 

Therefore, by starting from the appropriately substituted ketones, a series of additional 

starting materials were prepared and their resultant solutions pumped through the 

photoreactor, allowing evaluation of their conversion into the related azetidinols (figure 10 

and 11).  

 
Figure 10: X-ray structure of compound 2-95. 
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Figure 11: The expanded range of products prepared from the photo-flow Yang reaction. 

 All reactions were performed at 1 and 5 mmol exploratory scales, results presented are the mean of at least 3 repeat runs at the 5 mmol 

scale. The % consumption of starting material and % isolated yields (in parentheses) are shown. NMR yields were determined for the 

crude products using an internal standard of 4-dimethylaminobenzonitrile. All isolated yields were in the range of -1→3%lower than the 

theoretical yield determined by NMR. aGeneral flow conditions; 0.15 M solution of the starting material 1-110 in acetonitrile, flow rate 1 

mL/min (10 min residence time), reactor temperature 18-25 °C. b Concentration used was 0.075 M. cSolvent used was acetone. 

dConcentration used was 0.035 M. eConcentration used was 0.02 M. fA flow rate of 0.7 mL/min was used and a reactor temperature was 

70 °C. gA flow rate of 0.5 mL/min was used. 

 

Initially, the aromatic ring was enriched by the addition of bromine and chlorine substitution 

(Figure 11; 2-98 to 2-103) as versatile handles for subsequent medicinal chemistry 

derivatisation. The 3- and 4-substituted compounds gave high conversions and were isolated 

in similarly high yield by column chromatography, indicating that their reactivity was not 

affected by a halogen substituent at either the meta or para positions. This was in contrast to 

the corresponding ortho substituted aromatics which although showing high starting material 

consumption gave significantly more decomposition and thus much lower isolated recoveries 

(Figure 11; 2-100 & 2-103). We speculated this may be due to the ortho substituent imposing 

a steric impingement on the transition state thereby preventing planarity of the aromatic 

carbonyl and thus affecting the electronics and desired absorption of the substrate (Figure 

12, 13 and 14: conformational modelling). To experimentally test this, we prepared and ran 

the corresponding 2-substituted methyl and fluoro materials (Figure 11; 2-104 - 2-107). Again, 
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the difference in reactivity between the 2- and 4-methyl substituents was dramatic. Whereas, 

the 2- and 4-fluoro substituted reactants showed comparable reactivity as would be expected 

for the small orbital contracted fluoro group. These additional results indicated the observed 

effect was as hypothesised mainly steric in nature and not a direct electronic aspect of the 

potentially inductive halogens. This was further confirmed by assessing the methoxy series 

(Figure 11; 2-108 – 2-110). The reactivity of which was essentially equivalent for each 

member, including the 2-methoxy substrate (Figure 11; 2-110), which can preferentially 

orientate the methyl substituent to minimise steric interactions in the transition state and so 

easily achieve planarity. A further evidence in this direction was given by some 

conformational modelling on the starting materials (2-95, 2-100, 2-103, 2-105, 2-106 and 2-

110) showing that the co-planarity between the carbonyl group and the aromatic ring was 

progressively hampered increasing the dimension of the substituent in the ortho-position 

(Figure 12, 13, 14). 

 

 
Figure 12: Modelling of compounds 2-95, 2-106, 2-110. 

Conformational modelling simulation for compounds 2-95 (Blue), 2-96 (red) and 2-110 (green). The 

aromatic ring of the ketone moiety twists further out of plane with increasing size of ortho group. 

Compounds energies are reported: ortho-H. (Energy = 30.46 kcal mol-1). Ortho-Me (Energy = 37.40 kcal 

mol-1). Ortho-OMe (Energy = 37. 38 kcal mol-1) 
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Figure 13: Modelling of compounds 2-95, 2-100, 2-103. 

Conformational modelling simulation for compounds 2-95 (Blue), 2-100 (red) and 2-103 (green). The 
aromatic ring of the ketone moiety twists further out of plane with increasing size of ortho group. 

 

 
Figure 14: Modelling of compounds 2-95, 2-100, 2-105. 

Conformational modelling simulation for compounds 2-95 (Blue),2-103 (red) and 2-105 (green). The 

aromatic ring of the ketone moiety twists further out of plane with increasing size of ortho group. 

  

 
We next probed the installation of various π-donor and acceptor substituents as well as a 

trifluoromethyl functional group on the phenyl ring (Scheme 18; compounds 2-113 to 2-115).  
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Scheme 18: Synthesis of compounds 2-113, 2-114, 2-115.  

The % consumption of starting material and % isolated yields (in parentheses) are shown. Medium 

pressure mercury lamp with “gold filter” ( 365 nm max) was used. 

 

It appears that strongly electron donating units diminish the reactivity as indicted by the 

dioxolane 2-113a and dimethoxy derivative 2-114a. Under the standard conditions (1 mL/min 

- 10 min residence time) only 22% conversion, equating to a 10% isolated yield of the 

corresponding azetidine 2-113 was obtained. However, wishing to demonstrate that the 

general conditions could be rapidly re-optimized (Table 2) in flow for poorly reacting 

substrates we were able to improve the conversion (61%) and enable an isolated yield of 48%. 

 

Table 2: Rapid reoptimization screen for product 2-113. 

Entry Flow rate 
(mL/min) 

Lamp power 
(%) 

Temperature 
(°C) 

Yield 
(%) 

1 1 90 18-25 10 
2 0.7 90 18-25 20 
3 0.5 90 18-25 15 
4 0.7 90 49-52 22 
5 0.7 90 70 48 
6 0.7 90 80 39 

[a]Reactions were performed at 0.15 M concentration in MeCN using a medium pressure mercury lamp 

equipped with a “ Gold Filter” (365 nm max) At the higher temperatures indicated the photoreactor is more 

stable and easier to control the temperature at a specific set point.  

 

 



63 
 

Of particular interest was an observed dependence on temperature in this reaction. Allowing 

the photoreactor temperature to rise to 70 °C was accompanied by a steady but limited 

improvement in the yield. Although temperature has been shown to have a positive influence 

on other photochemical transformations, we, as well as others, are not able to fully account 

for this effect at this stage.[93] Indeed, this was in our case a seemingly localised effect as 

across the range of other substrates evaluated, the best yields were obtained at or below a 

temperature of 25 °C. The same impact of strongly donating substituents on the phenyl ring 

was also clearly seen with the equivalent 3,4-dimethoxy substrate 2-114 which initially proved 

completely inert to the photo induced reaction under the standard condition and showed 

little benefit when tested with the newly derived conditions established for 2-113 (see above). 

Interestingly, by changing the solvent, in this particular case to acetone, and using a lower 

flow rate (0.8 mL/min) we were able to achieve a modest 36% isolated yield of the cyclic 

product 2-114. Of note, the addition of 30 mol% diphenyl ketone or acetone to the original 

acetonitrile solution had no impact on the transformation discounting a photo-catalysed 

process. Overall, the reactions to form products 2-113 and 2-114 highlight that the aryl 

electronic contributions do play an important role in the transformation. The implication is 

that high yields of the desired azetidinol can be attained when there is a good match between 

the light source and absorbance relating to the n→π* propagation. Unfortunately, significant 

electronic perturbation from strongly electron donating or assumedly withdrawing groups 

would be expected to shift the absorbance band and alter the transition to the reactive 

diradical 2-90b (Scheme 15). Unfortunately, analysis of the UV spectra was not very revealing 

and did not allow any meaningful conclusions to be drawn. However, by comparing the 13C 

chemical shift of the carbonyl signals for the electron rich aromatic starting materials 2-113a 

(191.8 ppm) and 2-114a (192.0 ppm) against the parent H substituted standard 2-95a (193.8 

ppm) it is clear some donation occurs which is associated with a diminished reactivity (2-113 

and 2-114). Interestingly, during a wider analysis (Figure 15) we noted a general correlation 

that substrates with a carbonyl 13C signal in the range of 196-193 ppm generally showed good 

reactivity resulting in high isolated yields under the standard conditions (0.15 M in MeCN, 1 

mL/min). In comparison compounds outside this range were typically much lower yielding but 

could often be improved by changing the processing conditions (i.e. flow rate, solvent or 

concentration). Although more data is required to confirm this observation, it may with the 

sophisticated predictive NMR packages currently available enable in silico design of idealised 

substrates for subsequent reaction. 
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Figure 15: Correlation of 13C shift and yield. 

 

Pleasingly, when expanding the substrate range, the direct replacement of the phenyl ring for 

other simple heteroaromatics (Scheme 19; 1-136 – 1-138, Figure 16) was readily tolerated 

opening up the feasibility for exploring much greater structural diversity.  

 
Scheme 19: Substrates 2-116to 2-118.  
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The % consumption of starting material and % isolated yields (in parentheses) are shown. Medium 

pressure mercury lamp with “gold filter” (365 nm max) was used. 

 

 
Figure 16: X-Ray structure of compound 2-118. 

 

Next, we elected to explore the effect of further substitution on the carbon scaffold of the 

azetidine ring, consequently the additional substrates leading to compounds 2-119 to 2-122 

were assembled and tested (Scheme 20, Figure 17). 

  
Scheme 20: Synthesis of compounds 2-119 to 2-122.  

The % consumption of starting material and % isolated yields (in parentheses) are shown. Medium 

pressure mercury lamp with “gold filter” (365 nm max) was used. 
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Figure 17: X-Ray structures of compounds 2-119, 2-120 and 2-121. 

 
 

Analysis of the crude products revealed that in each case the material produced was a single 

diastereoisomer with syn disposition of the corresponding hydroxyl and the alkyl groups as 

confirmed by COSY, NOESY correlation experiments and by single crystal X-ray analysis (Figure 

18). 

 

 
Figure 18: X-ray of substrate 2-122 (left) and protons involved in the NOESY interaction 

(right). 

 

This observed selectivity is consistent with a predictive model based upon minimization of 

steric interactions in the ring forming transition state (Scheme 21). It is apparent that by 

adding additional steric demands to the reaction in the form of these side chains the reaction 

becomes more challenging as expressed by the lower isolated yields (cf. compound 2-95 with 

2-119 to 2-122). Of particular interest was that steric factors were balanced as the 

regioisomeric starting materials leading to the equivalent products 2-119 and 2-120 were 

obtained in essentially identical conversion and isolated yield. 
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Scheme 21: Minimization of steric interactions in the ring forming transition state. 

 

 

Having identified certain steric constraints which impact the reaction, we wished to explore 

the modification of the sulfonamide component of the system by adding an electron rich 3-

methoxyphenyl and a bulky tris-2,4,6-isopropylphenyl ring (Scheme 22; 2-123 & 2-124).  

 
Scheme 22: Substitution on the sulfonamide moiety. 

The % consumption of starting material and % isolated yields (in parentheses) are shown. Medium 

pressure mercury lamp with “gold filter” (365 nm max) was used. 
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Both substrates (2-123 & 2-124) were converted into the corresponding azetidinol’s under 

the standard condition without any appreciable difference in reactivity (Scheme 22). This was 

in stark contrast with the simple benzyl substituted substrate 2-125a which failed to yield any 

of the desired product 2-125 (Scheme 23). Interestingly, removing the methylene group 

restored some of the reactivity allowing 28% of the corresponding product 2-126 to be 

isolated. 

 

 

Scheme 23: Change of the spacer between N and the Ar group.  

The % consumption of starting material and % isolated yields (in parentheses) are shown. Medium 

pressure mercury lamp with “gold filter” (365 nm max) was used. 

 

Evidently an electron withdrawing group on the nitrogen helps increase the attached N-

methyl C-H acidity enabling easier hydride abstraction via the proposed intermediate 2-90b 

(Scheme 21), as well as stabilising the resultant radical formed (Scheme 15). This ultimately 

inspired us to consider other functional groups on the nitrogen which we will discuss below. 

Our study has demonstrated that the photochemical process works generally for many 

aromatic ketones. In order to gauge how a non-aromatic structure responds to the flow 

processing three aliphatic derivatives were prepared (Scheme 25). The methyl and tert-butyl 

derivatives were prepared by the standard sequence of bromination and substitution with 

sulfonamide 2-97 (Scheme 25), whereas the cyclohexanone construct, namely, 

bromocyclohexanone 2-127 proved completely unreactive toward substitution by 

sulfonamide 2-97. Compound 2-130a was therefore prepared starting from the 

corresponding epoxide 2-128, which was ring opened and the intermediate alcohol 2-129 

subsequently oxidized (Scheme 24). 
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Scheme 24: The preparation of substrate 2-130a. 

 

The aliphatic sulfonamides (Scheme 25) were each subjected to the optimised flow conditions 

used previously (0.15 M, 1 mL/min 100% lamp power), compounds 2-131a and 2-132a 

showed no conversion (even increasing the reaction time) whereas compound 2-130a was 

converted into the related azetidine 2-130 (Figure 19) but only in modest conversion and 

isolated yield and required longer reaction time (lower flow rate). As the UV spectra for these 

compounds all possess a characteristic absorption in the correct region, we expected these 

compounds would successfully react. Unfortunately, the lack of an aromatic ring seems to 

significantly affect the reactivity, possibly due to the diminished stability of the reactive 

intermediate 2-90b (Scheme 15).[94] Indeed, even screening a wider range of conditions and 

solvents no sign of reactivity was ever seen. The fact that the substrate 2-130a reacts at all is 

probably due to the more favourable locked geometric configuration which assists its 

cyclisation. 

 

 
Scheme 25: Aliphatic sulfonamides. 
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The % consumption of starting material and % isolated yields (in parentheses) are shown. Medium 

pressure mercury lamp with “gold filter” (365 nm max) was used. 

 

 
Figure 19: X-Ray structure of compound 2-130. 

 
Having previously established that although an electron withdrawing substituent on the 

sulfonamide nitrogen atom was required for successful reaction (cf compounds 2-125 and 2-

126) there seemed to be some scope for variation in the functionality (cf compounds 2-95, 2-

98, 2-123, 2-124). We therefore decided to explore some simplified amide groups and the 

synthetically more versatile Boc protection. The Boc group is considerably easier to remove 

compared with the analogous sulfonamide thus allowing access to the hydroxyazetidine with 

a free nitrogen available for further reactions. In order to introduce the Boc group we decided 

to start from the chlorine salt of the aminoketone (Scheme 26, 2-131) obtained by direct 

reaction between the related bromoketone and methylamine. Thus, reaction with Boc 

anhydride 2-132 gives the desired product 2-133 (Scheme 26).  

 

 

Scheme 26: Generation of Boc derivative 2-133a. 

 

Attempting the photocatalysed cyclisation using the standard flow condition despite 

indicating rapid consumption of the starting materials only resulted in low isolated yields of 
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the corresponding cyclic products (<30%). Thus, we embarked upon a re-optimisation screen 

which identified the solvent had a pronounced impact on the reaction process for these 

particular species (Table 3). 

 

Table 3: Optimization of the reaction of the Boc derivative 2-133a. 

 

Solvent T(°C) Flow (mL/min)  Yield (%) 

CH3CN (0.15 M) 30 1 25 

CH3CN (0.037 M) 30 1 30 

MeOH (0.15 M) 30 1 62 

MeOH (0.15 M) 30 0.7 62 

MeOH (0.15 M) 40 1 63 

MeOH (0.075 M) 40 1 69 

MeOH (0.037 M) 40 1 71 

MeOH (0.037 M) 40 0.8 71 

Acetone (0.037 M) 40 1 52 

[a] performed with a medium pressure mercury lamp; power = 100%. 

 

Adopting the newly determined condition the full range of substrates (acetyl, benzoyl and 

Boc species) were also processed and gave similar improved yields to the corresponding 

azetidine products (Scheme 27, Table 4, Figure 20). 
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Scheme 27: Synthesis of starting material for acetyl, benzoyl and Boc derivatives. 

 

 

Table 4. Cyclization acetyl, benzoyl and Boc derivatives. 

Starting material Product Conversion% 

(yield %) 

  

100 

(71) 

  

100 

(81) 

  

100 

(76) 

  

100 

(74) 

  

91 

(89) 
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90 

(85) 

Performed with a lamp power of 100%, 0.037 M in MeOH at a reactor temperature of 40 °C. 

 

 
Figure 20: X-Ray structures of 2-135and 2-136. 

 

Having determined the general scope and some limitations to the reaction, we wished to 

demonstrate the robustness and scalability of the processing capabilities of working in flow 

through the scale up of the transformation. As such five compounds were selected for assess 

at larger scale production, namely products 2-95, 2-100, 2-108 and 2-122. As an illustration 

compound 2-101 was directly scaled to 100 mmol (0.15 M concentration in MeCN equating 

to a required processing volume of 667 mL at 1 mL/min flow rate). In a single continuous run, 

this material required 11.5 h of processing, including reactor washing. After solvent 

evaporation, the product could be more expediently isolated by trituration with cold CHCl3 

and following drying in vacuo furnished 20.3 g (60%). For larger processing volumes (i.e. 2-

108 (64%) and 2-122 (40%), 250 mmol), the mixture was conveniently processed 

intermittently during a standard working day (8 h), with the reactor flushed with MeCN each 

night and simply restarted in continuation the following day. In this way, it was trivial to 

prepare stock solutions of materials and thus generate multi-gram quantities of the products. 
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2.5 CONCLUSIONS 

In conclusion, the Yang reaction has been studied in flow for the first time; starting from a 

sulfonamide derivative whereby the reactivity in batch was known. The reaction was 

optimized in a flow reactor showing a remarkable reduction in the reaction time from several 

hours (batch) to minutes. The initial substrate was progressively extrapolated in order to 

evaluate the effect of different substituents on the reactivity: initially both the aromatic ring 

and the sulfonamide fragments were functionalized, then the role of the substituent on the 

nitrogen was more closely assessed. Several N‐carbonyl derivatives were subsequently 

assembled showing a good reactivity toward the cyclization, moreover the Boc protected 

azetidine particularly represents a valuable substrate giving the chance for deprotection and 

the use of the free nitrogen for further reactions. The reaction was also scaled up allowing 

the production of >20 g of product in under 12 h demonstrating the efficiency of the Yang 

reaction in flow as a valuable synthetic tool. The total NMR conversion calculated using 4-

(dimethylamino)benzonitrile as an internal standard shows that the results are comparable 

to what has been previously reported in literature. Moreover, the flow process allows a 

drastic reduction in the reaction time (10 min) and easy scale up of the reaction. Overall, our 

study has shown how a flow approach can enhance the potential of this transformation 

increasing its synthetic utility. In this perspective the scope of this transformation leading to 

various 3-hydroxy azetidines can be continued investigating more complex structures and 

alternative substituents on the nitrogen as outlined in the last part of this study. Particularly, 

the presence of a second carbonyl group on at the α position would bypass the need for an 

aromatic ketone, thus offering a way to reduce the overall weight of the product and 

potentially to reach new and intriguing structures (Scheme 28). 

 

 

Scheme 28: Further scope expansion of the transformation. 
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2.7 Experimental  
 

2.7.1 Materials and Methods 
Chemicals: The chemicals used were obtained from the companies Sigma-Aldrich/Fluka, Alfa 

Aesar, TCI or Fluorochem and were used without further purification.  

Chromatography: For the TLC chromatography Merck TLC Aluminium oxide 60 F254 with 

glass backing were used. Detection was carried out either by UV absorption or by treatment 

of the plate with an acidic solution of potassium permanganate and drying using a hand held 

hot-air dryer. 

NMR-Spectroscopy: The NMR spectra were recorded on a Bruker Avance-400 and Varian 

VNMRS-700 spectrometer in the indicated solvent at a temperature of 297 K. Commercially 

available deuterated chloroform, methanol or DMSO was used as a solvent. The spectra were 

always set to the reference value of the solvent, for example chloroform (for 1H-NMR spectra 

to 7.26 ppm and for 13C-NMR spectra to 77.00 ppm). For the exact analysis and assignment of 

the signals in more complex compounds, COSY, HSQC and HMBC spectra were additionally 

added. Chemical shifts were reported in ppm and coupling constants J in hertz (Hz). The 

following abbreviations were used for the multiplicities of the signals: s (singlet), d (doublet), 

t (triplet), q (quartet), m (multiplet). 

MS-Spectroscopy: GCMS spectra were obtained using an Agilent 6890N gas chromatograph 

coupled with an Agilent 5973 inert mass selective detector operating in EI mode with a 

custom-built Anature auto sampler/injector or by Durham University Mass Spectrometry 

service. Electrospray (ES) mass spectra were obtained using a TQD mass spectrometer 

(Waters UK, Ltd; all were obtained by Durham University Mass Spectrometry service. 

IR-Spectroscopy: The infrared spectra were recorded with a PerkinElmer Spectrum One IR 

spectrometer. The samples were measured by the ATR method (attenuated total reflection). 

The evaluation was limited to the bands characteristic of the compound. The position of the 

absorption bands in the IR spectrum was expressed in wave numbers ṽ (cm-1). 

Melting point determination: The melting point was determined using an Electrothermal 

9100 capillary melting point device. The melting point range was recorded for the 

determination of melting points for powdered solids. 
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2.7.2 Synthesis  

Synthesis of products 2-95ato 1-146a. 

 

 

The α-bromoacetophenone derivative (10 mmol) was dissolved in acetonitrile (1 M), and 

K2CO3 (1.5 equiv.) and the appropriate sulfonamide (1 equiv.) were added. The mixture was 

stirred vigorously at room temperature until complete disappearance of the sulfonamide 

starting material as determined by TLC. The inorganic solids were dissolved by the addition of 

water (30 mL), and the mixture was extracted with EtOAc (50 mL), washed with brine (30 mL), 

dried over Na2SO4 and the solvent removed by evaporation under reduced pressure. The 

crude product was purified by column chromatography or by crystallization when possible. 

Compounds 2-105, 2-103 and 2-111 were synthetized using DMF instead of acetonitrile, the 

reaction was monitored by mass spectra and stirred until disappear of the α-

bromoacetophenone starting material. The reaction was worked up by addition of EtOAc (40 

mL) and the mixture was extracted with water (50 mL) until removal of DMF (clean water 

solution), washed with brine (30 mL), and dried over Na2SO4, the solvent was then evaporated 

and the crude material purified by column chromatography. 

 

Synthesis of the N-methyl 2-oxo-2-phenylethanaminium chloride (2-131b). 

 

 

A solution of CH3NH (2.2 mL; 9 M in MeOH) was added to acetonitrile (6 mL) and the solution 

was cooled at -8 °C with an ice-acetone bath. The α-bromoacetophenone derivative (20 

mmol) was dissolved in acetonitrile (20 mL) and added slowly to the cold solution. The mixture 

was monitored by TLC and stirred until the complete disappearance of the ketone starting 

material. Et2O was added and the mixture was filtered removing the ammonium salt. The 

solution was cooled to -10 °C and HCl (2 M solution in Et2O; 1 equiv.) was slowly added 

dropwise. The formed precipitate was filtered and purified by trituration with acetone. 
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Synthesis of the N-methyl tert-butyl 1-oxo-1-phenylethan-2-ylcarbamate (2-133a - 2-

137ab) 

 

 

To a solution of N-methyl 2-oxo-2-phenylethanaminium chloride in MeOH (1 M) was added 

NaHCO3 (4 equiv.) and the solution was cooled to 0 °C. A portion of di-tert-butyl dicarbonate 

(1.5 equiv.) was added and the mixture was stirred at room temperature for 48 h. The solvent 

was evaporated under reduced pressure, EtOAc (40 mL) was added and the solution was 

extracted with water (30 mL), washed with brine (20 mL) and crystallised from a mixture of 

Et2O / MeOH.  

 

A suspension of 2-oxo-2-phenylethane ammonium chloride (20 mmol) in Ac2O (15 mL) and 

NaOAc (3 g) was stirred for 24 h at room temperature. Water (20 mL) was added and the 

mixture diluted with EtOAc (35 mL), extracted with NaHCO3 (20 mL), brine (20 mL) and dried 

over Na2SO4. The solvent was evaporated under reduced pressure and the product was 

crystallised from EtOAc / Hexane. 

 

A biphasic mixture of saturated aqueous solution of NaHCO3 (50 mL) and DCM (40 mL) was 

cooled in an ice bath. To the mixture was added 2-oxo-2-phenylethane ammonium chloride 

(21 mmol) and benzoyl bromide (31.5 mmol) and the mixture was stirred for 24 h. To the 

mixture was added water (20 mL), the organic phase was separated, washed with brine (30 

mL), dried over Na2SO4 and the solvent evaporated under reduced pressure. The product was 

purified by crystallisation from Et2O / MeOH. 

General Procedure for the Photocyclization 

The α-aminoketone starting material 1 was dissolved in acetonitrile at the chosen 

concentration (typically 0.15 M), and the solution was pumped through the photoreactor at 
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the given flow rate (typically 1 mL/min). The temperature of the reactor was kept between 

20–25 °C using N2 gas cooling. The outflow from the reactor was collected into a flask, and 

after solvent evaporation, it was purified by normal phase column chromatography 

(EtOAc/Hexane) or by trituration with cold CHCl3.  

 

N,4-Dimethyl-N-(2-oxo-2-phenylethyl)benzene sulfonamide (2-95a).[4] Isolated yield 80%; 1H 

NMR (400 MHz, CDCl3) δ 7.99 – 7.94 (m, 2H), 7.72 (d, J = 8.3 Hz, 2H), 7.64 – 7.55 (m, 1H), 7.48 

(dd, J = 8.3, 7.1 Hz, 2H), 7.33 (d, J = 8.4 Hz, 2H), 4.56 (s, 2H), 2.82 (s, 3H), 2.44 (s, 3H); 13C NMR 

(101 MHz, CDCl3) δ 193.8 (C), 143.7 (C), 134.9 (C), 134.8 (C) 133.9 (CH), 129.8 (CH), 128.9 (CH), 

128.3 (CH), 127.6 (CH), 56.1 (CH2), 35.7 (CH3), 21.6 (CH3); IR (neat) ν = 2909.6 (s), 1692.3 (s, 

CO), 1338.2 (s), 1158.7 (s, SO2), 1228.7 (s, C-N), 741.2 (s), 666.9 (s), 544.8 (s) cm-1; HR-MS 

calculated for C16H18NO3S 304.1007, found 304.1018 (Δ = 3.6 ppm, mDa = 0.1); Melting point: 

118-119 °C. 

 

N-(2-(4-Bromophenyl)-2-oxoethyl)-N,4-dimethylbenzene sulfonamide (2-98a).[4] Isolated 

yield 63%; 1H NMR (400 MHz, CDCl3) δ 7.89 (d, J = 8.4 Hz, 2H), 7.73 (d, J = 8.3 Hz, 2H), 7.65 (d, 

J = 8.4 Hz, 2H), 7.36 (d, J = 8.3 Hz, 2H), 4.50 (s, 2H), 2.81 (s, 3H), 2.47 (s, 3H); 13C NMR (101 

MHz, CDCl3) δ 193.0 (C), 143.8 (C), 134.4 (C), 133.4 (C), 132.1 (CH), 129.9 (CH), 129.7 (CH), 

129.2 (C), 127.58 (CH), 56.1 (CH2), 35.6 (CH3), 21.6 (CH3); IR (neat) ν = 3064,1 (s), , 1697.6 (s, 

CO), 1584.6 (s), 1155.5 (s), 1325.7 (SO2), 1221.9 (s, C-N), 541.7 (s, CBr), 291.8 (s) cm-1; HR-MS 

calculated for C16H17
79BrNO3S 382.0113, found 382.0117 (Δ = 1.0 ppm); Melting point: 87.0-

89.5 °C. 

 

 

N-(2-(3-Bromophenyl)-2-oxoethyl)-N,4-dimethylbenzene sulfonamide (2-99a). Isolated 

yield 57%; 1H NMR (400 MHz, CDCl3) δ 8.10 (t, J = 1.8 Hz, 1H), 7.95 (ddd, J = 7.8, 1.8, 1.0 Hz, 

1H), 7.77 – 7.73 (m, 3H), 7.43 – 7.34 (m, 3H), 4.54 (s, 2H), 2.84 (s, 3H), 2.47 (s, 3H); 13C NMR 

(101 MHz, CDCl3) δ 192.6 (C), 143.8 (C), 136.7 (CH), 136.4 (C), 134.6 (C), 131.2 (CH), 130.4 
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(CH), 129.7 (CH), 127.5 (CH), 126.9 (CH), 123.1 (C), 56.1 (CH2), 35.6 (CH3), 21.6 (CH3); IR (neat) 

ν = 1706.4 (CO), 1335.8 (s), 1157.6 (s, SO2), 1217.1 (s, CN), 761.2(s), 546.7 (s, C-Br) cm-1; HR-

MS calculated for C16H17
79BrNO3S 382.0113, found 382.0123 (Δ = 2.6 ppm); Melting point: 

105.1-107.1 °C (crystallised from EtOAc / Hexane). 

 

 

N-(2-(2-Bromophenyl)-2-oxoethyl)-N,4-dimethylbenzene sulfonamide (2-100a). Isolated 

yield 55%; 1H NMR (400 MHz, CDCl3) δ 7.67 (d, J = 8.3 Hz, 2H), 7.59 – 7.55 (m, 1H), 7.45 – 7.41 

(m, 1H), 7.36 (td, J = 7.5, 1.3 Hz, 1H), 7.33 – 7.27 (m, 3H), 4.45 (s, 2H), 2.85 (s, 3H), 2.39 (s, 3H); 

13C NMR (101 MHz, CDCl3) δ 197.88 (C), 143.72 (C), 138.69 (C), 134.83 (C), 133.73 (CH), 132.34 

(CH), 129.73 (CH), 128.99 (CH), 127.61 (CH), 127.47 (CH), 118.82 (C), 58.33 (CH2), 35.74 (CH3), 

21.54 (CH3); IR (neat) ν = 1710.0 (m, CO), 1336.5 (s), 1215.7 (m), 1158.9 (s, SO2), 1215.7 (s, C-

N), 746.0 (s), 546.9 (s) cm-1; HR-MS: calculated for C16H17
79BrNO3S 382.0113, found 382.0108 

(Δ = -1.3 ppm, -0.5 mDa). 

 

 

N-(2-(4-Chlorophenyl)-2-oxoethyl)-N,4-dimethylbenzene sulfonamide (2-101a).[4] Isolated 

yield 73%; 1H NMR (400 MHz, CDCl3) δ 7.94 (d, J = 8.6 Hz, 2H), 7.71 (d, J = 8.3 Hz, 2H), 7.45 (d, 

J = 8.6 Hz, 2H), 7.34 (d, J = 8.3 Hz, 2H), 4.48 (s, 2H), 2.79 (s, 3H), 2.44 (s, 3H); 13C NMR (101 

MHz, CDCl3) δ 192.91 (C), 143.94 (C), 140.53 (C), 134.58 (C), 133.14 (C), 129.95 (CH), 129.88 

(CH), 129.30 (CH), 127.70 (CH), 56.29 (CH2), 35.76 (CH3), 21.70 (CH3); IR (neat) ν = 1691.9 (s, 

CO), 1338.7 (s, SO2), 1158.8 (s, SO2), 1225.2 (s, NC), 1088.0 (s), 818.9 (s), 756.5 (w), 649.5 (s), 

574.8 (s, CCl) cm-1; HR-MS calculated for C16H17
35ClNO3S 338.0618, found 338.0632 (Δ = 4.1 

ppm, mDa = 0.14); Melting point: 106-108 °C (crystallised from EtOAc / Hexane). 

 

 

N-(2-(3-Chlorophenyl)-2-oxoethyl)-N,4-dimethylbenzene sulfonamide (2-102a). Isolated 

yield: 58%; 1H NMR (400 MHz, CDCl3) δ 7.92 (t, J = 1.8 Hz, 1H), 7.88 (dt, J = 7.9, 1.8 Hz, 1H), 

7.71 (d, J = 8.3 Hz, 2H), 7.57 (ddd, J = 7.9, 1.8, 1.0 Hz, 1H), 7.43 (t, J = 7.9 Hz, 1H), 7.34 (d, J = 
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8.3 Hz, 2H), 4.52 (s, 2H), 2.81 (s, 3H), 2.45 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 192.79 (C), 

143.92 (C), 136.33 (C), 135.32 (C), 134.75 (C), 133.92 (CH), 130.32 (CH), 129.88 (CH), 128.41 

(CH), 127.69 (CH), 126.59 (CH), 56.26 (CH2), 35.78 (CH3), 21.71 (CH3); IR (neat) ν = 3677.5, 

2918.6 (s), 1707.8 (s, CO), 1335.6 (s, SO2), 1157.1 (s, SO2) 1219.4 (s, C-N) 771.0 (s), 656.7 (s), 

546.7(s, C-Cl) cm-1; HR-MS calculated for C16H17NO3S35Cl 338.0618, found 338.0619 (Δ = 2.7 

ppm); Melting point: 93-96 °C (crystallised from MeOH / Et2O). 

 

 

N-(2-(4-Fluorophenyl)-2-oxoethyl)-N,4-dimethylbenzene sulfonamide (2-104a). Isolated 

yield 65%; 1H NMR (400 MHz, CDCl3) δ 8.04 (m, 2H), 7.71 (d, J = 8.2 Hz, 2H), 7.37 – 7.31 (m, 

2H), 7.15 (m, 2H), 4.48 (s, 2H), 2.79 (s, 3H), 2.44 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 192.46 

(C), 166.2 (C, d, J = 256.3 Hz), 143.9 (C), 134.5 (C), 131.3 (CH, d, J = 9.5 Hz), 131.2 (C, d, J = 2.9 

Hz), 129.8 (CH), 127.7 (CH), 116.1 (CH, d, J = 22.0 Hz), 56.2 (CH2), 35.7 (CH3), 21.7 (CH3); IR 

(neat) ν = 1690 (s, CO), 1595.2 (s), 1336.6 (s), 1153.1 (s, SO2), 1228.7 (C-F), 1162.7 (s, CN), 

733.3 (s), 546.8 (s) cm-1; HR-MS calculated for C16H17FNO3S 322.0913, found 322.0912 (Δ = 0.3 

ppm, ,-0.1 mDa). 

 

 

 N-(2-(4-Fluoro)-2-oxoethyl)-N,4-dimethylbenzene sulfonamide (2-105a). Isolated yield 

47%; 1H NMR (400 MHz, CDCl3) δ 7.89 (td, J = 7.5, 1.9 Hz, 1H), 7.72 (d, J = 8.3 Hz, 2H), 7.56 (m, 

1H), 7.34 – 7.31 (m, 2H), 7.30 – 7.21 (m, 1H), 7.15 (ddd, J = 11.2, 8.3, 1.9 Hz, 1H), 4.58 (d, J = 

3.4 Hz, 2H), 2.89 (s, 3H), 2.44 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 192.15 (C, d, J = 5.6 Hz), 

163.44 (C), 160.91 (C), 143.58 (C), 135.62 (CH), 135.53 (CH), 130.94 (CH, d, J = 3.1 Hz), 128.69 

(CH, d, J = 212.9 Hz), 124.94 (CH, d, J = 3.2 Hz), 123.36 (C, d, J = 14.7 Hz), 116.76 (CH, d, J = 

23.7 Hz), 59.78 (CH2, d, J = 11.7 Hz), 36.02 (CH3), 21.69(CH3); IR (neat) ν = 1687.6 (m), 1608.4 

(m), 1337.8 (m), 1160.7 (m), 925.4 (s), 844.8 (m), 810.8 (m), 769.1 (s), 737.4 (s), 658.7 (s), 

548.2 (s), 527.5 (s) cm-1; HR-MS calculated for C16H27FNO3S 322.0913, found 322.0912 (Δ = -

0.3 ppm, -0.1 mDa); Melting point: 103-106.8 °C (crystallised CH3OH / Et2O). 

 

  

Field Code Changed
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N-(2-(2-Methyl)-2-oxoethyl)-N,4-dimethylbenzene sulfonamide (2-106a). Isolated yield 

83%; 1H NMR (400 MHz, CDCl3) δ 7.69 (d, J = 8.3 Hz, 2H), 7.65 (dd, J = 7.5, 1.4 Hz, 1H), 7.37 

(td, J = 7.5, 1.4 Hz, 1H), 7.31 – 7.20 (m, 4H), 4.43 (s, 2H), 2.82 (s, 3H), 2.43 (s, 3H); 13C NMR 

(101 MHz, CDCl3) δ 197.24 (C), 143.55 (C), 138.73 (C), 134.94 (C), 134.90 (C), 132.11 (CH), 

132.04 (CH), 129.66 (CH), 128.56 (CH), 127.42 (CH), 125.79 (CH), 57.63 (CH2), 35.71 (CH3), 

21.46 (CH3), 21.12 (CH3); IR (neat) ν = 1698.4 (m), 1333.8 (m), 1157.6 (s, SO2), 662.2 (m), 546.3 

(s) cm-1; HR-MS calculated for C17H20NO3S 318.1164, found 318.1165 (Δ = 0.3 ppm, 0.1 mDa). 

 

 

N-4-Dimethyl-N-(1-oxo-1-(p-tolyl)propan-2-yl)benzenesulfonamide (2-107a). Isolated yield 

75%; 1H NMR (400 MHz, CDCl3) δ 7.87 (d, J = 8.0 Hz, 2H), 7.72 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 

8.0 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 4.53 (s, 2H), 2.81 (s, 3H), 2.44 (s, 3H), 2.41 (s, 3H); 13C NMR 

(101 MHz, CDCl3) δ 193.35 (C), 144.89 (C), 143.68 (C), 134.80 (C), 132.32 (C), 129.75 (CH), 

129.54 (CH), 128.42 (CH), 127.61 (CH), 56.02 (CH2), 35.64 (CH3), 30.98 (CH3), 21.60 (CH3); IR 

(neat) ν = 1692.9 (m), 1603.0 (m), 1334.6 (s), 1164.8 (s), 969.1 (m), 926.7 (s), 814.9 (s), 737.7 

(s), 653.7 (s), 547.0 (s), 459.6 (m) cm-1; HR-MS calculated for C17H20NO3S 318.1164, found 

318.1175 (Δ = 3.5 ppm, 1.1 mDa); Melting Point 115-117 °C (crystallised Hexane / EtOAc). 

 

 

N-(2-(4-Methoxyphenyl)-2-oxoethyl)-N,4-dimethylbenzene sulfonamide (2-108a). Isolated 

yield 78%; 1H NMR (400 MHz, CDCl3) δ 7.96 (d, J = 8.9 Hz, 1H), 7.70 (d, J = 8.3 Hz, 1H), 7.31 (d, 

J = 8.3 Hz, 1H), 6.93 (d, J = 8.9 Hz, 1H), 4.46 (s, 2H), 3.85 (s, 3H), 2.78 (s, 3H), 2.42 (s, 3H); 13C 

NMR (101 MHz, CDCl3) δ 192.26 (C), 164.12 (C), 143.70 (C), 134.71 (C), 130.78 (CH), 129.76 

(CH), 127.85 (C), 127.64 (CH), 114.06 (CH), 55.95 (CH2), 55.61 (CH3), 35.65 (CH3), 21.61 (CH3); 

IR (neat) ν = 1684.3 (s), 1584.2 (s), 1342.7 (s), 1260.2 (s), 1153.4 (s, SO2), 1006.3 (m) cm-1; HR-

MS calculated for C17H20NO4S 334.1113, found 334.1117 (Δ = 4.5 ppm, -0.4 mDa); 

 

 

N-(2-(3-Methoxyphenyl)-2-oxoethyl)-N,4-dimethylbenzene sulfonamide (2-109a). Isolated 

yield 75%;  1H NMR (400 MHz, CDCl3) δ 7.72 (d, J = 8.2 Hz, 2H), 7.55 (dt, J = 8.0, 1.2 Hz, 1H), 
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7.50 (dd, J = 2.7, 1.2 Hz, 1H), 7.38 (t, J = 8.0 Hz, 1H), 7.33 (d, J = 8.2, Hz, 2H), 7.14 (ddd, J = 8.0, 

2.7, 1.2 Hz, 1H), 4.54 (s, 1H), 3.85 (s, 2H), 2.82 (s, 1H), 2.44 (s, 1H); 13C NMR (101 MHz, CDCl3) 

δ 193.70 (C), 160.00 (C), 143.77 (C), 136.10 (C), 134.87 (C), 129.94 (CH), 129.83 (CH), 127.66 

(CH), 120.89 (CH), 120.67 (CH), 112.49 (CH), 56.28 (CH2), 55.62 (CH3), 35.70 (CH3), 21.68 (CH3); 

IR (neat) ν = 2909.6 (s),1693.9 (m) 1593.9 (w), 1597.1 (w), 1486.0 (w), 1426.3 (w), 1332.3 (m), 

1262.7 (m), 1194.0 (w), 789.8 (w), 661.9 (m), 544.5 (s) cm-1; HR-MS calculated for C17H20NO4S 

334.1113, found 334.1110 (Δ = -0.9 ppm, -0.3 mDa). 

 

 

N-(2-(2-Methoxyphenyl)-2-oxoethyl)-N,4-dimethylbenzene sulfonamide (2-110a). Isolated 

yield 58%; 1H NMR (400 MHz, CDCl3) δ 7.75 (dd, J = 7.8, 1.8 Hz, 1H), 7.71 (d, J = 8.3 Hz, 2H), 

7.49 (ddd, J = 8.4, 7.8, 1.8 Hz, 1H), 7.32 – 7.28 (m, 2H), 7.04 – 6.94 (m, 2H), 4.62 (s, 2H), 3.92 

(s, 3H), 2.87 (s, 3H), 2.42 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 195.08 (C), 159.17 (C), 143.30 

(C), 135.83 (C), 134.73 (CH), 130.87 (CH), 129.57 (CH), 127.61 (CH), 125.37 (C), 120.97 (CH), 

111.61 (CH), 60.27 (CH2), 55.66 (CH3), 35.84 (CH3), 21.64 (CH3); IR (neat) ν = 3489.2 (w), 1682.7 

(w), 1596.3 (w), 1333.9 (m), 1156.0 (m), 923.6 (w), 550.4 (m), 548.0 (s), 518.1 (m) cm-1; HR-

MS calculated for C17H20NO4S 334.1113, found 334.1113 (Δ = 4.5 ppm, 0.0 mDa); Melting 

point: 151-152.5 °C (crystallised EtOAc / Hexane). X-Ray data: CCDC 1909069; Formula: 

C17H19NO4S, Unit Cell Parameters: a 7.0323(2) b 15.1708(5) c 30.0395(10) Pbca. 

 

 

 

N-(2-(4-Cyanophenyl)-2-oxoethyl)-N,4-dimethylbenzene sulfonamide (2-111a). Isolated 

yield 70%; 1H NMR (400 MHz, CDCl3) δ 8.08 (d, J = 8.7 Hz, 2H), 7.80 (d, J = 8.7 Hz, 2H), 7.74 (d, 

J = 8.0 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 4.44 (s, 2H), 2.63 (s, 3H), 2.42 (s, 3H); 13C NMR (101 

MHz, CDCl3) δ 190.2 (C), 143.6 (C), 137.0 (C), 135.9 (C), 132.7 (CH), 129.8 (CH), 129.5 (CH), 

127.3 (CH), 117.7 (C), 117.2 (C), 30.2 (CH2), 29.4 (CH3), 21.6 (CH3); IR (neat) ν = 3268.5 (s), 
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3091.2 (s), 3046.9 (s), 2224.2 (s), 1706.8 (s, CO), 1316.3 (s, SO2), 1154.7 (s, SO2), 1089.1 (s), 

824.6 (s), 673.3 (s), 541.4 (s) cm-1; HR-MS calculated for C17H17N2O3S 329.0960, found 

329.0974 (Δ = 4.4 ppm, mDa = 0.14). 

 

 

N-(2-([1,1'-Biphenyl]-4-yl)-2-oxoethyl)-N,4-dimethylbenzene sulfonamide (2-112a). Isolated 

yield 68%; 1H NMR (400 MHz, CDCl3) δ 8.06 (d, J = 8.4 Hz, 1H), 7.75 (d, J = 8.3 Hz, 1H), 7.70 (d, 

J = 8.4 Hz, 1H), 7.65 – 7.59 (m, 1H), 7.48 (t, J = 7.4 Hz, 1H), 7.44 – 7.38 (m, 1H), 7.34 (d, J = 8.3 

Hz, 1H), 4.58 (s, 1H), 2.84 (s, 2H), 2.45 (s, 2H); 13C NMR (101 MHz, CDCl3) δ 193.44 (C), 146.58 

(C), 143.76 (C), 139.70 (C), 134.82 (C), 133.52 (C), 129.81 (CH), 129.10 (CH), 129.01 (CH), 

128.52 (CH), 127.68 (CH), 127.49 (CH), 127.36 (CH), 56.25 (CH2), 35.74 (CH3), 21.67 (CH3); IR 

(neat) ν = 2921.4 (s), 1699.7 (s, CO), 1601.5 (s), 1340.5 (s), 1324.8 (s), 1228.4 (s), 1150.5 (s), 

759.35 (s), 957.9 (s), 542.59 (s) cm-1; HR-MS calculated for C22H22NO3S 380.1320, found 

380.1328 (Δ = 2.1 ppm, 0.8 mDa); Melting Point: 138.7-141 °C (crystallised Hexane / EtOAc). 

 

 

N-(2-(Benzo[d][1,3] dioxol-5-yl)-2-oxoethyl)-N,4-dimethylbenzene sulfonamide (2-113a). 

Isolated yield 80%; 1H NMR (400 MHz, CDCl3) δ 7.70 (d, J = 8.3 Hz, 2H), 7.61 (dd, J = 8.2, 1.7 

Hz, 1H), 7.41 (d, J = 1.7 Hz, 1H), 7.32 (d, J = 8.3 Hz, 2H), 6.85 (d, J = 8.2 Hz, 1H), 6.04 (s, 2H), 

4.44 (s, 2H), 2.79 (s, 3H), 2.43 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 191.8 (C), 152.4 (C), 148.4 

(C), 143.7 (C), 134.7 (C), 129.7 (CH), 129.5 (C), 127.6 (CH), 124.9 (CH), 108.2 (CH), 108.0 (CH), 

102.0 (CH2), 56.0 (CH2), 35.6 (CH3), 21.6 (CH3); IR (neat) ν = 1686.2 (s, CO), 1602.7 (s), 1487.9 

(s), 1446.3 (s), 1301.9 (s), 1251.2 (s), 1156.7 (s), 1035.3 (s), 982.2 (s), 933.3 (s). 881.5 (s), 806.8 

(s), 741.4 (s), 645.7 (s), 536.2 (s) cm-1; HR-MS calculated for C17H18NO5S 348.0906, found 

348.0921 (Δ = 4.3 ppm, 1.5 mDa), Melting point: 84-87 °C (crystallised EtOAc / Hexane). 

 

 

N-(2-(3,4-Dimethoxyphenyl)-2-oxoethyl)-N,4-dimethylbenzene sulfonamide (2-114a). 

Isolated yield 80%; 1H NMR (400 MHz, CDCl3) δ 7.69 (d, J = 8.0 Hz, 2H), 7.65 (dd, J = 8.4, 2.0 

Hz, 1H), 7.53 (d, J = 2.0 Hz, 1H), 7.30 (d, J = 8.0 Hz, 2H), 6.88 (d, J = 8.4 Hz, 1H), 4.44 (s, 2H), 
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3.92 (s, 3H), 3.90 (s, 3H), 2.76 (s, 3H), 2.40 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 192.00 (C), 

153.90 (C), 149.12 (C), 143.68 (C), 134.58 (C), 129.74 (CH), 127.87 (C), 127.57 (CH), 123.24 

(CH), 110.61 (CH), 110.29 (CH), 56.16 (CH3), 56.09 (CH3), 55.99 (CH2), 35.57 (CH3), 21.58 (CH3); 

IR (neat) ν = 1683.7 (s), 1584.7 (s), 1341.6 (s), 1261.4 (s), 1151.7 (s, SO2), 1008.8 (m) cm-1; HR-

MS calculated for C18H22NO5S 364.1219, found 364.1207 (Δ = -3.3 ppm, -1.2 mDa); Melting 

point: 132.5-133.9 °C. 

 

 

N-(2-(4-Trifluoromethyl)-2-oxoethyl)-N,4-dimethylbenzene sulfonamide (2-115a).[4] 

isolated yield 70%; 1H NMR (400 MHz, CDCl3) δ 8.10 (d, J = 8.0 Hz, 2H), 7.72 (m, 4H), 7.34 (d, J 

= 8.0 Hz, 2H), 4.53 (s, 2H), 2.80 (s, 3H), 2.44 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 193.30 (C), 

144.05 (C), 137.44 (C), 135.11 (q, J = 32.7 Hz, C), 134.43 (C), 129.92 (CH), 128.90 (CH), 127.67 

(CH), 125.99 (q, J = 3.8 Hz, CH), 123.55 (q, J = 272.9 Hz, C), 56.53 (CH2), 35.80 (CH3), 21.68 

(CH3); IR (neat) ν = 1704.7 (m), 1322.7 (s), 1122.2 (m), 1161.0 (s), 1126.6 (s), 1066.2 (s), 735.9 

(m), 550.7 (m) cm-1; HR-MS calculated for C17H17F3NO3S 372.0881, found 322.0877 (Δ = -0.4 

mDa). 

 

 

N,4-Dimethyl-N-(2-oxo-2-(pyridin-2-yl)ethyl)benzenesulfonamide (2-116a). Isolated yield 

30%; 1H NMR (400 MHz, CDCl3) δ 8.65 – 8.57 (m, 1H), 7.97 (d, J = 7.8 Hz, 1H), 7.82 (td, J = 7.8, 

1.5 Hz, 1H), 7.73 (d, J = 8.1 Hz, 2H), 7.48 (ddd, J = 7.8, 4.8, 1.5 Hz, 1H), 7.31 (d, J = 8.1 Hz, 2H), 

4.91 (s, 2H), 2.89 (s, 3H), 2.41 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 194.77 (C), 152.03 (C), 

149.07 (CH), 143.42 (C), 137.16 (CH), 135.61 (C), 129.71 (CH), 127.92 (CH), 127.50 (CH), 121.97 

(CH), 55.88 (CH2), 35.91 (CH3), 21.60 (CH3); IR (neat) ν = 3056.5 (w), 1714.5 (m), 1598.2 (w), 

1434.0 (w), 1335.8 (s), 1225.8 (w), 1159.6 (s), 1089.4 (m), 970.3 (m), 925.6 (m), 792.2 (s), 

681.15 (m), 646.9 (m), 548.4 (s) cm-1; HR-MS calculated for C15H17N2O3S 305.0960, found 

305.0950 (Δ = -3.3 ppm, -1.0 mDa). 
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N-(2-(furan-2-yl)-2-oxoethyl)-N,4-dimethylbenzenesulfonamide (2-117a). 1H NMR (400 

MHz, CDCl3) δ 7.94 (d, J = 4.0 Hz, 1H), 7.75 – 7.64 (m, 3H), 7.32 (d, J = 8.0 Hz, 2H), 7.15 (t, J = 

4.0 Hz, 1H), 4.41 (s, 2H), 2.82 (s, 3H), 2.43 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 187.03 (C), 

143.90 (C), 141.09 (C), 134.76 (CH), 134.44 (C), 133.48 (CH), 129.84 (CH), 128.58 (CH), 127.64 

(CH), 56.52 (CH2), 35.85 (CH3), 21.66 (CH3). IR (neat) ν = 1704.3 (m), 1290.6 (m), 1150.1 

(s),726.5 (s), 547.9 (s) cm-1 

 

4-Methyl-N-(2-oxo-2-phenylethyl)-N-propylbenzene sulfonamide (2-119a). Isolated yield 

32%; 1H NMR (400 MHz, CDCl3) δ 7.94 (d, J = 7.3 Hz, 2H), 7.74 (d, J = 8.1 Hz, 2H), 7.59 (t, J = 

7.3 Hz, 1H), 7.47 (t, J = 7.3 Hz, 2H), 7.29 (d, J = 8.1 Hz, 2H), 4.74 (s, 2H), 3.28 – 3.15 (m, 2H), 

2.42 (s, 3H), 1.50 (hex, J = 7.4 Hz, 2H), 0.81 (t, J = 7.4 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 

194.20 (C), 143.37 (C), 137.00 (C), 135.05 (C), 133.85 (CH), 129.62 (CH), 128.92 (CH), 128.16 

(CH), 127.57 (CH), 53.09 (CH2), 50.20 (CH2), 21.66 (CH3), 21.37 (CH2), 11.21 (CH3); IR (neat) ν = 

2981.3 (s), 1696.4 (s), 1584.9 (s), 1393.8 (s), 1342.9 (s), 1251.5 (s), 1155,8 (s), 801.7 (s) cm-1; 

HR-MS calculated for C18H22NO3S 332.1320 found, 332.1327 (Δ = 2.1 ppm, 0.7 mDa); Melting 

point: 59.9-61.7 °C (crystallised Et2O / Hexane). 

 

 

N,4-Dimethyl-N-(1-oxo-1-phenylbutan-2-yl)benzene sulfonamide (2-120a). Isolated yield 

40%; 1H NMR (400 MHz, CDCl3) δ 8.02 (d, J = 7.4 Hz, 2H), 7.58 (m, 3H), 7.47 (t, J = 7.4 Hz, 2H), 

7.18 (d, J = 7.9 Hz, 2H), 5.45 (t, J = 7.4 Hz, 1H), 2.81 (s, 3H), 2.36 (s, 3H), 1.92 (dt, J = 13.7, 7.4 

Hz, 1H), 1.45 (dt, J = 13.7, 7.4 Hz, 1H), 0.92 (t, J = 7.4 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 

197.66 (C), 143.47 (C), 136.25 (C), 135.86 (C), 133.64 (CH), 129.62 (CH), 128.86 (CH), 128.75 

(CH), 127.34 (CH), 60.34 (CH), 29.92 (CH3), 21.55 (CH3), 21.26 (CH2), 11.05 (CH3); IR (neat) ν = 

1685.0 (s), 1330.2 (s), 1149.7 (s), 567.2 (s), 544.6 (s) cm-1; HR-MS calculated for C18H22NO3S 

332.1320, found 332.1326 (Δ = 1.8 ppm, 0.6 mDa); Melting point: 79.0-80.2 °C (crystallised 

Hexane / EtOAc). 
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N-(2-(4-Chlorophenyl)-2-oxoethyl)-N-isobutyl-4-methylbenzene sulfonamide (2-121a). 

Isolated yield 20%; 1H NMR (400 MHz, CDCl3) δ 7.88 (d, J = 8.6 Hz, 2H), 7.70 (d, J = 8.1 Hz, 2H), 

7.45 (d, J = 8.6 Hz, 2H), 7.29 (d, J = 8.1Hz, 2H), 4.66 (s, 2H), 3.04 (d, J = 7.5 Hz, 2H), 2.42 (s, 3H), 

1.81 – 1.63 (m, 1H), 0.84 (s, 3H), 0.83 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 193.21 (C), 143.52 

(C), 140.40 (C), 136.63 (C), 133.37 (C), 129.67 (CH), 129.64 (CH), 129.29 (CH), 127.64 (CH), 

56.18 (CH2), 53.86 (CH2), 27.06 (CH3), 21.70 (CH3), 20.12 (CH3); IR (neat) ν = 1703.7 (m), 1287.9 

(m), 1154.9 (s), 1090.0 (s), 726.5 (s), 547.9 (s) cm-1; HR-MS calculated for C19H23NO3SCl 

380.1087, found  380.1088 (Δ = 0.3 ppm, 0.1 mDa). 

 

 

N-4-Dimethyl-N-(1-oxo-1-(p-tolyl)propan-2-yl)benzene sulfonamide (2-122a). Isolated yield 

65%; 1H NMR (400 MHz, CDCl3) δ 8.01 (d, J = 8.3 Hz, 2H), 7.67 (d, J = 8.3 Hz, 2H), 7.30 – 7.24 

(m, 4H), 5.64 (q, J = 6.9 Hz, 1H), 2.69 (s, 3H), 2.42 (s, 3H), 2.41 (s, 3H), 1.14 (d, J = 6.9 Hz, 3H); 

13C NMR (101 MHz, CDCl3) δ 197.1 (C), 144.6 (C), 143.7 (C), 136.1 (C), 132.5 (C), 129.8 (CH), 

129.5 (CH), 129.2 (CH), 127.5 (CH), 55.3 (CH), 29.8 (CH3), 21.8 (CH3), 21.6 (CH3), 12.5 (CH3); IR 

(neat) ν= 2923.6. (s), 1685.1 (s, CO), 1603.0 (s), 1446.6 (s), 1250.0 (s), 1156.3 (s), 1087.7 (s), 

1035.0 (s), 982.2 (s), 806.4 (s), 536.1 (s) cm-1; HR-MS calculated for C18H22NO3S 332.1320, 

found 332.1335 (Δ = 4.5 ppm, 1.5 mDa); Melting point: 67-70 °C (EtOAc / Hexane). 

 

 

N-(2-(4-Bromophenyl)-2-oxoethyl)-3-methoxy-N-methylbenzene sulfonamide (2-123a). 

Isolated yield 40%; 1H NMR (400 MHz, CDCl3) δ 7.85 (d, J = 8.6 Hz, 2H), 7.62 (d, J = 8.6 Hz, 2H), 

7.48 – 7.37 (m, 2H), 7.33 (dd, J = 2.6, 1.3 Hz, 1H), 7.13 (ddd, J = 8.0, 2.6, 1.3 Hz, 1H), 4.51 (s, 

3H), 3.85 (s, 3H), 2.82 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 193.00 (C), 160.07 (C), 138.77 (C), 

133.50 (C), 132.31 (CH), 130.32 (CH), 129.94 (CH), 129.34 (C), 119.73(CH), 119.28 (CH), 

112.52(CH), 56.16 (CH2), 55.80 (CH3), 35.82 (CH3). IR (neat) ν = 1720.3 (m), 1280.6 (m), 1160.3 

(s), 740.5 (s), 548.2 (s) cm- 
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2,4,6-Triisopropyl-N-methyl-N-(2-oxo-2-phenylethyl)benzene sulfonamide (2-124a). 

Isolated yield 40%; 1H NMR (400 MHz, CDCl3) δ 7.96 (d, J = 7.4 Hz, 2H), 7.60 (t, J = 7.4 Hz, 1H), 

7.48 (t, J = 7.4 Hz, 2H), 7.17 (s, 2H), 4.71 (s, 2H), 4.22 – 4.06 (m, 2H), 2.96 – 2.84 (m, 1H), 2.82 

(s, 3H), 1.29 – 1.20 (m, 18H); 13C NMR (101 MHz, CDCl3) δ 193.32 (C), 153.49 (C), 151.98 (C), 

150.66 (C), 135.24 (C), 133.86 (CH), 128.95 (CH), 128.16 (CH), 124.15 (CH), 53.28 (CH2), 34.96 

(CH), 34.30 (CH), 29.68 (CH3), 24.95 (CH3), 23.68 (CH3); IR (neat) ν = 2958.9 (m), 1702.3 (m), 

1549.3 (m), 1317.2 (m), 1152.1 (s), 883.2 (m), 735.1 (s), 547.1 (m) cm-1; HR-MS calculated for 

C24H34NO3S 416.2259, found 416.2275 (Δ = 3.8 ppm, 1.6 mDa). 

 

 

2-(Methyl(phenyl)amino)-1-phenylethan-1-one (2-126a).[5] Isolated yield 65%. 1H NMR (400 

MHz, CDCl3) δ 8.00 (d, J = 7.2 Hz, 2H), 7.62 (t, J = 7.6 Hz, 1H), 7.51 (t, J = 7.6 Hz, 2H), 7.32 – 

7.14 (m, 2H), 6.74 (t, J = 7.2 Hz, 1H), 6.70 (d, J = 7.6 Hz, 2H), 4.79 (s, 2H), 3.12 (s, 3H); 13C NMR 

(101 MHz, CDCl3) δ 196.5 (C), 149.3 (C), 135.6 (C), 133.6 (CH), 129.3 (CH), 128.9 (CH), 127.9 

(CH), 117.1 (CH), 112.3 (CH), 59.0 (CH2), 39.6 (CH3); IR (neat) ν = 1692.8 (s, CO), 1595.7 (s), 

1506.7 (s), 1215.3 (s, CN), 1256.2 (s, CN), 748.7 (s), 689.17 (s) cm-1; HR-MS calculated C15H16NO 

226.1232, found 226.1240 (Δ = 3.5 ppm); X-Ray data: CCDC 1909071; Formula: C17H19NO4S, 

Unit Cell Parameters: a 8.6115(11) b 9.5954(10) c 29.077(4) Pbca. 

 

 

 

N,4-Dimethyl-N-(2-oxopropyl)benzene sulfonamide (2-131a). Isolated yield 50%; 1H NMR 

(400 MHz, CDCl3) δ 7.52 (d, J = 8.1 Hz, 2H), 7.19 (d, J = 8.1 Hz, 2H), 3.75 (s, 2H), 2.63 (s, 3H), 

2.27 (s, 3H), 2.03 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 202.99 (C), 143.41 (C), 134.15 (C), 129.47 

(CH), 127.03 (CH), 58.90 (CH2), 35.72 (CH3), 26.65 (CH3), 21.13 (CH3); IR (neat) ν = 1694.0 (s), 

1603.7 (s), 1321.1 (s), 1229.7 (s), 1153.9 (s), 1091.8 (s), 974.4 (s), 757.8 (s), 421.1 (s) cm-1; HR-

MS: calculated for C11H16NO3S 242.0851 found, 242.0854 (Δ = 4.7 ppm, 0.3 mDa). 
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N,4-Dimethyl-N-(2-2,2dimethyl-oxobutyl)benzene sulfonamide (2-132a). Isolated yield 45%; 

1H NMR (400 MHz, CDCl3) δ 7.64 (d, J = 8.1 Hz, 2H), 7.27 (d, J = 8.1 Hz, 1H), 4.16 (s, 2H), 2.75 

(s, 3H), 2.38 (s, 3H), 1.10 (s, 9H); 13C NMR (101 MHz, CDCl3) δ 209.06 (C), 143.39 (C), 135.60 

(C), 129.58 (CH), 127.38 (CH), 53.76 (CH2), 43.29 (C), 35.44 (CH3), 26.69 (CH3), 26.22 (CH3). IR 

(neat) ν = 1680.3 (s), 1623.3 (s), 1311.5 (s), 1166.2 (s), 1100.7 (s), 980.1 (s), 760.2 (s), 424.7 (s) 

cm-1 

 

Synthesis of compound 2-130a 

 

A mixture of cyclohexene oxide (1.96 g, 20 mmol, 1.0 equiv.), N-methyl-p-tosylamide (1.2 

equiv.) and K2CO3 (1.5 equiv.) in acetonitrile (20 mL) was loaded into a Biotage 20 mL 

microwave vial. The solution was stirred and irradiated for 7 h at 90 °C. After cooling water 

(20 mL) was added and the mixture was extracted with EtOAc (30 mL x 2) washed with brine 

(25 mL) and dried over Na2SO4. The solvent was removed under reduced pressure to obtain 

as a colourless oil which was used in the next step without further purification.  

 

The amino alcohol intermediate (2.83 g; 10 mmol) was dissolved in acetone (100 mL) and 

freshly prepared Jones reagent (Aldrich; Cat No. 758035) was slowly added dropwise until the 

solution remained red. The solution was stirred for an additional 2 h. Isopropyl alcohol (10 

mL) was added, and the mixture stirred for 10 min, the mixture was diluted with Et2O (200 

mL). The solution was washed sequentially with NaHCO3 (100 mL), saturated NaHCO3 (50 mL), 

brine (50 mL) and dried over Na2SO4. The solvent was removed by evaporation to obtain a 

white solid which was purified by column chromatography (EtOAc / Hexane 6:4). 

 

 

2-(Methyl(phenyl)amino)cyclohexan-1-one (2-130a). Isolated yield 60%; 1H NMR (400 MHz, 

CDCl3) δ 7.20 (d, J = 7.1 Hz, 2H), 6.76 – 6.69 (m, 3H), 4.38 – 4.31 (m, 1H), 2.91 (s, 3H), 2.59 – 

2.51 (m, 1H), 2.40 (m, 1H), 2.26 – 2.18 (m, 1H), 2.16 – 1.93 (m, 3H), 1.86 – 1.61 (m, 2H); 13C 
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NMR (101 MHz, CDCl3) δ 208.9 (C), 149.9 (C), 129.2 (CH), 117.4 (CH), 113.4 (CH), 67.3 (CH), 

42.1 (CH2), 34.3 (CH3), 31.7 (CH2), 27.1 (CH2), 25.3 (CH2); IR (neat) ν = 1594.6 (CO), 1496.5 (s), 

1215.2 (s, CN), 748.5 (s), 690.6 (s) cm-1; HR-MS calculated for C13H18NO 204.1388, found 

204.1385 (Δ = -1.5 ppm, -0.3 mDa). 

 

 

N-(2-(4-Chlorophenyl)-2-oxoethyl)-N-methylacetamide (2-137a).[7] Isolated yield 55%; 1H 

NMR (400 MHz, CDCl3) δ 7.86 (d, J = 8.6 Hz, 2H), 7.41 (d, J = 8.6 Hz, 2H), 4.76 (s, 2H), 3.07 (s, 

3H), 2.16 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 193.44 (C), 171.36 (C), 140.10 (C), 133.51 (C), 

129.45 (CH), 129.14 (CH), 53.98 (CH2), 37.39 (CH3), 21.42 (CH3); IR (neat) ν = 2920.0 (W), 

1691.7 (s), 1627.8 (s, CO), 1584.8 (m), 1396.2 (s), 1294.4 (m), 1219.2 (s), 1074.5. (s), 1004.5 

(m), 965.4 (m), 814.5 (s), 703.7 (s), 562.7 (m), 552.3 (m) cm-1; HR-MS: calculated for 

C11H13NO2
35Cl 226.0635, found 226.0630 (Δ = -2.2 ppm, -0.5 mDa); Melting point 119.0-

120.9 °C (recrystallized from Hexane / EtOAc). 

 

 

tert-Butyl methyl(2-oxo-2-phenylethyl)carbamate (2-133a).[6] Isolated yield 50%; NMR data 

show the presence of rotamers. 1H NMR (400 MHz, CDCl3) δ 7.95 – 7.89 (m, 2H), 7.61 – 7.52 

(m, 1H), 7.51 – 7.37 (m, 2H), 4.66 (d, 2H), 2.95 (d, 3H), 1.47 (d, 9H); 13C NMR (101 MHz, CDCl3) 

δ 195.24 (C), 194.90 (C), 156.33 (C), 155.80 (C), 135.39 (C), 135.36 (C), 133.57 (CH), 133.53 

(CH), 128.88 (CH), 128.76 (CH), 127.97 (CH), 127.80 (CH), 80.10 (C), 80.06 (C), 55.77 (CH2), 

55.16 (CH2), 35.79 (CH3), 35.70 (CH3), 28.46 (CH3), 28.31 (CH3); IR (neat) ν = 2978.1 (s), 2930.3 

(s), 1686.12 (s, CO), 1144.9 (s), 881.3 (s), 753.4 (s), 688.8 (s), 632.5 (s) cm-1; HR-MS: calculated 

for C14H18NO3 248.1287, found 248.1274 (Δ = -5.2 ppm, -1.3 mDa). 

 

 

tert-Butyl (2-(4-chlorophenyl)-2-oxoethyl)(methyl)carbamate (2-134a). Isolated yield 52%; 

NMR data show the presence of rotamers. 1H NMR (400 MHz, CDCl3) δ 7.91 – 7.82 (m, 2H), 

7.46 – 7.38 (m, 2H), 4.57 (app. d, 2H), 2.93 (app. d, 3H), 1.41 (app. d, 9H); 13C NMR (101 MHz, 

CDCl3) δ 194.26 (C), 193.82 (C), 156.27 (C), 155.66 (C), 140.07 (C), 140.00 (C), 133.63 (C), 
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129.44 (CH), 129.24 (CH), 129.12 (CH), 80.28 (C), 80.20 (C), 55.71 (CH2), 55.12 (CH2), 35.82 

(CH3), 35.69 (CH3), 28.45 (CH3), 28.31 (CH3); IR (neat) ν = 3060.1 (s), 2951.4 (s), 1689.7 (s), 

1627.3 (s, CO), 1584.3 (s), 1396.4 (s), 1218.9 (s), 1069.8 (s), 1004.4 (s), 813.2 (s), 703.33 (s), 

551.8 (s) cm-1; HR-MS: calculated for C14H17NO3
35Cl 282.0897, found  282.0883 (Δ = -5 ppm, -

1.4 mDa); Melting point: 82-85 °C (crystallised from CHCl3).  

 

 

tert-Butyl (2-(4-bromophenyl)-2-oxoethyl)(methyl)carbamate (2-136a). Isolated yield 40%; 

1H NMR (400 MHz, CDCl3) δ 7.71 – 7.65 (m, 2H), 7.47 (dd, J = 13.5, 8.5 Hz, 2H), 4.48 (d, J = 26.4 

Hz, 2H), 2.83 (d, J = 10.2 Hz, 3H), 1.31 (d, J = 48.2 Hz, 9H); 13C NMR (101 MHz, CDCl3) δ 194.08 

(C), 193.77 (C), 155.95 (C), 155.39 (C), 133.77 (C), 131.93 (CH), 131.81 (CH), 129.25 (CH), 

129.10 (CH), 128.44 (C), 128.39 (C), 79.87 (C), 79.77 (C), 55.43 (CH2), 54.85 (CH2), 35.54 (CH3), 

35.45 (CH3), 28.19 (CH3), 28.04 (CH3); IR (neat) ν = 3414.6 (s), 3289.4 (s), 2978.6 (s), 1665.3 (s, 

CO), 1428.9 (s), 1366.8 (s), 11169 (s), 1009.8 (s), 821.2 (s) cm-1; HR-MS: calculated for 

C9H11
79BrNO 228.0024 found, 228.0027 (Δ = 1.3 ppm, 0.3 mDa); Melting point: 90.6-91.9 °C 

(crystallised from Hexane / EtOAc). 

 

Synthesis of the azetidin-3-ol products (2-95 – 2-139). 

 

3-Phenyl-1-tosylazetidin-3-ol (2-95).[1] 0.15 M in CH3CN, isolated yield 76%; 1H NMR (400 

MHz, DMSO-d6) δ 7.76 (d, J = 8.0 Hz, 2H), 7.53 (d, J = 8.0 Hz, 2H), 7.31 – 7.17 (m, 5H), 6.35 (s, 

1H), 3.93 (d, J = 8.5 Hz, 2H), 3.83 (d, J = 8.5 Hz, 2H), 2.47 (s, 3H); 13C NMR (101 MHz, DMSO-

d6) δ 144.63 (C), 144.13 (C) , 130.9 (C), 130.4 (CH), 128.8 (CH), 128.5 (CH), 127.8 (CH), 125.0 

(CH), 69.0 (C), 65.7 (CH2), 21.5 (CH3); IR (neat) ν = 3478.8 (OH), 3062.7 (s), 2963.6 (CH), 1132.2 

(s), 1147.8 (SO), 1184.5 (s), 700.7 (s), 612.9 (s), 670.8 (s), 533.2 (s) cm-1; HR-MS calculated for 

C16H18NO3S 304.1007, found 304.1008 (Δ = 0.3 ppm, 0.1 mDa). Melting point: 126.5-128.5 °C 

(crystallised from EtOAc). X-Ray data: CCDC 1909065; Formula: C16H17NO3S, Unit Cell 

Parameters: a 12.8320(9) b 5.7430(4) c 19.8741(14) P21/n. 
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3-(4-Bromophenyl)-1-tosylazetidin-3-ol (2-98). 0.075 M in CH3CN, isolated yield 70%; 1H NMR 

(400 MHz, DMSO-d6) δ 7.74 – 7.69 (m, 2H), 7.47 (ddd, J = 9.3, 6.5, 5.3 Hz, 4H), 7.19 – 7.13 (m, 

2H), 6.42 (s, 1H), 3.89 (d, J = 9.0 Hz, 2H), 3.79 (d, J = 9.0 Hz, 2H), 2.44 (s, 3H); 13C NMR (101 

MHz, DMSO-d6) δ 144.2 (C), 143.1(C), 131.0 (CH), 130.4 (C), 130.0 (CH), 128.36 (CH), 127.0 

(CH), 120.5 (C), 68.2 (C), 65.0 (CH2), 21.0 (CH3); IR (neat) ν = 3441.2 (m, OH), 2980.6 (w, CH), 

1596.8 (w), 1488.7 (m, C=C), 1331.8 (s), 1146.6 (s, SO), 1181.7 (m, C-N), 825.7 (s), 675.6 

(s),617.4 (s), 533.8 (s, C-Br) cm-1; HR-MS calculated for C16H16
79BrNO3S 382.0113, found 

382.0103 (Δ = -2.6 ppm, -1.0 mDa); Melting point: 160-162 °C (crystallised from EtOAc). 

 

 

3-(3-Bromophenyl)-1-tosylazetidin-3-ol (2-99). 0.075 M in CH3CN, isolated yield: 68%; 1H 

NMR (400 MHz, CDCl3) δ 7.76 (d, J = 7.8 Hz, 2H), 7.49 – 7.13 (m, 6H), 4.04 (d, J = 8.9 Hz, 2H), 

3.98 (d, J = 8.9 Hz, 2H), 2.48 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 144.7 (C), 144.3 (C), 131.2 

(CH), 131.0 (C), 130.2 (CH), 130.0 (CH), 128.4 (CH), 127.8 (CH), 123.2 (CH), 122.8 (C), 69.8 (C), 

65.4 (CH2), 21.7 (CH3); IR (neat) ν = 3468.2 (w, OH), 1595.0 (w), 1561.0 (w), 1333.0 (m, SO2), 

1183.8 (s, CN), 1148.8 (s, SO2), 792.0 (s, CBr), 672.9 (s), 611.8 (s), 533.2 (s) cm-1; HR-MS 

calculated for C16H17NO3S79Br 382.0113, found 382.0107 (Δ = -1.6 ppm, -0.6 mDa). 
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3-(1-Bromophenyl)-1-tosylazetidin-3-ol (2-100). 0.15 M in CH3CN, isolated yield: 40%; 1H 

NMR (400 MHz, CDCl3) δ 7.71 (d, J = 8.3 Hz, 2H), 7.55 – 7.50 (m, 1H), 7.32 – 7.22 (m, 3H), 7.20 

– 7.12 (m, 2H), 4.35 (d, J = 9.9 Hz, 2H), 4.08 (d, J = 9.9 Hz, 2H), 2.39 (s, 3H); 13C NMR (101 MHz, 

CDCl3) δ 144.37 (C), 139.37 (C), 134.23 (CH), 131.56 (C), 130.30 (CH), 129.87 (CH), 128.38 (CH), 

127.81 (CH), 127.46 (CH), 121.61(C), 72.60 (C), 62.50 (CH2), 21.66 (CH3); IR (neat) ν = 3467.2 

(w), 3065.8 (w), 2995.8 (w), 1337.7 (m), 1157.3 (s), 716.7 (m), 675.2 (s), 550.7 (m) cm-1; HR-

MS calculated for C16H17NO3S79Br 382.0113, found 382.0130 (Δ = 4.5 ppm, 1.7 mDa). 

 

 

3-(4-Chlorophenyl)-1-tosylazetidin-3-ol (2-101). 0.075 M in CH3CN, isolated yield: 71%; 1H 

NMR (400 MHz, d6-DMSO) δ 7.74 (d, J = 8.2 Hz, 2H), 7.51 (d, J = 8.2 Hz, 2H), 7.37 – 7.31 (d, J = 

8.7 Hz, 2H), 7.28 – 7.22 (d, J = 8.7 Hz, 2H), 6.44 (s, 1H), 3.92 (d, J = 9.0 Hz, 2H), 3.82 (d, J = 9.0 

Hz, 2H), 2.46 (s, 3H); 13C NMR (101 MHz, d6-DMSO) δ 144.2 (C), 142.7(C), 132.0 (C), 130.4 (C), 

129.9 (CH), 128.3 (CH), 128.1 (CH), 126.6 (CH), 68.2 (C), 65.1 (CH2), 21.0 (CH3); IR ν = 3640.6 

(w, OH), 2975.6 (w,) 1490.3, (m, SO2) 1329.7 (s, SO2), 1311.6 (s, CN), 1182.7 (m), 1149.9 (s), 

1087.2 (s), 1149.9 (s), 1087.2 (s), 812.11, (s), 827.1 (s), 673.6 (s, CCl) cm-1; Melting point: 173-

175 °C (crystallised from EtOAc); HR-MS: calculated for C16H17
35ClNO3S 338.0618, found 

338.0623 (Δ = 1.5 ppm, -0.5 mDa). 

 

 

3-(3-Chlorophenyl)-1-tosylazetidin-3-ol (2-102). 0.075 M in CH3CN, isolated yield: 73 %; 1H 

NMR (400 MHz, CDCl3) δ 7.77 (d, J = 8.3 Hz, 2H), 7.41 (d, J = 8.3 Hz, 2H), 7.27 – 7.23 (m, 3H), 

7.19 (m, 1H), 4.05 (d, J = 9.3 Hz, 2H), 3.99 (d, J = 9.3 Hz, 2H), 2.48 (s, 3H); 13C NMR (101 MHz, 

CDCl3) δ 144.8 (C), 144.2 (C), 134.7 (C), 131.1 (C), 130.1 (CH), 130.0 (CH), 128.6 (CH), 128.3 

(CH), 125.0 (CH), 122.8 (CH), 70.0 (C), 65.6 (CH2), 21.8 (CH3); IR (neat) ν = 3447.1 (m, OH), 

3063.1 (w), 2925.2 (w),  1421.5 (m) 1333.0, (s, SO2),1301.77 (m), 1185.2 (s, CN), 1147.3 (s, 

SO2), 1596.5 (m), 1569.0 (w), 532.9 (s, CCl) cm-1; Melting point: 128-131 °C (crystallised from 
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EtOAc); HR-MS calculated for C16H17
35ClNO3S 338.0618, found 338.0619 (Δ = 0.3 ppm, -0.1 

mDa). 

 

 

3-(2-Chlorophenyl)-1-tosylazetidin-3-ol (2-103). 0.15 M in CH3CN, isolated yield: 61%; 1H 

NMR (400 MHz, CDCl3) δ 7.73 (d, J = 8.1 Hz, 2H), 7.40 – 7.16 (m, 6H), 4.40 – 4.32 (m, 2H), 4.09 

– 4.03 (m, 2H), 2.41 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 144.39 (C), 137.89 (C), 132.58 (C), 

131.73 (C), 130.90 (CH), 130.22 (CH), 129.89 (CH), 128.44 (CH), 127.33 (CH), 127.18 (CH), 

71.60 (C), 62.58 (CH2), 21.72 (CH3); IR (neat) ν = 3459.2 (w), 1596.5 (w), 1337.6 (m), 1155.0 

(s), 1080.0 (m), 880.8 (m), 777.5 (m), 676.3 (s), 676.3 (s), 547.9 (s), 522.7 (s), 460.3 (m) cm-1; 

HR-MS calculated for C16H17ClNO3S 338.0618, found 338.0618 (Δ = 0.0 ppm, 0.0 mDa). 

 

 

3-(4-Fluorophenyl)-1-tosylazetidin-3-ol (2-104). 0.15 M in acetone, isolated yield 75%; 1H 

NMR (400 MHz, CDCl3) δ 7.76 (d, J = 8.3 Hz, 2H), 7.39 (d, J = 8.3 Hz, 2H), 7.35 – 7.27 (m, 2H), 

6.99 (t, J = 8.7 Hz, 2H), 4.06 (d, J = 9.0 Hz, 2H), 3.97 (d, J = 9.0 Hz, 2H), 2.47 (s, 3H); 13C NMR 

(101 MHz, CDCl3) δ 162.5 (C, d, J = 247 Hz), 144.6 (C), 138.1 (C, d, J = 3.3 Hz), 131.3 (C), 129.8 

(CH), 129.5 (CH, d, J = 144 Hz), 126.5 (CH, d, J = 8.2 Hz), 115.6 (CH, d, J = 21.5 Hz), 70.1 (C,), 

65.5 (CH2), 21.7 (CH3); IR (neat) ν = 3450.0 (w, OH), 2985.4 (w), 2865.0 (w), 1608.0 (w), 1597.2 

(w), 1513.4 (m), 1333.7 (s), 1228.0 (m, CF), 1148.2 (s, SO2), 1181.5 (m, CN), 832.8 (s), 674.8 

(s), 514.4 (s) cm-1; HR-MS calculated for C16H17FNO3S 322.0913, found 322.0912 (Δ = -0.3 ppm, 

-0.1 mDa); Melting point: 131-133 °C (crystallised from EtOAc). 

 

 

3-(2-Fluorophenyl)-1-tosylazetidin-3-ol (2-105). 0.075 M in CH3CN, isolated yield 72%; 1H 

NMR (400 MHz, CDCl3) δ 7.72 (d, J = 8.3 Hz, 2H), 7.35 – 7.26 (m, 3H), 7.23 (td, J = 7.7, 1.4 Hz, 
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1H), 7.10 (td, J = 7.7, 1.4 Hz, 1H), 7.02 (ddd, J = 11.2, 7.7, 1.4 Hz, 1H), 4.28 (dd, J = 9.8, 0.8 Hz, 

2H), 4.01 (dd, J = 9.8, 0.8 Hz, 2H) 2.42 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 160.58 (d, J = 247.5 

Hz, C), 144.41 (C), 131.57 (C), 130.69 (d, J = 8.6 Hz, CH), 129.89 (CH), 128.45 (CH), 128.06 (d, J 

= 12.5 Hz, C), 127.16 (d, J = 3.7 Hz, CH), 124.50 (CH), 116.40 (d, J = 21.5 Hz, CH), 69.32 (C), 

63.24 (CH2), 21.71 (CH3); IR (neat) ν = 3477.4 (m, OH), 1491.0 (m), 1452.4 (m), 1334.0 (s), 

1300.9 (s), 1147.4 (s), 841.3 (s), 815.9 (s), 765.9 (s), 664.9 (s), 616.11 (s), 545.8 (s) cm-1; HR-

MS calculated for C16H17FNO3S 322.0913, found 322.0922 (Δ = 2.8 ppm, 0.9 mDa). 

 

 

3-(2-Methyl)-1-tosylazetidin-3-ol (2-106). 0.15 M in CH3CN, isolated yield 30%; 1H NMR (400 

MHz, CDCl3) δ 7.74 (d, J = 8.3 Hz, 2H), 7.36 – 7.25 (m, 3H), 7.14 (dd, J = 7.6, 1.7 Hz, 1H), 6.95 – 

6.86 (m, 2H), 4.22 (d, J = 9.6 Hz, 2H), 3.94 (d, J = 9.6 Hz, 2H), 3.82 (s, 3H), 2.42 (s, 3H); 13C NMR 

(101 MHz, CDCl3) δ 156.72 (C), 144.15 (C), 131.72 (C), 129.92 (CH), 129.81 (CH), 128.86 (C), 

128.47 (CH), 125.86 (CH), 120.97 (CH), 111.10 (CH), 70.25 (C), 62.80 (CH2), 55.50 (CH3), 21.69 

(CH3); IR (neat) ν = 3466.37 (w), 1337.1 (m), 1156.0 (s), 1089.8 (m), 760.82 (m), 727.2 (m), 

666.5 (s), 549.2 (s), 539.4 (s), 514.6 (m), 457.3 (m) cm-1; HR-MS calculated for C17H20NO3S 

338.1164, found 338.1174 (Δ = 3.1 ppm, 1.0 mDa). 

 

 

3-(4-Methyl)-1-tosylazetidin-3-ol (2-107). 0.15 M in CH3CN, isolated yield 85%; 1H NMR (400 

MHz, DMSO-d6) δ 7.75 (d, J = 8.0 Hz, 2H), 7.53 (d, J = 8.0 Hz, 2H), 7.10 – 7.03 (m, 4H), 6.29 (s, 

1H), 3.89 (d, J = 8.5 Hz, 2H), 3.81 (d, J = 8.5 Hz, 2H), 2.47 (s, 3H), 2.26 (s, 3H); 13C NMR (101 

MHz, DMSO-d6) δ 181.86 (C), 178.44 (C), 174.18 (C), 168.11 (C), 167.68 (CH), 166.32 (CH), 

166.07 (CH), 162.25 (CH), 106.20 (C), 103.04 (CH2), 58.76 (CH3), 58.22 (CH3); IR (neat) ν = 

3472.4 (m), 1330.9 (s), 1181.2 (s), 1148.1 (s), 814.4 (s), 710.1 (m), 678.8 (s), 603.9 (s), 547.5 

(s), 516.0 (s), 456.6 (m) cm-1; HR-MS calculated for C17H20NO3S 318.1164, found 318.1163 (Δ 

= -0.3 ppm, -0.1 mDa); Melting point: 141.0-143.5 °C (crystallised from CH3CN). 
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3-(4-Methoxyphenyl)-1-tosylazetidin-3-ol (2-108). 0.15 M in CH3CN, isolated yield 72%; 1H 

NMR (400 MHz, CDCl3) δ 7.74 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H), 7.22 (d, J = 8.8 Hz, 

2H), 6.82 (d, J = 8.8 Hz, 2H), 4.06 (d, J = 9.3 Hz, 2H), 3.93 (d, J = 9.3 Hz, 2H), 3.78 (s, 3H), 2.46 

(s, 3H); 13C NMR (101 MHz, CDCl3) δ 159.4 (C), 144.5 (C), 134.3 (C), 131.4 (C), 129.9 (CH), 128.5 

(CH), 126.0 (CH), 114.0(CH), 70.3 (C), 65.3 (CH2), 55.4 (CH3), 21.7 (CH3); IR (neat) ν = 3457.9 

(OH), 2979.7 (s), 1517.1 (s), 1330.1 (s), 1146.9 (s, SO2), 1146.9 (s), 829.8 (s), 677.4 (s), 526.9 

(s) cm-1; HR-MS calculated for C17H19NO4S 334.1117, found 334.1113 (Δ = 4.12 ppm, 0.4 mDa); 

Melting point: 141.7-142.9 °C (crystallised from Hexane / EtOAc). 

 

 

3-(3-Methoxyphenyl)-1-tosylazetidin-3-ol (2-109). 0.15 M in CH3CN, isolated yield 75%; 1H 

NMR (400 MHz, CDCl3) δ 7.79 (d, J = 7.8 Hz, 2H), 7.42 (d, J = 7.8 Hz, 2H), 7.34 – 7.21 (m, 1H), 

6.96 – 6.79 (m, 3H), 4.12 (d, J = 8.2 Hz, 2H), 3.99 (d, J = 8.2 Hz, 2H), 3.80 (s, 3H), 2.50 (s, 3H); 

13C NMR (101 MHz, CDCl3) δ 159.96 (C), 144.60 (C), 143.70 (C), 131.33 (C), 130.03 (CH), 129.95 

(CH), 128.64 (CH), 116.84 (CH), 113.54 (CH), 110.63 (CH), 70.50 (C), 65.39 (CH2), 55.42 (CH3), 

21.77 (CH3); IR (neat) ν = 3849.9 (m, OH), 1581.2 (m), 1435.8 (m), 1332.6 (s), 1156.0 (s), 1045.5 

(s), 804.1 (s), 782.6 (s), 619.6 (s), 547.2 (s), 520.2 (s) cm-1; HR-MS calculated for C17H20NO4S 

334.1113, found 334.1101 (Δ = -0.12 ppm, -1.2 mDa); X-Ray data: CCDC 1909067; Formula: 

C17H19NO4S, Unit Cell Parameters: a 14.0517(6) b 18.3265(8) c 6.2061(3) Pna21. 

 

 



101 
 

 

3-(2-Methoxyphenyl)-1-tosylazetidin-3-ol (2-110). 0.15 M in CH3CN, isolated yield 82%; 1H 

NMR (400 MHz, CDCl3) δ 7.74 (d, J = 8.3 Hz, 2H), 7.36 – 7.24 (m, 3H), 7.14 (dd, J = 7.6, 1.7 Hz, 

1H), 6.96 – 6.85 (m, 2H), 4.22 (d, J = 9.6 Hz, 2H), 3.94 (d, J = 9.6 Hz, 2H), 3.82 (s, 3H), 2.42 (s, 

3H); 13C NMR (101 MHz, CDCl3) δ 156.72 (C), 144.15(C), 131.72 (C), 129.92 (CH), 129.81 (CH), 

128.86 (C), 128.47 (CH), 125.86 (CH), 120.97 (CH), 111.10 (CH), 70.25 (C), 62.80 (CH2), 55.50 

(CH3), 21.69 (CH3); IR (neat) ν = 3454.6 (w), 1596.3 (w), 1489.7 (w), 1434.6 (w), 1322.9 (m), 

1339.4 (s), 1150.9 (s), 1144.5 (s), 1126.8 (s), 1089.3 (s), 991.8 (s), 817.5 (s), 755.6 (s), 688.8 (s), 

617.5 (s), 507.6 (s) cm-1; HR-MS calculated for C17H20NO4S 318.1164, found 318.1174 (Δ = 3.1 

ppm, 1.0 mDa); Melting point 136.6-138.0 °C (crystallised EtOAc-Hexane): X-Ray data: CCDC 

1909066; Formula: C17H19NO4S, Unit Cell Parameters: a 8.1107(4) b 15.4959(7) c 25.5787(11) 

Pbca. 

 

 

 

 

4-(3-Hydroxy-1-tosylazetidin-3-yl)benzonitrile (2-111). 0.15 M in CH3CN, isolated yield 60%; 

1H NMR (400 MHz, DMSO-d6) δ 7.78 (d, J = 8.4 Hz, 2H), 7.74 (d, J = 8.1 Hz, 2H), 7.51 (d, J = 8.1 

Hz, 2H), 7.45 (d, J = 8.4 Hz, 2H), 6.61 (s, 1H), 3.95 (d, J = 8.8 Hz, 2H), 3.84 (d, J = 8.8 Hz, 2H), 

2.46 (s, 3H); 13C NMR (101 MHz, DMSO-d6) δ 149.09 (C), 144.36 (C), 132.28 (CH), 130.43 (C), 

130.07 (CH), 128.40 (CH), 125.77 (CH), 118.68 (C), 110.26 (C), 68.37 (C), 64.99 (CH2), 21.13 
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(CH3); IR (neat) ν = 3420.7 (OH), 2230.8 (s, CN), 1517.1 (s), 1324.3 (s), 1162.3 (s, SO2), 542.3 

(s) cm-1v; HR-MS calculated for C17H17N2O3S 329.1000, found 329.0966 (Δ = 4.0 ppm, 0.6 mDa). 

 

 

3-([1,1'-Biphenyl]-4-yl)-1-tosylazetidin-3-ol (2-112). 0.075 M in CH3CN, isolated yield 55%; 1H 

NMR (400 MHz, DMSO-d6) δ 7.77 (d, J = 7.7 Hz, 2H), 7.67 – 7.50 (m, 6H), 7.46 (t, J = 7.7 Hz, 

2H), 7.34 (m, 3H), 6.41 (s, 1H), 3.98 (d, J = 8.5 Hz, 2H), 3.87 (d, J = 8.5 Hz, 2H), 2.45 (s, 3H); 13C 

NMR (101 MHz, DMSO-d6) δ 144.18 (C), 142.85 (C), 139.63 (C), 139.22 (C), 130.57 (C), 130.01 

(CH), 128.94 (CH), 128.38 (CH), 127.49 (CH), 126.60 (CH), 126.44 (CH), 125.31 (CH), 68.53 (CH), 

65.26 (CH2), 21.10 (CH3); IR (neat) ν = 3100.8 (OH), 1323.1 (s), 1150.7 (s), 758.5 (s), 541.99 (s) 

cm-1; HR-MS calculated for C22H22NO3S 380.1320, found 380.1325 (Δ = 1.3 ppm, 0.5 mDa); 

Melting point: 170-172.8 °C (crystallised from CHCl3).  

 

 

3-(Benzo[d][1,3]dioxol-5-yl)-1-tosylazetidin-3-ol (2-113). 0.15 M in CH3CN (Flow rate 0.7 

mL/min), isolated yield 48%; 1H NMR (400 MHz, DMSO-d6) δ 7.74 (d, J = 7.8 Hz, 2H), 7.51 (d, J 

= 7.8 Hz, 2H), 6.79 (d, J = 8.2 Hz, 1H), 6.69 (dd, J = 8.2, 1.9 Hz, 1H), 6.55 (s, 1H), 6.30 (s, 1H), 

5.98 (s, 2H), 3.88 (d, J = 8.6 Hz, 2H), 3.78 (d, J = 8.6 Hz, 2H), 2.45 (s, 3H); 13C NMR (101 MHz, 

DMSO-d6) δ 147.23 (C), 146.37 (C), 144.23 (C), 137.66 (C), 130.46 (C), 129.99 (CH), 128.35 

(CH), 118.03 (CH), 107.64 (CH), 105.43 (CH), 101.02 (CH2), 68.69 (C), 65.30 (CH2), 21.09 (CH3); 

IR (neat) ν = 3458.5 (w), 3356.2 (w), 3259.6 (w), 1596.1 (w), 1492.9 (m), 1147.4 (m), 813.5 (s), 

671.0 (s), 524.02 (s), 504.03 (s) cm-1; HR-MS calculated for C17H18NO5S 348.0906, found 

348.0925 (Δ = 5.5 ppm, 1.5 mDa); Melting point: 134-137.0 °C (crystallised MeOH-Et2O); X-Ray 

data: CCDC 1909064; Formula: C17H17NO5S, Unit Cell Parameters: a 11.9795(10) b 5.7940(4) c 

22.8815(16) P21/n. 
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3-(3,4-Dimethoxyphenyl)-1-tosylazetidin-3-ol (2-114) 0.035 in acetone isolated yield 36%; 1H 

NMR (400 MHz, CDCl3) δ 7.75 (d, J = 7.9 Hz, 2H), 7.37 (d, J = 7.9 Hz, 2H), 6.89 – 6.73 (m, 3H), 

4.08 (d, J = 8.7 Hz, 2H), 3.94 (d, J = 8.7 Hz, 2H), 3.84 (s, 3H), 3.80 (s, 3H), 2.45 (s, 3H); 13C NMR 

(101 MHz, CDCl3) δ 149.10 (C), 148.85 (C), 144.49 (C), 134.70 (C), 131.37 (C), 129.95 (CH), 

128.58 (CH), 116.99 (CH), 110.96 (CH), 108.07 (CH), 70.38 (C), 65.34 (CH2), 56.02 (CH3), 55.97 

(CH3), 21.72 (CH3); HR-MS calculated for C18H22NO5S 364.1219 found 364.1220 (Δ = 0.3 ppm, 

0.1 mDa); Melting point: 131-133.0 °C. IR (neat) ν = 3101.2 (OH), 1325.3 (s), 1154.2 (s), 750.0 

(s), 540.13 (s) cm-1 

 

 

3-(2-Chlorophenyl)-1-tosylazetidin-3-ol (2-115). 0.15 M in CH3CN, isolated yield 78%; 1H NMR 

(400 MHz, CDCl3) δ 7.78 (d, J = 8.3 Hz, 2H), 7.59 (d, J = 8.3 Hz, 2H), 7.50 (d, J = 8.2 Hz, 2H), 7.41 

(d, J = 8.2 Hz, 2H), 4.10 (d, J = 9.5 Hz, 2H), 4.01 (d, J = 9.5 Hz, 2H), 2.49 (s, 3H); 13C NMR (101 

MHz, CDCl3) δ 146.11 (C), 144.89 (C), 131.18 (C), 130.25 (C, q, J = 36.5 Hz) 130.13 (CH), 128.58 

(CH), 125.67 (CH, q, J = 3.5 Hz), 125.11 (CH),123.9 (C, q, J = 123.9 Hz), 69.95 (C), 65.62 (CH2), 

21.77 (CH3); IR (neat) ν = 3462.2 (w), 1621.30 (w), 1597.8 (w), 1329.2 (s), 1316.8 (s), 1151.6 

(s), 1111.0 (s), 1076.5 (s), 1076.5 (s), 1015.6 (m), 840.0 (m), 677.5 (m), 605.8 (m) cm-1; HR-MS 

calculated for C17H17NO3F3S 372.0881, found 372.0880 (Δ = -0.3 ppm, -0.1 mDa). 
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3-(2-Pyridin)-1-tosylazetidin-3-ol (2-116). 0.075 M in CH3CN, isolated yield 69%; 1H NMR (400 

MHz, CDCl3) δ 8.47 (d, J = 4.9 Hz, 1H), 7.93 – 7.89 (m, 1H), 7.85 (td, J = 7.6, 1.5 Hz, 1H), 7.80 

(d, J = 8.0 Hz, 2H), 7.43 (d, J = 8.0 Hz, 2H), 7.32 (ddd, J = 7.6, 4.9, 1.5 Hz, 1H), 4.02 (d, J = 8.9 

Hz, 2H), 3.95 (d, J = 8.9 Hz, 2H), 2.49 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 159.81 (C), 146.82 

(CH), 144.64 (C), 138.52 (CH), 130.13 (CH), 128.85 (CH), 123.62 (CH), 119.35 (CH), 114.75 (C), 

68.48 (C), 65.72 (CH2), 21.82 (CH3); IR (neat) ν = 2948.8 (w), 1595.0 (w), 1343.3 (m), 1161.9 

(s), 1091.8 (m), 909.3 (s), 726.5 (s), 670.3 (s), 615.3 (m), 550.7 (s) cm-1; HR-MS calculated for 

C15H17N2O3S 305.0960, found 305.0951 (Δ = -2.9 ppm, -0.9 mDa). 

 

 

3-(2-Furan)-1-tosylazetidin-3-ol (2-117). 0.02 M in acetone, isolated yield 60%; 1H NMR (400 

MHz, CDCl3) δ 7.70 (d, J = 8.0 Hz, 2H), 7.35 (d, J = 8.0 Hz, 1H), 7.23 (dd, J = 1.9, 0.9 Hz, 1H), 

6.26 (dd, J = 3.3, 0.9 Hz, 1H), 6.21 (dd, J = 3.3, 0.9 Hz, 1H), 4.08 (d, J = 9.4 Hz, 2H), 3.89 (d, J = 

9.4 Hz, 2H), 2.44 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 153.73 (C), 144.42 (C), 142.67 (CH), 

131.16 (C), 129.88 (CH), 128.47 (CH), 110.55 (CH), 106.64 (CH), 66.57 (C), 63.20 (CH2), 21.67 

(CH3); IR (neat) ν = IR (neat) ν = 3345.4 (m), 3074.5 (w), 2970.1 (w), 2830.3 (w), 1453.8 (m), 

1300.7 (m), 1250.3 (m), 1187.3 (m), 1150.7 (s), 1073.8 (s), 1055.4 (s), 1000.6 (m), 830.7 (m), 

670.4 (s), 543.5 (s) cm-1; HR-MS calculated for C14H16NO4S 294.0800, found 294.0811 (Δ = -0.3 

ppm, -0.1 mDa). 

 

 

3-(2-Thiophen) -1-tosylazetidin-3-ol (2-118). 0.02 M in acetone (flow =0.8 mL/ min), isolated 

yield 68%; 1H NMR (400 MHz, CDCl3) δ 7.74 (d, J = 8.0 Hz, 2H), 7.38 (d, J = 8.0 Hz, 2H), 7.22 

(dd, J = 5.1, 1.2 Hz, 1H), 6.92 (dd, J = 5.1, 1.2 Hz, 1H), 6.83 (dd, J = 3.6, 1.2 Hz, 1H), 4.06 (d, J = 

8.7 Hz, 2H), 4.01 (d, J = 8.7 Hz, 2H), 2.46 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 146.70 (C), 144.62 
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(C), 131.19 (C), 130.03 (CH), 128.61 (CH), 127.30 (CH), 125.66 (CH), 123.87 (CH), 69.07 (C), 

65.99 (CH2), 21.76 (CH3); IR (neat) ν = 3426.4 (m), 3088.2 (w), 2989.1 (w), 2861.4 (w), 1328.7 

(m), 1295.6 (m), 1243.4 (m), 1190.6 (m), 1147.2 (s), 1085.1 (s), 1064.8 (s), 994.2 (m), 913.8 

(m), 850.1 (m), 819.9 (m), 783.6 (m), 698.9 (s), 674.7 (s), 616.3 (s), 535.5 (s) cm-1; HR-MS 

calculated for C14H15NO3S2 310.0572, found 310.0586 (Δ = 4.5 ppm, 1.4 mDa); Melting point: 

139-141 °C (crystallised from MeOH / Et2O); X-Ray data: CCDC 1909072; Formula: 

C14H15NO3S2, Unit Cell Parameters: a 12.1475(6) b 5.7937(3) c 20.2726(9) P21/n. 

 

 

 

 

2-Ethyl-3-phenyl-1-tosylazetidin-3-ol (2-119). 0.15 M in CH3CN (0.8 mL/min), isolated yield 

34%; 1H NMR (400 MHz, DMSO-d6) δ 7.76 (d, J = 8.1 Hz, 2H), 7.53 (d, J = 8.1 Hz, 2H), 7.15 – 

7.05 (m, 3H), 6.69 (dd, J = 8.0, 1.7 Hz, 1H), 6.31 (s, 1H), 3.82 (d, J = 9.5 Hz, 2H), 3.77 (d, J = 9.5 

Hz, 2H), 3.67 (dd, J = 9.5, 4.8 Hz, 1H), 2.48 (s, 3H), 2.03 (m, 1H), 1.71 (ddd, J = 10.6, 7.5, 4.8 Hz, 

1H), 0.69 (t, J = 7.5 Hz, 3H); 13C NMR (101 MHz, DMSO-d6) δ 144.23 (C), 144.00 (C), 130.60 (C), 

129.98 (CH), 128.40 (CH), 127.91 (CH), 126.94 (CH), 124.49 (CH), 76.19 (CH), 71.10 (C), 63.11 

(CH2), 22.78 (CH2), 21.04 (CH3), 9.51 (CH3); IR (neat) ν = 3437.0 (m, OH), 3054.7 (w), 2965.2 

(w), 2877.9 (w) 1329.5 (s), 1149.2 (s), 1084.9 (s), 831.6 (m), 815.5 (m) 756.4 (s), 703.1 (s), 

674.2 (s), 613.4 (s) cm-1; HR-MS calculated for C18H22NO3S 332.1320, found 332.1327 (Δ = 2.1 

ppm, 0.7 mDa); Melting point: 149.5-150.8 °C (crystallised from CHCl3); X-Ray data: CCDC 

1909064; Formula: C18H22NO3S, Unit Cell Parameters: a 9.1996(5) b 9.8006(5) c 10.3959(6) P-

1. 
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2-Ethyl-3-phenyl-1-tosylazetidin-3-ol (2-120). 0.15 M in CH3CN (0.8 mL/min), isolated yield 

32%; 1H NMR (400 MHz, CDCl3) δ 7.77 (d, J = 8.0 Hz, 2H), 7.39 (d, J = 8.0 Hz, 2H), 7.23 – 7.13 

(m, 3H), 6.96 – 6.88 (m, 2H), 4.01 – 3.85 (m, 3H), 2.49 (s, 3H), 2.05 (m, 1H), 1.91 (m, 1H), 0.81 

(t, J = 7.5 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 144.38 (C), 142.44 (C), 131.86 (C), 129.95 (CH), 

128.60 (CH), 128.50 (CH), 127.73 (CH), 124.74 (CH), 76.00 (CH), 73.09 (C), 63.65 (CH2), 23.28 

(CH2), 21.73 (CH3), 9.88 (CH3); IR (neat) ν = 3454.0 (m, OH), 2966.2 (w), 2877.7 (w), 1596.8 (w), 

1404.8 (w), 1328.2 (s), 1157.6 (s), 1096.8 (s), 896.5 (w), 846.7 (w), 821.7 (m), 746.6 (s), 706.2 

(s), 668.1 (s), 551.6 (s), 534.7 (s) cm-1; HR-MS calculated for C18H22NO3S 332.1320, found 

332.1326 (Δ = 1.8 ppm, 0.6 mDa); Melting point: 156-158 °C (MeOH); X-Ray data: CCDC 

1909074; Formula: C18H22NO3S, Unit Cell Parameters: a 9.2258(11) b 9.8099(14) c 10.3977(13) 

P-1. 

 

 

  

3-(4-Chlorophenyl)-2-isopropyl-1-tosylazetidin-3-ol (2-121). 0.15 M in CH3CN (0.5 mL/min), 

isolated yield 30%; 1H NMR (400 MHz, CDCl3) δ 7.72 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 

7.14 (d, J = 8.6 Hz, 2H), 6.87 (d, J = 8.6 Hz, 2H), 4.06 (d, J = 10.0 Hz, 1H), 3.91 (dd, J = 10.0, 1.1 
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Hz, 1H), 3.79 (dd, J = 10, 1.1 Hz, 1H), 2.48 (s, 3H), 2.29 (m, 1H), 1.13 (d, J = 6.8 Hz, 3H), 0.84 (d, 

J = 6.8 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 144.49 (C), 141.43 (C), 133.73 (C), 132.49 (C), 

129.89 (CH), 128.69 (CH), 128.65 (CH), 126.43 (CH), 80.28 (CH), 72.80 (C), 64.27 (CH2), 29.38 

(CH), 21.75 (CH3), 19.45 (CH3), 19.10 (CH3); IR (neat) ν = 3444.2 (w, OH), 2960.6 (w), 2875.4 

(w), 1331.9 (m), 1115.4 (s), 1088.7 (s), 908.1 (m), 814.9 (s), 729.4 (s), 409.4 (s) cm-1; HR-MS 

calculated for C19H23NO3S35Cl 380.1087, found 380.1097 (Δ = 2.6 ppm, 1 mDa); Melting point: 

194-196 °C (crystallised from MeOH); X-Ray data: CCDC 1909074; Formula: C19H22NO3S, Unit 

Cell Parameters a 11.3556(5) b 9.6431(5) c 17.4421(8) P21/n. 

 

 

  

2-Methyl-3-(p-tolyl)-1-tosylazetidin-3-ol (2-122). 0.075 M in CH3CN, isolated yield 47%; 1H 

NMR (400 MHz, CDCl3) δ 7.76 (d, J = 8.2 Hz, 2H), 7.38 (d, J = 7.9 Hz, 2H), 7.01 (d, J = 7.9 Hz, 

2H), 6.82 (d, J = 8.2 Hz, 2H), 4.14 (q, J = 6.5 Hz, 1H), 3.95 – 3.85 (m, 2H), 2.48 (s, 3H), 2.28 (s, 

3H), 1.41 (d, J = 6.5 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 144.3 (C), 138.8 (C), 137.8 (C), 131.9 

(C), 129.9 (CH), 129.2 (CH), 128.5 (CH), 124.7 (CH), 73.1 (C), 70.5 (CH), 63.0 (CH2), 21.7 (CH3), 

21.0 (CH3), 14.4 (CH3); IR (neat) ν = 3457.0 (br. OH), 2985.4 (s), 28.65.0 (s, SO), 1228.0 (s, CF), 

1181.5 (s), 832.8 (s), 674.8 (s), 514.4 (s) cm-1; HR-MS calculated for C18H22NO3S 332.1320, 

found 332.1326 (Δ = 1.8 ppm); Melting point: 108-110 °C (crystallised from MeOH). 
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3-(4-Bromophenyl)-1-((3-methoxyphenyl)sulfonyl)azetidin-3-ol (2-123). 0.15 M in CH3CN, 

isolated yield 63%; 1H NMR (400 MHz, CDCl3) δ 7.48 (t, J = 8.0 Hz, 1H), 7.39 (t, J = 8.0 Hz, 3H), 

7.34 – 7.27 (m, 1H), 7.22 – 7.10 (m, 3H), 4.01 (s, 4H), 3.85 (s, 3H); 13C NMR (101 MHz, CDCl3) 

δ 160.20 (C), 141.36 (C), 135.33 (C), 131.72 (CH), 130.50 (CH), 126.45 (CH), 122.12 (C), 120.57 

(CH), 119.81 (CH), 113.29 (CH), 69.86 (C), 65.58 (CH2), 55.88 (CH3); IR (neat) ν = 3429.3 (w, 

OH), 3069.7 (w), 1594.4 (m), 1479.8 (m), 1241.6 (s), 1148.4 (s), 1037.9 (s), 907.3 (m), 726.1 

(s), 697.9 (s), 983.8 (s), 588.5 (s) cm-1; HR-MS: calculated for C1H17NO4S79Br 398.0062, found 

398.0068 (Δ = 3.8 ppm, 0.6 mDa). 

 

 

3-Phenyl-1-((2,4,6-triisopropylphenyl)sulfonyl)azetidin-3-ol (2-124). 0.15 M in CH3CN, 

isolated yield 64%; 1H NMR (400 MHz, CDCl3) δ 7.58 (d, J = 7.2 Hz, 2H), 7.37 (t, J = 7.2 Hz, 2H), 

7.30 (t, J = 7.2 Hz, 1H), 7.18 (s, 2H), 4.31 – 4.08 (m, 6H), 2.98 – 2.85 (m, 1H), 1.27 (m, 18H); 13C 

NMR (101 MHz, CDCl3) δ 153.61 (C), 151.77 (C), 150.67 (C), 142.65 (C), 128.69 (CH), 128.11 

(CH), 124.67 (CH), 123.98 (CH), 70.18 (C), 63.92 (CH2), 34.32 (CH), 29.80 (CH), 25.03 (CH3), 

23.66 (CH3); IR (neat) ν = 3478.5 (w), 1340.4, 1170.8 (s), 901.7 (m), 666.4 (s), 540.4 (s), 520.3 

(m) cm-1; HR-MS calculated for C24H34NO3S 416.2259, found 416.2263 (Δ = 4.5 ppm, 0.4 mDa). 

 

 

1,3-Diphenylazetidin-3-ol (2-126).[5] 0.15 M in CH3CN, isolated yield 28%; 1H NMR (400 MHz, 

CDCl3) δ 7.67 – 7.59 (m, 2H), 7.48 – 7.39 (m, 2H), 7.40 – 7.32 (m, 1H), 7.32 – 7.25 (m, 2H), 6.83 

(tt, J = 7.6, 1.1 Hz, 1H), 6.58 (dd, J = 7.6, 1.1 Hz, 2H), 4.29 (dd, J = 7.7, 0.9 Hz, 2H), 4.13 (dd, J = 

7.7, 0.9 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 151.35 (C), 143.6 (C), 129.1 (CH), 128.7 (CH), 

127.8 (CH), 124.8 (CH), 118.2 (CH), 112.1 (CH), 72.4 (C), 67.2 (CH2); HR-MS calculated for 
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C15H16NO 226.1232, found 226.1245 (Δ = 3.6 ppm, 0.7 mDa); Melting point: 77-80 °C 

(crystallised from MeOH).  

 

 

7-Tosyl-7-azabicyclo[4.2.0]octan-1-ol (2-130). 0.075 M in MeOH, isolated yield 40%; 1H NMR 

(400 MHz, CDCl3) δ 7.65 (d, J = 8.1 Hz, 1H), 7.33 (d, J = 8.1 Hz, 1H), 3.53 (m, 1H), 3.47 (dd, J = 

6.7, 0.7 Hz, 1H), 3.18 (d, J = 6.7 Hz, 1H), 1.99 – 1.79 (m, 3H), 1.67 – 1.42 (m, 4H), 1.33 – 1.19 

(m, 1H); 13C NMR (101 MHz, CDCl3) δ 144.26 (C), 131.10 (C), 129.82 (CH), 128.58 (CH), 70.11 

(CH), 67.57 (C), 63.51 (CH2), 35.41 (CH2), 24.80 (CH2), 21.68 (CH3), 20.05 (CH2), 19.62 (CH2); IR 

(neat) ν = 3481.6 (w, OH), 2937.2 (w), 1598.6 (w), 1304.6 (m), 1333.9 (m), 1156.2 (s), 1091.2 

(m), 816.2 (m), 714.6 (m), 662.7 (s), 599.5 (s), 550.4 (m) cm-1; HR-MS calculated for C14H20NO3S 

282.1164, found 282.1174 (Δ = -4.6 ppm, -1.0 mDa); X-Ray data: CCDC 1909071; Formula: 

C14H19NO3S, Unit Cell Parameters: a 5.4874(3) b 11.3120(7) c 22.1706(13) P212121. 

 

 

 

1-(3-(4-Chlorophenyl)-3-hydroxyazetidin-1-yl)ethan-1-one (2-137). 0.075 M in CH3OH, 

isolated yield 70%; 1H NMR (400 MHz, CDCl3) δ 7.37 (d, J = 8.6 Hz, 2H), 7.28 (d, J = 8.6 Hz, 2H), 

4.31 (d, J = 9.1 Hz, 1H), 4.24 (d, J = 9.1 Hz, 1H), 4.14 (s, 2H), 1.82 (s, 3H); 13C NMR (101 MHz, 

CDCl3) δ 171.38 (C), 142.05 (C), 133.48 (C), 128.60 (CH), 126.17 (CH), 69.77 (C), 66.01 (CH2), 

63.22 (CH2, rotamer), 19.04 (CH3); IR (neat) ν = 3186.0 (m), 2979.8 (w), 2937.7 (w), 1607.9 (s, 

CO), 1484.5 (s), 1422.2 (s) 1244.6 (s), 1008.7 (m), 826.1 (s), 738.5 (s), 535.9 (s), 452.0 (m) cm-

1; HR-MS calculated for C11H13NO2Cl 226.0635, found 226.0638 (Δ = 1.3 ppm, 0.3 mDa); X-Ray 

data: CCDC 1909066; Formula: C11H12ClNO2, Unit Cell Parameters: a 10.4122(4) b 10.8600(4) 

c 10.1440(5) P21/c. 
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(3-(4-Bromophenyl)-3-hydroxyazetidin-1-yl)(phenyl)methanone (2-138). 0.075 M in CH3OH, 

isolated yield 89%; 1H NMR (599 MHz, DMSO-d6) δ 7.70 (d, J = 7.9 Hz, 2H), 7.56 (d, J = 7.9 Hz, 

2H), 7.53 – 7.49 (m, 3H), 7.46 (t, J = 7.5 Hz, 2H), 4.55 (d, J = 8.8 Hz, 1H), 4.41 (d, J = 8.8 Hz, 1H), 

4.27 (app. s, 2H); 13C NMR (101 MHz, DMSO-d6) δ 169.47 (C), 143.83 (C), 133.02 (C), 131.14 

(CH), 128.49 (CH), 127.87 (CH), 127.19 (CH), 120.46 (CH), 79.26 (C), 70.01 (C), 68.18 (CH2), 

64.09 (CH2 rotamer); IR (neat) ν = 3294.2 (s), 2980.7 (s), 1685.8 (s), 1602.4 (s, CO), 1447.2 (s), 

1245.1 (s), 1156.1 (s), 953.7 (s), 806.2 (s), 645.0 (s), 534.3 (s) cm-1; HR-MS calculated for 

C16H15NO2
79Br 332.0286, found 332.0299 (Δ = 3.9 ppm, 1.3 mDa); Melting point: 88.5-91.0 °C 

(crystallised from CHCl3); X-Ray data: CCDC 1909066; Formula: C16H14BrNO2, Unit Cell 

Parameters: a 7.1854(6) b 15.5462(11) c 25.176(2) P212121. 

 

 

tert-Butyl 3-hydroxy-3-phenylazetidine-1-carboxylate (2-133). 0.075 M in CH3OH, isolated 

yield 70%; 1H NMR (400 MHz, CDCl3) δ 7.46 (d, J = 7.5 Hz, 2H), 7.33 (t, J = 7.5 Hz, 2H), 7.28 – 

7.22 (m, 1H), 4.16 (q, J = 9.1 Hz, 2H), 1.41 (s, 9H); 13C NMR (101 MHz, CDCl3) δ 156.62 (C), 

143.68 (C), 128.47 (CH), 127.58 (CH), 124.64 (CH), 80.01 (C), 70.87 (C), 64.45 (CH2), 28.39 

(CH3); IR (neat) ν = 3385.0 (br., OH), 2975.0 (m), 1675.1 (s, CO), 1393.0 (s), 1366.7 (s), 1154.7 

(s), 759.4 (m),759.4 (m), 730.6 (s), 699.6(s), 589.5 (w), 549.5 (w), 460.2 (w), 425.9 (w) cm-1; 

HR-MS calculated for C9H12NO 150.0919, found 150.0929 (Δ = 6.7 ppm, 1.0 mDa). 
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tert-Butyl 3-(4-chlorophenyl)-3-hydroxyazetidine-1-carboxylate (2-134). 0.075 M in CH3OH, 

isolated yield 71%; 1H NMR (400 MHz, DMSO-d6) δ 7.51 (d, J = 8.4 Hz, 2H), 7.42 (d, J = 8.4 Hz, 

2H), 4.13 – 3.87 (m, 4H), 1.40 (s, 9H); 13C NMR (101 MHz, DMSO-d6) δ 155.79 (C), 143.71 (C), 

131.70 (C), 128.15 (CH), 126.54 (CH), 78.89 (C), 69.25 (C), 64.74 (CH2), 28.05 (CH3); IR (neat) ν 

= 3417.4 (w, OH), 2980.8 (m), 2883.2 (w), 1666.2 (s), 1427.6 (s), 1367.4 (s), 1237.4 (m), 1159.1 

(s), 1118.8 (s), 824.1 (m), 765.9 (m), 532.3 (w) cm-1; HR-MS calculated for C10H9NO3
35Cl (M-

trBuO-) 226.0271, found 226.0275 (Δ = 1.8 ppm, 0.4 mDa); Melting point: 138.4-140.8 °C 

(crystallised from CHCl3). 

 

 

tert-Butyl 3-(4-bromophenyl)-3-hydroxyazetidine-1-carboxylate (2-136). 0.075 M in CH3OH, 

isolated yield 72%; 1H NMR (400 MHz, CDCl3) δ 7.44 (d, J = 8.6 Hz, 2H), 7.35 (d, J = 8.6 Hz, 2H), 

4.14 (d, J = 9.3 Hz, 2H), 4.09 (d, J = 9.3 Hz, 2H), 1.40 (s, 9H); 13C NMR (101 MHz, CDCl3) δ 156.59 

(C), 142.94 (C), 131.53 (CH), 126.51 (CH), 121.52 (C), 80.23 (C), 70.45 (C), 64.47 (CH2), 28.41 

(CH3); IR (neat) ν = 3414.6 (w, OH), 3289.4 (w), 2978.6 (w),1665.3 (s, CO), 1428.9 (s), 1366.8 

(s), 1234.4 (m, SO2), 1116.9 (s), 1009.8 (s), 821.2 (s), 529.4 (m) cm-1; HR-MS calculated for 

C9H11NO79Br (M-trBuO-) 228.0024, found 228.0027 (Δ = 1.3 ppm, 0.3 mDa); Melting point: 

158-161 °C (crystallised from CDCl3); X-Ray data: CCDC 1909076; Formula: C14H18BrNO3, Unit 

Cell Parameters: a 10.7025(7) b 11.3028(7) c 12.7165(8) P-1. 
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(3-(4-Chlorophenyl)-3-hydroxyazetidin-1-yl)phenylmethanone (2-139). 1H NMR (400 MHz, 

CDCl3) δ 7.56 (d, J = 8.0 Hz, 2H), 7.41 (m, 5H), 7.31 (d, J = 8.0 Hz, 2H), 4.44 (m, 4H); 13C NMR 

(101 MHz, CDCl3) δ 170.73 (C), 141.86 (C), 133.75 (C), 132.63 (C), 131.54 (CH), 128.81 (CH), 

128.61 (CH), 128.00 (CH), 126.24 (CH), 71.07 (C), 68.85 (CH2), 64.05 (CH2); IR (neat) ν = 3290.6 

(s), 2977.3 (s), 1690.4 (s), 1609.7 (s, CO), 1460.3 (s), 1245.1 (s), 970.8 (s), 806.2 (s), 670.0 (s), 

542.7 (s) cm-1; HR-MS calculated for C16H15NO2Cl 288.0791, found 288.0793 (Δ = 0.7 ppm, 0.2 

mDa). 
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3. Chapter 3: The rearrangement of 3-hydroxyazetidines to 2-

oxazolines 

3.1 INTRODUCTION: General Oxazoline Synthesis and Applications 
 

Oxazolines are a class of 5 membered ring heterocycles which along with the less oxidised 

structural analogues oxazolidines and oxazoles share the same 1,3 distributed nitrogen and 

oxygen ring pattern (Figure 1) 

 

 

Figure 4: Oxazo class of heterocyclic compounds 

Depending on the position of the unsaturation various structures can be generated, namely, 

2-oxazoline (3-2), 3-oxazoline (3-2b), and 4-oxazoline (3-2c), numbering from oxygen, through 

to the nitrogen (Figure 2) 

 

Figure 5: Oxazoline’s isomers 

2-Oxazolines were first synthetized by Andreasch in 1885[1] by heating several amidine salts 

and amino alcohols, amid his study of allyl urea derivatives. Their structures were later 

assigned by Sigmund Gabriel in 1889[2]. 

 

3.1.1 Synthesis of 2-oxazoline  
One of the simplest ways to prepare the oxazoline ring is via the reaction between an amino 

alcohol and a carboxylic acid (scheme 1), for example, 2-phenyl-4,4-bis(hydroxymethyl)-2-

oxazoline (3-6) has been synthetized in refluxing benzoic acid for 20 hours using azeotropic 

distillation with xylene to remove generated H2O[3]. The equivalent reaction with an aldehyde 

gives the corresponding oxazolidine which can be subsequently oxidised giving the desired 

mono-unsaturated product 3-9.[4] 
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Scheme 4: Synthesis of 2-oxazolines through reaction between carboxylic acids and 

aldehydes with aminoalcohol. 

 

Schwekendiek and Gloriusdeveloped a one-pot synthesis involving the use of N-

bromosuccinimmide (NBS) as an auxiliary oxidising agent.(Table 1) The reaction employs mild 

condition and allows the synthesis of a variety of substrates, moreover enantiomeric purity is 

retained during the transformation.[5]. 

 

Table 1: Enantioselective synthesis of 2-oxazolines through secondary oxidation of 

intermediate oxazolidine with NBS. 

 
 Product Yield (%)  Product Yield 

(%) 

3-12a 

 

88 3-12i 

 

42 

3-12b 
 

91 3-12j 

 

93 

3-12c 

 

70 3-12k 

 

76 

3-12d 
 

80 3-12l 
 

83 

3-12e 
 

81 3-12m 
 

68 
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3-12f 

 

65 3-12n 
 

77 

3-12g 
 

82 3-12o 
 

34 

3-12h 

 

88 3-12p 

 

30 

aGeneral reaction conditions: 3-10 (1 mmol), 2-7 (1 mmol), 4 Å MS (1.5 g), CH2Cl2 (6 mL), 
rt, 14 h; NBS (1 mmol), rt, 0.5 h. NBS (1 mmol), rt, 0.5 h. 

 

Several examples have also been reported where 2-oxazolines have been prepared starting 

from amides. Early attempts entailed the use of allyl amides with concentrated H2SO4 to 

induce cyclisation and dehydration [6,7](Table 2), more recently propargylic amides have been 

used in combination with gold,[8] ZnI2 and FeCl3[9] catalysts (Table 3 and 4). 

 

Table 2: Synthesis of 2-oxazolines through cyclization of amides by treatment with H2SO4. 

 
Compound 

No. 
R group Yield (%) 

3-14a 2-Methyl 60 
3-14b 2-Phenyl 77 
3-14c 2 -p-TolyI 50 
3-14d 2 -p-Fluorophenyl 40 
3-14e 2-p-Nitrophenyl 74 
3-14f 2-p-Dimethylaminophenyl 52 
3-14g 2-p-Anisyl 15 

 

Table 3: Synthesis of 2-oxazolines through cyclization of propargylic amide gold catalysed. 

 
Product T (°C) Yield Product T 

(°C) 
Yield 
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20 83 

 

12 84 

 

6 78 

 

14 80 

 

12 80 

 

12 88 

 

12 91 

 

36 81 

 

48 59 

 

12 91 

 

24 70 

 

12 88 

 

16 80 

 

48 90 

 

Table 4: Synthesis of methylene-3-oxazoline derivatives through ZnI2 promoted cyclization of 

propargyl amides 
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Nitriles react with epoxides when treated with strong acid leading to the cyclic product, this 

transformation has been used to obtain several 2-oxazolines[10,11] (Table 5). 

 

Table 5: 2-oxazolines through reaction between nitriles and epoxides. 

 
R R1 Yield (%) Ratio 2,4- : 2,5- 

CH3 H 11 - 
C6H5 H 20 - 
CH3 ClCH2 37 0 : 100 
C6H5 ClCH2 21 0 : 100 
CH3 CH3 11 48 : 52 
C6H5 CH3 14 59 : 41 
CH3 C6H5 24 97 : 3 
C6H5 C6H5 42 93 : 7 

 

A series of 2-propyI-2-oxazolines have been prepared by Lambert and Kristofferson using the 

reaction between butyramidine and epoxides [12] (Table 6). According to the authors the 



118 
 

reaction proceeds from intermediate 3-24b which cyclises after eliminating ammonia 

(Scheme 2). 

 

 

Table 6: 2-oxazolines through reaction between butyramidine and epoxides. 

 
R R’ Yield (%) 

H H 40 
H CH3 80 
H CH2CH3 82 

CH3 CH3 42 
 

 

Scheme 5: Reaction mechanism proposed by Lambert and Kristofferson for the reaction 

between butyramidine and epoxides. 

 

Nitriles have also been used in combination with Cu or Zn catalysts making it possible to 

directly react them with amino alcohols leading to the 5 membered ring[13, 14] (Table 7 and 8). 
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Table 7: Synthesis of 2-oxazolines through reaction between amino alcohols and nitriles Cu 

catalysed. 

 

   

   

 
  

  
 

Reaction condition: nitrile (1mmol), alcohol (2mmol), [Cu(Cl)(iPr)] (0.02 mmol), NaOAc (0.1 mmol), 
100 °C, solvent free, 16 h. 

 

Table 6: Synthesis of 2-oxazolines through reaction between amino alcohols and nitriles Cu 

catalysed. 

 
Entry Groups Reaction time (h) Yield 

3-29a R’ = H, R = Ph 2 95 
3-29b (R’ = H, R = CH2Ph) 2 100 
3-29c (R’ = H, R = iPr) 2 90 
3-29d  (R’ = H, R = tBu) 3 90 
3-29e (R’ = H, R = Me) 2 75 
3-29f (R’ = H, R = Indanyl) 2 100 
3-29g (R’ = Me, R = Ph) 3 85 
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Another straightforward protocol for the assemby of the oxazoline structure starts from an 

amino alcohol and involves its conversion to the related amide by reaction with an acyl 

chloride, its subsequent reaction with tosyl chloride then generates the alkyl chloride (alcohol 

to chloride) which reacts intramolecularly to form the desired product[15-19] (Scheme 3). 

 

 

Scheme 6: Evans’ route to Box ligands 2-32. 

 

The group of Minataka has performed the cyclization of various alkenyl benzamides using a 

tert-BuOCl/NaI system. The method was shown to be quite general and allowed the synthesis 

of several different heterocycles. The reaction mechanism involves the formation of a cyclic 

iodonium ion obtained by reaction with the t-BuOCl generate in situ[20] (Table 9) 

 

. 

Table9: Minataka’s synthesis of 2-oxazolinesby cyclization of alkenyl benzamides using a 

tert-BuOCl/NaI system 

 
n X t-BuOCl 

(equiv.) 
NaI (equiv.) Time (h) Yield (%) 

1 O 1.1 1.1 5 95 
2 O 1.1 1.1 24 82 
1 S 1 1 5 77 
2 S 1.1 1.1 24 47 
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3.1.2 Synthesis of 3-oxazolines 
Although the practical utilization of 3-oxazolines has been neglected compared to the most 

used 2-oxazolines, several syntheses have been developed: Favreau and Fellous assembled 

the heterocycle starting from the condensation of an amino alcohol and a ketone [21] (Table 

10). 

Table 10: Synthesis of 3-oxazolines by condensation of amino alcohols and ketones. 

 
 R1 R2 R3 R4 Yield 2-36 Yield 2-37 

a H H Et Me 80 66 
b H H i-Pr Me 87 65 
c Me H Et Me 85 66 
d Me H i-Pr Me 76 55 
e H Et Et Me 91 83 
f H Et i-Pr Me 83 72 

 

Murai and Fujioka [22] showed a one-pot synthesis of 3-oxazoline-4-carboxylates 3-40 starting 

from aldehydes. The transformation involves the formation of the oxazolidine ring followed 

by chlorination of the nitrogen and subsequent elimination (Scheme 4 and Table 11). 

 

Scheme 7: Mechanism proposed for the 3-oxazoline-4-carboxylates from aldehydes and 

amino alcohols. 
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Table 11: Synthesis of 3-oxazoline-4-carboxylates from aldehydes and amino alcohols. 

 
 RCO R’ Yield (%) 

3-38a  H 84 

3-38b 

 

H 82 

3-38c  Me 83 

3-38d 

 

Me 84 

3-38e  H 82 

3-38f  H 90 

3-38g  H 89 

3-38h  H 87 

3-38I  

 

H 96 

3-38j  

 

H 91 

3-38 k 

 

H 84 

 

The types of application where these molecules have been successfully used are extremely 

wide ranging due to the multiple properties of this heterocycle. Furthermore, the importance 

of the molecules is shown by the continued development of new methods.  

 

3.1.3 Use of 2-oxazoline in the pharmaceuticals: 
The 2-oxazoline heterocycle motif is found in many drugs with many different therapeutic 

indications making it a valuable structure in medicinal chemistry. It is a prominent functional 

units in several biologically active molecules (antimicrobial,[23,24] anti-inflammatory,[3] anti-

malarial,[26,27] antibacterial,[28-30] antitumor,[31,32] anti-viral,[33] antipyretic,[34] 

antituberculotic,[35] CNS stimulant activity,[37,38] antioxidant[39]) and several natural 

products[15] (Figure 3) indicating its further biological activity. 
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Figure 3: Pharmaceutical relevant molecules containing the 2-oxazoline moiety. 

 

3.1.4 Industrial application 
These heterocyclic species have found value in several industrial applications thus increasing 

their interest to their study (Figure 4). 
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Figure 4: Industrial relevant molecules containing the 2-oxazoline moiety. 

 

3.1.5 Asymmetric catalyst 

The most widespread application of 2-oxazolidines is as ligands. Since the first reported 

example of a ligand containing the oxazoline ring by the Brunner group in 1986 several 

different ligands have been developed. Most popular examples comprise pyridine 

bis(oxazoline) (Pybox)[43], bis(oxazoline),[52-57] phosphinooxazolines (PHOX),[58-60], 

trisoxazolines (Tox)[61,62] and several other related systems.[63-69] (Figure 5). 
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Figure 5: Oxazoline based asymmetric ligands. 
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Chiral oxazoline-based ligands are among the most popular ligands in asymmetric catalysis. 

The reasons are essentially two: firstly, they can be easily synthetized by starting from cheap 

amino alcohols which allow access to a wide range of different derivatives and secondly, they 

permit to perform efficiently a large variety of crucial enantioselective transformation.[70] 

3.1.5.1 C2-symmetric Box 

Generally, among the Lewis acid catalysis, the catalyst is often a cation associated (by 

coordination or bound) with an optically active ligand resulting in a chiral complex with at 

least one Lewis acid vacant site able to induce the coordination and the activation of the 

reagent. In order to enhance a high enantioselectivity the reagent must possess the right 

orientation allowing it to favour the attack on a specific face. C2-symmetric chiral ligands 

allow to reduce half the variables required for a good face selectivity and C2-symmetric bis-

oxazolines also called BOX’s are some of the most popular ligands which fulfil these 

requisites[71] (Figure 6 and Table 12). 

 

Figure 6: C2-symmetric BOX catalysts. 
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BOX R BOX R 

3-73 Me 3-73r CMe2SMe 

3-73b Et 3-73s CH(Ph)OH 

3-73c i-Pr 3-73t CH(Ph)OMe 

3-73d CH2Ph 3-73u CH(Ph)OSiMe2-tBu 

3-73e CH2CHMe2 3-73v CH(Ph)OCOPh 

3-73f CH2C6H11 3-73w 2-Me-C6H4 

3-73g (1-adamantyl) 3-73x 2-OMe-C6H4 

3-73h (1-naphtyl) 3-73y 4-OMe-C6H4 

3-73i (2-naphtyl) 3-73z 4-Cl-C6H4 

3-73j CH2OH 3-73aa 2OH-5-tBu-C6H3 

3-73k CH2OCOPh 3-73ab 2-OMe-5-tBu-C6H3 

3-73l CH2OTBDPS 3-73ac 2-(OCH2CH2Cl)-5-tBu-C6H3 

3-73m CH(Me)OH 3-73ad 2-OMe-5-Cl-C6H3 

3-73n CH(Me)OCOPh 3-73ae CH2-1-naphtyl 

3-73o CMe2OSiMe3 3-73af CH2-2-naphtyl 

3-73p CH2SMe 3-73ag CH(Ph)OH 

3-73q CH2CH2SMe 3-73ah CH(Ph)OMe 

Table 7: C2-symmetric BOX catalysts. 

 

Generally, the BOX ligand with a spacer consisting of one carbon atom use the two nitrogen 

as a bidentate ligand although there are few exceptions[71] where complexes formed with the 

BOX ligand behaves as a monodentate ligand; for example {Ag[(S)-1]OTf(0.5H2O)} and 

{Ag[(S)-3d]OTf}.[72] Here the Ag ion coordinates two nitrogens belonging to two different BOX 

ligands leading to a single stranded polymer with a helical coordination, this system possesses 

a 2-fold symmetry displaying a left handed helicity and a zigzag conformation. In addition the 

oxazoline (S)-3-72 (Figure 6) with CuOTf·0.5C6H6 
[73] polymerises forming a single-strained 

helical with a 3-fold symmetry where the box bridges two bidentate Cu.[71]. (Figure 7) 
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Figure 7: C2 symmetric Oxazoline complex with Cu, behaving as a monodentate ligand. 

 

In general, a bidentate ligand where the cation is coordinated by two nitrogen from the same 

BOX allows the formation of a much more rigid species resulting in an enhancement of the 

discriminating ability between the two diastereofaces of the reagent.[71] For this reason, 

Mono-BOX species behaving as a bidentate ligand are some of the most popular complexes 

in asymmetric catalysis. Copper(II) remains the most used metal with these compounds.[71,] 

For BOX’s 3-71 and 3-72 a distorted square-planar coordination is normally observed leading 

to a coordination number of 4 although the use of a counter ion like triflate can expand it to 

five due to the formation of a distorted square pyramid-geometry.[71] The anion plays an 

important role in the distortion of the structure compared to the ideal plane of box and 

cation: [(S)-1·CuBr2] and [(S)-1·CuCl2] show this effect as Cl and Br induce a large distortion 

with the halogens positioned in quadrant free from substituent [74] (Figure 2) whereas the 

hydrated complex shows more planar features , with the dihedral angles O-Cu-N-C equal to -

11.3° and -7.2 and the two molecules of water pointing in the direction of the aromatic 

substituents (Figure 8) [75-77]. 
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Figure 8: Different geometries of the complex (S)-3-71 with Cu: distorted square-planar 

coordination in the hydrated form (left) and distortion of the geometry for effect of the ion 

Br (right). 

 

Complexes of (S)-3-72 with Cu have been extensively studied showing the importance of the 

counter ion in influencing the coordination number.[71,75,76] For example, when associated 

with SbF6, (S)-3-72 assumes a distorted planar square structure where two water molecules 

are included as happen with (S)-3-71 (Figure 9) although in this second case the distortion 

effect is augmented and the ligands are pushed far from the tert-butyl group with a big impact 

on the dihedral angles O-Cu-N-C which become +30.2° and +35.9° [75-78 ]. 

 
 

Figure 9: different effects of SbF6 on the distortion of the geometry in (S)-3-72 (left) 

compared to (S)-3-71 (right). 
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Since the end of last century, these ligands have gained a great deal of popularity to the point 

that some of them have been widely commercialised: for example ligands (R)-3-72, (S)-3-72 

and (S)-3-73 have became some of the most used ligands in scientific literature[71]. The 

synthesis of box ligands was first explored in the pioneering work of Corey[55] and Evans[54]. 

The oxazoline’s frame is obtained by reaction of a β-amino alcohol and a malonic acid 

derivative (Schemes 5 and 6). 

 

 

Scheme 8: Corey’s synthesis of the Box (R)-3-72. 

 

 

Scheme 9: Evans’ synthesis of the Box (S)-3-71. 

 

The cyclization step has been developed using alternative conditions; one example is the 

Masamune protocol[79] which uses Me2SnCl2 in refluxing xylene (Scheme 7). 
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Scheme 10: Musamune’s cyclization using (CH3)2SnCl2. 

 

Other reagents used for the cyclization are CH3SO3H, [80] Me2SnCl2, [52,53] ZnCl2, [81] DAST 

(diethylaminosulfur trifluoride), [82] or CF3SO3H and BF3.Et2O.[83] 

 

3.1.5.2 Reactions: 
 

3.1.5.2.1 Cyclopropanation 
The BOX ligand (S)-3-72 and CuOTf catalyse the cyclopropanation of alkanes with 

diazoacetates showing excellent yield, diastereoselectivity and enantioselectivity[86]. 

Interestingly, BOX 3-72 with Cu(I) salts gives better results compared to its use with Cu(II) or 

the alternative BOX ligand 3-71 (Table 13, entry 2, 3) [84,85] 

The selectivity is also dependent on the diazoester, particularly, trans selectivity is enhanced 

by increasing the steric demand (entry 6, Table 13). Trisubstituted alkenes were used in order 

to gauge the limitations of the BOX ligands for these reactions (entries 12-20, Table 13).[52,53,86] 

In the experimentation the ligand (S)-3-72 showed a much higher enantioselectivity 

compared with (S)-3-71 (entries 13-16, Table 13) although they led to the same absolute 

configuration.  

Table13: Asymmetric Cyclopropanations of Alkenes with Diazoacetates 3-84 Catalysed by 

Box Complexes. 

 

 R1 R2,3 R4 R box MXn yie
ld 

3-
85:23-
86 

3-85 ee(%) 3-86 ee ref 

1 Ph H H Et (S)-3-72 Cu(OTf)

2 

77 73:27 99 (1R,2R) 97(1R,2S) 54,73,84,
85 

2 Ph H H Et (S)-3-72 Cu(I)a 81 71:29 91 (1R,2R) 88(1R,2S) 85 
3 Ph H H Et (R)-3 71 CuOTf 77 70:30 65 (1S,2S) 54(1S,2R) 84 
4 Ph H H t-Bu (S)-3-72 CuOTf 75 81:19 96 (1R,2R) 93(1R,2S) 54 
5 Ph H H 2,6-DMPb (S)-3-72 CuOTf 68 86:14 97 (1R,2R) 96(1R,2S) 54 

6 Ph H H 2,6-BHTc (S)-3-72 CuOTf 85 94:6 99 (1R,2R)  54 
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7 Ph H H CH(C6H11)2 (S)-3-72 CuOTf 83 88:12 97 (1R,2R)  87 
8 Bn H H 2,6-BHT (S)-3-72 CuOTf d 99:1 99 (1R,2R)  54 

9 H Ph H Et (S)-3-72 CuOTf d  99 (1S)  54 
10 H Me H Et (S)-3-72 CuOTf d  99 (1S)  54 
11 C=CMe2 Me H L-methyl (S)-3-72 CuOTf 60 84:16 24 (1R,2R)  52, 53 
12 CH2OAc Me H Et (S)-3-71 Cu(I) 47 49:51 69 (1R,2R) 20 86 
13 CH2OAc Me H Et (S)- 3 72 CuOTf 50 80:20 95 (1R,2R) 3 86 

14 CH2OSiMe3 Me H Et (S)-3-71 CuOTf 52 64:36 66 47 86 
15 CH2OSiMe3 Me H Et (S)- 3 72 CuOTf 33 76:24 87 d 86 
16 CH2OCH2Ph Me H Et (S)-3-72 CuOTf 74 88:12 93 d 86 
17 CH2Otrityl Me H Et (S)-3-72 CuOTf 46 82:18 87 d 86 

18 CH2OCOPh Me H Et (S)-3-72 CuOTf 82 82:18 92 d 86 
19 CH2OCOC6H

4OMe 
Me H Et (S)-3-72 CuOTf 61 91:9 92 12 86 

20 Ph Me H Et (S)-3-72 CuOTf 62 72:28 89 (1S,2S) 80 88,89 

21 Ph H F Et (S)-3-72 CuOTf 56 81:19 93 (1S,2S) 89 88,89 
22 Ph H F t-Bu (S)-3-72 CuOTf 28 81:19 92 (1S,2S) >98 88,89 
23 p-ClPh H F L-methyl (S)-3-72 CuOTf 64 82:18 93 91 88 

24 Ph H F Et (S)-3-72 CuOTf 62 64:36 65 d 88 
25 C4H9 Me F Et (S)-3-72 CuOTf 28  16 d 88 

  a X = not reported. b 2,6-DMP is 2,6 dimethylphenyl. c 2,6-BHT is 2,6-di-tert-butyl-4-methylphenyl. d Not 

reported. 

 

3.1.5.2.2 Aldol like reactions 
The Mukaiyama reaction was one of the first transformations studied with the BOX ligands 

which turned out to be able to catalyse the addition of aldehydes or ketones to silylacetals.[71] 

The aldehyde or ketones 3-87 must possess a group capable of coordinating to the Lewis acid 

(Table 14). 

 

Table14: Catalysed Enantioselective Mukaiyama-Aldol Reactions between Aldehydes 3-87 

(R1=H) and Trimethylsilylketene acetals 3-88. 

 
Entry R A R2 BOX MXn Solvent Anti/syn 87 ee 88 ee Ref 
1 CH2OBn St-Bu H (S)-3-71 Zn(SbF6)2 DCM  85 (S)  95 
2 CH2OBn St-Bu H (S)-3-71 Cu(OTf)2 DCM  9 (R)  90 
3 CH2OBn St-Bu H (S)-3-72 Cu(OTf)2 DCM  91 (R)  71,90,95 
4 CH2OBn St-Bu H (S)- 3-72 Zn(SbF6)2 DCM  64 (S)  90 
5 CH2OBn OEt H (S)- 3-72 Cu(OTf)2 DCM  50 (R)  90 
6 CH2OBn Me H (S)- 3-72 Cu(OTf)2 DCM  38 (R)  90 
7 CH2OBn Ph H (S)- 3-72 Cu(OTf)2 DCM  51 (R)  90 
8 CH2OBn St-Bu Me (S)- 3-72 Cu(OTf)2 DCM 81:19 84 (R,S)  90 
9 CO2Et SPh H (S)-3-71 Cu(OTf)2 DCM   91 (S)  71 
10 Ph Ph Me (S)-3-72 Cu(OTf)2 H2O 10:90 a 15 71 

 

 

The chiral environment generated influences not only the substituent but also cation and 

anion play a fundamental role (Table 14, entries 1-4). Evans[90] suggested that changing the 
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counter ion (Table 14, entry 3 and 4) can induce an inversion of the configuration by causing 

a change in the coordination number (Scheme 8). 

 

Scheme 11: Inversion of the configuration due to a change in the coordination number. 

 

If the counter ion does not behave as an auxiliary ligand (e.g. SbF6) the complex assume a 

square planar conformation and the attack of the nucleophile occurs on the Si face leading to 

the (S)-3-89 product as major product whereas when the counter ion play a direct role as the 

ligand (e.g. OTf) the geometry changes toward a pyramidal square structure thus attacking 

preferably the Re face leading to the (R)-3-89 product (Scheme 8). 

3.1.5.2.3 Radical processes 
The use of bicyclo-oxazolines as chiral catalysts has found application in seberal free radical 

processes. The chiral Lewis acids can control the transfer of an atom or group allowing 

delivery of the substituent selectively to a particular face (Figure 10). The reaction is normally 

performed generating the radical from α-halo carbonyl compounds or from conjugate 

addition to a β-carbon atom. 
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Figure 10: Chiral control over the transfer of an atom or group by Lewis acid. 

 

The use of BOX ligagted Lewis acids can catalyse the coupling between the radical generated 

from the halo derivative 3-97 and Et3B (used as initiator) and allyl silanes or stannanes 3-98 

leading to the β-bromo derivative 3-99 which can then eliminate ZBr2 leading to the 

corresponding alkene. Changing the ion and counter ion can dramatically affect the outcome 

of the transformation: the salt Zn(OTf)2 and MgI2 give opposite enantiomers (Table 15).[91] 

 

Table 15. Reaction of 3-(α-bromoacyl)-2-oxazolidinone with allyl silanes and stannanes. 

 
Entry R Z BOX MX2 Yield (%) ee (%) (conf) 

1 Et SnBu3 (R)-3-71 Zn(OTf)2 84 42 (S) 

2 Et Si(OEt)3 (R)-3-71 Zn(OTf)2 65 60 (S) 

3 CH2tBu SnBu3 (R)-3-71 Zn(OTf)2 63 74 (R) 

4 CH2tBu SnMe3 (R)-3-71 Zn(OTf)2 88 90 (R) 

5 CH2tBu SnMe3 (R)-3-71 MgI2 86 68 (S) 

6 CH2tBu SnMe3 (S)-3-72 MgI2 61 78 (R) 

 

Yang[92] performed highly enantioselective atom-transfer radical cyclizations by using chiral 

Lewis acids. The transformation allowed the creation of various chiral centres and also to 

install a halogen in the product. The chiral ligand (S)-3-72 in combination of Mg(ClO4)2 

catalyses the cyclization of unsaturated β-keto esters through atom transfer (Table 16). 
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Table 16: cyclization of unsaturated β-keto esters through atom transfer. 

 
Entry Substrate Catalyst 

(equiv.) 
Solvent Time (h) Yield (%) ee (%) 

1 3-101 1.1 DCM 7.5 68 71 
2 3-101 1.1 Toluene 5 67 94 
3 3-101 0.5 Toluene 7 65 93 
4 3-101 1.1 Toluene 9 53 21 
5 3-102 1.0 Toluene 9.5 57(1/1.2)c 68/78d 
6 3-102 0.3 Toluene 12 58(1/1)c 74/87d 
7 3-103 0.3 Toluene 9.5 81(1/1.4)c 74/95d 
8 3-104 1.1 Toluene 7.5 62 93 
9 3-104 0.5 Toluene 7.5 53 94 

a MS 4Å (500 mg/mmol substrate); b 1.0 equiv. of water was added. c ratio of product b: product c; dee’s for product b 
and c 

 

 

The high selectivity of the process has been rationalised using the transitional state in which 

Mg is tetrahedral (Scheme 9): here, due to the bulky tert-Bu-groups of the ligand the 

cyclization on the Re-face is favoured over the Si-face and the resulting transition state 3-107 

experiences lower steric interactions thus resulting in the product 3-105.[92, 93] 

 

 

Scheme 12: Rationalization of the selectivity in 5-exo cyclization. 
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The same ligand has been used by Yang[94] with Mg(ClO4)2 for performing enantioselective 

tandem cyclizations: The author reports that the use of DCM gives poor enantiomeric excess 

which can be increased using molecular sieves although this decreases the yield on the 

contrary using toluene improves considerably the ee although reducing the yield of the 

transformation (Table 17). 

 

Table 17: Tandem cyclization by atom-transfer. 

 
entry substrate T (°C) Tolvent Product Yield (%) ee (%) 

1 3-108 -78 DCM 3-110 41 13 

2a 3-108 -78 DCM 3-110 24 33 

3 3-109 -40 Toluene 3-111 23 82 

4 3-109 -20 Toluene 3-111 16 84 

a MS 4Å was added 

 

3.1.5.2.4 Diels alder  
The Diels-Alder reaction together with the aldol addition represents a benchmark of the 

efficiency of a chiral catalyst and most of the ligand classes have been assessed with these 

reactions.[71] Since Corey in 1991 used (S)-3-71 for catalysing the Diels-Alder reaction between 

3-acryloyl-2-oxazolidinone and cyclopentadiene showing an endo selective process (3-113:3-

114 =96:4) and 82% ee for (1R,2R,4R)-3-113 [simplified (R)-3-113][55] the interest for this 

particular transformation grew considerably up to the point that acryloyl and crotonoyl 

oxazolidinones became a standard for gauging the efficiency of catalysts toward the Diels-

Alder reaction.[71] 
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Table 18: Box catalysed enantioselective Diels-Alder between cyclopentadiene and 3-

acryloyl-2-oxazolidinones (R = H). 

 
Entry R1 box MXn additives Solvent Yield (%) Endo / 

Exo 
Endo ee (%) [ref] 

1 H,H (S)-3-71 FeI3/I2  DCM 85 96:4 82 (R) 55 
2 H,H (S)-3-71 Cu(OTf)2  DCM 92 95:5 30 (S) 95,96 
3 H,H (S)-3-72 Cu(OTf)2  DCM 86 98:2 >98 (S) 95,96,97,102 
4 H,H (S)-3-72 Cu(OTf)2  THF >98 97:3 98 (S) 95 
5 H,H (S)-3-72 Cu(OTf)2  MeNO2 >98 92:8 84 (S) 95 
6 H,H (S)-3-72 Cu(OTf)2  MeCN 87 92:8 58 (S) 95 
7 H,H (S)-3-72 Cu(SbF6)2  DCM >95 96:4 >98 (S) 95,103 
8 H,H (S)-3-72 Cu(ClO4)2

a  DCM 85 97:3 60 (S) 101 
9 H,H (S)-3-72 Co(OTf)2  DCM 85 90:10 50 (S) 95 
10 H,H (S)-3-72 Mn(OTf)2  DCM 80 85:15 50 (S) 95 
11 H,H (S)-3-72 Ni(OTf)2  DCM 75 90:10 40 (S) 95 
12 H,H (S)-3-72 Zn(OTf)2  DCM 85 95:5 38 (S) 95 
13 H,H (S)-3-72 LiOTf  DCM 89 85:15 14 (S) 95 
14 H,H (S)-3-72 Cd(OTf)2  DCM 80 90:10 10 (S) 95 
15 H,H (S)-3-72 Sm(OTf)3  DCM 78 80:20 Racemate 95 
16 H,H (S)-3-72 Lu(OTf)3  DCM 75 75:25 racemate 95 
17 (R)-Bn (S)-3-72 Cu(OTf)2  DCM 100 99:1 >98 (S)b 95,96 

18 (S)-Bn (S)-3-72 Cu(OTf)2  DCM 20 >95:5 36 (S)b 95, 96 
19 H,H (R)-3-71 Mg(ClO4)2  DCM >98 93:7 73 (S) 99,98,100 
20 H,H (R)-3-71 Mg(ClO4)2 2H2O DCM >98 95:5 73 (R) 99,98,100 
21 H,H (R)-3-71 Mg(ClO4)2 2MeOH DCM >98 91:9 42 (R) 98 
22 H,H (R)-3-71 Mg(ClO4)2 2EtOH DCM >98 91:9 16 (R) 98 
23 H,H (R)-3-71 Mg(ClO4)2 2tBuOH DCM >98 92:8 33 (R) 98 
24 H,H (R)-3-71 Mg(ClO4)2 (CH2OH)2 DCM >98 91:9 58 (R) 98 
25 H,H (R)-3-71 Mg(ClO4)2 TMUc DCM >98 96:4 51 (R) 100 
26 H,H (R)-3-71 Mg(ClO4)2 Py or Et3N DCM 0 0 0  100 
27 H,H (R)-3-71 Mg(OTf)2  DCM >98 92:8 88 (R) 97,100 
28 H,H (R)-3-71 Mg(OTf)2 2H2O DCM >98 92:8 86 (R) 100 
29 H,H (R)-3-71 Mg(OTf)2 TMUc DCM >98 93:7 88 (R) 100 
30 H,H (S)-3-71 MgI2/I2  DCM >98 94:6 76 (R) 68 
31 H,H (R)-3-71 Zn(OTf)2  DCM >98 90:10 32 (R) 97 
32 H,H (R)-3-71 Zn(ClO4)2

a  DCM >98 92:8 20 (R) 85 
33 H,H (R)-3-71 Zn(ClO4)2 MSd DCM >98 92:8 73 (S) 85 
34 H,H (R)-3-71 Zn(SbF6)2  DCM >90 98:2 92 (R) 68,103 
35 H,H (R)-3-71 Ni(ClO4)2

a  DCM 97 88:12 52 (R) 64 
36 H,H (S)-3-71 Cu(ClO4)2

a  DCM 84 97:3 41 (S) 101 
aHexahydrate sat. bMajor endo diastereoisomer. cTMU is tetramethylurea. dMolecular sieves are 4 Å 

 

Evans showed how the BOX ligand 3-72 and Cu(II)[95,96,102-105] in combination with both OTf 

and SbF6 counter ions (entries 3-8) give the best results. The asymmetric induction [(S)-3-72 

gives (S)-329] arises from the intermediate 3-115 (Scheme 10) which has a square planar 

geometry. 
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Scheme 13. Asymmetric induction arising from the square-planar intermediate 3-115. 

 

The use of (R)-3-71 as catalyst reveals an unique behaviour: it seems that its enantioselectivity 

is not just influenced by the counter ion but also by external species which can work as 

auxiliary ligands: the use of perchlorate gives (S)-3-113 as product (Table 18) but when it is 

used in combination with 2 equivalent of water or ethylene glycol or tetramethylurea (entries 

27-29 Table 18) then the product obtained is the (R)-3-114. Conversely, when triflate is used 

as counter ion the product obtained is (R)-3-113 but in this case the addition of water or other 

additives does not affect the selectivity of the process (Table 18). This interesting effect where 

the enantioselectivity of the process is inversed by adding an achiral additive has been 

rationalised[63] considering that water and tetramethylurea in combination with perchlorate 

are able to induce an expansion in the coordination number bringing the complex from a 

tetrahedral geometry (coordination number = 4) to octahedral (coordination number = 6), on 

the contrary in case triflate is used, two of them coordinate in the axial position, therefore, 

the coordination number is always 6 and it is not affected by water or tetramethylurea. 

(Scheme 11) Among the 3 intermediate the tetrahedral geometry allows the cyclopentadiene 

to attack the Re face of the dienophile whereas an octahedral geometry results in the 

approach of the diene on the Si face (Scheme 11). 
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Scheme 14: Asymmetric induction resulting by expansion of the coordination sphere due to 

auxiliary ligands. 

 

Hetero Diels-Alder processes have been also extensively studied. Jorghensen[106] reported the 

reaction between activated ketones and the Danishefsky’s diene catalysed by (S)-3-

72/Cu(OTf)2/THF (Table 19). The enantiomeric purity of the transformation together with the 

low loading of the catalyst makes this transformation comparable to a bio-enzymatic 

reaction.[106,71]  

 

Table 19: Enantioselective Hetero-Diels Alder reaction between diene 3-116 and diketones 3-

117. 

 
Entry R R1 R2 BOX MXn Yield (%) ee (%) [ref] 

1a OEt Me H (R)-3-71 Cu(SbF6)2 24 23 (S) 106 
2 a OEt Me H (R)-3-71 Cu(OTf)2 85 35 (S) 106 
3 a OEt Me H (S)-3-72 Cu(SbF6)2 37 89 (S) 106 
4 a OEt Me H (S)-3-72 Cu(OTf)2 78 >99 (S) 106 
5 OMe Me H (S)-3-72 Cu(OTf)2 96 >99 (S) 109, 106 
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6 OMe Et H (S)-3-72 Cu(OTf)2 80 94 (S) 106 
7 OEt i-Pr H (S)-3-72 Cu(OTf)2 42 37 (S) 106, 107 
8 OEt Ph H (S)-3-72 Cu(OTf)2 77 77 (S) 106, 107 
9 OEt Ph H (S)-3-72 Sc(OTf)3 26 6 107 
10 OEt Ph H (S)-3-72 Yb(OTf)3 70 4 107 
11 OEt Ph H (S)-3-72 In(OTf)3 26 9 107 
12 Me Me H (S)-3-72 Cu(OTf)2 90 94 (S) 106 
13 Et Me H (S)-3-72 Cu(OTf)2 77 98 (S) 106 
14 Et Et H (S)-3-72 Cu(OTf)2 84 90 (S) 106 
15 Ph Me H (S)-3-72 Cu(OTf)2 95 94 (S) 106 
16 a Et (CH2)8Me H (S)-3-72 Cu(OTf)2 77 47 (S) 108 
17 OMe Me Me (S)-3-72 Cu(OTf)2 75 96 (S) 106 
18 OEt Ph Me (S)-3-72 Cu(OTf)2 57 99 (S) 106 
19 Me Me Me (S)-3-72 Cu(OTf)2 60 91 (S) 106 
a Reaction run in DCM 

 

The approach of the diene on the Re-face of the square planar complex is hampered by the 

tert-butyl group therefore leading to the (S)-3-118 arising from the attack on the Si face of 

the ketone coordinated to the Cu. 

 

 

Scheme 15: Asymmetric induction of the intermediate 3-119. 

3.1.5.2.5 Palladium chemistry 
Box catalysts have also been tested on the palladium chemistry. One of the first application 

was in the field of Pd-catalysed nucleophilic allylic substitution reactions. The mechanism 

proposed entails the attack on the halo-allyl 3-121 by the BOX-Pd complex leading to a couple 

of diastereoisomer complexes, thus, reaction with the nucleophile followed by a 

decomplexation gives the optically active product (Scheme 13). 
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Scheme 16: Nucleophilic allylic substitution reactions mechanism. 

 

Zhang and Muthiah[110-112] reported an interesting allylic substitution where the nucleophilic 

attack arises intramolecularly after the “activation” of an alkyne moiety through the Pd 

counter ion (OAc) compound 3-127 in combination with [(R)-3-71/Pd(OAc)2] in acetic acid 

gives the lactone 3-128 with good ee (Table 20). 

 

Table 20: Enantioselective intramolecular cyclization using BOX-Pd Catalysed. 

 

Entry R Yield ee (%) 

1 Me 78 92 (R) 
2 n-Pr 80 80 (R) 
3 Ph 58 79 (R) 
4 i-C7H15 77 85 (R) 
5 MeOCH2 67 87 (R) 

 

Shakil reported the synthesis of two Pd-BOX complexes which he used for catalysing Suzuki–

Miyaura and Mizoroki–Heck couplings (Scheme 14).[113] 
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Scheme 17: Shakil’s synthesis of complexes 3-133 and 3-134. 

 

The BOX ligand was obtained by direct reaction between phthalonitrile and an amino alcohol 

catalysed by Zn(OTf)2, subsequent of the same BOX ligand was reacted with PdCl2(PhCN)2 in 

DCM to yield the Pd complexes. Despite the ligands being achiral the author claimed an 

Inherent chirality arising from the coordination with the Pd which induces a rigid backbone 

curvature with dihedral angle of 87.42(2)° and 85.7(2)°.The complex was crystallised as 

pseudo-racemate. 

 

Figure 11: Complexes 3-133 and 3-134. 

 

The two obtained complexes were used for catalysing the Suzuki and the Heck reaction;BOX 

ligands 3-133 and 3-134 allows coupling between aryl iodide and phenyl boronic acid in 

quantitative yield. The enrichment of both the aryl halide and phenyl boronic acid ring with 
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electron withdrawing and electron rich groups does not impact the yield suggesting that the 

transformation is not affected by the electronic perturbation on the ring (Table 21). 

 

Table 21: Effect of various halides and arylboronic acid in Suzuki coupling using Pd-BOX (3-

133) as a catalyst. 

 

n° R1 n° R n° Coupling Product Yield 
(%) 

3-138 
 

3-136 

 

3-144 
 

89 

3-139 

 

3-136 

 

3-145 
 

86 

3-140 
 

3-136 

 

3-146 
 

81 

3-135 
 

3-141 

 

3-147 

 

87 

3-135 
 

3-142 

 

3-148 
 

95 

3-135 
 

3-143 

 

3-149 
 

94 

Conditions: Pd-BOX 3-133 (0.0100 mmol), aryl halide (0.500), arylboronic acid (0.600 mmol), K2CO3 (2.00 mmol), DFM (5.0 mL), 70 °C, 
6h. 

 

The author used the reaction model between iodobenzene and phenylboronic acid for 

comparing his two BOX catalysts with other commercially available palladium complexes such 

as Pd(OAc)2, PdCl2(PhCN)2 and PdSO4 the results show that the complex 3-133 gives the best 

results implying that the presence of the ligand can play a key role in the enhancement of this 

transformation[114] (Table 22). 

 

Table 22: Different palladium catalyst in the Suzuki coupling reaction between iodobenzene 

and phenylboronic acid. 

entry Palladium catalysts Yield (%) 
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1 Pd-BOX (3-133) 100 

2 Pd(OAc)2 93 

3 PdCl2(PhCN)2 88 

4 PdSO4 85 

Reaction conditions: Pd catalyst (0.01 mmol), iodobenzene (0.5 mmol), phenylboronic acid (0.6 

mmol), K2CO3 (2.0 mmol), DMF (5.0 mL), 70 °C 

 

These catalysts have also been successfully used in the Heck coupling between various aryl 

iodides and methyl acrylate or styrene. The aryl iodides possessing electron donating and 

electron withdrawing group react quantitatively with methyl acrylate whereas the reaction of 

the parent iodobenzene required higher temperature in order to reach competition (Table 

23). 
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Table 23: Mizonoki-Heck coupling reaction between various aryl iodides and olefins 

catalysed by Pd-Box complex 3-133a. 

 
n° Aryl Halides n° Olefins n° Product Yield 

%b 

3-135 
 

3-151 

 

3-153 

 

96 

3-138 
 

3-151 

 

3-154 

 

97 

3-139 
 

3-151 

 

3-155 

 

96 

3-140 
 

3-151 

 

3-156 

 

94 

3-150 
 

3-151 

 

3-157 

 

94 

3-135 
 

3-152 
 

3-158 

 

65 

3-135 
 

3-152 
 

3-158 

 

92c 

3-135 
 

3-151 

 

3-159 

 

95d 

a Reaction conditions: Pd-Box 3-113 or 3-114 (0.01 mmol), aryl halide (0.5 mmol), olefin (0.75 
mmol), K2CO3 (2 mmol), DMF (5.0 mL), 70 °C, 120. bIsolated yield. CTemperature = 110 °C. dPd-Box 
(3-114) used 
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3.2 Results and discussions  
 

In the second chapter, we described the preparation of a range of 3-hydroxyazetidines 

accessed via an efficient photochemical Yang reaction processed under flow conditions 

(Scheme 15, 3-161→3-162).[115] Having successfully demonstrated the scope, versatility and 

scalability of the reaction, we were particularly interested in expanding the medicinal 

chemistry value of the compound collection by applying simple secondary transformations to 

conduct functional group interconversions. As the starting materials 3-162 all possess a 

prominent tertiary benzylic alcohol, we first contrived to replace this group with an amide 

through a Ritter reaction.  

 

 

Scheme 18: Formation of the 3-hydroxyazetidine via the Yang reaction and proposed Ritter 

reaction (blue box). 

 

In a simple procedure, the substrate was refluxed in DCM (30 min) in the presence of 1 

equivalent of sulfuric acid and an excess of acetonitrile. Although the reaction proceeded 

smoothly with full consumption of the starting material, to our initial surprise, the compound 

formed was not the expected amide 3-163 but a new cyclic, rearranged, structure 3-164 (90% 

isolated yield) which we determined to be a 2-oxazoline derivative (Figure 12). 



147 
 

 

Figure 12: X-ray structure of compound 3-164 isolated from the attempted Ritter reaction. 

 

To account for its formation, we propose a direct cascade sequence which initiates through a 

standard Ritter reaction. The intermediate Ritter product we propose rapidly undergoes 

further rearrangement in which the amide carbonyl group attacks and ring opens the 

azetidine 3-163, driven by the relaxation of the 4-memebered ring strain (Scheme 16). 

 

 

Scheme 19: Proposed mechanism for the rearrangement of 3-hydroxyazetidines under Ritter 

type conditions. 

 

Although this was not our intended transformation, this reaction represents a previously 

unreported and interesting rearrangement sequence leading in high yield to a set of novel 

oxazoline scaffolds. As such we decided to further investigate the process. 

3.2.1 Optimization: Acid Screening 
 

In an attempt to optimize the reaction, we evaluated a range of acid sources to determine 

their impact on the new transformation. The evaluation reactions were run with 1 equivalent 

of each acid source, namely, H2SO4, HBF4, CH3SO3H and p-TSA (p-toluenesulfonic acid) giving 

respectively 90%, 85%, 40% and 35% isolated yield of product 3-162 (standard 30 min reaction 

time). It should be noted that the use of sub-stoichiometric quantities of acid gave 

comparable results but required the use of much extended reaction times; this was ultimately 

found to be detrimental to the quality of the product isolated which showed more 

decomposition over prolonged reaction times. Other acids were also tested, such as acetic 
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acid, CF3CO2H, polyphosphoric acid (PPA), Eaton’s reagent (phosphorus pentoxide - 

methanesulfonic acid 10:1 by wt.) and camphorsulfonic acid (CAMPHOR) but were all 

completely ineffective, with no product being detected (>4 h reaction time), and the starting 

material being recovered quantitatively. Interestingly, attempting to employ a solution of 

HCl·Et2O resulted in the slow formation of the corresponding chloro-substituted product 3-

162b (Figure 13). It was noted that increasing the proportion of HCl over water in the mixture 

resulted in higher quantities of the resultant chloro product 3-162b being detected. 

 

Figure 13: Reaction product obtained through treatment with hydrochloric acid. 

 

The attempted catalysis of the transformation was also studied employing several different 

Lewis acids (1 equivalent). Among these FeCl3, ZnCl2, AlCl3 and Cu(OTf)2 all failed to promote 

any reaction, whereas BF3·OEt2 initially looked promising giving fast early reaction turnover 

but quickly becoming inactive and resulting in a maximum 50% conversion (38% isolated). We 

suspect that the boron trifluoride becomes rapidly deactivated by the generated water thus 

preventing the turnover of the desired reaction. This is evidenced by the addition of further 

amounts of BF3·OEt2 (> 2 equivalent) which continues to progress the reaction, although the 

reaction mixture become increasingly complex with multiple decomposition products being 

observed by TLC and 1H-NMR. 
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Figure 14: The results from the acid screening. 

 

While the results obtained with H2SO4, CH3SO3H and p-TSA can be accounted for by their 

relative pKa and dehydrating effect, the surprising outcome was with HBF4 (48 wt% aqueous 

solution) which gave 85% based upon full consumption of the starting material. By contrast, 

any dilution of the other acids i.e. H2SO4 with water led to a significant drop in reactivity and 

incomplete (stalled) reaction. This seems to confirm the interesting property of the HBF4 

aqueous solution as previously noted by Stutz et al.[116] who found mixtures of HBF4 (aq.) in 

acetonitrile was able to rapidly cleave acetals, BOC groups and tert-butyldimethylsilyl ethers 

within minutes at room temperature, and was more effective than many other 

acids/solutions of acids. 

In summary, H2SO4 gave the best conversion and yield, thus, considering factors like safety, 

price and availability, it remains the best choice of catalyst for further testing and optimization 

of the transformation.  

 

3.2.2 Optimization: Solvent choice 
Our solvent selection for the process was rather restricted due to reactivity and the solubility 

of the substrate and product. Chloroform was found to work equally well as DCM; ethyl 

acetate and THF could also be used, but the yields were reduced (~5-15%) and accompanied 

by unidentified minor impurities. Other potential solvents, such as toluene, xylenes, 

chlorobenzene and trifluorobenzene, were insufficiently solubilizing. Interestingly, the effect 

of reflux temperature between DCM and chloroform seemed to offer little advantage with 
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both reactions being complete in ~10-12 minutes and yielding identical product outcomes. 

Eventually the optimum conditions for performing the reaction entailed the use of 1 

equivalent of nitrile (5 equivalents in case of the acetonitrile for which the excess can be easily 

removed by evaporation) 1 equivalent of sulfuric acid in DCM (0.33 M) refluxing the solution 

for 30 minutes (Scheme 17). 

 

Scheme 20: general conditions for the synthesis of substrate 3-164. 

 

3.2.3 Substrate scope 
 

Having determined some general reaction conditions, we next embarked upon an evaluation 

of the reaction scope in terms of both the azetidine and nitrile components. We were pleased 

to find the reaction proved general allowing a range of products to be assembled in good to 

high yield (Table 31). The rapid rate of reaction (~10 minutes) and relatively mild conditions 

enabled several different functional groups to be tolerated. In each case, the progression of 

the reaction was easily followed by LC-MS. 

 

 
Table 8: Investigation of substrate scope.  
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Percentages in parentheses are isolated yields. 

 

After testing some different structural changes with regard to the azetidinic aromatic moiety 

(3-164 – 3-167) we also made several alterations to the nitrile component. Initially we looked 

at extending the alkyl group (3-168) and then exchanging it with an aromatic ring which we 

functionalised in order to evaluate the compatibility of different appended groups (3-169 – 3-

173). We then progressively increase the complexity of the nitrile derivatives with the aim of 

assessing the synthetic scope of the transformation. This included testing several heterocyclic 

species (3-174 – 3-177) then more varied architectures (3-178 – 3-181). 

 

Figure 15: X-ray structures for compounds 3-172 (left) and 3-176 (right). 

 

Several starting materials were not commercially available but had been prepared in the 

group previously allowing their use, these included compounds 3-178, 3-180 and 3-181.[117-

119] Specifically compound 3-178 was obtained starting from the 5-amino-4-cyanopyrazoles 

which was prepared using a flow microwave reaction between 2,5-dichlorophenyl-hydrazines 

and ethoxymethylene malononitrile synthesised in methanol (Figure 16).[117] 
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Figure 14: Flow microwave synthesis of N-((2-(5-amino-1-(2,5-dichlorophenyl)-1H-pyrazol-3-

yl)-4-nitrile (3-185). 

 

The 4-cyano-4-(2-methylprop-1-enyl)cyclohexen-1-ene carboxylic acid starting material (3-

190) used for compound 3-181 was obtained from a Baylis-Hillman reaction between 

acrylonitrile and isobutyraldehyde catalysed by DABCO (15 mol-%) (Scheme 10). The 

intermediate was then dehydrated and cyclized in a Diels-Alder reaction which was followed 

by base hydrolysis to yield the desired cyclic nitrile.[119] 

 

 

Scheme 21: Synthesis of compound 3-90. 

The scope expansion of the reaction aptly demonstrates the synthetic value of the 

transformation exemplifying how it is possible to access complex structures. In general, it was 

found that simple alkyl and aryl nitriles worked well (Table 31 compounds 3-164 – 3-169). 

Even basic and acidic containing functionalities proved amenable, although isolation involving 

neutralisation of the product mixture was more difficult and thus, resulted in lower recoveries 

(3-173 – 3-175, 3-178 – 3-181). We also experienced issues with the isolation of compound 3-

175, which was produced as a mixed salt; additional optimisation beyond the proof of concept 

on this substrate was not performed. Finally, compound 3-181 could be isolated but required 

the use of excess acid as the hydration of the alkene moyety competes with the protonation 

of the azetidine alcohol required for the carbocation formation (Figure 17). Therefore, when 

only 1 equivalent of the acid was used, a complex mixture of the alkene 3-191, alcohol starting 

material 3-162 and their corresponding mixed hydrated products (3-181, 3-191) was 
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obtained. Whereas with an excess of acid (2.3 equivalents), selective conversion of the 

starting material to compound 3-181 in a respectable 81% isolated yield was achieved (Figure 

11) 

 

 

Figure 17: Cascade sequence forming hydrated compound 3-181.  

Product compositions were determined using 4-(dimethylamino)benzonitrile as internal standard on the crude 

reaction mixtures. 

Considering the positive results obtained, we considered the possibility of preparing dyad 

molecules through double addition to the bis-nitrile precursors. Starting with 1,3-

dicyanobenzene and using 2 equivalents of the azetidine (3-162, R = Me), we were surprised 

that no product from the double addition was detected. Instead, only a low yield of the mono 

oxazolidine 3-81 (35%) was produced. However, when observing a repeat reaction more 

closely, we attributed this to the poor solubility of the starting nitrile and its resulting single 

addition adduct 3-81, which seemed to immediately precipitate upon formation. Overall, the 

limited dissolution resulted in poor mixing and ineffective reaction. Unfortunately, the use of 

added solvents such as DMF to help solubilize the starting materials completely shut down 

the reaction, presumably by attenuating the pH (protonation of the DMF). Other solvents or 
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additives, like the addition of EtOAc or MeOH or EtOH in order to increase the solubility of 

the reagent, also failed to improve the situation. 

 

Scheme 22: Azetidine rearrangement with the bis-nitrile. 

 

We therefore selected a more soluble bis-nitrile starting material, glutaronitrile, which was 

subjected to the same reaction conditions (2 equivalents of azetidine and 2 equivlents of 

H2SO4 in refluxing DCM). In this case, we successfully isolated from the reaction, 3 

compounds; the meso 3-193 and racemic 3-194 diastereoisomers along with the 

corresponding mono substituted oxazolidine 3-195 (Figure 18). These were formed in a ratio 

of 1:1:1.1, respectively, as determined by 1H NMR analysis of the crude reaction mixture. 

 

 

Figure 15: Reaction products of 1,3-dicyanopropane (glutaronitrile) with 3-hydroxazetidine 

3-195 (R = Me) forming dyad molecules. X-ray images of 3-193 (left) and 3-194 (right). 

 

The two dyads possess very different and interesting solid state and solution interactions. As 

can be seen from the single crystal X-ray representations (Figure 18), the racemic structure 3-
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194, forms a set of complementary hydrogen bonds creating a tight dimeric pairing (oxazole 

to sulfonamide NH linkage). This interaction seems to also be observed in solution as 

evidenced by the 1H NMR, where the NH signals appear at a high chemical shift of 9.17 ppm 

(2H, CDCl3). This same synergistic interaction is absent in the meso compound 3-193, instead 

only a single intramolecular hydrogen bond occurs, a bridging H-bonding methanol molecule 

helps form a secondary interaction in the solid-state structure (Figure 19).  

 

Figure 19: X-ray image of meso compound 3-193 showing the additional solvent (MeOH) H-

bonding interaction.  

 

The corresponding 1H NMR solution state NH signals of 3-193 gives rise to a much lower 

resonance at 7.06 ppm (2H, CDCl3). This data is consistent with compound 3-193 adopting a 

weaker set of hydrogen bond interactions. Indeed, this trend is completed when it is 

compared to the monomer 3-195 which shows a NH signal at 5.21 ppm (indicative of no H-

bonding), this is also fully consistent with the other mono-oxaxole structures (Figure 5, NH 

signal range 5-6.5 ppm). We therefore hypothesis that structure 3-193 is unable to hydrogen 

bond as tightly as 3-194 due to its mismatching stereochemistry (easily seen by comparing 

the X-ray forms, Figure 18) and as such adopts in solution a more dynamic structure allowing 

rapid exchange between the two sets of H-bonding sulfonamide and oxazole (equating to an 

average NH signal). This exchange process is potentially assisted by the presence of small H-

bonding solvent molecules. This is exemplified when using extensively dried NMR solvent 

(CDCl3). The recorded spectra of 3-193 gives broad and poorly resolved signals, yet with the 

addition of a H-donor/acceptor molecule i.e. H2O or MeOH the signals immediately sharpen 
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giving well defined patterns and coupling. We take this as an indication of a faster exchange 

process in the presence of the H-bonding capable molecule. In comparison, no effect is seen 

in the 1H NMR for structures 3-194 or 3-195 (Figures 20 and 21). 

 

Figure 20: 1H NMR spectra of compounds 3-193. 
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Figure 16: 1H NMR spectra of compound 3-194. 

  

 

3.2.4 Investigating Alternative Nucleophiles  
 

Having established that the azetidine ring could be readily opened in an intramolecular 

process, we considered the possibility of creating other related cascades involving for 

example, an aromatic ring acting as the nucleophile (Scheme 20, compounds 3-197 – 3-203). 
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Scheme 23: Investigating Alternative Nucleophiles. 

 

Initial success was immediately achieved using the 3- and 4-methoxyphenols, which each gave 

the rearrangement product as determined by NMR and later confirmed by single crystal X-ray 

analysis for compound 2-197. However, when the alternative 3- and 4-methoxythiophenols 

were instead used, the azetidine was converted to the intermediate substitution product, but 

the secondary cyclisation was not observed, even after prolonged reaction times. We 

eventually managed to obtain an X-ray crystal structure of compound 2-201 (Figure 22) which 

clearly shows the elongated C-S bonds (C2/S2 1.825 & S2/C18 1.779 Å), this would make it 

impossible to adopt the correct alignment with sufficient orbital overlap between C23 – C1/C3 

for the ring opening to occur. Hence, no cyclisation was observed. 
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Figure 22: X-ray structure of compounds 3-199 (left) and 3-201 (right). 

 

3.2.5 Further Intramolecular Reactions 
In our initial substrate scope experiments, we had shown it was feasible to carry a bromide 

appendage on the nitrile component, compound 3-172 (Table 31). In addition, we explored 

the tosylamide nucleophilicity, which we expected to be good due to the high degree of sp3 

character suggested both by looking at the X-ray structure (Figure 6) and at the 1H NMR NH 

shift and J values (NH coupling with the vicinal CH2). To experimentally confirm the 

nucleophilic reactivity, we performed a displacement reaction on 2-bromo-1-(4-

bromophenyl)ethanone (3-204, Figure 22). 

 

Figure 22: Synthesis of compound 3-105. 

These observations led us to explore the use of nitrile precursors which would result in 

products containing residual alkyl halide chains generated from the Ritter cascade (Figure 23, 

19). Our proposal was that these could then enable a further intramolecular substitution 

reaction furnishing very interesting bicyclic products. 
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Figure 23: Products of the azetidine rearrangement prepared with pendant alkyl bromide side 

chains. 

 

Figure 17: X-ray structure of compound 3-206. 

 

Following this strategy, we successfully prepared a series of suitable starting materials (3-206 

– 3-210, Figure 23) using the previously described methodology in good isolated yields. These 

were then treated with K2CO3 under reflux in acetonitrile (36 h) to generate new cyclised 

compounds 3-211 – 3-215 (Figure 25). To the best of our knowledge, this type of oxazoline 

bridge head has never been reported before.  

The difference in isolated yields of these macrocyclic compounds can be rationalised by 

considering both the change in ring size (ring strain) and the increasing length of the linking 

tether in terms of the statistical likelihood of the cyclisation event. Hence, due to the smaller 

ring size, 3-111, a 10 membered ring, is a more strained structure (leads to a lower yield); 

whereas formation of the 15 membered ring, 3-215, is kinetically less favoured, again 

resulting in a lower yield. Overall, this series of products represents a further intriguing 

structural diversification of the parent oxazolines via very simple chemical manipulations. 
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Figure 18: Intramolecular cyclization products and representative X-ray structure of compound 

3-212, 3-213 and 3-114. 

 

3.2.6 Development of a Flow Process  
As these macrocyclic compounds were of particular interest as novel molecular entities, we 

wished to scale up their synthesis in order to access greater quantities of material for 

biological investigation. Therefore, the same intramolecular cyclizations were also attempted 

in flow where the enclosed reactor would allow higher reaction temperatures to be achieved 

to promote potentially faster reactions.[120-122] 

The reactions were performed using a Vapourtec-E series flow reactor system[123] fitted with 

a packed column reactor containing K2CO3 (Figure 26). The use of a back-pressure regulator 

(100 psi) allowed the reaction temperature to be increased to 130 °C without changing the 

solvent (acetonitrile). The reaction was carried out by directing a flow stream of the starting 

alkyl halide (3-206 – 3-210) stock solution at a concentration of 0.1 M through the packed 

column at rate of 400 L min-1. Notably under these conditions, equitable yields were 

obtained whilst reducing the reaction time from 36 h to 1.5 h. This enables easy access to 

gram quantities of the products with a productivity of 772 mg h-1 (3-113, 72% yield), and the 

ability to produce 5 g in a standard 8 h working day even taking into account reactor set-up, 

priming, washing and shutdown.  
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Figure 19. Flow reactor set up used for scale up of products 3-112– 3-115.  

 

3.3 CONCLUSION 
We have shown a novel and general Ritter based cascade involving the condensation of a 

nitrile and a 3-hydroxyazetidine leading to the formation of new 2-oxazoline scaffolds. The 

cascade can also be exploited using other nucleophilic components such as phenols, which 

indicates additional bifunctional nucleophiles may also be viable. In addition, we have shown 

that specific alkyl bromide substituted 2-oxazolines prepared using this methodology can be 

further cyclised in an intramolecular process to create unique bicyclic heterocycles. This last 

transformation has been developed in flow employing a packed column reactor reducing 

dramatically the reaction time and allowing the scale up of the reaction. 
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3.4 Future work 
Following the route that lead to compounds 3-211 – 3-115 the halo nitrile chain can be 

functionalised in order to prepare other cyclic structures (Figure 27) this would allow the 

installation of an extra ring on the original structure resulting in a tricyclic product and 

opening the way to more interesting functionalizations.  

 

Figure 27.Proposed Intramolecular cyclization with enriched macrocycle 

The synthesis of compound 3-205 demonstrated the nucleophilic character of compound 3-

164. The general structure of the 2-oxazolines obtained has the right features for attempting 

a Pictet-Spengler reaction [114] on the original substrate. The reaction between the free 

nitrogen and formaldehyde would allow the generation of an electrophile that is liable to 

attacked by the aromatic ring, especially if this was fictionalised with electron donating 

groups. The reaction would result in the cyclization of the substrate leading to a tricyclic spiro 

compound. 

 

 

3.5 Experimental Section 
General procedure for the rearrangement of 3-164 – 3-210: To a solution of 3-

hydroxyazetidine 2-162 (3.15 mmol) in DCM (10 mL), was added 1 equiv. of H2SO4 dropwise, 

followed by 1 equiv. of the nitrile (6 equiv. when the nitrile was acetonitrile) dissolved in DCM 

(3 mL). The reaction was heated at reflux and monitored by GC/LC-mass spectra. Upon 

complete disappearance of the starting material, the mixture was neutralised with an excess 
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of sat. aq. Na2CO3, and the mixture was extracted with EtOAc, washed with brine, dried over 

Na2SO4, filtered and the solvent evaporated under reduced pressure. The resulting material 

was purified by chromatography column (typically with a mixture of hexane: EtOAc). 

General flow procedure for the synthesis of 3-211 – 3-215: A stock solution was prepared 

from the appropriate alkyl halide (2 mmol, 3-206 – 3-210) dissolved in acetonitrile (0.1 M). 

The solution was pumped at a flow rate of 400 μL min-1 through a 100 x 6.6 mm packed column 

reactor (4.10 mL) filled with K2CO3 and equipped with adjustable end pieces. A 100 psi back 

pressure regulator was added to the outlet line and the column reactor heated in the 

Vapourtec E2 column heater at 130 °C. The acetonitrile was removed by evaporation, the 

residue was dissolved in EtOAc, washed with water, brine and dried over Na2SO4. After 

evaporation the resulting material was purified by chromatography column (hexane / EtOAc). 

 

4-Methyl-N-((2-methyl-4-phenyl-4,5-dihydrooxazol-4-yl)methyl)benzenesulfonamide (3-

164). 

Appearance Yellow oil, 90 %; 1H NMR (400 MHz, CDCl3) δ 7.65 (d, J = 8.3 Hz, 2H), 7.32 – 7.18 

(m, 9H), 5.53 (dd, J = 9.1, 4.6 Hz, 1H), 4.78 (d, J = 8.5 Hz, 1H), 4.31 (d, J = 8.5 Hz, 1H), 3.27 (dd, 

J = 12.8, 9.1 Hz, 1H), 3.02 (dd, J = 12.8, 4.6 Hz, 1H), 2.38 (s, 3H), 2.10 (s, 3H); 13C NMR (101 

MHz, CDCl3) δ 167.30 (C), 143.80 (C), 143.54 (C), 137.04 (C), 129.87 (CH), 128.84 (CH), 127.75 

(CH), 127.02 (CH), 125.56 (CH), 75.99 (C), 75.89 (CH2), 51.71 (CH2), 21.59 (CH3), 14.14 (CH3); 

IR (neat) ν = 3282.4 (w), 1737.6 (m), 1696.3 (m), 1648.3 (m), 1359.0 (m), 1219.3 (m), 1211.6 

(s), 1024.4 (m), 914.6 (m), 721.2 (m), 701.9 (m), 651.3 (m), 590.3 (s), 542.8 (s) cm-1; HR-MS 

calculated for C18H21N2O3S 345.1273, found 345.1281 (Δ = -2.3 ppm, 0.8 mDa); X-ray CCDC 

(1985621) Unit Cell Parameters: a 15.4987(8) b 11.7051(6) c 21.9098(11) C2/c. 

 

4-Methyl-N-((2-methyl-4-(p-tolyl)-4,5-dihydrooxazol-4-yl)methyl)benzenesulfonamide (3-

165). 
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Appearance :White solid, 90% 1H NMR (400 MHz, CDCl3) δ 7.66 (d, J = 8.0 Hz, 2H), 7.19 (d, J = 

8.0 Hz, 2H), 7.10 – 7.01 (m, 4H), 6.57 (dd, J = 9.0, 4.8 Hz, 1H), 4.84 (d, J = 8.5 Hz, 1H), 4.28 (d, 

J = 8.5 Hz, 1H), 3.28 (dd, J = 13.2, 9.0 Hz, 1H), 2.98 (dd, J = 13.2, 4.8 Hz, 1H), 2.38 (s, 3H), 2.30 

(s, 3H), 2.11 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 167.32 (C), 143.15 (C), 140.81 (C), 137.37 (C), 

137.20 (C), 129.70 (CH), 129.33 (CH), 126.86 (CH), 125.30 (CH), 75.77 (CH2), 75.77 (C), 51.41 

(CH2), 21.45 (CH3), 20.97 (CH3), 13.88 (CH3); IR (neat) ν = 3468.8 (w), 2961.8 (w), 1330.4 (s), 

1180.9 (m), 1147.5 (s), 1088.2 (m), 814.5 (s), 677.0 (s), 516.0 (s) cm-1; HR-MS calculated for 

C19H23N2O3S 359.1429, found 359.1424 (Δ = -1.4 ppm, -0.5 mDa); Melting point: 120-122 °C 

(crystallised from CHCl3). 

 

4-Methyl-N-((2-methyl-4-(thiophen-2-yl)-4,5-dihydrooxazol-4-

yl)methyl)benzenesulfonamide (3-166). 

Appearance: Yellow oil,75%, 1H NMR (400 MHz, CDCl3) δ 7.67 (d, J = 8.4 Hz, 2H), 7.23 (d, J = 

8.4 Hz, 2H), 7.17 (dd, J = 5.1, 1.2 Hz, 1H), 6.93 (dd, J = 5.1, 3.6 Hz, 1H), 6.83 (dd, J = 3.6, 1.2 Hz, 

1H), 5.86 (dd, J = 9.0, 4.9 Hz, 1H), 4.79 (d, J = 8.6 Hz, 1H), 4.37 (d, J = 8.6 Hz, 1H), 3.30 (dd, J = 

13.0, 9.0 Hz, 1H), 3.15 (dd, J = 13.0, 4.9 Hz, 1H), 2.39 (s, 3H), 2.09 (s, 3H);13C NMR (101 MHz, 

CDCl3) δ 168.23 (C), 147.61 (C), 143.53 (C), 137.03 (C), 129.84 (CH), 127.25 (CH), 127.01 (CH), 

124.78 (CH), 122.83 (CH), 76.25 (CH2), 74.03 (C), 51.16 (CH2), 21.57 (CH3), 13.95 (CH3); IR (neat) 

ν = 2923.7 (w), 1656.3 (m), 1327.0 (s), 1156.8 (s), 1089.6 (s), 813.9 (m), 752.4 (m), 659.6 (s), 

549.8 (s) cm-1; HR-MS calculated for C16H19N2O3S2 351.0837, found 351.0825 (Δ = -3.4 ppm, -

1.2 mDa). 

 

N-((4-([1,1'-Biphenyl]-4-yl)-2-methyl-4,5-dihydrooxazol-4-yl)methyl)-4-

methylbenzenesulfonamide (3-167). 

Apperance: Pale Yellow oil, 83%, 1H NMR (400 MHz, CDCl3) δ 7.68 (d, J = 8.3 Hz, 2H), 7.57 – 

7.52 (m, 4H), 7.44 (t, J = 7.5 Hz, 2H), 7.38 – 7.34 (m, 3H), 7.24 (d, J = 8.2 Hz, 2H), 5.41 (s, 1H), 
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4.96 (d, J = 8.7 Hz, 2H), 4.49 (d, J = 8.7 Hz, 2H), 3.31 (dd, J = 13.1, 9.0 Hz, 1H), 3.17 (dd, J = 13.1, 

4.9 Hz, 1H) 2.37 (s, 3H), 2.23 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 143.71 (C), 141.13 (C), 

140.30 (C), 136.85 (C), 129.94 (CH), 129.86 (C), 128.98 (CH), 128.47 (C), 127.74 (CH), 127.15 

(CH), 127.06 (CH), 127.03 (CH), 125.96 (CH), 77.00 (CH2), 75.10 (C), 51.56 (CH2), 21.60 (CH3), 

14.25 (CH3); IR (neat) ν = 2981.7 (w), 1744.1 (m), 1233.9 m), 1158.1 (s), 1050.9 (m), 908.8 (m), 

730. 3 (s), 697.6 (m), 549.8 (m) cm-1; HR-MS calculated for C24H25N2O3S 421.1586, found 

421.1581 (Δ = -1.2 ppm, -0.5 mDa). 

 

N-((4-(4-chlorophenyl)-2-propyl-4,5-dihydrooxazol-4-yl)methyl)-4-

methylbenzenesulfonamide (3-168). 

Appearance : Colourless oil, 80%, 1H NMR (400 MHz, CDCl3) δ 7.62 (d, J = 8.4 Hz, 2H), 7.23 – 

7.12 (m, 6H), 5.58 (dd, J = 8.5, 5.1 Hz, 1H), 4.69 (d, J = 8.6 Hz, 1H), 4.19 (d, J = 8.6 Hz, 1H), 3.22 

(dd, J = 12.8, 8.5 Hz, 1H), 3.02 (dd, J = 12.8, 5.1 Hz, 1H), 2.37 (s, 3H), 2.40 – 2.22 (m, 2H), 1.66 

(h, J = 7.0 Hz, 2H), 0.95 (t, J = 7.0 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 170.37 (C), 143.49 (C), 

142.38 (C), 136.91 (C), 133.39 (C), 129.77 (CH), 128.77 (CH), 126.99 (CH), 126.87 (CH), 75.55 

(CH2), 75.30 (C), 51.55 (CH2), 29.94 (CH2), 21.50 (CH3), 19.62 (CH2), 13.78 (CH3); IR (neat) ν = 

2930.7 (w), 1630.4 (m), 1337.8 (m), 1170.3 (s), 1097.2 (s), 811.9 (s), 648.2 (s), 553.2 (s) cm-1; 

HR-MS calculated for C20H24ClN2O3S 407.1184, found 407.1196 (Δ = 0.11 ppm, 1.2 mDa); . 

 

N-((2,4-di-p-tolyl-4,5-dihydrooxazol-4-yl)methyl)-4-methylbenzenesulfonamide (3-169). 

Appearance :white solid, 87%1H NMR (400 MHz, CDCl3) δ 7.90 (d, J = 8.2 Hz, 2H), 7.66 (d, J = 

8.2 Hz, 2H), 7.31 – 7.21 (m, 6H), 7.15 (d, J = 7.9 Hz, 2H), 4.96 (dd, J = 9.1, 4.5 Hz, 1H), 4.88 (d, 

J = 8.4 Hz, 1H), 4.46 (d, J = 8.4 Hz, 1H), 3.39 (dd, J = 12.6, 9.1 Hz, 1H), 3.22 (dd, J = 12.6, 4.5 Hz, 
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1H), 2.43 (s, 3H), 2.39 (s, 3H), 2.34 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 163.77 (C), 143.46 (C), 

142.52 (C), 140.21 (C), 138.59 (C), 136.78 (C), 129.78 (CH), 129.46 (CH), 129.18 (CH), 128.74 

(CH), 127.02 (CH), 125.56 (CH), 124.22 (C), 76.04 (CH2), 75.73 (C), 51.75 (CH2), 21.73 (CH3), 

21.56 (CH3), 21.11 (CH3); IR (neat) ν = 2981.9 (w), 1639.2 (s), 1328.2 (s), 1158.3 (s), 1088.1 (s), 

1075.1 (s), 891.36 (s), 658.8 (s), 547.0 (s) cm-1; HR-MS calculated for C25H26N2O3S 435.1742, 

found 435.1737 (Δ = -1.1 ppm, -0.5 mDa). 

 

N-((4-(4-Chlorophenyl)-2-(4-(trifluoromethyl)phenyl)-4,5-dihydrooxazol-4-yl)methyl)-4-

methylbenzenesulfonamide (3-170). 

Appearance : colourless oil, 70%, 1H NMR (400 MHz, CDCl3) δ 8.07 (d, J = 8.1 Hz, 2H), 7.62 (m, 

4H), 7.24 (d, J = 8.1 Hz, 2H), 7.16 (m, 4H), 5.30 (dd, J = 9.4, 4.6 Hz, 1H), 4.95 (d, J = 8.5 Hz, 1H), 

4.50 (d, J = 8.5 Hz, 1H), 3.37 (dd, J = 12.8, 9.4 Hz, 1H), 3.17 (dd, J = 12.8, 4.6 Hz, 1H), 2.37 (s, 

3H), 2.32 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 164.03 (C), 143.67 (C), 140.53 (C), 137.78 (C), 

136.76 (C), 133.54 (q, J = 32.5 Hz, C), 130.51 (C), 129.89 (CH), 129.62 (CH), 129.18 (CH),  127.06 

(q, J = 207.1 Hz, C),127.05 (CH), 125.46 (q, J = 3.81 Hz, CH), 76.38(CH), 76.28 (C), 51.91 (CH2), 

21.61 (CH3), 21.16 (CH3); IR (neat) ν = 3267.2 (w), 2982.2 (w), 1649.2 (m), 1321.9 (s), 1160.2 

(s), 1073.1 (s), 1090.1 (s), 853.7 (m), 730.6 (s), 510.4 (s) cm-1; HR-MS calculated for 

C25H24F3N2O3S 489.1503, found 489.1505 (Δ = 0.4 ppm, 0.2 mDa). 

 

N-((2-(3-Cyanophenyl)-4-(p-tolyl)-4,5-dihydrooxazol-4-yl)methyl)-4-

methylbenzenesulfonamide (3-171). 
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Appearance: white solid, 35%,  1H NMR (400 MHz, DMSO-d6) δ 8.15 (d, J = 8.3 Hz, 1H), 7.84 (t, 

J = 6.9 Hz, 1H), 7.67 (d, J = 7.7 Hz, 3H), 7.30 (d, J = 7.7 Hz, 5H), 7.15 (d, J = 7.7 Hz, 2H), 4.97 (d, 

J = 8.4 Hz, 1H), 4.44 (d, J = 8.4 Hz, 1H), 3.13 (dd, J = 13.4, 7.9 Hz, 1H), 2.98 (dd, J = 13.4, 5.9 Hz, 

1H), 2.30 (s, 3H), 2.25 (s, 3H); 13C NMR (101 MHz, DMSO-d6) δ 162.24 (C), 142.61 (C), 141.02 

(C), 137.79 (C), 136.84 (CH), 136.56 (C), 136.13 (CH), 131.36 (CH), 130.73 (CH), 129.59 (CH), 

129.14 (CH), 127.63 (C), 126.53 (CH), 125.71 (CH), 117.25 (C), 112.82 (C), 76.49(C), 75.18 (CH2), 

52.14 (CH2), 20.97 (CH3), 20.66 (CH3); IR (neat) ν = 2979.8 (w), 1633.9 (m), 1591.0 (s), 1328.5 

(m), 1156.2 (s), 1088.7 (s), 1071.1 (m), 810.7 (s), 703.1 (m), 659.4 (s), 562.5 (m), 548.2 (s) cm-

1; Melting point: 217-220 °C (hexane EtOAc); HR-MS calculated for C25H24N3O3S 446.1538, 

found 446.1530 (Δ = -1.8 ppm, -0.8 mDa). 

 

N-((2-(4-(2-Bromoacetyl)-phenyl)-4-(4-chlorophenyl)-4,5-dihydrooxazol-4-yl)methyl)-4-

methylbenzenesulfonamide (3-172). 

Appearance :pale yellow crystals, 68%,1H NMR (400 MHz, CDCl3) δ 8.04 (d, J = 8.0 Hz, 2H), 

7.95 (d, J = 8.0 Hz, 2H), 7.58 (d, J = 7.9 Hz, 2H), 7.19 (d, J = 7.9 Hz, 2H), 5.18 (dd, J = 8.7, 5.0 Hz, 

2H), 4.90 (d, J = 8.7 Hz, 2H), 4.43 (m, 3H), 3.31 (dd, J = 12.8, 8.7 Hz, 1H), 3.17 (dd, J = 12.8, 5.0 

Hz, 1H), 2.37 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 191.68 (C), 164.25 (C), 143.71 (C), 141.93 

(C), 136.65 (C), 136.31 (C), 133.80 (C), 131.67 (C), 129.86 (CH), 129.19 (CH), 128.99 (CH), 

128.94 (CH), 127.17 (CH), 126.93 (CH), 76.24 (CH2), 76.12 (C), 49.84 (CH2), 30.87 (CH2), 22.70 

(CH3); IR (neat) ν = 3302.6 (w), 1694.6 (m), 1642.0 (m), 1312.5 (m), 1151.1 (s), 1088.9 (s), 834.3 

(s), 814.2 (s), 654.9 (s), 546.4 (s) cm-1; Melting point: 120-122 °C (crystallised from CHCl3); HR-

MS calculated for C25H23N2O4
79BrS35Cl 561.0250, found 561.0236 (Δ = -2.5 ppm, -1.4 mDa); X-

ray CCDC (1985622) Unit Cell Parameters: a 8.9040(5) b 11.4226(7) c 11.9517(7) P-1. 



169 
 

 

N-((4-(4-Chlorophenyl)-2-(4-(2-(methyl(phenyl)amino)ethyl)phenyl)-4,5-dihydrooxazol-4-

yl)methyl)-4-methylbenzenesulfonamide (3-173). 

Appearance: yellow oil, 65%, 1H NMR (700 MHz, CDCl3) δ 8.09 (d, J = 8.4 Hz, 2H), 8.01 (d, J = 

8.4 Hz, 2H), 7.62 (d, J = 8.3 Hz, 2H), 7.29 (s, 4H), 7.25 – 7.20 (m, 4H), 6.75 (tt, J = 7.6, 1.0 Hz, 

1H), 6.69 (d, J = 7.6 Hz, 2H), 4.91 (d, J = 8.4 Hz, 1H), 4.81 – 4.78 (m, 3H), 4.47 (d, J = 8.4 Hz, 

1H), 3.34 (dd, J = 12.8, 8.6 Hz, 1H), 3.21 (dd, J = 12.8, 5.1 Hz, 1H), 3.11 (s, 3H), 2.40 (s, 3H); 13C 

NMR (176 MHz, CDCl3) δ 196.44 (C), 164.48 (C), 149.18 (C), 143.81 (C), 141.99 (C), 138.05 (C), 

136.80 (C), 133.92 (C), 131.36 (C), 129.94 (CH), 129.40 (CH), 129.25 (CH), 129.08 (CH), 127.95 

(CH), 127.20 (CH), 127.01 (CH), 117.55 (CH), 112.57 (CH), 76.25 (C), 76.20 (CH2), 59.48 (CH2), 

51.99 (CH2), 39.73 (CH3), 21.64 (CH3); IR (neat) ν = 1697.8 (s), 1647.8 (m), 1331.9 (m), 1159.1 

(s), 1089.7 (s), 812.1 (m), 744.0 (m), 660.2 (m), 546.5 (s) cm-1; HR-MS calculated for 

C32H31N3O4S35Cl 588.1724, found 588.1714 (Δ = -1.7 ppm, -1.0 mDa). 

 

N-((2-(1H-Pyrrol-2-yl)-4-(p-tolyl)-4,5-dihydrooxazol-4-yl)methyl)-4-

methylbenzenesulfonamide (3-174). 

Appearance: yellow oil, 58%, 1H NMR (400 MHz, CDCl3) δ 10.02 (s, 1H), 7.53 (d, J = 8.0 Hz, 2H), 

7.16 (d, J = 8.0 Hz, 2H), 7.08 (d, J = 8.0 Hz, 2H), 7.05 – 6.95 (m, 3H), 6.50 (s, 1H), 6.16 (s, 1H), 

4.91 (d, J = 8.4 Hz, 1H), 4.28 (d, J = 8.4 Hz, 1H), 3.54 (dd, J = 13.4, 9.6 Hz, 1H), 3.03 (dd, J = 13.4, 

4.0 Hz, 1H), 2.32 (ap. s, 6H); 13C NMR (101 MHz, CDCl3) δ 160.84 (C), 143.24 (C), 141.08 (C), 

137.52 (C), 136.96 (C), 129.71 (CH), 129.52 (CH), 126.84 (CH), 125.56 (CH), 123.08 (CH), 118.64 

(C), 114.77 (CH), 110.11 (CH), 75.92 (CH2), 75.35 (C), 52.63 (CH2), 21.58 (CH3), 21.13 (CH3); IR 

(neat) ν = 3333.7 (w), 1640.9 (s), 1429.2 (m), 1307.1 (m), 1155.0 (s), 1087.3 (m), 985.1 (m), 
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813.7 (s), 738.3 (s), 660.4 (s), 547. 7(s) cm-1; HR-MS calculated for C22H24N3O3S 410.1538, 

found 410.1542 (Δ = 1.0 ppm, 0.4 mDa). 

 

1-((4-(4-Chlorophenyl)-4-((4-methylphenylsulfonamido)methyl)-4,5-dihydrooxazol-2-

yl)methyl)pyridin-1-ium salt (3-175). 

Appearance: white solid,38%, 1H NMR (400 MHz, CD3OD) δ 8.92 (d, J = 6.0 Hz, 2H), 8.64 (t, J = 

7.9 Hz, 1H), 8.14 (t, J = 7.0 Hz, 2H), 7.70 (d, J = 7.9 Hz, 2H), 7.35 (m, 6H), 5.62 (s, 2H), 3.98 (d, 

J = 11.1 Hz, 1H), 3.88 (d, J = 11.1 Hz, 1H), 3.55 (q, J = 13.8 Hz, 1H), 2.44 (s, 3H); 13C NMR (101 

MHz, CD3OD) δ 156.27 (C), 138.12 (CH), 138.01 (CH), 135.43 (C), 130.52 (C), 129.14(C), 

124.53(C), 121.35 (CH), 119.81 (CH), 119.58 (CH), 119.30 (CH), 118.54 (CH), 56.67 (CH2), 54.72 

(C), 53.98 (CH2), 36.33 (CH2), 11.97 (CH3); IR (neat) ν = 2982.4 (w), 1700.9 (m), 1493.8 (m), 

1154.2 (s), 1010.0 (s), 548.8 (s) cm-1; Melting point: 227-230 °C (crystallised from Hexane 

EtOAc); HR-MS calculated for C23H25N3O4S35Cl (M+H2O) 474.1254, found 474.1247 (Δ = -1.5 

ppm, -0.7 mDa). 

 

4-Methyl-N-((2-(thiophen-2-yl)-4-(p-tolyl)-4,5-dihydrooxazol-4-

yl)methyl)benzenesulfonamide (3-176). 

Appearance: yellow oil, 78%1H NMR (400 MHz, CDCl3) δ 7.65 (m, 3H), 7.50 (d, J = 5.0 Hz, 1H), 

7.29 – 7.19 (m, 4H), 7.19 – 7.07 (m, 3H), 4.87 (d, J = 8.3 Hz, 2H), 4.46 (d, J = 8.3 Hz, 1H), 3.37 

(dd, J = 12.6, 9.3 Hz, 1H), 3.17 (dd, J = 12.6, 4.4 Hz, 1H), 2.38 (s, 3H), 2.32 (s, 3H); 13C NMR (101 

MHz, CDCl3) δ 161.00(C), 143.57 (C), 140.72 (C), 137.59 (C), 136.76 (C), 131.56 (CH), 130.77 

(CH), 129.84 (CH), 129.57 (C), 129.51 (CH), 127.89 (CH), 127.05 (CH), 125.55 (CH), 76.40 (CH2), 

76.13 (C), 51.67 (CH2), 21.60 (CH3), 21.13 (CH3); IR (neat) ν = 3056.2 (w), 1635.0 (s), 1326.5 (s), 
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1159.4 (s), 1084.6 (s), 813.9 (s), 727.9 (s), 714.5 (s), 659.6 (s), 548.0 (s) cm-1; HR-MS calculated 

for C22H23N2O3S2 427.1107, found 427.1112 (Δ = 1.1 ppm, .0.5 mDa); Melting point: 130-133 

°C; X-ray CCDC (1985623) Unit Cell Parameters: a 8.9040(5) b 11.4226(7) c 11.9517(7) P-1. 

 

4-Methyl-N-((2-(thiophen-2-ylmethyl)-4-(p-tolyl)-4,5-dihydrooxazol-4-

yl)methyl)benzenesulfonamide (3-177). 

Appearance: yellow oil, 76%, 1H NMR (400 MHz, CDCl3) δ 7.63 (d, J = 8.4 Hz, 2H), 7.29 (dd, J = 

5.0, 3.0 Hz, 1H), 7.24 – 7.19 (m, 3H), 7.13 – 7.05 (m, 5H), 5.34 (dd, J = 9.1, 4.7 Hz, 1H), 4.80 (d, 

J = 8.5 Hz, 1H), 4.31 (d, J = 8.5 Hz, 1H), 3.84 – 3.66 (m, 2H), 3.27 (dd, J = 12.8, 9.1 Hz, 1H), 3.04 

(dd, J = 12.8, 4.7 Hz, 1H), 2.39 (s, 3H), 2.31 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 168.17 (C), 

143.47 (C), 140.60 (C), 137.47 (C), 137.00 (C), 134.46 (C), 129.83 (CH), 129.49 (CH), 128.30 

(CH), 126.98 (CH), 126.12 (CH), 125.38 (CH), 122.81 (CH), 76.24 (CH2), 75.66 (C), 51.78 (CH2), 

29.49 (CH2), 21.56 (CH3), 21.07 (CH3); IR (neat) ν = 1649.5 (s), 1418.9 (m), 1326.0 (s), 1161.8 

(s), 1088.5 (s), 811.1 (s), 751.0 (s), 662.9 (s), 559.6 (s), 550.9 (s), 540.3 (s) cm-1; HR-MS 

calculated for C23H25N2O3S2 441.1307, found 441.1321 (Δ = 3.2 ppm, 1.4 mDa). 

 

N-((2-(5-Amino-1-(2,5-dichlorophenyl)-1H-pyrazol-3-yl)-4-(4-chlorophenyl)-4,5-

dihydrooxazol-4-yl)methyl)-4-methylbenzenesulfonamide (3-178). 

Appearance: white solid, 57%,  1H NMR (400 MHz, CDCl3) δ 7.67 (s, 1H), 7.61 (d, J = 8.3 Hz, 

2H), 7.53 – 7.46 (m, 2H), 7.42 (dd, J = 8.6, 2.5 Hz, 2H), 7.27 – 7.18 (m, 6H), 5.36 (s, 2H), 5.28 

(m, 1H), 4.63 (d, J = 8.4 Hz, 1H), 4.27 (d, J = 8.4 Hz, 1H), 3.26 (dd, J = 12.3, 7.7 Hz, 1H), 3.16 

(dd, J = 12.3, 5.4 Hz, 1H), 2.40 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 161.53 (C), 149.15 (C), 
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143.67 (C), 143.63 (C), 142.43 (C), 140.28 (CH), 136.56 (C), 135.83 (C), 133.72 (C), 133.49 (C), 

131.68 (CH), 131.19 (CH), 130.49 (C), 130.14 (CH), 129.89 (CH), 128.81 (CH), 127.27 (CH), 

127.01 (CH), 75.22 (C), 75.18 (CH2), 52.10(CH2), 21.64 (CH3); IR (neat) ν = 3278.4 (w), 1643.4 

(s), 1616.6 (s), 1157.3 (s), 1090.8 (s), 811.7 (s), 661.1 (s), 552.6 (s) cm-1; HR-MS calculated for 

C26H23N5O3S35Cl3 590.0587, found 590.0595 (Δ = 1.4 ppm, 0.8 mDa); Melting point: 91-93 °C 

(crystallised from Hexane / EtOAc). 

 

N-((4-(4-Chlorophenyl)-2-(7-hydroxy-4-methyl-2-oxo-2H-chromen-3-yl)-4,5-dihydrooxazol-

4-yl)methyl)-4-methylbenzenesulfonamide (3-179). 

Appearance: Yellow oil, 42%, 1H NMR (400 MHz, CDCl3) δ 7.76 (d, J = 7.9 Hz, 2H), 7.43 (d, J = 

8.8 Hz, 1H), 7.33 – 7.27 (m, 6H), 6.88 (dd, J = 8.8, 2.2 Hz, 1H), 6.75 – 6.63 (m, 2H), 5.13 (d, J = 

8.7 Hz, 1H), 4.45 (d, J = 8.7 Hz, 1H), 3.50 – 3.38 (m, 1H), 3.08 (d, J = 12.3 Hz, 1H), 2.40 (d, J = 

7.2 Hz, 6H); 13C NMR (101 MHz, CDCl3) δ 162.94 (C), 160.58 (C), 154.73 (C), 143.76 (C), 143.61 

(C), 138.83 (C), 136.21 (C), 133.75 (C), 130.00 (CH), 129.78 (CH), 129.30 (CH), 127.35 (CH), 

127.15 (CH), 126.94 (CH), 126.44 (CH), 114.98 (C), 111.82 (C), 102.17 (C), 76.39 (C), 76.29 

(CH2), 52.00 (CH2), 21.22 (CH3), 17.86 (CH3); IR (neat) ν = 3453.1 (m, OH), 1595.9 (w), 1330.0 

(s), 1182.1 (s), 1147.2 (s), 1088.1 (s), 909.1 (m), 815.7 (s), 675.3 (s), 603.7 (s), 562.2 (s), 515. 6 

(s) cm-1; HR-MS calculated for C27H24N2O6S35Cl 539.1044, found 539.1036 (Δ = -1.5 ppm, -0.8 

mDa). 

 

N-((4-(4-chlorophenyl)-2-(1-(4-nitrophenyl)-1H-1,2,3-triazol-4-yl)-4,5-dihydrooxazol-4-

yl)methyl)-4-methylbenzenesulfonamide (3-180). 
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Appearance: yellow oil,56%, 1H NMR (400 MHz, CDCl3) δ 9.01 (s, 1H), δ 8.48 (d, J = 9.0 Hz, 2H), 

8.10 (d, J = 9.0 Hz, 2H), 7.59 (d, J = 8.3 Hz, 2H), 7.19 – 7.13 (m, 4H), 7.08 (d, J = 8.0 Hz, 2H), 

6.39 (s, 1H), 5.14 (d, J = 8.6 Hz, 2H), 4.49 (d, J = 8.6 Hz, 2H), 3.49 (dd, J = 13.4, 9.4 Hz, 1H), 3.15 

(dd, J = 13.4, 4.6 Hz, 1H), 2.32 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 158.71 (C), 147.86 (C), 

143.69 (C), 140.74 (C), 140.04 (C), 137.90 (C), 137.76 (C), 137.10 (C), 129.96 (CH), 129.71 (CH), 

126.89 (CH), 125.86 (CH), 125.47 (CH), 124.65 (CH), 121.28 (CH), 42.13 (CH2), 27.16 (CH2), 

25.13 (C), 21.63 (CH3), 21.16 (CH3); IR (neat) ν = 1487.3 (m), 1202.1 (m), 1157.4 (m), 904.4 (s), 

728.5 (s) cm-1; HR-MS calculated for C26H25N6O5S 533.1607, found 533.1590 (Δ = -3.0 ppm, -

1.7 mDa). 

 

4-(4-(4-Chlorophenyl)-4-((4-methylphenylsulfonamido)methyl)-4,5-dihydrooxazol-2-yl)-4-

(2-hydroxy-2-methylpropyl)-3,3-dimethylcyclohex-1-enecarboxylic acid (3-181). 

Appearance: white solid,81%, 1H NMR (600 MHz, CDCl3) δ 7.61 (d, J = 8.3 Hz, 2H), 7.32 – 7.29 

(m, 2H), 7.24 – 7.19 (m, 4H), 6.62 (dt, J = 14.4, 1.8 Hz, 1H), 5.59 (m, 1H), 4.35 – 4.26 (m, 2H), 

3.37 (dd, J = 13.4, 7.1 Hz, 1H), 3.17 (dd, J = 13.4, 4.7 Hz, 1H), 2.39 (s, 3H), 2.37 – 2.33 (m, 1H), 

2.33 – 2.24 (m, 1H), 2.20 (d, J = 13.5 Hz, 1H), 2.06 – 1.99 (m, 1H), 1.88 (dddd, J = 13.9, 10.1, 

6.2, 3.3 Hz, 1H), 1.75 (d, J = 13.5 Hz, 1H), 1.42 (s, 3H), 1.38 (s, 3H), 1.10 (s, 3H), 0.98 (d, J = 2.5 

Hz, 3H);13C NMR (151 MHz, CDCl3) δ 166.76 (C), 148.04 (CH), 143.51 (C), 139.77 (C), 136.68 

(C), 133.68 (C), 129.77 (CH), 128.49 (CH), 127.34 (C), 127.26 (CH), 127.11 (CH), 81.52 (C), 74.65 

(C), 69.21 (CH2), 50.46 (C), 50.11 (CH2), 45.75 (CH2), 37.24 (C), 30.57 (CH3), 30.06 (CH2), 29.90 

(CH3), 29.36 (C), 26.26 (CH3), 23.06 (CH3), 21.73 (CH2), 21.61 (CH3); IR (neat) ν = 2986.0 (w), 

1711.9 (m), 1654.9 (m), 1248.0 (s), 1156.0 (s), 1090.6 (s), 1046.2 (m), 814.0 (m), 660.5 (s), 

549.9 (s) cm-1; HR-MS calculated for C30H38N2O6S35Cl 589.2139, found 589.2136 (Δ = -0.5 ppm, 

-0.3 mDa); Melting point: 88-90 °C (crystallised from Hexane EtOAc). 
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N,N'-(((meso)-2,2'-(Propane-1,3-diyl)bis(4-phenyl-4,5-dihydrooxazole-4,2-

diyl))bis(methylene))bis(4-methylbenzenesulfonamide) (3-193) 

Appearance: white solid, 20%, 1H NMR (400 MHz, DMSO-d6) δ 7.66 (d, J = 7.9 Hz, 6H), 7.35 – 

7.28 (m, 12H), 7.25 (m, 2H), 4.69 (d, J = 8.6 Hz, 2H), 4.19 (d, J = 8.6 Hz, 2H), 3.38 (s, 6H), 2.99 

(dd, J = 13.1, 7.9 Hz, 2H), 2.82 (dd, J = 13.1, 5.8 Hz, 2H), 2.46 – 2.38 (m, 4H), 2.04 – 1.90 (m, 

2H); 13C NMR (101 MHz, DMSO) δ 167.04 (C), 144.27 (C), 142.66 (C), 137.74 (C), 129.62 (CH), 

128.47 (CH), 127.25 (CH), 126.56 (CH), 125.84 (CH), 75.92 (C), 74.44 (CH2), 52.01 (CH2), 26.74 

(CH2), 21.92 (CH2), 20.97 (CH3); IR (neat) ν = 3338.0 (w), 2971.0 (w), 1742.0 (w), 1663.7 (w), 

1333.3 (m), 1157.0 (s), 1131.7 (m), 1092.5 (m), 818.16 (m), 700.57 (s), 664.18 (s), 543.79 (s) 

cm-1; HR-MS calculated for C37H41N4O6S2 701.2468, found 701.2480 (Δ = 1.7 ppm, 1.2 mDa); 

X-ray CCDC (1985624) Unit Cell Parameters: a 11.8945(9) b 21.4091(15) c 28.158(2) P21/c. 

 

N,N'-(((Rac)-2,2'-(Propane-1,3-diyl)bis(4-phenyl-4,5-dihydrooxazole-4,2-

diyl))bis(methylene))bis(4-methylbenzenesulfonamide) (3-194) 

Appearance: white solid, 20%, 1H NMR (400 MHz, CDCl3) δ 9.17 (dd, J = 10.2, 3.7 Hz, 2H), 7.56 

(d, J = 8.0 Hz, 4H), 7.29 (s, 10H), 7.01 (d, J = 8.0 Hz, 4H), 5.10 (d, J = 8.6 Hz, 2H), 4.29 (d, J = 8.6 

Hz, 2H), 3.47 (dd, J = 13.7, 10.2 Hz, 1H), 3.11 (ddd, J = 15.0, 10.0, 8.7 Hz, 2H), 2.82 (dd, J = 13.7, 

3.7 Hz, 1H), 2.59 (dt, J = 15.0, 4.5 Hz, 2H), 2.30 (s, 6H),  2.08 (td, J = 10.0, 8.6, 4.5 Hz, 2H); 13C 

NMR (101 MHz, CDCl3) δ 170.42 (C), 143.64 (C), 142.84 (C), 138.62 (C), 129.60 (CH), 128.90 

(CH), 127.86 (CH), 126.24 (CH), 124.68 (CH), 76.37 (CH2), 76.05(C), 50.80 (CH2), 24.68 (CH2), 

20.98 (CH3), 19.33 (CH2); IR (neat) ν = 3062.4 (w), 2870.2 (w), 1164.7 (s), 1147.2 (w), 1130.2 

(s), 1158.7 (s), 1091.23 (s), 1010.2 (s), 912.2 (m), 723.0 (m), 764.0 (s), 554.4 (s) cm-1; HR-MS 

calculated for C37H41N4O6S2 701.2468, found 701.2474 (Δ = 0.9 ppm, 0.6 mDa); X-ray CCDC 

(1985625) Unit Cell Parameters: a 15.0965(9) b 12.1682(7) c 21.8118(12) C2/c. 

 

N-((2-(3-Cyanopropyl)-4-phenyl-4,5-dihydrooxazol-4-yl)methyl)-4-

methylbenzenesulfonamide (3-195). 
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Appearance: colourless oil, 22%, 1H NMR (400 MHz, CDCl3) δ 7.67 (d, J = 8.1 Hz, 2H), 7.36 – 

7.30 (m, 2H), 7.30 – 7.18 (m, 5H), 5.21 (dd, J = 8.9, 5.0 Hz, 1H), 4.86 (d, J = 8.6 Hz, 1H), 4.39 (d, 

J = 8.6 Hz, 1H), 3.24 (dd, J = 13.0, 8.9 Hz, 1H), 3.10 (dd, J = 13.0, 5.0 Hz, 1H), 2.60 (t, J = 7.1 Hz, 

2H), 2.53 (t, J = 7.1 Hz, 2H), 2.39 (s, 3H), 2.09 (p, J = 7.1 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 

167.56 (C), 143.77 (C), 142.56 (C), 136.41 (C), 129.95 (CH), 129.04 (CH), 128.07 (CH), 127.02 

(CH), 125.53 (CH), 119.27 (C), 76.34 (CH2), 75.72 (C), 49.42 (CH2), 27.22 (CH2), 21.74 (CH2), 

21.63 (CH3), 16.79 (CH2); IR (neat) ν = 3263.6 (w), 2177.3 (w), 1663.1 (w), 1327.7 (w), 1160.0 

(s), 1091.5 (m), 906.5 (s), 727.8 (s), 702.2 (s), 551.8 (s) cm-1; HR-MS calculated for C20H22N3O3S 

384.1338, found 384.1335 (Δ = -0.8 ppm, -0.3 mDa). 

 

N-((4-Methoxy-2-(p-tolyl)-2,3-dihydrobenzofuran-2-yl)methyl)-4-

methylbenzenesulfonamide (3-197). 

Appearance: white solid, 40%,  1H NMR (400 MHz, CDCl3) δ 7.65 (d, J = 8.2 Hz, 2H), 7.28 (d, J = 

8.2 Hz, 2H), 7.11 (d, J = 8.2 Hz, 2H), 7.05 (d, J = 8.4 Hz, 2H), 6.89 (d, J = 8.7 Hz, 1H), 6.44 (d, J = 

6.5 Hz, 1H), 4.71 (d, J = 9.0 Hz, 1H), 4.51 (d, J = 9.0 Hz, 1H), 4.26 (dd, J = 8.5, 4.5 Hz, 1H), 3.79 

(s, 3H), 3.55 (dd, J = 12.2, 8.5 Hz, 1H), 3.35 (dd, J = 12.2, 4.5 Hz, 1H), 2.43 (s, 3H), 2.31 (s, 3H); 

13C NMR (101 MHz, CDCl3) δ 162.17 (C), 161.52 (C), 143.75 (C), 139.58 (C), 137.25 (C), 136.50 

(C), 129.91 (CH), 129.74 (CH), 127.18 (CH), 126.48 (CH), 125.07 (CH), 120.97 (C), 107.27 (CH), 

96.75 (CH), 82.39 (CH2), 55.65 (CH3), 53.32 (C), 49.95 (CH2), 21.66 (CH3), 21.02 (CH3); IR (neat) 

ν = 3263.0 (w), 1621.0 (w), 1326.1 (m), 1156.2 (s), 1091.2 (m), 804.8 (m), 661.4 (m), 549.2 (s) 

cm-1; HR-MS calculated for C24H26NO4S 424.1583, found 424.1583 (Δ = 0.0 ppm, 0.0 mDa); X-

ray CCDC (1985642) Unit Cell Parameters: a 10.9761(8) b 11.2566(8) c 17.2670(13) P21/n 
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N-((5-methoxy-2-phenyl-2,3-dihydrobenzofuran-2-yl)methyl)-4-

methylbenzenesulfonamide (3-199). 

Appearance: white solid, 45%, 1H NMR (400 MHz, CDCl3) δ 7.64 (d, J = 8.2 Hz, 2H), 7.33 – 7.18 

(m, 7H), 6.77 – 6.70 (m, 2H), 6.59 (dd, J = 2.3, 0.8 Hz, 1H), 4.70 (d, J = 9.1 Hz, 1H), 4.64 (dd, J = 

8.6, 5.4 Hz, 1H), 4.52 (d, J = 9.1 Hz, 1H), 3.69 (s, 3H), 3.61 (dd, J = 12.5, 8.6 Hz, 1H), 3.43 (dd, J 

= 12.5, 5.4 Hz, 1H), 2.41 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 154.63 (C), 154.36 (C), 143.63 

(C), 141.56 (C), 136.01 (C), 130.06 (C), 129.81 (CH), 128.98 (CH), 127.43 (CH), 127.03 (CH), 

126.53 (CH), 114.57 (CH), 110.81 (CH), 110.52 (CH), 80.92 (CH2), 55.94 (CH3), 54.46 (C), 49.35 

(CH2), 20.57 (CH3) cm-1; IR (neat)  = 3270.1 (w), 2254.1 (w), 1489.1 (m), 1160.5 (m), 904.0 (s), 

723.6 (s), 648.8 (s), 661.0 (s); HR-MS calculated for C23H24NO4S 410.1426, found 410.1445 (Δ 

= 4.6 ppm, 1.9 mDa). 

 

3-((4-Methoxyphenyl)thio)-3-(p-tolyl)-1-tosylazetidine (3-201). 

Appearance: brown solid, 70%, 1H NMR (400 MHz, CDCl3) δ 7.63 (d, J = 8.3 Hz, 2H), 7.28 – 7.22 

(m, 2H), 7.06 – 6.99 (m, 4H), 6.76 (d, J = 8.2 Hz, 2H), 6.71 (d, J = 8.8 Hz, 2H), 4.24 (d, J = 8.3 Hz, 

2H), 4.13 (d, J = 8.3 Hz, 2H), 3.78 (s, 3H), 2.40 (s, 3H), 2.30 (s, 3H); 13C NMR (101 MHz, CDCl3) 

δ 160.83 (C), 144.16 (C), 139.16 (C), 138.04 (CH), 137.02 (C), 132.20 (C), 129.70 (CH), 128.93 

(CH), 128.25 (CH), 126.17 (CH), 121.93 (C), 114.37 (CH), 61.72 (CH2), 55.37 (CH3), 49.32 (C), 

21.64 (CH3), 21.16 (CH3); IR (neat) ν = 2980.5 (w), 1588.1 (m), 1465.2 (m), 1344.5 (m), 1158.2 

(s), 1037.2 (m), 813.4 (m), 725.4 (s), 673.5 (s), 548.1 (s) cm-1; HR-MS calculated for C24H26NO3S2 

440.1354, found 440.1342 (Δ = -2.7 ppm, -1.2 mDa) Melting point: 124-126 °C crystallised 

from Hexane / EtOAc (1:1); X-ray CCDC (1985643) Unit Cell Parameters: a 5.9971(2) b 

19.0997(8) c 20.3305(8) P-1 
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3-((3-Methoxyphenyl)thio)-3-(p-tolyl)-1-tosylazetidine (3-203). 

Appearance: orange oil, 85%, 1H NMR (400 MHz, CDCl3) δ 7.66 (d, J = 8.3 Hz, 2H), 7.27 (d, J = 

7.7 Hz, 2H), 7.09 (dd, J = 8.4, 7.6 Hz, 1H), 7.02 (d, J = 7.7 Hz, 2H), 6.87 – 6.79 (m, 3H), 6.72 

(ddd, J = 7.6, 1.6, 1.0 Hz, 1H), 6.48 (dd, J = 1.6, 1.0 Hz, 1H), 4.26 (d, J = 8.4 Hz, 2H), 4.15 (d, J = 

8.4 Hz, 2H), 3.60 (s, 3H), 2.40 (s, 3H), 2.29 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 159.39 (C), 

144.21 (C), 138.91 (C), 137.13 (C), 132.32 (C), 131.88 (C), 129.75 (CH), 129.56 (CH), 128.96 

(CH), 128.25 (CH), 127.60 (CH), 126.26 (CH), 119.86 (CH), 115.64 (CH), 62.15 (CH2), 55.13 

(CH3), 49.18 (C), 21.65 (CH3), 21.08 (CH3); IR (neat) ν = 2980.7 (w), 1587.4 (m), 1346.8 (m), 

1157.9 (s), 908.3 (m), 813.5 (m), 725.7 (s), 672.7 (s), 548.5 (s) cm-1; HR-MS calculated for 

C24H26NO3S2 440.1357, found 440.1346 (Δ = -2.7 ppm, -1.1 mDa);  

 

N-(2-(4-Bromophenyl)-2-oxoethyl)-4-methyl-N-((2-methyl-4-(p-tolyl)-4,5-dihydrooxazol-4-

yl)methyl)benzenesulfonamide (3-205). 

Appearance: yellow oil, 60%, 1H NMR (400 MHz, CDCl3) δ 7.64 (d, J = 8.6 Hz, 2H), 7.61 (d, J = 

8.3 Hz, 2H), 7.57 (d, J = 8.4 Hz, 2H), 7.33 – 7.31 (m, 4H), 7.24 (d, J = 8.4 Hz, 2H), 4.98 (d, J = 8.7 

Hz, 1H), 4.88 – 4.70 (m, 2H), 4.33 (d, J = 8.7 Hz, 1H), 3.83 (d, J = 14.8 Hz, 1H), 3.61 (d, J = 14.8 

Hz, 1H), 2.40 (s, 3H), 1.86 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 192.78 (C), 166.38 (C), 144.10 

(C), 143.69 (C), 136.56 (C), 134.05 (C), 132.12 (CH), 129.70 (CH), 129.34 (CH), 128.79 (CH), 

128.73 (C), 127.66 (CH), 127.61 (CH), 125.82 (CH), 77.03 (C), 76.11 (CH2), 56.58 (CH2), 54.58 

(CH2), 21.66 (CH3), 14.12 (CH3); IR (neat) ν = 2924.2 (w), 1672.2 (m), 1585.3 (m), 1334.8 (m), 

1156.7 (s), 982.4 (s), 908.1 (s), 729.3 (s), 547.8 (s) cm-1; HR-MS calculated for C26H26N2O4S79Br 

541.0797, found 541.0780 (Δ = -3.1 ppm, -1.7 mDa). 
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N-((2-(5-Bromopentyl)-4-(p-tolyl)-4,5-dihydrooxazol-4-yl)methyl)-4-

methylbenzenesulfonamide (3-206). 

Appearance: colourless oil, 70%, 1H NMR (400 MHz, CDCl3) δ 7.65 (d, J = 8.0 Hz, 2H), 7.23 (d, 

J = 8.0 Hz, 2H), 7.16 – 7.06 (m, 4H), 5.02 (dd, J = 9.3, 4.6 Hz, 1H), 4.72 (d, J = 8.5 Hz, 1H), 4.28 

(d, J = 8.5 Hz, 1H), 3.41 (t, J = 6.7 Hz, 2H), 3.24 (dd, J = 12.6, 9.3 Hz, 1H), ), 3.04 (dd, J = 12.6, 

4.6 Hz, 1H),  2.39 (s, 3H), 2.31 (s, 3H), 1.94 – 1.83 (m, 2H), 1.78 – 1.62 (m, 2H), 1.52 (ddd, J = 

10.2, 8.4, 4.8 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 169.88 (C), 143.55 (C), 140.82 (C), 137.48 

(C), 136.82 C), 129.92 (CH), 129.48 (CH), 127.01 (CH), 125.40 (CH), 75.88 (CH2), 75.05 (C), 51.74 

(CH2), 33.74 (CH2), 32.38 (CH2), 28.56 (CH2), 27.03 (CH2), 25.30 (CH2), 22.31 (CH3), 21.09 (CH3); 

IR (neat) ν = 3089.3 (w), 2868.6 (w), 1651.1 (m), 1333.6 (s), 1160.0 (s), 1089.6 (s), 811.2 (s), 

659.3 (m), 554.9 (s), 545.8 (s) cm-1; HR-MS calculated for C23H30
79BrN2O3S 493.1161, found 

493.1146 (Δ = -3.0 ppm, -1.5 mDa); X-ray CCDC (1985626) Unit Cell Parameters: a 12.7711(8) 

b 11.4910(7) c 16.0665(10) P21/n. 

 

N-((2-(6-Bromohexyl)-4-(4-chlorophenyl)-4,5-dihydrooxazol-4-yl)methyl)-4-

methylbenzenesulfonamide (3-207). 

Appearance: colourless oil, 75%, 1H NMR (400 MHz, CDCl3) δ 7.62 (d, J = 8.2 Hz, 2H), 7.20 (m, 

4H), 7.15 (d, J = 8.7 Hz, 2H), 5.44 (dd, J = 8.7, 5.0 Hz, 1H), 4.68 (d, J = 8.6 Hz, 1H), 4.20 (d, J = 

8.6 Hz, 1H), 3.37 (t, J = 7.0 Hz, 2H), 3.21 (dd, J = 12.8, 8.7 Hz, 1H), 3.01 (dd, J = 12.8, 5.0 Hz, 

1H), 2.37 (s, 3H), 2.35 – 2.24 (m, 2H), 1.83 (p, J = 7.0 Hz, 2H), 1.64 (p, J = 7.0 Hz, 2H), 1.52 – 

1.28 (m, 4H); 13C NMR (101 MHz, CDCl3) δ 170.20 (C), 143.52 (C), 142.33 (C), 137.24 (C), 133.41 

(C), 130.00 (CH), 129.78 (CH), 126.98 (CH), 126.86 (CH), 75.52 (CH2), 75.31 (C), 51.56 (CH2), 

33.91 (CH2), 32.48 (CH2), 28.25 (CH2), 27.95 (CH2), 27.70 (CH2), 25.83 (CH2), 21.54 (CH3); IR 

(neat) ν = 2932.9 (w), 1658.0 (m), 1328.4 (m), 1157.6 (s), 1090.7 (s), 813.4 (s), 661.8 (s), 548.1 
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(s) cm-1; HR-MS calculated for C23H29
79Br35ClN2O3S 527.0736, found 527.0743 (Δ = 1.0 ppm, 

0.7 mDa). 

 

N-((2-(7-Bromoheptyl)-4-(p-tolyl)-4,5-dihydrooxazol-4-yl)methyl)-4-

methylbenzenesulfonamide (3-209). 

Appearance colourless oil, 75%, 1H NMR (400 MHz, CDCl3) δ 7.65 (d, J = 8.1 Hz, 2H), 7.22 (d, J 

= 8.1 Hz, 2H), 7.15 – 7.05 (m, 4H), 5.26 (dd, J = 9.2, 4.6 Hz, 1H), 4.72 (d, J = 8.4 Hz, 1H), 4.27 

(d, J = 8.4 Hz, 1H), 3.39 (t, J = 6.8 Hz, 2H), 3.25 (dd, J = 12.7, 9.2 Hz, 1H), 3.01 (dd, J = 12.7, 4.6 

Hz, 1H), 2.43- 2.30 (m, 2H), 2.38 (s, 3H), 2.30 (s, 3H), 1.84 (p, J = 6.9 Hz, 2H), 1.71 – 1.62 (m, 

2H), 1.49 – 1.28 (m, 6H); 13C NMR (101 MHz, CDCl3) δ 170.14 (C), 143.42 (C), 140.94 (C), 137.34 

(C), 136.88 (C), 129.77 (CH), 129.40 (CH), 126.95 (CH), 125.34 (CH), 75.74 (CH2), 75.36 (C), 

51.63 (CH2), 34.03 (CH2), 32.72 (CH2), 29.00 (CH2), 28.37 (CH2), 28.11 (CH2), 28.00 (CH2), 26.04 

(CH2), 21.53 (CH3), 21.04 (CH3); IR (neat) ν = 1652.7 (m), 906.8 (s), 726.8 (s), 661.6 (m), 551.0 

(m) cm-1; HR-MS calculated for C25H34
79BrN2O3S 521.1474, found 521.1475 (Δ = 0.2 ppm, 0.1 

mDa). 

 

N-((2-(10-Bromodecyl)-4-(p-tolyl)-4,5-dihydrooxazol-4-yl)methyl)-4-

methylbenzenesulfonamide (3-210). 

Appearance: colourless oil, 75%,  1H NMR (400 MHz, CDCl3) δ 7.65 (d, J = 8.0 Hz, 2H), 7.22 (d, 

J = 8.0 Hz, 2H), 7.13 (d, J = 8.3 Hz, 2H), 7.08 (d, J = 8.3 Hz, 2H), 5.34 (dd, J = 9.1, 4.6 Hz, 0H), 

4.73 (d, J = 8.4 Hz, 1H), 4.27 (d, J = 8.4 Hz, 1H), 3.39 (t, J = 6.9 Hz, 2H), 3.25 (dd, J = 12.7, 9.1 

Hz, 1H), 3.03 (dd, J = 12.7, 4.6 Hz, 1H), 2.38 (s, 3H), 2.30 (s, 3H), 1.84 (p, J = 6.9 Hz, 2H), 1.66 

(t, J = 7.4 Hz, 2H), 1.47 – 1.21 (m, 14H); 13C NMR (101 MHz, CDCl3) δ 170.41 (C), 143.34 (C), 

140.82 (C), 137.27 (C), 136.88 (C), 129.72 (CH), 129.35 (CH), 126.92 (CH), 125.32 (CH), 75.79 

(CH2), 75.26 (C), 51.56 (CH2), 34.09 (CH2), 32.79 (CH2), 29.34 (CH2), 29.31 (CH2), 29.16 (CH2), 



180 
 

29.13 (CH2), 28.72 (CH2), 28.13 (CH2), 28.12 (CH2), 26.10 (CH2), 21.47 (CH3), 21.00 (CH3) cm-1; 

HR-MS calculated for C28H40
79BrN2O3S 563.1965, found 563.1970 (Δ = 0.2 ppm, 0.5 mDa). 

 

1-(p-Tolyl)-3-tosyl-10-oxa-3,12-diazabicyclo[7.2.1]dodec-9(12)-ene (3-211). 

Appearance: colourless oil, 40%, 1H NMR (400 MHz, CDCl3) δ 7.62 (d, J = 8.3 Hz, 2H), 7.29 – 

7.22 (m, 4H), 7.18 – 7.14 (m, 2H), 5.20 (d, J = 8.5 Hz, 1H), 4.20 (d, J = 8.5 Hz, 1H), 3.81 (d, J = 

14.0 Hz, 1H), 3.17 – 2.96 (m, 2H), 2.77 (d, J = 13.9 Hz, 1H), 2.57 – 2.48 (m, 1H), 2.38 (s, 3H), 

2.33 (s, 3H), 2.15 (ddd, J = 14.6, 11.3, 3.8 Hz, 1H), 1.99 – 1.82 (m, 4H), 1.59 (ddq, J = 10.9, 8.0, 

5.2 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 170.12 (C), 143.46 (C), 140.95 (C), 137.15 (C), 134.64 

(C), 129.71 (CH), 129.34 (CH), 127.41 (CH), 125.77 (CH), 76.84 (C), 74.50 (CH2), 61.57 (CH2), 

49.82 (CH2), 29.58 (CH2), 27.20 (CH2), 24.55 (CH2), 23.67 (CH2), 21.47 (CH3), 21.04 (CH3); IR 

(neat) ν = 2923.5 (w), 1664.1 (m), 1334.6 (m), 1159.0 (s), 1014.1 (m), 908.2 (m), 815.3 (m), 

728.2 (s), 712.6 (s), 646.5 (m), 547.3 (s) cm-1; HR-MS calculated for C23H29N2O3S 413.1899, 

found 413.1895 (Δ = -1.0 ppm, -0.4 mDa). 

 

1-(p-Tolyl)-3-tosyl-11-oxa-3,13-diazabicyclo[8.2.1]tridec-10(13)-ene (3-212). 

Appearance: white solid, 72%, 1H NMR (400 MHz, CDCl3) δ 7.65 (d, J = 8.6 Hz, 2H), 7.33 (d, J = 

8.2 Hz, 2H), 7.27 (d, J = 8.6 Hz, 1H), 7.17 (d, J = 8.2 Hz, 2H), 5.52 (d, J = 8.9 Hz, 1H), 4.28 (d, J = 

8.9 Hz, 1H), 3.96 (d, J = 15.0 Hz, 1H), 3.32 – 3.21 (m, 1H), 2.84 (d, J = 15.0 Hz, 1H), 2.59 (dt, J = 

13.2, 4.1 Hz, 1H), 2.51 – 2.42 (m, 1H), 2.39 (s, 3H), 2.33 (s, 3H), 2.30 – 2.03 (m, 3H), 1.73 – 1.54 

(m, 3H), 1.54 – 1.30 (m, 3H); 13C NMR (101 MHz, CDCl3) δ 168.72 (C), 143.54 (C), 142.90 (C), 

136.90 (C), 134.76 (C), 129.67 (CH), 129.25 (CH), 127.65 (CH), 125.79 (CH), 76.58 (C), 74.99 

(CH2), 61.74 (CH2), 52.54 (CH2), 27.78 (CH2), 27.32 (CH2), 26.42 (CH2), 22.68 (CH2), 22.27 (CH2), 
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21.45 (CH3), 20.99 (CH3); IR (neat) ν = 2930.1 (w), 1661.9 (m), 1335.3 (m), 1160.0 (s), 984.6 

(m), 816.0 (m), 697.7 (m), 548.4 (s) cm-1; HR-MS calculated for C24H31N2O3S 427.2055, found 

427.2042 (Δ = -3.0 ppm, -1.3 mDa); X-ray CCDC (1985644) Unit Cell Parameters: a 10.5538(7) 

b 21.7626(14) c 10.9319(7) P21/n 

 

1-(4-Chlorophenyl)-3-tosyl-11-oxa-3,13-diazabicyclo[8.2.1]tridec-10(13)-ene (3-213). 

Appearance: white solid,70%, 1H NMR (400 MHz, CDCl3) δ 7.55 (d, J = 8.0 Hz, 1H), 7.27 (d, J = 

8.6 Hz, 1H), 7.23 – 7.16 (m, 4H), 5.42 (d, J = 9.0 Hz, 1H), 4.13 (d, J = 9.0 Hz, 1H), 3.81 (d, J = 

15.0 Hz, 1H), 3.16 (ddd, J = 13.2, 11.0, 3.5 Hz, 1H), 2.71 (d, J = 15.0 Hz, 1H), 2.46 (dt, J = 13.2, 

4.0 Hz, 1H), 2.42 – 2.33 (m, 1H), 2.30 (s, 3H), 2.17 – 1.94 (m, 3H), 1.68 – 1.16 (m, 6H); 13C NMR 

(101 MHz, CDCl3) δ 169.31 (C), 144.43 (C), 143.76 (C), 134.70 (C), 133.17 (C), 129.80 (CH), 

128.78 (CH), 127.74 (CH), 127.50 (CH), 76.55 (C), 74.89 (CH2), 61.57 (CH2), 52.65 (CH2), 27.81 

(CH2), 27.45 (CH2), 26.37 (CH2), 22.66 (CH2), 22.29 (CH2), 21.56 (CH3); IR (neat) ν = 2937.7 (w), 

1661.0 (m), 1332.9 (m), 1155.0 (s), 1086.7 (m), 999.9 (m), 952.0 (m), 816.0 (s), 700.8 (m), 

648.7 (m), 579.7 (s), 563.6 (s), 545.5 (s) cm-1; HR-MS calculated for C23H28N2O3S35Cl 447.1509, 

found 447.1508 (Δ = -0.2 ppm, -0.1 mDa); Melting point: 143-145 °C crystallised from Hexane 

/ EtOAc. X-ray CCDC (1985645) Unit Cell Parameters: a 5.9218(6) b 21.635(2) c 17.5661(16) 

P21/c. 

 

1-(p-Tolyl)-3-tosyl-15-oxa-3,17-diazabicyclo[12.2.1]heptadec-14(17)-ene (3-214). 

Appearance: white solid, 70%, 1H NMR (400 MHz, CDCl3) δ 7.53 (d, J = 8.3 Hz, 2H), 7.27 (d, J = 

8.3 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 7.12 (d, J = 8.0 Hz, 2H), 5.07 (d, J = 8.8 Hz, 1H), 4.38 (d, J = 
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8.8 Hz, 1H), 3.81 (d, J = 14.8 Hz, 1H), 3.13 (ddd, J = 13.7, 8.3, 5.3 Hz, 1H), 3.01 – 2.86 (m, 2H), 

2.39 (m, 1H), 2.35 (s, 3H), 2.30 (s, 3H), 2.10 (dtt, J = 15.9, 7.7, 3.3 Hz, 1H), 1.83 (ddt, J = 16.7, 

8.7, 4.4 Hz, 2H), 1.70 (ddt, J = 10.6, 8.7, 3.3 Hz, 1H), 1.66 – 1.45 (m, 4H), 1.20 (dtd, J = 16.7, 

7.7, 4.4 Hz, 2H); 13C NMR (101 MHz, CD3OD) δ 171.41 (C), 145.28 (C), 143.36 (C), 138.35 (C), 

135.27 (C), 130.86 (CH), 130.33 (CH), 128.76 (CH), 126.55 (CH), 77.78 (C), 76.92 (CH2), 60.66 

(CH2), 51.42 (CH2), 28.60 (CH2), 28.37 (CH2), 28.29 (CH2), 25.44 (CH2), 23.44 (CH2), 22.47 

(CH2), 21.51 (CH3), 21.12 (CH3); IR (neat) ν = 2931.6 (w), 1662.8 (m), 1334, 5 (m), 1159.5 (s), 

1088.8 (m), 815.0 (m), 730.4 (s), 696.8 (s), 547.6 (s) cm-1; HR-MS calculated for C25H33N2O3S 

441.2212, found 441.2208 (Δ = -0.9 ppm, -0.4 mDa); X-ray CCDC (1985647) Unit Cell 

Parameters: a 10.5408(7) b 11.4873(7) c 19.3042(13) P21/n. 

 

1-(p-Tolyl)-3-tosyl-15-oxa-3,17-diazabicyclo[12.2.1]heptadec-14(17)-ene (3-215). 

Appearance: pale yellow oil,33%,  1H NMR (400 MHz, CDCl3) δ 7.59 (dd, J = 8.3, 1.4 Hz, 2H), 

7.29 (d, J = 8.3 Hz, 2H), 7.24 (d, J = 8.1 Hz, 2H), 7.16 (d, J = 8.1 Hz, 2H), 4.99 (d, J = 8.3 Hz, 1H), 

4.34 (d, J = 8.3 Hz, 1H), 3.78 (d, J = 14.7 Hz, 1H), 3.21 (dd, J = 14.7, 10.2 Hz, 1H), 3.10 (m, 2H), 

2.39 (s, 3H), 2.33 (s, 3H), 1.77 – 1.63 (m, 3H), 1.43 – 1.11 (m, 15H); 13C NMR (101 MHz, CDCl3) 

δ 143.40 (C), 142.36 (C), 137.12 (C), 136.19 (C), 136.05 (C), 129.71 (CH), 129.29 (CH), 127.37 

(CH), 125.80 (CH), 77.01 (C), 75.45 (CH2), 58.15 (CH2), 51.30 (CH2), 29.97 (CH2), 29.77 (CH2), 

29.70 (CH2), 29.46 (CH2), 29.29 (CH2), 28.79 (CH2), 28.41 (CH2), 27.42 (CH2), 25.88 (CH2), 21.55 

(CH3), 21.09 (CH3); IR (neat) ν = 2924.9 (w), 1662.9 (w), 1334.7 (m), 1160.2 (m), 907.1 (s), 729.9 

(s), 649.5 (m), 549.9 (m) cm-1; HR-MS calculated for C28H39N2O3S 483.2681, found 483.2684 

(Δ = 0.6 ppm, 0.3 mDa). 
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4. Chapter 4: Exploring Photoflow Promoted Oximation of Alkanes 

 

4.1 Introduction: Oximes  
First synthetized in 1882 by the chemists Victor Meyer and Alois Janny[1] oximes[2] represent 

an important class of molecule possessing numerous applications in many different fields. An 

oxime is a function group entailing a hydroxyl bonded to the nitrogen of an imine. Depending 

on the substituent of the imino group we can distinguish between aldoxime 4-2, ketoxime 4-

3 or amidoxime 4-1 (Figure 1). 

 

Figure 20: General oxime structures. 

 

An oxime can potentially exist in three tautomeric forms, oxime 4-3, nitrone 4-4 and nitroso 

compound 4-5[3,4] (Figure 2). 

 

 

Figure 21: Tautomeric forms of oximes. 

 

The isomerization between oxime 4-3 and nitrone 4-4 was the first identified, studied and 

documented in 1977 by Vijfhhuizen and Terlouw during their investigation using mass 
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spectrometry to study the loss of the methyl group from o-methylbenzaldoximes (4-6a) after 

electron impact (Scheme 1).[5] 

 

 

Scheme 24: Vijfhhuizen and Terlouw study of the loss of the methyl group from o-

methylbenzaldoximes 

 

Several studies have proposed a thermal 1,2-hydrogen shift as being responsible for the 

tautomerism.[6-9] In particular Yamamoto[7] studied this proposed shift and the effect of protic 

solvent on the tautomerism of oximes and nitrones. However, recently it has been 

additionally suggested by the Lopez group that it can take place by a bimolecular mechanism 

involving two oximes or two nitrones[10-15] (Scheme 2). 

 

 

Scheme 2: Lopez bimolecular mechanism involving two molecules of oximes/nitrones. 

 

In general the nitroso and nitrone tautomers are less stable than the corresponding oxime 

form.[16] The nitrone species has proven particularly valuable in synthesis especially for 

cycloaddition reactions in combination with unsaturated electrophiles.[10,11,17] The oxime 

shows much higher reactivity than the nitrone (4-4) at high pH as showed by Dignam and 

Hegarty in their study on the kinetics and mechanism of E/Z isomerisation of amidoximes in 
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aqueous solution. In this piece of work the authors blocked the oxime-nitrone 

tautomerization (4-3↔4-4) by alkylating the oxime oxygen and observing that the alkylated 

amidoximes at high pH isomerize at similar rates to the non-alkylated; thus deducing that it 

is the neutral oxime (4-3) and not the nitrone (4-4) that was the reactive species.[11,18] 

One of the most important applications of an oxime is in the synthesis of Caprolactam 

(4-7b); obtained via a Beckman rearrangement from cyclohexanone oxime (4-7), itself a 

precursor of Nylon-6 (4-7c; Scheme 3). 

 

Scheme 3: Cyclohexanone oxime (4-7) a precursor of Nylon-6 (4-7b). 

In material chemistry oximes have recently found value in the recovery of rare metals such as 

uranium and vanadium from seawater. In particular amidoxime groups were very promising 

chelating agents and thus fibrous adsorbent material functionalised with amidoxime groups 

have been prepared as immobilised scavengers for this purpose.[19] 

Oximes also have broad ranging biological activity. Sorensen and Moller highlighted 

that they are extremely abundant among plant metabolites and play key roles in plant 

biological systems (growth regulation and attraction of species responsible for the 

pollination) moreover many plant metabolites are also biosynthesised from oxime precursors, 

examples include Auxin, glucosinolate and cyanogenic glucosides (Scheme 4 and 5).[20] 
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Scheme 4: Oxime as precursor in the general biosynthesis of Glucosinolate (4-8f). 

 

 

Scheme 5: Oxime as precursor of the cyanogenic glucoside Dhurrin (4-9f). 
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Their importance is also evidenced by the large number of biologically active compounds 

exhibiting the oxime moiety (Figure 3). Among these is a remarkable important application 

that oximes have as antidotes for organophosphorus compounds (OPCs).[31] Indeed, the 

current standard treatment in case of Organophosphorus Poisoning includes a muscarinic 

ACh (acetylcholine) receptor antagonist (like atropine[28]) to block the over-stimulation of 

cholinergic receptors by ACh, and an oxime like Pralidoxime (4-10) or Obidoxime (4-10b) 

(Figure 3) to reactivate OPC-inhibited AChE.[28,29,30] 
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Figure 22. Examples of biologically important compounds containing the oxime moiety. 



195 
 

4.1.2 Synthesis of oximes 
Oxime are generally obtained by the direct reaction between hydroxylamine and an aldehyde 

or a ketone.[6,32,33] They can also exist as two distinct stereoisomers: the Z or E form. Although 

the Z-isomer has been shown to be the most stable, the E form is often also present as a minor 

species.[11,4,18] Much effort has been applied towards optimising the reaction conditions to 

minimise by-product formation and maximise the yield of such condensations; several solvent 

free conditions have also been developed providing good results[34] and the reaction has been 

performed using enabling technologies like microwave irradiation,[35] ball milling[36] and 

sonication.[37] 

Shanarghi and Hosseni[38] have developed a solvent free one-pot Beckmann 

rearrangement of ketones and aldehydes (with hydroxylamine) promoted by heating at 140-

170 °C in the presence of ZnO catalyst (Scheme 6). This procedure offers a green methodology 

avoiding the use of solvent and any strong Bronsted or Lewis acid which normally causes 

several undesired by-products to form and can be problematic to perform on industrial scale 

because of the associated issues of corrosion they can cause.[39] The group applied this 

methodology to the synthesis of various oximes (Table 1). 

 

Scheme 6: Shanarghi and Hosseni’ one-pot Beckmann rearrangement of ketones and 

aldehydes. 

The authors observed that when an aldehyde was stirred with hydroxylamine hydrochloride 

(4-26) and ZnO at 80 °C it afforded the resultant oxime in excellent yield (Table 1). The reaction 

was fast and allowed full conversion of the starting material in a time range of 5-15 min. 

Interestingly, the reaction is reported to give predominantly the Z-oxime isomer (OH syn to 

the aryl). Although most aldehydes reacted well, the authors observed a reduced reactivity 

for meta-substituted aromatic aldehydes which required longer reaction times (Table 1, 

entries 5-8). This is also in line with the findings of Schofield who also observed a reduced 

yield for the conversion of meta-substituted aldehydes to oximes when using a sulfuric acid 

catalyst at the same temperature of 80 °C.[40] 
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Table 9: Conversion of aldehydes to oximes in the presence of ZnO. 

 
Entry R Time (min) Yield 4-2 (%) 

1 p-MeC6H4 5 100a 
2 p-OHC6H4 5 100 a 

3 p-ClC6H4 5 100 a 
4 p-MeOC6H4 10 100 a 
5 m-MeC6H4 15 100 b 
6 m-OHC6H4 15 100 b 

7 m-ClC6H4 15 100 b 
8 m-MeOC6H4 15 100 b 
9 o-OHC6H4 5 >98 c 

10 o-ClC6H4 5 >98 c 

11 Ph 5 100 d 
a 90% Z isomer 10% E, b 80% Z isomer 20 % E; c 100% Z isomer; d 75 
% Z isomer 15% E. 

 

Hajipour’s group[41] similarly performed the conversion of aldehydes and ketones into oximes 

under solvent free conditions using microwave irradiation. The process uses dry silica gel as a 

catalyst and allows the conversion to occur in just a few minutes with yields ranging from 

good to excellent (Table 2). 

Table 10: Conversion of aldehydes and ketones in oxime under solvent free condition using 

microwave irradiation. 

 

Entry R1 R2 Power (W) Time (s) Yield (%) 

1 Ph H 800 50 90 
2 o-MeOC6H4 H 800 160 94 
3 p-BrC6H4 H 800 220 88 
4 p-ClC6H4 H 800 210 92 
5 p-NO2C6H4 H 800 180 87 
6 p-MeOC6H4 H 800 140 79 
7 p-Me2NC6H4 H 800 120 76 
8 o-Cl, 6-FC6H3 H 800 180 98 
9 PhCH=CH H 800 240 84 

10 3,4-(MeO)2C6H3 H 800 120 86 
11 Ph Ph 800 360 50 
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12 3,4-(MeO)2C6H3 Me 800 270 37 
13 PhCO Ph 900 480 21 
14 Ph Me 900 240 73 
15 PhCH(OH) Ph 900 480 0 
16 -[CH2]5- 900 360 0 
17 -[CH2]6- 900 480 0 

Irradiation was carried out in a domestic microwave oven (Samsung 2450 MHz, 900 
W), for an optimised time and power. The temperature of the reaction reached 80-
90 °C.  

 

Notably, the authors reported the total inactivity of ketones under these condition and 

showed that their presence also didn’t alter the aldehyde conversion thus providing a 

methodology that permits aldoximes (i.e. 4-31 & 4-34) to be prepared even in the presence 

of compounds containing a ketone moiety (Scheme 7, 4-29 & 4-32). 

 

 

Scheme 7: The reaction condition permits the discrimination between aldehydes and ketones, 

with ketones being unreactive. 

 

Fukuyama[42] used O-TBS protected N-tosylhydroxylamine to obtain a variety of oximes from 

the corresponding alcohols, alkyl halides, or alkyl sulfonate; in particular the reagent was used 

under Mitsunobu conditions allowing for the facile conversion of alcohols (Table 3). The 

reaction generally gave excellent yields but led to a mixture of the E,Z-isomers. 
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Table 11: Synthesis of oximes starting from alcohols under Mitsunobu conditions. 

 

Oxime Product Yield 
(%) 

Oxime Product Yield 
(%) 

Oxime Product Yield 
(%) 

 

 
99 

 

 
92 

 

 
89 

 

 
92 

 

 
91 

 

 
95 

 

 
82 

 

 
94 

 

 
98 

 

 
98 

 

 
99 

 

 
99 

 

 
90 

 

 
94 

  

 

The procedure involves the conversion of the alcohol or alkyl halides first into the related 

alkylated hydroxylamine derivative via a Mitsunobu reaction (Scheme 8). The intermediate O-

silyl-N-arylsulfonylhydroxylamine (4-55) is then converted to the corresponding nitrosoalkane 

4-5 by elimination of sulfonate promoted by a fluoride ion attack on the silicon centre thus 

leading to the oxime 4-3 by tautomerization.[42] 
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Scheme 8: Proposed mechanism for the Fukuyama’s synthesis of oximes. 

 

Beauchemin’s group[39a] has managed to perform the intramolecular hydroamination of 

alkynes and alkenes by heating them with aqueous hydroxylamine in the absence of any metal 

catalyst (Scheme 9 and Table 4).[43-50] 

 

Scheme 9: The reaction between alkyne and hydroxylamine derivative. [39a] 

 

The authors proposed that some substrate have reduced reactivity due to a problematic 

intramolecular proton transfer and showed that the use of an addative of alcohol or water in 
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the reaction enhances the reactivity by promoting a more efficient bimolecular proton 

transfer (Scheme 10, Table 4; 4-73 - 4-75 4-77). 

 

 

Scheme 10: Intramolecular and intermolecular proton transfer steps.  

 

Table 12: Reaction of alkynes with aqueous NH2OH. 

 

Entry Major Product %Yield Entry Major product %Yield 

4-66 

 

87 a 4-72 

 

73  

4-67 

 

83 a 4-73 

 

62 b 

86 c 

4-68 

 

71 a 4-74 

 

55 b 
72 c 

4-69 

 

45 a 4-75 

 

63 c 

4-70 

 

75  a 476 

 

71 b 



201 
 

3-71 

 

65 a 3-77 

 

31 b 

53 c 

a 1 equiv. alkyne, 2 equiv. NH2OH, dioxane (1 M), sealed tube , 113 °C, 16-18 h; b 140 °C, dioxane 
(2 M), 38-40 h; c iPrOH (1 M), 140 °C (microwave), 5-10 h. 

 

The same group[51] also prepared a series of oximes and nitrones in good yield by direct 

reaction of an allene 4-79 with either aqueous hydroxylamine or N-alkylhydroxylamines 4-78 

(Tables 5 and 6).  

 

Table 13: Reaction of N-alkylhydroxylamines with cyclohexylallene. 

 

Entry R Temp (°C) Yield (%) 

1 Cy 140 91 

2 Bn 140 81 

3 i-Pr 140 63 

4 sec-Bu 140 49 

5 CH2C(CH3)3 140 47 

6 n-C6H13 140 51 

7 cyclopentane  140 58 

8 cycloheptane 140 71 

9 norbornane 140 38 

aConditions: 2 equiv. of allene 4-79, 1 equiv. of RNHOH 4-78, tert-BuOH (0.5 M), 
sealed tube, 18 h. 

 

Table 14: Reaction of aqueous hydroxylamine with allenes. 

 

Entry R R2 R3 Yield (%) 

1 Cy H H 75 
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2 n-C6H13 H H 93 

3 BnO(CH2)2 H H 99 

4 TBDPSO(CH2)3 H H 88 

5 Ph H H 71 

6 n-C6H13 n-Pr H 21c 

7 n-Pr H n-Pr 13 

aConditions: 1 equiv. of allene  (2.5 M), 2 equiv. of NH2OH, i-PrOH, sealed tube, 140 °C 18 h. c 
Heated in a microwave reactor at 160 °C. 

 

A concerted five membered transition state has been proposed by the authors for this 

transformation[52] (Scheme 11). The mechanism is also supported by the studies by 

Ciganek[45,46] and Oppolzer[48] on intramolecular group transfer hydroaminations with alkenes. 

The author also reported DFT calculations which confirmed a five-membered coplanar 

transition state for the concerted hydroamination process showing how the amination on the 

central carbon of the allene is favoured by 5.7 kcal/mol (Figure 4). 

 

 

Scheme 11: Concerted five membered group transfer mechanism. 

 

Figure 23: Energies for the two possible five-membered coplanar transition states. 

 

In an alternative approach to oximes Jatao and Ming reported upon the aerobic oxidation of 

a series of primary amines generating oximes in good yields using N,N′,N″-

trihydroxyisocyanuric acid (THICA) and acetaldoxime as the catalyst (Table 7).[53] The reaction 
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is metal-free and uses water as the reaction solvent. In combination with air as the oxidant 

the overall reaction conditions make it a green and efficient methodology for forming oximes. 

Table 15: Jatao and Ming oximes synthesis from primary amines. 

 

No. Oxime Product Time 

(h) 

Yield 

(%) 

No. Oxime Product Time 

(h) 

Yield 

(%) 

4-31 

 

36 88 4-45 

 

40 76 

4-90 

 

38 87 4-98 

 

34 80 

4-91 

 

36 86 4-99 

 

40 75 

4-92 

 

36 85 4-100 

 

36 79 

4-93 

 

40 81 4-101 

 

40 79 

4-94 

 

36 83 4-102 

 

36 81 

4-95 

 

35 85 4-103 

 

42 82 

4-96 

 

34 88 4-104 

 

42 78 

4-97 

 

40 87 4-36 

 

40 76 

4-42 

 

40 90 4-105 

 

24 trace 

 

Using benzylamine as a model substrate for the optimisation of the reaction conditions the 

authors found that THICA (N,N′,N″-trihydroxyisocyanuric acid) and acetaldoxime gave the 

best results compared to the other catalysts screened (TEMPO and N-hydroxyphthalimide) 

and additives tested (acetoxime, dimethylglyoxime, cyclohexanone). Interestingly, amongst 

the various solvents screened (DMSO, DMF, EtOH, MeCN and H2O) only water permitted the 



204 
 

formation of the product. The authors speculated (Scheme 12) the reaction progressed with 

the activation of THICA (4-87; Scheme 12) by the NOXyl radical 4-88b formed by a reaction 

between acetaldoxime 3-88 and oxygen. After radical abstraction from the primary amine 4-

106 which can then react with oxygen leading to the peroxide radical 4-107, subsequent 

reaction with THICA affords the hydroperoxide 4-108 and completes the catalytic cycle. The 

reactive peroxide species then undergoes elimination producing the oxime 4-2 (Scheme 12). 

  

 

Scheme 12: A possible reaction mechanism for the aerobic oxidation of the primary amine 

using the THICA/acetaldoxime system. 

 

Nicolaou et al.[54] studying hypervalent iodine chemistry reported that o-iodoxybenzoic acid 

(IBX) allows the oxidation of unhindered amine containing compounds to their corresponding 

imine and oxime counterparts. Example 4-31 and 4-124 show how starting from 

hydroxylamine the related oxime is obtained in great yield (Table 8). The authors proposed 

an anionic mechanism for the transformation (Scheme 13). 

Table 16: Imine and oxime synthesis from amines with o-iodoxybenzoic acid. 

 

No. Product Yield (%) No. Product Yield 

(%) 
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4-112 
4-113 
4-114 

 

83 

91 

95 

4-120 

4-121 

4-122 
 
4-123 

 

79 

89 

77 

89 

4-116 

4-117 

 

70 

3-116:3-
117 = 
0.8:1 

4-124  

 

 

90 

4-31 
 

97 4-125 
 

98 

4-118 

 

49 4-126 
 

94 

4-119 

 

 

98 

 

  

 

 

 

Scheme 13: Proposed SET mechanism for the oxidation of imines mediated by IBX. 

 

Czekelius and Carreira reported[55] the conversion of optically active nitroalkanes (4-132, 

Table 9) into chiral aldoximes 4-134 at room temperature by employing inexpensive reagents 

like benzyl bromide, KOH, and n-Bu4NI. The reaction gave good yields (Table 9). The authors 
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reported that amine bases soluble in the reaction media did not produce any product, 

whereas the use of heterogeneous conditions KOH/THF with an added phase transfer catalyst 

was optimal for promoting the formation of the aldoxime. Moreover, by using chiral-HPLC 

assays it was demonstrated that that no racemization occurred during the process. 

 

Table 17: Conversion of nitroalkanes into oximes. 

 

No. product Yield (%) No. product Yield (%) 

4-135 

 

80 4-141 

 

60 

4-136 

 

69 4-142 

 

78 

4-137 

 

81 4-143 

 

65 

4-138 

 

80 4-144 

 

70 

4-139 

 

76 4-145 

 

73 

4-140 

 

75 4-146 

 

56 

Reaction conditions: BnBr (1.1 equiv.), KOH (1.5 equiv.), nBu4NI (5 mol%) in THF at room 
temperature. THP = tetrahydropyran, Bn = benzyl, TBS = tert-butyldimethylsilyl. 

 

It has been shown that m-CPBA is a good reagent for the conversion of aliphatic and benzylic 

amines into their related oximes (Table 10). The absence of any metal catalyst, the use of 

room temperature, the short reaction times required and the availability of the oxidant, along 

with the good overall yields makes this process a valuable tool for the synthesis of oximes.[56] 
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Table 18: Synthesis of oximes from amines with m-CPBA. 

 

No. Product Yield (%) No. Product Yield (%) 

4-31 

 

93 3-100 

 

88 

4-118 

 

93 4-92 

 

91 

4-148 

 

94 4-36 

 

92 

4-44 

 

91 4-90 

 

88 

4-149 

 

94 3-152 

 

89 

4-96 

 

92 4-7 

 

90 

4-150 

 

91 4-153 

 

89 

4-97 

 

89 4-154 

 

78 

4-42 

 

92 4-155 

 

79 

4-151 

 

92 4-156 
 

81 

Reaction conditions: 2 equiv. m-CPBA, temperature: 30-32 °C, reaction time: 20 min. 
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The authors proposed a mechanism corroborated by previous studies,[57,58] this followed a 

sequence implying formation of hydroxylamine by reaction of m-CPBA with the amine which 

then is oxidised again by a second molecule of the peracid which through tautomerisation 

leads to the final oxime (Scheme 14). 

 

Scheme 25: A plausible reaction mechanism as proposed by Patil and Shankarling[43]. 

 

4.1.3 Photo oximation of cyclohexane  
In 1918 E.V Lynn published an article titled ‘A new reaction of paraffin hydrocarbons’ in this 

publication was outlined a new for creating an alternative process for the synthesis of ε-

caprolactam which was normally produced by the reaction between cyclohexanone and 

hydroxylamine (Scheme 3). The idea was to use the photonitrosation of cyclohexane to 

directly produce cyclohexanone oxime 4-7 in a single step using light radiation to induce the 

dissociation of nitrosyl chloride (4-162) and functionalise the cyclohexane (4-161) with a 

nitroso group (Scheme 15). The resulting cyclohexanone oxime (4-7) would then be subjected 

to the Beckmann rearrangement to furnish ε-caprolactam (Scheme 2, 4-7b).[60,61] The main 

functionalization of cyclohexane (4-161) was carried out in a single step and the amount of 

ammonium sulfate produced (obtained by the reaction between cyclohexanone and 

hydroxylamine sulfate) was reduced by 50% compared to the traditional method and on top 

of that the source of nitrogen used (nitrosyl chloride, 4-162) was considerably cheaper than 

hydroxylamine. The commercialization of the process started in 1963 with a production of 25 
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million imperial pound reaching 110 million imperial pounds after 6 years of production at 

the Nagoya plant[64] (Scheme 15). 

 

 

Scheme 15: The reaction of cyclohexane and nitrosyl chloride in the Toray process. 

 

The first Nagoya commercial plant used 10 kw·h-1 capacity high pressure mercury lamps which 

were subsequently upgraded to customised 20 kw·h-1 lamps developed specifically by Toray 

industries[62] in order to reduce the power consumption to 2.5 kw·h-1·kg-1 of oxime 

produced.[64]
 The photoreactor used was based upon direct immersion of the light source in 

the reaction solution with the thermal energy being removed by a coupled water-cooling 

system. As the reagents and products of the process are highly corrosive (nitrosyl chloride (4-

162), HCl, oxime hydrochloride (4-26)) the choice of construction material for the reactor was 

vital. Eventually titanium was used, although it is not directly resistant to nitrosyl chloride (4-

162) it provided resistance to corrosion if the system is used under optimum conditions (10 

°C, 10 h reaction time, 1 equivalent hydrochloric acid per equivalent of nitrosyl chloride (4-

162)).[64] 

In 1955 the Research Department of Toyo Rayon Company published an article called 

“Photonitrosation of Cycloalkanes with Nitrosyl Chloride. Synthesis of Cyclohexanone 

Oxime”[65] where the process for the photonitrosation of cycloalkanes and the reactor used 

was described (Figure 5). The cyclohexane (4-161) is charged to the reactor with vigorous 

stirring (Figure 5, item 8) where the mercury lamp provided the necessary irradiation. Nitrosyl 

chloride (4-162) and hydrochloric acid were pumped continuously into the cyclohexane 

solution (Figure 5, item 11). The oily product was removed from the lower part of the vessel 

as it was produced (Figure 5, item 2) whereas the less dense cyclohexane (4-161) was 

constantly added at the top of the reactor (Figure 5). The excess gases were conveyed in a 

series of 3 scrubbing vessel (Figure 5, items 3-5) containing sulfuric acid, sodium hydroxide 

and liquid paraffin. This allowed conversion of the nitrosyl chloride (4-162) into nitrosyl 

sulfuric acid whereas the hydrogen chloride was quenched by the sodium hydroxide and the 

cyclohexane captured by the paraffin.[65]
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Figure 24: Schematization of the reactor set-up as used by the Toyo Rayon Company for the 

nitrosation of cyclohexane. 

 

              

Scheme 16: Chain (left) and Non-chain (right) radical process proposed mechanisms. 

 

Both chain (Scheme 16; left insert) and non-chain (Scheme 16; right insert) radical processes 

have previously been proposed to account for the reaction process.[63] Mosher and Bunce[63] 

described the study of the thermal reaction using radical initiators like benzoyl peroxide, AIBN 

(azobisisobutyronitrile) and PAT (phenylazotriphenylmethane) reporting the absence of 
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significant formation of the cyclohexanone oxime (4-7). They also reported an average value 

for the “chain length“ which never exceeded unity for the formation of the product. This data, 

considering the values found by Muller[70] and Mosher[63] for the oxime formation of between 

0.6 and 1.5 does not support a chain process (Scheme 16; left insert). The chain process had 

also been excluded by the Toray team who calculated the light quantum yield of 0.7 thus 

clashing with a chain reaction mechanism.[64] 

In addition the Toray’s team had extensively studied the mechanism, they claimed 

that the reaction took place in a cage of cyclohexane (Franck and Rabinowitch cage effect[67]) 

and that this was supported by the fact that adding 15NO to the nitrosyl chloride (4-162) gas, 

gave an oxime product which does not contain the 15N label. Also, in this case a chain reaction 

was not postulated as the mechanism for the photonitrosation because of the light quantum 

yield they reported which was 0.7. 

Muller questioned the presence of free radicals in the reaction[67-69] and proposed that 

the reaction takes place in a solvent cage and postulated a 4-centred mechanism[70] (Scheme 

17). 

 

Scheme 26: Muller’s proposed mechanism for the nitrosation of cyclohexane. 

 

This hypothesis was rejected by Mackor and Boer who demonstrated the presence of radicals 

in the reaction by ESR experiments[71,72] and proposed what is now the generally accepted 

mechanism[73] (Scheme 18). 
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Scheme 27: Makor and Boer’s mechanism. 

 

The reaction starts with the photolysis of the alkyl nitrite 4-171 (Eq. 1) followed by proton 

abstraction from the alkane 4-164 (Eq. 2) leading to a second radical 4-165 which can 

recombine with the radical nitrosyl 4-173 affording the nitrosylated product 4-167 (Eq. 4). 

Equation 3 is an alternative chain reaction which could occur leading to the same product as 

Equation 4, 4-167. Gray and Rathbone suggested it for methyl radicals studying the 

decomposition of diacetyl peroxide in tert-butyl nitrite.[72] Nonetheless, separate experiments 

conducted by Makor[73,74] found it mostly speculative and it is generally accepted that the 

main pathway for the formation of the nitrosilated product 4-167 involves Equation 4.[75,76] 

The last step (Eq. 5) describes a possible recombination leading back to the formation of the 

starting material 4-171.  

Makor reported that using cyclohexane (4-161) as both reagent and solvent led to the 

dimerization of nitrosocyclohexane[73,74] (Scheme 19). 

  

Scheme 28: Dimerization of the nitrosated product. 
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Metzger and Muller reported that the dimer can be converted into the oxime by the action 

of hydrochloric acid and various catalysts (m-CPBA[77] or Et3N[78]), or upon exposure to 

unfiltered UV light. 

Makor in his studies on the nitrosation of alkanes using several nitrites sources[88] 

showed that the dimer 4-176 is less liable to decomposition compared to the monomer 4-6. 

Indeed, when the dimerization is slowed down by reducing the temperature or is incomplete 

this results in an increase in the formation of by-products (Scheme 20). According to Makor 

and Boer the occurrence of detrimental reactions (leading to products not easily convertible 

into the desired oxime or dimer) is manly influence by temperature, nitrite concentration and 

incident light, exacting control over the conditions allows the reaction to reach a maximum 

final yield of 81% (based on consumed nitrite).[73]
 

 

Scheme 29: Detrimental reactions of the involving the monomer described by Makor and Boer. 

 

Since the nitrosyl chloride (4-162) is very corrosive and produces tarry by-products which 

deposit on the surface of the lamp and thus affects the light-efficiency. Consequently, several 

alternative nitrosilating agents have been investigated. In this respect tert-butyl nitrite (4-

180) has received particularly attention and has been used as a model system for studying 

the reactivity of alkyl nitrites toward hydrocarbon functionalization[79] (Scheme 21). 

 

 

Scheme 30: The use of tert-butyl nitrite as nitrosating agent. 

 



214 
 

The main reaction product generated is the trans dimer (4-176; Scheme 21) with a minor 

amount of desired cyclohexanone oxime (4-7; Scheme 21) in a total yield of 81% (Ratio 4-

176:4-6 3:2).[80] 

The proposed mechanism entails the generation of tert-BuO and NO radicals (4-180b 

and 4-173; Scheme 22) by homolytic breaking of the tert-BuONO (4-180). The tert-butoxide 

radical (4-180b) is believed to abstract a hydrogen atom from the cyclohexane (4-161) leading 

to the cyclohexyl radical (4-161b) this can then couple with NO (4-173) giving the 

nitrosocyclohexane (4-170) that then undergoes tautomerization to afford the cyclohexanone 

oxime (4-7)[81] (Scheme 22). 

 

 

Scheme 31: Trapp’ proposed mechanism of cyclohexane photo-nitrosation. 

 

The existence of the dimeric species 4-176 generated from the nitroso compound 4-170 has 

long been known and had been postulated as early as 1875 by Tilden.[82-84] While nitroso 

compounds, like 4-170, form such dimers the tautomeric oximes (4-7; Scheme 23) have never 

been observed to undergo an analogous dimerization[85] (Scheme 23). In their article of 

1996[85] Glaser, Murmann and Barnes used an ab initio study of thermodynamic stabilities of 

diazene oxides and structural studies of the trans-dimer of 2-chloro-2-methyl-3-

nitrosobutane (4-5d, Figure 6) to investigate this behaviour. They showed that the 

dimerization of the oxime would be energetically unfavourable therefore explaining why only 

one (4-176) out of the four (4-182, 4-183, 4-184, 4-176) possible dimers was experimentally 

observed (Scheme 23). 
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Figure 6: Tautomeric forms of 2-chloro-2-methyl-3-nitrosobutane 4-5b. 

 

 

Scheme 32: Dimerization of nitrosocyclohexane 4-170; compounds in red are not observed 

 

During their study on the photo-oximation of cyclohexane (4-161) Trapp’s group reported 

that at 60 °C the nitrosocyclohexane dimer 4-176 was fully converted to cyclohexanone oxime 

(4-7) although a considerable amount of a black precipitate was also produced as a side 

product.[81] 

The UV spectra (Figure 7) of the species involved in the cyclohexane photo-oximation 

shows three sets of signals: a large band with maximum at 300 nm (Figure 7A) for the dimer 

azodioxycyclohexane4-176 and a much smaller peak at 700 nm (Figure 7C) for the monomer 

nitrosocyclohexane (4-170). The nitrosating agents, the tert-butyl nitrite (4-180) gives two 

distinct peaks: one band with a large absorption between 200 and 320 nm (Figure 7B2) and a 

much more complex and weaker one with multiple maxima between 320 and 430 nm (Figure 

7B1). The latter is related to the S0 → S1 (n, π*) absorption involving the promotion of an 

electron from the highest occupied non-bonding molecular orbital to an anti-bondng π* 

molecular orbital.[86] 

 



216 
 

 

Figure 7: UV absorption spectra in cyclohexane (4-161) of A = dimer 4-176; B1 and B2 tert-butyl 

nitrite (4-180); C = monomeric nitrosocyclohexane (4-170).[88]
 

 

Previous studies on the photolysis of alkyl nitrites have shown that an irradiation wavelength 

matching with the largest of the two bands of the nitrite 4-180 (Figure 7, part B2) induces its 

decomposition into nitric oxide (4-173), acetone (4-185) and a methyl radical (4-186). 

McMillan,[87] in particular, has demonstrated that wavelengths below 366 nm lead to the 

dissociation of tert-BuONO (4-180) into a NO radical (4-173) and tert-BuO radical (4-180b) 

which then fragment again into acetone (4-185) and methyl radical 4-186 (Scheme 24). 

 

 

Scheme 33: Photochemical induced tert-butyl nitrite (4-180) decomposition. 

 

According to Makor[73,74] lowering the wavelength applied increases the mole fraction of tert-

BuO radical (4-180b) which form through dissociation, in addition he founds that low 
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wavelengths can also dissociate the dimer (4-176) and then destroy the monomeric 

nitrosocyclohexane (4-170). On the other hand, light with a wavelength matching the weaker 

of the nitrite’s (4-180) absorption peaks (Figure 7, Part B1) induce the dissociation of the 

nitrite with a minimum amount of by-products although this band is partially overlapping with 

the absorption of the dimer 4-176 (Figure 7, part A). According to Makor this sets the lower 

limit for the radiation suitable in the photochemical nitrosation whereas the upper limit is 

given by the absorption peak of the nitrosocyclohexane (4-170; Figure 7, part C) around 690 

nm related to its n→π*transition. He reported that the product of an irradiation matching 

with this upper limit was the unstable dicyclohexyl nitroxide[73] which he proved by ESR 

spectroscopy.[74] 

 

 

Scheme 34: Detrimental reaction leading to the photolysis of the nitrosocyclohexane 

monomer 4-167. 

 

The choice of the light source is therefore important and made considering not just the 

starting nitrite 4-180 but also the two products of the reaction: the nitroso monomer (4-170) 

and the dimer (4-176). The region between 360-400 (Figure 7) allows the reaction to be 

irradiated selectively targeting the nitrite (4-180) without any activation of the trans dimer 

(4-176) of the nitrosocyclohexane (4-170, Figure 7, part A) or the n→π* band of the 

monomeric nitrosocyclohexane (4-170; Figure 7, part C). An irradiation in this region would 

thus also result in a dissociation of the monomer.[88] 

One of the limitations of this type of photo-oximation is represented by the by-

products obtained: the use of a mercury lamp has a relatively low efficiency in the desired 

absorption region and provides radiation at a lower wavelength thus generating large 

amounts of tarry light-absorbing by products on the glass wall of the reactor thus lowering 

the transmittance and reducing the selectivity.  

Good results have been obtained using LED light sources using both alkyl nitrites and 

NOCl (4-162).[89-93] Wysocky has demonstrated that using a LED set-up emitting at 365 nm the 

reaction proceeds in good yield leading to oxime 4-7 (for rearrangement of the nitroso) in 

80% yield.[81] 
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In 2019, Lebl reported the continuous version of the PNC process[94] claiming a 66% 

yield for the photochemical step and showing how this transformation can benefit from a 

continuous process in terms of scaling-up, sustainability, reaction time and safety (Figure 8). 

 

 

Figure 8: Lebl’s continuous set-up for the generation of NOCl, purification and subsequent 

use in the photo-oximation of cyclohexane. 

The process can be broken down in 2 steps (Figure 8): the first being the NOCl (4-162) 

generation and second the photochemical oximation of cyclohexane (4-161). 

The generation of NOCl (4-162) is performed by direct reaction of NaNO2 (8 M) and 6 

eqiv of HCl (6 M).[95] The two reagents are mixed with a third stream of DCM as a bipasic 

solvent in a 250 μL chip reactor where the NOCl (4-162) is formed. The reagent is more soluble 

in the DCM and is thus extracted and separated using a continuous liquid-liquid separator 

from Zaiput Flow Technologies equipped with a 0.5 μm pore size PTFE membrane. The NOCl 

generator outlet is mixed with a stream of cyclohexane (4-161) using a PEEK Y-mixer at -10 

°C. The merged solutions are further pumped into a Corning® Advanced-Flow Photo Reactor™ 

made of a 2.77 mL glass plate jacketed by heat transfer fluid and irradiated simultaneously by 

LED panels (λmax = 395 nm) from both faces. 

4.2 Results and discussion 
We embarked upon the synthesis of a series of oximes using a flow approach in order to 

evaluate whether this methodology could further improve the results obtained in the reaction 

of tert-butyl nitrite (4-180) and enhance the synthetic potential of the transformation 

(Scheme 26). 



219 
 

 

Scheme 35: Photo-oximation of cyclohexane 4-161. 

 

For this study we used a Vapourtec E-series 500 pumping system in combination with a UV-

150 photochemical reactor unit. The photoreactor was equipped with a medium pressure 

mercury lamp (power adjustable from 75 to 150 W) and a 365 nm LED array lamp (total 9 W). 

The flow reactor consisted of a 10 mL FEP coiled tube, and the reaction temperature could be 

monitored using a temperature probe with an external cooling system allowing moderation 

(Figure 9). 

 

Figure 9: Flow setup used for this study: A) Vapourtec E-series system; B) UV filters and LED 

lamps; C) emission spectra of the medium pressure mercury lamp alone and with filters; D) 

10 mL PFA coil reactor used for the transformation. 

 

The choice of the light source for the process was influenced by the absorption spectra of the 

species involved in the transformation (see also above discussion). The absorption band 

responsible for the homolytic breaking of the tert-BuONO (4-180) lies between 320 and 430 
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nm (Figure 7, part B1) but is partially overlapped by the absorption band of the nitroso-

cyclohexane dimer 4-176 which has its maximum at 300 nm but extends to 360 nm (Figure 7, 

part A). Wysocki[81] has shown that efficient activation is achieved using an emission between 

365 and 405 nm therefore a 365 nm LED array lamp was also investigated. However, this low 

power LED array does introduce some limitation regarding luminosity and hence photon flux 

which can potentially lead to the necessity for extended reaction times. 

To establish a flow process, we took cyclohexane (4-161) as a reference substrate and 

screened several molar ratios of reagents and flow rates in order to find optimum conditions 

for the oxamidation process. It was determined that a ratio of 45:1 cyclohexane (4-161): 

nitrite (4-180) using a flow rate of 1 mL/min provided the highest conversion (Table 11, Figure 

10). The reaction gave mainly the dimer product 4-176 in accordance with previously 

literature reported batch results.[81] 

Table 19: Optimization of the molar ration between 4-161 and 4-180 with a flow rate of 1 

mL/min; conversion based on tert-BuONO against an added internal standard. 

 

Molar ratio of 

4-161:4-180 

%Conv. to 4-176 %Conv. to 4-7 Total %Conv. 

By 1H-NMR 

10:1 32 3 35 

20:1 49 8 57 

30:1 51 8 59 

40:1 56 9 65 

45:1 55 13 68 

50:1 55 9 64 

60:1 57 7 64 

70:1 56 8 64 

80:1 55 8 63 

90:1 56 8 64 

100:1 54 10 64 
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Figure 10: Residence time optimization, 10 mL FEP coil reactor using 45:1 ratio of 4-161:4-

180. 

 

We also explored the need for active cooling of the photoreactor during the processing of the 

reaction, it was observed that higher ratios of the monomer 4-7 (4:1) were obtained directly 

if the temperature was allowed to stabilise around 50 °C (the non-regulated working 

temperature of the system). In this context it was observed that when dimer 4-176 was 

heated it readily interconverted to the corresponding oxime monomer 4-7. Compound 4-176 

was therefore heated neat at 100 °C for 30 min achieving quantitative conversion to the 

monomer form 4-7. This is in accordance with previous observations of Burrell[76] who 

calculated the dissociation constants at different temperatures.  

Although it is a trivial operation to batch collect the reactor output, remove the low 

boiling point cyclohexane (4-161) leaving the products 4-176 and 4-7, and then in a second 

step to heat the residue to convert it to the desired product 4-7, we wished to establish the 

principles of a more continuous operation. To create a viable set-up, we also had to consider 

some further aspects of the reaction. During our work we had found that prolong heating of 

the neat oxime 3-7 led to its slow but progressive decomposition. This was though suppressed 

if a solvent such as cyclohexane was present. However, the low solvent reflux temperature 

resulted in the need for longer heating time to affect the full conversion of the compound (4-

176→4-7).  

Therefore, to avoid any issues with needing to regulate the rate of a continuous 

distillation (not drying out of the product sample) but allowing constant heating (achieving 

full conversion of 4-176→4-7) we adopted a mixed flow and continuous distillation set-up 

(Scheme 27). 
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Scheme 36: Continuous flow recycling process for cyclohexane 4-161. 

 

A Soxhlet extraction apparatus (Scheme 27, part a) functioned to heat the product solution 

(Scheme 27, part b), converting the dimer 4-176 to the oxime 4-7 in-situ and acting to 

maintain an essentially constant liquid level (Scheme 27, part a/b). In this way the unreacted 

cyclohexane (4-161) was continuously distilled and could be pumped from the top of the 

Soxhlet collection chamber (Scheme 27, part a, containing pure cyclohexane (4-161)) to a 

stock flask (Scheme 27, part d) where it was continuously refreshed with additional tert-butyl 

nitrite (4-180) at a flow rate commensurate to maintain the 45:1 reagent ratio. The stock 

solution (Scheme 27, part d) was itself pumped through the photoreactor with an optimised 

residence time of 10 min and a theoretical throughput of 1.24 g/h (tert-BuONO (4-180) 

processed in 1 h). 

The calibrated conversion for the process was established at 54% (1H NMR yield v’s 

the internal standard 4-(dimethylamino)benzonitrile) with the isolated yield of pure 4-7 

following a batch recrystallization from 2 g of material being 36%. The system was able to be 

run in continuous mode for 15 h and thus generated 11.04 g (59% isolated) of the product 4-

7 demonstrating the scalability and improved productivity of the process. 

The results obtained show that the process gives good results in terms of conversion 

of the cyclohexane (4-161), the 1H-NMR yields show that the sum of oxime 4-7 and its dimer 

4-176 is comparable to that found for corresponding literature for the batch process.[81] The 

slight reduction in yield for the short run, 39%, could be the result of a shorter heating time 
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needed for the conversion of the dimer 4-176 into the oxime 47. Indeed, Wysocki[81] had 

reported that after 180 min the conversion reached almost the max conversion considering 

the sum of dimer 4-176 and oxime 4-7 whereas it took additional 13 h to convert the dimeric 

product fully into the hydroxylamine product. Thus, this probably suggests that the 

conversion of the dimer 4-176 into the product 4-7 is more efficient under photolytic 

condition rather than thermal, hence requiring longer time. This also explains why the longer 

reaction run gave far greater material recovery 59% vs 39%. 

Having determined the feasibility of the process for cyclohexane (4-161) we next 

explored the scope of the transformation in terms of other viable substrates. First, we tested 

the effect of adding unsaturation to the system, namely testing cyclohexene (4-193; Scheme 

28), as the product would offer value as an aniline precursor via the Semmler–Wolff reaction 

(Scheme 28).[96] In addition, the alkene should make cyclohexene (4-193) a better substrate 

by assisting the proton abstraction step due to the lower bond dissociation energy of the 

allylic hydrogen compared with the purely unsaturated hydrocarbon system (85  vs 96 kcal 

mol-1).[98,99] 

 

Scheme 37: Semmler-Wolff transformation of cyclohexene oxime to aniline. 
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Scheme 38: Photo-promoted oximation of cyclohexene (4-193). 

 

The reaction produced predominantly the anti-diastereomer 4-187a (Scheme 29). The two 

diastereomers 4-187a/4-187b were found to exist in equilibrium, this was proven by the 

partial conversion of a pure sample of the major diastereomer 4-187a to a 4:1 mixture of 4-

187a:4-187b after leaving the sample of diastereomer 4-187b incubated for 24 h in CDCl3 

solvent (determined by 1-H NMR). The preference for the anti-diastereomer could be 

rationalised by the 1,4-interaction between the hydroxyl group and the vinylic proton in 4-

187a (Scheme 30).[100] 

 

 

Scheme 30: Equilibrium between diastereomer 4-187a and 4-187b. 

 

 

Figure 25: X-ray single crystal structure of compound 4-187a. 

 

Even in this case an additional rapid screening of the reagent ratio was performed finding that 

a large excess of cyclohexene (4-193) was still needed for efficient reaction. 
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Table 20: Optimization of cyclohexene (4-193) nitrosation. 

 

Molar ratio 
of reagent 

T/°C Flow rate 
mL/min 

TRes 
min 

1H-NMR Conv.  
(4-187a + 4-187b) 

NMR 
conv. to 
4-194 

Total 
NMR 
conv. 

100:1 50 1.0 10 57% 20% 77% 

50:1 50 1.0 10 56% 18% 74% 

50:1 50 1.0 10 58% 4% 62% 

50:1 50 0.5 20 53% 0% 53% 

50:1 50 5.0 2 17% 32% 49% 

50:1 50 10.0 1 19% 23% 42% 

 

Again, the previously established Soxhlet apparatus was used with cyclohexene as the 

reaction substrate allowing the product to be isolated in 70% yield (mixture of 4-187a : 4-187b 

=  3.8:1). Given the encouraging results obtained with cyclohexene (4-193), we next looked to 

expand the scope further with additional substrates (Figure 12 and Table 13). 

 

Figure 26: Expansion of substrate scope. 
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Table 21: Results and conditions for the photo-oximation. 

Entry Ratio a Reactor 

T/ °C 

Flow rate  

(mL/min)b 

Isolated 

yield 

4-196 10:40:1 50 1.00 54% 

4-196 20:20:1 50 1.00 68% 

4-197 20:20:1 50 1.00 50% 

4-198 20:20:1 50 1.00 37% 

4-199 20:0:1 50 0.50 40% 

4-200 20:20:1 50 1.00 8% 

4-201 20:20:1 50 1.00 32% 

a Ratio indicated is precursor: tert-BuOH: tert-BuONO 
b Reactor V = 10 mL 

 

The new substrates selected were all non-volatile therefore the removal of unreacted starting 

material was no longer achievable by simple evaporation and required either 

chromatographic separation or crystallisation. Compound 4-196 (Figure 12 and 13) was 

obtained starting from tetraline, the diastereoselectivity of the reaction can be explained by 

the preference for a conformation involving the interaction between the hydroxy group and 

the α-protons rather than α-peri-interaction with the aromatic proton (Figure 13). 

 

 

Figure 27: Possible diasteraisomers of compound 4-196. 

 

The regioselectivity displays a strong preference for the abstraction of the benzylic proton 

again arising from the lower associated BDE energy (83 kcal mol-1 benzylic vs 96 kcal mol-1 

alkyl[101]). 
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Figure 28: X-ray structure of compound 4-196. 

 

Compound 4-197 (Figure 15) was obtained starting from indanone, similarly to 4-196, it was 

obtained as single regio- and diastereoisomer presumably due to the same kinetic and 

thermodynamic assumptions. 

 

Figure 29: X-ray structure of compound 4-197. 

 

In order to test the reaction on a heterocyclic core, a tetrahydroquinoline system was 

processed under the standardised reaction conditions. Among the two possible benzylic 

products (Figure 16) regioisomer 4-198a potentially can be stabilised by a hydrogen bond 

between the hydroxyl proton and the pyridine nitrogen and was thus considered to be the 

most likely product. Although there is no literature NMR available for compound 4-198a the 

measured melting point for the product obtained under our conditions (190-192 °C) equates 

best to that reported in literature, 173-175 °C and 180-182 °C for compound 4-198a whereas 

it seems to be quite different from what is reported in the literature for 4-198b (235-236 °C 

and 240 °C).[102-104] 
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Figure 30: Possible isomers of compound 4-198. 

 

In addition, compound 4-199 was obtained from (1R,6S)-3-carene (Figure 17). Even in this 

example a remarkable regio- and stereoselectivity was observed. This can be accounted for 

by the difference in steric hindrance between the allylic positions on the cyclohexene ring 

caused by the presence of the proximal methyl group (Figure 17). Interestingly, no oximation 

was observed on the methyl arguably because the primary radical first obtained is less stable 

if compare with the secondary one which arise from the abstraction on the allylic position. In 

addition the alignment of the C-H bond in the methyl group would require the adoption of a 

high energy eclipsing conformation to allow hyperconjugation and stabilisation of the 

developing radical, which would be restricting compared to the alternatives. 

 

           

Figure 31: (1R, 6S)-3-carene and X-ray structure of compound 4-199. 

 

Finally, regioisomeric compounds 4-200 and 4-201 were obtained starting from 1-

phenylcyclohexene. The ratio 1:4 (4-200:4-201) can again be rationalised by considering the 

preference of the H-abstraction step, favouring the less hindered allylic proton (Figure 18). 
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Figure 32: X-ray structures of compounds 4-200 and 4-201. 

 

4.3 Conclusion 
In conclusion, we have reported the photoflow oximation of several alkanes and alkenes using 

tert-butyl nitrite. The flow process allows a considerably reduction in the reaction time (from 

hours[81] to minutes) and the easy scale-up of the transformation. A continuous process was 

also investigated in order to gauge the possibility of recycling the unreacted starting material 

(cyclohexane). The major product remains the dimer trans-azodioxycyclohexane 4-176. 

Although the conversion of the dimer to the oxime can be performed thermally the high level 

of decomposition prevent this from being an efficient strategy and therefore more effort has 

still to be put into finding an alternative strategy.  

In addition several substrates were subjected to the reaction condition to show the 

synthetic value of the transformation. The starting materials screened show that the method 

is applicable to a broad range of substrates thus it would be interesting to couple this method 

with the Semmler-Wolf reaction[96,97] in order to access substituted anilines (Scheme 31). 

Indeed, if this can be successfully proven this strategy may provide an interesting and 

straightforward route to highly substituted anilines otherwise difficult to access due to the 

conflicting directing groups. 

 

 

Scheme 39. Synthesis of substituted anilines by photo-oximation of cyclohexene derivatives 

followed by Semmler Wolff reaction. 
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4.5 Experimental 

4.5.1 Materials and Methods  
Chemicals: The chemicals used were obtained from the companies Sigma-Aldrich / Fluka, Alfa 

Aesar, TCI or Fluorochem and were used without further purification.  

Chromatography: For the TLC chromatography Merck TLC Aluminium oxide 60 F254 with 

glass backing were used. Detection was carried out either by UV absorption or by treatment 

of the plate with an acidic solution of potassium permanganate and drying using a handheld 

hot-air dryer.  

NMR-Spectroscopy: The NMR spectra were recorded on a Bruker Avance-600 and Varian 

VNMRS-700 spectrometer in the indicated solvent at a temperature of 297 K. Commercially 

available deuterated chloroform, methanol or DMSO was used as a solvent. The spectra were 

always set to the reference value of the solvent, for example chloroform (for 1H-NMR spectra 

to 7.26 ppm and for 13C-NMR spectra to 77.00 ppm). For the exact analysis and assignment 

of the signals in more complex compounds, COSY, HSQC and HMBC spectra were additionally 

added. Chemical shifts were reported in ppm and coupling constants J in hertz (Hz). The 

following abbreviations were used for the multiplicities of the signals: s (singlet), d (doublet), 

t (triplet), q (quartet), m (multiplet).  

MS-Spectroscopy: GCMS spectra were obtained using an Agilent 6890N gas chromatograph 

coupled with an Agilent 5973 inert mass selective detector operating in EI mode with a 

custom-built Anature auto sampler/injector or by Durham University Mass Spectrometry 

service. Electrospray (ES) mass spectra were obtained using a TQD mass spectrometer 

(Waters UK, Ltd; all were obtained by Durham University Mass Spectrometry service.  

IR-Spectroscopy: The infrared spectra were recorded with a PerkinElmer Spectrum One IR 

spectrometer. The samples were measured by the ATR method (attenuated total reflection). 

The evaluation was limited to the bands characteristic of the compound. The position of the 

absorption bands in the IR spectrum was expressed in wave numbers ṽ (cm-1). 

 Melting point determination: The melting point was determined using an Electrothermal 

9100 capillary melting point device. The melting point range was recorded for the 

determination of melting points for resinous solids. 

General procedure for the synthesis of compounds 4-176, 4-196/4-201: tBuONO 25. mmol 

and 20 equivalent of the starting material are pumped through the photoreactor at 1 mL/min. 
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DCM 20 mL is added to the obtained mixture and the solution is stirred with activated 

charcoal (2 g) filtered and the solvent and unreacted cyclohexane are removed by rotavapour. 

The product was recrystallized from cyclohexane (compound 4-199 is purified through 

chromatographic column hexane: EtOAc (8:2)). 

General continuous procedure for compounds 4-7, 4-187a, 4-187b: tBuONO (25.1 mmol) and 

cyclohexane/cyclohexene (1:45 and 1:100 molar ratios) are pumped through the 

photoreactor at 1 mL/min and 2 mL/min and in a Soxhlet apparatus, where it is heated at 

reflux and the distilled solvent is re-flowed at 1 mL/min in the starting material flask where 

tBuONO is added ,with the flow rate of the reagent adjusted to give the indicated ratio of 

reagents in the reactor coil, until consumption of cyclohexane. Product sublimed and 

recrystallised from cyclohexane (1.05 g, 37%). 

4.5.2 Compounds characterization   
 

 

 

(E)-1,2-Dicyclohexyldiazene-1,2-dioxide (4-176). 

 

 Appearance: white crystalline solid, isolated yield 55%; 1H NMR (700 MHz, CDCl3) δ 5.05 (tq, 

J = 11.4, 3.8 Hz, 2H), 1.93 (dd, J = 11.4, 3.8 Hz, 4H), 1.84 (dp, J = 11.4, 3.5 Hz, 4H), 1.73 – 1.57 

(m, 4H), 1.35 (qt, J = 13.0, 3.6 Hz, 4H), 1.21 (qt, J = 13.0, 3.6 Hz, 4H); 13C NMR (176 MHz, CDCl3) 

δ 65.79 (CH), 28.36 (CH2), 25.14 (CH2), 24.71 (CH2); IR (neat) ν = 2930.1 (s), 2851.7 (m), 1446.5 

(s), 1394.4 (s), 1191.5 (s), 1145.7 (s), 1005.2 (m), 893.4 (s), 875.3 9(m), 689.5 (s) cm-1; MS 

calculated for C12H23N2O2 227.1256, found 227.1260 (Δ = 1.8 ppm, 0.4 mDa); Melting point: 

117–118 °C;  Unit Cell Parameters: a 5.5414(2) b 6.1252(3) c 9.8876(5) P-1. 
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Cyclohexanone oxime (4-7). 

 

 Appearance: white crystalline solid, isolated yield 59% 1H NMR (600 MHz, CDCl3) δ 9.12 (s, 

1H), 2.52–2.49 (m, 2H), 2.23–2.19 (m, 2H), 1.72–1.55 (m, 6H); 13C NMR (151 MHz, CDCl3) δ 

160.85 (C), 32.28 (CH2), 27.01 (CH2), 25.94 (CH2), 25.72 (CH2), 24.60 (CH2); IR (neat) ν = 3182.5 

(w), 3106.7 (w), 2930.9 (m), 1163.1 (m), 1478.2 (m), 1435.2 (m), 1224.7 (w), 991.9 (s), 959.9 

(s), 899.7 m), 774.6 (m), 567.3 (w) cm-1; MS calculated for C6H12NO 114.0919, found 114.0912 

(Δ = -6.1 ppm, -0.7 mDa); Melting point: 89.1–89.8 °C (crystallised from cyclohexane). 

 
 

 

(E)-Cyclohex-2-en-1-one oxime (4-187a).  

 

Appearance: white crystalline solid, isolated yield 55.4%  1H NMR (600 MHz, CDCl3) δ 6.23 (dt, 

J = 10.1, 4.1 Hz, 1H), 6.14 (dt, J = 10.1, 1.9 Hz, 1H), 2.65 – 2.60 (m, 2H), 2.18 (tdd, J = 6.3, 4.1, 

1.9 Hz, 2H), 1.76 (p, J = 6.3 Hz, 2H); 13C NMR (151 MHz, CDCl3) δ 156.61 (C), 136.65 (CH), 

124.35 (CH), 29.27 (CH2), 25.22 (CH2), 22.36 (CH2), 20.88 (CH2); IR (neat) ν = 2832.1 (m), 1636.7 

(w), 1476.8 (w), 1394.1 (w), 1001.1 (s), 947.1 (s), 861.2 (s), 719.7 (s), 596.2(w) cm-1; MS 

calculated for C6H10NO 112.0762, found 112.0734 (Δ = -25.0 ppm, -2.8 mDa); Melting point: 

101.0–102.0 °C (crystallised from cyclohexane); Unit Cell Parameters: 20.516(3) 20.516(3) 

7.4084(12) P-3. 
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(Z)-Cyclohex-2-en-1-one oxime (4-187b).  

 

Appearance: white crystalline solid, isolated yield 14.5% 1H NMR (600 MHz, CDCl3) δ 6.82 (dt, 

J = 10.3, 2.2 Hz, 1H), 6.33 (dt, J = 10.3, 4.0 Hz, 1H), 2.41 – 2.37 (m, 2H), 2.24 (tdd, J = 6.1, 4.0, 

2.2 Hz, 2H), 1.84 (p, J = 6.1 Hz, 2H); 13C NMR (151 MHz, CDCl3) δ 153.57 (C), 139.95 (CH), 

117.22 (CH), 28.41 (CH2), 26.42 (CH2), 22.42 (CH2); IR (neat) ν = 2873.0 (m), 1636.8 (m), 1470.6 

(m), 976.1 (s), 854.4 (m), 740.2 (s), 572.8 (s) cm-1; MS calculated for C6H10NO 112.0762, found 

112.0766 (Δ = 3.6 ppm, 0.4 mDa); Melting point: 80.2–81.1 °C (crystallised from cyclohexane); 

Unit Cell Parameters: 13.643(3)20.516(3) 7.4084(12) P-3. 

 

 

(E)-3,4-Dihydronaphthalen-1(2H)-one oxime (4-196). 

 

Appearance: white crystalline solid, isolated yield 68%, 1H NMR (700 MHz, CDCl3) δ 9.57 (s, 

1H), 7.91 (d, J = 7.6 Hz, 1H), 7.29 (t, J = 7.6 Hz, 1H), 7.23 (t, J = 7.6 Hz, 1H), 7.18 (d, J = 7.6 Hz, 

1H), 2.87 (t, J = 6.7 Hz, 2H), 2.79 (t, J = 6.7 Hz, 2H), 1.91 (p, J = 6.7 Hz, 2H); 13C NMR (176 MHz, 



239 
 

CDCl3) δ 155.47 (C), 139.95 (C), 130.57 (C), 129.34 (CH), 128.80 (CH), 126.62 (CH), 124.16 (CH), 

29.95 (CH2), 24.03 (CH2), 21.44 (CH2); IR (neat) ν = 2933.8 (w), 1485.6 (w), 1305.6 (w), 962.2 

(m), 948.1 (m), 886.9 (m), 737.0 (s), 657.2 (w), 466.3 (w) cm-1; MS calculated for C10H12NO 

162.0919, found 162.0916 (Δ = -1.9 ppm, -0.3 mDa); Melting point: 103.0–104.0 °C 

(crystallised from cyclohexane); Unit Cell Parameters: a 13.643(3) b 8.3171(16) c 15.465(3) 

C2/c. 

 

 
 
 

 

(E)-2,3-Dihydro-1H-inden-1-one oxime (4-197). 
 

Appearance: white crystalline solid, isolated yield 50%, 1H NMR (600 MHz, CDCl3) δ 8.87 (s, 

1H), 7.70 (d, J = 7.7 Hz, 1H), 7.38–7.32 (m, 2H), 7.29–7.24 (m, 1H), 3.10–3.07 (m, 2H), 3.02–

2.98 (m, 2H); 13C NMR (151 MHz, CDCl3) δ 164.19 (C), 148.57 (C), 136.06 (C), 130.57 (CH), 

127.15 (CH), 125.75 (CH), 121.71 (CH), 28.67 (CH2), 26.08 (CH2); IR (neat) ν = 3044.1 (m), 

2839.7 (m), 1654.4 (m), 1453.4 (m), 1431.8 (m), 1070.0 (m), 954.8 (s), 750.7 (s), 674.4 (m), 

543.2 (w) cm-1; MS calculated for C9H10NO 148.0762, found 148.0764 (Δ = 1.4 ppm, 0.2 mDa); 

Melting point: 146.0–148.2 °C (crystallised from EtOAc); Unit Cell Parameters: a 22.4110(8) b 

22.4110(8) c 5.8772(2) I41/a. 
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(E)-6,7-Dihydroquinolin-8(5H)-one oxime (4-198). 

Appearance: yellow crystalline solid, isolated yield 40%, 1H NMR (600 MHz, CDCl3) δ 8.46 (dd,  

= 4.7, 1.7 Hz, 1H), 7.41 (ddt, J = 7.7, 1.8, 0.9 Hz, 1H), 7.12 (dd, J = 7.7, 4.6 Hz, 1H), 2.86 (t, J = 

6.6 Hz, 2H), 2.74 (t, J = 6.1 Hz, 2H), 1.89–1.80 (m, 2H); 13C NMR (151 MHz, CDCl3) δ 153.1 (C), 

148.8 (C), 148.2 (CH), 136.9 (CH), 134.8 (C), 123.6 (CH), 29.0 (CH2), 23.9 (CH2), 20.8 (CH2); IR 

(neat) ν = 2980.9 (w), 1474.0 (m), 967.9 (s), 884.0 (s), 791.4 (s) cm-1; MS calculated for 

C9H11N2O 163.0871, found 163.0871 (Δ = -6.1 ppm, -1.0 mDa); Melting point: 190.0–192.0 °C 

(crystallised from iPrOH). 

 

 

(1R,6S,Z)-4,7,7-Trimethylbicyclo[4.1.0]hept-3-en-2-one oxime (4-199). 

 

Appearance: white crystalline solid, isolated yield 40%, 1H NMR (400 MHz, CDCl3) δ 5.87 (s, 

1H), 2.48 (dd, J = 20.1, 8.3, Hz, 1H), 2.15 (d, J = 20.1 Hz, 1H), 1.97 (d, J = 8.3 Hz, 1H), 1.79 (s, 

3H), 1.25 (s, 3H), 1.22 (d, J = 8.3 Hz, 1H), 0.91 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 155.0 (C), 

143.0 (C), 119.0 (CH), 28.0 (C), 27.1 (CH), 23.5 (CH2), 22.5 (CH), 21.0 (CH3), 19.8 (CH3), 14.6 

(CH3); IR (neat) ν = 3165.3 (m), 2863.3 (m), 1614.5 (w), 1439.6 (m), 963.0 (s), 842.2 (m), 747.8 

(m) cm-1; MS calculated for C10H16NO 166.1232, found 166.1229 (Δ = -1.8 ppm, -0.3 mDa); 

Melting point: 122.2–123.0 °C (crystallised from Hexane: EtOAc); Unit Cell Parameters: a 

15.248(5) b 15.248(5) c 7.249(3) P63. 
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(E)-5,6-Dihydro-[1,1'-biphenyl]-3(4H)-one oxime (4-201). 
 

Appearance: white crystalline solid, isolated yield 32%, 1H NMR (700 MHz, CDCl3) δ 7.32 (m, 

2H), 7.29 – 7.27 (m, 1H), 7.25 (m, 2H), 6.24 (t, J = 4.4 Hz, 1H), 2.69 (t, J = 6.6 Hz, 2H), 2.32 (td, 

J = 6.6, 4.4 Hz, 2H), 1.82 (p, J = 6.6 Hz, 2H); 13C NMR (176 MHz, CDCl3) δ 157.16 (C), 138.67 (C), 

137.79 (CH), 136.38 (C), 129.06 (CH), 128.21 (CH), 127.50 (CH), 25.64 (CH2), 22.98 (CH2), 20.80 

(CH2); IR (neat) ν = 3163.7 (w), 3048.1 (w), 2950.4 (w), 1439.0 (m), 981.4 (m), 943.2 (m), 877.1 

(m), 753.1 (s), 687.5 (s), 615.5 (m), 452.7 (m) cm-1; MS calculated for C12H14NO 188.1075, 

found 188.1070 (Δ = -2.7 ppm, -0.5 mDa); Melting point: 130.8–131.4 °C (crystallised from 

hexane); Unit Cell Parameters: a 10.8828(5) b 7.5566(3) c 12.1779(5) P21/c. 

 

 
 
 

 
(E)-4,5-Dihydro-[1,1'-biphenyl]-2(3H)-one oxime (4-200). 
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Appearance: white crystalline solid, isolated yield 8%, 1H NMR (700 MHz, CDCl3) 8.80–7.70 

(br., 1H), 7.39–7.24 (m, 5H), 6.20 (t, J = 4.4 Hz, 1H), 2.70 (t. J = 6.6 Hz, 2H), 2.33 (q, J = 5.6 Hz, 

2H), 1.84 (p, J = 6.4 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 157.0 (C), 138.6 (C), 137.5 (CH), 136.3 

(C), 128.9 (CH), 128.1 (CH), 127.4 (CH), 25.5 (CH2), 22.8 (CH2), 20.7 (CH2); IR (neat) ν = 2994.2 

(w), 1432,5 (w), 989.3 (m), 946.6 (s), 746.3 (s), 755.4 (s), 601.8 (m), 543.1 (m) cm-1; MS 

calculated for C12H14NO 188.1075, found 188.1078 (Δ = 1.6 ppm, 0.3 mDa); Melting point: 

156.0–157.5 °C (crystallised from hexane:EtOAc); Unit Cell Parameters: a 6.2751(14) b 

8.759(3) c 10.097(3). 

 


