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Abstract

Thermal radiation in forced and natural convection can be an important mode of heat transfer
in high temperature chambers, such as industrial furnaces and boilers, even under non-soot
conditions. Growing concern with high temperature processes has emphasized the need for an
evaluation of the effect of radiative heat transfer. Nevertheless, the modelling of radiation is
often neglected in combustion analysis, mainly because it involves tedious mathematics, which
increase the computation time, and also because of the lack of detailed information on the
optical properties of the participating media and surfaces. Ignoring radiative transfer may
introduce significant errors in the overall predictions. The most accurate procedures available
for computing radiation transfer in furnaces are the Zonal and Monte Carlo methods. How-
ever, these methods are not widely applied in comprehensive combustion calculations due to
their large computational time and storage requirements. Also, the equations of the radiation
transfer are in non-differential form, a significant inconvenience when solved in conjunction
with the differential equations of flow and combustion. For this reason, numerous investiga-
tions are currently being carried out worldwide to assess computationally efficient methods. In
addition efficient modelling of forced and natural convection-radiation would help to simulate
and understand heat transfer appearing in various engineering applications, especially in the
case of the heat treatment of high-alloy steel or glass by a continuously heating process inside
industrial furnaces, ovens or even smaller applications like microwaves. This thesis deals with
the design of such methods and shows that a class of simplified approximations provides ad-
vantages that should be utilized in treating radiative transfer problems with or without flow
convection. Much of the current work on modelling energy transport in high-temperature
gas furnaces or chemically reacting flows, uses computational fluid dynamics (CFD) codes.
Therefore, the models for solving the radiative transfer equations must be compatible with the
numerical methods employed to solve the transport equations. The Zonal and Monte Carlo
methods for solving the radiative transfer problem are incompatible with the mathematical
formulations used in CFD codes, and require prohibitive computational times for spatial reso-
lution desired. The main objectives of this thesis is then to understand and better model the
heat treatment at the same time in the furnace/oven chamber and within the workpieces under
specified furnace geometry, thermal schedule, parts loading design, initial operation conditions,
and performance requirements. Nowadays, there is a strong need either for appropriate fast
and accurate algorithms for the mixed and natural convection-radiation or for reduced models
which still incorporate its main radiative transfer physics. During the last decade, a lot of
research was focused on the derivation of approximate models allowing for an accurate de-
scription of the important physical phenomena at reasonable numerical costs. Hence, a whole
hierarchy of approximative equations is available, ranging from half-space moment approxi-
mations over full-space moment systems to the diffusion-type simplified Py approximations.
The latter were developed and extensively tested for various radiative transfer problems, where
they proved to be sufficiently accurate. Although they were derived in the asymptotic regime



for a large optical thickness of the material, these approximations yield encouraging even
results in the optically thin regime. The main advantage of considering simplified Py ap-
proximations is the fact that the integro-differential radiative transfer equation is transformed
into a set of elliptic equations independent of the angular direction which are easy to solve.
The simplified Py models are proposed in this thesis for modelling radiative heat transfer for
both forced and natural convection-radiation applications. There exists a variety of compu-
tational methods available in the literature for solving coupled convection-radiation problems.
For instance, applied to convection-dominated flows, Eulerian methods incorporate some up-
stream weighting in their formulations to stabilize the numerical procedure. The most popular
Eulerian methods, in finite element framework, are the streamline upwind Petrov-Galerkin,
Galerkin/least-squares and Taylor-Galerkin methods. All these Eulerian methods are easy to
formulate and implement. However, time truncation errors dominate their solutions and are
subjected to Courant-Friedrichs-Lewy (CFL) stability conditions, which put a restriction on
the size of time steps taken in numerical simulations. Galerkin-characteristic methods (also
known by semi-Lagrangian methods in meteorological community) on the other hand, make
use of the transport nature of the governing equations. The idea in these methods is to rewrite
the governing equations in term of Lagrangian co-ordinates as defined by the particle trajec-
tories (or characteristics) associated with the problem. Then, the Lagrangian total derivative
is approximated, thanks to a divided difference operator. The Lagrangian treatment in these
methods greatly reduces the time truncation errors in the Eulerian methods. In addition,
these methods are known to be unconditionally stable, independent of the diffusion coefficient,
and optimally accurate at least when the inner products in the Galerkin procedure are calcu-
lated exactly. In Galerkin-characteristic methods, the time derivative and the advection term
are combined as a directional derivative along the characteristics, leading to a characteristic
time-stepping procedure. Consequently, the Galerkin-characteristic methods symmetrize and
stabilize the governing equations, allow for large time steps in a simulation without loss of
accuracy, and eliminate the excessive numerical dispersion and grid orientation effects present
in many upwind methods. This class of numerical methods have been implemented in this
thesis to solve the developed models for mixed and natural convection-radiation applications.
Extensive validations for the numerical simulations have been carried out and full comparisons
with other published numerical results (obtained using commercial softwares) and experimental
results are illustrated for natural and forced radiative heat transfer. The obtained convection-
radiation results have been studied under the effect of different heat transfer characteristics to
improve the existing applications and to help in the furnace designs.
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Chapter 1

Introduction

Heat transfer takes place when high temperature exists within a system or between a system
and its surroundings. In thermodynamics, heat is defined as energy of a system and with a
growing concern on environment and energy crisis; the investigation of heat transfer has been
an important part of engineering research over the past years [54]. The applications cover a
wide range of areas from the aspects of environmental, atmospheric and geophysical problems
to manufacturing systems, space research and heat injection/rejection. The three modes of
heat transfer are conduction, radiation and convection, these usually occur in most practical
systems where every mode of heat transfer can be investigated separately and the results of
heat transfer is then combined to give a total heat transfer rate within systems. However, in
some cases heat transfer from a system may involve a combination of two or three modes which
interact with each other. For the conduction and radiation, heat transfer processes, the former
occurs when temperature differences exist in the material of a system and also due to the
motion of particles which may comprise materials as well as microscopic particles. Diffusion
of energy occurs due to the difference in the local temperature and fluid motion. The energy
transfer in the radiation however occurs in the form of electromagnetic waves where the energy
is emitted from a material due to the high temperature in mediums, and is transferred to other
layers through the superseding space.

A lot of studies are considered to understand radiation heat transfer by solving the full ra-
diative transfer equation. For instance, authors in [157] developed a new study based on Pj
approximations to decompose the radiative transfer equation. Results were carried out for
one dimensional and two dimensional problems of scattering, absorbing and emitting media
using variable and constant properties. Their proposed approach however suffers from false
scattering. This is because of the intensity expansion into a smoother series of spherical har-
monic. Likewise, author in [102] developed 2D Py, P3 and P5 approximations. Results validated
against Monte Carlo approach while Marshak boundary condition are reformulated in the light
of the elliptic formulation. The study on the other hand requires more calculations and more
investigation is needed for the calculation of the flux divergence and the incident radiation.
Furthermore, authors in [105] investigated a conduction-radiation in diffusive grey materials
based on the simplified P; approximation. However, only simple tests were carried out and
the method is still not proven to be accurate for more complicated problems. Additionally,
authors in [97] derived the SPy approximations to the order of SP;, SP3 and SP5. However, no
examples were conducted nor derivations of boundary conditions. The study was more about
a comparison with the Py approximations rather than investigating the SPy approximations
in details. Furthermore, a partitioned of unity method for the numerical resolution of thermal
boundary layers is investigated by [107] for conduction-radiation problems using finite element



method. The study however struggled with the steep gradient in the boundary layers and
no strong validations were carried out. Likewise, an efficient partition of unity finite element
method for three-dimensional transient diffusion problem is developed by [93]. Remeshing
is not needed as the solution is refined by adapting the enrichment functions. However, the
study is not suitable for moving heat sources and results were not validated properly. Likewise,
authors in [104] developed a new methodology on spherical harmonic Py. The advantage of
this methodology is that it employed successive elimination of the spherical harmonic tensors.
This leads to a reduction in the number of first order partial differential equations required for
solving Py approximations. The challenge in this study is that for a low order technique, it
is difficult to describe in intensity with sharp directional gradients. The solution of nonlinear
problems is studied by [95] using the partition of unity method to enriched finite element tech-
nique. No remeshing is needed in this study. However, extensive validations are still required.
Additionally, authors in [94] investigated the nonlinear transient heat transfer in functionally
graded materials. The advantage of this study is the ability to approximate complicated local
features of the solution utilizing coarse mesh. However, refine mesh is needed for an accurate
results. Also, a non-uniform rational B-splines is needed to mesh the domain.

Moreover, authors in [92] used the Rosseland model for approximating thermal radiation to
study the transfer of heat on optically thick non-gray medium. The advantage of this study is
that it reduced the computational cost. However, the approach is not suitable to study heat
flow as full radiative transfer can not be coupled with Navier-Stokes equation. Furthermore, a
high order enriched partition of unity finite element approach is proposed by [5] for nonlinear
and linear time dependent diffusion problems. The main advantage of this study is that it
does not need to remesh as it is able to refine the solution by adapting the enrichment without
generating new mesh. However, the accuracy of this study is needed to be investigated for
higher orders of finite element. Likewise, authors in [106] used the generalized finite element
solution of time-dependent boundary-value problems for testing the performance of iterative
solver based on Krylov subspaces. The study solved the linear system using generalized min-
imum residual. However, more validations are needed as the study was not applied on an
engineering application. Convection occurs when there is a relative motion between a surface
and a fluid over the surface and there is a temperature difference between the surface and flow.
The mechanism of flow on a heated surface is divided into three distinct groups: natural con-
vection, forced convection and mixed convection. The movement of mass in natural convection
depends on the density gradient which is driven by the buoyancy force of the flow, while the
flow in forced convection is driven by other external forces such as flow speed and pressure
gradient. On the other hand, mixed convection is driven by both free and forced convections.
Over recent years, more attention has been given to natural convection as it occurs naturally
in environmental systems. Moreover, most practical and economical methods for developing
heating and cooling systems use natural convection induced by buoyancy forces. This chapter
proceeds as follows. Section 1.1 gives an overview of the convection-radiation heat transfer that
occurs naturally inside different computational domains. Section 1.2 shows different studies
of forced convection-radiation heat transfer that take place inside various industrial furnaces.
The evolution of modeling process for heat transfer is explained in section 1.3. Challenges and
novelties are explained in section 1.4. Objectives of the thesis are presented in section 1.5.
Finally, thesis layout is outlined in section 1.6.
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Figure 1.1: An illustration of natural convection-radiation transfer of heat.

1.1 Natural convection-radiation heat transfer

Coupling of natural-convection and radiation heat transfer occurs in various engineering prob-
lems. One of the common examples of natural convection and radiation coupling is the cooling
of electronic components such as laptops, CD players, and cell phones. These listed devices put
a premium on power conservation to reduce the drain on the battery power. Other examples
of applications for coupled natural convection and radiation heat transfer include water qual-
ity management, environmental planning in coastal regions [85], furnaces [158], solar energy
[35], crystal growth [69] and room fires [65]. Figure 1.1 shows two widely used applications on
natural heat convection-radiation transfer. Many of these systems can be evaluated through ex-
periments. However, experiments can be costly, time consuming, and limiting on the variation
that may be investigated. Modern computers and simulation softwares are used to augment
experiments in evaluating and designing engineering systems. Because the simulation programs
are benchmarked against experiments, sometimes only simulations are performed and experi-
ments are avoided entirely. The problem with the numerical simulations is the calculations can
become complicated and computationally intensive for simulations where natural convection
and radiation heat transfer are included. If one of the heat transfer modes (natural convection,
conduction, or radiation) can be neglected, the calculations may be simplified: reducing com-
putation times and resources. A heat transfer mode may be neglected when its contribution
is small compared to other heat transfer modes.

1.1.1 Literature review on natural convection-radiation heat

Natural convection-radiation heat transfer problems can be found in many industrial and real-
istic applications such as building insulations, double glazed windows and solar collectors. The
effects and contributions of natural convection and radiation have been studied in many forms
over the years ranging from pure natural convection to natural convection with participating
media. The importance of radiation heat transfer interacting with natural convection is gener-
ally well recognized [128]. Radiation typically has a larger impact on natural convection than
for forced convection [71]. This is due to forced convection having higher heat transfer fluxes
than the relatively low values of natural convection. In [125, 151], authors found that radia-
tive heat transfer was substantial at minimum temperature of 273 K in systems coupled with

Lwww.carrozzeriaautorizzata.com/news/623 /impianti-di-essiccazione-irt-power-cure-by-covea
Zwww.panasonic.com/uk/consumer /home-appliances /microwaves.html
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natural convection. Researchers propose to study pure natural convection have had to be very
careful to avoid any effects from radiation. In [26], liquid Nitrogen (temperature of 77 K) was
utilized in experiments to determine the natural convection around a heated cylinder made of
Bronze. Thermo-resistive properties of bronze were used to determine the temperature of the
cylinder. In [52], researchers conducted a time-dependent natural convection experiment in a
150 x 50 x 60 mm cuboid enclosure. Two isothermal baths were used to set the temperatures
on two opposing surfaces while the top and bottom surfaces were insulated. The front and
rear surfaces were Plexiglas to allow for flow visualization of the silicon oil in the system. In
the worst-case scenario, the system was placed under a temperature difference of 333 K with
the ambient temperature at 298 K. Under these conditions, radiation from the hot surface to
the cold surface was around two percent. Their results indicated that radiation contributed
at relatively low temperatures even when precautions were taken to minimize radiation heat
transfer.

Radiative heat transfer is categorized into two broad classifications: participating and non-
participating media. Optical thickness (defined as the product of the characteristic length and
the absorption coefficient) is often cited as the criteria for whether the medium is radiatively
participating or not. If a medium has a relatively large optical thickness, participating media
calculations should be performed. Participating media reduces heat transfer at the boundaries
because the medium has a more uniform temperature than without participating media [158].
In [10], authors looked at heat transfer between two concentric cylinders for different values
of optical thickness. Conditions for the simulations were emissivity of the inner cylinder was
0.9, and the outer cylinder emissivity was 0.4. Increasing the optical thickness reduced the
radiation heat transfer in a decreasing exponential manner.

Fluids such as air, Nitrogen, and the inert gasses are essentially non-emitting and non-absorbing.
These two characteristics make these fluids effectively non-participating. This criteria holds
as long as temperatures are not high enough for either ionization or electronic excitation to
occur, such as in the bow shock wave of a spacecraft in re-entry [100] or a nuclear explosion
[41]. More studies appear to be available for enclosures filled with participating media than
non-participating media. In [125], researchers had similar findings in their literature review.
The majority of the research coupling natural convection and radiation heat transfer was for
steady state conditions [47, 151, 158, 160] where one surface was set as the "hot’ surface while
the other surface was set as the 'cold’ surface. Some researchers investigated thoroughly the
transient natural convection and radiation interaction [85, 88]. In [88], investigators found in
their numerical simulations that retaining time derivative terms improved the rate of conver-
gence of their simulations. Time derivative terms are differentials in the equations defined by
a quantity change over a time change. Authors also found that after a certain mesh and time
step size, the benefits of refining the mesh or decreasing time step sizes were offset by round
off errors in the computer.

A typical system for simulating and conducting experiments for combined natural convection
and radiation is a simple rectangular enclosure. In [151], authors performed two-dimensional
steady state simulations in a simple rectangular enclosure with a non-participating media. The
enclosure was described as a rectangle with width and height. The top and bottom surfaces
were insulated while the left surface was set as the 'cold” surface and the right surface was set
as the "hot” surface. The Rayleigh numbers ranged from 10° to 10'2, emissivity was between 0
to 0.9, initial temperature was between 223 to 423 K, temperature difference between the hot
and cold surface was ranged from 10 to 250 K and the aspect ratio (enclosure height divided
by length) varied from 1 to 200. In all of the simulations, air was the working medium. Re-
sults showed the surface-to-surface radiation modified the temperature on the top and bottom
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surfaces, which in turn affected the natural convection heat transfer in the enclosure. The top
surface served to cool the fluid and then to re-emit the heat flux to other surfaces as radiation.
The bottom surface absorbed radiation and heated the fluid by convection. Heating of the fluid
along the bottom surface reduced the temperature difference between the hot surface and the
boundary layer. Velocity and turbulence levels were enhanced by surface radiation resulting
in higher convective heat transfer. In [35, 36], researchers took the simple two-dimensional
rectangular enclosure and extended it to three-dimensions. Length and width were the origi-
nal edges that formed a square, while depth represented the expansion into three dimensions
forming the cube. In the simulations, the cold temperature was 278 K, and the hot tempera-
ture was 833 K. Fluid properties were taken at the reference temperature of 555 K. The height
for the cube enclosure varied from 2.57x1072 m to 4.66x10~! m. Carbon dioxide was the
working medium with a Prandlt number of 0.68. Under these conditions, carbon dioxide was
treated as a participating media. To account for the participating media, the P; radiation
model was selected. This model uses spherical harmonic approximations for radiation inten-
sity to predict both temperature and heat transfer [127]. A limitation to the model is the
need for optically thick media: materials with appreciable optical depth values. Several heat
transfer models were considered by [35, 36] for carrying simulations. One option was to neglect
radiation. Results showed that the temperature field varied only slightly in the z direction,
while the velocity field had weak secondary flows in the corners. Steady state solutions were
not reached in the natural convection mode. With radiation included, steady state solutions
could be acquired. The presence of the end surfaces and radiation had a large effect on the
formation of three-dimensional flow fields. Secondary flows reached a higher intensity and the
secondary vortex corners moved towards the symmetry plane. Surface radiation was attributed
to causing variations in the temperature field near the back surface mainly due to an increase
in the surface temperature [36].

Comparing the results obtained in two-dimensional simulations performed by [33, 36] and
three-dimensional work, heat transfer was approximately 15 to 20 percent less than for the two
dimensional counterpart. End surface temperatures in the three-dimensional model reached
a maximum value relative to all temperatures the surfaces will reach which reduced the total
radiative flux from the isothermal surfaces and cause the difference in heat transfer. As for
the flow fields [84], it was found that two-dimensional simulations were able to capture the
major features of the flow development. For full understanding of the flow field and insta-
bilities, three-dimensional simulations are needed. Simulations and experiments available for
simple enclosures provide large amounts of information, especially for systems that are simple
enclosures such as windows, but do not adequately capture more complicated systems where
there are partitions and obstacles. Room fire phenomena as discussed by [158] and the exper-
imental model for the research being presented have blocking features and more complicated
heat transfer interactions.

Among the past work, numerical calculations were carried out in in [76] for obtaining results
for a squared cavity at Rayleigh numbers between 103-10° as a benchmark solution. Finite Vol-
ume Method (FVM) was adopted to solve the Navier-Stokes equations and Disctrete Ordinates
Method (DOM) were accounted for the Radiative Transfer Equations (RTE). Results showed
that different values of Rayleigh number and optical thickness affect on the transfer of heat
across the cavity. However, the study was limited to a fixed Planck coefficient of 0.1 without
considering the effect of the inclined angle. In [139], natural convection-radiation interaction
was studied inside a squared enclosure at different values of Planck coefficient, optical depth
and Rayleigh number. The RTE was solved utilizing five different approaches, DOM, FVM,
Py, SP3 and P3. Nevertheless, the study was limited as the effect of the inclined angle was
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not considered. Furthermore, numerical investigation was conducted in [7] for natural thermal
flow under laminar and turbulent conditions inside a squared cavity using the control volume
method with Rayleigh number up to 10'°. Nonetheless, only convection heat was investigated
to solve the conservation equations. Likewise, a combined heat transfer of radiation and natu-
ral convection study was investigated in [34] in a squared cavity containing participating gases.
The effect of Rayleigh number of values between 103-10° with optical thickness values from
0-100 on temperature, velocity distribution and Nusselt numbers were studied. The study
on the other hand was limited to convection heat transfer and can not be used for complex
geometries as Finite Difference Method (FDM) was used.

Moreover, Py approximation for representing the radiative heat transfer was utilized in [82, 83]
in narrow vertical cavities. The effect of radiation on the transition, conduction and boundary
condition was dealt with. However, the study was limited to P; approximation without the
effect of the inclined angle. Additionally, authors investigated the interaction between natural
convection and radiation with and without participating media for an undivided cavity with
wide range of Rayleigh and Planck coefficient [24, 91]. However, the FDM was considered in
[24] which can not be used for complex geometries and in [91], the effect of optical depth and
the inclined angle was not presented. In [11], radiation-natural convection heat transfer was
investigated in an inclined rectangular enclosure at different Rayleigh numbers and inclined
angles using FVM for solving the governing equations. It was found a reduction in the effect
of heat transfer when the increase in the inclined angle was considered. The study however did
not consider the effect of Planck coefficient or optical thickness. In [141], an absorbing, emit-
ting and isotropically scattering medium at three different values of Rayleigh number and a
wide range of radiation-conduction parameters was studied inside a squared enclose using non-
linear successive-over-relaxation method for combining radiation and convection-conduction
heat transfer. Yet, the effect of the inclined angle, Planck coefficient and optical depth were
not taken into account.

In [154], interaction effect between convection and radiation was taken into account in a squared
cavity with inclined angle. The FDM was the method chosen which is limited to simple ge-
ometries. Results showed the heat transfer were affected by the inclined angle, emissivity and
Rayleigh number. The result was limited to a constant optical depth of unity and Planck
coefficient of 0.1. Furthermore, a numerical study was considered in [74] for the effect of
radiation-convection heat transfer in a slanted cavity with two different angles of 45° and 60°.
The FVM was considered with different ranges of 7. The study was limited to one value of
Rayleigh number at a fixed Planck coefficient. Moreover, convection-radiation heat transfer
was investigated experimentally and numerically in [86]. The numerical investigation was done
using ANSYS Fluent software. The study considered variety values of Rayleigh and inclined
angle. Results showed that the maximum heat rate was at an inclined angle of 0°. The lim-
itations in this study were regulating the effect of radiation as the commercial softwares can
not deal with radiation transfer equations properly. In addition, in [156], a numerical study
was performed based on thermosolutal buoyancies with Dufour and Soret effects for double-
diffusive convection. The model was desicritized using FVM and solved utilizing SIMPLE
algorithm with QUICK scheme in non-uniform staggered mesh. Heat transfer characteristics
were investigated with different values of Rayleigh, Soret and Dufour coefficients, aspect ratios
and buoyancy ratios. The average Sherwood as well as Nusselt numbers were kept constant
without considering the radiation effect or the inclined angle. Likewise, a numerical analysis
of combined double diffusion radiation convection transfer of heat in a squared cavity were
conducted using FDM and DOM for the RTE in [110]. Results showed that heat transfer was
affected by the optical thickness. However, the study used FDM which can only be performed
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on simple geometries and the effect of Planck coefficient and the inclined angle were not investi-
gated. Furthermore, a convection-radiation transfer of heat was accounted for a rotating cavity
of a squared shape with a local heater in [99]. The non-dimensional mathematical formula-
tion was solved by FDM. The influence of Rayleigh number, Nusselt number, Taylor number,
emissivity and Ostrogradsky number on the natural heat flow was studied. The results showed
that the increase in the emissivity as well as the rotation reduce the temperature inside the
heating element. Additionally, the study can not be applied on complex geometries due to
the limitations of FDM. Likewise, a double-diffusive natural convection study in [63] for Soret
and Dufour effects as well as viscosity dissipation in a squared cavity filled with Bingham fluid
was simulated by Fictitious Domain (FD) Lattice Boltzmann technique. Various values of
Rayleigh number, Lewis number, Bingham number, Eckert number, Dufour and Soret param-
eters, Buoyancy ratio and inclined angle were carried out. Results showed that mass transfer
increases with the increase in Soret parameter while the heat transfer increases with the in-
crease in Dufour parameter for different values of Rayleigh and Bingham numbers. The rise in
both Dufour and Soret parameters enhances the raises of the fluid friction and enhances the
generation of entropy. Results also showed that the growing in the buoyancy ratio boosts heat
and mass transfer. The augmentation of Eckert number decreases the transfer of heat while
the increase in Rayleigh number decreases the average Bejan number. From another point of
view, the study can not be used for considering complex geometries and it misses the effect of
radiation heat transfer.

A thorough investigation of the numerical performance of the Simplified approximations (SPy)
hierarchy in the context of coupled radiation, convection and diffusion problems are given in
the current study. We examine the accuracy and efficiency of the SPy approximations of ra-
diative transfer for natural convection problems in a squared enclosure with the effect of the
inclined angle. The vertical walls of the enclosure are heated with uniform different tempera-
tures and the horizontal walls are adiabatic. A Boussinesq approximation of the Navier-Stokes
equations is employed for the fluid subject to combined natural convection and radiation.
Coupled with the SPy models, the system of equations results into a set of partial differential
equations independent of the angle variable and easy to be numerically solved using standard
computational fluid dynamics methods. We believe that this is the first investigation on the
effect of convection-radiation heat transfer using the Taylor-Hood finite element method with
SP3 approximations. Previous studies failed to show a noticeable difference between radiation
and pure convection. This is due to the fact that previous researchers focused on considering
the P; radiative equations that are discussed in this thesis. Furthermore, to the best of our
knowledge, another novelty lies in the complex geometry heater that is added to the square
cavity with two different inclined angles.

1.1.2 Computational tool

The studies in this section create a basis regarding heat transfer in a system with natural con-
vection and radiation. In addition to the investigation of the interaction of natural convection
and radiation, the current work expands on the baffled enclosure work to examine combined
natural convection and radiation for a geometry with an inclined angles as well as the inclusion
of a complex heater inside the inclined squared cavity. The method has been implemented using
FORTRAN code and the obtained results have been validated against those published in the
literature, commercial available Computational Fluid Dynamics software (CFD) and experi-
mental data. A thorough investigation of the numerical performance of the SPy hierarchy in
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the context of coupled radiation, convection and diffusion problems are given. We examine the
accuracy and efficiency of the SPN approximations of radiative transfer for natural convection
problems in a squared cavity. The vertical walls of the domain are heated with uniform differ-
ent temperatures and the horizontal walls are adiabatic. A Boussinesq approximation of the
Navier-Stokes equations is carried out subject to combined natural convection and radiation.
Coupled with the SPy models, the system of equations results into a set of partial differential
equations independent of the angle variable and easy to be numerically solved using standard
computational fluid dynamics methods.

1.2 Mixed convection-radiation models

Due to the growing demands for reducing energy consumption and emissions of pollutants, the
simulation of heat transfer features of the structure in an industrial furnace, is the topic of
significant amount of research investigations [56, 111]. It is important to note that the pro-
cess of heating of furnaces signifies an important step which will help achieve the appropriate
thermal characteristics of the treated structure. The following factors tend to perform an im-
portant part in such processes to maintain uniform temperature gradients minimization, avoid
as many surface defect (skid marks) as possible and to increase the capacity of the furnace.
Likewise, increase the structure product quality in particular in terms of resistance and hard-
ness. Essentially, control the hot fire flows inside the furnace. Thereafter, the heat (radiation
and convection) transfer through conduction in the structure with time [135]. Nevertheless,
the problem can be challenging to analyse precisely owing to the unsteady heat, the location
of the treated inclusion, the given geometry and the orientation of the burners along the so-
phisticated structure of the furnace which includes the thermal coupling of the structures and
fluids. Thus, the design of a CFD tool is so crucial for the successful investigation of these
physical phenomena and also for predicting the global behaviour of the furnace.

The main purpose of this study is to introduce a technique which can predict this phenomena
that takes place in a complex two dimensional configuration under the operation of several
burners. In particular, the main focus of this study is to represent thoroughly heat flow, phys-
ical domain and consider both heat convection and radiation. To perform such a study, we
propose a mixed finite element method [27]. Over the recent years, the focus of many scientific
studies was on the diverse engineering applications, involving thermal coupling of structures
and fluids [51, 29]. In [96], a simplified method for on-line model for controlling a rotating
reheat furnace was developed to study the process of reheating and annealing processes of
the metals. The idea was to examine the radiative exchanges in a pusher furnace. However,
the study was limited to monitor the evolution of temperature with time without coupling
convection-radiation heat transfer and without studying the effect of the optical depth and
Planck coefficient on the radiative equation. Likewise, in [8], a simplified method for on-line
temperature control of a pusher kind of furnace was developed to improve the operation practice
and propose a better furnace design. However, the study focused on the radiative combustion
gases rather than studying the number and location of the burners for a better new design. On
one hand, authors in [126] developed a model of an indirect firing furnace that is capable of
predicting the fuel consumption. On the other hand, the study focused on thermal chemistry
without considering thermal physics. Similarly, in [4], models for analysing heat radiation in
furnaces were developed for reheating slabs rotating and rolling hearth furnaces. Nevertheless,
the study was limited to measure the temperature on the slab without considering convection
transfer of heat, heat flow behaviour and controlling the operation and location of the burners.
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Furthermore, in [48], a computational model was used for predicting heat transfer in direct-fire
pusher type reheat furnace was developed using FVM for computing the gas radiation heat
transfer. The research was bounded to study the radiative transfer without the effect of the
turbulence of the heat flow inside the furnace. Moreover, a mathematical model was devel-
oped in [67] using FVM to predict radiation heat transfer on slab surface and temperature
distribution inside the slab. However, the study was limited to solve the RTE of heat trans-
ferred from the burners without solving the heat propagation (the Navier-Stokes equations).
Moreover, the SPy approximations have been modelled to study the radiative heat transfer in
glass by [68]. The study was focusing only on the cooling process of glass sheet. The results
showed that simplified approximations were efficient and sufficiently accurate. Furthermore,
the SPy approximations of radiative transfer were investigated in [40] considering a high-order
discontinuous Galerkin method. The results showed that for optically thick media, the SPy
approximations produced results which were close to those computed by the full radiative
transfer problem. Yet the method was applied to simple problems and more study and error
estimator are required.

As far as dealing with a diverse range of physical characteristics, dimensions and shapes of
structures to heat are concerned, such experimental identifications become increasingly time
consuming, limited, as well as costly. We believe that this is the first investigation on the ef-
fect of mixed convection-radiation heat transfer using the Taylor-Hood finite element method
with the SP3 approximations. Furthermore, to the best of our knowledge, another novelty
lies in the complex geometry furnace that is considered inspired from the glass manufacturing
and glass melting industrial furnaces. Moreover, different operation of burners are consid-
ered. This is important to understand the behaviour of heat inside the furnace, predict the
furnace life time and being able to redesign the furnace geometry which can help the realistic
industrial furnaces in obtaining the required results and minimising the manufacturing and
operating costs. In this investigation, the radiation heat transfer is included into the ther-
mal incompressible Navier-Stokes equations through the SP; and SP3 problems. We propose
a Galerkin-characteristic procedure where the time derivative and the convection term are
combined as a direct derivative along the characteristics, which leads to a characteristic time
stepping procedure.

1.2.1 Introduction to heat treatment furnaces

Heat transfer is involved in several physical processes, and in actual fact it can be the limiting
factor for many processes. The modelling of heat transfer effects inside industrial furnaces has
started drawing attention to many more investigators as a result of the demand for energy
conservation through efficiency improvement and for reduction of pollutant emissions. It has
also become even more important in the design of the products itself in many areas such as the
electronics, automotive, machinery and equipment manufacturing industries. Research in both
experimental and numerical areas and through mathematical models has proven to be effective
in accelerating the understanding of complex problems as well as helping decrease the develop-
ment costs for new processes. In the past, the optimizations and savings in large productions
were made by only large companies that could support and afford the cost of sophisticated heat
transfer modelling tools, specialized engineers and computer software. Nowadays, modelling
has turned out to be an important element of research and development for several industrial
and realistic models of complex structure of the furnace that can be feasible on a personal
computer. A direct fire flow furnace is a manufacturing process to control the physical and
mechanical properties of the product components. It involves conduction within the load, un-
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Figure 1.2: An illustration of mixed convection-radiation transfer of heat.

steady flows, furnace control, convection and thermal radiation simultaneously. The thermal
history of each part and the temperature distribution in the whole load are critical for the final
microstructure and the mechanical properties of structure and can directly determined the final
quality of parts in terms of hardness, toughness and resistance. Figure 1.2 illustrates two types
of industrial fire furnaces. To achieve higher treatment efficiency, the major influencing factors
such as the design of the furnace, the location of the workpieces, thermal schedule and position
of the burners should be understood thoroughly. The damage to the global environment and
the prospective depletion of essential resources caused by growing human activity constitute a
dual challenge that calls for coordinated measures by multilateral organizations. Since simu-
lation of the heat flow for treating the structure inside the furnace is of great importance for
the control and prediction of the ultimate microstructure of the structure but specially the
reduction of both pollutant emissions and energy consumption.

1.2.2 Role of computational modelling in heat furnace design

As mentioned previously, the major factor to be considered in the working of a furnace is the
heat transfer by all the modes, which occur simultaneously. To either study a new furnace
or to optimize the heating process in existing ones, the heat transfer in the furnace has to
be modelled in the same way of a real situation as closely as possible. Given the geometry
of the furnace, different boundary conditions along the furnace length, gas composition and
properties and other complexities, an analytical solution is not feasible and computational
modelling has to be carried out. Over the last 20 years, the CFD has gained its reputation
of being an efficient tool in identifying and solving such problems. Modelling the heating
process involves solving coupled heat transfer equations. By solving them computationally,
the technique should be able to do so in a precise mode and within a reasonable computational
time. Heat transfer and treatment that take place inside the furnace are conduction, convection,
radiation, furnace control and turbulent flow. Conduction mainly exists in structure materials.
Unsteady convection occurs between the solid materials and heat flow surrounds them and the
surface furnace walls that are in direct contact to the heat flow. Radiation exists when the
heat flow that transfers inside the geometry of the furnace.

3www.linde-gas.com/en/industries/glass/glass_melting /glass_melting.html
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1.3 Modelling heat transfer

We give a review on modelling process for transient heating in heat furnaces, a brief review
will be presented here. Different methods and models have been used and each model can
be characterized upon the assumptions made. Numerous practical methods and models for
the prediction of thermal heating process have been developed and applied to various different
furnace geometries. For a complete description about computational modelling of heat transfer
in reheat furnaces, we refer to [48]. In [115], authors modelled combustions chambers and fur-
naces using the composite-flux radiation model. The heat transfer was modelled by [72] using
some empirical relations in both the pusher-type and walking beam furnaces. Only radiation
was considered and convection was neglected. In [101], authors showed by studying walking
beam furnaces that the convective heat transfer coefficient changes very little along the furnace.
In [149], researchers investigated the effects of non-gray combustion products using the zone
method proposed by [50]. This method was used for absorbing, emitting and non-scattering
homogeneous gas to predict radiative heat transfer in a reheating furnace. The zonal energy
balance method was used to compute the gas temperature. However, it was stated that the
coupling of the temperature distribution in the load and refractories with heat transfer from
the combustion gases was not accurate. In the work of [39], passive experiments were con-
ducted as an addition to a statistical mathematical model, monitoring the dimensions of the
load, speed of movement and thermocouple readings. Authors found out that by considering
only a uniform continuous entry of inclusion into the furnace and by assuming that the tem-
perature of the furnace atmosphere was constant in a zone, good results can be obtained. In
[16], Researchers developed a simplified model capable of determining detailed temperatures
profiles in the load for a continuous reheating furnace. This model consists in computing the
gas temperature as a function of the distance through the furnace. The mean-beam length
technique was used to compute the radiation effects using the gray model assumption for gases.
In [89], investigators developed a mathematical model for predicting steadystate heat transfer.
The radiation effects were computed using the zone method while transient 2D conduction
equation was solved to compute the temperature profiles in the slab. Researchers pointed out
that the computing cost of the zone-method is too expensive and should be replaced.

In [126], Authors developed a model of an indirectly fired continuous furnace capable of pre-
dicting the fuel consumption. The radiation heat transfer was calculated using the radiosity
method assuming that the gases are a non-participating medium. A 1D model was used for
the conduction in the solid. A mathematical system model for modelling direct fired continu-
ous reheat furnaces was developed in [16]. The convective heat-transfer rate to the refractory
and load surfaces was calculated utilizing existing correlations from the literature. The zone
approach was applied to compute the radiation heat exchange between the combustion gases,
the refractory and the load. A parametric research was also obtained to study the effects of
refractory emissivities, the load and the height of the combustion area on the thermal perfor-
mance of the continuous reheating furnace. In [8], testers developed an interesting simplified
approach for on-line temperature control of a pusher type furnace. The temperature was com-
puted in the longitudinal section of each bloom inside a long-furnace type. An implicit FDM
was used to solve the convection heat transfer and a zonal method was applied to calculate
the radiation effects. In [96], analysts developed a simplified on-line model for controlling a
rotating reheat furnace. The radiation effects between individual load segments and between
the burners and the load as well as the convection were neglected. In [4], scientists developed
both off-line and on-line models of the pusher-type and walking beam furnaces. The problem
was divided into the load problem and the radiation problem for the purpose of analysis. The
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zonal method was used to calculate the radiation heat transfer and a finite volume approach
was used to calculate the conduction heat transfer in the load. In [49], a computational model
was developed for predicting the heat transfer in a direct-fired pusher type reheat furnace.
The FVM was used to compute the gas radiative heat transfer. Recently, a mathematical
model was developed in [67] for predicting the temperature distribution inside the slab and
the radiative heat flux impinging on its surface. The furnace is modelled as radiating medium
with constant absorption coefficient and spatially varying temperature.

1.4 Challenges and novelty

Developing a method gives rise to a class of computational challenges related to the heat flow
problems/subproblems. The behaviour of the flow depends very much on the geometry of the
application and location of the inclusion. Non-uniform temperature distribution is the result
of the fluid mechanics forces applying on the structure. From the mathematical point of view,
heat flow problem may be characterized as follows. The system of differential equations and
boundary conditions related to the medium. Main challenges that can be addressed in this field
of study are: (1) difficulty to handle vast rotations or/and translations which results in very
distorted elements and consequently inaccurate outcomes, (2) difficulty in using Lagrangian
multipliers to put in weak form which results in a force distribution which leads to inaccu-
rate computational results when computing the pressure and velocity gradient, (3) the partial
integrated elements can be very small which leads to inaccuracies, (4) difficulty to set onto
the Cartesian grid on the boundary conditions that are required to solve the flow equations.
Not to mention, it is difficult to enforce the effect of the physical boundary conditions on the
solution of the flow which is computed on the Cartesian grid, (5) an increase in computational
costs as well as inaccurate results. For instance due to velocity interpolation, (6) the sparsity
patterns are very unstructured in 2D. Hard to deal with a dominant convection term in the
governing equations, (7) the approximation of the functions that approximate the solution
can not be easily made of higher order. Also, it is challenging sometimes when dealing with
incompressible fluids.

We propose a research on developing a technique based on mixed FEM that can deal with and
solve the mentioned research challenges while acquiring the research novelties. Mixed FEM is
considered as it has been proven to produce the most desirable results [137, 138]. Two main
advantages of mixed models are the relaxation of continuity requirements on the interpolation
functions. Linear triangular elements (three nodes) are taken into consideration for the pressure
and quadratic triangular elements (six nodes) are taken into account for the temperature and
velocity. This technique allows us to solve the Navier-Stokes equations instead of interpolating
lower degrees functions. Another requirement is for dealing with the instabilities associated
with Galerkin formulation of the challenge. This is due to the fact that the presence of the
advection terms in the governing equations can result in node-to-node oscillations mainly in
the velocity field. This kind of oscillations become more apparent for advection-dominant (e.g.
at high Reynolds number). To predominant this challenge, split method is considered which is
done by solving the convection term first then the diffusion term. This allows large time steps
to be utilized in the numerical simulations without loosing in accuracy and lead to a great
improvement in efficiency. The method provides a consistent framework for conserving mass
and general boundary conditions. Motivated by this method in its applications to the Navier-
Stokes equations [117], we carried out our research on using characteristics technique and the
Taylor-Hood finite element. Another consideration is that the incompressible fluid. This is
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due to the fact that the change in density with pressure is very small as to be negligible. This
is because of the fluid flows in large volume domains that makes the pressure variation very
small as compared with the absolute pressure (low Mach number). Furthermore, Boussinesq
approximation is required to restrict the analysis of our system whose background density and
temperature do not vary much over their mean values. Likewise, the Crank-Nicolson method
time discretization is considered as it is unconditionally stable and has higher order of accu-
racy. Due to the high temperature that takes place, radiation is the dominant mode inside the
investigated domains. The SPy approximations are considered as they offer the possibility of
improved accuracy relative to diffusion by capturing some transport effects while still preserv-
ing many of the features that make diffusion solvers attractive. The SPy models approximate
the full radiative transfer equation with less computational cost and give results which are
more accurate than those obtained by the classical Rosseland approach traditionally used by
physicists [103].

In this work, a developed approach to design a model for simulating the heat flow is carried
out. A new high level programming interface which leads to improve and increase flexibility
with respect to the functionality are investigated and applied. It provides all necessary im-
plementations in a clear and dynamical configurable way. A complete set of algorithms for
the heat flow governing equations are integrated and applied on different applications for the
first time. Finally, a set of validation scenarios are computed to validate the chosen approach
and implemented features, ranging from academic benchmarking scenarios to two-dimensional
realistic application scenarios with engineering relevance.

1.5 Objectives of the thesis

The main objectives of this research are: (1) to determine the relative importance of radiation
and natural convection in a small enclosure with inclined angles and with/without heating el-
ement inside the enclosure, and (2) to estimate the natural convection-radiation heat transfer
characteristics. Interaction between natural convection and radiation is carried out using tem-
peratures and heat transfer relations (e.g. Nusselt and Rayleigh numbers) in order to predict
the heat flux contribution. Fully developed model is used to perform the numerical calculations
used to estimate the bulk natural convection and radiation heat transfer as well as to estimate
the convective-radiative heat transfer behaviour. The resulting data and analyses are used to
determine the effect of heat transfer mode and adjusting certain heat transfer characteristics.
As explained previously, heat treatment represents a critical step within the steel/glass mak-
ing process. It can be defined as a combination of heating and cooling operations applied to
a structure in solid state which controls its mechanical properties, therefore contributes to the
product quality in terms of hardness, resistance and toughness. Therefore, the objective of
the proposed project is to develop a computational methodology able to predict the furnace
atmosphere as well as the transient heat transfer to the load in a continuous heat treatment
process. This can help to: (1) improve the structure quality, (2) increase furnace lifetime, (3)
possibility to select desired number of burners (not limited by breast wall space) and (4) cost
reduction of the structure annealing/bending or manufacturing processes.

Due to the complexities of the physics that may occur for such applications, many mathemat-
ical models have been proposed over the past years. Of course this complexity has decreased
with the available computing power but most of the time, the general idea of these models
was to solve only for heat convection and radiation within the load and employ different as-
sumption and simplification about the surrounding gas temperature within the furnace using
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different heat transfer characteristics inspired from known furnaces or previous experimental
works [31, 17, 152]. Additionally, in recent years, different environmental constrained pushed
the industrials to change their previous regulations. Consequently, many experimental tests
must be made to deduce such transfer characteristics that ensure both the convective and
radiative effects on and from the treated solid. However, when dealing with a large diversity
of shapes, dimensions and physical properties of these structures to heat or to quench, such
operations can become rapidly very costly and time consuming.

The development of efficient methods to understand and simulate heat flow for multi-components
systems (fluid-solid) is then highly demanded. In recent years, there has been increasing in-
terest in studying numerically a variety of engineering applications that involve such coupling
(fluids-solids) [51, 29, 123]. Typically, the general idea of these techniques consists in dividing
the global domain and solving on each subdomain the corresponding equation independently.
The global solution can then be constructed by suitably constructing local solutions from in-
dividually modelled subdomains. However, during the assembly, the coordination between the
meshes can become complicated or even sometimes not feasible. Other alternative approaches
have been applied for multi-phase flows problems and are available in the literature, such as
the ghost fluid method introduced by [28], the immersed boundary method [116], the domain
decomposition [129], the Extended Finite Element Method (X-FEM) [136]. They introduced
and improved enrichment functions for material interfaces and voids by means of the level
set representations of surfaces. Nevertheless, in general when using all these techniques, one
still needs to know the value of the heat transfer coefficients between the two domains which
ensures, as a Neumann/Dirichlet boundary conditions, the heat exchange at the air/solid in-
terface. The main objective of this work aims to overcome this drawback and to present a
multidomain approach to solve the heat flow for which the two modes, convective and ra-
diative heat transfer interfere simultaneously and in the fluid part in order to maintain the
required temperature distribution over the entire structure surface. The proposed numerical
method for modelling such multimaterial flows is referred as the Taylor-Hood FEM. When
dealing with this kind of study, this method was proven to be the best and the closest to the
experimental results [137, 138]. A full description and details about this method is given in
this thesis.

To complete, the two-dimensional FEM needed for solving the transient heat transfer and heat
flow inside the furnaces must be capable of taking into account also the proposed thermal cou-
pling. Therefore, the first part of the thesis consists in developing different numerical methods
for modelling the heat transfer and heat flow. At the burners level and inside the domain,
it is well known that for convection-dominated problems, spurious oscillations may appear in
the standard finite element resolution of the advection-diffusion equations. In order to over-
come this numerical difficulty, stabilized finite element methods are presented, such as mixed
Galerkin-characteristics finite element methods. A new approach is presented to obtain stabi-
lized finite element formulation that ensures an oscillation-free solution and treats the thermal
shocks. The velocity and the pressure fields are computed by solving the Navier-Stokes equa-
tions coupled to heat equations. An extension of this solver is studied, analyzed and added
to take into account the convection/radiation terms for simulating heat flow at the chosen
Reynolds numbers. The work mainly involves the implementation studying heat flow inside
the direct fired furnace under the operation of different burners. Two furnaces are examined in
this study, direct fired as well as furnaces with regenerative burners. All the numerical results
obtained for benchmark problems are compared with other numerical models and analytical
solutions for validation purposes [37]. This will be the subject of the last part where also sev-
eral industrial applications will be presented. To summarize, the originality of this work is that
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the combination of stabilization methods, unstructured meshes, transient flows, heat transfer
and radiation models in a multidomain approach. All the mentioned elements represent the
features dedicated to industrial abilities of the method. The main tasks within this thesis are:

e The establishment of physics-mathematical models for temperature and heat transfer
analysis during a continuous heating inside the furnace. This is mainly include a heat
flow model, and heat radiation/convection model in a multi-domain approach.

e The development of a numerical calculation method for estimating the temperature dis-
tributions in the furnace and workpieces by using stabilized finite element methods, under
a specified furnace geometry, thermal schedule, performance requirements and initial op-
eration conditions.

e Finally, the development of a model, which will provide an interface for the information
input of the furnace, workpieces, thermal and physical properties, and initial operation
conditions that are used in the simulation.

Another encouraging point for serving the industry is the establishment of such user friendly
interface. The thesis is built not only on the idea of offering accurate results for the heat
furnace treatment but also in answering all the industry needs in a fully novel and developed
study. Here is a list of some industrial demands.
e Accurate prediction of temperature profiles in the furnace chamber.
- Temperature capturing at different positions (walls, corners...).

- Temperature capturing at the surface of the inclusion.

- Capable of handling multiple parts in two-dimensional simulations.

e Ability to simulate various configurations.
- Ability to arrange or randomly distribute loaded parts.
- Simulating different thermal timing.

- Ability to insert or remove ingots at any time during the simulation.

e Facility to calculate important terms such as:
- The heat losses from the furnace.
- The heat and energy required for the load under different conditions.

- The heat stored in the furnace or in the load as a function of time.

e Ability to adjust the heat flow.

- Turning on or cutting off some burners during the simulation.

1.6 Layout of the thesis

This thesis is divided into six chapters. Chapter 1 introduces problems and challenges related
to forced and natural convection-radiation heat transfer and provides some realistic applica-
tions related to the topic considered. A literature review is given thoroughly to provide ideas
and information on the models and computational tools related along with the methods used
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in the previous simulation experiments. Inspired from the literature review, goals, challenges
and novelties are formally stated to overcome and cover the difficulties explained. Chapter 2
summarizes the strategy required to choose the governing equations of the radiative transfer.
Certain methods and algorithms are adopted and a full comparison is considered in order to
examine the efficiency and the accuracy of the methods chosen. The obtained results inspired
us to choose the considered simplified Py approximations instead of solving the full radiative
transfer that can be computationally expensive and costly. Chapter 3 gives a detailed descrip-
tion of the formulations of the method of simplified Py approximations that lead to the chosen
simplified radiative governing equations. A detailed SP; and the novel SP3 derivations are
given with the required boundary conditions for the first time in this study to deal with natu-
ral as well as forced convection-radiation heat transfer. Chapter 4 shows the model geometries,
dimensional and non-dimensional governing equations, the SPy formulations, time stepping, fi-
nite element and the computational procedure needed to solve the natural convection-radiation
problems for the first time with different computational arrangements. The obtained novel re-
sults are validated with various results from the literature and with several experimental and
computational comparisons. Natural convection-radiation heat behaviour is studied and ad-
justed by adjusting the related heat transfer characteristics inside various geometry conditions.
Chapter 5 is devoted to the forced convection-radiation heat flow that takes place inside a di-
rect fired furnaces and its conducted results from this novel study along with the validations
of the obtained results with the available results from the literature. Different furnace oper-
ations and types are examined with different heat transfer arrangements in order to predict
and investigate the unsteady heat flow at different locations inside the furnaces. Convection
versus radiation effects are investigated in details under various heat transfer scenarios that
are inspired from the realistic operations of industrial furnaces. The conclusions and the future
extension for future directions of the present work that might take place inside the same chosen
applications and/or different engineering applications are included in chapter 6.
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Chapter 2

Numerical methods for radiative
transfer

In this chapter, we present thorough numerical techniques for solving the two-dimensional
RTE. Diamond differencing is used for space discretization. For angle collocation, discrete
ordinates approach is accounted for angle collocation. The result is producing a system of
sparse matrices in which the RTE is turned into. The source iteration, Biconjugate Gradient
Stabilized (BICGSTAB) and Generalized Minimal Residual (GMRES) algorithms are formu-
lated in order to solve the final system. Two numerical examples are utilized for showing the
robustness, convergence rates and efficiency of the chosen methods.

The problem of non-energetic Neutron transport in a certain material surrounded on all sides
by vacuum can be formulation by the following integro-differential equation

101

—8—+Q-V]+(U+/<)I = Z I(t,x,)dY +q(t,x,Q), in [0,7) x D x S,

c Ot 47 52
I(t,x,Q) = g(t,x,9Q), on [0,7) x 9D~ x S, (2.1)
1(0,x,Q) = Iy(x,9Q), in D xS%

Here, D is a space domain with smooth boundary 0D, [0,7) is a time interval and the unit
sphere is S%. Here, I(t,x, ) is the angular flux at time ¢ and the location of point x := (z,y, z)
in the orientation Q := (u, &, )T with fixed speed ¢, o := o(t,x) is the scattering cross-section,
Kk = k(t,x) is the absorption cross-section, and ¢(¢,x,{2) is an external source. In (2.1),
g(t,x,Q) and Iy(x,€2) are known boundary and initial functions, respectively. ¢ and k are
assumed to be non-negative functions. We define the boundary region 0D~ as

0D :=={x€dD| n(x) Q<0}, (2.2)

where n(x) is the outward normal at the point x on 0D. Despite the linear equation (2.1),
computing its numerical solution is inconsiderable because of:

1. The vast number of dependent unknowns. The solution [ in (2.1) in general is a function
of eight independent variables, three variables (u, &, n) for the angle, three space variables
(x,y, z), and one variable for time t. The computational cost and the memory require-
ments become drastically immense after discretization of these variables. Due to these
challenges, severe restrictions on computational approaches for solving (2.1) are imposed.
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2. In the RTE (2.1), the solution is not a smooth function of the dependent variables
(t,x, ). Shock discontinuities as well as steep fronts can arise. This needs to be resolved
accurately in engineering applications and often can cause severe numerical challenges.

3. In equation (2.1), it is clearly known that the behaviour changes from a certain physical
situation to another. For instance, the equation (2.1) behaves like elliptic for steady-state
case in optically dense region, a parabolic for time-dependent case and a hyperbolic in
void-like regions. It is extremely difficult to construct an unified computational algorithm
that can be able to resolve accurately all the mentioned behaviour cases.

For physical interest, we define an optical coefficient ¥ and a scattering ratio v associated to
the equation (2.1) as

v = r}ggg(ﬁ), and V= ineilr)l (J(x) + /{(x)) diam(D), (2.3)
respectively. In (2.3), diam(D) is the space domain diameter D. Two extreme situations in
computational RT remain active field of research

1. v =1, pure scattering, no absorption (k = 0),
2. ¥ > 1, optically thick, dense absorption (k> 1),

and the conventional methods suffer some difficulties to solve accurately these two cases as
mentioned in [2, 3, 87]. The two-dimensional version of (2.1) is considered for simplicity in
this chapter. Thus, D C R?, x := (z,y)? and Q := (u,n)?. By introducing the scalar flux ¢

6(x) = % /S T, 2, (2.4)

the two-dimensional time-independent RTE reads

“%+’7%+(”+“)[ = 0(z,y) +q(x,y,p,m), in DxS?

(2.5)
I(z,y,1,m) = gz, y,1,m), on 0D~ x 52

The aim of this chapter is to give a detailed overview on the quality and efficiency of classical
and modern algorithms in computational radiative transfer. At first we will show the way
of discretizing the equation (2.5) in space and angle. By the example of discrete ordinates
and Diamond difference methods, we will demonstrate how to develop iterative solvers for the
fully discrete system. Many studies of these solvers have been done in variety of references
[2, 3, 87, 119, 118, 13, 6]. This chapter contains several approaches to the construction of a
suitable algorithm which can serve as solver for the general RTE (2.1). The easiest possibility is
the use of Richardson iteration known by astrophysicists as ~-iteration. This strategy has been
theoretically analysed in details in [2, 87]. Another basic solver is the P;/Diffusion approach,
which means the equation (2.1) is replaced by a scaled diffusion problem such that at the limit
tends to approximate the solution of (2.1). Generalized P;/Diffusion and other simplified Py
approximations have been introduced in [79, 81, 146]. Tterative solvers for linear systems based
on Krylov subspace methods like the BICGSTAB [150] or GMRES [131] are also implemented
in this chapter. Generalizing the idea of constructing preconditioner for an accelerated ~-
iteration we show how to use the P;/Diffusion approach as an optimal preconditioner for a
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given y-iteration. The resulting solver known as diffusion synthetic acceleration was introduced
in [3] and studied from a linear algebra point of view in [13, 6]. Finally we apply these solvers
to various test cases from RT problem. Dependent on the scattering ratio 7 and the optical
coefficient ¢ of the problem under consideration, the most suitable solver in terms of accuracy
and computing cost can be identified.

This chapter is organized as follows. In section 2.1, a full description to the approach of
discrete ordinates is introduced. In section 2.2, a space discretization based on volume controls
and cell averaging is proposed. Section 2.3 describes the numerical techniques for solving the
linear system. Diffusion synthetic acceleration method is formulated in section 2.4. Finally,
numerical examples are discussed in section 2.5. Conclusions are clarified in section 2.6.

2.1 Discrete ordinates method

In order to solve a variety of basic problems accurately in the field of heat radiation, discrete
ordinates approach was introduced and used in [15]. This is done by the replacement of some
of the integral terms in the Boltzmann equation by numerical quadrature approximations of
those terms. The resulting set of ordinary differential equations is then solved. In much of the
literature [15, 119, 118, 87| the discrete ordinate method is detailed only for the one-dimensional
slab geometry case and the theoretical results remain valid for the multi-dimensional cases. In
the current section we formulate this technique for the two-dimensional model (2.5). A standard
approach for the integral expression over the unit sphere S? in (2.12) is the quadrature rule of
the form

/ x, Q)dY ~ Zwll x, ), (2.6)
SQ

in which Q) = (u;, &,m)7, for 1 = 1,2,..., N, with N = n(n + 2), and n is the number of
directions cosines. Because ) € 5%, we have

pr4E4+n=1, forall 1=1,2,...,N.

n is assumed to be an even number of quadrature points. For this assumption, the points
(1, &1, m1) are nonzeros, symmetric about the origin, and

[—1
pi = i + 2— 2~ 3u1)- (2.7)

For the weights w; we assume all are positive which satisfy

N N N N
Zwl =4, Zwl,ul =0, Zwl@ =0, and Zwml =0. (2.8)
=1 =1 =1 =1

A simple way to guaranty the conditions (2.8) is to set all weights positive and equal to . Note
that the approximation (2.6) can be derived using the spherical coordinates. If the dlrectlon
vector € := (sin p cos d, sin psin @, cos p)T, then

s 2
/ I(x,)deY —/ / I(x,0',¢")dd sin¢'dy’.
s2 0o Jo
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Figure 2.1: The Sjo-direction set for the two-dimensional problems of a quarter of sphere.

The trapezoidal rule for each one-dimensional integral separately yields

s 27 L K
/ / I(X7 9/’ (p,)del sin gp,dgp, = Z Z wlkj(xa 9l7 @k)? (29)
0 0

=1 k=1

where the quadrature weights
7r
2LK
By taking the sum over k in wy, the expression (2.9) is equivalent to the quadrature rule (2.6)
with

Wy = sin ;.

K
wl:Zwlk, and N:LK
k=1

Other methods to discretize the unit sphere S? are the so-called S,-direction sets. A review
dealing with the .S, sets can be found in [32], and a comparison between different S,, sets for
radiative transfer has been done in [43]. These S,, sets satisfy the conditions (2.7) and (2.8).
Furthermore, they are arranged on n/2 levels, invariant under 90° rotations, and they have
equal positive weights, see Figure 2.1 for an illustration of Sis set in two-dimensional case.
Here, the direction ¢ is omitted. Let Sx be a chosen set of discrete directions in the unit
sphere S?, then the two-dimensional direction set is just the simplification of one direction in
Sy such that the simplified set is symmetric, has nonzero direction, and with positive weights.
Hence a semi-discrete formulation of the RTE (2.5) is given by

o1, o1, )
s o+ (@ + KL = od(x,y) +alry), in D xSy,
Ii(z,y) = a(z,y), on 0D x Sy,

where [;(x,y), q(z,y) and g;(x,y) are discrete approximations to I(x,y, u, m), q(x,y, tr, m)
and g(,y, i, m), respectively. Note that the angular discretization (2.10) transforms the orig-
inal integro-differential equation (2.5) into a system of N coupled differential equations.

Remark 1 One of our favourite S,-direction set is the C-60 known as buckyball in [18].

the set contains 60 equal weighted directions with high symmetry configuration. The C-60 set
is reproduced in Table 2.1. In our numerical examples we used others S,, sets but the C-60
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yields the best results. However, the main disadvantage using these sets is we can not refine
the ordinates within the same set as we can do using the usual trapezoidal or Gauss quadrature
rules.

2.2 Space discretization

In general, applying discrete ordinates method is done by combining it with spectral methods,
finite elements or finite differences. In [13], the author combines the Petrov-Galerkin method
with the discrete ordinates collocation for the RTE (2.1). Since it is easier to combine the
upwinding with finite volume discretization than other methods, we consider in these notes a
space discretization based on volume control and cell averaging. The space domain is assumed
to be a rectangle for simplicity, D := [a, b] X [¢,d]. Thus the numerical grid is determine by

Dy, = {xij = (zi,y;)", 1 = i(Ax)s,y; = §(Ay)ji =1,2...,N,j = 1,2...,]\/[},
Tog=a,xy = b, yo = ¢,yy = d, and h is the maximum cell size h := max((Ax)i, (Ay)j). We
define the averaged grid points as ?

Tyt Y1ty
=g Yl E g
The notation f;; is used for denoting the estimated value of the function f which is located at

the grid point (z;,y;). Utilizing the semi-discrete formulation (2.10), a fully discrete approxi-
mation for the equation (2.5) can be directly written as

(A.T)H_% = Tiy1 — Ty, (Ay)j+% =Y — Y, Ty

N

Liiv1j — Digj L1 — L
’ : ’ ’ Ny ) =
Bomy " g b s e i
Op it Qi djrd T Qirdjvds (2.11)
where the cell averages of I are given by
L [ By
Ly = —/ Ii(z;,y)dy,
! (A‘r)i-l-% Yi
1 Tit1
L = —/ Ii(7,y;)dw, (2.12)
a (Ay)fr% ’

1 Z Tit1 Yj+1 ( )
L, = / / I (x,y)dxdy.
! (AI)H%(AZ/)J'JF% z; 5

To approximate the fluxes (2.12), we employ the well known Diamond difference approach
which consist on centred differences and the approximation of the function values at the cell
centers by the average of their values at the neighbouring nodes. See Figure 2.2 for an illustra-
tion of the grids used in these notes. Bilinear interpolation is accounted for the approximation
of the function value of f;, 1;,1 at the cell center

i+ fivig + Jij + fivga
fi+%j+% = 1 .

(2.13)

Hence, the scalar flux ¢;,1;,1 in (2.11) is given by
AR ST AT S
i T Livij + Lige1 + Ligijn
¢i+%j+%zzwl J J 4.7 J )

=1
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2.2. SPACE DISCRETIZATION

Table 2.1: The C-60 directions set used in our numerical test problems.

l

M

m

wi

© 00O Ui W+

-0.9642754578
-0.9642754578
-0.8987150765
-0.8987150765
-0.8331546952
-0.8331546952
-0.7926361513
-0.7926361513
-0.6865572261
-0.6615153887
-0.6615153887
-0.5554364635
-0.5554364635
-0.5554364635
-0.5554364635
-0.4898760822
-0.4898760822
-0.4493575383
-0.4493575383
-0.3432786130
-0.2777182317
-0.2777182317
-0.2121578505
-0.1060789252
-0.1060789252
-0.1060789252
-0.1060789252
-0.0655603813
-0.0655603813
0.0655603813
0.0655603813
0.1060789252
0.1060789252
0.1060789252
0.1060789252
0.2121578505
0.2121578505
0.2777182317
0.2777182317
0.3432786130
0.4493575383
0.4493575383
0.4898760822
0.4898760822
0.5554364635
0.5554364635
0.5554364635
0.5554364635
0.6615153887
0.6615153887
0.6865572261
0.7926361513
0.7926361513
0.8331546952
0.8331546952
0.8987150765
0.8987150765
0.9642754578
0.9642754578

-0.1716393065
-0.1716393065
0.1716393065
0.1716393065
0.5149179195
0.5149179195
-0.5149179195
-0.5149179195
-0.7270757700
0.1716393065
0.1716393065
-0.5149179195
0.7270757700
0.7270757700
-0.5149179195
-0.1716393065
-0.1716393065
0.5149179195
0.5149179195
-0.9392336205
0.9392336205
0.9392336205
-0.7270757700
-0.1716393065
-0.9392336205
-0.9392336205
-0.1716393065
0.5149179195
0.5149179195
-0.5149179195
-0.5149179195
0.1716393065
0.9392336205
0.9392336205
0.1716393065
0.7270757700
0.7270757700
-0.9392336205
-0.9392336205
0.9392336205
-0.5149179195
-0.5149179195
0.1716393065
0.1716393065
0.5149179195
-0.7270757700
-0.7270757700
0.5149179195
-0.1716393065
-0.1716393065
0.7270757700
0.5149179195
0.5149179195
-0.5149179195
-0.5149179195
-0.1716393065
-0.1716393065
0.1716393065
0.1716393065

0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
0.2094395102
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2.2. SPACE DISCRETIZATION

y
(ij+1) (i+1,j+1)
Yier T - ¢
11
(1+2»J+2)
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Yl
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J (i) (i+1,j)
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X X 1 X, X
1 i+ i+l

2

Figure 2.2: The staggered grid chosen for the space discretization.

We can proceed for the boundary conditions in (2.10) as follows:

e when z = a, the normal n = (—1,0)7, then n - Q; = —y;, and for y; > 0 we have
1105 = G105

e when z = b, the normal n = (1,0)7, then n-Q; = g, and for y; < 0 we have [ x; = g1 v,

e when y = ¢, the normal n = (0,—1), then n - Q; = —;, and for 7, > 0 we have

e when y = d, the normal n = (0,1)”, then n-; = n;, and for ; < 0 we have I; ;5 = giin,

Remark 2 If the space domain D presents some points on the boundary 9D~ where the normal
is not unique (corners for example in the case of a rectangular domain) then, it is possible to
define a new normal on those points with multiple components. For instance, at the left lower

corner point x = (a, c¢)? in the rectangle a new normal can be define as i = (—*/75, —g)T, and

forn- € = —\/75 ;= ‘/757)[ < 0, we have I; oo = gi,00. Similar work can be done for other three

remaining corners. The matrix entries are first defined for allowing us to get accurate linear
algebra formulation as well as simplify the notation of (2.11) as:

dy. 1.1 = ’MI, + ’771’ + O-i-&-%j-i-% + KJH—%]A-%
Litzi+3 Q(A:L‘)H_% Q(Ay)]_i_% 4 )
€ ., 1,1 = ’H'l| + —‘771| + Ui-‘r%j-{-% + KH_%]‘_’_%
Litgi+s 2(A$)l+% Q(Ay)]_i_% 4 )
€ ., 1.,1 = _|’ul| + |77l| + O-H'%j"‘% + RH‘%J‘“%
=lLitzj+5 Z(AJ;)H_% 2(Ay)]+% 4 )
Litsj+s Z(AJ})H_% 2(Ay)]+% 4 .
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2.2. SPACE DISCRETIZATION

Define the vectors

Il70 IZ,O]
I, = : € RWHDMHD - with [, = : e RN*!,
Il,M [lJVJ
. 944
d = : e R"M  with O 1= : e RV;
Ppyo1 On_1j-1
Qi %454
and Q = : e R"M  with Ql,j—% = : e RY.
Ql,Mfé GN-1j-1

Recall that the Sy-direction set used for the discrete ordinates formulation (2.10) avoids the
zero component in a given direction €2, = (y;,7;). So, only one of the four cases; p; < 0 and
m <0, <0andn >0,y >0and n <0, or gy > 0 and 7, > 0 can hold. Here, we define
the matrices H; and ¥, for the case yu; < 0 and 7, < 0, similarly, the other three cases can be

derived,
Dl El
H, = D; E, € RO X (N+1)(M+1) with
D, S
S
d e e e
D, = e T c R(N+1)><(M+1)’ E, = c R(N+1)><(M+1)’
d e - e e
1 1
1 1
and S= e RWHDX(M+1),
1 1
1
Zl71
El = c R(N+1)(M+1)XNM, with
Zl,Mfé
0
i+3i+y i did
1
Y, .= c R(NJrl)XM.
& Titbi+d TRirdjvd
1
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2.2. SPACE DISCRETIZATION

With these definitions, the equation (2.11) can be written in the unknowns I and ® as

H; -2 I Q:
' = ' : (2.14)

Hy | —Xy Ly Qx

—culS —(,UNS INM P 0

where Iy, is the N x M identity matrix and 0 is the N null vector. The usual technique
to solve the equation (2.14), is to eliminate the angular flux Ij,..., Iy using the Gaussian
elimination. Therefore, the storage requirements is reduced and the resulting equation

N N
1 . 1 »
(INM—E;wlSHl zl)cp = E;wlSHl Q, (2.15)

is solved for the scalar flux ®, which does not depend on direction variables. Furthermore,
solving (2.15) does not need to store the dense NM x N M schur matrix,

N
1 Z -
./4 = INM — E -~ wlSHl 121. (216)

For instance, to apply this matrix to a given N M vector U, only three N M vectors are needed.
The first is used to store the product U by ¥, in the second the solution of the linear system
is stored with the matrix H;. Multiplying by S and subtracting the weighted resulting vector
from U is stored in the third vector.

Since the key idea in all the incoming numerical methods dealing with the equation (2.15) is
inverting the matrix H; for [ = 1,..., N, we work out the following Algorithm 1 performing
this step. Note that Algorithm 1 is based on the Gaussian elimination recognized in compu-
tational RT as sweeping procedures that are illustrated in Figure 2.3. Furthermore, only one
sweep is needed for every direction in Sp.

Remark 3 When reflective boundaries arise on no more than one vertical and one horizontal
boundary, Algorithm 1 starts first sweeping at the boundaries with known incoming flux then,
reflected flux from the boundary is used for back sweeping. If both horizontal and/or vertical
boundaries are reflective, an iterative process must be done on the boundaries. Suppose for
example, both vertical boundaries are reflective i.e.,

Loj(p,m) = Loj(—pu,mi), for gy >0 and  Ini1j(p,m) = Ingrj(—pu,m), for gy <O0.

Then, the angular fluxes at the vertical boundaries which were calculated in one step are used
as inflow boundary for the next step of iteration. The iterations are stopped as soon as, the
inequality

||]old _ ]newHLDo S 6T||10ld||LOO +5a

is satisfied. Here, d,, d, are given tolerances and ||.||z~ is the L*>°-norm.
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2.2. SPACE DISCRETIZATION

Algorithm 1 Sweeping(N,M N, Az, Ay,0,k,1,m,Q,1,U)

1: fori=1,...,N do
2: fori=1,...,N do

3: for j=1,...,M do
4: d _ | Oipljel TR 101
: Litditd = 2Da)i1 | 2(By), 1 .
2 2
P p— ] “fm| | Cirdirh TR
Lit3i+s 2(A$)7L+l 2(Ay)j+l 1
2 2
P (U] || Tiplibd TRip L1
“Litgits 2(Ax)i+l 2(Ay)j+i 1
2 2
U p—1 —lml |, Cerdird il
Lit5i+35 2(Ax)i+l 2(Ay)j+l 1
2 2

5 end for

6: end for

7:  if (uy <0and n <0) then
8: fori=1...,N+1do

9: Ijinvrv1 = quini41
10: end for
11: forj=1,...,M +1do
12: I N+15 = @, N+15
13: end for
14: fori=N,...,1do
15: for j=M,...,1do
16: I = Vit ditd T i3 T T e 3 T i 25y T
"t divdlirl
17 end for
18: end for
19: end if
20: if (; <0 and n > 0) then
21: fori=1,...,N+1do
22: I =qn
23: end for
24: for J=1,...,M+1do
25: I Nv15 = @, N+15
26: end for
27: fori=N,...,1do
28: for j=1,...,M do
. Yirdi+d — el,i+%j+%ll7i+1j - él,i+%j+%llﬂij - Ql,i+%j+%llyi+1j+1
29: I ijy1 = y
Lit3i+3
30: end for
31: end for
32: end if
33:  if (4, > 0and n < 0) then
34: fori=1,...,N+1do
35: I in+1 = Qim+1
36: end for
37: forj=1,...,M +1do
38: Iy =qiaj
39: end for
40: fori=1,...,N do
41: for j=M,...,1do
. Uipljad ~Cirlja il ~ € i it — € 154 1 i
Litgit+s
43: end for
44: end for
45: end if
46:  if (g, > 0 and n > 0) then
47: fori=1,...,N+1do
43: L1 = a1
49: end for
50: for J=1,...,M +1do
51 i1 =quaj
52: end for
53: fori=1,...,N do
54: for j=1,...,M do
. Uipljrd ~ Civ ki ittt — et i — eyt
55: Ijir1j41 = p
Lit3i+3
56: end for
57: end for
58:  end if

59: end for
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2.3. ITERATIVE METHODS

'S
1 ] ] ]
j+1®
i+ 0 ] ] ]
i e
1 ] ] ]
'S
y @
O O O O /
° ° ° I ° °
i i+ i+l

Figure 2.3: Illustration of a sweep for p; > 0 and 7, > 0. Here, ® known boundary flux ¢, o
computed flux ¢ at cell interfaces, and [J computed flux ¢ at cell centre.

2.3 Iterative methods

In the currrent section, some numerical techniques used in the literature are introduced for
solving the linear system (2.14), which can be rewritten in common linear algebra notation as

AX = b, (2.17)
with
H, =2 I Q1
A= , X = , and b=
Hy | —Xy Iy Qxn
—wls —wNS INM I 0

In the same spirit we can rewrite the system (2.15) as

A® = B, (2.18)

N
1
where A is the Schur matrix given in (2.16) and the right hand side B = = g wlSHl_lQl.
T
=1

Recall that the matrices A and A are sparse and nonsymmetric. In large scale problems, iter-
ative methods are computationally more efficient than direct methods; however, most iterative
methods for nonsysmmetric systems, with the possible exception of multigrid methods, are less
efficient than their symmetric counterparts.

The most popular and easiest iterative approach for solving (2.18) is the Source Iteration (SI)
method also known in the computational RT as Richardson iteration. Given an initial guess
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2.3. ITERATIVE METHODS

Algorithm 2 The SI algorithm

Require: Kmaz, N, w, tol

N
1
1: Given the initial guess I?) compute 0 = — ZwlSI(O)
47 —

2: for k=0,..., Kmax do
forl=1,...,N do
compute W =Q;+ Elé(k)
end for
call sweeping(N, M, N, Az, Ay, o, k, 1,1, Q, I*+D W)

N
1
. (k+1) _ (k+1)
7:  compute P =1 lg_l wST;

8  compute Res*Ft1) — ||‘1>(k+1) — ‘I'(k)”ﬂ
Res(k-i—l)

9: if (7 < tol) then
Res®

10: stop

11: end if

12: end for

&) the (k + 1)-iterate solution is obtained by
dh) _ e 4 L iw SH'Q, — A®®
rpa wH; " Q ;
or simply
o+ — L iw SH; ! (Q + 3 <I>(’“)). (2.19)
rpa >H, 12

In what follows, Algorithm 2 is presented.

Here, Kmax is the highest value of the iterations, the given tolerance is tol, ||.||zz is the discrete
L%norm, and Res®™ denotes the residual vector at iteration k.

Note that iteration (2.19) is equivalent to a preconditioned block Gauss-Seidel technique ap-
plied to (2.17), where the preconditioner is the block lower triangle of the matrix A. Thus, if
M is the block lower triangle of A, then

MXED — (M — A)X® 4+ b,
and

X+ — <1NM - M—1A> X® 4 M~b. (2.20)

Therefore, the (k + 1)-iterate scalar flux satisfy

N
1 C1q(kt1)
Pkt — EE W SH LY,

=1
1 N
= > wSH ! (Q+meb),
=1

which is identical to (2.19). Regarding to the matrix formulations (2.17) and (2.18), we have
the following properties:
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2.3. ITERATIVE METHODS

Algorithm 3 The matrix-vector multiplication

1: Given a vector U, to apply the matrix A to U we proceed as:
2: forl=1,...,N do
3:  compute V =3;U
4: end for
5: call sweeping(N, M, N, Ax, Ay, 0, K, 1,1, Q, V, W)
6: forl=1,...,N do
7. compute V = S;W
8: end for B
1N
9: set U_U—M;wlv

1. The matrices A and A are nonsymmetric. In general they are not diagonally dominant.

2. When ¢,;,1;,1 < 0and ¢, 1,1 <0, forall [,7,7, the matrix A is weakly diagonally
dominant.

3. Since Sy has nonzero directions and ¢ and k are nonnegative functions, the matrix A
has nonpositive off-diagonal elements and positive diagonal elements.

The fact that CLivljrl < 0 and €Litljrl < 0 is equivalent to

h = max((Az);, (Ay);) < max( 2pul 2l ), Vi, (2.21)

L L. Y
W U \Oigljpl T Riplipl Ol + R 15,1

physically this means physically that the cell size is no more than two mean free paths of the
particles being simulated. Needless to say that the condition (2.21) gives the bound of the
coarser mesh should be utilized in the computations. In order to overcome the disadvantage
of SI method to efficiently solve the problem (2.15) when v ~ 1, two Krylov subspace-based
techniques are proposed, especially the BICGSTAB [150] and the GMRES [131]. The main
idea behind these methods is that the Krylov subspace techniques can be interpreted as the
weighted Richardson iteration

X# = 8(Tyy — PA)XO 4 Plb, 0<N<2, (2.22)

where the preconditioner P and the relaxation parameters N are variables within each iteration
step. Note that, when P = M and X = 1, the iteration (2.22) is reduced to the SI technique.
The GMRES and BICSTAB algorithms for solving the linear system (2.18) can be imple-
mented in the conventional way as in [42, 44, 64, 131, 150]. The only difference is that the
sparse matrix A can not be explicitly stored. All what is required, on the other hand, is a
subroutine that performs a matrix-vector multiplication as illustrated in Algorithm 3.

Note that we need only three vectors (W, V and U) for performing the multiplication of the
matrix A to the vector U. Likewise, we require only three calls for Algorithm 3 from the
GMRES or BICGSTAB subroutines.

Remark 4 Preconditioned GMRES or BICGSTAB techniques can also be utilized. For exam-
ple, in the case when the matrix A in (2.16) is diagonally dominant, the GMRES or BICGSTAB
approaches can be accelerated by utilizing the diagonal as a preconditioner. This method can
be easily implemented. However, it requires additional computational work. It goes without
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2.4. DIFFUSION SYNTHETIC ACCELERATION METHOD

saying that since, the matrix A does not have an explicit representation, ILU type precondi-
tioners can not be accounted for solving (2.15).

It is worth mentioning that direct solvers are not suitable to work as the matrices are big in
the order of hundreds of thousands or more. When the matrices are very big in the order of m,
then m x m operations are required in order to solve the system utilizing Gaussian elimination.
Furthermore, when dealing with sparse matrices, it would be meaningless as the operation (for
instance, multiplication zero by zero) will be waste of computing resources. Likewise, direct
solvers do not have the direct access to the overall matrix at the same time. Iterative solvers
on the other hand starts the operation by assuming an approximate solution for the computed
unknown. Then the solution is iterated upon till it reaches the exact solution [61].

2.4 Diffusion synthetic acceleration method

It has been shown in [79, 80, 81], under the physical assumptions that the scattering of medium
is dominate and it is optically thick, the RTE (2.5) can be approximated by the diffusion
problem

-V [— = in D
\Y <3(0 R V(p) + K q in D, .
5 :
—_— = 4 D.
w0+ 3(0+H)n Vo 7g, on 0O

The authors in [79, 80, 81] used asymptotic analysis to prove that, in the diffusive limit,
the solution to the equation (2.23) approaches asymptotically solution of the full RTE (2.5).
Further analysis and other asymptotic approximations to the transport problem in radiative
heat transfer context can be found in [150]. The main advantages to consider the diffusion
approach lie on the fact that it is linear elliptic equation, equation (2.23) does not depend on the
angle variable (), easy to solve numerically with less memory requirement and computational
cost, and when & is positive (2.23) has a unique solution. In order to build a discretization
for the diffusion problem (2.23) which is consistent to the one used for the RTE (2.5) and
converges asymptotically to the same solution as the mesh size h tends to zero, we consider
in this section the same grid structure as Figure 2.2 and the same notations as those used in
section 2.2. Hence, for the equation (2.23), a space discretization reads as

2

1
DGy ®)y Kbt = Giedin 22

where the difference operator D}, is given by Dj := D3 4 D2, with

Dﬁ(ww)ij = Wij + Wit1j Wity _QWij | Wiyt @i Wiy — 0;%-13-’
2 (A:C)H% 2 <A“")i+%

Di(ww)y; = o T Dij1 Wi i Tyl + wij Wiy — i1,
2 (AY)7 s 2 (By)2,,

anFl the fun.ctions Pirljrl and Qi1+ appeared in (2.24) are.g‘iven'by the ermula (2.13).
Without using ghost points, the gradient in the boundary conditions is approximated by up-
winding. For instance, the boundary discretization on the left boundary of the domain (z = x)
is
2 P34l —PLligl
Prits ~ 3(o1; il (Az) B 4ﬁg%j+%’

[
[V
N[



2.4. DIFFUSION SYNTHETIC ACCELERATION METHOD

Algorithm 4 The DSA algorithm

1: Given the initial guess I(9) compute o ZwlSI

2: for k=0,..., Kmax do

3 for/=1,...,N do

4: compute W =Q;+ EZ<I>(k)

5. end for

6: call sweeplng(N M, N Az, Ay, 0,k 1,1, Q, p(k+1) , W)

7. compute o Z SI(kJrl

8:  compute ¢ by solvmg the diffusion problem

1 1
(3((7 + :‘Q) ) & ( ’ )7

2
% n-Veo = 0.
P+ 300 + n)n P
9: set ®FHD — <I><k+%) + @
10:  compute Res* 1) = ||@*+) _ "),
Res(v*1)
N i — <
11 i ( Res® = tol) stop
12: end for

and similar work has to be done for the other boundaries. All together, the above discretization
leads to a linear system of form

Ty =R, (2.25)

where T is N x M nonsymmetric positive definite matrix obtained from the difference dif-
fusion operator (2.24) with boundary conditions included, and R is NM vector containing
the right hand ¢ and boundary function g. The system (2.25) can be solved using one of the
iterative methods BICGSTAB or GMRES already discussed in section 2.3. In our numerical
examples presented in this chapter, we used the preconditioned BICGSTAB with the diagonal
as preconditioner.

As mentioned early the diffusion approach (2.23) is a good approximation to the full RTE (2.5)
only when the transport field is optically thick (J > 1) or with dense absorption (k > 1).
In medium with small absorption or pure scattering (k = 0), the diffusion approach (2.23)
becomes unable to approximate accurately the correct solution of the full transport problem.
Nevertheless, this approach can be used for accelerating the source iteration algorithm in all the
regimes. The resulting accelerated algorithm, widely known in computational RT as Diffusion
Synthetic Acceleration (DSA) method, was first introduced in [3] and studied in various papers,
see for instance [6, 13]. The implementation of DSA technique for approximating the solution
of the RTE (2.5) is achieved in Algorithm 4.

Recall that in the matrix notation of section 2.3 the SI iteration is given by the Richardson
iteration applied to the system (2.17) as

X (1) — (INM . M-1A> X® 4 M,

where M is the block lower triangle of A. Roughly speaking, the DSA approach can be viewed
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Table 2.2: The values of o, k and boundary function g used for different test problems.

o(z,y) R, y) gr () gr. () gr, (z) gr.(x)
Test 1 0.99 0.01 0 1 x x
Test 2 99 1 0 1 x T
Test 3 1 10 Y 11—y x 1—x
Test 4 10 0 Y 11—y x 1l—x

as preconditioned Richardson iteration with the diffusion matrix 7 like preconditioner,
XED = (Lyy = T A)X® 4 71,

and 7! is obtained by solving the diffusion linear system (2.25).

It is worth noting that Algorithm 4 and Algorithm 2 share the first lines. However, the source
iteration algorithm gives only the intermediate solution @ (*+3) which has to be corrected by
adding the solution ¢ obtained by the diffusion method.

2.5 Numerical examples

To assess the performance of the methods introduced in the previous sections, some numerical
experiments of two examples are run for the RTE (2.5).

Res®)

—6
Res(0) <1077

Relative Residual :=

(2.26)

Here Res® and Res® denote the initial residual and the residual at the iteration k in the
iterative algorithm, respectively. We used the discrete L?-norm for the computation of these
residuals. The convergence rates along with cross-section plots of the results give an acceptable
percentage of accuracy of the algorithms. The CPU time context is monitored to compare how
efficient the solvers are. All the calculations reported in this section have been carried out in
FORTRAN implementation with double precision.

The first example is the equations (2.5) in the unit square D = [0, 1] x [0, 1] covered by 100 x 100
grid points and augmented with the following boundary function g

9Ly, Q) =gr,(y), for 0<y<1;
9(x,1,9) = gr,(z), for 0<2<1.

g<07y79) = gFl<y>a
g(lC,O,Q) = ng('r)a

We set q(x,y,Q) = 0. The coefficients o, x; the functions gr,, gr,, gr, and gr,, are selected
for four different test problems according to Table 2.2. The main issues we wish to address in
these test problems are concerned with the comparison on convergence and efficiency of all the
methods presented in these notes using different values of o, k and g to show the advantages
of a method over the others. To this end, we first plot in Figure 2.4 the convergence rates for
the four test problems. A log-scale on the y-axis is used. A first remark concerning these plots
is that the SI method converges slowly when v =~ 1. For example, in Test 2 (y = 0.99) SI
needs 866 iterations to converge and in Test 4 (7 = 1) needs 262 iterations. However, in both
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Table 2.3: The number of iterations (# Iter) and the CPU time (in seconds) for SI, GMRES,
BICGSTAB, DSA and Diffusion techniques for the four test examples.

Test 1 Test 2 Test 3 Test 4
# Iter | CPU | # Iter CPU # Iter | CPU | # Iter CPU
SI 17 7.65 866 317.29 6 3.10 262 107.98
GMRES 4 5.51 50 51.14 2 3.68 16 17.43
BICGSTAB 4 3.61 52 28.12 3 3.12 14 8.68
DSA 7 19.97 21 14.84 4 4.01 8 14.27
Diffusion 224 3.48 58 0.94 60 0.9 154 2.33

tests, DSA approach shows fast convergence over all the others methods. On the other hand,
when 7 < 1 the BICGSTAB method can be competed with DSA. In Test 1 and Test 3, a few
iterations are enough for the convergence of all methods, but still SI method is the slowest.
In Table 2.3 the number of iterations needed are displayed by each method for the four tests
together with the consumed CPU time. It is clear that the BICGSTAB method uses less
CPU time in all tests except in Test 2 (¢ = 100). The diffusion results are also included in
Table 2.3. These results are less CPU time consuming. However, the diffusion results should
not be compared to other methods since the problem they solve has a different structure than
those solved by SI, BICGSTAB, GMRES, or DSA methods.

In Figure 2.5 we plot the scalar flux ¢ obtained by DSA method for the four test problems.
Similar results are plotted in Figure 2.6 but using the diffusion procedure. The SI, BISCATAB
and GMRES results are not presented here, because they overlap those obtained by DSA
method. In order to compare these results, we show in Figure 2.7 a cross-section at the main
diagonal (y = z) of the scalar flux obtained by all techniques. As can be slightly seen, the
diffusion failed to approach accurately the DSA results when v = 0.99; ¥ = 1 (Test 1), and
v =0.09; ¥ = 11 (Test 3). In other two tests (Test 2 and Test4), diffusion approach resolves
the RTE correctly as the DSA technique does, but with less computational time in Table 2.3.

Our second example consists of tests arising in radiative transfer problems. Usually the trans-
port equation (2.5) is coupled to the heat equation to model radiative heat transfer phenomena,
compare [98, 15, 43, 146] for detailed studies on radiative transfer. Since our goal is concerned
with numerical tools for simulating the transport equation, we fix the temperature profile in
the RTE and we try to solve the transport equation coupled to this temperature profile. Thus,
the problem statements we consider here are:

The frequency-independent problem

Q-VIi+(c+r) = i I(x,2)dQ" + kB(©). (2.27)
™ Jg2
The frequency-dependent problem
Q-VI+ (0 +m)L = 2 [ L(x,2,v)d + r,B(O,v). (2.28)
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Figure 2.4: The convergence plots for the four test examples from Table 2.2.

Here, © = O(x), I, = I(x, Q,v), k, = k(x,v) and 0, = o(x,v) denote respectively, the
temperature, the radiation intensity, the opacity and the scattering within the frequency v > 0.
In (2.27), B is the Planck function given by

2h13
2

B(©,v) = (eM/ks® — 1) (2.29)

where kg, h and ¢ Boltzmann constant, Planck coefficient and the speed of light, respectively.
Notice that, in the frequency-independent problem (2.27), the function B = B(0) = az0?,
with ap is a radiation constant (ag = 1.8067.10~® J/K). The computational domain is a square
of 1 x 1 discretized into 100 x 100 grid cells. The temperature we used in our computations is
a linear profile between 800 K and 1800 K in the unit square i.e.,

O(z,y) = 800z + 1000, (x,y) € [0,1] x [0, 1].

Using this temperature profile we set the boundary conditions for the intensity according to
the radiative equilibrium

I(x)=B(O(%)), =*€dD, (2.30)
for the frequency-independent problem (2.27), and
I,(x) = B(6(x),r), xedD, (2.31)

for the frequency-dependent problem (2.28). First, we solve the grey problem (2.27)-(2.30)
using the methods studied in the previous sections. In Figure 2.8, we report the convergence
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Figure 2.5: The scalar flux ¢ obtained by DSA method for the four test problems from Table 2.2.

plots for two different values of the absorption s while the scattering is fixed to ¢ = 1 em ™!

in both tests. It is apparent that the convergence of SI method becomes slow when the
scattering ratio  changes from 0.09 (k = 10 em™) to 1 (k = 0 em™!'). The accuracy plots
given in Figure 2.9 represent a cross-section at y = 0.5 of the scalar flux obtained by all the
techniques with the diffusion approach included. As the opacity k decreases, the diffusion
results become slightly far from the results obtained for the full transport problem. We now
turn our attention to the frequency-dependent problem (2.28)-(2.31). In order to discretize

the equations (2.28)-(2.31) with respect to the frequency variable v, we assume N frequency
bands [v,,v,11], t = 1,..., N with piecewise constant absorptions given by

Ky = Ky, Vvely,v] t=1,...,N.

The frequency-averaged intensity in the band [v,, v,41] is defined by
Vit1
I, —/ L,(x,Q,0)dV'. (2.32)

Then, the equations (2.28)-(2.31) are transformed to a system of N transport equations of the
form

Vi+1
Q-VI, + (O’L + RL)]L = Z—L I(x,Q,v,)dQ + "@/ B(©,/")dV,
T 2 v,
5 (2.33)

Vi1
I(x) = / B(©,/")dV, xe€0D".
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Figure 2.6: The scalar flux ¢ in the Diffusion approach for the four test problems from Table 2.2.

Note that after the discretization of ordinates in N directions and the space in N x M gridpoints,
one has to deal with systems with N x N x N x M unknowns and, finding solutions to such
systems requires a big memory storage and high computational cost. Eight frequency bands
[V, v,41], ¢ = 1,...,8 given in Table 2.4 are used in out numerical simulations. These values
are frequently used in the glass manufacturing, we refer to [146] for more physical details.
Using two different values for the scattering (¢ = 1 em™! and ¢ = 100 cm ™), we summarize in
Table 2.5 the CPU time and the number of iterations used by all methods except the BICSTAB
method, because its results are identical to the GMRES ones. It is important to mention two
points with respect to the results in Table 2.5. First, we observe that by decreasing the
scattering ratio v and keeping o fixed to 100 em™! or 1 em ™!, the number of iterations reduce
asymptoticly in all the methods with the advantage of the GMRES method over the others.
Second, when o = 100 em™!, the SI method required unreasonable number of iterations for the
first frequency bands, consequently the CPU time used is very large. In contrast, the Diffusion
approach uses only 0.012% of the CPU time used by SI method for this case, and the results
obtained by both approaches are similar, see Figure 2.10.

In order to quantify the solution of (2.33) we define the frequency-mean scalar flux ¢ as

1 o
p(x) = —// I(z, Q' V)dYdV,
4 s2 Jo

>N AT]

=1 =1
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Figure 2.7: The cross section at y = z of the scalar flux ¢ for the four test problems from

Table 2.2.

Table 2.4: The bands used in the numerical simulation of the frequency-dependent problem.

Sclar flux

Sclar flux

Test 1

Clipping

— S|
BICGSTAB

—- Gmres

— DSA

— - Diffusion

L
07 08 09 1

Test3
T T T
si
BICGSTAB |
' ~ Grres I
\ — DSA [
\ . - - Diffusion [
002 ' Clipping o

00151

0.01

0.0051-

ey

0

L L =
02 03 04 05 06

X

Test 2
1 T T T T T
Clippint sl
L PPing BICGSTAB
09
—- Gmres
— DSA |
sl — — Diffusion i
07
06
x
2
E 05
o
9]
04
03
02
01
0 01 02 03 04 05 06
X
Test4
0 T T
—~ sl
BICGSTAB
045 ~ Gmres |
— DSA
~ - Difiusion
04
035
x O3 Clipping
2
_‘{E 0.25F 03
[5 0.25
(7]

L L
0 0.1 02

L L L L
0.3 04 05 06
X

Band ¢ | v, (um) | vy (pm) | K, (m™1)
1 00 5 0.4
2 > 0.333 0.5
3 0.333 0.285 7.7
4 0.285 0.250 15.4
5 0.250 0.222 27.9
6 0.222 0.181 267.9
7 0.181 0.166 267.3
8 0.166 0.142 7136
0.142 0 opaque

37



2.6. CONCLUDING REMARKS

k=10, =1 k=0, 6=1

--8l N --8l
BICGSTAB N BICGSTAB
Gmres N —- Gmres

_ Dpsa ] SR NN — DSA
10 \ N

L2-norm of residual

L2—norm of residual

‘ ‘2 ; é Némber O“fﬂ\le’aﬂé‘is “4 “6 “8 ® ‘0 ‘2 ; é Némber O“fﬂ\le’a‘\;‘is “4 “6 “8 ®
Figure 2.8: The convergence plots for the grey problem (2.27)-(2.30) with ¢ = 1 and two
different values of opacity.
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Figure 2.9: The cross section at y = 0.5 of the scalar flux ¢ for the grey problem (2.27)-(2.30)
with ¢ = 1 and two different values of opacity.

Figure 2.10 shows a cross-section of ¢ at y = 0.5 for the two values of o. The main message
taken from this figure is that, the diffusion results coincides with the transport results only
when the scattering is large (¢ = 100 cm™!) and for this case the SI scheme is unreasonably
slow (compare the CPU time in Table 2.5). Therefore, it is worth using the diffusion approach
because, at least for this test problem, it gives results that are as accurate as those obtained
for the full transport equation but with less computational cost.

2.6 Concluding remarks

We have combined the discrete ordinates collocation and the Diamond differencing to re-
construct numerical techniques for the two-dimensional radiative transfer equation. These
techniques include the source iteration scheme, GMRES and full BICGSTAB algorithms, and
the diffusion synthetic acceleration method. We have compared the results obtained by these
methods on several test problems. The principal conclusions achieved through this comparison
are the following:

1. For radiative transfer equation with small scattering ratio (7 < 1) and moderate optical
coefficient 9, the SI method can be a reasonable solver, but still not efficient enough as
BICGSTAB, GMRES or DSA methods.
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Table 2.5: The number of iterations and the CPU time (in minutes) for SI, GMRES, DSA and
Diffusion techniques for the eight frequency-band examples along with two different values of
.

Band ¢ | Scattering ratio ~y SI GMRES | DSA | Diffusion

1 0.71428 16 6 7 217

2 0.66666 15 6 7 212

3 0.11494 8 4 4 91

4 0.06077 6 4 4 46

oc=1cem™! 5 0.03450 6 4 3 25

6 0.00371 4 2 3 4

7 0.00175 4 2 3 3

8 0.00014 3 1 2 2
CPU S 25.63 3.94 14.69 0.21

1 0.99601 1700 92 32 87

2 0.99502 1321 89 30 82

3 0.92850 178 26 29 25

4 0.86617 95 18 29 17

o =100 em™t 5 0.78137 57 14 27 11

6 0.27175 12 5 9 3

7 0.14985 9 4 6 3

8 0.01381 5 2 3

CPU —_— 981.16 6.43 69.72 0.12
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Figure 2.10: The cross section at y = 0.5 of the mean scalar flux ¢ for the problem (2.28)-(2.31)
with the eight frequency-bands given in Table 2.5 and two different values of o.

2. For radiative transfer equation with large or pure scattering (y =~ 1), the SI method
become very slow and loses efficiency. In parallel, the DSA method is the best and
presents fast convergence rate over all other methods.

3. For radiative transfer equation in optically thick regime (9 > 1), the diffusion approach
may be a valid alternative for the iterative methods since it gives results that are as accu-
rate as those obtained by DSA method, but with less computational cost, and diffusion
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approach does not need extra discretization for the angular directions.

Nevertheless, comparing the simplified Py approximations to the transport equation and fol-
lowing the argument of section 2.4, it is convenient to devise generalized preconditioners to
the SI method with high accelerated convergence. Such methods can be used in radiative heat
transfer and radiation hydrodynamic couplings rather than the transport equation (2.1).

We want to point out that general time-dependent radiative transfer problem (2.1) can also
numerically solved in a similar manner. By utilizing the discrete ordinates and the Diamond
differencing methods, and by using the same notations as in section 2.2, the equations (2.1)
are transformed to the system of ordinary differential equations below

1d Vit — Yuij
Ea%w%ﬂ% + (Ac),,
2

wl,z’jJrl - wl,ij

+m (Ay>j+% + (UiJr%jJr%+/§i+%j+%)wl7i+%j+%:

OLit1jriPirtirt + Qi ljrds

Urii(t) = quii(t),
wl,ij(o) = wlo,ija

(2.34)

where each centered valued function f;;, 1, 1 appeared in (2.34) is given by

~ Juig t Jris T fia + fricga
fl,i+%j+% = 1 .

For the time integration of (2.34), one can use any ordinary differential equation solver. How-
ever, the presence of the term 1/c in the front of the time-derivative operator, makes the use
of explicit schemes inefficient, because these explicit schemes are subject to a CFL condition
of the form

Ai=c— <1 2.
e~ <1, (2.35)

where At is the time stepsize, h := max((Am)i, (Ay)j) is the mesh size and c is the speed of
ij

light (extremely large, order of speed of light). Therefore, implicit schemes which alleviate
the stability restriction (2.35), should be used. For simplicity, the implicit Euler method is
considered here to integrate the equations (2.34).

Let the time interval [0, T] be divided into NM subintervals [t,,t,.1] of length At such that
t, = nAt and T'= NMA¢t. The notation W is used to denote the value of the function W
at (tn, fu, m, xi,y;). Then, the fully discrete formulation of the equation (2.1) can be written
as

n+l _ in+l n+l  yn+l
Ml%iﬂj Urij mwz,ijﬂ s v (ot e LY
iy 1,1 1.1 A 1,1 —
(Ax>i+l (Ay)j+; t+3+3 t+5it3 cAt Lit5i+3
2 2
1 (2.36)
o 0 AP —Y; 1.
l,z+%g+%¢z+%y+§ T Divljel T CAtwlﬂ'F%J-f—%
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Once again, the discrete equation (2.36) can be reformulated in matrices as in (2.14) by using
the following new matrix entries

1

dy. 1.1 = |’LLZ| |,r]l| +Ui+%j+%+/€i+%j+%+m

Litsij+s Q(ASC)PF% 2(Ay>j+% A ,
1

€Litlitl = |’ul| _|Tll| + O-i+%j+% + Ki—&-%j—i—% + AL

Lit3i+5 Q(Al’)z—i-% 2<Ay)]+% 4 ,
1

SlLitgity Q(Aw)H% Q(Ay)ﬂ_% 1 ,
1

Litgsi+s Q(A:E)H_% Q(Ay)j_’_% 4 .

The SI, BICGSTAB, GMRES, DSA methods and the Diffusion approach studied in the pre-
vious sections remain valid to solve the problem (2.36) in the same way that are done for the
time-independent problem (2.11) with the only difference that another loop must be added for
the time integration. Furthermore, the convergence rate of the source iteration is governed, at
each time step, by the new scattering ratio

) . 0 (tn, X)
n) = max ’
v x€D U(tn,X) + K(tnax) + i

We would like to mention that, the space discretization used is second order. Therefore, to be
consistent that the fully dicrestized scheme maintains the same order of accuracy, a second-
order time integration scheme should be used. For example, Crank-Nicolson method can be
a good candidate, since it can be formulated easily as (2.36) and the resulting linear systems
have the same structures as those obtained by Euler method.
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Chapter 3

Simplified Py approximations for
radiative heat transfer

Radiative heat transfer equations can be found in various engineering applications, for instance,
heat from a stove burner [53], microwave oven [53], electromagnetic radiation from cell phones
[155], laser beam [22], etc. Since a major part of this heat is transferred by photons, the nu-
merical solution of the radiative equations can be computationally expensive and complicated
because of the dependence of frequency, time and the directional variables. This is due to
the involvement of the direct-dependent thermal radiation field. Approximations of the full
radiative transfer model are required as they need less computational time, yet with a great
solution accuracy [79]. The most common approximations used in dealing with radiative trans-
fer equations are the spherical harmonic Py approximations. The major drawback however is
that the approximations become complicated specially with high order dimensions.

In this chapter, we propose the simplified Py approximations as alternative approximations
to the Py equations. The simplified Py approximations provide an extension to the approx-
imate solution of arbitrary high order, by transforming the equation of transfer into a set of
partial differential equations (PDEs). The approach was first proposed by [58] in his work on
radiative transfer in stars. Further description of the method may be found in the books by
[70, 19, 109] in which they dealt with the Neutron transport theory. The great advantage of
these approximations is the conversion of the governing equation to relatively simple partial
differential equations. This chapter focuses on the the simplified Py approximations and a
full description is given. The reason behind considering the SPyN approximations is that they
offer the possibility to improve the accuracy of the solution by capturing the transport effects
while still preserving the features that makes the diffusion solver attractive. Gelbard [38] in-
troduced the simplified Py approximations as an intuitive three-dimensional extension to the
one-dimensional slab Py formulation [103]. For any location x in the domain V' C R?, we have
the balanced equation of energy

Cppg -V (%V@) = —/ / k(B — 1) dS du, (3.1)

and the transfer equation

Yo >, Qe S?: -—+Q-VI=xr(B-1I). (3.2)



On the boundary, x € 9V, the radiation incident is described by the semi-transparent boundary
condition

pn-NI(x, Q' v)+ <1 —p(n- Q))B(V, 0y) = 1(x,Q,v), Vn - <0, (3.3)

where

Q—2n-Qn=0

is the specular reflection of €2 on the surface 0V, and the temperature satisfies

ni

2 1z
h(©, — 0) + om(@) / (B(V, ©,) — B(v, @))du = 3VO - n, (3.4)
0
the temperature at initial time t = 0 is prescribed by
O(x,0) = Oy(x), xeV. (3.5)

In the above equations, h denotes convective heat transfer coefficient, & the thermal conduc-
tivity, I(x, €2, v) the specific intensity of radiation at the point x € V| travelling with frequency
v > vy in the direction 2 € S?. The Temperature O(x,t) the material temperature at time
(t > 0) and a direction x € V. As for the exterior boundary 9V which is between the surround-
ing and the domain, with refractive indices ny < ni, respectively, the light rays are refracted
and reflected. Semi-transparent boundary condition in (3.3) is considered, the physics that is
described next.

For all directions x exterior to V' and for the direction €) pointing towards V', radiation of the
photon propagates in a Planckian distribution B(v, ©,) at a certain temperature 6,. Thus,
this Planckian radiation is observed by the location x just outside of V' for all directions of (2
satisfying 2-n < 0, where n is the outer unit normal. On 9V of the above incident radiation, a
specific fraction [p(n-2)] is specularly reflected back into the exterior of V', while the remaining
fraction, 1 — p(n - Q), penetrates through 0V into V. The photons inside V' that attempt to
leak out through 0V are applied to the same physics. Thus, for incident directions 2 of the
location x inside of OV, the penetrating radiation described above is:

I(x,Q,v) = (1 —pn- Q))B(u, 0,).

Also, the radiation which in the process of attempting to leak out through 0V, is reflected
back to V:
[7"6ﬂ<x7 Q, V) = p(n ) Q>I<Xa le V)'

The sum I,.5; + I, constitutes the left side of equation (3.3). This boundary condition holds
for location x just inside of dV. The boundary condition is given by (3.4) and the initial
temperature is prescribed by (3.5). Radiation is completely absorbed in this considered work.
Thus, the integration in the second term of this equation is performed on the opaque interval
of the spectrum [0, v1]. Note that, equations (3.1)-(3.5) contain the opacity x(v), the speed of
light in the vacuum ¢, the heat conductivity 3, the density p, the specific heat C),, the Planck

function , .
2 Pl Ply B
B(v,0) =nj ’ (e’g ° — 1) :

c2

where Pl is the Planck coefficient and kg Boltzmann’s constant. For industrial purposes as

well as for our considerations in this study, the term % in (3.2) is neclected. This is due to
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the fact that the value is almost zero. The reflected proportion of radiation is the reflectivity
p € 10,1]. If the total reflection occures then it is equal to unity, i.e., if §; > 0., where 0, is
the critical angle which is given by sinf,. = Z—f Otherwise, the calculation of p is carried out
according to Fresnel’s equation

1 tan2(91 — 92) Sil’l2<91 — 92)
p(,u) =35 ) ) s
2 | tan*(61 +02)  sin*(0; + 65)

where the fraction angles ; and 6, are given by cosf; = |n- Q| = pu and the Snell’s law of
refraction
nysin 6] = ng sin 6s.

Finally, the boundary surface of (3.4) of the hemispheric emissivity « is related to the reflec-

tivity p by
1
o= 2n1/ (1 — p(u))du.
0

We will focus here on optically thick problems. This means that the opacity & is large and
the radiation propagates mainly in a diffused-like manner. We rewrite the above equations in
dimensionless form in order to introduce a proper scaling. We introduce reference values that
corresponds to typical values of the physical quantities.

2 ®T8f Iref

bref =CP Rref Xopp ——  and  Spep = ———.
ref ref Rref ref ref /frefgref

Here, we define the dimensionless parameters:

1
E= —",
RrefTref

which satisfies 0 < ¢ << 1 in the diffusive, optically thick regime. The non-dimensional
equations read

eV - (%wa) —52% = —/ / k(B — I1)dS) dv, (3.6a)
V1 S2
Yo >1,Qe 8% eQ-VI = k(B-1) (3.6b)
The boundary condition for the temperature becomes
2 1
£ (% V@) ‘n—hO,—0)= aw(%) / <B(V, ©y) — B(v, @)) dv. (3.7)
1 0

It is worth mentioning that the initial condition for the temperature in (3.4) will not be affected
by this conversion to dimensionless variables. It is well known that an asymptotic expansion
of (3.6a) and (3.6b) leads to the Rosseland approximation or the equilibrium diffusion

00 4 *“10B
which is expected to be valid in the interior of V' [78, 121, 122]. However, boundary layers can
not be described by this simple diffusion approximation in the regions in which the temperature

gradients are very large. Thus, the need arises for more sophisticated diffusion approximations
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3.1. ASYMPTOTIC DERIVATIONS OF SPy EQUATIONS

that can model the boundary layers at internal interfaces and the outer boundary of the
system. For the Neutron transport, simplified Py approximations are used for high-order
asymptotic corrections to the diffusion theory, see for instance [12, 38, 77, 147]. The simplified
Px approximations can accurately describe the boundary layers and the diffusion of Neutrons.
This chapter proceeds as follows. In section 3.1, asymptotic expansions to (3.6a) and (3.6b)
are derived. We couple the frequency-dependent diffusion equations to each other as well as
to the frequency-independent heat transfer equation (3.6a). Boundary conditions for the SPy
equations are formulated in section 3.2. A summary of the SPy approximations is outlined in
section 3.3. Finally, concluding remarks are discussed in section 3.5.

3.1 Asymptotic derivations of SPy equations

In order to derive (3.6b) in the domain V', the equation can be formulated as
(1 +20. v) I(x,9,v) = B(v,©).
K

By applying the Neumann series, we obtain

—1
[= (1+ fQ-v) B(v,0)
K

2 3 4

(1—%9 v+ (V)P - (- V)P +

K3

(@Q-w)t. )B(V, 0). (3.9

K4

By integrating with respect to 2 where V2 = V - V| and using [103]:

/SQ(QV)”CIQ: (1+(—1)”) 2T _gn

n+1
we obtain
o(x) = / 1dQ) = 4x (1 - —V2 + —v4 - 7—v6 )B(u, 0) + O(e%). (3.10)
S2
Hence,
4rB(1r,0) = (1+-— v e ) O()
o) = 3 554 0 v

€ V2o g, €° 6 2 et 4, € 6 ?
- ( (3_ V 7 6v> <3/<;2v 5K4V +ﬁv>

6

3
2 4 4, & s 8
- (BH,ZV 5/€4v +ﬁv> "')QO-FO(&E )
The formal asymptotic equation for ¢ yields:

g2 4et 44¢5
Vv > 4rB(1r,0) = (1 - -—V? - vt —
v > dnB(.0) < 362" Ioat" Od5A0

V6)<,0+ O(%). (3.12)

Taking the terms of O(e*) and O(e%) into consideration, the approximations are independent
of €2 and angle variation.
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3.1.1 Formulation of the Rosseland and SP; approximations

In this following subsection, we truncate (3.12) up to O(g?):
e? o2 4
ArB(v,0) = p — @V v+ 0(eY),

we obtain:

2
Vv > —;—KVQQO + kp = k(4T B(v, ©)). (3.13)

The derivation of (3.12), we have written ~ as independent of space although it is dependent
of space. It remains correct from the asympotical point of view. Thus, we can consider the
energy equation (3.6a) up to O(g?),

00 o Y A
E—V (JV@) _/u1 SHV @ dv. (3.14)

Equations (3.13) and (3.14) are the SP; approximation to (3.6a) and (3.6b). Due to the O(e?)
error in (3.14), the SP; error is O(e?). With the use of p = 47B(v,0) + O(£?) in (3.14), we
can truncate to O(g?) equation

9 _ A\ (%V@) = / A\ SLV(ZLWB) dv,

ot "
90 N i [*10B

Due to the presence of the frequency variable v, equations (3.13) and (3.14) are easier to solve
compared to (3.15a) because of the existence of non-linearity in (3.15a).

3.1.2 Formulation of the SP3 approximation
By ignoring the terms of O(&®) in (3.12), we obtain
44¢*

4e?
4rB(v,0) = p — —V2<30+ T2 V o+ ) + O(£%)

o B ) o
—cp——v2< ( ;i; ) ( )>+O(58). (3.16)
(e

11e
=(1-—=—=V?
72 < QIKQV)

then, in (3.16) up to O(&%), it becomes

Hence, by defining

> (3.17)

2
e
47TB(V, @) =@ — @V2(§0 + 2@2),

or
1
Yv > —£%V - QV(go +2py) + K = k(41 B(v, ©)). (3.18)
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Hence, equation (3.17) can be written as:

1e?_, , 2e*_,  2(e*_,
ey Pt = eV Tilgave)
2 2e% _,
= g{—‘lﬁB(%@)ﬂL@—@V%}
or A ,
2 11\ e
—(p—41B(r,0)) = —=— = | =
s(p—4rB(1,0)) <15 21>n2‘p2+9@2’
or eventually:
9 2 2
N2V —£?V - %—KVQOQ + kg — e = 5/1(47‘(‘3(1/, 0)). (3.20)

By (3.18), we get up to O(e°)

o0 1 oo
—52/ Y §V(90 +2¢py) dv = / / K(B(v,0) — 1) dQ dv.
vy 1% 52

Thus, the energy equation (3.6b) becomes:

00 N >

Equation (3.21) and the two approximate equations (3.18) and (3.20) form the SP3 approxi-
mation to (3.6a) and (3.6b). The SP3 equations can be expressed in an algebraically simpler
way. First, we multiply 0 x [(3.18)] + (3.20):

2 e 1[0 9 2
/4(9— g>(47rB) = —¢ V-EV<§(90~I—2¢2)+£902) +/€(990+g02 - 590)

Value of 6 is required so that two functions in the braces on the right are scalars multiplies by
each other. The required values of 6 are needed such that

9 9 9
2 _z _ 2 = .22
m (ecp + @2 5@0) 3(g0+ ©2) + 25 P2 (3.22)

where ;2 > 0 is a constant needed to be calculated. The challenge in equation (3.22) is that
it has two unknowns ¢ and ¢s. To overcome this difficulty, we reformulate equation (3.22) in

this form: p ) 00 o
— =% -Z d p?==+_—.
3~/ ( 5) e =g T s

By eliminating §, we get a quadratic equation in 2,

2, 1\ 1, 9
21 =,2  ——- — 2 7
H (3 14) o T

which has two positive solutions,

, 3 2 [6
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The corresponding values of 6 are

9o 3 /6 9 3 /6
g, = — — 2,/ d - hy= 2+ 242
=357V 2= 5577\ 5

Relation (3.22) implies, for n = 1, 2,

00— 2V i(arB,0) = (=9 (229 4 5) (0ot 00— 26). (323)
5 K 5

This suggests that two new independent variables are needed to be defined for n = 1, 2,

Onp + 2 — 2/5¢ ©2
%: =p+

P & BN 24
0, —2/5 b —2j5 P (3:24)

where
1 5

%:971_—2/5:§(1+(—1)"3 g)

The two equations in (3.23) become

e

Ii(47TB(V, @)) =-V- ( B le) + /ﬁbl, (325&)
e

k(4rB(r,0)) = -V - ( - V¢2> + Ki)a. (3.25Db)

The diffusion equations are uncoupled in this form the of SP3 equations. However, a weak
coupling is still a drawback and it is shown in subsection 3.2. We used the linear transformation
of variables above according to the formula,

p=TNTNY g =BT (3.26)
T2 N T2 M
The three constants can be defined as [79]:
1 7 /5 7 /6
Y2 — M 30V6 36V5
V2 1 5) M 1 ( 5)
wp = =—(3+1/= , Wy = =—13—1/=], 3.27b
R 6( 6 S p-m 6 6 ( )

¢ and ¢y can be written as ¢ = wi +wathe and @y = wp(hg — 1) respectively. This can lead
to:

1 1 1
g(@ + 2p2) = g(wl — 2w )1 + §(W2 + 2wo) Ve = a1 + agds.

Two constants are introduced here, which are equal to:

w) — 2wy 1 \f wy + 2wy 1 \f
“ 3 30 ( 6>’ 2 3 300" VG (3.28)

The SP3 equations (3.21) becomes:

00

== (3.29)

V. (SV@) + /00 V- %V<CL1¢1 + agy) dv

V1

The SP3 equations (3.25) and (3.29) are asymptotic when either  is independent of space or
the problem has a planar-geometry space dependence.
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3.2 Derivation of the simplified Pn boundary conditions

Developed boundary conditions for the SP; and SP3 approximations, the transport problem
in (3.6b) with the boundary condition in (3.3) are taken into account. The transport equation
(3.6b) is considered

Yv > e Q-VIx,Q) +rIx,Q) =rB(1r,0), xeV,

with semi-transparent boundary conditions on 0V
I(x,Q) =p(n-I(x,Q) + (1 — p(n- Q))B(V, ©y), n-N<O0.
Same like what has been defined earlier, the mean radiative intensity:

p(x) = /52 I(x,9Q) dQ.

The two integrals of the penetration radiation are also defined from mi = 1 and 3,

Li(x, 1) = /m.Q<0 Poi(|Q - 1) L,(, 1) d2
~ ([ Pul2-n)1 - -] d0) Biv,6y)
= (or [ Pustiolt = sl ) B 00

= pmiB(v, 6y), (3.30)
where
(1 —2r)m, mi =1,
—(1 + 27“5)7?, mi = 3.
Here, the Legendre polynomials of order 1 and 3 are used,
5 3
Pi(u) = p and  Py(p) = 5 = op,
and the integrals are defined as:
1 1
ro= / po(—p) d, rs = / Py(p)p(—p) dp,
0 0
1 1
ry = / 2p(—p) dp, re = / Po(p) P3(p) p(— 1) dps,
0 0
1 1
ry = / 12 p(—p) dp, ry = / P3(p) Ps(p)p(—p) dp,
0 0
1
ry = / 1 Ps(p) p(—p) dp.
0
The boundary condition for ¢ in the SP; approximation (3.13) is
14 3ry 2
Vv > o(x) + (1 i— 2:? i)n -Vp(x) = 47 By (v, 0y), (3.33)
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where B(v,0,) = B(v,0,(x)). For all frequencies v > vy and x € 0V, the SP3 boundary
conditions for ¢ and ¢5 in (3.18) and (3.20) are [12]:

(1= 2r1) 10(x) + (1= 8r5)e02(6) + (14 372) o - Vip()
—i—(l —|—33r2 + %) ;—Zn Vo (x) = p1B(v, Oy), (3.34a)

(14 8r3)7p(x) + (1= 8r) =02 (x) + Brum - Vip(x)

3
+ (m + 14(1 + 77"7)> Zn - Vipa(x) = p3B(v, ©y), (3.34b)
or in a formal style:

€ 5
A1p(x) + Agipa(x) + Aggn -Vip(x) + A4En - pa(x) = ;1 B(v,0y),

£ £
Bip(x) 4+ Bapa(x) + ngn - Vio(x) + B4EH Vs (v, 0) = p3B(v, O).

By using the formula in (3.26), the above boundary conditions can be transformed for ¢ and
9 into boundary conditions for ¢, and 5. We obtain

wo(y2 A1 — Ag)r + wo(As — 11.A1) s + wo(12 Az — A4) n- Vi
Fwo(Ag — 1143) n- Vi = p1B(v,0y),
wo(v2B1 — Ba)1 + wo(Ba — 7131)1/)2 + wo(v2 B3 — 34) n- Vi

+wo(Bs — 7133) n- Vi = p3B(v,0y),
or, we can formally rewrite for convenience,

€ €
p1B = Ciyr + Cohg + C3En -V + C4En - Vg,

€ €
p3B = Dy + Dahy + DSEn -V + D4E11 - Vihs.

The gradient terms n - Vi, in the first equation and n - Vi; in the second equation are
eliminated to get the boundary conditions for both v¢; and ¥y equations. This becomes:

(C1Dg — D1Cy)tpy + (CsDy — D304) n- Vi, = —(CoDy — DyCy)1pg + (Dapy — Cyps3)B

—(C3D3 — DyC3)1hy + (C3Dy — D3C4) n-Viy = (C1D3 — D1Cs)1py — (Dspy — Csp3) B

Thus, by setting D = C3D4 — D3C; and defining constants

= ——2 T % = 2372 28
1 D ) 2 D )
5 GD=DiC . GoDi— CaDy
1 — D ) 2 — D )
~ Dypr — Ciyps ~ C3p3 — D3py
m=——75 =5
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we get the following boundary conditions for the SPj:

—Batha(x) + mB(v, ©p) = aqthr(x) + Zn - Vi (x), (3.40a)

—B111 (%) + 12 B(v, ©p) = atha(x) + %n - Vo (x). (3.40b)

Equations (3.40a) and (3.40b) are compatible with the diffusion equations (3.25a) and (3.25b),
respectively with a weak coupling of ¥, and 1),. If we consider that no reflection is occurring
(p = 0), then all the constants from 7, to r7 will be zero. The value of D = ﬁ\/% and all
the constants in (3.40a) and (3.40b) are:

5 5 5 5
— 2 (34411 —), :—(4—11\[),
a 96<3 + \/; a2 = g5 3 6
5 5 5 5
= —(2- _)a = - _>7
b 96< \/; & 96<2+ 6
5% 5 5% 5)

’71—7(“\@)’ m=75(3-15)

The above equations can be performed for any other boundary conditions.

3.3 Summary of the SPy approximations

In this section we summarize the governing equation for SP; and SPj3 approximations for
radiative heat transfer in both gray and nongray media.

3.3.1 SPy equations for nongray media

For the SP; approximation:

52% -’V (%V@) = - / k(47 B(v, ©) — )dQ dv,
" (3.41)
2
-V (3—KV90> +rp = 4rkB(v,0),
equipped with the following boundary conditions
2 V1
6(% V@) ‘n—h(0,—0) = aw(g) / (B(V, ©) — B(v, @))du,
n
o Yo (3.42)
+ org 3 R
. = 4B
7 (1—2r13(/<c+0)>n(x) Ve B, 6).
and initial condition
O(x,0) = Op(x). (3.43)

In (3.41)-(3.42), the Planck function B(v,©) is defined as

3 -1
B(v,0) =n? 2 Py <ek}z@ —1) :

c2
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and the variables r; and ro appeared in the boundary conditions are defined above.

For the SP3 approximation:

52§ — £’V (%V@) = —/ k(47 B(v, ©) — )dQ dv,
2,2
V. (5:1W1) + Ry = AneB(v,0), (3.44)

2,,2
—V-(E:QWQ)H% — 47kB(v, 0),

equipped with the following boundary conditions

2 1
g<s V@) ‘n—H6,-0) = aw(%) / (B(u, ©) — B(v, @))du,
1 0
arths +—n(%) - Ve = —Bus +mB(v,0y), (3.45)

QotPa + Zn(fc) Vipy = —fihr +meB(v, 0y),
and initial condition
O(x,0) = Oy(x). (3.46)
3.3.2 SPn equations for gray media

For the SP; approximation:

5288—(;) — &’V <%V@> = —k(47B(O) — ¢),

) (3.47)
5
-V <§Vgo> + ke = 4rkB(0),

equipped with the following boundary conditions
2
5<% V@) ‘n—hO,—0) = anr (—) (B(@b) - B(@)) dv,

2¢ R
Y2 + %n(x) . Vg& = 47TB(@(,),

(3.48)

and initial condition
O(x,0) = Op(x). (3.49)
In (3.47)-(3.48), the Planck function B(©) is defined as
B(@) = 03@4,

where op is the Boltzmann coefficient.

For the SP3 approximation:

299 _ oy (%ve)) S (47TB(G)) - M) ,
Y2— N

V. (8 :1 wl) Ve = ATkB(O), (3.50)

—V-(5:2v¢2)+w2 — 47kB(O),
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Figure 3.1: Temperature distribution obtained for the cooling example at time t = 4 minutes
using the full RHT model and the considered SPy approximations.

53



3.4. NUMERICAL VALIDATIONS

470 -

440

410+

Temperature (K)
Temperature (K

w
&
3

350

Figure 3.2: Cross-sections of the temperature shown in Figure 3.1 at the main diagonal for the
considered values of the optical parameter ¢.

equipped with the following boundary conditions

5<% V@> ‘n-h6,—-0) = ar (%)2 (B(@b) - B(@)) dv,
ity +-n(®) Vi = —Bata +mB(Oy). (351)
Qs+ —n(%) - Vi = —Bity +mB(6y),
and initial condition
O(x, 0) = O(x). (3.52)

3.4 Numerical validations

An example is carried out in this section to validate the simplified Py approximations against
the RHT and to show the effect of different values of medium thickness on the heat distribution.
An unit squared cavity is considered for this study with Robin boundary conditions (3.48)
for the temperature on its sides. The surrounding temperature Oy is 300 K and the initial
temperature Oq is 1000 K at time t = 0. Figure 3.1 shows the temperature behaviour of
Rosseland, the SP; and the SP3 approximations against the obtained results from the full
radiative transfer equation at different values of the medium thickness of ¢ = 1, 0.5 and 0.1
while the absorption coefficient x = 1, convective heat transfer coefficient A = 1, thermal
conductivity & = 1, the Boltzman constant is 5.67 x 107% and the scattering coefficient o =
0. The size of the timestep is fixed to At = 107*. It can be seen that results obtained from
the SP( are inaccurate. The temperature evolution obtained from the SP3 approximation is
closer to the full radiative transfer results at the three chosen values of €. The second part is to
consider the accuracy of the results by taking the cross-sectional results at the main diagonal.
Figure 3.2 shows the effect of medium thickness on the transfer of heat. Results show that
the simplified approximations are in a good agreement with the full radiative transfer. It can
be seen that with different radiation scenarios, the SP3 approximation is accurate and it can
be reliable for the radiative heat transfer applications. It is also more accurate than results
obtained by the Rosseland approximation. With smaller values of e, the photons tend to
keep the energy inside them. For more details about the validations procedure, we refer to
[133, 132, 143|. Following facts are obtained from the validation results. First, radiation can
not be neglected. Results from the SP( are overestimated the real value of the temperature in
this cooling process example. Second, results from Rosseland approximations failed to produce
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the accurate rise in the boundary conditions specially with higher values of €. Solving one single
equation (diffusion) is not accurate in radiation heat transfer. Third, the simplified P; and Pj
gave the closest results to the full radiative transfer equation under different optical regimes.
Fourth, with lower value of e, the SP3 gave us a full convergence which is required as an
evidence of a successful solver. The last fact worth mentioning is that considering a higher
order of SP approximations (more than SP3) is not needed specially with low values of e.

3.5 Concluding remarks

The asymptotic name was chosen as the approximation represents the transport solution in
asymptotic regions that are far away from the boundary layers and sources in which the
behaviour of the scalar is exponentially. Approximation for the full radiative transfer are needed
in order to reduce the computational time while maintaining the accuracy of the solution. The
main focus of this chapter was then to develop qualitative and asymptotic approximations able
to capture the complex features of the radiation heat transfer. Asymptotic approximations are
introduced, the so called simplified Py approximations for the radiative transfer equation. The
simplified Py approximations help us to obtain an extension to the approximate solution of
the arbitrary high order. This is accomplished by transforming the equation of transfer into a
set of partial differential equations. The best element these approximations can offer is that
the conversion of the governing equation to relatively simple partial differential equations. The
reason behind adopting the SPy approximations is that they offer the possibility to improve
the accuracy of the solution by capturing the transport effects while still preserving the features
that makes the diffusion solver attractive. Two higher-order of N approximations are considered
for this thesis that are SP; and SP3. Since most of the studies done by authors from the
literature are based on SP; approximation as it is the simplest approximation. Higher order
of SP3 approximation is considered here in order to compare in the next chapters between
SP; and SPj3 in terms of accuracy. These approximations allow us to do further investigation
as they are less complicated compared with the standard spherical harmonic Py equations.
These approximations are applied in the next chapters to help us in studying the effect of
natural and forced convection-radiation while considering the accuracy with the lowest possible
computational requirements. The SPs is not considered in this study as the solutions of all
even-order SPy equations are discontinuous at the interface with different cross sections [147].
The even-order SPy are not employed because the transport scalar flux is spatially continuous.
However, the SP3 approximation reserve the advantages that the SP, is unable to keep. As
far as the efficiency is concerned, it has been proven in this chapter that the simplified Py
approximations can be chosen to deal with engineering applications related to radiative transfer
and heat flow for optically thick media. It became an evident that further approximations
are not needed as the SP3 gave us the required results with acceptable computational time.
Higher approximations can results in slightly more accurate results. However, the increase in
the accuracy is negligible as it is very small while causing a dramatic increase in the numerical
effort. The algorithms used and the approaches adopted are approved to be accurate and can
easily be integrated and used in an existing library or CFD codes for heat flow applications.
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Chapter 4

Simplified Py models for natural
convection-radiation heat transfer

In this chapter, the SPN models are performed to study effects of natural convection-radiation in
enclosures with different heat transfer characteristics and inclined angles. Inclusion of complex
geometry heating source inside the cavity is considered and investigated as well. Radiation
heat transfer between two or more surfaces depends very much on the radiation properties
of the surfaces. One of these properties is the orientation of two surfaces relative to each
other. The effects of the orientation of the surfaces relative to each other on the radiation heat
transfer between the hot and cold sides are known from a parameter called the view factor
[45]. The view factor is defined as the fraction of the radiation leaving a certain surface that
strikes a second surface. In particular, the aim is to investigate the behaviour of heat transfer
(radiation and natural convection) inside a cavity. The left vertical wall of the enclosure is
heated while maintaining the vertical right wall at room temperature with both adiabatic
upper and lower walls. The governing equations are the Navier-Stokes equations subjected to
the Boussinesq approximation to account for the change in the density. The natural convection-
radiation equations are solved continuously to obtain the temperature, velocity and pressure.
The Galerkin-characteristics and the Taylor-Hood finite element methods have been adopted
to solve the equations using triangular mesh. Effects of the Rayleigh number, the Planck
coefficient and optical thickness on the results are considered, presented and analyzed. Results
show that the adiabatic walls, the Planck coefficient as well as the inclined angle play an
important role in the distribution of heat transfer inside the cavity. The chapter is organized as
follows. In section 4.1, geometric set up and an introduction to the coupled system consisting of
the Boussinesq approximation and the radiative transfer equation are presented. Dimensionless
derivations are produced in section 4.2. The SPy approximations are formulated in section
4.3 where we especially introduce the SP; and SPj3 systems. The numerical methods for
the solution of the SPy coupled systems are based on the Galerkin-characteristics method
which is presented in sections 4.4 and 4.5. In section 4.6, results are presented. Subsection
4.6.1 shows the validation for the obtained results. Finally, numerical results are discussed
in subsection 4.6.4, where we compare the different models for different flow and radiation
regimes. Especially, we present numerical comparisons for wide range of physical parameters,
e.g. the optical depth, the Prandtl number, the Planck coefficient and the Rayleigh number.
Conclusions are summarized in section 4.7.
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Figure 4.1: The geometry of the squared cavity with inclination angle used in the current
study.

4.1 Governing equations for natural convection-radiation

The radiation heat transfer between two surfaces forming an enclosure that can be solved using
a set of equations. The dimensions of any physical quantities can be manipulated algebraically
and the results can be utilized for providing useful information for the physical processes
consideration. Authors defined dimensional analyses as a process for eliminating irrelevant
information from a relation between different physical quantities [142]. In [113], it was defined
as a way that can be used to represent and clarify relationships between physical quantities.
There are two basic approaches to establish the dimensionless relations that characterize the
behaviour of a system [55]. The first approach is to study the equations that control the
behaviour of the system. The second approach is to find the suitable physical quantities that
can lead to the desirable dimensionless set of equations.

For any equation to meaningfully express properties of a physical system, this equation must
have numerical equality and dimensional homogeneity between its right and left hand sides
[140]. Dimensional analysis is concerned only with the nature of the properties involved in
the situation and not on their numerical values, particularly where the numerical value of the
dimensional quantity is a dependent on the system of units used for its measurement [21].
This study focuses on choosing the accurate dimensional equations for solving the natural
convection-radiation heat that flows inside the squared enclosure shown in Figure 4.1. The
current system contains a squared domain with all sides of length L and inclination angle
¢ subject to a temperature difference (0% — ©r), with ©% and ©f are the hot and cold
temperatures of the vertical walls. Primed variables in the current study refer to dimensional
quantities. The enclosure consists of a gray, emitting, absorbing and non-scattering fluid
surrounded by rigid walls. The fluid is considered to be Newtonian and all the thermo-physical
properties are treated to be constant with an exception for density in the buoyancy term that
can be adequately modelled by the Boussinesq approximation [57]. The governing equations
for these assumptions are:
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Conservation of mass: B By
U v
— 4+ —=0. 4.1
ox + dy (4.1)
Conservation of z-momentum:
ou  ,ou  ou 10 <82u’ 0%u’
=p

W_|_u%_|_va—y-|-;8—gc_ W—i—a—yQ)—i—gQ(@—@mf)smG. (4.2)

Conservation of y-momentum:

o' o'’ o' 10y 20 O
R TR Y i ‘- g 4
ot u8x+vay p Oy @<ax2+ay2>+9Q(@ Oyer) cosb (4.3)
Conservation of energy:
00’ ,6@’ /8@’ o 920 520/ ,
Pref0p<at +u B +v 8y>_\g(—8x2 +a_y2>_v.qH (4.4)

Here, p,cr is the fluid density, ©,.; the reference temperature, p’ the dimensional pressure,
u’' = (u/,v")T the velocity field, Cp the specific heat at constant pressure, ©' the temperature,
p the kinematic viscosity, g the gravity force, & the thermal conductivity and p the coefficient
of thermal expansion. The radiation effect is taken into account in the equation of energy as
the divergence of radiative heat flux, V - ¢f. This term is given by

Vg = /S R(B/(@/) - I’) ds, (4.5)

where I’ = I'(w,x) is the spectral intensity at position x = (z,y)? and propagating along
the angular direction w in the unit sphere S?. The intensity I’ of a non-scattering medium is
obtained from the radiative transfer equation

w-VI'+kl' =kB(0), (4.6)

where k is the absorption coefficient and B’(©) is the spectral intensity of the black-body
radiation given by the Planck function

B'(0) = 050*, (4.7)

with op is the Boltzmann constant.

4.2 Dimensionless equations for natural convection-
radiation

The governing equations for the mass, momentum and energy conservations within the enclo-
sure. We define the following nondimensional variables for obtaining dimensionless formulation

X W g e
L’ L e’ Pref€?’ Oy — 04’

K= l ]:L qui 0 — o j:u

K”I‘Ef7 O-B@ﬁef’ O-B@?«ef’ eref’ @T’ef ’
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where € is thermal diffusivity, 7 a general parameter used in the calculation of the non-
dimensional radiation energy, L length parameter. The optical depth 7, the Prandtl number
Pr, the Rayleigh number Ra, and the Planck coefficient Pl are defined as

Oy —Oy)L? <
T = /{/refL’ Pfr’ — g’ Ra f— /Bg( H C) y Pl - %. (4-8)
€ Qe opO;. ;L
Hence, the equations (4.1)-(4.4) can be rewritten in non-dimensional form as
V-u = 0,

Du 9

i +Vp— PrV°u = RaPrOe, (4.9)
DO ) 1
D VO T TEY

where e = (sin 6, cos )T is the unit vector associated with the inclination angle and % is the
total derivative of any physical variable w defined by

Dw  Ow
E— E+u~Vw. (410)

The non-dimensional radiative heat flux is given by
1
Van= (¢ B(O)), (4.11)

where ¢ is the total incident radiation defined as

o(x) = / I(w,x) dw. (4.12)
S2
The dimensionless of Planck function is given by
B(©) = 46*,
The radiation heat transfer equation (4.6) can be rewritten in non-dimensional as
Tw- VI + kIl = kB(0O). (4.13)

For the formulation of a well-posed problem, equations (4.9) and (4.13) have to be solved in
a bounded domain €2 with smooth boundary 02 and subject to chosen initial and boundary
conditions. As shown in Figure 4.1,

89 - Pl U FQ U Fg U F4, (414)

where I'; and I's are the hot and cold walls, respectively, whereas I'y and I'y are adiabatic
walls. Hence, the boundary conditions are

u(t,x) =0, vV x € 01, (4.15)
for the flow, and
O(t,x) = O, Vxely,
O(t,x) = Oc, Vxely, (4.16)
Il()A() : V@(t,f() = O, Vx e FQ U F4,
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for the temperature. In (4.16), n(X) represents the outward unit normal in X with respect to
0%). The boundary conditions for the transfer of heat radiation are for diffuse black walls

I(x,w) = B(Op), Vxely,
I(x,w) = B(Oc), Vxel;, (4.17)
n(x) VItx) = 0, Vxel, uly,

where the boundary regions I';” are defined as
Iy ={xel;: n(x)-w < 0}, i=1,...,4.

It should be noted that other boundary conditions for flow, temperature and radiative intensity
can also be incorporated in the chosen formulation without major conceptual alteration.

4.3 The simplified Py equations

Clearly, the coupled problem presented in Section 4.2 is numerically coupled due to the di-
rectional dependence of the radiative intensity. Main reduction of the discrete space can be
accomplished when replacing the equation of the radiative transfer with a new model that can
involve physical quantities which are independent of the direction of the angle. To do that,
the simplified Py approximations are needed. For the purpose of completeness, we summarize
how the SPy approximations are derived from an asymptotic analysis applied to the radiation
heat equation [78, 79]. The first step is to rewrite the equation (4.13) as

(1 +lw v) I = B(O).
K
Then, a Neumann series are applied for the inversion of the transport operator

I = (1 + v)_l B(©),

K

%
/N
—_
|
I
&
<
+

| %
©
4
|
| %
©
4
+
N—
ey
e

Integrating with respect to w is considered over all directions in the unit sphere S?, and using

/82 (w- V)ndw = (1 + (—1)”) an:lvn,

The formal asymptotic equation is obtained for ¢

72 474 4 4476

47B(©) = (1 - —V?

- — 0 %). 4.1
eyl T VE > 2+ 0 (4.18)
The SPy, SP; and SP3 approximations are obtained by neglecting terms of O(72), O(r*) and
O(7®). In a similar manner, higher order approximations can be derived. The SP, approxima-
tion reduces (4.18) to

47B(O) = o. (4.19)

This corresponds to the thermodynamic equilibrium for which the radiation effects are dropped
out from the energy equation in (4.9). In the present work, the SP; and SP3 approximations are
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considered and our methods can be extended straightforwardly to other SPy approximations.
Thus, the SP; approximation:

2
-
ATB(O) = ¢ — 32 Vo 4+ O(14),

which is equivalent to
2

—;—KV% + ki = kB(O). (4.20)

The SP3 approximation:

A1t 4475
ArB 1— 2 =T
B(©) = ( SRV A Y

V6> o+ O(1%),

and its associated equations are given by

2
——M1V2¢1+fwl = rdnB(0),

. (4.21)

——u2V Yo+ Krpe = kKATB(O).

The new variables 1 and ¢ in (4.25) are related to the total incident intensity (4.12) by

_ Y21 — 71902. (4'22>
Y2 — TN

The radiative heat flux can easily be formulated as in (4.11), once the mean intensity ¢ is
obtained from the above SPy approximations. The boundary conditions for the SPy approxi-
mations are strongly connected to the Py approximations Marshak’s conditions and are derived
from variational principles. Here, boundary conditions which are consistent with the temper-
ature boundary conditions (4.16) are formulated for the SPy approximations. Hence, for the
SP; equation (4.20), boundary conditions are

én(f{) Vot %)+ (t,X) = B(Oy), Vxel,
Sn(%) Vet %)+ o(tX) = B(Oc), Vxely, (4.23)
n(x)-Ve(t,x) = 0, VxelyUTy.

For the SP3 equations (4.25), boundary conditions are given by

%n(ﬁ) Vori(t, %) + arp1(t,%) = mB(On) + fapa(t, %), Vi eT,
Tn(%) - Veu(t.%) + arpr(t. %) = mB(Oc) + fopalt, %), VX €Ty,
o) Veult %)+ apa(tX) = mB(On) +fip(tX),  Vxeln  (424)
%n(i) Vo (l,X) + aspa(t, X) = mB(Oc) + bipi(t,x),  VxeT;,
n(x) - Vi (t,x) =n(x) - Vpo(t,x) = 0, VxeTyUuly.
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where

It is worth noting that the current parameters are valid only when the radiative transfer
equation (4.13) is supplied with non-reflective boundary conditions. In summary, the SPy
approximation is:

ArB(©) = ¢,
the SP; approximation:
2
-
B(©) = ——V? :
KB(O) = —o-V7p + ry
and the SP3 approximation is:

2
_%N%VQ%JFF&% = r4rB(O),
L

—;/LQV Y2+ Krpa = kKATB(O).

4.4 Finite element solution procedures

Solving the governing equations presented in section 4.3 can be interpreted as a fractional
step approach where the convection part is decoupled from the Stokes/Boussinesq part in the
temporal discretization. Thus, at each time step, the temperature and the velocity are updated
by solving the convection equations

(Z_u +u-Vu = 0,

t (4.25)
00
E +u-VO = 0,

then, the Stokes/Boussinesq equations in (4.9). The equations are solved inside the squared
enclosure. Notice that the equation of energy in (4.9) has been decoupled from the equation of
momentum, which can be solved separately once the convection step (4.25) is approximated.

4.4.1 The Lagrangian stage

The finite element Galerkin approximations to the convection equations usually suffer from
instability problems. This is due to the fact that the traditional finite element Galerkin
discretization leads to the central difference approximation of differential operators. The
characteristic-Galerkin schemes are considered for improving stability, streamline upwind fi-
nite element Petrov-Galerkin. The characteristic-Galerkin scheme is carried out by discretizing
the original equation in time along the characteristic curves before applying the spatial dis-
cretization. It can be implemented in the framework of the typical Galerkin finite element
formulation. We describe the ingredients of the numerical scheme used in this section. We
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Time

n+1

Figure 4.2: Schematic diagram illustrates the characteristics.

chose a time step At to discretize the time domain into subintervals [t,,t,.1] with t, = nAt
and n = 0,1,... We use the following notation w"(x) = w(x,t,). Furthermore, the character-
istic curves associated with the material derivative (4.10) are denoted by X(x,t,1;t) which
solve the following initial-value problem

dX(X7 tn—i—l; t)

y = u(X(x,tns1;t),t), YV (x,t) € QX [tn, tns1],

(4.26)
X<X7 tn+1;tn+1) = X

Notice that X(x,t,1;t) = (X (X, tni1;t), Y (X, tyi1; t))T is the departure point and represents
the location at time ¢ of a particle that arrives at time ¢, to the point x = (z,5)?. Figure
4.2 shows the characteristics. Hence, for all x € Q = QU 9 and t € [t,, t,,1] the solution of
(4.26) can be written as

tn+1
X (X, thy1;tn) =X — / u (X(x,tpy1;t),t) dt. (4.27)
tn

It is important to obtain an accurate estimation of the characteristic curves X(x,t,11;t,) as
it affects the overall accuracy of the characteristic-Galerkin approach. In the current study, a
technique is utilized which is first proposed in [144] in the context of semi-Lagrangian schemes
for integrating the equations of the weather prediction. To approximate the integral in (4.27),
a second-order extrapolation based on the mid-point rule scheme is used. Here, we use C to
denote the displacement between a mesh point on the new level x; and the departure point of
the trajectory to this point on the previous time level X (X, t,11;t,), €.g.

C=x—X(x,thi1;t)
Applying the mid-point rule to approximate the integral in (4.27) yields
C = Atu(X(x, tni tur1/2)s tura/2)s (4.28)

utilizing the second-order extrapolation

3 1
u(x, tyiay/2) = éu(x, tn) — §u(x, tn-1), (4.29)
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4.4. FINITE ELEMENT SOLUTION PROCEDURES

and the second-order approximation is:
1

X(X, tn; tn+(1/2)) =X-= 58
The following implicit formula is obtained for C:

3 1 1 1

C=At(su(x-=0,t,) — zux—=C,t,1) ).

2u(x 5 ) 2u(x 5 1)

The following iterative procedure is considered in order to compute C:

SRR )

00 — Ag( 2 Lot 1 Lot _ 0
= (ﬁu(x — 5[: tn) — Eu(x — 5[3 ,tn_l)), k=1,2,...
The iterations in (4.30) are terminated when the following criteria
6% — C-
G| < tol
is fulfilled for the Euclidean norm || - || and a given tolerance tol. It is known that [124]:

1
C—C¥ < FIC=CEDvuar, k=12,

Hence, an important condition for the convergence of iteration (4.30) is that the velocity

gradient satisfies
[|Vul|At < 1. (4.31)

Since the Courant-Friedrichs-Lewy condition associated with the advection term is relaxed
to the condition (4.31). The main advantage of this condition is that it allows for large
time steps to be used in the simulations. Likewise, the condition (4.31) guarantees that the
characteristics’ curves will not intersect during the At time size. We set the iteration until the
trajectory changes by 1075, The discretization of the space domain € is proceed as follows.
Given hg, 0 < hg < 1, let h be a spatial discretization parameter such that 0 < h < hg. A
quasi-uniform partition €, C Q of small elements 7, is generated that satisfy the following
conditions:

Ne
(i) Q= U T;, where Ne is the number of elements of 2.
j=1

(ii) If 7; and 7; are two different elements of €2, then

Pi;, a certain point in the mesh, or

TiNT; = 4Ty, acommon element side, or
(),  far away from each other.
(iii) There exists a positive constant k such that for all j € {1,---, Ne}, Z—; >k (h; < h),

where d; is the diameter of the circle inscribed in 7; and hj; is the largest side of 7;.
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0 Temperature, velocity and radiation nodes <> Pressure nodes

¢

Figure 4.3: Definition of the Taylor-Hood finite elements.

The conforming finite element spaces used in this research for velocity-temperature-radiation
and pressure are the Taylor-Hood finite elements P,,/P,,_1 i.e., polynomial of degree m > 2 for
{u,v,0, p} and polynomial of degree m—1 for the finite element { P} on simplices, respectively.
A depicted illustration can be seen in Figure 4.3 for triangular mesh. For such elements, the
discrete velocity-temperature-radiation and pressure fields must satisfy the inf-sup condition.
This property guarantees the convergence and stability of the approximate solutions, compare
[9, 153]. These elements can be defined as

v, = {vheCO(Q): ol € S(T)), VTth},
0, = {qheCO(Q): aly € R(Ty), \ﬂ;eﬂh},

where C°(Q) represents the space of bounded and continuous functions in 2, S(7;) and R(T;)
are polynomial spaces defined in 7; as S(K;) = P,,(7;) for simplices, S(7;) = Qn(7;) for
quadrilaterals, R(7;) = P,_1(7;) for simplices and R(7;) = Qm-1(7;) for quadrilaterals.
Hence, the finite element solutions to u"(x), v"(x), T"(x), ¢"(x) and p ( ) are formulated as

M

n¢]7 h - ZAn¢J>

7=1

N
oh = Zé;‘cbj, ph=>_ P,
=1 =1

Ui 9;,

nM:
an

(4.32)

where M and N are representing the number of velocity-temperature-radiation and pressure
mesh points in the partition €),. The functions U, V", A} and P;' are the corresponding
nodal values of uj(x), vy (x), ©)(x) and pj(x), respectively. They are defined as U}' = uj(x;),
Vi =wup(x;), A} = @”(xj) and P/" = pj(y;) where {x;}}1, and {y;}}_, are the set of velocity-
temperature- rad1at10n and pressure mesh points in the partition €2y, respectlvely, so that N <
M and {yi,...,yn} C {x1,...,xp}. In (4.32), {¢;}}L, and {¢;}}_, are the set of global
nodal basis functions of V}, and S),, respectively, characterized by the property ¢;(x;) = d;;
and ¢;(y;) = 0;; with J;; denoting the Kronecker symbol.

Taking the assumption that for all j = 1,..., M, the pairs (X}, ’7;) and the mesh point values
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4.4. FINITE ELEMENT SOLUTION PROCEDURES

{U7, V}*, A7} are known, the values {ﬁ]", Vj”, A?} are computed as

an = up(Xp;) = ZUk¢k Xhi)s Vgn = v, (XG;) = ZW% XGi)s
(4.33)

A = 0,(X};) = ZAk¢k XGi)-

~

Then, the solution {a}(x), v (x), ©F(x)} at the characteristic feet is obtained by

=T, =Y Ve, 60 =Y Aje0. (439

It is worth mentioning that the traditional characteristic-Galerkin techniques in [23, 117] eval-
uate 4y, U; and C:)Z using an L2-projection on the space of the velocity-temperature-radiation
Vi,. The evaluation of integrals in the L?-projection is computationally very demanding in
several applications.

4.4.2 The Eulerian stage

We compute the characteristics and we interpolate, uj, 05 and (:)Z are known at the character-
istic feet. The procedure to advance the solution of (4.9) and (4.20) or (4.9) and (4.25) from
a time t, to the next time ¢, is achieved using the following steps:

1. Solve for mt!
2

—;—KVQQD"H + k" = KB(O"), (4.35)

subject to the boundary conditions (4.23) in case of the SP; approximation or

2

—%MVQ T+ Rt = kB(OM),
L (4.36)
——M2V2 ntl H(p721+1 _ HB(én),
n+ n+1
SOn-i-l — 72901 71%02 ) (437)
T2 — M
subject to the boundary conditions (4.24) in case of the SP3 approximation.
2. Solve for @1 X
@nJrl _ @n
~ v2@n+1/2 v n+1 4.38
subject to the boundary conditions (4.16).
3. Solve for a"*!
l—ln—i-l — Q"
N EERA L i Prv*at? = RaPro™/?e, in Q,
(4.39)

att = o, on I.
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4. Solve for p and u"*!

un—i—l _ ﬁn+1

A7 +Vp = 0, in Q,
V-u'tt = 0, in (4.40)
n-Vu"t = 0, on I.
5. Update p™*!
Pt ="+ 2.

In (4.38) and (4.39), ©"/2 and a"*'/? are defined as

1
un+1 + _un7

1 1. 1
@n+1/2 — _@nJrl —on sn+l1/2 _ —
S SO 2 2

The current solution of (4.40) leads to a pressure-Poisson problem for p of the form

1
Vi = Ev-ﬁnﬂ, in Q,

(4.41)
n-Vp = 0, on I

Furthermore, in the solution procedure, only linear systems have to be computed at every
time step to update the solution {p"™! u"*! vt " 1Y from (4.35)-(4.41). To solve
the current linear systems in our approach, a BICGSTAB algorithm is implemented.

4.5 Approximation of Stokes/Boussinesq system

In order to solve the Stokes/Boussinesq problem in (4.9) at each time step, a procedure is re-

quired. This is done by applying the conjugate gradient approach [20]. The Stokes/Boussinesq
solution is solved in the following way:

Step 1. Solve for ©}*! € Vy, such that for all v, € V!
1 n+1 n+1 1 An
E @h ’Uth + V@h : V?)th = E @h’ljth. (442)
Step 2. Given P, = P}, solve for u, € V}, x V}, such that for all v, € V}, x V},

1 1
A / u, v, d§) + Pr / Vu,, - VvdQ) = A / a,v,dQ — Pr / Vi - Vv,dQ)

+ / POV - v,d) + PrRa / Ortly,ed.
(4.43)

Afterwards, calculate

thV‘uh.
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Step 3. Solve for v, € @, such that for all ¢, € Qy,

/ Vi, - VrdQ = / v, dnd<, (4.44)
Q Q

and set
1
gn = Ewh + T Wy = 9p-
From m > 0 , based on the assumption that we know P}Em),uglm),rgm), g}(lm),wém),

P gl pmid g md) | mi) g caleulated:

a. Solve for uy, € Vj, x V}, such that for all v, € V), x V},

1 m m m
N / i\"v,dQ + / v - Vv,dQ = / W™ €, (4.45)
and set
b. Compute
/ () (m) gy
h Yn
Pm =
/ A do
c. Set
P(m+1) = P}Em) - pmw}(Lm)a
u;Lm-‘rl) _ uI(lm) . pmﬁém)’
r](lm—&-l) _ T}(lm) . pmfgm)

d. Solve for 1/_1,(Lk) € S}, such that for all ¢, € S},

/ Vo™ - VndQ = / 7™ 8, dSQ,

and set

m+1 m 1 m 1 m+1
gé“zgﬁ)—pm(ﬁw,ﬁ)JriPWiH :

/rém—&-l)gi(lm—&-l)dQ
1. If

<'¢, then
/ r,(lo)g,(zo)dQ
PI?H — P}:nJrl uZJrl — uszrl
stop.
ii. Otherwise, compute
/r}(LmH)g}(LmH)dQ (m+1) (m+1) (m)
n= » o W = Yy + Ny
/ r,(Lm)g,(lm)dQ
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change m <— m + 1, go to step a. and repeat the process.
iii. End if

Notice that, the integration of equations (4.35)-(4.41) for triangular elements is easy and
described in many text books, compare [60] among others.

4.6 Numerical results

This section can be divided into two main subsections. First, complete validations and com-
parisons has been carried out to compare the obtained results with the results conducted by
several authors from the literature. Second, we carried out with our novel strategies and plans
after validating our methods and algorithms to create and understand different thermal sce-
narios that can serve the industry. Our novel simplified P3 approximation has been applied
for the first time to study the natural convection-radiation. For the first time, we have con-
sidered a squared cavity with different inclination angles and with the inclusion of complex
heat source inside it. We believe that this is the first attempt to apply the Taylor-Hood finite
element method with the adoption of Galerkin-characteristics method to study the natural
convection-radiation under turbulent conditions.

4.6.1 Validation of convection-radiation heat transfer without incli-
nation angles

The results have been extensively checked on benchmark problems to check the accuracy. For
verification of the numerical results, we have compared our results with different published
scenarios. The first validation that has been considered is comparing the accuracy of our
results with the experimental results obtained by Bajorek and Lloyd [130] for the pure heat
convection inside air-filled vertical squared cavity with all surfaces coated in black. The right
and left sides were the hot and cold walls, while the bottom and top are maintained adiabatic.
The results have been validated with the simulation results obtained by Vivek et al. [154] for
the convection heat transfer for the temperature values at the mid-height of the domain. Figure
4.4 shows an excellent agreement to the horizontal cross-sectional study for the dimensionless
temperature at the middle of the squared cavity along with the values of the Nusselt number
on the hot wall with [154] at Ra = 3.557 x 10°, Oy = 312.1 K, ©¢ = 296.6 K. The next
validation that has been considered is comparing our results with the results obtained by [76]
for pure convection. The upper and lower sides of the cavity remained adiabatic, while heat
transferred from the hot wall located on the left to the cold wall which is on the right. Figure
4.5 shows a very good agreement with our results obtained for the temperature contour at Ra
= 105. The third validation has been accounted for the pure double diffusion for a squared
enclosure. The right and left walls have been set as hot and cold sources respectively with no
heat transfer from the upper and lower walls. Figure 4.6 shows the obtained isotherm which
shows an agreement between the current study and the study that has been done by [110] and
[63] at Ra = 10*. The fourth validation that has been investigated by comparing our results
with the results taken by [63] for double diffusion at Ra = 10°. Figure 4.7 shows the agreement
with our current study results for the temperature distribution across the squared cavity with
the same set of walls that has been adopted by the previous references. The fifth validation
examined is with the inclusion of the radiation transfer of heat in a squared cavity. Figure
4.8 shows the comparison that has been obtained with the results carried out by [139] for
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Figure 4.4: A comparison for the cross-section of the dimensionless temperature with Bajorek
and Lloyd [130] and Vivek et al. [154] (left) and the convective Nusselt number (right) at Ra
= 3.557 x 10°.

Figure 4.5: A comparison for the temperature isotherms for our results (right) and the results
obtained by [76] at Ra = 10° (left).

accounting radiation at Ra = 10, Pl = 1.0, 7 = 5. It is worth mentioning that our approach
is valid for low value of 7. In [139], it was reported that at high value of 7, convective heat
became dominant and there was no effect for the radiation. We have performed the same values
of the pertinent parameters for calculating only the heat convection. Our results matches the
results conducted by [139] and shown in Figure 4.8. Our final validation accounts for the effect
of radiation-convection. The current results have been compared with cross-sectional results
examined by [76] at Ra = 10* and 10° with a fixed 7 of 1 and Pl = 0.1. Figure 4.9 shows a
very good agreement with our results taken for the horizontal cross sectional study for the
temperature at the middle of the enclosure.

70



4.6. NUMERICAL RESULTS

Figure 4.6: A comparison for the temperature isotherms from the obtained results (right), the
results obtained by [110] (left) and the results achieved by [63] (middle) at Ra = 10*.

Figure 4.7: A comparison for the temperature isotherms for our results (right) and the results
obtained by [63] at Ra = 105 (left).

4.6.2 Validation of convection-radiation heat transfer with inclina-
tion angles

The second part of the validation is taking into account the inclined angle as well as the
inclusion of a complex circular heater inside the cavity. Figure 4.10 shows an excellent match
with the results obtained by [63] at an angle value of 40° and with Ra = 10°. The inclined left
and right walls are the hot and cold walls respectively, while maintaining adiabatic inclined
top and bottom walls. Another validation that has been accounted for the results from two
inclined angles of 40° and 120° obtained by [75] with Ra = 10°. Figure 4.12 shows a very good
match with our convective heat results. One more validation is also taken into consideration
by comparing our results with the results carried out by [1] for a squared enclosure with
an inclined angle of 60° with Ra = 10°. Figure 4.11 shows close results compared with our
obtained results. The final validation considered is a cavity with inclined angle of 30° containing
a circular heating source at two values of Ra of 10° and 10° with a circular heater diameter
of 0.1. The inclined left and right walls are kept at cold temperatures while maintaining an
inclined adiabatic upper and lower walls. Figure 4.13 shows the convection heat transfer results
between the current results and the results accomplished by [114].
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Figure 4.8: A comparison for the temperature isotherms for our results (right) and the results
obtained by [139] at Ra = 10*, Pl = 1.0, 7 = 5 (left).
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Figure 4.9: A comparison for the cross-section non-dimensional temperature along the non-
dimensional z axis in the middle of the squared cavity obtained by [76] and the current study
at Ra = 10* (left) and Ra = 10° (right) at Pl = 0.1 and 7 = 1.

4.6.3 Validation of convective-radiative heat transfer in a cylindri-
cal annulus

More complex geometry is considered for validating the natural convection-radiation. Double
pipe heat exchanger is taken into our consideration. Figure 4.14 shows the diameter of the
inner pipe of the annulus geometry. The L is the space between the inner and the out pipes.
The Ty is the hot temperature, T¢ is the cold temperature and 6 is the angle of rotation that
moves in a clockwise direction. The value L/D has been considered according to the previous
published work to match their dimensions. The first validation that has been considered in
this study is a comparison of our natural convection heat transfer results with experimental
data from [73], numerical data from [159] and numerical data from [161] at Ra = 5 x 10° and
Pr = 0.7 with three rotational angles of 0°, 90° and 180°. Figure 4.15 shows a good match
between the conducted results and the previous published data. The second validation that has
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Figure 4.11: A comparison between the obtained natural convective results (right) and the
results obtained by [1] (left) for an angle of 60° with Ra = 10°.

been accounted for the results conducted by Jha et al. [59] for the interaction of the natural
convection heat with thermal radiation and our conducted results. Figure 4.16 illustrates an
acceptable match of results between the current study and the published work by Jha et al. [59]
for Pr = 7, the temperature difference parameter that appears in the dimensionless Navier-
Stokes equation of energy Cr = 1.5 and perturbation parameter that determines the effect
of their asymptotic expansion R = 0.1. Another validation has been done by comparing the
current study with the experimental results conducted by [73], simulation done by [134] and
simulation accomplished by [159] for values of Ra = 4.7 x 10* and Pr = 0.706. It can be seen
from Figure 4.17 that the temperature plume is in agreement with the mentioned results.

Figure 4.10: A comparison between the obtained natural convection results (right) and the
results obtained by [63] (left) for an angle of 40° and with Ra = 10°.
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Figure 4.12: A comparison between our natural convection results (right column) and the
results obtained by [75] (left column) for an angle of 40° (upper row) and an angle of 120°
(lower row) with Ra = 10°.

Figure 4.14: Cross-sectional view of the annulus geometry with 6 is the angle that moves in a
clockwise direction.
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Figure 4.13: A comparison between our natural convection results (right column) and the
results obtained by [114] (left column) for an angle of 30° for Ra = 10° (upper row) and Ra =
108 lower row with a circular heater diameter of 0.1.

Figure 4.17: Comparison of temperature plume between the current study (right), the pub-
lished work by [134, 73] (left) and simulation by Yang and Kong [159] (middle) for Pr = 0.706
and Ra = 4.7 x 10*. In the left Figure, the left part is the simulation results carried out by
Sheikholeslami et al. [134] and right part is the interferograms from the experimental results
of Kuehn and Goldstein [73].
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4.6.4 Obtained results

In all the results presented hereinafter, some variables are kept fixed using our chosen heat
transfer coefficients and boundary conditions. The upper and the lower walls of the cavity are
adiabatic. The hot wall on the left side is at temperature © 5 = 228 °C while maintaining the
temperature of the cold wall on the right side © = 28 °C. The Prandtl number Pr = 0.707
and 7 = 0.1 (as fluid flows inside the cavity is considered air [90]). It is worth noting that the
results obtained are for a flow of fully developed and it is not laminar.

4.6.5 Results for squared cavity without internal heater

Different values of Ra, Pl, the inclined angle 6 are considered to study the effect of natural
convection-radiation inside the cavity. The simulation experiments that are considered at Ra
= 10%-107 with two different values of Pl = 0.2 and 0.5 and three different angles 6 of 0°, 30°
and 60°. Figure 4.18 shows the temperature contour at a wide range of Ra with Pl = 0.5 for
the SP3 approximations and for the considered angles. It can be seen the circulation of flow
inside the cavity is affected by the inclined angle. At # = 0° and 30°, the flow circulates in a
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clockwise direction. However, at § = 60°, the flow recirculates anti-clockwise. This is due to the
buoyancy forces. Although the upper and lower surfaces are adiabatic, it should be noted that
the temperature isotherms are not perpendicular to the adiabatic walls owing to the presence
of the inclined angle, the radiation and convection heat transfer. The gradients of temperature
increase at the top of the cavity as the hot air get less dense (lighter) when it is heated up.
However, when the inclined angle increases, the direction of the stagnant position gets affected
by the buoyancy forces. It is worth mentioning that the recirculation of the flow covers the
entire cavity and concentrated at the center of the cavity despite the value of the angle. As the
cavity is inclined, the buoyancy driving force for the natural convection boundary layers will
reduce, where the buoyancy term varies with cos(#). This kind of the buoyancy flow has been
monitored at # = 0° in [110]. The next step is to investigate the effect of Planck coefficient.
Figure 4.19 and Figure 4.20 show the cross-sectional study for temperature at the center of
the squared cavity at the three mentioned angles for the considered Rayleigh numbers. At
a Pl = 0.5, the ratio of radiation to convection heat decreases, although this variation with
optical depth remains the same. When the Rayleigh number increases, the effect of radiation
decreases dramatically even at a lower value of the Planck coefficient. This indicates that when
convection is more intense, the effect of radiation gets smaller.

For the case of Pl = 0.2 in which the radiation is more dominant over the conduction, isotherms
are high, unlike the pure convection condition where the heat has not reach the cold side, the
adiabatic wall condition requires that the conductive heat equals to the radiative heat. If the
latter is similar or larger than the former, there will be a temperature gradient near the wall.
There are two evident changes to the temperature contour. First, the temperature gradient
reduces with the increase values of the Planck coefficient which indicates more heat radiation
intensity. Another difference is that the isotherm skewness appears in the middle of the domain
towards the hot wall side. In this condition where the conduction heat transfer dominates over
the radiation and the radiation has less effect compared with the diffusion heat. This results
mean that the effect of heat in case of larger Pl is only due to the adiabatic wall condition.
Results show that the temperature layers are thinner than the case of Ra = 10*. As mentioned
before, for the Planck coefficient Pl = 0.5, the heat transfer acts a little bit same like the pure
convection heat transfer as the convection heat becomes dominant. It can be seen that the heat
flow decreases along the cold wall and tends to accumulate at the hot wall. The flow with an
inclined angle has a dramatic effect on the heat flow behaviour. The results of isotherms show
a reduction in the transfer of heat as compared with the results conducted at § = 0°. The flow
of the temperature contour show a reduction of almost 30 % in the heat flow towards the cold
direction. Heat is accumulating at the hot wall with reduction in the effect of heat radiation as
compared with the results at the horizontal domain (without angle rotation). This unsteady
flow is involved of a series of waves circulating around the edges of the cavity and travelling in
the same direction as the flow, that is up the heated wall, from left to right across the cavity
adjacent to the adiabatic walls. The transition flow is the result of both the natural convection
boundary layers and the attached jet/plumes being able to sustain travelling waves. Despite
the fact that heat transfer is stable, at an inclination angle of 30° the desolation in the heat
plumes is balanced by the expansion in the natural convection boundary layers which lead to
the observed transition.

4.6.6 Results for cavity with internal complex heating source

The second part of the study has been considered for a squared cavity with adiabatic upper
and lower walls. The left and the right walls are kept at a temperature of 28 °C. A circular
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Figure 4.18: Temperature contour for the SP3 solution at Ra = 10* (first row), Ra = 10°
(second row), Ra = 10° (third row) and Ra = 107 (fourth row) with Pl = 0.5 at 6 = 0° (first
column), # = 30° (second column) and § = 60° (third column).

heater is installed at the center of the squared cavity at a temperature of 228 °C. Figure 4.21
shows the SP3 evolution of the thermal plume at the three mentioned angles. This evolution
of the thermal plume can be defined as the interaction between the thermal plume at high
temperature from the circular heating element and the thermal plume at lower temperature at
the sides of the cavity. It can still be seen that the temperature distribution inside the cavity is
affected by the Rayleigh number and the inclined angle. At a dominant heat radiation (Ra =
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Figure 4.19: Temperature cross-sectional study for the pure convection SP, and radiation-
convection SP; and SPj solutions at Ra = 10* (first row), Ra = 10° (second row), Ra = 10°
(third row) and Ra = 107 (fourth row) with Pl = 0.2 at § = 0° (first column), = 30° (second
column) and ¢ = 60° (third column).

10%), thermal plume tends to move upward. The only reason for this behaviour is the presence
of the adiabatic wall. However, fluid flow rate increases and it is flowing towards the shortest
cold region at higher values of the Rayleigh number. This is due to the fact that the capability
of the cold wall to absorb the heat is more than the heat flux flow into the adiabatic upper wall
at higher Ra and with the effect of the inclination angles. Since the temperature difference is
established across the right side of the cavity, the heat starts to flow towards that direction
and accumulates there. Figure 4.22 and Figure 4.23 show the horizontal cross-sectional study
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Figure 4.20: Temperature cross-sectional study for the pure convection SP, and radiation-
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column) and ¢ = 60° (third column).

that has been accounted across the cavity at y = 0.8. It can be seen that the effect of radiation
is not quite dominant. Different values of the Planck coefficient has no dramatic effect on
This is due to the close distance of the heating source which is located in the
middle. Introducing the heating element in the middle part of the cavity caused less heat
transfer circulation across the geometry. This indicates that the longer the heat travels, the
higher radiation of heat becomes. The effect of the adiabatic walls on the direction of heat is
reduced massively with the augmentation of the inclined angle. The complete study has been

radiation.
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Table 4.1: Temperature values in the middle of the geometry without including the circular
heater in °C of SPy, SP; and SP3 at the chosen experimental simulations of 8 = 0°.

Ra = 104 Ra = 10°
Pl =02 Pl =05 Pl =02 Pl=0.5
SPy SP, SPs SPy SPs SPy SPy SPs SPy SP4
128.14 132.38 154.63 130.17 139.89 127.85  130.48 143.27 12944 137.24
Ra = 108 Ra = 107
Pl=0.2 Pl=10.5 Pl =02 Pl =0.5
SPg SP, SPs SPy SPs SPg SPy SPs SPy SPs
12795 12947 137.82 128.76 134.72 12854  128.95 134.84 12893 133.17

summarized in the Tables 4.1 - 4.4. It can be seen from the tables that the inclined cavity
with angles of inclination of 30° and 60° is shown to have a considerably different flow effect to
that of the non-inclined cavity. The fluid in the diffuse intrusion flows horizontally across the
cavity to be entrained by the far wall boundary layer. As the angle of inclination increases the
fluid flow pattern changes. This is due to the change in the buoyancy forces in the direction
of flow between the hot and the cold walls. The effect of the inclusion of the heating source
inside the squared cavity is affected mainly by the inclined angle then by Rayleigh number.
At a dominant radiation of the Planck coefficient of 0.2 and the Rayleigh number of 10%,
convection alone captured a temperature of 128.14 °C, while the temperature with the SP;
was 132.38°C and a value of 154.63°C under the SP3. From these novel obtained results, it
is worth mentioning that the commercial softwares as well as the previous studies based on
P, approximations failed to give accurate results when studying radiation heat transfer inside
industrial applications. The radiation heat transfer has a dramatic effect on heat transfer
even at a dominant convection effect of the Rayleigh number of 10° and moderate the Planck
coefficient of 0.5. The novel developed method is then applied to different inclination angles
and with the inclusion of complex heating source inside the cavity. This is done to understand
and study the effect of the change in the buoyancy forces. It was shown that as the angle of
inclination increases the fluid flow pattern changes. Our results for radiation accounts for the
SP3 are still dominant and can not be underestimated inside the investigated domains. This
chapter proved that results obtained from the SP3 approximations are the most desirable for
numerical and industrial purposes with natural heat transfer.

4.7 Concluding remarks

Combined heat transfer of natural convection and radiation in a squared cavity was studied
numerically at three different inclined angles. The continuity, momentum and energy equations
were solved using the Taylor-Hood finite element approach for the first time. Splitting method
is considered to deal with the advection term and Galerkin-characteristics technique is a very
good bonus to deal with the pressure surge. To deal with radiation effects which are the dom-
inant mode, the simplified Py approximations are used and the SPj3 is applied and considered
for the first time. After thorough experimental and numerical validations, the robust methods
show that it can be taken for granted. The considered medium is air with two upper and
lower adiabatic walls. The heat transfer characteristics inside the cavity were obtained at a
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Figure 4.21: Temperature contours for the SP3 solution at Ra = 10 (first row), Ra = 10°
(second row), Ra = 10° (third row) and Ra = 107 (fourth row) with Pl = 0.2 at § = 0° (first
column), 6 = 30° (second column) and § = 60° (third column).

broad range of Rayleigh numbers (10-107) with optical thickness value of 0.1 and the Planck
coefficient values of 0.2 and 0.5. The goal of this study is to apply the novel approaches for the
first time to cover the turbulent natural convection-radiation heat transfer that takes places
in realistic applications that can serve the industry. The presented study in this chapter is
essential as it considered as the cornerstone for real applications like, ovens, microwaves, heat
exchangers... etc. To the best of our knowledge, the entire previous studies failed to describe
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Figure 4.22: Temperature cross-section for the SP3 solution at Ra = 10* (first row), Ra = 10°
(second row), Ra = 10° (third row) and Ra = 107 (last row) with Pl = 0.2 at § = 0° (first
column), 6 = 30° (second column) and § = 60° (third column).

radiation accurately. We believed that the previous studies misfigured the accurate methods
that can lead to the accurate results that can simulate part of/whole industrial applications
as real and skilful as possible. Our stable solver was able to capture a significant temperature
difference under a dominant radiation heat transfer.
coefficient of 0.2 and the Rayleigh number of 10%, convection alone captured a temperature of
128.14°C, while the temperature with SP; was 132.38°C and a value of 154.63°C under the

SPs.

At a dominant radiation of the Planck

From these novel obtained results, it is worth mentioning that results obtained from

commercial softwares as well as the previous studies based on P; approximations failed to

83



178F 168 128
T— ——
,” N 277N ——
153 % N 148 v < ~\
4 4 N 108 /4 A
_ 128} 4 ‘\ P A4 \}
P s s V4 N o / N\
¢ £ 108} 4 g 88 4 ‘\
3 3
T 103 ® ® 4
g g s8r I
£ E £ 68
o 7801 @
= " el -
| 48
53 e
28 28 ' : : 28
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1
x (m) x (m) x (m)
188 140 92
168 ~" 7N,
-
1 = Ll "‘—
148 112 ” 76 7
—_ ’ —_ 4
é) G l/ éJ l/
=128 < = '/
g o g ¢
2 2 2 4
© 108 " 84t © 60 ,I
8 g g 4
Q
£ 88 £ 5 ,’
2 @ I /4
68 56 44 4
4
48
28 . . . . 28 . 28
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1
x (m) x (m) x (m)
178 148 108f P
o A
" '/
4’ /
o 92 4
118 =7 7
—~ —~ —— —~ 4
@) [6) - [§) ’a
< < ’d < 7
g g 7 p 76
2 2 2
© © 88 ©
o o °
g g 8
£ £ £ 60
Q l]) Q
= = = /
58 v
44 e
Ciad
28 28
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1
x (m) x (m)
148F 124
-
A
153+ 108
_usp / P
—~ G —~ ‘
P o /s 9= /
o o 9] 1
5 E 5
2 103 T 88l 2 76
— ] —
@ @ a
Q o aQ
£ E £
@ 78] g 2 60
58t
53 - =5P0 44
— SP1
— S P3
28 28 . . . 28
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1

X (m)

Figure 4.23: Temperature cross-section for the SP3 solution at Ra = 10* (first row), Ra = 10°

(second row), Ra = 10° (third row) and Ra = 107 (last row)

with Pl = 0.5 at 0 = 0° (first

column), 6 = 30° (second column) and § = 60° (third column).

give accurate results when studying radiation heat transfer inside industrial applications. The
radiation heat transfer has a dramatic effect on heat transfer even at a dominant convection
effect of Rayleigh number of 10° and moderate Planck constant of 0.5. This chapter proves
that the SP3 approximations are the most desirable for numerical and industrial purposes with
natural heat transfer. It can be seen from the validated novel results that the inclined cavity
with angles of inclination of 30° and 60° is shown to have a considerably different flow effect to
that of the non-inclined cavity. The fluid in the diffuse intrusion flows horizontally across the
cavity to be entrained by the far wall boundary layer. As the angle of inclination increases the
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Table 4.2: Temperature values in the middle of the geometry without including the circular
heater in °C of SPy, SP; and SP3 at the chosen experimental simulations of 8 = 30°.

Ra = 104 Ra = 10°
Pl =02 Pl =05 Pl =02 Pl=0.5
SPy SP, SPs SPy SPs SPy SPy SP4 SPy SPs
140.67 158.54 173.82 153.16 155.76 128.45  143.97 148.25 136.13 138.12
Ra = 108 Ra = 107
Pl =02 Pl =05 Pl =02 Pl =05
SPy SP, SPs SPy SPs SPy SPy SPs SPy SPs
130.39 135.64 137.42 135.11 136.88 131.56  136.67 138.66 133.44 135.02

Table 4.3: Temperature values in the middle of the geometry without including the circular
heater in °C of SPy, SP; and SP3 at the chosen experimental simulations of 8 = 60°.

Ra = 104 Ra = 10°
Pl =02 Pl =05 Pl =02 Pl =05
SPy SP, SPs SPy SPy SPy SPy SPy SPy SPs
128.73 146.14 149.71 140.06 142.65 130.92  145.52 150.36 138.05 140.16
Ra = 108 Ra = 107
Pl=02 Pl=05 Pl =02 Pl =0.5
SPy SP, SPs SPy SPs SPo SPy SPs SPy SPs
130 135.89 137.74 135.22 137.07 131.69 137.01 139.27 134.2 135.51

Table 4.4: Temperature values in the middle of the geometry with the inclusion the circular
heater in °C of SPy, SP; and SP3 at the chosen experimental simulations of 8 = 0°.

Ra = 104 Ra = 10°
Pl =02 Pl =05 Pl =02 Pl =05
SPy SP; SPs SPy SPs SPy SPy SPy SPy SP4
169.97 172.19 200.44 170.27 173.84 184.46  185.27 198.54 184.6 186.16
Ra = 106 Ra = 107
Pl=02 Pl=05 Pl =02 Pl =0.5
SPg SP, SPs SP, SPs SPg SPy SPs SP; SPs
169.27 169.42 171.39 169.36  170.37 162.95  160.87 162.13 162.33 161.42

fluid flow pattern changes. This is due to the change in the buoyancy forces in the direction of
flow between the hot and the cold walls. The effect of the inclusion of the heating source inside
the squared cavity is affected mainly by the inclined angle then by the Rayleigh number.
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Chapter 5

Simplified Py models for forced
convection-radiation heat transfer

The present chapter is dedicated to the modelling of the heat flow inside two types of furnaces,
direct fired furnace and furnace with regenerative burners. The stabilized Taylor-Hood finite
element approximation from the previous chapter using triangular mesh will be extended and
applied for the resolution of the 2D Navier-Stokes equations for solving radiation and the forced
convection heat transfer. The Boussinesq approximation for modelling the change in density is
considered. The simplified Py approximations are carried out for the radiative transfer which
is coupled with convection. The Galerkin-characteristics method is accounted for the dominant
advection. The developed models are tested and results are presented under the operation of
different burners. Comparisons between simulations without radiation and with radiation are
discussed. The main goal of the chapter is to provide such an alternative novel method for
simulating heat flow that occurs inside industrial furnaces. The chapter focuses on getting
acceptable validated results while minimizing the computational time. For the first time, the
simplified Py approximations are accounted for the simulation of heat flow inside the furnaces
with different operating scenarios.

5.1 Modelling forced convection-radiation

It is known that the property of incompressibility is a feature of the fluid dynamics. The flow
is said to be incompressible if it is incapable of the reduction in volume by pressure. The gases
are mostly considered as compressible flows. For low Mach number around 0.3, they can be
also be treated as incompressible [30]. This non-dimensional number quantifies the relation
between a characteristic velocity u of the flow and the velocity of the sound ¢ by:

M=
C

The Mach number is named after physicist and philosopher Ernst Mach (1836-1916). Since
the velocity of the sound is 340 m/s in the air, then the conditions of incompressibility is
well respected up to a fluid velocity of 100 m/s. In this work, the values for the flow velocity
that are chosen are compatible with the velocity of the flame inside industrial furnaces [120,
14]. Therefore, some assumptions and simplifications are made. Another important non-
dimensional number that quantifies the properties of a particular flow is the Reynolds number

given by
L
Re = —u,
£
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Burners

Figure 5.1: Illustration of a cross-sectional view of the considered furnace containing multiple
burners and a structure.

where L is a characteristic length scale, u is the flow velocity and g is the kinematic viscosity
of the respective flow. It gives a measure of the ratio of inertial forces to viscous forces and,
consequently it quantifies the relative importance of these two types of forces for given flow con-
ditions. The Reynolds numbers is frequently used to characterize different flow regimes, such as
laminar (Re < 2300), transition (2300 < Re < 4000 ) or turbulent flow (Re > 4000): laminar
flow occurs at low Reynolds numbers, where viscous forces are dominant, and is characterized
by smooth, constant fluid motion, while turbulent flow occurs at high Reynolds numbers and
is dominated by inertial forces, which tend to produce random eddies, vortices and other flow
fluctuations. The Reynolds number is named after Osborne Reynolds (1842-1912), who pro-
posed it in 1883. In most of the heating and manufacturing applications, maintaining a uniform
temperature distribution over the surface of the enclosure inside the furnace is required for the
product quality [148]. Therefore, moderate values of the Reynolds number inside the furnace
are required to adjust the heat flow vortices. A special attention is needed in the study of the
effect of vortices inside the furnace because of their big effect on the heat flow stabilization
[66]. The vortex takes place when the pressure gradient is large enough to create heat flow
recirculation along the furnace axis.

5.2 Equations for convection-radiation problems

Figure 5.1 represents a schematic of the geometry for the furnace studied in this work which
consists of two-dimensional cross-sectional view (with vertical burners) containing a flat struc-
ture. The domain is initially at the room temperature O = 300 K. The burners blow fire at a
temperature of ©’; = 1800 K. Thickness of the heated structure sheet is very thin about 5 mm.
The following scales have been produced to formulate a dimensionless form of the governing
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equations:
x/ v u’ p/ ¢ I
X = -, t = s u = s = — s / = —, [ = y
D tref Uref P p/uzef v I [Tef
o O DY e D
- ’ - ’ - H» - ) - .
@/H — @/C u%ef Dref Kref

The kinematic viscosity is @', ¢ the dynamic viscosity and D’ is the structure thickness. The

non-dimensional numbers are defined as

7 D'us €

Re: s Pl:m,

o v/
where 7 is the optical depth, L, is the length parameter, € thermal diffusivity, Re the Reynolds
number, Pr the Prandtl number, Pl is the Planck constant. Substituting the dimensionless
variables in the governing equations (4.1)-(4.4), we get

/
T = Kooliso, Pr =

V-u = 0,
Du 1,
- _ - Nl
Dt + Vp R@V u Oe, (5.1)
pe 1 _, 1
Dt PTR@V © = _PrReV i

where e = (0,1)7 is the unit vector associated with the gravitational force. The radiative
transfer equation (4.6) can be rewritten in dimensionless as

Tw- VI + kI = kB(O). (5.2)

The governing equations (5.1) and (5.2) are solved in a computational domain €2 with smooth
boundary 02 = I'y, UT, UTs as shown in Figure 5.1, and subject to the following boundary
conditions

u(t,x) =0, Vxely,
u(t,X) = Ueo, Vx e,
for the flow velocity, and
O(t,x) = O, Vxelly,
O(t,x) = Opg, Vx ey, (5.3)
n(x)-VO(t,x) = 0, Vxell,

for the temperature. Here, n(X) denotes the outer unit normal with respect to 02. For the
radiative transfer, the boundary conditions are for emitting and reflecting walls

I(X) = B(©¢), Vxel,,
I(X) = B(Og), Vxeln, (5.4)
n(x)-VI(x) = 0, VxeT,,

where the boundary regions are defined as
f‘i:{fcefi: w-n(f{)<0}, 1 =w,in,Ss.

It is important to mention that other boundary conditions for the radiation flow can also be
introduced in our formulation without main conceptual changes.
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Table 5.1: SP; horizontal cross sectional results for one burner with CPU time in minutes.

# of elements | # of nodes for | # of nodes for | Error in Error in Error in CPU
temperature & | pressure temperature | velocity v pressure times
velocity

Mesh A 12351 25133 6391 0.0961 0.2593 0.2034 2

Mesh B 24898 50442 12772 0.0778 0.1195 0.0861 5
Mesh C 49411 99693 25141 0.0154 0.0646 0.0451 14
Mesh D 99112 199504 50196 0.0103 0.0293 0.0202 35
Reference 247534 497122 124794 — — — 116

5.3 Numerical results for direct fired furnace

In this section, in order to validate the results, two steps are considered. Since no study for
direct fired Convective Glass Melting furnace (CGM) has been investigated. We have taken
into account two of the configurations that has been examined by [37] using four vertical burn-
ers inside a walking-beam type reheat furnace domain for the temperature of the billet inside
the furnace. The only difference is that we have chosen a triangular mesh for the current
validation while they have chosen a quadrilateral mesh. The billets travel a distance of 3.8 m
along the furnace. The separation between the burners axis is 1 m and the burner closest to
the right wall is 0.65 m from it. In order to avoid billets overheating, given due to the location
of the flames directly over the billets, the back wall supporting the burners was located 0.36
m away from the last billet position. The rectangular furnace had an internal width of 4.15
m and an internal height of 0.7 m. The mean ambient pressure and temperature are 74.7
kPa and 300 K, respectively. The burners blow fire to a temperature of above 1100 K for the
purpose of heating steel structures at time t = 10 s. Two points for two cases C1 and C2
have been monitored a long the billet as it travels through the furnace. In case of C1 and C2,
the location of the burners are on the back wall opposite to direction of the billet movement.
The difference between the cases C1 and C2 is that the latter geometry is 20 % shorter. The
distance between the burners is 1 m and the fourth burner is 0.65 m from the right wall. A full
schematic of the geometry as well as the temperature isotherms are provided in [37]. Figure
5.2 shows a great match between the conducted results and the results obtained by [37] for the
temperature profile in the considered cases of C1 and C2 versus billet position.

The second validation that has been accounted for is mesh convergence for the SP; under
the operation of a single burner attached to the middle position of the roof curvature of the
domain at time ¢ = 10 s. The heat transfer characteristics values for the SP; are taken into
account, for the mesh convergence with an optical depth 7 of 1 and the Planck coefficient of
Pl = 0.5. Very fine mesh density is taken as a reference mesh for the calculation of errors
with CPU time. In this study, two values of the Reynolds number are considered of Re =
500 and 1000, the Prandtl number is Pr = 0.72. Table 5.1 illustrates the validation of the
results represented by the mesh convergence and Figure 5.3 shows the mesh convergence for a
horizontal cross-sectional study taken for the heat flow temperature, pressure and velocity at
the wall height y = 1.8 m.Comparing the results taken from the mesh convergence, Mesh C is
taken into account for the study of operations under one, three, five, seven and nine burners as
it has a considerable percentage errors and CPU time among the rest. Results show that the
radiative heat transfer is dominant and it does have an effect on the distribution of heat even
at time t = 10 s. The second part of the study has been accounted for the convection-radiation
heat transfer inside the domain using the SPy, SP; and SP3 models at ¢t = 30 s. When the
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Figure 5.2: Validation between the current study and Garcia et al. [37] for temperature profile
vs billet position for the cases C1 (left) and C2 (right).
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Figure 5.3: Horizontal cross-sectional study for temperature (left column), pressure (middle
column) and velocity (right column) at time ¢ = 10 s for the considered meshes.

burners are firing, convection-radiation heat transfer plays an important role in the distribution
of temperature inside the domain. Heat flow inside the furnace begins with the radiation and
forced convection heat transfer generating from the burners. Figure 5.4 shows the unsteady
state condition of the temperature distribution under the operation of single burner, three,
five, seven and nine burners using the SP, positioned at the left column, SP; located in the
middle column and SPj lies on the right column at time ¢ = 10 s.

During the operation of the burners across the geometry of the furnace, vertices appear. Fig-
ure 5.5 shows the vortices generated by the effect of the temperature and velocity at the same
mentioned conditions. The forced convection-radiation heat transfer is the result of the inter-
action between the fixed fluid inside the domain which is at room temperature and the moving
flow of fire. The movement of the heat flow is very interesting. It promotes us to study the
influence of heat for different arrangements and applications. Due to the high temperature
inside the furnace, heat radiation is the dominant mode and it depends on the number and po-
sition of burners, dimensions of the domain and the operation conditions. In radiation, energy
is carried by the electromagnetic waves (no molecules) emitted by the fire. It is a volumetric
phenomenon, which is emitted randomly in the form of photons in all possible directions. Since
the furnace is initially at room temperature, absorption of heat inside the furnace is greater
than emission of heat. Convection occurs as the hot fluid inside the furnace absorbs the heat
within the layers of it. When the gas gets heated up, its molecules are carried away and scat-
tered causing that the mass of the gas becomes less dense. The warm layer of the gas tends

90



5.3. NUMERICAL RESULTS FOR DIRECT FIRED FURNACE

No radiation With SP, With SP,

1600 1600
1400 1400
411200 1200
41000 X 1000 X
800 800
600 600
400 400
1800
1600
1400
41200
41000
800
600
400
1600
>, N R
’ ‘ 1600
’ 1400
11200
11000 ¥
800
600
400
1600 1600
1400 / 1400
1200 1200
1000 ¥ 1000 ¥
800 800
600 600
400 400

Figure 5.4: Temperature distribution under the operation of single burner (first row), three
burners (second row), five burners (third row), seven burners (fourth row) and nine burners
(last row) with no radiation (left), SP; (middle) and SPj3 (right) at Pl = 0.5, 7 = 1 and t =
10 s.
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to float vertically and horizontally, while the colder layer (heavier) falls down due to gravity.
Through this process, the molecules of the hot layers transfer heat continuously toward the
volumes of the colder layers. The third part that has been carried out is taking into account
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the cross-sectional study at y = 1.8, 1.2 and 0.7 m under the operation of the mentioned burn-
ers and time. Figure 5.6 shows the temperature behaviour effects using different simulation
experiments.

Results show that the temperature inside the furnace is higher with the SP; and SP3. The
reason behind these results are that when radiation (SP; and SP3) are taken into account,
temperature difference between the air inside the furnace and heat flow becomes larger which
makes the flow tends to move upward close to the roof curvature of the furnace. It is worth
mentioning that the study is a fire dynamics application, hence Planck coefficient value has
been kept constant with a value of 0.5 (under 1) [25]. The drawback of the heat radiation flow is
that it generates stronger vortices which cause a non-uniform temperature distribution across
the geometry of the furnace as well as the surface of the structure. This kind of behaviour is
expected inside the furnace and it is compatible with the heat flow behaviour obtained in [46].
Another reason behind this disposal is the Reynolds number. The Reynolds number generates
flow vortices, eddies and wakes which make the flow unpredictable during the transfer of heat
from the hot layers to the colder layers. The inertial forces dominate considerably which result
in large chaotic flow. Thus, two values of the Reynolds number here has been chosen that are
equal to 500 and 1000 to reduce vortices effect. It can be seen from Figure 5.4 and Figure 5.5
that the flow tends to move downward. However, at a further time, the flow starts circulating
and tends to float upward. To examine the temperature distributions on the structure sheet,
three main finite element nodes are considered. The first node located on the left upper corner
of the structure with coordinates (0.5, 0.605) m, the second node is located on the right upper
corner of the structure with cordinates (2, 0.605) m and the third and last node is located on
the middle upper surface of the structure with coordinates (3.5, 0.605) m. Figure 5.1 illustrates
the chosen nodes for the study in red colour. At time ¢t = 30 s in which the heat flow reaches
the structure, the temperature of the chosen nodes on the upper surface of the structure has
been monitored with time. Figure 5.7 shows the evolution of temperature at time ¢t = 30 s at
the left node under the operation of single burner, three, five, seven and nine burners. Results
show that the heat is greater with radiative heat transfer. However, it is noticeable that the
heat has more unsteady flow. This behaviour creates a higher temperature fluctuations over
the structure surface as more and faster vortices occur.

It can be noticeably seen under the operation of five, seven and nine burners. Larger vortices
increases with the increase in heat which can be seen that unsteady flow conducted from the
SPj is slightly greater than the unsteady flow evaluated from the SP;. The temperature of the
right node on the upper surface of the structure is the second node that has been monitored
with time. Figure 5.7 shows the evolution of the temperature with time t = 30 s at the right
node under the operation of single burner, three, five, seven and nine burners. Unsteady state
results show that higher unsteady flow and vortices take place on the right side of the furnace
which lead to a higher temperature fluctuation particularly under the operation of five, seven
and nine burners. The temperature behaviour with time for the middle node is illustrated in
Figure 5.7 and has a minimum unsteady flow and the heat flow accumulates at the sides of the
structure leaving the center of the furnace. Figure 5.7 represents the evolution of temperature
with time ¢ = 30 s at the middle node under the operation of different simulation experiments.
This behaviour is due to higher temperature difference that draws the flow towards the sides
of structure as the temperature under the structure is the minimum. It can be seen that ra-
diation heat transfer has a dramatic influence under the operation the various burners and it
depends very much on the radiative heat transfer. This effect increases dramatically with time.
However, with the operations of nine burners, the heat tends to fill the furnace which makes
the amount heat reflected on the structure sheet is higher than the one with the operation of
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With SP, With SP,

No radiation

Figure 5.5: Velocity flow under the operation of single burner (first row), three burners (second
row), five burners (third row), seven burners (fourth row) and nine burners (last row) without
radiation (left), SP; (middle) and SPj3 (right) at Pl = 0.5, 7 = 1 and t = 10 s.

the other different number of burners where the vast majority of the amount of heat rate is
absorbed by the fluid inside the furnace creating higher temperature change. A maximum
temperature difference can be shown between the SPy, and SP3 on the middle, left and right
nodes specially under the operation of nine burners. Results show that the temperature on the
sides of the furnace is not equal. This is due to the fact that the unsteady convection-radiation
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Figure 5.6: Temperature cross-section along x direction at y = 1.8 m (left column), y = 1.2
m (middle column) and on the surface of the structure along the furnace (right column) under
the operation of 1 (first row), 3 (second row), 5 (third row), 7 (fourth row) and nine (fifth row)
burners at t = 30 s and Re = 500.
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Figure

5.7:

Temperature evolution for the structure

left node (left column), middle node

(middle column) and right node (right column) under the operation of single burner (first
row), three burners (second row), five burners (third row), seven burners (fourth row) and nine
burners (fifth row) at Re = 500.
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Figure 5.8: Temperature cross-section along x direction at y = 1.8 m (left column), y = 1.2
m (middle column) and on the surface of the structure along the furnace (right column) under
the operation of 1 (first row), 3 (second row), 5 (third row), 7 (fourth row) and nine (fifth row)
burners at t = 30 s and Re = 1000.
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Figure 5.9: Temperature evolution for the structure left node (left column), middle node
(middle column) and right node (right column) utilizing single burner (first row), three burners

(second row), five burners (third row), seven burners (fourth row) and nine burners (fifth row)
at Re = 1000.
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& Am 1
Figure 5.10: Cross-section view of the furnace with regenerative burners.

heat draws the unstable heat flow towards the sides at the chosen time. The effect of higher
value of the Reynolds number as far as heat transfer is concerned, is that an additional mecha-
nism of heat transfer in the azimuthal and radial directions becomes available and higher. This
is commonly termed ”eddy transport” and is intense, providing much better transfer of energy
across the flow at a given position than in lower value of Re. Another difference worth noting
is the extent of the thermal entrance region in which the transverse temperature distribution
becomes fully developed. This region is relatively short in operation with 7 and 9 burners
(precisely because of the intense turbulent transverse transport of energy), whereas it tends to
be long under the operation of 1 and 3 burners. Figure 5.8 shows the temperature distribution
across three horizontal regions inside the furnace domain. Compared with the results obtained,
the flow contains eddying motions of all sizes, and a large part of the mechanical energy in the
flow goes into the formation of these eddies which eventually dissipate their energy as heat. It
can also be seen from Figure 5.9 is that the heat increases for the chosen nodes compared with
the results of the temperature growth per time obtained at Re = 500 in Figure 5.7.

5.4 Operation under regenerative furnaces

Tremendous opportunities for improvement of process efficiency and product quality is desirable
by the industry through better control of the furnaces [108]. Keeping a stable glass temperature
decreases defects such as cords, seeds, and other inclusions. Glass temperature control allows
for controlling the forming operations [112]. Most glass furnaces use simple, single-loop control
of the firing rate based on the temperature of the refractory in the furnace crown. The first
step in any control design is modelling. The accuracy and robustness of a control system is
entirely dependent on the quality of the underlying mathematical model of the process and its
environment. Modelling means describing a physical element or system using mathematical
equations. These equations can be used to predict how a system will behave in response to any
feasible set of inputs, and thus a controller can be designed to provide a series of control signals
which will result in the system producing the desired outputs or at least a set of outputs that
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Figure 5.11: Distribution of temperature under the operation of the left burner, the right
burner and both using the SPy (upper row), SP; (middle row) and SP3 (lower row) at Pl =
0.5, 7 =0.75 and t = 30 s.

1600

is acceptably close to the desired set. The furnace considered in this study is similar to the
CGM furnace. The only difference is that the burners are located on the side walls of the
furnace. Figure 5.10 represents a schematic of the geometry of the furnace studied in this
work which consists of two-dimensional cross-section heat flow. Same procedure done for the
furnace with vertical burners are considered here.

In this section, results for the convection-radiation heat transfer inside the furnace are obtained
using the SPy (no radiation), SP; and SP3 models at Re = 700, Pr = 0.72, Pl = 0.5 while
the value of 7 = 0.75 and 1 [25]. Since a glass furnace operates at high temperatures (above
1500 K), the primary mode of heat transfer from the flame to the glass is radiation. The
energy is absorbed and re-radiated from the floor refractory and from the glass itself, and is
internally reflected from the air/glass interface. Thus, the energy impinging on the surface of
the mold is not all absorbed at the surface, once the batch materials have melted and become
translucent /transparent. This phenomenon is considered in the model by including an Opacity
Factor (OF) [162]. The opacity factor can be adjusted for each furnace and type of inclusion
by adjusting the value of 7. The opacity factor was determined by trial and error to make the
temperature gradients in the melt agree with estimates of those found in the prototype furnace.
Opacity is the amount of radiation absorbed by a semi clear solid, liquid, or gas. The OF is
an approximation and can be adjusted for each furnace and type of glass. Figure 5.11 shows
the unsteady state condition of the temperature distribution utilizing single burner attached
to the left and single burner attached to the right and operation of both at time interval ¢t =
30 s. It can be seen that radiation effect is dominant specially under the operation of both
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Figure 5.12: Heat flow distribution under the operation of the left burner, the right burner
and both using the SPy (upper row), SP; (middle row) and SP3 (lower row) at Pl = 0.5, 7 =
0.75 and t = 30 s.

burners. This is due to the fact that radiation heat fills the entire furnace chamber while
convection heat transfer tends to float. Figure 5.12 shows the distribution of the heat flow
under different operations of the burners. Since the temperature inside the furnace is very
high, heat radiation is the dominant mode and it depends very much on number and position
of the burners, dimensions of the furnace and the heat transfer coefficients of Pl and 7.

It can be clearly seen that the operation of the regenerative burners cause a flashover. Flashover
is defined as the sudden involvement of a furnace in flames from floor to ceiling caused by
thermal radiation feedback [145]. Thermal radiation feedback is the energy of the fire being
radiated back to the contents of the furnace from the walls, floor, and ceiling. This simply
means that flashover depends mainly on the temperature. It requires that the fires energy be
radiated back to the contents to produce a rapid rise in temperature and simultaneous ignition.
Flashover indicates that the heat flow has grown to the fully developed stage. On exposure
to radiative (or convective) heat, the surface temperature of the enclosure (glass sheet) will
increase, eventually to reach a steady-state (equilibrium) value. This can be estimated on the
basis of simple heat transfer calculations, assuming the material to be inert. Figure 5.15 shows
the temperature behaviour for the chosen nodes shown in Figure 5.10 using the SPy, SP; and
SP3 models when using 7 = 0.75. The next study is to try to predict the thermal behaviour
over the entire glass sheet. Figure 5.13 shows the temperature, velocity and pressure over
the inclusion at 7 = 1. In Figure 5.15, results show that temperature over the glass sheet
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Figure 5.13: Temperature, pressure and velocity profiles along x direction over the surface of the
structure (at y = 0.605 m) under the operation of the left burner (left column), the operation
of both burners (middle column) and the operation of the right burner (right column) for
temperature (upper row), pressure (middle row) and velocity (lower row) at Pl = 0.5, 7 =
0.75 and t = 30 s.

is higher with the SP; and SP3 under the operation of single burner (on the left wall or on
the right wall). The reason behind this result is that when radiation (SP; and SP3) is taken
into account, more heat is generated from the heat flow on the surface of the structure and it
is higher than when using SP,. However, the operation under dual burners shows that heat
radiation is dominant on both sides of the glass sheet. This is due to the fact that the furnace
is filled with heat in such away that radiation is dominant and tends to move towards the lower
temperature area located under the glass sheet leaving the middle of the furnace geometry.
Less heat transfer effect has been shown with lower effect of opacity factor with a value of 7
= 1. Figures 5.14 and 5.16 show the effect of 7 on the heat transfer across the geometry. It
can be seen that with higher value of 7, radiation transfer becomes less dominant. However,
with 7 = 0.75, a noticeable effect between the SP; and SP3 can be recognized. Results show
that the SP3 describes better radiation effect when the radiation is dominant.

101



5.5. CONCLUDING REMARKS

1000 1550

= =5P0 /

900
1300 -

800
700 1050

600

Temperature (K}
m
8

Temperature (K)
Temperature (K)

500

550
400

300
0

5 10 15 20 25 30 0 5
Time (sec)

-30 25 -20 -15 -10 5 0
Time (sec)

500 T 1550

460 i 1300

-
)
I
S

©
8
3
Temperature (K)

Temperature (K)

550

300

0 5 10 15 20 25 30 -30 -25 -20 -15 -10 5 0
Time (sec) Time (sec)

1500 380
= =SP0 1
370+ 370
1300
)
360 360 7\
- ’ N~

< < 1100 ¥ / =T
=350 = =350 ¢ \
2 e 2 7/
2 2 2 vl \
© 340 © 900 © 3407 )¢ %\
9] o] @ e \
-3 a a Y
£330+ £ £ 330 N\
] & 700t = N \~

320+ 320 4 \ \.\~

4 ~,
500 - N
310+ 310 / \ \
- \
300 300 . - - 300
0 5 10 15 20 25 30 -30 -25 20 -15 -10 5 0
Time (sec) Time (sec) Time (sec)

Figure 5.14: Temperature behaviour with time for the glass left node (upper row), right node
(lower row) and middle node (middle row) under the operation of left burner (left column),
right burner (right column) and both burners (middle column) at Pl = 0.5, 7 = 1 and ¢ = 30
S.

5.5 Concluding remarks

In the present chapter, forced convection-radiation heat flow was studied inside the investigated
furnaces for the first time numerically using a stabilized mixed finite element formulation for
the incompressible Navier-Stokes equations with the simplified Py approximations for dealing
with radiation. The simplified Py approximations are considered and the SP3 is applied to the
investigated furnaces for the first time. The proposed approach solves the set of equations inside
the investigated furnaces in order to get a stabilized and satisfactory results. As discussed in
chapter 4, the developed splitting method is considered to deal with the dominant advection
term and the adopted Galerkin-characteristics technique is used to deal with the pressure surge.
Numerical validations are performed and the results show that the proposed study can generate
the accurate numerical solutions for the unsteady heat flow. The novel developed solver is
performed over two types of furnaces: convective glass melting furnace with vertical burners
and furnace with horizontal regenerative burners. The heat transfer characteristics inside the
furnaces were obtained at two values of the Reynolds number of 500 and 1000 in case of the
glass melting furnace and two values of the optical thickness of 0.75 and 1.0 are considered for
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Figure 5.15: Temperature behaviour with time for the glass left node (upper row), right node
(lower row) and middle node (middle row) under the operation of left burner (left column),
right burner (right column) and both burners (middle column) at Pl = 0.5, 7 = 0.75 and ¢ =
30 s.

the furnace with regenerative burners. Five different operations are carried out to investigate
the heat flow inside the glass melting furnace and three different operations are taken into
account for the the furnace with regenerative burners. All operations are done at the Planck
coefficient of 0.5. The novel obtained results show a maximum temperature difference of 200 K
between the SP; and the SP3 and a temperature difference of 500 K between no radiation and
the SP3 under a dominant radiation effect of the Planck coefficient of 0.5 and optical depth
of 0.75 over the surface of the inclusion. The novel validated results clearly show that the
commercial softwares as well as the previous developed methods based on P; approximation
failed to capture the accurate temperature distribution inside furnaces. The novel developed
method proved that the SP3 approximation is the only accurate solution that can serve the
industrial furnaces for different thermal scenarios. The developed method showed that it is
reliable over different values of different heat transfer coefficients and under various operations.
From the industrial point of view, the novel technique is highly recommended to: (i) control the
desired temperature distribution over the structure surface (ii) reduce the vortices generation
since different operations are considered with different heat transfer coefficients (iii) choose the
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Figure 5.16: Temperature, pressure and velocity profiles along x direction over the surface of
the structure all the way to the furnace walls (at y = 0.605 m) under the operation of the left
burner (left column), the operation of both burners (middle column) and the operation of the
right burner (right column) for temperature (upper row), pressure (middle row) and velocity
(lower row) at Pl = 0.5, 7 =1 and t = 30 s.

required furnace dimensions (iv) increase furnace life time (v) reduce the fuel consumption by
controlling the operations time.
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Chapter 6

Conclusions and future work

6.1 Conclusions

The original contribution of this thesis is the development of an efficient method which is able
to simulate complex flow problems inside thermal engineering applications including radiation.
Such simulation involves heat flow, unsteady heat transfer containing convection and thermal
radiation all in multi-component formulations. The techniques used in this thesis are the mixed
finite element method and the Navier-Stokes equations. This method is shown as an attrac-
tive way to solve heat flow and heat transfer inside different thermal engineering chambers
and it can be applied for a variety of geometries and boundary conditions. All the necessary
methods and models required to simulate and study heat transfer (radiation and convection)
and its applications are reviewed thoroughly in chapter 1. The previous studies promote us to
find motivations, novelties and choose the best strategy that can help us get the best possible
results. It has been proven by the previous studies that finite element method is the best
when it comes to simulate heat flow. Previous studies struggled with dominant convection
term. Previous studies failed to accurately capture the effect of radiation heat transfer inside
realistic applications. The motivation for us is then to overcome these challenges and propose
a novel technique and validate it by applying it on realistic applications. Based on that, major
research objectives were set out to determine the importance and the effect of radiation heat
that takes place in both natural and forced transfer.

The novel developed method is needed to study the interaction between convection and ra-
diation and to test, understand and adjust it based on the chosen engineering applications.
The plan was set by choosing the Taylor-Hood finite element method due to the presence of
the non-thermodynamic variable (pressure) in the Navier-Stokes equations. Linear triangular
elements were chosen for the pressure and quadratic elements were selected for the veloc-
ity, radiation and temperature to deal with any simple or complex geometry. Our developed
Galerkin-characteristics approach is used and tested for different values of the Reynolds num-
ber. The SPy approximations are adopted to deal with the effect of radiation and for the first
time ever, it has been adopted and applied to our different thermal scenarios and applications.
We started in chapter 2 by reviewing the full discretization procedures coupled with the dis-
crete ordinates method which is often used for the spatio-angular discretization of the radiative
transfer equation. To improve the efficiency of the solver, instead of using a single standard
iterative method, variety of iterative methods were performed and a comparison among all
was done. It was shown that the BICGSTAB method gives the most desirable results, with
smooth convergence and less CPU, and memory requirements. In chapter 2, we investigated
and set our goals in terms of building and implementing the required solver, algorithms and
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methods to carry out with this research. In chapter 3, a complete SPy derivations have been
obtained as the results from chapter 2 showed that simplified approximations give favourable
results compared with the full radiative transfer equation with less computational time. The
outcomes from this chapter are the governing equations and the boundary conditions that are
adopted for radiative transfer.

The second part of the thesis consisted in developing numerical methods for modelling the
unsteady heat flow under different simulation experiments. Standard finite element method
normally exhibits overall spurious oscillations in convection-dominated problems, especially in
the vicinity of sharp gradients. The Galerkin-characteristics are more advanced methods in
the stabilization context which were proposed in chapter 4. We have explained in chapter
4 a stabilized finite element method for the transient incompressible Navier-Stokes equations
for solving natural convection-radiation in squared cavities with and without complex heaters
and inclined angles. The preliminary results have been obtained and validated thoroughly and
extensively against those from the literature. Our obtained results were the most acceptable
compared with the experimental data available from the literature. After validating our tech-
nique, we carried out in our novel research and applications adopted. Our novel applications
and results were accomplished under different thermal and engineering scenarios. First, we
chose a squared domain and applied our novel SPy approximations on it. We compared and
adjust the effect of radiation heat transfer by adjusting the value of the Planck coefficient.
Then we regulate the effect of convection heat transfer by regulating the values of Rayleigh
number. The medium inside the cavity were chosen as air.

Our stable solver was able to capture a significant temperature difference under a dominant
radiation heat transfer. At a dominant radiation of the Planck coefficient of 0.2 and Rayleigh
number of 10%, convection alone captured a temperature of 128.14 °C, while the temperature
with SP; was 132.38°C and a value of 154.63°C under the SP3. From these novel obtained
results, it is worth mentioning that reults obtained from commercial softwares as well as the pre-
vious studies based on P; approximations failed to give an accurate description when studying
radiation heat transfer inside industrial applications. The radiation heat transfer has a dra-
matic effect on heat transfer even at a dominant convection effect of Rayleigh number of 10°
and moderate Planck coefficient of 0.5. The novel developed method is then applied to different
inclination angles and with the inclusion of complex heating source inside the cavity. This is
done to understand and study the effect of the change in the buoyancy forces. It was shown
that as the angle of inclination increases the fluid flow pattern changes. The novel achieved
results of the SPj3 still dominant and can not be underestimated. This chapter proved that the
SP3 approximations are the most desirable for numerical and industrial purposes with natural
heat transfer.

In chapter 5, the motivation of using these advanced methods comes from the need of extend-
ing the created solver in order to deal with highly convection-dominated flows that may occur
in the furnaces. The core of the proposed approach was to keep the previous implementation
of the stable velocity-pressure formulation and to extend it by taking into account the change
in pressure and the convection terms in the equations. Results for the unsteady Navier-Stokes
equations obtained via the new modified scheme have been compared and analyzed with the
results provided from the literature. The operations chosen show that the method is stable.
The performance and the efficiency of the overall new scheme have been demonstrated using
five different burner operations for the convective glass melting furnace and for three opera-
tions of furnace with regenerative burners. The motivation of using such models comes from
the necessity of solving highly unsteady flow problems, for instance the temperature coming
out from the burners into the furnace chamber could reach 1800 K. Again, the stabilized finite
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element approach for solving the SPy equations proposed in chapter 2 and chapter 3 were
used and applied for the resolution of the set of equations. Most importantly, we concluded
from the numerical experiments that a chosen model should introduce the minimum amount
of complexity while capturing the essence of the relevant physics. An improved version of
this model appropriate for simulation of different operations was also introduced and adopted
in this work. However, the question of which suitable operation must be used to simulate
accurately heat flow in the furnace chamber requires certain attention. Our main objective
remained on understanding and implementing these models to open the choice to the user to
decide which method one must use regarding the application in hand. We explained briefly
that each method offers the accuracy of the results with respect to the computational costs and
the required computing time. Finally, the performance and the efficiency of the overall mod-
els were demonstrated using the mentioned operations as benchmark with results validations.
Our novel method were applied to our novel industrial furnaces under different engineering
scenarios. We carried out first by testing our Galerkin-characteristics method by adjusting the
Reynolds number within the industrials values. It was shown that our developed method is
stable and can deal with different values of the Reynolds number. The novel obtained results
show a higher and dominant temperature distribution over the inclusion with the SP3 approx-
imations. The SP3 approximations enabled us to understand the heat flow behaviour inside
different locations and under the operations of different burners and for the first time inside a
glass melting furnace.

The second part of the study was to investigate our novel developed approach by applying it
on an industrial furnace with regenerative burners. Since the burners are located on the walls
of the furnace, heat transfers to the structure is solely from radiation. This study promotes us
to investigate the effect of the radiation heat characteristics namely, the Planck coefficient and
optical depth. The novel obtained results show that radiation is dominant even when reducing
the effect of radiation with higher values of the Planck coefficient and optical depth. The novel
SP3 obtained results showed a higher temperature difference on the surface of the structure
of 10 K than the SP; and 20 K higher than SP,. This is another evidence that commercial
softwares as well as studies based on P; approximation will not be able to serve the industry
and that are incapable of simulating heat flow accurately for forced heat transfer.

As mentioned in the results sections of chapter 4 and chapter 5, thermal radiation exchange
plays an important role on the overall efficiency, the quality of the heated structure (glass
or ingots) and the production rates since it is the dominant mode of heat transfer in most
furnaces. We showed that the proposed SPy approximations for modelling such multi material
heat flow allows a simple and accurate resolution. Full description, details and examples about
this method are discussed in this thesis. One important feature of the proposed approach is
that the SP3 are performed for the first time on unprecedented applications considered which
are needed for solving the transient heat transfer and heat flow inside the furnaces. The engi-
neering applications are completely suited with this approach without additional efforts.

The focus in this work is on a new concept for numerical methods to estimate the temperature
distributions at the same time in the furnace and with the inclusion under specified furnace
geometry, thermal schedule, parts loading design, initial operation conditions, and performance
requirements. It is then to develop the SPy approximations for solving radiative transfer. The
importance of this study is due also to the fact that the model created has been proved to be
applicable to very large variety of natural and forced heat transfer applications, as it depends
mainly on the geometry and on the operating conditions. The created model can be used
for complex application of every dimension and powered under any thermal conditions. The
spherical harmonic P3 offered the possibility to improve the obtained accuracy of the solution
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by capturing the transport effects while still preserving the features that makes the diffusion
solver attractive.

6.2 Scope of future works

Several recommendations arose from the results that are carried out in this study. For future
development areas, three main goals must be considered:

e Reduce the computational costs.
e Increase discretization flexibility.
e Enhancement of the mathematical and physical methods.

Due to the time constraints, additional work was not possible to be carried out and although
valuable results were obtained. It is deemed to be preferable if more in-depth understanding
of heat transfer/heat flow behaviour is to be obtained. Based on the results obtained, there
are different areas where we think it can be good opportunities for future investigation and
study. Some are:

e Our work was limited to the SP3 approximations for radiative transfer. Further approxima-
tions can be considered for dealing with radiation heat transfer.

e The study was focused on 2D natural-convection radiation heat transfer. Mass transfer is
another possible study to consider with the extension of 3D Taylor-Hood finite element
approach.

e The research was done using the Galerkin-characteristics technique to deal with the presence
of the advection term that can cause node-to-node oscillations. Our approach however,
is valid for laminar flow conditions. Another approach that can be used for higher values
of the Reynolds number with different other engineering applications.

e The focus was limited to convection and radiation. Conduction can be considered for the
future work along with coupling heat flow with the structure in order to calculate the
deformation of the inclusion.

e Our study focused on adjusting a uniform temperature distribution across the entire furnaces.
This is done by choosing different operation conditions. The effect of flow swirling (heat
flow angle) on the distribution of the heat flow is another interesting idea that can be
applied to focus the heat on a particular area.

e Capturing the melting points of structures (phase change) inside the furnace is another
interesting study that can be investigated.

e The proposed study managed very well in understanding the behaviour of the heat flow.
Thermoforming applications are another type of study that can be an extension to the
current results in both 2D and 3D.

e Effect of fuel:air on both the furnace geometry and emissivity is another continuation of the
investigation that can be carried out.
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