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Abstract: The main aim of this thesis is to use the geometric setting of cutting

sequences to better understand the behaviour of continued fractions under integer

multiplication. We will use cutting sequences to construct an algorithm that multi-

plies continued fractions by an integer n. The theoretical aspects of this algorithm

allow us to explore the interesting properties of continued fractions under integer

multiplication. In particular, we show that an eventually recurrent continued frac-

tions remain eventually recurrent when multiplied by a rational number. Finally,

and most importantly, we provide a reformulation the p-adic Littlewood Conjecture

in terms of a condition on the semi-convergents of a real number α.
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Chapter 1

Introduction

1.1 Motivation

The main aim of this thesis is to further understand and develop the link between

cutting sequences and continued fraction expansions. In particular, we wish to

use cutting sequences to better understand how continued fractions behave when

iteratively multiplied by an integer.

The question of how continued fractions behave when iteratively multiplied by an

integer is important to several open problems in Diophantine approximation. The

most important motivation for us comes from the p-adic Littlewood Conjecture

(pLC). This conjecture was first proposed by de Mathan and Teulié in 2004 in

[MT04], as a one-dimensional analogue of the classical Littlewood Conjecture. We

state the conjecture as follows:

The p-adic Littlewood Conjecture. For every real number α " R, we have:

mp�α� �� inf
q"N

rq � ¶q¶p � ½qα½x � 0,

where ¶ � ¶p is the p-adic norm and ½ �½ is the distance to the nearest integer function.
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Reformulating the p-adic Littlewood Conjecture

Whilst it is not initially clear from the above formulation how integer multiplication

of continued fractions relates to the p-adic Littlewood Conjecture, we can reformulate

pLC to highlight the importance of integer multiplication of continued fractions in

this setting. Before we do this, we first introduce some definitions. Note that this

will be covered in more detail in Chapter 2.

If α is a real number, then we will denote its continued fraction expansion as α �

�a0; a1, . . .� with a0 " N< r0x and ai " N. We refer to the terms ak appearing in the

continued fraction as the partial quotients of α. We define the height function B�α� of
a real number α to be the largest partial quotient in the continued fraction expansion,

excluding a0. More explicitly, we have B�α� �� sup
k"N

rak � α � �a0; a1, a2, . . .�x. We

will say that α is badly approximable if the height function B�α� is finite. We denote

the set of all badly approximable numbers as:

Bad �� rα " R � B�α� $�x .
It is then a classical result of Diophantine approximation that for any α " R, we

can bound the value inf
k"N

rq � ½qα½x above and below in terms of the height function

B�α�. More specifically:

1
B�α� � 2 & inf

k"N
rq � ½qα½x & 1

B�α� .
Since the p-adic norm is bounded above by ¶q¶p & 1 for all q " N, it is not hard to

see that if α ©" Bad, then mp�α� � 0. With a fair bit of work - the details of which

we present in Chapter 2 - we can then show that for all α " Bad, we have:

mp�α� � inf
`"N<r0x

vinf
q"N

q � ½qp`α½| .
This is then bounded above and below as:

inf
`"N<r0x

v 1
B�p`α� � 2

| & inf
`"N<r0x

vinf
q"N

q � ½qp`α½| & inf
`"N<r0x

v 1
B�p`α�| .
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This leads to the following reformulation of pLC:

Corollary 2.2.14. (Folklore) Let α " Bad. Then α satisfies pLC if and only if:

sup
`"N<r0x

tB�p`α�z ��.

Since α " Bad, the value of B�p`α� is finite for each ` " N < r0x. Therefore, using
this reformulation, we can think of the p-adic Littlewood Conjecture as saying that

for all α " Bad there is some increasing subsequence r`mxm"N such that the limit of

B�p`mα� is unbounded. Alternatively, if α is a counterexample to pLC, then there

exists some K " N such that for all ` " N < r0x, we have:

B�p`α� & K.
It is for this reason that the (theoretical) set of counterexamples to pLC is often

referred to as the multiplicatively badly approximable numbers:

Madp �� rα " R � mp�α� % 0x.

Multiplying Continued Fractions

The above reformulation of pLC is heavily dependent on the behaviour of continued

fraction expansions under iterative integer multiplication - more precisely, the be-

haviour of the size of the largest partial quotient. Therefore, to better understand

pLC, it would be useful to have a way of directly computing the continued fraction

expansion nα from the continued fraction expansion α, for an arbitrary n " N.

For every α " R, we can construct a unique map between α and α, (if α " Q, take

α with 1 as the final partial quotient - otherwise the map is not unique), and a

unique map between α and nα. Therefore, we expect to be able to construct the

map n � α � nα to get the following commutative diagram:
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α
n //

��

nα

��
α

n
// nα

From a theoretical point of view we could avoid the n map - denoted by a dashed

arrow - and go the “long way” around the diagram. More specifically, we could first

take the continued fraction α and map this to the real number α. We could then

easily multiply α by n to obtain nα, and then finally, compute the continued fraction

expansion nα. However, on a more practical level, this produces issues. Whenever α

is an infinite continued fraction (and not periodic), we can not compute the precise

value of α in real time. Instead, we must truncate α to some fixed precision and then

compute an approximation of α. Since we are only dealing with an approximation

of α, any computation done in this way is likely to produce numerical errors. Whilst

these errors can be minimised, they can not be avoided in all cases and iterative

multiplication compounds the issue. Instead, we wish to directly compute nα from

α in an algorithmic way.

There are a few benefits to expressing the n map in an algorithmic way. Firstly,

it makes the most heuristic sense. Continued fractions are a way of encoding a

continuous object (the real number α) as a collection of discrete data (the partial

quotients). If we want to see how this discrete data behaves under integer multi-

plication, it is more natural to construct a map which acts directly on this discrete

data, instead of the continuous object. Secondly, since algorithms are iteratively

defined, we can construct them in a way such that they never introduce computa-

tional errors. In particular, if we do not have enough data to complete the final step

of the algorithm, the algorithm will not produce an output for this final step - as

opposed to producing an erroneous output. Finally, if we compute the multiplication

map on, say, the first million partial quotients in the continued fraction expansion,

and then decide that this is not enough precision for our uses, we can continue the

multiplication algorithm from the millionth partial quotient without introducing any

errors, provided that we remember the last state we encountered. In the previously
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explained continuous setting, we would have to completely redo the multiplication

step, and then recompute the corresponding continued fraction nα.

Previous Work on Multiplying Continued Fractions

The topic of constructing an algorithm for integer multiplication of continued fraction

expansions has been previously investigated, most notably by Raney in [Ran73] and

Liardet and Stambul in [LS98]. In fact, both of these previous works tackled a slightly

more general question; they showed how for any real number α and any matrix

M � � a bc d � with non-zero determinant (i.e. ad� bc j 0), one could use the continued

fraction expansion of α to compute the continued fraction expansion of β �M �α ��

aα�b

cα�d
. These works were themselves inspired by an earlier paper of Hall [Hal47],

which outlined how one could construct such multiplication algorithms. However,

Hall’s algorithm was not very efficient, even for matrices with small determinant.

On the other hand, both Raney’s algorithm and Liardet and Stambul’s algorithm

are very efficient for explicit computation. However, for theoretical purposes, these

algorithms are not necessarily. The main reason for this is that the algorithm is

solely defined for each matrix M � � a bc d � with non-zero determinant. In particular,

if we have m,n " N with m j n, knowing how the m multiplication algorithm works

does not really tell us much information about the n multiplication algorithm.

This is not to say that Raney’s algorithm and Liardet and Stambul’s algorithm

can not be used for theoretical results. Liardet and Stambul show in [LS98] that if

α � �0; k� has period length 1, then nα has period length at most 5, and Vandehey

notably used Liardet and Stambul’s algortihm in [Van17] to show that CF-normality

is preserved by non-trivial matrix multiplication. However, in this thesis we present

an algorithm which has a more natural link between the continued fraction expansion

α and corresponding real number α - they are both encoded by the same object in

our setting. The most important theoretical aspect to come out of our construction

is the concept of infinite loop mod n. An infinite loop mod n is any positive real

number α " R%0 which has no semi-convergent denominators divisible by n. As



6 Chapter 1. Introduction

we will see in Chapter 5, infinite loops mod n have very interesting properties with

regards to multiplication by n and are very important in understanding the structure

of potential counterexamples to pLC. As far as the author is aware, infinite loops as

described in this thesis have not been previously discussed. We use the nomenclature

“infinite loop”, since when we perform our multiplication by n algorithm on an infinite

loop mod n, the process will go on indefinitely, however, it never returns to the initial

state.

1.2 Summary and Main Results

The main purpose of Chapter 2 is to introduce some classical results of Diophantine

approximation and use these preliminary results to discuss the p-adic Littlewood

Conjecture (pLC) and mixed Littlewood Conjecture (mLC). This chapter summarises

the current literature available on these topics, and from that point of view, should

be considered as background instead of novel material. We begin by briefly discussing

the history of continued fractions, of which, more detail can be found in [Bre80].

From there, we give a brief summary of continued fractions and outline the properties

of continued fractions that we will use throughout the text. We then move on to

discussing the classical Littlewood conjecture. This serves two main purposes: firstly,

it provides motivation as to why one would want to study the mixed and p-adic

Littlewood conjectures, and secondly, it allows us to discuss the analogies between

the Littlewood conjecture and these conjectures. After discussing some key results

pertaining to the Littlewood conjecture, we then formally introduce the mixed and

p-adic Littlewood conjecture. We discuss the main developments with regards to

these conjectures and finish the chapter by proving the folklore reformulation of pLC.

A good source which outlines the major developments for both the Littlewood and

mixed Littlewood Conjecture can be found in [Bug14].

In Chapter 3, we introduce the notion of cutting sequences and describe how one can

use this geometric setting to understand how integer multiplication affects continued
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fractions. Section 3.1 is more background, with the main aim being to introduce the

notion of a cutting sequence and discuss the main properties of cutting sequences.

We start by defining a cutting sequence of a geodesic ray ζ intersecting an ideal

triangulation T of H. We then replace the geodesic ray with an arbitrary path,

so that we can see that homotopy only affects cutting sequences in a fairly trivial

way. We then introduce the Farey tessellation F as an ideal triangulation of H.

This section ends by providing the link between cutting sequences relative to F and

continued fractions. In particular, we state the following theorem:

Theorem 3.1.22. ([Ser85b, Theorem A]) Let ζα be a geodesic ray in H, starting at

the y-axis and terminating at a point α " R%0. Then, if �ζα,F� � L
n0R

n1� is the

cutting sequence of ζα relative to F , the continued fraction expansion of α is given

by α � �n0;n1, . . .�, for n0 " N < r0x and ni " N otherwise.

This theorem is the foundation of our work on multiplying continued fractions by

an integer, since it allows us to encode continued fractions as cutting sequences in a

very natural way.

Section 3.2 is predominantly novel material, with the exception of section 3.2.2 which

recaps the work in [Kul91]. We begin by defining the 1
n
-scaled Farey Tessellation,

1
n
F . This is given by 1

n
F �� �n���1 �F�, where n� �� � Ó

n 0
0 1Ó

n
	 " PSL2�R�. We then

note that if ζα is any geodesic ray starting at the y-axis and terminating at the point

α " R%0, and ζnα is a geodesic ray starting at the y-axis and terminating at the

point nα, then the cutting sequence �ζα, 1
n
F� is equivalent to the cutting sequence

�n��ζα�, n� � 1
n
F�� � �n��ζα�,F�. This is in turn equivalent to the cutting sequence

�ζnα,F�. In particular, �ζα,F� corresponds to the the continued fraction α and

�ζα, 1
n
F� corresponds to the continued fraction expansion of nα. Since α " R%0 was

arbitrarily chosen, replacing the triangulation F by the triangulation 1
n
F represents

integer multiplication of continued fractions. However, this process is not algorithmic.

To construct such an algorithm, we will observe that for any fundamental domain

Pn of Γ0�n�, we can define Tr1,nx to be Pn =F and Trn,nx to be Pn = 1
n
F . The action
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of Γ0�n� on the fundamental domain Pn tessellates the plane H. Moreover, the

action of Γ0�n� on the locally defined Tr1,nx and Trn,nx recovers the triangulations F

and 1
n
F , respectively. More specifically, Γ0�n� � Tr1,nx � F and Γ0�n� � Trn,nx �

1
n
F .

Therefore, in order to describe the structure of F and 1
n
F simultaneously, it is

sufficient to describe their structure inside some fundamental domain Pn of Γ0�n�.
It is ultimately this property that allows us to construct the integer multiplication

algorithm. In Section 3.2.2, we take a brief hiatus from our own work to describe the

work done by Kulkarni in [Kul91]. Here, we discuss how Kulkarni uses the structure

of F to produce fundamental domains of Φ, where Φ is any subgroup of PSL2�Z�.
In particular, one can use this work to find fundamental domains of Γ0�n�. Using

the fundamental domains as described in Kulkarni’s work, we formally outline the

construction of the integer multiplication algorithm in Section 3.2.3. This Chapter

ends with examples of how to construct and implement the algorithm for n � 2 and

3.

We begin Chapter 4 by generalising the notion of cutting sequences to include

paths intersecting triangulations of a quotient space Φ�H, where Φ is a finite index

subgroup of PSL2�Z�. To do this, we define a triangulation of this quotient space

and prove that if an ideal triangulation T of H is invariant under the action of Φ

- i.e. Φ � T � T - then T induces a triangulation rT of Φ�H. We then discuss the

properties of cutting sequences relative to Φ�H and compare these properties to

cutting sequences relative H. Since the triangulations F and 1
n
F are both preserved

under the action of Γ0�n�, these triangulations induce the triangulations sF andu1
n
F

of Γ0�n��H. In particular, the following theorem highlights how we can view integer

multiplication of a continued fraction as a triangulation replacement on Γ0�n��H.
Theorem 4.1.8. For every geodesic ray ζα in H starting at the y-axis with endpoint

α % 0, there is a canonical projection sζα onto Γ0�n��H such that �ζα,F� � �sζα, sF�
and �ζα, 1

n
F� � �sζα,u1nF�.

In Section 4.2, we discuss how if λ is a path on Φ�H, then the cutting sequence
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�λ, T � satisfies certain properties if and only if the path λ satisfies certain properties,

where T is any triangulation of Φ�H. For example, we will show how the cutting

sequence �λ, T � is periodic if and only if λ is homotopic to a path that goes around a

closed curve infinitely often. Similarly, the cutting sequence �λ, T � will be eventually
recurrent - see Section 2.1.2 for definition - if and only if λ satisfies some geometric

property - which we refer to as geometric recurrence. Since these geometric properties

are independent of triangulation T , we get the following corollary:

Corollary 4.2.4. Let Φ�H be an orbifold and let ζ be a geodesic ray in Φ�H, starting

at some arc γζ. If there is some triangulation T containing the arc γζ such that

�ζ, T � is eventually recurrent/periodic, then �ζ, T ¬� is eventually recurrent/periodic,

where T ¬ is any other triangulation of Φ�H containing the starting arc γζ.

By Theorem 4.1.8, we can represent integer multiplication of a continued fraction

by n as the triangulation replacement of sF by u1
n
F on the space Γ0�n��H. We

can then use Corollary 4.2.4 deduce that if the continued fraction expansion of α

is eventually recurrent, then the continued fraction expansion of nα will also be

eventually recurrent for all n " N, since the corresponding cutting sequences �sζα, sF�
and �sζα,u1nF� will be eventually recurrent. The continued fraction expansion α will

also be eventually recurrent if we add an arbitrary integer, - i.e. if we take β � α� k

for some k " N - or if we invert α - i.e. if we take β � 1
α
. Combining together all of

these operations, we end the chapter with the following corollary:

Corollary 4.2.6. Let α " R, let M � � a bc d � be a non-trivial integer matrix (i.e.

a, b, c, d " Z, ad � bc j 0), and let β � M � α �
aα�b

cα�d
. If the continued fraction

expansion α is eventually recurrent and cα � d j 0, then the continued fraction β is

eventually recurrent.

In Chapter 5 we introduce the notion of an infinite loop mod n. These objects have

geometric origins, but can be nicely expressed as the positive real numbers, which

have no semi-convergent denominators divisible by n. We begin by discussing the
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properties of infinite loops and describing why these objects are interesting. Using

these properties, we see that infinite loops behave very badly with regards to the

integer multiplication algorithm. On the other hand, if α is not an infinite loop

mod n, then we can deduce some nice properties of nα. In particular, if α is not

an infinite loop mod n, then we can guarantee that the partial quotients of B�α�
and B�nα� can not both be simultaneously small relative to

Ó
n. More precisely, we

have the following lemma:

Lemma 5.1.10. Assume that α is not an infinite loop mod n. Then we have:

maxrB�α�, B�nα�x ' �2Ón%�1.

We will use this property to show that if there is some sequence of natural numbers

r`mxm"N such that p`mα is not an infinite loop mod pm, then α satisfies pLC. This

is summarised in the following corollary:

Corollary 5.1.12. Let α " Bad and assume there is some sequence of natural

numbers r`mxm"N such that p`mα is not an infinite loop mod pm. Then α satisfies

pLC.

The reverse to this statement is also true. In particular, we have the following

lemma:

Lemma 5.1.14. Let α " Bad and assume there exists an m " N such that p`α is

an infinite loop mod pm for all ` " N. Then α is a counterexample to pLC.

Combining these statements together, we get the following reformulation of pLC in

terms of infinite loops mod n.

Theorem 5.1.15. Let α " Bad. Then, α satisfies pLC if and only if there is a

sequence of natural numbers r`mxm"N such that p`mα is not an infinite loop mod pm.

We end this chapter by discussing two algorithms one could use to construct infinite

loops mod n, for any n " N. One of these algorithms is geometric in nature and the
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other is arithmetic. Due to the reformulation of the p-adic Littlewood Conjecture in

terms of infinite loops mod n, we hope that these algorithms will be useful in further

investigating the set of potential counterexamples to pLC.

In the final chapter, we discuss the main results and findings of this thesis, as well

as the ways that this work could be developed in the future.





Chapter 2

Motivation and Context

The main focus of this chapter is to introduce the motivation for the main question

of this thesis: “How do continued fraction expansions behave when multiplied by an

integer?” This question has strong ties to several open problems in Diophantine

approximation, such as the mixed and p-adic Littlewood Conjectures. In order to

introduce these conjectures, we will briefly discuss the history of continued fractions

and a range of the classical results pertaining to continued fractions. We will also

discuss why the mixed and p-adic Littlewood conjectures are interesting and outline

some of the more important work done in this area.

2.1 The History of Continued Fractions and

Important results

2.1.1 A Brief History of Continued Fractions

We begin by briefly discussing the history of continued fractions. The main source

used for this overview is [Bre80], but we cite other sources when applicable.

The origins of continued fractions are often attributed to Euclid’s algorithm (c. 306-

283BCE). This algorithm is a process to find the greatest common divisor of two
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integers p and q, and slight modification of this algorithm can be used to determine

the continued fraction expansion of p

q
. However, it is unlikely that Euclid or his

contemporaries used the algorithm in this way. Following Euclid, there were several

notable instances of convergents of continued fractions being implicitly used in

mathematics. For example, Aryabhata the elder (c. 475–550CE) detailed a process

he called “kuttaka” to find integer solutions x and y to indeterminate equations of

the form ax � by � c, for a, b, c fixed variables in Z. Convergents were also used to

approximate square roots of integers and to find solutions to Pell equations. These

are equations of the form x
2
�Dy

2
� 1, where D is a fixed positive square-free integer

and x and y are positive integers variables. Theon of Smyrna (c. 70–135CE)[Hat07]

found solutions to the equation d
2
� 2a2

� �1 and noted that the solutions gave

“good approximations” of
Ó

2.

However, it was not until the 17th century that the phrase continued fraction was first

introduced by John Wallis. Wallis explicitly investigated continued fractions and

their general properties in the book Arithmetica Infinitorum, which was published

in 1655. However, it was the 18th century, in which the theory of continued fractions

flourished into the topic we know today. In particular, Euler’s book De Fractionibus

Continius laid the groundwork for much of the modern theory of continued fractions.

In this book, Euler proved that rational numbers correspond to finite continued

fractions, irrational numbers correspond to infinite continued fractions and that

e is irrational. He also gave a proof that eventually periodic continued fractions

correspond to quadratic irrationals - however, he did not show that the reverse is true.

In the latter half of the 18th century, Lambert expressed tan�x� as a generalised

continued fraction and used this to show that π

4 is irrational, and, by extension,

so is π. In 1766, Lagrange proved that Pell’s equation has infinitely many integer

solutions for D a square-free positive integer. In 1767 and 1768, Lagrange published

two papers which completed the identification of quadratic irrationals and periodic

continued fractions, by showing that quadratic irrationals all have eventually periodic

continued fraction expansions.
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2.1.2 Classical Results Surrounding Continued Fractions

In this section, we will discuss several classical results pertaining to (simple) contin-

ued fractions. These results can be found in a number of introductory texts, but the

main sources we use are [Khi63] and chapter 10 of [HW38]. We start by defining

simple continued fractions.

Definition 2.1.1. A (simple) continued fraction α is an expression of the form

α �� a0 �
1

a1 �
1

a2 �
1
. . .

,

where a0 " Z and ai " N for i ' 1.

Throughout this thesis, we will solely look at simple continued fractions, which we

will from now on just refer to as “continued fractions” for brevity.

We will usually identify continued fractions with their sequence of ai’s, α � �a0; a1, . . .�
and refer to the ai’s as partial quotients. We note that explicit evaluation of the

continued fraction expansion produces a real number α. Similarly, for any real

number α we can find an associated continued fraction expansion by using Euclid’s

algorithm:

Euclid’s Algorithm for Computing Continued Fractions.

Let α " R and let α be an empty list.

1. Set i � 0 and α0 � α:

2. While αi j 0:

(a) Find ai " N and ri " �0, 1� such that αi � ai � ri.

(b) Append ai to the list of partial quotients α.

(c) If ri j 0:
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• Set αi�1 �
1
ri
.

Else:

• Set αi�1 � 0.

3. End of algorithm.

We note that for α " Q, the above process terminates. In particular, for α " Q ¯ r0x
there is some k " N such that αk " N. However, since our remainder rk lies in the

interval �0, 1�, this results in two equivalent continued fraction expansions given by

�a0; a1, . . . , ak� and �a0; a1, . . . , ak � 1, 1�, where ak % 1. For α " R ¯ Q, the above

process does not terminate and so there is no value k " N < r0x with αk " N. In

particular, for α " R ¯Q there is a unique infinite continued fraction expansion.

Definition 2.1.2. Let α � �a0; a1, a2, . . .� be a continued fraction. We define the

k-th convergent of α to be pk
qk
�� �a0; a1, . . . , ak�. We can define this iteratively where:

p�1 � 1 p0 � a0 pk � akpk�1 � pk�2

q�1 � 0 q0 � 1 qk � akqk�1 � qk�2

We refer to the term pk as the k-th convergent numerator of α and qk as the k-th

convergent denominator.

Remark 2.1.3. It is worth noting that since ai " N for i ' 1 and a0 " Z, only

the initial partial quotient a0 can be negative. From this set-up, the convergent

denominators will always be non-negative and the convergent numerators (possibly

excluding p�1) will have the same sign as α.

Continued fractions as Good Rational Approximations

One of the main reasons why continued fractions have been so well-studied, is that

the convergents of a real number α " R are very “good rational approximations” of

α. This notion of a “good rational approximation” takes several different forms.
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Given a real number α, we define a rational number p

q
to be the best rational

approximation of the first type, if for every n " N < r0x and d " N with d & q, we

have: »»»»»»α � p
q
»»»»»» & »»»»»»α � n

d

»»»»»» .
This is equivalent to saying that there is no rational number with a denominator

smaller than q, which is closer to α. We similarly define p

q
to be the best rational

approximation of the second type, if for every n " N < r0x and d " N with d & q, we

have:

¶qα � p¶ & ¶dα � n¶.
Here, it will be useful to introduce the distance to the nearest integer function

½ � ½ � R� �0, 1
2�, which is the function given by:

½α½ � min r¶α � n¶ � n " Zx .
It is easy to see that for a rational p

q
to be a best approximation of the second type,

we must necessarily have that:

½qα½ � ¶qα � p¶.
Otherwise, this would imply that there is some n " Z with n j p, such that:

½qα½ � ¶qα � n¶ $ ¶qα � p¶.
In this case, n

q
would be a better rational approximation than p

q
. We note that if pk

qk

is a convergent of α, then:

½qkα½ � ¶qkα � pk¶.
Therefore, the convergents of α satisfy this necessary condition. In fact, the following

theorem shows that the best rational approximations of the second type are precisely

the convergents of α:

Theorem 2.1.4. ([Khi63, Theorem 16 and 17]) Every convergent is a best approx-

imation of the second kind and every best approximation of the second kind is a
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convergent.

Remark 2.1.5. There is one trivial exception to this theorem, which is when

α � a � 1
2 for a " Z. Here, both a

1 and a�1
1 give equally good approximations of α,

but only one of them will be a convergent (if a " Z'0, then p0
q0
� a, and p0

q0
� a � 1,

otherwise).

With a bit of work we can see that if p

q
is a best approximation of the second kind,

then p

q
is a best approximation of the first kind. In particular, for all n " N < r0x

and d " N with d & q we have the following:

q
»»»»»»α � p

q
»»»»»» � ¶qα � p¶ & ¶dα � n¶ � d »»»»»»α � n

d

»»»»»» & q »»»»»»α � n

d

»»»»»» ,
and so: »»»»»»α � p

q
»»»»»» & »»»»»»α � n

d

»»»»»» .
Therefore, we can conclude that every convergent is also a best approximation of the

first kind. However, not every best approximations of the first kind is a convergent.

In order to get all best approximations of the first kind, we first must generalise the

notion of a convergent. To do this, we define the semi-convergents of α, also known

as the intermediate convergents or secondary convergents.

Definition 2.1.6. Let α � �a0; a1, a2, . . .� be a continued fraction expansion of

some real number α. We define the rk,mx-th semi-convergent of α to be prk,mx
qrk,mx

��

�a0; a1, . . . , ak,m�, where 0 & m & ak�1. We can define this iteratively using the

standard convergents:

prk,mx � mpk � pk�1,

qrk,mx � mqk � qk�1.

We refer to the term prk,mx as the rk,mx-th semi-convergent numerator of α and

qrk,mx as the rk,mx-th semi-convergent denominator.

We can view the k-th convergents as truncations of the continued fraction expansion

α after the k-th partial quotient. The rk,mx-th semi-convergents can similarly be
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viewed as the truncation of α which occurs m integers into the �k � 1�-th partial

quotient. By construction, the rk, 0x-th semi-convergent of α will be the �k � 1�-th
convergent of α. Similarly, the rk, ak�1x-th semi-convergent of α will be the �k�1�-th
convergent of α. Using the notion of a semi-convergent, one can obtain the following

result:

Theorem 2.1.7. ([Khi63, Theorem 15]) The fraction n

d
is a best approximation to

a real number α of the first kind if and only if it is a k-th convergent or a rk,mx-th
semi-convergent of α, where either:

• m �
ak�1

2 and �ak�1 � ak, . . . , a0� % �ak�1; ak�2, . . .�, or
• m %

ak�1
2 .

Convergents can also be viewed as good rational approximations of real numbers in

an alternative way. In particular, the difference between α and one of its convergents

is very small relative to the size of the convergent denominator. This concept is

emphasised by the following theorem:

Theorem 2.1.8. ([HW38, Theorem 163 and 171], [Khi63, Theorem 9]) The k-th

convergent of a real number α satisfies the following property:

»»»»»»α � pk
qk

»»»»»» $ 1
qkqk�1

$
1

ak�1q
2
k

&
1
q2
k

.

Using this notion of a good approximation, it is natural to ask whether or not any

rational number n

d
satisfying »»»»»α � n

d

»»»»» $ 1
d2 is a convergent of α. However, this is not

quite true. If we have a slightly stronger condition - that »»»»»α � n

d

»»»»» $ 1
2d2 - then n

d
is a

convergent of α.

Legendre’s Theorem. ([Khi63, Theorem 19], [HW38, Theorem 184]) Every irre-

ducible rational number n

d
satisfying »»»»»α � n

d

»»»»» $ 1
2d2 is a convergent of α.
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For α an irrational number, α has infinitely many partial quotients, and therefore,

has infinitely many convergents. One can conclude from Theorem 2.1.8 that:

»»»»»»α � p
q
»»»»»» $ 1

q2 ,

for infinitely many p " Z and q " N with gcd�p, q� � 1. In fact, one can say

something even stronger:

Hurwitz’s Theorem. ([Khi63, Theorem 21]) For every α " R ¯ Q, there are

infinitely many p " Z and q " N with gcd�p, q� � 1 such that:

»»»»»»α � p
q
»»»»»» $ 1Ó

5q2
.

Hurwitz’s Theorem shows that for every α " R ¯Q and ν � 1Ó
5 , we have:

»»»»»»α � p
q
»»»»»» $ ν

q2 ,

for infinitely many p " Z and q " N with gcd�p, q� � 1. From this, it is natural to

ask if ν � 1Ó
5 is the best constant for this upper bound. In fact, for a general α " R,

ν � 1Ó
5 is the best that we can do. For example, the golden ratio ϕ �� 1�

Ó
5

2 only has

finitely many rationals p

q
which satisfy

»»»»»»α � p

q

»»»»»» $ ν

q2 , when ν $ 1Ó
5 .

In a similar vein of questioning, we can ask “What is the largest value of c " R such

that:
c

q2 $
»»»»»»α � p

q
»»»»»» ,

for every rational p
q
?”. We will use the function c�α� to denote the largest value of c

in this case. We can rearrange the equation and take the infimum, to see that:

c�α� � inf
p
q
"Q

uq2 »»»»»»α � p
q
»»»»»»{

� inf
p
q
"Q

uq »»»»»»qα � qpq »»»»»»{
� inf

p
q
"Q

rq ¶qα � p¶x
� inf

q"N
rq½qα½x .
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The function c�α� gives some kind of idea of how well an irrational number is

approximated by the rationals. For example, if c�α� � 0, then for every ε % 0 there

is some rational number p

q
which satisfies:

»»»»»»α � p
q
»»»»»» $ ε

q2 .

However, if c�α� % ε % 0, then for every rational number p

q
we have:

ε

q2 $
»»»»»»α � p

q
»»»»»» .

We refer to the class of real numbers with c�α� % 0 as the set of badly approximable

numbers (also referred to as the badly approximables), denoted Bad. Explicitly, we

have that:

Bad �� wα " R � inf
p
q
"Q

uq2 »»»»»»α � p
q
»»»»»»{ % 0} .

By Hurwitz’s Theorem, we know that c�α� $ 1Ó
5 for all real α. Since 1Ó

5 $
1
2 , we can

use Legendre’s Theorem to see that the rationals p

q
which minimise q2 »»»»»»α � p

q

»»»»»» must

be the convergents of α. As a result, we can rewrite c�α� in terms of the convergents

of α:

c�α� � inf
k"N

rqk½qkα½x .
Therefore, we can rewrite the set Bad in terms of the convergents of α:

Bad �� vα " R � inf
k"Q

rqk ½qkα½x % 0| .

We can similarly define Bad by using a condition on the partial quotients of the

continued fraction expansions. In order to do this, we introduce the following theorem

which gives us a lower bound on the value of ¶α� pk
qk
¶ in terms of the partial quotients:

Theorem 2.1.9. ([Khi63, Theorem 13]) The k-th convergent of a real number α

satisfies the following property:

1�ak�1 � 2�q2
k

$
1

qk�qk�1 � qk� $
»»»»»»α � pk

qk

»»»»»» .
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Combining together Theorem 2.1.8 and Theorem 2.1.9, we see that:

1
ak�1 � 2 $ qk½qkα½ $ 1

ak�1
.

As a result, we can bound c�α� in terms of the partial quotients of α:

inf
k"N<r0x

v 1
ak�1 � 2| $ c�α� $ inf

k"N<r0x
v 1
ak�1

| .
Here, we see that for α " R ¯ Q, we have c�α� % 0 if and only if inf

k"N
t 1
ak
z % 0. We

note that inf
k"N

t 1
ak
z % 0 if and only if sup

k"N
rakx $�, i.e. partial quotients are bounded.

We define the height function B�α� to be the largest partial quotient of α, i.e.:

B�α� � sup
k"N

rak � α � �a0; a1, a2 . . .�x .
This allows us to redefine Bad in terms of the height function of α:

Bad �� rα " R ¯Q � B�α� $�x .
Remark 2.1.10. Note that in the definition of the height function, we ignore the

term k � 0 and only look at k " N. This is because for rαx � α � �α$, we have

½qα½ � ½q rαx ½ � ½ rqαx ½, and so it is natural drop the integer part of α.

Here we should also note the link between the constant c�α� and the Markov constant

µ�α�, where:
µ�α� �� lim inf

q��
rq½qα½x .

We can view the Markov constant as the smallest value of u such that

»»»»»»α � p
q
»»»»»» $ u

q2

is satisfied for infinitely many rational numbers p

q
. Occasionally, the badly approx-

imable numbers are defined as the set of real numbers α " R satisfying µ�α� % 0

[BV11]. However, as seen in [Bur00, Theorem 7.4], we see that c�α� � 0 if and only

if µ�α� � 0 and so these definitions are equivalent. See [Bur00] for more information

about c�α� and µ�α�.
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There are a few reasons why we chose to define the badly approximable numbers

using the constant c�α�, instead of the Markov constant µ�α�. The most notable

reason why we do this is that the constant c�α� corresponds to a nicer definition of

infinite loops in Chapter 5. This in turn results in nicer statements of Corollary 5.1.12

and Lemma 5.1.14.

Finally, we note that if α " Bad, then so is nα for all n " N. Since α is an element

of Bad, we know that there is some ε % 0 such that:

q � ½qα½ % ε,
for all q " N. As a result, it follows that for a fixed n, we have:

nq � ½nqα½ % ε,
for all q " N. Finally, this implies that:

q � ½q�nα�½ % ε
n,

for all q " N, and the result follows.

Continued Fraction Expansions as Words

In order to discuss some of the results pertaining to the Littlewood-type conjectures,

it will often be useful to view continued fractions as their associated words.

Let A be some set, then a finite word w (in A) of length N is a composition of N

elements in A. The set A is referred to as the alphabet and the elements of this set

are referred to as letters. The set of all words of length N is denoted by AN and

the set of all finite word will be denoted by A�. An infinite word is a composition

of countably many elements in A. The set of all infinite words is denoted AN. The

left shift map T � AN � AN is the map induced by removing the first letter from the

word. For example, if w � w0w1w2 . . ., then Tw � w1w2 . . ..

A sub-word of w � w1w2w3 . . . is any finite word u which appears at least once in w,
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i.e. there is some i, k " N with u � wi�1 . . . wi�k. Given a word w � w1w2w3 . . . of

length n " N< r�x, a prefix is any sub-word p � w1w2 . . . wm formed by truncating

w after the first m terms, where m $ n. If w is a finite word, then a suffix is any

sub-word v of w such that w � uv. If w is an infinite word, then a tail is an infinite

word v such that w � uv, where u is a prefix. [AS03].

Given a real number α " R, we define wCF �α� to be the (potentially infinite) word

formed by iteratively appending the non-zero partial quotients of the continued

fraction expansion of α [Bad15], i.e.:

wCF �α� �
~������������
a0a1a2 . . . if α � �a0; a1, a2, . . .�
a1a2a3 . . . if α � �0; a1, a2, a3, . . .�

For α " R ¯ Q, we see that that wCF �α� " NN. However, if α " Bad there exists

some K " N such that B�α� & K, and so, in this case, wCF �α� " ANK where

AK �� r1, . . . , Kx. This K is not unique, but we will often take K to be the

minimum possible value, i.e. K � B�α�. We will typically only be interested in

words corresponding to infinite continued fractions and the properties that these

words have. The two main properties we will discuss are periodicity and recurrency.

An infinite word w � w1w2 . . . is strictly periodic if there exists an m " N such

that wi � wm�i for all i " N. We will use the notation w1 . . . wm to indicate that

wi � wm�i for all i " N. The period of w is the smallest m such that wi � wm�i for

all i " N. An infinite word w is eventually periodic, if there exists some n " N< r0x
such that T nw is periodic, i.e. one can write w � u1 . . . unw1 . . . wm.

Theorem 2.1.11 (Euler and Lagrange). Let α " R. Then wCF �α� is eventually

periodic if and only if α is a quadratic irrational, i.e. α is a real number of the form
a�b

Ó
c

d
, where a, b, c, d " Z ¯ r0x and c is square-free.

An infinite word w is strictly recurrent if every sub-word that appear once in w,

appears infinitely often in w. An infinite word w is eventually recurrent, if there

exists some n " N < r0x such that T nw is strictly recurrent. Examples of strictly
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recurrent words include: Sturmian words, Thue-Morse words and periodic words;

See [AS03] for more details on each of these objects.

Remark 2.1.12. In general, we will drop the phrase “strictly” when referring to

“strictly recurrent” and “strictly periodic” words, and will instead refer to them as

being recurrent or periodic, respectively. We will also commonly abuse notation and

refer to the continued fraction expansion as recurrent/periodic if the corresponding

word is recurrent/periodic.

Given two irrational numbers α and β, we will say that α has the same tail as

β if there is some word v which is a tail for both wCF �α� and wCF �β�. In other

words, there exist some k, ` " N < r0x such that α � �a0; . . . , ak, c0, c1, . . .� and

β � �b0; . . . , b`, c0, c1, . . .�. The following theorem tells us exactly when two real

numbers will have the same tails:

Theorem 2.1.13. Let α, β " R be two irrational numbers. Then, α and β have the

same tails if and only if there is some matrix � a bc d � " GL2�Z� such that β � aα�b

cα�d
.

Another useful tool to look at will be the complexity function, P �wCF �α�, n�. The
complexity function P �w, n� is the function which counts the number of unique

sub-words of length n, i.e. P �w, n� �� ¶rwl�1 . . . wl�n � l ' 0x¶, where w � w1w2 . . ..

For α " Q, there exists some r " N such that P �wCF �α�, n� � 0 for all n ' r. If

α " R ¯ �Q <Bad�, then P �wCF �α�, n� � � for all n ' 1. However, if α " Bad

with height function B�α� & K for some K " N, then P �wCF �α�, n� & K
n. In

[MH38], Morse and Hedlund showed that if α " Bad and wCF �α� not ultimately

periodic, then P �wCF �α�, n� ' n � 1 for all n ' 1. In the case that α is ultimately

periodic, there exists a C " N such that P �wCF �α�, n� & C for n ' 1.

When the alphabet of a word w is finite, then it follows by the definition of the

complexity function that P �w, n�m� & P �w, n�P �w,m� for all n,m " N. This also

implies that log�P �w, n�m�� & log �P �w, n��� log �P �w,m��, and so log�P �w, n�
m�� is subadditive. In particular, for α " Bad, the limit E�α� �� lim

n��

log�P �wCF �α�,n��
n

exists and is finite. We refer to the value E�α� as the entropy of α.



26 Chapter 2. Motivation and Context

2.2 The Littlewood-type Conjectures

2.2.1 The Littlewood Conjecture

The Littlewood conjecture (LC) is a classical open problem in Diophantine approx-

imation. According to Montgomery in Littlewood’s obituary [Mon79], the problem

was first (officially) stated by Spencer - one of Littlewood’s students - in [Spe42] in

1942.

The Littlewood Conjecture. For any pair of real numbers numbers �α, β� " R2,

we have:

lim inf
q"N

rq � ½qα½ � ½qβ½x � 0.

It follows from the definition of the badly approximable numbers

Bad �� vx " R � inf
q"N

q � ½qx½ % 0| ,
that if either α or β do not lie in the set of Bad, then the pair �α, β� must satisfy

the Littlewood conjecture.

The first major result for the Littlewood Conjecture was due to Cassels and Swinnerton-

Dyer in 1955, where they showed that if the pair �α, β� each belong to the same

cubic field, then they satisfy the Littlewood Conjecture [CSD55]. Note that it is still

an open problem in Diophantine approximation, whether general algebraic numbers,

and by extension cubics, are badly approximable or not.

The next major result was due to Pollington and Velani in 2000 [PV00]. In this

paper they showed the following result:

Theorem 2.2.1 (Pollington and Velani [PV00]). Given any α " Bad there exists a

subset G�α� of Bad with full Hausdorff dimension such that for all β " G�α� and

infinitely many q " N, we have:

q � ½qα½ � ½qβ½ $ 1
log�q� .
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If rqkxk"N is the set of convergent denominators of α, then the set G�α� is given by:

G�α� �� vβ " Bad � ½qkβ½ $ 1
log qk

for infinitely many qk| .
Since this theorem holds for infinitely many q " N, it follows as a corollary that, given

any α " Bad and β " G�α�, the pair �α, β� satisfies the Littlewood Conjecture.

The next big result was due to Einsiedler, Katok and Lindenstruass [EKL06]. In

particular, they showed that the set of potential counterexamples to the Littlewood

Conjecture is relatively small.

Theorem 2.2.2 (Einsiedler, Katok and Lindenstruass [EKL06]). Let Θ be the set

of counterexamples to the Littlewood Conjecture, i.e.:

Θ �� v�α, β� " R � lim inf
q"N

q � ½qα½ � ½qβ½ % 0| .
Then, Θ has Hausdorff dimension 0.

2.2.2 The mixed and p-adic Littlewood Conjectures

The mixed Littlewood Conjecture (mLC) was first proposed by de Mathan and

Teulié in 2004, as a 1-dimensional analogue of the classical Littlewood Conjecture

[MT04]. The main purpose of this conjecture was to gain further insight into the

Littlewood Conjecture. However, this problem has proved very interesting in its own

right, and whilst significant progress has been made, the conjecture remains open.

As we will see later, many of the results pertaining to the Littlewood Conjecture

have analogues in the mixed/p-adic setting. It is also worth noting that definitive

answers for associated problems have been found. In particular, the t-adic Littlewood

Conjecture - an analogue of pLC over function fields - was proven to be false for F3

[ANL18]. This provides some credence to the notion that pLC (or mLC) may also

be false.

In order to explicitly state the mixed (and p-adic) Littlewood Conjecture, we must

first introduce some definitions. Let C � �ck�k"N be a sequence of integers with ck ' 2
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for all k. Then we set d0 � 1 and dk � ckdk�1 for all k " N, i.e. dk � c1 � c2 � . . . � ck.

We refer to any sequence D �� �dk�k"N which can be defined in this way as a pseudo-

absolute sequence. If we define vD�q� �� sup
n"N

rdn � dn ¶ qx, then the D-adic norm (or

pseudo-absolute norm) is given by:

¶q¶D �� 1
vD�q� .

The mixed Littlewood Conjecture is then stated as follows:

The Mixed Littlewood Conjecture 2.2.3. For every real number α " R and

every pseudo-absolute sequence D, we have:

mD�α� �� inf
q"N

rq � ¶q¶D � ½qα½x � 0.

Remark 2.2.4. Note that if β � α� k for some integer k " Z, then β satisfies mLC

if and only if α satisfies mLC. This follows since:

mp�α� � inf
q"N

rq � ¶q¶D � ½qα½x
� inf

q"N
rq � ¶q¶D � ½qα � qk½x

� inf
q"N

rq � ¶q¶D � ½q�α � k�½x
� inf

q"N
rq � ¶q¶D � ½qβ½x

� mp�β�.
Remark 2.2.5. Frequently, the literature will write the condition given in mLC as:

lim inf
q��

rq � ¶q¶D � ½qα½x � 0,

however, both conditions are equivalent. This is obviously true for α " Q. For

R¯Q, we note that ¶q¶D % 0 for q " N and qk �½qkα½ % 1
ak�1�2 , for qk any convergent

denominator of α. Therefore, since the convergent denominators give the best (lower)

approximation of q � ½qα½, for each fixed q " N, we have:

q � ¶q¶D � ½qα½ % 0.
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As a result, inf
q"N

rq � ¶q¶D � ½qα½ � 0x if and only if there is some monotonically in-

creasing subsequence rnjxj"N such that lim
j��

snj � ¶nj¶D � ½njα½y � 0, i.e.:

lim inf
q��

rq � ¶q¶D � ½qα½x � 0.

It is worth noting that ¶q¶D & 1 for every q " N and every pseudo-absolute sequence

D. It follows that for every α ©" Bad, we have inf
q"N

rq � ¶q¶D � ½qα½x � 0. For reasons

which will become more obvious in the next section, we will refer to the set of

counterexamples to mLC as the set of multiplicatively badly approximable numbers

[BV11]. We will denote this set as:

MadD �� rα " R � mD�α� % 0x .
When C is the constant sequence (i.e. every ck � a for some a ' 2), then we will

write ¶ � ¶a to mean ¶ � ¶D, where D is the corresponding pseudo-absolute sequence.

In this case, we have D � t1, a, a2
, a

3
, . . .z. When a � p is a prime, the D-adic norm

¶ � ¶p is just the standard p-adic norm. For a fixed prime p, we obtain a specific

case of the mixed Littlewood conjecture, known as the p-adic Littlewood Conjecture

(pLC). We state the conjecture as follows:

The p-adic Littlewood Conjecture. For every real number α " R, we have:

mp�α� �� inf
q"N

sq � ¶q¶p � ½qα½y � 0.

2.2.3 Known Results for mLC and pLC

As part of the paper which introduced the problem [MT04], de Mathan and Teulié

managed to show the following:

Theorem 2.2.6 (de Mathan and Teulié [MT04]). Let D be a pseudo-absolute se-

quence. Then, if there exists C " N such that dk�1
dk

$ C, every quadratic irrational α

satisfies:

lim inf
q��

rq � log q � ¶q¶D � ½qα½x $�.
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In particular, every quadratic irrational satisfies mLC for such sequences.

In 2007, Einsiedler and Kleinbock showed that the set of counterexamples to pLC is

very small [EK07].

Theorem 2.2.7 (Einsiedler and Kleinbock [EK07]). For every pseudo-absolute se-

quence D, the set of counterexamples MadD has Hausdorff dimension 0.

In the same year Bugeaud, Drmota and de Mathan showed that if for a given α " Bad

the corresponding word wCF �α� “limits to a periodic word”, then α satisfies pLC

(for every p) [BDM07].

Theorem 2.2.8 (Bugeaud, Drmota and de Mathan [BDM07]). Let α " Bad and

let wCF �α� � a0a1 . . . be the word corresponding to the continued fraction expansion

of α. Let T " N and let u � b1 . . . bT be a periodic word in NN. If there exists an

unbounded sequence �mk�k"N such that wCF �α� and u have common sub-words of

length mk for every k " N, then α satisfies pLC for every p.

The next big result was due to Harrap and Haynes in 2013, when they showed that

a weak form of the mixed Littlewood Conjecture is true [HH13].

Theorem 2.2.9 (Harrap and Haynes [HH13]). Let a ' 2 and let D be a pseudo-

absolute sequence such that there exists C " N with dk�1
dk

$ C. Then for every α " R,

we have:

inf
q"N

rq � ¶q¶a � ¶q¶D � ½qα½x � 0.

The final results that we will discuss are due to Badziahin, Bugeaud, Einsiedler

and Kleinbock in 2015 [BBEK15]. In this paper they managed to show that if the

complexity function of a real number α grows too quickly, then α satisfies pLC.

Theorem 2.2.10 (Badziahin et al. [BBEK15]). If for a real number α, the entropy

E�α� � lim
n��

log�P �wCF �α�,n��
n

% 0, then α satisfies pLC for every prime number.

This paper also showed that if the word corresponding to the continued fraction

expansion wCF �α� was eventually recurrent then α satisfies mLC.
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Theorem 2.2.11 (Badziahin et al. [BBEK15]). If for a real number α, we have

wCF �α� is eventually recurrent, then for every pseudo-absolute sequence, we have:

inf
q"N

rq � ¶q¶D � ½qα½x � 0.

A corollary of the above theorem is that if the complexity function of a real number

α grows too slowly, then α satisfies mLC.

Corollary 2.2.12 (Badziahin et al. [BBEK15]). Let α " R such that:

lim
n��

P �wCF �α�, n� � n $�.

Then for every pseudo-absolute sequence, we have:

inf
q"N

rq � ¶q¶D � ½qα½x � 0.

2.2.4 Reformulating mLC and pLC

Since we definedBad both as the set of irrational numbers satisfying lim inf
q"N

rq � ½qα½x %
0 and the set of irrational numbers with bounded partial quotients in their continued

fraction expansions, it is natural to ask whether we can reformulate mLC and pLC

from the condition inf
q"N

rq � ¶q¶D � ½qα½x � 0 to a condition on partial quotients. This

is indeed possible and is commonly known to experts in the field, however, there

seems to be no formal statement or proof in the literature. For completeness, we

will include a formal statement and a proof of this statement.

Proposition 2.2.13. Let α " Bad and let D � �dj�j"N be a pseudo-absolute se-

quence. Then α satisfies mLC if and only if:

sup
j"N

sB�djα�y ��.

Corollary 2.2.14. Let α " Bad. Then α satisfies pLC if and only if:

sup
`"N

tB�p`α�z ��.
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Remark 2.2.15. It is (partly) due to this reformulation that we refer to the set of

counterexamples to mLC as the set of multiplicatively badly approximable numbers.

To prove these reformulations, we first introduce the following lemmas:

Lemma 2.2.16. For every α " Bad and every pseudo-absolute norm D, we have:

inf
j"N

v 1
B�djα� � 2| $ mD�α�.

Before we begin this proof, we first make the following claim:

Claim: Let β " Bad and let B�β� be the height function. Then, we have:

1
B�β� � 2 $ inf

k"N
rqk � ½qkβ½x � inf

q"N
rq � ½qβ½x .

Proof of claim. By a reformulation of Hurwitz’s Theorem, if β " R ¯Q, then there

are infinitely many q " N such that q½qβ½ $
1Ó
5 . We can similarly reformulate

Legendre’s Theorem to see that if q½qβ½ $ 1
2 for some q " N, then q is a convergent

denominator of β. As a result, we can conclude that the q " N which minimise

q½qβ½ are the convergent denominators of β. Therefore, we have that:

inf
q"N

q½qβ½ � inf
k"N

qk½qkβ½,
where qk are the convergent denominators of β. By Theorem 2.1.9 for each convergent

denominator qk, we have:
1

ak�1 � 2 $ qk � ½qkβ½,
where ak�1 is the �k � 1�-th partial quotient of β. Combining this information

together, we see that:

1
B�β� � 2 � inf

k"N
v 1
ak�1 � 2| $ inf

k"N
rqk � ½qkβ½x � inf

q"N
rq � ½qβ½x .

Proof of Lemma 2.2.16. Assume that α " Bad and D is a pseudo-absolute sequence.

Recall that vD�q� �� sup
n"N

sdj � dj ¶ qy. Then, for any q " N, we write q in terms of
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the function vD�q�, i.e. q � vD�q�q¬, for some q¬ " N. Since the D-adic norm is given

by ¶q¶D � 1
vD�q� , we have:

q � ¶q¶D � ½qα½ � vD�q�q¬ � ¶vD�q�q¬¶D � ½vD�q�q¬α½
� vD�q�q¬ � 1

vD�q� � ½vD�q�q¬α½
� q

¬½q¬�vD�q�α�½.
We can then apply the above claim, replacing β with �vD�q�α�, to see that:

mD�α� � inf
q"N

rq � ¶q¶D � ½qα½x
� inf

q"N
tq¬½q¬�vD�q�α�½z

% inf
q"N

v 1
B�vD�q�α� � 2| .

Since the function vD�q� only outputs values dj " D, we can conclude that:

inf
j"N

v 1
B�djα� � 2| � inf

q"N
v 1
B�vD�q�α� � 2| .

In particular, if inf
j"N

u 1
B�djα��2{ % 0, then α does not satisfy mLC.

Lemma 2.2.17. For every α " Bad and every pseudo-absolute norm D, we have:

mD�α� $ inf
j"N

v 1
B�djα�| .

Proof. Given a pseudo-absolute sequence D, we fix j and consider dj. We can then

take qk to be the k-th convergent denominator for djα. We can then construct the

sequence of natural numbers rdjqkxk"N. For each, djqk, we know that dj ¶ djqk and

so ¶djqk¶D & 1
dj
. Using this information, we see that:

djqk � ¶djqk¶D � ½djqkα½ & djqk � 1
dj
� ½djqkα½

� qk � ½qk�djα�½
We know that, if ak is a partial quotient of djα and qk is a convergent denominator,
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then we have:

inf
k"N

sqk � ½qk�djα�½y $ inf
k"N

v 1
ak

| $ 1
B�djα� .

Therefore, we can conclude that:

inf
k"N

sdjqk � ¶djqk¶D � ½djqkα½y $ v 1
B�djα�| .

Since rdjqkxk"N is a sub-sequence of rqxq"N, we can also conclude that:

mD�α� � inf
q"N

rq � ¶q¶D � ½qα½x & inf
k"N

sdjqk � ¶djqk¶D � ½djqkα½y $ 1
B�djα� .

Finally, since dj was arbitrarily chosen from the pseudo-absolute sequence D, we can

conclude that:

mD�α� $ inf
j"N

v 1
B�djα�| .

Proof of Proposition 2.2.13. Combining together Lemma 2.2.16 and Lemma 2.2.17,

we see that for every α " Bad, we have:

inf
j"N

v 1
B�djα� � 2| $ mD�α� $ inf

j"N
v 1
B�djα�| .

As a result, α satisfies mLC, i.e. mD�α� � 0, if and only if

inf
j"N

v 1
B�djα�| � 0.

This is equivalent to saying:

sup
j"N

sB�djα�y ��,

as required.



Chapter 3

Cutting Sequences and Integer

Multiplication of Continued

Fractions

In this chapter we will introduce the notion of cutting sequences, discuss the link

between cutting sequences and continued fractions, and explain how replacing one

triangulation of the hyperbolic plane with another can be used to represent integer

multiplication of continued fractions. This chapter will be split into two sections.

The first section - Section 3.1 - is predominantly a brief overview of previous work

done in this area. In Section 3.1.1, we will recall the classical definition of the cutting

sequence �ζ, T � of a geodesic ray ζ relative to some ideal triangulation T . We will use

the terminology and general construction introduced by Series in [Ser85a; Ser85b],

which itself was influenced by the work of Humbert [Hum16]. We will then extend

this definition to include paths - not just geodesics - and discuss how homotopy

affects the cutting sequence of paths. In Section 3.1.2, we will introduce the Farey

tessellation F , an ideal triangulation of the hyperbolic plane. Having constructed

the Farey tessellation and discussed some of its properties, we then state Theorem

A of [Ser85b], which is foundational for the rest of the work in this thesis:
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Theorem 3.1.22. ([Ser85b, Theorem A]) Let ζα be a geodesic ray in H, starting at

the y-axis and terminating at a point α " R%0. Then, if �ζα,F� � L
n0R

n1� is the

cutting sequence of ζα relative to F , the continued fraction expansion of α is given

by α � �n0;n1, . . .�, for n0 " N < r0x and ni " N otherwise.

The second section - Section 3.2 - is predominantly new material, building on the work

introduced in Section 3.1. The main aim of this section is to construct an algorithm

that multiplies continued fractions by some integer n. This sets up the framework

for Chapters 4 and 5, which discuss how certain classes of continued fractions behave

when multiplied. We begin this section by showing that if ζα is a geodesic ray starting

at the y-axis I and terminating at a point α " R%0, and 1
n
F is the 1

n
-scaled Farey

tessellation, then the cutting sequence �ζα, 1
n
F� is equivalent to the continued fraction

expansion nα. In particular, replacing the triangulation F by 1
n
F induces integer

multiplication by n on the corresponding continued fraction expansion. We discuss

how if Pn is a fundamental domain of Γ0�n� �� r� a bc d � " PSL2�Z� � c � 0 mod nx,
then there are two canonical triangulations of Pn - which we denote Tr1,nx and Trn,nx

- such that these triangulations “generate” F and 1
n
F under the action of Γ0�n�.

In particular, the triangulation replacement of Tr1,nx by Trn,nx in Pn is equivalent

to the triangulation replacement of F by 1
n
F in H. In Section 3.2.2, we give a

brief overview of the work done by Kulkarni in [Kul91], which discusses some of

the general properties for fundamental domains of Γ0�n�. We end this chapter with

Section 3.2.3, which outlines how we can use the triangulation replacement of Tr1,nx

by Trn,nx in Pn to construct an explicit integer multiplication algorithm for continued

fractions.

3.1 Continued Fractions as Cutting Sequences

In this section we will introduce the notion of a cutting sequence of a geodesic ray

relative to some arbitrary triangulation and then generalise this notion to include

paths. We will discuss how cutting sequences relate to continued fraction expansions,
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as well as some more general properties of cutting sequences. The most important

properties will be that:

1. Cutting sequences behave “nicely” when performing homotopy on the under-

lying path.

2. Given certain conditions, we can decompose a path λ into an ordered collection

of sub-paths rλixi"N, such that the cutting sequence �λ, T � is equal to the

product of cutting sequences 4
i"N

�λi, T �.
It is these properties which allow us to ultimately build the multiplication algorithm.

We then introduce the Farey tessellation F and discus how the cutting sequences

of geodesic rays relative to the Farey tessellation correspond to continued fraction

expansions in a natural way. In particular, if ζα is a geodesic ray starting at the

y-axis and terminating at some point α " R%0 and Ln0R
n1� is the cutting sequence

of ζα relative to F , then the continued fraction expansion α is �n0;n1, . . .�.

3.1.1 Cutting Sequences

Cutting Sequences of Geodesic Rays

Throughout this thesis we will work with the hyperbolic plane H. We will represent

the hyperbolic plane by the upper half plane model H �� rz " C<r�x � Im�z� ' 0x
with boundary ∂H � R < r�x. Geodesic lines are given by Euclidean half-lines of

the form ra� iy � 0 & y &�x and semicircles centred on ∂H. We define a hyperbolic

n-gon P to be the region enclosed by (and including) the edges l1, . . . , ln, where:

1. each li is a geodesic segment,

2. consecutive edges li and li�1 intersect only at a common endpoint vi and no

other edges pass through vi - here, we treat ln�1 as l1,
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3. and the edges are otherwise pairwise disjoint, i.e.:

li = lj �

~������������
o If j j i � 1, i � 1,

vi�1 or vi otherwise.

Given two consecutive edges li and li�1 in P , we refer to the common endpoint of

these edges vi as a vertex of P . A hyperbolic n-gon is ideal if all of its vertices lie

on the boundary of the hyperbolic plane ∂H. A tessellation of H will be a collection

of hyperbolic polygons P � rτixi"N such that the collection of these polygons cover

H, i.e. �
i"N

τi � H, and for any two polygons τj, τk in P these polygons either do

not intersect, i.e. τj = τk � o, intersect only at a common vertex, i.e. τj = τj � zi,

or intersect along a common edge, i.e. τj = τk � li, where li is an edge of both τ1

and τ2. If E is an edge of a polygon τ " P, we will say that E is an edge of the

tessellation P . If these polygons in P are all ideal 3-gons, then we refer to P as an

ideal triangulation of H.

Remark 3.1.1. We will only consider ‘nice’ tessallations: we will assume that for

every open neighbourhood ν in H, there are only finitely many polygons in the

tessellation which intersect ν.

Let ζ be an oriented geodesic ray which enters an ideal triangle ^ABC, labelled

clockwise, through the edge AB. Then ζ can leave the triangle ^ABC in one of

three ways:

1. The geodesic ζ passes through the edge BC. This isolates the vertex B (lying

to the left of ζ) from the vertices A and C (which lie to the right of ζ). In this

case, we say that ζ cuts ^ABC to form a left triangle. See Fig. 3.1 (a).

2. The geodesic ζ passes through the edge AC. This isolates the vertex A (lying

to the right of ζ) from the vertices B and C (which lie to the left of ζ). In this

case, we say that ζ cuts ^ABC to form a right triangle. See Fig. 3.1 (b).

3. The geodesic terminates at the vertex C. Here, we refer to the vertex C as

the opposing vertex.
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(a) An example of a left triangle. (b) An example of a right triangle.

(c) An example of a left fan. (d) An example of a right fan.

Figure 3.1: Examples of left and right triangles and fans.

Let T be an ideal triangulation of H and let ζ be an oriented geodesic ray, starting at

some edge E of T and terminating at some point p " ∂H (where p is not an endpoint

of E). We can then form an ordered collection rτixi"N<r0x of the all the triangles in

T , which ζ non-trivially intersects, i.e. ζ intersects the interior of each triangle τi.

For each triangle τi, the geodesic ray ζ either cuts τi to form a left triangle, a right

triangle, or terminates at the opposing vertex. If ζ intersects multiple left triangles

in a row, then we refer to the collection of all these triangles as a left fan. Similarly,

if ζ intersects multiple right triangles in a row, then we refer to the collection of right

triangles as a right fan. See Fig. 3.1 (c) and (d). If ζ passes through an opposing

vertex of a triangle τ , then we could think of this as ζ cutting τ to form either a left

triangle or a right triangle - however, for the sake of uniqueness, we will always take

this triangle to be a left triangle. If ζ terminates at an opposing vertex, then ζ does

not intersect any more triangles in T . In particular, the collection of triangles that
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ζ intersects is finite if and only if ζ terminates at some opposing vertex. Using these

notions, we can define the cutting sequence �ζ, T � of a geodesic ray ζ relative to a

triangulation T , as follows:

Definition 3.1.2. Let T be an ideal triangulation of H, let E be any edge of T

and let ζ be an oriented geodesic ray starting at E and terminating at some point

p " ∂H. Also, let rτixi"N<r0x be the ordered collection of all triangles in T which ζ

non-trivially intersects. Then, the cutting sequence of ζ with respect to T , denoted

�ζ, T �, is the (potentially) infinite word over the alphabet rL,Rx, formed by the

following algorithm:

1. Start with i � 0 and �ζ, T � � ε.
2. Repeat the following process until told to stop:

• If ζ cuts τi to form a left triangle:

– Append the letter L to �ζ, T �.
– Set i � i � 1.

• Else, if ζ cuts τi to form a right triangle:

– Append the letter R to �ζ, T �.
– Set i � i � 1.

• Else, ζ intersects the opposing vertex of τi:

– Append L to �ζ, T �.
– Stop.

3. End of algorithm.

We can write every cutting sequence �ζ, T � in the form L
n0R

n1L
n2�, where n0 "

N < r0x and ni " N. Each index ni indicates the size of the i-th fan which ζ forms

with T . We will abuse notation and also refer to the term L
ni/Rni in the cutting

sequence as the i-th fan of �ζ, T �.
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Since we can write each cutting sequence in the form L
n0R

n1L
n2� for n0 " N< r0x

and ni " N, there is an natural map η between cutting sequences and continued

fraction expansions of positive real numbers. This map converts each fan of size

of ni into a partial quotient of size ni. Explicitly, we have η � Ln0R
n1L

n2� (

�n0;n1, n2, . . .�. If the cutting sequence is finite, then it maps to a finite continued

fraction. If the cutting sequence is infinite, then it maps to an infinite continued

fraction.

If we have the cutting sequence Ln0R
n1L

n2�L
nkL, then this would correspond to the

continued fraction �n0;n1, n2, . . . , nk�1�. In our convention, we will always take L to

be the final term. This ensures that the cutting sequence is formed in a unique way.

However, we could have instead picked R to be our final term, i.e. Ln0R
n1L

n2�L
nkR.

This would correspond to the continued fraction �n0;n1, n2, . . . , nk, 1�. In particular,

the choice of ending the cutting sequence with either L or R is analogous to the choice

of whether the continued fraction expansion is of the form �n0;n1, n2, . . . , nk � 1� or

�n0;n1, n2, . . . , nk, 1�.

Cutting Sequences of Paths

It will often be useful to deal with paths starting from some edge E and terminating

at some point in p " ∂H, instead of geodesic rays. This allows us to see how

homotopy affects cutting sequences. To do this, we will need extend to the definition

of cutting sequences to include paths which may double back on themselves. We will

assume that λ is an oriented path, which starts in the interior of some edge γ in T ,

and terminates at some point α " ∂H � R< r�x. Furthermore, we will assume that

our path λ is transverse to each edge in T , i.e. no point on λ will have a common

tangent with any point on any edge that it intersects. Up to homotopy, we can

always guarantee that λ is transverse to each edge in T . If the path λ (transversally)

intersects an edge AB of a triangle^ABC, labelled clockwise, then λ can intersect

^ABC in one of six ways:
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1. The path λ leaves ^ABC through the edge BC, i.e. λ cuts ^ABC to form

left triangle.

2. The path λ leaves ^ABC through the edge AC, i.e. λ cuts ^ABC to form

right triangle.

3. The path λ doubles back on itself and leaves through the edge AB. In this

case we say λ forms a bigon with ^ABC. See Fig. 3.2.

4. The path λ terminates at the vertex A. We refer to A as the right vertex.

5. The path λ terminates at the vertex B. We refer to B as the left vertex.

6. The path λ terminates at the vertex C. We refer to C as the opposing vertex.

Figure 3.2: An example of a path λ cutting a triangle ^ABC to
form a bigon.

We will refer to left vertex and right vertex as the adjacent vertices. We can then

define the generalised cutting sequence for λ relative to T , as follows:

Definition 3.1.3. Let T be an ideal triangulation of H, let E be any edge of T and

let λ be an oriented path starting at E and terminating at some point in p " ∂H.

Also, let rτixi"N<r0x be the ordered collection of all triangles in T which λ intersects.
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Then the generalised cutting sequence of λ with respect to T , denoted �λ, T �, is

the potentially infinite word over the alphabet rL,R,Xx, formed by the following

algorithm:

1. Start with i � 0 and �λ, T � � ε.
2. Repeat the following process until told to stop:

• If λ cuts τi to form a left triangle:

– Append the letter L to �λ, T �.
– Set i � i � 1.

• Else, if λ cuts τi to form a right triangle:

– Append the letter R to �λ, T �.
– Set i � i � 1.

• Else, if λ cuts τi to form a bigon:

– Append the letter X to �λ, T �.
– Set i � i � 1.

• Else, if λ intersects the left vertex:

– Append LX.

– Stop.

• Else, if λ intersects the right vertex:

– Append RX.

– Stop.

• Else, λ intersects the opposing vertex:

– Append L.

– Stop.

3. End of algorithm.
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Remark 3.1.4. For a geodesic ray ζ and an ideal triangulation T , the geodesic ray

ζ will only ever cut a triangle τ to form a left or right triangle, or intersect the

opposing vertex. In particular, the notion of a cutting sequence and a generalised

cutting sequence are equivalent for geodesic rays.

Furthermore, for a general path λ and an ideal triangulation T , we may have that

the cutting sequence �λ, T � ends with a fan of infinite size, i.e. L� or R�. In this

case, each triangle in the fan has a common vertex p. Let rEixi"N are the edges

of the fan that λ intersects. Then each edge Ei has p as one of its endpoints and

some point vi as the other endpoint. We can then conclude that the sequence of

endpoints rvixi"N must limit to p. Otherwise, if v is the limit of the sequence rvixi"N,
then the edges rEixi"N limit to an edge E with distinct endpoints v and p. In this

case, any point on the edge E will always have infinitely many triangles in any open

neighbourhood - and therefore, we do not have a ‘nice’ triangulation of H. As a

result, any path λ which passes through a fan of infinite size, must terminate at the

common vertex p of this fan.

Homotopy and Cutting Sequences

One of the main reasons why we introduced the notion of a generalised cutting

sequence is so that we can discuss the effect that homotopy has on cutting sequences.

In actual fact, we will want a slightly restricted form of homotopy.

Definition 3.1.5. Let λ and λ¬ be two paths which both start at the same edge E.

Then, λ and λ¬ are homotopic relative to E, if:

• The paths λ and λ¬ are homotopic.

• This homotopy preserves the interior of the edge E.

• This homotopy fixes the endpoints of λ and λ¬ in ∂H.

If λ and λ¬ start at the same edge E and are homotopic to E, we will denote this

as λ �E λ
¬. Note that in the hyperbolic plane, the paths λ and λ

¬ are homotopic
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relative to E if and only if they have the same endpoint p " ∂H. As a result, we will

denote the class of all paths which are homotopic to λ relative to E as �λ�Ep , where
E is the starting edge and p " ∂H is the terminal point. However, this is not true

when discussing paths on surfaces, as in Chapter 4.

Given an initial starting edge E, there are two possible ways a path λ can leave

this edge, corresponding to the two sides of each edge. We will arbitrarily refer to

one of these sides as the positive side of E, which label we label “�”, and refer to

the other side as the negative side of E, which we label “�”. If λ leaves E via the

positive side then we say that λ has positive direction of departure, and if λ leaves E

via the negative side we say that λ has negative direction of departure. We denote

the direction of departure by the pair �E,��, where E is the starting edge and

� " r�,�x represents whether λ leaves E via the positive side or negative side.

Given a starting edge and direction of departure, the generalised cutting sequence

completely encodes the path λ. In particular, if we had an arbitrary word W over

the alphabet rL,R,Xx, an initial starting edge and direction of departure, we could

reverse-engineer a path λW such that �λW , T � � W . Generally speaking, each letter

of W iteratively tells us how λW intersects each triangle in T , however, if the word

is finite and ends in an X, then we have to consider the last two letters as a pair.

This path λW is unique up to some minimal homotopy, i.e. for any triangle τ that

λW intersects, we are free to homotope the path λW within this triangle, as long as

the path still cuts τ in the same way. From this we can deduce that if two paths λ

and λ¬ have the same starting edge, direction of departure and generalised cutting

sequence, then they must be homotopic relative to E.

Lemma 3.1.6. Let λ and λ¬ be two paths in H starting at some edge E in T with

the same cutting sequence and direction of departure. Then λ and λ¬ are homotopic

relative to E.

The reverse of this statement is not always true: if λ and λ¬ are homotopic relative

to E, they do not necessarily have the same generalised cutting sequence.
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Reduced Paths and Minimal Position

In general, it would be useful to be able to tell when two paths are homotopic relative

to T just by looking at their generalised cutting sequences. In order to do this, we

first must introduce a bit of general theory.

Definition 3.1.7. Let λ and µ be paths in some space X and let �λ� and �µ�
be the homotopy classes of λ and µ which fix the start and endpoints of λ and

µ, respectively. We define the intersection number i�λ, µ� of λ and µ to be the

minimum number of times any representatives of the homotopy classes �λ� and �µ�
(transversally) intersect. In other words:

i�λ, µ� �� min t#�λ¬ = µ¬� � λ¬ " �λ�, µ¬ " �µ�z .
If two paths λ and µ intersect each other minimally, i.e. i�λ, µ� � #�λ=µ�, then we

say that these paths are in minimal position. Finally, given a path λ and a collection

of paths C, which are disjoint except for at ∂X, we say that λ and C are in minimal

position, if λ is in minimal position with each path in C.

In our case, we will take H to be our space X and will want to know exactly when

a path λp is in minimal position relative to some ideal triangulation T . We will also

use the homotopy class �λp�Ep instead of the homotopy class �λp�, i.e. our starting
point is allowed to move along the interior of the initial edge E. The first thing

that we notice is that geodesic rays ζp are always in minimal position relative to a

triangulation T .

Lemma 3.1.8. Let T be a triangulation of H and let ζp be a geodesic ray starting

at some edge E of T and terminating at some point p " ∂H. Then ζp is in minimal

position relative to T .

Proof. Two geodesics in H can either intersect exactly once, not intersect at all or be

concurrent. As a result, if we assume that p is not an endpoint of the starting edge,

then ζp intersects edges of T either exactly once or not at all. Let rEixi"N be the
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sequences of edges in T that ζp intersects non-trivially, with the index indicating the

order that ζp intersects these edges. Each edge Ei splits H into two regions, which

we can arbitrarily label as positive and negative. Without loss of generality, we can

assume that ζp intersects each edge Ei by going from the negative region to the

positive region. The positive region of each Ei must contain p. Otherwise, for some

edge Ek, either the endpoint p lies in the negative region - this can not happen since

ζp would have to pass through Ek again and therefore ζp could not be a geodesic - or

p is also an endpoint of Ek - this can not happen since ζp would not need to intersect

the interior of Ek and so this edge would not be part of our sequence of edges. Since

each path λp in the homotopy class �ζp�Ep starts in the negative region of each Ei

and p lies in the positive region of each Ei, the path λp must also intersect all edges

in rEixi"N (and potentially some others). Since ζp only intersects the edges rEixi"N
exactly once and no other edges, we can conclude that ζp is in minimal position.

As a consequence of the above proof, if a geodesic ray ζp intersects a sequence of edges

rEixi"N in a triangulation T , then a path λp " �ζp�Ep will only be in minimal position

if it intersects the same sequence of edges in the same order without intersecting any

other edges. As a result, all paths in �ζp�Ep in minimal position must have the same

cutting sequence.

Corollary 3.1.9. Let λp and λ¬p be two homotopic paths in H starting at some edge

E in T and terminating at some point p " ∂H. Assume that λp and λ¬p are both in

minimal position with T . Then the corresponding cutting sequences are equal, i.e.

�λp, T � � �λ¬p, T �.
We will say that a path λp is reduced relative to T , if λp does not form a bigon with

any triangle in T , terminate at an adjacent vertex of any triangle in T or have a

final fan of infinite size. As a result, a path λp is reduced if and only if the cutting

sequence �λp, T � does not contain the letter X or end with the terms L� or R�. In

this case, we will also say that the cutting sequence �λp, T � is reduced. Furthermore,

if λp is not in minimal position with T , we can guarantee that λp either forms a



48 Chapter 3. Cutting Sequences and CF Multiplication

bigon with T or terminates at an adjacent vertex. In particular, we can reduce a

path λp relative to a triangulation T by using homotopy to remove bigons, adjacent

vertices and terminal fans of infinite size. As we will see in the next lemma, a path

λp is reduced if and only if it is in minimal position (relative to triangulation T ).

Lemma 3.1.10. Let λp be a path in H starting at some edge E in T and terminating

at some point p " ∂H. Then, the path λp is in minimal position with T if and only

if λp is reduced relative to T .

Remark 3.1.11. This lemma is analogous to the bigon criterion in [FM11].

Proof. ��� � As previously discussed, every geodesic ray ζp is reduced relative to

every triangulation T . Since every path λp " �ζp�Ep which is in minimal position

with T has the same cutting sequence with T , we can conclude that all paths which

are in minimal position with T are reduced relative to T .

�
�� We will prove this direction by proving the contrapositive, i.e. if λp is not in

minimal position with T , then λp is not reduced relative to T .

Let λp be a path starting at an edge E in T and let ζp be a geodesic ray in �λp�Ep .
We will assume that λp is not in minimal position. As a result, we can guarantee

that there is some edge E ¬ in T that λp intersects but ζp does not.

We can assume that λp passes through E ¬ from the positive region to the negative

region. Since ζp does not intercept E ¬ and starts within the positive region of E ¬,

the endpoint p of λp and ζp must either lie in positive region of E ¬ or be an endpoint

of E ¬.

Case 1. The point p lies in the positive region of E ¬.

In this case we can guarantee that λp must intersect E ¬ again - otherwise λp is

trapped in the negative region of E ¬. Let x be a point on λp just before λp intersects

E
¬ the first time and let y be a point just after λp intersects E ¬ for the second time.

Then x and y both lie to the positive side of E ¬. Let µ be the sub-path of λp starting

at x and terminating at y. The path µ runs from one point in H to another point in
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H and, therefore, is finite length. As a result, we can find an open neighbourhood

of µ. Since we are only looking at ‘nice’ triangulations of H, we know that this

open neighbourhood can only intersect finitely many triangles in T . By extension,

the path µ can only intersect finitely many triangles in T and, furthermore, it can

only intersect each of these triangles finitely many times (since λp is continuous and

finite). As a result, we can label each edge that µ intersects, using some a canonical

ordering, i.e. E1 � E
¬ is the first edge that µ intersects, E2 is the second edge that µ

intersects, etc. If for some i " N we have Ei � Ei�1, then this tells us that µ passes

through an edge Ei and then immediately passes through Ei again without passing

through any other edges in T . In particular, Ei forms a bigon with µ.

Assume that µ passes through n edges - counted with multiplicity. Then we can

conclude that E1 and En are both E
¬, since this is the first and last edge that µ

intersects. If n � 2, then E1 � E2 and, therefore, λp forms a bigon. Otherwise, we

take E2 to be the second edge that µ passes through. Without loss of generality,

we can assume that µ passes from the positive region of E2 to the negative region.

Since the edge E1 � En � E
¬ lies in the positive region of E2, we can conclude that

µ must pass through E2 again - and it must do this before passing through En. In

particular, we can find some 2 $ k $ n with E2 � Ek. If E1 � E2, then λp forms a

bigon.

Since µ can only pass through a finite number of edges - counted with multiplicity -

we can conclude that by repeating this procedure, we will find some 1 & i & n with

Ei � Ei�1. At this point, we can conclude that µ forms bigon with the edge Ei.

Case 2. The endpoint p is also an endpoint of E ¬.

Let x1 be the other endpoint of E ¬. Then, we can assume that when λp intersected

E
¬ it passed from a triangle τ0, with endpoints x0, x1 and p, to a triangle τ1, with

endpoints x1, x2 and p. We know that λp can not go to the points x1 or x2, since

the path would have to terminate at these points. Therefore, there are four possible

ways that λp can intersect τ1.
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1. The path λp passes through the edge E ¬ again. In this case, λp forms a bigon

with τ1.

2. The path λp passes through the edge F1 between x1 and x2. In this case, we

can assume that λp goes from the positive region of F1 to the negative region.

Since p lies in the positive region of F1, we can apply procedure used in case 1

to deduce that λp intersects some triangle in T to form a bigon.

3. The path λp terminates at p. In this case, λp terminates at an adjacent vertex

of τ1.

4. The path λp passes through the edge between x2 and p.

If λp intersects τ1 in any of the first three ways, then we can conclude that λp is not

reduced, as required. As a result, we will assume that λp passes through the edge

between x2 and p. Here, we can assume that λp goes from τ1 to a triangle τ2, with

endpoints x2, x3 and p. However, we can now see that λp can only intersect τ2 in

one of the same four ways that λp can intersect τ1.

By repeating the above procedure, we see that either λp forms a bigon with some

triangle τk in T in T or λp terminates at an adjacent vertex of some triangle τk in T

or λp passes through infinitely many unique triangles rτixi"N, each of which has p as

a common vertex. In this case, since each of the triangles has p as a common vertex,

we can conclude that λp cuts each of these triangles in the same way and, therefore,

the cutting sequence �λp, T � ends with a fan of infinite size. In all of these cases,

the path λp is not reduced and the result follows.

Since any path λp can be reduced by removing bigons, adjacent vertices and fans

of infinite size and a path is reduced if any only if it is in minimal position, we can

conclude that the homotopy required to put a path λp in minimal position can also be

realised by removing bigons, adjacent vertices and fans of infinite size. Furthermore,

this reduction process introduces a well-defined series of relations on the letters L,

R and X of the corresponding cutting sequences. We refer to these relations as the
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reduction relations and denote these relations using the using the symbol �. These

relations are listed below and the corresponding homotopy moves can be seen in

Fig. 3.3.

For prefixes:

• Let W be an arbitrary word over the alphabet rL,R,Xx. If W � XV , for

some V word over the alphabet rL,R,Xx, then W � V . If λW is the path

with cutting sequence W and λV is the path with cutting sequence V , then

λW and λV have opposing directions of departure.

For arbitrary sub-words:

• X
2
� ε.

• LXL � R (or LXL � L, if LXL is a suffix).

• LXR � X.

• RXR � L.

• RXL � X.

For suffixes:

Let W be an arbitrary word in rL,R,Xx�.
• If W � V LLX, for some V " rL,R,Xx�, then W � V LX.

• If W � V LRX, for some V " rL,R,Xx�, then W � V L.

• If W � V RRX, for some V " rL,R,Xx�, then W � V RX.

• If W � V RLX, for some V " rL,R,Xx�, then W � V L.

• If W � V RL
�, for some V " rL,R,Xx�, then W � V L.

• If W � V LR
�, for some V " rL,R,Xx�, then W � V L.
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(a) An example of how homotopy
can remove the starting letter X
from a cutting sequence. Here,
the cutting sequenceXL reduces
to L.

(b) An example of how homotopy
induces the reduction relation
X

2
� ε. Here, the cutting se-

quence LX2
L reduces to L2.

(c) An example of how homotopy
induces the reduction relation
LXL � R. By taking the mir-
ror image, we get the reduction
relation RXR � L.

(d) An example of how homotopy
induces the reduction relation
LXR � X. By taking the mir-
ror image, we get the reduction
relation RXL � X.

(e) An example of how homotopy in-
duces the reduction relation on
the suffix LRX. Here, LRX �

L. By taking the mirror im-
age, we get the reduction rela-
tion RLX � L, where RLX is a
suffix.

(f) An example of how homotopy in-
duces the reduction relation on
the suffix RRX. Here, RRX �

RX. By taking the mirror im-
age, we get the reduction relation
LLX � LX, where LLX is a suf-
fix.

Figure 3.3: A collection of examples of how homotopy induces the
reduction relations.
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For two wordsW andW ¬ over the alphabet rL,R,Xx, we will writeW � W
¬ if these

words are equivalent under the above reduction relations. This lead to the following

corollary:

Corollary 3.1.12. Let λp and λ
¬

p be two homotopic paths in H starting at some

edge E in T and terminating at some point p " ∂H. Then the corresponding cutting

sequences are equivalent under reduction relations, i.e. �λp, T � � �λ¬p, T �.
Remark 3.1.13. Typically, we will only be interested in reduced paths. For ease,

we will often take these paths to be geodesics, but any reduced path would work.

As preciously discussed, given a starting edge E, direction of departure and a wordW

over the alphabet rL,R,Xx, we can form a path λW such that this path has cutting

sequence W relative to T . However, if we picked the opposite direction of departure,

then this could produce a path λ¬W with cutting sequence W , and λ¬W would not be

homotopic to λW . Furthermore, we could produce the path λXW which has cutting

sequence XW and has the same direction of departure to λW , but λXW would be

homotopic to λ
¬

W , and by extension not homotopic to λW . This is because the

reduction relations do not take into account the fact that homotopy can change the

direction of departure. However, we note that the each edge E in the triangulation

T will split H into two regions. We will label these regions E� and E� such that

this labelling is consistent with the direction of departure. Instead of describing our

paths λW by using the direction of departure, we can instead describe our paths

based on where the endpoints lie. We can then make the following statement:

Lemma 3.1.14. Let W and W ¬ be two words over the alphabet rL,R,Xx, which
are equivalent up to the reduction relations and assume that these words are not

equivalent to LX or RX. Let T be an ideal triangulation and E some edge of

the triangulation. If λ and λ
¬ are two paths starting at E with cutting sequences

W � �λ, T � and W ¬
� �λ¬, T �, then λ is homotopic to λ¬ relative to E if and only if

the endpoints of λ and λ¬ both lie in the region E� or both lie in the region E�.
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Note that if the word W does not contain the letter X, then for any triangulation

T , any edge E and any direction of departure, the constructed path λW will be

reduced relative to T . In this case, the path λW does not double back on itself, and

so whether the endpoint lies in E� or E� only depends on the initial direction of

departure. Therefore, we get the following corollary:

Corollary 3.1.15. Let W be a word over the alphabet rL,Rx. Let T be an ideal

triangulation and E some edge of the triangulation. If λ and λ¬ are two paths starting

at E with cutting sequences W � �λ, T � and W � �λ¬, T �, then λ is homotopic to λ¬

relative to E if and only if λ and λ¬ have the same direction of departure.

Composing Paths and Cutting Sequences

To describe infinite length paths, it will often be useful to split them into a union of

infinitely many finite length paths.

If two finite length paths λ and λ¬ both start at an edge E1 and terminate at an edge

E2, then we will say that these paths are homotopic relative to E1 and E2 if they are

homotopic, and this homotopy preserves the interior of both E1 and E2. We denote

λ and λ¬ being homotopic relative to E1 and E2 as λ �E1,E2 λ
¬. We will say that a

finite-length path λ has a well-defined cutting sequence relative to T if the path λ

starts at one edge E1 of a triangulation T and terminates at another edge E2 of T .

If λ is a path with a well-defined cutting sequence, then for every triangle in T that

λ passes through, λ cuts this triangle to form a left triangle, a right triangle or a

bigon, since λ starts and terminates in the interior of two edges of T . As a result,

we can think of the paths with well-defined cutting seqeunces as being the paths

which are completely determined by their cutting sequence.

Lemma 3.1.16. Assume that two finite paths λ and λ¬ both start at the edge E1 in T

and terminate at the edge E2 in T . Then, the paths λ and λ¬ are homotopic relative

E1 and E2 if and only if the cutting sequences �λ, T � and �λ¬, T � are equivalent up

to reduction relations.
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Proof. This follows from the proof of Lemma 3.1.10.

Remark 3.1.17. It is worth noting that in this setting, we require both a starting

edge E1 in T and a terminal edge E2 in T . This terminal edge will either lie in

the region E1,� or the region E1,�, but since E2 is assumed to be the terminal edge

for both λ and λ¬, the “if and only if” statement in Lemma 3.1.14 is automatically

satisfied.

In analogy to the previous section, given a finite word W , a starting edge E of T and

a direction of departure, we can construct a finite length path λW which terminates

in the interior of some edge E ¬ in T and has cutting sequence W � �λW , T �. This

path will be unique up to homotopy relative to the starting edge E and terminal

edge E ¬.

If a finite length path λ terminates at an edge E2 in T , we can define the direction of

approach in a similar way to how we define the direction of departure. In particular,

if λ approaches E2 from the positive side, we will say that λ has positive direction

of approach, and if λ approaches E2 via the negative side, then we will say that

λ has negative direction of approach. As we did for the direction of departure, we

can express the direction of approach as the pair �E2,��. Here, we have a nice

duality between the direction of departure and direction of approach. In particular,

given a finite word W , a terminal edge E of T and a direction of approach, we can

also construct a a finite length path λW which starts at some edge E ¬ in T and has

cutting sequence W � �λW , T �. This path will be unique up to homotopy relative

to the starting edge E ¬ and terminal edge E.

If we let λ1 and λ2 be two finite length paths such that λ1 terminates at an edge E

and λ2 starts at E, then we can homotope the endpoint of λ1 to coincide with the

starting point of λ2. This effectively allows us to concatenate these paths to form

a new path λ � λ1 ` λ2. Given two such paths λ1 and λ2, we will say that these

paths are compatible relative to E if the direction of approach of λ1 is opposite to

the direction departure for λ2. If these paths are compatible and E is an edge in T ,
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then the cutting sequence �λ, T � is equal to the product of the two cutting sequences

�λ1, T � � �λ2, T �. As a result, the concatenated path λ will be reduced if and only

if both λ1 and λ2 are reduced. Alternatively, if E is an edge in T and λ1 and λ2

are not compatible, then the concatenated path λ trivially intersects the edge E. In

particular, if two paths λ1 and λ2 are not compatible, then the concatenated path

λ will never be reduced. In this case, the cutting sequence �λ, T � is equivalent to

the cutting sequence �λ1, T � � X � �λ2, T � - using the convention that a path that

intersects an edge E and then immediately turns back contributes an X to the

cutting sequence. See Fig 3.4.

If λ is an infinite reduced path, then we can cut λ into sub-paths by cutting along

the an arbitrary set of edges in T which intersect λ, and each of these sub-paths

have a well-defined cutting sequence relative to F . Note that, since λ is oriented,

there is an inherent ordering of the edges of T that λ intersects. As an example, we

could cut along a set of edges E1, E2, . . . , En�1 to obtain a collection of sub-paths

λ1, λ2, . . . , λn. The sub-path λi meets the sub-path λi�1 at the edge Ei and these

sub-paths will be pairwise compatible (since λ was assumed to be reduced). The

paths λ1, λ2, . . . , λn�1 will all be finite, but the path λn will be infinite (since λ was

assumed to be infinite). Since these paths are all compatible, we can conclude that

the cutting sequence of the original path �λ, T � is equal to the (ordered) product of

the cutting sequences for each sub-path, i.e. �λ, T � � �λ1, T � � �λ2, T � � . . . � �λn, T �.
If λ does not terminate at a vertex of T , then it must intersect infinitely many edges

of T . In particular, we can decompose λ into an infinite collection of finite paths, i.e.

λ � λ1 ` λ2 ` . . .. In this case we have the following lemma.

Lemma 3.1.18. Let λ be an infinite length path, let T be an ideal triangulation

and let rλixi"N be a collection of finite length paths such that λ � λ1 ` λ2 ` . . . and

each pair of consecutive paths λi and λi�1 are compatible (relative to T ). Then, the

cutting sequence �λ, T � is equal to the infinite product
�

4
i�1

�λi, T �.
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(a) An example of two compatible paths
λ1 and λ2. These paths have cut-
ting sequences �λ1, T � � L

2
R and

�λ2, T � � LRL.

(b) An example of the concatenation
λ of two compatible paths λ1 and
λ2. This path has cutting sequence
�λ, T � � L

2
RLRL.

(c) An example of two non-compatible
paths λ1 and λ2. These paths have
cutting sequences �λ1, T � � L

2
R and

�λ2, T � � LRL
2.

(d) An example of the concatenation λ
of two non-compatible paths λ1 and
λ2. This path has cutting sequence
�λ, T � � L

2
RXLRL

2.

Figure 3.4: Examples of how concatenating both compatible paths,
(a) and (b), and non-compatible paths, (c) and (d),
affects the cutting sequence of their concatenation.

3.1.2 The Farey Tessellation F

The Farey Tessellation F

The Farey tessellation F is an ideal triangulation of the upper-half plane H. The

vertices are the set Q < r�x. Two vertices A and B have a geodesic edge between

them if once written in reduced form, A �
p

q
and B �

r

s
, we have ¶ ps � qr ¶� 1. We

will say that two vertices are neighbours, if they have an edge between them. In this

definition, we treat � as 1
0 .
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Given two vertices A �
p

r
and B �

q

s
in Q < r�x in reduced form, we can define

Farey addition h and Farey subtraction d, as follows:

AhB ��
p � r
q � s �

r � p
s � q �� B h A

AdB ��
p � r
q � s �

r � p
s � q �� B d A

The first thing to note is that if A �
p

q
and B �

r

s
are neighbours in the Farey

tessellation, i.e. ¶ ps � qr ¶� 1, then the point Ah B �
p�r

q�s
is a neighbour of both

A and B. The points A and AhB are neighbours since:

¶ p � �q � s� � q � �p � r� ¶ �¶ pq � ps � qp � qr ¶ �¶ ps � qr ¶� 1,

and the points B and AhB are neighbours since:

¶ r � �q � s� � s � �p � r� ¶ �¶ rq � rs � ps � sr ¶ �¶ �ps � qr ¶� 1.

As a result, the points A,B and A h B each have a geodesic edge between them,

and, therefore, form a triangle in F . Similarly, if A and B are neighbours in the

Farey tessellation, then the point AdB is also a neighbour of both A and B (and

is not a neighbour of AhB).

Given any point z " H and any matrix M � � a bc d � " PSL2�R�, we can define the

action of M on the point z as follows:

M � z ��
az � b

cz � d
.

The group PSL2�R� with action as defined above is isomorphic to the group of

orientation preserving isometries of H, denoted Isom��H�. From this perspective,

if we take M � � p rq s � " PSL2�Z� $ PSL2�R�, and we take the line I between 0

and �, then the action of M on I maps I to an edge between the points M � 0 � r

s

and M � � �
p

q
. Since M " PSL2�Z�, we have that det�M� � ps � qr � 1. As

a result, M maps I to an edge of F . Alternatively, if A �
p

q
and B � rs are

neighbours in F , then since ¶ ps � rq ¶� 1, we can deduce that either � p rq s � or � p �rq �s �
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is an element of PSL2�Z�. In particular, the set of edges of the Farey tessellation

is equivalent to the set of images of I under the action of PSL2�Z�, i.e. the set

of edges PSL2�Z� � I. This allows us to deduce that F is preserved under the

action of PSL2�Z�, i.e. M � F � F for all M " PSL2�Z�. Furthermore, PSL2�Z�
is the maximal orientation-preserving group which preserves F , i.e. M � F j F

for any M " PSL2�R� ¯ PSL2�Z�. We write Isom��F� � PSL2�Z� to indicate

that PSL2�Z� is the maximal orientation-preserving group which preserves F . See

Fig. 3.5 for a truncated picture of the Farey tessellation.

In fact, not only is the set of edges PSL2�Z� � I equivalent to the 1-skeleton of F ,

but given any two Farey neighbours A and B there is a unique map M " PSL2�Z�
such that M � � � A and M � 0 � B.

Proposition 3.1.19. Given any two Farey neighbours A and B there is a unique

matrix M " PSL2�Z� such that M � � � A and M � 0 � B.

Proof. We start by writing the points A and B in reduced form, A �
p

q
and B �

r

s
.

Since A and B are Farey neighbours we can know that these points satisfy the

relations:

¶ps � rq¶ � 1,

and:

gcd�p, r� � gcd�s, q� � gcd�p, q� � gcd�r, s� � 1.

Let M � � a bc d � " PSL2�Z� be a matrix satisfying M � � � A and M � 0 � B. We

know by the above arguments that such a matrix exists and will now show that it is

unique. Since ad � bc � 1, we can conclude that:

gcd�a, b� � gcd�a, c� � gcd�b, d� � gcd�c, d� � 1.

Claim 1: Let M � � a bc d � " PSL2�Z� such that M � � � A. Then:

a � ��1�np and c � ��1�nq,
for some n " r0, 1x.
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Since M � � � A, we can conclude that:

M � � �
a � � � b

c � � � d
�
a
c �

p
q � A.

There are two cases we need to consider here: either A ��, i.e. p � 1 and q � 0,

or A �
p

q
with q j 0.

In the case that A � � �
1
0 , then since a

c
�

1
0 and b, d " Z, we must have that

c � 0 � q. Therefore, we can conclude that M is of the form:

M �

�����
a b

0 d


���� .
Since M " PSL2�Z�, we have:

ad � 1.

In particular, a ¶ 1 and so a � ��1�n � ��1�n � 1 � ��1�n � p and c � 0 � ��1�n � 0 �
��1�n � q, for some n " r0, 1x.
Alternatively, if A j � and q j 0, then we can also conclude that c j 0, since

otherwise this would imply M �� �� j A. As a result, we can multiply both sides

of the equation a

c
�

p

q
by cq to determine that:

qa � pc.

Since a, c, p, q " Z, we must have that q ¶ pc. However, we know that gcd�p, q� � 1,

and so q ¶ c. On the other hand, we can also conclude that c ¶ qa. Furthermore, since

we have gcd�a, c� � 1, we can conclude that c ¶ q. Since q ¶ c and c ¶ q, it follows

that

c � ��1�nq,
where n " r0, 1x. This allows us to deduce that:

qa � pc

� p��1�nq
� ��1�npq.
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Dividing both sides by q j 0, we see that:

a � ��1�np.
The claim follows as required. QED

Claim 2: Let M � � a bc d � " PSL2�Z� such that M � 0 � B. Then:

b � ��1�mr and d � ��1�ms,
for some m " r0, 1x.
Similar to claim 1, we start by noting that since M � 0 � B, we can conclude that:

M � 0 � a � 0 � b
c � 0 � d �

b

d
�
r
s � B.

Again, there are two cases we need to consider here: either B ��, i.e. r � 1 and

s � 0, or B �
r

s
with s j 0.

In the case that B � � �
1
0 , then since b

d
�

1
0 and b, d " Z, we must have that

d � 0 � s. Therefore, we can conclude that M is of the form:

M �

�����
a b

c 0


���� .
Since M " PSL2�Z�, we have:

�bc � 1.

In particular, b ¶ 1. We can therefore write that b � ��1�m � ��1�m � 1 � ��1�m � r
and d � 0 � ��1�m � 0 � ��1�m � s, for some m " r0, 1x.
The rest of claim 2 follows, by the same argument of claim 1. QED.

Combining together claim 1 and claim 2, we can rewrite M in the form:

M � � ��1�np ��1�mr
��1�nq ��1�ms �,

for some n,m " r0, 1x. Since M " PSL2�Z� and I and �I are equivalent in

PSL2�Z�, we can assume that n � 0 and m � r0, 1x, i.e. M � � p ��1�mr
q ��1�ms �. As a
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result, M has two possible forms (however we will see that given a choice of A and

B only one of these choices is viable). We can take the determinant to see that:

p � ��1�ms � q � ��1�mr � ��1�m �ps � rq� � 1.

Since A and B are Farey neighbours, we know that:

¶ps � rq¶ � 1,

and so, either:

ps � rq � 1 or ps � rq � �1.

If ps � rq � 1, then m � 0 and M � � p rq s �. Otherwise, we have that m � 1 and

M � � p �rq �s �. In either case, M is uniquely defined.

Corollary 3.1.20. Let A and B be a pair of Farey neighbours and let C and D be

another pair of Farey neighbours. Then there is a unique map M " PSL2�Z� such

that M � A � C and M �B � D.

Proof. Let N1 be the map such that N1 � � � A and N1 � 0 � B and let N2 be the

map such that N2 � � � C and N2 � 0 � B. Then M is given by:

M � N2N
�1
1 .

Remark 3.1.21. Here, we make a brief comment that often we will abuse notation

and use F to refer the 1-skeleton of Farey tessellation (i.e. all of the edges in the

Farey tessellation). However, all of the triangles in the Farey tessellation can be

defined either be their edges or their interiors, and so, on a practical level, there is

no real distinction. In particular, we will think of PSL2�Z� � I as being equivalent

to F .
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Cutting Sequences and the Farey Tessellation

The following theorem highlights the importance of the Farey tessellation with

regards to continued fractions. Recall that η is the map the converts (reduced) cutting

sequences into continued fractions expansions, i.e. η � Ln0R
n1�( �n0;n1, . . .�.

Theorem 3.1.22. ([Ser85b, Theorem A]) Let ζ be a geodesic in H with endpoints

α1 % 0 and α2 $ 0, and let I be the geodesic line between 0 and �. Let I� be the

region rz � Re�z� % 0x and I� be the region rz � Re�z� $ 0x. Then, for ζ� � ζ = I�
and ζ

�
� ζ = I� (with implicit orientation), η��ζ�,F�� is the continued fraction

expansion of α1 and η��ζ�,F�� is the continued fraction expansion of �1
α2
.

The main point to take away from the above theorem is the following: if λα is a

path (which is reduced relative to F) starting at the the y-axis I and terminating

at the the point α " R%0, then η��λα,F�� � α. As a result, we can identify the real

number α " R%0 with any path λα starting at I and terminating at the point α, and

the cutting sequence �λα,F� is equivalent to the continued fraction expansion α.

However, this is not the only connection between the cutting sequence of a (reduced)

path λα with the Farey tessellation and the continued fraction expansion α.

For every fan that λα forms with F , there is a vertex which is in all of the triangles

of this fan. In particular, every edge in this fan will have a unique common endpoint.

We refer to this vertex as the fixed vertex of the fan. Let vk be the fixed vertex of

the �k � 1�-th fan. Then we can label each edge in the fan Ek,i, where 0 & i & nk�1,

using the order that λα intersects these edges. As previously mentioned, each of

these edges Ek,i has a common vertex vk. For each edge Ek,i, we label the other

vertex vk,i. If vk,i is the final “other vertex” in this fan, (i.e. i � nk�1), then this

vertex is either the endpoint of λα or it is the fixed vertex of the next fan, i.e.

the �k � 2�-th fan. Likewise, if vk,0 is the first “other vertex” of the �k � 1�-th
fan, then vk,0 is the fixed vertex of the previous fan, i.e. the k-th fan. We can

now note, that if �λα,F� � L
n0R

n1�, then the reduced path λ
k,i
α which starts

at I and terminates at the vertex vk,i, has cutting sequence Ln0R
n1�L

nkR
i�1
L or
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Figure 3.5: An image of a geodesic ray ζα intersecting the Farey
tessellation F with (some of the) convergents shown in
bold. The endpoint of ζα is α �

Ó
5�1
2 . The convergents

are �, 0, 1, 1
2 ,

2
3 ,

3
5 ,

5
8 , . . ..

L
n0R

n1�R
nkL

i, depending on whether k is even or odd respectively. As a result,

we find that the point vk,i has continued fraction expansion �n0;n1, . . . , nk, i� (up

to taking equivalent continued fraction expansions). However, this is simply the

rk, ix-th semi-convergent of α. See Definition 2.1.6. Note that by construction, the

point vk � vk�1,nk � vk�1,0 is the k-th convergent pk
qk
, which can also be written as

semi-convergent as pk�1,nk
qk�1,nk

�
pk�1,0

qk�1,0
. Except for possibly the point p�1

q�1
�

1
0 ��, every

convergent is a fixed point of a fan. This means that each convergent is the endpoint

of at least two edges that λα intersects. Alternatively, if λα intersects two distinct

edges, which have the same endpoint, then this endpoint is a fixed point of a fan

and, therefore, this point is a convergent. Putting together this information, we get

the following corollary:

Corollary 3.1.23. Let ζα be a geodesic ray (or a reduced path) starting at the y-

axis I and terminating at the point α " R%0. Then, the point v " Q < r�x is a

semi-convergent of α if and only if it is the endpoint of some edge E in F which
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intersects ζα. The point v " Q < r�x is a convergent of α if and only if it is the

point at � or it is the endpoint of at least two edges in F which intersect ζα.

3.2 Integer Multiplication of Continued

Fractions and Triangulation Replacement

Let n� �� � Ó
n 0
0 1Ó

n
	 " PSL2�R� and define 1

n�
�� �n���1 for n " N. These two

maps scale both H and F by a factor of n and 1
n
, respectively. In particular, they

multiply the real axis by n and 1
n
. Since n� ©" PSL2�Z� for n ' 1, these maps do not

preserve F and we will refer to the images of F under these maps as nF and 1
n
F ,

respectively. Both nF and 1
n
F will be ideal triangulations of H, since the n� map will

take geodesics to geodesics and triangles to triangles. It is worth noting that both of

these maps preserve the line I between 0 and �, which is our conventional starting

edge for our geodesic rays in F . The initial direction of departure is also preserved,

since n� and 1
n�

both preserve the orientation of H. It follows that for any geodesic

ray ζα starting at I and terminating at α " R%0, the scaled geodesic ray n��ζα� will

start at I and terminate at the point nα " R%0. Note that n��ζα� will also be a

geodesic ray, since n� " PSL2�R� 	 Isom
��H�. As a result, the cutting sequence

�n��ζα�,F� will be reduced and equivalent to the continued fraction expansion of

nα.

Alternatively, we could scale the Farey tessellation by �n���1 to get the tessellation
1
n
F . Relatively speaking, the geodesic ray n

��ζα� will intersect F in the same

way that ζα intersects 1
n
F . Thus, the cutting sequences will be equivalent, i.e.

�ζ, 1
n
F� � �n��ζ�,F�. Therefore, η�ζα, 1

n
F� � η�n��ζα�,F� � nα. As a result, we

can view the map n � α � nα as being equivalent to replacing the triangulation F

with 1
n
F in the corresponding cutting sequence. Explicitly, we can express n as the

map between the cutting sequences n � �ζα,F�� �ζα, 1
n
F�.

Since the n map in this context is dependent upon the 1
n�

map (which is a continuous
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map), we have only described the n map via continuous action on H. Instead we

want to describe n as a discrete action on local structures. To find such a discrete

action, we will claim that for any natural number n, there exists a finite polygon Pn

with side pairings and two decorated copies of Pn, Tr1,nx and Trn,nx, such that Tr1,nx

tessellates F and Trn,nx tessellates 1
n
F , under the group action induced by the side

pairings of Pn. We will take Pn containing the y-axis I and will take this edge to

be our starting edge, unless otherwise stated. Then we express our geodesic ray ζα

as a collection of ordered sub-paths ��

i�1 ζ
�i�
α intersecting the tessellation induced by

Pn, such that each sub-path ζ�i�α is entirely contained in some image of Pn in this

tessellation. By slightly expanding our definition of cutting sequences, we find that

�ζα,F� � �

4
i�1

�ζ�i�α , Tr1,nx� and �ζα, 1
n
F� � �

4
i�1

�ζ�i�α , Trn,nx�. In particular, replacing

Tr1,nx with Trn,nx encodes the multiplication map n � α � nα.

3.2.1 Common Structure of F and 1
n
F

Given a tessellation T in H and a matrix M " PSL2�R�, we say that T is invariant

under the action of M , if M � T � T . We also say that M preserves T in this case.

Given such a tessellation T , we define the group of orientation-preserving isometries

of T , Isom��T �, to be the largest subgroup of PSL2�R� 	 Isom��H� such that T

is invariant under the action of every element of Isom��T �. Of course, if G is a

subgroup of Isom��T �, then T is also invariant under the action of G. In the case

Isom
��T � is a discrete group, we can find a fundamental domain P such that the

action of Isom��T � on P tessellates H.

As seen in Section 3.1.2, Isom��F� � PSL2�Z� is the maximal orientation-preserving

group which preserves F . One can then show that Isom� � 1
n
F� � rn�1

`A`n � A "

PSL2�Z�x is the maximal orientation preserving group which preserves 1
n
F . We can

view each element of Isom�� 1
n
F� as a composition of maps: first the map scaling

1
n
F to F , followed by an isomorphism of F and finally, the map scaling F back to

1
n
F . By explicit computation, we can see that these elements are of the following
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form:

Isom
� � 1

nF
 � v� a b
n

nc d
� " PSL2�R� � � a bc d � " PSL2�Z�|,

and Isom�� 1
n
F� takes on a natural group structure induced by Isom��F�.

We can recover a common subgroup of the maximal invariant subgroups F and 1
n
F by

taking the intersection of Isom��F� and Isom�� 1
n
F�. By explicit computation, we

see that Isom��F� = Isom�� 1
n
F� � Γ0�n� �� s� a bc d � " PSL2�Z� � c � 0 (mod n)y.

The group Γ0�n� is a subgroup of both Isom��F� and Isom�� 1
n
F� by construction,

and, therefore, preserves the structure of both F and 1
n
F . If we take Pn to be a

fundamental domain of Γ0�n�, then Pn under the action of Γ0�n� tessellates the plane.
We note that F and 1

n
F split Pn into different regions and these regions tessellate

Pn. Here, we will explicitly identify the Farey tessellation F with its set of edges

and do the same with the scaled Farey tessellation 1
n
F . If we take Tr1,nx �� Pn = F

and Trn,nx �� Pn =
1
n
F , we can say more: Tr1,nx under the action of Γ0�n� will be

equivalent to F and Trn,nx under the action of Γ0�n� will be equivalent to 1
n
F . This

follows since:

• The group Γ0�n� preserves F , i.e. it maps edges of F to edges of F . Therefore,

the set of edges in Tr1,nx under the action Γ0�n� must be contained in the set

of edges for F , i.e. Γ0�n� � Tr1,nx N F .

• The fundamental domain Pn covers H under the action of Γ0�n�. Therefore the
set of edges in Tr1,nx must cover the set of edges in F , i.e. Γ0�n� � Tr1,nx � F .

• The group Γ0�n� preserves 1
n
F , i.e. it maps edges of 1

n
F to edges of 1

n
F .

Therefore, the set of edges in Trn,nx under the action Γ0�n� must be contained

in the set of edges for 1
n
F , i.e. Γ0�n� � Trn,nx N

1
n
F .

• The fundamental domain Pn covers H under the action of Γ0�n�. Therefore, the
set of edges in Trn,nx must cover the set of edges in 1

n
F , i.e. Γ0�n� �Trn,nx �

1
n
F .

In particular, if we wish to describe how replacing the triangulation F with the

triangulation 1
n
F affects cutting sequences of paths in H, it is equivalent to discuss
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how replacing Tr1,nx with Trn,nx affects cutting sequences. See Fig. 3.6 for images of

Tr1,4x and Tr2,4x and how these structures tessellate the plane.

(a) An image of Tr1,4x. (b) An image of Tr2,4x.

(c) An image of how Tr1,4x tessellates H
to form F .

(d) An image of how Tr2,4x tessellates H
to form 1

2F .

Figure 3.6: An example of how Tr1,4x and Tr2,4x tessellate H to form
F and 1

2F , respectively.

Note that Γ0�n� is a subgroup of Γ0�d� if and only if d ¶ n. Since Γ0�n� is a subgroup

of Γ0�d�, Γ0�n� preserves 1
d
F . As a result, we can also define Trd,nx �� Pn =

1
d
F for

every d ¶ n and the decorated tile Trd,nx together with the side pairings induced by

Γ0�n� encodes sufficient data to recover 1
d
F , for all d ¶ n.

For any geodesic ray ζα, we can decompose ζα into an ordered collection of sub-

paths ��

i�1 ζ
�i�
α , such that each ζ

�i�
α is entirely contained in an image of Pn under

its tessellation by Γ0�n�. We will abuse notation and think of each ζ
�i�
α as a sub-

path in Pn. Then, the cutting sequence of ζα with 1
d
F for d ¶ n, is equivalent to

ordered product of the cutting sequences for each ζ�i�α with Trd,nx. In the case that
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every sub-path ζ�i�α has a well defined cutting sequence relative to Trd,nx, each pair

of consecutive sub-paths will be mutually compatible relative to Trd,nx. As a result,

we can apply Lemma 3.1.18 to see that:

�

5
i�1

�ζ�i�α , Trd,nx� � �ζ�1�α , Trd,nx� � �ζ�2�α , Trd,nx� � . . . � �ζα, 1
d
F
 .

In particular, if each sub-path ζ
�i�
α has a well-defined cutting sequence relative to

both Tr1,nx and Trn,nx, we can very easily describe the map n � α � nα by looking

at these cutting sequences.

Unfortunately, the paths ζ�i�α will rarely have well-defined cutting sequences relative

to both Tr1,nx and Trn,nx, and so, we need to do a bit more work before we can

describe the multiplication algorithm for an arbitrary n. See Section 3.2.3. Before

we do this, we will take a brief break to discuss how to construct a fundamental

domain Pn of Γ0�n� using the structure of the Farey tessellation. This construction

will be very useful, since - for the most part - the edges of Pn will lie in F . As a

result, when we split ζα into sub-paths ζ�i�α , each contained in Pn, the endpoints of

these sub-paths ζ�i�α will lie on the edges of Tr1,nx. Therefore, the paths ζ�i�α will have

a well-defined cutting sequence relative to Tr1,nx. We then use this nice structure to

compensate for the fact that the sub-paths ζ�i�α may not have well-defined cutting

sequences relative to Trn,nx.

3.2.2 Fundamental domains of Γ0�n�

Fundamental domains of Γ0�n� have been well studied with relation to modular forms.

Notably, R.S. Kulkarni outlined how one could explicitly construct a fundamental

domain for Γ0�n� (with side pairings) using Farey symbols in [Kul91]. This process

uses the structure of the Farey tessellation to describe fundamental domains for

arbitrary finite index subgroups of PSL2�Z�. These fundamental domains will have

very nice structure and, for this reason, we use this section to describe properties

of these fundamental domains and main results of [Kul91]. For the sake of brevity,
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we will not discuss explicitly how these fundamental domains are constructed, but

details can be found in [Kul91] and [KL07].

Farey Symbols and Special Polygons

A Farey Sequence is a sequence of points in Q< r�x of the form r�, x0, . . . , xr,�x
such that:

• Each consecutive pair of points xi and xi�1 are neighbours in the Farey tessel-

lation F .

• There is some i " r0, . . . , rx with xi � 0.

• For each j " r0, . . . , r � 1x we have xj $ xj�1, i.e. the vertices (excluding �)

are ordered via the natural ordering of Q.

Given a Farey sequence r�, x0, . . . , xr,�x we can construct a special polygon. These

special polygons act as the fundamental domains of Φ, where Φ is some finite index

subgroup of PSL2�Z�. The Farey sequence will act as our underlying vertex set -

from which we will add additional vertices and construct edges.

Definition 3.2.1. A special polygon P is a polygon in H with a set of edge identi-

fications ΦP in PSL2�Z� satisfying the following properties:

1. Underlying vertex set: The vertices of P lying on ∂H form a Farey sequence

r�, x0, . . . , xr,�x with an induced natural ordering.

2. Edges: Each pair of consecutive neighbours xi and xi�1 in the underlying

Farey sequence satisfy exactly one of the following conditions:

• The points xi and xi�1 are connected by a geodesic edge ei.

• There is an edge fi running between xi and yi and another edge gi between

yi and xi�1, where yi is the centre of the triangle with vertices xi, xi�1

and xi h xi�1.
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3. Edge identifications: Edges between two Farey neighbours xi and xi�1 have

edge identifications of one of the following types:

• The edge ei between xi and xi�1 is identified to another edge ej between

two vertices xj and xj�1, for some j j i. In this case, we refer to ei (and

ej) as a free edge of P .

• The edge ei between xi and xi�1 is identified to itself by a map which

takes xi to xi�1 and vice versa. In this case, we refer to ei as an even edge

of P .

Given two vertices xi and xi�1 which are connected by an edge fi running

between xi and yi and another edge gi between yi and xi�1, the edges fi and

gi are identified with each other by a map which takes xi to xi�1, xi�1 to

xihxi�1, and xihxi�1 to xi. This edge identifications correspond to an elliptic

involution of order 3 centred at yi. We refer to the edges fi and gi as odd edges

of P .

Remark 3.2.2. We should note that the ordering of the vertices in the Farey

sequence induces a natural (anti-clockwise) orientation of the edges (and vertices)

of a special polygon. We can use this ordering to recover the underlying Farey

sequence of a special polygon P . In particular, if we take the sequence of all vertices

in P - starting at � with an anti-clockwise ordering - and we remove each of the

odd vertices from this sequence, then this process produces the underlying Farey

sequence.

Since each of these edge identifications is an element of PSL2�Z� and each of the edge

identifications maps a pair of Farey neighbours to another pair of Farey neighbours,

Corollary 3.1.20 tells us that there is in fact a unique edge identification for each edge

ei in P . Furthermore, we should note that we can give the vertices some arbitrary

cyclic ordering (this can be induced from the cyclic ordering of the underlying Farey

sequence). Given this ordering each of the edge identifications maps an edge ei of
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P to another edge ej of P with opposing orientation. For even and free sides, the

change in orientation can be realised by noting that edge identification ϕi maps the

point xi to a point xj�1 and the point xi�1 to the point xj. For an odd edge fi

running between xi and yi, the edge identification maps yi to itself and maps xi to

xi�1 and so the image of the edge ϕi�fi� has a different orientation to gi.

To construct the maps which identify edges in the special polygon Pσ, we note that

if we have a pair of vertices in F , xi � ai
bi

and xi�1 �
ai�1
bi�1

, and we want a map in

PSL2�Z� taking xi to xj�1 �
aj�1

bj�1
and xi�1 to xj �

aj

bj
, then this map will be of the

form:

ϕ ��
�����
ajbi � aj�1bi�1 �aiaj � ai�1aj�1

bibj � bi�1bj�1 �aibj � ai�1bj�1


���� (3.2.1)

To make the process of describing special polygons easier, we introduce the notion

of a Farey symbol. Given a Farey sequence V , we construct a Farey symbol σ by

identifying each pair of consecutive vertices xi, xi�1 in the Farey symbol with one of

the following intervals:

1. A free interval with label a " N such that there is another pair of consecutive

vertices xj, xj�1, which also form a free interval and have the same label,

xi
a

xi�1 and xj
a

xj�1

2. An even interval,

xi
`

xi�1

3. An odd interval.

xi
a

xi�1
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Of course, there is a natural duality between special polygons and Farey symbols.

In particular, the free edges in special polygons correspond to free intervals of

Farey symbols, the even edges correspond to the even intervals, and the odd edges

correspond to odd intervals. In particular, given a special polygon P , one can

construct a corresponding Farey symbol σP , and given a Farey symbol σ one can

construct a corresponding special polygon Pσ.

For any Farey symbol σ (or the corresponding special polygon Pσ), there is a collec-

tion of maps (explicitly given by equation 3.2.1) corresponding to the edge identifica-

tions. We can therefore define Φσ to be group generated by the edge identifications of

σ. By the Poincaré Polyhedron Theorem [Ser13, Theorem 6.14], Pσ is a fundamental

domain for Φσ. Theorem (6.1) in [Kul91] states that the edge identifications for

any Farey symbol σ, form an independent set of generators for Φσ. Moreover, the

following Theorem explains the importance of special polygons.

Theorem 3.2.3. ([Kul91, Theorem 3.2 and 3.3]) Every special polygon Pσ is a

fundamental domain for a finite index subgroup Φσ of PSL2�Z�, and this subgroup

Φσ is generated by the side pairings of Pσ. Every finite index subgroup Φ of PSL2�Z�
admits a special polygon PΦ as a fundamental domain.

See Fig. 3.7 for examples of two special polygons, which are fundamental domains

of Γ0�7� and Γ0�11�. The corresponding Farey symbols are:

�

0

0
a

1
2
a

1
0

� ,

and:

�

0

0
1

1
3

2

1
2

1

2
3

2

1
0

� .

Special Polygons as Fundamental Domains of Γ0�n�
For any Γ0�n�, we can take a special polygon Pσ to be our fundamental domain

such that the y-axis I and I � 1 are paired sides of Pσ. In particular, we can take
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(a) An image of a special polygon which is a
fundamental domain for Γ0�7�.

(b) An image of a special polygon which is a
fundamental domain for Γ0�11�.

Figure 3.7: Special polygons which are fundamental domains Γ0�7�
and Γ0�11�. Internal edges show the structure of F in
this region. External edges are identified by colour and
line type.

x0 � 0 and xr � 1 in the corresponding Farey sequence. This is due to the fact that

� 1 1
0 1 � " Γ0�n�, for all n " N%1.

For p prime, we can find a Farey symbol σ (for which Pσ is a fundamental domain of

Γ0�p�), in which the vertices are symmetric in the line x � 1
2 to �. In other words,

the underlying Farey sequence will be of the form r�, 0, x1, x2, . . . x
¬

2, x
¬

1, 1,�x,
where x¬i � 1�xi. The term 1

2 will be in every Farey symbol of Γ0�p� for p ' 5. This

is due to the fact that the line 0 to 1
2 separates H into two regions: one containing

the vertex 1 and the other containing all other neighbours of 0. Therefore, to get
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a Farey symbol containing the terms 0 and 1, the underlying Farey sequence must

either only contain the vertices �, 0 and 1 or the sequence must contain the vertex
1
2 . If we have either an odd or even interval, then the interval identifications are

symmetric in the line 1
2 to �. However, for free intervals we have antisymmetry, i.e.

the free interval labelled a will be replaced with the label a¬ in this symmetry. Due

to the symmetry of the vertices in the line x � 1
2 to � and the pseudo-symmetry

of the interval identifications, we will shorten the sequence up to the term 1
2 (for

p ' 5, since for p � 2, 3 we only use the vertices �, 0 and 1). Similarly, due to

identification of the y-axis I with I � 1, we will not include the terms �
0

0 or

1
0

� with the identification between these edges being implicit. For example, we

would write:

s 0
1

x1

1¬

x2
a

x3
`

1
2 ¶ refl.y

instead of

s�
0

0
1

x1

1¬

x2
a

x3
`

1
2

`

x
¬

3
a

x
¬

2
1

x
¬

1

1¬

1
0

� y.
We can explicitly state how many odd, even and free intervals there will be in

each fundamental domain of Γ0�n�. This can be derived from the properties of the

quotient space Γ0�n��H. For a prime p ' 5 with p � 1 mod 3 there are exactly two

odd intervals (either side of 1
2), otherwise there are no odd intervals. Similarly, if

p � 1 mod 4 there are exactly two even intervals (either side of 1
2), otherwise there

are no even intervals. If p � 1 mod 3, the Farey symbol has p�2
3 terms, otherwise

the Farey symbol has p�4
3 terms.

Given Φ a subgroup of PSL2�Z�, we can use the Riemann-Hurwitz formula to relate

geometric invariants the quotient space Φ�H, as follows:

d � 3e2 � 4e3 � 12g � 6t � 12

where

• d is the index of �PSL2�Z� � Φ�
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• e2 is the number orbifold points in Φ�H with cone angle π (or equivalently the

number of even intervals in a corresponding special polygon)

• e3 is the number orbifold points in Φ�H with cone angle 2π
3 (or equivalently

the number of odd intervals in a corresponding special polygon)

• g is the genus of Φ�H

• t is the number of cusps for Φ�H

For Φ � Γ0�n�:
d � n5

q¶n
�1 � 1

q	,
t �=

a¶n
ϕ�gcd�a, na		,

where q is a prime number, a " N and ϕ is the Euler totient function.

Calculating this information for Γ0�p�, we observe that the quotient space Γ0�p��H
will have 2 punctures, e2 even intervals, e3 odd intervals and genus g. The above

relation then reduces to:

p � 1 � 3e2 � 4e3 � 12g.

3.2.3 Constructing the Integer Multiplication Algorithm

for Cutting Sequences.

In order to discuss how we construct the integer multiplication algorithm, we should

first explain exactly how we want this algorithm to work. The algorithm will take

the form of a deterministic finite automaton with output (DFAO) [AS03]. This is a

sextuple Mn � �Sn, In,On, δn, τn, q0�, where:
• Sn is a finite set of states.

• In is the input alphabet (a finite set of all possible inputs).

• On is the output alphabet (a finite set of all possible outputs).
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• δn � Sn � In � Sn is the transition function.

• τn � Sn � In � On is the output function.

• q0 is the initial state.

Keeping the above notions in mind, we will produce the following motivating con-

struction. There are a few issues in this construction, which we will discuss and

resolve later. However, this construction gives a good overview and idea of how the

multiplication algorithm will work.

A Motivating Construction of the Multiplication Algorithm

We take Pn to be a special polygon which is a fundamental domain of Γ0�n� con-

taining I and I � 1 as paired sides. In this example, the edges on the boundary of

Pn represent the states Sn of our algorithm. Given two edges Ei and Ej of ∂Pn, we

can construct a path λEi,Ej , which starts at Ei and terminates at Ej and this path

is unique up to homotopy relative to Ei and Ej. Given a starting edge Ei, we can

then construct the set of paths Λn�Ei�, which start at Ei and terminate at some

arbitrary edge Ej (considered up to relative homotopy). Since Pn has only finitely

many sides, the set Λn�Ei� is finite. Since the paths we wish to construct start at

the y-axis I and I is on the boundary of Pn, the edge I will be our initial state q0.

For each starting edge Ei, we define the input alphabet to be:

In�Ei� �� r�λEi,Ej , Tr1,nx� � λEi,Ej " Λn�Ei�x.
This is the set of cutting sequences of paths which start at Ei, taken relative to

Tr1,nx.

The output alphabet is similarly given by:

On�Ei� �� r�λEi,Ej , Trn,nx� � λEi,Ej " Λn�Ei�x,
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This is the set of cutting sequences of paths which start at Ei, taken relative to

Trn,nx, i.e. we have performed triangulation replacement on the cutting sequences of

the input alphabet.

One thing to note is that the paths Λn�Ei� encode both the input alphabet In�Ei�
and the output alphabet On�Ei�. As a result, it will be more natural for us to

consider the output function τn and transition function δn as a function on Λn�Ei�
instead of as a function on the input alphabet, i.e. τn � Λn�Ei� � On�Ei� and

δn � Λn�Ei� � Sn. With the above observations, we can define the output function

τn � Λn�Ei�� On�Ei� to be the function given by τn�λEi,Ej� � �λEi,Ej , Trn,nx�.
In order to construct the transition function δn, we need to observe how the funda-

mental domains in the tessellation of Pn piece together. This in turn allows us to

observe how the paths in Λn can be concatenated. If we take λI,E1 to be our initial

path in Pn, which starts at I and terminates at some edge E1 " Sn, then our next

path λE1,E2 , should start at E1, where E1 is the edge paired to E1 under the edge

identifications of Pn. If ϕ1 is the map taking E1 to E1, then we see that this allows

us to concatenate the paths λI,E1 and ϕ1�λE1,E2� in a natural way:

• The map ϕ1 maps E1 to E1 and, therefore, λI,E1 terminates at the edge E1

and ϕ1�λE1,E2� starts at the edge E1.

• The map ϕ1 does not map Pn to Pn and, therefore, the paths λI,E1 and

ϕ1�λE1,E2� are contained in adjacent copies of Pn.

• Therefore, the paths λI,E1 and ϕ1�λE1,E2� must have compatible directions of

approach/departure.

Here, we will slightly abuse notation and denote the concatenated path as λI,E1 `

λE1,E2 , instead of λI,E1 ` ϕ1�λE1,E2�. By a similar argument, if the path λE1,E2

terminates at E2, then the next path λE2,E3 should start at the edge E2, where E2 is

the edge of Pn identified to E2. In this case, the paths λE1,E2 and ϕ2�λE2,E3� will be

compatible. As a result, we can concatenate ϕ1ϕ2�λE2,E3� to our path λI,E1 ` λE1,E2 .
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Again, we will abuse notation and write this path as λI,E1 ` λE1,E2 ` λE2,E3 , instead

of λI,E1 ` ϕ1�λE1,E2� ` ϕ1ϕ2�λE2,E3�. This process generalises and we can construct

an arbitrarily long path λ in H by repeatedly concatenating paths rλkx in Pn, as

long as we have that λk terminates at the edge Ek and λk�1 starts at the edge Ek.

Here, we denote this path as λ � λI,E1 ` λE1,E2 ` λE2,E3 ` . . .. Since the edges are

the states of this algorithm, we see that the above process induces the transition

function δn � Λn�Ei�� Sn. In particular, if λEk�1,Ek terminates at the edge Ek, then

δn�λEk�1,Ek� �� Ek.
Assuming we have constructed all the above structures and these structures are well

defined, the algorithm would work as follows:

The Motivating Cutting Sequence Multiplication Automaton

Let W word over the alphabet rL,Rx corresponding to the cutting sequence which

we wish to multiply by n, let V be the empty word ε " rL,Rx�, and let I be our

initial state.

1. Set k � 0 and take W0 � W and E0 � I.

2. Repeat the following steps:

(a) Find a word Uk " In�Ei� which is a prefix of Wk and let λk be the

corresponding path.

(b) Find Vk � τn�λk� � �λk, Trn,nx� " On and append Vk to V .

(c) Set Ek�1 � δn�λk�
(d) Write Wk � UkWk�1.

(e) Set k � k � 1.

3. End of algorithm.

The initial word W can then be decomposed into a product of sub-words, i.e. W �

U0U1U2�, and the output word can be written as V � V0V1V2�.
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Issues with the Motivating Construction

Whilst the above construction is very good for presenting the general ideas behind

the algorithm, there are two main issues:

Issue 1: For every edge Ei and every word W " rL,RxN there may not always be a

prefix Uk of W which is also in the input alphabet In�Ei�. Furthermore, this prefix

may not correspond to a unique path in Pn.

To resolve Issue 1, we will consider special polygons Pn without odd edges and show

a slightly stronger condition: that each of the input alphabets In�Ei� is a base

over rL,Rx. Here, we define a base over the alphabet rL,Rx to be a finite set of

words B � rUk " rL,Rx�x such that for any word W " rL,RxN, there is a unique

element in B which is a prefix of W . An example of a base over rL,Rx would be

B � rL,RL,RRL,RRRx. We then discuss special polygons with odd edges and see

that the input alphabets In�Ei� are also base - relative to some small concession

when Ei is an odd edge. In doing this, we will also show that the cutting sequences

�λk, Tr1,nx� are well-defined for all paths λk in Pn - again up to some small concession

when Pn contains odd edges.

Issue 2: The cutting sequences of the paths λk are not necessarily well-defined

relative to Trn,nx. As a result, the path λk `λk�1, formed by concatenating two paths

λk and λk�1 in Pn, is not necessarily reduced relative to 1
n
F . This may be the case,

even if both λk and λk�1 are reduced relative Trn,nx. See Fig. 3.8.

To resolve Issue 2, we will show that if we subdivide the edges to produce some

additional states, then we only have to consider paths λk which intersect Trn,nx in a

minimal way. In this case, we have a natural way to interpret the cutting sequence

and the concatenated paths will be reduced to 1
n
F . We will also show that in this

construction, the paths λk will still satisfy nice properties relative to Tr1,nx.
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Figure 3.8: An image showing how two paths λ1 and λ2, which
are both reduced relative Tr2,2x, can be concatenated
together to form a path λ1 ` λ2 which is not reduced
relative to 1

2F .

Resolving Issue 1 – Special Polygons without Odd Edges

Issue 1: For every edge Ei and every word W " rL,RxN there may not always be

a prefix Uk of W which is also in the input alphabet In�Ei�.
In the case that Pn is a special polygon of Γ0�n�, which does not contain any odd

edges, we can explicitly show that all of the paths in Λn�Ei� have a well-defined

cutting sequence relative to Tr1,nx, for every edge Ei in ∂Pn. This follows since every

edge on the boundary of Pn is also an edge of F by construction. Thus, every edge

of ∂Pn is also in Tr1,nx. Therefore, any path from one edge Ei of ∂Pn to another edge

Ej of ∂Pn will have a well-defined cutting sequence relative to Tr1,nx, since Ei and

Ej are both edges of Tr1,nx.

Using these ideas, we can show that the input alphabet In�Ei� is a base, and thus,

Issue 1 is resolved quite simply in this case.

Lemma 3.2.4. Assume that Pn is a special polygon which is a fundamental domain

of Γ0�n� that does not contain any odd edges. Then, for any edge Ei the input

alphabet In�Ei� forms a base.
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Proof. Assume that Pn is a special polygon of Γ0�n� that does not contain any odd

edges. Since the polygon Pn is formed by using edges of the Farey Tessellation F ,

every edge in the boundary of Pn is also an edge of F . As seen in Section 3.1.1, given

an infinite word W , an edge E in F and a direction of departure, we can construct

an infinite path λW such that W � �λW ,F�, and this path is unique up to homotopy

relative to E.

We will take Ei to be any edge on the boundary of Pn and assume that the direction

of departure heading into Pn is positive. We will then construct the reduced path

λW , which starts at the edge Ei and has positive direction of departure, such that

�λW ,F� � W , for some arbitrary wordW " rL,RxN. The special polygon Pn is made

up of finitely many triangles in F and so the path λW must intersect the boundary

of Pn at a unique edge Ej j Ei or at a vertex V . We can then cut λW along the edge

Ej to produce two paths λEi,Ej " Λn�Ei� and λ¬W such that λW � λEi,Ej ` λ
¬

W . Note

that λEi,Ej is completely determined (up to relative homotopy) by its initial edge and

terminal edge. Therefore, if we have an alternative decomposition λW � λEi,Ek ` λ
¬

V ,

then we must have Ek � Ej and λ¬V � λW .

Since Ej is an edge of F and λW is assumed to be reduced relative to F , the path

λEi,Ej has a well-defined cutting sequence. Furthermore, the paths λEi,Ej and λ¬W

will be compatible. Therefore, it follows that W � �λ,F� � �λEi,Ej ,F� ��λ¬W ,F�. In
particular, �λEi,Ej ,F� is a prefix of W . Since Tr1,nx �� Pn = F and λEi,Ej is a path

in Pn, we can conclude that �λEi,Ej ,F� � �λEi,Ej , Tr1,nx� " In�Ei� and �λEi,Ej ,F�
is a unique prefix of W . Since W was arbitrarily chosen, this must be true for all

W " rL,RxN, and so In�Ei� is a base.

Resolving Issue 1 – Special Polygons Containing Odd Edges

Recall from Section 3.2.2 that to form the odd edges, we first take two Farey neigh-

bours xi and xi�1 and find their Farey sum xi h xi�1 (see Section 3.1.2). The triple

of points xi, xi�1 and xi h xi�1 form a triangle in F . We can then take the point yi
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to be the centre of the triangle. The odd triangle τ is then the triangle in H with

vertices xi, xi�1 and yi, and the edges between xi and yi and yi and xi�1 are referred

to as odd edges. Note that these odd edges are identified under the side pairings. It

will be useful to also consider the edge in F between the points xi and xi�1, which

we refer to as a supporting edge. An odd triangle is then made up of two odd edges

and one supporting edge.

If Pn is a special polygon which contains some odd edges, then it is worth emphasising

that these odd edges are not part of the Farey tessellation and, therefore, not an

edge in Tr1,nx. As a result, if Ej and Ej are the two odd edges of an odd triangle

and Ei is any other edge of ∂Pn, then the paths λEi,Ej and λEi,Ej do not have a

well-defined cutting sequence relative to Tr1,nx. The same is true if our paths start

at an odd edge. To remedy this, we will extend our definition of Tr1,nx to include

these odd edges.

We note that if Es is the supporting edge of the odd triangle containing the odd

edges Ej and Ej, then since Es is in the Farey tessellation, the paths λEi,Es will

have a well defined cutting sequence (assuming that Ei is not an odd edge). One

can then note that if the odd triangle has edges Ej, Es and Ej labelled clockwise,

any reduced path λEs,Ej from Es to Ej will always form a right triangle with the

odd triangle, and any reduced path λEs,Ej from Es to Ej will always form a left

triangle. We will interpret the paths λEs,Ej and λEs,Ej as forming “half triangles”

with Tr1,nx and give these paths the cutting sequences �λEs,Ej , Tr1,nx� � R
1
2 and

�λEs,Ej , Tr1,nx� � L
1
2 . As a result, we can decompose the path λEi,Ej from Ei to

Ej into two compatible sub-paths: λEi,Es and λEs,Ej . This would have the cutting

sequence �λEi,Ej , Tr1,nx� � �λEi,Es , Tr1,nx� � �λEs,Ej , Tr1,nx� � �λEi,Es , Tr1,nx� �R 1
2 .

When considering paths λEj ,Ek which start at an odd edge Ej, we will similarly

break these into a path λEj ,Es and followed by the path λEs,Ek , where Es is the

supporting edge. The path λEj ,Es forms a left triangle with the odd triangle and the

path λEj ,Es forms a right triangle with the odd triangle. Again, we consider these

as half triangles in the cutting sequence relative to Tr1,nx. We will not consider the
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Figure 3.9: An image showing how we can homotope a path so
that it only ever intersects one odd edge in a row. The
dashed lines represent the odd edges.

path λEj ,Ej or the path λEj ,Ej in this setting, because, up to homotopy, the path

formed by concatenating λEi,Ej with the path λEj ,Ej is equivalent to the path λEi,Ej
- the path that went to the edge Ej in the first place. Given any path in H, we

can homotope the path so that it only ever intersects one odd edge in a row. See

Fig. 3.9. Since the edges Ej and Ej are identified via the edge identifications, the

path λEs,Ej with cutting sequence �λEs,Ej , Tr1,nx� � R
1
2 is always followed by the

path λEj ,Es with cutting sequence �λEj ,Es , Tr1,nx� � R 1
2 . As a result, the path λEj ,Es

“completes the triangle” relative to the path λEs,Ej . Similarly, the path λEsEj with

cutting sequence �λEs,Ej , Tr1,nx� � L
1
2 is always followed by the path λEj ,Es with

cutting sequence �λEj ,Es , Tr1,nx� � L
1
2 . We can view these odd edges as being part

of an extended tessellation of Tr1,nx, and this guarantees that the paths in Pn have

well-defined cutting sequences relative to Tr1,nx.

This construction allows us to distinguish the paths λEi,Ej and λEi,Ej by their cutting

sequences relative to Tr1,nx. More precisely, we have �λEi,Ej , Tr1,nx� � �λEi,Es , Tr1,nx� �
R

1
2 and �λEi,Ej , Tr1,nx� � �λEi,Es , Tr1,nx� � L 1

2 . Using this information, we can extend

the proof of Lemma 3.2.4 to fundamental domains with odd edges.
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Corollary 3.2.5. Let Pn be a special polygon, which is a fundamental domain of

Γ0�n� containing odd edges. Then, for any edge Ei which is not an odd edge, the

input alphabet In�Ei� forms a base. If Ei is an odd edge, then the input alphabet

In�Ei� will be of the form L
1
2B or R

1
2B, where B is a base.

Proof. Assume that Ei is not an odd edge and λW is an arbitrary path starting

at Ei with positive direction of departure (relative to Pn) with cutting sequence

W � �λW ,F�, where W is some arbitrary word in rL,RxN. Then by the arguments

in the proof of Lemma 3.2.4, we can uniquely decompose λW into two sub-paths:

λEi,Ej " Λn�Ei� and λ
¬

W . Since λEi,Ej , and λ
¬

W are compatible, we have W �

�λW ,F� � �λEi,Ej ,F� � �λ¬W ,F� � �λEi,Ej , Tr1,nx� � �λ¬W ,F�. Therefore, the cutting

sequence �λEi,Ej , Tr1,nx� is a prefix of W . Since paths in Λn�Ei� each have distinct

cutting sequences relative to Tr1,nx, the input alphabet In�Ei� is a base.

If Ei is an odd edge, then we can take Ei to be the other odd edge of the odd triangle,

and take Es to be supporting edge. If Λn�Es� is the set paths in Pn starting at Es and

terminating at Ek with Ek j Ei and Ek j Ei, then we can use the above arguments

to see that the set of cutting sequences r�λEs,Ek , Tr1,nx� � λEs,Ek " Λn�Es�x is a base.

In the notation of the corollary, B �� r�λEs,Ek , Tr1,nx� � λEs,Ek " Λn�Es�x. The paths
λEi,Es and λEi,Es contribute either an initial L

1
2 term or R

1
2 term, depending on

whether the paths λEi,Es and λEi,Es intersect the odd triangle to form a left triangle

or a right triangle.

Resolving Issue 2

Issue 2: The cutting sequences of the paths λk are not necessarily well-defined

relative to Trn,nx. As a result, the path λk `λk�1, formed by concatenating two paths

λk and λk�1 in Pn, is not necessarily reduced relative to 1
n
F . This may be the case,

even if both λk and λk�1 are reduced relative Trn,nx.

The main problem here is that the fundamental domain Pn is unlikely to intersect

the edges in 1
n
F in a nice way and so the polygons in the tessellation Trn,nx of Pn,
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will not all be triangles. As a result, it is not immediately clear how one could

compute the cutting sequence �λk, Trn,nx� for λk some path in Pn (or even what a

cutting sequence would mean in this case).

Figure 3.10: An example of the finite set of triangles C7 which are
contained in 1

7F and cover P7. The special polygon P7
is shaded grey.

In order to define a cutting sequence for λk, we note that for each edge Ei on the

boundary of Pn only a finite number of edges in 1
n
F will intersect Ei. As a result, we

can find a finite number of triangles in 1
n
F , which cover Pn. We denote this covering

as Cn. See Fig. 3.10. This covering is given by taking all of the triangles which

intersect Pn non-trivially, i.e. the triangles that intersect Pn, and this intersection

is not just an edge or a vertex of Pn. For any path λk in Pn, we can take E1 to be

the first edge of Cn that λk intersects, and take E` to be the last edge of Cn that

λk intersects. Therefore, we can use the structure this covering Cn to determine the

cutting sequence of the sub-path yλk of λk, which runs from E1 to E`. Whilst this

gives us some structure to form a cutting sequence, we discard part of the path λk

and so concatenated terms λk ` λk�1 will not necessarily have the cutting sequence

�yλk, Trn,nx� � �|λk�1, Trn,nx�. In particular, λk will terminate inside some triangle τ of
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1
n
F and λk�1 will start inside this triangle, and so by only considering the cutting

sequences of the paths yλk and |λk�1, we miss out on how the concatenated path

λk `λk�1 intersects τ . As a result, the cutting sequence of �λk `λk�1,
1
n
F� is given by

�yλk, Trn,nx��Y � �|λk�1, Trn,nx�, where Y encodes how λk`λk�1 intersects τ . In general,

we want to avoid paths which introduce bigons when concatenated. Fortunately, we

will see that if we put some restrictions on the choices of λk, we can do exactly that.

Not only that, but under these restrictions, the way λk�1 intersects τ completely

determines how λk ` λk�1 intersects τ .

Restricting the paths in Pn

Assume that E is an edge of Pn and E ¬ is and edge of 1
n
F , and these edges non-trivially

intersect. We also assume that λk and λk�1 are two paths which are compatible

relative to E and want to see how the concatenated path λk ` λk�1 intersects both

E and E ¬. One thing to note is that if λk ` λk�1 intersects E ¬ and does not form a

bigon, then we can always homotope this intersection to occur relative to the path

λk�1. See Fig. 3.11. In particular, we will never need the path λk to intersect the

edge E ¬, since if we do not need the concatenated path λk ` λk�1 to intersect E ¬,

then having λk intersecting E ¬, will force us to introduce a bigon - see Fig. 3.11 and

if we need the concatenated path λk ` λk�1 to intersect E ¬, we can make sure that

this happens along the path λk�1 - see Fig. 3.12.

In particular, if the path λk terminates at an edge E in ∂Pn, then λk should not

intersect any edge of 1
n
F that intersects E. If λk satisfies this condition, then we

will say that λk is a minimal path relative to E.

Recall that every geodesic splits the plane H into two regions. If γ is a geodesic

intersecting Pn (and γ is not a boundary edge), then γ also splits Pn into two regions.

In this setting, if λk is a path in Pn terminating at an edge Ei, then the starting

point and terminal point of λk should lie in the same region relative to all edges in
1
n
F which intersect the edge Ei. In fact, if the starting point of λk and the terminal
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Figure 3.11: An example of how if λk intersects an edge E ¬ and
the concatenated path λk `λk�1 forms a bigon with E ¬

(left), then we could have taken representatives of λk
and λk�1, such that λk never intersected E ¬ in the first
place (right).

Figure 3.12: An example of how if the concatenated path λk ` λk�1
intersects E ¬ (left) and does not form a bigon, then,
we can homotope λk ` λk�1 such that λk�1 intersects
E
¬ and λk does not (right).

point λk both lie in the same region relative to edges in 1
n
F which intersect the edge

Ei, and λk is reduced relative to 1
n
F , i.e. it does not form bigons, then λk will be a

minimal path relative to Ei.

The edges in Trn,nx split each edge Ei of ∂Pn into a finite number of distinct regions,

which we label Ei,j. It is worth noting that if Ei and Ei are edges paired under the

edge identifications, then up to relabelling each segment Ei,j will be identified to a

corresponding region Ei,j under this edge identification. Note that these segments

nicely match up because the edge identifications are elements of Γ0�n� and Γ0�n�
acting on Trn,nx produces the triangulation 1

n
F . For each segment Ei,j, we can assign

a base point Bi,j and refer to the set of points for a given edge as the base points for

Ei. We can do this in such a way that the base point Bi,j is paired to the base point
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Bi,j, where Bi,j is the base point corresponding to the region Ei,j. It is these points

Bi,j which will represent our states in the modified algorithm, and so, we denote the

set of all base points as Sn.

If λBi,j ,Ek is a path starting at the base point Bi,j and terminating at the edge Ek, we

can homotope λBi,j ,Ek fixing the initial point Bi,j such that λBi,j ,Ek is a minimal path

relative to Ek, i.e. λBi,j ,Ek does not intersect any of the edges in 1
n
F which intersect

Ek. For each edge Ek, there will be a unique segment Ek,` that the path λBi,j ,Ek

can terminate at such that λBi,j ,Ek is a minimal path relative to Ek. Existence of

such a region occurs because the edges in 1
n
F intersect Ek disjointly. As a result,

the edges of 1
n
F which intersect Ek split Pn into finitely many disjoint regions and

each of these regions contains a unique segment of Ek. Since these regions contain

unique segments of Ek, we can deduce that this segment Ek,` is unique. As a result,

for each base point Bi,j, we can compute Λn�Bi,j� to be the set of minimal paths in

Pn, which start at Bi,j.

As previously mentioned, if we have two paths λk and λk�1 in Pn which are compatible

relative to some edge Ei on the boundary of Pn (and Ei is not in 1
n
F), then these

paths will meet in the interior of some triangle ^ABC in 1
n
F . If Y encodes how

λk ` λk�1 intersects τ , then the cutting sequence of �λk ` λk�1,
1
n
F� is given by

�yλk, Trn,nx� � Y � �|λk�1, Trn,nx�. The triangle ^ABC can intersect Ei in one of the

following ways:

1. Two edges of ^ABC intersect the interior of Ei. In this case, a segment Ei,j,

runs between these edges of ^ABC which intersect Ei.

2. One edge of ^ABC intersects the interior of Ei and one of the endpoints of

Ei is a vertex of τ . In this case, there is a segment Ei,j of Ei between this

vertex of ^ABC and the edge of τ intersecting Ei.

3. One edge of ^ABC intersects an odd edge Ei, another edge of ^ABC

intersects the paired odd edge Ei in Pn. Let D be the odd vertex of the
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corresponding odd triangle. Then, there is a segment Ei,j which runs from D

to the intersection of τ with Ei.

If λk is some minimal path that terminates at Ei,j, and λk�1 is the next path that we

wish to construct, then we will show that the way the concatenated path λk ` λk�1

intersects^ABC is completely determined by how λk�1 intersects^ABC relative

to Ei,j.

Case 1: Two edges of ^ABC intersect the interior of Ei. In this case, a segment

Ei,j, runs between these edges of ^ABC which intersect Ei.

Figure 3.13: An image showing how the way the concatenated path
λk ` λk�1 intersects the triangle ^ABC in Case I is
dictated by the way that λk�1 intersects the triangle
^AB

¬
C
¬.

Without loss of generality, we assume that the edges of ^ABC which intersect Ei,

meet at the vertex A. We will denote the intersection of the line between A and

B as B ¬ and label the intersection of the line between A and C as C ¬. The points

A, B ¬ and C
¬ form a triangle. If λk is a minimal path in Pn terminating at the

region Ei,j, then λk can not have intersected the edge between A and B or the edge

between A and C, as this would contradict λk being a minimal path. As a result,

λk must have entered the triangle through the edge between B and C. Therefore,



91

we can deduce that λk intersects the quadrilateral BB ¬
C
¬
C, before terminating at

the edge between B
¬ and C

¬, and likewise we can deduce that λk�1 intersects the

triangle ^AB
¬
C
¬. In this case, we see that if the path λk�1 forms a right triangle

relative to the triangle ^AB
¬
C
¬, i.e. if λk passes through the edge between A and

C
¬, then the concatenated path λk ` λk�1 forms a right triangle relative to ^ABC.

Similarly, if the path λk�1 forms a left triangle relative to the triangle ^AB
¬
C
¬,

then the concatenated path λk ` λk�1 forms a left triangle relative to ^ABC. As

a result, the triangle that λk�1 forms with ^AB
¬
C
¬ tells us how the concatenated

path should behave. See Fig. 3.13.

Case 2: One edge of ^ABC intersects the interior of Ei and one of the endpoints

of Ei is a vertex of τ . In this case, there is a segment Ei,j of Ei between this vertex

of ^ABC and the edge of τ intersecting Ei.

Figure 3.14: An image showing how the way the concatenated path
λk ` λk�1 intersects the triangle ^ABC in Case II is
dictated by the way that λk�1 intersects the triangle
^ABC

¬.

In this case, we will assume that B is the vertex of the triangle which is the endpoint

of Ei. Then the edge E intersects the edge between A and C at a point C ¬. If λk

is a minimal path, then λk can not have intersected the edge between A and C,

since this edge intersects Ei. As a result, λk must have entered the triangle ^ABC
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through the edge between B and C or the edge between B and A. Without loss

of generality, we assume that λk entered the triangle through the edge between B

and C. Then λk intersects the triangle ^BCC
¬ and λk�1 intersects the triangle

^ABC
¬
. We then see that if the path λk�1 forms a left or right triangle relative to

the triangle ^ABC
¬, then the concatenated path λk ` λk�1 forms a triangle of the

same type relative to ^ABC. Again, we see that the triangle that λk�1 forms with

^AB
¬
C
¬ tells us how the concatenated path should behave. See Fig. 3.14.

Case 3: One edge of ^ABC intersects an odd edge Ei, another edge of ^ABC

intersects the paired odd edge Ei in Pn. Let D be the odd vertex of the corresponding

odd triangle. Then, there is a segment Ei,j which runs from D to the intersection of

τ with Ei.

Figure 3.15: An image showing how the way the concatenated path
λk ` λk�1 intersects the triangle ^ABC in Case III is
dictated by the way that λk�1 intersects the quadrilat-
eral A¬

BC
¬
D.

We will take yEi to be the other odd edge (which is not part of Pn) which is paired

with Ei and Ei under the elliptic involution of order 3 around D. Then, without

loss of generality, the edge between A and B will intersect Ei at a point A¬ and the

edge between B and C will intersect yEi at a point C ¬. The path λk can not have

intersected the edge between A and B, and can not have started at the edge E (since
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we saw that these paths were redundant in the previous section). As a result, λk

must have passed through the edge between A and C. The next path λk�1 lies in a

quadrilateral A¬
BC

¬
D. The path λk�1 can not pass through the edge between D and

C
¬, as this would also lead to a redundant path. In particular, λk�1 must either pass

through the edge between B and A¬, in which case the concatenated path λk ` λk�1

forms a right triangle with^ABC, or λk�1 passes through the edge between B and

C
¬, in which case the concatenated path λk `λk�1 forms a left triangle with^ABC.

If we treat the edges between A¬ and D and D and B ¬ as if they are a single edge,

then induces a natural notion λk�1 forming a left or right “triangle” with A¬
BC

¬
D,

and this notion is consistent with the concatenated paths, i.e. if λk�1 cuts A¬
BC

¬
D

to form a left “triangle” then the concatenated path λk ` λk�1 forms a left triangle

with ^ABC. See Fig. 3.15.

As a result of looking at each of the above three cases, we see that if λk and λk�1

are both minimal paths in Pn which are compatible relative to some edge Ei on the

boundary of Pn (and Ei is not in 1
n
F), then the way that λk�1 intersects ^ABC

relative to Ei,j completely determines how λk ` λk�1 intersects ^ABC. As a result,

in this case we will take �λk�1, Trn,nx� � Y ��|λk�1, Trn,nx�, where Y corresponds to the

way that λk�1 intersects the initial “triangle” that λk�1 is contained in. Therefore,

we can deduce that the cutting sequence � �
k"N<r0x

λk,
1
n
F� is equivalent to:

�

5
k�0

�λk, Trn,nx� � �λ0, Trn,nx� � �λ1, Trn,nx� � �λ2, Trn,nx� . . .
� �yλ0, Trn,nx� � Y1 � �λ1, Trn,nx� � Y2 � �λ2, Trn,nx� . . . ,

where Yk is ε if λk starts at an edge in 1
n
F and otherwise Yk is determined by how

λk intersects the connecting triangle.

To summarise, for every base point Bi,j and every edge Ej, we can find a unique

base point Bk,` on the edge Ej such that the path λBi,j ,Bk,` " Λn�Bi,j�. We can

take λBi,j ,Bk,` to be a geodesic representative which starts at Bi,j and terminates at
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Bk,`, in which case λBi,j ,Bk,` will be reduced relative to both Tr1,nx and Trn,nx. For

each path λBi,j ,Bk,` in Λn�Bi,j�, there is a unique homotopic path in Λn�Ei�. This

is given by λEi,Ej . The edges Ei and Ej are either in F or an odd edge of Pn, and

so the cutting sequence relative to Tr1,nx is preserved under relative homotopy of

these edges. As a result, the extended input alphabet In�Bi,j� is equivalent to the

initial input alphabet In�Ei� and so In�Bi,j� is a base. By the above arguments, we

can guarantee that the cutting sequences �λBi,j ,Bk,` , Trn,nx� are all well defined and

concatenate nicely. Therefore, the output alphabet On�Bi,j� is also well-defined.

The Cutting Sequence Multiplication Algorithm

Let n " N be the integer by which we wish to multiply.

1. Construct the special polygon Pn for Γ0�n�.
2. Find Tr1,nx and Trn,nx by taking the local structure of F and 1

n
F in Pn.

3. By looking at how Trn,nx intersects the boundary of Pn, construct the set of

base points Sn.

4. For each base point Bi,j " Sn construct the set of all non-trivial minimal paths

starting at this points Λn�Bi,j�.
5. For each base point Bi,j construct the input alphabet:

In�Bi,j� �� t�λBi,j ,Bk,` , Tr1,nx� � λBi,j ,Bk,` " Λn�Bi,j�z .
6. For each base point Bi,j construct the output alphabet:

On�Bi,j� �� t�λBi,j ,Bk,` , Trn,nx� � λBi,j ,Bk,` " Λn�Bi,j�z .
7. If λBi,j ,Bk,` " Λn�Bi,j�, then the transition function sigma is given by:

σ�λBi,j ,Bk,`� � Bk,`,

where Bk,` is the base point which is paired with Bk,` under the side pairings.
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8. If λBi,j ,Bk,` " Λn�Bi,j�, then the output function τ is given by:

τ�λBi,j ,Bk,`� � �λBi,j ,Bk,` , Trn,nx�.
9. End of algorithm.

3.2.4 Explicit Constructions of the Multiplication

Algorithm

For relatively low integers, the multiplication algorithm can be nicely expressed as

automata. See Fig 3.19 and 3.24 . However, for n ' 5 this gets a bit too complicated

and so expressing the automaton as a table of the initial state, the input, the output

and the next state is much more appropriate.

An Explicit Algorithm for p � 2

For p � 2, we use the special polygon shown in Fig. 3.16. By overlapping the triangu-

lations Tr1,2x and Tr2,2x, we see that there are four base points S2 �� rB0, B0, B1, B1x.

Figure 3.16: An image of the special polygon P2 with the embedded
structure of Tr2,2x. The base points are indicated on
the diagram.
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We first look at the paths starting at B0. From Fig. 3.17, we can see that there are

two minimal paths: One from B0 to B0 with cutting sequences �λB0,B0 , Tr1,2x� � L
and �λB0,B0 , Tr2,2x� � L

2, and the other from B0 to B1 with cutting sequences

�λB0,B1 , Tr1,2x� � R and �λB0,B1 , Tr2,2x� � ε.

(a) An image of the minimal paths start-
ing at the base point B0 in P2. These
paths are taken relative to Tr1,2x and
labelled with their cutting sequence.

(b) An image of the minimal paths start-
ing at the base point B0 in P2. These
paths are taken relative to Tr2,2x and
labelled with their cutting sequence.

Figure 3.17

We can then look at the paths starting at B1. From Fig. 3.18, we can see that there

are two minimal paths: One from B1 to B0 with cutting sequences �λB1,B0 , Tr1,2x� �
L and �λB1,B0 , Tr2,2x� � L, and the other from B1 to B0 with cutting sequences

�λB1,B0 , Tr1,2x� � R and �λB1,B0 , Tr2,2x� � RL.

(a) An image of the minimal paths start-
ing at the base point B1 in P2. These
paths are taken relative to Tr1,2x and
labelled with their cutting sequence.

(b) An image of the minimal paths start-
ing at the base point B1 in P2. These
paths are taken relative to Tr2,2x and
labelled with their cutting sequence.

Figure 3.18
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We note that P2 is symmetric in the line x � 1
2 . Under this symmetry, B0 maps

to B0 and B1. This symmetry takes left triangles to right triangles and vice versa.

Therefore, having constructed the minimal paths and cutting sequences for the paths

starting at B0 and B1, we can deduce the minimal paths and cutting sequences for the

paths starting at B0 and B1 by taking the mirror image, and the cutting sequences

are given by replacing L with R and vice versa. This produces Table 3.1. We can

produce an equivalent diagram by drawing all the states as nodes and all of the

transition maps as labelled arrows. The labelling indicates which input is swapped

with which output. See Fig. 3.19.

Initial State Transition Map Next State

S0 L � L
2

S0
R � ε S1

S1 R � RL S0
L � L S0

S0 R � R
2

S0
L � ε S1

S1 L � LR S0
RL � ε S0

Table 3.1: The transition table of the cutting sequences correspond-
ing to multiplication by 2.

We finish the p � 2 case with a short example of how the algorithm would work for α �
116
165 . This has continued fraction expansion α � �0; 1, 2, 2, 1, 2, 1, 1, 2� corresponding

to the cutting sequence RL2
R

2
LR

2
LRL

2.
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S0 � B0 W0 � �R�L2
R

2
LR

2
LRL

2
U0 � R τ2�U0� � ε V � ε

S1 � B1 W1 � �L�LR2
LR

2
LRL

2
U1 � L τ2�U1� � LR V � LR

S2 � B0 W2 � �L�R2
LR

2
LRL

2
U2 � L τ2�U2� � ε V � LR

S3 � B1 W3 � �R�RLR2
LRL

2
U3 � R τ2�U3� � RL V � LR

2
L

S4 � B0 W4 � �R�LR2
LRL

2
U4 � R τ2�U4� � ε V � LR

2
L

S5 � B1 W5 � �L�R2
LRL

2
U5 � L τ2�U5� � LR V � LR

2
L

2
R

S6 � B0 W6 � �R�RLRL2
U6 � R τ2�U6� � R2

V � LR
2
L

2
R

3

S7 � B0 W7 � �R�LRL2
U7 � R τ2�U7� � R2

V � LR
2
L

2
R

5

S8 � B0 W8 � �L�RL2
U8 � L τ2�U8� � ε V � LR

2
L

2
R

5

S9 � B0 W9 � �R�L2
U9 � R τ2�U9� � RL V � LR

2
L

2
R

6
L

S10 � B0 W10 � �L�L U10 � L τ2�U10� � L2
V � LR

2
L

2
R

6
L

3

S11 � B0 W11 � �L� U11 � L τ2�U11� � L2
V � LR

2
L

2
R

6
L

5

The final output is V � LR
2
L

2
R

6
L

5, which corresponds to the continued fraction

expansion �1; 2, 2, 6, 5�. The corresponding real number is 232
165 , which is indeed 2� 116

165 .

B0

B1

B1

B0

L � L
2

R � ε

L � LR

R � R

R � R
2

L � ε

R � RL

L � L

Figure 3.19: An automata which multiplies continued fractions by
2. The initial state is B0.
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An Explicit Algorithm for n � 3

For n � 3, we use the special polygon shown in Fig. 3.20. By overlapping the

triangulations Tr1,3x and Tr3,3x, we see that there are six base points:

S3 �� rB0, B1,1, B1,2, B0, B1,1, B1,2x.

Figure 3.20: An image of the special polygon P3 with the embedded
structure of Tr3,3x. The base points are indicated on
the diagram.

We first look at the paths starting at B0. From Fig. 3.21, we can see that there are

three minimal paths. One goes fromB0 toB0 with cutting sequences �λB0,B0 , Tr1,3x� �
L and �λB0,B0 , Tr3,3x� � L

3. Another goes from B0 to B1,2 with cutting sequences

�λB0,B1,2 , Tr1,3x� � RR
1
2 and �λB0,B1,2 , Tr3,3x� � L. The final path goes from B0 to

B1,1 with cutting sequences �λB0,B1,1 , Tr1,3x� � RL 1
2 and �λB0,B1,1 , Tr3,3x� � ε.

We can then look at the paths starting at B1,1. From Fig. 3.22, we can see that there

are two minimal paths: One from B1,1 to B0 with cutting sequences �λB1,1,B0 , Tr1,3x� �
L

1
2L and �λB1,1,B0 , Tr3,3x� � L, and the other from B1,1 to B0 with cutting sequences

�λB1,1,B0 , Tr1,3x� � L 1
2R and �λB1,1,B0 , Tr3,3x� � RL2.
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(a) An image of the minimal paths
starting at the base point B0 in
P3. These paths are taken relat-
ive to Tr1,3x.

(b) An image of the minimal paths
starting at the base point B0 in
P3. These paths are taken relat-
ive to Tr3,3x.

Figure 3.21

(a) An image of the minimal paths
starting at the base point B1,1 in
P3. These paths are taken relat-
ive to Tr1,3x.

(b) An image of the minimal paths
starting at the base point B1,1 in
P3. These paths are taken relat-
ive to Tr3,3x.

Figure 3.22

(a) An image of the minimal paths
starting at the base point B1,2 in
P3. These paths are taken relat-
ive to Tr1,3x.

(b) An image of the minimal paths
starting at the base point B1,2
in P3. These paths are taken re-
lative to Tr3,3x.

Figure 3.23
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Finally, we look at the paths starting at B1,2. From Fig. 3.23, we can see that there

are two minimal paths: One from B1,2 to B0 with cutting sequences �λB1,2,B0 , Tr1,3x� �
L

1
2L and �λB1,2,B0 , Tr3,3x� � LR, and the other from B1,2 to B0 with cutting sequences

�λB1,2,B0 , Tr1,3x� � L 1
2R and �λB1,2,B0 , Tr3,3x� � RL.

We note that P3 is symmetric in the line x � 1
2 . Under this symmetry, B0 maps to

B0, B1,1 maps to B1,1, and B1,2 maps to B1,2. This symmetry takes left triangles to

right triangles and vice versa. Therefore, having constructed the minimal paths and

cutting sequences for the paths starting at B0 and B1, we can deduce the minimal

paths and cutting sequences for the paths starting at B0 and B1 by taking the mirror

image, and the cutting sequences are given by replacing L with R and vice versa.

This produces Table 3.2.

Initial State Transition Next State Initial State Transition Next State

B0 L � L
3

B0 B0 R � R
3

B0

RL
1
2 � L B1,2 LR

1
2 � R B1,2

RR
1
2 � ε B1,1 LL

1
2 � ε B1,1

B1,1 L
1
2L � L B0 B1,1 R

1
2R � R B0

L
1
2R � RL

2
B0 R

1
2L � LR

2
B0

B1,2 L
1
2L � LR B0 B1,2 R

1
2R � RL B0

L
1
2R � RL B0 R

1
2L � LR B0

Table 3.2: The transition table of the cutting sequences correspond-
ing to multiplication by 3.

We then produce the corresponding automaton - see Fig. 3.24 - as we did for p � 2.

We will finish this the p � 3 case with a short example of how the algorithm would

work for α � 116
165 . This has continued fraction expansion α � �0; 1, 2, 2, 1, 2, 1, 1, 2�

corresponding to the cutting sequence RL2
R

2
LR

2
LRL

2.
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S0 � B0 W0 � �RL 1
2 �L 3

2R
2
LR

2
LRL

2
U0 � RL

1
2 τ2�U0� � L V � L

S1 � B1,2 W1 � �L 1
2L�R2

LR
2
LRL

2
U1 � L

1
2L τ2�U1� � LR V � L

2
R

S2 � B0 W2 � �R�RLR2
LRL

2
U2 � R τ2�U2� � R3

V � L
2
R

4

S3 � B0 W3 � �R�LR2
LRL

2
U3 � R τ2�U3� � R3

V � L
2
R

7

S4 � B0 W4 � �LR 1
2 �R 3

2LRL
2

U4 � LR
1
2 τ2�U4� � R V � L

2
R

8

S5 � B1,2 W5 � �R 1
2R�LRL2

U5 � R
1
2R τ2�U5� � R V � L

2
R

9

S6 � B0 W6 � �L�RL2
U6 � L τ2�U6� � L3

V � L
2
R

9
L

4

S7 � B0 W7 � �RL 1
2 �L 3

2 U7 � RL
1
2 τ2�U7� � L V � L

2
R

9
L

5

S8 � B1,2 W8 � �L 1
2L� U8 � L

1
2L τ2�U8� � L V � L

2
R

9
L

6

The final output is V � L
2
R

9
L

6, which corresponds to the continued fraction expan-

sion �2; 9, 6�. The corresponding real number is 348
165 , which is indeed 3 � 116

165 .

B0

B1,2B1,1 B1,2 B1,1

B0

L � L
3

RR
1
2 � εL

1
2R � RL

2

L
1
2R � RL RL

1
2 � L

R
1
2R � R

R
1
2R � RL

R � R
3

LL
1
2 � ε R

1
2L � LR

2

R
1
2L � LRLR

1
2 � R

L
1
2L � L

L
1
2L � LR

Figure 3.24: An automata which multiplies continued fractions by
3. The initial state is B0.



Chapter 4

Cutting sequences on Φ�H

4.1 Cutting Sequences on Φ�H

In Section 3.1, we defined cutting sequences of geodesic rays with respect to ideal

triangulations of H. The concept of a geodesic ray intersecting a triangle to form a

left or right triangle is still well-defined for any triangle on any surface, and so, for

any triangulated surface we can define the cutting sequence of a geodesic ray relative

to this triangulation. Similarly, we can define the generalised cutting sequence of a

path relative to a triangulated surface, since the notions of a bigon, a left triangle

and a right triangle all still hold.

However, if we take Φ to be a finite index subgroup of PSL2�Z�, the quotient space

Φ�H is not strictly a surface. Instead, we obtain a two-dimensional orbifold. Here, we

define a two-dimensional orbifold to be a surface S (possibly with boundary), with a

set of marked points M and a potentially empty set of orbifold points Q. In the case

that Q is empty, the orbifold will simply be a surface. When we supply the orbifold

with a metric, each element of M will correspond to cusps with angle 0 and each

element of Q will correspond to a cone point/orbifold point with angle 2π
k

for some

k " N'2. As discussed in Section 3.2.2, these orbifolds will have empty boundary,

at least one cusp (element of M) and a potentially empty set of orbifold points Q,

which can be decomposed into two disjoint subsets: Q2, the set of orbifold points
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with cone angle π and Q3, the set of orbifold points with cone angle 2π
3 . Following

the definitions in Section 3.2.2, the number of cusps is exactly given by ¶M¶ � t,

the number of orbifold points with cone angles π is ¶Q2¶ � e2, and the number of

orbifold points with cone angle 2π
3 is ¶Q3¶ � e3.

Given some subgroup Φ of PSL2�Z�, we can find the special polygon PΦ which is

the fundamental domain for Φ. Taking the quotient Φ�H is equivalent to taking

the corresponding special polygon PΦ and identifying sides via the side pairings.

We denote the special polygon with edges identified as PΦ��. When we take the

corresponding special polygon PΦ and identify sides via its side pairings, we see

that the central points of the even edges directly correspond to elements of Q2, the

interior vertices of PΦ connecting two odd edges correspond to elements of Q3 and

the vertices on the boundary of H correspond to elements of M (considered up to

the side pairings).

4.1.1 Triangulations of Φ�H

We define an arc γ on an orbifold Φ�H to be a geodesic path, which is disjoint from

M <Q except from its endpoints with the following properties:

• The endpoints of γ are contained in M <Q and at least one endpoint is in M ,

• The only self-intersections of γ occur at the endpoints of γ, if at all,

• If γ bounds a monogon (i.e. both endpoints of γ are at the same point in M),

then this monogon either contains one element of M , one element of Q3 or two

elements of Q2.

If γ has one endpoint in Q3 (and the other in M), then we will say that γ is an

odd arc. We will say that a pair of arcs γ, γ ¬ are admissible, if γ = γ ¬ L M (i.e. γ

and γ
¬ only intersect at endpoints which are also marked points). If the number

of marked points M and the number of orbifold points Q are finite, then there is
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a maximum number of admissible arcs that we can have on orbifold. We define a

quotient triangulation T of an orbifold Φ�H to be a maximal collection of pairwise

admissible arcs on Φ�H. This maximal collection arcs separates our space into a

collection of triangles. There are six possible of types triangle that can arise from a

quotient triangulation, which we list in Table 4.1.

Type Name Diagram Lift in H
(I) Standard triangle

(II) Self-folded triangle

aa

(IIIa) Quotient-2 triangle (a)

(IIIb) Quotient-2 triangle (b)

(IIIc)* Quotient-2 triangle (c)

(IV) Quotient-3 triangle

Table 4.1: A table of the six possible types of triangles that can
appear in a quotient triangulation and their lifts in H.
Elements of P are indicated by a, elements of Q2 are
indicated by `, and elements of Q3 are indicated by u.
Dashed lines indicate odd arcs and their lifts.

Remark 4.1.1. * The quotient-2 triangle (IIIc) occurs as a triangulation for exactly

one orbifold. This orbifold has three elements in Q2 and a single cusp, and the

triangle is formed by taking an arc between each point in Q2 and the cusp. There

is only one subgroup Φ of PSL2�Z�, given by Γ3 � �� 0 �1
1 0 �, � 1 �2

1 �1 �, � 1 �1
2 �1 ��, which
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induces a quotient space Φ�H that allows such a triangle. Furthermore, only triangles

of this type appear on this orbifold. There are two special polygons of Γ3 with Farey

symbols r�
`

0
`

1
`

� x and r�
`

�1
`

0
`

� x.

When we take the Farey tessellation F relative to some special polygon PΦ, since

the special polygon is built using of Farey neighbours, it is not hard to see that F

decomposes PΦ into triangles of type �xI���yIV� minus the lift of any odd arcs (where

�xI� is the lift of (I) in H etc.). As a result, the projection of F decomposes Φ�H into

triangles of type (I)-(IIIc) or into monogons containing a single element of Q3. For

the monogons containing a single element of Q3, we can construct a unique odd arc

between this element of Q3 and the element of M on the boundary of this monogon.

In particular, the projection of F induces a unique quotient triangulation for all

the quotient spaces Φ�H, for Φ any finite index subgroup of PSL2�Z�. However,

in general it is not immediately clear when an arbitrary ideal triangulation T will

induce a quotient triangulation of Φ�H. In particular, it is not obvious whether 1
d
F

induces a quotient triangulation of Γ0�n��H for d ¶ n. The following lemma gives

a sufficient condition for an ideal triangulation T of H to induce a unique quotient

triangulation on Φ�H.

Lemma 4.1.2. Let Φ be a non-trivial finite subgroup of PSL2�Z� (excluding Γ3), let

PΦ be a special polygon which is a fundamental domain for Φ, and let T be an ideal

triangulation of H, which is invariant under Φ. Then, the projection of T decomposes

Φ�H into triangles of type (I)-(IIIb) or into monogons containing a single element

of Q3. In particular, the projection of T induces a unique quotient triangulation TΦ

of Φ�H.

Proof. We will split this proof into three cases: Firstly, we show that if a triangle τ in

T does not contain the lift of an orbifold point, then τ projects to a triangle of type

(I) or (II) in Φ�H. Secondly, we will consider the case that the triangle τ contains

lifts of a points in Q2. In this case τ projects to a triangle of type (IIIa)-(IIIc) in
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Φ�H. Finally, we will show that if τ contains the lift of a point in Q3, then τ projects

to a triangle of type (IV) in Φ�H.

1. We first show that if a triangle τ in the ideal triangulation T of H does not contain

a lift of an orbifold point in Φ�H, then τ projects to a triangle of type (I) or (II) in

Φ�H.

Let τ be a triangle in the ideal triangulation T of H which does not contain a lift

of an orbifold point in Φ�H. Then, the projection of τ in Φ�H will not contain any

elements of Q � Q2 <Q3. Since T is invariant under Φ, geodesics in H will project

to geodesic arcs in Φ�H and these geodesic arcs will be pairwise disjoint except for

at P . As a result, the projection of τ will be triangles of type (I) or (II).

2. We will now show that if τ contains the lift of an orbifold point in Q2, then τ

projects to a triangle of type (IIIa)-(IIIc) in Φ�H.

Claim: If PΦ contains an even edge e2, then any triangulation T preserved by Φ

must contain an edge that runs through m2, where m2 is the fixed point of ϕ2, the

side pairing induced by the even edge e2.

Proof of claim: First, we assume the opposite, that m2 is not intersected by any edge

of T . Then, since m2 lies in the interior of H, the point m2 must lie in the interior

of τ , some triangle in T . Two vertices of τ will lie on one side e� of the even edge e2

and one vertex of τ will lie on the other side e�. Since ϕ2 is an elliptic involution

of order 2 with fixed point m2, the image of ϕ2�τ� will contain m2 and have two

vertices in e� and one vertex in e�. Since ϕ2 is an element of Φ, it follows that ϕ2�τ�
must be a triangle in T (since T is invariant under Φ). Both triangles τ and ϕ2�τ�
contain the point m2, however these triangles τ and ϕ2�τ� are not equivalent, since

the number of endpoints in e� and e� are different for τ and ϕ2�τ�. See Fig. 4.1.

This implies τ and ϕ2�τ� have non-trivial intersection and do not intersect along a

common edge (since then m2 would lie on this edge). Therefore, T can not be an

ideal triangulation and this is a contradiction to our initial assumptions. QED.

It follows from the above claim, that if a triangle τ in T contains the point m2, then
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Figure 4.1: An example of a triangle which contains the point m2
(left) in its interior, and its image under the action of
ϕ2 (right), where ϕ2 is an elliptic involution of order 2
with fixed point m2.

this point lies on one of the edges of τ . Such a triangle can either have one, two or

three edges, which each contain the lift of a point in Q2. These triangles will project

to a quotient triangle in Φ�H of type (IIIa), (IIIb) or (IIIc) (which occurs only for

Φ � Γ3), respectively.

3. Finally, we show that if τ contains the lift of an orbifold point in Q3, then τ

projects to a monogon containing a single element of Q3. As seen above, we can

then construct a unique odd arc between this element of Q3 and the element of M

which lies on the boundary of this monogon.

Claim: No edge in T projects to an odd arc in Φ�H.

Proof of Claim. Assume that E is an edge of an ideal triangulation T in H, which

projects to an odd arc in Φ�H. Then E must intersect the interior vertex c3 of an odd

triangle τ3 in PΦ. We define ϕ3 to be the side pairing induced by this odd triangle.

Then ϕ3 is an elliptic involution of order 3 with fixed point c3. In particular, the

images of E under Id, ϕ3 and ϕ�1
3 are three geodesic which all intersect at c3. Since



4.1. Cutting Sequences on Φ�H 109

T is invariant under Φ, all of the images of E under Φ (and therefore under Id,

ϕ3 and ϕ
�1
3 ) must be edges in T . See Fig. 4.2a. However, E, ϕ3�E� and ϕ

�1
3 �E�

intersecting inside H and therefore, T can not be an ideal triangulation. This is a

contradiction to our initial assumptions. QED.

(a) A geodesic line (bold) passing through the point c3 (left), and
its images under Id, ϕ3 and ϕ�1

3 (right).

(b) A pair of geodesic rays (left), which form a triangle under the
action of Id, ϕ3 and ϕ�1

3 (right).

Figure 4.2: Examples of edges and their images under the actions
of Id, ϕ3 and ϕ

�1
3 , where ϕ3 is an elliptic involution

of order 3 with fixed point c3. The odd triangle τ3 is
drawn in for structure.

Following this claim, the point c3 must lie in the interior of some triangle τ in T . The

elliptic involution about c3 will split H into three different regions, each containing a



110 Chapter 4. Cutting sequences on Φ�H

vertex of τ . Therefore, the projection of τ on to Φ�H will be a monogon containing

a single orbifold point with cone angle 2π
3 . See Fig. 4.2(b).

4.1.2 Paths and Cutting Sequence on Φ�H

For the most part, the concepts we introduced in Section 3.1.1 all still apply. However,

we will recap the main concepts for convenience and clarity.

Let Φ�H be an orbifold (as described in the previous section), and let T be a quotient

triangulation of Φ�H. Infinite paths will start at some arc γ of the triangulation T

(which is not an odd arc) and will limit to a marked point on Φ�H (here, we treat

marked points a like points at �). We will say that two infinite paths λ and λ¬ are

homotopic relative to γ if they both start at the same arc γ of T , limit to the same

marked point P and there is a homotopy between these paths which preserves the

starting arc γ and the final vertex P . In this case, we write λ �γ λ¬. Alternatively,

if λ and λ¬ two finite length paths, then we will say that these paths are homotopic

relative to γ1 and γ2 if they both start at the same arc γ1, terminate at the same arc

γ2, and there is a homotopy between them which preserves both γ1 and γ2. In this

case, we write λ �γ1,γ2 λ
¬.

Cutting Sequences relative to Odd Arcs

When defining the cutting sequence, we note that each path λ can cut each triangle

τ in T to either form a left triangle, a right triangle or a bigon (the path leaves the

triangle from the same edge it entered), or it can terminate at a vertex of a triangle.

In particular, the cutting sequence over the alphabet rL,R,Xx can generally be

formed as described in Section 3.1.1. However, for triangles of type (IV), there are

a few alterations we need to make. Firstly, if λ cuts an odd arc to form a left/right

triangle then we will append either L
1
2 or R

1
2 , respectively. Whenever a path λ

intersects an odd arc, we will require that λ does not “loop around” the cone point

of order 3. See Fig 4.3 (a) and (b). As a result, the path λ must either form a bigon
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(a) An example of a path “looping
around” the cone point of order 3.

(b) The lift of a path which “loops
around” a cone point of order 3 in
H.

(c) An example of a path intersecting an
odd arc to “complete” the triangle. It
has cutting sequence R

1
2R

1
2 � R.

(d) An example of a path intersecting an
odd arc, which then forms a bigon
with this odd arc. It has cutting se-
quence R

1
2XL

1
2 .

Figure 4.3: Examples of the different ways a path can intersect an
odd arc.

with the odd arc or λ must “complete” the half triangle. If λ forms a bigon with the

odd arc, then this induces the reduction relations L
1
2XR

1
2 � X and R

1
2XL

1
2 � X,

and if λ “completes” the triangle, then we have the reduction relations L
1
2L

1
2 � L

or R
1
2R

1
2 � R. See Fig. 4.3 (c) and (d).

Direction of Departure and Direction of Approach

Each arc γ in the triangulation T has two sides, which we can arbitrarily label “�”

and “�”. Every path λ (finite or infinite) which starts at the arc γ must leave either

via the positive side or negative side. If λ leaves via the positive side, we say that λ
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has positive direction of departure, and if λ leaves via the negative side, we say that

λ has negative direction of departure. We will express the direction of departure as a

pair �γ,��, where γ is the initial edge and � tells us how the path leaves this edge,

i.e. from the positive side or from the negative side. If λ is a finite path, then it will

approach its terminal edge γ ¬ from either the positive side, in which case we will say

that λ has positive direction of approach, or λ will approach γ
¬ from the negative

side, in which case we say that λ has negative direction of approach. Again, we will

express the direction of approach as the pair �γ ¬,��, where γ ¬ is the terminal edge

and � encodes whether λ approaches from the negative side or positive side. If λ1

is a finite length path terminating at an edge γ in T and λ2 is any path starting at

γ, we can concatenate these paths to form the path λ � λ1 ` λ2. We will say that

λ1 and λ2 are compatible if λ1 approaches γ from one direction and λ2 leaves γ from

the opposite directions. If two paths λ1 and λ2 are compatible and reduced, then

their concatenated product λ � λ1 ` λ2 will be reduced, and the cutting sequence

�λ, T � is equal to the product of the cutting sequences �λ1, T � � �λ2, T �.
Reduction Relations and Other Path Equivalences

Let Q be an orbifold point of order 2 and let E be an edge terminating at Q. If

a path λ intersects E and then loops around Q to intersect E again, then we will

consider the loop that this path forms to be a bigon - since it intersects the edge E

twice in a row and lifts to a bigon in H. See Fig. 4.4. In particular, we will consider

the path λ to be equivalent to the path λ¬ which has this loop removed.

As in Section 3.1.1, we can remove bigons from our paths and this induces reduction

relations on the cutting sequence. All the previous reduction relations still hold. We

will say that a path λ is reduced if it does not form bigons with T - and if it is not

homotopic to a sub-path of its starting arc, i.e. it does not have the cutting sequence

LX or RX considered up to reduction relations. The corresponding cutting sequence

of a reduced path will also be reduced, in the sense that it is only made up of the

letters L and R. As in Section 3.1.1, if two reduced paths are homotopic, then they



4.1. Cutting Sequences on Φ�H 113

Figure 4.4: An example of how to remove a bigon which loops
around an orbifold point of order 2, along with the
corresponding lifts in H. The arcs which form the bigon
are indicated by a dashed line.

will have the same cutting sequence.

Lemma 4.1.3. Let T be a triangulation of some orbifold Φ�H and let λ and λ¬ be two

homotopic reduced paths, starting at the same edge γ in T . Then �λ1, T � � �λ2, T �.
However, given two paths λ and λ¬ in Φ�H, starting at the same edge S in T with the

same cutting sequence, it is not necessarily true that λ1 and λ2 are homotopic. Given

an initial starting edge γ, a direction of departure, and a reduced wordW " rL,RxN,
we can produce a path λW such that �λW , T � � W . Inside triangles of type �I�, �II�
and �IV �, this path is uniquely defined up to homotopy (relative to T ). However,

if the path λW intersects an even edge, then it can do this in two different ways,

and these two different ways induce the same cutting sequence. This is because

a sub-path which terminates an even edge will add the same letter to the cutting

sequence regardless of the direction of approach. See Fig. 4.5.

As a result, given a reduced word W and a triangulation T , we can construct many

different paths λW,i, each with the cutting sequence �λW,i, T � � W . These paths will
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(a) (b)
.

Figure 4.5: An example of how paths can terminate at an even edge
with different directions of approach but still have the
same cutting sequence. The left figure (a) shows this
for paths in the triangle (IIIa) and the right figure (b)
shows this for paths in the triangle (IIIb)

intersect the same edges in the same order, but they can intersect each even edge in

one of two different ways corresponding to the two different directions of approach.

The fact that we can have multiple non-homotopic paths λW,i with the same starting

edge direction of departure and cutting sequence is not ideal when considering how

triangulation replacement affects cutting sequences. In particular, if λ and λ¬ have

the same starting edge direction of departure and cutting sequences �λ, T � and

�λ¬, T �, then it is not obvious that the cutting sequences �λ, T ¬� and �λ¬, T ¬� will

be equivalent, where T ¬ is some other triangulation. Fortunately, the next lemma

proves exactly this.

Lemma 4.1.4. Let Φ�H be some orbifold, with triangulation T . Assume that λ and

λ
¬ are two reduced paths which start at the same edge S with the same direction of

departure and that these paths have the same (reduced) cutting sequence. If T ¬ is

some other triangulation of Φ�H, then the cutting sequences �λ, T ¬� and �λ¬, T ¬� are

equivalent (up to reduction relations).

Remark 4.1.5. The above lemma is true for both finite paths and infinite paths.

However, if λ and λ
¬ are finite paths which terminate at an edge F , then we will

assume that the edge F is in both T and T ¬. The main reason why do this is because

otherwise the cutting sequences may not be well-defined.
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Proof. Since λ and λ¬ are reduced paths, and have the same cutting sequence, we

know that λ and λ¬ intersect the same edges of T in the same order, however they

may intersect even edges in different ways.

We describe the proof assuming that λ and λ
¬ only differ in how they intersect a

single even edge and they only differ in how they intersect this edge once. However,

since the edges of triangulations of Φ�H do not intersect each other (except at M

the set of marked points) and our paths λ and λ
¬ are disjoint from M except at

the endpoints, the paths λ and λ
¬ only ever intersect one edge of a triangulation

at a time. In particular, this result follows even in the case that λ and λ¬ intersect

arbitrarily many even edges in different ways.

Let Q be an orbifold point of order 2 and let E be the edge in T between Q and

some marked point M of Φ�H. We will assume that λ and λ
¬ differ in how they

intersect E exactly once. We can construct an open neighbourhood N around Q

and homotope λ and λ
¬ such that the intersections that λ and λ¬ have with E lie

within this neighbourhood.

Remark 4.1.6. Note that the marked points and orbifold points on Φ�H appear

discretely - i.e. there are not points which are arbitrarily close to each other. Fur-

thermore, there is exactly one edge E in T which has Q as an endpoint. Similarly,

there is exactly one edge E ¬ in T ¬ with Q as an endpoint. Since no other edges in

T or T ¬ can get arbitrarily close to Q, we can freely chose the neighbourhood N

such that it contains no edge in T or T ¬ except for E and E ¬. Similarly, we can also

assume that N contains no boundary points except for Q.

Since λ and λ
¬ only differ in how they intersect E - and we have homotoped this

intersection to appear inside N - outside this neighbourhood N we can homotope

these paths to be concurrent. Let µ be the sub-path of λ inside this neighbourhood

for the section of λ where λ and λ¬ intersect E in different ways and let µ¬ be the

corresponding sub-path of λ¬. We can then take λ1 to be the sub-path of λ (and λ¬)

going from the start of λ to the start of µ (or equivalently µ¬). Similarly, we can
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take λ2 to be the sub-path of λ (and λ¬) which starts at the end of µ. Then we have

λ � λ1 ` µ ` λ2 and λ¬ � λ1 ` µ
¬
` λ2.

Let s be the starting point of µ and µ¬, let t be the end point of µ and µ¬ and let e

be the be the point on E where E intersects ∂N . By going clockwise round ∂N , we

induce a cyclic ordering points s, t and e. The two possible orderings are rs, t, ex
and rs, e, tx. We will assume that the ordering is rs, t, ex, however the argument we

make holds for the ordering rs, e, tx by symmetry. Since λ and λ
¬ are reduced, µ

and µ¬ intersect E exactly once. Up to homotopy, there are two possible paths in

N with the ordering rs, t, ex. See Fig 4.6. We will call the section of ∂N lying in

the region going clockwise from s to t the top half of ∂N and will label the region

going anticlockwise from s to t the bottom half of ∂N . In our ordering, e lies in

the bottom half of ∂N . Without loss of generality, we will take µ to be the path

goes in an anti-clockwise direction from s to t without forming a loop around Q and

intersecting E exactly once. Whereas, we will take µ¬ to be the path that starts at

the s, loops around P once in a clockwise direction and then terminates at t. See

Fig.4.6.

Let T ¬ be a new triangulation of O. Then, there is exactly one edge E ¬ in T ¬ going

from some marked point to the orbifold point Q.

If E ¬ comes from the bottom half of ∂N , then E ¬ will intersect µ and µ¬ once each

in the same way that the edge E intersected µ and µ¬. Since λ � λ1 ` µ ` λ2 and

λ
¬
� λ1 ` µ

¬
` λ2, outside of the neighbourhood N , the paths λ and λ¬ intersect the

same edges in the same order and in the same way. Inside this N , µ and µ¬ intersect

both intersect E ¬ exactly once. As a result, λ and λ¬ intersect the same edges in the

same order and therefore have the same cutting sequence.

Alternatively, if E ¬ comes from the top half of ∂N , then µ intersects this edge twice

in a row but µ¬ does not intersect E ¬ at all. See Fig. 4.7. The path µ forms a bigon

with E ¬, since it µ¬ intersects the even edge E ¬ twice in a row. As such, the path µ¬

is equivalent to the path with the bigon removed. However, this path is simply µ.
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Figure 4.6: An image showing the two different possible ways (up
to symmetry) that a reduced path can intersect an even
edge.

As a result, the paths λ and λ¬ are equivalent up to bigon removal. Therefore, they

have equivalent reduced cutting sequence.

Finally, if E ¬ intersects N at one of the end points of µ of µ¬ then we can slightly

shift either of these end points, s or t, via homotopy to end up in one of the above

cases. In homotoping these endpoints, we will also need to homotope that paths λ1

and λ2 such that we still have λ � λ1 ` µ ` λ2 and λ¬ � λ1 ` µ
¬
` λ2.

Remark 4.1.7. Note that we will still think of even edges as having two directions

of approach and two directions of departure, since this will allow us to talk about

compatible arcs in a natural way. For simplicity, we will always assume that paths

which start at even edges have positive direction of departure and paths which

terminate at even edges have negative direction of approach. In particular, these

paths are compatible.
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Figure 4.7: An example of how two paths, which only differ in how
they intersect an even edge, are still equivalent (up to
reduction) regardless of triangulation replacement. In
this figure, the even edge E - lying in the bottom half
of ∂N) - is replaced by another even edge E ¬ - which
lies in the top half of ∂N .

4.1.3 Triangulation Replacement on Γ0�n��
H

We will end this section by discussing how we can use triangulation replacement on

the orbifold Γ0�n��H to represent integer multiplication of a continued fraction. This

statement is essentially equivalent to the statement that triangulation replacement

on a special polygon Pn represents integer multiplication of a continued fraction.

However, we will still explicitly state this, since it will be useful in the next section

for showing that if a continued fraction is recurrent, then any rational multiple of

this continued fraction will also be recurrent.

When discussing the effect that triangulation replacement has on cutting sequences,

we will want to make sure that the induced action is well-defined. If T and T ¬ are our

chosen triangulations, we will require that each path λ starts at an edge E and this

edge is in both T and T ¬. If the initial path is infinite, then we can freely homotope

the path λ relative to E. In particular, we can homotope the path λ to make sure
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the cutting sequences �λ, T � and �λ, T ¬� are both reduced (though not necessarily

at the same time).

To discuss how triangulation replacement on Γ0�n��H can represent integer multi-

plication by d for d ¶ n, we start by noting that the scaled Farey complexes 1
d
F are

preserved under the action of Γ0�n�. Therefore, by Lemma 4.1.2 these triangulations

induce quotient triangulations of Γ0�n��H. We denote these triangulations as t1
d
F ,

since these triangulations are the projections of 1
d
F on to Γ0�n��H with the addition

of any required odd arcs. If rI is the projection of the y-axis I in Γ0�n��H, then since

every triangulation 1
d
F contains the y-axis, each of their projections t1

d
F contains

the arc rI. If ζα is a geodesic ray in H starting at the y-axis I with endpoint α % 0,

then we can take sζα to be its projection in Γ0�n��H. This path sζα has a well-defined

starting edge rI, which is in all of the triangulations t1
d
F , and so the cutting sequence

�sζα,t1dF� is well-defined, for all d ¶ n. Using this information, we get the following

theorem:

Theorem 4.1.8. For every geodesic ray ζα in H starting at the y-axis I with endpoint

α % 0, there is a canonical projection sζα onto Γ0�n��H such that �ζα, 1
d
F� � �sζα,t1dF�,

for all d ¶ n.
Proof. Since the y-axis I is an edge in 1

d
F for all d " N, the projection sζα of ζα in

Γ0�n��H is unique and has a well-defined starting edge rI and direction of departure,

for all t1
d
F . Taking the projection of ζα and 1

d
F does not change how these objects

intersect. In particular, �ζα, 1
d
F� � �sζα,t1dF�, for all d ¶ n.

4.2 Parallels between Geometric and

Combinatorial Properties

Given some path λ on an orbifold Φ�H and some triangulation T of Φ�H, we can

then define the cutting sequence �λ, T � as described above. Throughout this section,
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we shall assume that λ is reduced relative to to T and therefore, the cutting sequence

�λ, T � is also reduced. Since, we will primarily be dealing with reduced paths, we

will often take the geodesic representative, i.e. we will often work with a geodesic

ray ζ. If this cutting sequence �ζ, T � has some combinatorial property (i.e. it is

periodic or recurrent), it is natural to ask whether this induces a geometric property

on ζ. In particular, if �ζ, T � has some property P , can we show that �ζ, T ¬� has the

same property P , where T ¬ is any other triangulation of Φ�H? This is possible for

certain properties, and recurrency is an example of such a property. We use this

to show that eventually recurrent continued fractions remain eventually recurrent

under rational multiplication and addition.

4.2.1 Properties of Cutting Sequences

Recurrent Cutting Sequences

Let Φ�H be an orbifold with triangulation T , let γ be an edge of T , and let ζ be

a geodesic ray starting at the arc γ. If ζ transversely intersects γ infinitely often,

then we can homotope each of these intersection points to a common point lying on

γ, which we denote P . Note that this process does not introduce new intersections

of γ with T , and so we do not have to worry about forming bigons with T . This

process decomposes ζ into a potentially infinite collection of closed curves C�ζ, γ�,
each based at the point P . If two elements in C�ζ, γ� are homotopic (or equivalent

under reduction), we will consider them as the same element. Due to construction,

each of these closed curves will be reduced relative to γ, i.e. each closed curve will

only intersect γ at the start and end point P and none of these closed curves will

be homotopic to a point. Since ζ intersects γ infinitely often, the geodesic ray ζ will

be homotopic to the infinite product of closed curves c1 ` c2 ` . . ., where ci " C�ζ, γ�
and ` is the standard loop concatenation, i.e. c1 ` c2 is the loop which goes round

the curve c1 and then the curve c2. For each geodesic ray ζ, we can take C�ζ, γ� to

be an alphabet and construct the infinite word w�ζ, γ� �� c1c2 . . ., which is formed
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by appending (the labels of) the closed curves appearing in ζ, in order. Given any

sub-word of w�ζ, γ�, we refer to the path formed by composing the loops that appear

in this sub-word as a product of loops in ζ. We denote the set of all products of loops

by P�ζ, γ�. We say that ζ is strictly geometrically recurrent relative to γ, if we can

form the word w�ζ, γ�, and the word w�ζ, γ� is strictly recurrent. We say that ζ

is eventually geometrically recurrent relative to an arc γ, if ζ (with a fixed starting

point) is homotopic to a finite length path ρ followed by a geodesic ray ξ, where ξ

is recurrent relative to γ, i.e. ζ � ρ ` ξ. We refer to ξ as the recurrent component.

We want to show that the above definition is well defined, i.e. if ζ is eventually

geometrically recurrent relative to some arc γ, then ζ is eventually geometrically

recurrent relative to all other arcs which the recurrent component intersects. The

next lemma proves exactly that.

Lemma 4.2.1. Let ζ be a geodesic ray on an orbifold Φ�H and assume that ζ

is strictly geometrically recurrent relative to some arc γ. Then ζ is eventually

geometrically recurrent relative to γ ¬, where γ ¬ is any other arc that ζ intersects.

Proof. Let ζ be strictly geometrically recurrent relative to some arc γ. Let c be some

closed curve in C�ζ, γ�, which intersects γ ¬ at least once. Since ζ is strictly geomet-

rically recurrent, the closed curve c is a sub-path of ζ infinitely often. Therefore, the

arc γ ¬ is intersected infinitely often by ζ. Let ρ be the shortest (initial) path along

ζ connecting γ to γ ¬ and let ξ be the geodesic ray such that ζ � ρ ` ξ. We define

C�ξ, γ ¬� to be the collection of closed curves that ξ decomposes into relative to γ ¬.

Let π be any product of curves in P�ζ, γ� which intersects γ ¬ at least once. We can

express π as π � pπ ` ν ` sπ, where pπ is a path from γ to γ ¬, ν is a product of closed

curves in P�ξ, γ ¬� and sπ is a path from γ
¬ to γ. Here pπ and sπ are both disjoint

from γ
¬ except at the end/start point respectively. Since π is a product of curves

in P�ζ, γ� and ζ is geometrically recurrent relative to γ, the sub-word w�π, γ� must

occur in w�ζ, γ� infinitely often. It follows from this, that the sub-word w�ν, γ ¬�
occurs infinitely often in w�ξ, γ ¬�. Given any such product of closed curves π in
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P�ζ, γ� we can construct a product of curves π¬, which contains all loops along ζ

until the end of π, i.e. if ζ � c1`c2` . . .`cn`π`cn�1, we take π¬ � c1`c2` . . .`cn`π.

Thus, either π � π
¬, in which case pπ is equivalent to the initial path ρ, or pπ is a

sub-path of some loop based at P ¬, as required.

It follows from the above statements that every product of curves ν in P�ξ, γ ¬� is

induced by a product of curves π in P�ζ, γ�. Since every product of curves in P�ζ, γ�
that occurs once, occurs infinitely often, every product of curves in P�ξ, γ ¬� must

also occur infinitely often. Therefore, it follows that ζ is eventually geometrically

recurrent relative to γ ¬.

The above lemma shows if a geodesic ray ζ is (strictly) geometrically recurrent

relative to one arc, then it is eventually geometrically recurrent relative to all arcs

it passes through. In this case, we refer to ζ as eventually geometrically recurrent

and drop the phrase “relative to”.

Theorem 4.2.2. Let Φ�H be an orbifold and let ζ be a geodesic ray in Φ�H, starting

at some arc γζ. Then ζ is eventually geometrically recurrent if and only if the

cutting sequence �ζ, T � is eventually recurrent, where T is any triangulation of Φ�H

containing the arc γζ.

Proof. ���: Let T be any triangulation of Φ�H and assume that ζ is geometrically

recurrent relative to γ, some edge in T . As seen in the proof of the previous lemma,

we can decompose ζ into an initial non-recurrent sub-path ρ, which terminates at

γ, followed by a geodesic ray ξ, which start at γ and is (strictly) geometrically

recurrent relative to γ. We can then construct the collection of curves C�ξ, γ� and

the word w�ξ, γ�. We can write w�ξ, γ� � π1π2 . . ., where each πi represents a

curve in C�ξ, γ�. The cutting sequence of ξ relative to T , can similarly broken up

into the product of the cutting sequences of the closed curve decomposition, i.e.

�ξ, T � � �π1, T � � �π2, T � � . . .. Since each closed curve πi starts and ends at γ, which

is an edge in T , the cutting sequences �π,i , T � are all well-defined. We now wish to
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show that if any sub-word W " rL,Rx� appears in the cutting sequence �ξ, T � once,

then it appears in the cutting sequence appears infinitely often.

Let W be any sub-word of �ξ, T �. Then, we can write the cutting sequence �ξ, T �
as a product of words UWV , for some words U and V , since W is a sub-word of

�ξ, T �. We can equivalently write the cutting sequence �ξ, T � as the infinite product

of cutting sequences �π1, T � � . . . � �πj, T � � �πj�1, T � � . . . � �πj�k, T � � . . ., where

ξ � π1 `π2 ` . . .. The word W is finite, and so there is some finite product of cutting

sequences �πj, T � � �πj�1, T � � . . . � �πj�k, T �, which contains W . Since ξ is (strictly)

geometrically recurrent relative to γ, the corresponding sub-word πjπj�1 . . . πj�k

must occur in w�ξ, γ� infinitely often. By extension, the word W must occur in the

cutting sequence �ξ, T � infinitely often. Since W was arbitrarily chosen, the cutting

sequence �ξ, T � must be recurrent. Because ζ can be decomposed into the paths

ρ ` ξ, the cutting sequence can similarly be decomposed into �ζ, T � � �ρ, T � � �ξ, T �.
The path ρ is a finite length path and so the cutting sequence �ρ, T � is a finite word.

It follows that the cutting sequence �ζ, T � is eventually recurrent, as required.

�
�: Assume that that cutting sequence �ζ, T � is eventually recurrent. We split

�ζ, T � into a finite non-recurrent word P and an infinite recurrent word W . We

can similarly split ζ along some γ in T such that ζ � ρ ` ξ, where �ρ, T � � P and

�ξ, T � � W .

Without loss of generality, we can assume that ξ has positive direction of departure

from γ, i.e. the direction of departure is �γ,��. Note that T is a finite triangulation,

i.e. it is made up of finitely many edges. As a result, if we take DT to be the set of

all possible directions of departure for paths starting at some edge of T , then we see

that this set is also finite - there are K arcs of the triangulation and each arc can

be approached in twos ways, so this set is of size 2K. Similarly, the set of directions

of approach AT will also be finite.

Note that for simplicity, we will freely assume that any path which starts at an even

edge has positive direction of departure and any path which terminates at an even
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edge has negative direction of approach. In practice, this means that we will never

use some directions of departure, but this does not affect the overall constructions.

We note that if V1 is an arbitrary sub-word of W with some implicit positioning,

then we can associate a sub-path λV1 of ξ to it. This sub-path is precisely the section

of ξ which contributes the word V1 to the cutting sequence (in the required position).

In order to prove this direction of the proof, we will show that the sub-path λV1 lies

within a loop/product of loops, and that this loop/product of loops occurs infinitely

often in w�ξ, γ�. Since the initial sub-word V1 is arbitrarily chosen, the corresponding

sub-path represents all possible sub-paths of ξ. In particular, every sub-path of ξ

lies within a product of loops, and this product of loops occurs in w�ξ, γ� infinitely

often.

To make this process somewhat easier, instead of dealing with arbitrary sub-words

V1 of W , we will instead deal with prefixes W1 of W . Note that if V1 is not initially

a prefix of W , then we can always find a prefix U of W , such that UV1 is a prefix.

In this case, we can simply take W1 � UV1. Also note, that since W1 is a prefix

of W , the corresponding sub-path λW1 starts at the edge γ and has direction of

departure �γ,��. Copies of the prefix W1 occur infinitely often in W , since W is

recurrent. To distinguish these copies, we will add a subscript based off of the natural

ordering of these copies, starting with W1 � W1,0. In particular, we can decompose

the word W as follows, W � W1,0V1W1,1V2W1,2 . . .. In general, the induced paths

λW1,k will rarely start at �γ,�� and will therefore lead to a collection of different

paths (when considered up to homotopy relative to their starting edges and terminal

edges). However, since there finitely many directions of departure and there are an

infinite number of copies of W1 in W , we can conclude that infinitely many of the

paths λW1,k must start at the same edge with the same direction of departure. We

define D�W1� to be the set of all pairs �γ ¬,�� which are directions of departure for

infinitely many paths λW1,k . By construction D�W1� is a non-empty subset of DT .

Note that we can similarly define the set D�V �, where V is an arbitrary sub-word

of W .
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We can also construct the set A�W1� to be the set of all pairs �γ ¬,�� which are

directions of approach for infinitely many paths λW1,k . Note that there is a duality

between the direction of approach and direction of departure; if �γ1,�1� " D�W1�
is the direction of departure for infinitely many copies of λW1,k , then the direction of

approach �γ2,�2� will be the same for each of these copies λW1,k and so �γ2,�2� "
A�W1�. In fact we can say something stronger, if λW1,j has direction of departure

�γ1,�1� and direction of approach �γ2,�2�, then �γ1,�1� " D�W1� if and only if

�γ2,�2� " A�W1�. Note that here we have used the assumption that all paths that

start at the an even edge have positive direction of departure and all paths that

terminate at an even edge have negative direction of approach.

Claim: Let W1 be any prefix of W . Then, �γ,�� is the direction of departure for

infinitely many path λW1,k . In other words, �γ,�� " D�W1�.
Proof of Claim. We will prove this claim by contradiction.

AssumeW1 is a prefix ofW with only finitely many associated paths λW1,k starting at

�γ,��. Let �γ1,�1� be the direction of approach for λW1,0 . Since we have assumed

that �γ,�� ©" D�W1�, it follows that �γ1,�1� ©" A�W1�. However, W contains

infinitely many copies of W1, and so A�W1� and D�W1� must both be non-empty.

In particular, there must be some pair �γ2,�2� " A�W1� which is the direction of

approach for infinitely many copies of λW1,k . Let W1,j be the first copy of W1 such

that the path λW1,j has direction of approach �γ2,�2�. We can now construct a new

sub-word of W of the form W2 � W1,0V1 . . . VjW1,j. Note that W2 is a prefix of W ,

since it starts with W1,0, which is a prefix of W . Copies of W2 appear infinitely often

in the word W , since W is recurrent. Again, we will add a subscript based on the

natural ordering to distinguish these copies, starting with W2 � W2,0.

SinceW2 hasW1 as a prefix, any direction of departure �γ ¬,�¬�, which is the direction

of departure for infinitely many paths λW2,k , must also be a direction of departure

for infinitely many paths of the form λW1,k . It follows that D�W2� L D�W1�. In

particular, since only finitely many paths of the form λW1,k have �γ,�� as their

direction of departure, only finitely many paths λW2,k have �γ,�� as their direction
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of departure. We can then conclude - by the duality of the direction of approach and

direction of departure - that only finitely many copies of λW2,k have �γ2,�2� as their

direction of approach. Similarly, since W2 has W1 as a suffix, we can conclude that

any direction of approach �γ ¬,�¬�, which is the direction of approach for infinitely

many paths λW2,k , must also be a direction of approach for infinitely many paths

of the form λW1,k . As a result, we see that A�W2� L A�W1�. In particular, only

finitely many λW2,k have �γ1,�1� as their direction of approach. Gathering together

this information, we can now conclude that �γ1,�1� and �γ2,�2� are not elements

of A�W2�. Note that �γ2,�2� is an element of A�W1� and not A�W2�, and therefore

A�W2� is a proper subset of A�W1�.
We now define the word W3 in a similar way. Let �γ3,�3� be the direction of

approach for infinitely many copies of λW2,k and let W2,j be first instance of W2,

such that λW2,j has direction of approach �γ3,�3�. We can then take W3 to be the

sub-word of W of the form W3 � W2,0V0W2,1 . . . VjW2,j. Note that W3 is a prefix of

W , since it starts with W2,0, and contains a copy of W2 as both a prefix and a suffix.

Since W2 is a prefix of W3 and only finitely many paths λW2,k have �γ,�� as their

direction of departure, we can conclude that only finitely many paths λW3,k have

�γ,�� as their direction of departure. Since �γ3,�3� is the direction of approach

for λW3,0 , we can conclude by duality of the direction of approach and direction of

departure, that only finitely many paths λW3,k have �γ3,�3� as their direction of

approach, i.e. �γ3,�3� ©" A�W3�. Since W2 is a suffix of W3, we can also conclude

that A�W3� L A�W2� and so, �γ1,�1� and �γ2,�2� are not elements of A�W3�. Note
that �γ3,�3� is an element of A�W2� and not A�W3�, and therefore A�W3� is a

proper subset of A�W2�.
In the above procedure, we have that A�W3� à A�W2� à A�W1� à AT . Since

the triangulation T is made up of finitely many edges, the set of directions of

approach AT is finite. If we iterate the above procedure (i.e. construct a word

Wi�1 to be a word with prefix Wi,0 and suffix Wi,j, where λWi,j
has direction of

approach �γi,�i� " A�Wi�), we see that each set A�Wi�1� is a proper subset of
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A�Wi�. Therefore, there must be some ` " N such that A�W`� contains no elements.

However, this implies that the word W` can only appear as a sub-word of W finitely

often. This is a contradiction to the fact that W is recurrent. Therefore our initial

assumption must be false, and so infinitely many paths of the form λW1,k must have

�γ,�� as their direction of departure. This prove the claim. QED.

By the above claim, we can now assume that �γ,�� " D�W1�. As a result, we can

form the word U1 � W1,0V1W1,1 . . . Vj where W � W1,0V1 . . . VjW1,j . . . and λW1,j is

the next occurrence W1 which has direction of departure �γ,��. Since λW1,j has

direction of departure �γ,�� and W � U1W1,j . . ., the corresponding path λU1 has

direction of departure �γ,�� and direction of approach �γ,��. We can therefore

conclude that λU1 is a product of loops. Note that by construction U1 is also a prefix

of W . As a result, we can conclude that �γ,�� " D�U1�. In particular, the product

of loops λU1 occurs in the word of loops w�ξ, γ� infinitely often, as required.

Periodic Cutting Sequences

A similar process can be used to look at paths with periodic cutting sequences. If a

path ζ goes around a closed curve infinitely many times without deviating, then the

cutting sequence �ζ, T � will be strictly periodic for any triangulation T . The reverse

is also true: a path with strictly periodic cutting sequences is homotopic to a path

which goes around a closed curve infinitely often (up to the equivalence relations

on even edges). Note that this statement is not obvious, but follows from a slight

adjustment in the proof of Theorem 4.2.2:

Proposition 4.2.3. Let Φ�H be an orbifold and let ζ be a geodesic ray in Φ�H,

starting at some arc γ. Then ζ is homotopic to a path (relative to γ) which goes

around a closed curve infinitely many times (up to equivalence relations) if and only

if the cutting sequence �ζ, T � is strictly periodic, where T is any triangulation of

Φ�H containing the arc γ.

Proof. ��� � Since (up to homotopy and equivalence relations) ζ goes around a
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closed curve π infinitely many times, the word w�ζ, γ� can be written as the infinite

product of π, i.e. w�ζ, γ� � π
�. Since γ is in T , the cutting sequence �π, T � is

well-defined relative to T . In particular, �ζ, T � � �

4
i�1

�π, T �. Let W � �π, T �, then
�ζ, T � � W and, therefore, is periodic.

�
� � If �ζ, T � � Ln0Rn1�Lnk , take W1 to be the prefix L
n0R

n1�L
n` . If ζ has

direction of departure �γ,��, then so does our initial path λW1 . If λW1 has direction

of approach �γ,��, then the path λW1 forms a loop. Since the cutting sequence

�ζ, T � can be represented as a product of infinitely many copies of W1, ζ can be

viewed as the path which goes around the loops λW1 infinitely many times, i.e. ζ is

homotopic to a path which goes around a closed curve infinitely many times.

Assume λW1 has direction of approach �γ1,�1� j �γ,��, i.e. assume it does not loop

back up. Then we can take W2 to be the prefix containing two copies of the period

W1, i.e. W2 � W1,0W1,1. If λW2 has direction of approach �γ2,�2� j �γ,��, then
λW2 does produce a loop either. In this case, λW2 can not have direction of approach

�γ1,�1�, since this would imply that λW1,1 has direction of approach �γ1,�1�. This
could only occur if λW1,0 and λW1,1 had the same direction of departure, i.e. λW1,0 is a

loop. If we then take W3 to be the prefix of �ζ, T � containing three copies of W1, i.e.

W1,0W1,1W1,2, then we start see a pattern. Either λW3 is a loop or it can not have

the same directions of approach as either λW2 or λW1 . By the pigeonhole principle,

there must be some Wk and Wk¬ with k $ k¬, such that the path λWk
and λWk¬

have

the same direction of approach. If k � 0, we are done. Otherwise, we note that we

can express the path λWk
as the concatenation of paths λW1,0 ` λW1,1 ` . . . ` λW1,k ,

and λWk¬
as the concatenation of paths λW1,0 ` λW1,1 ` . . . ` λW1,k¬

. We then see

that, since λWk
and λWk¬

have the same direction of approach, the paths λW1,k and

λW1,k¬
are equivalent up to homotopy and reduction, and these paths have the same

direction of departure. Therefore, we can deduce that λWk�1 and λWk¬�1
have the

same direction of approach. Iterating this process we get that λW1,0 has the same

direction of approach as λW1,k¬�k
. In particular, λW1,k¬�k�1

, must have direction of

approach �γ,�� and so λW1,k¬�k�1
forms a loop. Since �ζ, T � can also be expressed
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as product of infinitely many copies of Wk¬�k�1, we see that ζ goes round the loop

λW1,k¬�k�1
infinitely many times, as required.

4.2.2 Properties of Cutting Sequences under Triangulation

Replacement

As seen in Theorem 4.2.2, if ζ starts at an arc γ, then ζ is eventually geometrically

recurrent if and only if the cutting sequence �ζ, T � is eventually recurrent, where T

is any triangulation of Φ�H containing the arc γ. We can therefore deduce that if

�ζ, T � is eventually recurrent for some triangulation T on an orbifold Φ�H, then ζ

is eventually geometrically recurrent. If we then replace the triangulation T with a

triangulation T ¬ containing the starting arc γ, then since ζ is eventually geometrically

recurrent, we see that the cutting sequence �ζ, T ¬� is eventually recurrent. This gives

us the following corollary:

Corollary 4.2.4. Let Φ�H be an orbifold and let ζ be a geodesic ray in Φ�H, starting

at some arc γζ. If there is some triangulation T containing the arc γ such that �ζ, T �
is eventually recurrent, then �ζ, T ¬� is eventually recurrent, where T ¬ is any other

triangulation of Φ�H containing the starting arc γζ.

We can similarly use Proposition 4.2.3 to see that if a geodesic ray ζ has an eventually

periodic cutting sequence �ζ, T �, for some triangulation T on an orbifold Φ�H, then

�ζ, T ¬� will be eventually periodic, where T ¬ is any other triangulation of Φ�H.

Corollary 4.2.5. Let Φ�H be an orbifold and let ζ be a geodesic ray in Φ�H, starting

at some arc γζ. If there is some triangulation T containing the arc γζ such that

�ζ, T � is eventually periodic, then �ζ, T ¬� is eventually periodic, where T ¬ is any other

triangulation of Φ�H containing the starting arc γζ.

The same observations also hold for geodesic rays with strictly periodic and strictly

recurrent cutting sequences. We can therefore deduce that strictly periodic, even-

tually periodic, strictly recurrent and eventually recurrent cutting sequences each
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form a closed class of with regards to triangulation replacement on a triangulated

orbifold. Note that given a strictly periodic/strictly recurrent cutting sequence, the

corresponding continued fractions need not necessarily be strictly periodic/strictly

recurrent. For strictly periodic cutting sequences, this is because the periodic block

in the cutting sequence may start and end with the same letter. As an example, if

we take the cutting sequence �ζ, T � � L3R2LRL2, then the corresponding contin-

ued fraction expansion would be �3; 2, 1, 1, 5�. We can give such continued fraction

expansions a general form:

α ��

~������������
�a0; a1, a2, . . . , a2n� a0 & a2n

�0; a1, a2, . . . , a2n�1� a1 & a2n�1

,

where ai " N for i ' 0. If a continued fraction expansion α gives rise to a strictly

periodic cutting sequence, we refer to it as essentially periodic. Similarly, we refer to

continued fractions leading to recurrent cutting sequences as essentially recurrent.

Triangulation Replacement and Continued Fractions

In general, it is not known how triangulation replacement explicitly affects cutting

sequences or the corresponding continued fraction expansions. However, we do know

that specific triangulation replacement on specific orbifolds represents integer mul-

tiplication of the associated continued fraction, as seen in Theorem 4.1.8. We can

also represent integer division by taking this triangulation replacement in reverse.

From Proposition 4.2.2, we can deduce that if the cutting sequence of a geodesic ray

ζ relative to some triangulation T is recurrent, then the cutting sequence �ζ, T ¬� is

recurrent for T ¬ any other triangulation of Φ�H. In particular, a cutting sequence

being (eventually) recurrent is independent of the triangulation. If a continued frac-

tion expansion α is eventually recurrent, then this implies that the cutting sequence

of �sζα, sF� will be eventually recurrent. Since this is independent of triangulation,

the cutting sequence �sζα,u1nF� is also eventually recurrent. In particular, if α is an

eventually recurrent continued fraction expansion then so is qα, where q " Q. The
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same is true if we replace the cutting sequence being eventually recurrent with being

strictly recurrent/strictly periodic/eventually periodic.

For eventually recurrent continued fractions, we see that rational addition also

preserves the property of being eventually recurrent. As does taking 1
α
, since this is

equivalent to replacing all R’s with L’s in the corresponding cutting sequence and

vice versa. From this, we obtain the following corollary of Theorem 4.2.2. Note that

in the proof of this corollary, we repeat (and add to) some of the above arguments

for completeness.

Corollary 4.2.6. Let α " R, let M � � a bc d � be a non-trivial integer matrix (i.e.

a, b, c, d " Z, ad � bc j 0), and let β � M � α �
aα�b

cα�d
. If the continued fraction

expansion α is eventually recurrent and cα � d j 0, then the continued fraction β is

eventually recurrent.

Proof. For such a α " R, let ζα be a corresponding geodesic ray in H. Since the

continued fraction expansion is equivalent to the cutting sequence �ζα,F�, this

cutting sequence will also be eventually recurrent. We take Γ0�n��H to be our

orbifold, for some arbitrary n " N. Then the two triangulations of Γ0�n��H given

by sF andu1
n
F , encode the structure of F and 1

n
F . In particular, if we take sζα to

be the projection of ζα on Φ�H, then �sζα, sF� � �ζα,F� and �sζα,u1nF� � �ζα, 1
n
F�

by Theorem 4.1.8. Since the cutting sequence �ζα,F� is eventually recurrent, so

is the associated cutting sequence �sζα, sF� on Φ�H. It follows from Theorem 4.2.2

that the cutting sequence �sζα,u1nF� is also eventually recurrent. In particular, the

continued fraction expansion of nα � η�ζα, 1
n
F� will also be eventually recurrent.

Therefore, we can conclude that recurrency of the continued fraction expansion is

preserved under integer multiplication. Using a similar argument, we can extend

this result to show that recurrency is preserved under non-zero integer division, and

by extension rational multiplication. Recurrency of the continued fraction expansion

is also preserved under integer addition, and so by composing these operations we

can conclude that if α " R has an eventually recurrent continued fraction expansion,
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then qα� r will also has an eventually recurrent continued fraction expansion, where

q, r " Q.

Let a, b, c, d " Z with ad � bc j 0. If c � 0, then the result follows trivially. Instead,

assume c j 0. It follows that, if α " R has an eventually recurrent continued fraction

expansion, then cα�d will have an eventually recurrent continued fraction expansion,

since c, d " Z. We know that if β " R¯r0x admits an eventually recurrent continued

fraction expansion, then so will 1
β
. This follows, since 1

β
� �0; b0, b1, . . .�, where

β � �b0; b1, . . .�. Therefore, for cα�d j 0, 1
cα�d

admits a recurrent continued fraction

expansion. Let r � a

c
and q � b � ad

c
. It follows that q, r " Q, and q j 0, since

ad � bc j 0. Since recurrency of the continued fraction expansion is preserved by

rational multiplication and addition, the continued fraction expansion of q � 1
cα�d

� r

is also eventually recurrent. Then:

q �
1

cα � d
� r � �b � ad

c � � 1
cα � d

�
a
c

�
b � ad

c
� a

c
� �cα � d�

cα � d

�
b � ad

c
� aα � ad

c

cα � d

�
aα � b

cα � d

And the result follows.

One consequence is that if a property of the cutting sequence is preserved by triangu-

lation replacement, by adding a Lm term to the start of the sequence for m " Z and

by replacing all L’s with R’s and all R’s with L’s, then this property is preserved by

the transformation aα�b

cα�d
, for all a, b, c, d " Z with ad � bc j 0.

This leaves two interesting avenues open for future research: Firstly, what transform-

ations of continued fraction expansions are induced by triangulation replacement?

In particular, can we express any other of these transformations explicitly (as we did

for integer multiplication and division)? Secondly, what other properties of cutting

sequences are preserved by triangulation replacement?



Chapter 5

Infinite Loops as Potential

Counterexamples to the p-adic

Littlewood Conjecture

In this chapter we will discuss infinite loops mod n. Infinite loops can be viewed in

two equivalent ways. Firstly, we can define an infinite loop mod n to be a geodesic

ray ζα which starts at the y-axis and terminates at some point α " R%0 and is

disjoint from the set Γ0�n� � I except for the edges of the form I � k, where k " Z'0.

Secondly, we can define an infinite loop mod n to be a real number α " R%0, which

has no semi-convergent denominators divisible by n (except for q�1 � 0). Since semi-

convergents will be frequently used throughout this chapter, we recall the definition

of a semi-convergent for the benefit of the reader.

Definition 2.1.6. Let α � �a0; a1, a2, . . .� be a continued fraction expansion of

some real number α. We define the rk,mx-th semi-convergent of α to be prk,mx
qrk,mx

��

�a0; a1, . . . , ak,m�, where 0 & m & ak�1. We can define this iteratively using the

standard convergents:

prk,mx � mpk � pk�1

qrk,mx � mqk � qk�1
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We refer to the term prk,mx as the rk,mx-th semi-convergent numerator of α and

qrk,mx as the rk,mx-th semi-convergent denominator.

Before discussing infinite loops in full generality, we will first discuss the structure

of F = 1
n
F and the geodesic rays which start at I and are otherwise disjoint from

F= 1
n
F . We will see that the cutting sequences of these geodesic rays behave “badly”

when multiplied by n. We will then see that the set of edges Γ0�n� � I is a subset of

the edges in F = 1
n
F , and that these sets of edges are equal if and only if n is a prime

power. As a result, if n not a prime power, a geodesic ray being an infinite loop mod

n is actually a slightly weaker condition than this geodesic ray being disjoint from

F= 1
n
F (except at I�k for k " Z'0). However, by duality if ζα is not an infinite loop

mod n, then this is a stronger condition than saying ζα intersects F = 1
n
F . Moreover,

if ζα is not an infinite loop mod n, then we will see that it behaves very nicely when

multiplied by n. Therefore, we can view the property of being an infinite loop mod

n as some kind of minimal condition for the multiplication algorithm to not behave

nicely.

After discussing the structure of F = 1
n
F , we will then discuss the structure of

Γ0�n� � I and the preliminary properties of infinite loops mod n. We will then

use these properties to look at the role infinite loops play in the p-adic Littlewood

Conjecture. Firstly, we have the following lemma:

Lemma 5.1.10. Assume that α is not an infinite loop mod n. Then:

max rB�α�, B�nα�x ' �2Ón%�1.

Remark 5.0.1. Recall that B�α� is the height function, which outputs the largest

partial quotient in the continued fraction expansion, i.e:

B�α� �� sup
k"N

rai � α � �a0; a1, . . .�x .
This lemma tells us that if α is not an infinite loop mod n, then the largest partial

quotients for α and nα can not both be “small” relative to
Ó
n. As we will see in
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more detail later, this lemma allows us show that if there is a sequence of natural

numbers r`mxm"N such that p`mα is not an infinite loop mod p
m, then α satisfies

pLC. Here, we note that the sequence r`mx need not be increasing. This is a fact

which we will discuss later in Section 5.1.3. However, if no such sequence exists, α

is a counterexample to pLC. In particular, we have the following lemma:

Lemma 5.1.14. Let α " Bad and assume there exists an m " N such that p`α is

an infinite loop mod pm for all ` " N. Then α is a counterexample to pLC.

Combining these statements together, we get the following reformulation of pLC,

written as a condition of infinite loops mod pm:

Theorem 5.1.15. Let α " Bad. Then, α satisfies pLC if and only if there is a

sequence of natural numbers r`mxm"N such that p`mα is not an infinite loop mod pm.

In Section 5.2.1 we will provide two ways of constructing infinite loops mod n. One

of these ways is geometric in nature and the other is arithmetic. We will describe

the theoretical process of constructing both of these algorithms for some arbitrary

n. We finish this section by constructing the algorithm of p � 5 and 7. We do this

using both the geometric algorithm and the arithmetic algorithm.

5.1 Infinite Loops and the p-adic Littlewood

Conjecture

We begin this section by defining an infinite loop mod n (as a geodesic ray).

Definition 5.1.1. Let ζα be a geodesic ray starting at the y-axis I and terminating

at the point α " R%0. Then ζα is an infinite loop mod n, if ζα is disjoint from Γ0�n��I
except for the edges of the form I � k, for k " Z'0.

Remark 5.1.2. Here we allow ζα to intersect the the lines between a " N < r0x
and �. This is because the integer part of α does not affect how α multiplies. In



136 Chapter 5. Infinite Loops as Counterexamples to pLC

particular, if rαx is the fractional part of α, then rn rαxx will be the fractional part

of nα, i.e. for a � �α$ and rxx �� x � �x$, we have rnαx � rnα � nax � rn rαxx.
As remarked in Chapter 2, α satisfies mLC if and only if rαx satisfies mLC.

As we will soon see, the set of edges Γ0�n� �I is a subset of the set of edges in F= 1
n
F .

In order to motivate the definition of an infinite loop mod n, we will initially discuss

geodesic rays which are disjoint from F = 1
n
F . We will then explain why we loosen

this condition when defining infinite loops.

5.1.1 Initial Motivation for Looking at Infinite Loops

If λ is a finite length path, running from one edge Ei of F to another edge Ej in F ,

the cutting sequence of �λ,F� and direction of departure completely defines the path

λ up to relative homotopy. For example, if λ has direction of departure �Ei,�� and

cutting sequence W � �λ,F�, we can then construct the path λW with direction of

departure �Ei,��. The path λW will terminate at the edge Ej and λW is homotopic

to λ relative to Ei and Ej. However, when we take the cutting sequence of λ relative

to 1
n
F , the cutting sequence �λ, 1

n
F� is only well-defined if Ei and Ej are both edges

of 1
n
F . In particular, if Ei and Ej are not edges 1

n
F , then we can not reconstruct

the path λ just by knowing the direction of departure and cutting sequence �λ, 1
n
F�.

As we saw in Section 3.2.3, if we build a path λW starting at I out of smaller sub-

paths rλixi"N (each with well defined cutting sequence relative to F), then even if

none of the sub-paths λi have a well-defined cutting sequence relative to 1
n
F , the

next sub-path λi�1 determines how λi ` λi�1 intersects 1
n
F , and so the concatenated

path λW will still form a well-defined cutting sequence �λW , 1
n
F� relative to 1

n
F . In

the case that none of the sub-paths λi terminate at an edge E of F = 1
n
F , we see

that no sub-path of the form λ1 ` λ2 ` . . . ` λk has a well defined cutting sequence

relative to both F and 1
n
F simultaneously. In particular, no sub-path of λW is

simultaneously a good approximation of �λW ,F� and �λW , 1
n
F�. On the other hand,

if there is some λj which has an endpoint in both F and 1
n
F , then this tells us that
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the path λ1 ` λ2 ` . . . ` λj has a well-defined cutting sequence relative to both F and
1
n
F . As we will see later, this implies that some pair of semi-convergents of α induce

a pair of semi-convergents of nα. We can think of this pair of semi-convergents in α

as good approximations of α relative to multiplication by n. Since pLC and mLC

are deeply tied to the behaviour of continued fractions under iterative multiplication,

the real numbers which correspond to geodesic rays that are disjoint from F = 1
n
F

seem like a natural place to find potential counterexamples.

The Structure of F = 1
n
F

Recall from Section 3.1.2 that two points A �
p

q
and B �

r

s
in Q<r�x are neighbours

in F if and only if ¶ps � rq¶ � 1. This in turn implies that there is some element

M " PSL2�Z� such that M � 0 � A and M � � � B. This matrix M is either

of the form � p rq s � or � p �rq �s �, depending on whether ps � rq � 1 or ps � rq � �1,

respectively. It is important to note that A and B can only be neighbours in F if

gcd�ps, rq� � 1. By extension we must have that gcd�p, r� � gcd�q, s� � 1. We can

also show that every edge in F is of the form M � I, where M " PSL2�Z�. Note

that if M � � a bc d � and M
¬
� � b �ad �c �, the lines M � I and M

¬
� I will be equivalent

with opposite orientation.

Using this information about F , we can deduce similar information about 1
n
F by

simply scaling F by the �n���1 map. Using this structure, we obtain the following

lemma:

Lemma 5.1.3. Two points A and B are neighbours in both F and 1
n
F if and only

if they have reduced form a

n1c1
and b

n2d1
, with n � n1n2 and ¶an2d � bn1c¶ � 1.

Proof. ���: Assume that A �
a

c
and B �

b

d
are neighbours in F and 1

n
F . Since A

and B are neighbours in F , we can conclude that ¶ad�bc¶ � 1, and more importantly

for us:

gcd�c, d� � 1.
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Since 1
n
F is a scaled version of the Farey tessellation, A and B are neighbours in

1
n
F if and only if n��A� � n � A �

na

c
and n��B� � n � B �

nb

d
are neighbours in F .

Of course, n �A �
na

c
and n �B �

nb

d
will not necessarily be in reduced form. We will

take g �� gcd�c, n� and h �� gcd�d, n�. In this case, we can rewrite c, d and n in the

following ways:

c � n1c1, n � n1g,

d � n2d1, n � n2h.

We can then rewrite n � A and n �B in reduced form as:

n � A �
n1ga
n1c1

�
ga
c1
,

n �B �
n2hb

n2d1
�
hb

d1
.

Since n �A and n �B are neighbours in F , we see that ¶gad1�hbc1¶ � 1. Necessarily,

we can not have gcd�g, h� � r j 1, since this would imply that ¶gad1 � hbc1¶ � 0

mod r and so ¶gad1 � hbc1¶ j 1. Therefore, we can conclude that:

gcd�g, h� � 1.

Since we know that gcd�c, d� � 1, c � n1c1, and d � n2d1, we can conclude that:

gcd�c, d� � 1 � gcd�n1c1, n2d1� � gcd�n1, n2�.
Using this equality, we see that:

n1 � gcd�n1, n�
� gcd�n1, n2h�
� gcd�n1, n2� � gcd�n1, h�
� 1 � gcd�n1, h�
� gcd�n1, h�.
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However, since gcd�g, h� � 1, we can also deduce that:

h � gcd�h, n�
� gcd�h, n1g�
� gcd�h, n1� � gcd�h, g�
� gcd�h, n1� � 1

� gcd�h, n1�,
and so:

n1 � gcd�n1, h� � gcd�h, n1� � h.
Since n � n1g � n2h, we can now conclude that g � n2, and so:

n � n1n2.

Combining this information all together, we can now write A �
a

n1c1
and B �

b

n2d1

with ¶an2d1 � bn1c1¶ � 1 and n � n1n2, as required.

�
� � Let A �
a

n1c
and B �

b

n2d
, with n � n1n2 and ¶an2d � bn1c¶ � 1. Since

¶an2d � bn1c¶ � 1, we see that A and B are neighbours in F . Writing n �A and n �B

in reduced form, we have that:

n � A �
n2a
c ,

and

n �B �
n1b

d
.

We can now check to see if n � A and n � B are neighbours in F by computing the

value of ¶an2d � bn1c¶. Here, we have ¶an2d � bn1c¶ � ¶adn2 � bcn1¶ � 1, and so

n � A and n �B are indeed neighbours in F . By rescaling by a factor of �n���1, we

now see that A and B are neighbours in 1
n
F , as required.

In the above lemma, requiring the condition that A and B have reduced form a

cn1

and b

dn2
with n � n1n2 and ¶adn2 � bcn1¶ � 1, is equivalent to saying that if A and B

are neighbours of this form in either F or 1
n
F , then necessarily they are neighbours



140 Chapter 5. Infinite Loops as Counterexamples to pLC

in both F and 1
n
F .

Geodesics Intersecting F = 1
n
F

If ζα is a geodesic ray starting at the y-axis I and terminating at some point α " R%0,

and ζα intersects F = 1
n
F , then we can deduce some nice properties corresponding

to the semi-convergents of α and nα. In order to make these statements, we recall

Corollary 3.1.23.

Corollary 3.1.23. Let ζα be a geodesic ray starting at the y-axis I and terminating

at the point α " R%0. Then the point v " Q < r�x is a semi-convergent of α if

and only if it is the endpoint of some edge E in F which intersects ζα. The point

v " Q < r�x is a convergent of α if and only if it is the point at � or it is the

endpoint of at least two edges in F which intersects ζα.

Using the above proposition, we see that if ζα intersects an edge E in F = 1
n
F , then

both of the endpoints of E must be semi-convergents for α. As a result, α has two

semi-convergents of the form a

n1c1
and b

n2d1
with n � n1n2 and ¶an2d � bn1c¶ � 1. In

fact, one of these points will be the fixed point of a fan and so will be a convergent,

not just a semi-convergent. Without loss of generality, we can take pk
qk
�

a

n1c1
to

be the k-th convergent of α and let pk,m

qk,m
�

b

n2d1
be the rk,mx-th semi-convergent

of α. Since E is also an edge of 1
n
F , we can rescale our space using the n� map.

This allows us to see that n��ζα� intersects n��E�, which is an edge in F with end

points an2
c1

and bn1
d1

. Since n��ζα� is homotopic relative to I to ζnα, the geodesic ray

starting at I and terminating at nα, we can conclude that both an2
c1

and bn1
d1

will be

semi-convergents of nα. In fact, we can guarantee that one of an2
c1

or bn1
d1

will be a

convergent of nα. It is worth noting that if A �
a

n1c1
was a convergent of α, this

does not necessarily mean that n � A �
n2a

c1
is a convergent of nα and we may find

that n � B is a convergent of nα. We reformulate this information in the following

proposition:
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Proposition 5.1.4. Let α " R%0 and assume that α has a convergent of the form
pk
qk

�
a

n1c
and semi-convergent of the form pk,m

qk,m
�

b

n2d
such that n � n1n2 and

¶an2d � bn2c¶ � 1. Then n2a

c
and n1b

d
are both semi-convergents of nα. In fact, at

least one of n2a

c
or n1b

d
will be a convergent for nα.

5.1.2 Infinite Loops and their Properties

As we saw in the last section, if a geodesic ray ζα intersects F = 1
n
F , then α has

nice properties when multiplied by n. However, as we will soon see, if ζα intersects

Γ0�n� � I L F = 1
n
F , we can recover even more properties. In particular, the

geodesic rays which intersect Γ0�n� � I behave extremely nicely with regards to

integer multiplication by n and the geodesic rays which do not intersect Γ0�n� � I
behave badly. When n � p` is some prime power, we have Γ0�p`� � I � F = 1

p`
F . In

this case, not only do infinite loops behave badly with respect to multiplication by

p
`, but they behave as badly as possible.

The Structure of Γ0�n� � I
In Lemma 5.1.3 we saw that two points A and B are neighbours in both F and 1

n
F if

and only if they have reduced form a

n1c1
and b

n2d1
with n � n1n2 and ¶an2d � bn1c¶ �

1. Given two points A �
a

n1c1
and B �

b

n2d1
which are neighbours in both F

and 1
n
F , then since we know that ¶an2d1 � bn1c1¶ � 1, we necessarily must have

gcd�n1c1, n2d1� � 1 and, by extension, gcd�n1, n2� � 1. As a result, if n is a prime

power - i.e. n � p` for p some prime and ` " N - then all edges which are in both F

and 1
p`
F have endpoints of the reduced form A �

a

p`c
and B �

b

d
with gcd�p`c, d� � 1.

If we more generally look at neighbours in both F and 1
n
F of the form A �

a

nc
and

B �
b

d
with gcd�nc, d� � 1, then, by definition of neighbours in F , we have that

¶ad�bnc¶ � 1. As a result, we can conclude that either � a b
nc d � is an element of Γ0�n�

or � a �b
nc �d � is an element of Γ0�n�. Alternatively, if ϕ � � a b

nc d � is some element of

Γ0�n�, then the endpoints of ϕ � I will be ϕ � 0 � b

d
and ϕ � � �

a

nc
. As a result, we
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get the following corollaries about the structure of Γ0�n� � I:
Corollary 5.1.5. Let A �

a

nc
and B �

b

d
be two (reduced) elements of Q < r�x.

Then A and B are neighbours in F if and only if the matrix ϕ � � a �b
nc �d � is an

element of Γ0�n� L PSL2�Z�.
Note that in the above corollary, if A �

a

nc
and B �

b

d
are neighbours in F , then we

can use Lemma 5.1.3 to see that A and B are also neighbours in 1
n
F . This essentially

leads to the following corollary:

Corollary 5.1.6. The set of edges Γ0�n� � I is a subset of F = 1
n
F . These sets are

equivalent if and only if n is a prime power.

Redefining an Infinite Loop mod n

Recall our previous definition of an infinite loop mod n.

Definition 5.1.1. Let ζα be a geodesic ray starting at the y-axis I and terminating

at the point α " R%0. Then ζα is an infinite loop mod n, if ζα is disjoint from Γ0�n��I
except for the edges of the form I � k, for k " Z'0.

As stated in Corollary 5.1.5, two points A �
a

cn
and B �

b

d
in Q<r�x are neighbours

in F if and only if ϕ � � a �b
nc �d � is an element of Γ0�n�. In this case, the element ϕ

maps � to a

cn
and 0 to b

d
. By extension, ϕ maps the y-axis I to the edge between

a

cn
and b

d
. Since a

cn
and b

d
can only be neighbours in F if gcd�cn, d� � gcd�n, d� � 1,

every edge in F with endpoint of the form a

nc
can be expressed in the form ϕ � I, for

some element ϕ " Γ0�n�. In particular, Γ0�n� � I is the collection of all edges in F

with one endpoint of the form a

nc
.

Viewing this information through the lens of infinite loops, we see that if ζα is an

infinite loop mod n, then ζα can not intersect any edge in F which has an endpoint

with denominator divisible by n (except for the point at �). However, as seen in

Proposition 3.1.23, the semi-convergents of α are exactly the endpoints of the edges
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in F which ζα intersects. This leads to an equivalent definition of an infinite loop

mod n (as a real number).

Definition 5.1.1 (b). An infinite loop mod n is any real number α " R%0 with no

semi-convergent denominators which are by divisible n (other than q�1 � 0).

Remark 5.1.7. Here, we should note that if α " Q, we will assume that the

continued fraction expansion α ends in a partial quotient of size �. The real

number α still produces two separate continued fraction expansions of the form

�a0; a1, . . . , am � 1,�� and �a0; a1, . . . , am, 1,��. The reason why we do this is

because we may have rational numbers which are the endpoint of some edge in

Γ0�n� � I, but do not have a semi-convergent denominator divisible by n, unless we

include the final partial quotient of size �. Note that since:

lim
k��

a0 �
1

a1 �
1

. . . �
1

am � 1 �
1
k

� a0 �
1

a1 �
1

. . . �
1

am � 1

,

the continued fraction expansion �a0; a1, . . . , am � 1,�� and �a0; a1, . . . , am � 1� are

equivalent.

Properties of Infinite Loops

We begin by listing the properties of infinite loops mod n for future reference and

then discuss each property individually providing a proof of each statement. For

some of these properties we will include further discussion and results.

Properties of Infinite Loops mod n

1. If α is an infinite loop mod n, then α is an infinite loop mod kn, where k " N.

2. If ζα is not an infinite loop mod n, then there is some map ϕ " Γ0�n� such

that ζα intersects F and 1
n
F in the same way that ϕ�1

� ζα intersects both F

and 1
n
F .
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3. If α is not an infinite loop mod n, then there is a tail β of α such that nβ is a

tail of nα.

4. If ζα is not an infinite loop mod n, then either:

(a) It can be decomposed into infinitely many sub-paths such that each sub-

path behaves nicely when multiplied by n, or

(b) It can be decomposed into a finite number of sub-paths (each of which

behaves nicely when multiplied by n), followed by a sub-path which is

equivalent to an infinite loop mod n.

5. Let a

cn
and b

d
be two points lying in the interval �0, 1� which satisfy ¶ad �

bcn¶ � 1. Then, for all α " R%0 satisfying min t a

cn
, b
d
z & α & max t a

cn
, b
d
z, the

corresponding geodesic ray ζα is not an infinite loop mod n.

6. If n " N and n ' 4, then there exist infinite loops mod n.

Property 1. If α is an infinite loop mod n, then α is an infinite loop mod kn, where

k " N.

Proof. This property comes from the definition of infinite loops mod n. Since α is

an infinite loop mod n, it has no semi-convergent denominators which are divisible

by n. By extension, α has no semi-convergent denominators divisible by kn, where

k " N.

Property 2. If ζα is not an infinite loop mod n, then there is some map ϕ " Γ0�n�
such that ζα intersects F and 1

n
F in the same way that ϕ�1

� ζα intersects both F

and 1
n
F .

Proof. If we assume that ζα is not an infinite loop mod n, then we can conclude

that there is some non-trivial element ϕ " Γ0�n� such that ζα intersects ϕ � I. We

can then perform the inverse map ϕ�1
" Γ0�n� on our space H, and since F and 1

n
F

are both invariant under the action of Γ0�n�, the map ϕ�1 preserves the structure
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Points of the form

Number of neighbours
in F between
consecutive

neighbours in F = 1
n
F

Number of neighbours
in 1

n
F between

consecutive
neighbours in F = 1

n
F

a

nc
0 n � 1

b

d
, gcd�n, d� � 1 n � 1 0

Table 5.1: A table of the number of neighbours in F and 1
n
F that

points of the form a

nc
and b

d
(with gcd�n, d� � 1) have

between consecutive neighbours in F = 1
n
F

of both F or 1
n
F . In particular, the way that ζα intersects F and 1

n
F is equivalent

to the way that ϕ�1
� ζα intersects F and 1

n
F .

This turns out to be a very powerful tool when looking at how integer multiplication

affects cutting sequences. Using a slightly stronger version of this condition, we

can gain even more information. For any point of the form A �
a

nc
and any two

consecutive neighbours B1 �
b1
d1

and B2 �
b2
d2

of A in Γ0�n� � I, we can always

find a map ϕ " Γ0�n� such that ϕ � 0 � A, ϕ � � � B1 and ϕ � 1
n
� B2 (up to

relabelling). Since Γ0�n� preserves both F and 1
n
F , the number of neighbours that

A has between B1 and B2 in F (or equivalently in 1
n
F) will be equivalent to the

number of neighbours that 0 has between � and 1
n
in F (or in 1

n
F). The point 0

has n � 1 neighbours in F between � and 1
n
, and each neighbour is of the form 1

i

with i " r1, 2, . . . , n � 1x. In 1
n
F , 0 has no neighbours between � and 1

n
. Similarly,

for any point of the form B �
b

d
(gcd�n, d� � 1) and any two consecutive neighbours

A1 �
a1
nc1

and A2 �
a2
nc2

of B in F= 1
n
F , the number of neighbours that B has between

A1 and A2 in F (or in 1
n
F) will be equivalent to the number of neighbours that �

has between 0 and 1 in F (or in 1
n
F). The point� has no neighbours in F between

0 and 1 and n � 1 neighbours in 1
n
F between 0 and 1, and each neighbour is of the

form i

n
with i " r1, 2, . . . , n � 1x. We summarise these results in Table 5.1.
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This information is used to prove the following result.

Proposition 5.1.8. If a continued fraction α has a convergent denominator qk, such

that qk � nq
¬

k, for some n " N and some q¬k " N%1, then B�nα� ' n. Furthermore,

if pk
qk
�

pk
nq¬k

is a convergent of α, pk
q¬k

is a convergent of nα.

Proof. Let A �
pk
qk

be a convergent of α with geodesic representative ζα in H such

that qk � nq
¬

k, for some n " N and some q¬k " N%1. Then A is a common vertex

of a fan in the cutting sequence of ζα with F . By Proposition 3.1.23, at least two

edges of the cutting sequence have A as an endpoint. Let B �
r

s
and C �

t

u
be the

other two endpoints of two such edges with ^ABC " F . Since A is a neighbour

of both B and C in F , gcd�qk, s� � gcd�n, s� � gcd�qk, u� � gcd�n, u� � 1. From

Lemma 5.1.3, the edges AB and AC are in F = 1
n
F . By the above paragraph, there

exists a map in Γ0�n� which takes � to A, 0 to B and 1 to C (up to relabelling

B and C). Since AB and AC are both in F = 1
n
F , there are n � 1 edges between

AB and AC in 1
n
F - as mentioned in Table 5.1 - all of which the geodesic ray ζα

passes through. All these edges share A as an endpoint and so, they are all edges in

the same fan. It follows from this, that the fan ζα forms with 1
n
F containing both

AB and AC, contains at least n triangles. Therefore, the corresponding continued

fraction expansion �ζα, 1
n
F� contains a partial quotient with value at least n.

By the above argument A �
pk
qk

is a common vertex of a fan in the cutting sequence

�ζα, 1
n
F�. When we rescale using the n� map, the vertex pk

qk
in 1

n
F maps to pk

q¬k
in F ,

which is a fixed vertex of some fan in the cutting sequence �n��ζα�,F�. Therefore,
pk
q¬k

is a convergent of nα � �a�n�0 ; a�n�1 , . . .�. Since q¬k % 1, it follows that pk
q¬k

is not

the common vertex of the first fan, but necessarily of some fan after. As a result,

the partial quotient of nα with value at least n is not the first partial quotient. By

definition B�nα� �� max ta�n�i � nα � �a�n�0 ; a�n�1 , . . .�z and so B�nα� ' a
�n�
i for all

i " N. Since there exists an a
�n�
i ' n for i " N, it follows that B�nα� ' n, as

required.

We can improve on this result by taking all such triangles in the fan with the common
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vertex pk
qk

with n ¶ qk. Since this point can be mapped to� by a map which preserves

F and 1
n
F , each of the triangles in the fan is effectively subdivided each by n when

replacing F with 1
n
F . There are ak�1 such triangles, where ak�1 is the k�1-th partial

quotient. Note that there may be extra terms in this fan (added either side) but,

nevertheless, we can still guarantee that this fan contains at least nak�1 triangles.

In particular, we get the following corollary:

Corollary 5.1.9. If a continued fraction α has a convergent denominator qk, such

that n ¶ qk for n " N and n $ qk, then B�nα� ' nak�1.

Property 3. If α is not an infinite loop mod n, then there is a tail β of α such that

nβ is a tail of nα. If α is an infinite loop mod n, then there is no tail β of α such

that nβ is a tail of nα.

Proof. If ζα is not an infinite loop mod n, then we can decompose ζα into a finite

path ρα, which runs from I to ϕ �I for some ϕ " Γ0�n�, followed by a infinite path ξα

starting at ϕ � I. Since ξα starts at ϕ � I, we can perform ϕ
�1 on H to find a geodesic

ray ζβ � ϕ�1
�ξα. Since ξα started at ϕ�I, the geodesic ray ζβ starts at the y-axis I and

terminates at the point β � ϕ�1
�α. The map ϕ�1 preserves both F and 1

n
F , since it is

an element of Γ0�n�. We can therefore see that �ξα,F� � �ϕ�1
�ξα, ϕ

�1
�F� � �ζβ,F�

and �ξα, 1
n
F� � �ϕ�1

� ξα, ϕ
�1
� 1
n
F� � �ζβ, 1

n
F�. Since �ξα,F� is a tail of �ζα,F� and

�ξα, 1
n
F� is a tail of �ζα, 1

n
F�, the result follows.

Property 4. If ζα is not an infinite loop mod n, then either:

1. It can be decomposed into infinitely many sub-paths such that each sub-path

behaves nicely when multiplied by n, or

2. It can be decomposed into a finite number of sub-paths (each of which behaves

nicely when multiplied by n), followed by a sub-path which is equivalent to an

infinite loop mod n.
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Proof. If ζα intersects infinitely many lines in Γ0�n��I, then we decompose ζα into an

infinite collection of paths rλixi"N such that each λi runs from one edge in Γ0�n� � I
to another. Since Γ0�n� � I L F = 1

n
F , we can conclude that both cutting sequences

�λi,F� and �λi, 1
n
F� are well-defined for every i " N.

If ζα only intersects Γ0�n� �I finitely many times, then we can take ψ �I to be the last

time that ζα intersects Γ0�n��I. If we take β � ψ�1
�α " R%0, then the corresponding

geodesic ray ζβ starting at I and terminating at β is an infinite loop mod n. Since ψ

preserves both F and 1
n
F , not only is ζα equivalent to a unique infinite loop ζβ mod

n, but the multiplication of ζα is determined by the multiplication of ζβ by Property

3.

Property 5. Let a

cn
and b

d
by two points lying in the interval �0, 1� which satisfy

¶ad � bcn¶ � 1. Then, for all α " R%0 satisfying min t a

cn
, b
d
z & α & max t a

cn
, b
d
z, the

geodesic ray ζα is not an infinite loop mod n.

Proof. Here, the edge between a

cn
and b

d
lies in Γ0�n� � I by Corollary 5.1.5. Fur-

thermore, this edge separates H into two regions: one containing I, and the other

containing α. Since the geodesic ray ζα runs from I to α, ζα must necessarily in-

tersect the edge between a

cn
and b

d
. Therefore, ζα can not be an infinite loop mod

n.

Property 6. If n " N and n ' 4, then there exist infinite loops mod n.

Proof. In order to prove this statement, it is equivalent to show that there is no

finite set of edges in Γ0�n� � I connecting 0 to 1. As seen in Property 5, if we have

two points a

cn
and b

d
in the interval �0, 1� which satisfy ¶ad � bcn¶ � 1, then for all

α " R%0 satisfying min t a

cn
, b
d
z & α & max t a

cn
, b
d
z, the geodesic ray ζα is not an

infinite loop mod n. If we assume that a

cn
$

b

d
and assume that there is another

point of the form e

nf
%

b

d
with ¶ed� bnf¶ � 1, then we can further conclude that for

all α " R%0 satisfying a

cn
& α & e

nf
, the geodesic ray ζα is not an infinite loop mod n.

If there is a finite set of edges connecting 0 to 1, then we can use Property 5 on each
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of these edges to see that there is no infinite loop mod n, for all 0 & α & 1. However,

if no such finite path exists, then there must be a non-empty set of points in �0, 1�
which do not lie between any neighbours in Γ0�n� � I. If α is one of these points,

then the corresponding geodesic ray ζα does not intersect Γ0�n� � I. Therefore, α is

an infinite loop mod n.

To find this set of edges, it is equivalent to find a finite sequence of rational

points between 0 and 1 such that each consecutive pair of rational points are

neighbours in Γ0�n� � I. This sequence of rational numbers will be of the form

t0
1 �

b0
d0
, a1
c1n
, b1
d1
, . . . , ak

ckn
, bk
dk
�

1
1z, where bi�1

di�1
$

ai
cin

$
bi
di
, ai, bi, ci, di " N and gcd�n, di� �

1. Given two pointsA andB and a sequence of rationals rA � A0, A1, A2, . . . , Ak � Bx,
we will say that this sequence is a sequence of neighbours in Γ0�n� � I connecting

A and B if Ai $ Ai�1 and Ai and Ai�1 are all neighbours in Γ0�n� � I for all

i " r0, 1, . . . , k � 1x. Similarly, if we have two points A and B and a sequence of ra-

tionals rA � A0, A1, A2, . . . , Ak � Bx, we will say that this sequence is a sequence of

neighbours in F connecting A and B if Ai $ Ai�1 and Ai and Ai�1 are all neighbours

in F for all i " r0, 1, . . . , k � 1x.
Since Γ0�n� � I is a sub-graph of F = 1

n
F , which is in turn a sub-graph of F , each

edge E in the finite set of edges in Γ0�n� � I connecting 0 to 1, must also be an

edge of F . As a result, we will start with a sequence of neighbours in F , and insert

additional Farey neighbours to this sequence, until this sequence is also a sequence

of neighbours in Γ0�n� � I. To show that this constructs a minimal sequence of

neighbours in Γ0�n� � I (should a minimal sequence exist), we will use the following

claim:

Claim: Assume that a

c
, b
d
" Q = �0, 1� are neighbours in F with a

c
$

b

d
. Then

any sequence of neighbours in F of the form ta
c
�

a0
c0
, a1
c1
, a2
c2
, . . . , ak

ck
�

b

d
z satisfying

ai�1
ci�1

$
ai
ci
$

ai�1
ci�1

must either:

1. Only contain the points ta
c
, b
d
z, or

2. Contain the point a

c
h b

d
�

a�b

c�d
.
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Proof of claim. Since a

c
and b

d
are neighbours in F we know that there is an edge E

in F connecting these points. This edge separates the plane H into two regions: E�,

containing the interval �a
c
, b
d
�, and E�, containing the intervals ���, a

c
� and � b

d
,��.

The sequence of neighbours ta
c
�

a0
c0
, a1
c1
, a2
c2
, . . . , ak

ck
�

b

d
z, must all lie in the interval

�a
c
, b
d
�, since we assumed that ai�1

ci�1
$

ai
ci
$

ai�1
ci�1

. In particular, the edges between each

of these vertices must either be contained in E� or be the edge E itself, i.e. the

sequence of neighbours in F is just ta
c
, b
d
z.

If this is not the case, then we can assume that the sequence of neighbours in F ,

given by ta
c
�

a0
c0
, a1
c1
, a2
c2
, . . . , ak

ck
�

b

d
z, contains a vertex aj

bj
which is not a

c
, b
d
or a�c

b�d
.

Since a

c
h b

d
�

a�b

c�d
is a neighbour of both a

c
and b

d
in F , the vertices a�b

c�d
, a
c
and b

d

form a triangle in F . Furthermore, since aj

cj
j

a�c

b�d
, the vertex aj

cj
can either lie in

the interval �a
c
, a�b
c�d

� or �a�b
c�d
, b
d
�. We assume that aj

cj
lies in the interval �a

c
, a�b
c�d

� -

a similar argument can be made if aj

cj
lies in the interval �a�b

c�d
, b
d
�. Then, we take

E
¬ to be the edge between a

c
and b

d
, and assume E ¬

� is the region containing the

interval �a
c
, a�b
c�d

�. By assumption, the vertex aj

cj
is contained in the region E

¬

�. In

the sequence ta
c
�

a0
c0
, a1
c1
, a2
c2
, . . . , ak

ck
�

b

d
z, there must be a subsequence of neighbours

in F given by uaj
cj
,
aj�1

cj�1
, . . . , ak

ck
�

b

d
{ which connects aj

cj
to b

d
. However, aj

cj
lies in E ¬

�

and b

d
lies in E ¬

�. As a result, the corresponding sequence of edges in F must either

contain the point a�c

b�d
or non-trivially intersect the edge E ¬. However, since E ¬ and

the sequence of edges connecting aj

cj
to b

d
are all edges in the Farey tessellation, none

of these edges can non-trivially intersect. Therefore, the subsequence of edges must

pass through the point a�c

b�d
and so, the sequence of neighbours uaj

cj
,
aj�1

cj�1
, . . . , ak

ck
�

b

d
{

must contain the point a�c

b�d
. Finally, since this subsequence contains the point a�b

c�d
,

so must our original sequence of neighbours ta
c
�

a0
c0
, a1
c1
, a2
c2
, . . . , ak

ck
�

b

d
z. QED.

Given two Farey neighbours a

c
and b

d
with a

c
$

b

d
, we can use this claim to construct

a minimal sequence of neighbours in Γ0�n� � I between these points. We denote

this minimal sequence yV . Firstly, we take the sequence of neighbours in F given by

V0 �� ta
c
, b
d
z to be our initial sequence. If a

c
and b

d
are neighbours in Γ0�n� � I, then

we will take yV � V0, and we are done. Otherwise, by the above claim, the set yV
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must include the point a�b

c�d
. We know that a�b

c�d
is a Farey neighbour of both a

c
and

b

d
and a

c
$

a�b

c�d
$

b

d
. As a result, we can replace our initial sequence of neighbours

V0 � ta
c
, b
d
z with the sequence of neighbours V1 �� ta

c
, a�b
c�d
, b
d
z. Since each consecutive

pair of vertices in V1 are neighbours in F , we can consider each pair of vertices in the

set V1 individually and apply the same process on each of these pairs. For example,

if a

c
and a�b

c�d
are neighbours in Γ0�n� � I, then we do not need to construct any more

vertices between them. However, if they are not neighbours in Γ0�n� � I, then our

sequence of neighbours in Γ0�n� � I must include their Farey neighbour 2a�b
2c�d . As a

result, we can replace the subsequence ta
c
, a�b
c�d

z by the subsequence ta
c
, 2a�b

2c�d ,
a�b

c�d
z.

We can then apply the same procedure on the subsequence ta�b
c�d
, b
d
z to form our

next iterated set of neighbours in F , which we denote V2. We can then perform this

procedure on each pair of vertices in V2 to form a new set V3, and then perform

this procedure on the set V3, and so on. Since we only add in additional neighbours

between two points A and B when A and B are not neighbours in Γ0�n� � I, this
process will form a minimal sequence of neighbours in Γ0�n� � I between the points

A and B - provided such a sequence of vertices exist. Starting with the initial set of

vertices V0 � r0, 1x, the process can be described algorithmically as follows:

1. Start with the set of vertices V0 � t0
1 ,

1
1z.

2. While Vi is not of the required form, repeat the following process:

(a) Take Vi�1 � t0
1z.

(b) For each pair of vertices vi and vi�1 in Vi:

If vi and vi�1 are neighbours in Γ0�n� � I:
• Append vi�1 into Vi�1

Otherwise:

• Append w � vi h vi�1 into Vi�1.

• Append vi�1 into Vi�1.

3. End of algorithm.
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If we take n � 2 then we have:

V0 � v0
1 ,

1
1| ,

V1 � v0
1 ,

1
2 ,

1
1| .

At which point the process stops.

If we instead take n � 3 then we have:

V0 � v0
1 ,

1
1| ,

V1 � v0
1 ,

1
2 ,

1
1| ,

V2 � v0
1 ,

1
3 ,

1
2 ,

2
3 ,

1
1| .

Again, the process stops at this point.

However, for n � 5, we have:

V0 � v0
1 ,

1
1| ,

V1 � v0
1 ,

1
2 ,

1
1| ,

V2 � v0
1 ,

1
3 ,

1
2 ,

2
3 ,

1
1| ,

V3 � v0
1 ,

1
4 ,

1
3 ,

2
5 ,

1
2 ,

3
5 ,

2
3 ,

3
4 ,

1
1| ,

V4 � v0
1 ,

1
5 ,

1
4 ,

2
7 ,

1
3 ,

2
5 ,

1
2 ,

3
5 ,

2
3 ,

5
7 ,

3
4 ,

4
5 ,

1
1| ,

. . .

Given two points a

c
and b

d
, which are neighbours in F , we can see from Corollary 5.1.5

that a

c
and b

d
are neighbours in Γ0�n� � I if and only if exactly one of c � 0 mod n or

d � 0 mod n. Here, we should note that we can not have that both c � 0 mod n

and d � 0 mod n, since we know that gcd�c, d� � 1. In particular, assuming the

points a

c
and b

d
are Farey neighbours, we only need to know the value of c and d mod

n to be able to tell if they are neighbours in Γ0�n��I. As a result, for us to construct a

finite sequence of neighbours in Γ0�n� �I of the form t0
1 �

b0
d0
, a1
c1n
, b1
d1
, . . . , ak

ckn
, bk
dk
�

1
1z
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it is a necessary condition that the sequence of denominators (taken mod n) is

of the form td0 � 1, 0, d1, 0, . . . , 0, dk � 1z where each di " r1, . . . , n � 1x. As a

result, if we wish to show that the sequence of neighbours in Γ0�n� � I of the form

t0
1 �

b0
d0
, a1
c1n
, b1
d1
, . . . , ak

ckn
, bk
dk
�

1
1z does not exist, then it is sufficient to show that the

corresponding sequence td0 � 1, 0, d1, 0, . . . , 0, dk � 1z does not exist.

If we start with two points a

c
and b

d
which are Farey neighbours (with a

c
, b
d
), we

can replace the sequence V0 �� ta
c
, b
d
z with the sequence D0 �� tc, dz, where c � c

mod n, d � d mod n and c, d " r0, 1, . . . , n � 1x. If one of c � 0 or d � 0, then we

are done. Otherwise, a
c
and b

d
are not neighbours in Γ0�n� � I. In this case, we would

replace the sequence V0 �� ta
c
, b
d
z with the sequence V1 �� ta

c
, a�b
c�d
, b
d
z, and so we

analogously replace the sequence D0 �� tc, dz with the sequence D1 �� tc, c � d, dz,
where c � d � c � d mod n and c � d " r0, 1, . . . , n � 1x. If c � d � 0, then we

are done. Otherwise, we can consider each consecutive pair in D1 and perform

the same procedure on each pair, i.e. we perform the same procedure on tc, c � dz
and tc � d, dz. Iterating this procedure, we can form a new algorithm to find a

sequence of denominators of the required form td0 � c, 0, d1, 0, . . . , 0, dk � dz, where
each di " r1, . . . , n � 1x. For our initial set being D0 �� r1, 1x (corresponding to the

set V0 �� t0
1 ,

1
1z), the above procedure is described by the following algorithm.

1. Start with the set of denominators D0 � r1, 1x.
2. While Di is not of the required form, repeat the following process:

(a) Take Di�1 � r1x.
(b) For each pair of denominators di and di�1 in Di:

If di and di�1 are neighbours in Γ0�n� � I:
• Append di�1 into Di�1

Otherwise:

• Append e � di � di�1 mod n into Di�1.

• Append di�1 into Di�1.
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3. End of algorithm.

For example, for n � 5 we would have:

D0 � r1, 1x ,
D1 � r1, 2, 1x ,

D2 � r1, 3, 2, 3, 1x ,
D3 � r1, 4, 3, 0, 2, 0, 3, 4, 1x ,

D4 � r1, 0, 4, 2, 3, 0, 2, 0, 3, 2, 4, 0, 1x ,
D5 � r1, 0, 4, 1, 2, 0, 3, 0, 2, 0, 3, 0, 2, 1, 4, 0, 1x ,

. . .

For n % 2, we can always guarantee that the above process does not terminate

after the first iteration, and so, the above process creates the set D1 � r1, 2, 1x.
Furthermore, for an arbitrary n % 3, we can perform iterative Farey sums between

the sub-sequence r1, 2x to obtain the sequence r1, 0, n � 1, n � 2, . . . , 2x, and this

sequence does not simply reduce to r1, 0, 2x, since n � 1 j 2 mod n for n % 3.

If we perform the same process on the sub-sequence rn � 1, n � 2x mod n, we

obtain the sequence rn � 1, 0, 1, 2, . . . , n � 3, n � 2x. Combining together these se-

quences, we see that iteratively performing the procedure on sub-sequence r1, 2x
to produces the sequence r1, 0, n � 1, 0, 1, 2, . . . , n � 3, n � 2, . . . , 2x. However, the

sequence r1, 0, n � 1, 0, 1, 2, . . . , n � 3, n � 2, . . . , 2x contains the sub-sequence r1, 2x.
This in turn implies that for n % 3 we can not resolve any sub-sequence of the

form r1, 2x, since any attempt to do so produces another sub-sequence of the form

r1, 2x. As a result, for n % 3 we can not find a finite sequence of denominators

td0 � 1, 0, d1, 0, . . . , 0, dk � 1z corresponding to the finite sequence of neighbours in

Γ0�n��I of the form t0
1 �

b0
d0
, a1
c1n
, b1
d1
, . . . , ak

ckn
, bk
dk
�

1
1z. In particular, no such sequence

of neighbours in Γ0�n� � I can exist, for n % 3. Finally, this implies that there are

infinite loops mod n for all n % 3.
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5.1.3 Infinite Loops and the p-adic Littlewood Conjecture

We start this section by restating the p-adic Littlewood Conjecture, as well as its

reformulation:

The p-adic Littlewood Conjecture. For every real number α " R, we have:

mp�α� �� inf
q"N

sq � ¶q¶p � ½qα½y � 0.

Corollary 2.2.14. Let α " Bad. Then α satisfies pLC if and only if:

sup
l"N<r0x

B�plα� ��
As seen in the previous sections, infinite loops mod n behave badly when multiplied

by n. In fact, infinite loops mod n behave even worse when n � p
`. Since, the p-

adic Littlewood Conjecture is very closely related to the behaviour of the continued

fractions expansions tpmα � m " N < r0xz, it seems very natural that infinite loops

mod p` may tell us something non-trivial about the p-adic Littlewood Conjecture.

Our first confirmation of this fact, comes from the next lemma and its corollary.

This lemma can be viewed as a slightly weaker version of Proposition 5.1.8. Instead

of assuming α has a convergent denominator divisible by n, we assume that α is an

infinite loop mod n, i.e. it has a semi-convergent denominator divisible by n. This

lemma roughly states that if α is not an infinite loop mod n, then B�α� and B�nα�
can not both be simultaneously small relative to

Ó
n.

Lemma 5.1.10. Assume that α " �0, 1� is not an infinite loop mod n. Then:

max rB�α�, B�nα�x ' �2Ón%�1,

where ��$ is the standard floor function.

Proof. Assume α is not an infinite loop mod n and let ζα be the associated geodesic

ray in H. Since α is not an infinite loop mod n, there is an element ϕ " Γ0�n�,
where ϕ is not the identity, such that ζα intersects the edge ϕ � I. We can apply the
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map ϕ�1 to the whole of H such that ϕ�1
� ζα intersecting F resembles Fig. 5.1 (a) -

up to taking a mirror image in the y-axis. Taking a mirror image has no affect on

this argument other than to swap the roles of left and right fans, and so we shall

assume that we are oriented as in the figure.

We assume that the geodesic ray ϕ�1
� ζα approaches the y-axis I by a right fan of

size rα " N< r0x and leaves by a right fan of size sα " N< r0x. Here, we allow these

fans to be of size 0, however, in this case we interpret this fan to be a left fan. In

this case, ϕ � ζα either intersects I and I � 1 (when sα � 0), or it intersects I and

I � 1 (when rα. In either case, the point at infinity is a fixed point of this fan. This

tells us that ϕ � � is a convergent of α. This point ϕ � � will be of the form a

nc

and so by Proposition 5.1.8, this case induces B�nα� ' n, in which case the result

follows.

We therefore assume rα, sα ' 1 and note that ϕ�1
� ζα approaches the y-axis from

a value less than ��0; rα, 1� � �1
rα�1 . Similarly, we can assume that ϕ�1

� ζα departs

the y-axis and approaches a point greater than �0; sα, 1� � 1
sα�1 . Since 1

n
F has

vertices between i

n
and � for all i " N, we can ask how many of these lines the

geodesic ray ϕ�1
� ζα intersects in this neighbourhood. We see that there is some

number Rα " N < r0x such that �Rα�1
n

&
�1
rα�1 &

Rα
n
. One can then guarantee that

ϕ
�1
� ζα intersects a left fan in 1

n
F of size at least Rα directly before approaching the

y-axis. Note that here the value Rα can be defined as Rα ��  n

rα�1&, where ��$ is the

standard floor function. By a similar process we can see that ϕ�1
� ζα intersects a left

fan in 1
n
F of size at least Sα ��  n

sα�1& in 1
n
F directly after leaving the y-axis, see

Fig. 5.1 (b). These fans concatenate to form a fan of size Rα � Sα in 1
n
F . Therefore,

we know that α has a term of size at least rα � sα and nα has a term of size at least

Rα�Sα. We conclude that B�α� ' rα � sα and B�nα� ' Rα � Sα, and by extension

max rB�α�, B�nα�x ' max rrα � sα, Rα � Sαx.

We assume that rα�sα & �2Ón$�2, since otherwise we would have B�α� ' �2Ón$�1.

If we fix 0 & rα & �2Ón$ � 2, then 0 & sα & �2Ón$ � 2 � rα. For all sα in this range,



5.1. Infinite Loops and the p-adic Littlewood Conjecture 157

(a) An example of a geodesic ϕ�1
� ζα approaching I by a right fan of

size rα in F and leaving I via a fan of size sα. This results in a fan
of size �rα � sα�.

(b) An example of how the geodesic ϕ�1
� ζα intersects 1

n
F . The lines

between �Rα
n

and Sα
n

are necessarily intersected by ϕ�1
� ζα and this

results in a fan of size ' �Rα � Sα�.

Figure 5.1: An example of a how geodesic ray ζα, which is not an
infinite loop mod n, intersects both F , (a), and 1

n
F , (b).

This is considered up to re-framing by Γ0�n�.
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we note:

Sα � " n
sα � 1( ' " n�2Ón$ � 2 � rα � 1

( � " n�2Ón$ � rα � 1
( ,

and:

Rα � Sα � " n
rα � 1( � " n

sα � 1( ' " n
rα � 1( � " n�2Ón$ � rα � 1

(
' " n

rα � 1 �
n�2Ón$ � rα � 1

( � 1.

We can find a lower bound estimation for this by considering the following equation:

f(x) �� n
x � 1 �

n�2Ón$ � x � 1
, for x " �0, �2Ón$ � 2� ,

and noting that �f(x)$ is minimised when f(x) is minimised. The derivative of f(x)

is given by:

f¬(x) � n � �1�x � 1�2 �
1��2Ón$ � x � 1�2
 .

Note that we can write �2Ón$ � 2 �Ón$ � δ where δ � 0, 1.

1. Assume δ � 0:

In this case, f¬(x) � 0 if and only if x � �Ón$�1, and so, x � �Ón$�1 must be either

a minima or a maxima (since f(x) is symmetric in x). At x � �Ón$ � 1, we have:

�f(x)$ � " n�Ón$ � n�Ón$( � 1

� " 2n�Ón$( � 1

' " 2nÓ
n
( � 1

� �2Ón% � 1

We note that �f(0)$ ' n, which is greater than or equal to 2 �Ón$ � 1 for all n " N.

Therefore, �f( �Ón$ � 1)$ is a minima.

2. Assume δ � 1:
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In this case, f¬(x) � 0 if and only if x � �Ón$ � 1
2 . At x � �Ón$ � 1

2 , we have:

�f(x)$ � # n�Ón$ � 1
2

�
n�Ón$ � 1

2

) � 1

� " 4n
2 �Ón$ � 1

( � 1

� " 4n�2Ón$( � 1

' " 4n
2
Ó
n
( � 1

� �2Ón% � 1

We note that �f(0)$ ' n, which is greater than or equal to 2 �Ón$ � 1 for all n " N.

Therefore, �f( �Ón$ � 1
2)$ is a minima.

Therefore, for all rα � sα & �2Ón$ � 2, we have that Rα � Sα ' �2Ón$ � 1, and so

max rrα � sα, Rα � Sαx ' �2Ón$ � 1 for all possible rα and sα.

The above lemma gives us a lower bound for max rB�α�, B�nα�x if α is not an

infinite loop mod n. We set mp�α� �� inf sq � ¶q¶p � ½qα½y and note that pLC is

true is equivalent to saying that mp�α� � 0 for every α " R%0. Combining together

Lemma 2.2.16 and Lemma 2.2.17 from Chapter 2, we see that :

inf
`"N<r0x

v 1
B�p`α� � 2

| & mp�α� & inf
`"N<r0x

v 1
B�p`α�| .

This leads to the following corollary:

Corollary 5.1.11. If α " R%0 is not an infinite loop mod pm, then:

mp�α� & 1
 2

Ô
pm&�1

.

Proof. Since we know that:

mp�α� & inf
`"N<r0x

v 1
B�p`α�| ,

we can conclude that

mp�α� & 1
B�pjα� ,
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for any j " N<r0x. Since α is not an infinite loop mod pm, we know by the previous

lemma, that:

max sB�α�, B�pmα�y '  2
Ô
pm&�1.

Combining this information together, we see that:

mp�α� & min v 1
B�α� , 1

B�pmα�| & 1
 2

Ô
pm&�1

,

as required.

Corollary 5.1.12. Let α " Bad and assume there is some sequence of natural

numbers r`mxm"N such that p`mα is not an infinite loop mod pm. Then α satisfies

pLC.

Proof. From Corollary 5.1.11, we can conclude that for any α " R%0, if there is a

sequence of natural numbers �`m�m"N such that p`mα is not an infinite loop mod pm,

then we have:

mp�α� & lim
m��

1
 2

Ô
pm&�1

� 0.

Therefore, α satisfies pLC.

Here, we should note that the sequence r`mx need not be monotonically increasing.

For example, we may have that α is an infinite loop mod p, but there exist some

K " N, such that pKα is not an infinite loop mod pm for all m " N. In this case,

the sequence lm � K for all m " N would allow us to show that α satisfies pLC.

The following proposition shows that for all α with eventually recurrent continued

fraction expansions, there is some K " N such that pKα is not an infinite loop mod

p
m for all m " N.

Proposition 5.1.13. Let α " R%0 be a real number with an essentially recurrent

continued fraction expansion and let p be a prime number. Then α is not an infinite

loop mod n, for any n " N. Furthermore, if α " R%0 is a real number with an

eventually recurrent continued fraction expansion, then for any prime number p,
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there exists some K " N such that pKα is not an infinite loop mod pm, for all m " N.

In particular, eventually recurrent continued fractions satisfy pLC.

Proof. First we will assume that α is essentially recurrent. Let ζα be the geodesic

ray starting at I and terminating at α. Then, the projection sζα of ζα in Γ0�n��H,
will have a strictly recurrent cutting sequence �sζα, sF�. Therefore, the geodesic sζα
will be strictly recurrent relative to the arc rI, which is the projection of I in Γ0�n��H.
By Proposition 4.2.1, we can conclude that sζα intersects rI infinite often. By lifting

sζα back to ζα in H, we can see that ζα intersects infinitely many edges of Γ0�n� � I -

since rI lifts to Γ0�n� � I. We can therefore conclude that ζα, and by extension α, is

not an infinite loop mod n.

We will now assume that α has an eventually recurrent continued fraction expansion.

Let ζα be the geodesic ray starting at I and terminating at α. Then, we can cut

ζα along some edge in F to form two paths, ρα and ξα, such that ζα � ρα ` ξα and

ξα has a strictly recurrent cutting sequence �ξα,F�. Let z starting point of ξα and

let x � Re�z�. Since ζα is a geodesic ray that approaches α from I, we can that

conclude that ξα approaches α from the “left”, i.e. x $ α. Therefore, the interval

�x, α� is non-empty.

Since this interval is non-empty, we can guarantee that for each prime p, there exists

natural numbers a " N < r0x and K " N such that a

pK
" �x, α�. Since there is an

edge between a and� in F , we can deduce that there is an edge between a

pK
and�

in 1
pK

F . We will label this edge E. We can then take sζα to be the projection of ζα in

Γ0�n��H and take sξα to be the projection of ξα in Γ0�n��H. Similarly, we will take sE

to be the projection of E in Γ0�n��H. Since the cutting sequence �ξα,F� � �sξα, sF�
is strictly recurrent, we can use Lemma 4.2.1 to deduce that sξα intersects sE infinitely

often. Furthermore, we can decompose sξα into a finite path sπα, which runs along

sξα until the first time sξα intersects sE, followed by an infinite path sηα. This path sηα
is strictly geometrically recurrent relative to sE. In particular, the cutting sequence

�sηα,v1pKF� is strictly recurrent.
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Going back to H, we can see that the lift ηα of sηα has a strictly recurrent cutting

sequence �ηα, 1
pK

F� � �sηα,v1pKF�. The path ηα has a well-defined cutting sequence

relative to 1
pK

F , since the starting edge E is in 1
n
F . Rescaling our geodesic ray by

�pK��, we see that �pK�� � ζα intersects the line between a and� in H. By rescaling

ηα, we see that �pK�� � ηα starts at this line between a and�. The cutting sequence

��pK�� � ηα,F� is equivalent to �ηα, 1
pK

F� and is therefore strictly recurrent. If we

take β � p
K
α � a, then the map ϕ � � 1 �a

0 1 � takes the starting edge of �pK�� � ηα,
which goes from a and�, to the edge I. It also maps the endpoint pKα of �pK�� �ηα
to β. In particular, the cutting sequence ��pK�� � ηα,F� directly corresponds to

the continued fraction expansion of β. Since ��pK�� � ηα,F� is strictly recurrent,

we can conclude that the continued fraction expansion of β is essentially recurrent.

Finally, since β and pKα only differ by an integer and β has an essentially recurrent

continued fraction expansion, we can deduce that pKα is not an infinite loop mod

p
m, for any m " N.

In contrast to Corollary 5.1.12, if there exists an m " N such that p`α is an infinite

loop mod pm, for all ` " N < r0x, then α is a counterexample to pLC.

Lemma 5.1.14. Let α " Bad and assume there exists an m " N such that p`α is

an infinite loop mod pm, for all ` " N < r0x. Then α is a counterexample to pLC

and mp�α� ' 1
pm�2 .

In order to prove this statement, we will first show that if β " R%0 is a real number

such that pjβ is an infinite loop mod p
m for all j " N < r0x, then bk�1 & p

m
� 4,

where β � �b0; b1, . . .�. As a result, we can then conclude that B�β� & pm � 4.

Claim: If β " R%0 is a real number such that pjβ is an infinite loop mod pm for all

j " N < r0x, then bk�1 & p
m
� 4, where β � �b0; b1, . . .�. In particular, we can then

conclude that B�β� & pm � 4.

Proof of claim. Let bk�1 be an arbitrary partial quotient of β for some k " N and

consider the following two cases for the corresponding convergent denominator qk:
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(Case I): The prime p and qk are coprime.

(Case II): The prime p and qk are not coprime.

(Case I): Since qk is coprime with p, we know that there are infinitely many neigh-

bours of pk
qk

which have a denominator divisible by p
m. This is analogous to the

fact the 0 has infinitely many neighbours of the form 1
pmj

, where j " N. The corres-

ponding geodesic ray ζβ must not intersect any of the geodesic arcs from pk
qk

to these

neighbours. As a result, there is a unique pair of neighbours, a1
c1p

m and a2
c2p

m , such

that the arcs between these points and p
`
k

q`k
separate ζβ from all other neighbours of

pk
qk

whose denominator divisible by pm. See Fig 5.2.

Figure 5.2: An image of ζβ cutting a fan (relative to F) with fixed
point pk

qk
and gcd�p, qk� � 1. In this scenario, ζβ is an

infinite loop mod pm and forms the largest fan possible
for this bk�1.

Similarly, we can express all other neighbours of pk
qk

in this region by using the Farey

sum on pk
qk

and a1
c1p

m (up to relabelling). More explicitly, the neighbours in this region

are of the form:

ni �
a1 � i � p

`
k

c1p
m � i � q`k

,

where i " r0, 1, . . . , pmx and n0 �
a1
c1p

m and npm �
a2
c2p

m .



164 Chapter 5. Infinite Loops as Counterexamples to pLC

Two of these neighbours will be fixed vertices for the previous and subsequent fans,

and we label these neighbours as ns and nt with t % s. The size of the fan bk�1 is

given by t � s. The points pk
qk
, ns and ns�1 form a triangle in F , and so, since ns is

a convergent denominator of ζβ, the point ns�1 must be a semi-convergent of p`α.

Similarly, since nt is the convergent of the next partial quotient, the point nt�1 is a

semi-convergent of β. If either n0 or npm are semi-convergents of β, then, since they

are of the form A

Cpm
with C j 0, we can conclude that β is not an infinite loop mod

p
m. It follows that for ζβ to be an infinite loop mod pm, we have s " r2, . . . , pm � 3x
and t " r3, . . . , pm � 2x. Therefore, the maximum size of the fan is bk�1 is given by

�max t �min s� � pm � 2 � 2 � pm � 4, as required. QED.

(Case II): In this case, there is some j " N such that pj ¶ qk and pj�1 ¹ qk. We will

write qk � pjdk, where dk " N and gcd�q¬k, p� � 1. Therefore, by Corollary 5.1.9, we

can deduce that B�pjβ� ' pjbk�1 and pkdk is a convergent of pjβ. We wish to show

that if bj
k¬�1 is the partial quotient of pjβ corresponding to the convergent pkdk, then

we have bk�1 � p
j
& b

j

k¬�1. Since gcd�dk, p� � 1, we can use Case I to conclude that

bk $ b
j

k¬�1 & p
m
� 4.

The geodesic ray ζβ forms a fan Bk�1 with F of size bk�1 and this fan has a fixed

vertex pk
qk
. Since pj ¶ qk, any neighbour a

c
of pk

qk
in F must satisfy gcd�c, pj� � 1. By

Corollary 5.1.5, the edge between a neighbour of this form and pk
qk

must be an edge

of F = 1
pj
F . Therefore, since every edge that ζβ intersects in Bk�1 has pk

qk
as one

of its endpoints, we can conclude that each of these edges lie in F = 1
pj
F . Since

these edges lie in F = 1
pj
F , we can guarantee that pk

qk
is a fixed point of some fan

B
j

k¬�1 in the cutting sequence �ζβ, 1
pj
F�. After having corrected for scaling, we can

observe that pk
dk

is a convergent of pjβ, where qk � dk � p
j, as above. Each triangle

in Bk is sub-divided into pj triangles when we replace F with 1
pj
F , as described in

Proposition 5.1.8 and Table 5.1. Therefore, in analogy to Corollary 5.1.9, if bj
k¬�1

is the partial quotient of pjβ corresponding to the fan Bj

k¬�1 - with corresponding
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convergent pk
dk

- then bj
k¬�1 satisfies:

p
j
� bk�1 & b

j

k¬�1.

Since gcd�dk, p� � 1, we can use Case I to see that bj
k¬�1 $ p

m
� 4. However, since

p
j
� bk�1 & b

j

k¬�1, we can conclude bk�1 & p
m
� 4, as required. QED.

Finally, since the partial quotients bk�1 of β are all bounded above by pm � 4, we

can conclude that B�β� & pm � 4 and this completes the proof of the claim.

Proof of Lemma 5.1.14. For each ` " N < r0x, p`α is not an infinite loop mod pm.

Therefore p`�jα is also an infinite loop mod pm for all j " N < r0x. As a result, we

can replace β in the above claim by p`α, and we see that B�p`α� & p
m
� 4, for all

` " N < r0x. As seen in Lemma 2.2.16, we know that:

mp�α� ' inf
`"N<r0x

1
B�p`α� � 2

.

Finally, we can conclude that:

mp�α� ' 1
pm � 2 .

Combining Corollary 5.1.11 and Lemma 5.1.14, we get the following theorem.

Theorem 5.1.15. Let α " Bad. Then α satisfies pLC if and only if there is a

sequence of natural numbers r`mxm"N such that p`mα is not an infinite loop mod pm.

5.2 Constructing Infinite Loops

Now that we have discussed the importance of infinite loops mod n and their link

to the p-adic Littlewood Conjecture, it is natural to ask “For a given n, how can

one construct an infinite loop mod n?”. Here we present two ways: one geometric,

and the other arithmetic. Both are fairly simple processes, but due to the natures
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of how these objects are formed, the second is much more practical to be run on

computer. There is hope that with further understanding of these objects, we may

be able to find some real number α " R%0, which is an infinite loop mod pm, such

that pkα is also an infinite loop mod pm for all 1 & k & K, where K is some large

number. If K were suitably large, i.e. K � 1000, then such an object would be very

strong potential counterexample to pLC.

5.2.1 Theoretical Construction of Infinite Loops

In this section, we provide the groundwork for how one would theoretically construct

an infinite loop mod n. As previously discussed, we present two different ways of

doing this. In both cases, the algorithm that we present constructs infinite loops

mod n in the interval �0, 1�. These processes construct all possible infinite loops

mod n in this interval. All other infinite loops mod n can be constructed by adding

some arbitrary positive integer.

Constructing Infinite Loops via Geometry

As previously mentioned, we can view infinite loops mod n as real numbers α, which

have corresponding geodesic rays ζα that are disjoint from Γ0�n� � I except at I � k,

for k " Z'0. To construct an infinite loop ζ mod n in this setting, we will note that

every sub-path path ζ must be disjoint from Γ0�n� � I, except at I � k for k " Z'0.

Therefore, we can reverse-engineer an infinite loop mod n by concatenating paths λi

which are totally disjoint from Γ0�n� � I (except at I �k). As we did in Section 3.2.3,

we will take these paths λi to be completely contained in some fundamental domain

Pn. Note that, the concatenated path λ � λ0 ` λ1 ` � will not be a geodesic ray,

however it will be reduced relative to F . By Corollary 3.1.12, λ will be homotopic

relative to I to a geodesic ray ζ, and the cutting sequences �λ,F� and �ζ,F� will

be equivalent. For ease, we will construct paths which are disjoint from Γ0�n� � I
everywhere, except at the starting edge I. In particular, the endpoint of this path
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will lie in the interval �0, 1�.
Take Pn to be a special polygon of Γ0�n�, which has I and I � 1 as edges. The

edges En on the boundary of Pn will be our set of states and I will be our initial

state. Any (oriented) path λ in Pn which starts at an edge Ei and terminates at an

edge Ej will be completely determined - up to relative homotopy - by these initial

and final edges. We label such paths λEi,Ej , to indicate the initial and final edge.

Since the cutting sequence is invariant under homotopy and the boundary edges of

Pn are in F or an odd edge, the cutting sequence �λEi,Ej , Tr1,nx� is well-defined and

unique given some choice of starting and terminal edges. Here, as in Section 3.2.3,

we view λ intersecting a odd triangle as being equivalent to cutting a half triangle.

In this case, we append L
1
2 or R

1
2 to the cutting sequence depending on whether

this half-triangle is a left triangle or a right triangle, respectively.

Given a path λEi,Ej and a path λEj ,Ek , where Ej is the edge paired with Ej in Pn, we

can concatenate these paths by gluing together two copies of Pn (which contain these

paths) along the identified edge. If W1 is the cutting sequence �λI,Ei , Tr1,nx� and W2

is the cutting sequence �λE ¬

i,Ej
, Tr1,nx�, then the cutting sequence of the concatenated

path, relative the induced triangulated polygon, will simply be W1W2.

To construct a path which avoids Γ0�n� � I, except at I, we can pick some initial

sub-path λI,Ei and then iteratively append sub-paths in Pn which are disjoint from

I and I � 1. We can take IΛn�I� to be the set of all paths in Pn - considered up to

relative homotopy - which start at I, but do not otherwise intersect I or I � 1. This

will be our input alphabet for our initial state I. Similarly, we define IΛn�Ei� to be

the set of all paths starting at the edge Ei which are completely disjoint from I and

I � 1. The set IΛn�Ei� will be our input alphabet for the state Ei. For all edges Ei

of Pn, we define the output alphabet to be ILn�Ei� �� s�λj, Tr1,nx� � λj " IΛn�Ei�y.
Using this input alphabet and the notions presented in Section 3.2.3, we can define

a definitive finite automaton with output, which constructs the cutting sequence

infinite loops mod n, as follows:
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The automaton which constructs infinite loops mod n

Let Pn be a special polygon for Γ0�n� containing the edges I and I � 1:

1. Let En be the set of the edges in Pn. These will be our states. The edge I will

be our initial state.

2. For every Ei " En construct IΛn�Ei� and ILn�Ei�. The set IΛn�Ei� will be

our input alphabet and the set ILn�Ei� will be our output alphabet.

3. For each path in IΛn�Ei� from Ei to Ej:

• The transition function δ � En � En � En is given by δ�Ei, Ej� ( Ej,

where Ej is the edge identified to Ej via side pairings.

• The output function τ � IΛn�Ei� � ILn�Ei� is given by λEi,Ej (

�λEi,Ej , Tr1,nx�, where λEi,Ej is the unique path from Ei to Ej taken up

to homotopy.

Remark 5.2.1. The process of constructing the automaton for forming infinite

loops mod n is much easier than the construction of the multiplication algorithm

mod n. This is because we do not need to know anything about cutting sequence of

the paths λEi,Ej with Trn,nx. In particular, we only need states corresponding to the

edges - and not to based points of edges.

Constructing Infinite Loops via Arithmetic Methods

We can also construct infinite loops mod n by iteratively constructing partial quo-

tients which do not admit semi-convergent denominators divisible by n. The main

tool that we use is the recurrence relation for semi-convergent denominators:

qrk,mx � mqk � qk�1,

where 0 & m & ak�1.

If we assume that �0; a1, a2, . . . , ak� does not admit any semi-convergent denomin-

ators divisible by n, then we can ask what values of ak�1 can we take, such that
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�0; a1, a2, . . . , ak, ak�1� does not admit any semi-convergent denominators are divis-

ible by n. In particular, for a given value of ak�1, is there some 0 & m & ak�1 such

that qrk,mx � 0 mod n? Since qrk,mx � mqk�qk�1, this is equivalent to asking whether

mqk � �qk�1 mod n, for any 0 & m & ak�1. Treating m as an integer variable, and qk

and qk�1 as fixed integers, we obtain a simple linear congruence. This linear congru-

ence has a unique solution mod n if and only if gcd�qk, n� divides �qk�1. We note

that if there is a value M " r1, . . . , n � 1x with Mqk � �qk�1 mod n, then as long

as ak�1 'M the continued fraction expansion �0; a1, . . . , ak, ak�1 . . .� will admit the

semi-convergent denominator qrk,Mx which is divisible by n. Since gcd�qk, qk�1� � 1,

if gcd�qk, n� � g j 1, then g ¹ qk�1. Therefore, if gcd�qk, n� � g j 1, then we

have Mqk ©� �qk�1 mod n for any value of M " Z. In particular, if a convergent

denominator shares a common factor with n but is not divisible by n, then it can

contain a partial quotient of arbitrary size and still be an infinite loop mod n. A

good example of this is that 1
2 is a infinite loop mod 4. Here, we can write the

continued fraction expansion of 1
2 as �0; 1, 1,�� or �0; 2,��. If we take �0; 1, 1,��,

the (semi-)convergent denominators are:

q�1 � 0, q0 � 1, q1 � 1, q2 � 2, q2,k � 2k � 1 � ��1�k mod 4.

Equivalently, if we take �0; 2,�� the semi-convergent denominators are:

q�1 � 0, q0 � 1, q0,1 � 1, q0,2 � 2, q1,k � 2k � 1 � ��1�k mod 4.

In both cases, none of the semi-convergent denominators are divisible by 4 (except

for when q�1 � 0).

The above observations give us a good basis for constructing an arithmetic automaton

for constructing infinite loops mod n. Our states are given by the “possible” pairs

of consecutive convergent denominators �qk, qk�1� taken mod n. We could naively

express these states as elements in Zn � Zn, however, this will include some states

which are not accessible from other states without introducing semi-convergent

denominators that are divisible by n. For k ' 2, qk and qk�1 will both be non-
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zero elements in Zn, corresponding to the fact that we do not want our convergent

denominators divisible by n, except for q0. Since q0 is always equal to 0 and q1 is

always equal to 1, the only pairs of convergent denominators which allow for infinite

loops will be contained in the set s�a, b� � a, b " Z�ny < r�1, 0�x. In fact, this set is

not minimal and we can further remove redundant states.

If we have a pair of convergent denominators �qk, qk�1� with gcd�qk, n� � 1 and

qk � qk�1 � 0, then the pair �qk�1, qk� always admits a semi-convergent denominator

divisible by n. This is the semi-convergent corresponding to �0; a1, . . . , ak, 1�, which
has the denominator qk � qk�1 � 0 mod n. We also note that we can not have

pairs of the form �qk, qk�1�, where qk � qk�1 mod n, unless �q2, q1� � �1, 1�. This

is because qk � aqk � qk�2 � aqk�1 � qk�2 mod n if and only if �a � 1�qk � qk�2 �

�a � 1�qk�1 � qk�2 � 0 mod n. The equation �a � 1�qk�1 � qk�2 � 0 mod n has a

unique solution for a " r1, . . . , nx. However, if we take a � 1, a " r1, . . . , nx such

that a � 1 $ a, then the sequence of partial quotients �0; a1, . . . , ak�1, a� will admit

the semi-convergent of the form �0; a1, . . . , ak�1, a � 1�, which has denominator of

the form �a � 1�qk�1 � qk�2 � 0 mod n. The only way that we can resolve this

is by having a � 1 mod n and a � 1 � n mod n. However, this can only occur

when qk�2 � 0 mod n, which by assumption only occurs when k � 2. As a result,

�qk, qk�1� � �1, 1� mod n. We also do not allow elements of the form �a,�2a�, since
when ak�1 � 1 this leads to the pair �qk�1, qk� of the form ��a, a� mod n and when

ak ' 2, we have that �0; a1, . . . , ak, 2� is a semi-convergent with denominator divisible

by n (since 2a� ��2a� � 0 mod n). We denote the set Zn � Zn excluding elements

of the form �a,�a�, �a,�2a�, �b, b� , �0, c� and �d, 0� for b, d j 1, as Pairsn. This

set will be the states for our algorithm.

For each pair �qk, qk�1� " Pairsn with gcd�qk, n� � 1, we can compute:

M�qk, qk�1� �� sup rm " r1, . . . , n � 1x � mqk � qk�1 ©� 0 mod nx .
For pairs �qk, qk�1� with gcd�qk, n� j 1, we take M�qk, qk�1� � �. Given a

pair �qk, qk�1�, we can ask whether the induced pair �`qk � qk�1, qk� with ` "
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r1, . . . ,M�qk, qk�1� � 1x will lie in Pairsn or not. This induces a natural trans-

ition function δ � Pairsn � Pairsn and output function τ � N� N, whenever these

maps are well defined, i.e. whenever �`qk � qk�1, qk� is in Pairsn. We will use x as a

stand-in for when this map is not defined. We explicitly express δ and τ , as follows:

δ�qk, qk�1, `� ��
~������������
�`qk � qk�1, qk� if �`qk � qk�1, qk� " Pairsn

x otherwise

τ�qk, qk�1, `� ��
~������������
` if �`qk � qk�1, qk� " Pairsn

x otherwise

Note that the value ` in the range r1, 2, . . . ,M�qk, qk�1� � 1x contains the set of

possible partial quotients the pair �qk, qk�1� can take to avoid admitting a semi-

convergent denominator divisible by n. This range is taken since, for M�qk, qk�1� $
�, we have that qk�1 � M�qk, qk�1� � qk � qk�1 � �qk mod n and this leads to

a redundant pair of the form ��a, a�. For a fixed pair �qk, qk�1�, the collection

of all possible transition functions represents all of the possible values the next

convergent denominator qk�1 can take, such that the corresponding sequence of

partial quotients does not admit a semi-convergent denominator divisible by n. The

collection of output functions represents all of the possible partial quotients in this

case. Here, the output alphabet and input alphabet are equivalent, i.e. they are both

r1, . . . ,maxM�a, b� � 1x. Note that if n is prime, then these sets are both finite.

However, if n is composite this is not necessarily the case. Although the input and

output algorithm are not finite sets, the value of ` is only important - with regards

to the automaton - modulo n and so the automaton is still well-defined.

We can also note, that if gcd�qk, n� � 1 and �qk, qk�1� j �1, 0�, then M�qk, qk�1� $
n � 3. This result essentially follows from the observation that for an arbitrary

pair �a, b�, we have that M�a, b� % M�a, b � a� and �a, 2a� gives the highest value

of M�a, 2a� � n � 2. This observation is equivalent to the observation that if

gcd�qk, p� � 1 and ak�1 % p
`
� 4, then this sequence is not an infinite loop mod p`.
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5.2.2 Constructing Infinite Loops mod 5 and 7

As with the multiplication, the best way to illustrate this process is by example. We

do this for reasonably low primes, but the process analogous for all positive integers.

Constructing Infinite Loops mod 5: The Geometric Method

For p � 5 the set of edges E5 is given by the edges tE0 � I, E0, E1, E
¬

1z. There are

two edges in P5, E1 and E ¬

1, which are not E0 � I or E0 � I � 1. As a result, the

infinite loop alphabet of paths starting at E0 is given by IΛ5�E0� �� sλE0,E1λE0,E
¬

1
y.

These paths have cutting sequence R2 and RL, respectively, and so our output

alphabet is IL5�I� � tR2
, RLz. See Fig. 5.3 (a). For the edge E1, there is one path

λE1,E
¬

1
in the infinite loop alphabet IΛ5�E1�. This path has cutting sequence R and

so our output alphabet is IL5�E1� � rRx. See Fig. 5.3 (b). Similarly, for the edge

(a) An image of the paths in IΛ5�E0�. (b) An image of the path in IΛ5�E1�.

(c) An image of the path in IΛ5�E
¬

1�.

Figure 5.3: This figure shows the possible different infinite loop
alphabets for p � 5.
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E
¬

1, there is one path λE ¬

1,E1 in the infinite loop alphabet IΛ5�E ¬

1�. This path has

cutting sequence L and so our output alphabet is IL5�E1� � rLx. See Fig. 5.3 (c).

Note that the edges E1 and E
¬

1 are paired with themselves and so E1 � E1 and

E
¬

1 � E
¬

1. Using this information, we can recover Table 5.2 and we can construct the

corresponding automaton, as in Fig. 5.4.

Initial State Transition Function Output Function

E0 λE0,E
¬

1
� E1 R

2

λE0,E1 � E
¬

1 RL

E1 λE1,E
¬

1
� E

¬

1 R

E
¬

1 λE ¬

1,E1 � E1 L

Table 5.2: A table of the transition functions and output functions
used to construct infinite loops mod 5.

E0

E1 E
¬

1

R
2 RL

L

R

Figure 5.4: An automaton that constructs infinite loops mod 5using
the geometric method. The initial state is E0.

Since there is exactly one path that one can take from E1 and E ¬

1, there are only

two possible infinite loops mod 5. These correspond to the real numbers 5�
Ó

5
10

and 5�
Ó

5
10 with continued fraction expansions �0; 1, 2, 1� and �0; 3, 1�, respectively.

Interestingly, when multiplied by 5, we find that the continued fraction expansions

are 5 � 5�
Ó

5
10 �

5�
Ó

5
2 � �3; 1� and 5 � 5�

Ó
5

10 �
5�

Ó
5

2 � �1; 2, 1�.
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Constructing Infinite Loops mod 5: The Arithmetic Method

We start by first constructing the set Pairs5 �� r�1, 0�, �1, 1�, �1, 2�, �2, 1�, �3, 1�,
�4, 3�x. We note that excluding �1, 0� and �1, 1�, the maximum value of M�a, b� � 2,

i.e. each possible partial quotient must equal 1, for these cases. For �1, 0�, we can

have 1 or 3 as possible partial quotients and for �1, 1� we can have 1 or 2. Using

this information, we construct Table 5.3 to represent the infinite loop construction

algorithm and construct the automaton as in Fig. 5.5

Next partial quotient States
ak�1 �1, 0� �1, 1� �1, 2� �2, 4� �3, 1� �4, 3�

1 �1, 1� x �3, 1� �1, 2� �4, 3� �2, 4�
2 x �3, 1� x x x x
3 �3, 1� x x x x x

Table 5.3: A table showing the possible values the next partial quo-
tient can take to form an infinite loop mod 5.

�1, 0� �1, 1�

�3, 1�

�4, 3��1, 2�

�2, 4�

3 2

1

1

11

1

Figure 5.5: An automaton that constructs infinite loops mod 5 using
the arithmetic method. The initial state is �1, 0�.

Here, we see that there are only two paths we can take around this automaton: One

which goes from �1, 0� to �1, 1� to �3, 1� and then repeatedly goes from �3, 1� to
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�4, 3� to �2, 4� to �1, 2� and then back to �3, 1�, and another which goes from �1, 0�
to �3, 1� and then repeatedly goes from �3, 1� to �4, 3� to �2, 4� to �1, 2� and then

back to �3, 1�. These paths produce the continued fraction expansions �0; 1, 2, 1�
and �0; 3, 1�, respectively.

Constructing Infinite Loops mod 7: The Geometric Method

For p � 7 the set of edges E5 is given by the edges tE0 � I, E0, E1, E1, E2, E2z. There
are four edges in P7, E1, E1, E2 and E2, which are not E0 � I or E0 � I � 1. As a

result the infinite loop alphabet IΛ7�E0� is given by sλE0,E1 , λE0,E1 , λE0,E2 , λE0,E2y.
These paths induce the output alphabet IL7�I� � uR2

L
1
2 , R

2
R

1
2 , RLL

1
2 , RLR

1
2{.

See Fig. 5.6 (a). For the edge E1, there are two paths we can take in the infinite loop

alphabet IΛ7�E1� � sλE1,E2 , λE1,E2y. This induces the output alphabet IL7�E1� �

(a) An image of the paths in IΛ7�E0�. (b) An image of the path in IΛ7�E1�.

(c) An image of the path in IΛ7�E1�.

Figure 5.6: This figure shows the possible different infinite loop
alphabets for p � 7, taken up to symmetry.
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uL 1
2RL

1
2 , L

1
2RR

1
2{. See Fig. 5.6 (b). Similarly, for the edge E1, there are two paths

we can take in the infinite loop alphabet IΛ7�E1� � sλE1,E2 , λE1,E2y. This induces

the output alphabet IL7�E1� � uR 1
2RL

1
2 , R

1
2RR

1
2{. See Fig. 5.6 (c). Since E2 is

symmetric to E1 under the reflection in the line x � 1
2 , we can use this symmetry

to deduce the alphabet for IL7�E2�, by taking the alphabet IL7�E1� and swapping

the roles of L and R. Similarly, we can use the symmetry of E1 and E2 to deduce

the alphabet IL7�E2� from IL7�E1�.

Note that the edges E1 and E1 are paired with each other and E2 is paired with E2.

Using this information, we can recover Table 5.4 and the automaton in Fig.5.7.

Initial State Transition Function Output Function

E0 λE0,E1 � E1 R
2
L

1
2

λE0,E1 � E1 R
2
R

1
2

λE0,E2 � E2 RLR
1
2

λE0,E2 � E2 RLL
1
2

E1 λE1,E2 � E2 L
1
2RR

1
2

λE1,E2 � E2 L
1
2RL

1
2

E1 λE1,E2 � E2 R
1
2RR

1
2

λE1,E2 � E2 R
1
2RL

1
2

E2 λE2,E1 � E1 R
1
2LL

1
2

λE2,E1 � E1 R
1
2LR

1
2

E2 λE2,E1 � E1 L
1
2LL

1
2

λE2,E1 � E1 L
1
2LR

1
2

Table 5.4: A table of the transition functions and output functions
used to construct infinite loops mod 7.
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E0

E1

E1

E2

E2

R
2
L

1
2

R
2
R

1
2

RLR
1
2

RLL
1
2

L
1
2RL

1
2

L
1
2RR

1
2

R
1
2RR

1
2

R
1
2RL

1
2

R
1
2LR

1
2

R
1
2LL

1
2

L
1
2LR

1
2

L
1
2LL

1
2

Figure 5.7: An automaton that constructs infinite loops mod 7. The
initial state is E0.

Constructing Infinite Loops mod 7: The Arithmetic Method

We start by first constructing the set Pairs7 �� r�1, 0�, �1, 1�, �1, 2�, �1, 3�, �1, 4�,
�2, 1�, �2, 4�, �2, 6�, �3, 2�, �3, 5�, �3, 6�, �4, 1�, �4, 2�, �4, 5�, �5, 1�, �5, 4�, �5, 6�, �6, 3�,
�6, 4�, �6, 5�x. We note that excluding �1, 0� and �1, 1�, the maximum value of

M�a, b� � 4 and so 3 is the largest value for any partial quotient corresponding to

these pairs. For �1, 0�, we can have 1,2,4 and 5 as possible partial quotients and

for �1, 1� we can have 1, 3 and 4. We then construct Table 5.5 to represent the

algorithm.

Due to the large number of states, it is not practical to produce a diagram of the

automaton, but the table can be used instead.
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Next partial quotient States
ak�1 �1, 0� �1, 1� �1, 2� �1, 3� �1, 4� �2, 1� �2, 4�

1 �1, 1� �2, 1� x �4, 1� �5, 1� �3, 2� �6, 2�
2 �2, 1� x �4, 1� �5, 1� x x �1, 2�
3 x �4, 1� �5, 1� x x x �3, 2�
4 �4, 1� �5, 1� x x x x x
5 �5, 1� x x x x x x

Next partial quotient States
ak�1 �2, 6� �3, 2� �3, 5� �3, 6� �4, 1� �4, 2� �4, 5�

1 �1, 2� �5, 3� �1, 3� �2, 3� x �6, 4� �2, 4�
2 �3, 2� �1, 3� x �5, 3� �2, 4� x �6, 4�
3 x x x �1, 3� �6, 4� x x

Next partial quotient States
ak�1 �5, 1� �5, 4� �5, 6� �6, 3� �6, 4� �6, 5�

1 �6, 5� x �4, 5� �2, 6� �3, 6� x
2 �4, 5� �6, 5� x x �2, 6� �3, 6�
3 x �4, 5� x x x �2, 6�

Table 5.5: A table showing the possible values the next partial quo-
tient can take to form an infinite loop mod 7.



Chapter 6

Conclusions and Future Research

The main aim of this thesis was to use the geometric setting of cutting sequences to

better understand the behaviour of continued fractions under integer multiplication.

Furthermore, we wished to use this setting to further investigate the p-adic Littlewood

conjecture. From this perspective, the project was very successful. In particular, in

Chapter 3 we outlined a method to construct an algorithm to multiply continued

fractions by prime numbers and in Chapter 5 we reformulated pLC using infinite

loops: a concept stemming from this geometric setting. In this chapter, we list

the most important results and discuss their connection to the literature. We also

discuss how this work could be built upon.

6.1 Main Results

The result that most encapsulates the work in this thesis is Theorem 4.1.8 - that

we can view integer multiplication of continued fractions as being equivalent to

triangulation replacement on some orbifold.

Theorem 4.1.8. For every geodesic ray ζα in H starting at the y-axis with endpoint

α % 0, there is a canonical projection sζα onto Γ0�n��H such that �ζα,F� � �sζα, sF�,
which is equivalent to the continued fraction expansion of α, and �ζα, 1

n
F� � �sζα,u1nF�,

which is equivalent to the continued fraction expansion of nα.
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By viewing integer multiplication as triangulation replacement, we can learn a lot

about the behaviour of continued fractions when they are multiplied. For example,

Lemma 4.2.2 tells us that if �ζ, T � is an eventually recurrent cutting sequence on an

orbifoldO, then �ζ, T ¬� is also eventually recurrent, where T and T ¬ are triangulations

of O. Theorem 4.1.8 then allows us to deduce that if �sζα, sF� is eventually recurrent,

then so is �sζα,u1nF�. Since the cutting sequences �sζα, sF� and �sζα,u1nF� naturally

correspond to the continued fraction expansions of α and nα respectively, we can

deduce that for every real number α with an eventually recurrent continued fraction

expansion and every integer n, the continued fraction expansion of nα will also be

eventually recurrent. This is a main step in proving the following corollary:

Corollary 4.2.6. Let α " R, let M � � a bc d � be a non-trivial integer matrix (i.e.

a, b, c, d " Z, ad � bc j 0), and let β � M � α �
aα�b

cα�d
. If the continued fraction

expansion α is eventually recurrent and cα � d j 0, then the continued fraction β is

eventually recurrent.

Viewing integer multiplication of continued fractions in this way also draws attention

to the concept of infinite loops. A geodesic ray ζα in H starting at the y-axis I and

terminating at a point α " R is an infinite loop if it does not intersect the set of

edges Γ0�n� � I ¯ rI � a � a " Zx. Equivalently, an infinite loop mod n is any real

number with no semi-convergent denominators divisible by n - except for q�1 � 0.

These are very important objects in relation to the p-adic Littlewood Conjecture,

since whether α is an infinite loop mod n or not gives a lot of information about

the bounds that we can infer from α and nα. In particular, if α is not an infinite

loop mod n, then at least one of the largest partial quotients of α and nα is large

(relative to
Ó
n):

Lemma 5.1.10. Assume that α is not an infinite loop mod n. Then we have:

maxrB�α�, B�nα�x ' �2Ón%�1.

Alternatively, if p`α is an infinite loop mod pm for all ` " N, then the largest partial
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quotient of p`α is bounded above:

Lemma 5.1.14. Let α " Bad and assume there exists an m " N such that p`α is

an infinite loop mod pm for all ` " N. Then B�p`α� $ pm�4.

The above lemmas show how viewing multiplication of continued fractions in this

geometric way has a lot of power. In particular, this method allows us to nicely

recreate the result of Badziahin, Bugeaud, Einsiedler and Kleinbock [BBEK15],

namely:

Proposition 5.1.13. Eventually recurrent continued fractions satisfy pLC.

Furthermore, we can combine the above lemmas to reformulate pLC in terms of

infinite loops.

Theorem 5.1.15. Let α " Bad. Then, α satisfies pLC if and only if there is a

sequence of natural numbers r`mxm"N such that p`mα is not an infinite loop mod pm.

The work presented in this thesis is quite a different way of looking at the p-adic

Littlewood conjecture, compared to the rest of the literature. Despite this, not only

were we able to recreate some of the previously known results - Proposition 5.1.13 -

but we also found some new results: Corollary 4.2.6, Lemmas 5.1.10 and 5.1.14, and

Theorem 5.1.15. This shows the power of the methods presented in this thesis, as well

as the potential to provide even more information about pLC and the multiplication

of continued fractions. In particular, there are several ways that we could build on

the results of this thesis. In the next section, we discuss a few of the ways that this

work could develop.
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6.2 Future Research Aims

There are two main ways I see this work developing:

• To further investigate what this work can tell us about the mixed and p-adic

Littlewood conjectures.

• To investigate how triangulation replacement affects cutting sequences in more

depth.

6.2.1 Further Investigation of the p-adic Littlewood

Conjecture

One of the main aims of the future of this research would be to find a larger class

of real numbers which satisfy pLC. As discussed above, the techniques presented in

this thesis were shown to be reasonably powerful. As such, the possibility of finding

new solutions to pLC looks hopeful. Furthermore, it also seems likely that we can

extend the reformulation of pLC to a reformulation of mLC.

Furthermore, I also plan to use the work in this thesis to investigate potential counter

examples to pLC. The t-adic Littlewood conjecture - a problem which is analogous

to pLC over function fields - was recently proven to be false by Adiceam, Nesharim

and Lunnon in [ANL18]. This provides credence to the idea that pLC may also be

false.

Finally, I would also like to improve the currently known upper bounds of pLC.

Badziahin showed in [Bad16], that for all real numbers α " R:

m2�α� $ 1
9 .

I have already done some investigation of the upper bounds of pLC and have found

that for all real numbers α " R, we have:

m2�α� $ 1
15 .
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Finding Good Potential Counterexamples to pLC

As mentioned above, I plan to look at finding potential counterexamples to pLC. In

particular, Theorem 5.1.15, Section 5.2.1 and previously known results gives us a

good idea of where to start looking for potential counterexamples. Firstly, we would

use Section 5.2.1 to produce a large number of partial quotients of a continued fraction

expansion that is also an infinite loop mod pk for some prime power pk. Since we

know certain properties of potential counterexamples to pLC - i.e. counterexamples

do not limit to a periodic continued fraction [BDM07], counterexamples necessarily

have non-recurrent continued fraction expansions [BBEK15], infinite loops mod pk

do not have partial quotients bigger than pk � 4 - the infinite loops that we produce

would also be built to satisfy these properties. For a potential counterexample α, we

could then use the multiplication algorithm to calculate pα and check whether pα

is an infinite loop mod pk. If there is some large L " N such that plα is an infinite

loop mod p
k for all l & L, then this would indicate that α is a “good” potential

counterexample to pLC.

It is worth noting that such a process would not provide proof that pLC is false.

However, being able to find such a result would give us a lot of heuristic information

about counterexamples to pLC, and this may be useful for finding other methods

and techniques that could prove pLC to be false.

Improving Upper Bounds on the Infimum of the p-adic Littlewood

Conjecture

The p-adic Littlewood Conjecture has shown to be very difficult to solve directly.

As a result, we can instead ask if we can find upper bounds for mp�α� �� infq'1rq �
¶q¶p �½qα½x for all α " R and a fixed p? To formalise this question we introduce the

function mPLC�p�:
mPLC�p� �� sup

α"R
rinf
q'1

rq � ¶q¶p � ½qα½xx.
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By Hurwitz’s Theorem - see Section 2.1.2 - we know that:

inf
q'1

rq � ½qα½x $ 1Ó
5
.

Furthermore, ¶q¶p & 1 for all p, q " N. Combining these results together, we can

guarantee that for all primes p we have:

mPLC�p� � sup
α"R

rinf
q'1

rq � ¶q¶p � ½qα½xx
$ sup

α"R
rinf
q'1

rq � ½qα½xx
$ sup

α"R
v 1Ó

5
|

$
1Ó
5
.

However, since this initial bound is achieved by “forgetting” the p-adic norm, it does

not seem to be very optimal. Indeed, the work of Badziahin in [Bad16] shows that

for p � 2, we have:

mPLC�2� $ 1
9 .

This result was achieved by using an algorithm that was computer implemented.

We should note that the algorithm required only 3 seconds to give a bound of

mPLC�p� $ 1
9 . However, when the algorithm was implemented to try to obtain a

bound of mPLC�p� $ 1
10 , the process ran for over 60 hours without a conclusive

result. Badziahin states in this paper [Bad16], that such a large increase in time

complexity may be indicative of the existence of a counterexample to pLC.

The work in this thesis provides another way to try and compute upper bounds

for mPLC�p�. In particular, we can use Corollary 5.1.11 to prove the following

proposition:

Proposition 6.2.1. If for a fixed prime power pm and every α " R there is some

k " N < r0x such that pkα is not an infinite loop mod pm, then we have:

mPLC�p� & 1
 2

Ô
pm&�1

.
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In particular, if we can show that the set of infinite loops mod pm is empty under

finite multiplication by p, then the result holds.

This general idea has been the basis for my own computer based algorithm. Using

this algorithm and complementary techniques, I was able to improve on Badziahin’s

upper bound, and find other values of mPLC�p� as shown in the following table:

Prime p 2 3 5 7 11 13 17 19
mPLC�p� $

1
15 $

1
9 $

1
9 $

1
4 $

1
5 $

1
6 $

1
7 $

1
7

Table 6.1: A table of upper bounds on mPLC�p�.
These results are still somewhat preliminary and further computation may improve

the bounds that we receive.

6.2.2 Further Investigation of Triangulation Replacement

I would also like to investigate how triangulation replacement affects cutting se-

quences in a more general setting. As seen in Chapter 4, given a specific orbifold

O, a specific geodesic ray and two specific triangulations of O, triangulation replace-

ment induces integer multiplication on the level of cutting sequences. However, one

can also naturally ask “How do other triangulation replacements on other orbifolds

affect the cutting sequence (and it’s corresponding continued fraction)?” and “Is

there some natural way to describe the transformations on the continued fraction

expansions which are induced by these triangulation replacements?”

If one were able to find the set of transformations T which are realised by triangula-

tion replacement, then, since recurrency and periodicity of the cutting sequence are

both tied to geometric properties that are not altered by triangulation replacement,

this would imply that recurrent and periodic continued fractions are also preserved

by this set of transformations T .

Alternatively, it would also be interesting to investigate whether other properties

of cutting sequences are preserved by triangulation replacement. One interesting
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property to look at would be normality. Does normality correspond naturally to some

geometric property? Is normality preserved under triangulation replacement? These

questions are extremely pertinent following Vandehey’s proof that normality of the

continued fraction expansion of a real number x is preserved under the transformation
ax�b

cx�d
, for � a bc d � "M [Van17]. It would be interesting to investigate whether this was

due to some geometric property, and if so, whether it is possible to strengthen the

result to the larger class of transformations T , as described above.
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