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Coherence and Collisions in
Ultracold 87Rb133Cs Molecules

Jacob Andrew Blackmore

This thesis presents work towards the development of a quantum simulator
based on 87Rb133Cs molecules using a bulk sample of up to ∼ 4000 molecules
at temperatures of ∼ 1 µK.
We demonstrate coherent control over the molecules’ internal state using
resonant microwave fields. We test this coherence by performing high res-
olution Ramsey spectroscopy of the first rotational transition and observing
how the contrast of the spectroscopic fringes decay. We are able to affect
the coherence of the superposition using an external laser field, as the two
component states have a significant differential AC Stark shift. We extend
this microwave control by including an additional microwave field, demon-
strating the Autler-Townes effect with hyperfine state resolution and transfer
between two hyperfine states in N = 0.
We study the internal structure of the molecule in the presence of external
fields focussing on controlling the differential AC Stark shift between the
rotational ground state and the first excited state. We investigate the effect
of the off-resonant light on the internal structure in static magnetic and
electric fields. In the DC electric field we use two models to describe the
molecular structure, demonstrating that at modest values of the electric field
the nuclear spin angular momentum is decoupled from the rotational angular
momentum of the molecule, this enables us to construct a set of optimum
trapping parameters for states with MN = 0.
Through careful measurements of the molecular lifetime we are able to de-
termine that molecular losses are limited by two-body collisions. By introdu-
cing a time dependent intensity modulation to our optical trap we are further
able to determine that the dominant loss process in bulk samples of ultracold
87Rb133Cs molecules is the laser excitation of collision complexes.
Finally, we investigate the collisional properties of 87Rb133Cs with 87Rb and
133Cs atoms. We find that the loss is caused by single molecule-single atom
collisions and sub-universal over a wide range of magnetic fields.
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Chapter 1

Introduction

1.1 Ultracold Atoms and Extending Interac-

tions

Ultracold atomic gases have opened the door to new avenues of research

in quantum science and technology. In part this is due to the quantum

control that has been developed alongside the continued growth of the field.

Two technologies that are of chief interest to us are quantum computers

and quantum simulators. For our purposes we consider quantum computers

to be devices that perform an abstract calculation using quantum particles

through the application of discrete processes called “gates”. A quantum

simulator on the other hand uses a tunable quantum apparatus to emulate

a complex system that cannot be fully studied numerically. In both of these

technologies the key is to have two controlled quantum systems that can

“talk” to one another. As such working towards these technologies is often

considered a quest for interactions.

The interactions in ultracold neutral atomic gases are typically limited to

contact interactions, which only occur on the length scale of collisions. There

are two common ways that atomic ensembles are extended to include long-

range interactions. The first is to use Rydberg atoms [8, 9], which are neutral

atoms excited to very high principal quantum number n, typically these are

n � 10. These states have large electric dipole moments, de, (on the order

1



Chapter 1. Introduction 2

of 102 − 103 D) and so have strong interactions, given by

V elec
dd =

d2
e

4πε0r3
×
(
1− 3 cos2 θ

)
, (1.1)

for aligned dipoles. In the above r is the separation between the dipoles

and θ is the angle between the dipoles and the line connecting the pair. For

Rydbergs V elec
dd ∼ h × 10 MHz at r = 1 µm. These states have lifetimes

limited by radiative decay which occurs on a timescale . 1 ms. The second

solution is to use highly magnetic atoms such as ultracold gases of Er [10],

Dy [11] or Cr [12]. These atoms have ground states which have high angular

momentum and so a large permanent magnetic dipole moment, µ, which

gives an interaction between pairs of atoms

V mag
dd =

µ0µ
2

4πr3
×
(
1− 3 cos2 θ

)
. (1.2)

For these atoms V mag
dd ∼ h × 1 Hz at 1 µm. However because these atoms

possess a dipole moment in the ground state they are not prone to radiative

losses and so have much longer lifetimes.

There is a third option though, provided you are willing to leave the world

of atoms behind: ultracold heteronuclear molecules. Like Rydberg atoms

these molecules have a permanent electric dipole moment, though it is much

smaller (∼ 1 D) which gives dipole-dipole interactions Vdd ∼ h× 0.1 kHz at

1 µm. Like the highly magnetic atoms this dipole moment, in the molecule

frame, is present in the molecule’s ground state. As there is nowhere for

the molecule to decay to, the timescale of experiments is only limited by the

typically second-scale collisional lifetime.

Our work focuses on the 87Rb133Cs isotopologue, hereafter referred to as

RbCs for simplicity. Our long-term goal is to use these molecules in a

quantum simulator to study complex quantum many-body systems. In this

work we present proof-of-concept measurements towards building a quantum

simulator using RbCs molecules.

1.2 Production of Ultracold Molecules

There are currently two routes to ultracold temperatures for molecules, these

are known as the direct and indirect methods. The direct method of cool-
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ing ultracold molecules starts with the goal of taking molecules which are

formed in their ground state and cooling them to ultracold temperatures us-

ing laser cooling techniques on suitable molecules to form MOTs and tweezer

traps. The other method for producing samples of ultracold molecules is to

exploit the atomic cooling techniques and then form the molecules from the

pre-cooled atomic gases. These techniques are known as “indirect” as the

molecules are produced at ultracold temperatures, so do not need further

cooling. The two methods that we will consider as indirect are association

using a resonant laser (photoassociation) and association on a magnetic Fesh-

bach resonance (magnetoassociation). Both of which (broadly) follow a three

step sequence:

1. Cool atomic gases to a high phase-space density.

2. Transfer the atoms into a molecular bound state.

3. Transfer the molecules from their initial state to a desired state adia-

batically.

Step (1) can be readily achieved using conventional cooling techniques, they

will be built upon an atomic MOT for homonuclear species or dual atomic

MOTs for heteronuclear species. Cooling to ultracold temperatures will re-

quire additional techniques, the specifics of the cooling in the Durham RbCs

experiment will be described in Section 2.1.1.

1.2.1 Direct Laser Cooling

Taking an idea directly from the world of atomic physics where laser cooling

has been critical to many modern experiments there are now several groups

that have cooled molecular species using laser light. To explain the differences

between laser cooling of molecules and the laser cooling of atoms we will

briefly revise the principles of laser cooling which are much the same for

molecules as for atoms: each photon carries a small amount of momentum

related to the optical wavelength (λ) given by: h/λ. Light can therefore be

used to exert a small force on objects such as atoms or molecules. When the

object absorbs a photon it becomes excited and eventually decays back to
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the ground state emitting another photon in the process, this spontaneous

emission has no net momentum contribution i.e. a photon is emitted into

a random direction. Over many cycles this averages out to no net effect

on the momentum. For a typical alkali atom the most probable velocity at

room temperature is ∼ 200 m s−1 (> 400 mph) and reaching v = 0 would

take ∼ 104 photons, this is typically easy in atoms as they possess closed

transitions where following a cycle of absorption and spontaneous emission

the atom returns to the state it started in.

Taking the lessons learnt from laser cooling of atomic species DiRosa wrote

criteria for a suitable molecule for laser cooling [13]. These are:

1. A short upper state lifetime.

2. A highly diagonal Franck-Condon matrix.

3. No intervening electronic states.

All three criteria are based around finding a way to scatter enough photons

to slow the molecules down. Criterion (1) tells us that cooling molecules with

laser light requires the use of electronic transitions, as rotational and vibra-

tional transitions have much longer lifetimes (and smaller photon momenta).

Criteria (2) and (3) are concerned with ensuring that the optical transition

used is suitably closed.

It is finding a molecule that has a sufficiently closed cycling transition which

forms a major challenge to laser-cooling molecules. During an electronic

transition there is no selection rule on vibration, instead the decays to dif-

ferent vibrational levels are determined by the overlap of the relevant wave-

functions. The Franck-Condon matrix describes this overlap of different elec-

tronic and vibrational states, the more diagonal this matrix the more likely

the molecule is to conserve the vibrational quantum number in a decay from

an electronically excited state. In experiment multiple vibrational repumps

are necessary to close the transition further, typically 3 or 4 are used. Inter-

vening electronic states give a molecule additional decay pathways, though

the effect can be minimised if the coupling between the excited state and the

intermediate is sufficiently small. Unlike the vibrational branching rotational

transitions have a strict selection rule associated with them (∆N = 0,±1).
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Figure 1.1: Photoassociation of molecules. A laser (PA) is resonant with the transition

between a free atom pair of energy Eth, shown by the dashed grey line, and an excited

molecular bound state (AB)∗, the dotted red line. Decays from this excited state possible

to multiple levels (solid blue lines) in the ground electronic potential, as governed by the

Franck-Condon factors.

Rotational branching can therefore be restricted by cooling on a transition

N = 1 → 0, this however gives more sub-levels in the ground state which

adds more complications.

Despite the additional complications that laser cooling molecules directly

adds to an experiment there are multiple groups that have created magneto-

optical traps (MOTs) of diatomic SrF [14], CaF [15, 16] and YO [17] with

cooling demonstrated for SrOH [18], YbF [19], YbOH [20], CaOH [21],

CaOCH3 [22] and BaH [23]. There are in addition many groups which are

striving to cool more and more molecular species, it is not unreasonable to

expect that eventually there will be more molecular species being laser cooled

than atomic species.

1.2.2 Photoassociation

Photoassociation spectroscopy has proved to be an important tool in under-

standing molecular potentials [24, 25] as well as promising additional uses

including in precision metrology [26, 27]. The use we will be considering

in this section is the creation of ground state molecules from an ultracold

atomic gas, though the principle is the same for spectroscopy.
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In one-photon photoassocation two atoms, which we shall label A and B,

which are colliding with an incident thermal energy Eth can be excited by

a resonant laser, labelled PA in figure 1.1. This laser takes the atoms to an

excited state of the molecular potential: labelled (AB)∗. The energy required

for this process is less than that required to excite either atom to their own

excited states. This excited state has a finite lifetime as such some time after

the pair is excited to (AB)∗ it then decays to the ground electronic state of

the molecule.

Using single-photon photoassociation for the formation of ground state mo-

lecules has several limitations. The first is that, for photoassociation rates to

be useful, the molecular bound state (AB)∗ must have a significant overlap

with the atomic continuum: this is only true for high lying vibrational states.

The likely decays are therefore from a high vibrational state in an excited

potential to high vibrational states in the ground potential, though there are

some exceptions where decay to low vibrational numbers is possible [28–32].

The other issue that affects one-photon photoassociation is that the process

is incoherent, molecules cannot be coherently broken apart in the same way

that the Feshbach molecules discussed in Section 1.2.3 can be, this limits the

imaging techniques that can be used to either ionisation and detection on a

suitable detector [28, 33] or photodissociation and absorption imaging [34].

Finally because the population of the ground state is through spontaneous

decays of the excited states not only are different vibrational states populated

but different rotational and hyperfine states can be as well, though rotational

pure samples have been created in some species such as 85Rb133Cs [35].

1.2.3 Magnetoassociation

Arguably the most successful route to ultracold molecules has been mag-

netoassociation on a magnetic Feshbach resonance [36, 37]. Molecules of

KRb [38], Cs2 [39], Rb2 [40], RbCs [41, 42], NaK [43], NaRb [44], NaLi [45]

and NaCs [46] have been formed this way. It is worth highlighting that there

are two methods commonly referred to as magnetoassociation in the literat-

ure. One method involves using a resonant RF field with the magnetic bias

field held close to an interspecies Feshbach resonance. The other method, and
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Figure 1.2: Magnetoassociation on a magnetic Feshbach resonance. (a) Two atoms, collid-

ing with energy Ec, on the open incoming channel (Vi) can couple to a bound state in the

closed channel Vc. At ultracold temperatures the incoming energy tends to the incoming

channel threshold (E = 0). The position of the bound state can be tuned with respect

to this threshold using a magnetic field, as described in the text. Inset is shown the vari-

ation of the scattering length near the Feshbach resonance. (b) A simplified energy level

scheme for magneto association, relative to the energy of free atoms. The solid lines show

the avoided crossing used for association. The dotted lines indicate the magnetic field

dependence of free atoms (blue) and molecules (red) if the two states were not coupled.

the one that we will describe, involves adiabatically sweeping the magnetic

field across an interspecies Feshbach resonance. Following magnetoassoci-

ation the molecules are in a high lying vibrational level, but only a single

rotational and hyperfine state. Transfer between different molecular states

is therefore much easier than when considering photoassociation. Typically

transfer from the weakly bound state to a more tightly bound one is accom-

plished with stimulated Raman adiabatic passage (STIRAP), which will be

covered in section 2.1.3.

A magnetic Feshbach resonance is the result of a molecular bound state and

a free atomic state being degenerate in energy. Because the molecular state

and the atomic state have a different magnetic moment an external magnetic

field can be used to tune its position with respect to the free atoms. This is

illustrated in figure 1.2(a), the atoms are initially on the incoming channel

labelled Vi with energy Ec which at ultracold temperatures tends towards

the incoming channel threshold (E = 0). Inset to the figure is an illustration

of the scattering length (a) as a function of magnetic field (B) around the
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Feshbach resonance which follows

a(B) = abg

(
1− ∆

B −Bres

)
. (1.3)

Where Bres is the centre of the resonance, abg is the scattering length in

the absence of any resonances and ∆ defines the width of the resonance.

Control of the scattering length around a magnetic Feshbach resonance has

been critical to the formation of BECs of 85Rb and 133Cs as well as novel

states of matter such as quantum droplets [47, 48], dipolar supersolids [49–

51], bright solitary matter-waves [52] and perhaps most notably observation

of the BEC-BCS crossover in Fermi gases [53, 54].

Molecules can be formed on a Feshbach resonance by exploiting that, because

of a coupling between the molecular bound state and the atomic state, the

resonance doesn’t cause the energy levels to cross. Instead an avoided cross-

ing, as shown in figure 1.2(b) opens up. Starting with the magnetic field

above the resonance and then ramping it down adiabatically ensures that

the atom pair follows the energy level into the bound molecular state. The

critical ramp speed, below which the following is adiabatic, can be arrived

at by considering the avoided crossing in a Landau-Zener model

dB

dt

∣∣∣∣
crit

=
V 2

h|∆µ|
. (1.4)

In the above V is the energy difference between the two energy levels at the

position of the resonance, as shown in figure 1.2(b) and ∆µ is the differen-

tial magnetic moment between the two states. The process can be reversed

by crossing back over the resonance: from low field to high. However it is

not necessary to follow this adiabatically, if the crossing speed is too quick

the atoms will remain bound together as a molecule but they will eventu-

ally dissosciate back into the free atomic state which is more energetically

favourable.

1.3 Applications of Ultracold Molecules

Ultracold atoms have been used across many applications including, but not

limited to: precision measurement of time [55] and external fields [56, 57];
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Figure 1.3: Measurement of an electronic EDM using an ultracold polar molecule. (a) An

electron with a charge distribution along the spin axis has a dipole moment de along the

same axis. (b) Illustration of the scheme typical for a measurement of the eEDM. When

all other interactions are accounted for the eEDM gives a small shift to a state: ∆E. This

is maximal when it is aligned or anti-aligned to the internal electric field of the molecule

Emol. By measuring the energy difference between the +|N | and −|N | states the value of

de can be constrained.

quantum simulation [58, 59]; and quantum computation [60]. We must ask

ourselves, why should we go to the effort of working on ultracold molecules?

In this section we will approach this question and summarise four places

where ultracold molecules are either at the forefront of quantum science or

have additional strengths over ultracold atoms.

1.3.1 High precision measurement of fundamental con-

stants

One arena in which cold and ultracold molecules have found themselves to

be uniquely suited is the precision study of fundamental constants. Measure-

ments have been made on the variation of the fine-structure constant (α) [61],

tests of the electron-to-proton mass ratio (µ) [62] and (perhaps most not-

ably) a search for a non-zero electronic electric dipole moment (eEDM). In

this third endeavour the leading groups currently use YbF [63] and ThO [64]

though there are proposals to use BaF [65] as well as more exotic polyatom-
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ics. It is important to note that current experiments have not used ultracold

molecules, instead using molecules that have been slowed. Great effort is

being put into using truly ultracold molecules to extend the measurement

time, thereby also increasing the precision even further.

The search for an eEDM has proved to be incredibly important to funda-

mental physics research. Several extensions to the standard model introduce

additional time symmetry violations which ultimately lead to a potentially

measurable dipole moment. An illustration of the principle behind an eEDM

measurement is shown in figure 1.3(b). In short an electric field is used to

polarise the molecules, within the molecule an electric field is generated as it

is polarised, Emol. Depending on the state that the molecules are in the elec-

tronic dipole moment will be either aligned or anti-aligned to the molecule’s

internal field. This leads to an energy shift of the form

∆E = de · Emol. (1.5)

The value of ∆E can be measured by using high-resolution spectroscopic

probes of the internal molecular structure. By comparison to a suitable

“spectator” state to account for the systematic shifts the value of de can be

obtained [63, 64].

1.3.2 Molecular Qubits

Currently there are many different architectures that are being considered

for qubits. The leading architecture currently is the superconducting circuit

as chosen by traditional computing giants like Google [66], Intel [67] and

IBM [68]. Other architectures have been considered with their own strengths

and weaknesses, trapped ions for instance are the leaders in gate fidelity [69].

In 2001 DeMille proposed using ultracold polar molecules as qubits [70]. The

essence of the proposal is that molecules are trapped in a periodic potential

formed by a standing-wave optical trap. An electric field which varies along

the length of the trap is used to make each of the qubits spectroscopically

addressable, with the qubit states identified with the ground and first excited

states. In the last two decades there have been many advancements in the

field of quantum technology. In this section we will be briefly outlining two
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Figure 1.4: The iSWAP gate of [71]. Molecule A is initially in |1〉 and molecule B is in |0〉
both in the rotational ground state. A microwave π-pulse drives A to |e〉 but not B. The

dipole-dipole interaction (Vdd) allows the excitation to hop between A and B. A second

microwave pulse drives B from |e〉 to |1〉 completing the SWAP operation.

new proposals for molecular quantum gates: a key element necessary to using

ultracold molecules as qubits.

In [71] Ni et al. proposed an implementation of an iSWAP gate that would

be suitable for 1Σ states. The iSWAP gate takes a pair of molecules in the

product state |0〉 |1〉 and transfers the excitation such that the output is |1〉 |0〉
or vice-versa. Along with single qubit rotations their iSWAP gate forms a

universal set, meaning that any quantum computation can be solved. In

this implementation a collection of ultracold molecules are held in moveable

tweezer traps and the qubit states |0〉 and |1〉 are two hyperfine states in the

rotational ground state. In this formulation there is a need for a third, inter-

mediate state |e〉 which is in the first rotational excited state. Crucially |e〉
has to have a transition dipole moment connecting to both |1〉 and |0〉, this

is possible through hyperfine mixing in an applied magnetic field. The mech-

anism by which this gate is implemented is remarkably simple: a microwave

π-pulse on the |1〉 → |e〉 transition; the two molecules in the gate are then

able to interact for a time tgate = (πr3)/(2D) where r is the distance between

the molecules and D is a dipole-dipole interaction strength1; following the

interaction a second π-pulse drives the transition |e〉 → |1〉. This scheme

is illustrated in figure 1.4(a). To protect the state of the other molecules

off-resonant light could be used to AC-Stark shift them from resonance with

the microwave field.

An alternative gate implementation which does not require an additional ex-

1This will depend on the species, the states used and the orientation of the two mo-

lecules.
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cited state was proposed by Hughes et al. [72]. Their entanglement gate does

not perform the SWAP operation, instead the ideal operation is represented

in the computational basis (|1〉 |1〉 , |1〉 |0〉 , |0〉 |1〉 , |0〉 |0〉) by

T =


1 0 0 0

0 eiφ

2
− eiφ

2
− 1√

2

0 − eiφ

2
eiφ

2
− 1√

2

0 1√
2

1√
2

0

 , (1.6)

where φ is a controllable phase shift. In this implementation the state |0〉
is in the rotational ground state and |1〉 is in the excited state. Despite

not being an easily identifiable logic gate this operation, along with one-

qubit controls, forms a universal gate set [73]. The basic principle of the

gate presented transfers a pair of ground state molecules to the Bell state

|Ψ+〉 = (|0〉 |1〉 + |1〉 |0〉)/
√

2. The transfer is accomplished by holding two

molecules close enough together that the dipole-dipole interaction becomes

significant enough to split the degeneracy between |Ψ+〉 , |1〉 |1〉 and |0〉 |0〉.
A shaped microwave pulse, with a fixed detuning, is then able to reproduce

equation (1.6) with fidelity > 0.999.

1.3.3 Molecular Qudits

This section summarises the results in Sawant et al. [4].

One of the challenges that is associated with the production of a quantum

computer under the 2-level qubit paradigm is that of scalability [74]. In short:

producing enough individual qubits that can be externally controlled and

together form a Hilbert space large enough to perform a useful calculation

without interference from the environment is extremely challenging. We

can ease the problem of scalability by not restricting ourselves to two-level

systems and instead utilising d-level qudits.

Quantum computers are often only considered to be useful when they are able

to perform calculations beyond even the most powerful classical computers2.

Typically this point is expected to be reached for about 50 two-level qubits,

2In the literature this is often termed “quantum supremacy”, though there is some

debate about the appropriateness of the term [75].
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Figure 1.5: A comparison of qubits and qudits in optical tweezer arrays. (a) Using p

traditional two-level atomic qubits to form a Hilbert space of dimension 2p. (b) Using d

internal levels of q molecules forms a Hilbert space of dq. To create a space of the same

dimension as in (a) requires q = p/ log2(d). Clearly for d > 2 fewer quantum elements are

required for qudits than for qubits.

with a team from Google AI Quantum recently demonstrating a significant

quantum advantage for p = 53 [66]. If we were to use a quantum system

of dimension d then only ∼ 50/ log2(d) qudits would be required, which is

approximately 15 for d = 10. This scaling law is illustrated in figure 1.5,

where the qubits’ state-space is represented by the products of several two-

level atoms whilst the qudits’ state-space requires fewer d-level molecules.

Molecules provide an interesting system to consider producing qudits in, as

alongside the hyperfine and electronic degrees-of-freedom possessed by atoms

they also have rotation and vibration. The rotational and hyperfine degrees-

of-freedom in ultracold molecules are readily controlled using microwaves3.

By analysing the internal structure of RbCs we were able to find states to

form d = 8 qudits in the rotational ground state, with a gate time of 1 ms.

The qudit is formed by multiple levels in the rotational ground state, and

gates are formed by microwave operations between the rotational ground

state and the first excited state. An alternative formulation, with the same

gate time, would enable us to form a qudit with d up to 21, a single qudit

therefore would have equal computational power to 4 qubits. In practice

however these excited states are more prone to dephasing due to differential

3See Chapter 4 for details of the microwave control in the Durham RbCs experiment.
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AC Stark shifts in optical traps.

1.3.4 Quantum Simulation

The motivation for using molecules for quantum simulation stems from the

ability to engineer controllable long-range interactions between spins via the

electric dipole-dipole interaction between molecules i and j

V DD
ij =

1

4πε0

di · dj − (di · êij)(dj · êij)
r3
ij

. (1.7)

Here molecule i has electric dipole moment di and position vector ri; rij =

ri−rj = rijêij. This form differs from equation (1.2) as we have not assumed

that the dipole moments are aligned. Typical achievable dipole moments are

∼ 1 D, leading to a dipole-dipole interaction energy ∼ h × 1 kHz between

neighbouring molecules spaced by 532 nm in an optical lattice (λ = 1064 nm).

There are two limits that are relevant for experiments on quantum simula-

tion with ultracold molecules. The first is the weak lattice limit: here the

molecules can tunnel between neighbouring sites and so there is an on-site

interaction and a dc electric field aligns the permanent dipole moments of

the molecules. The many-body physics of this system is captured in the

extended Bose-Hubbard model [76, 77]

HBH = −T
∑
〈i,j〉

b†ibj +
V

2

∑
i 6=j

ninj
r3
ij

− µ
∑
i

ni. (1.8)

The first term in this many-body Hamiltonian describes the kinetic energy,

with hopping amplitude T and bosonic creation/annihilation operators for

site i are b†i/bi. The second-term is the repulsive dipole-dipole interaction

with strength V = d2/a3 where a is the lattice spacing and rij = |ri − rj|
for the normalised lattice vectors r. The final term includes the chemical

potential µ and the number operator for site i,ni. Theoretical studies [76, 77]

of this system show the emergence of superfluid, supersolid and Mott solids

of varying fractional density. These varied phases of matter can be studied

by tuning the lattice depth (and thereby the tunnelling rate) or the strength

of the dipole-dipole interaction.

The other limit is the “tight binding” limit, here the lattice depth is suffi-

ciently high that molecules cannot tunnel to neighbouring sites. It is then
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Figure 1.6: Using polar molecules for quantum simulation. (a) Pseudo-spins can be en-

coded in the internal rotational states of molecules (blue-orange dumbbells) confined in

regular arrays. In this example, we map the two spin states ↑, ↓ onto the rotational states

|N = 0,MN = 0〉 and |1, 0〉. The energy separation between these states is set by the

rotational constant B0 and lies in the microwave domain. (b) Dipole-dipole interactions

(V DD) lead to spin-exchange (or spin flip-flop) interactions between adjacent molecules,

here shown confined in individual tightly-focussed optical tweezers. (c) In a deep optical

lattice, the molecules can be used to simulate models of quantum magnetism, such as the

XXZ model described in the text. The applied static electric field can be used to tune the

model parameters.

possible to encode pseudo-spins in the molecular rotational states in order to

realise various models of quantum magnetism. For example, in the proposal

by Barnett et al. [78] they mapped |↓〉 with the ground state (N = 0,MN = 0)

of a 1Σ potential. The excited state |↑〉 is mapped to any of the states with

N = 1. In figure 1.6(a) we identify |↑〉 with |1, 0〉 and |↓〉 with |0, 0〉 to

also demonstrate a spin-1/2 system. The resonant dipole-dipole interac-

tion between these pseudo-spin states leads to two-body “flip-flop” or spin-

exchange interactions, shown in figure 1.6(b) for tweezer-confined molecules.

For a collection of molecules pinned to the sites of a two-dimensional (2D)

lattice this two-body interaction leads to the well-known XXZ spin Hamilto-

nian [79, 80]

HXXZ =
∑
i 6=j

[
JX
2

(
S+
i S
−
j + S−i S

+
j

)
+ JZS

z
i S

z
j

]
. (1.9)

In this Hamiltonian the first term describes the spin-exchange interaction,
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the second term describes the the two coupling constants are given by

JX =
1− 3 cos2 θij

4πε0r3
ij

d2
↑↓, (1.10a)

JZ =
1− 3 cos2 θij

4πε0r3
ij

(d↑↑ − d↓↓) , (1.10b)

with dsisj = | 〈si|d |sj〉 | for |s〉 ∈ {|↑〉 , |↓〉} and θij the angle between the

molecular dipole moments and the intermolecular vector [79–81]. By con-

trolling the angle of the applied electric field these two parameters can be

tuned for performing simulations of different many-body systems.
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1.4 Thesis Overview

This thesis is structured as follows:

In Chapter 2 we detail the key pieces of experimental apparatus used to

create our samples of ultracold polar molecules. We pay particular attention

to the microwave and electric field apparatus which are key to our control of

the rotational state of the molecule.

Chapter 3 covers the physics of molecular structure in great detail. We

start by determining the behaviour of a rigid rotor in AC and DC electric

fields, examining the pendular states of the molecule. We then construct a

Hamiltonian that includes the hyperfine structure in a completely uncoupled

basis. We end the chapter by presenting theoretical calculations for RbCs in

AC and DC electric fields as well as in static magnetic fields.

In Chapter 4 we demonstrate coherent control over the internal state of the

molecule using resonant one and two-photon microwave pulses. We demon-

strate Ramsey interferometry with high contrast and no loss of coherence

over the ∼ 3 ms we can observe the molecules for. To extend our investiga-

tion we apply a beam from the optical dipole trap to the molecule cloud and

observe that the coherence is lost rapidly. With a comparison to a theoretical

calculation of the AC Stark shift we find some regions where we can extend

this coherence to a 1/e time of 0.7 ms. We conclude with an outlook that

extends our two-photon work to performing quantum simulations of the SSH

model in synthetic dimensions.

Chapter 5 contains an exploration of the internal structure of the molecule

in laser fields at λ = 1550 nm and at λ = 1064 nm where we characterise the

polarisability and compare to theoretical predictions. We additionally find

an unexpected two-photon transition within the molecule at λ ≈ 1064.5 nm.

We conclude by exploring the limits of the “magic angle” formulation by

exploring the polarisation dependence of the AC Stark shift in applied DC

electric and magnetic fields.

In Chapter 6 we explore the collisional properties of the RbCs molecule in

detail. We start by establishing that the kinetics are second-order indicating

that the rate-limiting step involves two molecules which we attribute to the
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formation of collision complexes. We compare our results to a single channel

model inspired by quantum defect theory which indicates that only approx-

imately two-thirds of the molecules that reach short range are lost. Using an

intensity modulated trap we are able to measure the lifetime and excitation

rate of the complexes formed, which both agree with the theoretical predic-

tion that optical excitation limits the lifetime of the molecule. We conclude

this chapter by exploring the collisional behaviour of RbCs in mixtures with

Rb and Cs atoms at fields near 20 G and near 181.5 G, we find no evidence

of resonant behaviour and losses in both mixtures are approximately a factor

of 5 below the zero-temperature universal limit.



Chapter 2

Experimental Apparatus

The RbCs apparatus in Durham is the result of well over a decade of develop-

ment and work by a multitude of students and postdocs [82–88]. Within this

work very little has been done to change the experiment on a hardware level

as it still stands as a cutting edge apparatus. This is the advantage of a Ph.D.

in a well established laboratory. However there are some limitations related

to how the experiment has developed which are worth considering. In this

chapter we will discuss some of the details relating to the experimental hard-

ware used to perform the experiments presented in this thesis. We will start

with a description of the methods we use to produce the RbCs molecules.

We will then describe the vacuum system, the apparatus for magnetic fields

and the systems used for generating electric fields and for removing the resid-

ual charge build-up between experimental cycles. Finally we will conclude

by describing our microwave equipment and, using finite element method

calculations, determine how well polarised they are.

2.1 How to make RbCs

RbCs, as a bialkali, is an example of an associated molecule. In this section

we will briefly cover the three steps needed to produce a sample using our

apparatus.

19



Chapter 2. Experimental Apparatus 20

2.1.1 Atomic Mixture

The Durham RbCs apparatus uses a two chamber design. The first is a

pyramid MOT which acts as a source for the 87Rb and 133Cs gases. The initial

samples are sourced from pairs of alkali metal dispensers which are mounted

on opposing edges of the pyramid MOT chamber. From the pyramid, atoms

are transferred via an imbalance in the trapping beams into an ultra-high

vacuum glass cell (the “science cell”) where we produce two conventional

6-beam MOTs. The clouds are separated to minimise interspecies collisions

by an additional push beam, which displaces the 87Rb MOT centre. A brief

compressed MOT phase is used to overlap the traps for both species and

match the geometry of the MOT to the magnetic trap. We use both sets of

lasers to perform polarisation-gradient cooling in optical molasses to reach

sub-Doppler temperatures. Both species are then optically pumped into low-

field seeking states (fRb = 1,mRb = −1), (fCs = 3,mCs = −3) before loading

into the magnetic quadrupole trap.

Additional cooling in the magnetic trap is achieved by forced RF evapora-

tion of the Rb atoms which sympathetically cools the Cs through interspecies

collisions[85, 86]. Both species are then loaded into the crossed 1550 nm di-

pole trap. The atoms are transferred into the high-field seeking states of their

respective hyperfine manifolds (fRb = 1,mRb = +1, fCs = 3,mCs = +3). We

achieve this by moving the zero of the magnetic quadrupole field over the

atomic cloud whilst coupling the lowest and highest magnetic sublevels with

RF radiation, transferring the atoms using rapid adiabatic passage. Follow-

ing this stage the quadrupole field and the 20 G magnetic bias field add in

such a way to form a uniform field gradient pointing upwards, we choose the

strength and direction of this field gradient (∼ 30 G cm−1) to levitate both

species against gravity.

By reducing the intensity of the trapping light further we can allow the most

energetic atoms to escape, evaporatively cooling our mixture. Because of the

difference in polarisablity the 133Cs atoms “see” a deeper potential from the

optical dipole trap throughout, which is well suited to continued sympathetic

cooling by the 87Rb. Previously this cooling sequence was used to bring both

species to BEC [89]. Practically a doubly-degenerate mixture is not useful for
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Figure 2.1: The relevant Feshbach states for magnetoassociation. The states are labelled

by |n(fRb, fCs)L(mRb,mCs)〉, as described in the text. The magnetic field where Stern-

Gerlach separation is used to separate the atomic and molecular clouds is marked by the

unfilled point. The magnetic field at which STIRAP is performed is marked by the filled

point.

production of molecules as the large interspecies scattering length makes the

two clouds immiscible and prevents efficient magneto-association. Following

this process we have a mixture of 87Rb and 133Cs atoms at a phase-space

density of approximately 0.1 and a temperature of ∼ 300 nK.

2.1.2 Magneto-association

As discussed in Section 1.2.3, when a free atomic state meets a bound mo-

lecular state at a Feshbach resonance there is an avoided crossing. By ramp-

ing the magnetic field over this resonance adiabatically we can take pairs

of atoms with quantum numbers fi and mi, for i = Rb,Cs, and associ-

ate them into molecules in a single quantum state [90]. We label these

states as |n(fRb, fCs), L(mRb,mCs)〉. The quantum numbers to label the

molecular state are L which is the quantum number for end-over-end ro-

tation of the molecule, represented by a letter s, p, d, f... for 0, 1, 2, 3...; and n

which is the vibrational number counting down from the least bound state:

n = −1. Each of the Feshbach states has a total angular momentum projec-

tion M = mRb +mCs +ML = 4.
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We start the association process with the magnetic field held above the two

lowest interspecies Feshbach resonances at∼ 212 G, two magnetic field ramps

are necessary to form molecules in the desired state. The initial 250 G s−1

magnetic field ramp crosses a Feshbach resonance at ∼197 G which forms

molecules in a weakly bound state, which runs nearly parallel to the free

atomic energy as shown in figure 2.1. A second ramp across an avoided

crossing at ∼ 182 G transfers the molecules into | − 2(1, 3), d(0, 3)〉 via the

|−6(2, 4)d(2, 4)〉 state. To remove the remaining atoms we exploit that, in

this Feshbach state, the molecules and atoms have very different magnetic

moment to mass ratios. We increase the magnetic field gradient such that

the molecules are exactly levitated. This over levitates the atoms and throws

them out of the top of the trap, we name this part of the experiment the

“Stern-Gerlach separation”.

The ground state of the molecule has no appreciable magnetic moment and

so we must transfer the molecules to a pure optical potential, we do this

before the STIRAP transfer. The 1550 nm optical dipole trap is increased in

intensity over 20 ms, this adiabatic compression raises the temperature of the

sample as the trap frequency increases with the square-root of intensity, the

final temperature of the molecules is ∼ 1 µK. Crucially however the phase-

space density of the sample is preserved through this compression. Finally,

to prepare for the STIRAP transfer, the magnetic field is ramped again so

that the Feshbach molecules are in the state |−6(2, 4)d(2, 4)〉. The overall

efficiency of this process is such that from clouds of ∼ 105 atoms about 5000

Feshbach molecules will be produced.

2.1.3 STIRAP

The final stage in the ground state molecule production sequence is stim-

ulated Raman adiabatic passage (STIRAP) from the weakly bound Fesh-

bach state to the rovibronic ground state. The system consists of two

lasers labelled “Pump” and “Stokes”. The Pump laser drives transitions

between the Feshbach state, |F 〉 = |−6(2, 4), d(2, 4)〉 and an excited state:

|E〉 = |b3Π1, v = 29, J = 1,M = 4〉. |E〉 is chosen due to its strong coup-

ling to both an accessible Feshbach state and to the ground state |G〉 =
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Figure 2.2: The STIRAP sequence used in the RbCs experiment. (a) Relevant potentials

for STIRAP, reproduced from [91]. Spin-orbit coupling is not included. (b) The pulse

sequence used, the time axis is shared with (c). (c) Molecule transfer from the Feshbach

state with n = −6 to the ground state. Only molecules in the Feshbach state can be

dissociated and imaged. Data is reproduced from [92].

|X1Σ+, v = 0, N = 0,MF = +5〉. The Stokes laser drives the second leg of

the two-photon transition from |E〉 → |G〉. We show the levels involved in

figure 2.2(a). It should be highlighted that although the Feshbach state is

a high energy level of the a3Σ potential, transfer to the X1Σ ground state

is possible because, due to spin-orbit coupling, the b3Π excited state has

significant singlet character.

To describe the STIRAP process we first consider an ideal three-level system.

In the basis {|F 〉 , |E〉 , |G〉} the Hamiltonian is1

H3−level = ~


0 ΩP/2 0

ΩP/2 ∆P ΩS/2

0 ΩS/2 ∆P −∆S

 , (2.1)

where subscript “P” refers to the Pump laser and “S” to the Stokes laser.

When the three level system is on two-photon resonance, i.e. ∆P −∆S = 0

the three level Hamiltonian has an eigenstate |a〉 that has no |E〉 component

|a〉 = cos (θmix) |F 〉 − sin (θmix) |G〉 , (2.2)

1A diagram of the Λ energy level scheme can be found in figure 4.8.
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where θmix is the “mixing angle” and is defined with respect to the Rabi

frequencies ΩP, ΩS as

tan (θmix) =
ΩP

ΩS

. (2.3)

Thus as ΩP becomes zero whilst ΩS 6= 0 the state |a〉 becomes entirely |F 〉,
similarly when ΩS → 0 then |a〉 → |G〉. In the idealised system there is no

loss of molecules to state |E〉, however in the experiment this is limited by

the adiabaticity of the transfer. The conditions for efficient transfer are [92]

Ω̃2

π2γ
� 1

τ
� D, (2.4)

in this expression γ is the natural linewidth of the excited state, D is the

linewidth associated with the frequency difference between the lasers, Ω̃2 =

Ω2
P + Ω2

S and τ is the transfer time. The two limits on our hardware and

control are therefore, the transfer must be slower than the rate Ω̃2/γ and

faster than D. The first is achieved by using states with high transition

strengths as available laser power is typically a practical limit. The second

criterion is met by using lasers with narrow linewidths, we estimate that our

STIRAP lasers have a linewidth of . 1 kHz, details of the apparatus can be

found in Gregory et al. [93].

The pulse sequence that we use for ground state transfer follows two sinusoids

and is shown in figure 2.2(b), with the current hardware this transfer process

takes ≈ 20 µs. During this time the optical trap is switched off to remove

spatially-varying AC Stark shifts [94]. Using this sequence we achieve a max-

imum transfer efficiency of 92(1)% [92]. The STIRAP process completes the

formation of the RbCs sample, however we have no current means to directly

detect the molecules as there are no closed transitions suitable for absorp-

tion or fluorescence imaging. Currently to image our molecular clouds we

reverse the STIRAP process and dissociate the molecules back into atoms.

We then take in-situ absorption images of both clouds and average the num-

ber of atoms within each to determine our molecule numbers. This process

is hyperfine state selective, molecules in states other than |G〉 are unable to

undergo the reverse process and so are not imaged.
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Figure 2.3: Rendered CAD models of the vacuum apparatus used in the RbCs experiment.

(a) View of the science cell side of the apparatus. Support structures have been removed.

(b) View of the pyramid MOT side of the apparatus. The feedthroughs for the alkali

metal dispensers are labelled by the species. The mirror for the pyramid MOT can be

seen through the viewport. (c) Close up of the second MOT. Each of the coils labelled is

one of a pair, arranged symmetrically about the glass cell.

2.2 Vacuum System

The centrepiece of any ultracold physics experiment is the vacuum system.

As mentioned earlier the apparatus we use is a two-chambered design. Within

the first chamber is a pyramid mirror, used for the pyramid MOT. This first

chamber has its own 40 L s−1 vacuum pump. The pyramid MOT is loaded

directly from alkali metal dispensers and is used to produce a beam of cold

atoms, which move through a hole at the apex of the pyramid mirror into

the second chamber.

The second chamber is a fused silica glass cell, measuring 2 cm×2 cm×8.3 cm.

This cell is where the experiments are actually performed and so is referred

to as the “science cell”. The science cell is pumped using a 55 L s−1 vacuum

pump and is connected to the pyramid MOT chamber by a narrow tube

to maintain two orders of magnitude difference in pressure between the two

chambers. A render showing both chambers can be found in figure 2.3 with

a close-up of the science cell (and surrounding equipment) in figure 2.3(c).

Currently this apparatus is suitable for the production of bulk samples of
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ultracold RbCs molecules, and studying their properties as an ensemble. To

advance further towards quantum simulation there are two next-generation

apparatuses being constructed to study RbCs on the single-molecule level.

These will benefit from increased optical access around their science cells,

which is heavily restricted in the current apparatus due to the optics required

for the two MOTs in the second chamber.

2.3 Magnetic Fields

The apparatus is equipped with six pairs of coils for the generation of mag-

netic fields and magnetic field gradients. Of the six pairs five surround the

science cell, and can be seen in figure 2.3(c). The sixth coil pair is respons-

ible for the quadrupole field on the pyramid MOT and so is configured in an

anti-Helmholtz arrangement. Two of the five coil pairs around the science

cell are also in an anti-Helmholtz configuration, the inner coil pair is used

for the magnetic trap and levitation gradients whilst the outer coils are used

for the second MOT. The remaining three coil pairs are all in a Helmholtz

arrangement, and are labelled from inside to out Bias 1, Bias 2 and Bias 3.

Bias 1 and Bias 2 are used to generate the largest magnetic fields required

by our apparatus (> 1000 G) however currently only ∼ 200 G is necessary

for our magneto-association sequences and so Bias 2 is disconnected. Bias

3 is the outermost Helmholtz coil pair and is used to perform rapid (∼ ms)

and small changes to the magnetic field. In our association sequence Bias 1

provides a magnetic field just below the ∼ 181 G used for STIRAP whilst

Bias 3 is used to carefully control the field through the association sequence.

Each of the coils pairs is controlled by a bank of metal oxide semiconductor

field-effect transistors (IXFN230N10-ND) which, when coupled with our feed-

back electronics, enables us to control the current in the coil to approximately

1 part in 103. The coils on the science cell side of the apparatus are powered

by supplies that can deliver > 400 A, whilst the pyramid MOT coils are

limited to ∼ 30 A. To be able to cope with the power dissipation by such

large currents each coil is wound from hollow copper wire with a square cross-

section, during operation a barrier cooler pumps distilled water through this

area dissipating up to 2 kW of heat.
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Figure 2.4: Calibrating the magnetic field using the hyperfine structure of 87Rb. (a)

Microwave spectroscopy of (fRb = 1,mRb = 1) → (2, 2). The solid lines are Gaussian

fits to the data. (b) The hyperfine structure of the 52S1/2 ground state of 87Rb used for

magnetic field calibrations. The transitions which can be driven by different polarisations

of microwaves are coloured by their transition strength relative to the strength of the

(1, 1)→ (2, 2) transition. The hyperfine ground state (1, 1) is coloured black. The dashed

grey line indicates the magnetic field that corresponds to the spectroscopy in (a).

To probe the magnetic field at the location of the molecules we perform

microwave spectroscopy on the hyperfine transitions of the alkali atoms we

have trapped. For the works presented in this thesis we typically use the

(fRb = 1,mRb = 1) → (2, 2) transition in 87Rb, which has a differential

magnetic moment of ∼ h × 2.1 MHz G−1. We probe this transition using

microwave spectroscopy, however it is only allowed by a magnetic dipole

moment. In this frequency range ∼ 5 GHz ↔∼ 13 GHz we can access up

to 35 dBm of microwave power, which is coupled into a microwave horn.

With this equipment we can achieve Rabi frequencies on the scale of kHz.

Following the microwave spectroscopy we split the atomic cloud by state with

a magnetic field gradient, where the (2, 2) state is forced down and the (1, 1)

state is levitated. This leads to a vertical separation between the two clouds.

An example spectrum is shown in figure 2.4(a).

To extract the magnetic field we construct the Breit-Rabi diagram (shown

in figure 2.4(b)) using the Hamiltonian

H = HHF +HZeeman. (2.5)
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Where HHF contains the hyperfine structure, which in the 52S1/2 ground state

is dominated by the direct nuclear spin-electron spin coupling. The Zeeman

term is given by

HZeeman = gllzµBB + gsszµBB + giizµNB, (2.6)

where µB is the Bohr magneton, µN is the nuclear magneton, l is the orbital

angular momentum, s is the electron spin angular momentum and i is the

nuclear spin angular momentum. The values of the three relevant g-factors

are phenomenally well known [95] and so error due to conversion between

magnetic field and frequency is minimal compared to the spectroscopic error,

using this technique we can determine the central value of the magnetic field

to ∼ 5 mG. By using the width of a Gaussian fitted to our spectroscopy

(in the case of figure 2.4(a) this is 32(5) kHz) we can also determine that

our magnetic field is only stable to ∼ 20 mG over the 1 ms microwave pulse.

Repeated measurements at the same settings indicate that the magnetic field

is stable to ∼ 55 mG day-to-day.

2.4 Optical Traps

Our apparatus is equipped with two optical dipole traps, operating at two

different wavelengths. A diagram showing these is shown in figure 2.5. The

first, and oldest, is the λ = 1550 nm crossed optical dipole trap. The light

for this trap is sourced from an IPG photonics ELR-30LP-SF Er-doped fibre

laser, outputting a maximum of 30 W. This light is divided into two beams

using a polarising beam splitter and a 100 MHz difference in frequency is ap-

plied to the beams using two acousto-optical modulators (AOMs) to remove

interference effects. These AOMs are also used to control the intensity of the

light using a servo loop with ∼ 50 kHz bandwidth, the power in each beam is

monitored using the light that leaks through the final mirrors. Both beams

are focussed through the glass cell. Over time the waists have varied between

65 µm and 110 µm, likely due to thermal degradation of the optical surfaces

near the laser output. Each beam has an independent λ/2-waveplate for

control over the polarisation, because the light is almost normally incident

on the walls of the glass cell there is no measureable variation in reflectiv-
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Figure 2.5: The optical traps in the RbCs apparatus (not to scale). The λ = 1550 nm is

shown in red, the λ = 1064 nm trap is shown in blue. The arrangement of the 1064 nm trap

is for the intensity-modulated trap in Chapter 6.2.1, for the spectroscopy in Chapter 5.3

the optical chopper is removed and the second pass is blocked.

ity with polarisation. This trapping potential has been largely untouched,

barring realignments, as even small changes in the beam waists or alignment

can significantly reduce the efficiency of the evaporation in the dipole trap.

The second trap operates at a wavelength of 1064 nm and has two main

configurations for the results discussed in this thesis. The first configuration,

and the one shown in figure 2.5, is the intensity-modulated or time-averaged

trap. The light is delivered from a Coherent Mephisto Nd:YAG laser, con-

figured in a master-oscillator power amplifier (MOPA) configuration though

an NKT photonic crystal fibre. The light intensity is stabilised before being

coupled into the fibre for delivery using similar electronics to the 1550 nm

trap. On this laser system the photodiode for the power servo monitors the

transmission through the second of a pair of steering mirrors near the fibre

out-coupler. The time-averaged trap is arranged in a bow-tie configuration,

the first pass has a waist of 107(1) µm whilst the second pass, which is fre-

quency shifted by +80 MHz by an AOM, has a waist of 74(1) µm. As in the

1550 nm trap we can control the polarisation of the laser light using a λ/2

waveplate, however control of the polarisation is not independent between

the two beams. Careful control over the polarisation is necessary because at

the shallow angle of incidence of the laser beam (54◦) there is a significant
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difference in the reflectivity for s- and p- polarised light [96]. The intensity

modulation is achieved using an optical chopper, to reduce the impact of dif-

fraction on the trap we focus the beam through the chopper so that the waist

is significantly smaller than the gaps in the chopper wheel. The alternative

arrangement for the 1064 nm laser system is as a single beam for spectro-

scopic measurements, in this arrangement the optical chopper and the optics

for focussing through it are removed and the second pass through the cell is

blocked.

2.5 Electric Fields

Our apparatus is equipped with a system to generate DC electric fields, these

are used to align the intrinsic dipole moment of the molecule to the external

field by coupling states of opposite parity. The fields are generated by ap-

plying high voltages to four out-of-vacuum steel electrodes. The electrodes

are highlighted in figure 2.3(c). The high voltages necessary are generated by

two up to 5 kV Stanford Research Systems PS350 power supplies of opposing

polarity. The lower two electrodes are connected to positive polarity whilst

the upper two are connected to negative polarity. This ensures that the elec-

tric field points vertically in our apparatus and so aligns with the magnetic

bias field. To determine the uniformity of our electric field we perform a

simple simulation, approximating each of the steel electrodes as an infinite

conductor held at a fixed voltage. The calculation we perform returns values

that are normalised to that in the center of the cell and can be seen in fig-

ure 2.6(a), we match the calculation to the experimental data in chapter 5

for quantitative analysis2. The results of our simulation can be seen in fig-

ure 2.6, at the centre of the cell we can reach a maximum electric field of

∼ 1.5 kV cm−1 for a potential difference of 10 kV applied between the elec-

trodes. We note that because we only have four electrodes and our molecules

are located at an electric field maxima that we expect only a small electric

field gradient across the cloud, however we do have a significant electric field

curvature which contributes to non-uniformity.

2These measurements are also in agreement with an older finite element method sim-

ulation and previous measurements [42, 88].
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Figure 2.6: A simulation of the electric field within the RbCs apparatus. (a) The electric

field between the electrodes in the apparatus, the colour indicates the magnitude |E| whilst

the arrow indicates the direction. The calculation approximates the arrangement as four

infinitely long wires. The polarity of the electrode with respect to the common ground

is indicated by ±. The numerical result is rescaled to an experimental calibration for a

potential difference of 10 kV. The dashed grey box indicates the bounds of the glass cell.

The position of the molecules is indicated by the X. (b) The electric field along x (black)

and z (red) axes through the point marked by an x in (a). (c) As in (b) but showing the

gradient of E. (d) As in (b) but showing the curvature of E.

The power supplies that we use have a large intrinsic capacitance and so

switching the output voltage on or off can take a large amount of time (mul-

tiple s). For experiments we want to use electric fields that are on for time

scales comparable to our microwave spectroscopy (typically a few ms) or

STIRAP transfer (several µs). To speed up switching we use a Behlke HTS-

61-03-GSM switch with a high voltage capacitor (capacitance = 4.7 nF) in

parallel as an external switching circuit for each power supply [88]. The trig-

ger input for the high voltage is isolated from our FPGA control card with

an external optical link. Using this arrangement we can switch from 0 V to

5 kV in ∼ 1 µs and from 5 kV to 0 V in 0.3 µs [88].

Whilst we have the potential to apply up to±5 kV to our electrodes our limit-

ing factor is not the maximum voltage we have available and is instead due to

the fused silica of our glass cell. At high electric field (EDC > 1 kV cm−1) the

glass becomes measurably polarised with the accumulated charges creating a

significant electric field. This additional electric field persists even when the
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(a) (b)

Figure 2.7: Illumination of the RbCs apparatus under the UV (λ0 = 365 nm) light used

to remove remnant electrical charges. (a) The science-cell side of the apparatus. The Rb

microwave horn can be seen, as can the G-10 mounts and the supports for the magnetic

field coils. (b) The pyramid MOT side of the apparatus, the pyramid mirror is visible

through the viewport.

external voltages are removed and can be significant enough to Stark shift

the molecules away from resonance with our STIRAP lasers [87]. To prevent

the gradual build up of charges even when operating below this point we

apply up to 3 W of UV light with centre wavelength 365 nm to our cell and

viewport from LedEngin LZ4-44UV00-0000 light emitting diode (LED) ar-

rays. Each LED array is mounted to an aluminium heatsink to dissipate the

approximately 10 W of waste heat generated and they are controlled using

a TTL signal from our experimental control. The areas illuminated by the

LED arrays can be seen in figure 2.7, we are unable to collimate the light on

the science cell side of the apparatus due to space restrictions. We find that

there is no measurable difference in the electric field when we power the UV

LED arrays for 1 s between experimental cycles.

2.6 Microwaves

Controlling the rotational and hyperfine state of the RbCs molecule requires

fields with frequency ∼ 1GHz, this is well within the microwave portion of the

electromagnetic spectrum. The first step to understanding microwave fields
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Figure 2.8: The models and geometry that are important for this section. (a) A dipole

antenna, the overall length is λ/2 and is modelled as two conducting cylinders of diameter

D separated by an ideal insulator, which is also able to act as a 50 Ω feed line. (b) The

monopole antenna, which has one conducting cylinder, again of diameter D and length

λ/4, is mounted onto a square grounded conducting plane of side-length W . (c) The

microwave waveguide, two conducting plates are separated by an air gap of size d along

the z axis.

in the RbCs apparatus is to start with the fields emitted by the simple an-

tennas that we have developed. We build up the modelling, starting with the

simple theoretical description of a Hertzian dipole before discussion of simu-

lations of the λ/4 antennas used in the experiment. We additionally consider

the environment around the cell, and the impact that has on the microwave

field polarisation by considering the physics of microwave waveguides.

2.6.1 Emission Patterns

To consider the Hertzian dipole3 as an antenna design is already misleading,

the structure is inherently theoretical; a line of charge of (infinitesimal) length

dl is driven by a current of the form I0e
iωt. We can derive the field that is

emitted from this structure by first finding the vector potential ~A(~R, t), where

3sometimes the “Hertzian Doublet”
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Figure 2.9: Emission patterns of a perfect Hertzian dipole antenna. (a) The electric field

strength in the θ and r directions, as a function of the distance from the antenna in the

z = 0 plane. The strength of the E field is in decibels with respect to the θ-polarised field

at r = 0. By r = λ the r-polarised component is already a factor of 50 dB weaker than

the θ-polarised component. (b) The directivity pattern in the x− y plane at r = λ. The

colours indicate which direction the field is polarised as in (a), the strength is in decibels

with respect to the maximum of the θ-polarised field with 0 dB on the circumference of

the plot. (c) The directivity pattern in the x−z plane at r = λ, the colours indicate which

direction the field is polarised as in (a).

~R is a coordinate in space and t is time

~A(~r) =
µ0

4π

w ~J( ~R′, tr)

|~R− ~R′|
d3 ~R′

=
µ0

4πr
I0e
−ikr~̂z dl

(2.7)

where tr is the “retarded time” and is given by tr = t+ |r− r′|/c and k is the

angular wavenumber ω/c = 2π/λ. We have also implicitly used the Lorenz

gauge4 to simplify future steps. The molecule couples most strongly to the

electric field component of the microwave field we shall only calculate ~E for

which we only need the vector potential

~E(~r′, tr) =
∇× (∇× ~A)

iωµ0ε0

=
I0Z0dl

2π
e−ikr

[
1

2

(
ik

r
+

1

r2
− i

kr3

)
sin(θ)~̂θ +

(
1

r2
− i

kr3

)
cos(θ)~̂r

]
(2.8)

4the condition for this gauge is: ∇· ~A+ 1
c2

dφ
dt = 0, this allows us to write ~E = −∇φ− ∂ ~A

∂t

and ~B = ∇× ~A
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Figure 2.10: The polarisation from a dipole (a) and monopole (b) antenna from a finite

element method (FEM) simulation in COMSOL. In both panels the dashed line indicates

the 1/r decay of |Eθ| for a Hertzian dipole. The simulations indicate that the antennas

are exceptionally well polarised with 60 dB of difference between the θ component and the

two orthogonal components in the z = 0 plane. The simulation is set to use λ0 = 30 cm

for both antenna designs.

Where, in the above expression, we have used that Z0 =
√
µ0/ε0 ≈ 377 Ω is

the impedance of free-space and ~θ, ~r are vectors that point in the altitude and

radial directions respectively. We have plotted the Eθ and Er components in

figure 2.9.

In the far-field only the terms that fall as 1/r survive, as such we can see

that the radiated electric field only has a component in the θ-direction. In

the plane defined by z = 0 this means that the field is linear and vertically

polarized with no dependence on x or y other than through the distance

from the origin r. In the near-field regime there is also a component that is

π/2 out of phase which points along the radial direction, the field therefore

should circulate in the r, θ plane. Where the near-field ends and the far-

field begins is a semantic matter, there is no hard-and-fast rule: however the

characteristic length scale is typically a wavelength.

We began the analysis of this system by stating that the Hertzian doublet

is not a real antenna design and that the structures are smaller than the

wavelength. A common approximation to this system is the half-wave dipole

where the overall length is λ/2, as shown in figure 2.8(a). An analytical form
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of the emission pattern in the far field can be arrived at through a process

known as pattern multiplication [97]

~E ≈ iZ0I0

4πr
e−ikr

[
cos
(
kl
2

cos(θ)
)
− cos

(
kl
2

)
sin(θ)

]
~̂θ. (2.9)

The difference between this formula and the idealised Hertzian dipole is ac-

tually minimal as such we use this as a benchmark for our numerical calcu-

lations.

The transition N = 0 → 1 has a transition frequency of ∼ 1 GHz, corres-

pondingly the wavelength is approximately 30 cm. For space reasons we do

not use a half-wave dipole for our microwave antennas as these would have

to be ∼ 15 cm in length which begins to become prohibitively long to fit into

our apparatus. Instead we use a simplified design, known as a quarter-wave

monopole. In essence it is a single conductor connected to the microwave

source mounted on a grounding plane, and behaves similarly to the dipole

antenna. We are chiefly concerned with the polarisation purity of the an-

tenna in both the near- and far-field regimes. We are concerned with both as

one antenna is located significantly less than one wavelength away from the

molecules. To determine the electric fields that are being generated by our

design we create an idealised model, illustrated in figure 2.8(b), and use the

finite element method (FEM) solver in COMSOL multiphysics RF. For our

simulation we use a side length W = λ/10, D � λ and simulate a region less

than a wavelength from the centre of the antenna, this is appropriate for our

closest antenna. We show the field components along r, θ and φ directions as

a function of the radial coordinate for this simulation and, as a benchmark,

for a dipole antenna in figure 2.10. The far-field behaviour of the two designs

is remarkably similar, with only the θ component surviving to long ranges:

this simulation indicates that our antennas are as close to perfectly polarised

as we could reasonably require. An additional simulation also confirms that

the emission pattern matches that of the ideal dipole.

2.6.2 Effect of the Surroundings

Within the RbCs apparatus in Durham there are numerous coils required

for the MOT, magnetic trap and magneto-association stages of the experi-
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Figure 2.11: The propagation of an electric field between two plates spaced by λ0/10,

originating from a point microwave source simulated using COMSOL multiphysics RF.

The upper panels show the propagation of a field initially polarised along the y direction.

The lower panels show the propagation for a field initially polarised along the z direction.

Both sets of panels are normalised independently. We have split the field into the three

polarisation components along the Cartesian x, y, z axes. We see that for both polarisa-

tions there is a significant electric field strength for all three polarisations, showing that

the plates mix the polarisation.

ment. As well as the G-10 mounts and the support structures necessary to

hold the coils in place. Naturally this forms a structure within which the

microwaves either cannot propagate within, or where they are strongly at-

tentuated. For the purposes of modelling we treat this as a bulk object with

openings significantly smaller than one wavelength.

The simplest waveguide structure one can envisage is the parallel plate wave-

guide, this consists of two infinite conducting plates which are separated by

a dielectric, usually in the radio-frequency regime this is considered to be air

but can in principle be any electrically permittive medium, in the microwave

spectrum it is not unusual for the medium to be the dielectric in a circuit-

board. Within the region between the two plates only certain transverse

modes can propagate, these are labelled TE for transverse electric; TM for

transverse magnetic; TEM for transverse electromagnetic. We can determ-

ine which modes are allowed by considering the boundary conditions to the

problem, starting for the TE modes for a wave propagating along the y axis

in figure 2.8(c) and given that the electric fields must be zero at the locations
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of the plates, and so the allowed modes have wavenumbers given by

k =
nπ

d
, n ∈ 1, 2, 3, ... (2.10)

The frequency at which propagation in a TE mode is possible is given by the

cut-off frequency, which is determined by the cut-off wavenumber i.e. n = 1

fc =
kc

2π
√
µε

(2.11)

the closest coils in the RbCs experiment is the pair for Bias 1, with an inner

separation of 32.5(1) mm [84]. If we use this value for the separation of the

plates we find that fc = 4.6 GHz, so any EM waves of wavelength longer

than 65 mm will be attenuated by the waveguide structure.

We can calculate the length over which each of the fields decays, within the

waveguide the component of the field along the propagation direction is given

by exp (−iβy) with

β =

√
k2 −

(nπ
d

)2

, (2.12)

where for k < kc β is imaginary and the propagating field decays away

over a length scale given by the difference in wavenumbers between the TE

mode and the applied field. For our example above and an incident field

with λ = 30 cm this length scale is 8 cm, these cut-off modes are known as

“evanescent”.

To gain a qualitative understanding on how the coils in our experiment will

impact the polarisation purity of our antennas we set up a simplified com-

putational model. We use a pair of square plates which are spaced by 3 cm

and with side lengths of 30 cm for a simulation wavelength of λ0 = 30 cm,

this accurately reflects the spacing of the coils for bias 1 and the extent of

the G-10 mounts. For our source we do not use the monopole antenna dis-

cussed previously: the reason for this is that the structures necessary for

an accurate full simulation requires a finer mesh and so more computational

resources. Instead as a source we use an idealised point emitter located at

y = 0 and x = −7.5 cm and repeat the simulation for two polarisations:

along the horizontal y axis and along the vertical z axis. For analysis we

only consider the fields along the z = 0 plane, corresponding to the exact

centre of the parallel plates, shown in figure 2.11 after averaging over 5 peri-

ods of oscillation. For both sources we observe that there is a significant
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electric field component along all three axes, but this is most obvious for

an initial y polarisation (upper panels of figure 2.11). This tells us that we

cannot purely rely on polarisation to isolate individual transitions. We have

observed this effect experimentally by observing slow Rabi oscillations when

using the “incorrectly” polarised antenna for a transition.
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Molecular Structure

The Hamiltonian (H) relevant to our experiments can be split into terms

that depend on internal (HInt) and external degrees of freedom (HExt). In a

diatomic molecule there are many energy scales which we must consider to

properly describe the internal structure. The Hamiltonian of such a molecule

is given by

HInt = HElectronic +HVibration +HRotation +HHF. (3.1)

where this Hamiltonian contains terms for electronic (HElectronic), vibrational

(HVibration) and rotational (HRotation) excitations as well as the hyperfine in-

teractions between the constituent atoms in the molecule (HHF). When con-

structed accurately this Hamiltonian contains all of the information about

the internal structure of the molecule and illustrates the large number of

degrees-of-freedom that the structure provides. The internal structure of the

RbCs molecule is shown in figure 3.1 to illustrate the various energy scales.

The interaction between the internal structure and external fields is described

by HExt, for our purposes we describe it with three terms

HExt = HZeeman +HDC +HAC. (3.2)

The three terms we consider are the interaction between a molecule and a

DC magnetic field (HZeeman), a DC electric field (HDC) and an AC electric

field (HAC).

In this chapter we will begin by discussing the electronic and vibrational

structure briefly, particularly as it relates to RbCs. The later sections of

40
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this chapter will be dedicated to the rotational structure of the vibronic

(vibrational & electronic) ground state of a diatomic molecule which we will

represent as a rigid rotor. We will then show, in detail, the interplay between

hyperfine, Stark and Zeeman structures and the different ways these are

represented in a molecule. We conclude the chapter with theoretical hyperfine

structure calculations for RbCs.

3.1 Hund’s Cases

Before we begin the detailed description of the internal structure of the mo-

lecule we shall cover some idealised cases for the coupling of electronic and

rotational angular momenta. These cases are known as Hund’s cases and are

labelled (a-e). We will cover only the cases relevant to the RbCs molecule:

(a) and (c), which are illustrated in figure 3.2. The terms we shall use for

angular momentum will follow [98]:

� L: The total orbital angular momentum of the electrons,

� S: The total spin of the electrons,

� J : The total angular momentum,

� N : The total angular momentum without spin; N = J − S,

� R: The rotational angular momentum of the nuclei; R = N −L,

� I: The total nuclear spin.

Hund’s case (a)

In this case the total orbital angular momentum L is strongly coupled to

the internuclear axis by electrostatics and more weakly to S by spin-orbit

coupling. The components along the internuclear axis of L and S are both

well-defined and labelled as Λ and Σ respectively. These two components add

to form Ω, which is the magnitude of a vector pointed along the internuclear

axis. The total angular momentum vector, J , is the vectorial sum of Ω with

the nuclear rotational angular momentum R.
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Figure 3.1: The structure of the RbCs molecule at various energy scales. (a) The mo-

lecular potentials as a function of the distance from the equilibrium nuclear position

R0 [91]. The four lowest energy potentials are labelled. Highlighted are the Feshbach

[n = −6(fRb = 2, fCs = 4), L = 2(mRb = 2,mCs = 3)] and ground (v = 0, N = 0,MF = 5)

states. (b) The vibrational structure near the bottom of the X1Σ+ potential for small

distances from R0 = 0.43 nm. Each of the vibrational lines is separated by ~ωv, where

ωv is the vibration frequency. (c) The rotational structure of v = 0, as a function of

distance from R0. As the rotational quantum number increases the separation between

neighbouring states also increases in multiples of the rotational constant BRot. (d) The

Zeeman structure of N = 0 as a function of applied magnetic field. The state with

(N = 0,MF = +5) is highlighted. (e) A zoom on the low field region in (d) showing the

F = 2, 3, 4, 5 manifolds separated by the scalar spin-spin coupling constant c4.
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(a) (c)

Figure 3.2: A schematic of Hund’s cases (a) and (c) as relevant for the RbCs molecule.

This case is typically a good representation of low-lying J states [99]. The ap-

propriate quantum numbers to describe the basis states are (S,Σ,Λ,Ω, J) [98].

Within this case we can also describe the coupling of the nuclear spins to the

molecular rotation, using Dunn’s case (aβ) [98, 100]. In this case the total

nuclear spin I = iRb + iCs couples to the total angular momentum J to form

a grand total angular momentum F = J + I. Using this scheme the basis

states can be labelled by the quantum numbers (S,Σ,Λ,Ω, J, I, F ).

Hund’s case (c)

In case (c) the spin-orbit coupling between L and S is much stronger and

so Λ and Σ cannot be defined. In this case both L and S couple to form

Ja = L + S, with projection Ω on the internuclear axis. This new angular

momentum adds vectorially to R to form the total angular momentum J .

This coupling scheme is usually applicable to molecules with large inter-

nuclear separations [99]. Near the dissociation limit and at short range po-

tentials are often labelled by Ω, alongside other quantum numbers. The

good quantum numbers for this case are (Ja,Ω, J) [98]. In RbCs this case is

appropriate for the description of molecules in a Feshbach state.

3.2 Electronic Structure

The largest energy separation in molecules, typically h × 100 THz, is due

to the electronic degree-of-freedom. In this thesis a detailed understanding
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of the electronic structure is not necessary, outside of what is necessary to

describe the STIRAP process described in Chapter 2 and the two-photon

spectroscopy shown later in Chapter 5. However it is worthwhile to discuss

briefly.

The total molecular wavefunction is the product of a wavefunction for the

component nuclei ψN and an electronic wavefunction φe. Because of the

differences in masses between the nuclei and electrons the motion of the

nuclei is much slower than the electrons and so, via the Born-Oppenheimer

approximation, the electronic wavefunctions vary slowly with the nuclear

coordinates r = {r,Θ,Φ}. This allows the Schrödinger equation to be written

for ψN[
− ~2

2µ

1

r2

∂

∂r

(
r2 ∂

∂r

)
+
〈φe|R2 |φe〉

2µr2
+ Ee(r)

]
ψN(r) = EψN(r). (3.3)

Here µ is the reduced mass of the molecule.

What we therefore term “the electronic structure” are actually then the elec-

tronic eigen-energies (Ee) which vary as a function of the nuclear separation.

These energies act as potentials which define the range over which the nuc-

lear wavefunction exists. The general form of these potentials is to increase

toward infinity as r → 0 (due to Coulomb repulsion) and to tend to the free

atomic levels as r → ∞. If there is a minimum between these two points,

and the potential is deep enough, the electronic structure is able to sup-

port bound states. The position of this minimum is called the “equilibrium

separation” R0.

Each of these potentials can be described by a “term symbol”: n(2S+1)Λ±Ω.

By analogy with the spectroscopic notation used in atoms Λ is represented

by a capital Greek letter starting with Σ for Λ = 0, Π for Λ = 1 continuing

following the s, p, d, f ... pattern. The value of n is represented by a letter,

starting at X then A,B,C... counting up in energy, in some places the case of

the letter is used to indicate that a potential has a different spin multiplicity

(the value of 2S + 1) to the ground state. n can be omitted and replaced

by Ω for certain potentials [91]. The ± superscript represents the inversion

symmetry in a plane which includes the internuclear axis. Figure 3.1(a)

shows examples of the lowest potentials for the RbCs molecule, calculated

neglecting spin-orbit coupling by Fahs et al. [91].
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3.3 Vibrational Structure

The vibrational energy of the molecule is associated with motion around the

equilibrium separation. We can arrive at an equation for the radial motion of

the nuclei by substituting ψN(r) = fv,N
ΛXN,MN

r−1 where fv,N is the radial

wavefunction and ΛXN,MN
is the angular wavefunction. By substituting into

equation (3.3) we can form a radial equation[
−~2

2m

d2

dr2
− ERot + Ee(r)

]
fv,N = E fv,N . (3.4)

Here one term has already been simplified to the rotational energy (ERot),

this will be covered in much greater detail in the next section. To solve this

equation we will consider only behaviour around the potential minimum.

Taylor expanding the potential near the minimum gives

Ee(R) ≈ Ee(R0) +
Be

2
(r −R0)2. (3.5)

and so we can immediately recognise that the vibrational energy is exactly

the quantum harmonic oscillator. This gives energy levels

Evib = ~ωv
(
v +

1

2

)
, (3.6)

with the vibrational angular frequency ωv =
√
Be/m. For the X1Σ state of

RbCs the v = 0 → 1 transition energy is h× 1.49270 THz [101]. This short

derivation illuminates two features of the vibrational structure: firstly the vi-

brational ground state does not coincide with the minimum of the electronic

potential (as can be seen in figure 3.1(b)) there is a zero-point energy of

~ωv/2. Secondly, as the wavefunctions are those for the harmonic oscillator,

they behave like Hermite polynomials and so, for v′ 6= v, are orthogonal,

hence one can arrive at a selection rule ∆v = ±1.

However for vibronic transitions (that is: transitions involving changing vi-

brational and electronic state) the potential minimums and vibrational fre-

quencies can be vastly different and so the argument that the wavefunc-

tions for v 6= v′ are orthogonal breaks down. In this case the overlap of

the radial wavefunctions, known as the Franck-Condon factor, governs the

strength of different transitions. In experiment, particularly those related

to the laser cooling of molecules, a multitude of vibrational transitions are

allowed [102, 103].
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3.4 Rotational structure and the rigid rotor

The previous sections have dealt with what we shall term the “gross” struc-

ture of the molecule: the largest energies. In this section we will cover, in

detail, the derivation of an effective Hamiltonian for the rotational and hy-

perfine structure. We will neglect both Evib and Ee in this discussion as

ro-vibrational and rovibronic transitions are not relevant to molecules pre-

pared in the electronic and vibrational ground states.

The coarsest energy level we will consider in our new “effective” Hamiltonian

is that of rotation. In RbCs rotational energies are in the microwave part of

the spectrum with energies ∼ h×1 GHz. The rotational term can be arrived

at by treating the molecule as a rigid rotor which is symmetric about the

internuclear axis, the associated kinetic energy is [104]

T =
1

2Ia
(R2

a +R2
b) +

1

2Ic
R2
c

=
1

2Ia
R2 +

(
1

2Ic
− 1

2Ia

)
R2
c ,

(3.7)

where a, b and c are the principal axes of the system, conventionally c is

chosen to be the internuclear axis. In equation (3.7) Ii is the moment of

inertia about axis i and Ri is the rotational angular momentum about axis

i. For axis a the moment of inertia is given by Ia = I0 = mR2
0, where m

is the reduced mass of the molecule. We can discard the terms in Rc as

their eigenvalues are proportional to ±Λ (which is zero for Σ potentials).

Making the substitution for the rotational constant B0 = ~2/2I0 and setting

R = J = N for Λ = Σ = 0 gives the rigid rotor energy levels

ERigid(N) = B0N(N + 1). (3.8)

As there is no potential energy associated with the rotation of the molecule,

provided it is rigid, the Schrödinger equation is identical to the angular part

of that for the hydrogen atom. Its wavefunctions are thus [105]

ψR = ARe
−iMNφPMN

N [cos (θ)] = YN,MN
(θ, φ) (3.9)

where θ and φ are the polar and azimuthal angles about z respectively. PMN
N

is the associated Legendre polynomial and AR is a normalisation constant.
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Figure 3.3: The probability density of the wavefunctions, YN,MN
, for N ≤ 3 for a rigid

rotor, the colour indicates the phase. The wavefunctions are being viewed along the x

axis, with the solid black line showing cuts through the y − z plane. Scales are consistent

for each N but not between states of different N .

The functions YM,MN
are the spherical harmonics, which will come in handy

later to determine the matrix elements of various Hamiltonians. These wave-

functions are shown in figure 3.3 for N ≤ 3.

However real molecules can vibrate and so are not rigid, to include this

requires solving the radial equation for separations about the equilibrium

position R0. Doing so introduces an additional effective potential due to

the centrifugal distortion of the molecule, which leads to a correction to the

eigenenergy of the form

ECentrifugal = −D0N
2(N + 1)2. (3.10)

In principle there are also higher order terms which couple vibration and

rotation to higher powers. For the low rotation states only this first distortion

term is relevant, for RbCs this shifts the energy of N = 1 by h×800 Hz. Our

rotational Hamiltonian’s matrix elements are then given by

〈N,MN |HRot |N ′,M ′
N〉 = (ERigid + ECentrifugal)δMN ,M

′
N
δN,N ′ , (3.11)

which is diagonal in the |N,MN〉 basis and so the wavefunctions in equa-

tion (3.9) are still valid.
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Figure 3.4: The DC Stark shift of a rigid rotor molecule. (a) The pendular states with

Ñ ≤ 4, the magnitude of MN is indicated where a given energy level crosses the vertical

axis. The electric field is given in units of the ratio of the rotational constant to the

intrinsic dipole moment. For RbCs this is B0/d0 ≈ 0.785 kV cm−1 (b) The induced dipole

moment of this molecule in units of the permanent dipole moment (d0) for states with

MN = 0, calculated using equation (3.20).

3.5 Rigid Rotor and Electric Fields

In this section we will describe a simple model of a charged rigid rotor in an

electric field. This will enable us to describe the AC and DC Stark effects

for polar molecules.

3.5.1 DC Stark Effect

In any heteronuclear molecule there is a slight difference in charge along

the internuclear axis due to the differing number of protons between the

two nuclei. This charge distribution gives the molecules an intrinsic dipole

moment. This dipole moment exists only within the molecular reference

frame. In the laboratory the molecules follow the rotational wavefunctions

shown in figure 3.3 and have no specified orientations and so the average

dipole moment is zero. Applying an electric field to the molecules couples

states of opposing parity, inducing a dipole moment in the molecules in the

laboratory frame. The Hamiltonian for the DC Stark effect can be written
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Figure 3.5: The state composition of four pendular states is shown as a function of applied

electric field. The component in the rotational state which they adiabatically connect to at

zero electric field is shown as a solid line, with all other components shown as dashed. As

the electric field increases it becomes clear that higher rotational states contribute more

to the state composition and so labelling states by N is no longer appropriate. The pole

in Ñ = 1,M = 0 is due to a zero crossing of the |N = 1,MN = 0〉 component.

as:

HDC = −d0E · n̂, (3.12)

where n̂ is a unit vector which points in the direction of the internuclear axis

and d0 is the molecule-frame intrinsic electric dipole moment. Let us assume

that the electric field is pointed along the z-axis, which the molecules are

also quantised along. Equation (3.12) becomes

HDC = −d0E cos(θ). (3.13)

Our total Hamiltonian now resembles a spherical pendulum with potential

energy associated with the position along the z axis. The eigenstates of this

new system, so-called “pendular states”, are given by superpositions of the

spherical harmonics [106]∣∣ψÑ,MN

〉
=
∑
N,M

cN,MYN,M =
∑
N,M

cN,M |N,M〉 (3.14)

the Ñ is used to indicate that N is no longer a good quantum number

but that we can still count up in energy for each |MN |. As the eigenstates

for this Hamiltonian can be expressed as superpositions of our rotational
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wavefunctions we will continue to use the |N,MN〉 basis when discussing

the charged rigid rotor model. The evolution of some example states is

shown in figure 3.5, where it becomes clear that using (N,MN) as labels is

inappropriate.

To determine the new wavefunctions and the associated energies we shall

calculate the matrix elements of equation (3.13) the |N,MN〉 basis. Re-

membering from equation (3.9) once again that these wavefunctions are the

spherical harmonics YN,MN
(θ, φ) the matrix elements are

〈N,MN |HDC |N ′,M ′
N〉 =

−d0E
w w

Y ∗N,MN
(θ, φ) cos(θ)YN ′,M ′N (θ, φ)d2Ω,

(3.15)

where the integral is over the surface of a sphere i.e. in spherical polar

coordinates d2Ω = sin(θ)dθdφ, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π. We can use the sub-

stitution cos(θ) = Y1,0×
√

4π/3 to rewrite this expression entirely in the form

of spherical harmonics. This allows us to use the known integral formula for

the product of three spherical harmonics [107]
w w

YA,i(θ, φ)YB,j(θ, φ)YC,k(θ, φ)d2Ω

=

[
(2A+ 1)(2B + 1)(2C + 1)

4π

]1/2
(
A B C

0 0 0

)(
A B C

i j k

)
.

(3.16)

Combined with the definition that Y ∗N,MN
= (−1)MNYN,−MN

we can arrive at

the result

〈N,MN |HDC |N ′,M ′
N〉 =− d0E

√
(2N + 1)(2N ′ + 1)(−1)MN

×

(
N 1 N ′

−MN 0 M ′
N

)(
N 1 N ′

0 0 0

)
.

(3.17)

The last two terms in parenthesise are Wigner-3j coefficients1 and show that

the DC Stark effect mixes states with the same MN but N different by 1.

For N = 0, 1 and MN = 0,−1, 0, 1 the DC Stark effect is given by the matrix

HDC = −d0E


0 0

√
1
3

0

0 0 0 0√
1
3

0 0 0

0 0 0 0

 . (3.18)

1The Wigner-3j symbols are similar to the Clebsch-Gordon coefficients and describe

the addition of two angular momenta in terms of a third [108].
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Figure 3.6: The dipole moment for pendular states with MN = 0 (left) and |MN | = 1

(right). At key points the probability density of the wavefunction is illustrated as in

figure 3.3. For Ñ 6= MN the dipole moment is briefly oriented anti-parallel to the applied

electric field, shown as a distortion of the wavefunctions along the −z axis at (ii) and (v).

We can interpret this matrix as showing us the couplings between the lowest

two rotational levels. In this simplified case there are only the N = 0, 1,

MN = 0 states that are being coupled as no other states satisfy the rules

enforced by equation (3.17). We can also observe that there are no diag-

onal elements, these would correspond to the simple shifting of energy levels

without mixing. In figure 3.4(a) the DC Stark shift of the lowest pendular

states is shown as a function of applied electric field.

Dipole moments

We can now sensibly ask the question, what is the dipole moment induced

by the DC electric field? The lab-frame dipole moment of a state |ψ〉 is given

by the appropriate expectation value of the dipole operator

〈ψ|d |ψ〉 . (3.19)

where d has components along all three axes. If we are only concerned with

the z component (the one along the external DC electric field) then we find
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N → N + 1 dz(d0) d±(d0)

0 1√
3

− 1√
3

1 2√
15

−
√

2
5

2 3√
35

−
√

3
7

3 4
3
√

7
−2

3

4 5
3
√

11
−
√

5
11

5 6√
143

−
√

6
13

6 7√
195

−
√

7
15

7 8√
255

−2
√

2
17

8 9√
323

− 3√
19

9 10√
399

−
√

10
21

10 11√
483

−
√

11
23

Table 3.1: The transition dipole moments for the π transitions |N, 0〉 → |N + 1,MN = 0〉
and the spin-stretched σ± transitions |N, |MN | = N〉 → |N + 1, |MN | = N + 1〉.

that

d 〈ψi|H |ψi〉
dE

=
dEi
dE

=
dERot

i

dE
+

dEDC
i

dE

= 0− d(E 〈ψi| dz |ψi〉)
dE

= −〈ψi| dz |ψi〉 ,

(3.20)

where Ei is the eigenenergy associated with eigenstate |ψi〉. The value of this

induced dipole moment is shown in figure 3.4(b) for Ñ ≤ 4 and MN = 0.

We also show the induced dipole moment and its relation to the shape of the

wavefunction in figure 3.6, plotting the wavefunction in this way illustrates

the common interpretation that the electric field “aligns” the molecules along

the z axis.

We can also explicitly calculate the terms in the |N,MN〉 basis. If we replace



Chapter 3. Molecular Structure 53

E with ẑ in equation (3.15) then the matrix elements become

〈N,MN | dz |N ′,M ′
N〉 =

d0

w w
Y ∗N,MN

(θ, φ) cos(θ)YN ′,M ′N (θ, φ)d2Ω

= d0

√
(2N + 1)(2N ′ + 1)(−1)MN

×

(
N 1 N ′

−MN 0 M ′
N

)(
N 1 N ′

0 0 0

)
.

(3.21)

It is worth highlighting a key property of this formula. If we set N = N ′ then

equation (3.21) is exactly zero, we can interpret this as for any of the pure

rotational states there is no laboratory-frame dipole moment! The physical

reason for this is that the spherical harmonics have a definite parity whilst

for a dipole moment to exist this symmetry must be broken.

To determine the remaining elements of the dipole operator we can use

foresight to calculate for σ+ = (x̂+ iŷ)/
√

2, σ− = (x̂− iŷ)/
√

2 and π = ẑ,

which are the matrix elements for transitions that change MN by +1, −1

and 0 respectively. These are represented by the terms dj = d0Y1,j and so

give

〈N,MN | dj |N ′,M ′
N〉 =

d0

w w
Y ∗N,MN

(θ, φ)Y1,j(θ, φ)YN ′,M ′N (θ, φ)d2Ω =

d0

√
(2N + 1)(2N ′ + 1)(−1)MN

(
N 1 N ′

−MN j M ′
N

)(
N 1 N ′

0 0 0

)
,

(3.22)

where j = −1, 1, 0 for σ+, σ−, π transitions.

Dipole-Dipole Interactions

The reason to care about the preceding section is to arrive at a system of

permanent dipoles that can be engineered to interact. This necessiates a brief

journey into many-body physics. If we consider a system of two molecules

in the plane, as in figure 3.7, then classically the dipole-dipole interaction is

given by

Vdd =
d1 · d2 − 3(d1 · R̂)(d2 · R̂)

r3
. (3.23)

To transform this equation into a quantum-mechanical form we must replace

the vectors di with the expectation values of operators. As the dipole oper-
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Figure 3.7: The coordinate system used to define the interaction between two molecules.

The z axis is fixed by an external electric or magnetic field and is used as a quantisation

axis. The molecules are confined to the perpendicular x− y plane.

ators we have previously determined would act on separate state-spaces for

molecules i and j it is convenient to form a new ij state space. We will rep-

resent the dipole operators for the k-th molecule as D
(q)
k , where q represents

a spatial axis. Explicitly this is

D
(q)
i = d

(q)
i ⊗ 1j,

D
(q)
j = 1i ⊗ d(q)

j .
(3.24)

We additionally construct the vector of operators Dk = (D
(x)
k , D

(y)
k , D

(z)
k )

such that we can expand out the scalar products in Cartesian coordin-

ates. Noting that, with our constraint that the molecules lie in the plane,

R = (r cos(Φ), r sin(Φ), 0). The dipole-dipole interaction then becomes

Vdd =
1

r3

([
D

(x)
i D

(x)
j

[
1− 3 cos2(Φ)

]
+D

(y)
i D

(y)
j

[
1− 3 sin2(Φ)

]]
− 3 cos(Φ) sin(Φ)

[
D

(x)
i D

(y)
j +D

(y)
i D

(x)
j

]
+D

(z)
i D

(z)
j

)
.

(3.25)

However for calculations on molecules that have quantum numbers N,MN

these Cartesian operators are not convenient. Using the same form as in

equation (3.22) we can convert the dipole operators into ones for circularly

polarised light. Doing so, and expanding out the trigonometric functions

gives [109]:

Vdd =
1

r3

([
D

(0)
i D

(0)
j +

D
(+)
i D

(−)
j +D

(−)
i D

(+)
j

2

]

− 3

2

[
D

(+)
i D

(+)
j e−2iΦ +D

(−)
i D

(−)
j e+2iΦ

])
.

(3.26)
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This form of the dipole-dipole interaction is often used in quantum magnet-

ism Hamiltonians such that molecules can represent pseudo-spins on a tight

lattice. I will outline how one could do so here.

The first step is to define a useful basis to work in. Commonly these are

the lowest rotational or pendular states with MN = 0 [72, 106], which

have on-site Ising energies as well as “flip-flop” interactions. Our basis

is for the states: {|↓k〉 = |Ñ = 0,MN = 0〉k, |↑k〉 = |1, 0〉k}, |Ψij〉 ∈
{|↓i↓j〉 , |↓i↑j〉 , |↑i↓j〉 , |↑i↑j〉}. We then calculate the matrix elements for mo-

lecules i, j, noting that we expect there to be 16 elements (a 4×4 matrix)

due to the number of basis states

Hij =
∑
n,m

∣∣Ψn
ij

〉 〈
Ψn
ij

∣∣Vdd

∣∣Ψm
ij

〉 〈
Ψm
ij

∣∣ , (3.27)

for 0 ≤ n,m ≤ 4. We can also note here that the states we have chosen as

a basis only have matrix elements for D
(0)
k and so the Hamiltonian for the

interaction between i and j is given by the matrix

Hij =
1

r3


d2
↓ 0 0 d2

↑↓

0 d↓d↑ d2
↑↓ 0

0 d2
↑↓ d↓d↑ 0

d2
↑↓ 0 0 d2

↑

 , (3.28)

where d↓ and d↑ correspond to the expectation value of d for |↓〉 and |↑〉
respectively. The terms d↓↑ are the transition dipole matrix elements |↓〉 →
|↑〉, values of these for the bare rotational states can be found in Table 3.1.

The diagonal elements of this Hamiltonian correspond to Ising energies. The

terms in |↑i↓j〉 〈↓i↑j| and the conjugate, correspond to flip-flop interactions.

The terms in |↑i↑j〉 〈↓i↓j| and its conjugate are also flip-flops, but because

there is a requirement of two spin excitations these are often far off-resonant

and so neglected.

3.5.2 AC Stark Effect

The AC Stark shift caused by light with electric field E is governed by the

Hamiltonian

HAC = −E ·α ·E. (3.29)
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Figure 3.8: The coordinate systems needed to describe the polarisability of the RbCs mo-

lecule. (a) A linearly polarised dipole trapping laser, propagating along x (perpendicular

to the page), is polarised along z, which also acts as the quantisation axis for a molecule.

Highlighted are two of the components of the polarisability α‖ and α⊥ and their axes in

the molecule’s coordinate system. The third component is perpendicular to the page with

magnitude α⊥. (b) The dipole trapping laser’s polarisation is rotated by β about x. This

forms a new coordinate system where the inter-nuclear axis of the molecule is at an θ′ to

the electric field of the laser.

Where the polarisability, α, of a molecule is given by the tensor:

α =


α11 α12 α13

α21 α22 α23

α31 α32 α33

 , (3.30)

if we use the coordinate system shown in figure 3.8(a) this tensor can be

simplified as α11 = α22 = α⊥, α33 = α‖ and all other terms are zero. At first

it is convenient to assume that the molecule, lying at some angle θ to the

z axis, has z-polarised light incident. For this case the electric field in the

molecule’s coordinate frame (with numerical labels) is

E = E


0

sin(θ)

cos(θ)

 , (3.31)

where E = |E| is the magnitude of the laser’s electric field. Expanding out

equation (3.29) gives the expression

HAC =
[
α‖ cos2(θ) + α⊥ sin2(θ)

]
× |E|2, (3.32)

we can replace the E2 with a scaled intensity I/(2ε0c) from the defini-

tion of the Poynting vector [110]. Equation (3.32) can be rewritten in a
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Figure 3.9: The AC Stark shift of an RbCs-like rigid rotor. (a) The AC Stark shift of the

lowest two rotational levels is shown as a function of the angle β. The dashed vertical

lines indicate the magic angles. The states are determined in the rigid rotor basis, |±〉
corresponds to the linear superpositions: |N = 1,MN = +1〉 ± |N = 1,MN = −1〉 /

√
2.

(b) The intensity dependence of the transition frequencies between (N = 0,MN = 0) and

the states in N = 1 at the magic angle 54.7356◦. The lines are coloured as in (a). We have

used the values of the polarisability for RbCs at λ = 1064 nm to perform this calculation.

(c) As in (b) but at the second magic angle: 35.2644◦.

more convenient form by making the substitutions α(0) = (α‖ + 2α⊥)/3 and

α(2) = 2× (α‖ − α⊥)/3

HAC =
(
α(0) + α(2)P2 [cos(θ)]

)
× I

2ε0c
, (3.33)

α(0) is known as the isotropic part of the polarisability and has no angular

dependence, whilst α(2) is the anisotropic part, with its term depending on the

second Legendre polynomial P2(x) = (3x2 − 1)/2. We can now calculate the

matrix elements which correspond to the first, H
(0)
AC, and second, H

(2)
AC, terms

in equation (3.33). As with the DC Stark effect we will use our knowledge

that the wavefunctions in the |N,MN〉 basis are given exactly by the spherical
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harmonics

〈N,MN |H(0)
AC |N

′,M ′
N〉 =

Iα(0)

2ε0c

w w
Y ∗N,MN

(θ, φ)YN ′,M ′N (θ, φ) d2Ω =

Iα(0)

2ε0c
δN,N ′δMN ,M

′
N
,

(3.34a)

〈N,MN |H(2)
AC |N

′,M ′
N〉 =

Iα(2)

2ε0c
×
√

4π

5

w w
Y ∗N,MN

(θ, φ)Y2,0 (θ, φ)YN ′,M ′N (θ, φ) d2Ω =

Iα(2)

2ε0c
×
√

(2N + 1)(2N ′ + 1)(−1)MN×(
N 2 N ′

MN 0 −M ′
N

)(
N 2 N ′

0 0 0

)
.

(3.34b)

Where in equation (3.34a) we have used the orthonormality of the spherical

harmonics to remove terms where N 6= N ′ and MN 6= M ′
N , which gives us the

expected diagonal Hamiltonian. In equation (3.34b) we have first rewritten

P2 [cos(θ)] as a spherical harmonic Y2,0 with an appropriate normalisation

constant, this is so that we can then use equation (3.16) to perform the

integration.

Whilst these terms are correct it is somewhat limiting to only be able to

describe lasers polarised along the z axis. If we want to rotate the polar-

isation of our laser by an angle β we must first rewrite the term for the

anisotropic Stark shift2 in a new coordinate system, which we will designate

with θ′, φ′ [107]

2ε0c

α(2)I
×H(2)

AC(θ′, φ′) =

√
4π

5
Y2,0(θ′, φ′)

=

√
4π

5

∑
M

D2
M,0(0, β, 0)Y2,M(θ, φ)

(3.35)

where D2
M,0(α, β, γ) is the Wigner rotation matrix. In our example the ro-

tation was simply about the propagation axis (x) so only one of the three

Euler angles was necessary and we can make the substitution D2
M,0(0, β, 0) =

2Because the isotropic shift has no angular dependence it is the same in all coordinate

systems.
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d2
M,0(β) i.e. replacing the Wigner rotation matrix for the reduced Wigner

rotation matrix. Substituting this into equation (3.34b) gives

〈N,MN |H(2)
AC |N

′,M ′
N〉

=
Iα(2)

2ε0c
×
√

4π

5

w w
Y ∗N,MN

(θ, φ)Y2,0 (θ′, φ′)YN ′,M ′N (θ, φ) d2Ω

=
Iα(2)

2ε0c
×
√

4π

5

w w
Y ∗N,MN

(θ, φ)

(∑
M

d2
M,0(β)Y2,M (θ, φ)

)
YN ′,M ′N (θ, φ) d2Ω

=
Iα(2)

2ε0c
×
∑
M

d2
M,0(β)

√
(2N + 1)(2N ′ + 1)(−1)MN

×

(
N 2 N ′

MN M −M ′
N

)(
N 2 N ′

0 0 0

)
.

(3.36)

These terms are not immediately obvious and we will describe some special

cases shortly. It is important to note that we have non-zero elements for

|N ′ −N | = 0, 2 and 0 ≤ |M ′
N −MN | ≤ 2.

The first special case is where β = 0 or when equation (3.36) reduces to

equation (3.34b). In this case the matrix elements, for N = N ′ = 1 are

〈1,MN |H(2)
AC(0) |1,M ′

N〉 = − 1

2ε0c


−1

5
(α(2)I) 0 0

0 2α(2)I
5

0

0 0 −1
5
(α(2)I)

 ,

(3.37)

and so the AC Stark effect is (mostly) diagonal when the electric field of the

trapping laser is along the quantisation axis. The Hamiltonian is only mostly

diagonal as there are higher order terms such as: −2ε0c× 〈0, 0|H(2)
AC |2, 0〉 =

α(2)I/
√

5.

Another case that may be of interest is when the trapping laser is polarised

perpendicularly to the z axis, β = 90◦

〈1,MN |H(2)
AC(90◦) |1,M ′

N〉 = − 1

2ε0c


α(2)I

10
0 − 1

10
(3α(2)I)

0 −1
5
(α(2)I) 0

− 1
10

(3α(2)I) 0 α(2)I
10

 .

(3.38)

In this case only states with MN = 0 are un-mixed, with MN = ±1 being

coupled by the off-diagonal elements. We also have non-zero matrix elements
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for 〈0, 0|H(2)
AC |2, 0〉 and 〈0, 0|H(2)

AC |2,±2〉 and similar for higher N .

The final case we will show is a little more difficult to immediately recognise,

if we start by giving the matrix elements for the N = N ′ = 1 states for an

arbitrary value of β

〈1,MN |H(2)
AC(β) |1,M ′

N〉

= −α
(2)I

2ε0c


1−3 cos2(β)

10
3 cos(β) sin(β)

5
√

2

−3 sin2(β)
10

3 cos(β) sin(β)

5
√

2

3 cos2(β)−1
5

−3 cos(β) sin(β)

5
√

2
−3 sin2(β)

10
−3 cos(β) sin(β)

5
√

2

1−3 cos2(β)
10

 ,
(3.39)

where we see that all the diagonal terms in MN have the same angu-

lar dependence3, give-or-take a factor of -1, and so for a special angle we

can remove all the diagonal terms at once. The value of this angle is

βMagic = arccos
(
1/
√

3
)
≈ 54.7356◦. The matrix elements then reduce to

〈1,MN |H(2)
AC(βMagic) |1,M ′

N〉 = −α
(2)I

2ε0c


0 1

5
−1

5
1
5

0 −1
5

−1
5
−1

5
0

 . (3.40)

There are indeed now no diagonal elements in the matrix for the AC Stark

effect, however as we show in figure 3.9(b), this doesn’t mean there are no

energy shifts.

3.6 Hyperfine

In a heteronuclear molecule there are two nuclei with their own intrinsic

nuclear spins, their interactions cause small (when compared to the rotational

structure) changes in the energy level structure. The effect of the interactions

between nuclear spins is called the hyperfine structure, we have not described

the “fine” structure as in the electronic ground state of bialkalis S = 0. In

this section we will consider the hyperfine structure of a general bialkali AB,

i.e. A,B ∈ {Li,Na,K,Rb,Cs,Fr}, with a few references specifically to RbCs.

The hyperfine Hamiltonian consists of three terms [98, 111, 112]

HHF = HQuad +HSpin−Spin +HSpin−Rotation. (3.41)

3This dependence extends beyond N = 1 as well.
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The first term is the nuclear quadrupole interaction and is non-zero only

for nuclei with i > 1/2. This term arises from the interaction between the

nuclear quadrupole and the electronic electric field gradient. This term is

given by [113, 114]

HQuad =
∑
j=A,B

−(eqQ)j
3(ij ·N )2 + 3/2(ij ·N )− i2j ·N 2

2ij(2ij − 1)(2N − 1)(2N + 3)
, (3.42)

(eqQ)j is the quadrupole coupling constant of nucleus j. This term only has

an impact on states with N > 0.

The second term that we will consider is HSpin−Spin, which itself consists of

two terms, the first is the scalar spin-spin interaction

H
(0)
Spin−Spin = c4iA · iB, (3.43)

which arises from electron-mediated dipolar interactions. For RbCs in the

ground state at zero magnetic field this term is dominant4. The next term

is the tensor spin-spin interaction which also includes direct magnetic di-

polar interactions as well as indirect contributions. It is given by the expres-

sion [115]

H
(1)
Spin−Spin =

c3
3(iA ·N ) · (iB ·N ) + 3(iB ·N ) · (iA ·N )− 2N(N + 1)(iA · iB)

(2N + 3)(2N − 1)
.

(3.44)

The final term we must consider to accurately represent the hyperfine struc-

ture with no external fields is HSpin−Rotation, which arises from the interaction

between the magnetic moments of the nuclei and the magnetic field generated

by the rotation of the molecule. This is given by

HSpin−Rotation =
∑
j=A,B

cjN · ij. (3.45)

The hyperfine structure splits the 2N + 1 rotational sub-levels into (2N +

1)(2iA +1)(2iB +1) sub-levels. In RbCs this gives 32 sub-levels in the ground

state and 96 in the first excited state. In the ground state these levels are

divided into manifolds, defined by F = 2, 3, 4, 5 and separated by multiples

of the scalar spin-spin coupling constant. This splitting is highlighted in

figure 3.1(e) where the Zeeman structure at low magnetic fields are shown.

4The usage of c3 and c4 as the symbols for the coefficients is based on convention. The

terms have been presented in order of significance to the ground state structure of RbCs
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3.6.1 Zeeman Effect

When compared to the atomic case the magnetic interaction in the mo-

lecule is extremely weak, as both electrons are paired they do not provide a

magnetic moment and so only the nuclei contribute. The interaction with

magnetic field is therefore weaker by the ratio µN/µB. The Zeeman term in

the Hamiltonian therefore has only nuclear spin and rotational components

HZeeman = −grµNN ·B −
∑
j=A,B

gjNµNij ·B. (3.46)

As the magnetic field has terms which act separately on N and iA, iB the

action of the magnetic field is to split the initially degenerate F states into

distinct, decoupled states. In the limit of very high magnetic field the states

are well described by the quantum numbers (N,MN ,mA,mB), whilst at low

field the states are well represented with basis states (N,F,MF ).

The Zeeman structure ofN = 0 in the RbCs molecule is shown in figure 3.1(d)

and (e). At low fields the F = 2, 3, 4, 5 manifolds are clear and separated by

multiples of the scalar spin-spin coupling constant c4.

3.7 Application to 87Rb133Cs

In this section we combine the results from this chapter to form a full descrip-

tion of the RbCs molecule in external fields. We will describe the evolution

of the structure first with the application of magnetic fields, then with DC

electric fields. Finally we compare the AC Stark structure to illustrate how

the DC electric field can decouple the rotational structure from the nuclear

spin and hyperfine structure.

In figure 3.10(a) we show the evolution of the hyperfine states under an

increasing applied magnetic field, in this field regime the states in both the

ground rotational state and the excited state are being split by their value

of MF . In our apparatus, we produce RbCs molecules at a magnetic field of

181.5 G in the spin stretched state (MN = 0,mRb = 3/2,mCs = 7/2), which

has MF = +5. Under these conditions, this is the lowest hyperfine state

in N = 0. At this magnetic field, F is no longer a good quantum number
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Figure 3.10: The Zeeman and Stark shifts in RbCs with hyperfine structure. (a) The

energy of the hyperfine states is shown as a function of the applied magnetic field strength.

The states with grand total angular momentum projection MF = +5 are highlighted. In

N = 0 there is only one state, labelled 0. In N = 1 (upper panel) there are three, labelled

by an index i in inverted energy order at E = 0. (b) The Zeeman split hyperfine energy

levels are shown as a function of applied DC electric field strength. The region shown in

the upper panel of (b) is highlighted in (c) which shows a larger range of electric field. (d)

The transition dipole moment dz for the π transitions is shown as a function of applied

electric field. For high electric field there is only one transition with appreciable transition

strength.

but transitions with ∆MF = 0,±1, provided ∆N = 1, can have a non-zero

strength. We have highlighted the three possible transitions with ∆MF = 0,

which correspond to energy levels with MF = +5 and N = 1 in figure 3.10(a).

Because of the hyperfine interactions described in section 3.6 these states have

components with different nuclear spin projections.

In figure 3.10(b) we show the same states at 181.5 G but apply a small electric

field< 150 V cm−1. In the ground rotational state all the energy levels remain

parallel as each state has the same rotational projection MN = 0. In the first

excited state however there is first a pattern of crossings and avoided crossings

as the states split according to |MN |. In N = 1 the MN = 0 branch is higher

in energy than that with MN = ±1. In figure 3.10(b) we have coloured each

of the lines by the value of the transition dipole moment | 〈0| dz |i〉 | where |i〉
represents each of the states in N = 1. In figure 3.10(c) we take the electric

field further to 500 V cm−1. In this figure we have highlighted the region from
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figure 3.10(b) to show the rapid change in energy due to the DC Stark shift,

which is approximately quadratic with electric field strength. At 400 V cm−1

only one state (labelled 1) has any appreciable transition dipole moment with

the ground state. We show the evolution of the transition dipole moment as

in figure 3.10(b) by shading the appropriate energy level in the Stark map,

we also show the numerical values in figure 3.10(d) for the highlighted states

in figure 3.10(a).

The application of the DC electric field has split the rotational structure into

energy levels characterised by the quantum number MN . Although there

are 32 copies of each level with a given MN , split by the nuclear Zeeman

interaction, the hyperfine interactions no longer have a significant impact on

the energy level structure. Each hyperfine state vector |ΨHF〉 is now well

represented by

|ΨHF〉 =
∣∣ψÑ,MN

〉
⊗ |iRb,mRb〉 |iCs,mCs〉 , (3.47)

where
∣∣ψÑ,MN

〉
are the pendular states as given in equation (3.14) and

|iRb,mRb〉 |iCs,mCs〉 represent the nuclear spin states.

We now consider the AC Stark shift of RbCs in an off-resonant optical field

(λ = 1064 nm) in two experimentally relevant regimes in figure 3.11. The

first is where the 181.5 G magnetic field and hyperfine interactions leave

the nuclear spins coupled and where |ΨHF〉 = |N,MF 〉, this is shown in fig-

ure 3.11(a). For β 6= 0◦ the AC Stark effect creates a complex pattern of

crossings and avoided crossings, and so the polarisability can only be ad-

equately described locally by the intensity dependent df/dI. For the special

case of β = 0◦ the Hamiltonian governing the AC Stark shift is almost di-

agonal, as shown in equation (3.37) and the AC Stark shift is linear, though

the transition dipole matrix element does not remain constant for all π trans-

itions. We contrast this behaviour with that when a 300 V cm−1 electric field

is applied as shown in figure 3.11(b). In this case the hyperfine state vectors

are given by equation (3.47) and, for all values of β, the AC Stark shift is

linear and so the local polarisability df/dI is independent of intensity.
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Figure 3.11: A comparison of the AC Stark shift of the transitions to N = Ñ = 1 from the

hyperfine ground state of RbCs at λ = 1064 nm without (a) and with an applied electric

field of 300 V cm−1 (b). We consider three polarisation angles, β = 0◦, βmagic and 90◦ in

all three cases the Stark structure is vastly simplified . The individual energy levels are

shaded by the π transition dipole moment.

3.7.1 Value of Coupling constants

To calculate the energy levels of RbCs the many coupling constants through-

out the Hamiltonian must be included. All of the values necessary for the

models presented in this chapter are given in Table 3.2. Additionally we

present the python 3.7 source code used for performing these calculations in

Appendix B.
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Constant Description Value Source

iRb
87Rb nuclear spin 3/2

iCs
133Cs nuclear spin 7/2

d0 Dipole moment 1.225(3)(8) D [42]

E0 Binding energy h× 114 268 135.25(3) MHz [92]

Bv=0 Rotational constant h× 490.173 994(45) MHz [116]

Dv=0 Centrifugal distor-

tion constant

h× 213.0(3) Hz [101]

(eQq)Rb
87Rb quadrupole

coupling constant

−h× 809.29(1.13) kHz [116]

(eQq)Cs
133Cs quadrupole

coupling constant

h× 59.98(1.86) kHz [116]

cRb
87Rb nuclear spin-

rotation coupling

constant

h× 29.4 Hz* [111]

cCs
133Cs nuclear spin-

rotation coupling

constant

h× 196.8 Hz* [111]

c3 Tensor spin-spin

coupling constant

h× 192.4 Hz* [111]

c4 Scalar spin-spin

coupling constant

h× 19.019(105) kHz [116]

gr Rotational g-factor 0.0062 * [111]

gRb(1− σRb) Shielded 87Rb nuc-

lear g-factor

1.8295(24) [116]

gCs(1− σCs) Shielded 133Cs nuc-

lear g-factor

0.7331(12) [116]

Table 3.2: Values of the coupling constants relevant to the RbCs hyperfine Hamiltonian.

Constants for which the values have been determined using the density-functional theory

of [111] have been indicated with an asterisk (*).



Chapter 4

Coherent Control of Molecular

States

To realise the potential of ultracold molecules as a viable tool for quantum

science we must be able to control the internal degrees of freedom of the

molecule. Because of the different energy scales of the molecular degrees of

freedom, as shown in figure 3.1, we can spectroscopically choose to address

some whilst neglecting others. We choose to focus on the rotational degree

of freedom as the associated transition frequencies (∼ 1 GHz) are experi-

mentally convenient as they are in the microwave part of the spectrum. This

choice allows us to neglect the electronic and vibrational structure however

we must include effects due to the hyperfine structure.

Within the rotational levels we will begin by describing our prior work con-

trolling the internal state and identifying the transitions with theory [116].

We will then describe proof of concept measurements made using a two-level

Ramsey system, where the effects of the AC Stark shift (described in greater

detail in Chapter 5) on the coherence time are measured. We then expand

our discussion to two-photon transitions between rotational levels with meas-

urements of the Autler-Townes effect, Raman spectroscopy and measuring

the coherence of a superposition between hyperfine levels in the rotational

ground state. Finally we conclude by discussing the use of rotational levels

in RbCs molecules as a synthetic lattice dimension.

67
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Figure 4.1: Spectroscopy from [116]: reproduced with permission. The 8 transitions with a

strong enough dipole moment to drive are shown, the vertical dashed line is the predicted

line centre using the molecular constants in Table 3.2. In all cases the microwave Rabi

frequency (Ω) and pulse time (τ) are constrained such that Ωt < π.

4.1 Internal State Control

The STIRAP process transfers our molecules into a single quantum state of

the X1Σ+ electronic potential. To be able to truly exploit the rich internal

structure of the molecule we must be able to transfer between the internal

states of a given electronic potential. The lowest energy transfers that are

electric dipole allowed are transitions between rotational states. In [116] we

demonstrated coherent one-photon transfer between rotational and hyperfine

states. In this section we will briefly summarise and review those results.

With our two microwave antennas we are able to produce microwave fields

polarised along z and y, in principle these are capable of only driving π and

σ± transitions respectively1. In a true rigid rotor these fields would mean

we could drive only three possible transitions: ∆MN = −1, 0, 1, however

with the nuclear spins of the Rb and Cs nuclei and hyperfine mixing there

are actually 10 transitions which could be driven. This is because the good

quantum numbers at 181.5 G are not N,MN but instead N,MF . We label

states by (N,MF )i, where i is an index starting from 1 to distinguish states

1We actually find that both antennas produce a strong z polarised component, further

discussion of this phenomenon is in Chapter 2.6.
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by energy at 181.5 G when there are multiple states with the same values of

N and MF .

The strength of a given transition is determined by the squared modulus

of the transition dipole moment, which can be reduced by the magnetic

field and hyperfine interactions mixing states with different nuclear spin

projections. We can illustrate this with an example, which is simplest

in the uncoupled basis. The ground state (N = 0,MF = +5) is spin-

stretched and so in the uncoupled basis can be represented by |g〉 =

|N = 0,MN = 0,mRb = 3/2,mCs = 7/2〉. For our illustrative example we

will take the lowest energy transition (0,+5)→ (1,+5)1 which is a π trans-

ition. At 181.5 G this excited state can only be written as a superposition

of multiple states with different nuclear spins but the same MF [116]

|e〉 = 0.925 |1, 0, 3/2, 7/2〉+0.087 |1, 1, 3/2, 5/2〉−0.370 |1, 1, 1/2, 7/2〉 . (4.1)

The electric dipole operator does not affect the nuclear spin degree of freedom

and so, because the transition dipole moment for a π transition is given by

〈g| dz |e〉 only the component with the same nuclear spins contributes i.e.

the first term in equation (4.1). The rigid rotor would have a transition

dipole moment of d0/
√

3, as shown in Table 3.1, therefore the state we are

interested in has a dipole moment of 0.925×d0/
√

3 ≈ 0.53 d0, or only 85% of

the transition strength. For some states this mixing is more severe, weakening

the transitions such that they are not observable. As such we only observe

8 of the 10 allowed transitions: these are shown in figure 4.1 and the fitted

centres at 181.5 G are summarised in Table 4.1.

We use our hyperfine state selective spectroscopy to determine the values of

constants in the molecular Hamiltonian, all the best-fit values are given in

Table 3.2. We constrained these constants by repeating the spectroscopy in

figure 4.1 at a higher magnetic field of ∼ 204.4 G. Because of the interplay

between the Zeeman effect and the hyperfine structure these 16 spectroscopic

points are enough to constrain 7 of the hyperfine constants. The remaining

values are either fixed by measurements in [42, 101] or to theoretical results

in [111].

Having characterised the hyperfine structure in an applied magnetic field

we are able to demonstrate coherent single-photon control of the internal
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State Transition Magnetic Field fTheory fexp

(N,MF )i Strength (G) (kHz) (kHz)

(1, 5)1 0.7314 181.507(2) 980,231.07 980,233(2)

(1, 4)1 0.0238 181.484(1) 980,277.96 980,278.9(2)

(1, 4)2 0.0461 181.487(1) 980,320.47 980,320.4(2)

980,321.300(12)∗

(1, 6) 1.0000 181.541(2) 980,384.98 980,384.97(6)

980,385.569(8)∗

980,385.698(3)∗

(1, 5)2 0.0027 181.507(2) 980,443.97 980,444.8(7)

(1, 4)3 1× 10−8 181.5 980,508.39

(1, 5)3 0.0086 181.507(2) 980,546.75 980,546.9(7)

(1, 4)4 2× 10−8 181.5 980,613.24

(1, 4)5 0.0004 181.487(1) 980,661.35 980,661.15(6)

(1, 4)6 0.0044 181.487(1) 980,758.64 980,758.6(1)

Table 4.1: A summary of the spectroscopic data presented in [116]. The entries marked

by an asterisk (∗) are Ramsey measurements from this work performed in free-space with

a nominal magnetic field of 181.5 G, for which we anticipate less than 55 mG of variation

day-to-day. States are identified by (N,MF )i, where i is used to identify states with the

same quantum numbers by their energy at 181.5 G. The transition strength | 〈0| d |e〉 |2 is

given for transitions from |0〉 = |N = 0,MF = 5〉, relative to the transition (0, 5)→ (1, 6).

The states (1, 4)3 and (1, 4)4 are not observed because their transition dipole moments are

too small.

structure. This coherence is characterised by Rabi oscillations in free space

which do not observably dephase in our ∼ ms interaction time. Using these

techniques we were able to transfer molecules to the spin-stretched state in

N = 2 and to a state in N = 0 for which the nuclear spin projections are

changed [116].

4.2 Derivation of the Ramsey lineshape

In this section we will cover the derivation of the Ramsey lineshape. Our

derivation will begin by describing the time dependent interaction between

a two-level atom or molecule with an AC field. We then apply this time
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Time

Figure 4.2: A schematic view of a typical Ramsey sequence. Molecules are initially in

N = 0, the south pole. These are driven up to the equator by near-resonant microwaves

of Rabi frequency Ω, where they precess about the polar axis with angular frequency ∆.

A second microwave pulse rotates the molecular state about the same axis as the first but

only transfers a fraction of the population to N = 1.

dependence to the Ramsey sequence to determine a lineshape. Throughout

we will neglect additional, nearby, hyperfine levels as in the experiment we

can tune our microwave fields to address only a single hyperfine state, as

shown in figure 4.1. Similarly we will not include the spontaneous decay of

the excited states as this does not affect our molecule on the timescale of

experiment.

The Hamiltonian for a two level atom within a frame that co-rotates with

an applied electromagnetic field, of angular frequency ω, within the rotating

wave approximation is

H =
~
2

(
∆ Ωeiφ

Ωe−iφ −∆

)
, (4.2)

where ∆ = ω− ω0 is the detuning of the microwave field frequency from the

resonant frequency ω0. We have set the zero of energy to be exactly between

the two energy levels. We have explicitly made the Rabi frequency of the

field (Ωeiφ) complex. The phase angle (φ) in a single sequence corresponds to

an arbitrary global phase and can usually be disregarded. However in later

discussions it will prove useful to have arbitrary phase differences between

microwave pulses. To determine how an arbitrary state evolves under this

Hamiltonian we need to construct the time evolution operator, starting from

the equation of motion [117]

UMW = exp

[
−it
~
H

]
, (4.3)



Chapter 4. Coherent Control of Molecular States 72

which will enable us to study the dynamics of the system. We arrive at this

by diagonalising the Hamiltonian, which has two eigenstates

|+〉 =
1

Ω

(
eiφ[∆ + Ω′]

Ω

)
(4.4a)

|−〉 =
1

Ω

(
eiφ[∆− Ω′]

Ω

)
, (4.4b)

corresponding to eigen-energies of ±~Ω′/2 where Ω′ is the effective Rabi

frequency
√

Ω2 + ∆2. To now determine the expression for UMW we simply

diagonalise the Hamiltonian given in equation (4.2)

H̃ = D−1HD

=
~
2

(
Ωe−iφ

2Ω′
Ω′−∆

2Ω′

−Ωe−iφ

2Ω′
Ω′+∆

2Ω′

)(
∆ Ωe−iφ

Ωe−iφ −∆

)(
eiφ[∆+Ω′]

Ω
eiφ[∆−Ω′]

Ω

1 1

)

=
~
2

(
Ω′ 0

0 −Ω′

)
.

(4.5)

Finally we rearrange this expression and substitute into equation (4.3) to

find our time evolution operator

UMW(∆,Ω, φ, t) = D exp

[
−it
~
H̃

]
D−1

=

(
cos
(

Ω′t
2

)
− i∆

Ω′
sin
(

Ω′t
2

) −iΩ
Ω′
eiφ sin

(
Ω′t
2

)
−iΩ
Ω′
e−iφ sin

(
Ω′t
2

)
cos
(

Ω′t
2

)
+ i∆

Ω′
sin
(

Ω′t
2

)) ,
(4.6)

where t is the time elapsed since the interaction between the field and the

molecule began.

The operator in equation (4.6) describes a single rotation on the Bloch sphere.

The axis of rotation is controlled by the detuning ∆ and phase φ of the

microwave pulse. Within a single pulse the phase is global and so can be

neglected, as such we choose to describe ∆ = 0, φ = 0 rotations as being

about the x axis, as shown in figure 4.2. The angle that the state vector

is rotated by is given by Ω′t. Allowing this operator to continue to act on

the same state leads to oscillation in the populations in |0〉 and |1〉. These

oscillations are known as “Rabi oscillations” or “Rabi flopping”. We consider
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that molecules are initially in state |0〉 = ( 1
0 ) and that we are concerned only

with the population remaining in the initial state, which evolves as

| 〈0|ψ(t)〉 |2 = | 〈0|UMW |ψ0〉 |2

=

∣∣∣∣cos

(
Ω′t

2

)
− i∆

Ω′
sin

(
Ω′t

2

)∣∣∣∣2
= cos2

(
Ω′t

2

)
+

∆2

Ω′2
sin2

(
Ω′t

2

)
,

(4.7)

where, for Ω′t = π and ∆ = 0, the population is perfectly transferred from

|0〉 to |1〉 and vice versa.

In figure 4.2 a schematic of the Ramsey method is shown, with the axes that

the populations rotate around indicated for each stage of the sequence. The

diagram shows an idealised case where a near-perfect π/2 pulse puts the mo-

lecules into a superposition, then due to a small frequency difference between

the microwaves and resonance: a phase rotation around the equator occurs.

Finally a second pulse, about the same axis as the first, maps the phase

accumulated onto the ground state population. To describe this sequence

mathematically we can use UMW. We shall assume that the magnitude of

Rabi frequency Ω, pulse time τ , evolution time T and detuning ∆ are fixed

in a single sequence but allow the phase of the second pulse φ to vary with

respect to the first, which we fix to be φ0 = 0. The population in the ground

state is given by

| 〈0|ψ〉 |2 =| 〈0|UMW(∆,Ω, φ, τ) · UMW(∆, 0, 0, T ) · UMW(∆,Ω, 0, τ) |0〉 |2

=
1

8Ω′4
×
[
3
(
∆4 + Ω4

)
+ 3Ω′4 + 2∆2Ω′2

+ 4Ω2

(
∆Ω′ [2 sin(τΩ′)− sin(2τΩ′)] sin(∆T + φ)

− 2 sin2

(
τΩ′

2

)
cos(∆T + φ)

[(
∆2 + Ω′2

)
cos(τΩ′) + Ω2

])
+ 8∆2Ω2 cos(τΩ′) + 2Ω4 cos(2τΩ′)

]
.

(4.8)

The population in the excited state is found by instead projecting 〈1| onto
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|ψ〉

| 〈1|ψ〉 |2 =
Ω2 sin2

(
τΩ′

2

)
Ω′4

×
(

[∆ + Ω′] cos

[
1

2
(∆T + τΩ′ + φ)

]
+ [Ω′ −∆] cos

[
1

2
(∆T − τΩ′ + φ)

])2

.

(4.9)

It is worth noting that we have made no assumptions about the value of the

detuning with respect to the strength of the microwave field, as such this is a

general formula. We have also neglected the natural linewidth of the excited

state in this discussion: for microwave excitation of RbCs molecules this is

appropriate as the N = 1 radiative lifetime is 1/Γ0 ∼ 6× 103 years [118].

4.3 Ramsey Interferometry in Free Space

Since Ramsey’s original work [119], his method of separated oscillatory fields

now known as the Ramsey method, has been at the forefront of precision

measurement in atomic and molecular physics [61, 120–122]. Within mo-

lecular physics the Ramsey method has an additional benefit: a superpos-

ition of rotational states with opposite parity will have a non-zero electric

dipole moment in the laboratory frame. This means that, within the Ram-

sey sequence, there are also dipole-dipole interactions. In this section we

will discuss the application of the Ramsey method described in section 4.2

to rotational superpositions in RbCs.

We begin our investigation of the Ramsey method in RbCs by considering

the simple case of molecules in free-space. We prepare a superposition of

the spin-stretched states |0〉 = |N = 0,MF = +5〉 and |1〉 = |1,+6〉, as the

associated transition has the largest transition moment available between

N = 0 and N = 1. For our first measurement we fix T = 600µs and use

a Rabi frequency Ω/2π ≈ 5 kHz. Figure 4.3 shows the high-contrast fringes

that result. The fringes have spacing≈ 1.5 kHz and an envelope function that

has a width set by 1/(2τ) ≈ 10 kHz. By fitting equation (4.8) to the data,

with only the centre frequency f0 as a free parameter, we can determine f0 =

980.385 569(8) MHz. We have only quoted a statistical uncertainty having

not investigated potential systematic effects. This hertz-level uncertainty

is a three orders-of-magnitude improvement on our previous uncertainty, as
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Figure 4.3: High resolution spectroscopy performed using the Ramsey method. The mo-

lecule number, normalised to that with no applied microwaves, is shown as a function of

the microwave detuning. Each point represents a single experimental run. The π/2 pulses

each have duration τ = 47.8µs and the superposition evolves for T = 600µs. The solid

line is a fit to equation (4.8) with only the centre frequency as a free parameter. It yields

a resonant frequency of 980.385 569(8) MHz, the error quoted is purely statistical.

shown in Table 4.1. This marks a necessary step to be able to observe

dipole-dipole interactions between individual molecules in an optical lattice,

at a spacing of 500 nm a typical interaction energy is ∼ h × kHz. At our

current density (2 × 1011 cm−3) in a bulk gas the interactions are several

orders of magnitude weaker ∼ h × 10 Hz We investigate the coherence of

the superposition of |0〉 and |1〉 in free-space by performing a complementary

measurement in the time-domain. We fix the microwave frequency to be

980.390 MHz, corresponding to ∆/2π ≈ −5 kHz. To ensure the detuning

is small, compared to our pulses’ Fourier width (∼ 1/τ), we increase the

microwave power such that the π/2 pulses are now only 19µs in duration.

We then vary T and map out the Ramsey fringes. These fringes are shown

in figure 4.4.

The reduction in the size of fringes could be the result of two mechanisms:
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Figure 4.4: For a fixed microwave frequency of 980.390 MHz, we vary the free evolution

time, T . We observe Ramsey fringes with a negligible loss of contrast over the 2.3 ms

interrogation time. However, we observe a reduction in the molecule number with time

as the cloud of molecules falls and expands. The dashed line shows the result of an

independent measurement of this effect with an uncertainty indicated by the shaded region.

The solid line is a fit to (1− (T/T0)2)× P0, with P0 given by equation (4.8).

the total number of molecules can decrease or the molecular superposition

can decohere, as described in section 4.4. We can discriminate between the

two by comparing the changes in the maximum number in a fringe and

in the minimum. A change in only the maximum indicates that the total

number of molecules is decreasing whereas a change in the minimum and

maximum, i.e. a reduction in contrast, indicates a loss of coherence. From

our a measurements we therefore conclude there is no loss of coherence as the

hold time increases to 2.3 ms, there is however a loss of molecules: likely as

they fall out of the detection region defined by the STIRAP beams. Although

the STIRAP beams have a waist of ∼ 30µm, the STIRAP transfer efficiency

depends sensitively on the intensity and is optimised only near the focus.

To test our hypothesis we independently measure the population in |0〉 as a

function of time in free space; the result is indicated by the dashed line in

figure 4.4. We fit (1 − T/T0) × | 〈0|ψ〉 |2 to this measurement (as given by

equation (4.8)), with T0 = 2.57(4) ms. We are additionally able to extract

a transition frequency of f0 = 980.385 698(3) MHz, where the quoted 3 Hz

uncertainty is, as in the spectroscopy from figure 4.3, purely statistical.
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The centre frequency extracted from the time domain measurement in fig-

ure 4.4 differs from that shown in figure 4.3 by 129(8) Hz, given that our

statistical uncertainty is ∼ Hz, this is statistically significant. As the mi-

crowave source was referenced to an external 10 MHz GPS reference, we

believe that the measured frequency difference stems from a difference in the

conditions of the experiment on the separate days that the measurements

were performed. The Zeeman shift of the transition is -4.8 Hz G−1 [116], in-

dicating that the difference is not attributable to a change in the magnetic

field (which is . 50 mG day-to-day). The transition is very sensitive to stray

electric fields which can be present in the UHV glass cell when not actively

controlled [42]. A DC Stark shift of the transition by 129 Hz requires a DC

electric field of only 1.2 V cm−1. We discount the possibility of the difference

being due to dipole-dipole interactions as, in our bulk gas of peak density

∼ 1011 cm−3, the interaction strength associated with the transition dipole

moment for (N = 0,MF = +5)→ (1, 6) is only ∼ h× 10 Hz. Alternatively,

the difference may result from a more subtle systematic effect such as coup-

ling to nearby hyperfine states; the Fourier widths of the microwave pulses

(21 kHz and 53 kHz for figure 4.3 and figure 4.4 respectively) are similar to

the spacing between neighbouring hyperfine states. As two different pulse

times are used it would be reasonable to expect that this effect would create

a difference between the two Ramsey measurements presented.

4.3.1 The Phase Control Method

An alternative implementation of the Ramsey method is to use phase mod-

ulation rather than the detuning to map out fringes. This method can be

interpreted as changing the axis x in figure 4.2 by rotating it by an angle

φ about z, corresponding to the phase difference between the two pulses.

This method allows us to directly measure the phase that has accumulated

due to the finite detuning between the microwave source and the molecular

resonance.

To observe Ramsey fringes we choose |0〉 = |N = 0,MF = +5〉 and |1〉 =

|1,+4〉2, where the subscript indicates that this is the second state with

these quantum numbers counting up in energy at 181.5 G. In figure 4.5 we
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Figure 4.5: Ramsey fringes measured with the phase control method for |0〉 =

|N = 0,MF = +5〉 and |1〉 = |1, 4〉2. (a)The ground state molecule number (Nmol) as

a function of the phase of the second π/2 pulse. Fringes are measured by varying the

phase of the second pulse with respect to the first after an evolution time of 30µs for

red and blue detuning as indicated by the red and blue colour respectively. (b) As in (a)

with a 200µs evolution time. (c) By mapping the evolution of the phase of the fringes as

a function of the evolution time (T in figure 4.2) the detuning for fixed frequencies can

be extracted, in this panel an additional detuning is shown in purple, corresponding to

a near resonance condition. The dashed line shows the behaviour when the microwave

field is fixed to resonance. Combined these measurements give a resonant frequency of

980 321.300(12) kHz.

show the evolution of the phase of Ramsey fringes with time. For various

hold times up to 1 ms we map out phase fringes, examples can be seen in fig-

ure 4.5(a) and (b) for 30 µs and 200 µs respectively. Because we are varying

the microwave axis around the Bloch sphere the phase is only defined mod-

ulo 2π. To overcome this we fit the detuning using as few phase windings

as possible and unpack the phase parameter. We expect that this is reas-

onable as previous measurements have given us estimates of the transition

frequency to ∼ 1 kHz precision [116]. We combine the three measurements in

figure 4.5(c) using a weighted mean to give the best estimate of the resonant
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frequency f0 = 980 321.300(12) kHz [123]. We highlight that as in our pre-

vious Ramsey measurements the error quoted is the statistical error due to

the fit and we have not investigated potential systematic effects. The value

of f0 found using this method disagrees with the previous best estimate of

980 320.4(2) kHz [116] by almost 1 kHz which we cannot definitively explain

however it is likely for the same reason as the discrepancies observed earlier

in this section.

4.4 Decoherence of Ramsey Fringes

The Ramsey fringes presented in the preceding section were free of measur-

able decoherence. For many of the proposals using ultracold molecules in a

quantum simulator an optical lattice is a necessary component [124]. Addi-

tionally, by trapping the molecules the interrogation time can be increased

improving the resolution of the Ramsey measurement, for molecules in a 1Σ

state only optical traps are suitable due to the lack of appreciable magnetic

moment. When optically trapped there is the possiblity that the differential

AC Stark shift between the rotational states can provide a decoherence mech-

anism. In this section we will briefly review the ways in which decoherence

can manifest in a general two-level system before investigating the effect of

the AC Stark shift on the coherence we observe in superpositions of states

in N = 0 and 1.

4.4.1 Decoherence mechanisms

There are two possible mechanisms for the loss of contrast in a superposition

state each of which has a characteristic 1/e time scale. The first timescale

T1 is related to loss of population from the excited state. The second T2

is related to the loss of coherence, mathematically this is the decay of the

off-diagonal elements of the density matrix.

The first mechanism, loss of population, is due to spontaneous emission of

the excited state in our case. The decay rate of these transitions is given
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by [118]

Γ =
ω3

0

3πε0~c3
| 〈e|d |g〉 |2. (4.10)

Substituting values appropriate for the N = 0→ 1 transitions in RbCs (|d| =
d0/
√

3 and ω0/2π = 980 MHz) gives a decay rate of Γ/2π = 5.5× 10−12 s−1

which corresponds to an excited state lifetime of 1/Γ ≈ 6× 103 years. This

is sufficiently long that we will neglect the amplitude damping mechanism.

The second possible mechanism is also known as “phase damping” and is

modelled as a series of infinitesimal “kicks” in the transition frequency, chan-

ging the rate of phase progression at random. In general the characteristic

timescale for the decay of coherence depends on the exact noise distribu-

tion. A general discussion can be made which provides some experimental

expectations. Firstly we note that the populations, ρ00 and ρ11, will not be

affected by phase kicks whilst the correlations, ρ01 and ρ10, will. Secondly if

we assume that the phase kicks follow a Gaussian distribution with variance

σ2 then the coherences will have time dependence [125]

ρ01(t) = e−(σ)2/2eiφ0 . (4.11)

where φ0 is the mean phase accumulated in t. If we assume that the phase

kicks follow a Brownian path, i.e. are delivered at random, then σ2 = Γt and

so we arrive at exponential decay of coherences.

4.4.2 Dephasing in an optical potential

We now study the effect of a simple optical trapping on the rotational co-

herence time of the molecules. We achieve this by recapturing the molecules

in an optical trap after the STIRAP transfer to the ground state. The trap

consists of two linearly polarised beams with λ = 1550 nm and waists of

w01 = 80 µm and w02 = 98 µm, crossing at an angle of 27◦ in the horizontal

plane. We set the polarisation of both beams to be along the direction of the

magnetic field with an uncertainty of < 3◦. The peak intensity of the trap

light prior to STIRAP is 37.3 kW cm−2 for all the measurements. We vary

the intensity of the trap used to recapture the molecules, thereby exploring

the effect on the Ramsey sequence of different AC Stark shifts. Creating a

trap deep enough to prevent evaporation of the molecules requires a peak
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Figure 4.6: Ramsey measurements using RbCs molecules confined in an optical trap. (a)

Long-lived Ramsey fringes in a trap with a peak intensity of I0 = 19.3 kW cm−2 using

a superposition of |0〉 = |N = 0,MF = +5〉 and |1〉 = |1,+4〉2. (b) Rapid dephasing

of the Ramsey fringes in a trap with a peak intensity of I0 = 20.7 kW cm−2 using a

superposition of |0〉 and |1〉 = |1,+5〉1. In both (a) and (b) each point represents the result

of a single experimental run and the solid line is a damped sine-function fit (χ2
red = 0.2, 0.4

respectively) to the data used to extract a coherence time. (c) The coherence time as a

function of the peak intensity of the trap for superpositions of |0〉 with |1〉 = |1,+4〉2 (filled

red points) and |1〉 = |1,+5〉1 (open blue points). The lines represent fits of the simple

model described in the text and equation (4.13), showing qualitative agreement with our

expectation that the coherence is maximised when the differential AC Stark shift across

the sample is minimised.

intensity > 20 kW cm−2, and matching the potential to that experienced by

the Feshbach molecules requires a peak intensity of 43 kW cm−2.

The trap holds the molecules in space, removing the loss mechanism we ob-

served in figure 4.4. In principle this increases the time the molecules can be

interrogated and therefore the precision of the Ramsey sequence. However,

molecules in different parts of the trap experience different intensities, res-

ulting in a spatially varying AC Stark shift of the microwave transition. The

initial distribution of the ground-state molecules reflects that of the Feshbach

molecules, as the molecules move a negligible distance during the 50 µs that

the trap is turned off for STIRAP. The distribution is Gaussian, with stand-

ard deviations of σz = 6.6 µm in the vertical direction and σaxial = 24 µm in

the axial direction. Due to gravitational sag, the centre of the distribution is
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z0 = 8.1 µm below the position of peak intensity. Under these conditions, the

variation of intensity across the cloud is dominated by the vertical direction

and we estimate the 2σ intensity difference to be

∆I ≈ 8z0σz
w2

0

I0 ≈ 0.04× I0. (4.12)

Crucially, this depends on the peak intensity I0, indicating that the spread of

intensities is greater for deeper traps. This analysis assumes that the light is

switched instantaneously and that the width of the cloud along the vertical

does not change. For simplicity, we assume that the molecular distribution

and the associated intensity variation remains constant during the measure-

ments. Typical trap oscillation periods are ∼ 5 ms, we therefore expect that

this approximation is valid for measurements performed in under ∼ 0.5 ms.

For longer times, the intensity variation will be greater than the above es-

timate, as the molecular cloud will fall and expand, since all the intensities

investigated are below the 43 kW cm−2 needed to match the trap potential.

Although this effect is undoubtedly important for some of our measurements,

this approximate model gives sufficient insight for the present work.

To measure the effect of the trap light on the coherence time, we perform

Ramsey measurements by varying T . We use different hyperfine levels of

N = 1 compared to the free space measurement in section 4.3. Specific-

ally, we investigate superpositions of |0〉 = |N = 0,MF = +5〉 with either

|1〉 = |1,+4〉2 or |1〉 = |1,+5〉1. We choose these states as, unlike (1,+6),

their transitions are well separated in frequency from other nearby trans-

itions minimising the possibility of off-resonant coupling. To perform each

measurement, we turn on the trap light to recapture the molecules in |0〉.
We then wait 400 µs before performing the Ramsey sequence. This ensures

that the intensity of the light is stable prior to the measurement; the laser

intensity is monitored on a photodiode and stabilised by an active servo loop

with a bandwidth of ∼ 50 kHz. For each trap intensity, we first determine

the transition frequency and measure the Rabi frequency at zero detuning to

define the π/2 pulse duration, τ . For (1,+5)1 we typically use τ ≈ 2.5 µs,

whilst for (1,+4)2 we use τ ≈ 12 µs. The times chosen are a compromise,

the shorter times ensure that all molecules within the trapped cloud are ad-

dressed while the microwaves have a non-zero detuning ∆. The pulse must

also be long enough such that h/τ is smaller than the splittings between
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Figure 4.7: (a)The AC Stark shift of relevant transitions for our Ramsey work at a

wavelength of λ = 1550 nm with polarisation along the magnetic field. Transition fre-

quencies are measured from (N = 0,MF = +5) for (1,+5)1 (red), (1,+4)2 (blue) and

(1,+6) (green). The vertical dashed line indicates the intensity of 19.3 kW cm−2 where

the maximum coherence time was measured in figure 4.6(c). (b) The models used for the

fit functions in figure 4.6(c) are shown as solid lines, colours are consistent with (a). The

dashed lines are the theory values from (a). The extracted transition frequencies from

Ramsey measurements are shown as points, with error bars that cannot be seen at this

scale.

neighbouring hyperfine states. Note that the transition to the MF = +4

state is considerably weaker and its strength varies appreciably with trap-

ping laser intensity. For this transition, we must therefore use a longer τ

and are limited to smaller detunings, as we can only interact with a smaller

frequency range. Figure 4.6(a) and (b) show typical results of such meas-

urements for the two different hyperfine levels. We observe Ramsey fringes

which decohere with time as the spatially dependent AC Stark shift across

the cloud leads to dephasing. To quantify this effect, we fit each dataset to

a sine wave with an exponentially decaying amplitude in order to extract a

coherence time τc.

The results shown in figure 4.6(a) and (b) exhibit significantly different coher-

ence times for the two transitions, with the peak laser intensity differing by

< 10%. The AC Stark shifts of the transitions to N = 1 from N = 0,MF = 5

are shown in figure 4.7 for a single beam polarised along the magnetic field2.

2The AC Stark shift is discussed in detail in section 3.5.2 and chapter 5.
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For (N = 1,MF = +5)1, the AC Stark shift is very close to linear. The spread

of transition frequencies across the cloud is then simply ∆f = (df/dI)×∆I

and the associated dephasing time is expected to scale inversely with the

peak intensity. For the peak intensity of 20.7 kW cm−2 shown in figure 4.6(b),

we find that a superposition between (0,+5) and (1,+5)1 has a coherence

time of 66(5) µs. In contrast, the transition to (1,+4)2 displays a broad

avoided crossing around 16 kW cm−2, where (df/dI) ' 0 and the variation

of transition frequency across the cloud is minimised. We observe a signific-

ant increase in the coherence time for this state around the avoided crossing,

as shown in figure 4.6(c). The maximum coherence time that we measure for

(1,+4)2 in the trap is 0.75(6) ms, and is approximately an order of magnitude

greater than that achieved using (1,+5)1.

To model the results in figure 4.6(c) we need accurate knowledge of the

AC Stark shift of the transitions. The prediction shown in figure 4.7(b) is

for the polarisation of the trap light exactly aligned with the direction of

the magnetic field for a single trapping beam. Even small deviations from

this condition can lead to significantly different AC Stark shifts, particularly

around an avoided crossing [1]. We therefore use the period of the Ramsey

fringes to determine the transition frequency for each intensity, effectively

mapping out the AC Stark shift under the conditions of the experiment

(i.e. accounting for any small misalignment of the polarisation of the trap

beams). For the transition to (1,+4)2, we fit the measured frequencies to

a third-order polynomial constrained to the known zero-intensity transition

frequency [116]. For the transition to (1,+5)1, we use a simple linear fit.

For a given intensity I, we extract the minimum and maximum transition

frequencies in the range I − ∆I/2 → I + ∆I/2 to determine the spread of

transition frequencies ∆f(I) responsible for the dephasing of the Ramsey

signal. The total coherence time τc is modelled using [126]

τc =

[(
1

T2

)2

+ (2π ×∆f(I))2

]− 1
2

, (4.13)

where T2 is the coherence time from all other sources of decoherence in the

experiment, whilst the factor of 2π with ∆f(I) converts from cycles to ra-

dians. The solid lines in figure 4.6(c) show the results of fitting the simple
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Figure 4.8: A sketch of the two and three level schemes described in this chapter. (a)

The two-level molecule. A ground state |0〉 is coupled to the excited state |1〉 by radiation

detuned by ∆ from resonance and driving with a Rabi frequency Ω. (b) The three-level Λ

molecule. |0〉 and |1〉 are coupled as in (a), the additional level |2〉 is coupled only to |1〉
by an additional field of Rabi frequency ΩB. δ represents the “two-photon” detuning. (c)

The ladder three-level system. (d) The V three-level system. In (c) and (d) the couplings

and labels are as in (b).

model described by equation (4.13) to the measurements of the coherence

time, with T2 and ∆I as fit parameters. For the transition to (1,+4)2, we

find T2 = 0.7(2) ms and a spread of intensities equal to 3.4(9) % of the peak

intensity. The measurements using (1,+5)1 are adequately described by the

intensity-dependent dephasing term alone and the fit yields a 2(1) % intensity

variation. In both cases, the spread in intensity is in reasonable agreement

with the simple estimate of equation equation (4.12). The fitted T2 time is

considerably shorter than the coherence time observed in free space. This is

most likely due to the lack of a full dynamical model of the molecular motion

leading to an underestimate of the intensity variation for longer evolution

times.

4.5 Two-photon Spectroscopy

There are many proposals which utilise multiple resonant fields to couple the

rotational states in a coherent manner for applications such as quantum com-

putation [70, 71, 127] and simulation [79, 124]. One which is of particular

interest is to use the rotational states of a molecule to form synthetic di-

mensions [128, 129]. These synthetic dimensions are an interpretation of the

internal rotational ladder, where the population in a given rotational state
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corresponds to a spin excitation on a lattice of hard-core bosons, i.e. con-

strained to one excitation per “site”. In this system control of the tunnelling

rates (or spin-exchange rates) between sites is given by the Rabi frequencies

on different transitions. It is advantageous to use rotational excitations in

molecules for studying synthetic dimensions because the energy level splitting

increases with N , allowing individual level couplings to be tuned. To perform

these types of experiments we must first develop the tools to couple multiple

states simultaneously. In this section we will present our experimental res-

ults using two microwave fields simultaneously, first to spectrally observe

the dressing of rotational states with a second microwave field then secondly

for Raman transfer between hyperfine states of the rotational ground state

without populating N = 1.

4.5.1 Three Level Molecule

We begin our study of multi-level phenomena by considering the next-

simplest case to the two level molecule: the three-level molecule, example

systems are shown in figure 4.8. In this case we need two microwave fields,

which we will label A and B coupling |0〉 → |1〉 and |1〉 → |2〉 respectively.

If we set the zero of energy to be the ground state (|0〉) the Hamiltonian is

H =
~
2


0 ΩA 0

ΩA −2∆ ΩB

0 ΩB −2δ

 , (4.14)

where we have defined the one photon detuning ∆ = ωA−ω1 = ∆A as in the

two-level system. The two-photon detuning has been defined to include the

one-photon detuning: δ = ∆− ωB + (ω1 − ω2) = ∆A −∆B, where ∆B is the

detuning of the second microwave field from resonance and ω0, ω1 and ω2

describe the energies of states |0〉 , |1〉 and |2〉 respectively. We can find the

population in the ground state after some time by solving the time-dependent

Schrödinger equation

i~
dψ

dt
= Hψ, (4.15)

and integrating up to a pulse time τ .
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Figure 4.9: Autler-Townes splitting of the N = 0→ 1 transition in RbCs.(a) The observed

spectra for three different powers of microwave applied on the N = 1→ 2 transition. Each

point is the result of a single experimental run. The solid lines are fits to the optical Bloch

equations. The fitted upper microwave field detunings ∆B and Rabi frequencies ΩB are

shown. (b) The upper Rabi frequencies ΩB extracted from a fit to the optical Bloch

equations as a function of input microwave power. A line ∝
√
P is shown to guide the eye.

4.5.2 The Autler-Townes Effect

The first system we will consider is the Autler-Townes doublet. With a

microwave field near-resonant from |1〉 → |2〉, i.e. |∆B| → 0, we can split

state |1〉 into two dressed states, each with energy given by

E± = ±~
2

√
∆2
B + Ω2

B = ±~Ω′B
2
. (4.16)

In the limit where ∆B = 0 the energy splitting between the two features in

the doublet is given simply by the Rabi frequency ΩB. The state vectors

associated with these two states are superpositions of |1〉 and |2〉. To probe

this system we use the third level of our three-level Hamiltonian, keeping

ΩA � ΩB to ensure that our probe field doesn’t itself create Autler-Townes

doublets. We can realise Autler-Townes spectroscopically in separate rota-

tional transitions of the RbCs molecule.

In figure 4.9 we show Autler-Townes spectroscopy of the N = 0 → 1 → 2

ladder system. The lower (0, 5)→ (1, 6) transition is used as the weak probe

with Rabi frequency ΩA/2π = 5 kHz whilst the power, and therefore Rabi

frequency, on the upper (1, 6) → (2, 7) transition is varied. For an input
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microwave power of ∼ 3 W a splitting of 15.3(3) kHz is observed. There is

a slight asymmetry in the observed lines, by fitting the spectroscopy to the

optical Bloch equations we can determine that this is likely due to a detuning

of the second microwave field of ∆B/2π = −1.7(5) kHz. Whilst this was not

anticipated it is not surprising, given that the spectral width of our initial

one-photon spectroscopy was ∼ 10 kHz.

By measuring the splitting as a function of the applied microwave power we

can extract the Rabi frequency of the upper transition. This is shown in

figure 4.9(b) alongside the expected
√
P scaling. We see that for the lowest

Rabi frequency, the two features cannot be resolved, demonstrating that the

Autler-Townes splitting is only significant for ΩB � ΩA.

4.5.3 Raman Spectroscopy

When using single-photon pulses to transfer between rotational and hyperfine

states we require that there is a non-zero electric dipole moment between the

two. This restricts us to transitions between neighbouring rotational states,

however there are many interesting applications for ultracold molecules which

could utilise either transitions between the same rotational levels or accessing

higher rotational levels with no population loss. Both of these can be achieved

by using Raman spectroscopy. This section will briefly describe a proof-

of-principle measurement on Raman spectroscopy using a rotational ladder

system.

Starting from equation (4.14), we can form a quasi-two-level system by fixing

the microwave fields to be two-photon resonant (i.e. δ = 0) but with a

significant one photon detuning i.e. when ∆ is large compared to the Rabi

frequencies ΩA,ΩB. By considering the time-dependent Schrödinger equation

it can be shown that the |1〉 component of the state vector evolves as

〈1|ψ(t)〉 ≈
(

1− ei∆t

∆

)
[ΩAc0(t) + ΩBc2(t)] , (4.17)

where ci = 〈i|ψ〉. Writing the effective two-level Hamiltonian in the new |0〉,
|2〉 basis

H =
~

4∆

(
Ω2

A ΩAΩB

ΩAΩB Ω2
B − 4∆δ

)
. (4.18)
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So our new effective Hamiltonian has Rabi frequency Ω̃ = ΩAΩB/4∆. The

advantage of this “Raman” system is that it enables the coupling of levels

for which direct transitions are forbidden by selection rules. The mathem-

atics presented here is applicable to any of the three-level systems shown in

figure 4.8.

In figure 4.10 we demonstrate the Raman system using the same energy level

scheme as we did for the Autler-Townes in section 4.5.2. We first use single-

photon spectroscopy to locate the intermediate state (N = 1,MF = +6) and

final state (2, 7) and measure Rabi frequencies of ΩA/2π = 5.16(6) kHz and

ΩB/2π = 4.25(6) kHz respectively. To transfer between N = 0 and N = 2

without populating N = 1 we must setup our Raman system, we do this by

detuning the first microwave field from resonance such that ∆A � ΩA. In our

case we choose ∆A ≈ +30 kHz, this shifts the resonant frequency of the 1→ 2

transition by −∆A, spectroscopy of which can be seen in figure 4.10(a). In

figure 4.10(d) we show the evolution of the population with both microwave

fields on and δ = 0. We compare our measurements to a numerical solution

to the three-level optical Bloch equations with our known values of ΩA and

ΩB. As the effective Rabi frequency scales as 1/∆A we expect that the

Raman transition dynamics would be much slower than the dynamics of the

individual single photon transitions, this can be seen in the Rabi oscillations

in figure 4.10(b-d). This slower dynamics gives a longer π-pulse time and so

narrower spectroscopy. Future work in this direction will need to utilise a

higher power microwave field.

4.5.4 Ramsey Inteferometry in the Rotational Ground

State

We are, of course, not limited to the ladder systems presented in the preced-

ing sections. If we instead use a Λ configuration we can use the hyperfine

mixing of the rotationally excited state to change the nuclear spin, accessing

a different hyperfine level in the rotational ground state. There are numerous

reasons why accessing different nuclear spin states is advantageous: firstly it

increases the number of energy levels available for quantum computation [4],

secondly because the transitions between hyperfine states are electric dipole



Chapter 4. Coherent Control of Molecular States 90

Figure 4.10: Raman transitions between N = 0 and N ′ = 2. (a) Spectroscopy of the

(N = 0,MF = +5) → (2, 7) transition using two one-photon transition (blue points) and

a two-photon Raman transition (red points). The solid lines are Lorentzian fits to the

data. For the single-photon transitions we extract a full width at half-maximum (FWHM)

of 9(2) kHz, the two-photon transition lineshape has FWHM of 0.55(12) kHz. The energy

levels and transitions used are shown inset. (b-c) Single photon Rabi oscillations on the

(b) (0, 5)→ (1, 6) (c) (1, 6)→ (2, 7) transitions. (d) Two-photon Rabi oscillations on the

(0, 5) → (2, 7) Raman transition, the solid line is a fit using an effective two-level model.

The dashed lines show the expected populations in N = 0, 1, 2 (grey, purple, blue) in a

true three-level system given the Rabi frequencies in (b) and (c).

forbidden the lifetime of state |1〉 is longer even than the rotationally ex-

cited states meaning there is a possibility of using the molecular levels as a

quantum memory.

As a proof-of-concept measurement we use a Raman system to make a two-

photon transition between the ground state (N = 0,MF = +5) and an

additional state in N = 0: (0,4)2. These two states are split by ∼ 200 kHz

by the applied 181.5 G magnetic field. In a similar manner to the experi-

ments shown in figure 4.6 we use a π/2 pulse, of duration 361.5 µs, to create a

superposition of the two hyperfine levels of the ground state we are interested

in, allow this superposition to evolve for some time T and then, through an-

other π/2 pulse make a projective measurement of the population in (0,+5).

The superposition is able to evolve freely, whilst trapped in the λ = 1550 nm

optical dipole trap. We find that, in this measurement dephasing happens

far more rapidly than expected, with a 1/e decay time of 0.08(3) s. This is
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Figure 4.11: Ramsey interferometry using a Raman system (a) Ramsey fringes measured

between the (N = 0,MF = +5) and (0,+4)2 states of RbCs. The solid line shows the line

of best fit to a damped sine function, the shaded region shows the error on the fit. The

fringes rapidly decay with a coherence time of 0.08(3) s. (b) The transitions used in the Λ

energy level configuration for this measurement. The resonant (0, 5) → (1, 5)1 transition

frequency is shown.

two orders-of-magnitude faster than was observed in a more detailed study

of the nuclear spin coherence times of ground state NaK [130].

We have not rigorously investigated the loss of contrast in the ground state,

however by considering several possible mechanisms we can estimate poten-

tial decoherence times. Firstly we can discount the trapping potential, un-

like in the single-photon Ramsey measurements shown in section 4.4 the two

states we consider have almost identical AC Stark shifts with leading terms

∝ α(0)I, we note that the prior work in [130] was able to measure ∼ Hz AC

Stark shifts between the hyperfine levels in the NaK ground state, these are

orders-of-magnitude too small to explain our decoherence. Additionally the

trapping light is switched off ∼ 100 µs before the two microwave pulses to re-

move any spatial AC Stark shifts during the microwave transfer, ensuring that

the Raman pulses interact with all the molecules. There is however a differen-

tial magnetic moment between the two states of approximately 1.3 kHz G−1,

our expectation is that the magnetic bias field has approximately 55 mG of

Gaussian noise. Combined we would expect 73 Hz of noise on the transition

frequency which corresponds to a dephasing time of 14 ms. This estimate
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based on the Zeeman shift agrees to an order-of-magnitude with our meas-

urement, suggesting that the nuclear spin coherence time is limited by our

magnetic field noise. This effect was not significant for the work of Park et

al. where the differential magnetic moment was 200 Hz G−1 [130, 131] and

the magnetic field noise was ±10 mG [132], giving them Hz-level transition

frequency noise due to the differential magnetic moment.

To improve upon this measurement with our current experimental hardware

we should identify a superposition with less sensitivity to magnetic field. The

quantity we compare is

δµ = | 〈0|µz |0〉 − 〈1|µz |1〉 |, (4.19)

where |0〉 , |1〉 are the state vectors of the two components of the superposition

and µz is the magnetic moment operator for a magnetic field along z. We

tabulate the value of the magnetic moment for several states in Table 4.2. By

choosing two states which have similar magnetic moment we could extend

the coherence time of hyperfine states, we are able to identify two such pairs

of states: one in N = 0 and another in N = 1. For N = 0 the pair of

states (0,4)2 and (0,3)1 has a differential magnetic moment of 71 Hz G−1,

corresponding to 4 Hz of frequency noise with our magnetic field stability (or

an expected coherence time of ∼ 250 ms). For N = 1 the states (1,5)2 and

(1,4)1 perform even better, with a differential magnetic moment of 27 Hz G−1

which could extend the coherence time of hyperfine states to > 0.5 s. Though

the sub-levels in N = 1 will experience a differential AC Stark shift.

4.6 Outlook: Synthetic Dimensions

In this section we will describe an extension to our coherent control work

that, by using more microwave fields, can be used to simulate quantum sys-

tems. We will focus our efforts on one model: the Su-Schrieffer-Heeger (SSH)

model. This model was originally created to explain the movement of de-

fects in (CH)x polymer chains [133]. It is also one of the simplest models to

study which also has been shown to exhibit topological invariants and edge

states [59, 134].
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(N,MF )i µz(µN)

(0,5) -5.310

(0,4)1 -4.464

(0,4)2 -3.593

(0,3)1 -3.686

(0,3)2 -2.685

(0,3)3 -1.872

(1,5)2 -4.481

(1,4)1 -4.445

Table 4.2: The magnetic moment µz is given for selected states in units of the nuclear

magneton (µN ≈ 762 Hz G−1) for various states of RbCs at an applied magnetic field of

181.5 G. States are identified by (N,MF )i, where i is used to identify states with the same

quantum numbers by their energy at 181.5 G.

The many-body Hamiltonian of this SSH system is given by [59]

HSSH = −
∑

i∈even,j∈odd

tij

[
b̂†i b̂j + b̂†j b̂i

]
, (4.20)

where the b̂i(b̂
†
i ) operator is the bosonic annihilation (creation) operator for

site i. This bosonic formulation also includes a hard-core constraint such

that b̂†i b̂
†
i = 0 so that only one bosonic particle occupies one site. The model

is fixed such that only the nearest neighbour terms are non-zero, with two

values t1 for hopping from odd sites to even sites and t2 for the reverse. We

can, of course, write this explicitly as a matrix

HSSH =


0 t1 0 0

t1 0 t2 0

0 t2 0 t1

0 0 t1 0

 . (4.21)

In this form we have only considered four sites, a schematic of this is shown in

figure 4.12. It is well known that there are two configurations of this Hamilto-

nian one known as the trivial configuration where t1 > t2 and another, known

as the “topological” configuration where t1 < t2. The configurations are so

named because, in momentum space, the trivial configuration has a winding

number of zero whilst the topological configuration has a winding number of

one [135].
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Figure 4.12: A mapping of the Su-Schrieffer-Heeger (SSH) model to the rotational trans-

itions in a molecule. The SSH model represents a periodic modulation of the tunnelling

rates between sites in a lattice, we can map this to the rotational states of the molecule

using resonant microwave fields with Rabi frequencies Ω1 and Ω2.

If we compare equation (4.21) to equation (4.14) we can see that the mapping

from the many-body Hamiltonian to the rotational energy states is simple:

we have multiple microwave fields of periodic strengths ΩA and ΩB with

the microwave fields tuned exactly to resonance. We can then make the

connection that, in this arrangement, the relative tunnelling parameters are

given by the Rabi frequencies ΩA and ΩB. In the SSH model the tunnelling

amplitudes t1, t2 only couple nearest neighbour sites whilst for our rotational

states we can only consider nearest neighbours because of the electric dipole

selection rules. Additionally each microwave field only couples two rotational

states as the rotational splitting between N and N + 1 increases with N .

Using the internal states of the molecule we can spectroscopically probe the

many-body energy levels: to view the spectrum we include an extra state

in our model to represent the rotational ground state (|0〉). We allow |0〉 to

couple only to the first of our simulation states |1〉 and it does so weakly,

with a probe Rabi frequency ΩP � ΩA,ΩB and detuning ∆P. We can then

solve the time-dependent Schrödinger equation

i~
d

dt
|ψ〉 =

~
2



0 ΩP 0 0 0

ΩP −2∆P ΩA 0 0

0 ΩA −2∆P ΩB 0

0 0 ΩB −2∆P ΩA

0 0 0 ΩA −2∆P


|ψ〉 , (4.22)

to predict where our populations will be for various experimentally relevant

parameters.
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Figure 4.13: Numerical modelling of the rotational SSH model with 3 microwave fields.

The ground state population is shown after a microwave pulse with Ωpt = π as a function

of probe detuning (∆p) and the second coupling Rabi frequency (ΩB) in units of ΩA,

which has been chosen to be � Ωp. As ΩB increases the topological phase becomes more

apparent, shown by the splitting of the outermost spectral features and the convergence of

the innermost. The innermost features are the topological edge states for ΩB > ΩA. When

ΩB < ΩA these states are part of the conduction and valence bands. Note the non-linear

colour map, chosen to keep the outermost features visible as they become weaker.

The first experiment one would likely perform is to study the transition

between trivial and topological matter. In figure 4.13 we show this phase

transition, as would be seen spectroscopically, for various ratios of ΩB to ΩA.

For the numerics ΩA is fixed to 50×Ωp and we use only three microwave fields

(four rotational states) which represents the simplest SSH system we could

experimentally realise. At ΩB = 0 the model reduces to the Autler-Townes

Hamiltonian explored experimentally in section 4.5.2. As we increase ΩB

the overall spectral splitting increases, however the two strongest spectral

features tend towards zero detuning as is expected for edge states. The

“true” topological configuration would have these edge states degenerate and

there should be a sharp phase transition between the trivial and topological

configurations, however due to the small system size this is more gradual.

We now investigate the effects of finite sizes on the numerical spectra, by ex-

tending equation (4.22) to include more microwave fields, restricting ourselves

to odd numbers (such that the number of simulated lattice sites remains

even). These spectra are shown in figure 4.14. For both the trivial and topo-
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Figure 4.14: Numerical modelling of the rotational SSH model. The ground state popu-

lation is shown as a function of probe detuning, ∆p, with a varying number of microwave

fields (nMW). (a) ΩB > ΩA: the topological configuration. Two edge states are clearly vis-

ible until nMW = 7 where the limited frequency resolution merges the states together. (b)

ΩB < ΩA: the trivial configuration. No edge states are visible, only the valence and con-

duction bands. Note that for one microwave field the trivial and topological configurations

are identical as the rotational SSH model reduces to an Autler-Townes doublet.

logical configurations we see that the size of the conduction and valence bands

increases as the system size grows, this is expected, with their splittings re-

maining the same: again this is expected as the energy differences are determ-

ined by the strengths of ΩA and ΩB. The splitting between the edge states

however does change as the number of microwave fields is increased. For the

topological configuration shown in figure 4.14, ΩA = 50× Ωp, ΩB = 4× ΩA,

we can see that by the time that nMW = 7 the two edge states are no longer

resolvable with Ωpt = π. This suggests that only a small number of states is

necessary to remove the finite-size effects seen in figure 4.13.

To summarise, within this section we have discussed a possible mapping

between a many-body SSH Hamiltonian and a multi-level molecular system.

We showed that by varying the strength of ΩB with respect to ΩA we can

explore both topological and trivial states of the system, with the character-

istic topological edge states visible even for three microwave fields. We then

examined the point at which finite-size effects are not spectrally resolvable,

concluding that by nMW = 7 we could access true many-body states with
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this synthetic dimensional simulator. Whilst this system will require coup-

ling more rotational states than we have previously we can avoid differential

AC Stark shifts by using untrapped molecules, for ∼ 1 kHz uncertainties a

typical spectroscopic pulse will have Ωp/2π ∼ kHz. Thus for the numerical

parameters we have chosen: ΩA/2π ≈ 50 kHz and ΩB/2π ≈ 200 kHz, these

are larger than typically used in experiment but not impossible. To avoid

subtle effects relating to the hyperfine structure a simple DC electric field of

order ∼ 100 V cm−1 should suffice.

4.7 Summary

In this chapter we have described the coherent control we have over the in-

ternal states of the RbCs molecule. We began by describing proof of concept

Ramsey measurements in free-space, which were decoherence free, in which

we achieved hertz-level statistical uncertainty. We found that the limiting

factor in free-space is the falling and expansion of the molecules from the

optimal STIRAP region, after which they are lost. To investigate the effects

that optical trapping had on the Ramsey coherence time we performed sim-

ilar measurements in the presence of λ = 1550 nm laser light for two distinct

superposition states |N = 0,MF = +5〉+ |1,+5〉1 and |0,+5〉+ |1,+4〉2. We

found that the dephasing rate depends strongly on the gradient of the AC

Stark shift as a function of laser intensity, finding an optimum coherence

time of 0.75(6) ms.

Moving from single-photon measurements we expanded our control scope to

include coherent control over a three-level molecule in ladder and Λ configur-

ations. In the ladder system we first investigated the Autler-Townes splitting,

demonstrating hyperfine state specific mixing of two rotational levels. We

later used this same configuration of states to optimise our equipment for

coherent Raman transitions between N = 0 and N = 2 which is dipole-

forbidden. In the Λ configuration we used a Raman transition to create an

equal superposition of two hyperfine states in the rotational ground state,

where we found dephasing which we attribute to the differential magnetic

moment of the two states coupled with our magnetic field noise.
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Finally we discussed the possibility of using the many rotational states in

RbCs molecules as a synthetic lattice for studying the Su-Schrieffer-Heeger

many-body Hamiltonian. We concluded that topological effects are visible

with only four simulated lattice sites and that finite-size effects are no longer

spectrally resolvable with eight simulated sites.



Chapter 5

The AC Stark Effect and

External Fields

There are many proposals that use polar molecules confined in optical lattices

for the simulation of novel problems in many-body physics [76–78, 124, 136–

140]. These all exploit the long-range dipole-dipole interactions between mo-

lecules that can be engineered using applied electric fields and/or superpos-

itions of rotational states. If the molecules are permitted to tunnel between

lattice sites, novel quantum phases, including super-solids and spin glasses,

are predicted to emerge [76, 77, 136–140]. In contrast, if the molecules are

pinned to the lattice sites, pseudo-spin excitations encoded in the rotational

states of the molecule can still propagate in the lattice due to spin exchange

interactions. Exploiting the rich internal structure of the molecule enables

a large range of tunable Hamiltonians to be explored, relevant to quantum

magnetism [78–80, 124, 141–143]. In both cases, the majority of proposals re-

quire high occupancy in the lattice. This is readily achieved using molecules

associated from ultracold atomic gases where uniform filling of the lattice

can be achieved via the Mott-insulator transition [144]. Extending this to

two atomic species and then forming molecules from the pre-formed pairs on

each lattice site leads to high occupancy for the molecules, as demonstrated

for ground-state KRb [145] and RbCs Feshbach molecules [146].

To realise a useful simulator, the lattice confining the molecules needs to fulfil

several criteria. Firstly, the one-body lifetime, limited by evaporation and

99
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off-resonant scatter, of the molecules in the lattice should be much greater

than the timescales associated with the evolution of the Hamiltonian under

investigation. Secondly, the light shifts in the lattice need to be controlled

such that the coherence of the quantum states under investigation is longer

than the characteristic inter-site interaction time. Bialkali molecules typically

have permanent electric dipole moments ∼ 1 D, which for a lattice spacing

∼ 500 nm leads to a dipole-dipole interaction energy ∼ h × 1 kHz. Rota-

tional coherence times greater than 10 ms are therefore essential. Finally,

for associated molecules it is also desirable that the Feshbach state and the

rovibrational ground state of the molecule have identical, or at least very

similar, polarisabilities. This is necessary to prevent the molecules being ex-

cited into higher bands of the lattice during the optical transfer to the ground

state [40, 147]. In the case of RbCs molecules, it has been predicted [148]

that this last condition should be satisfied for a lattice wavelength near to

1064 nm.

In this chapter we will study the effect of external AC and DC fields on the

rotational and hyperfine structure of RbCs. The effect of a DC magnetic

field on the internal structure of RbCs has already been studied in [116],

we therefore start by mapping out the DC Stark shift of the first rotational

transition, then through comparison to theory are able to locate a region

where the molecule is in a “pendular” state. We then study the AC Stark

shift at two wavelengths λ = 1550 nm and 1064 nm, the latter chosen as

it is predicted to satisfy the first and third of our criteria for an optical

lattice [148]. Finally, to satisfy our second criterion, we study how we can

use the DC Stark and Zeeman effects to control the AC Stark shift, finding

that with an applied electric field we can reduce the differential Stark shift

greatly.

5.1 The DC Stark Effect

Heteronuclear molecules posses a permanent electric dipole moment due to

the charge imbalance along the internuclear axis. This means that they

interact strongly with electric fields.
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Figure 5.1: The DC Stark shift of transitions to N = 1 from (N = 0,MF = +5) in

RbCs as a function of electric field strength, the electric field is directed along the 181.5 G

magnetic field. The inset shows the highlighted region at low field. The relative transition

strengths are coded as in Fig.4. Each point is the fitted centre frequency from a measured

microwave spectrum, with uncertainties of ∼kHz, which are too small to be seen at this

scale. As the electric field increases in magnitude the energy levels in N = 1 are split

into MN = 0 and MN = ±1 branches. At high field only one transition can be driven

with microwaves polarised along z, whilst at lower fields hyperfine mixing allows multiple

transitions, which can be seen clearly at 50 V cm−1 where three transitions are observed.

The interaction between the molecule’s dipole moment and a static electric

field EDC is described by the expression

HDC = −d ·EDC. (5.1)

The matrix elements of the dipole moment operator, d, in equation (5.1) are

given by1 [98]

〈N,MN |d |N ′,M ′
N〉 =∑

i=−1,0,+1

d0î
√

(2N + 1) (2N ′ + 1) · (−1)MN

×

(
N 1 N ′

−MN i M ′
N

)(
N 1 N ′

0 0 0

)
.

(5.2)

where î is a unit vector along the axes x − iy, z and x + iy for -1, 0, +1

respectively. d0 is the molecule’s permanent molecule-frame dipole moment

1A full derivation is in Chapter 3.
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Figure 5.2: The decoupling of the nuclear spin from the rotational angular momentum by

an applied electric field. (a) The energy level structure of RbCs in a DC electric field.

The states which initially have MF = +5 are highlighted in Ñ = 0 (lower panel) and

Ñ = 1 (upper panel). (b) The overlap of the hyperfine states highlighted in (a) with the

pendular state with Ñ = 1,MN = 0 and MI = 5. As the electric field increases only one

hyperfine state maintains any overlap with the pendular state. Shown inset is this overlap

subtracted from 1 to show the deviation. Note the logarithmic scale.

and the symbols in parentheses are Wigner-3j symbols [108]. In the above

expression i = −1, 0, 1 correspond to σ+, π, σ− transitions, respectively

these can change MN by +1, 0, −1. We have chosen to restrict that EDC lies

along B, which we have designated the z axis, so only the term with i = 0

contributes to the DC Stark effect.

We can spectroscopically probe the structure of the excited state within an

electric field by using our microwave spectroscopy techniques. We are limited

to using pulses with a Fourier width of 50 kHz by a slow drift in the electric

field over the ∼ 0.1 ms timescale of the experiment.

The experiments are performed in a glass cell, which can be polarised by

the electric field applied by our external electrodes. To remove charge build

up between shots we irradiate the chamber with up to 3 W of UV light

(λ0 = 365 nm) which removes the accumulated charges from the surfaces.

Additionally we restrict our maximum electric field to 500 V cm−1 to limit

the rate of charge build up which can cause instabilities within a single ex-

perimental run. This field is also the highest we can access with the limited
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bandwidth of our microwave antennas.

In figure 5.1 we show the exploration of the first rotational state of RbCs

using microwave spectroscopy in an applied electric field. We follow the

lowest π transition as a function of applied electric field, until ∼ 50 V cm−1

where the strongest transition becomes the highest energy. Because of the

roughly quadratic dependence on electric field the DC Stark shift very quickly

separates the energy levels, by ∼ 100 V cm−1 there is approximately 1 MHz

between the π and σ± transitions from (N = 0,MF = 5)2. To account for

movement in the external electrodes we fit the value of the electric field to

the known dipole moment of RbCs, d0 = 1.225(3)(8) D [42], using our model

of the molecule’s hyperfine structure.

From the fitted model we can also extract how the state evolution evolves.

In figure 5.2(a) we show the energy levels, as extracted from the fitting to

figure 5.1 and have highlighted the energy levels that have MF = +5 in

N = 0, 1. We can calculate the overlap between each of these states and an

ideal pendular state by first calculating the DC Stark shift of a rigid rotor,

as described in Chapter 3.5.1. We choose the rigid rotor state of interest to

be |ψRR〉 =
∣∣∣Ñ = 1,MN = 0

〉
. We then create a state vector in the hyperfine

space by taking the outer product of |ψRR〉 with the spin-stretched nuclear

spin state: |MI = +5〉 = |iRb = 3/2,mRb = 3/2〉 |iCs = 7/2,mCs = 7/2〉. We

show the evolution of the overlap of this state with the hyperfine states with

MF = +5 as a function of electric field in figure 5.2(b). It is clear that initially

the pendular basis is not a good representation of the hyperfine states, with

all three states initially having some overlap with the single target state.

However as the electric field increases past 100 V cm−1 the overlap with the

highest energy state (shown in yellow) increases rapidly with the overlap two

lower energy states (blue and red) decreasing. Because there is now only one

state with good overlap with the pendular state we conclude that we have

decoupled the nuclear spins from the rotational angular momentum.

2We are using the same labelling scheme as Chapter 4 when there are multiple states

with the same values of N,MF .
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5.2 Determining the Polarisability at λ =

1550 nm

Our first work on studying the polarisability was performed in a λ = 1550 nm

optical dipole trap. This is the trap in which our molecules are produced and

so has some advantages to continuing to use it. Additionally the wavelength

of 1550 nm is longer than that associated with the X1Σ → A1Σ, b3Π trans-

itions, reducing the risks of off-resonant excitation.

The molecular polarisability for an off-resonant laser beam polarised at an

angle θ to the internuclear axis is given by

α (θ) = α(0) + α(2)P2 [cos (θ)] , (5.3)

where P2(x) = (3x2−1)/2 is the second Legendre polynomial. The two parts

of the polarisability, α(0) and α(2) are called the isotropic and anisotropic parts

respectively. The matrix elements for the AC Stark shift of these components

in the lab frame are given in equation (3.34a) and equation (3.36). In short:

the isotropic part contributes equally and only to the trapping potential for

all rotational levels, the anisotropic part is responsible for the differential AC

Stark shift and affects transition frequencies as well as the trapping potential

for N ≥ 1.

This section will describe the determination of the polarisability at λ =

1550 nm. We begin by describing how we determined the isotropic part of

the polarisability, which is the only contributor to the trapping potential in

the rotational ground state. We will then describe high precision microwave

spectroscopy of the N = 0 → 1 rotational transitions, from which we can

extract the anisotropic part of the polarisability.

5.2.1 Isotropic Polarisability

As described in section 3.5.2 the isotropic part of the polarisability, α(0), cor-

responds to an equal energy shift of all (N,MN) whilst the term proportional

to α(2) is only non-zero for N > 0. Therefore in the rotational ground state

only α(0) contributes to the trapping potential. The value of this component

can be found either by direct trap frequency measurements, e.g. through
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Figure 5.3: Measurement of the isotropic polarisability of RbCs in the rovibrational ground

state using the AC Stark shift of the two-photon STIRAP resonance. (a) Spectroscopy of

the two-photon STIRAP transition in free-space (blue points) and in a 1550 nm laser of

peak intensity 11.2(3) kW cm−2 (b) The shift of the STIRAP two-photon resonance as a

function of peak laser intensity. The error on peak laser intensity is estimated at ±3%.

parametric heating, or by the differential AC Stark shift between two states.

For our measurements at λ = 1550 nm we will use both methods to de-

termine α(0). We start by measuring the AC Stark shift of the two-photon

transition used for STIRAP. At 1550 nm the Feshbach and ground states

have different polarisabilities, by measuring the differential Stark shift we

can determine this difference and as the Feshbach molecules’ polarisability

is simply the sum of that for the free atoms, which are well known [149], we

can uniquely determine α(0). We show an example spectrum in figure 5.3(a)

for a peak intensity of 12 kW cm−2, where we measure a shift of ∼50 kHz. In

figure 5.3(b) we show the results of repeating this spectroscopy for different

peak intensities, the data agree well with the expected straight line which we

can fit to extract a gradient of: -5.6(6) Hz (W cm−2)−1. This corresponds to

a ground state polarisability of α(0)/4πε0 =878(12) a3
0. This method however

requires accurate knowledge of the absolute value of the intensity, which for

our λ = 1550 nm apparatus, is approximately 3%.

To verify our result and determine the impact of a possible systematic shift

we perform a measurement of the trapping frequency. Immedately after

STIRAP we load the ground state molecules into a trap, consisting of both
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Figure 5.4: Parametric heating in the λ = 1550 nm optical dipole trap. (a) Parametric

heating measurements of the two atomic species available in our apparatus: data for 133Cs

(87Rb) are shown in purple (green). (b) Parametric heating of the RbCs molecules in the

rotational ground state (red) and first rotationally excited state (blue). We can the value

of α(0) from the ratios between the trapping frequencies for the atoms and ground state

molecule, with no dependence on the absolute value of the intensity.

beams of λ = 1550 nm light crossing at an angle of 27◦ in the plane defined

by the magnetic field vector, with a peak intensity of 36 kW cm−2. We

then modulate the intensity of one beam by ±20% at a variable frequency.

When the modulation frequency is twice one of the trapping frequencies

the molecules are resonantly heated and so become untrapped. Because,

as shown in figure 5.3(b), the AC Stark effect is linear we know that the

trapping frequency goes as (α/m)1/2. By comparing the measured trapping

frequency for molecules to that of atoms we can therefore determine the value

of the molecular polarisability. We show the results for this measurement

in figure 5.4(b) with a comparison to atoms in figure 5.4(a). Using this

method we can determine the ground state polarisability to be α(0)/4πε0 =

8.8(1) × 102 a0
3, with no systematic error due to the intensity. This value

is in good agreement with the value measured spectroscopically. When we

compare our result with theory we also find excellent agreement, with a

ratio of ground-state to Feshbach polarisability of 0.88(1) compared to the

prediction of 0.874 [148].
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Figure 5.5: Transition frequencies from the lowest-energy hyperfine state of the rovibronic

ground state (N = 0,MF = 5) to the hyperfine states for N = 1 as a function of laser

intensity, for laser polarisation angle (β) (a) perpendicular to and (b) parallel to the

181.5 G magnetic bias field. Each point is the fitted centre frequency from a measured

microwave spectrum, with uncertainties of ∼kHz, which are too small to be seen at this

scale. The transition strengths |d|2, relative to that of a rigid rotor, for microwaves

polarised along z and y are shown as blue and red colour maps respectively.

5.2.2 Anisotropic Polarisability

To characterise the polarisability of the RbCs molecule we also require a

measurement of α(2). This can be measured through the intensity-varying

differential frequency shift of the rotational transitions. We measure the

transition frequencies using our two microwave antennae polarised along z

and y (at zero intensity these correspond to π and σ± transitions respect-

ively). To probe the AC Stark structure we switch a single laser beam, with

waist 95 µm and λ = 1550 nm, on 0.5 ms before the microwave pulse. This

time allows the laser intensity to fully stabilise, the molecules then exper-

ience a laser intensity which varies by only 2% across the cloud. We fix

the time of the microwave pulse such that the Fourier-limited linewidth is

γFWHM/2π ≈ 10 kHz, corresponding to times τ ∼ 0.1 ms. This timescale

keeps the fraction of molecules which interact with the microwave field high,

maximising our signal to noise ratio. Additionally we keep Ωτ < π such

that we only observe one spectral feature, we are able to achieve this either

through coarse tuning of the microwave power or by decreasing τ .
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In figure 5.5 the Stark maps for β = 90◦ and 0◦ are shown in panels (a) and

(b) respectively. The hyperfine mixing of states causes a complex pattern

of crossings and avoided crossings as laser intensity is increased, however

by using a model of the complete hyperfine structure of the molecule (basis

states up to N = 3) it is possible to fit these maps to experimental microwave

spectra. We find that we are unable to fit both sets of spectra with the same

value of α(2) instead finding that α
(2)
90◦/4πε0 = 602(2) a0

3 and α
(2)
0◦ /4πε0 =

507(1) a0
3, in both cases we get excellent agreement between theory and

experiment. Both uncertainties are the statistical errors extracted from the

fitting, however as with α(0) the data are subject to approximately ±3% error

in the absolute value of the intensity. Unlike when determining α(0) however

we cannot remove the dependence on the intensity as, due to the complex

behaviour, the value of the combined polarisability of the excited states i.e.

the effect of α(0) and α(2), is strongly non-linear with intensity.

5.3 Determining the polarisability at λ =

1064 nm

Theoretical analysis predicts that the polarisability of ground state RbCs

molecules is identical to the polarisability of the initial Feshbach state at λ =

1064 nm, we therefore choose to install a second optical potential operating

at this wavelength to replace our λ = 1550 nm ODT. In this region of the

spectrum the polarisability should be dominated by transitions to the A1Σ

and B1Π potentials [148, 150], all of which occur at higher energies than the

∼ h×281 THz provided by the 1064 nm photons. It is worth noting that due

to spin orbit coupling the lowest levels of the b3Π potentials have significant

singlet character, giving strong resonant behaviour from h× 262 THz to h×
270 THz despite singlet→triplet transitions being forbidden by spin selection

rules.

During initial attempts to load RbCs molecules into the ODT of λ ≈
1064 nm, we observed loss in the ground state which was orders of mag-

nitude faster than the collisional losses which typically dominate our exper-

iments (these losses will be discussed in greater detail in Chapter 6). This
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Figure 5.6: A schematic illustration of the communication between different hardware

required to stabilise the frequency of the Mephisto MOPA system. A GUI powered by tk-

inter is used for user inputs, this controls the MOT servo and the laser lock. A HighFinesse

WS ultimate wavemeter is used as a frequency reference on the Mephisto, the output is

then compared to the setting supplied by the user and used in Simple PID.py to generate

the response of a servo loop. All of the code to create this software was written in Python

3.7.

was not expected. Although a single 1064 nm photon has enough energy

to drive transitions to states in the electronically excited b3Π potential, as

mentioned earlier, resonant behaviour is strongly suppressed by negligible

Franck-Condon factors for transitions from 270 THz to 300 THz [148, 150].

In this section we will first describe the laser system in use and the method

by which we stabilise the output frequency. We then will determine that the

mechanism by which molecules are lost is a two-photon transition to another

molecular state before identifying regions of the spectrum suitable for optical

trapping where we characterise both components of the polarisability.

5.3.1 Laser stabilisation

The 1064 nm laser light is derived from a commercial Nd:YAG laser in a

master-oscillator power amplifier (MOPA) configuration3 which can output

up to 25 W of laser power. The laser frequency is entirely controlled by the

pump laser and can be adjusted within a range of ∼ 30 GHz by using an

internal piezo and controlling the temperature of the Nd:YAG crystal.

For reliable measurements of resonant phenomena we must actively stabil-

3A Coherent Mephisto MOPA.
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Figure 5.7: Frequency stability of the λ = 1064 nm set-up. (a) Overlapping Allan deviation

with (blue) and without (red) the software lock running. When locked the laser is initially

+500 MHz from the desired frequency (f0) but surpasses the unlocked stability within

60 s. (b) Recorded deviation of laser frequency (f) from f0 as a function of time. f0 is

defined as the lock set-point for the blue data and the initial set-point for the red. The

width, in frequency, of modulation used for the spectroscopic measurments is shown as a

dashed line.

ise the output frequency of this laser. In practice, for these wavelengths,

lasers are either stabilised to an I2 molecular reference or to a high-finesse

optical cavity. We do not have the hardware for either of these solutions, as

such we use a simpler, software based solution. The off-the-shelf frequency

stability is claimed to be a drift of 1 MHz/min and is shown by the dotted

line in figure 5.7. We choose to use a HighFinesse WS-Ultimate wavemeter

for our frequency reference. We calibrate the wavemeter with our cooling

lasers which are independently stabilised to 87Rb and 133Cs atomic frequency

references.

The frequency stabilisation loop is contained entirely within software.

Briefly: the software monitors the output of the wavemeter, which the drivers

store in a .dll file on Windows: wlmData.dll. This value, in Hz, is filtered
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by a 3rd-order Butterworth low-pass filter in the time domain to remove

jitter associated with repeatedly accessing the wavemeter output. This fre-

quency is then used as the input to an external python library simple PID

which implements a proportional-integrator-derivative control loop output-

ting a single voltage in the range ±10 V. Finally this output is relayed to a

National Instruments USB-DAQmx board (which also controls the Rb MOT

servo), the output of which is buffered using a trans-impedence amplifier cir-

cuit and connected to the temperature modulation input on the Mephisto

pump laser. A schematic of this process is shown in figure 5.6. Currently

this technique is limited by the Hz-level I/O refresh rates available and the

∼ 10 Hz filter required to remove jitter.

To quantify the drift of the laser we fit a straight line to the frequency

measured as a function of time, whilst the MOPA is free-running we find that

there is an average drift of 343.6(3) Hz/s, well within the specification. By

implementing our software servo we improve this to: -3(2) Hz/s, indicating

that not only is the software functioning but it has removed all of the slow

frequency drift. In figure 5.7 we show the overlapping Allan deviation with

and without the servo loop in place, at short times the Allan deviation is

actually higher when the servo loop is active, we attribute this to the low

gain of the overall loop initially driving the laser frequency to oscillate. At

the longer times, which are more relevant for our experiments, the Allan

deviation averages down, indicating that we have correctly stabilised the

output frequency of the laser.

5.3.2 Determining the loss mechanism

To investigate the optical losses, we trap ground-state molecules in the λ =

1550 nm crossed optical dipole trap and pulse on the 1064 nm light in a

single beam to perform spectroscopy. We find that the loss of molecules

is very sensitive to laser frequency, with several resonances in the region

accessible to us. To determine the nature of these resonances we designate

one of the resonant frequencies f0 = 281.634 630(2) THz and stabilise the

laser to this frequency, we apply additional modulation of 35 MHz at a rate

of 5 kHz to remove error due to frequency tuning. We first measure the loss
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Figure 5.8: Determination of molecular loss mechanism. (a) Molecule loss as a function

of time for various peak laser intensities. For the filled points the laser frequency is f0

and an additional λ = 1550 nm dipole trap is used for confinement. For the unfilled black

points the laser is detuned by −12.3 GHz, and the intensity is increased to 11.2 kW cm−2

without the 1550 nm dipole trap. (b) Rate of resonant loss (Γ) of molecules as a function

of peak laser intensity (I). The solid line shows a fit to the data of the form Γ ∝ Ik which

yields a best-fit (χ2
red = 4) value of k = 2.02(8), the shaded region indicates the error on

the fit. The dashed line shows the expected scaling for a one-photon process. (c) Initial

fractional loss rate of molecules as a function of peak molecular density. The dashed lines

indicate the expected scaling for single-(blue) and two-(red) molecule processes.

of molecules as a function of time due to the resonant light. By modelling

the rate of change of density n as

ṅ(r, t) = −k2n(r, t)2 − Γn(r, t), (5.4)

we can extract the resonant loss rate Γ. In equation (5.4) k2 is the two-

body inelastic loss rate coefficient, in this analysis we fix it to the value of

4.8× 10−11 cm3 s−1 as measured in [3]. Example loss measurements, with fit

curves, can be seen in figure 5.8(a). To investigate the mechanism behind the

loss, we measure Γ as a function of the peak intensity of the 1064 nm beam

(see figure 5.8(b)). We fit the resulting variation with the function Γ = AIk,

with A as a free parameter. We fix k = 1, 2, 3 corresponding to loss due to

a one, two, or three photon process, and find χ2
red=31, 4 and 17 respectively.

We confirm this fitting by additionally allowing k to vary, where we find that

k = 2.02(8) with no significant change in the best value for χ2
red. This suggests

that the loss is a two-photon process, with Ak=2 = 25(1) s−1 (kW cm−2)−2.
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We examine the density dependence of the loss by reducing the starting num-

ber of ground-state molecules, while keeping all other experimental paramet-

ers the same. Figure 5.8(c), shows loss rates for samples with a factor of 2 dif-

ference in the initial density; the largest change that we can make whilst still

being able to measure an accurate lifetime. Both measurements agree within

1-σ so we conclude that there is no dependence on density [123]. This allows

us to discount the possibility of, for example, two-photon photo-association

of molecules or the resonant loss of molecular collision complexes [151]. As

the loss appears to be a one-body process and the intensity dependence is

quadratic, we believe it is caused by driving a two-photon transition to an

electronically excited state. A pair of 1064 nm photons have sufficient energy

to drive to the low-lying states in the (5)1Σ+ potential, shown in figure 5.9(b),

which has a minimum of energy at h× 557 THz (λ = 538 nm) [91, 152].

5.3.3 Spectroscopy of two-photon transitions

As the loss process we observe appears to be a two-photon transition to a

different electronic state we expect there to be several resonances around

f0. To resolve these transitions we reduce the intensity to ∼ 1 kW cm−2

and continue to dither the frequency as in the previous section, pulsing the

light on for 50 ms. The dithering artificially broadens the transitions to the

level where we can resolve individual lines with our current spectroscopy ap-

paratus. In figure 5.9(a) we show results for spectroscopy from the ground

rotational state N = 0, where two doublets separated by ≈ 1 GHz in laser

frequency are observed. This energy splitting is typical for rotational trans-

itions. We are able to fit the observed lines with a Gaussian function to

extract centre frequencies with ∼ MHz error.

To ensure that we can reliably trap excited state molecules we repeat our

spectroscopy measurements for molecules that have be transferred to N = 1

by microwaves. The results for this spectroscopy are shown in figure 5.9, off-

set by the microwave transition frequency 980.231 MHz. In this spectroscopy

we see markedly different structure, with two doublets spaced by ∼ 2 GHz in

laser frequency and an additional singlet transition at f ≈ f0−1.25 GHz. Due

to the different lines observed we can conclude that the individual transitions
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Figure 5.9: Resonant two-photon loss of ground state molecules in the presence of 1064 nm

light. (a) The fraction of molecules remaining in the 1550 nm trap after exposure to

1064 nm light as a function of the laser frequency for molecules prepared in N = 0 (blue)

or N = 1 (red). To display the results on a continuous scale corresponding to the excited

state energy we plot the horizontal axes as twice the laser frequency (offset from f0 =

281, 634.630(2) GHz) and offset the N = 1 measurements by 2 × Bv=0/h = 980.231 MHz

on the top axis. Each data point is the average of 3 runs, with error bars indicating

the standard deviation, the solid lines are Gaussian fits to the data. The vertical dashed

lines highlight the excited state rotational structure using a rotational constant of Bv′ =

h× 400 MHz. (b) The potential energy curves for RbCs [152]. The black arrows indicate

the energies of one- and two-photon transitions at 1064 nm.

are likely to be due to transitions of the form X1Σ, v = 0, N → (5)1Σ, v′, N ′.

As each transition involves the absorption of two photons we have the selec-

tion rule N −N ′ = −2, 0, +2 to maintain angular momentum conservation.

We fit the strongest of each pair of lines in the spectra to the eigenvalues of the

rotational Hamiltonian Bv ×N ′(N ′ + 1), weighted by the error in the centre

frequencies extract from the fits. This gives a value of Bv = h×389.9(4) MHz,

which compares favourably to the theoretical prediction of 408 MHz cal-

culated in [152]. We again note that there is an additional transition at

f0 − 1.25 GHz for molecules initially in N = 1, we are not certain of the

origin of this line.

We can suppress the losses, such that they become unobservable in our ex-

periments, by tuning the laser frequency ∼GHz away from the observed

transitions. By doing this, we have been able to successfully load RbCs mo-
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Figure 5.10: Measurement of the isotropic polarisability of RbCs in the rovibrational

ground state using the AC Stark shift of the two-photon STIRAP resonance. (a) Spectro-

scopy of the two-photon STIRAP transition in free-space (blue points) and in a 1064 nm

laser of peak intensity 8.60(7) KW cm−2. The 1064 nm laser is -12.3 GHz detuned from

the two-photon resonance at f0. (b) As in (a) with the 1064 nm laser +8.4 GHz detuned

from f0. (c) The real part of the polarisability as given by: equation (5.5). The linewidth

used is Γ/2π = 8 Hz which is the upper bound from the measurements in (a) and (b).

lecules into an ODT made with λ = 1064 nm light, where the lifetime is once

again limited by two-body collisions [3]. This is shown in figure 5.8(a) by the

dashed line and unfilled points.

5.3.4 Isotropic polarisability

For our measurements at λ = 1064 nm we choose to repeat the spectroscopy

of the STIRAP transition to measure the intensity dependent energy shift

of the ground state with respect to a weakly-bound Feshbach state. This is

given by the AC Stark shift of the two-photon transition used in STIRAP [92],

which we measure with and without the 1064 nm light in figure 5.10. The

light is delivered in a single beam with a waist of 173(1) µm, and peak

intensity of 8.60(7) kW cm−2.

To check for off-resonant effects from the two-photon transition, we perform

measurements for the 1064 nm laser tuned ±10 GHz of the loss features

observed in Fig. 5.9. The energy shifts measured above and below the trans-
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Figure 5.11: Parametric heating in the λ = 1064 nm dipole trap for (a) atoms and (b)

ground state molecules. The weighted average polarisability from these measurements is

α(0)/4πε0 = 2.03(4)× 103 a0
3, in agreement with that measured using the AC Stark shift

of the STIRAP transitions.

ition are h× 68(8) kHz and h× 68(9) kHz respectively. The identical shifts

confirm that the laser frequency is far from resonance with the two-photon

transition. Note that the shift in frequency is in the opposite direction to

that shown in figure 5.3, indicating that the polarisability of the ground state

is higher than the Feshbach state.

We can also use the polarisability to put an upper bound on the linewidth of

the two-photon transition. By considering the dominant contribution to the

polarisability to be that of the transition at f0 = ω0/2π and assuming that

it has a form given by [153]

α(ω) = αBack +
Γ/ω2

0

ω2
0 − ω2 − iΓ(ω3/ω2

0)
, (5.5)

where Γ is the linewidth of the transition of interest and αBack is the back-

ground polarisability. We can then vary the value of γ until both measure-

ments of the AC Stark shift of the STIRAP transitions agree with the curve

to 1-σ. This occurs at Γ/2π = 8 Hz, this should not be interpreted as a

measurement of the excited state lifetime.

The measured energy shift gives the difference in polarisability between the

ground and Feshbach states, and the polarisability of the Feshbach state can

be readily calculated by simple addition of the atomic polarisabilities αRb, αCs
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which are well known [149]. The weighted average of our two measurements

yields a polarisability in the ground state:

α(0) = αRb + αCs + 4πε0 × 1.70(14)× 102 a3
0

= 4πε0 × 2019(14) a0
3.

Our measurement corresponds to a ratio of the ground-state to Feshbach

polarisabilities (α(0)/(αRb + αCs)) of 1.09(2). This is significantly different

from the value of 1.00006 predicted by Vexiau et al. [148]. This may be a re-

flection that at 1064 nm there are many one and two-photon transitions that

can contribute to the polarisability with both red and blue detunings, there-

fore the polarisability is likely sensitive to small differences in the relative

transition strengths.

We confirm our spectroscopic measurement by again using parametric heat-

ing, shown in figure 5.11. We find that the polarisability is α(0)/4πε0 =

2.03(4)× 103 a0
3 which agrees with the spectroscopic measurement. We at-

tribute the larger error on this measurement to pointing instability in the

1064 nm crossed optical dipole trap, which has a much longer beam path

than the 1550 nm trap. This leads to, over the course of the experiment,

the trapping beams crossing and uncrossing thereby changing the trapping

frequency.

5.3.5 Anisotropic polarisability

In this section we determine the value of the second term in the expansion

of the polarisability, α(2), using microwave spectroscopy of the N = 0 → 1

rotational transition in RbCs, with an applied magnetic field of 181.5 G. We

repeat the microwave spectroscopy of section 5.2.2, using similar techniques

and with the 1064 nm laser frequency fixed to f0− 12 GHz. We again fit the

complex AC Stark map to our spectra, however as the complex structure has

been confirmed already in figure 5.5 we need only a few points to establish

the scaling with laser intensity. By fitting this to our hyperfine model, using

basis states up to N = 3, we can extract that α(2)/4πε0 = 1997(6) a0
3. We

note that for λ = 1064 nm only a single value of α(2) is necessary to fit the

spectra at both β = 90◦ and 0◦, which are shown in figure 5.12.
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Figure 5.12: Transition frequencies from the lowest-energy hyperfine state of the rovibronic

ground state (N = 0,MF = 5) to the hyperfine states for N = 1 as a function of laser

intensity, for laser polarisation angle (β) (a) perpendicular to and (b) parallel to the

181.5 G magnetic bias field. Each point is the fitted centre frequency from a measured

microwave spectrum, with uncertainties of ∼kHz, which are too small to be seen at this

scale. The relative transition strengths for microwaves polarised along z and y and are

shown as blue and red colour maps respectively.

Knowing both parts of the polarisability allows us to fix all the parameters

in both the hyperfine and pendular models described in Chapter 3.

5.4 Controlling the AC Stark effect with ex-

ternal fields

Molecules with 1Σ ground states only have the nuclear contributions to their

magnetic moments. Therefore they require a larger magnetic field gradient

than molecules with 2Σ ground states or atoms need to be trapped. As

such it is simplest to trap these molecules with optical potentials as these

are often a pre-requisite to produce the initial ultracold atomic gases from

which they are associated. In the two previous sections we demonstrated

that the AC Stark effect in the presence of a DC magnetic field creates a

polarisation dependent, complex structure of crossings and avoided crossings

between hyperfine states. In this section we will cover the interplay between

the hyperfine structure, the AC Stark effect and the DC Stark and Zeeman
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Figure 5.13: The anisotropic light shift of the (N = 0,MF = +5)→ (1,+5)1 transition in

an applied magnetic field of (i) 181.5 G and (ii) 355 G as a function of (a) polarisation

angle (β) for a fixed intensity of 1.05(1) kW cm−2 and (b) the laser intensity for β set

to the zero crossing measured in (a), as indicated by the dotted line. Each point is the

fitted centre frequency from a measured microwave spectrum, with uncertainties of ∼kHz.

The solid lines are a model of the AC Stark effect which includes the full hyperfine and

Zeeman structure, the shaded regions in (b) indicate the ±1◦ uncertainty in setting the

polarisation angle to the zero crossing. On both axes the coloured dashed line indicates

the expectation in a hyperfine-free model, with the vertical dashed line indicating the

associated “magic angle”. The intensity dependence makes it clear that the zero crossings

are not due to magic angle behaviour and are instead due to turning points in the Stark

map.

effects. We will show that when the AC Stark effect is combined with the

DC Stark effect the molecules’ internal structure is greatly simplified and

there is a magic angle. We then extend this analysis to find the polarisation

dependence of an optimum trapping condition. Finally we briefly describe

an extension to higher rotational states.

5.4.1 In an applied magnetic field

We begin investigating the anisotropy of the polarisability in a magnetic field

by fixing the intensity of the 1064 nm light to 1.05(1) kW cm−2 at the posi-

tion of the molecules and varying the polarisation angle to find βmagic. In fig-

ure 5.13(a) the polarisation dependent Stark shift is shown at (i) 181.5 G and

(ii) 355 G. In both cases the AC Stark shift does not follow the ∝ P2[cos(β)]
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form expected from models which ignore hyperfine structure. The transition

frequency’s zero crossing is also significantly different to the expected βmagic,

instead crossing at 63(1)◦. To find whether this is due to “magic angle” be-

haviour we fix the polarisation angle to 63◦ and vary the intensity at both

magnetic fields, these measurements are shown in figure 5.13(b). In both

cases we observe that the zero-crossing in the transition frequency is due to

a low intensity turning point in the AC Stark map.

The data in figure 5.13 indicates that the hyperfine effects are playing a sig-

nificant role in the AC Stark effect. Because the hyperfine interactions (de-

scribed in section 3.6) mix different MN the AC Stark effect has a different

dependence on angle to the expected ∝ P2 [cos (θ)] form. It is expected that

as the magnetic field increases the nuclear spin components of the wavefunc-

tion should decouple from the rotational angular momentum components.

What we observe is that this does not happen over an experimentally relev-

ant regime, which is unsurprising due to the small magnetic moment of the

molecule, compared to the electric dipole moment. Our calculations includ-

ing hyperfine structure show that the field would need to be ∼ 700 G for the

|N = 1,MN = 0,mRb = 3/2,mCs = 7/2〉 component of (N = 1,MF = 5)1 to

be > 99%, we are currently limited to exploring up to ∼ 400 G with our

current configuration.

5.4.2 In an applied electric field

Because of the permanent electric dipole moment in the molecule frame there

is a stronger coupling to DC electric fields than to the DC magnetic field.

This means that only an experimentally modest electric field is sufficient

to decouple the rotational and nuclear angular momenta. We have already

discussed the effect of just applying the DC electric field in section 5.1. Once

a field > 100 V cm−1 is applied to the molecules the rotational level has split

into |MN | = 1 and MN = 0 branches. To reach a 99% state purity in the DC

electric field requires only 100 V cm−1.

We study the polarisation dependence of the AC Stark shift in an electric

field using a fixed intensity of 3.12 kW cm−2 in figure 5.14(a) with an applied

electric field of 300 V cm−1. The model used here is hyperfine-free which



Chapter 5. The AC Stark Effect and External Fields 121

0 45 90
Polarisation angle,  ( )

150

100

50

0

50

100
Tr

an
si

tio
n 

Fr
eq

ue
nc

y 
Sh

ift
 (k

H
z)

|

| +

|0

(a)

0

50
100 V cm 1(b)

0

50
150 V cm 1

0 5 10
Intensity (kW cm 2)

0

50
300 V cm 1

Tr
an

si
tio

n 
Fr

eq
ue

nc
y 

Sh
ift

 (k
H

z)

In
cr

ea
si

ng
 E

Figure 5.14: AC Stark shifts of the N = 0 → N = 1 transitions with an applied DC

electric field along the 181.5 G magnetic bias field. The shift of each transition is shown

as a function of (a) the polarisation angle (β) of the 1064 nm laser with an applied electric

field of 300 V cm−1 and a laser intensity of 3.12 kW cm−2. The energy level of the state

with MN = 0 is labelled |0〉, the energy levels labelled |+〉 and |−〉 are even and odd

combinations of (1,1) and (1,-1) respectively. (b) As a function of the peak laser intensity

with β fixed to the magic angle (indicated in (a) by the dashed line). Each point is the

fitted centre frequency from a measured microwave spectrum, with uncertainties of ∼kHz,

which are too small to be seen at this scale. The solid lines are the results of a hyperfine

free model, with the shaded regions indicating the error due to the uncertainty in α(2).

agrees well with the data, as all measured points agree, within 1−σ, with the

previously measured value of α(2). This shows that even a modest electric

field can decouple N , iRb and iCs . To test the remanant AC Stark shift

we fix the polarisation angle of the 1064 nm laser to the predicted magic

angle of 54.7◦ and vary the intensity of the light. The results of these ex-

periments at three electric fields are shown in figure 5.14(b). We see that

the AC Stark shift scales approximately as I2, this phenomenon is often

termed “hyper-polarisability”, it is important to recognise that this effect is

completely described within equation (3.36) which contains only electronic

polarisabilities. At higher electric fields this term is reduced, with only a

maximum frequency shift of 10.0(1.6) kHz being measured at 300 V cm−1.

The remaining noise on our spectroscopy we expect is due to electric field

noise which we anticipate to be on the level of ∼ 10−3.
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Figure 5.15: The AC Stark shift of the (Ñ = 0,MN = 0,MF = 5)→ (1, 0, 5) transition in

RbCs as a function of peak 1064 nm laser intensity. An electric field of 100.8 V cm−1 is

applied, and the resulting shifts for two polarisation angles, β, of the applied 1064 nm

laser are compared. Only transition strengths for microwaves along z are shown, coded

as in figure 5.13. Each point is the fitted centre frequency from a measured microwave

spectrum, with uncertainties of ∼kHz. The continuous lines are the results from the

hyperfine-containing model.

5.4.3 Beyond the Magic Angle

At the magic angle the diagonal terms of equation (3.36) are reduced to zero,

in a perfect |N,MN〉 state this removes the α(2) component of the AC Stark

shift. Previous works have focused on finding the magic angle [126, 154].

However due to the quadratic intensity behaviour of the remnant AC Stark

shift, as seen in figure 5.14(b) and figure 5.15(a), the differential polarisability

is only reduced to zero at I = 0. Here we describe a tunable arrangement for

which the total frequency shift is reduced to near-zero at an intensity suitable

for trapping. Because this technique doesn’t require the full decoupling of

the nuclear spins from the rotation it can be used in much smaller electric

fields, reducing the sensitivity to electric field noise.

In figure 5.15(a) we compare the AC Stark shifts of the (Ñ = 0,MN =

0,MF = 5) → (1, 0, 5) transition in RbCs with a model that includes the

hyperfine structure initially using our data from figure 5.14(b). We see that

by tuning the polarisation angle away from the magic angle (in this case

β = 47◦) a broad minimum is engineered at I0 ≈ 6 kW cm−2, shown in fig-
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Figure 5.16: Tuning the AC Stark shift with polarisation and applied electric fields. (a)

The critical angle for I0 = 6 kW cm−2 as a function of applied electric field. The magic

angle βmagic ≈ 54.7◦ is shown as a dashed line. (b) The difference between the critical

angle and the magic angle as a function of applied electric field. Note the logarithmic

scale for the vertical axis. In (a) and (b) the solid line is a solution to equation (5.9)

whilst the points are obtained by optimising for a particular electric field by varying β in

a calculation of the full hyperfine structure. (c) The optimum AC Stark maps, showing

difference in transition frequency as a function of 1064 nm laser intensity, from the points

in (a) and (b).

ure 5.15(b). This intensity corresponds to a trap depth of 27 µK in the

rotational ground state, so would be suitable for trapping molecules at our

current molecular temperatures of 1.5 µK.

We quantify the expected transition frequency spread ∆f for a 4% spread in

intensity by evaluating the Taylor expansion of the AC Stark map at I = I0

and I0 −∆I for the two cases shown in figure 5.15. For β = 54.7◦ we expect

∆f = 1.5 kHz. In comparison for β = 47◦, where we have optimised to min-

imise differential Stark shifts, ∆f = 33 Hz. We expect that the coherence

time in this arrangement should scale with 1/∆f ∼ 30 ms. Seeßelberg et

al. trapped 23Na40K in an applied electric field in a spin-decoupled optical

lattice where a coherence time of 8.7(6) ms was observed [154]. Our ana-

lysis indicates that we should observe similar coherence times with reduced

sensitivity to electric field variation.

To find the angle with the minimum AC Stark shift for a given electric field

and peak trap intensity we start with a Taylor expansion of the AC Stark
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shift of a given transition

∆f = AI +BI2, (5.6)

where A is often referred to as the polarisability and B the hyper-

polarisability both are given by: [126, 154]

A =
[1− 3 cos2 (β)]

5
α(2), (5.7)

B =
2

5
× BRot sin2(2β)

(d0E)2
α(2). (5.8)

To find the optimum angle of polarisation we take the derivative of equa-

tion (5.6) with respect to intensity to find the turning point, which will have

the minimum variation in transition frequencies. We then have a function

which, for a given electric field and peak intensity, gives the optimum angle

of polarisation to use to minimise the AC Stark shift

I0 =
d2

0E
2 [1 + 3 cos(2β)] csc2(2β)

8BRot

, (5.9)

where I0 is the intensity at which the transition frequency has a turning point.

This is shown in figure 5.16(a) and (b) for an intensity of 6 kW cm−2. We val-

idate the simple model by calculating the full Stark map, including hyperfine

structure, for various electric fields and optimising the polarisation such that

the minimum is located within ∼ 1% of the desired value of 6 kW cm−2. The

accuracy of this technique is limited by the coarse intensity axis of the hy-

perfine calculation, which must be repeated many times. The optimised AC

Stark maps are shown in figure 5.16(c) for (Ñ = 1,MN = 0,MF = +5). We

find that this simplified model agrees well with our full calculations with devi-

ations only becoming significant at large electric fields. Qualitatively we ob-

serve that as the electric field increases, what we have termed as the “critical

angle” tends towards the magic angle, differing by < 1◦ by E = 300 V cm−1.

This is expected as at high electric field the molecular states become more

pendular and so the differential polarisability becomes better represented by

the term proportional to α(2) in equation (5.3), which has a zero at the magic

angle.
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Figure 5.17: The difference in polarisability in units of the anisotropic polarisability, α(2),

is shown for the transitions N → N + 1 with N ≤ 20 for π transitions MN = M ′N . For

MN = 0, the σ± transitions are shown as open points. The ratio of the transition dipole

moment, d, to the permanent dipole moment d0 is shown inset for N ≤ 20.

5.4.4 Higher Rotational States

One of the key advantages of molecules is the number of internal states

which can be accessed. There are many possible applications for these but

one of the most promising is to use the internal molecular states as a syn-

thetic dimension [128, 129]. In the simplest case this only requires a single

molecule, however more advanced models can be made with lattices of in-

teracting molecules. To experimentally realise these systems requires many

resonant microwave fields, which could make them very sensitive to time or

space-varying AC Stark shifts. It is also desirable to maintain as large a

dipole moment between the states as possible, such that nearest neighbour

interactions can still be used if necessary. Here we will use the pendular

theoretical model covered in Chapter 3 to analyse the AC Stark effect for

pairs of high rotational states.

In figure 5.17, we evaluate the differential polarisability between various ro-

tational levels for the hyperfine and Zeeman-free Hamiltonian. Our measure

of the differential polarisability is the difference between the diagonal matrix

elements, for polarisation along z, in equation (3.36) for N and N + 1 i.e.

| 〈N + 1,M ′
N |HAC(β = 0) |N + 1,M ′

N〉−〈N,MN |HAC(β = 0) |N,MN〉 |. We
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find that if a two level system formed by levels with (N = 10,MN = 0) and

(11, 0) is used, the differential polarisability reduces by almost four orders of

magnitude with respect to (0, 0) and (1, 0).

For applications to synthetic dimensions in lattices we must also consider the

variation of the transition dipole moments between these higher rotational

states. Partly this is because the transition dipole moment indicates what

Rabi frequencies are possible between the states, which maps onto the tunnel-

ing rate between synthetic lattice sites. In lattices the interactions between

the real sites will also be governed by the transition dipole moments. Inset

to figure 5.17 we show how the transition dipole moment varies for the same

states, measuring it as 〈N + 1,MN | dz |N,MN〉. This indicates that the re-

duction in differential polarisability would not come at the cost of reduced

interaction strength.

5.5 Outlook and Summary

To summarise, we have explored the effect of external fields on the internal

energy level structure of the RbCs molecule. Starting with a DC electric field

we find that, as expected, the molecule couples strongly to the field with large

energy shifts for experimentally modest electric fields. We compared our

observations in the DC electric field with a model including the hyperfine

structure and were able to conclude that of the three initially drivable π

transitions only one has significant strength above 100 V cm−1. We conclude

that this is because above this field the molecule is in a pendular state, as

described in section 3.7.

We then moved to determining the interaction between the molecule and

optical frequency AC fields. We started with λ = 1550 nm, as it was already

in use for trapping the atomic mixture. Our initial measurements were on

the isotropic part of the polarisability, where we found a ratio of ground

to Feshbach state polarisability α(0)/ [αRb + αCs] = 0.88(1) which agrees

well with theory [148]. We then studied the effect of the trapping light

on the microwave transitions to the first rotationally excited state, find-

ing that there is a complex pattern of crossings and avoided crossings. We
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are able to fit each set of spectra independently to find best-fit values of

α(2)/4πε0 = 602(2) a0
3, 507(1) a0

3 for β = 90◦, 0◦ respectively. We are not

able to determine the origin of this discrepancy.

We also investigated λ = 1064 nm as this wavelength has been predicted to

be magic for the STIRAP transitions, with equal values for α(0) and αFB =

αRb + αCs. Our initial experiments found rapid losses from the rotational

ground state, which we were able to attribute to two-photon single-molecule

transitions of the form X1Σ+N → (5)1Σ, (N − 2, N,N + 2). We found that

rather than the expected ratio of 1.00006 [148] the ratio of ground state

to Feshbach polarisability is 1.09(2), and therefore not a magic wavelength.

Using the same microwave spectroscopic techniques as used for the λ =

1550 nm dipole trap we were able to determine that α(2)/4πε0 = 1997(6) a0
3,

we were unable to reproduce the discrepancy between β = 90◦ and β = 0◦

seen at λ = 1550 nm: suggesting that this was experimental in origin.

We extended our study of the polarisability by studying the interplay between

the AC Stark effect and the DC Stark and Zeeman effects on the in-

ternal structure of the molecule, which required we constrain α(2)/4πε0 =

1997(6) a0
3. For both cases we were able to compare our experiment directly

to theoretical predictions, finding good agreement. Additionally we are able

to verify our expectation that only a small electric field (E ≈ 100 V cm−1)

is necessary to enter the limiting “pendular” case. Using this pendular case

we were then able to engineer a turning point in our AC Stark maps for

Ñ = 1 such that the minimum variation in transition frequency was at

I0 = 6 kW cm−2. We predict that this arrangement will give a sufficient

trap depth for 1.5 µK molecules with coherence times > 10 ms. Finally we

discussed how the AC Stark effect could impact the theoretical proposals

which require higher rotational states to be used, with a particular focus on

synthetic dimensions. Combined our results indicate that higher rotational

states in the presence of a DC electric field have reduced sensitivity to dif-

ferential Stark shifts without loss of interaction strength. This is promising

for using molecules as a system for studying synthetic dimensions.

The control that we have developed over the internal structure in this chapter

will be necessary for the future use of molecules in quantum simulations. By

being able to isolate individual transitions by ∼ MHz using DC electric fields
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large Rabi frequencies can be used in multi-photon synthetic dimension ex-

periments [128, 129]. Additionally knowledge of the the complex behaviour

of the internal structure of the molecule as a function of intensity and polar-

isation will allow for the generation of novel traps which could support long

coherence times, either through exploiting magic angles [154] or by removing

the intensity dependence in a magic wavelength trap [155].



Chapter 6

Collisions of RbCs Molecules

With decades of experimental and theoretical research we now possess a

detailed understanding of collisions in ultracold atomic systems [37, 156].

Experiments are able to control inter- and intra-species scattering properties

at magnetic Feshbach resonances [146, 157–159]. This control is aided by

the availability of highly-accurate quantitative calculations of the scatter-

ing length. The corresponding calculations for ultracold molecule-molecule

collisions have proved far more difficult. This is, in part, due to the ad-

ded complexity of the possible collisions between two molecules. A collision

between two atoms depends only on one coordinate: the separation, a col-

lision between two diatomic molecules instead depends on multiple as we

must represent the distance between the molecular centres-of-mass, their ori-

entations and the separation of the atoms in the molecules. Despite this

theoretical difficulty the densities reached in experiments on associated ul-

tracold molecules are now sufficiently high that molecule-molecule collision

processes are proving important and measurable.

The first measurements of ultracold molecular collisions were in fermionic
40K87Rb, where the lifetime was limited by the two-body exchange pro-

cess 2KRb → K2 + Rb2 [160–162]. However even in species for which this,

and other chemical processes, are strongly energetically forbidden such as

in the bosons 87Rb133Cs [3, 41] or 23Na87Rb [163, 164] and in the fermion
23Na40K [43, 165] the lifetime of the molecule is limited by two-body pro-

cesses and remains on the same order-of-magnitude as in the reactive case.

129
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This suggests that there is an unknown loss mechanism which is limiting the

lifetime of these species.

In this chapter we will discuss our work studying the collisional properties of

the RbCs molecule. First we will determine that the molecule follows second-

order kinetics in molecule density. Then, using results from an intensity-

modulated trap, we will determine that the molecule loss mechanism is con-

clusively explained by complex-mediated photoinduced losses. Finally we

will conclude by studying the difference in the losses in mixtures of RbCs

and Rb or RbCs and Cs.

6.1 Collisions of Ground State RbCs

The key to understanding the molecular loss is to establish a mechanism.

This begins by determining the density dependence. In this section we begin

by reviewing prior theoretical predictions for the molecular loss. We then

study the molecular lifetime experimentally to determine that the kinetics of

the rate-limiting step are second order in molecular density.

There are multiple collisional processes that can occur if we restrict ourselves

to 2-body chemistry:

RbCs + RbCs→ Rb2Cs2, ∆E/hc = −2641 cm−1 [166] (6.1a)

RbCs + RbCs→ Rb2 + Cs2, ∆E/hc = +29.1 cm−1 [167] (6.1b)

RbCs + RbCs→ Rb2Cs + Cs, ∆E/hc = +1981 cm−1 [167] (6.1c)

RbCs + RbCs→ Rb + RbCs2 ∆E/hc = +2101 cm−1 [167]. (6.1d)

Only the tetramer formation process in equation (6.1a) is energetically al-

lowed, however due to the large exothermicity it is expected that this should

not be significant at ultracold temperatures [166]. As the other three possible

processes are forbidden by ∆E � hc × 1 cm−1 = kB × 1.4 K, they also do

not occur at ultracold temperatures. For these reasons we will refer to RbCs

as “unreactive”.

Given that the molecule is stable against two-body chemical reactions we

must consider other possible mechanisms. One such mechanism was pro-

posed by Mayle et al. [168, 169]. In their work they argue that the large
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number of rovibrational states available supports a dense manifold of Fesh-

bach resonances. The lifetime of the complex formed at a collision resonance

is given by τc = ~/Γ, where Γ is the resonance width. The key assumption

of the Mayle et al. work is that the motion is fully ergodic i.e. energy within

the complex is fully randomised. This enables them to use Rice-Ramsperger-

Kassel-Marcus (RRKM) theory to determine the mean width:

〈Γ〉 =
NOpen

2πρ
. (6.2)

In the above ρ is the density of states and NOpen is the number of open

channels for the pair, for RbCs molecules in the absolute ground state

NOpen = 1. The cited work then calculates an estimate of the density of states

of ρ/kB = 942 µK−1; this corresponds to a lifetime for the (RbCs)2 complex

of 45 ms. These complexes can in principle decay back into molecules, how-

ever the predicted lifetime is sufficiently long that a third molecule is likely

to collide with the complex and cause loss of all three.

The work of Mayle et al. includes a critical error. They count states for

which the overlap 〈n,mn, L,ML|J,M〉 6= 0. For each J,M this includes a

factor of (2n + 1) where n of the order 102 contribute to the calculation of

the density of states. This leads to several orders of magnitude overestim-

ate in the density of states, and therefore also in the lifetime of (RbCs)2.

More recent work from Christianen et al. [151, 170] corrected this error, only

counting the states of well-defined J,M . Their calculations imply a complex

lifetime of τc = 253 µs for (RbCs)2, though the calculation was initially only

performed for the (NaK)2 complex, and scaled appropriately for the different

bialkalis. This timescale is too short to reasonably expect loss by three-body

collisions given current experimental densities. A different mechanism would

therefore be necessary to explain the rate of observed losses. By considering

a full potential energy surface for NaK+NaK it was determined in [151] that

the complex has a significant number of possible transitions at typical trap-

ping wavelengths, the loss was then hypothesised to be dominated by optical

excitation of a molecular complex formed by a two-body collision.

In this section we will discuss the losses in our ultracold RbCs gas. We

begin by determining the order of the kinetics, finding that the rate-limiting

step is second-order in molecular density and sub-universal. We are able
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to explain this data using a single channel model which uses some results

from quantum defect theory (QDT), this enables us to determine, for each

collision, the probability that the molecules will be lost. We exploit the

thermal averaging to fully constrain the model, extracting a short-range loss

parameter y and phase shift δs. We then explore the effect of the internal

state, finding that there is a trend towards universality with increasing state.

Additionally we see evidence that in a mixture of rotational states there is

resonant dipole-dipole enhancement to the collision rate. Finally we conclude

by exploring the magnetic field dependence, finding that even when the state

with MF = +5 is not the ground state there is no change to the collisional

properties.

6.1.1 Determining the Kinetics

Before we can determine what the loss mechanism is we must first determine

how many molecules are involved. For that we look at the kinetics of the rate-

limiting step. For a generic γ-order process we can describe the reduction in

molecular density as
dn(~r, t)

dt
= −kγnγ(~r, t). (6.3)

In a harmonic trap the density of molecules n as a function of the position

vector ~r = (x, y, z) and number of molecules Nmol is given by

n(~r, t) =
Nmolω̄

3m3/2

(2πT )3/2
exp

[
−
m
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

2kBT

]
, (6.4)

note that we have allowed for the number of molecules Nmol and temperature

T to be implicit functions of time t and ω̄ = (ωxωyωz)
1/3 is the harmonic

trapping frequency and ωi is the trap frequency along the i-th axis. In the

experiment, we typically cannot probe the density as a function of time,

instead we measure the total number of molecules. This number is simply

the integral of the density over all space. Our loss rate from equation (6.3)

therefore becomes

dNmol

dt
=

w dn

dt
d3r = −kγCγ−1

[
Nγ

mol

γ3/2T (γ−1)×(3/2)

]
, (6.5)

where we have included the parameter C = (mω̄2/2πkB)3/2. The loss of

molecules is preferentially from the densest region of the cloud, therefore as
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losses continue the cloud is expected to heat as the average energy of the

particles increases. The average energy of the colliding molecules is then

given by summing the potential and kinetic energy contributions

Ē =
w
ploss

m

2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

d3r +
3kBT

2
=

3(γ + 1)kBT

2γ
, (6.6)

where the probability of loss (ploss) can be calculated as nγ/
r
nγd3r. From

the average energy per molecule we can arrive at the total energy through

E = 3kBTNmol. The total energy of the gas must be conserved and so,

comparing the energy at time t and t+ δt

3kBT (t+ δt)Nmol(t+ δt) = 3kBT (t)Nmol(t)− Ē [Nmol(t+ δt)−Nmol(t)] .

(6.7)

In this expression we have made the implicit time dependence of T and Nmol

explicit. If we take the infinitesimal limit for δt we can construct a differential

equation for the temperature

dT

dt
=

1

Nmol

dNmol

dt

(
Ē

3
− T

)
. (6.8)

We have assumed that the molecules remain in thermal equilibrium, such

that a single temperature can describe the entire sample, experimentally we

observe that losses occur on a timescale longer than a quarter trapping period

implying that the molecules will thermalise on a time-scale comparable to

the losses. As this behaviour depends on the time derivative of Nmol we can

substitute equation (6.5) to reach a pair of coupled equations for T and Nmol

dNmol

dt
= −kγCγ−1

[
Nγ

mol

γ3/2T (γ−1)×(3/2)

]
, (6.9a)

dT

dt
= kγC

γ−1

(
γ − 1

2γ

)(
Nγ−1

mol

γ3/2T (3γ−5)/2

)
. (6.9b)

For γ = 1, i.e. a 1-body process, the temperature has no time dependence.

We establish what the relevant kinetics are for the RbCs loss process by

measuring the time-dependent molecule number in our crossed optical dipole

trap at λ = 1550 nm, the results are shown in figure 6.1(a). The molecules

are initially prepared in the spin-stretched rotational ground state (N =

0,MF = +5) at a magnetic field of 181.5 G, the STIRAP process used to
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Figure 6.1: Determining the rate limiting step for the molecule-molecule loss process. (a)

Lifetime of RbCs molecules in an optical dipole trap. Each data point is the mean of at

least 5 experimental runs, with error bars indicating the standard error. The black solid

line is a fit to the coupled equations in equation (6.9) with kγ and γ as free parameters,

with a shaded 1σ error bar. Constrained fits for γ = 1, 2, 3, corresponding to 1, 2 and

3-body loss processes are shown as blue, red and green dashed lines respectively. The

expected variation in temperature for each model is shown inset. (b) The loss rate over

the first 200 ms is shown as a function of peak molecular density. The expected trends

for γ = 1, 2, 3 are shown as in (a), with the solid black line indicating the line of best fit.

Combined (a) and (b) indicate that only a two-body process can fit both data sets well.

transfer the molecules to this state is hyperfine state selective, molecules that

are in different states (or form complexes) will appear to be lost alongside

those that are ejected from the trap. The initial temperature and density are

1.5(1) µK and 1.9(2)×1011 cm−3 respectively. Currently we can only measure

the temperature of the Feshbach molecules. This is because only ground-state

molecules that undergo a second STIRAP sequence can be imaged, if we were

to allow the cloud to expand due to its thermal energy it would also fall out

the region where STIRAP is optimised. Measuring the temperature as a

function of time is further complicated by the collisional losses reducing the

number of molecules, greatly reducing the optical depth of the clouds being

imaged.

To determine what order process we are observing we fit the experimental

data to equation (6.9) allowing both γ and kγ to vary freely, we assume that

only one loss process is significant, noting that the vacuum limited lifetime
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for Rb atoms is in excess of 100s. The parameter Tmol(t = 0) is fixed to

match the measured temperature of the Feshbach molecules, Nmol(t = 0) is

used as a fitting parameter. Using this method we find that γ = 2.07(7)

and kγ = 4.8(6) × 10−11 cm3 s−1, we quantify the goodness-of-fit with the

reduced χ2 parameter: χ2
red = 0.998. This suggests that the loss is rate-

limited by a second-order process. In figure 6.1(a) we also compare the

results to models that have γ constrained to 1, 2 or 3, respectively these

have χ2
red = 22.9, 1.27, 10.4. We have repeated this analysis excluding the

temperature variation from the model and are able to retrieve the same result:

the loss manifests as a two-body process, we do not believe therefore that

only being able to measure the initial temperature of the Feshbach molecules

is a limiting factor.

As an independent verification of the second-order behaviour we measure the

rate of molecule loss as a function of initial density over a 200 ms period.

To do so we first fix the trap frequencies and molecular temperature and

then vary the number of molecules after STIRAP. We extract a loss rate by

linearly fitting the molecule loss over this time period to extract an average

rate of change. We then confirm the order of the kinetics by plotting on a

log-log scale, shown in figure 6.1(b). We fit a further three functions of the

loss rate −dNmol/dt against the initial density n0

log

(
dNmol

dt

)
= [γ − 1] log (n0) + C. (6.10)

Gradients of 0, 1 and 2 correspond to first, second and third-order kinetics1.

If we allow γ to be a free parameter we find that the best-fit value is 0.9(3),

again in agreement with second-order kinetics. For these reasons we will,

from this point onwards, constrain all fitting to γ = 2 and parametrise our

loss curves using k2.

6.1.2 The Single-Channel Model and Universal Losses

For a “simple” system, such as collisions of the form alkali atom + alkali atom,

it is possible to accurately and fully model the scattering processes using close

1The γ − 1 exponent coefficient to log(n0) from the conversion between rate of change

of number and rate of change of number density.
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Figure 6.2: (a) An illustration of the processes that enter into the single channel model.

The two parameters that enter the model are the short range loss parameter y and phase

shift δS . The model considers the scattering off the long range C6 potential at a distance

ā and for y < 1 can include multiple reflection and transmission processes. (b) Thermally

averaged two-body loss rate coefficient at 1.5 µK, plotted as a function of the loss parameter

y and phase shift δS . The dashed line shows the contour corresponding to the k2 measured

in figure 6.1(a) whilst the solid lines indicate the 1σ error bars.

coupled-channel methods to directly solve the many-body Schrödinger equa-

tion using software such as MOLSCAT [171, 172]. It was this ability to do

accurate calculations that enable atomic scattering to be so well understood

and for magneto-association to be first attempted. In the more complex

molecule-molecule scattering systems this type of theory is simply not pos-

sible. We therefore use a different technique, based on quantum defect theory

(QDT) [173, 174]. The model we use breaks the interaction processes into

two components: a long-range part and a short-range part. We consider the

long range part to be the 1/R6 part of the molecule-molecule potential energy

surface (where R is the distance between the two molecules). At low colli-

sion energies a large amount of particle flux is scattered off the long-ranged

potential and so never reaches short range. This gives a non-zero elastic

cross-section. The component that does not scatter off the long-ranged po-

tential therefore interacts with the short-ranged part of the potential, because

the behaviour will depend strongly on the exact shape of the potential we
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parametrise the loss from this potential using the short-range S-matrix [174]

Sc =

(
1− y
1 + y

)
e2iδs , (6.11)

where we have introduced two new parameters: a loss parameter y which

quantifies the amount of molecular flux loss at short range and δs which is a

phase shift of the wavefunction that comes from short range2. We can relate

the parameter δs to a scattering length a through

a

ā
= 1 + cot

(
δs − π

8

)
. (6.12)

The parameter y is related to the probability of loss at short range

pout = |Sc|2 =

∣∣∣∣1− y1 + y

∣∣∣∣2 , (6.13a)

ploss = 1− pout =
4y

(1 + y)2
. (6.13b)

The limiting case where y → 1 has been termed the “universal loss” regime

as ploss → 1. In this regime there is no dependence on δs and the scattering

properties are limited by the long ranged part of the potential [173]. In the

universal loss limit and at zero temperature the two-body loss coefficient is

given by [173]

kUniv
2 (T = 0) =

2ghā

µ
(6.14)

where µ is the reduced mass, g = 2 for identical bosons and ā = 0.477988...×
(mC6/~2)1/4 is the mean scattering length [175]. For RbCs in the rovibra-

tional ground state: C6 = d4
0/6Brot = 141× 103Eha

6
0, which gives ā = 233 a0

and kUniv
2 (T = 0) = 1.79× 10−10 cm3 s−1 [3].

Away from the zero energy limit the value of k2 has a strong energy depend-

ence. Initially the second-order loss coefficient falls away: this is due to a

falling contribution from the s partial wave. The next contribution to k2

(d-wave) increases with temperature. However this contribution is zero at

T = 0 and so it is not until higher temperatures (greater than 1 µK) that

the second-order loss rate starts to increase again. Our model, which is de-

scribed in greater detail in [174] uses Gao’s analytic wavefunctions for a 1/R6

potential [176, 177], this accounts for the reflections off the long-range part.

2The superscript s is not for S-wave and instead stands for “short-ranged”.
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We are able to freely vary y and include multiple partial waves to get the full

energy dependence. As the experiments are performed at finite temperature

we thermally average the second-order loss coefficient

k2(T ) =
2√
π

w ∞
0
k2(E)θ1/2e−θ dθ, (6.15)

where θ = E/kBT . In figure 6.2(b) we plot the thermally averaged contours

of constant k2(T = 1.5 µK) as a function of y and δs. At this temperature

the universal limit is kUniv
2 (T = 1.5 µK) = 9.93 × 10−11 cm3 s−1, nearly a

factor of 2 reduced from the value at T = 0. In the region of parameter

space for y < 1 we see the strong dependence on δs we expect. For δs ≈ π/8

there is strong enhancement to loss, in excess of the universal limit, caused

by resonant s-wave scattering. We also observe an enhancement to the loss

coefficient at δs ≈ 5π/8 due to a d-wave shape resonance. We note here that

because RbCs is a boson only the even partial waves contribute. There are

other shape resonances in k2(E) but have been washed out in the thermal

averaging for k2(T ) [174].

We have marked the region of 1-σ agreement between the value of k2 meas-

ured in figure 6.1(a) and our thermally averaged k2 in figure 6.2(b) with

solid lines, the dashed line indicates the best fit value. From our single meas-

urement we are able to determine that the collisional losses between RbCs

molecules is sub-universal, with the highest acceptable value of y being 0.4,

however we are not able to constrain the value of δs with only a single meas-

urement.

6.1.3 Temperature Dependence

To constrain δs we choose to exploit the extra information that is contained

within the temperature dependence of k2. We vary the temperature of the

molecules by using an adiabatic compression such that the final temperature

Tf of the molecules, depends on the initial temperature Ti and the ratio of

trapping frequencies

Tf = Ti ×
(
ω̄f

ω̄i

)
. (6.16)

Using the λ = 1550 nm optical dipole trap we are able to explore ω̄f/2π in

the region 79 Hz to 149 Hz, corresponding to temperatures of 0.85(5) µK
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Figure 6.3: Exploiting the temperature dependence of the second-order loss coefficient k2

to constrain the short-range phase and loss parameter δs and y. (a) The temperature

dependence of k2 as a function of initial molecule temperature. The filled black points

use the λ = 1550 nm trap, the unfilled points use the λ = 1064.52 nm trap and the

dotted point (�) uses a hybrid 1550 nm + 1064.52 nm trap. Each of the coloured dashed

lines show the temperature dependence for a particular value of y, δs. The black line

and shaded region correspond to the best-fit parameters and their error respectively. The

temperature dependence of the universal limit (y = 1) is shown by the solid blue line. (b)

The thermally averaged contours of k2(T = 1.5 µK) as a function of y and δs. The dashed

line corresponds to the best-fit value of k2 measured in figure 6.1(a). The crosses (×) show

the locations in parameter space for the continuous lines in (a). The solid line indicates

the χ2 ≤ χ2
min + 1 region.

and 1.9(1) µK respectively. To access higher temperatures we compress into

a λ = 1064.52 nm potential, with waists 64 µm and 67 µm for which we

perform measurements at T = 2.6(2) µK and T = 3.3(3) µK. To remove

the possibility of additional losses due to heating or scatter caused by the

∼ 100 MHz beat frequency between the optical trapping beams we form

a hybrid potential: crossing one beam of λ = 1550 nm and one of λ =

1064.52 nm.

We use a χ2 minimisation method to determine the best-fit values of the

short range parameters y and δs. To narrow the parameter space, we fit the

loss as the temperature dependence as a function of δs with y constrained to

give k2(T = 1.5 µK) = 4.8×10−11 cm3 s−1, we show several of these functions

in figure 6.3(a). These slices through the (y, δs) parameter space show that
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Figure 6.4: Measurements of k2 in different hyperfine and rotational states. (a) The Breit-

Rabi diagram for the first three rotational levels of RbCs, relevant hyperfine levels are

highlighted. All experiments are performed at a magnetic field of 181.5 G. (b) The norm-

alised values of k2 for the highlighted states in (a). Unfilled points represent experiments

where the state was populated using STIRAP, filled points represents experiments where

the state was populated using coherent microwave π-pulses. The numerical values of kExp
2

and kUniv
2 are given in table 6.1

temperature dependence of k2 is strongly affected by the short range phase.

We find that y = 0.26(3) and δs = 0.56+0.07
−0.05 × π, where we have extracted the

errors as the maximum extent on the χ2
min + 1 contour shown in figure 6.3(b)

along the y and δs axes. As expected these data confirm that the loss is sub-

universal, the value of y measured corresponds to ploss = 66(4)% indicating

that a third of the molecule flux that reaches short range is able to return

to long range. Using equation (6.12) we can put the first constraint on the

scattering length for molecule-molecule collisions: 231 a0 < a < 319 a0, we

note that this scattering length is not the same as the background scattering

length.

6.1.4 Internal State Dependence

We can also explore the dependence of loss on the internal state of the mo-

lecule to shed light on the underlying two-body loss mechanism. As we are

limited to only probing the number of molecules that are in the state that

STIRAP can address any process which changes the state that molecules
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State Energy/h kExp
2 ×1011 kUniv

2 (0)×1011 kUniv
2 (1.5 µK)

(N,MF )i (GHz) (cm3 s−1) (cm3 s−1) ×1011 (cm3 s−1)

(0, 5) -0.000635 4.8(6)* 17.9 9.9

(0, 5) -0.000635 4.5(8)* 17.9 9.9

(0, 4)1 -0.000577 6.3(7) 17.9 9.9

(0, 4)2 -0.000433 5.8(5)* 17.9 9.9

(0, 4)2 -0.000433 6.4(7) 17.9 9.9

(1, 5)1 0.979596 6.4(9) 17.9 9.9

(1, 6) 0.979750 6.2(8) 16.3 9.4

(2, 7) 2.940456 8.6(1.0) 15.8 9.1

Table 6.1: The values of k2 for different rotational and hyperfine states. Experimental

values where the state was directly populated using STIRAP are marked by an asterisk

(*), all others were populated using coherent microwave π-pulses. The zero of energy is

the ground rotational state in the absence of hyperfine structure and Zeeman shifts.

occupy would present as loss.

We have measured second-order loss coefficients for three hyperfine states

in N = 0 (including the hyperfine ground state), two in N = 1 and one in

N = 2. These are shown in figure 6.4 and the numerical values are summar-

ised in table 6.1. Transfer between the ground state and the excited states is

achieved using a mixture of STIRAP and coherent microwave π-pulses. We

compare the losses for each state to the universal rate, which is not inde-

pendent of state. The value of kUniv
2 changes with state due to the different

rotational contributions to the value of C6. We show the fractional loss coef-

ficient k2/k
Univ
2 in figure 6.4(b) for each of the hyperfine states investigated.

We see that the ratio increases significantly in the excited states. In N = 2

the ratio is consistent with 1, indicating that the collisions are near-universal.

The measured increase is likely due two-body inelastic collisions, but could

also also be caused by an increased formation of collision complexes. In the

excited states the higher angular momentum allows the incoming channel to

couple to a larger number of states in the (RbCs)2 complex.

We have also studied the collisions where we put only half of the molecules

into a rotationally excited state. We start with a pure sample of molecules

in (N = 0,MF = +5), using a microwave π/2-pulse we transfer half of the
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population into (1,+6) where, because of the differential AC Stark effect the

superposition rapidly dephases within 10 µs3. The resulting density matrix

which describes the molecule sample therefore has only diagonal elements and

so the molecules occupy a statistical mixed state. The two states that we have

chosen are connected by an electric dipole allowed transition, so the collisions

between them experience an additional resonant dipole interaction. For S-

wave scattering this interaction cancels to first order because of spherical

averaging, for the higher partial waves the interaction dies off as 1/R3. These

terms die off much more slowly than the 1/R6 dispersion interaction at long

ranges and could reasonably be expected to produce higher loss rates.

To model this system we use a modification of our coupled rate equations.

We consider the density nN(~r, t) of molecules in the two rotational states to

be governed by the coupled rate equations

dn0(~r, t)

dt
= −k00

2 (n0(~r, t))2 − 1

2
k01

2 n0(~r, t) n1(~r, t), (6.17a)

dn1(~r, t)

dt
= −k11

2 (n1(~r, t))2 − 1

2
k01

2 n0(~r, t) n1(~r, t). (6.17b)

We use the values of k2 measured for molecules in a single rotational state,

as shown in table 6.1 for k00
2 and k11

2 . We are then able to fit these loss

equations to our experimental data, finding k01
2 = 7.9 × 10−10cm3 s−1. This

is a significant increase over molecules in a single rotational and hyperfine

state, indicating that the resonant dipole-dipole interactions are enhancing

the loss rate. As the two states used have a difference in polarisability of

∼ 10% we repeat the experiment twice, once matching the trap frequency

between the Feshbach molecules and N = 0 and once matching between the

Feshbach state and N = 1. In both measurements we measure the same

value of k01
2 .

6.1.5 Magnetic Field Dependence

The single channel model we have been using has no explicit dependence

on magnetic field, however at fields below 98.8 G (N = 0,MF = +5) is no

longer the hyperfine ground state. This implies that hyperfine state chan-

ging collisions could occur between RbCs molecules. If this were the case it

3See chapter 5 and chapter 4 for more information.
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Figure 6.5: The two-body loss coefficient k2 as a function of applied magnetic bias field. (a)

The Breit-Rabi diagram for the ground rotational state (N = 0) of RbCs. The magnetic

field at which molecules are produced (181.5 G) and the magnetic field where the populated

state with MF = +5 is no longer the absolute ground state (98.8 G) are shown as dashed

and dotted lines respectively. (b) The two-body loss coefficient, as extracted from a fit to

equation (6.9), as a function of magnetic bias field. The solid line shows the mean value

of k2 and the shaded region the error on the mean. We see no statistically significant

variation in the scattering properties as a function of magnetic field.

would manifest in the experiment as an increased loss rate because of the

state-selective nature of STIRAP. We note here that previous measurements

by Takekoshi et al. at 8.7 µK did indeed see an increase in loss rate by ap-

proximately an order of magnitude when the magnetic field was held below

90 G [41].

To measure the dependence of k2 over a range of magnetic fields we ramp

the applied magnetic bias field linearly from 181.5 G to the target field in

50 ms. After a variable hold time we must ramp back to 181.5 G, again

over 50 ms, to bring the STIRAP lasers back into resonance. In figure 6.5

we show the values of k2 extracted by repeating this process for target fields

from 4.6 G and 229.8 G. As can clearly be seen we do not observe any

increased loss of molecules as a function of magnetic field, even when (0, 5)

is not the hyperfine ground state by ∼ 0.1 MHz. We therefore discount the

possibility of hyperfine state changing collisions as a loss mechanism. Our

data instead supports the hypothesis that molecule loss is entirely mediated

by the formation of (RbCs)2 collision complexes, which is unlikely to be
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strongly affected by the small changes in asymptotic states and therefore

will be independent of magnetic field.

6.1.6 Conclusions

From the measurements presented in this section we can determine that

the rate-limiting step is second-order in molecule density. This supports

the “sticky collisions” hypothesis that molecules are lost to (RbCs)2 com-

plex formation. However the prediction of Mayle et al. and Christianen et

al. [168, 170] predict universal losses at short range, whilst we observe only

66(4)% losses. This could be due to a number of reasons, firstly the RRKM

theory assumes that the averaged with of the complex states is proportional

to the spacing between them, an alternative way to arrive at the same result

is through random matrix theory, which assumes there is no structure to the

energy levels: clearly this is only an approximation and it is unsurprising

that the real system has a loss rate below this prediction. Another interpret-

ation is that (RbCs)2 complexes are only formed at a small subset of relative

orientations of the RbCs molecules. Currently we have no way to determine

which of these mechanisms is the true cause of the sub-universal loss rate.
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6.2 Complex-mediated Photoinduced Losses

Our measurements on collisions of RbCs molecules told us that the kinetics

are second-order, indicating that the rate-limiting step is two-body. We have

already discounted the possibility of chemical reactions by consideration of

the energetics involved. The remaining mechanisms are those which involve

“sticky collisions”. The historical prediction for the lifetime of the (RbCs)2

was calculated by Mayle et al. to be τc = 45 ms [168]. More recent work
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Figure 6.6: An illustration of the energetics of the photoinduced loss mechanism. Energy

levels are taken from [166, 179] and are given with respect to the pair of free RbCs

molecules. All available atom transfer reactions are forbidden energetically, however due

to the high density of states near the incoming energy the transient complex (RbCs)2

can form. These complexes can then be excited to the (RbCs)∗2 states by light from the

trapping potential. It is important to note that these transitions are at much longer

wavelengths than those in the RbCs molecule. Once a complex has absorbed a photon it

appears as a lost pair of RbCs molecules.

by Christianen et al. corrected an error in the historical calculation of the

density-of-states [170], and therefore also in τc. Their prediction was that

τc = 505 µs [151]. Christianen et al. also predicted that at experimental

densities sticking-amplified three-body losses would lead to a lifetime on the

order of minutes in RbCs [170], as such it is expected that photoinduced

losses of molecular collision complexes forms the dominant loss mechanism.

In this section we will show that this is the case for RbCs.

We measure the photoinduced loss of complexes by introducing a time-

dependent intensity to our optical dipole trap. The trap itself is a crossed

optical dipole trap with λ = 1064 nm in a bow-tie configuration. The first

pass through the cell has a waist of 107(1) µm, whilst the second is 74(1) µm.

Between the two passes there is an acousto-optic modulator to introduce

an 80 MHz frequency difference between the two beams and is included to

avoid interference effects. We introduce the modulation by using a ThorLabs

MC2000 optical chopper, the motor for which can spin at up to 100 Hz. We

use a custom-made laser-cut blade which gives us an accessible modulation
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frequency range of 120 Hz to 6 kHz. The duty cycle, that is the ratio of

“bright time” to “dark time”, is fixed to 25% or a ratio of 1:3. To imprint

the intensity modulation onto the trapping light we focus the output of the

1064 nm laser through the aperture in the blade. Focussing the beam in this

manner minimises the time where the laser beam is being diffracted, this is

important as it makes the laser output better match our desired square-wave

intensity profile. This minimises the light that leaks through to the molecules

during the “dark time”, any additional light during this time will continue

to drive the optical losses of (RbCs)2. The intensity profiles expected for

differently sized beams are shown in figure 6.7(a).

The experiments we perform start with Feshbach molecules being produced

in the λ = 1550 nm crossed dipole trap. To transfer from this trap into the

time averaged potential we first increase the intensity of the λ = 1064 nm

laser over 50 ms before the magnetic levitation gradient and 1550 nm light

are ramped off in 10 ms. When not in use we block the λ = 1550 nm

light with a pair of mechanical shutters, one for each beam. Typically we

must turn the trapping light off to efficiently perform STIRAP. This avoids

spatially dependent AC Stark shifts. In the time-averaged trap we exploit the

intensity modulation and synchronise the STIRAP sequence to only occur

during the time where the molecules are in the dark.

6.2.1 Measuring the lifetime of (RbCs)2

The photoinduced loss mechanism is predicted to be saturated by multiple

orders of magnitude, this means that as the laser intensity is increased for the

intensity-modulated trap the rate of loss of complexes is fixed as the limiting

step is their formation. Therefore whilst the light is off the molecule density

is determined entirely by the decay and formation of (RbCs)2 complexes. We

can then use the time that the trap is off to probe these dynamics. We model

the rate of change of the density of molecules, nmol and complexes nc using

the coupled rate equations

dnmol

dt
= −k2n

2
mol +

2

τc
nc, (6.18a)

dnc

dt
=

1

2
k2n

2
mol −

1

τc
nc − k1I(t)nc. (6.18b)
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Figure 6.7: An illustration of a lifetime measurement in the intensity-modulated potential.

(a) The intensity of the dipole trap as a function of time, shown on a logarithmic intensity

scale. An ideal square wave is shown as a dashed black line, the solid red line shows the

behaviour for our small laser beam. The blue line shows the same for a larger beam waist.

(b) The molecule density on short time scales for τc/tdark = 0.1 (i), 1 (ii), 10 (iii). The

dashed line shows the time-dependent density for a CW trap. The dotted line shows a CW

trap with k2/4. (c) As in (b) but on longer time scales. It can be seen that as the time is

extended the behaviour in the intensity-modulated potential results in slower losses.

In the above k2 is the second-order loss coefficient for molecules, where we

have presumed that molecule loss is entirely governed by the formation of

(RbCs)2 complexes. We have included another parameter: τc which is the

lifetime of the complex before it decays back into a pair of molecules. There

is a factor of 2 difference in the first two terms of the coupled rate equations

because it takes a pair of molecules to form a single complex. To model the

photoinduced loss we include k1, which is the first-order loss coefficient for

the complexes.

Over multiple cycles the difference in molecule density between the intensity-

modulated and continuous-wave (CW) potentials becomes much larger, as

can be seen in the simulation of the mechanism in figure 6.7(b-c). For this

simulation we use a fixed fmod = 1.5 kHz, a 25% duty cycle and a second-

order molecule-molecule loss coefficient appropriate for RbCs. For our initial

analysis we assume that k1I0 � τ−1
c , an assumption which is supported by

theoretical predictions and that we shall justify later.



Chapter 6. Collisions of RbCs Molecules 148

0.5 1.0 1.5 2.0 2.5 3.0
Modulation Frequency, fmod (kHz)

0

250

500

750

1000

1250

1500

1750

2000

M
ol

ec
ul

e 
N

um
be

r

Nmod

Nmod + CW

(a)
0.75 0.375 0.25

Dark time (ms)

1 2 3 4 5 6
Modulation Frequency, fmod (kHz)

0.0

0.1

0.2

0.3

0.4

(N
m

od
/N

m
od

+
CW

) -
 1

(b)
0.75 0.25 0.125

Dark time (ms)

Figure 6.8: Measuring the lifetime of (RbCs)2 in the time-averaged potential. (a) The

number of molecules in the intensity-modulated trap with and without additional CW

light (Nmod+CW and Nmod respectively) as a function of the modulation frequency of the

trap. Each point is the mean and standard error of 8 measurements. The solid line is a

linear interpolation of the points for Nmod+CW, the dashed line is this function multiplied

by the best-fit curve in (b). Sketches of the time-dependent intensities are shown inset.

(b) The fractional difference in the molecule number with and without the CW light. Each

point is the ratio of the mean of 50 measurements of Nmod and Nmod+CW. The solid line

is an exponential fit to the results with τc = 0.53(6) ms, the shaded region showing the

error bar.

Before we can extract the behaviour of the complexes we have to determine

the parameters associated with their formation. To do this we measure two-

body loss curves in the CW 1064 nm trap, which operates in the same geo-

metry as the intensity-modulated trap. We use the same procedure as in fig-

ure 6.1, finding that the best fit is still γ = 2 and k2 = 5.4(9)×10−11 cm3 s−1.

This is in agreement with the theory prediction in figure 6.3(a). For our ana-

lysis of the lifetime we fix this value of k2 in the CW and time-averaged

traps.

We measure the lifetime of the complex by varying the dark time tdark, as the

duty cycle is fixed this is achieved by changing the modulation frequency. In-

troducing the intensity modulation also introduces another source of heating

through parametric heating and therefore additional losses through evapor-

ation. This extra loss is likely strongly frequency dependent with a highly

complex structure due to the presence of high harmonics of all three trap
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frequencies. We therefore need to perform a comparative measurement,

where the heating and evaporative losses are common to both data sets.

To produce such a comparative measurement we choose to add a second,

low-intensity, CW beam at λ = 1550 nm. The light is sourced from the

same laser as is used to trap the atomic mixture, but we have signific-

antly reduced the peak intensity to 0.31(1) kW cm−2. This intensity was

chosen as it should be large enough to maintain k1I � τ−1
c yet is low

enough that it does not significantly perturb the trapping potential that

the molecules experience4. We label the number of molecules after a 200 ms

hold in Nmod when only the time averaged potential is used and Nmod+CW

when we have introduced the low-intensity beam. We show the ratio of

the two values as a function of modulation frequency in figure 6.8(a), av-

eraged over 8 measurements. The trap frequencies experienced by the mo-

lecules are [ωx, ωy, ωz]/(2π) = [96(2), 160(3), 185(3)] Hz. At low frequency

(fmod < 1 kHz) we observe significant losses from the time-averaged poten-

tial, this is consistent with parametric heating effects [180–183]. At higher

frequencies we observe a broad band where losses caused by the trap are low

and where Nmod is greater than Nmod+CW by more than 1σ, indicating that

there is an observable reduction in the rate of loss.

The expected suppression of photoinduced loss depends strongly on the ratio

τc/tdark, that is what fraction of a lifetime the complexes are not scattering

light: the larger this fraction the higher the probability that the complexes

dissociate back into individual RbCs molecules. To accurately determine

the lifetime of (RbCs)2 we perform 50 interleaved measurements each of

Nmod and Nmod+CW. The measurements are interleaved so that slow changes

over the ∼ hours taken for the data to be gathered are equally included in

both datasets. In figure 6.8(b) we show the data from these measurements,

presented as the fraction difference (Nmod/Nmod+CW)−1 as a function of fmod.

The solid line is a fit to equation (6.18a), where the only free parameter is

τc, as we assume that no complexes remain between light pulses. We find

that τc = 0.53(6) ms with an additional systematic uncertainty of ±0.11 ms,

associated with our density calibrations. As a simplification we have assumed

that the molecules do not get heated as a function of time by either the

4Typical traps at this wavelength have peak intensities of ∼ 10 kW cm−2.
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Figure 6.9: The intensity dependence of the loss of (RbCs)2 complexes. We fix the modu-

lation frequency to 1.5 kHz (dark time = 0.67 ms) and measure the ratio between molecule

number with and without the CW light, for which we vary the intensity. Each data point

is the result of 50 measurements each of Nmod and Nmod+CW, errorbars show the standard

error. (b) An example histogram with Nmod shown in red and Nmod+CW shown in blue.

The mean values are indicated by dashed vertical lines and the Gaussian distribution of

the data is shown as a solid line.

intensity modulation or by the two-body loss, our model indicates that a

25% increase in temperature would shorten τc by ∼ 20%.

The measured value of the lifetime for (RbCs)2 compares favourably with

theory. The prediction of Christianen et al. is τc = 0.253 ms [170]. We note

that their prediction is from a detailed calculation for the (NaK)2 complex,

where they have scaled the result to (RbCs)2 using approximate scaling laws.

Performing such a calculation for (RbCs)2 would be a large undertaking in

itself. We note that the expected density of states increases with the reduced

mass of the molecule, where NaK is the lightest of the non-reactive bialkalis

and RbCs is the heaviest.

6.2.2 Measuring the Intensity Dependence

In the previous section we assumed that the intensity of our additional CW

beam was sufficient to continuously remove complexes. In this section we

will use the time-averaged trapping potential to probe the intensity depend-
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ence of the photo-induced loss mechanism and in the process will test this

assumption.

To perform this measurement we fix the modulation frequency to 1.5 kHz,

corresponding to tdark/τc ≈ 1.25 and vary the intensity of the CW beam. For

intensities above 102 W cm−2 we can use the CW beam described previously.

To reduce the intensity further we use a larger beam of the same λ = 1550 nm

light. As for our measurement of τc for each intensity we perform 50 inter-

leaved measurements of Nmol and Nmol+CW, in figure 6.9(a) we present this

data as the ratio: Nmod+CW/Nmod.

To extract the value of k1 we fit the model

Nmod+CW

Nmod

= (1−B)× exp

(
− I
I0

)
+B, (6.19)

to our data. We leave B and I0 = (k1 × τc)
−1 as free parameters. The best

fit is achieved for I0 = 5+5
−3 × 10−1 W cm−2. We can convert this into the

first order loss coefficient k1 from equation (6.18) by including our measured

value for τc. Doing so gives k1 = 3+4
−2 × 103 s−1 (W cm−2)−1. A typical trap

for our molecules will have depth ∼ 10 µK, for RbCs this is an intensity of

∼ 5 kW cm−2 and gives a scattering rate (excitation time) of 15 × 106 s−1

(66 ns). This excitation time is over three orders of magnitude smaller than

τc, confirming that not only was our earlier assumption that k1I � 1/τc is

valid but also that the photoinduced loss process is heavily saturated. With

the process being so heavily saturated as soon as a complex is formed from

a pair of molecules it scatters a photon and is removed.

We have also repeated the intensity dependence tests using a λ = 1064 nm

beam. These data are shown in figure 6.9(a) as unfilled points. We see

that the change in wavelength does not significantly affect the saturation

behaviour. This was expected: Christianen et al. predicted that signfici-

cant changes in the laser excitation rate would require an increase of the

wavelength to ∼ 10 µm [151].

6.2.3 Summary and Conclusions

By using an intensity-modulated trap we have been able to suppress photo-

induced loss of RbCs molecules. This simple addition to our existing appar-
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atus has offered a powerful insight into the lifetime of the collision complex,

both in the dark and in the optical trapping light. We have found that the

lifetime in the dark i.e. the time to decay back to a pair of RbCs molecules

agrees within a factor of two with the rescaled value of [151], which is excel-

lent given the complexity of the calculation. By measuring in the light we

have seen that as the intensity increases fewer complexes break back apart

into molecules. We have to reduce the intensity by many orders of mag-

nitude from a typical trapping intensity to suppress this. Recently Liu et al.

have performed a complementary experiment using a bulk gas of KRb, and

reached the same conclusions [184].

Our results indicate that there are two ways now to reduce the effect of loss

of molecules on current and next-generation molecule experiments. The first

is to remove the formation of complexes entirely: this can be achieved using

techniques for trapping single molecules in tweezers, or in sites of an optical

lattice. Another possibility if a bulk gas is required is to shield individual

molecules from collisions using DC electric fields [185] or by dressing using

microwaves [186, 187]. The other way that losses can be mitigated is to

not use a red-detuned optical trap with saturated losses. A blue detuned

box trap could be used to reduce the scattering rates as molecule spend

more time in low-intensity regions [153] as could a significant increase in

wavelength [151]. If the molecule possess a magnetic moment, such as the
2Σ molecules currently used in laser cooling, then magnetic traps [188] avoid

the possibility of optical excitation altogether.

We have conclusively determined the dominant loss mechanism for ultracold

ground state RbCs, and likely the other non-reactive bialkalis, to be photo-

excitation of a collision complex by the infra-red trapping laser, which at

typical intensities is very highly saturated. The complexes are formed by a

two-body collision of the form RbCs+RbCs→(RbCs)2.

6.3 Collisions Between Atoms and Molecules

Throughout this chapter we have been considering the processes that occur

between pairs of RbCs molecules. Of course because we associate our mo-
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lecules from pre-cooled gases of 87Rb and 133Cs we can also study collisions

in mixtures of these atomic species with our molecules. Studying collisions

between atoms and molecules could open up a promising new avenue for cool-

ing of RbCs further than is currently possible, collisional cooling has been

observed in a mixture of 3Σ NaLi and Na [189] suggesting that workable

parameters are possible to find.

There are multiple loss mechanisms that are possible in a mixture between

atoms and molecules, the most obvious of which are chemical reactions. By

comparing the binding energies of the different homonuclear dimers we can

consider the energetics of the RbCs + atom processes

RbCs + Rb→ Rb2 + Cs, ∆E/hc = −181.9(2) cm−1 [167], (6.20a)

RbCs + Cs→ Cs2 + Rb, ∆E/hc = +161.88(2) cm−1 [167]. (6.20b)

By studying atom+molecule collisions we can therefore access reactive col-

lisions with Rb atoms and non-reactive with Cs atoms. For both atomic

species the reaction of the form RbCs + X→ XRbCs is energetically allowed

by ∼ 103cm−1 [167]. However, like the reaction RbCs+RbCs→ Rb2Cs2, this

should be unlikely at ultracold temperatures [166]. In the case of the non-

reactive reaction RbCs+Cs there are multiple mechanisms that we could con-

sider. These are similar to the RbCs+RbCs mechanisms in that they rely on

an intermediate collision complex. When compared to the molecule-molecule

case the predicted density of states should be lower for the atom-molecule

system by a factor of ∼ 105 [168, 169], this would shorten the lifetime of

the complex significantly and so reduces the likelihood of collision-enhanced

three body losses.

In this section we present early data on collisions between RbCs molecules

and Rb, Cs atoms. First we present our method of removing a single species

from the mixture. We perform comparable measurements at two magnetic

fields, with no significant differences between the two.

6.3.1 Species-Selective Removal

Typically in experiments on molecules we use the Stern-Gerlach effect to

separate the Feshbach molecule cloud from the atoms. We achieve this by
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Figure 6.10: (a) The sequence used to measure collisions between molecules and atoms.

Key points in the sequence are labelled. (b) A zoom in on the highlighted region in (a).

The time when the STIRAP pulse sequence begins is shown by the blue dashed line. The

shaded region shows where the MOT light is switched on for atom removal.

increasing a magnetic field gradient to levitate the molecules, held in the

n = −2 Feshbach state, against gravity which gives the dipole trap for the

atoms a significant upwards tilt. This is very effective at removing both

atomic species and leads to a pure sample of RbCs. However it is not species

selective as the magnetic moment to mass ratio is approximately the same

for both Rb and Cs. As such we need a new method to selectively remove

only one atomic species from our mixture.

There are several possibilities: microwave ARP between hyperfine states fol-

lowed by optical cycling on a closed transition [190] or tuning a repump

and “blaster” beam to resonance at high field. Both of these require an

understanding of the internal atomic structure in a magnetic field, our calcu-

lations of which are presented in Appendix A. An alternative implementation

involves bringing the atoms back to resonance with our existing laser light

using the magnetic field. We choose to use this option as it does not require

any additional hardware. Briefly the sequence is as follows:

1. The atoms are transferred into a pure optical potential adiabatically.

2. The Feshbach molecules are produced as usual at 181.5 G and trans-

ferred into the state with n = −6.
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Figure 6.11: Determining the timescales for single-species removal. (a) The variation in

magnetic field following magneto-association, measured using microwave spectroscopy of

the 87Rb (fRb = 1,mRb = 1) → (2, 2) transition. The target field value is shown as a

dashed line. We fix the wait between jumping the magnetic field and the STIRAP sequence

to 1 ms based on this crossing point. (b) The loss of 87Rb (red) 133Cs atoms whilst the

blaster light is switched on at 20 G. The minimum atom number we can detect using our

absorption imaging is shown by a horizontal dashed black line. We extrapolate to total

removal by fitting a straight line in log-log space.

3. The molecules are transferred via STIRAP to the absolute ground state.

4. The magnetic field is reduced to 20 G in 0.1 ms followed by 3 ms where

the MOT light is switched on.

Finally if necessary the magnetic field is increased back to 181.5 G for the

measurement. If one atomic species remains in the trap we repeat step 4 to

remove it before increasing the magnetic field back to 181.5 G for STIRAP.

This sequence is also shown diagramatically in figure 6.10.

We find that it is necessary to include a wait between the changing magnetic

field and the STIRAP process to allow the field to settle. We determine this

time using high-precision microwave spectroscopy of the (fRb = 1,mRb =

1) → (2, 2) transition, the change in magnetic field with time is shown in

figure 6.11(a). We aim to keep this time as short as possible as we observe

fast loss (1/e time of 1.2(1) ms) of Feshbach molecules when they are held in

a mixture with free atoms of total density ∼ 1013 cm−3. The blasting must

take place after the STIRAP transfer to the ground state as the Feshbach
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Figure 6.12: The lifetime of RbCs measured in a mixture with Rb and Cs. (a) The number

of RbCs molecules as a function of time with Rb atoms (blue points) and Cs atoms (red

points). The lifetime is measured at the magnetic field where the atomic species can be

removed: 20 G. The lifetime of RbCs without either atomic species is also shown as a

reference (black points). (b) As in (a) but at a magnetic field of 181.5 G.

molecules will scatter the light used for removal.

We identify the amount of time needed for full removal by using in-situ

imaging of the atomic mixture and varying the length of the removal pulse.

Using the in-situ measurement method has a minimum number of atoms

that we can detect which is ∼ 100. Because of this we cannot image to total

removal and must extrapolate the exponential decay to find an appropriate

amount of time. The loss of atoms as a function of time in the light is shown

in figure 6.11(b). Based on these measurements we fix the removal pulse

time, for both species, to 3 ms.

Using this sequence we are able to produces samples of RbCs molecules in

the (1Σ, N = 0,MF = +5) ground state at a temperature of 1.1(2) µK.

These molecules are in a mixture with atoms of either species. Both atomic

species are in their absolute ground state. The atoms are at a temperature

of 0.73(5) µK and a mean density of ∼ 4 × 1012 cm−3, this is an order of

magnitude greater than the density of the molecules.
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6.3.2 Lifetime Measurements

Now that we are able to produce samples of RbCs and Rb or Cs atoms we

can study the behaviour of the new mixture. In figure 6.12 we show the

results for measuring the lifetime of RbCs with Rb and Cs atoms at ∼ 20 G

and ∼ 181.5 G. It is immediately obvious that the loss between atoms and

molecules is much faster than that between the molecules themselves, how-

ever this is not unexpected as the mean atom density is ∼ 1013 cm−3, com-

pared to the molecules ∼ 1011 cm−3. This increase in density increases the

rate of collisions, and therefore also of collisional losses. We find that these

measurements fit well to exponentials with time constants of 17.0(1.8) ms

[24.1(1.5) ms] for mixtures with Rb [Cs] at 181.5 G. At 20 G these time

constants are 14.7(1.1) ms [48(3) ms] for mixtures with Rb [Cs]. The atomic

densities are not equal however and so we cannot directly compare these time

constants and must determine a density scaling law.

To determine the density scaling we desire to remove all atoms of one species

and a portion of the atoms of the other. We choose to optically remove all of

the Rb atoms. We cannot use the optical technique to remove only some of

the Cs atoms as the light distributes atoms across multiple states. Instead

we rapidly tilt the trapping potential using a magnetic field gradient. This

over-levitates the atoms and causes a portion of them to leave. In figure 6.13

we show the 1/e lifetime of the molecule against the mean Cs atom density

on a log-log scale. The two expectations for this data are that the additional

losses are caused by RbCs+Cs collisions or by RbCs+Cs+Cs collisions. We

expect the loss rate (the inverse lifetime) to scale linearly and quadratically

with the mean atomic density respectively. A linear fit in log-log space to

the data gives a gradient of -1.00(3) allowing us to discount the three-body

process as a possibility.

Having determined the density scaling and desiring a more quantitative de-

scription, we consider the rate of change of density of molecules, in the pres-

ence of atoms, to be given by

dnmol

dt
= −kmol

2 n2
mol − ki2ninmol. (6.21)

where i =Rb, Cs. We will assume that dTmol/dt = 0. As in section 6.1 we

are actually measuring the number of molecules and not the density. The
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Figure 6.13: The 1/e lifetime of RbCs molecules when in a mixture with Cs is shown as a

function of mean Cs atomic density. The dotted black line is a fit to the data to extract

the density dependence as a power law, the fitted gradient is -1.00(3). The solid blue and

red lines are expectations for a linear and quadratic density dependence.

rate of change is therefore the integral of equation (6.21) over all space. We

have already determined the first term in the derivation of equation (6.9).

To determine the second term we must consider the interspecies density. We

can arrive at an approximation if we assume that the trap for the molecules

and atoms are centred at the same point and that they are spherical i.e

ωx = ωy = ωz = ω̄

Nmoln̄i =
w
nmolni d3r

= NmolNi

(
(mmolω̄

2
mol)(miω̄

2
i )

2πkB [(miω̄2
i )Tmol + (mmolω̄2

mol)Ti]

)3/2

.
(6.22)

In our case there is actually a significant gravitational sag, which is differ-

ent between the atoms and molecules. We can correct for this using the

dimensionless factor

F (∆z) = exp

[
−

(mmolω
2
z,mol)(miω

2
z,i)∆z

2

2kB(miTmolω2
z,i +mmolTiω2

z,mol)

]
. (6.23)

We are only concerned with the trap frequencies along the z (vertical) axes

as for our purposes the difference in position, ∆z, is entirely due to the

gravitational sag

δz = g

(
1

ω2
z,i

− 1

ω2
z,mol

)
, (6.24)
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Process kUniv
2 (T = 0) kExp

2 (B = 20 G) kExp
2 (B = 181.5 G)

(×10−11cm3 s−1) (×10−11cm3 s−1) (×10−11cm3 s−1)

RbCs + Rb 6.51 1.0(2) 1.6(3)

RbCs + Cs 5.46 2.0(4) 1.2(2)

Table 6.2: The values of the second-order loss coefficient for collisions between RbCs

molecules and Rb or Cs atoms extraced from fits to the data in figure 6.12

here g is the acceleration due to gravity. We now have a model for the rate

of change of molecule number, whilst in a mixture with atoms

dNmol

dt
= −kmol

2 C

(
N2

mol

23/2T 3/2

)
− ki2F (δz)n̄iNmol. (6.25)

We can remove the second-order dependence on molecule number in equa-

tion (6.25) by independently measuring the RbCs lifetime without the atomic

species but using the optical removal technique, we note that the loss ob-

served is faster than the sub-universal losses in section 6.1.1. We attribute

this increased loss to evaporation of the RbCs molecules from the trap, to

maintain a large enough sample to study we cannot compress as tightly as

in prior experiments, the trap depth is only 8 µK. Coupled with increased

heating from the removal process evaporative losses are now significant. We

are able to confirm this hypothesis by further compressing the molecules into

a trap of depth ∼ 30 µK and to a temperature of 1.9(3) µK. Here we are able

to recover losses at a rate consistent with the model presented in figure 6.3(a).

By fitting equation (6.25) to our data we can extract a value of ki2. We

can compare these results to the universal limit at zero temperature using

equation (6.14) and the values of C iso
6 from Kotochigova et al. [191]. We find

that for both species at both low and high magnetic field the loss coefficients

are below the zero-temperature universal limit by approximately a factor of

5, the numeric values are tabulated in table 6.2.

Recent results by Yang et al. suggest that Feshbach resonances between

atoms and molecules should be resolvable [165]. From their results we ex-

pect that the widths of these resonances should be ∼ G. To verify that

the rate constants we have measured are not due to resonant behaviour we

scan the magnetic field ±5 G around the fields we have studied for life-

times. We scan the magnetic field in steps of 0.11 G, which is a compromise
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Figure 6.14: The number of molecules after a hold time with Rb (upper) and Cs (lower)

atoms at 20 G (left panels) and 181.5 G (right panels) . In each case the magnetic field is

scanned ±5 G around B0. The mean value for each panel is shown as a solid horizontal

line; 1−σ and 2−σ intervals are shown as dashed and dotted lines respectively. The data

are also shown as a histogram and compared to a normal distribution, normalised to give

the probability density p. We see no significant variation from normally distributed noise.

between resolution and experimental time. We perform the scan by fixing

the molecules hold time with atoms to 10 ms (6 ms for the data with Rb at

∼ 181.5 G), the time is chosen such that our background number is ∼ 1000

molecules, this would enable us to see both increases and decreases in the

lifetime. We present these results in figure 6.14. To determine if there is

any variation from background we make a histogram of the results and ex-

tract a mean and standard deviation. For all four measurements we observe

only ∼ 5% of the points are outside the mean ±2σ interval, as would be

expected for normally distributed noise. Additionally there are no signs of

correlation between neighbouring points which also suggests that there is no

structure to be found. We acknowledge that the region we have explored is

small (only 10 G) when compared to the size of the magnetic bias field we

apply (181.5 G), however it is expected that for RbCs and Cs the average

spacing of resonances would be ∼ 5 G by rescaling the predictions of [168].

Our observations are therefore consistent with the hypothesis that there are

no resolvable scattering resonances between atoms and molecules. This is

potentially because the average spacing of resonances scales inversely with

reduced mass, NaK is the lightest non-reactive bialkali currently being stud-



Chapter 6. Collisions of RbCs Molecules 161

ied and RbCs is the heaviest. It is not impossible that the resonances in

RbCs are overlapped to behave continuously and the resonances in NaK are

more widely spread.

6.4 Summary

We have studied the collisional properties of RbCs molecules in a range of

scenarios. Through our initial measurements we were able to determine that

the kinetics of the rate-limiting step are second-order in molecule density and

so agrees with the hypothesis that the loss is mediated by the formation of

complexes. By comparing with a single-channel model we were able to de-

termine that the losses were sub-universal with a short-range loss parameter

y = 0.26(3) and phase shift δs = 0.56+0.07
−0.05 × π. This indicates that there is

some limitation on the formation on complexes that prevents some molecules

that reach short range from being lost.

To investigate the mechanism behind the losses of complexes we used an

intensity-modulated optical dipole trap. We found that across a broad mod-

ulation frequency range the modulated trap gave an enhancement to the

number of molecules observed after a fixed hold time when compared to

when the complexes are continuously removed by CW light. By measuring

this frequency response we are able to determine that the lifetime of the

(RbCs)2 complex is 0.53(6) ms, within a factor of two with theory [151].

This level of agreement is exceptional given the complexity of the theoretical

calculation. We found that the intensity-normalised laser excitation rate is

3+4
−2 s−1(kW cm−2)−1 at λ = 1550 nm, indicating that at typical trap intens-

ities the photo excitation of (RbCs)2 highly saturated. Our results demon-

strate that optical excitation of (RbCs)2 complexes formed by collisions of

RbCs molecules is the dominant loss mechanism for ultracold non-reactive

molecules.

Finally we concluded by presenting data on collisions with atoms and mo-

lecules. As in the molecular complex formation we see sub-universal rates,

with little difference between the exothermic RbCs + Rb and endothermic

RbCs + Cs processes. Despite being sub-universal we see rapid loss of mo-
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lecules due to collisions with atoms because of the high atomic density. We

verified that this rapid loss was not due to resonant scattering by tuning the

magnetic field, where our observations were consistent with the null hypo-

thesis that there are no scattering resonances.



Chapter 7

Conclusions

Our goal throughout the work presented in this thesis has been to understand

how we can use RbCs molecules in a quantum simulator. To this end we can

create some necessary criteria for making a useable quantum simulator based

upon ultracold polar molecules.

� For performing useful quantum simulations it is a requirement that we

are able to engineer long-range interactions using the dipole-dipole in-

teraction between molecules. This enables the simulation of more com-

plex condensed matter models and is the chief advantage of a molecule-

based quantum simulator over one based on atoms.

� We require that the coherence time of any superposition is longer than

the molecule-molecule interaction time, typically this is ∼ ms. This

maintains the quantum behaviour of the system for as long as possible

and so preserves few-body interference effects over the many-body sys-

tem.

� We must be able to coherently control the internal state of the molecule,

even in the presence of external electromagnetic fields. This control is a

necessary requirement to be able to initialise the molecules into a state

for simulation, as well as for adding additional synthetic dimensions to

a simulator.

� It is also desirable to know a great deal about the collisional properties

of the molecule. This is because cooling the molecules to high phase-

163
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space density is likely to be necessary prior to loading into any array

for performing a simulation. If the lattice depth is low enough, there

is also the possibility that molecules can tunnel between lattice sites

and in these cases the collisional properties of the molecule will greatly

affect the outcome of any quantum simulation experiment.

In this chapter we will summarise the key findings presented within this thesis

and compare them to these listed criteria. We will then describe the next

steps in molecular physics research our group will be undertaking and how

the work presented in this thesis has helped to inform the development and

trajectory of this future work.

7.1 Summary

Throughout this thesis we have investigated the internal structure of the

RbCs molecule experimentally and theoretically. In Chapter 3 we provided

a framework for understanding the structure. In order to demonstrate the

behaviour of RbCs in different external fields we have developed a python

package for performing this kind of theoretical calculation (the python 3.7

code is presented in Appendix B).

We have expanded our microwave control beyond coherent π pulses begin-

ning with Ramsey measurements in free-space. Here we were able to observe

a highly coherent superposition limited only by the time that molecules are

detectable within our apparatus. Extending the interaction time necessitates

an external trapping potential. The addition of a trap introduces spatially-

dependent frequency shifts due to the differential AC Stark shift. We fur-

ther investigated the coherence of superpositions of |N = 0,MF = 5〉 and two

states in N = 1: finding that we can maximise the coherence time by tuning

the optical dipole trap to an avoided crossing, providing a first step towards

our criterion on the coherence time. This work also helped us understand our

criteria on engineering dipole-dipole interactions as the expectation value of

the dipole moment for our rotational superposition is equal to the transition

dipole moment, two molecules in such a superposition will therefore interact.

To begin to satisfy another one of our criteria we looked at coherently coup-
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ling three internal states using two microwave fields. We demonstrated ad-

ditional control over the internal structure of the molecule in two regimes.

First, by using a resonant field on the (N = 1,MF = 6) ↔ (2, 7) transition,

we were able to observe Autler-Townes splitting of the (0, 5)↔ (1, 6) trans-

ition. This system is an appropriate starting-point for considering how we

might move towards using the internal levels of RbCs molecules as a syn-

thetic dimension. Then by using a Λ configuration rather than a ladder we

were able to transfer our molecules between different hyperfine levels of the

rotational ground state. We tested the coherence of this process by produ-

cing a superposition of two states: (0, 5) and (0, 4)2. In this superposition we

attributed loss of contrast to the differential magnetic moment between the

two states. Through this attribution we were able to find two pairs of states,

one in N = 0 and one in N = 1, which have lower sensitivity to magnetic

field and would be suitable for use as a quantum memory.

We investigated the AC Stark shift of the rotational and hyperfine states

at two different wavelengths in Chapter 5. A combination of trap frequency

measurements and ∼ kHz precision microwave spectroscopy were used to find

the isotropic α(0) and anisotropic α(2) components of the polarisability. We

first investigated at λ = 1550 nm finding that two values of α(2) are required

to fully describe the experimental data. We repeated these experiments at

λ = 1064 nm where we found an unexpected two-photon transition to a high-

lying electronic state. We were, however, able to detune the laser sufficiently

far that we can still maintain the long one-body lifetime at typical trapping

intensities.

To expand our work on the polarisability at 1064 nm we explored how the

AC Stark shift interacts with DC magnetic and electric fields. Our results

show that, due to the hyperfine mixing of states, the AC Stark shift can only

be minimised at local minima at experimentally relevant magnetic fields.

However only a modest electric field is necessary to cause the molecule’s

rotation to decouple from the nuclear spin of its constituent atoms. In this

electric field we are able to find the “magic angle”: a polarisation where

the AC Stark shift of N = 0 matches that for N = 1, however we observe

a residual AC Stark shift. This shift is often called a hyper-polarisability

term though it is caused by off-diagonal elements in the Hamiltonian and
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requires us to add no extra terms to our analysis. We are able to use the

applied electric field and the polarisation angle of the applied laser field

to control this quadratic light shift. Control over the AC Stark shift will

enable us to extend the coherence time of rotational superpositions to the

level necessitated by the ∼ kHz interactions expected for a lattice spacing of

0.5 µm.

We began our investigation into the collisional properties of ground state

RbCs molecules in Chapter 6 by attempting to determine the kinetic order

of the rate-limiting steps. Our careful measurement of the lifetime of RbCs in-

dicates that the loss follows a second-order process and so is therefore caused

by collisions of the form RbCs+RbCs. By considering the possible processes

of this form we can rule out chemical reactions: to rule out other processes

we varied the internal state and energy of the molecule using a magnetic field

and microwaves. We observed no change in the loss rate throughout these

experiments. Therefore we conclude the loss of RbCs molecules is due to the

formation of (RbCs)2 complexes. To learn more about this complex forma-

tion process we varied the temperature of the molecular gas. By changing

the temperature of the gas we are able to constrain the short-range loss coef-

ficient and the short range phase shift. Across a wide range of parameters we

measured less than universal losses: this suggests that there is a limitation

to complex formation.

We continued to investigate the losses of RbCs molecules in a time-averaged

trap. In this intensity-modulated potential we were able to measure the life-

time of the (RbCs)2 complex in the dark which agrees well with a theoretical

prediction. By measuring the intensity dependent suppression of the loss in

this trap we were able to determine that at normal trapping intensities the

loss of (RbCs)2 complexes by laser scattering is saturated by many orders of

magnitude. This allowed us to conclude that the dominant loss mechanism

for ultracold RbCs is optical excitation of complexes formed by a two mo-

lecule collision. This work conclusively explains the source of loss observed

in all non-reactive ultracold molecule experiments [3, 41, 43, 160, 161, 163].

The final results we presented concerned collisions in mixtures of RbCs mo-

lecules and free atoms. Continuing these studies may reveal a way that we

can use collisions between atoms and molecules to perform additional sym-
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pathetic cooling of RbCs. This cooling could lead to a higher occupancy in

the lattice used for quantum simulation experiments.

7.2 Outlook

The results that we have presented in this thesis demonstrate proof-of-

concept measurements towards performing quantum simulations in ultracold

molecules. As the field progresses the knowledge that we have gained from

these measurements can be put into practice. In this section we will describe

how using two new apparatuses in our group in Durham will enable us to

pursue these goals. We will also describe possible future upgrades to the ex-

isting RbCs apparatus which can extend the life of the existing experimental

apparatus into the future.

7.2.1 New Apparatus

There are two new RbCs apparatuses currently in development in our group,

both are focussed on solving the problem that optical excitation of colli-

sion complexes by preventing the initial RbCs+RbCs collision that forms an

(RbCs)2 complex. In both cases they will achieve this by confining individual

molecules in optical potentials.

The first of the two new apparatuses that are in development aims to control

individual RbCs molecules in optical microtraps. Recently laser-cooled CaF

molecules were transferred into a small array of optical tweezer traps [192] and

association of individual NaCs Feshbach molecules has also been shown to

be possible in an optical tweezer [46]. Using a digital mirror device, acousto-

optic deflector or spatial light modulator these traps can be manipulated in

space. In Rydberg atoms this has been used to exploit the spatial dependence

of the dipole-dipole interaction [59], as molecules can also have dipole-dipole

interactions this could be replicated in tweezer trapped ultracold molecules.

The other new apparatus is a quantum gas microscope for RbCs. The key

ingredient of a quantum gas microscope is the same as for the optical tweez-

ers: a high numerical aperture objective lens. Using this lens it is possible to
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Figure 7.1: A pair of simulated output images for (a) Rb and (c) Cs from a quantum gas

microscope for RbCs. (b) The initial lattice of RbCs molecules, with two molecular states

identified with ↑, ↓ spins as shown in the legend, the white sites are empty. Each of these

pseudo-spin states is mapped onto an atomic species as described in the text.

observe individual atoms confined to sites in an optical lattice, these atoms

are spaced by half of the trapping wavelength, typically 0.5 µm. This tech-

nology has already been developed for atoms [193, 194] but extending it to

molecules has additional benefits. The first benefit matches that in optical

tweezers, the molecules possess an electric dipole moment which allows for

interactions between sites in a lattice.

The other benefit that we shall consider is that we can leverage the two

constituent atoms for imaging of a simulated spin-1/2 system. Because there

are no closed transitions within the RbCs molecule that would be suitable

for imaging through absorption or fluorescence we must break the molecule

apart into its constituents. These atoms can then be imaged separately in

either time, i.e sequentially or spatially for example using a species-selective

lattice or similar. We can use this to account for the defects in the lattice

by exploiting the hyperfine and rotational state selective nature of STIRAP.

To illustrate this we can take an imperfect lattice of RbCs molecules, like

that shown in figure 7.1(b). For our example we identify |↑〉 with a hyperfine

state in N = 1 and |↓〉 with (N = 0,MF = 5), represented in the figure by

the red and blue squares respectively.

We can image the molecules in |↓〉 by performing a STIRAP and disasso-

ciation sequence (as we currently do), this leaves the molecules in |↑〉 un-



Chapter 7. Conclusions 169

touched. By removing just the Cs atoms every lattice site that was occupied

by a |↓〉 molecule is now a lone Rb atom, however in order to preserve this

so we can repeat the process to form a Cs lattice to represent |↑〉 we must

protect the Rb atoms. One possibility is to physically offset the Rb lattice

from the RbCs |↑〉 lattice along the vertical direction. Another is to use

a microwave field to transfer the Rb atoms from their (fRb = 1,mRb = 1)

ground state to (2, 2). We also need to transfer the molecules between |↑〉 and

|↓〉, though as we have shown, this can be achieved readily using microwave

pulses. After the STIRAP and dissociation process we must remove the Rb

in a spin-selective manner, at high magnetic field this is possible by using a

microwave field and ARP to swap the populations (1, 1) ↔ (2, 2), this has

the added benefit of moving the “protected” Rb atoms from earlier back into

the ground state. Removal of the unnecessary Rb atoms then takes place

by cycling on the closed (5S1/2, fRb = 2,mRb = 2)↔ (5P3/2, 3, 3) transition.

Two images can then be taken in the atomic quantum gas microscope to re-

construct the distribution of molecules in |↑〉 and |↓〉. Predicted images from

following this sequence for a given spin-1/2 lattice are shown in figure 7.1(a)

and (c).

7.2.2 Upgrades to the Existing Apparatus

As well as building two new apparatuses we can also take what we have learnt

about the RbCs molecule to inform some upgrades to the existing apparatus.

We have determined that one of the limiting factors to using RbCs molecules

for quantum simulation experiments is differential energy shifts between the

rotational states. As we look towards the next generation of apparatus we

should consider methods to reduce these. The most immediately applicable

is to use a “magic wavelength” optical trap. In these traps the differential

AC Stark shift is exactly zero as the two states have the same polarisability.

Searching for these wavelengths is challenging both experimentally and the-

oretically however a magic wavelength trap has been demonstrated for NaK

molecules [155] suggesting it would be possible for RbCs as well.

An alternative to magic wavelength traps, that we have already demonstrated

proof-of-principle measurements for, is to use the polarisation dependence of
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Figure 7.2: The performance of the high stability voltage source for our next-generation

high voltage system. The source is an AD5791 evaluation board, externally referenced

to a MAX6325 reference voltage. (a) Voltage trace measured in time over ∼ 2 hours.

Measurements are logged at 0.2 Hz. The offset is measured from the set-point of 1 V. The

solid line indicates the rolling average, the dashed lines indicate ± one standard deviation.

(b) The overlapping Allan deviation of the data in (a). The peak at ∼ 0.5 hrs corresponds

with the cycling period of the laboratory AC system.

the AC Stark shift to control the internal energy level structure. This will

necessitate a reasonably large electric field to be applied, large enough that

time-dependent variations in the electric field become a significant source of

decoherence. At the largest electric field we are likely to use in the current

apparatus, 300 V cm−1, the ∆MN = 0 transition frequency has a gradient of

121 kHz (V cm−1)−1. To stabilise the transition frequency to < kHz we need

to stabilise the field to 8 mV cm−1. This corresponds to the potential being

stabilised to the ∼ 10ppm level. We have therefore begun to develop a high

stability voltage source: which can operate up to ±2 kV. The design follows

the principles outlined in [195]: a low-noise voltage reference is the input to

a control loop, the output is amplified by a high-gain amplifier, the amplified

voltage is sampled by a potential divider and fed back into the control loop

to stabilise the voltage applied onto our electrodes. The limit to the electric

field stability comes form the voltage reference used for control. We plan to

use a 20-bit AD5791 DAC referenced to temperature in-sensitive MAX 6325.

The performance of our reference at 1 V is shown in figure 7.2 over 2 hours,

which is able to achieve higher stability than the 10 ppm we required.
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It has been a long time since the apparatus in our lab was designed and in

that time the field of ultracold atomic gases has advanced significantly. Main-

taining the efficient operation of the apparatus into the future will require

some improvements to the early part of the sequence where we are focussed

on cooling the atoms. These improvements will most likely come in the form

of additional laser cooling of the Rb atoms using techniques like Λ-enhanced

grey molasses cooling [196]. This additional cooling will provide a significant

benefit to the continued operation of the experiment as additional cooling of

the Rb atoms prior to the first stage of sympathetic cooling in the magnetic

trap will lead to an increased number of Rb atoms being able to make it

through to later stages of the sequence. This should improve the efficiency of

the sympathetic cooling in the magnetic trap, allowing us to either cut the

∼ 20 s RF-evaporation down and improve our repetition rate or, more likely,

to improve the molecule number from our current limit of ∼ 3500. Adding

more atoms cannot increase the efficiency of the magnetoassociation process,

as this is limited by the phase space density of the mixture which is limited

as the Rb and Cs are immiscible.

7.2.3 Possible Future Experiments

Using the multi-photon control that we have developed within this work

opens up new avenues for studies with ultracold molecules. In Chapter 4 we

detailed a possible study where a many-body Hamiltonian (in that case the

Su-Schrieffer-Heiger model) could be mapped on to the internal states of a

molecule by dressing with multiple microwave fields. To be concise we will

not cover this specific application again, instead we will outline how this tech-

nique could be expanded to produce simulations of more complex systems.

One obvious extension to the one-dimensional system already explored is to

take this to two-dimensions, this is clearly more difficult as it requires more

microwave fields. An illustration of a possible mapping for two-dimensional

studies in synthetic dimensions is shown in figure 7.3 for a 2 × 2 and 3 × 3

lattice. Because we now require multiple transitions to the same rotational

manifold we cannot solely use the microwave frequency to avoid unwanted

couplings, we must also use the polarisation. As such to build this system we
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Figure 7.3: A diagram of a possible implementation of 2D synthetic dimensions using the

rotational states of molecules. This implementation uses microwave fields of orthogonal

polarisation to reduce cross talk between transitions to the same rotational manifold.

would require microwave fields to drive the σ± transitions from each level.

Applying a large magnetic field as well as an electric field will separate trans-

itions by multiple kHz to reduce the chance of off-resonant driving further.

We have already seen that, due to the hardware that surrounds the glass

cell, it is difficult to maintain a good microwave polarisation purity at low

frequency. One solution to this would be to STIRAP molecules to N = 2

rather than N = 0, this would shorten the transition wavelength and lessen

the effects of the surroundings.

Control over the scattering properties has proved vital for the development

of ultracold atomic gas experiments. Previous works have shown that the

dipole-dipole interactions between molecules can increase the collision rate

between molecules in DC electric fields [197], and when dressed with near-

resonant microwave fields [198]. Having demonstrated microwave dressing in

Chapter 4 with Autler-Townes spectroscopy we can begin to imagine com-

bining this with our work on two-body losses to control the scattering pro-

cesses. This has already been addressed theoretically, with calculations that

show that using blue-detuned microwaves can shield molecules from colli-

sions [186, 187] and should not be limited by our ability to produce circularly

polarised microwave fields [199]
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7.3 Final Remarks

In this work we have explored the internal structure of the RbCs molecule.

Understanding how we can control the internal state with microwave fields

will be critical to using molecules for quantum simulation and computa-

tion. For molecules to be useful in a quantum simulator we must study how

their internal structure is influenced by external electric and magnetic fields.

Through our study we determined that it is possible to use these external

fields to control the internal structure: provided that, as we do, you are able

to understand the behaviour of the molecule in these fields.

When this work began the world of ultracold molecules faced one central

problem: the unexplained loss of non-reactive molecules. There were, of

course, multiple potential explanations given to explain the experimental ob-

servations. In this work we have conclusively shown that the cause of loss of

ultracold RbCs molecules is optical excitation of the complex formed by two

molecules colliding. Now that we know that the cause of this loss is a com-

bination of the optical trap and the molecular density future experiments can

truly exploit the potential of ultracold molecules. As the field expands with

the continued growth in the number of associated and laser-cooled molecular

species available we can expect more and more laboratories to embrace the

challenges and benefits of ultracold molecules.



Appendix A

Atomic Transitions at High

Magnetic Field

To determine the appropriate technique for the removal of a single species

required extensive understanding of the relevant atomic structure. Here we

present the transitions of the D2 lines of 87Rb and 133Cs for magnetic fields

between 0 and 181.7 G.

The atomic Hamiltonian is given by

Hatom = H0 +Hfine +HHF +HZeeman. (A.1)

where H0 is the coarse energy level structure (dependent on the principle

quantum number n). Hfine is the fine structure and is given by

Hfine =
γSO

~2
(l · s) , (A.2)

here γSO is the spin-orbit coupling constant and l and s are the orbital and

spin angular momenta of the valence electron. HHF is the hyperfine structure

and has two components

HHF = HDipole +HQuad, (A.3a)

HDipole =
AHF

~2
(i · j) , (A.3b)

HQuad =
BHF

~4

[
3(i · j)2 + ~2 3

2
(i · j)− i(i+ 1)j(j + 1)~4

2i(2i− 1)× j(2j + 1)

]
. (A.3c)

In the above HDipole describes the magnetic dipole interaction between the

total electronic angular momentum j = i + l and the nuclear spin i. HQuad

174
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is the Hamiltonian for the electric quadrupole interaction. HZeeman is the

Zeeman interaction between the atom and the magnetic field

HZeeman =
µB

~
(gllz + gssz + giiz)Bz. (A.4)

Here, the assumption is that the magnetic field is along the quantisation axis

z. The factors gi, gl and gs are the g-factors for i, l and s respectively.

We are only concerned with the Zeeman shift of the ground state energy

levels and the transitions on the D2 line of each atomic species. The calcu-

lations were performed using the Elecsus python package [200, 201] which

encapsulates all of the terms that we require.

A.1 Zeeman Shift of Transitions in 87Rb

The first atom we focus on is 87Rb. In figure A.1 the energy levels are

shown at 0 G and 181.7 G. Our calculation indicates there are no closed

transitions from the hyperfine ground state 5S1/2(fRb = 1,mRb = 1). The

“most closed transition” is the σ− transition to the lowest energy hyperfine

sub-level in 5P3/2, approximately 85% of the time the atom decays to (1,1).

This transition is frequency shifted from the repump laser by approximately

600 MHz and requires the opposite polarisation to drive. All transitions from

this state eventually lead to atoms being distributed across 5S1/2fRb = 1, 2,

in the figure the ground states that can be decayed to are indicated by the

grey circles. This distribution across multiple states is not ideal for the clean

removal of atoms.

The pattern repeats for transitions from 5S1/2(2, 2). The cooling trans-

ition 5S1/2(2, 2) → 5P3/2(3, 3) remains closed even at high magnetic field

because both states are spin-stretched, though there is a frequency shift of

∼ 250 MHz.

Using the existing repump and cooling lasers at high field is also not a suit-

able option. Both lasers are far off-resonant, when compared to the natural

linewidth, and would drive multiple transitions with similar strengths.
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Figure A.1: The hyperfine energy levels for 87Rb as a function of magnetic field. The

cooling 5S1/2(fRb = 2,mRb = 2)↔ 5P3/2(3, 3) transition is shown in orange. The repump

5S1/2(1, 1) ↔ 5P3/2(2, 2) transition is shown as a blue dashed line. The magnetic field

increases from left to right. The right hand panel is at the high magnetic field of 181.7 G,

transitions from 5S1/2(1, 1) are shown as dashed lines and transitions from 5P3/2(2, 2) are

shown by solid lines. The upper panel shows the transition strength in units of the reduced

matrix element | 〈J = 1/2| |er| |J ′ = 3/2〉 |2.
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A.2 Zeeman Shift of Transitions in 133Cs

We repeat the calculation for 133Cs. Near zero magnetic field the cooling

light addresses the transition 6S1/2(fCs = 4,mCs = 4) ↔ 6P3/2(5, 5) while

the repump addresses 6S1/2(3, 3)↔ 6P3/2(4, 4). Because of the Zeeman shift

these lasers are not resonant in a magnetic field.

There are no closed transitions from the ground 6S1/2(fCs = 3,mCs = 3) to

any hyperfine level of the 6P3/2 state. The lowest transition of the D2 line

is more closed than in 87Rb with > 90% of the population returning to the

(3,3) state. At the magnetic field we perform the calculation for, 181.7 G,

the repump laser light is nearly resonant (within ±80 MHz) with 6 separate

transitions.

The 6S1/2(fCs = 4,mCs = 4)↔ 6P3/2(5, 5) is therefore the only closed trans-

ition on the D2 line of Cs at 181.7 G. This transition is shifted 250 MHz from

the cooling light, there are three transitions within ±80 MHz of the laser

frequency.
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Figure A.2: The hyperfine energy levels for 133Cs as a function of magnetic field. The

cooling 6S1/2(fCs = 4,mCs = 4)↔ 6P3/2(5, 5) transition is shown in orange. The repump

6S1/2(3, 3) ↔ 6P3/2(4, 4) transition is shown as a blue dashed line. The magnetic field

increases from left to right. The right hand panel is at the high magnetic field of 181.7 G,

transitions from 6S1/2(3, 3) are shown as dashed lines and transitions from 6S1/2(4, 4) are

shown by solid lines. The upper panel shows the transition strength in units of the reduced

matrix element | 〈J = 1/2| |er| |J ′ = 3/2〉 |2.
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Hyperfine code

This appendix gives the full hyperfine code necessary for the calculations in

5 as described in 3. The code is written using python 3.7 and requires the

scipy stack [202]. The numerical values for the molecular constants used and

their sources are given in Table 3.2. The code is also available from [203].

B.1 Python Source code

import numpy

from sympy.physics.wigner import wigner_3j,wigner_9j

from sympy.physics.quantum.spin import Rotation

from scipy.linalg import block_diag,eig,eigvals

import scipy.constants

import warnings

# Start by definining a bunch of constants that are needed for the code

’’’

Important note!

All units in this code are SI i.e. elements in the Hamiltonian have

↪→ units

of Joules. Outputs will be on the order of 1e-30

’’’

179
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h = scipy.constants.h

muN = scipy.constants.physical_constants[’nuclear magneton’][0]

bohr = scipy.constants.physical_constants[’Bohr radius’][0]

eps0 = scipy.constants.epsilon_0

c = scipy.constants.c

pi = numpy.pi

DebyeSI = 3.33564e-30

# RbCs Molecular Constants

RbCs = { "IRb":1.5,

"ICs":3.5,

"d0":1.225*DebyeSI,

"binding":114268135.25e6*h,

"Brot":490.173994326310e6*h,

"Drot":213*h,

"QRb":-809.29e3*h,

"QCs":59.98e3*h,

"CRb":98.4*h,

"CCs":194.2*h,

"C3":192.4*h,

"C4":19.0189557e3*h,

"MuN":0.0062*muN,

"MuRb":1.8295*muN,

"MuCs":0.7331*muN,

"a0":2020*4*pi*eps0*bohr**3,

"a2":1997*4*pi*eps0*bohr**3,

"Beta":0}

# Functions for the calculations to use#

#first functions are mathematical and used to generate the structures that

↪→ we

#will need to use

def Raising_operator(j):

#produce the angular momentum raising operator J+

dimension = numpy.rint(2.0*j+1).astype(int)
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J = numpy.zeros((dimension,dimension))

for m_j in range(numpy.rint(2.0*j).astype(int)):

J[m_j,m_j+1]=numpy.sqrt(j*(j+1)-(j-m_j)*(j-m_j-1))

return J

# produce the three generalised projections of angular momentum:

# for S=1/2 these should return the Pauli matrices.

# for the source of these definitions see any good QM textbook e.g.

# Bransden & Joachain (or wikipedia)

def X_operator(J):

’’’

input arguments:

J: Magnitude of angular momentum (float)

’’’

J_plus = Raising_operator(J)

J_minus = numpy.transpose(J_plus)

return 0.5*(J_plus+J_minus)

def Y_operator(J):

’’’

input arguments:

J: Magnitude of angular momentum (float)

’’’

J_plus = Raising_operator(J)

J_minus = numpy.transpose(J_plus)

return 0.5j*(J_minus - J_plus)

def Z_operator(J):

’’’

input arguments:

J: Magnitude of angular momentum (float)

’’’

J_plus = Raising_operator(J)

J_minus = numpy.transpose(J_plus)

return 0.5*(numpy.dot(J_plus,J_minus)-numpy.dot(J_minus,J_plus))

def vector_dot(x,y):

’’’

A function that can do the dot product of a vector of matrices

↪→ default
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behaviour of numpy.dot does the elementwise product of the matrices

↪→ .

input arguments:

x,y: Vectors of Angular momentum operators, each element is a JxJ

↪→ arrays

(numpy.ndarray)

’’’

X_Y = numpy.zeros(x[0].shape,dtype=numpy.complex)

for i in range(x.shape[0]):

X_Y += numpy.dot(x[i],y[i])

return X_Y

def Generate_vecs(Nmax,I1,I2):

’’’

Generate the vectors of the angular momentum operators which we

↪→ need

to be able to produce the Hamiltonian

input arguments:

Nmax: maximum rotational level to include in calculations (float)

I1,I2: Nuclear spins of nuclei 1 and 2 (float)

’’’

shapeN = int(numpy.sum([2*x+1 for x in range(0,Nmax+1)]))

shape1 = int(2*I1+1)

shape2 = int(2*I2+1)

Nx = numpy.array([[]])

Ny=numpy.array([[]])

Nz= numpy.array([[]])

for n in range(0,Nmax+1):

Nx = block_diag(Nx,X_operator(n))

Ny = block_diag(Ny,Y_operator(n))

Nz = block_diag(Nz,Z_operator(n))

#remove the first element of the N vectors, which are empty

Nx = Nx[1:,:]

Ny = Ny[1:,:]

Nz = Nz[1:,:]
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#Each of the following corresponds to the product [N x 1Rb x 1Cs]

#This gives the operators for N in the full hyperfine space.

# numpy.kron is the function for the Kronecker product, often also

↪→ called

# the tensor product.

N_vec = numpy.array([numpy.kron(Nx,numpy.kron(numpy.identity(shape1),

numpy.identity(shape2))),

numpy.kron(Ny,numpy.kron(numpy.identity(shape1),

numpy.identity(shape2))),

numpy.kron(Nz,numpy.kron(numpy.identity(shape1),

numpy.identity(shape2)))])

# we also have to repeat for the nuclear spins

I1_vec = numpy.array([numpy.kron(numpy.identity(shapeN),

numpy.kron(X_operator(I1),numpy.identity(shape2))),

numpy.kron(numpy.identity(shapeN),

numpy.kron(Y_operator(I1),numpy.identity(shape2))),

numpy.kron(numpy.identity(shapeN),

numpy.kron(Z_operator(I1),numpy.identity(shape2)))])

I2_vec = numpy.array([numpy.kron(numpy.identity(shapeN),

numpy.kron(numpy.identity(shape1),X_operator(I2))),

numpy.kron(numpy.identity(shapeN),

numpy.kron(numpy.identity(shape1),Y_operator(I2))),

numpy.kron(numpy.identity(shapeN),

numpy.kron(numpy.identity(shape1),Z_operator(I2)))])

return N_vec,I1_vec,I2_vec

# From here the functions will calculate individual terms in the

↪→ Hamiltonian,

# I have split them up for two reasons 1) readability and 2) so that its

↪→ obvious

# what is doing what.

def Rotational(N,Brot,Drot):

’’’
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Generates the hyperfine-free hamiltonian for the rotational levels

↪→ of

a rigid-rotor like molecule. Includes the centrifugal distortion

↪→ term

input arguments:

N: Angular momentum vector for rotation (numpy.ndarry)

Brot: Rotational constant (float)

Drot: Centrifugal distortion (float)

’’’

N_squared = vector_dot(N,N)

return Brot*N_squared-Drot*N_squared*N_squared

def Zeeman(Cz,J):

’’’

Linear Zeeman shift, fixed magnetic field along z so only need the

last component of the angular momentum vector.

input arguments:

Cz: Zeeman Coefficient (float)

J: Angular momentum vector (numpy.ndarray)

’’’

Hzeeman = -Cz*J[2]

return Hzeeman

def scalar_nuclear(Ci,J1,J2):

’’’

Returns the scalar spin-spin term of the HF Hamiltonian

Input arguments:

Ci: Scalar spin coupling coefficient (float)

J1,J2: Angular momentum vector (numpy.ndarray)

returns:

Quad: (2*Nmax+1)*(2*I1_mag+1)*(2*I2_mag+1)x

(2*Nmax+1)*(2*I1_mag+1)*(2*I2_mag+1) array.

’’’

return Ci*vector_dot(J1,J2)

def tensor_nuclear(C3,I1,I2,N):

’’’

The tensor - nuclear spin spin interaction
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input arguments:

C3: Tensor spin-spin coupling coefficient (float)

I1,I2,N: Angular momentum Vectors (numpy.ndarry)

returns:

Quad: (2*Nmax+1)*(2*I1_mag+1)*(2*I2_mag+1)x

(2*Nmax+1)*(2*I1_mag+1)*(2*I2_mag+1) array.

’’’

with warnings.catch_warnings():

# this is a statement to make the code nicer to use, python wants

↪→ to

# warn the user whenever the data type is changed from Complex. But

↪→ we

# know that it will always be real so it doesn’t matter.

warnings.filterwarnings("ignore",category=numpy.ComplexWarning)

#find max values for angular momentum from their projections onto z

Nmax = int(numpy.round(numpy.real(numpy.amax(N[2])),1))

I1max = numpy.real(numpy.round(numpy.amax(I1[2]),1))

I2max = numpy.real(numpy.round(numpy.amax(I2[2]),1))

I1shape = int(2*I1max+1)

I2shape = int(2*I2max+1)

# The tensor nuclear spin-spin interaction depends on the rotational

↪→ level

# not its projection, so we have to create a new matrix that contains

↪→ the

# values of N. Thankfully the terms are block-diagonal in N so we don’

↪→ t have

# to worry what the term <N,MN|I1 dot T dot I|N’,MN’> looks like

Narray = numpy.zeros((1,1))

for n in range(0,Nmax+1):

#this loop iterates over all the values for N (indexed as n)

↪→ allowed and

# builds an nxn matrix of only one value.

shape = int((2*n+1)*(2*I1max+1)*(2*I2max+1))

nsub = numpy.zeros((shape,shape))+n

Narray = block_diag(Narray,nsub)

#first element is fixed to be zero - get rid of it
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Narray = Narray[1:,1:]

#Now calculate the terms as shown earlier

prefactor = C3/((2*Narray+3)*(2*Narray-1))

term1 = 3*numpy.dot(vector_dot(I1,N),vector_dot(I2,N))

term2 = 3*numpy.dot(vector_dot(I2,N),vector_dot(I1,N))

term3 = -2*vector_dot(I1,I2)*Narray*(Narray+1)

return prefactor*(term1+term2+term3)

def Quadrupole(Q,I1,I2,N):

’’’

from 10.1103/PhysRev.91.1403, which quotes the quadrupole

↪→ interaction

for KBr

input arguments:

Q:Tuple or list of the nuclear quadrupole moments as (Q1,Q2) (

↪→ tuple)

I1,I2,N: Nuclear spin of nucleus 1,2 and rotational angular

↪→ momentum

vectory (numpy.ndarray)

returns:

Quad: (2*Nmax+1)*(2*I1_mag+1)*(2*I2_mag+1)x

(2*Nmax+1)*(2*I1_mag+1)*(2*I2_mag+1) array.

’’’

Q1,Q2 = Q

with warnings.catch_warnings():

# this is a statement to make the code nicer to use, python wants

↪→ to

# warn the user whenever the data type is changed from Complex. But

↪→ we

# know that it will always be real so it doesn’t matter.

warnings.filterwarnings("ignore",category=numpy.ComplexWarning)

#find max values for angular momentum from their projections onto z

Nmax = int(numpy.round(numpy.real(numpy.amax(N[2])),1))

I1max = numpy.round(numpy.real(numpy.amax(I1[2])),1)

I2max = numpy.round(numpy.real(numpy.amax(I2[2])),1)

Narray = numpy.array([])
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Narray=numpy.zeros((1,1))

for n in range(Nmax+1):

# this loop iterates over all the values for N (indexed as n)

↪→ allowed &

# builds an (2*I1+1)*(2*I2+1)*(2*n+1)x(2*I1+1)*(2*I2+1)*(2*n+1)

↪→ matrix

# of only one value.

shape = int((2*I1max+1)*(2*I2max+1)*(2*n+1))

subarray = numpy.zeros((shape,shape))+n

Narray= scipy.linalg.block_diag(Narray,subarray)

Narray = Narray[1:,1:]

# there is the possibility for division by zero here, so define a

↪→ machine

# epsilon to avoid NaN errors. Epsilon is insignificantly small,

# particularly on modern 64-bit machines.

epsilon = (numpy.finfo(float).eps)

prefactor1 = numpy.zeros(Narray.shape)

prefactor2 = numpy.zeros(Narray.shape)

# Calculate the terms as earlier. This is presented in Sigma notation

↪→ in the

# text but is actually just two terms.

prefactor1 = -Q1/(2*I1max*(2*I1max-1)*(2*Narray-1)\

*(2*Narray+3))

term1_1= 3*(numpy.dot(vector_dot(I1,N),vector_dot(I1,N)))

term2_1 = 1.5*vector_dot(I1,N)

term3_1 = -1*numpy.dot(vector_dot(I1,I1),vector_dot(N,N))

Quad1 = prefactor1*(term1_1 +term2_1+term3_1)

prefactor2 = -Q2/(2*I2max*(2*I2max-1)*(2*Narray-1)*\

(2*Narray+3))

term1_2= 3*(numpy.dot(vector_dot(I2,N),vector_dot(I2,N)))

term2_2 = 1.5*vector_dot(I2,N)

term3_2 = -1*numpy.dot(vector_dot(I2,I2),vector_dot(N,N))

Quad2 = prefactor2*(term1_2 +term2_2+term3_2)

return Quad1+Quad2
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def DC(Nmax,d0,I1,I2):

’’’

Generates the effect of the dc Stark shift for a rigid-rotor like

molecule.

This term is calculated differently to all of the others in this

↪→ work

and is based off Jesus Aldegunde’s FORTRAN 77 code. It iterates

↪→ over

N,MN,N’,MN’ to build a matrix without hyperfine structure then uses

kronecker products to expand it into all of the hyperfine states.

input arguments:

Nmax: maximum rotational quantum number to calculate (int)

d0: Permanent electric dipole momentum (float)

I1,I2: Nuclear spin of nucleus 1,2 (float)

returns:

H: Hamiltonian, (2*Nmax+1)*(2*I1_mag+1)*(2*I2_mag+1)x

(2*Nmax+1)*(2*I1_mag+1)*(2*I2_mag+1) array.

’’’

shape = numpy.sum(numpy.array([2*x+1 for x in range(0,Nmax+1)]))

HDC = numpy.zeros((shape,shape),dtype= numpy.complex)

I1shape = int(2*I1+1)

I2shape = int(2*I2+1)

i =0

j =0

for N1 in range(0,Nmax+1):

for M1 in range(N1,-(N1+1),-1):

for N2 in range(0,Nmax+1):

for M2 in range(N2,-(N2+1),-1):

HDC[i,j]=-d0*numpy.sqrt((2*N1+1)*(2*N2+1))*(-1)**(M1)*\

wigner_3j(N1,1,N2,-M1,0,M2)*wigner_3j(N1,1,N2,0,0,0)

j+=1
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j=0

i+=1

return (numpy.kron(HDC,numpy.kron(numpy.identity(I1shape),

numpy.identity(I2shape))))

def AC_iso(Nmax,a0,I1,I2):

’’’

Generates the effect of the isotropic AC Stark shift for a rigid-

↪→ rotor

like molecule.

This term is calculated differently to all of the others in this

↪→ work

and is based off Jesus Aldegunde’s FORTRAN 77 code. It iterates

↪→ over

N,MN,N’,MN’ to build a matrix without hyperfine structure then uses

kronecker products to expand it into all of the hyperfine states.

input arguments:

Nmax: maximum rotational quantum number to calculate (int)

a0: isotropic polarisability (float)

I1,I2: Nuclear spin of nucleus 1,2 (float)

returns:

H: Hamiltonian, (2*Nmax+1)*(2*I1_mag+1)*(2*I2_mag+1)x

(2*Nmax+1)*(2*I1_mag+1)*(2*I2_mag+1) array.

’’’

shape = numpy.sum(numpy.array([2*x+1 for x in range(0,Nmax+1)]))

I1shape = int(2*I1+1)

I2shape = int(2*I2+1)

HAC = numpy.zeros((shape,shape),dtype= numpy.complex)

i=0

j=0

for N1 in range(0,Nmax+1):

for M1 in range(N1,-(N1+1),-1):

for N2 in range(0,Nmax+1):

for M2 in range(N2,-(N2+1),-1):

if N1==N2 and M1 ==M2:
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HAC[i,j]=-a0

j+=1

j=0

i+=1

#final check for NaN errors, mostly this is due to division by zero or

# multiplication by a small prefactor. it is safe to set these terms

↪→ to 0

HAC[numpy.isnan(HAC)] =0

#return the matrix, in the full uncoupled basis.

return (numpy.kron(HAC,numpy.kron(numpy.identity(I1shape),

numpy.identity(I2shape))))

def AC_aniso(Nmax,a2,Beta,I1,I2):

’’’

Generates the effect of the anisotropic AC Stark shift for a rigid-

↪→ rotor

like molecule.

This term is calculated differently to all of the others in this

↪→ work

and is based off Jesus Aldegunde’s FORTRAN 77 code. It iterates

↪→ over

N,MN,N’,MN’ to build a matrix without hyperfine structure then uses

kronecker products to expand it into all of the hyperfine states.

input arguments:

Nmax: maximum rotational quantum number to calculate (int)

a2: anisotropic polarisability (float)

Beta: polarisation angle of the laser in Radians (float)

I1,I2: Nuclear spin of nucleus 1,2 (float)

returns:

H: Hamiltonian, (2*Nmax+1)*(2*I1_mag+1)*(2*I2_mag+1)x

(2*Nmax+1)*(2*I1_mag+1)*(2*I2_mag+1) array.

’’’

I1shape = int(2*I1+1)

I2shape = int(2*I2+1)

shape = numpy.sum(numpy.array([2*x+1 for x in range(0,Nmax+1)]))

HAC = numpy.zeros((shape,shape),dtype= numpy.complex)
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i=0

j=0

for N1 in range(0,Nmax+1):

for M1 in range(N1,-(N1+1),-1):

for N2 in range(0,Nmax+1):

for M2 in range(N2,-(N2+1),-1):

M = M2-M1

HAC[i,j]= -a2*(Rotation.d(2,M,0,Beta).doit()*(-1)**M2*\

numpy.sqrt((2*N1+1)*(2*N2+1))*\

wigner_3j(N2,2,N1,0,0,0)*\

wigner_3j(N2,2,N1,-M2,M,M1))

j+=1

j=0

i+=1

#final check for NaN errors, mostly this is due to division by zero or

# multiplication by a small prefactor. it is safe to set these terms

↪→ to 0

HAC[numpy.isnan(HAC)] =0

#return the matrix, in the full uncoupled basis.

return (numpy.kron(HAC,numpy.kron(numpy.identity(I1shape),

numpy.identity(I2shape))))

#Now some functions to take these functions and assemble them into the

↪→ physical

#Hamiltonians where necessary.

def Hyperfine_Ham(Nmax,I1_mag,I2_mag,Consts):

’’’

The field-free Hyperfine hamiltonian

Input arguments:

Nmax: Maximum rotational level to include (float)

I1_mag,I2_mag, magnitude of the nuclear spins (float)

Consts: Dict of molecular constants (Dict of floats)

returns:

H: Hamiltonian, (2*Nmax+1)*(2*I1_mag+1)*(2*I2_mag+1)x

(2*Nmax+1)*(2*I1_mag+1)*(2*I2_mag+1) array.

’’’
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N,I1,I2 = Generate_vecs(Nmax,I1_mag,I2_mag)

H = Rotational(N,Consts[’Brot’],Consts[’Drot’])+\

scalar_nuclear(Consts[’CRb’],N,I1)+scalar_nuclear(Consts[’CCs’],N,I2)

↪→ +\

scalar_nuclear(Consts[’C4’],I1,I2)+tensor_nuclear(Consts[’C3’],I1,I2,N

↪→ )+\

Quadrupole((Consts[’QRb’],Consts[’QCs’]),I1,I2,N)

return H

def Zeeman_Ham(Nmax,I1_mag,I2_mag,Consts):

’’’

assembles the Zeeman term and generates operator vectors

Input arguments:

Nmax: Maximum rotational level to include (float)

I1_mag,I2_mag, magnitude of the nuclear spins (float)

Consts: Dict of molecular constants (Dict of floats)

returns:

H: Hamiltonian, (2*Nmax+1)*(2*I1_mag+1)*(2*I2_mag+1)x

(2*Nmax+1)*(2*I1_mag+1)*(2*I2_mag+1) array.

’’’

N,I1,I2 = Generate_vecs(Nmax,I1_mag,I2_mag)

H = Zeeman(Consts[’MuRb’],I1)+Zeeman(Consts[’MuCs’],I2)+\

Zeeman(Consts[’MuN’],N)

return H

# This is the main build function and one that the user will actually have

↪→ to

# use.

def Build_Hamiltonians(Nmax,I1,I2,Constants,zeeman=False,EDC=False,AC=

↪→ False):

’’’

This function builds the hamiltonian matrices for evalutation so

↪→ that

the user doesn’t have to rebuild them every time and we can benefit

↪→ from

numpy’s ability to do distributed multiplcation.
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Input arguments:

Nmax: Maximum rotational level to include (float)

I1_mag,I2_mag, magnitude of the nuclear spins (float)

Constants: Dict of molecular constants (Dict of floats)

zeeman,EDC,AC :Switches for turning off parts of the total

↪→ Hamiltonian

can save significant time on calculations where DC

↪→ and

AC fields are not required due to nested for loops

(bool)

returns:

H0,Hz,HDC,HAC: Each is a (2*Nmax+1)*(2*I1_mag+1)*(2*I2_mag+1)x

(2*Nmax+1)*(2*I1_mag+1)*(2*I2_mag+1) array.

’’’

H0 = Hyperfine_Ham(Nmax,I1,I2,Constants)

if zeeman:

Hz = Zeeman_Ham(Nmax,I1,I2,Constants)

else:

Hz =0.

if EDC:

HDC = DC(Nmax,Constants[’d0’],I1,I2)

else:

HDC =0.

if AC:

HAC = (1./(2*eps0*c))*(AC_iso(Nmax,Constants[’a0’],I1,I2)+\

AC_aniso(Nmax,Constants[’a2’],Constants[’Beta’],I1,I2))

else:

HAC =0.

return H0,Hz,HDC,HAC

#These are the functions that the user will use to generate any

↪→ interesting maps

#obviously these can be added to by writing custom scripts but these

↪→ should

# cover most needs

def Vary_magnetic(Hams,fields0,Bz,return_states = False):

’’’
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find Eigenvalues (and optionally Eigenstates) of the total

↪→ Hamiltonian

input arguments:

Hams: list or tuple of hamiltonians. Should all be the same size

fields0: initial field conditions, allows for zeeman + Stark

↪→ effects

Bz: magnetic field to be iterated over

return_states: Switch to return EigenStates as well as

↪→ Eigenenergies

returns:

energy:array of Eigenenergies, sorted from smallest to largest

↪→ along

the 0 axis

states:array of Eigenstates, sorted as in energy.

’’’

H0,Hz,HDC,HAC = Hams

E,B,I = fields0

#warn the user if they’ve done something silly, so they don’t waste

↪→ time

if type(Hz) != numpy.ndarray:

warnings.warn("Hamiltonian is zero: nothing will change!")

else:

EigenValues = numpy.zeros((H0.shape[0],len(Bz)))

if return_states:

States = numpy.zeros((H0.shape[0],H0.shape[0],len(Bz)))

for i,b in enumerate(Bz):

with warnings.catch_warnings():

warnings.filterwarnings("ignore",category=numpy.

↪→ ComplexWarning)

H = H0+E*HDC+I*HAC+b*Hz

if return_states:

Eigen = eig(H)

order = numpy.argsort(Eigen[0])

EigenValues[:,i]=Eigen[0][order]

States[:,:,i] = Eigen[1][:,order]

else:

Eigen = eigvals(H)
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EigenValues[:,i]=numpy.sort(Eigen)

if return_states:

return EigenValues,States

else:

return EigenValues

def Vary_ElectricDC(Hams,fields0,Ez,return_states = False):

’’’

find Eigenvalues (and optionally Eigenstates) of the total

↪→ Hamiltonian

input arguments:

Hams: list or tuple of hamiltonians. Should all be the same size

fields0: initial field conditions, allows for zeeman + Stark

↪→ effects

Ez: Electric field to be iterated over

return_states: Switch to return EigenStates as well as

↪→ Eigenenergies

returns:

energy:array of Eigenenergies, sorted from smallest to largest

↪→ along

the 0 axis

states:array of Eigenstates, sorted as in energy.

’’’

E,B,I = fields0

H0,Hz,HDC,HAC = Hams

EigenValues = numpy.zeros((H0.shape[0],len(Ez)))

#warn the user if they’ve done something silly, so they don’t waste

↪→ time

if type(HDC) != numpy.ndarray:

warnings.warn("Hamiltonian is zero: nothing will change!")

else:

if return_states:

States = numpy.zeros((H0.shape[0],H0.shape[0],len(Ez)))

for i,e in enumerate(Ez):

with warnings.catch_warnings():
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warnings.filterwarnings("ignore",category=numpy.

↪→ ComplexWarning)

H = H0+e*HDC+I*HAC+B*Hz

if return_states:

Eigen = eig(H)

order = numpy.argsort(Eigen[0])

EigenValues[:,i]=Eigen[0][order]

States[:,:,i] = Eigen[1][:,order]

else:

Eigen = eigvals(H)

EigenValues[:,i]=numpy.sort(Eigen)

if return_states:

return EigenValues,States

else:

return EigenValues

def Vary_Intensity(Hams,fields0,I_app,return_states = False):

’’’

find Eigenvalues (and optionally Eigenstates) of the total

↪→ Hamiltonian

input arguments:

Hams: list or tuple of hamiltonians. Should all be the same size

fields0: initial field conditions, allows for zeeman + Stark

↪→ effects

I_app: Laser

return_states: Switch to return EigenStates as well as

↪→ Eigenenergies

returns:

energy:array of Eigenenergies, sorted from smallest to largest

↪→ along

the 0 axis

states:array of Eigenstates, sorted as in energy.

’’’

H0,Hz,HDC,HAC = Hams

E,B,I = fields0

#warn the user if they’ve done something silly, so they don’t waste

↪→ time
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if type(HAC) != numpy.ndarray:

warnings.warn("Hamiltonian is zero: nothing will change")

else:

EigenValues = numpy.zeros((H0.shape[0],len(I_app)))

if return_states:

States = numpy.zeros((H0.shape[0],H0.shape[0],len(I_app)))

else:

for i,Int in enumerate(I_app):

with warnings.catch_warnings():

warnings.filterwarnings("ignore",

category=numpy.ComplexWarning)

H = H0+E*HDC+Int*HAC+B*Hz

if return_states:

Eigen = eig(H)

order = numpy.argsort(Eigen[0])

EigenValues[:,i]=Eigen[0][order]

States[:,:,i] = Eigen[1][:,order]

else:

Eigen = eigvals(H)

EigenValues[:,i]=numpy.sort(Eigen)

if return_states:

return EigenValues,States

else:

return EigenValues

def Vary_Beta(Hams,fields0,Angles,Molecule_pars,return_states = False):

’’’

find Eigenvalues (and optionally Eigenstates) of the total

↪→ Hamiltonian

This function works differently to the applied field ones. Because

↪→ beta

changes the matrix elements in the Hamiltonian we cannot simply

multiply it through. Therefore we have to recalculate the matrix

elements on each interation. This makes the function slower.

input arguments:

Hams: list or tuple of hamiltonians. Should all be the same size

fields0: initial field conditions, allows for zeeman + Stark

↪→ effects

Angles: Polarisation angles to iterate over
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Molecule_pars: Nmax,I1,I2,a2, arguments to feed to regenerate the

anisotropic Stark shift matrix.

return_states: Switch to return EigenStates as well as

↪→ Eigenenergies

returns:

energy:array of Eigenenergies, sorted from smallest to largest

↪→ along

the 0 axis

states:array of Eigenstates, sorted as in energy.

’’’

Nmax,I1,I2,a2 = Molecule_pars

H0,Hz,HDC,HAC = Hams

E,B,I = fields0

#warn the user if they’ve done something silly, so they don’t waste

↪→ time

if I == 0:

warnings.warn("Intensity is zero: nothing will change")

else:

EigenValues = numpy.zeros((H0.shape[0],len(Angles)))

if return_states:

States = numpy.zeros((H0.shape[0],H0.shape[0],len(Angles)))

for i,beta in enumerate(Angles):

HAC = AC_aniso(Nmax,a2,beta,I1,I2)/(2*eps0*c)

with warnings.catch_warnings():

warnings.filterwarnings("ignore",category=numpy.

↪→ ComplexWarning)

H = H0+E*HDC+I*HAC+B*Hz

if return_states:

Eigen = eig(H)

order = numpy.argsort(Eigen[0])

EigenValues[:,i]=Eigen[0][order]

States[:,:,i] = Eigen[1][:,order]

else:

Eigen = eigvals(H)

EigenValues[:,i]=numpy.sort(Eigen)
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if return_states:

return EigenValues,States

else:

return EigenValues
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J. Lange, O. Dulieu, R. Wester, and M. Weidemüller, Physical Review

Letters 101, 133004 (2008).

[29] P. Zabawa, A. Wakim, M. Haruza, and N. P. Bigelow, Physical Review

A 84, 061401 (2011).

[30] J. Banerjee, D. Rahmlow, R. Carollo, M. Bellos, E. E. Eyler, P. L.

Gould, and W. C. Stwalley, Physical Review A 86, 053428 (2012).

[31] C. D. Bruzewicz, M. Gustavsson, T. Shimasaki, and D. DeMille, New

Journal of Physics 16, 023018 (2014).

[32] Z. Li, T. Gong, Z. Ji, Y. Zhao, L. Xiao, and S. Jia, Physical Chemistry

Chemical Physics 20, 4893 (2018).

[33] C. Gabbanini and O. Dulieu, Physical Chemistry Chemical Physics 13,

18905 (2011).

https://doi.org/10.1103/PhysRevLett.124.133201
https://arxiv.org/abs/2004.02848
https://arxiv.org/abs/2004.02848
https://arxiv.org/abs/2004.09570v1
https://doi.org/10.1103/PhysRevA.97.063414
https://doi.org/10.1103/physreva.98.022707
https://doi.org/10.1103/physrevlett.113.023004
https://doi.org/10.1103/physrevlett.113.023004
https://doi.org/10.1103/physrevlett.120.083202
https://doi.org/10.1103/PhysRevLett.101.133004
https://doi.org/10.1103/PhysRevLett.101.133004
https://doi.org/10.1103/PhysRevA.84.061401
https://doi.org/10.1103/PhysRevA.84.061401
https://doi.org/10.1103/PhysRevA.86.053428
https://doi.org/10.1088/1367-2630/16/2/023018
https://doi.org/10.1088/1367-2630/16/2/023018
https://doi.org/10.1039/c7cp07756d
https://doi.org/10.1039/c7cp07756d
https://doi.org/10.1039/C1CP21497G
https://doi.org/10.1039/C1CP21497G


Bibliography 203

[34] M. McDonald, I. Majewska, C.-H. Lee, S. S. Kondov, B. H. McGuyer,

R. Moszynski, and T. Zelevinsky, Physical Review Letters 120, 033201

(2018).

[35] Z. Ji, T. Gong, Y. He, J. M. Hutson, Y. Zhao, L. Xiao, and S. Jia,

ArXiv 2002.06390 (2020), pre-print.
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G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin, and J. Ye, Science

327, 853 (2010).

[161] K.-K. Ni, S. Ospelkaus, D. Wang, G. Quéméner, B. Neyenhuis,
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