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Abstract: In this thesis we study two- and three-dimensional supersymmetric

gauge theories, in particular 2d N = (2, 2) and 3d N = 4 theories. The techniques

of supersymmetric localization and the Jeffrey-Kirwan residue are applied to compute

correlation functions in these theories. Using the localization result for the correlation

functions of 2d N = (2, 2) Gauged Linear Sigma Models (GLSMs) on the Omega-

deformed two-sphere, we examine the correlation functions of a GLSM describing

a non-compact geometry. We investigate the ambiguity in the results for three-

point correlators using twisted masses and the Omega deformation, and we compare

with previous evaluations of these correlation functions in the literature. For 3d

N = 4 U(N) theories, by combining inputs from supersymmetric localization and

brane constructions in type IIB string theory, we compute correlation functions of

monopole operators that are inserted in an Omega background. We study various

examples of correlators involving the product of monopoles of minimal positive and

negative charges, and investigate the effects of monopole bubbling and wall-crossing

phenomena. Our results are successfully tested using the non-commutative Moyal

(star) product and the action of Parity-Time (PT) symmetry.
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Chapter 1

Introduction

In the 20th century, the marriage of special relativity and quantum mechanics was

established through the theoretical framework of quantum field theory (QFT). This

resulted in the development of the Standard Model, a theory describing the funda-

mental building blocks of the Universe and their interactions. This theory has had

great success, including, most notably, the prediction of the Higgs boson, whose

existence was experimentally verified in 2012 at the Large Hadron Collider, CERN.

However, the Standard Model is incomplete. Issues include the absence of gravity,

the origin of neutrino mass, the asymmetry between matter and anti-matter, the

nature of Dark Matter, and the Hierarchy problem. One proposed extension to the

Standard Model is supersymmetry.

Supersymmetry is a spacetime symmetry that exchanges bosons (particles of integer

spin) with fermions (particles of half-integer spin). It predicts that every particle

has a superpartner, with the same mass and quantum numbers, but a different spin.

The work of Haag, Łopuszanski, and Sohnius [1], generalising the Coleman-Mandula

theorem [2], implies that supersymmetry is the most general spacetime symmetry of

an interacting QFT.1 As a mathematical structure, supersymmetry first appeared

in the early 1970s in the context of string theory, which paved the way for Wess and

1The maximal group of symmetry is (SuperPoincaré)× (Compact internal symmety). Relaxing
the requirement of particle finiteness allows us to replace SuperPoincaré with SuperConformal
symmetry.
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Zumino (1974) to write down a supersymmetric field theory in four dimensions [3].

The idea of symmetry has been a key guiding principle throughout the development

of physics. Although supersymmetry has not been observed in Nature, there are

many theoretical reasons for studying supersymmetric QFTs. Such theories can

be viewed as theoretical laboratories for obtaining exact results, even at strong

coupling, where the usual tricks of Feynman break down. Supersymmetry provides

enhanced theoretical control, allowing the structure of QFTs to be probed, and the

non-perturbative behaviour of systems to be studied. It is hoped that by analysing

supersymmetric theories we can learn more generic details about QFTs, which would

help us to improve our understanding of the real world.

Additionally, string theory, the framework that proposes to unite general relativity

and quantum mechanics by replacing point-like particles by one-dimensional objects

called strings, relies on supersymmetry for consistency. String theory also contains

extended objects called branes, these are dynamical objects that are defined by

imposing boundary conditions for open strings. Type IIA (IIB) string theory has

Dp branes with p even (odd), where the D refers to Dirichlet boundary conditions.

These objects are useful for studying supersymmetric gauge theories because a stack

of N coincident Dp branes realises a (p+ 1)-dimensional maximally supersymmetric

Yang-Mills (SYM) theory with gauge group U(N). For the case p = 3, we have

four-dimensional N = 4 U(N) SYM, with 16 Poincaré supercharges. The study of

string theory and supersymmetric field theories is also important due to connections

with research in mathematics, in particular the areas of geometry and topology. Over

recent years, advancements in physics have led to new insights and developments in

mathematics.2

Dualities have played a central role in the developments of superstring theory and

supersymmetric gauge theories. The basic reason for studying dualities is that a

difficult question to answer from one perspective can turn into an easier question to

answer from another perspective. Electric-magnetic duality, which exchanges electric

2Of course physics and mathematics have a long and illustrious history.
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and magnetic fields, is an example of a strong-weak duality. By exploiting the idea

that the strong coupling limit of one theory is equivalent to the weak coupling limit

of another theory, we can learn about the non-perturbative aspects of a given theory

by studying its dual theory.

Localization is a technique whose full power has only been exploited recently in

the study of supersymmetric field theories. It is a useful tool applied to reduce

infinite-dimensional path integrals to finite-dimensional integrals, allowing the exact

non-perturbative computation of partition functions. Localization formulae can be

used to extract physical and mathematical information about field theories, and

provide a method to perform detailed tests of non-perturbative dualities. The

localization procedure has been successfully applied to a range of supersymmetric

field theories defined on curved backgrounds of various dimensions. Alongside the

evaluation of partition functions, the insertion of local and non-local operators has

been studied, including order and disorder operators, which are defined as functions

of the fundamental fields in the theory and defined through boundary conditions,

respectively.

1.1 Thesis Outline

The aim of this thesis is to explore the correlation functions of two- and three-

dimensional supersymmetric gauge theories. The computation of such correlation

functions, which would be difficult to evaluate by standard methods, is made possible

by exploiting the power of supersymmetric localization, and, in the case of 3d theories,

inputs from brane constructions in string theory.

The outline of this thesis is as follows.

In chapter 2 we review background material on supersymmetric gauge theories. We

recap some basic features of four-dimensional N = 1 supersymmetry. We then

discuss the supersymmetry algebra and field content of two-dimensional N = (2, 2)
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gauge theories, which are related to 4d N = 1 theories by dimensional reduction. We

write down the gauge-invariant Lagrangian for a U(1) gauge symmetry and discuss

how topological theories with N = (2, 2) supersymmetry are obtained through

twisting. By minimising the scalar potential appearing in the theory, we study the

classical geometry of some examples. We then examine the Coulomb branch vacua

and the dualisation of sigma models. Furthermore, we discuss three-dimensional

N = 4 gauge theories and focus on the Coulomb branch structure of the moduli

space of supersymmetric vacua. Finally, the type IIB brane construction of 3d N = 4

U(N) gauge theories is presented.

In chapter 3 we explain how the technique of supersymmetric localization is used

to compute the path integral of a supersymmetric field theory. We then discuss the

defining properties and constructive definition of the Jeffrey-Kirwan (JK) residue,

whose importance in localization computations has been recognised in the last few

years. Finally, we present explicit examples to demonstrate how the JK prescription

is applied to compute JK integrals.

In chapter 4 we review the result from supersymmetric localization for the correlation

functions of two-dimensional N = (2, 2) Gauged Linear Sigma Models (GLSMs)

on the Omega-deformed two-sphere. We then examine the computation of the

correlation functions of a GLSM describing a non-compact geometry. We compare

with the previous evaluations of these correlation functions in the literature, discuss

some issues with mass regulation, and highlight the ambiguity of the result for

three-point correlators.

In chapter 5 we present new results from our paper [4] on the computation of

correlators of monopole operators in three-dimensional N = 4 U(N) supersymmetric

quantum chromodynamics (SQCD) in the Omega background. We use inputs from

supersymmetric localization and brane constructions. Our method is illustrated by

presenting several examples of the computations of two- and three-point correlators

in U(2) SQCD. We also study various examples of correlators containing products

of monopole operators of minimal positive and negative charge in U(N) theories.
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Along the way we investigate wall-crossing phenomena and make connection with

the non-commutative Moyal (star) product.

Finally, we conclude in chapter 6 by summarising our work and discussing the

possible directions for future research. Additional details are collected in appendices.





Chapter 2

Review of Supersymmetric Gauge

Theories

We begin this chapter on the familiar ground of 4d N = 1 theories, four-dimensional

theories with four Poincaré supercharges. We then discuss the ingredients of lower-

dimensional supersymmetric gauge theories. We review Witten’s construction of

two-dimensional N = (2, 2) Gauged Linear Sigma Models [5], theories that become

strongly coupled in the infrared and flow to Non-Linear Sigma Models. Finally, we

present an overview of three-dimensional N = 4 gauge theories and discuss their

realisation using a brane construction from type IIB string theory [6].

2.1 Four-dimensional N = 1

We work in Minkowski spacetime with metric ηµν = diag (+1,−1,−1,−1), where

Greek indices µ, ν, . . . = 0, 1, 2, 3 represent spacetime coordinates and Latin indices

are used for the spatial directions i, j, . . . = 1, 2, 3. The material presented in this

section is standard textbook and lecture material, see for example [7, 8].

The 4d N = 1 supersymmetry algebra is a Z2 graded algebra L = L0 ⊕ L1. The

bosonic even L0 sector comprises the usual generators of the Poincaré algebra: Pµ
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for translations, and Mµν for rotations and boosts. These satisfy the commutation

relations

[Pµ, Pν ] = 0 ,

[Mµν , Pλ] =− iηµλPν + iηνλPµ ,

[Mµν ,Mρσ] =− iηµρMνσ + iηνρMµσ − iηνσMµρ + iηµσMνρ .

(2.1.1)

The generators of the fermionic odd L1 sector are the spin 1/2 complex supercharges

Qα and Qα̇, where the Weyl spinor indices are α, β, . . . = 1, 2 and α̇, β̇, . . . = 1, 2,

and we have the additional commutation relations1

[Pµ, Qα] =
[
Pµ, Qα̇

]
= 0 ,

[Mµν , Qα] = i(σµν) β
α Qβ ,[

Mµν , Q
α̇
]

= i(σµν)α̇β̇Q
β̇
,{

Qα, Qβ̇

}
= 2(σµ)αβ̇Pµ ,

{Qα, Qβ} =
{
Qα̇, Qβ̇

}
= 0 ,

(2.1.2)

with (σµ)αβ̇ = (1,−σi)αβ̇, and

(σµν) β
α = 1

4 (σµσν − σνσµ) β
α , (σµν)α̇β̇ = 1

4 (σµσν − σνσµ)α̇β̇ , (2.1.3)

where σi are the Pauli matrices, which satisfy σiσj = δij1 + iεijkσk, and εijk is the

anti-symmetric Levi-Civita symbol, with ε123 = 1. The spinor indices are raised and

lowered with the Levi-Civita tensors

εαβ = εα̇β̇ =

 0 1

−1 0

 , εαβ = εα̇β̇ =

0 −1

1 0

 , (2.1.4)

which gives

ψα = εαβψβ , ψα = εαβψ
β , ψ

α̇ = εα̇β̇ψβ̇ , ψα̇ = εα̇β̇ψ
β̇
. (2.1.5)

1This is the case for minimal generators of the supersymmetry. If we have extended super-
symmetry, we introduce an index I = 1, . . . , N to count the supercharges and the commutation
relations are modified. Significantly, the anti-commutator of two supercharges, QIα and QJβ or QIα̇
and QJβ̇ , does not necessarily vanish due to the presence of central charges.
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We follow the convention that undotted indices are contracted from North-West

to South-East, ψχ = ψαχα = εαβψβχα, whilst dotted indices are contracted from

South-West to North-East, ψχ = ψα̇χ
α̇ = εα̇β̇ψα̇χβ̇.

It is also possible to have a scalar charge R that generates a U(1)R symmetry and

acts non-trivially on the supercharges

[R,Qα] = −Qα ,
[
R,Qα̇

]
= Qα̇ . (2.1.6)

Finally, there can be a global non-R symmetry, a flavour symmetry F , generated by

scalar charges that commutes with the generators of the supersymmetry algebra.

To write down supersymmetric actions we introduce superspace, where the bosonic

and fermionic fields are components that are packaged into a superfield. Super-

space, an extension to (bosonic) Minkowski space xµ, is formulated by introducing

the Grassmann odd coordinates θα and θα̇. The supercharges Qα (Qα̇) generate

translations in θα (θα̇) and xµ.

The supercharge generators, written as differential operators, are

Qα = −i
(
∂α − i

(
σµθ

)
α
∂µ
)

, Qα̇ = i
(
∂α̇ − i (θσµ)α̇ ∂µ

)
, (2.1.7)

where

∂µ = ∂

∂xµ
, ∂α = ∂

∂θα
, ∂α̇ = ∂

∂θ
α̇ . (2.1.8)

These derivatives satisfy the following relations

{∂α, ∂β} =
{
∂α̇, ∂β̇

}
=
{
∂α, ∂α̇

}
= 0 ,{

∂α, θ
β
}

= δ β
α ,{

∂α̇, θ
β̇
}

= δ β̇
α̇ ,{

∂α, θ
α̇
}

=
{
∂α̇, θ

α
}

= 0 .

(2.1.9)

In addition, the supercovariant derivatives are

Dα = ∂α + i
(
σµθ

)
α
∂µ , Dα̇ = ∂α̇ + i (θσµ)α̇ ∂µ , (2.1.10)
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which satisfy the anti-commutation relations

{Dα, Dβ} =
{
Dα̇, Dβ̇

}
= 0 ,

{
Dα, Dα̇

}
= −2(σµ)αα̇Pµ . (2.1.11)

A generic superfield Y
(
x, θ, θ

)
can be Taylor expanded in terms of its components

Y (x, θ, θ) = y(x) + θψ(x) + θχ(x) + θθm(x) + θθn(x)

+ θσµθvµ(x) + θθθλ(x) + θθθρ(x) + θθθθD(x) ,
(2.1.12)

which terminates due to the Grassmann nature of the θ, θ coordinates. The spinor

indices in this expression have been contracted and so are suppressed in the notation,

for instance θσµθ = θα(σµ)αβ̇θ
β̇.

A general superfield has too many components to be an irreducible representation

of the supersymmetry algebra. Consequently, we must impose constraints to reduce

the number of components consistently with the supersymmetry algebra. This can

be achieved by using a reality condition or a differential constraint.

A chiral superfield Φ is obtained by imposing the constraint Dα̇Φ = 0. The com-

ponent expansion of this superfield, using the coordinate change yµ = xµ + iθσµσ,

is

Φ(y) = φ(y) +
√

2θψ(y)− θθF (y) , (2.1.13)

where φ is a complex scalar, ψ is a Weyl fermion, and F is a complex auxiliary scalar.

The supersymmetry transformations of these components are

δφ =
√

2ζψ ,

δψα = −
√

2ζαF + 2i(σµζ)α∂µφ ,

δF = − i
√

2∂µψσµζ ,

(2.1.14)

where ζ, ζ are the supersymmetry transformation parameters. Similarly, the anti-

chiral superfield Φ, the conjugate to the chiral superfield, is obtained from the

constraint DαΦ = 0.
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The supersymmetry transformations in (2.1.14) are obtained from

δΦ(y) = i
(
ζQ+ ζQ

)
Φ(y) =

[
ζα∂α + 2i

(
θσµζ

)
∂µ
]

Φ(y) , (2.1.15)

where the two terms in the square brackets in the last step are the supercharges

from (2.1.7) changed to the y coordinate basis and now ∂µ = ∂
∂yµ

. Acting with the

appropriate derivatives, (2.1.15) becomes

δΦ(y) =
√

2ζψ − 2ζθF + 2i
(
θσµζ

) [
∂µφ+

√
2θ∂µψ

]
. (2.1.16)

The term that comes with no θ gives us the expression for δφ in (2.1.14). Likewise,

collecting the terms with
√

2θ and −θθ we find the transformations δψα and δF in

(2.1.14), respectively, after applying the helpful identity θαθβ = −1
2ε
αβθθ.

The most general supersymmetric action involving (anti-)chiral superfields with at

most two derivatives is given by

S =
�

d4xd2θd2θK
(
Φ,Φ

)
+
(�

d4xd2θW (Φ) + c.c.

)
, (2.1.17)

where d2θ = 1
2dθ1dθ2 and d2θ = 1

2dθ2̇dθ1̇. Integration over a Grassmann coordinate

θ satisfies �
dθ (a+ θb) = b , (2.1.18)

which is equivalent to differentiating the integrand with respect to θ. Due to the

anti-commuting nature of these coordinates we have
�

dθ1dθ2θ2θ1 = 1 ,

�
dθ1dθ2θ1θ2 = −1 . (2.1.19)

The first term in (2.1.17) is the D-term, where K
(
Φ,Φ

)
is the Kähler Potential,

a real function of Φ,Φ. This governs the kinetic terms for chiral multiplets. The

Grassmann integral
�

d2θd2θ picks out the top component of K
(
Φ,Φ

)
, i.e. the term

that comes with θθθθ in its component expansion. The action is invariant under a

Kähler transformation

K
(
Φ,Φ

)
→ K

(
Φ,Φ

)
+ Λ(Φ) + Λ(Φ) , (2.1.20)
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where Λ(Φ)
(
Λ(Φ)

)
is an arbitrary (anti-)chiral superfield.

The second term in (2.1.17) is the F-term, where W (Φ) is the superpotential, a holo-

morphic function of Φ. The Grassmann integral
�

d2θ picks out the top component,

θθ, of W (Φ). To ensure that the action is invariant under a global U(1)R symmetry,

the Kähler Potential and superpotential must carry R charges 0 and 2, respectively.2

We can consider a renormalisable theory with a set of chiral superfields Φi, where

i = 1, . . . , N . In this case, the Kähler Potential and superpotential are restricted to

the form

K
(
Φi,Φi

)
= ΦiΦi , W (Φi) = aiΦi + 1

2mijΦiΦj + 1
3gijkΦ

iΦjΦk , (2.1.21)

for some arbitrary coefficients ai,mij, gijk. Consequently, the action (2.1.17) becomes

S =
�

d4xd2θd2θΦiΦi +
(�

d4xd2θW (Φi) + c.c.

)

=
�

d4x
[∣∣∣∂µφi∣∣∣2 − iψiσµ∂µψi + F iF

i − (∂iW )F i −
(
∂
i
W
)
F i

−1
2 (∂i∂jW )ψiψj − 1

2
(
∂
i
∂
j
W
)
ψiψj

]
,

(2.1.22)

where

∂iW = ∂W

∂Φi
, ∂

i
W = ∂W

∂Φi

. (2.1.23)

The auxiliary fields, F i and F i, can be integrated out and the solution to their

equations of motion are

F i = ∂W

∂φi
, F i = ∂W

∂φi
. (2.1.24)

Substituting these back into the action (2.1.22), we obtain the scalar potential

U(φi, φi) = F iF
i =

N∑
i=1

∣∣∣∣∣∂W∂φi
∣∣∣∣∣
2

. (2.1.25)

The moduli space of supersymmetric vacuaM is given by the solutions to U(φi, φi) =

0. In this case, the zeros of the scalar potential are simply given by

∂W

∂φi
= 0 ⇒

〈
φi
〉

= constant , (2.1.26)

2Since the Grassmann coordinates θα and θα̇ have R charges 1 and −1, respectively.



2.1. Four-dimensional N = 1 13

and so we can write

M =
{〈
φi
〉

= constant
∣∣∣∂W
∂φi

= 0 ∀i
}
. (2.1.27)

Relaxing the requirement of renormalisability allows for theories with a general

Kähler Potential of degree greater than 2. These theories are called Non-Linear Sigma

Models (NLSMs). In section 2.2 we will consider supersymmetric gauge theories

(with N = (2, 2) supersymmetry), where a vector superfield V is introduced, which

is obtained by taking the generic superfield (2.1.12) and imposing the constraint

Y = Y †.

The moduli space of supersymmetric vacua is an object of physical and mathematical

interest. We now study an explicit example involving the computation of a moduli

space, where we see that the space is comprised of a union of branches that intersect

at a point.

Consider a model of three chiral superfields, X, Y, and Z, with the homogeneous

superpotential W (X, Y, Z) = XY Z. The scalar potential is given by

U = |∂XW |2 + |∂YW |2 + |∂ZW |2 = |Y Z|2 + |XZ|2 + |XY |2 . (2.1.28)

The moduli space of vacua, the set of constant field configurations that minimise

the potential, is

M = {X, Y, Z ∈ C |Y Z = XZ = XY = 0} . (2.1.29)

These F-term equations are solved by setting any two of X, Y, Z to zero. Therefore,

there are three possibilities

MX = {X ∈ C, Y = Z = 0} ,

MY = {Y ∈ C, X = Z = 0} ,

MZ = {Z ∈ C, X = Y = 0} .

(2.1.30)

Consequently, the moduli space is given by M = MX ∪ MY ∪ MZ , which we

illustrate in Figure 2.1. This figures highlights that this moduli space is composed of
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Figure 2.1: The moduli space for a model with three chiral superfields X, Y, Z
and the superpotential W (X, Y, Z) = XY Z.

three branches that intersect at the origin, which is the singular point where X, Y,

and Z vanish.

2.2 Two-dimensional N = (2, 2)

The study of two-dimensional theories is particularly significant due to the shared

dynamical and quantum properties with four-dimensional theories and links to string

theory. 2d N = (2, 2) supersymmetry is obtained from the dimensional reduction

of 4d N = 1 supersymmetry. In this section, we follow the conventions of [9]. We

restrict to the case of abelian gauge theories and write down the generic gauge-

invariant supersymmetric Lagrangian for a single U(1) gauge group.

2.2.1 Supersymmetry Algebra

The N = (2, 2) supersymmetry algebra is generated by the four real supercharges

Q± and Q±, the Hamiltonian H for time translations, the momentum P for spatial

translations, and the Lorentz generator M . In addition, there are two kinds of U(1)

symmetries, vector and axial R symmetries, which are generated by FV and FA,
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respectively. These obey the following (anti-)commutation relations

Q2
± = Q

2
± = 0 ,

{Q±, Q±} = (H ± P ) ,

{Q+, Q−} = {Q+, Q−} = 0 ,

{Q−, Q+} = {Q+, Q−} = 0 ,

[M,Q±] = ∓Q± ,
[
M,Q±

]
= ∓Q± ,

[FV , Q±] = −Q± ,
[
FV , Q±

]
= Q± ,

[FA, Q±] = ∓Q± ,
[
FA, Q±

]
= ±Q± ,

(2.2.1)

where ± are left/right handed spinor indices. Under the U(1) vector and axial R

rotations, the Grassmann coordinates transform as

U(1)V : θ± → e−iαθ± , θ
± → eiαθ

±
,

U(1)A : θ± → e∓iβθ± , θ
± → e±iβθ

±
.

(2.2.2)

The algebra (2.2.1) is invariant under an automorphism, which is described by the

exchange of the generators

Q− ↔ Q− , FV ↔ FA . (2.2.3)

This symmetry is called two-dimensional mirror symmetry [10, 11]. Two theories

that are equivalent under the exchange of these generators are said to be mirror to

each other.

2.2.2 Field Content

Gauge theories with N = (2, 2) supersymmetry in two dimensions contain the

following ingredients.

Firstly, we have a real vector superfield V , with the gauge transformation V →

V + i
(
Λ− Λ

)
, for some arbitrary chiral superfield Λ and its conjugate Λ. The vector
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superfield V =
(
vµ, σ, σ, λµ, λµ, D

)
contains a real gauge field vµ, the complex con-

jugate scalars σ, σ, Dirac fermions λµ, λµ, and a real auxiliary scalar D, transforming

in the adjoint representation of the gauge group. In Wess-Zumino (WZ) gauge, the

component expansion of this superfield is given by

V = θ−θ
−(v0 − v1) + θ+θ

+(v0 + v1)− θ−θ+
σ − θ+θ

−
σ

+ iθ−θ+
(
θ
−
λ− + θ

+
λ+
)

+ iθ
+
θ
− (
θ−λ− + θ+λ+

)
+ θ−θ+θ

+
θ
−
D ,

(2.2.4)

and the supersymmetry variations of the component fields are

δv± = iζ±λ± + iζ±λ± ,

δσ = − iζ+λ− − iζ−λ+ ,

δσ = − iζ+λ− − iζ−λ+ ,

δλ+ = iζ+ (D + iF01) + 2ζ−∂+σ ,

δλ− = iζ− (D − iF01) + 2ζ+∂−σ ,

δλ+ = − iζ+ (D − iF01) + 2ζ−∂+σ ,

δλ− = − iζ− (D + iF01) + 2ζ+∂−σ ,

δD = − ζ+∂−λ+ − ζ−∂+λ− + ζ+∂−λ+ + ζ−∂+λ− ,

(2.2.5)

where F01 = ∂0v1 − ∂1v0, and we have the supersymmetry transformation

δ = ζ+Q− − ζ−Q+ − ζ+Q− + ζ−Q+ , (2.2.6)

with supersymmetry parameters ζ±, ζ±.

Additionally, there is a chiral superfield Φ, which satisfies the constraint D±Φ = 0.

This has charge Q under an abelian gauge group and its gauge transformation is

given by Φ → eiQΛΦ. The chiral multiplet Φ = (φ, ψ−, ψ+, F ) contains a complex

scalar φ, a complex Dirac spinor ψ, and a complex auxiliary scalar F , transforming in

a representation RΦ of the gauge group. The component expansion of this superfield

takes the form

Φ = φ(y) + θ+ψ+(y) + θ−ψ−(y) + θ+θ−F (y) , (2.2.7)
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where y± = x± − iθ±θ
±. The supersymmetry transformations of the component

fields are
δφ = ζ+ψ− − ζ−ψ+ ,

δψ+ = iζ− (D0 +D1)φ+ ζ+F − ζ+σφ ,

δψ− = − iζ+ (D0 −D1)φ+ ζ−F + ζ−σφ ,

δF = − iζ+ (D0 −D1)ψ+ − iζ− (D0 +D1)ψ−

+ ζ+σψ− + ζ−σψ+ + i
(
ζ−λ+ − ζ+λ−

)
φ ,

(2.2.8)

where the covariant derivative is Dµ = ∂µ + ivµ.

Finally, the gauge-invariant field strength of the vector superfield is Σ = D+D−V ,

which is a twisted chiral superfield satisfying D+Σ = D−Σ = 0. The fact that we

can write the gauge-invariant field strength in this form is unique to two dimensions.

In component form we have

Σ = σ(ỹ) + iθ+λ+(ỹ)− iθ−λ−(ỹ) + θ+θ
− [D − iF01] (ỹ) , (2.2.9)

where ỹ± = x± ∓ iθ±θ±.

We will see in section 2.2.6 that the two-dimensional mirror symmetry (2.2.3) has

the effect of exchanging chiral and twisted chiral superfields.

2.2.3 Supersymmetric Lagrangian

The gauge-invariant Lagrangian for the theory of a single charged chiral multiplet

with a U(1) gauge symmetry, described by a vector multiplet V , is given by a sum

of terms

L = Lkin + Lgauge + L
W̃

+ LW . (2.2.10)
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The kinetic term for the chiral multiplet of charge 1 is

Lkin =
�

d4θΦeV Φ

= −DµφDµφ+ iψ−(D0 +D1)ψ− + iψ+(D0 −D1)ψ+

+D |φ|2 + |F |2 − |σ|2 |φ|2 − ψ−σψ+ − ψ+σψ−

− iφλ−ψ+ + iφλ+ψ− + iψ+λ−φ− iψ−λ+φ .

(2.2.11)

The kinetic term for the vector multiplet, written in terms of the field strength Σ, is

Lgauge = − 1
2e2

�
d4θΣΣ

= 1
2e2

(
−∂µσ∂µσ + iλ− (∂0 + ∂1)λ− + iλ+ (∂0 − ∂1)λ+ + F 2

01 +D2
)
,

(2.2.12)

where e2 is the gauge coupling, with mass dimension one.

In addition, the twisted superpotential term is given by

L
W̃

= − t2

�
d2θΣ + c.c. = −rD + θF01 , (2.2.13)

where t is the complexified Fayet–Iliopoulos (FI) term

t = r − iθ , (2.2.14)

r is the FI parameter, and θ is the theta angle, which are dimensionless parameters.

Finally, one can also add a superpotential F-term

LW =
�

d2θW (Φ) + c.c. , (2.2.15)

where W (Φ) is a gauge-invariant holomorphic function of Φ.

After eliminating the auxiliary fields, D and F , in (2.2.10), the potential for the

scalar fields φ and σ is

U = |σ|2 |φ|2 + e2

2
(
|φ|2 − r

)2
+
∣∣∣∣∣∂W∂φ

∣∣∣∣∣
2

. (2.2.16)

The general Lagrangian for the case with multiple charged chiral multiplets Φi, with
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charge Qi under the U(1), where i = 1, . . . , N , is

L =
�

d4θ

(
N∑
i=1

Φie
QiV Φi −

1
2e2 ΣΣ

)
− t

2

�
d2θΣ + c.c+ LW , (2.2.17)

and hence the scalar potential becomes

U =
N∑
i=1
|Qiσ|2 |φi|2 + e2

2

(
N∑
i=1

Qi |φ|2 − r
)2

+
N∑
i=1

∣∣∣∣∣∂W∂φi
∣∣∣∣∣
2

. (2.2.18)

This system demonstrates a decoupling of the parameters, the chiral and twisted

chiral sectors do not talk to each other. t is a twisted chiral parameter, associated

to the twisted superpotential W̃ , while the superpotential W depends on chiral

superfields only. There is no mixing of parameters between W and W̃ .

The classical system exhibits both U(1)V and U(1)A R symmetries. The Lagrangian

(2.2.17) is invariant under the vector and axial R rotations upon assigning the

U(1)V × U(1)A charges (0, 2) to Σ. To ensure that the superpotential term is

invariant under the R symmetries, it must obey the quasi-homogeneous condition

W (λΦ) = λ2W (Φ) , (2.2.19)

where λ ∈ C×, since θ2 has vector R charge −2 and axial R charge 0.

We must also consider quantum effects. For the case of a single U(1) gauge theory

with one chiral superfield Φ of charge 1, the FI parameter runs as

r(µ) = r(ΛUV )− log
(

ΛUV

µ

)
, (2.2.20)

where ΛUV is the UV renormalisation scale and µ is some finite energy scale. There

is another quantum effect called the axial R symmetry anomaly. The measure in

the path integral is not invariant under the axial R symmetry, which has the effect

of shifting the theta angle

θ → θ − 2α . (2.2.21)

Consequently, the classical system is no longer invariant under U(1)A, the symmetry

is broken to Z2 in the quantum theory. A shift in the theta angle can be absorbed

by an axial R symmetry transformation. Hence, the two parameters describing the
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classical theory, r and θ, are replaced by a single complex scale parameter Λ in the

quantum theory.3

Repeating this argument for N chiral superfields Φi of charge Qi, where i = 1, . . . , N ,

(2.2.20) and (2.2.21) become

r(µ) = r(ΛUV )− b log
(

ΛUV

µ

)
, θ → θ − 2bα , (2.2.22)

where b =
N∑
i=1

Qi. We must consider two scenarios. If b = 0, the FI parameter does

not run, the theta angle is not shifted, and the system is invariant under the U(1)A R

symmetry. As such, the quantum theory is described in terms of the two parameters

r and θ. On the other hand, if b 6= 0, the U(1)A symmetry is anomalously broken to

Z2b and the quantum theory has the single parameter Λ. This is a renormalisation

group invariant dynamical scale, which is defined by

Λb = µbe−t(µ) = Λb
UV e

−t(ΛUV ) . (2.2.23)

There are two distinct topological supersymmetric backgrounds for 2d N = (2, 2)

theories, which are called the A- and B-model and are obtained by twisting the

theory [12, 13]. After Wick rotating to Euclidean space, the spacetime symmetry is

the rotation group SO(2) = U(1)E. Twisting of the theory is achieved by combining

either of the vector or axial R symmetries with the U(1)E symmetry. This results

in the two different models, which are described by

A-model : U(1)E → U(1)E × U(1)V ,

B-model : U(1)E → U(1)E × U(1)A .
(2.2.24)

For both of these models, the scalar φ (the lowest component) of the chiral superfield

Φ remains a scalar, however the spin of the fermionic fields is modified. In the

A-model, ψ− and ψ+ become scalars, whereas ψ+ and ψ− become anti-holomorphic

and holomorphic one-forms, respectively. On the other hand, in the B-model, ψ±

become scalars, and ψ+ and ψ− become anti-holomorphic and holomorphic one-

3This effect is called dimensional transmutation.
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Before Twisting After Twisting
U(1)V U(1)A U(1)E A-model B-model

φ 0 0 0 0 0
ψ− −1 1 1 0 2
ψ+ 1 1 −1 0 0
ψ− 1 −1 1 2 0
ψ+ −1 −1 −1 −2 −2

Table 2.1: Charges for the component fields of a chiral superfield. The A-
and B-model are obtained by twisting with the U(1)V and U(1)A R symmetry,
respectively.

forms, respectively. We summarise this in Table 2.1, which contains the charges of

the fields under the various symmetries, before and after twisting. Two-dimensional

mirror symmetry, which was proved by Hori and Vafa [14], can be used to study

these models since the A- and B-models are interchanged under this symmetry.

Defining the supercharges

QA = Q+ +Q− , QB = Q+ +Q− , (2.2.25)

which satisfy Q2
A = Q2

B = 0, an operator O is called a chiral operator if it satisfies

[QB,O] = 0 , (2.2.26)

and a twisted chiral operator if it satisfies

[QA,O] = 0 . (2.2.27)

The scalar φ (σ) in the chiral superfield Φ (twisted chiral superfield Σ) is an example

of a chiral (twisted chiral) operator.

In the A-model (B-model), the supercharge QA (QB) is a scalar. Hence, each

of these models preserves 1/2 of the supersymmetry on any curved background.

The A- and B-models are both topological because the correlation functions are

independent of the choice of the worldsheet metric. Correlations functions in the

A-model depend holomorphically on twisted chiral operators and receive instanton

corrections, whereas B-model correlators depend holomorphically on chiral operators
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and are classically exact.

2.2.4 Non-Linear Sigma Models from Gauge Theories

In the early 1990s, Witten [5] studied the geometry of Gauged Linear Sigma Models

(GLSMs) with N = (2, 2) supersymmetry. These are theories that flow to Non-

Linear Sigma Models (NLSMs) of Kähler or Calabi-Yau manifolds at low-energy

scales. The classical geometry of these gauge theories can be studied by minimising

the scalar potential. This is achieved by setting the D- and F-terms to zero and

quotienting by the gauge group. We now discuss the classical supersymmetric vacua

for a couple of examples, firstly in the absence of a superpotential term, and then

with the presence of such a term. For more examples see [15, 16].

Example 1: CPN−1

Consider the case of a single U(1) gauge theory with N chiral superfields Φi of charge

1, where i = 1, . . . , N , and no superpotential. The potential energy of this theory is

given by

U =
N∑
i=1
|σ|2|φi|2 + e2

2

(
N∑
i=1
|φi|2 − r

)2

. (2.2.28)

We wish to study the classical supersymmetric vacua given by the configurations

where U vanishes. This depends on the FI parameter:

• r < 0: the potential energy U is positive and there is no supersymmetric vacua.

• r = 0: U = 0 is obtained by setting φi = 0 and leaving σ arbitrary.

• r > 0: U = 0 is given by σ = 0 and
N∑
i=1
|φi|2 = r.

We will study the r > 0 scenario in more detail. The vacuum manifold is described

by the set of all supersymmetric vacua modulo the U(1) gauge group action,{
N∑
i=1
|φi|2 = r

}
/U(1) . (2.2.29)
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This tells us that the vacuum manifold is the complex projective space CPN−1,

which can be generalised to some weighted projective space by considering chiral

superfields of different charges. Thus, at low-energies, the classical theory reduces

to a Non-Linear Sigma Model on CPN−1. This is the theory of the massless modes

of φi, which are tangent to the vacuum manifold.

How do we obtain this vacuum manifold? The metric on the space of vacua is

computed after taking the quotient by the gauge group. One method to obtain this

relies on the fact that as we flow to the infrared, the GLSM reduces to the NLSM

and the gauge field is no longer dynamical. As a result we can take the kinetic terms

for the lowest component of the chiral multiplets and integrate out the gauge field

by imposing its equation of motion.

The general kinetic term for N chiral fields φi of charge Qi is

N∑
j=1

DµφjDµφj , (2.2.30)

where Dµφj = ∂µφj + ivµQjφj. Integrating out the gauge field vµ, the kinetic term

becomes
N∑
j=1

∂µφj∂µφj −
jµj

µ

4
N∑
j=1

Q2
j |φj|2

, (2.2.31)

where jµ = i
N∑
j=1

Qj

(
∂µφjφj − φj∂µφj

)
and the gauge field has been set to

vµ = − jµ

2
N∑
j=1

Q2
j |φj|2

, (2.2.32)

by its equation of motion.

Consequently, the metric on the space of vacua, which is obtained from (2.2.31), is

ds2 = rgFS . (2.2.33)
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This is the metric of CPN−1, where gFS denotes the Fubini-Study metric,

gFS =

N−1∑
i=1
|dzi|2

1 +
N−1∑
i=1
|zi|2

−

N−1∑
i=1
|zidzi|2(

1 +
N−1∑
i=1
|zi|2

)2 , (2.2.34)

which is expressed in terms of the coordinates zi = φi
φN

, where i = 1, . . . , N − 1.

Alternatively, the metric on the space of vacua can be computed from the derivative

of the Kähler Potential K(z, z), since

gij = ∂2

∂zi∂zj
K(z, z) , (2.2.35)

where z, z are local complex coordinates. For the case of CPN−1, the Kähler Potential

is K = r log (1 + z1z1 + z2z2 + . . .+ zN−1zN−1), and performing (2.2.35) we recover

(2.2.33).

Example 2: Hypersurfaces in CPN−1

We can now examine an example with a superpotential. Consider the case of a single

U(1) gauge theory with N+1 chiral superfields Φ1, . . . ,ΦN , P , of charge 1, . . . , 1,−d,

and the gauge-invariant superpotential

W = PG(φ1, . . . , φN) , (2.2.36)

where G(φ1, . . . , φN) is a homogeneous polynomial of degree d. The polynomial G

is generic, which means

G = ∂G

∂φ1
= · · · = ∂G

∂φN
= 0 ⇒ φ1 = · · · = φN = 0 . (2.2.37)

The condition G = 0 defines the hypersurface M in CPN−1, which is a smooth

complex manifold of complex dimension N − 2. When d = N , we have the Calabi-

Yau (CY) case, where the sum of the U(1) charges vanishes. The famous Quintic

model occurs when N = 5.
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The potential energy of the theory is given by

U =
N∑
i=1
|σ|2|φi|2 + |σ|2d2|p|2 + e2

2

(
N∑
i=1
|φi|2 − d|p|2 − r

)2

+ |G|2 +
N∑
i=1
|p|2|∂iG|2 .

(2.2.38)

The structure of the vacuum manifold is again different for r > 0, r = 0, and r < 0:

• r > 0: U = 0 is given by

σ = p = 0 ,
N∑
i=1
|φi|2 = r , G = 0 . (2.2.39)

The vacuum manifold is the set of all fields satisfying these equations modulo

the U(1) gauge group action. This gives the complex hypersurfaceM of CPN−1,

which is a CY manifold when d = N .

• r = 0: The vacuum manifold is the complex σ-plane, with p = φi = 0 from

the requirement U = 0.

• r < 0: U = 0 is described by

σ = φi = 0 , |p|2 = |r|
d
, (2.2.40)

and hence the vacuum manifold is a point. Taking the limit where the gauge

coupling e→∞, the classical theory is the Landau-Ginzburg (LG) model with

the superpotential

W = 〈p〉G(φ1, . . . , φN) , (2.2.41)

where 〈p〉 =
√
|r|
d
is the vacuum expectation value. Actually, there is a slight

subtlety. The choice of the vacuum value for p breaks the U(1) gauge symmetry

into Zd. The presence of this residual symmetry, which acts non-trivially on

Φi, means that the low-energy theory is not the ordinary LG model but its

Zd-orbifold/LG orbifold.

This example is particularly neat because it demonstrates that the Calabi-Yau sigma

model and the Landau-Ginzburg orbifold are two phases of the same system. These
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two descriptions are interpretations of different regions of the same moduli space of

theories.

Following on from the work of Witten, [17] explicitly computed the quantum-exact

A-model correlation functions (including instanton contributions) with target space

a toric variety or a Calabi-Yau hypersurface. The GLSM construction was used

to prove an equivalence between an N = (2, 2) theory with a cigar geometry and

Liouville theory [18]. Further direct GLSM computations have been carried out

in [19, 20], where the contribution of discrete Coulomb branch vacua to A-model

correlators was investigated for models with compact and non-compact geometry.

Recently, [21] investigated generalised Kähler geometries by considering new ingredi-

ents and structures for GLSMs whose target spaces are compatible with N = (2, 2)

supersymmetry.

In this section we have only discussed theories with a single U(1) gauge group but the

generalisation to higher rank or non-abelian gauge groups is possible. The quantum

dynamics of N = (2, 2) non-abelian gauge theories have also been studied, see for

example [22, 23]. We will consider quantum effects in the next subsection.

2.2.5 Coulomb Branch Vacua

In N = (2, 2) gauge theories, Coulomb branch vacua arise when the scalars in the

field strength multiplets Σa gain a non-zero expectation value, 〈Σa〉 6= 0. When

this happens the chiral superfields φi charged under the gauge symmetries become

massive and can be integrated out. This leads to a quantum correction to the twisted

superpotential in the theory. For the general case of a U(1)k =
k∏
a=1

U(1)a gauge group

with N chiral superfields Φi of charge Qa
i , the effective twisted superpotential is

W̃eff(Σ1, . . . ,Σk) = −
k∑
a=1

Σa


N∑
i=1

Qa
i

log


k∑
b=1

Qb
iΣb

µ

− 1

+ ta(µ)

 , (2.2.42)
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where the renormalised complexified FI parameter for each U(1)a gauge group factor

is

ta(µ) = ta(ΛUV) +
N∑
i=1

Qa
i log

(
µ

ΛUV

)
. (2.2.43)

The supersymmetric vacua on the Coulomb branch are determined by the solutions

to

exp
(
−∂W̃eff

∂Σa

)
= 1 , (2.2.44)

for all the field strength multiplets Σa, where a = 1, . . . , k. We set exp
(
−∂W̃eff

∂Σa

)
= 1,

rather than ∂W̃eff
∂Σa = 0, because we must take into account the 2π period of the theta

angle θa, which is contained in the complexified FI parameter ta in (2.2.42). Hence,

for the effective twisted superpotential (2.2.42), the vacuum equations are given by

N∏
i=1


k∑
b=1

Qb
iΣb

µ


Qai

= exp (−ta(µ)) . (2.2.45)

The CPN−1 model

For the previously discussed CPN−1 model, with N chiral fields Φi of charge 1 and

a single Σ field, the effective twisted superpotential is

W̃eff(Σ) = −Σ
(
N

[
log

(
Σ
µ

)
− 1

]
+ t(µ)

)
. (2.2.46)

Imposing (2.2.44), there are N distinct Coulomb branch vacua described by

∂W̃eff

∂Σ = −N log
(

Σ
µ

)
− t(µ) = 0 ⇒ ΣN = µN exp (−t(µ)) . (2.2.47)

2.2.6 Dual Descriptions

It is important to discuss duality. A basic example of dualisation is T-duality in

string theory. This tells us that the sigma model on the circle of radius R is equivalent

to the sigma model on the circle of radius 1
R
, where the momentum of one theory is

exchanged with the winding number of the other theory.
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Applying T-duality to the N = (2, 2) supersymmetric sigma model on the cylinder

C× = R × S1 results in the sigma model on another cylinder C̃× = R × S̃1, where

S1 and S̃1 have radius R and 1
R
, respectively. To see this we consider the system

described by the Lagrangian

L =
�

d4θ

(
R2

4 B2 − 1
2(Y + Y )B

)
, (2.2.48)

where B is a real superfield (an unconstrained field) and Y is a periodic twisted

chiral superfield, satisfying Y = Y + 2πi.

Firstly, integrating out B imposes the constraint

B = 1
R2 (Y + Y ) , (2.2.49)

and substituting this back into the original Lagrangian gives

L1 =
�

d4θ
(
− 1

2R2Y Y
)
. (2.2.50)

This is the sigma model on the cylinder with radius 1
R
for the circle, which is described

in terms of the twisted chiral superfield Y .

What happens if we integrate out Y and Y ? Integrating out these fields yields the

constraints D+D−B = D+D−B = 0, which are solved by

B = Φ + Φ , (2.2.51)

where Φ is a periodic chiral superfield, Φ = Φ + 2πi, whose periodicity matches

the period of the dual field Y . Substituting this solution for B into the original

Lagrangian gives

L2 =
�
d4θ

(
R2

2 ΦΦ
)
. (2.2.52)

This is the sigma model on the cylinder with radius R for the circle, which is described

in terms of the chiral superfield Φ.

Consequently, these two theories are equivalent, with the duality map

R2(Φ + Φ) = Y + Y . (2.2.53)
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The R → 1
R
duality on the S1 transforms a theory of a chiral multiplet to another

theory of a twisted chiral multiplet. This is an example of the two-dimensional

mirror symmetry (2.2.3), where the supercharges Q− and Q− are exchanged under

this equivalence.

To end this section we discuss the mirror theory of the CPN−1 sigma model. For

CPN−1, realised as the U(1) gauge theory with i = 1, . . . , N chiral superfields Φi

of charge 1, we saw in section 2.2.4 that the system reduces to the sigma model

described by the quotient (2.2.29).

Dualising the phase of the N chiral fields, one obtains N twisted chiral superfields

Yi, with periodicity Yi = Yi + 2πi. The dual theory, described in terms of (Σ, Yi),

has the exact twisted superpotential

W̃ =
(

N∑
i=1

Yi − t(µ)
)

Σ +
N∑
i=1

µe−Yi , (2.2.54)

where the dual fields Yi couple to the gauge field as a dynamical Theta angle, and

the final term is the instanton correction needed to ensure that the theories are

quantum mechanically equivalent [14].

Taking the strong coupling (sigma model) limit, the Σ field becomes heavy and can

be integrated out, which results in the constraint

N∑
i=1

Yi = t , (2.2.55)

and the twisted superpotential becomes

W̃ = e−Y1 + . . .+ e−YN . (2.2.56)

The constraint (2.2.55) is solved by

Yi = Θi for i = 1, . . . , N − 1 ,

YN = t−
N−1∑
i=1

Θi .
(2.2.57)

Consequently, the mirror theory is the LG model on the (N−1)-dimensional cylinder
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parameterised by the periodic coordinates Θi with the superpotential

W̃ = e−Θ1 + . . .+ e−ΘN−1 + e−t+Θ1+...+ΘN−1 . (2.2.58)

2.3 Three-dimensional N = 4

Three-dimensional N = 4 gauge theories, with 8 supercharges, are completely spe-

cified by the choice of a gauge group G, associated with a vector multiplet, and some

matter content, associated to hypermultiplets. 3d N = 4 theories are related to 4d

N = 2 and 6d N = (1, 0) theories by dimensional reduction.

2.3.1 Field Content

The vector multiplet contains a gauge field Aµ and three real scalars (φ1, φ2, φ3),

transforming in the adjoint representation of G, plus fermions. The matter fields are

contained in hypermultiplets, which transform under a pseudo-real representation

Rp−r of G. We will only consider matter hypermultiplets, which come in pairs of

chiral multiplets transforming in complex conjugate representations, Rp−r = R⊕R∗.

In three dimensions, the gauge field Aµ is dual to a scalar γ, which is called the dual

photon, since

Fµν = εµνρ∂
ργ , (2.3.1)

where Fµν is the gauge field strength. The dual photon γ is a scalar that we normalise

to have period 2π, which is compact due to the flux quantization of the field strength.

The R symmetry group is SU(2)C × SU(2)H . The three real scalars in the vector

multiplet transform as a triplet under the SU(2)C , whereas the pair of complex

scalars in each hypermultiplet (Q, Q̃†), transform as a doublet under the SU(2)H .

There also exists twisted vector and twisted hypermultiplets, where the roles of

SU(2)C and SU(2)H are exchanged.
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2.3.2 Branches

Examining the moduli space of supersymmetric vacua of these theories, the set of zero

energy field configurations, is a rich and interesting subject. The space of vacua is

comprised of a union of intersecting subspaces, which are called branches, analogous

to Figure 2.1. There are two important branches, the Higgs branch MH and the

Coulomb branch MC . Mixed branches are obtained by products of subspaces of

these branches. Mirror symmetry in three dimensions informs us that dual theories

exist, where in the infrared limit, the Higgs branch of one theory is the Coulomb

branch of the dual theory, and vice versa [24].

2.3.3 Higgs Branch

The Higgs branchMH is parameterised by the vacuum expectation values (VEVs)

of the scalars in the hypermultiplets. These are subject to D- and F-term constraints

and the classical description can be worked out from the level of the Lagrangian

since there are no quantum corrections [25]. MH is classically exact and is described

as the hyper-Kähler quotient R4dimR////G [26]. The R symmetry group SU(2)H

acts non-trivially onMH , whereas the SU(2)C R symmetry acts trivially.

2.3.4 Coulomb Branch

On the other hand, the Coulomb branch is parameterised by the VEVs of both

the scalars in the vector multiplet and the dual photons. The R symmetry group

SU(2)H acts trivially onMC , whereas the SU(2)C R symmetry acts non-trivially.

It is not an easy task to characterise the geometry of Coulomb branches. For abelian

theories, the metric on the Coulomb branch receives one-loop quantum corrections

and has been directly evaluated [27, 28]. However, the metric on the Coulomb branch

of non-abelian theories receives non-perturbative quantum corrections, which are

notably hard to compute.



32 Chapter 2. Review of Supersymmetric Gauge Theories

In recent years, significant progress has been made by utilising the description of the

Coulomb branch as a complex algebraic variety, hence bypassing difficulties related

to the metric. The key players in this description are chiral operators, including

standard Casimir-invariant operators and monopole operators [29]. The VEVs of

these chiral operators parameterise the Coulomb branch and the algebraic relations

that they satisfy give the chiral ring relations.4

The potentials in the action impose that only scalars valued in a Cartan subalgebra

can take vacuum expectation value. At a generic point on the Coulomb branch,

the gauge group G is broken to its maximal torus U(1)rank(G). MC is classically

described by

(R3 × S1)rank(G)/W , (2.3.2)

where the R3 factors are parameterised by the Cartan components of the three

real scalars φia, and the S1 factors are parameterised by the dual photons γa, with

a = 1, . . . , rank(G). The Weyl group of G is denoted by W .

Two out of the three real scalars in the vector multiplet can be combined to create

the complex scalars ϕa = φ1
a + iφ2

a. The remaining real scalars φ3
a can be combined

with the dual photons γa to form the complex scalars

u±a = exp (±χa) = exp
(
±
[

2π
g2 φ

3
a + iγa

])
, (2.3.3)

where g2 is the Yang-Mills coupling of the gauge group factor. These complex scalars

u±a satisfy the classical relations

u+
a u
−
a = 1 ∀ a . (2.3.4)

Consequently, the classical Coulomb branch is alternatively described as a complex

algebraic variety, which is given by

(C× C∗)rank(G) /W . (2.3.5)

4It is believed that the Coulomb branch is finitely generated, namely that every Coulomb branch
admits a finite basis of generators.
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This classical description of the Coulomb branch is valid when all of the hypermul-

tiplets are massive and the theory is that of free abelian vector multiplets.

The coordinates u±a , appearing in the description of the Coulomb branch as a complex

algebraic variety, are chiral ’t Hooft monopole operators [30]. Monopole operators

in three-dimensional Euclidean gauge theories are local disorder operators, which

are defined by requiring the gauge field to have a Dirac monopole singularity at a

certain insertion point x. As such, the integral of the field strength around a sphere

S2
x enclosing the point x obeys

1
2π

�
S2
x

Fa = na , (2.3.6)

where na ∈ Z arises from the Dirac quantization condition. These monopole op-

erators are point-like objects in three dimensions, so monopole operators in three

dimensions are like instantons in four dimensions.

In addition, to ensure that half of the supersymmetry is preserved, we require a

corresponding singularity for the real scalar φ3
a. Consequently, the insertion of a

half-BPS monopole of charge B is defined by requiring in the path integral the

singular profile

F = −B2 ? d(1
r

) , φ3 = B

2r , (2.3.7)

in the vicinity of the insertion point x, where r is the radial coordinate. The BPS

condition, the condition relating F and φ3, is given by

F = − ? dφ3 , (2.3.8)

which follows from setting to zero the supersymmetry variations of the gauginos in

the theory, see [29, 31] for details.

These monopole operators can also be dressed by a polynomial in the complex scal-

ars ϕa. The symmetric polynomials in ϕa and u±a are thus gauge-invariant dressed

monopole operators. Hence, the quantum corrected Coulomb branch is paramet-

erised by the VEVs of the Coulomb branch operators, certain BPS gauge-invariant
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combinations of the vector multiplets scalars and dressed monopole operators.

Importantly, the monopole operators satisfy some non-trivial quantum relations,

which are the algebraic relations defining the Coulomb branch as a complex algeb-

raic variety. For the case of U(N) SQCD with Nf massless hypermultiplets, these

relations, which modify the classical relations (2.3.4), take the form

u+
a u
−
a

∏
b 6=a

(ϕb − ϕa)2 = ϕNfa , (2.3.9)

for all a = 1, . . . , N [32].

In [33, 34, 35, 36, 37] the monopole formula for the Coulomb branch was developed

and studied. This crucially relied on the Hilbert series, the generating function that

counts bosonic gauge-invariant chiral operators in the theory, graded according to

their dimension and quantum numbers under global symmetries.5 For a review see

[40].

Additionally, [32] applied the abelianization approach to construct the quantum

corrected Coulomb branch and its deformation quantization, which is known as the

quantized Coulomb branch and is physically achieved by placing the 3d theory in

an Omega background. The moduli space of 3d N = 4 U(N) SQCD theories were

further studied in [41],6 where good, bad, and ugly theories were examined, according

to the classification of [43] based on the R charges of the monopole operators.

Finally, there has also been significant progress in the mathematics literature. A

rigorous mathematical construction of the Coulomb branch for 3d N = 4 theories

was developed in [44, 45, 46].7

5See also [38, 39] for the monopole formula for the Hilbert series of 3d N = 2 gauge theories.
6For theories with the gauge group USp(2N) see [42].
7For introductory lectures see [47, 48].
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0 1 2 3 4 5 6 7 8 9
D3 X X X X
D5 X X X X X X
NS5’ X X X X X X
D1 X X
D3’ X X X X
NS5 X X X X X X

Table 2.2: Brane array for 3d N = 4 theories.

2.3.5 Brane Construction and Realisation of Monopole

Operators

A three-dimensional gauge theory can be realised as the low-energy theory of D3

branes stretched between NS5’ and D5 branes in type IIB string theory [6]. The

orientations of these objects are given in the first set of entries in the brane array

Table 2.2, where X denote the worldvolume directions. A Dp brane is localised to live

in a (p+ 1)-dimensional hypersurface with Neumann boundary conditions in (p+ 1)

directions and Dirichlet boundary conditions in the remaining (10−1)−(p+1) = 8−p

directions.8 The D3, NS5’, and D5 branes share 3 common directions, 012, and

preserve 8 supercharges, a 1/4 of the 32 type IIB supercharges. Under S-duality, D5

and NS5 branes are interchanged whilst D3s are invariant.

A 3d U(N) gauge theory is realised by a brane construction with N D3 branes

stretched between two NS5’ branes. k D5 branes intersecting these D3s realises k

fundamental hypermultiplets. This is illustrated in Figure 2.2. The fundamental

hypermultiplets are the light modes of D5-D3 open strings. The light modes of

D3-D3 open strings stretched across NS5’ branes are bifundamental hypermultiplets.

The brane realisation of monopole operators in abelian 3d N = 4 gauge theories

8Recall, for the string parameterised by the spatial coordinate σ ∈ [0, π], we have boundary
conditions to tells us how the end points move. Neumann boundary conditions satisfy ∂σXµ = 0
at σ = 0, π, which allow the ends of the string to move freely (at the speed of light). Dirichlet
boundary conditions impose δXµ = 0 at σ = 0, π, so the end points of the string are fixed in space,
Xµ = constant.
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x3

k D5

N D3

NS5'
x4

Figure 2.2: Brane configuration associated to a 3d U(N) gauge theory.

was introduced and studied in [49].9 To realise the inclusion of monopole operators

in the theory, we introduce D1, D3’, and NS5 branes, whose orientations are given

in the second set of entries in Table 2.2. A monopole operator is then realised by

adding a pair of NS5 branes and stretching a D1 between a D3 and one of the NS5s

in the pair. The D3’ branes will play no role in this thesis as we do not discuss the

brane realisation of Casimir and dressed monopole operators, see section 5 of [4] for

details.

In a given brane configuration, the D3 branes are taken separated, indicating that

we consider a Coulomb branch configuration where the gauge group is broken to a

maximal torus. We label the D3 branes by D3a, where a = 1, . . . , N . An NS5 pair

refers to the pair of NS5 branes (NS5+, NS5−), where NS5+ (NS5−) indicates an

NS5 brane placed to the right (left) of all the D3 and D5 branes in the x7 direction.

In Figure 2.3 we illustrate the brane set-up associated to the realisation of the abelian

operator ue1 . We depict the brane set-up in both the x37 and x78 plane. In the rest

of this thesis, we will only draw the brane diagrams in the x78 plane, where the NS5’

branes span the whole space so we do not draw them. The NS5 branes in Figure

2.3 come in a pair, denoted by a + on the right and a − on the left, and we have

the D3s and D5s located in the interval between them. A single D1 is stretched

between the first D3 brane D31, and the NS5+. The remaining N − 1 D3 branes are

9See also [50] for the analogue in N = 3 Chern-Simons-Matter theories.
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x3

x7

x8

x7

D1

D1

NS5'

D5

D3
NS5

+

NS5
+

D5

D3
1

N-1 D3

NS5
-

NS5'

NS5
-

a) b)

Figure 2.3: Brane set-up realising the insertion of the abelian monopole ue1 .
We depict the set-up in the x37 plane and in the x78 plane.

unconnected.

2.3.6 Hanany-Witten Transition

An important property of the brane set-up is that the triple (NS5, D3, D1) form a

Hanany-Witten triple. Studying the brane array Table 2.2, the combination of the

NS5 and D3 branes completely fill the whole 10 dimensional spacetime, apart from

the single x7 direction. When a D3 crosses an NS5, a brane is created that must

span the x7 direction. This created brane also spans all of the common worldvolume

directions of the NS5 and D3 branes, i.e only x3. Hence, this created brane is a D1.

Consequently, there is a D1 creation/annihilation effect when a D3 crosses an NS5,

which we illustrate in Figure 2.4.

This effect was justified in [6] using the conservation of magnetic charge. The total

magnetic charge measured on a D3 brane is given by its linking number `, which is

defined by

` = 1
2 [n(NS5L)− n(NS5R)] + n(D1R)− n(D1L) , (2.3.10)

where n(NS5L), n(NS5R) is the number of NS5s to the left, right of the D3 brane

along the x7 direction. Likewise, n(D1L), n(D1R) is the number of D1 strings ending

on the D3 brane from the left, right along x7. We can also define a linking number
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x7

x8

D1

NS5

D3

NS5

D3

Figure 2.4: This figure illustrates a Hanany-Witten transition. A D1 string is
created/annihilated as a D3 crosses an NS5.

h for an NS5 brane,

h = 1
2 [n̂(D3R)− n̂(D3L)] + n̂(D1L)− n̂(D1R) , (2.3.11)

where the n̂’s are defined similar to the n’s in the D3 brane linking number `.

These quantities satisfy the relation ∑
b
hb = ∑

a
`a and must be preserved under any

transition of branes.

For the set-up on the left hand side of Figure 2.4, we have ` = h = −1
2 . After

performing the Hanany-Witten transition we obtain the set-up on the right hand

side, with ` = h = 1
2 − 1 = −1

2 . These linking numbers match. We observe that

without the presence of the D1 string on the right hand side, there would be a

violation of the preservation of the linking numbers. The Hanany-Witten transition

has another consequence. There is also an s-rule: at most one D1 string can be

stretched between an NS5 and a D3 [6].



Chapter 3

Supersymmetric Localization and

The Jeffrey-Kirwan Residue

In this chapter we present the localization argument for supersymmetric quantum

field theories. We then review the Jeffrey-Kirwan residue operation [51], which

first appeared in the physics literature in the computation of the elliptic genera of

two-dimensional N = (2, 2) gauge theories using supersymmetric localization [52].

3.1 Supersymmetric Localization

Inspired by the mathematical works1 [54, 55, 56], the technique of supersymmetric

localization was first developed by Witten in the context of topological quantum

field theories [12, 13]. Subsequently, a range of exact results have been successfully

obtained for supersymmetric theories in curved backgrounds of various dimensions.

In this context, the localization procedure was first applied to four-dimensional

N = 2 gauge theories in the Omega background [57], and, in particular, has been

successfully applied to the calculation of partition functions for four-dimensional

N = 2 gauge theories on the 4-sphere S4 [58], N = 2 theories on S3 [59, 60, 61],

1For a dictionary between the mathematical world of equivariant localization formulae for
finite-dimensional integrals and supersymmetric localization see Table 1 in [53].
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and 2d N = (2, 2) theories on S2 [62, 63, 64].2 The aim of this section is to provide

an introduction to the topic of supersymmetric localization. For more details see

[53, 67], as well as the collection of articles in [68].

3.1.1 Intuitive Example

To begin this discussion of supersymmetric localization, let us consider a simple

but illustrative example that shares a key idea with localization, which appears in

[69, 53]. Consider the unit two-sphere S2, with metric

ds2 = dθ2 + sin2 θdφ2 , (3.1.1)

in spherical coordinates (0 ≤ θ ≤ π, 0 ≤ φ < 2π), and compute the integral

I =
� 2π

0
dφ

� π

0
dθ sin θeit cos θ , (3.1.2)

where t is a constant parameter. This integral is easily evaluated and we find

I = 2π
� 1

−1
d(cos θ)eit cos θ

= 2π
t

[
−ieit + ie−it

]
= 4π sin t

t
.

(3.1.3)

This is an exact result. Now we can ask the question: can this integral be computed

using another method?

The answer is yes. We can consider the large t scenario and apply the stationary

phase approximation. For an integral of the form
�

dnxeitf(x) , (3.1.4)

where f(x) is a real smooth function, the stationary phase approximation tells us that

the leading contributions to the integral at large t are given by the stationary points

xk of f(x). Taylor expanding f(x) about each xk, assuming that the stationary

points are non-degenerate, and performing the resulting Gaussian integrals, (3.1.4)

2For a review of supersymmetric localization in 2d N = (2, 2) gauge theories see [65, 66].
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is given by (2π
t

)n
2 ∑
xk

eitf(xk) eiσk
π
4

|detH (f(xk))|
1
2
, (3.1.5)

where we sum over all the stationary points xk, H (f(xk)) is the Hessian matrix of

f(x) at xk, and σk = σ+
k − σ−k , where σ+

k and σ−k are the number of positive and

negative eigenvalues of the matrix H (f(xk)), respectively.

In this case, the leading contributions to the integral (3.1.2) arise from the stationary

points of cos θ. There are two stationary points, the North and South poles of S2.

Rewriting the integral in terms of Cartesian coordinates, where the unit two-sphere

S2 is defined by the equation x2 + y2 + z2 = 1, (3.1.2) becomes

I =
�
S2

dAeitz , (3.1.6)

and dA is the area element with the normalisation
�
S2 dA = 4π. We Taylor expand

about each stationary point, where

zN = 1− 1
2(x2 + y2) , (3.1.7)

for the North pole, and

zS = −1 + 1
2(x2 + y2) , (3.1.8)

for the South pole. Hence, for the North pole we find

H(zN) =

−1 0

0 −1

 , (3.1.9)

and so detH(zN) = 1 and σN = −2. Likewise, for the South pole we find

H(zS) =

1 0

0 1

 , (3.1.10)

and so detH(zS) = 1 and σS = −2. Consequently, using (3.1.5) and adding the

contributions from the two stationary points together gives

I ≈ 2π
t

[
eite−i

π
2 + e−itei

π
2
]

= 2π
t

[
−ieit + ie−it

]
= 4π sin t

t
, (3.1.11)
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which matches the previous exact computation. There is no reason for these methods

to be equal. This is an example of a scenario where the stationary phase approxim-

ation gives the exact result. This is a localization result, since the integral localizes

to the stationary points of cos θ, i.e. it picks up a contribution from the North and

South poles of S2. Hence, localization formulae can be viewed as instances when the

stationary phase approximation (or semi-classical expansion) is exact.

3.1.2 The Localization Technique

The object that we wish to study is the path integral of a supersymmetric QFT. The

Euclidean partition function of a theory is defined by3

Z =
�
M

[DX] e−S[X] , (3.1.12)

whereM is a compact curved manifold. Field theories on compact manifolds are free

of infrared divergences and so their path integrals are well defined. S[X] denotes the

action, where X is used to collectively represent the set of all bosonic and fermionic

fields comprising the theory. This object is often extremely difficult to compute, the

tools of perturbation theory work well at weak coupling but break down at strong

coupling. Hence, we require non-perturbative techniques to obtain an exact result.

Supersymmetric localization relies on supersymmetry to prove that the path integral

only receives contributions from the fixed points of the supersymmetry and quadratic

fluctuations around these. This reduces the infinite-dimensional integral to a lower

finite-dimensional integral, which can be solved exactly in favourable situations.

Supersymmetric localization is crucially dependent on the construction of supersym-

metry in curved space. Commonly, a manifold does not admit covariantly constant

spinors. There are two approaches to defining a supersymmetric field theory in

curved space:

1. Trial and error. Introduce a curvature length scale r and add curvature de-

3We set ~ = 1.
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pendent corrections to the flat space supersymmetry transformations δ(0) and

supersymmetric Lagrangian L(0):

δ = δ(0) |η→g,∂→∇ +
∑
n≥1

1
rn
δ(n) ,

L = L(0) |η→g,∂→∇ +
∑
n≥1

1
rn
L(n) ,

(3.1.13)

replacing the flat metric η by the curved metric g and the ordinary derivatives

∂ by covariant derivatives ∇, until the supersymmetry algebra closes and

the supersymmetric variation of the Lagrangian is at most a total derivative

δL = ∇µ(. . .)µ. However, this method can be time consuming and is not

guaranteed to work.

2. Follow the generic model independent method proposed by Festuccia and

Seiberg [70]: 1) Non-linearly couple the flat space theory to off-shell supergrav-

ity background fields; 2) Solve the generalised Killing spinor equations that

are obtained by setting the gravitinos and their variation to zero.

The technique of localization concerns supersymmetric field theories consisting of

conserved supercharges Q, which obey the relation

Q2 = B , (3.1.14)

where B is a bosonic symmetry (or zero). The action S[X] is invariant under

supersymmetry

QS[X] = 0 , (3.1.15)

where again X collectively denotes the set of all fields. This condition tells us that

S[X] is Q-closed. The supersymmetric transformations schematically take the form

Q(bosons) = (fermions) , Q(fermions) = (bosons) . (3.1.16)

The expectation value of a gauge-invariant Q-exact BPS operator A is given by

〈A〉 =
�
M

[DX]Ae−S[X] , (3.1.17)
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up to an overall normalisation factor, which we ignore to ease notation. Since it is

Q-exact, the operator A can be written as Q acting on another operator O. Hence,

by substituting A = QO into (3.1.17), we can show that the expectation value for a

Q-exact operator vanishes,

〈QO〉 =
�
M

[DX] (QO) e−S[X] =
�
M

[DX]Q
(
Oe−S[X]

)
= 0 . (3.1.18)

This is true provided that the integrand decays fast enough, i.e. e−S[X] → 0 as

|X| → ∞, so that no boundary terms exist, and S[X] satisfies (3.1.15). One way to

see this is that in superspace formalism, the supercharge Q is a derivative, see (2.1.7),

which obeys Leibniz rules. Hence, Q is the generator of shifts along a fermionic

direction and we end up with an integral of a total derivative, which vanishes due

to an analogue of Stokes’ theorem.

Alternatively, we can consider this using operator formalism, where the expectation

value is given by

〈0| {Q,O] |0〉 , (3.1.19)

for a supersymmetric vacuum state |0〉. The notation {Q,O] denotes the commutator

[Q,O] if O is bosonic and the anti-commutator {Q,O} if O is fermionic. The vacuum

state |0〉 is annihilated by Q and 〈0|Q = 0, so the expectation value of a Q-exact

operator must vanish.

Consequently, a freedom exists to deform the path integral by a Q-exact term,

Z =
�
M

[DX] e−S[X]−tSloc[X] , (3.1.20)

where t is a deformation parameter. The Q-exact deformation term is written as the

localizing action

Sloc[X] = QV [X] , (3.1.21)

where V [X] is a fermionic functional, which is invariant under Q2. Significantly,

using a similar logic to the vanishing of the expectation value of a Q-exact operator,
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it is possible to show that Z is independent of t,

dZ
dt = −

�
M

[DX]Sloc[X]e−S[X]−tSloc[X] = −
�
M

[DX]Q
(
V [X]e−S[X]−tSloc[X]

)
= 0 ,

(3.1.22)

since the integral of a total derivative vanishes.

Consequently, upon taking the limit t→∞, the partition function (3.1.12) is equally

described by

Z = lim
t→∞

�
M

[DX] e−S[X]−tSloc[X] . (3.1.23)

In the limit t→∞, the semi-classical approximation in 1
t
is exact, and the integrand

is dominated by the saddle points of Sloc[X].

A natural question to ask is what is the localizing action Sloc[X]? This term is any

Q-exact expression that takes the form (3.1.21), but a suitable choice can make the

computation more manageable. For example, if the kinetic terms associated to the

chiral multiplets in the theory are Q-exact, then it is convenient to use these Q-exact

pieces as the localizing action.

The canonical choice for the localizing action contains a sum over all the fermionic

fields ψ in the theory and is given by

V [X] =
∑
ψ

[
(Qψ)†ψ + ψ†

(
Qψ†

)†]
, (3.1.24)

so that the bosonic piece of Sloc is a positive semi-definite sum of squares.

The saddle point configurations, to which the path integral localises, are obtained

by setting

ψ = ψ† = 0 ⇒ fermions = 0 ,

Qψ = Qψ† = 0 ⇒ Q(fermions) = 0 ,
(3.1.25)

which are the fixed points of the action of the supercharge Q. The deformed path

integral (3.1.23) is evaluated by expanding the fields X about the saddle points X0

of Sloc[X],

X = X0 + 1√
t
δX , (3.1.26)
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where
√
t has been added to ensure canonical normalisation. This means that

S[X] + tSloc[X]→ S[X0] + 1
2

�
δ2Sloc[X]
δX2

∣∣∣∣∣
X=X0

(δX)2 , (3.1.27)

where the localizing action evaluated at the saddle points is zero, and taking the

limit t→∞, the higher order terms vanish. Consequently, the localization formula

for the path integral is

Z =
�
MQ

[DX0]ZclassicalZ1−loop , (3.1.28)

which we arrive at by integrating out the transverse quadratic fluctuations (δX)2 and

performing a Gaussian integral to obtain the one-loop term. This formula describes

the path integral localized to a subspace, the BPS locus of Q-invariant configurations,

which is given by

MQ = {[X] ∈M| fermions = 0, Q(fermions) = 0} . (3.1.29)

The classical piece is

Zclassical = e−S[X0] , (3.1.30)

and the one-loop determinant is given by

Z1−loop = SDet
[
δ2Sloc[X0]
δX2

0

]
= Det∆fermion

Det∆boson

, (3.1.31)

where ∆fermion and ∆boson are the kinetic operators for the fermionic and bosonic

fluctuations, respectively. Evaluating the one-loop determinant is often the most

difficult part of a localization calculation. Strategies to compute Z1−loop include field

decomposition into spherical harmonics, eigenmode pairing, and index theorems.

To conclude, using supersymmetric localization, the path integral has been reduced

to an integral over the saddle point configurations of the localizing action, which

can be solved to give an exact result for the partition function of the theory. A

supersymmetry preserving operator can be inserted into the formula (3.1.28) to

compute its expectation value. The main point is summarised by emphasising

that when the path integral is deformed by a localizing action term, the semi-
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classical approximation in 1
t
is exact, and the path integral is localized to the fixed

points of the Q-invariant field configurations given by solving fermions = 0 and

Q (fermions) = 0.

It is important to point out that different choices for the localizing action can lead

to results that appear to be different but it will be possible to show that they are

equivalent. For example, concerning two-dimensional N = (2, 2) theories on S2 [62],

Coulomb branch localization writes the partition function as an integral over the

vector multiplet configurations. On the other hand, an alternative (dual) description

is obtained via Higgs branch localization, where the partition function reduces to

a discrete sum over the product of vortex and anti-vortex excitations at the poles

of S2. These two descriptions are identical since the localization argument ensures

that the final result is independent of the choice of the deformation.

3.1.3 Localization Example

We now demonstrate how the localization procedure can be applied to compute the

exact two-sphere S2 partition function of N = (2, 2) Landau-Ginzburg (LG) models

with an arbitrary gauge-invariant twisted superpotential W̃ . This reproduces a result

from [64], although we use the notation of [71] in this presentation.

This theory comprises the twisted chiral multiplet Ω =
(
ω, η−, η+, G

)
- where ω is

a complex scalar, η−, η+ are complex Dirac fermions, and G is a complex auxiliary

scalar - and the twisted anti-chiral multiplet Ω =
(
ω, η−, η+, G

)
. In flat space, the

twisted chiral multiplet satisfies D−Ω = D+Ω = 0, whereas the twisted anti-chiral

multiplet obeys D+Ω = D−Ω = 0. The supersymmetry transformations of the
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components in these multiplets are4

δω =
√

2
(
ζ+η− − ζ−η+

)
, δω = −

√
2
(
ζ+η− − ζ−η+

)
,

δη− =
√

2ζ−G+ 2
√

2iζ+D1ω , δη− =
√

2ζ−G− 2
√

2iζ+D1ω ,

δη+ =
√

2ζ+G+ 2
√

2iζ−D1ω , δη+ =
√

2ζ+G− 2
√

2iζ−D1ω ,

δG = 2
√

2i
(
ζ+D1η+ − ζ−D1η−

)
, δG = 2

√
2i
(
ζ+D1η+ − ζ−D1η−

)
,

(3.1.32)

where 1 and 1 are holomorphic and anti-holomorphic frame indices, respectively.

The Killing spinors ζ± and ζ± are the supersymmetric parameters corresponding

to the four preserved supercharges in the theory. On S2, these spinors satisfy the

Killing spinor equations

Dµζ± = i

2rγµζ± , Dµζ± = i

2rγµζ± , (3.1.33)

where r is the radius of the sphere and the two-dimensional gamma matrices γµ are

the Pauli matrices.

The action in the path integral contains a kinetic term LΩΩ, a holomorphic twisted

superpotential term L
W̃
, and an anti-holomorphic twisted superpotential term L

W̃
.

The kinetic term is described by the Lagrangian

LΩΩ = 2D1ωD1ω + 2D1ωD1ω −GG+ 2iη+D1η+ − 2iη−D1η−

= −4ωD1D1ω −GG+ 2iη+D1η+ − 2iη−D1η− ,

(3.1.34)

upon integration by parts. Combining the holomorphic and anti-holomorphic twisted

superpotential terms gives the twisted superpotential couplings

L
W̃+W̃

= Gi∂iW̃ + ηi−η
j
+∂i∂jW̃ + i

r
W̃ +G

i
∂iW̃ − ηi−η

j
+∂i∂jW̃ + i

r
W̃ . (3.1.35)

It is possible to show that (3.1.34) and (3.1.35) are invariant under the supersym-

metry transformations (3.1.32).

We now follow the localization argument to compute the S2 partition function using

4We follow the convention to abuse notation slightly. Here δ on the left hand side of these
expressions represents δ + δ, where the δ and δ pieces are associated to the terms with ζ± and ζ±
on the right hand side of these supersymmetry transformation, respectively.
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(3.1.28). It is possible to show that the twisted chiral kinetic term LΩΩ can be

written in the form5

LΩΩ = δδ
(
−1

2ωG
)
. (3.1.36)

Therefore, this term is Q-exact and so is a good choice for the deformation term

Sloc[X]. The saddle (fixed) points are the Q-exact BPS configurations obtained by

solving the constraints (3.1.25). Hence, we must solve

η− = 0 , η+ = 0 , δη− = 0 , δη+ = 0 , (3.1.37)

for the twisted chiral multiplet Ω. Using (3.1.32), we find δη− = 0 and δη+ = 0 are

satisfied by

G = 0 , Djω = 0 ⇒ ω = constant = x+ iy , (3.1.38)

where j = 1, 1 and x, y are real constants. Therefore, the saddle point configurations

are
η− = 0 , η+ = 0 , G = 0 , ω = x+ iy ,

η+ = 0 , η− = 0 , G = 0 , ω = x− iy ,
(3.1.39)

where the second line is obtained by repeating the argument for the twisted anti-chiral

multiplet Ω.

Consequently, the localized partition function is given by

ZS2 =
�

[DX0] e−S[X0]Z1−loop . (3.1.40)

Substituting the saddle point solutions (3.1.39) into (3.1.40) gives

[DX0] = [Dω][Dω] , (3.1.41)

and

exp (−S[X0]) = exp
(
−
(
i

r
W̃ + i

r
W̃
)

4πr2
)
, (3.1.42)

where the 4πr2 term arises from the volume of the two-sphere. The one-loop determ-

inant term is given by the ratio of the determinants of the fermionic and bosonic

5Also, LΩΩ = δδ
( 1

2ωG
)
.
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operators (3.1.31). Rewriting the localizing action (3.1.34) in the form

LΩΩ = ω∆bω −GG+ (η+, η−)∆f

η−
η+

 , (3.1.43)

where the operators are given by

∆b = −4D1D1 , ∆f = 2i

 0 D1

−D1 0

 . (3.1.44)

There is no kinetic operator for the fields G,G because these are auxiliary fields.

The kinetic operators (3.1.44) satisfy the relation

(∆f )2 = −∆b12, (3.1.45)

where 12 is the 2×2 identity matrix. Therefore, all of the fermionic and bosonic eigen-

states are paired by supersymmetry, and so the fermionic and bosonic contributions

to the one-loop determinant cancel out, and we have

Z1−loop = 1 . (3.1.46)

Consequently, combining these results the localized S2 partition function is given by

ZS2 =
�

[Dω] [Dω] exp
(
−4πirW̃ (ω)− 4πirW̃ (ω)

)
=
�

dxdy exp
(
−4πirW̃ (x+ iy)− 4πirW̃ (x− iy)

)
,

(3.1.47)

which depends on the twisted superpotential W̃ .

3.2 The Jeffrey-Kirwan Residue

The Jeffrey-Kirwan (JK) residue operation was introduced in [51]. The work of

Jeffrey and Kirwan was motivated by a physical discussion in [72], where Witten

re-examined the non-abelian localization of Duistermaat and Heckman [54] in the

context of two-dimensional Yang-Mills theory. The JK residue has become a useful
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tool in the study of exact results from supersymmetric localization for the partition

functions and correlations functions of gauge theories in various examples, see for

example [52, 73, 74]. Recently, the JK residue has also been used to strengthen

the relation between scattering amplitudes and geometry by linking it to the amp-

lituhedron [75]. The review of the JK residue operation in this section follows closely

[52, 76], for more details concerning the constructive definition see [77].

3.2.1 Defining Properties

Let G be a rank r gauge group with Lie algebra g and Cartan subalgebra h ⊂ g,

with dual h∗.

To define the JK residue we need to consider n hyperplanes meeting at u = u∗ =

0 ∈ Cr:

Hi = {u ∈ Cr |Qi(u) = 0} , (3.2.1)

where i = 1, . . . , n and Qi ∈ (Rr)∗. The set of charges Q∗ ≡ Q(u∗) = {Qi} meeting

at u∗ define the hyperplanes Hi and give them an orientation.

In all of our cases of interest, the arrangement of hyperplanes will satisfy a projective

arrangement: Q∗ ⊂ Q lies within an open half-space of h∗ and the associated

intersection point u = u∗ = 0 is called the projective point. We will first assume that

the arrangement of hyperplanes is non-degenerate, i.e. the number of hyperplanes

meeting at u∗ obeys n = r. The degenerate scenario, n > r, will be discussed further

below.

Consider the integrand
du1 ∧ . . . ∧ dur
Q1(u) . . . Qr(u) , (3.2.2)

where the set of charges Q∗ = {Q1, . . . , Qr} define the r hyperplanes that intersect

at the projective point u∗ = 0, realising a codimension-r pole. The generic scenario

with a non-zero u∗ is obtained by an appropriate coordinate shift. The JK residue
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JK-Resu=u∗ [Q∗, η] is given by

JK-Res
u=0

[Q∗, η] du1 ∧ . . . ∧ dur
Q1(u) . . . Qr(u) =


1

|det(Q1,...,Qr)| if η ∈ Cone (Q1, . . . , Qr) ,

0 if η /∈ Cone (Q1, . . . , Qr) ,

(3.2.3)

where Cone (Q1, . . . , Qr) is the closed cone spanned by Q1, . . . , Qr and η ∈ (Rr)∗ is

the JK parameter. The role of the JK parameter will become more clear when we

consider some examples in section 3.2.3.

For the simple case r = 1, with a single term in the denominator of the integrand,

(3.2.3) reduces to

JK-Res
u=0

[q, η] du
qu

=


sign(q)
q

if ηq > 0 ,

0 if ηq < 0 ,
(3.2.4)

with charge q. This tells us that if η and q share the same sign, then the condition

η ∈ Cone(q) is satisfied and we obtain a non-zero result. On the other hand, if η is

positive and q is negative, or vice versa, we obtain 0 as the condition η ∈ Cone(q) is

not satisfied.

3.2.2 Constructive Definition

An equivalent formulation of the JK residue is given by the constructive definition,

which is expressed in terms of a sum of iterated residues. To write down this

definition we first need to introduce some more objects.

Let Conesing(Q∗) be the union of the cones generated by all subsets of the set of

charges Q∗ with r − 1 elements. This divides the space h∗ into chambers, where a

chamber is defined to be a connected component of h∗ \Conesing(Q∗). ΣQ∗ is the set

of elements of h∗ obtained by the partial sums of the elements of Q∗ = {Q1, . . . Qn}:

ΣQ∗ =
{∑
i∈π

Qi | π ⊂ {1, . . . , n}
}
, (3.2.5)
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where n ≥ r. For example,

Q∗ = {Q1, Q2} ⇒ ΣQ∗ = {Q1, Q2, Q1 +Q2} ,

Q∗ = {Q1, Q2, Q3} ⇒ ΣQ∗ =
{
Q1, Q2, Q3, Q1 +Q2, Q1 +Q3, Q2 +Q3,

3∑
i=1

Qi

}
.

(3.2.6)

The chambers are divided into sub-chambers by Conesing(ΣQ∗). We impose that

the JK parameter η obeys the strong regularity condition η /∈ Conesing(ΣQ∗), which

automatically guarantees η /∈ Conesing(Q∗). This tells us that the possible values

of η are restricted; η must lie within the interior of a chamber, and not along the

(sub-)chamber walls.

In addition, let FL(Q∗) be the finite set of flags

F = [F0 = {0} ⊂ F1 ⊂ . . . ⊂ Fr = h∗] , dimFj = j , (3.2.7)

such that Q∗ contains a basis for each of the flags Fj, where j = 1, . . . , r. The first

j elements in the ordered set B(F ) = (Qj1 , . . . , Qjr) give a basis of Fj.

For the ordered basis B(F ) of each F ∈ FL(Q∗), the iterated residue Res
F

of w =

w1,...,r dQj1(u) ∧ . . . ∧ dQjr(u) is defined by

Res
F
w = Res

Qjr (u)=0
. . . Res

Qj1 (u)=0
w1,...,r , (3.2.8)

where in each step of the residue operations on the right hand side, the other variables

remain to be free. The iterated residue only depends on the flag F , and not on the

choice of the ordered basis. However, for each flag, it is important to stress that the

order of the residue operations in (3.2.8) is crucial.

Furthermore, for each flag F , the vectors κFj are defined to be the sums of the

elements of Q∗,

κFj =
∑
Qi∈Fj

Qi , (3.2.9)

where j = 1, . . . , r. The number ν(F ) is given by

ν(F ) = sign det
(
κF1 . . . κ

F
r

)
, (3.2.10)
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where ν(F ) = 1 (−1) if κFj are linearly independent and the ordered basis κF =

(κF1 , . . . , κFr ) ∈ h∗ is positively (negatively) oriented, and ν(F ) = 0 if κFj are linearly

dependent.

Finally, the closed cone for a flag F ∈ FL(Q∗) is given by

s+(F,Q∗) =
r∑
j=1

R≥0κ
F
j , (3.2.11)

and FL+(Q∗, η) represents the set of flags such that η is contained in the cone

s+(F,Q∗). The strong regularity condition ensures that ν(F ) = ±1 for every F ∈

FL+(Q∗, η).

We can now write down the constructive definition of the JK residue. For a JK

parameter η satisfying the strong regularity condition, the JK residue at a projective

point u = u∗ = 0 is defined by

JK-Res
u=0

[Q∗, η] =
∑

F∈FL+(Q∗,η)
ν(F ) Res

F
w , (3.2.12)

which is written in terms of the iterated residue (3.2.8) and ν(F ) is defined in (3.2.10).

It is important to emphasise that the result of the JK residue is independent of the

choice of η. Both (3.2.3) and (3.2.12) provide equivalent formulations of the JK

residue. In this thesis, the constructive definition will be applied to compute JK

integrals for non-degenerate cases, n = r, as well as degenerate cases, n > r.

So far we have assumed that the arrangement of hyperplanes is non-degenerate, n = r

hyperplanes meet at a point. What happens if we have a degenerate scenario, where

n > r hyperplanes meet at a point? To deal with degenerate cases, we can introduce

a mass regulator to the terms in the denominator of the integrand, which separates

the hyperplanes and ensures that the situation becomes non-degenerate.6 This allows

us to follow the prescription to compute the JK integral using (3.2.12) and then

the result is obtained by taking the limit of vanishing regulator. After taking the

limit, the individual residues that originated from non-degenerate arrangements of

6This is the technique implemented in section 4.3 of [52].
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hyperplanes may depend on the regulator but the full JK residue, which is the sum

of all the iterated residues, is independent of the choice of the regulator.

3.2.3 Jeffrey-Kirwan Residue Examples

To illustrate how to apply the formula (3.2.12) to compute JK integrals we now

present some examples. The aim of these examples, in particular the second one,

is to provide explicit details of the objects defined in the constructive definition

of section 3.2.2. The JK prescription is implemented to determine the poles that

contribute to the integral in a specific chamber. The examples discussed are solely

non-degenerate, more computations of JK integrals, including degenerate cases,

appear in chapters 4 and 5.

One-dimensional JK Integral

Firstly, we can study an r = 1 example by considering the following integral

I1 =
�

JK

dz

2πi
(2ε)

[±(z − ϕ1) + ε] [±(z − ϕ2) + ε] , (3.2.13)

where ±(z − ϕa) = (z − ϕa)(−z + ϕa). There are 4 charge covectors,

Q1 = (1) , Q2 = (−1) , Q3 = (1) , Q4 = (−1) , (3.2.14)

which are read off from the coefficient of the integration variable z for each of the

terms in the denominator of the integrand.

The integral can be computed in two chambers, depending on whether the sign of

the JK parameter η is positive or negative. For η > 0, we determine the poles that

contribute in this chamber by establishing if we can solve η = aQi for some a > 0

for each Qi, where i = 1, . . . , 4. Hence, we find that the poles corresponding to the

terms associated to the charge covectors Q1 and Q3 will contribute in this chamber.

This tells us that the poles contributing to the JK residue in the positive chamber are

z = ϕj − ε, where j = 1, 2. Repeating the exercise for the η < 0 case, we determine
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X1 Y1 X2 Y2 X3 Y3 FI
U(1)1 -1 1 1 -1 0 0 ξ1

U(1)2 0 0 -1 1 1 -1 ξ2

Table 3.1: Gauge charges for the chiral multiplets and FI parameters in the
two-dimensional JK integral example.

that the poles contributing in the negative chamber are z = ϕj + ε, which come from

the terms associated to Q2 and Q4 in the integrand.

Evaluating the integral in both cases, we find the chamber independent result

I1 = − 1
ϕ12 (ϕ12 − 2ε) −

1
ϕ12 (ϕ12 + 2ε) = 2

(±ϕ12 + 2ε) , (3.2.15)

with the shorthand notation ϕ12 = ϕ1 − ϕ2.

Two-dimensional JK integral

We can consider a two-parameter model with two U(1) gauge fields and 6 chiral

multiplets, whose charges are given in Table 3.1. We would like to use the JK

prescription to compute the integral

I2 =
�

JK
dz1dz2

(2ε)2

[±(z1 − z0) + ε] [±(z2 − z3) + ε] [±(z1 − z2) + ε] . (3.2.16)

This model has 6 phases as the FI parameters are varied, which are illustrated in

Figure 3.1. The blue lines in a) represent the charge covectors Qi ∈ h∗ associated to

each chiral multiplet, which divide the FI space into the 6 chambers. In b) we draw

a slice of the hyperplanes, which demonstrates that this example is non-degenerate

because at most two hyperplanes intersect at a point. These hyperplanes, which

arise from each of the terms in the denominator of the integrand in I2, are defined

by
HX1 : 0 = z0 − z1 + ε , HY1 : 0 = z1 − z0 + ε ,

HX2 : 0 = z1 − z2 + ε , HY2 : 0 = z2 − z1 + ε ,

HX3 : 0 = z2 − z3 + ε , HY3 : 0 = z3 − z2 + ε .

(3.2.17)
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Figure 3.1: a) FI parameter space for the two-parameter model, with the
charge covectors in blue, which separate the space into chambers. The cham-
ber Cone(QY1 , QX3) is divided into the sub-chambers Cone(QY1 , QY1+X3) and
Cone(QY1+X3 , QX3) by the sum of the charges defining the chamber walls, which
is represented by the green arrow. Similarly, the other chambers are also di-
vided into sub-chambers but for ease of presentation this is not illustrated in
the figure. η1 and η2 denote the JK parameters used to evaluate the integral
in the chamber ξ1 > 0, ξ2 > 0. b) slice of the hyperplanes, which are normal to
the charge covectors. We see that this example is non-degenerate as at most
two hyperplanes meet at a point.

In this example we discuss the explicit computation of the integral in the chamber

ξ1 > 0, ξ2 > 0, the upper-right quadrant of the graph in Figure 3.1-a). A similar

exercise can be repeated for the other chambers.

The chamber ξ1 > 0, ξ2 > 0 is defined by the region enclosed by Cone(QY1 , QX3) and

the JK residue receives contributions from

1. HY1 ∩HX3 ,

2. HY1 ∩HY2 ,

3. HX2 ∩HX3 .

For HY1 ∩HX3 the set of relevant charges is Q∗ = {QY1 , QX3}. The set of flags F ,
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with their respective vectors κFj , is

F 1
1 =

{
Y1,R2

}
κ1

1 = {Y1, Y1 +X3} =


1

0

 ,
1

1


 ν(F 1

1 ) = 1 ,

F 1
2 =

{
X3,R2

}
κ1

2 = {X3, Y1 +X3} =


0

1

 ,
1

1


 ν(F 1

2 ) = −1 .

(3.2.18)

For HY1 ∩HY2 the set of relevant charges is Q∗ = {QY1 , QY2}. The set of flags with

their respective vectors κFj is

F 2
1 =

{
Y1,R2

}
κ2

1 = {Y1, Y1 + Y2} =


 1

0

 ,
0

1


 ν(F 2

1 ) = 1 ,

F 2
2 =

{
Y2,R2

}
κ2

2 = {Y2, Y1 + Y2} =


−1

1

 ,
0

1


 ν(F 1

2 ) = −1 .

(3.2.19)

For HX2 ∩HX3 the set of relevant charges is Q∗ = {QX2 , QX3}. The set of flags with

their respective vectors κFj is

F 3
1 =

{
X2,R2

}
κ3

1 = {X2, X2 +X3} =


 1

−1

 ,
1

0


 ν(F 1

1 ) = 1 ,

F 3
2 =

{
X3,R2

}
κ3

2 = {X3, X2 +X3} =


 0

1

 ,
1

0


 ν(F 1

2 ) = −1 .

(3.2.20)

To compute the JK integral in this chamber we choose a JK parameter that obeys

the strong regularity condition, i.e. it must lie within the interior of Cone(QY1 , QX3)

(not on the chamber walls) and it cannot take a value along QY1+X3 , the line in green

on Figure 3.1-a), which divides this chamber into two sub-chambers. This gives two

choices, η1 and η2 in Figure 3.1-a), where η1 is a JK parameter that lies within the

interior of Cone(QX3 , QY1+X3), for example η1 = (1, 2). Whilst, η2 is a JK parameter
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that lies within the interior of Cone(QY1+X3 , QY1), for example η1 = (2, 1).

Consequently, we pick either of these JK parameters and follow the prescription to

determine the flags F for each set of the relevant charges Q∗ that we must select to

ensure that the JK parameter is contained in the positive cone s+(F,Q∗), and then

perform the sum of the iterated residue in (3.2.12). We will now show that both

choices for the JK parameter give the same result.

Firstly, consider η1 and determine the flags to select for each of the contributions

to the JK residue. For HY1 ∩ HX3 we need to establish whether η1 is located in

the positive Cone(QY1 , QY1+X3) or Cone(QX3 , QY1+X3). Since we are dealing with

polyhedral cones with as many generators as the dimension, it is possible to determine

this by expressing η1 in the basis of the generators of the cone and checking whether

the coefficients are strictly positive. Hence, it is possible to see that we cannot

write η1 = αQY1 + βQY1+X3 with α, β > 0 but we can write η1 = αQX3 + βQY1+X3

with α, β > 0. Therefore, η1 is in the positive Cone(QX3 , QY1+X3) and the flag F 1
2

must be selected to compute this contribution to the integral. This could have been

simply deduced from the graph in Figure 3.1-a), but this method is advantageous

as it can be generalised to cases of higher dimensions, where it is not possible to

draw the graph. This method can also be used to implement the JK prescription

using Mathematica, see further details below. Repeating the exercise for the other

two contributions, HY1 ∩ HY2 and HX2 ∩ HX3 , we see that η1 is in the positive

Cone(QY1 , QY1+Y2) and Cone(QX3 , QX2+X3), respectively. Consequently, for η1 the

relevant flags are F 1
2 , F

2
1 , F

3
2 .

Finally, to compute the JK integral in this chamber using η1, we choose B(F 1
2 ) =

{QX3 , QY1}, B(F 2
1 ) = {QY1 , QY2}, and B(F 3

2 ) = {QX3 , QX2} for the ordered basis of

the flag from each of the contributions. The constructive definition (3.2.12) tells us

the I2 is given by

I2 = ν(F 1
2 ) Res

F 1
2

+ν(F 2
1 ) Res

F 2
1

+ν(F 3
2 ) Res

F 3
2

, (3.2.21)
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where the iterated residues are

Res
F 1

2

= Res
z1=z0−ε

Res
z2=z3−ε

I2(z1, z2) dz2 ∧ dz1 ,

Res
F 2

1

= Res
z2=z1−ε=z0−2ε

Res
z1=z0−ε

I2(z1, z2) dz1 ∧ dz2 ,

Res
F 3

2

= Res
z1=z2−ε=z3−2ε

Res
z2=z3−ε

I2(z1, z2) dz2 ∧ dz1 ,

(3.2.22)

and I2(z1, z2) is the integrand in (3.2.16). Substituting the values of ν(F ) into (3.2.21)

and using the anti-symmetric property of the wedge product, −dz2∧dz1 = dz1∧dz2,

we obtain

I2 = 1
(±z03 + ε)−

1
(z03 + ε) (z03 + 3ε)−

1
(z03 − ε) (z03 − 3ε) = 3

(±z03 + 3ε) . (3.2.23)

The same procedure can be implemented to compute the integral using the JK

parameter η2. In this case, the relevant flags are F 1
1 , F

2
1 , F

3
2 , and I2 is given by

I2 = ν(F 1
1 ) Res

F 1
1

+ν(F 2
1 ) Res

F 2
1

+ν(F 3
2 ) Res

F 3
2

. (3.2.24)

The second and third term in this sum are identical to the second and third term

in (3.2.21) from the computation using η1. The only difference is in the first term,

where the iterated residue ResF 1
1
is7

Res
F 1

1

= Res
z2=z3−ε

Res
z1=z0−ε

I2(z1, z2) dz1 ∧ dz2 , (3.2.25)

where the order of the residues has been switched compared to ResF 1
2
in (3.2.22).

Evaluating (3.2.24) we obtain the same result as the η1 case, given in (3.2.23), which

is expected because both of these JK parameters are located in the same chamber.

Hence, the JK prescription produces two expressions, (3.2.21) and (3.2.24), for this

integral in the chamber ξ1 > 0, ξ2 > 0. These expressions depend on the sub-chamber

that the JK parameter lies in but are equivalent upon evaluation.

This analysis can be repeated to compute the JK integral in the other chambers.

Although the multi-dimensional poles contributing in each chamber differ, it is

7Using the ordered basis B(F 1
1 ) = {QY1 , QX3}.
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Chamber of FI space Sign of ν(F ) Multi-dimensional Pole
ξ1 > 0 + (z2 = z3 − ε, z1 = z0 − ε)
ξ2 > 0 + (z1 = z0 − ε, z2 = z0 − 2ε)

ξ1 + ξ2 > 0 + (z2 = z3 − ε, z1 = z3 − 2ε)
ξ1 > 0 − (z1 = z0 − ε, z2 = z3 + ε)
ξ2 < 0 − (z1 = z0 − ε, z2 = z0)

ξ1 + ξ2 > 0 + (z1 = z2 − ε, z2 = z3 − ε)
ξ1 > 0 + (z2 = z1 + ε, z1 = z0 + ε)
ξ2 < 0 − (z2 = z3 + ε, z1 = z0 − ε)

ξ1 + ξ2 < 0 − (z1 = z2 − ε, z2 = z3 + ε)
ξ1 < 0 + (z2 = z3 + ε, z1 = z0 + ε)
ξ2 < 0 + (z1 = z0 + ε, z2 = z0 + 2ε)

ξ1 + ξ2 < 0 + (z2 = z3 + ε, z1 = z3 + 2ε)
ξ1 < 0 − (z1 = z0 + ε, z2 = z3 − ε)
ξ2 > 0 − (z1 = z0 + ε, z2 = z0)

ξ1 + ξ2 < 0 + (z1 = z2 + ε, z2 = z3 + ε)
ξ1 < 0 + (z2 = z1 − ε, z1 = z0 − ε)
ξ2 > 0 − (z2 = z3 − ε, z1 = z0 + ε)

ξ1 + ξ2 > 0 − (z1 = z2 + ε, z2 = z3 − ε)

Table 3.2: Multi-dimensional poles contributing to the JK integral I2 (3.2.16)
in each of the 6 chambers.

possible to show that the overall result for this integral, from the sum of the iterated

residues, is the same, as stated in (3.2.23). In Table 3.2 we summarise the multi-

dimensional poles contributing in each chamber, where each pole comes with its sign

ν(F ) appearing in the sum of the iterated residues and the residue operations are

performed from left to right.

Performing the JK integral in each chamber can be a labour intensive task. As a

result, this procedure can be implemented using Mathematica to determine the poles

that contribute in each chamber and to compute the sum of the iterated residues.

For the Mathematica code used to evaluate this JK integral in each chamber, see

appendix A.





Chapter 4

Correlators of 2d N = (2, 2) Gauged

Linear Sigma Models

In this chapter we examine two-dimensional N = (2, 2) Gauged Linear Sigma Models

(GLSMs) on the Omega-deformed two-sphere background S2
Ω. Firstly, we begin by

summarising the main result of [74]. This is then used to investigate a model for a

GLSM describing a non-compact geometry, which was originally studied in [19, 20]

and again in [74].

4.1 Summary of the Localization Result on the

Omega-deformed Two-sphere

Correlation functions of two-dimensional N = (2, 2) GLSMs on the Omega-deformed

sphere were studied in [74] (see also [73]). The technique of supersymmetric localiz-

ation was employed to obtain an exact formula, written in terms of a Jeffrey-Kirwan

(JK) residue on the Coulomb branch. This result was derived by performing a careful

analysis of the contour of integration for the auxiliary field D, following the approach

of [52, 78].

The supersymmetry background is obtained using the method of Festuccia and
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Seiberg [70] outlined in section 3.1.2. The 2d N = (2, 2) flat space theory is coupled

to the off-shell supergravity background
(
Σ, gµν , A(R)

µ , Cµ, C̃µ
)
, which contains a

metric gµν on a closed orientable Riemann surface Σ, a background R symmetry

gauge field A(R)
µ , and the graviphoton vector fields Cµ, C̃µ that couple to the conserved

currents associated to the central charges of the supersymmetry algebra.1

The Omega-deformed two-sphere S2
Ω is described, using the canonical complex frame

e1 = e1
zdz = g

1
4 dz, e1 = e1

zdz = g
1
4 dz, by Σ = CP1 with metric

ds2 = 2gzz(|z|2)dzdz = √gdzdz = e1e1 , (4.1.1)

and a U(1) isometry generated by the real Killing Vector V ,

V = iz∂z − iz∂z , (4.1.2)

whose fixed points are located at the North and South poles, z = 0 and z = ∞,

respectively. The supersymmetric background contains the global R symmetry gauge

field

A(R)
µ = 1

2ωµ , (4.1.3)

where ωµ is the spin connection,2 and the graviphoton dual field strengths

H = −iεµν∂µCν = εΩ
2 ε

µν∂µVν , H̃ = −iεµν∂µC̃ν = 0 , (4.1.4)

where εΩ is the Omega deformation complex parameter [57], a constant of mass

dimension 1. The Killing spinor solutions for this background are given by

ζ =

ζ−
ζ+

 =

iεΩV1

1

 , ζ =

ζ−
ζ+

 =

 1

−iεΩV1

 . (4.1.5)

The Omega-deformed two-sphere background preserves two out of the four super-

charges and corresponds to a one-parameter deformation of the A-twisted sphere,

1For more details of two-dimensional N = (2, 2) supersymmetric backgrounds see [71].
2The spin connection is given by ωz = − i

4∂z log g, ωz = i
4∂z log g, which are obtained by

using the torsion vanishing condition dea + ωab ∧ eb = 0, raising and lowering frame indices with
δ11 = 2, δ11 = 1

2 , imposing the anti-symmetry condition ωab = −ωba, and applying the definition
ωµ = −2i(ω11)µ.
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which is recovered by setting εΩ = 0.

The correlation functions of gauge-invariant polynomials in σ, the complex scalar in

the vector multiplet, are given by

〈
O(N)(σ)O(S)(σ)

〉
= (−1)N∗
|W|

∑
k

qkZ̃k (O) , (4.1.6)

where O(N)(σ) and O(S)(σ) denote the operators inserted at the North and South

poles of S2
Ω, respectively. We now discuss the terms that appear on the right hand

side of (4.1.6).

Firstly, the factor (−1)N∗ appears due to a R charge dependent sign ambiguity

associated to the chiral multiplets. The ambiguity is resolved by the prescription

to assign R charge 0 (2) to chiral multiplets of charge +1 (−1). N∗ denotes the

number of field components of R charge 2 in the GLSM. For a gauge group G, |W|

is the order of the Weyl group. We sum over the topological sectors labelled by k,

the magnetic fluxes belonging to the weight lattice of the GNO (or Langlands) dual

group G∨ of G [79, 80, 81]. The instanton factor q is given by

qI = e2πiτI , (4.1.7)

for each U(1) factor in G, where τI is the complexified FI coupling

τI = θI
2π + iξI , (4.1.8)

for I = 1, . . . , n, where n ≤ rank(G). The contribution qk in (4.1.6) is the clas-

sical action component from the localization computation, which occurs due to the

presence of the linear twisted superpotential

W̃ (σ) = τ ItrI(σ) . (4.1.9)

On the right hand side of (4.1.6) we also have

Z̃k (O) =
�

JK(ξUV
eff )

rank(G)∏
a=1

dσ̂a
2πi

Z1−loop
k (σ̂; εΩ)O(N)

(
σ̂ − εΩ

k

2

)
O(S)

(
σ̂ + εΩ

k

2

)
,

(4.1.10)
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where the contour integral is a JK integral, which gives a sum of the residues of

the codimension-rank(G) poles in the integrand. This depends on the effective FI

parameter in the UV ξUV
eff , which is needed to ensure that the series in q in (4.1.6)

converges. The localization locus is the classical Coulomb branch, which is spanned

by the vacuum expectation values

σ = diag(σa) , σ = diag(σa) , (4.1.11)

where a = 1, . . . , rank(G). The integral is over the constant mode σ̂, which is defined

as the average σ̂ = 1
2(σN + σS), where the values of σ at the poles are

(σa)N = σ̂a − εΩ
ka
2 , (σa)S = σ̂a + εΩ

ka
2 . (4.1.12)

Finally, the one-loop term Z1−loop
k (σ̂; εΩ) takes the form

Z1−loop
k (σ̂; εΩ) = Zvector

k (σ̂; εΩ)
∏
i

ZΦi
k (σ̂; εΩ) . (4.1.13)

The vector multiplet contribution is given by

Zvector
k (σ̂; εΩ) = (−1)

∑
α>0

(α(k)+1)
∆
(
σ̂ + k

2 εΩ
)

∆
(
σ̂ − k

2 εΩ
)
, (4.1.14)

where α > 0 denotes the positive roots of the gauge group G, and

∆(x) =
∏
α>0

α(x) , (4.1.15)

is the Vandermonde determinant of G. The contribution from each chiral multiplet

Φi, which transforms in a representation Ri of G and carries R charge ri, is

ZΦi
k (σ̂; εΩ) =

∏
ρi∈Ri

ε ri−ρi(k)−1
Ω

Γ
(
ρi(σ̂)
εΩ

+ ri−ρi(k)
2

)
Γ
(
ρi(σ̂)
εΩ
− ri−ρi(k)

2 + 1
)
 , (4.1.16)

where ρi denote the weights of Ri. This expression can be conveniently written as

ZΦi
k (σ̂; εΩ) =

∏
ρi∈Ri

Z(ri−ρi(k)) (σ̂; εΩ) , (4.1.17)
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where

Zr (σ̂; εΩ) =



r
2−1∏

m=− r
2 +1

(ρi(σ̂) + εΩm) if r > 1 ,

1 if r = 1 ,
|r|
2∏

m=− |r|2

(ρi(σ̂) + εΩm)−1 if r < 1 ,

(4.1.18)

and r = ri − ρi(k).

The only modification in the presence of a flavour symmetry F , a non-R continuous

global symmetry, acting on the chiral multiplets Φi is to turn on the twisted masses

mF
i and send ρi(σ̂) → ρi(σ̂) + mF

i in the chiral multiplet one-loop contribution

(4.1.16). In general, the correlation function (4.1.6) depends holomorphically on the

parameters εΩ, q, and any twisted masses mF
i that are turned on.

The formula for the A-model correlators is obtained by sending εΩ → 0, which gives

〈O(σ)〉 = (−1)N∗
|W|

∑
k

qk
�

JK(ξUV
eff )

rank(G)∏
a=1

dσ̂a
2πi

Z1−loop
k (σ̂)O(σ̂) , (4.1.19)

where the insertion point of the operator O(σ) is now no longer specified since a

gauge-invariant operator can be inserted anywhere on the A-twisted two-sphere due

to the topological nature of the theory.

To end this section we state the recursion relations that the εΩ-dependent correlation

functions obey in the case of abelian theories. These relations are useful as they can

be applied to efficiently compute higher-point correlators from lower-point correlators

and can be used as a consistency check to verify results. For each U(1)a gauge group

factor, the correlators satisfy
〈
O(N)(σN)

∏
i,Qai>0

Qai−1∏
l=0

[
Qi(σN) +mF

i + εΩ

(
ri
2 + l

)]〉

= qa ·
〈
O(N) (σN − εΩδ(a))

∏
i,Qai<0

|Qai |−1∏
l=0

[
Qi(σN) +mF

i + εΩ

(
ri
2 + l

)]〉
,

(4.1.20)

for the case where all of the operators are inserted at the North pole. A relation for

the operators inserted at the South pole is obtained by applying N → S, εΩ → −εΩ
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X1 X2 Y Z W FI
U(1)1 1 1 1 −N −1 ξ1

U(1)2 0 0 1 1 −2 ξ2

Table 4.1: Gauge charges for the chiral multiplets and FI parameters in the
GLSM for the non-compact orbifold C3/Z(2N+1)(2,2,1).

to this expression. In the limit εΩ → 0, (4.1.20) reduces to the quantum chiral ring

relations (quantum cohomology relations) of the A-twisted theory.

4.2 Investigation of C3/Z(2N+1)(2,2,1)

In this section, we use (4.1.19) to re-investigate the computation of the correlators

of an A-twisted GLSM for a non-compact orbifold, a model examined originally

in [19, 20] and subsequently in [74]. We find that the result for the three-point

correlators is ambiguous; it depends on the twisted masses that are used to make the

JK integral non-degenerate. We turn on the Omega deformation and compute the

correlators using (4.1.6) to see if this resolves the ambiguity. The results for these

correlators are tested using the recursion relations (4.1.20) and explicitly compared

with the evaluation of these correlators in [20].

4.2.1 A-twisted Correlators

Consider the GLSM for the non-compact orbifold C3/Z(2N+1)(2,2,1), which has a U(1)2

gauge group and 5 chiral multiplets of R charge zero and the gauge charges given in

Table 4.1. We observe that the sum of the U(1)2 gauge charges vanishes, whereas

the sum of the U(1)1 charges depends on the value of N , ∑QU(1)1 = −N + 2. We

consider the scenario N > 2, so that this sum is negative, and the axial R symmetry

has a mixed anomaly with the U(1)1 gauge group.

We are interested in computing the correlators for this GLSM in the geometric phase,

where the effective FI parameters in the UV are ξUV
eff = (−∞, ξ2). The geometric

phase is the region satisfying −Nk1 + k2 ≥ 0 and −k1− 2k2 ≥ 0, which is related to
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k1 0 −1 −2 −3 . . . −l . . .

k2 0 −N, . . . , 0 −2N, . . . , 1 −3N, . . . , 1 . . . −lN, . . . , |b l2c| . . .

Table 4.2: The allowed values of the integers k1 and k2 in the geometric phase
for the GLSM. These appear in the sum over the topological sectors in the
formula for the correlator Fa,b. Values of k1 > 0 are not possible in the region
satisfying −Nk1 + k2 ≥ 0 and −k1 − 2k2 ≥ 0. bac denotes the greatest integer
less than or equal to a.

the region −2ξ1 + ξ2 > 0,−ξ1 −Nξ2 > 0 in FI space. In Table 4.2 we illustrate the

allowed values of k1 and k2 in this region.

The correlators for this GLSM are given by

Fa,b =
〈
σa1σ

b
2

〉
, (4.2.1)

where a, b ∈ Z≥0, and σ1 and σ2 are the complex scalars in the vector multiplets

for U(1)1 and U(1)2, respectively. These correlators obey a selection rule due to

axial and gravitational anomalies. The gravitational anomaly for this GLSM is

dgrav = −2− (−5) = 3, and since the sum of the U(1)1 charges is non-zero, this tells

us that the non-vanishing correlators must satisfy the constraint

a+ b = 3 + (2−N)k1 , (4.2.2)

where k1 is the flux of the U(1)1 gauge group.

The correlators Fa,b can be evaluated in the UV geometric phase using (4.1.19). The

JK residue prescription informs us that we must select the multi-dimensional pole

that arises from the intersection of the hyperplanes associated to the fields Z and W .

The prescription also specifies the order in which the residue operations should be

carried out. The geometric phase is divided into two sub-chambers, Cone(QW , QW+Z)

and Cone(QZ , QW+Z). Taking the JK parameter η to lie within the interior of the

sub-chamber Cone(QW , QW+Z), it is possible to find a solution to η = αQW+βQW+Z

for constants α, β > 0, where QW is the vector comprised of the gauge charges of

the field W . On the other hand, it is not possible to solve η = αQZ + βQW+Z for

α, β > 0. Therefore, the residue of the pole from W must come before the residue of
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the pole from Z in the iterated residue for this sub-chamber. Taking η to lie within

the interior of the other sub-chamber, Cone(QZ , QW+Z), reverses the order in the

iterated residue but does not change the final result, as expected from the discussion

in section 3.2.3.

This computation is also an example of a degenerate JK integral. This is because

more than two hyperplanes intersect at the point σ1 = σ2 = 0. To overcome this

issue we make the integral non-degenerate by turning on a generic twisted mass mi

for each term in the denominator of the integrand. Consequently, the twisted masses

act as a regulator allowing us to compute the integral then take the limit of vanishing

twisted masses, as discussed at the end of section 3.2.2. It is important to stress that

in this work we select a general choice for the twisted mass regulation compared to

the one used in [74], where a single common twisted mass term is turned on for each

term in the denominator of the integrand.

Hence, with generic masses turned on, the correlators (4.2.1) are given by

Fa,b =
∑
k1,k2

qk1
1 q

k2
2 Res

σ̂1=m5+2m4
1+2N

Res
σ̂2=−σ̂1+m5

2

σ̂1
aσ̂b2Z

X1
k ZX2

k ZY
k Z

Z
k Z

W
k , (4.2.3)

where we sum over all the allowed values of k1 and k2 in the geometric phase, and

we have

ZXi
k = (σ̂1 +mi)−(k1+1) ZY

k = (σ̂1 + σ̂2 +m3)−(k1+k2+1)

ZZ
k = (−Nσ̂1 + σ̂2 +m4)−(−Nk1+k2+1) ZW

k = (−σ̂1 − 2σ̂2 +m5)−(−k1−2k2+1) ,

(4.2.4)

for i = 1, 2.

All that remains is to compute the sum of the iterated residues and take the limit of

vanishing twisted masses. We will focus on the result for the three-point correlators,

a+ b = 3, where the selection rule (4.2.2) tells us that k1 = 0, which implies k2 = 0.

Consequently, the poles in (4.2.3) are simple, and we obtain

F3−b,b = (2m4 +m5)(3−b)(−m4 +Nm5)b
(1 + 2N)∆ , (4.2.5)
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where b = 0, . . . , 3, and

∆ = [(1 + 2N)m1 + 2m4 +m5] [(1 + 2N)m2 + 2m4 +m5]

× [(1 + 2N)m3 +m4 + (1 +N)m5] .
(4.2.6)

Taking the limit of vanishing twisted mass we find that the result is ambiguous since

it depends on the order in which the limits are taken. Performing limm4→0 limm5→0

or limm5→0 limm4→0 directly on (4.2.5) we obtain 0. On the other hand, we obtain a

non-zero result by performing the following limits

lim
m5→0

lim
m4→0

lim
m3→0

lim
m2→0

lim
m1→0

F3−b,b = N b

(2N2 + 3N + 1) , (4.2.7)

lim
m4→0

lim
m5→0

lim
m3→0

lim
m2→0

lim
m1→0

F3−b,b = (−1)b2(1−b)

(1 + 2N) . (4.2.8)

We find that the limits of m1,m2, and m3 commute with each other, but exchanging

m4 and m5 we obtain a different answer. Thus, the result is ambiguous. We continue

our study of these three-point correlators in the next section by turning on the Omega

deformation to see if this resolves the ambiguity. It is hoped that the introduction

of the Omega deformation will regulate the JK integral by separating the coincident

hyperplanes so that at most two hyperplanes intersect at a point.

4.2.2 Turning on the Omega Deformation

The evaluation of the correlators Fa,b in the geometric phase can be repeated with

the Omega deformation parameter turned on. We consider the case where all of the

operators are inserted at the North pole and the twisted masses are turned off since

we are using εΩ as a regulator.

Correlator expression

Inserting twisted chiral operators at the North pole, using the formula (4.1.6), and
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applying the shift σ̂ → σ̂ + k
2εΩ, the correlator Fa,b is given by

Fa,b =
〈
σa1σ

b
2

〉
N

=
∑
k1,k2

−Nk1+k2∑
pz=0

−k1−2k2∑
pw=0

qk1
1 q

k2
2 Res

σ̂1= (pw+2pz)εΩ
(2N+1)

Res
σ̂2= 1

2 (−σ̂1+εΩpw)
σ̂a1 σ̂

b
2I ,

(4.2.9)

where the poles and the order of the residue operations result from the JK residue

prescription, as in (4.2.3), and we again sum over all the allowed values of k1 and

k2, see Table 4.2. The term I in the integrand is given by

I =
−Nk1+k2∏
pz=0

(−Nσ̂1 + σ̂2 + εΩpz)−1
−k1−2k2∏
pw=0

(−σ̂1 − 2σ̂2 + εΩpw)−1

×





k1∏
px=0

(σ̂1 + εΩpx)−1 if k1 ≥ 0

1 if k1 = −1
−k1−2∏
px=0

(σ̂1 + εΩ(px + k1 + 1)) if k1 ≤ −2



2

×



k1+k2∏
py=0

(σ̂1 + σ̂2 + εΩpy)−1 if k1 + k2 ≥ 0

1 if k1 + k2 = −1
−k1−k2−2∏
py=0

(σ̂1 + σ̂2 + εΩ(py + k1 + k2 + 1)) if k1 + k2 ≤ −2

,

(4.2.10)

from the chiral multiplet one-loop determinant (4.1.17).

The selection rule (4.2.2) is modified for Fa,b with the Omega deformation turned

on. The correlator (4.2.9) obeys

a+ b = 3 + (2−N)k1 + j , (4.2.11)

where the new term j ∈ Z, compared to (4.2.2), denotes the power of the εΩ

parameter. This modification is required as the R charge of εΩ is 2.

Results

Computing (4.2.9) we obtain the following results

• Lower-point correlators

Fa,b = 0 when a+ b ≤ 2 . (4.2.12)
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The terms contributing to the sum over k1 and k2 contain negative powers of

εΩ and sum to zero.

• Three-point correlators

F3−b,b =
〈
σ3−b

1 σb2
〉
N

= (−1)b2(1−b)

(1 + 2N) , (4.2.13)

which explicitly gives

F3,0 = 2
(1 + 2N) F2,1 = − 1

(1 + 2N)

F1,2 = 1
2(1 + 2N) F0,3 = − 1

4(1 + 2N) .

(4.2.14)

The only term that does not cancel in the k1, k2 sum is the one associated

with k1 = k2 = 0. Hence, these results are q1, q2, and εΩ independent. It is

interesting to observe that these results match (4.2.8).

• For four-point correlators we state the results for the cases N = 3 and N = 4.

– N = 3

F4,0 = 32
16807q1

− 64
5764801q1q3

2
+ 136

823543q1q2
2
− 104

117649q1q2
,

F3,1 = 12
16807q1

− 192
5764801q1q3

2
+ 296

823543q1q2
2
− 137

117649q1q2
,

F2,2 = − 20
16807q1

− 576
5764801q1q3

2
+ 552

823543q1q2
2
− 82

117649q1q2
,

F1,3 = 17
16807q1

− 1728
5764801q1q3

2
+ 648

823543q1q2
2

+ 153
117649q1q2

,

F0,4 = − 12
16807q1

− 5184
5764801q1q3

2
− 1080

823543q1q2
2
− 108

117649q1q2
.

(4.2.15)

– N = 4

F4,0 = F3,1 = F2,2 = F1,3 = F0,4 = 0 . (4.2.16)

For the case N = 3, only the k1 = −1 terms give a non-cancelling contribution

to the result and there is no εΩ dependence, from the selection rule (4.2.11). For

N = 4, these correlators vanish as the sum contains terms with only negative

powers of εΩ, which sum to zero.
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• The first correlators with a positive εΩ dependence appear at a+ b = 5, where

again the terms with negative powers of εΩ cancel in the sum over k1 and k2.

Testing using recursion relations

These results can be verified using the recursion relations (4.1.20). For U(1)1 we

have 〈
σl11 σ

l2
2 σ

2
1 (σ1 + σ2)

〉
N

=

q1 ·
〈

(σ1 − εΩ)l1 σl22 (−σ1 − 2σ2)
N−1∏
l=0

(−Nσ1 + σ2 + εΩl)
〉
N

,
(4.2.17)

and for U(1)2 we have

〈
σl11 σ

l2
2 (σ1 + σ2) (−Nσ1 + σ2)

〉
N

=

q2 ·
〈
σl11 (σ2 − εΩ)l2 (−σ1 − 2σ2) (−σ1 − 2σ2 + εΩ)

〉
N
,

(4.2.18)

where l1, l2 ∈ Z≥0. Both of these recursion relations match the quantum cohomology

relations in [19] when εΩ = 0, as expected.

We have explicitly verified, using Mathematica, that the results for the correlators

(4.2.9) obey the q1 relation (4.2.17) for low values of l1 and l2. We also find that, in

general, these results obey the q2 relation (4.2.18), except in two cases:

• For l1 = 1, l2 = 0 we find

〈σ1 (σ1 + σ2) (−Nσ1 + σ2)〉N

− q2 · 〈σ1 (−σ1 − 2σ2) (−σ1 − 2σ2 + εΩ)〉N = −1
2 .

(4.2.19)

• For l1 = 0, l2 = 1 we find

〈σ2 (σ1 + σ2) (−Nσ1 + σ2)〉N

− q2 · 〈(σ2 − εΩ) (−σ1 − 2σ2) (−σ1 − 2σ2 + εΩ)〉N = 1
4 .

(4.2.20)

Hence, there is a mild violation of the εΩ-dependent recursion relation (4.2.18), which

is caused by the three-point correlators. In [20] the authors argue that the quantum

cohomology relations are violated for Fa,b when a+ b = 3, and we observe that the
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violation is still present when εΩ is non-zero. This also agrees with the statement in

[74] that the correlators F3−b,b are quantum cohomology violating constants.

Comparison with [20]

We can now study how the results from the evaluation of the correlators with the

Omega deformation turned on compare with the computation of these correlators

in [20], where the correlators Fa,b were found to be given by the contour integral

Fa,b = qk1
1

∑
ŵ=w+,w−

�
C(ŵ)

dw

2πi
wbs(w)k1

(1 + 2w)P (w) , (4.2.21)

where C(ŵ) is a small contour about w = ŵ, and w± are the roots of P (w), with

P (w) = (1 + w)(−N + w)− q2(1 + 2w)2 ,

s(w) = (−1− 2w)(−N + w)N
(1 + w) .

(4.2.22)

w is related to the vector multiplet scalars σ1, σ2 through σ2 = wσ1.

Evaluating (4.2.21) at the roots of P (w) and comparing with the results obtained

for the correlators (4.2.9) we find:

• For a+ b ≤ 2, the lower-point correlators vanish, which matches (4.2.12).

• The results for the higher-point correlators, a+ b ≥ 4, determined from (4.2.9)

agree with the results from (4.2.21) in the limit εΩ → 0.

We will be more explicit for the case of the three-point correlators. We require k1 = 0

from the selection rule. The roots of P (w) are

w± = (1−N − 4q2)±
√

1 + 2N +N2 − 4q2 − 8Nq2

2(−1 + 4q2) . (4.2.23)

In the limit q2 →∞ both of these roots tend to w = −1
2 . Computing the residue for

each of these roots and summing the answers we find

F3,0 = 2
(1 + 2N) F2,1 = − 1

(1 + 2N)

F1,2 = 2q2 −N − 1
(1 + 2N)(4q2 − 1) F0,3 = −4q2

2 + (5 + 6N)q2 +N2 −N − 1
(1 + 2N)(4q2 − 1)2 ,

(4.2.24)
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which match the results from [19]. These results satisfy the q2 recursion relation

(4.2.18) (with εΩ = 0) for l1 = 1, l2 = 0, and l1 = 0, l2 = 1, and so satisfy the

quantum cohomology relations. However, as discussed, the three-point correlators

are quantum cohomology violating objects. Interestingly, the correlators F3,0 and

F2,1 match those in (4.2.14) from the computation with the Omega deformation.

However, the correlators F1,2 and F0,3 are q2 dependent and there is no q2 dependence

in (4.2.14).

We can also evaluate (4.2.21) at the poles w = −1
2 and w = ∞ (from Cauchy’s

theorem) for each case, b = 0, . . . , 3. Evaluating minus of the contribution from the

pole at w = −1
2 we obtain

b = 0 : 2
(1 + 2N) b = 1 : − 1

(1 + 2N)

b = 2 : 1
2 (1 + 2N) b = 3 : − 1

4 (1 + 2N) .

(4.2.25)

Evaluating minus of the contribution from the pole at w =∞ we obtain

b = 0 : 0 b = 1 : 0

b = 2 : 1
2 (1− 4q2) b = 3 : −(3− 2N − 12q2)

4(1− 4q2)2 .
(4.2.26)

Summing the contributions (4.2.25) and (4.2.26) we find agreement with the results

(4.2.24), as expected. Significantly, we observe that the results from the evaluation of

the residues at w = −1
2 agree with the results (4.2.14) from the Omega deformation

computation.

In addition, since we observe that the residue of the pole at w = −1
2 matches

the results from the Omega deformation computation, one can ask where does the

contribution from the pole at w = ∞ arise in the Omega deformation case? As

σ2 = wσ1, w →∞ corresponds to either σ2 →∞ or σ1 → 0.

We observe that3

−
∑
k1,k2

−Nk1+k2∑
pz=0

−k1−2k2∑
pw=0

qk1
1 q

k2
2 Res

σ̂1=0
Res
σ̂2=0

σ̂3−b
1 σ̂b2I , (4.2.27)

3Where I is the integrand in (4.2.10).
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and

−
∑
k1,k2

−Nk1+k2∑
pz=0

−k1−2k2∑
pw=0

qk1
1 q

k2
2 Res

σ̂2=∞
Res
σ̂1=∞

σ̂3−b
1 σ̂b2I , (4.2.28)

reproduce (4.2.26) in the limit q2 → 0. For each case, it appears that only the

k1 = k2 = 0 term gives a non-vanishing contribution to the sum. However, we are

unable to find a way to fully reproduce the expressions in (4.2.26) (for the non-zero

cases b = 2 and b = 3).

Applying the substitution σ2 = wσ1 to the q2 violating recursion relations and taking

the limit εΩ → 0, (4.2.19) and (4.2.20) become

σ3
1P (w) = −1

2 ,

σ3
1wP (w) = 1

4 ,

(4.2.29)

respectively. Solving for w we find w = −1
2 . As discussed for the three-point

correlators, evaluating the residue of the integral (4.2.21) at the pole w = −1
2

reproduces the results (4.2.14) from the Omega deformation computation, which

precisely matches (4.2.8) from one of the specific orderings of vanishing twisted

masses. No agreement is found with (4.2.7).

Turning on twisted masses

We can also turn on generic twisted masses, compute the correlators Fa,b, and verify

that the recursion relations with both εΩ and twisted masses are satisfied. In the

presence of generic twisted masses for each chiral multiplet, the recursion relations

(4.2.17) and (4.2.18) become

〈
σl11 σ

l2
2 (σ1 +m1)(σ1 +m2) (σ1 + σ2 +m3)

〉
N

= q1 ·
〈

(σ1 − εΩ)l1 (σ2)l2 (−σ1 − 2σ2 +m5)
N−1∏
l=0

(−Nσ1 + σ2 +m4 + εΩl)
〉
N

,

(4.2.30)

and〈
σl11 σ

l2
2 (σ1 + σ2 +m3) (−Nσ1 + σ2 +m4)

〉
N

= q2 ·
〈
(σ1)l1 (σ2 − εΩ)l2 (−σ1 − 2σ2 +m5) (−σ1 − 2σ2 +m5 + εΩ)

〉
N
,

(4.2.31)
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respectively. We find that these recursion relations are obeyed for the correlators

computed with the Omega deformation and twisted masses turned on. This matches

the statement in [74] that the quantum cohomology relations hold in the massive

theory and there is a mild violation in the massless theory, as was observed earlier

in this section.

The three-point correlators have zero axial R charge and behave differently com-

pared to the higher-point (lower-point) correlators with positive (negative) axial

R charge.4 The three-point correlators F3−b,b are the only non-zero contributions

when the limit of vanishing twisted masses is taken. The lower-point correlators

are ill-defined due to their 1/mass behaviour and the higher-point correlators are

zero when the limit is taken. The computation of the three-point correlators is

complicated by the non-compactness of the geometry. The three-point correlators

display 0/0 phenomena when the vanishing of twisted masses limit is performed,

which leads to their ambiguous nature and the observed violation of the quantum

cohomology relations.

Issue with ambiguity

Turning on the Omega deformation is unsuccessful at lifting the ambiguity in the

three-point correlators. This is because the k1 = k2 = 0 contribution to the term

(4.2.10) in the integrand contains no εΩ dependence and so would still require reg-

ulating due to the coincident hyperplanes at σ1 = σ2 = 0. The ambiguity in the

three-point correlators is observed in the limit of vanishing regulating terms, as in

section 4.2.1.

Due to the ambiguity one question that we can ask is how can we obtain different

results from the contour integral (4.2.21)? In this analysis we have chosen to set

N = 3 for convenience. Applying the substitutionm4 = cm5 to the result (4.2.5) with

generic twisted masses turned on and εΩ = 0, where c is a constant, and performing

limm5→0 limm3→0 limm2→0 limm1→0 we again find that all of the q1 recursion relations

4The correlator Fa,b has the axial R charge 2(a+ b− 3) [74].
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are satisfied and all of the q2 recursion relations are satisfied, except in two cases:

• For l1 = 1, l2 = 0 we find

〈σ1 (σ1 + σ2) (−3σ1 + σ2)〉N

− q2 ·
〈
σ1 (−σ1 − 2σ2)2

〉
N

= −c(4 + c) + 7q2

4 + 9c+ 2c2 .
(4.2.32)

• For l1 = 0, l2 = 1 we find

〈σ2 (σ1 + σ2) (−3σ1 + σ2)〉N

− q2 ·
〈
σ2 (−σ1 − 2σ2)2

〉
N

= (−3 + c)(c(4 + c) + 7q2)
(4 + c)(1 + 2c)2 .

(4.2.33)

For both of these cases to be satisfied we require c(4 + c) + 7q2 = 0, which solving

for q2 gives q2 = − c(4+c)
7 . Substituting this value of q2 into the integral (4.2.21) and

evaluating the residue of the pole at the w+ root of P (w), we find that the result

matches the result from the generic twisted masses computation, up to an overall

constant factor, which is given by

4 + c

2(2 + c) . (4.2.34)

4.2.3 Summary

To summarise, in this chapter we have studied the computation of the correl-

ators for the Gauged Linear Sigma Model describing the non-compact orbifold

C3/Z(2N+1)(2,2,1), using the localization result from [74]. When the Omega deforma-

tion is turned off, we regulate the JK integral by turning on generic twisted masses,

and we find that the result for the three-point correlators is ambiguous. The result

depends on how the twisted masses are introduced and on the limit of vanishing

twisted masses. Turning on the Omega deformation, we find that the result for the

three-point correlators matches the previous computation provided that the limits

of vanishing twisted masses are taken in an appropriate fashion. We do not have

a physical explanation for why the limits should be taken in a specific order. In
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[76] the authors propose a prescription for turning on twisted masses to compute

degenerate JK integrals appearing in the formula for A-twisted correlators. It is

unclear if their prescription could be applied in this case because the sum of the

U(1)1 charges is non-zero.

We observe that, in general, the correlators computed with the Omega deformation

obey the recursion relations (4.1.20), except for a mild violation caused by the three-

point correlators. These three-point correlators do not depend on εΩ so this violation

is the violation of the quantum cohomology relations discussed in [20]. Finally,

the results for the correlators Fa,b with εΩ turned on have been compared with the

evaluation of these correlators in [20]. In both cases, the lower-point correlators,

a+ b ≤ 2, vanish. The results for the higher-point correlators, a+ b ≥ 4, match the

results obtained from the contour integral (4.2.21) in the limit εΩ → 0. The results

for the three-point correlators (4.2.14) do not match the results found by evaluating

(4.2.21) at the roots of P (w). However, the results obtained from computing the

residue of the pole at w = −1
2 match the results from the Omega deformation

computation. It remains unclear if it is possible to determine the origin of the

contribution from the pole at w = ∞ in (4.2.21) for the Omega deformation case.

Overall, we find that the introduction of the Omega deformation is unable to resolve

the ambiguities in the three-point correlators for this model.



Chapter 5

Correlators of Monopole

Operators in 3d N = 4 U(N)

Theories

In this chapter we collect results from [4] on the computation of correlators of

monopole operators in three-dimensional N = 4 U(N) gauge theories on the Omega

background.1 We discuss how a result from supersymmetric localization can be used

to extract an expression for the vacuum expectation value of a monopole operator and

then an expression for correlators containing a product of positively and negatively

charged monopoles. We show how the type IIB brane construction from section 2.3.5

can be applied to recover these expressions.

We present explicit examples of the computation of correlators involving the product

of monopoles of minimal positive and negative charges in the case of U(2) SQCD.

These correlators are written in terms of the abelian monopole operators and the

bubbling factors associated to gauged Super-Matrix-Models (SMMs), which we expli-

citly evaluate using the Jeffrey-Kirwan (JK) residue prescription. Finally, we study

some examples for the general case of U(N) SQCD and focus on their wall-crossing

behaviour.
1See [82] for an independent related work.
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In this chapter we will only discuss the case of bare (undressed) monopole operators,

but the story generalises. See section 5 of [4] for the brane realisation of Casimir

and dressed monopole operators in the U(N) SQCD theory, and the evaluation of

correlators involving them.

5.1 Set-up

The power of supersymmetric localization and brane constructions allows us in

principle to compute any correlator of monopole operators on R× R2
ε , where R2

ε is

the Omega background [83] with deformation parameter ε. Mathematically, this

amounts to working equivariantly with respect to rotations in the R2
ε plane, with

equivariant parameter ε. O = O(x0
i ) denotes an operator inserted at the position x0

i

along the line R, the Euclidean time direction, and at the origin of R2
ε .

The 3d N = 4 theory preserves 8 supercharges. The insertion of half-BPS Coulomb

operators breaks supersymmetry by a half, and the Omega background on R2
ε by

another half. Hence, the background with operators Oi inserted at the origin of R2
ε ,

and at arbitrary but different positions x0
i preserves two supercharges.

For a single operator, the vacuum expectation value (VEV) is simply independent

of the position,

O =
〈
O(x0)

〉
. (5.1.1)

The correlators 〈O1(x0
1)O2(x0

2) · · · 〉 are topological in the sense that they do not

depend on the actual positions of the operator insertions x0
i , except (possibly) for

their ordering along R.

For the correlator containing two operators, O1 = O1(x0
1) and O2 = O2(x0

2), inter-

changing the order of these operators along R does not necessarily give the same

result,

〈O1O2〉 6= 〈O2O1〉 . (5.1.2)
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Consequently, for two local operator insertions, the correlators define an associative

but non-commutative product, with

O1 ?O2 :=
〈
O1(x0 + δ)O2(x0 − δ)

〉
, δ > 0 . (5.1.3)

The right hand side is independent of δ, as long as δ > 0, and the limit δ → 0+ yields

the VEV of a local chiral operator. In the limit ε→ 0, we obtain Coulomb operator

insertions on flat R3, which are independent of the positions in R3. There is no

longer any ordering and the star product becomes the usual commutative product

between holomorphic functions.

An expression for the vacuum expectation value of a monopole operator in three

dimensions can be obtained by taking the supersymmetric localization result from

[84] for the VEV of ’t Hooft lines of four-dimensional N = 2 theories on R×R2
ε ×S1

and performing dimensional reduction along S1.

For SQCD theories with gauge group U(N) and Nf flavours of hypermultiplets in

the fundamental representation, the VEV of a monopole of minimal charge is

V(±1,0N−1) =
N∑
a=1

u±ea , (5.1.4)

where ea =
(
0a−1, 1, 0N−a

)
and the notation 0N−a means 0 repeated N − a times.

This VEV is written in terms of a sum of the abelian variables u±ea , where the

subscript denotes the vector for the magnetic charge. These abelian variables are

rational functions, which are given by

u±ea = e±χa


Nf∏
k=1

(ϕa −mk)∏
b 6=a

[±(ϕa − ϕb) + ε]


1
2

, (5.1.5)

where ϕa and χa are the complex scalars defined in section 2.3.4. The term in the

brackets in (5.1.5) is the one-loop contribution. This comprises a product of the

contributions from the vector multiplet (in the denominator) and the hypermultiplets

(in the numerator), where mk denotes the complex mass for the k-th hypermultiplet.
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The form of the abelian variables in (5.1.5) is extracted from the 4d localization result

by taking an appropriate limit. In the 4d case, the one-loop contribution is given by

a product of the contributions from the vector multiplet and hypermultiplets, where

Zvec
1−loop(v) =

∏
α∈G
α>0

|α.v|−1∏
j=0

sh
[
± (α.a) +

(
|α.v| − 2j

)
ε
]−1/2

,

Zhyp
1−loop(v) =

∏
w∈R

|w.v|−1∏
j=0

sh
[
w.a−m+

(
|w.v| − 1− 2j

)
ε
]1/2

,

(5.1.6)

with sh(x) := 2 sinh(x2 ) and f(x ± y) := f(x + y)f(x − y). The magnetic charges

v ∈ Λcochar belong to the cocharacter lattice of the gauge group G, α ∈ G denotes

the non-zero roots α of the gauge algebra, and w ∈ R denotes the weight w of

the representation R. The electric chemical potentials aa, with a = 1, . . . , rank(G),

are the VEVs of the real parts of the eigenvalues of the adjoint complex scalars

in the 4d N = 2 vector multiplet, complexified by the holonomies of their photon

superpartners. Similarly, the magnetic chemical potentials ba are the VEVs of the

imaginary parts of the eigenvalues of the adjoint complex scalars, complexified by

the holonomies of the dual photons (which are gauge bosons in four dimensions).

The masses mk are analogues of aa for flavour symmetries.

In (5.1.6), the S1 radius R has been set to one. We can re-introduce it by rescaling

the dimensionful parameters by R to build the dimensionless quantities: aa →

Raa,mk → Rmk, ε→ Rε. The 3d limit is then obtained by taking R → 0, keeping

aa, mk, ε, and ba fixed, and renormalising the leading order term by an appropriate

power of R that is fixed by dimensional analysis to obtain a finite result. In this

limit, the complex scalars aa and ba can be identified with the 3d complex scalars ϕa

and χa = 1
g2σa + iγa, respectively. In addition, the one-loop contributions simplify

from trigonometric to rational functions, so (5.1.6) becomes

Zvec
1−loop(ϕ; v) =

∏
α∈G
α>0

|α.v|−1∏
j=0

[
± (α.ϕ) +

(
|α.v| − 2j

)
ε
]−1/2

,

Zhyp
1−loop(ϕ; v) =

∏
w∈R

|w.v|−1∏
j=0

[
w.ϕ−m+

(
|w.v| − 1− 2j

)
ε
]1/2

,

(5.1.7)
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and we can immediately identify the abelian variables discussed in [32],

uv = ev.χZ1−loop(ϕ; v) = ev.χ


∏
w∈R

|w.v|−1∏
j=0

[w.ϕ−m+ (|w.v| − 1− 2j)ε]

∏
α∈G

|α.v|−1∏
j=0

[α.ϕ+ (|α.v| − 2j)ε]


1/2

,

(5.1.8)

which reduce to (5.1.5) for the case of U(N) theories with a monopole of minimal

(positive or negative) charge.

Furthermore, an expression for correlators containing products of monopole operators

can be written down. Schematically, the correlator of N monopole operators Vha (of

positive or negative charge) is given by〈
T

(
N∏
a=1

(Vha)na
)〉

=
∑
|v|≤|B|

uvZSMM (ϕ,m, ε; v,B) , (5.1.9)

where na ∈ Z≥0 and ha denote the number of and the magnetic charge vector of the

operator Vha , respectively. The symbol T stands for time ordering, i.e. the order of

these operators inserted along the x0 direction.2 These correlators are topological

in the sense that they can depend on the ordering of the operators along the x0

direction, but not on their actual positions.

On the right hand side of (5.1.9) we have the magnetic charges v. We sum over all

the weights that appear in the representation of highest weight B, which is given by

the linear combination B =
N∑
a=1

naha. We again have the abelian variables uv, as in

(5.1.4). These objects are well understood and we will not worry about their explicit

form when computing the correlators in sections 5.3 and 5.4.

The new piece compared to the VEV (5.1.4) is ZSMM. This is the contribution

from monopole bubbling, which is the non-perturbative phenomenon whereby the

magnetic charge of the singular Dirac monopole defining the monopole operator

is screened by the magnetic charge of a smooth ’t Hooft-Polyakov monopole [85].

Each bubbling contribution is given by the partition function of a specific N = (0, 2)

deformation of a 0d N = (0, 4) theory, where SMM stands for a Super-Matrix-Model,

2To ease notation we do not write the insertion positions x0 explicitly.
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which is a zero-dimensional supersymmetric gauge theory.3 The SMM multiplets

and Lagrangian (in the ε→ 0 limit) can be viewed as the dimensional reduction of

the 2d N = (0, 4) multiplets and Lagrangian4 down to zero dimensions. The Omega

deformation further breaks (the dimensional reduction of) N = (0, 4) supersymmetry

down to (the dimensional reduction of) N = (0, 2) supersymmetry. Crucially, we

will see that any dependence on the ordering of the operators will be contained in

the ZSMM terms. The correlator (5.1.9) can be written in the form〈
T

(
N∏
a=1

(Vha)na
)〉

=
∑
B

uB +
∑
|v|<|B|

uvZSMM (ϕ,m, ε; v,B) , (5.1.10)

where the first terms on the right hand side have no bubbling since ZSMM = 1 for

the magnetic charges associated to the highest weight B. The remaining terms have

non-trivial bubbling contributions.

Similar expressions to (5.1.9) have been obtained in the case of the computation of

supersymmetric ’t Hooft loops in 4d N = 2 theories [87, 88], where the bubbling

factors ZSMM become the partition functions of a supersymmetric quantum mechanics

(SQM) rather than a matrix model. The computation of the bubbling contributions

is a difficult and subtle task, see [89, 90, 91, 92]. In this chapter we address the

computation of the correlators of monopole operators using the type IIB brane set-up

discussed in chapter 2. We show how the brane construction reproduces the right

hand side of (5.1.9) and allows us to explicitly compute the bubbling factors ZSMM.

5.2 Star Product and PT Symmetry

We now discuss the realisation of the non-commutative product (5.1.3) as a Moyal

(star) product and the role of Parity-Time (PT) symmetry. Both of these will

be useful tools in testing the validity of the results obtained for the correlators of

3The N = (0, 2) deformation is constructed by selecting an N = (0, 2) subalgebra of the
N = (0, 4) supersymmetry algebra and turning on a constant background proportional to ε for the
Cartan generator of the R symmetry of the N = (0, 4) supersymmetry algebra, which commutes
with the selected N = (0, 2) subalgebra.

4For more details see [86].
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monopole operators in later sections of this chapter.

5.2.1 Star Product as a Moyal Product

Following the 4d analysis in [84], the explicit definition of the non-commutative star

product as a Moyal product is

(f ? g)(ϕ, χ) := e
ε
∑

a
(∂χ′a∂ϕa−∂ϕ′a∂χa )

f(ϕ, χ)g(ϕ′, χ′)
∣∣∣∣
ϕ′=ϕ, χ′=χ

. (5.2.1)

The star product between two VEVs can be computed via the following formula.

With the VEV of a monopole operator V given by the expression

V =
∑
v

ev.χZV (ϕ; v) :=
∑
v

ZV,tot(ϕ, χ; v) , (5.2.2)

we have

〈V1V2〉 := V1 ? V2 =
∑
v1

∑
v2

ZV1,tot
(
ϕ+ εv2, χ; v1

)
ZV2,tot

(
ϕ− εv1, χ; v2

)
=
∑
v1

∑
v2

e(v1+v2).χZV1

(
ϕ+ εv2; v1

)
ZV2

(
ϕ− εv1; v2

)
.

(5.2.3)

Computing the star product of two abelian monopole variables we find the general

abelian relations

uv1 ? uv2 = uv1+v2

∏
w∈R

h−(w,v1,v2)−1
2∏

jw=−h
−(w,v1,v2)−1

2

[
w.ϕ−m− sgn(w.v12)h+(w, v1, v2)ε+ 2jwε

]

∏
α∈G

h−(α,v1,v2)−1
2∏

jα=−h
−(α,v1,v2)−1

2

[
α.ϕ− sgn(α.v12)h+(α, v1, v2)ε+ (2jα + 1)ε

] ,

(5.2.4)

where w ∈ R denotes the weight w of the representation R, α ∈ G denotes the

non-zero roots α of the gauge algebra, and

h±(σ, v1, v2) := 1
2
(
|σ.v1|+ |σ.v2| ± |σ.(v1 + v2)|

)
. (5.2.5)

More generally,

(uv1f1(ϕ)) ? (uv2f2(ϕ)) = (uv1 ? uv2)f1(ϕ+ v2ε)f2(ϕ− v1ε) , (5.2.6)
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and in particular,

uv ? f(ϕ) = uv · f(ϕ− vε) , f(ϕ) ? uv = uv · f(ϕ+ vε) . (5.2.7)

These are the quantized abelian relations, which reduce to the abelian relations

conjectured in [32] in the commutative limit ε→ 0.

The abelian monopole variables u±ea in (5.1.5) obey the star product relations

uea ? u−ea = (−1)N−1

Nf∏
k=1

(ϕa −mk − ε)∏
b 6=a

ϕab(ϕab − 2ε) , a = 1, . . . , N ,

u−ea ? uea = (−1)N−1

Nf∏
k=1

(ϕa −mk + ε)∏
b 6=a

ϕab(ϕab + 2ε) , a = 1, . . . , N ,

uea ? u−eb = u−eb ? uea = uea−eb , a 6= b ,

uea ? ueb = − 1
ϕab(ϕab − 2ε)uea+eb ,

u−ea ? u−eb = − 1
ϕab(ϕab + 2ε)u−ea−eb ,

(u±ea)?n = u±nea , n > 0 ,

(5.2.8)

where we have explicitly

uea+eb = eχa+χb


Nf∏
k=1

(ϕa −mk)(ϕb −mk)∏
c 6=a,b

(±ϕac + ε)(±ϕbc + ε)


1/2

,

uea−eb = eχab


Nf∏
k=1

(ϕa −mk)(ϕb −mk)

(±ϕab)(±ϕab + 2ε) ∏
c 6=a,b

(±ϕac + ε)(±ϕbc + ε)


1/2

,

unea = enχa


Nf∏
k=1

|n|−1∏
j=0

[ϕa −mk + (|n| − 1− 2j)ε]

∏
b 6=a

|n|−1∏
j=0

[±ϕab + (|n| − 2j)ε]


1/2

, n ∈ Z .

(5.2.9)

The star product can be used to generate monopole operators with higher magnetic

charge from products of monopole operators with lower magnetic charges. However,

to identify the precise operators that appear in a product, one first needs to know
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the explicit expression for the monopole operators in terms of abelian variables. As

such, for the results obtained in this analysis, the star product is a useful consistency

test.

5.2.2 The Action of PT Symmetry

Another important consistency check of our results will be related to the action of the

spacetime symmetry PT on monopole operators. PT is defined to act as a reflection

on Euclidean time x0 → −x0 and one coordinate x1 → −x1. This is nothing but a

rotation by π in the 01 plane. This rotation leaves invariant a monopole operator

sitting at the origin (the reflection P or T alone would instead reverse the magnetic

flux). On R×R2
ε , the P symmetry can be implemented as the reversal of the Omega

background parameter ε→ −ε, while the T action simply reverses the locations of

the insertion points on the R axis.

For a single monopole operator of charge B sitting at the origin, this symmetry

implies that the VEVs obey the property

VB(ε) = VB(−ε) . (5.2.10)

For the insertion of two monopoles, that are brought to the origin, the T action

reverses their ordering, and therefore we have the relation

VB1 ? VB2(ε) = VB2 ? VB1(−ε) . (5.2.11)

Other identities in the same vein hold for higher-point functions.

5.3 U(2) SQCD Theories

We now apply the brane construction from section 2.3.5 to reproduce the expres-

sion (5.1.4) for the VEV of a monopole operator and then compute the correlators

(5.1.9) containing a product of monopole operators. We explicitly write down the
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partition function for each monopole bubbling contribution and compute them using

the Jeffrey-Kirwan residue prescription. Finally, we verify the evaluation of the

correlators against the star product formula of section 5.2.1. We focus here on U(2)

SQCD theories with Nf flavours and study U(N) theories in section 5.4.

We will use a convenient characterisation of a brane configuration in terms of two

pairs of partitions (ρ+, σ+) and (ρ−, σ−).

The partitions ρ+ = (h+
i ) and ρ− = (h−i ) collect different linking numbers for the

NS5+ and NS5− branes, respectively. These are defined by

h+ = n̂(D3R) + n̂(D1L)− n̂(D1R) for an NS5+ ,

h− = n̂(D3L) + n̂(D1R)− n̂(D1L) for an NS5− .
(5.3.1)

These linking numbers h± are related but not equal to the linking numbers h defined

in (2.3.11). The relation is ha = ±(h±a − N
2 ) for NS5± branes. NS5± branes with

vanishing h± linking numbers are spectator branes (decoupled from the other branes)

and we do not include them in ρ±. We will always consider partitions ρ± ordered in

a non-increasing fashion, namely h±i ≥ h±i+1.

The partitions σ± are defined by the schematic split σ = (σ+,~0,−σ−), where σ+ =

p(`+
a ) collects the positive D3 linking numbers `+

a = `a > 0, where ` is the D3 linking

number defined in (2.3.10). Likewise, σ− = p(`−a ) collects the negative D3 linking

numbers `−a = −`a > 0. Again, these partitions are ordered non-increasingly, where

p represents the operation of ordering in a non-increasing fashion. For the U(2)

theory we have the linking numbers (`1, `2) for the two D3 branes.

These definitions are such that the four partitions ρ±, σ± contain only strictly positive

integers, ordered non-increasingly. The partitions are simply read from the pattern

of the D1 strings stretched between the D3 and NS5+ branes for (ρ+, σ+), and of

the D1 strings stretched between the D3 and NS5− branes for (ρ−, σ−). We remark

that the partitions σ+ and ρ+ (and similarly σ− and ρ−) do not necessarily have the
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same magnitude.5 There is however a constraint

|ρ−| − |σ−| = |ρ+| − |σ+| , (5.3.2)

which arises from requiring that all D1 strings end on NS5 or D3 branes on both

sides.

A given brane configuration is then related to a specific abelian monopole VEV. For

the D3 partition σ = v, we have

Brane set-up (ρ, σ) ←→ uσZρ,σ , (5.3.3)

where uσ is the abelian monopole VEV of charge v = σ = (σ+,~0,−σ−), and Zρ,σ is

the matrix model that describes the low-energy theory living on the D1 strings. To

read off the SMM living on the D1s, one has to move the D3s along the x7 direction,

taking into account the Hanany-Witten string creation/annihilation effects discussed

in section 2.3.6, until there are no longer D3s connected to any D1s. This leads to

configurations with D1 strings stretched between NS5 branes, supporting unitary

gauge nodes of an N = (0, 4) SMM.6 D3 branes are the source of hypermultiplets in

the SMM, while D5 branes are the source of Fermi multiplets.7 If the configuration

reached has no D1 strings left, we simply have Zρ,σ = 1. These are the non-bubbling

sectors.

5.3.1 Vacuum Expectation Values

To obtain the VEV of a non-abelian monopole VB, one has to sum over all the brane

set-ups with fixed ρ± = ρ±B. This means that we sum over all the patterns of the D1

strings attached to the NS5± in the specific arrangement given by the partition ρB,

and ending on the D3 branes in any possible way, compatible with the s-rule.

5The magnitude of a partition µ is |µ| =
∑
k µk, where k is the length of the partition.

6Or rather an N = (0, 2) deformation of an N = (0, 4) in the presence of ε 6= 0.
7A Fermi multiplet Λ contains a complex fermion λ and a complex auxiliary field G, which

arises due to the property that in N = (0, 2) theories the left-moving fermions are not necessarily
accompanied by propagating, bosonic superpartners.
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Figure 5.1: Brane set-ups realising the abelian contributions to a) V(1,0) =
ue1 + ue2 , b) V(0,−1) = u−e1 + u−e2 , and c) V(1,1) = ue1+e2 , depicted in the x78

plane.

We can consider the VEVs for the (non-abelian) monopoles of smallest magnetic

charge in the U(2) SQCD theory, which are V(1,0) and V(−1,0). To do this we require

a set-up with two D3 branes, which we label D31 and D32, Nf D5 branes, and a pair

of NS5 branes.

For V(1,0) we have ρ+ = (1) and ρ− = () (empty). Hence, there is a single D1 string

emanating from the NS5+. This D1 string can end on either of the two D3s, leading

to two possible abelian configurations, with v = (1, 0) = e1 or v = (0, 1) = e2, which

we must sum together. Both configurations correspond to σ+ = (1) and σ− = ()

(because the two v’s are identical after reordering). These two configurations are

depicted in Figure 5.1-a). After applying Hanany-Witten transitions, the D1 strings

vanish, and so the bubbling contributions are trivial. Hence, the two configurations

are associated to the abelian variables ue1 and ue2 . Consequently, V(1,0) is given by

the sum

V(1,0) = ue1 + ue2 , (5.3.4)

which reproduces (5.1.4) for the case N = 2, the result for the VEV of a monopole
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operator of minimal positive charge.

Similarly, for V(0,−1) we have ρ− = (1) and ρ+ = (). This set-up is identical to the

previous case apart from the D1 connects to the NS5− rather than the NS5+. Again,

the D1 can end on either of the D3s, see Figure 5.1-b), which leads to the two abelian

configurations u−e1 and u−e2 . Thus, we obtain

V(0,−1) = u−e1 + u−e2 . (5.3.5)

We can also consider the VEV for the monopole V(1,1). We have ρ+ = (2), ρ− = (),

with two D1 strings ending on the NS5+ of an NS5 pair. The two D1s must end

on different D3s, due to the s-rule, which leads to a single configuration with the

abelian charge v = (1, 1) = e1 + e2, which we illustrate in Figure 5.1-c). Moving

the D3s to the right, via Hanany-Witten transitions, we observe that both of the

D1s disappear, resulting in a configuration without any D1s, and so the bubbling

contribution is trivial. Hence, we obtain

V(1,1) = ue1+e2 . (5.3.6)

5.3.2 Monopole Correlators

The correlator of monopoles is given by a sum of the contributions associated to each

allowed pattern of D1 strings in the brane configuration. The D1 strings emanating

from the NS5 branes are not allowed to extend to x7 = ±∞, so they must either end

on other NS5 branes or on D3 branes, in a way consistent with the s-rule. We sum

over all configurations with fixed linking numbers for the NS5 branes. The vector

of linking numbers (`a) of the D3 branes, which encodes how the D1 strings end on

the D3s, determines the magnetic charge v = (`a) of the abelian monopole operator

uv. To each pattern of D1s corresponds the given abelian monopole variable uv and

a bubbling factor ZSMM equal to the partition function of the SMM theory living on

the D1 strings. The resulting contribution to the correlator is uvZSMM. This gives

the structure of terms appearing in (5.1.9).
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Contributions to the matrix model

Before presenting the computation of some correlators for U(2) SQCD, we provide

a discussion of the contributions to the matrix model ZSMM in the case of U(N)

theories. To do this we introduce an alternative notation for the brane configurations.

In this alternative notation, we drop all spectator NS5 branes and label the brane

configuration by the linking numbers of all D3 branes, the linking numbers of all

(active) NS5 branes, and an extra integer L that specifies the NS5 brane interval

in which the D5 branes lie. We choose not to move the D5 branes across the NS5

branes to avoid creating D3’ branes, so the D5 branes still separate the NS5− from

the NS5+. Therefore, the Nf D5 branes lie in the interval between the L-th and

(L+ 1)-th NS5 along x7, where

L = `(ρ−) (5.3.7)

is the length (i.e. the number of non-zero entries) of ρ−, namely the number of active

NS5− branes. Analogously, R = `(ρ+) is the number of active NS5+ branes.

The linking numbers for the D3 and NS5 branes can be re-defined asymmetrically

as follows:

D3 : `′ := n(NS5L) + n(D1R)− n(D1L) = `+ L ,

NS5 : h′ := n̂(D3R) + n̂(D1L)− n̂(D1R) = h+N/2 ,
(5.3.8)

where ` and h were defined in (2.3.10) and (2.3.11), respectively. These linking

numbers can be read off by moving all the D3 branes across all the NS5− branes,

so that they lie to the left of all NS5 branes, and counting the net number of D1

strings ending on the D3 branes from the right and on the NS5 branes from the left.

The D3 brane linking numbers are v′ = (`′a) = v + L ≡ (`a + L). The corresponding

ordered partition is

σ′ = p(v′) = (σ+ + L,LN−`(σ
+)−`(σ−),−σ− + L) , (5.3.9)

where we use the shorthand notation −µ := (−µ`, . . . ,−µ1) and k + µ := (k +
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µ1, . . . , k + µ`) for a partition µ = (µ1, . . . , µ`) and an integer k.

Similarly, we label NS5 branes with increasing x7 by an integer I = 1, . . . , L+R (so

x7
I+1 > x7

I) and we collect their linking numbers in an unordered partition8

ρ′ = (ρ′I) = (N − ρ−, ρ+) . (5.3.10)

Using the constraint (5.3.2), we observe that σ′ and ρ′ are partitions of the same

number n,

|σ′| = NL+ |σ+| − |σ−| = NL+ |ρ+| − |ρ−| = |ρ′| ≡ n . (5.3.11)

In the rest of this section we will use this second notation to describe the brane

configurations and we will omit the primes from the notation.

The gauged SMM

The prefactor that multiplies the abelian monopole variable uv in the expansion

of the topological correlation function is the partition function of an N = (0, 2)

deformation of the gauged N = (0, 4) SMM, which describes the low-energy physics

on the worlvolume of the D1 strings. The generic SMM is denoted by T σρ,L[SU(N)],

where σ and ρ are given by (5.3.9) and (5.3.10), respectively (with primes omitted).

When no Fermi multiplets are present we can drop the L dependence.

The supersymmetric matrix model arises from the localization of the actions that

descend from the 2d kinetic terms. Localizing the gauge multiplet first leads to a

BPS locus parameterised by commuting σ and σ̃ (where all other fields vanish). They

can therefore be diagonalised simultaneously by a complexified gauge transformation,

reducing to an integral over a Cartan subalgebra of the gauge group, modulo the

action of the Weyl group. Supersymmetry ensures that the dependence on σ̃ drops

out [93, 52, 78, 94], so the partition function is computed by a holomorphic contour

8Note that NS5+ branes with h+ = a and NS5− branes with h− = N − a have the same linking
numbers h′ = a with D3 branes. They are however distinguished by their linking numbers with D5
branes (for the (NS5, D5, D3’) Hanany-Witten triple), which differ by Nf .
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integral in za, the eigenvalues of σ.

To read off the gauge group and matter content of the SMM, we move D3 branes

along the x7 direction, crossing NS5 branes until the D3s no longer have any D1

strings attached. We then count the number of:

• D1 strings - contributing vector multiplets from D1-D1 string modes,

• D3 branes - contributing fundamental hypermultiplets from D3-D1 string

modes,

• D5 branes - contributing fundamental Fermi multiplets from D5-D1 string

modes,

in each interval between two adjacent NS5 branes. The NS5 branes themselves

contribute bifundamental hypermultiplets for adjacent gauge groups, from D1i-D1i+1

strings modes.

The gauge and flavour nodes are labelled by a non-negative integer I = 1, . . . , L +

R− 1, corresponding to the interval between the I-th and the (I + 1)-th NS5 branes

along x7. The SMM quiver is then the same as for T σρ [SU(N)] [43], reduced to zero

dimensions and further decorated byNf extra fundamental Fermi multiplets attached

to the L-th gauge node. The number of flavours of fundamental hypermultiplets MI ,

the ranks NI , and the FI parameters ξI of the I-th gauge node (I = 1, . . . , L+R−1)

in the quiver for T σρ,L[SU(N)] are given by

MI = σ̂I − σ̂I+1 ,

NI =
∑
K>I

ρK −
∑
K>I

σ̂K ,

ξI = x0
I+1 − x0

I ,

(5.3.12)

where x0
I is the position of the I-th NS5 brane along x0, and a hat denotes the dual

(or transposed) partition. The FI parameters of the gauge nodes are related to the

insertion points of the monopole operators along the line in the correlator (5.1.9).
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N1 N2
. . . NL−1 NL NL+1 . . . NL+R−2 NL+R−1

M1 M2
. . .

ML−1 ML ML+1 . . . ML+R−2 ML+R−1

Nf

Figure 5.2: Quiver diagram for a generic gauged SMM from the brane con-
struction.

We encode the field content of the gauged SMM in a quiver, as depicted in Figure

5.2, where gauge nodes are denoted by circles, flavour nodes are denoted by squares,

and bifundamental hypermultiplets are denoted by the lines between two circles, or

between a circle and a square. Equivalently, this quiver can be represented in the

matrix notation byM1 M2 . . . ML−1 ML ML+1 . . . ML+R−2 ML+R−1

N1 N2 . . . NL−1 NL NL+1 . . . NL+R−2 NL+R−1

 , (5.3.13)

where the underline indicates the presence of Nf extra fundamental Fermi multiplets.

To avoid violating the s-rule and breaking supersymmetry [6], the NS5 brane partition

ρ and the D3 brane partition σ must satisfy the inequalities9

∑
K>I

p(ρ)K ≥
∑
K>I

σ̂K ∀ I , `(σ) ≤ N , (5.3.14)

otherwise the SMM partition function vanishes. The relevant D3 partitions σ, which

appear for a given NS5 partition ρ, can be obtained by starting from the Young

tableau associated to p̂(ρ) and consecutively moving boxes in σ down to the next

row or column. We refer to appendix B for details, where we show how to obtain the

T σρ,L[SU(N)] partition function with a non-trivial D3 brane partition σ by starting

with the Tρ,L[SU(N)] partition function with the trivial partition σ = (1N) and

9Recall, p(ρ)K denotes the ordered partition associated to ρK .
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applying a residue procedure.

The partition function of the SMM T σρ,L[SU(N)]

To conclude, the partition function of T σρ,L[SU(N)] is a meromorphic function of the

complex masses for the global symmetries:

• m = {mα}
Nf
α=1 for the U(Nf) flavour symmetry acting on the fundamental

Fermi multiplets charged under the L-th gauge group.

• ϕ̃K = {ϕ̃K,r}MK
r=1 for the U(MK) flavour symmetry acting on the fundamental

hypermultiplets of the K-th gauge group. We gather all the ϕ̃K in a vector

ϕ̃ = (ϕ̃K).

• ε for the R symmetry of the N = (0, 4) superalgebra that commutes with the

N = (0, 2) subalgebra.

With this notation and conventions, the partition function of T σρ,L[SU(N)] is com-

puted by the integral

ZTσρ,L[SU(N)](ϕ,m, ε; ξ) =
�

JK(ξ)

∏
K

 dNKzK
(2πi)NKNK ! (2ε)

NK
NK∏
I 6=J

zK,IJ(zK,IJ + 2ε)


·
∏
K

1
NK∏
I=1

[
NK+1∏
J=1

(±(zK,I − zK+1,J) + ε)
MK∏
r=1

(±(zK,I − ϕ̃K,r) + ε))
]

·
NL∏
I=1

Nf∏
α=1

(zL,I −mα) ,

(5.3.15)

where the products over the gauge groups in the first and second line run from K = 1

to K = L+R− 1, and the ϕ̃ variables are related to the ϕ variables as above. The

three lines in the right hand side of (5.3.15) account for the contributions of 0d

vector multiplets, hypermultiplets, and Fermi multiplets, respectively. We use the

shorthand notation zK,IJ = zK,I − zK,J and (±x+ y) := (x+ y)(−x+ y).
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The contour of integration JK(ξ) is given by the Jeffrey-Kirwan prescription with

the JK parameter identified with the vector of FI parameters ξ = (ξK). The multi-

dimensional poles that are encircled by the JK integration cycle are in one-to-one

correspondence with the Higgs vacua of the theory [87]. When the vector of FI

parameters ξ is generic (that is, it lies in the interior of a chamber in FI space, where

the Higgs vacua are isolated), the prescription is simple: the choice of contour only

depends on the chamber that ξ belongs to. When ξ lies on a wall separating two

different chambers, the JK integral is ill-defined and a 0d Coulomb branch opens

up, as such the contour integral is much more subtle to determine. In this thesis, we

focus on the cases where the FI parameters are non-vanishing, and the SMM can be

readily evaluated from the Jeffrey-Kirwan prescription.

It is possible to derive a general result for the partition function of T σρ,L[SU(N)],

we refer to section 4 and appendix A of [4] for details. In the rest of this chapter

we focus on the computation of correlators containing products of positively and

negatively charged monopole operators. We explicitly evaluate the relevant matrix

model partition functions by applying the JK residue prescription.

Computation of correlators

We can now consider the computation of correlators containing the minimal mono-

poles V(1,0), V(0,−1), V(1,1), and V(−1,−1) in the U(2) SQCD theory. We will explicitly

demonstrate the evaluation of some two- and three-point correlators.10

〈
V 2

(1,0)

〉
:

We require a brane set-up with two pairs of NS5 branes, with one D1 emanating

from each of the NS5+, and the NS5− are spectators. The NS5+ sit at different

positions along the x0 direction, since we have one NS5+ for each operator, but the

ordering will not matter as we are inserting the same monopole V(1,0) twice. The

two D1s can end on the two D3s in three different patterns, which leads to three

10We will also assume that the monopole operators are time ordered.
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Figure 5.3: Set-up realising the three contributions to the correlator
〈
V 2

(1,0)

〉
=

u2e1 + u2e2 + ue1+e2Z1. The bubbling factor Z1 is computed as the SMM
described by the quiver in Figure (iii).

contributions to the correlator
〈
V 2

(1,0)

〉
. These are illustrated in Figure 5.3. Both

of the D1s can end on D31, or on D32, which gives the abelian variables u2e1 , or

u2e2 , respectively. Both of these contributions have a trivial bubbling term as the D1

strings vanish after performing Hanany-Witten transitions, moving the D31, or D32,

to the right so that D1s are no longer attached to the D3. The third possibility is to

have one D1 ending on each D3, which realises ue1+e2 . In this third case, see Figure

5.3-(iii), we observe that after moving the D3s to the right, via Hanany-Witten

transitions, there is a single D1 string remaining, which is stretched between the

two NS5+. This gives us a bubbling term associated to the SMM with a U(1) gauge

node and two hypermultiplets (from the D3-D1 modes) with masses ϕ1 and ϕ2 (the

distance between the D1 and the D3s along the x8+i9 direction). Therefore, there

is a non-trivial bubbling contribution ZSMM := Z1, which is described by the quiver

diagram in Figure 5.3-(iii). Consequently, we obtain

〈
V 2

(1,0)

〉
= u2e1 + u2e2 + ue1+e2Z1(ϕ, ε) . (5.3.16)
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The SMM for Z1 is the U(1) theory with two fundamental hypermultiplets of masses

ϕ1 and ϕ2. This matrix model is given by the Jeffrey-Kirwan integral

Z1(ϕ, ε) =
�

JK

dz

2πi
(2ε)∏

a=1,2
[±(z − ϕa) + ε] . (5.3.17)

To compute this integral we follow the JK prescription from section 3.2. We observe

that (5.3.17) is the same as the JK integral that appeared in the one-dimensional

JK integral example (3.2.13), so we simply state the poles and result again.

For the single U(1) node there is an FI parameter ξ, which is given by the difference

in the x0 positions of the two NS5+ branes. Hence, the JK prescription instructs

us that we can compute the integral in one of two chambers, either the chamber

in which the FI parameter is positive or negative. This then tells us the poles that

contribute to the integral in each of these chambers. In this simple example, these

poles are related by sending ε→ −ε. The JK prescription for the positive chamber

ξ > 0 is to pick the residues at z = ϕa − ε, for a = 1, 2, while for ξ < 0 we pick the

residues at z = ϕa + ε. Evaluating we obtain the chamber independent result

Z1(ϕ, ε) = 2
(±ϕ12 + 2ε) , (5.3.18)

where ϕ12 = ϕ1 − ϕ2. Hence, this result is the same in both chambers so the

bubbling term is independent of ξ. This was to be expected since the operators in

the correlator are identical and so commute. Consequently, the correlator is given

by 〈
V 2

(1,0)

〉
= u2e1 + u2e2 + 2

(±ϕ12 + 2ε)ue1+e2 . (5.3.19)

If the FI parameter was zero, which would be the case where the two operators are

on top of each other and so the NS5+ branes share the same position in x0, we would

not be able to compute the integral (5.3.17) using the JK prescription. This would

be an example of an on-the-wall partition function, whose computation remains to

be a technical challenge. Although it may be tempting to conjecture that the result

computed on-the-wall is the same as the result on both sides of the wall, we will not
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Figure 5.4: Brane patterns for two-point correlators in the U(2) SQCD theory:
a)
〈
V 2

(1,1)

〉
= u2e1+2e2 and b)

〈
V(1,0)V(1,1)

〉
= u2e1+e2 + ue1+2e2 .

do so since we have no evidence for it. In fact, we suspect that the result computed

at ξ = 0 is different.11

〈
V 2

(1,1)

〉
:

The brane configuration consists of two NS5 pairs (one for each V(1,1) insertion)

with two D1s emanating from each of the NS5+. There is a single contribution to

the correlator, which is given by each D3 having two D1s ending on it due to the

s-rule, see Figure 5.4-a). The abelian variable is u2e1+2e2 and the bubbling factor is

trivial (since all the D1s disappear after moving the D3s to the right of the NS5+s).

Consequently, we obtain 〈
V 2

(1,1)

〉
= u2e1+2e2 . (5.3.20)

〈
V(1,0)V(1,1)

〉
:

The brane configuration comprises two NS5 pairs with two D1s attached to the

left-most NS5+ and one D1 attached to the right-most NS5+ (the ordering of the

NS5+ along x7 is non-increasing in linking numbers, as discussed). There are two

possible D1 patterns: two D1s ends on D31 and one on D32, or vice versa, see Figure

5.4-b). These correspond to the abelian variables u2e1+e2 and ue1+2e2 . After moving

11We thank Daniele Dorigoni for discussions on this point.



5.3. U(2) SQCD Theories 103

the D3 branes, we see that the bubbling factors are trivial, since there are no D1s

remaining. We thus obtain

〈
V(1,0)V(1,1)

〉
= u2e1+e2 + ue1+2e2 . (5.3.21)

Reversing the order of the insertions does not change the argument, so we conclude

that the two operators commute

〈
V(1,1)V(1,0)

〉
=
〈
V(1,0)V(1,1)

〉
. (5.3.22)

〈
V(1,0)V(0,−1)

〉
:

The brane configuration necessitates only a single NS5 pair,12 with one D1 string

attached to the NS5+ and another D1 attached to the NS5−. The D1s can either end

on different D3s, leading to the abelian variables ue1−e2 or u−e1+e2 , or alternatively

they can reconnect with each other, leaving the D3s unconnected. For the latter

case we have a single configuration with a D1 string stretched from the NS5− to the

NS5+. There is no monopole charge, but we have a non-trivial bubbling contribution

ZSMM := Z2. This is a U(1) theory with two hypermultiplets, with mass ϕa=1,2

from the D1-D3 modes, and Nf Fermi multiplets, with mass mk=1,...,Nf from the

D1-D5 modes. We illustrate the contributions in Figure 5.5. There is a single FI

parameter, which is given by ξ = x1 − x−1, where x1/x−1 labels the x0 position of

the NS5+/NS5−.

Consequently, the correlator is given by

〈
V(1,0)V(0,−1)

〉
= ue1−e2 + u−e1+e2 + Z2(ϕ,m, ε; ξ > 0) , (5.3.23)

where the matrix model Z2 must be evaluated in the positive FI chamber.

Exchanging the order of the insertions corresponds to having ξ < 0 in the matrix

12To be consistent we should always introduce one pair of NS5 branes per minimal monopole
inserted, with the two NS5 of a pair sitting at the same x0 position. Among each pair, one NS5 is
a spectator. In this case we have one NS5+ spectator and one NS5− spectator, which we suppress.
Thus, the remaining NS5+ and NS5− sit at different positions in x0.
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Figure 5.5: The three configurations contributing to
〈
V(1,0)V(0,−1)

〉
: (i) ue1−e2 ,

(ii) u−e1+e2 , (iii) Z2.

model, and we have

〈
V(0,−1)V(1,0)

〉
= ue1−e2 + u−e1+e2 + Z2(ϕ,m, ε; ξ < 0) . (5.3.24)

What is the bubbling factor Z2(ξ ≷ 0)? Compared with the previous bubbling factor

Z1, the SMM for Z2 has Nf extra Fermi multiplets with masses mk. Thus, this

matrix model is given by

Z2(ϕ,m, ε; ξ) =
�

JK(ξ)

dz

2πi

(2ε)
Nf∏
k=1

(z −mk)∏
a=1,2

[±(z − ϕa) + ε] , (5.3.25)

where the extra term in the numerator comes from the Fermi multiplets. The JK

prescription is the same as for the evaluation of (5.3.17). We now obtain two different

results, depending on the sign of ξ,

Z2(ϕ,m, ε; ξ) =


−

Nf∏
k=1

(ϕ1−mk−ε)

ϕ12(ϕ12−2ε) + (ϕ1 ↔ ϕ2) ξ > 0 ,

−

Nf∏
k=1

(ϕ1−mk+ε)

ϕ12(ϕ12+2ε) + (ϕ1 ↔ ϕ2) ξ < 0 .

(5.3.26)

Consequently, the correlators are given by

〈
V(1,0)V(0,−1)

〉
= ue1−e2 + u−e1+e2 −

Nf∏
k=1

(ϕ1 −mk − ε)

ϕ12(ϕ12 − 2ε) + (ϕ1 ↔ ϕ2) ,

〈
V(0,−1)V(1,0)

〉
= ue1−e2 + u−e1+e2 −

Nf∏
k=1

(ϕ1 −mk + ε)

ϕ12(ϕ12 + 2ε) + (ϕ1 ↔ ϕ2) ,

(5.3.27)

which differ due to the non-trivial bubbling factor for each correlator.
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We observe that in this case the two operators do not manifestly commute. A

closer inspection, with the help of Mathematica, reveals that the two expressions

are actually equal for Nf = 0, 1, 2, but begin to differ for Nf ≥ 3, with the difference

being a polynomial in ϕa and ε. This is a non-trivial result. For small values of Nf

we have

• Nf ∈ {0, 1, 2} 〈
[V(1,0), V(0,−1)]

〉
= 0 . (5.3.28)

• Nf = 3 〈
[V(1,0), V(0,−1)]

〉
= 2ε . (5.3.29)

• Nf = 4

〈
[V(1,0), V(0,−1)]

〉
= −2ε

( 4∑
k=1

mk − 2ϕ1 − 2ϕ2

)
. (5.3.30)

• Nf = 5

〈
[V(1,0), V(0,−1)]

〉
= ε

[
4ε2 +

(
2ϕ2

1 + 2ϕ2
2 −

∑
k

m2
k

)
+
(

2ϕ1 + 2ϕ2 −
∑
k

mk

)2 ]
.

(5.3.31)

This is our first encounter with a wall-crossing phenomenon in SMM. As the FI

parameter crosses the ξ = 0 wall, the SMM changes with contributions coming from

residues at different poles. As a result, the two monopole operators do not commute.〈
V(1,1)V(0,−1)

〉
:

The brane configuration contains two NS5 pairs with two D1s emanating from the

left-most NS5+ and one D1 emanating from the right-most NS5−. There are two D1

patterns, each with two D1s reconnecting and a single D1 ending on D31 or on D32

from the right, see Figure 5.6-a). Consequently, we obtain

〈
V(1,1)V(0,−1)

〉
= ue1Z3(ϕ2,m, ε; ξ > 0) + ue2Z3(ϕ1,m, ε; ξ > 0) , (5.3.32)

where Z3 is the non-trivial bubbling factor, which is a U(1) theory with a hypermul-

tiplet of mass x = ϕ2 or x = ϕ1, and Nf fundamental Fermi multiplets of masses
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mk. The matrix model is

Z3(x, ϕ,m, ε; ξ) =
�

JK(ξ)

dz

2πi

(2ε)
Nf∏
k=1

(z −mk)

[±(z − x) + ε] . (5.3.33)

In the positive FI chamber ξ > 0, we pick the residue at z = x− ε, which gives

Z3(x,m, ε; ξ > 0) =
Nf∏
k=1

(x−mk − ε) . (5.3.34)

Consequently, the correlator is given by

〈
V(1,1)V(0,−1)

〉
= ue1

Nf∏
k=1

(ϕ2 −mk − ε) + ue2

Nf∏
k=1

(ϕ1 −mk − ε) . (5.3.35)

Permuting the order of the operator insertions changes the sign of the FI parameter

in the SMM (ξ < 0), which results in changing the poles to z = x+ ε. Consequently,

the correlator is given by the same result with ε reversed,

〈
V(0,−1)V(1,1)

〉
= ue1

Nf∏
k=1

(ϕ2 −mk + ε) + ue2

Nf∏
k=1

(ϕ1 −mk + ε) , (5.3.36)

as expected. As soon as Nf ≥ 1, we observe a wall-crossing phenomenon, meaning

that the commutator
〈
[V(1,1), V(0,−1)]

〉
does not vanish.〈

V(1,1)V(−1,−1)
〉
:

The brane configuration contains two NS5 pairs with two D1s emanating from the

left-most NS5+ and two D1s emanating from the right-most NS5−. There is a single

D1 pattern, where the D1s fully reconnect with each other and the abelian magnetic

charge vanishes, see Figure 5.6-b). Consequently, we obtain

〈
V(1,1)V(−1,−1)

〉
= Z4(ϕ,m, ε; ξ > 0) , (5.3.37)

where the non-trivial bubbling factor Z4 is the U(2) theory with two hypermultiplets

of masses ϕ1, ϕ2, and Nf fundamental Fermi multiplets of masses mk. The matrix

model is

Z4(ϕ,m, ε; ξ) =
�

JK(ξ)

dz1dz2

(2πi)2
1
2

(2ε)2(±z12)(±z12 + 2ε)
Nf∏
k=1

∏
i
(zi −mk)∏

a

∏
i

[±(zi − ϕa)] + ε) . (5.3.38)
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Figure 5.6: Brane patterns for two-point correlators in the U(2) SQCD the-
ory and associated SMMs: a)

〈
V(1,1)V(0,−1)

〉
= ue1Z3(ϕ2) + ue2Z3(ϕ1) and b)〈

V(1,1)V(−1,−1)
〉

= Z4.

In the evaluation of Z4 for ξ > 0, the only poles contributing are at (z1, z2) =

(ϕ1 − ε, ϕ2 − ε) and the permutation z1 ↔ z2. After simplification, we obtain

Z4(ϕ,m, ε; ξ > 0) =
∏
a=1,2

Nf∏
k=1

(ϕa −mk − ε) , (5.3.39)

and so 〈
V(1,1)V(−1,−1)

〉
=

∏
a=1,2

Nf∏
k=1

(ϕa −mk − ε) . (5.3.40)

For the commuted correlator, we compute Z4(ξ < 0), and find the same result with

ε→ −ε, as expected,

〈
V(−1,−1)V(1,1)

〉
=

∏
a=1,2

Nf∏
k=1

(ϕa −mk + ε) . (5.3.41)

Again, the two monopoles do not commute and we observe wall-crossing, as soon as

Nf ≥ 1.

〈
V 2

(1,0)V(1,1)
〉
:

The brane configuration has three NS5 pairs, one for each minimal monopole inserted,
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1

2

(ii)(i) (iii)

D3
1

D3
2

D3
1

D3
2

D3
1

D3
2

Figure 5.7: Brane patterns and associated SMM for the three-point correlator〈
V 2

(1,0)V(1,1)
〉

= u3e1+e2 + ue1+3e2 + u2e1+2e2Z1.

with two D1s emanating from the left-most NS5+ and one D1 emanating from the

other two NS5+. There are three D1 patterns, where the number of D1 strings

ending on (D31,D32) are given by (3, 1), (2, 2), and (1, 3), respectively, see Figure 5.7.

Consequently, we obtain
〈
V 2

(1,0)V(1,1)
〉

= u3e1+e2 + ue1+3e2 + u2e1+2e2Z1(ϕ, ε)

= u3e1+e2 + ue1+3e2 + u2e1+2e2
2

(±ϕ12 + 2ε) ,
(5.3.42)

where Z1 is the SMM with gauge group U(1) and two hypermultiplets of mass ϕ1, ϕ2,

which was already encountered in (5.3.16) for the evaluation of the correlator
〈
V 2

(1,0)

〉
.

Changing the order of the insertions of the operators does not affect the final result.

This is because, as found earlier, the operators V(1,0) and V(1,1) commute.
〈
V(1,0)V(1,1)V(0,−1)

〉
:

The brane realisation has three NS5 pairs, with two D1s emanating from the left-

most NS5+ and one D1 emanating from the middle NS5+ and right-most NS5−.

The remaining NS5 branes (with no D1s attached) are spectators. In the language

of partitions we have ρ+ = (2, 1) and ρ− = (1). There are three patterns of D1s,

with the D1 from the NS5− reconnecting with a D1 from an NS5+ in all cases. The
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Figure 5.8: Brane patterns and associated SMM for the three-point correlator〈
V(1,0)V(1,1)V(0,−1)

〉
= u2e1Z3(ϕ2) + u2e2Z3(ϕ1) + ue1+e2Z5.

remaining D1s end on the D3s, with either two D1s ending on a single D3 (σ+ = (2)),

or one D1 ending on each D3 (σ+ = (1, 1)), see Figure 5.8. The correlator is thus

〈
V(1,0)V(1,1)V(0,−1)

〉
= u2e1Z3(ϕ2, ξ > 0) + u2e2Z3(ϕ1, ξ > 0) + ue1+e2Z5(ξ1,2 > 0) ,

(5.3.43)

where Z3 is the SMM that already appeared in the two-point correlator
〈
V(1,1)V(0,−1)

〉
,

see (5.3.32), and Z5 is the bubbling factor described by the right-most quiver in Figure

5.8. The quiver SMM Z5 is computed by

Z5(ϕ,m, ε; ξ) =
�

JK(ξ)

dz

2πi
dẑ

2πi

(2ε)2
Nf∏
k=1

(z −mk)

[±(z − ẑ) + ε] ∏
a=1,2

[±(ẑ − ϕa) + ε] . (5.3.44)

There are two FI parameters ξ := (ξ1, ξ2), one for each U(1) gauge node. In the

case when they are both positive, we pick residues at z = ẑ − ε and ẑ = ϕa − ε, for

a = 1, 2. This gives

Z5(ϕ,m, ε; ξ1,2 > 0) = −

Nf∏
k=1

(ϕ1 −mk − 2ε)

ϕ12(ϕ12 − 2ε) + (ϕ1 ↔ ϕ2) . (5.3.45)
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< 𝑽 𝟏,𝟏 𝑽 𝟏,𝟎 𝑽 𝟎,−𝟏 > < 𝑽 𝟏,𝟎 𝑽 𝟏,𝟏 𝑽 𝟎,−𝟏 >

𝝃𝟏

< 𝑽 𝟎,−𝟏 𝑽 𝟏,𝟎 𝑽 𝟏,𝟏 >< 𝑽 𝟎,−𝟏 𝑽 𝟏,𝟏 𝑽 𝟏,𝟎 >

𝝃𝟐
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< 𝑽 𝟏,𝟏 𝑽 𝟎,−𝟏 𝑽 𝟏,𝟎 >

Figure 5.9: This figure illustrates the six distinct chambers in FI space.
Each chamber corresponds to a specific ordering of the monopole operators
V(1,0), V(1,1), and V(0,−1).

Thus, we have
〈
V(1,0)V(1,1)V(0,−1)

〉
= u2e1P (ϕ2 − ε) + u2e2P (ϕ1 − ε)

− ue1+e2

[
P (ϕ1 − 2ε)
ϕ12(ϕ12 − 2ε) + (ϕ1 ↔ ϕ2)

]
,

(5.3.46)

with

P (x) :=
Nf∏
k=1

(x−mk) . (5.3.47)

The other orderings of the operators in the correlator are given by the same com-

putation but with the FI parameters in different chambers. There are six possible

orderings of these monopole operators, which we illustrate in Figure 5.9. Here

ξ1 is both the single FI parameter of Z3 and the left node FI parameter of Z5,

while ξ2 is only the FI parameter of the right node in Z5. Exchanging V(1,0) and

V(1,1) corresponds to crossing the ξ1 = 0 axis. In addition, exchanging V(1,1) and

V(0,−1) corresponds to crossing the ξ2 = 0 axis. Finally, exchanging V(1,0) and V(0,−1)

corresponds to crossing the ξ1 + ξ2 = 0 line.
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This is all worked out from the brane set-up. Each SMM node corresponds to D1

strings stretched between two NS5s. These two NS5s are associated to two monopole

operator insertions and their positions along x0 determine the FI parameter of the

node ξ = x0
right − x0

left. By looking at the ordering in the operator insertions in

the correlator, we can determine the chamber in FI space. To summarise, there is

wall-crossing when V(0,−1) is commuted with either V(1,0) (wall at ξ1 + ξ2 = 0) or V(1,1)

(wall at ξ2 = 0).

5.3.3 Comparison with Star Product

To conclude this section, we wish to show that the above results are compatible

with the Moyal, or star, product structure from section 5.2.1. The explicit formula

(5.2.3) allows us to compute the star product between any two monopole operators,

and, by iteration, the star product of any number of operators. The star product

is supposed to compute correlators (see (5.1.3)), therefore we can check whether it

agrees with the computations presented in sections 5.3.1 and 5.3.2, based on the

brane constructions. In order to apply the formula (5.2.3), one needs to first express

the abelian monopoles uv in terms of the abelian variables χa, ϕa, as in (5.1.5) and

(5.2.9).

From the relations (5.2.8) with N = 2, we find13

V(1,0) ? V(1,0) = u2e1 + u2e2 + ue1+e2
2

(±ϕ12 + 2ε) =
〈
V 2

(1,0)

〉
,

V(1,0) ? V(0,−1) = ue1−e2 + u−e1+e2 −
[

P (ϕ1 − ε)
ϕ12(ϕ12 − 2ε) + (ϕ1 ↔ ϕ2)

]
=

〈
V(1,0)V(0,−1)

〉
,

V(0,−1) ? V(1,0) = ue1−e2 + u−e1+e2 −
[

P (ϕ1 + ε)
ϕ12(ϕ12 + 2ε) + (ϕ1 ↔ ϕ2)

]
=

〈
V(0,−1)V(1,0)

〉
,

(5.3.48)

which match in all cases. The third product is obtained from the second by reversing

the sign of ε, in agreement with (5.2.11).

13Recall, we define P (x) :=
Nf∏
k=1

(x−mk) in (5.3.47).
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We can also consider some other examples:

V(1,0) ? V(1,1) =
[
eχ1

(
P (ϕ1)

(±ϕ12 + ε)

)1/2

+ (...1 ↔ ...2)
]
?
[
eχ1+χ2(P (ϕ1)P (ϕ2))1/2

]

= e2χ1+χ2

(
P (ϕ1 + ε)P (ϕ1 − ε)P (ϕ2)

(±ϕ12 + ε)

)1/2

+ (...1 ↔ ...2)

= u2e1+e2 + ue1+2e2 .

(5.3.49)

V(1,0) ? V(1,1) ? V(0,−1) =
[
e2χ1+χ2

(
P (ϕ1 + ε)P (ϕ1 − ε)P (ϕ2)

(±ϕ12 + ε)

)1/2

+ (...1 ↔ ...2)
]

?
[
e−χ1

(
P (ϕ1)

(±ϕ12 + ε)

)1/2

+ (...1 ↔ ...2)
]

= eχ1+χ2

(
P (ϕ1)P (ϕ1 − 2ε)2P (ϕ2)

ϕ2
12(ϕ12 − 2ε)2

)1/2

+ e2χ1

(
P (ϕ1 + ε)P (ϕ1 − ε)P (ϕ2 − ε)2

(±ϕ12 + 2ε)(±ϕ12)

)1/2

+ (...1 ↔ ...2)

= −ue1+e2

[
P (ϕ1 − 2ε)
ϕ12(ϕ12 − 2ε) + (ϕ1 ↔ ϕ2)

]
+ u2e1P (ϕ2 − ε) + u2e2P (ϕ1 − ε) .

(5.3.50)

Once again, this is in perfect agreement and is a strong consistency check of the

computations based on branes.

5.4 U(N) SQCD Theories

To conclude our analysis of topological correlation functions of monopole operators,

we study a few correlators with a low number of monopoles of minimal positive and

negative charge in U(N) SQCD theories. The bubbling terms are determined by

following the JK prescription to compute the partition functions for the relevant

SMMs. We focus in particular on the relationship between the correlation functions

containing a commutator of monopole operators, the non-zero contributions to the

partition functions from poles at infinity, and wall-crossing phenomena.
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5.4.1 One Positive and One Negative Minimal Monopole

Operator

Firstly, we consider the correlator of the product of two minimal monopole operators

of opposite charge, U+
1 ≡ V(1,0N−1) and U−1 ≡ V(0N−1,−1). Depending on the order of

these operators, we obtain two different results. To compute these results we require

a set-up containing an NS5+ and an NS5− brane, from each of which emanates a

D1 string, that is ρ+ = ρ− = (1). In total, there are N(N − 1) + 1 configurations

contributing to the correlator. There are N(N − 1) configurations with the NS5+

and the NS5− connected to different D3 branes and the remaining N − 2 D3 branes

are unconnected (σ+ = σ− = (1)), which correspond to an abelian magnetic charge

ea − eb, with a 6= b. There is a single configuration where the NS5 branes are

connected by the D1 strings joining and the N D3 branes remain unconnected, with

vanishing abelian magnetic charge (σ+ = σ− = ()). This tells us that

〈U+
1 U

−
1 〉 =

∑
a6=b

uea−eb + Z+−(ϕ,m, ε) ,

〈U−1 U+
1 〉 =

∑
a6=b

uea−eb + Z−+(ϕ,m, ε) ,
(5.4.1)

where ea := (0a−1, 1, 0N−a) and a, b = 0, . . . , N .

As expected, the first term in each correlator has no bubbling factor. The bubbling

factors Z±∓(ϕ,m, ε), arise from the configuration where the D1s are connected to

each other. These are computed as the SMM described by the abelian quiver (in

matrix notation) N
1

 , (5.4.2)

whose partition function is given by

Z±∓(ϕ,m, ε) =
�

JK(±ξ>0)

dz

2πi

(2ε)
Nf∏
k=1

[z −mk]
N∏
a=1

[±(z − ϕa) + ε]
, (5.4.3)

where ± in Z±∓ corresponds to the FI chamber ±ξ > 0 used in evaluating the
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integral, which is directly linked to the order of the operators in the correlator.

The FI parameter is given by the difference in the positions of the NS5 branes,

ξ = x1 − x−1, where x1/x−1 labels the NS5+/NS5− position along x0. This JK

integral is ill-defined at the codimension-one wall corresponding to the FI parameter

ξ = 0, which is the situation where the NS5+ and NS5− are at the same x0 position

and the operators V(1,0N−1) and V(0N−1,−1) collide.

The poles contributing in the FI chamber ±ξ > 0 are at z = ϕa ∓ ε, where a =

1, . . . , N , and the partition function evaluates to

Z±∓(ϕ,m, ε) = (−1)N−1
N∑
a=1

Nf∏
k=1

[ϕa −mk ∓ ε]∏
b 6=a

[ϕab (ϕab ∓ 2ε)] . (5.4.4)

As expected, the two results are related by sending ε → −ε, see (5.2.11). Con-

sequently, for the product of one minimal positive operator and one minimal negative

operator we find

〈U+
1 U

−
1 〉 =

∑
a6=b

uea−eb + (−1)N−1
N∑
a=1

Nf∏
k=1

[ϕa −mk − ε]∏
b 6=a

[ϕab (ϕab − 2ε)] ,

〈U−1 U+
1 〉 =

∑
a6=b

uea−eb + (−1)N−1
N∑
a=1

Nf∏
k=1

[ϕa −mk + ε]∏
b 6=a

[ϕab (ϕab + 2ε)] ,

(5.4.5)

which matches the result found using the star product from section 5.2.1. These

results are our 3d analogue of the results obtained in section 3.2.2 of [88].

The vacuum expectation value of the commutator
[
U+

1 , U
−
1

]
, which is the differ-

ence between the results computed in the two chambers, is related to the non-zero

contribution Z∞(ϕ,m, ε) from evaluating the residue of the integrand in (5.4.3) at

z =∞,

〈[
U+

1 , U
−
1

]〉
= Z+−(ϕ,m, ε)− Z−+(ϕ,m, ε) = −Z∞(ϕ,m, ε) , (5.4.6)
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where

Z∞(ϕ,m, ε) = Res
z=∞

(2ε)
Nf∏
k=1

[z −mk]
N∏
a=1

[±(z − ϕa) + ε]
. (5.4.7)

Therefore, to obtain the result for the partition function of the SMM in one chamber

from the other chamber, we add or subtract the contribution from evaluating the

residue of the pole at infinity. This corresponds to crossing the codimension-one wall

where the FI parameter is zero, which is the location where the 0d Coulomb branch

opens up. An identical observation could have been made for the N = 2 case with

the correlators in (5.3.27).

For low values of Nf , there is no pole at infinity and the two monopole operators

commute. The first non-zero contribution from the pole at infinity occurs at Nf =

2N − 1. This gives a polynomial of degree 1 in ε. In general, the contribution from

evaluating the residue of the pole at infinity will be a polynomial in ϕ, m, and ε of

total degree Nf − 2N + 2. The explicit contributions from the pole at infinity, which

computes the monopole commutator in (5.4.6), for small values of Nf are

• Nf = 0, 1, . . . , 2N − 2

Z∞(ϕ,m, ε) = 0 . (5.4.8)

• Nf = 2N − 1

Z∞(ϕ,m, ε) = (−1)N−1(2ε) . (5.4.9)

• Nf = 2N

Z∞(ϕ,m, ε) = (−1)N−1(2ε)
2

N∑
a=1

ϕa −
Nf∑
k=1

mk

 . (5.4.10)

• Nf = 2N + 1

Z∞(ϕ,m, ε) = (−1)N−1ε

2Nε2 +
(

2
∑
a

ϕ2
a −

∑
k

m2
k

)
+
(

2
∑
a

ϕa −
∑
k

mk

)2
 .

(5.4.11)
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5.4.2 Two Positive and One Negative Minimal Monopole

Operators

We now expand our analysis by introducing a second minimal positive operator: we

compute the correlator of the product of two minimal positive operators and one

minimal negative operator. In this scenario we find three different results depending

on the order of the operators. We require a set-up containing two NS5 pairs and we

sum over configurations with three D1 strings, where a single string emanates from

the two NS5+, one string emanates from the inner-most NS5−, and the remaining

NS5− is a spectator.

To read off the contributions to the correlator we sum over all of the configurations

where the D1s connect to a D3 or a D1 from an NS5− connects with a D1 from

an NS5+. The configurations contributing to the correlator are shown in Figure

5.10. There are N(N − 1) configurations with both the NS5+ connected to the

same D3 branes, D3a, the NS5− connected to a different D3, D3b, and N − 2 D3s

remain unconnected. Additionally, there are N configurations where the NS5− is

connected to one of the NS5+, the other NS5+ is connected to a D3, D3a, and

the remaining N − 1 D3 branes are unconnected. Finally, there are N(N−1)(N−2)
2

configurations where the NS5 branes are all connected to three different D3 branes

and the remaining N − 3 D3s are unconnected, where a and b are the D3s connected

to the NS5+s and c is the D3 connected to the NS5−. This tells us that the correlator

for the product of these monopole operators is given by

〈
T
(
(U+

1 )2U−1
)〉

=
∑
a6=b

u2ea−eb +
∑
a

ueaZa(ϕ,m, ε; ξ) +
∑
a6=b,c
b 6=c

uea+eb−ecZab(ϕ,m, ε) .

(5.4.12)

The first term on the right hand side in the correlator has no monopole bubbling

contribution, the partition function of the associated SMM is trivial. The third term

in the correlator comes from the cases where the NS5s are all connected to different

D3s. The associated bubbling factor is computed as the SMM described by the
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N-2

(i)

N-2

N-1

(ii)

N-1

N-3

(iii)

N-3

D3
a

D3
a

D3
a

D3
b

D3
c D3

b

Figure 5.10: The brane set-up for the configurations contributing to the cor-
relator of two minimal positive operators and one minimal negative operator.
(i), (ii), and (iii) are an example of one of the diagrams contributing to each of
the sums in the first, second, and third term on the right hand side of (5.4.12).
The other terms contributing to these sums are given by permutations of the
D3 branes.

matrix notation 2

1

 , (5.4.13)

so the SMM is the 0d SQED theory with two hypermultiplets of masses ϕa and ϕb.

The partition function of this quiver was computed earlier in the evaluation of the

correlator
〈
V 2

(1,0)

〉
, see (5.3.16), and we simply state the result again,

Zab(ϕ,m, ε) =
�

JK

dz

2πi
(2ε)

[±(z − ϕa) + ε] [±(z − ϕb) + ε] = 2
(±ϕab + 2ε) . (5.4.14)

where a and b are the D3 branes that are connected to the two NS5+ branes in the

construction, see Figure 5.10-(iii). It is important to highlight that this result is the

same regardless of the chamber in which we compute the JK integral.

The other bubbling factor in the correlator (5.4.12) is computed as the SMM de-
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scribed by the quiver N − 1 1

1 1

 , (5.4.15)

where we underline the U(1) gauge node attached to the Fermi multiplets. The

partition function of this theory is given by

Za(ϕ,m, ε; ξ) =
�

JK(ξ)

dz0dz1

(2πi)2

(2ε)2
Nf∏
k=1

(z0 −mk)∏
b 6=a

[±(z0 − ϕb) + ε] [±(z0 − z1) + ε] [±(z1 − ϕa) + ε] ,

(5.4.16)

where a labels the single D3 brane that is located in the interval between the two

NS5+ branes and the remaining N − 1 D3s are between the inner-most NS5− and

the inner-most NS5+, see Figure 5.10-(ii). The bubbling factors for the different

orderings of the monopole operators are obtained by evaluating this integral in the

different FI chambers. The ordering of the operators is linked to the order of the

NS5 branes, which affects the sign of the FI parameters and leads to the different

chambers. In this case, there are two FI parameters, one for each U(1) gauge node,

which are given by

ξ0 = x1 − x−1 , ξ1 = x2 − x1 , (5.4.17)

where x1, x2 are the x0 coordinates of the two NS5+ branes and x−1 of the inner

NS5−. The outer NS5− is a spectator and plays no role here.

By naively considering the order of these NS5 branes, one expects to find 6 chambers

from the permutations of x1, x2, x−1. However, there is a symmetry under the

exchange of x1 and x2, which tells us that (ξ1, ξ0) is equivalent to (−ξ1, ξ0 + ξ1).

Consequently, there are only 3 distinct chambers, which are illustrated in Figure

5.11, where:

• The + +− chamber satisfies the region ξ0 > 0, ξ0 + ξ1 > 0.

• The −−+ chamber satisfies the region ξ0 < 0, ξ0 + ξ1 < 0.

• The final chamber, +−+, contains the remaining regions described by ξ1 >
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Figure 5.11: This figure illustrates how the 6 regions of the FI space (separated
by the solid black lines) are grouped into 3 distinct chambers, due to the sym-
metry under the exchange of the two NS5+ branes. Each chamber corresponds
to a different ordering of the operators in the correlator (5.4.12).

0, ξ0 < 0, ξ0 + ξ1 > 0 and ξ1 < 0, ξ0 > 0, ξ0 + ξ1 < 0.

In general, for a correlator 〈T
(
(U+

1 )A(U−1 )B
)
〉 there will be (A+B)!

A!B! inequivalent

chambers, in correspondence to all the orderings of A U+
1 operators and B U−1

operators.

The JK prescription tells us that the multi-dimensional poles contributing to the

JK integral in (5.4.16) are different in the different regions of the FI space. In Table

5.1 we list the poles contributing to the integral in each chamber. We apply the

constructive definition of the JK residue from section 3.2.2, where each term in the

sum of residues comes with the appropriate sign ν(F ), see (3.2.10), which depends

on the orientation of the ordered basis used to determine the order in which to

perform the iterated residue for each pole. Evaluating (5.4.16) in each of the three
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Region of FI space Chamber Sign of ν(F ) Multi-dimensional Pole
ξ0 > 0 + (z1 = ϕa − ε, z0 = ϕa − 2ε)
ξ1 > 0 + +− + (z0 = ϕb − ε, z1 = ϕb − 2ε)

ξ0 + ξ1 > 0 + (z1 = ϕa − ε, z0 = ϕb − ε)
ξ0 > 0 + (z0 = z1 − ε, z1 = ϕa − ε)
ξ1 < 0 + +− − (z1 = z0 + ε, z0 = ϕb − ε)

ξ0 + ξ1 > 0 − (z0 = ϕb − ε, z1 = ϕa + ε)
ξ0 < 0 − (z1 = ϕa − ε, z0 = ϕa)
ξ1 > 0 +−+ + (z1 = z0 − ε, z0 = ϕb − ε)

ξ0 + ξ1 > 0 − (z1 = ϕa − ε, z0 = ϕb + ε)
ξ0 > 0 − (z1 = ϕa + ε, z0 = ϕa)
ξ1 < 0 +−+ + (z1 = z0 + ε, z0 = ϕb + ε)

ξ0 + ξ1 < 0 − (z1 = ϕa + ε, z0 = ϕb − ε)
ξ0 < 0 + (z1 = ϕa + ε, z0 = ϕa + 2ε)
ξ1 < 0 −+ + + (z0 = ϕb + ε, z1 = ϕb + 2ε)

ξ0 + ξ1 < 0 + (z1 = ϕa + ε, z0 = ϕb + ε)
ξ0 < 0 + (z0 = z1 + ε, z1 = ϕa + ε)
ξ1 > 0 −+ + − (z1 = z0 − ε, z0 = ϕb + ε)

ξ0 + ξ1 < 0 − (z0 = ϕb + ε, z1 = ϕa − ε)

Table 5.1: Multi-dimensional poles contributing to the integral (5.4.16) in each
chamber, where a has a fixed value and b = 1, . . . , a− 1, a+ 1, . . . , N .

chambers we find

Z++−
a = (−1)N−1P (ϕa − 2ε)∏

b 6=a
[(ϕab − ε) (ϕab − 3ε)] +

∑
b6=a

2(−1)N−1P (ϕb − ε)
(ϕab − ε) (ϕab + 3ε) ∏

c 6=b,a
b 6=a

[ϕbc (ϕbc − 2ε)] ,

(5.4.18)

Z+−+
a = P (ϕa)∏

b 6=a
[±ϕab + ε] +

∑
b 6=a

 (−1)N−1P (ϕb + ε)
(ϕab − ε) (ϕab − 3ε) ∏

c 6=b,a
b 6=a

[ϕbc (ϕbc + 2ε)] + (ε→ −ε)
 ,

(5.4.19)

Z−−+
a = (−1)N−1P (ϕa + 2ε)∏

b 6=a
[(ϕab + ε) (ϕab + 3ε)] +

∑
b 6=a

2(−1)N−1P (ϕb + ε)
(ϕab + ε) (ϕab − 3ε) ∏

c 6=b,a
b 6=a

[ϕbc (ϕbc + 2ε)] ,

(5.4.20)
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where P (x) is defined in (5.3.47). As expected, Z++−
a and Z−++

a are related by

ε→ −ε, while Z+−+
a is invariant.

Consequently, we find the following results for the correlator (5.4.12):

〈
U+

1 U
+
1 U

−
1

〉
=
∑
a6=b

u2ea−eb +
∑
a

ueaZ
++−
a +

∑
a6=b,c
b 6=c

uea+eb−ec
2

(±ϕab + 2ε) ,

〈
U+

1 U
−
1 U

+
1

〉
=
∑
a6=b

u2ea−eb +
∑
a

ueaZ
+−+
a +

∑
a6=b,c
b 6=c

uea+eb−ec
2

(±ϕab + 2ε) ,

〈
U−1 U

+
1 U

+
1

〉
=
∑
a6=b

u2ea−eb +
∑
a

ueaZ
−++
a +

∑
a6=b,c
b 6=c

uea+eb−ec
2

(±ϕab + 2ε) ,

(5.4.21)

where Z++−
a , Z+−+

a , and Z−++
a are given in (5.4.18), (5.4.19), and (5.4.20), respect-

ively. We have checked that these results agree with those obtained using (5.1.4)

and the star product. These correlation functions are our 3d analogue of the results

obtained in section 4.2.2 of [88]. The correlators of two minimal negative operators

and one minimal positive operator can also be obtained from these results by sending

U+
1 ↔ U−1 and ea ↔ e−a.

We can now study the relationship between the results computed in the different

chambers and wall-crossing. The jump between chamber + +− and +−+ is given

by

〈
U+

1

[
U+

1 , U
−
1

]〉
=
∑
a

uea
(
Z++−
a (ϕ,m, ε)− Z+−+

a (ϕ,m, ε)
)
. (5.4.22)

The difference between the SMM partition functions Za of (5.4.16) computed in the

+ +− and +−+ chambers is captured by the residue of a pole at infinity. To obtain

Z+−+
a from Z++−

a there are two options. The first option involves setting ξ0 = 0 and

crossing the ξ1 axis, see Figure 5.11. This corresponds to adding the contribution

from the pole where z1 is finite and z0 →∞,

Z++−
a (ϕ,m, ε)− Z+−+

a (ϕ,m, ε) = −Res
z0=∞

Res
z1=ϕa−ε

Ia(z, ϕ,m, ε) , (5.4.23)

where Ia(z, ϕ,m, ε) is the integrand in (5.4.16). The second option involves crossing

the line ξ0 + ξ1 = 0, which corresponds to adding the contribution from the pole
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where z1 →∞, z0 →∞, with finite z1 − z0,

Z++−
a (ϕ,m, ε)− Z+−+

a (ϕ,m, ε) = −Res
z1=∞

Res
z0=z1−ε

Ia(z, ϕ,m, ε) . (5.4.24)

These two options are identical, since the contributions from the poles at infinity

obey the following relations,

Res
z0=∞

Res
z1=ϕa−ε

Ia = Res
z1=ϕa−ε

Res
z0=∞

Ia = Res
z1=∞

Res
z0=z1−ε

Ia = −Res
z0=∞

Res
z1=z0+ε

Ia . (5.4.25)

Consequently, we can write

〈
U+

1

[
U+

1 , U
−
1

]〉
= −

∑
a

uea Res
z0=∞

Res
z1=ϕa−ε

Ia(z, ϕ,m, ε) = −
∑
a

ueaZ
∞(ϕ− eaε,m, ε) ,

(5.4.26)

which is obtained by evaluating the residue for the pole z1 = ϕa − ε, and then using

the definition of Z∞(ϕ,m, ε) in (5.4.7).

This can be linked with our discussion of the star product by using the quantized

abelian relations from section 5.2.1. In particular, using uea · f(ϕ− eaε) = uea ? f(ϕ),

we find

〈
U+

1

[
U+

1 , U
−
1

]〉
=
∑
a

uea ? [−Z∞(ϕ,m, ε)] =
〈
U+

1

〉
?
〈[
U+

1 , U
−
1

]〉
, (5.4.27)

where the last equality is obtained using the VEV of the commutator in (5.4.6).

Similarly, we find that the jump between chambers +−+ and −+ + is
〈[
U+

1 , U
−
1

]
U+

1

〉
=
∑
a

uea
(
Z+−+
a − Z−++

a

)
= − Z∞(ϕ,m, ε) ?

∑
a

uea

=
〈[
U+

1 , U
−
1

]〉
?
〈
U+

1

〉
,

(5.4.28)

after applying the relation uea · f(ϕ+ eaε) = f(ϕ) ? uea in (5.2.7). Lastly,

〈[(U+
1 )2, U−1 ]〉 = 〈U+

1

[
U+

1 , U
−
1

]
〉+ 〈

[
U+

1 , U
−
1

]
U+

1 〉 =
∑
a

uea
(
Z++−
a − Z−++

a

)
,

(5.4.29)

which involves a sum of two commutators since to obtain Z−++
a from Z++−

a we must

cross two codimension-one walls.

In this discussion we have not mentioned what happens when we set ξ1 = 0 and cross
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the ξ0 axis. This situation corresponds to reversing the order of two NS5+ branes.

Hence, crossing the codimension-one wall given by ξ1 = 0 is related to exchanging

the two minimal positive operators in the correlator, which does not change the

result since they obviously commute. We can also explain this by looking at the

contribution from the appropriate pole at infinity. Crossing the ξ0 axis corresponds

to adding the contribution from the pole where z0 is finite and z1 →∞. Evaluating

the residue of the integrand in (5.4.16) at this pole, we find zero.

Consequently, this analysis is consistent with the ordering of the NS5 branes described

earlier, which explained how the 6 regions of FI space are actually grouped into only

3 inequivalent chambers, due to the symmetry under the exchange of the two NS5+

branes. The difference in the ordering of the operators in the correlator is related to

the signs and relevant magnitudes of the FI parameters. The codimension-one wall-

crossing phenomenon is manifest when we exchange two operators of a different type,

and the contribution from evaluating the residue of the appropriate pole at infinity

is non-zero. The pole at infinity is specified entirely by crossing the codimension-one

wall between the relevant chambers. When the contribution from a particular pole

at infinity is zero, the correlator is unchanged, which corresponds to the exchange

of two commuting (and in this case identical) operators.

5.4.3 Two Positive and Two Negative Minimal Monopole

Operators

We finish our analysis by studying the correlator of the product of two minimal

positive operators and two minimal negative operators, which is an example of a

computation where a bubbling term with a non-abelian unitary gauge node emerges.

Depending on the order of the operators, we obtain six different results. We require

a set-up containing two NS5 pairs and we sum over configurations with four D1

strings, where a single string emanates from each of the NS5 branes.
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Figure 5.12: The brane configurations and associated SMMs for the chamber
dependent terms that arise in the correlator

〈
T
(
(U+

1 )2(U−1 )2
)〉

.

The correlator of the product of these monopole operators is given by
〈
T
(
(U+

1 )2(U−1 )2
)〉

=
∑
a,b

u2ea−2eb +
∑
a,b,c

u2ea−eb−ecZ
−
bc +

∑
a,b,c

u−2ea+eb+ecZ
+
bc

+
∑
a,b,c,d

uea+eb−ec−edZab,cd +
∑
a,b

uea−ebZab(ξ) + Z(ξ) ,
(5.4.30)

where a, b, c, d = 1, . . . , N , and it is understood that all indices that are summed over

are different. We have indicated explicitly the SMM partition functions that exhibit

a non-trivial dependence on the FI parameters ξ, and the brane configurations for

these two terms are illustrated in Figure 5.12.

The first term on the right hand side in the correlator, which has no monopole

bubbling factor, arises from the configurations where one of the D3 branes, D3a, is

connected to both NS5+, another D3, D3b, is connected to both NS5− and N−2 D3s

remain unconnected. The second term on the right hand side in (5.4.30) comes from

the cases where both of the NS5+ are connected to the same D3, D3a, the two NS5−

are connected to different D3s, D3b and D3c, and N − 3 branes are unconnected.
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The associated bubbling factor is computed as the SMM described by the quiver2

1

 . (5.4.31)

The partition function of this theory has already been computed previously and is

Z−bc =
�

JK

dz

2πi
(2ε)

[±(z − ϕb) + ε] [±(z − ϕc) + ε] = 2
(±ϕbc + 2ε) , (5.4.32)

where b and c are the D3 branes that are connected to the two NS5− in the construc-

tion. The third term in the correlator is given by a left-right mirror configuration,

where both of the NS5− are connected to the same D3, D3a, the two NS5+ are

connected to different D3s, D3b and D3c, and N − 3 branes remain unconnected.

The bubbling factor is computed as the partition function of SMM described by

the same quiver as (5.4.31). Its partition function is Z+
bc = Z−bc, where now b and c

represent the D3 branes that are connected to the two NS5+ branes in the construc-

tion. The next term in (5.4.30) arises from the cases where all of the NS5 branes are

connected to different D3s and N − 4 D3s are unconnected. The resulting bubbling

term factorises into a product of the two previous bubbling factors,

Zab,cd = Z+
abZ

−
cd = 4

(±ϕab + 2ε) (±ϕcd + 2ε) , (5.4.33)

where a, b (c, d) denote the D3 branes that are connected to the NS5+ (NS5−).

All of the terms discussed so far are chamber independent. The different orderings of

the operators in the correlator are encoded in the last two terms of (5.4.30), where

the bubbling factors carry FI chamber dependence. The penultimate term in the

correlator arises from the configurations where a single NS5+ and a single NS5− are

connected, and the other NS5+ and NS5− are connected to different D3s, with N −2

D3s remaining unconnected, see Figure 5.12-(i). The bubbling factor is computed
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as the SMM described by the quiver1 N − 2 1

1 1 1

 , (5.4.34)

where again we underline the gauge node that is attached to the Fermi multiplets.

The partition function of this theory is given by

Zab(ξ) =
�

JK(ξ)

dz−1dz0dz1

(2πi)3
(2ε)3P (z0)

∆(z) , (5.4.35)

where

∆(z) = [±(z−1 − ϕb) + ε] [±(z1 − ϕa) + ε]
∏
s=±1

[±(z0s) + ε]
∏
c 6=a,b

[±(z0 − ϕc) + ε] ,

(5.4.36)

where a (b) denotes the single D3 brane that is connected to the NS5+ (NS5−), namely

the D3 brane that is located in the interval between the two NS5+ (NS5−), after

applying a Hanany-Witten transition. Finally, there is one configuration where all

of the NS5s are connected by the D1 strings and N D3 branes remain unconnected,

as shown in Figure 5.12-(ii). This gives the remaining bubbling factor, which is

computed as the SMM described by the quiver0 N 0

1 2 1

 , (5.4.37)

whose partition function is given by

Z(ξ) =
�

JK(ξ)

dz−1dz1
2∏
i=1

dz0,i

2(2πi)4

(2ε)4 [±z0,12] [±z0,12 + 2ε]
2∏
i=1

P (z0,i)
2∏
i=1

[ ∏
s=±1

[±(z0,i − zs) + ε]
N∏
a=1

[±(z0,i − ϕa) + ε]
] .

(5.4.38)

All of the N D3 branes are located in the interval between the inner-most NS5+

and the inner-most NS5−. The explicit details of the computation of the monopole

bubbling factors (5.4.35) and (5.4.38) has been relegated to appendix C.

The ordering of the NS5 branes affects the signs of the FI parameters, which leads
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to the different chambers. In this case, there are three FI parameters given by

ξ−1 = x−1 − x−2 , ξ0 = x1 − x−1 , ξ1 = x2 − x1 , (5.4.39)

where x1, x2 are the x0 coordinates of the two NS5+ branes and x−1, x−2 of the two

NS5− branes. These FI parameters tell us that

ξ−1 + ξ0 = x1 − x−2 , ξ0 + ξ1 = x2 − x−1 , ξ−1 + ξ0 + ξ1 = x2 − x−2 . (5.4.40)

By naively considering the order of these four NS5 branes, one expects to find 24

chambers from the permutations of x−2, x−1, x1, x2. However, there is a symmetry

under the exchange of x1 and x2, and another symmetry under the exchange of x−1

and x−2. Consequently, there are only 6 distinct chambers, which are given up to

the aforementioned permutations by:

• + +−− chamber: x−2 < x−1 < x1 < x2.

• +−+− chamber: x−2 < x1 < x−1 < x2.

• +−−+ chamber: x1 < x−2 < x−1 < x2.

• −−++ chamber: x1 < x2 < x−2 < x−1.

• −+−+ chamber: x1 < x−2 < x2 < x−1.

• −+ +− chamber: x−2 < x1 < x2 < x−1.

For the chamber dependent SMM partition functions Zab(ξ) and Z(ξ) in (5.4.30), we

will denote the chamber in which the partition function is computed by a superscript,

e.g. Z++−−
ab is Zab evaluated in the + +−− chamber.

We conclude our analysis by studying one example of wall-crossing between the

results for (5.4.30) computed in two adjacent chambers, + +−− and +−+−. Thus,

〈
U+

1

[
U+

1 , U
−
1

]
U−1

〉
=
∑
a6=b

uea−eb
(
Z++−−
ab − Z+−+−

ab

)
+
(
Z++−− − Z+−+−

)
.

(5.4.41)
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Firstly, to obtain Z+−+−
ab from Z++−−

ab we cross the plane ξ0 = 0, which corresponds

to adding the contribution from the pole where z1 and z−1 are both finite, and

z0 →∞,

Z++−−
ab − Z+−+−

ab = − Res
z0=∞

Res
z1=ϕa−ε

Res
z−1=ϕb−ε

Iab , (5.4.42)

where Iab is the integrand in (5.4.35). Analogously, to obtain Z+−+− from Z++−− we

must also cross ξ0 = 0. Taking into account both the gauge and flavour symmetry,

we find

Z++−− − Z+−+− = −
N∑
a=1

(
Res
z0,1=∞

Res
z−1=ϕa−2ε

Res
z1=ϕa−2ε

Res
z0,2=ϕa−ε

I + (z0,1 ↔ z0,2)
)
,

(5.4.43)

where I is the integrand in (5.4.38). Due to the gauge symmetry, we find

Res
z0,1=∞

Res
z−1=ϕa−2ε

Res
z1=ϕa−2ε

Res
z0,2=ϕa−ε

I = Res
z0,2=∞

Res
z−1=ϕa−2ε

Res
z1=ϕa−2ε

Res
z0,1=ϕa−ε

I . (5.4.44)

By evaluating the residues of the poles not at infinity and using our definition of Z∞

in (5.4.7), it is possible to write

〈
U+

1

[
U+

1 , U
−
1

]
U−1

〉
= −

N∑
a6=b

uea−ebZ
∞(ϕ− (ea + eb)ε,m, ε)

−
N∑
a=1

Z∞(ϕ− 2eaε,m, ε)


(−1)N−1

Nf∏
k=1

[ϕa −mk − ε]∏
b 6=a

ϕab (ϕab − 2ε)

 .

(5.4.45)

Comparing with (5.2.8), we see that the final term in brackets is just uea ? u−ea , and

using our quantized abelian relations from section 5.2.1, along with (5.4.6), it is easy

to see that 〈
U+

1

[
U+

1 , U
−
1

]
U−1

〉
=
〈
U+

1

〉
?
〈[
U+

1 , U
−
1

]〉
?
〈
U−1

〉
, (5.4.46)

showing agreement with the result expected from the star product.

To conclude, the non-commutativity of the monopole operators is tied to a wall-

crossing phenomenon in the gauged SMM. The choice in the ordering of the monopole

insertions along the line in R× R2
ε is directly related to a choice in the signs of the

FI parameters in the SMM. When we reverse the order of two insertions, we cross a
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codimension-one hyperplane, a wall, in the FI parameter space and the JK contour

changes, instructing us to pick contributions at different poles. If the sign of the

charge of the two monopole operators that are exchanged is the same, the partition

function does not jump across the wall. However, every time we cross a wall at which

two monopole operators of opposite charge (or equivalently an NS5+ and an NS5−

brane) change order, the partition function jumps. Hence, positively and negatively

charged monopole operators generically do not commute. For the cases that we have

discussed, we show that the commutators are simply related to the residues of poles

at infinity in the matrix models.





Chapter 6

Concluding Remarks and Outlook

To conclude, we summarise the main points of this thesis and discuss the possible

directions for future work.

After reviewing background material for two- and three-dimensional supersymmetric

gauge theories in chapter 2, we discussed supersymmetric localization and the Jeffrey-

Kirwan (JK) residue operation in chapter 3.

The technique of localization is useful to compute path integrals in supersymmetric

field theories. The main point is summarised by emphasising that when the path

integral is deformed by a Q-exact localizing action term, the semi-classical approxim-

ation is exact, and the path integral is localized to the fixed points of the Q-invariant

field configurations given by solving fermions = 0 and Q (fermions) = 0. The

localization procedure has been successfully applied to various supersymmetric field

theories defined on curved spaces. We demonstrated this technique in an example

by evaluating the exact two-sphere partition function of two-dimensional N = (2, 2)

Landau-Ginzburg models with a twisted superpotential.

The JK residue is another useful tool in the analysis of exact results for supersymmet-

ric gauge theories. Its definition was explained in section 3.2, and we also presented

the explicit evaluation of a one- and two-dimensional JK integral. Both of these

techniques, supersymmetric localization and the JK residue, were utilised in chapters

4 and 5 to obtain our results.



132 Chapter 6. Concluding Remarks and Outlook

In chapter 4, by using the exact formula for the correlation functions of two-

dimensional N = (2, 2) Gauged Linear Sigma Models (GLSMs) on the Omega-

deformed two-sphere background [74], we studied the computation of the correlators

for the GLSM describing the non-compact orbifold C3/Z(2N+1)(2,2,1). With the Omega

deformation turned off, we found that the result for the three-point correlators is

ambiguous, since it depended on the twisted masses that were used to make the

JK integral non-degenerate. We turned on the Omega deformation in an attempt

to regulate the integral and repeated the computation. We found that the result

for the three-point correlators matched the previous computation provided that the

limits of vanishing twisted masses were taken in an appropriate fashion. In addition,

we compared our results with the evaluation of these correlations functions in the

literature. We clarified that the results obey the quantum cohomology relations in

the massive theory but there is a mild violation, due to the three-point correlators,

in the massless theory.

We examined in chapter 4 a single GLSM with a non-compact geometry, but it would

be worthwhile to study other cases, including non-abelian models, to observe if the

correlation functions for different non-compact geometries are ambiguous. It would

also be interesting to investigate the connection between the contour integral of [20]

and the A-model correlators formula of [74], see (4.2.21) and (4.1.19), respectively.

A potential area for future research is the application of supersymmetric localization

to B-twisted Landau-Ginzburg models on the Omega-deformed two-sphere. This

would enable the computation of correlation functions to be compared using two-

dimensional mirror symmetry.

In chapter 5 we computed correlators of monopole operators in three-dimensional

N = 4 U(N) gauge theories in the R × R2
ε Omega background, using inputs from

supersymmetry localization and the brane realisation of these operators in type IIB

string theory. These correlators were written in terms of a sum containing products

of abelian monopole variables and monopole bubbling factors. The abelian monopole

variables, which are rational functions of the vacuum expectation values of complex



133

scalars in the vector multiplet, are well understood. On the other hand, the bubbling

factors, which are the partition functions of zero-dimensional gauged Super-Matrix-

Models (SMMs), are challenging to compute. These were realised as the theory

living on the D1 strings in the brane construction and we explicitly computed them

by applying the JK residue prescription. We found that the non-commutativity

arising in the monopole operator insertions is related to wall-crossing phenomena in

the FI parameter space of the SMM. Finally, we used the non-commutative Moyal

(star) product and the action of PT symmetry as non-trivial consistency checks to

successfully test our results.

The method discussed in chapter 5 has several advantages. Firstly, it is a direct

approach, computing correlators from supersymmetric localization, so it does not rely

on assumptions. It can also be applied for arbitrary gauge group rank. In addition, it

provides evidence for the Moyal product realisation of the non-commutative product.

Finally, in our method the physics of monopole bubbling is manifest, and importantly,

the physics of the results is transparent.

This method also has some limitations. In particular, it requires a brane realisation

of the 3d gauge theory, which is only available for quiver-like theories with classical

gauge group factors. Even with a brane realisation, the method may become tedious

for long quivers. However, one may argue that for complicated theories, any method

will necessarily be tedious anyway. The significant remaining challenge is the com-

putation of the matrix models ZSMM at zero FI parameters, so called on-the-wall

partition functions. When two adjacent NS5 branes (for example the inner-most

NS5+ and the inner-most NS5−) share the same x0 position, the corresponding FI

parameter for the respective gauge node is zero, and the partition function cannot

be computed using the JK residue prescription. This situation arises generically,

pointing to the missing ingredient in our construction: the computation of ZSMM on

the FI walls. The SMM are readily evaluated when the FI parameters are non-zero,

i.e. away from the chamber walls in the FI parameter space, which allowed us

to compute the correlators of monopoles of minimal positive and negative charge
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efficiently. On the other hand, the evaluation of the vacuum expectation values

and correlators of higher charged monopoles crucially relies on the technical task of

evaluating the matrix models on the FI space walls.

This work could be extended to study the quantized Coulomb branch of various

3d gauge theories (with brane realisations). Furthermore, the exact results for the

correlators of Coulomb branch operators could be used to address various physics

questions, in particular how to determine the quantized monopole relations and the

precise map of operators under three-dimensional mirror symmetry. Finally, this

analysis carried out using brane constructions has the potential to be extended to

gauge theories with N < 4 supersymmetry.



Appendix A

Mathematica Code for Performing

the Jeffrey-Kirwan Residue

This appendix contains the Mathematica code used to compute the two-dimensional

JK integral (3.2.16) in section 3.2.3.



JK Residue Computation Example 

Integrand
e = epsilon 

In[1]:= Den1 = {z1 - z0 + e, -z1 + z0 + e, z2 - z3 + e, -z2 + z3 + e, z1 - z2 + e, -z1 + z2 + e}

Length[Den1]

listProduct[x_List] := Times @@ x

integrand = 2 e^2
1

listProduct[Den1]

Out[1]= {e - z0 + z1, e + z0 - z1, e + z2 - z3, e - z2 + z3, e + z1 - z2, e - z1 + z2}

Out[2]= 6

Out[4]= 4 e2  e + z0 - z1 e - z0 + z1 e + z1 - z2 e - z1 + z2 e + z2 - z3 e - z2 + z3

Charge Vectors

Define the charge vectors

In[5]:= q[1] = {1, 0};

q[2] = {-1, 0};

q[3] = {0, 1};

q[4] = {0, -1};

q[5] = {1, -1};

q[6] = {-1, 1};

q[7] = {1, -1};

q[8] = {-1, 1};

Sum of two charges

In[13]:= qsum2[i_, j_] := q[i] + q[j];

Poles
Associate the terms in the denominator of the integrand to the poles

In[14]:= a = {1 → z1 → z0 - e, 2 → z1 → z0 + e, 3 → z2 → z3 - e, 4 → z2 → z3 + e,

5 → z1 → z2 - e, 6 → z2 → z1 - e, 7 → z2 → z1 + e, 8 → z1 → z2 + e};

SelfReplace[rules_] := MapFunctionu, u[[1]] → u[[2]] //. rules, rules;

Find multidimensional poles and exclude the combinations that are not allowed 
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In[16]:= d = Tuples[{{1, 2, 5, 8}, {3, 4, 6, 7}}];

Do[If[ContainsNone[d[[i]], {1, 2, 3, 4}] ||

SubsetQ[d[[i]], {5, 6}] || SubsetQ[d[[i]], {5, 7}] || SubsetQ[d[[i]], {6, 8}] ||

SubsetQ[d[[i]], {7, 8}], d[[i]] = 0,], {i, Length[d]}]

Length[d]

fieldswithconstraints = DeleteCases[d, 0]

Length[fieldswithconstraints]

Out[18]= 16

Out[19]= {{1, 3}, {1, 4}, {1, 6}, {1, 7}, {2, 3},

{2, 4}, {2, 6}, {2, 7}, {5, 3}, {5, 4}, {8, 3}, {8, 4}}

Out[20]= 12

Now use ‘a’ to change the numbers in the allowed combinations ‘fieldswithconstraints’ to the poles 
in terms of z’s and e. Use ‘SelfReplace’ to simplify the poles and check that all the poles are unique 
(no duplicates).

In[21]:= dd = fieldswithconstraints /. a

tt = Table[SelfReplace[dd[[i]]], {i, 1, Length[dd]}]

compare = Table[Position[tt, tt[[k]]], {k, 1, Length[tt]}]

Do[If[Dimensions[compare[[i]]] ≠ {1, 1}, compare[[i]] = 0,], {i, 1, Length[compare]}]

unique = DeleteCases[compare, 0];

Length[tt]

Length[unique]

Out[21]= {{z1 → -e + z0, z2 → -e + z3}, {z1 → -e + z0, z2 → e + z3}, {z1 → -e + z0, z2 → -e + z1},

{z1 → -e + z0, z2 → e + z1}, {z1 → e + z0, z2 → -e + z3}, {z1 → e + z0, z2 → e + z3},

{z1 → e + z0, z2 → -e + z1}, {z1 → e + z0, z2 → e + z1}, {z1 → -e + z2, z2 → -e + z3},

{z1 → -e + z2, z2 → e + z3}, {z1 → e + z2, z2 → -e + z3}, {z1 → e + z2, z2 → e + z3}}

Out[22]= {{z1 → -e + z0, z2 → -e + z3}, {z1 → -e + z0, z2 → e + z3}, {z1 → -e + z0, z2 → -2 e + z0},

{z1 → -e + z0, z2 → z0}, {z1 → e + z0, z2 → -e + z3}, {z1 → e + z0, z2 → e + z3},

{z1 → e + z0, z2 → z0}, {z1 → e + z0, z2 → 2 e + z0}, {z1 → -2 e + z3, z2 → -e + z3},

{z1 → z3, z2 → e + z3}, {z1 → z3, z2 → -e + z3}, {z1 → 2 e + z3, z2 → e + z3}}

Out[23]= {{{1}}, {{2}}, {{3}}, {{4}}, {{5}},

{{6}}, {{7}}, {{8}}, {{9}}, {{10}}, {{11}}, {{12}}}

Out[26]= 12

Out[27]= 12

Good, now extract the unique allowed combinations and the unique poles.  Separate the expres-
sions on the left and on the right of the arrows in ‘unique’ into two separate lists, and check. 
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In[28]:= uniquepoles = Table[Flatten[tt[[Flatten[unique[[i]]]]]], {i, 1, Length[unique]}]

uniquefields = Table[

Flatten[fieldswithconstraints[[Flatten[unique[[i]]]]]], {i, 1, Length[unique]}]

pp = Table[Flatten[dd[[Flatten[unique[[i]]]]]], {i, 1, Length[unique]}]

up = Table[Last[pp[[k, i]]], {k, 1, Length[pp]}, {i, 1, Length[pp[[k]]]}]

zz = Table[First[pp[[k, i]]], {k, 1, Length[pp]}, {i, 1, Length[pp[[k]]]}]

Length[uniquepoles]

Length[uniquefields]

Length[up]

Length[zz]

unique[[4]]

uniquepoles[[4]]

uniquefields[[4]]

up[[4]]

zz[[4]]

Out[28]= {{z1 → -e + z0, z2 → -e + z3}, {z1 → -e + z0, z2 → e + z3}, {z1 → -e + z0, z2 → -2 e + z0},

{z1 → -e + z0, z2 → z0}, {z1 → e + z0, z2 → -e + z3}, {z1 → e + z0, z2 → e + z3},

{z1 → e + z0, z2 → z0}, {z1 → e + z0, z2 → 2 e + z0}, {z1 → -2 e + z3, z2 → -e + z3},

{z1 → z3, z2 → e + z3}, {z1 → z3, z2 → -e + z3}, {z1 → 2 e + z3, z2 → e + z3}}

Out[29]= {{1, 3}, {1, 4}, {1, 6}, {1, 7}, {2, 3},

{2, 4}, {2, 6}, {2, 7}, {5, 3}, {5, 4}, {8, 3}, {8, 4}}

Out[30]= {{z1 → -e + z0, z2 → -e + z3}, {z1 → -e + z0, z2 → e + z3}, {z1 → -e + z0, z2 → -e + z1},

{z1 → -e + z0, z2 → e + z1}, {z1 → e + z0, z2 → -e + z3}, {z1 → e + z0, z2 → e + z3},

{z1 → e + z0, z2 → -e + z1}, {z1 → e + z0, z2 → e + z1}, {z1 → -e + z2, z2 → -e + z3},

{z1 → -e + z2, z2 → e + z3}, {z1 → e + z2, z2 → -e + z3}, {z1 → e + z2, z2 → e + z3}}

Out[31]= {{-e + z0, -e + z3}, {-e + z0, e + z3}, {-e + z0, -e + z1}, {-e + z0, e + z1},

{e + z0, -e + z3}, {e + z0, e + z3}, {e + z0, -e + z1}, {e + z0, e + z1},

{-e + z2, -e + z3}, {-e + z2, e + z3}, {e + z2, -e + z3}, {e + z2, e + z3}}

Out[32]= {{z1, z2}, {z1, z2}, {z1, z2}, {z1, z2}, {z1, z2},

{z1, z2}, {z1, z2}, {z1, z2}, {z1, z2}, {z1, z2}, {z1, z2}, {z1, z2}}

Out[33]= 12

Out[34]= 12

Out[35]= 12

Out[36]= 12

Out[37]= {{4}}

Out[38]= {z1 → -e + z0, z2 → z0}

Out[39]= {1, 7}

Out[40]= {-e + z0, e + z1}

Out[41]= {z1, z2}

Evaluate the iterated residue for each eta. Find the poles 
that contribute in each chamber, with their sign in the 
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iterated residue, and check that the final result is the 
same in all chambers.

JK parameters for each chamber.

In[42]:= η = {{{1}, {2}}, {{2}, {1}}, {{2}, {-1}},

{{1}, {-2}}, {{-1}, {-2}}, {{-2}, {1}}, {{-1}, {2}}};

Length[

η]

Out[43]= 7

Check that these η are all unique. 

In[44]:= Table[η[[i]] === η[[j]], {i, 1, Length[η] - 1}, {j, i + 1, Length[η]}]

Out[44]= {{False, False, False, False, False, False}, {False, False, False, False, False},

{False, False, False, False}, {False, False, False}, {False, False}, {False}}

Good. Now for each of the chambers, find the poles that contribute in each chamber and follow the 
JK prescription to evaluate the iterated residue. Print the poles that contribute in each chamber 
and the final result.
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In[45]:= Forll = 1, ll < Length[η] + 1, ll++,

ww = 1;

Forj = 1, j < Length[uniquepoles] + 1, j++,

pp = Table[Flatten[dd[[Flatten[unique[[i]]]]]], {i, 1, Length[unique]}];

up = Table[Last[pp[[k, i]]], {k, 1, Length[pp]}, {i, 1, Length[pp[[k]]]}];

zz = Table[First[pp[[k, i]]], {k, 1, Length[pp]}, {i, 1, Length[pp[[k]]]}];

perm = Permutations[uniquefields[[j]]];

Do[

If[Solve[Transpose[{q[perm[[i, 1]]], qsum2[perm[[i, 1]], perm[[i, 2]]]}].{e, f} ⩵

η[[ll]] && e ≥ 0 && f ≥ 0, {e, f}] ⩵ {}, perm[[i]] = 0,], {i, Length[perm]}];

new = DeleteCases[perm, 0];

If[new == {}, result[j] = 0,

tt =

Table[Position[uniquefields[[j]], new[[1, i]]], {i, 1, Dimensions[new][[2]]}];

t = Flatten[tt];

polefirst = zz[[j]][[t[[1]]]] → up[[j]][[t[[1]]]];

rs1 = Residue[integrand, {zz[[j]][[t[[1]]]], up[[j]][[t[[1]]]]}];

up[[j]] = up[[j]] /. {zz[[j]][[t[[1]]]] → up[[j]][[t[[1]]]]};

polesecond = zz[[j]][[t[[2]]]] → up[[j]][[t[[2]]]];

result[j] = Residue[rs1, {zz[[j]][[t[[2]]]], up[[j]][[t[[2]]]]}];

up[[j]] = up[[j]] /. {zz[[j]][[t[[2]]]] → up[[j]][[t[[2]]]]};

pol[ww] = {polefirst, polesecond};

ww = ww + 1;

];

Ifnew ⩵ {}, sig[j] = 0,

ddd[j] = Det[Transpose[{q[uniquefields[[j]][[t[[1]]]]],

qsum2[uniquefields[[j]][[t[[1]]]], uniquefields[[j]][[t[[2]]]]]}]];

sig[j] = Signature[t] * Sign[ddd[j]];

;

Clear[pp];

Clear[up];

Clear[zz];

;

Print["In the chamber ", η[[ll]]];

Print["The contributing poles are ", allpoles[ll] = Table[pol[y], {y, 1, ww - 1}]];

Print["The total number of poles is ", Length[allpoles[ll]]];

signs[ll] = DeleteCases[Table[sig[j], {j, 1, Length[uniquepoles]}], 0];

Print["The sign in the iterated residue for each of these poles is ", signs[ll]];

answer[ll] = Sum[sig[j] * result[j], {j, 1, Length[uniquepoles]}];

Print["The result in this chamber is ", answer[ll]];

Print["This result simplifies to ", FullSimplify[answer[ll]]];

Print[];

Clear[ww];

Clear[result];

Clear[pol];

Clear[sig];

Clear[ddd];



In the chamber {{1}, {2}}

The contributing poles are

{{z2 → -e + z3, z1 → -e + z0}, {z1 → -e + z0, z2 → -2 e + z0}, {z2 → -e + z3, z1 → -2 e + z3}}

The total number of poles is 3
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The sign in the iterated residue for each of these poles is {1, 1, 1}

The result in this chamber is

-
1

(e + z0 - z3) (3 e + z0 - z3)
+

1

(e + z0 - z3) (e - z0 + z3)
-

1

(e - z0 + z3) (3 e - z0 + z3)

This result simplifies to
3

(3 e + z0 - z3) (3 e - z0 + z3)

In the chamber {{2}, {1}}

The contributing poles are

{{z1 → -e + z0, z2 → -e + z3}, {z1 → -e + z0, z2 → -2 e + z0}, {z2 → -e + z3, z1 → -2 e + z3}}

The total number of poles is 3

The sign in the iterated residue for each of these poles is {1, 1, 1}

The result in this chamber is

-
1

(e + z0 - z3) (3 e + z0 - z3)
+

1

(e + z0 - z3) (e - z0 + z3)
-

1

(e - z0 + z3) (3 e - z0 + z3)

This result simplifies to
3

(3 e + z0 - z3) (3 e - z0 + z3)

In the chamber {{2}, {-1}}

The contributing poles are

{{z1 → -e + z0, z2 → e + z3}, {z1 → -e + z0, z2 → z0}, {z1 → -e + z2, z2 → -e + z3}}

The total number of poles is 3

The sign in the iterated residue for each of these poles is {-1, -1, 1}

The result in this chamber is

-
1

(e + z0 - z3) (3 e + z0 - z3)
+

1

(e + z0 - z3) (e - z0 + z3)
-

1

(e - z0 + z3) (3 e - z0 + z3)

This result simplifies to
3

(3 e + z0 - z3) (3 e - z0 + z3)

In the chamber {{1}, {-2}}

The contributing poles are

{{z2 → e + z3, z1 → -e + z0}, {z2 → e + z1, z1 → e + z0}, {z1 → -e + z2, z2 → e + z3}}

The total number of poles is 3

The sign in the iterated residue for each of these poles is {-1, 1, -1}

The result in this chamber is

-
1

(e + z0 - z3) (3 e + z0 - z3)
+

1

(e + z0 - z3) (e - z0 + z3)
-

1

(e - z0 + z3) (3 e - z0 + z3)

This result simplifies to
3

(3 e + z0 - z3) (3 e - z0 + z3)

In the chamber {{-1}, {-2}}

The contributing poles are

{{z2 → e + z3, z1 → e + z0}, {z1 → e + z0, z2 → 2 e + z0}, {z2 → e + z3, z1 → 2 e + z3}}

The total number of poles is 3
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The sign in the iterated residue for each of these poles is {1, 1, 1}

The result in this chamber is

-
1

(e + z0 - z3) (3 e + z0 - z3)
+

1

(e + z0 - z3) (e - z0 + z3)
-

1

(e - z0 + z3) (3 e - z0 + z3)

This result simplifies to
3

(3 e + z0 - z3) (3 e - z0 + z3)

In the chamber {{-2}, {1}}

The contributing poles are

{{z1 → e + z0, z2 → -e + z3}, {z1 → e + z0, z2 → z0}, {z1 → e + z2, z2 → e + z3}}

The total number of poles is 3

The sign in the iterated residue for each of these poles is {-1, -1, 1}

The result in this chamber is

-
1

(e + z0 - z3) (3 e + z0 - z3)
+

1

(e + z0 - z3) (e - z0 + z3)
-

1

(e - z0 + z3) (3 e - z0 + z3)

This result simplifies to
3

(3 e + z0 - z3) (3 e - z0 + z3)

In the chamber {{-1}, {2}}

The contributing poles are

{{z2 → -e + z1, z1 → -e + z0}, {z2 → -e + z3, z1 → e + z0}, {z1 → e + z2, z2 → -e + z3}}

The total number of poles is 3

The sign in the iterated residue for each of these poles is {1, -1, -1}

The result in this chamber is

-
1

(e + z0 - z3) (3 e + z0 - z3)
+

1

(e + z0 - z3) (e - z0 + z3)
-

1

(e - z0 + z3) (3 e - z0 + z3)

This result simplifies to
3

(3 e + z0 - z3) (3 e - z0 + z3)

Good. Now verify that all of these results are the same. 

In[46]:= Do[Print[FullSimplify[answer[1] - answer[i]]], {i, 2, Length[η]}]

0

0

0

0

0

0

Good. Therefore, the chamber independent result is 

In[47]:= FullSimplify[answer[1]]

Out[47]=
3

3 e + z0 - z3 3 e - z0 + z3

Printed by Wolfram Mathematica Student Edition
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Appendix B

Computing Residues in Flavour

Fugacities

In this appendix we explain how the partition function of the T σρ,L[SU(N)] matrix

model can be obtained from the partition function for the trivial D3 brane partition

σ = (1N) by taking appropriate residues in the flavour fugacities, which have the

effect of moving boxes in the Young tableaux associated to σ. We follow a related

computation performed for Hilbert series in appendix C of [37].

Any partition σ of N can be obtained from σ = (1N) by repeatedly moving the last

box to a previous row which is followed by rows of a single box only, so it is enough

to consider the move1

σ = (σ1, . . . , σd−h, H, 1h) → σ′ = (σ1, . . . , σd−h, H + 1, 1h−1) , (B.0.1)

where the lengths of the partitions σ and σ′ are d+1 and d, respectively. For brevity,

we will denote X = d − h + 1, so that σX = H and σ′X = H + 1, where H is an

integer greater than or equal to 1. We assume σX−1 > H so that the move is allowed.

1In the language of Kraft-Procesi transitions [95], in which moving a box up by k rows and to
the right by one column is an Ak transition, whereas moving a box up by one row and to the right
by l columns is an al transition, the move (B.0.1) realises an Ah−1 transition followed by an aH−1
transition.
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We claim that for such σ and σ′,

Res
z=0

ZTσρ,L[SU(N)]

∣∣∣ = P (ϕX + (H − L)ε)

(H + 1)(2ε)
d∏

a=X+1
[±(ϕXa + (H − 1)ε) + ε]

ZTσ′ρ,L[SU(N)] ,

(B.0.2)

where
∣∣∣ denotes the substitution ϕX → ϕX − (ε − z), ϕd+1 → ϕX + H(ε − z), and

Nf fundamental Fermi multiplets are attached to gauge node L. For L ≤ H, the

term containing the Fermi multiplets is present since the rank of the gauge node

attached to these multiplets reduces during the transition (B.0.1). In contrast, when

L > H, the Fermi multiplets are unaffected by the transition and it is understood

that P (ϕX + (H − L)ε)→ 1 in (B.0.2).

To see this, recall that the quiver diagram of T σρ [SU(N)] is represented by the matrix
0 h 0 . . . 1 MH+1 . . .

0 N1 N2 . . . NH NH+1 . . .

 , (B.0.3)

where the first/second row in the matrix denotes the rank of a unitary flavour/gauge

group, starting from nodes labelled by i = 0. In the case L = H, for example, the

Fermi multiplets are attached to the U(NH) gauge group with a single flavour of

fundamental hypermultiplets with mass parameter ϕX , which can be illustrated by

underlining NH in the matrix above. (B.0.3) is true for all H > 1, if we have H = 1

the quiver is instead given by the matrix0 h+ 1 M2 . . .

0 N1 N2 . . .

 . (B.0.4)

The matrix notation for T σ′ρ [SU(N)] is given by
1 h− 1 0 . . . 0 MH+1 + 1 . . .

0 N1 − 1 N2 − 1 . . . NH − 1 NH+1 . . .

 . (B.0.5)

The ellipses on the right remain unchanged in the transition. In terms of these 0d

quivers and their partition functions (5.3.15), we identify ϕd+1 = ϕ̃1,h and ϕX = ϕ̃H,1,
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so ϕd+1 is the mass parameter for one of the h fundamental hypermultiplets of gauge

group 1 and ϕX is the mass parameter for the fundamental hypermultiplet of gauge

group H.

The partition function in the left hand side of (B.0.2) has a simple pole at z = 0 if

the term
1

ϕX,d+1 + (H + 1)ε , (B.0.6)

is present before the substitution.2 This term appears if the abelian subquiver1 0 . . . 0 1

1 1 . . . 1 1

 , (B.0.7)

where the left/right flavour node has mass parameter ϕd+1/ϕX and the gauge nodes

have parameters zi,Ni , leads to a multi-dimensional pole in the SMM integral given

by

zi,Ni =


ϕd+1 − iε , 1 ≤ i ≤ a ,

ϕX + (H + 1− i)ε , a+ 1 ≤ i ≤ H ,

(B.0.8)

for some integer a ∈ [0, H]. This multi-dimensional pole of the partition function of

the abelian subquiver can be illustrated diagrammatically by

ϕd+1 ϕX

↑ ↓

ϕd+1 − ε←ϕd+1 − 2ε . . .← ϕd+1 − aε ϕX + (H − a)ε← . . . ϕX + 2ε← ϕX + ε

1 2 . . . a a+ 1 . . . H + 1 H

,

(B.0.9)

where arrows indicate the chiral multiplets that contribute to the pole and the

nodes have been replaced by their corresponding parameters. Due to the massive

hypermultiplet associated to the missing link in the quiver (B.0.9), the residue of the

2Applying the substitution ϕX → ϕX − (ε − z), ϕd+1 → ϕX + H(ε − z) to (B.0.6) gives
(z(H + 1))−1.
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abelian subquiver partition function is [±(ϕX,d+1 +Hε)+ε]−1, which indeed contains

the factor (B.0.6). Note that a pole of the type (B.0.9) for a certain value of a appears

in any chamber: the relevant value of a is determined by xa+1 = max{xb}H+1
b=1 .3

If we now embed the abelian subquiver in the full non-abelian quiver and evaluate

the integrals over zi,Ni for i = 1, . . . , H at the poles (B.0.8) in the full SMM parti-

tion function, the gauge group (B.0.3) of the original SMM reduces to the gauge

group (B.0.5) of the new matrix model. Keeping track of the masses of the fields

which enter the one-loop determinants and following several cancellations, it is then

straightforward to obtain the right hand side of (B.0.2), where the new ϕX is now

identified with an extra mass parameter for the flavour symmetry at node H + 1, as

expected. In the presence of Fermi multiplets, the poles (B.0.8) are unchanged since

they depend only on the hypermultiplets. Thus, to take into account the factors that

arise from the Fermi multiplets, we require the additional term in the numerator on

the right hand side of (B.0.2).

As an example let us consider the transition σ = (13) → σ′ = (2, 1) with the NS5

brane partition ρ = (13) and Fermi multiplets attached to the first gauge node.

In the previous notation, X = H = 1, d = h = 2, and L = 1. In the chamber

described by the NS5 brane configuration x2 < x−1 < x1,4 the partition function of

T
(13)
(13),1[SU(3)] is

Z
T

(13)
1 [SU(3)]

= −1
ϕ12ϕ13ϕ23

 P (ϕ2 + ε)P (ϕ3 − ε)
(ϕ12 − 2ε)(ϕ13 + 2ε)(ϕ23 + 2ε)

+ P (ϕ1 + ε)P (ϕ2 − ε)
(ϕ12 + 2ε)(ϕ13 + 2ε)(ϕ23 − 2ε) + P (ϕ1 + ε)P (ϕ3 − ε)

(ϕ12 + 2ε)(ϕ13 + 2ε)(ϕ23 + 2ε) + (ε→ −ε)
 .

(B.0.10)

Performing the substitution ϕ1 → ϕ1 − (ε− z), ϕ3 → ϕ1 + (ε− z), and computing

3Recall that the FI parameter for the a-th gauge node is given by xa+1 − xa.
4Using the map ξ0 = x1 − x−1, ξ1 = x2 − x1, this corresponds to the chamber ξ1 < 0, ξ0 >

0, ξ0 + ξ1 < 0 in FI space.
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the residue at z = 0 we find

Res
z=0

Z
T

(13)
(13),1

[SU(3)]

∣∣∣ = P (ϕ1)
2(2ε) [±ϕ12 + ε]

×
[

P (ϕ1)
(±ϕ12 + ε) −

(
P (ϕ2 + ε)

(ϕ12 − ε) (ϕ12 − 3ε) + (ε→ −ε)
)]

.

(B.0.11)

According to the prescription (B.0.2), the term in brackets on the right hand side

should be the partition function of T (2,1)
(13),1[SU(3)]. Indeed, it matches the result

for Z+−+
1 in (5.4.19) when N = 2, which was computed directly using the JK

prescription.





Appendix C

More on the Computation of

Monopole Bubbling Factors

In this appendix we state the results for the partition functions (5.4.35) and (5.4.38)

in each of the 6 distinct chambers. These results have been computed by applying

the JK prescription and have been verified by following the residues in the flavour

fugacities procedure outlined in appendix B.

In Tables C.1 and C.2 we list the multi-dimensional poles contributing to (5.4.35) in

one of the regions of FI space for each of the 6 inequivalent chambers. These poles

are written in the order that the iterated residues are performed, from left to right,

and the sign ν(F ) that is associated to each pole is the sign used in the sum of the

iterated residues, see (3.2.10) and (3.2.12).
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Evaluating (5.4.35) in each of the six chambers we find

Z++−−
ab (ϕ,m, ε) =


(−1)N−1

Nf∏
k=1

[ϕa −mk − 2ε]

ϕab (ϕab − 2ε) ∏
c 6=b,a

[(ϕac − ε) (ϕac − 3ε)]

+
(−1)N−1

Nf∏
k=1

[ϕa −mk − 2ε]

(ϕab − 2ε) (ϕab − 4ε) ∏
c 6=b,a

[(ϕac − ε) (ϕac − 3ε)] + (a↔ b)



+
∑
c 6=b,a


(−1)N−1

Nf∏
k=1

[ϕc −mk − ε]∏
r=a,b

(ϕrc + ε) (ϕrc + 3ε) ∏
d6=c,b,a

ϕcd (ϕcd − 2ε)

+
(−1)N−1

Nf∏
k=1

[ϕc −mk − ε]∏
r=a,b

(±ϕrc + ε) ∏
d6=c,b,a

ϕcd (ϕcd − 2ε)

+


(−1)N

Nf∏
k=1

[ϕc −mk − ε]

(±ϕac + ε) (ϕbc + ε) (ϕbc + 3ε) ∏
d6=c,b,a

ϕcd (ϕcd − 2ε) + (a↔ b)


 .

(C.0.1)

Z−−++
ab (ϕ,m, ε) =


(−1)N−1

Nf∏
k=1

[ϕa −mk + 2ε]

ϕab (ϕab + 2ε) ∏
c 6=b,a

[(ϕac + ε) (ϕac + 3ε)]

+
(−1)N−1

Nf∏
k=1

[ϕa −mk + 2ε]

(ϕab + 2ε) (ϕab + 4ε) ∏
c6=b,a

[(ϕac + ε) (ϕac + 3ε)] + (a↔ b)



+
∑
c6=b,a


(−1)N−1

Nf∏
k=1

[ϕc −mk + ε]∏
r=a,b

(ϕrc − ε) (ϕrc − 3ε) ∏
d 6=c,b,a

ϕcd (ϕcd + 2ε)

+
(−1)N−1

Nf∏
k=1

[ϕc −mk + ε]∏
r=a,b

(ϕrc ± ε)
∏

d 6=c,b,a
ϕcd (ϕcd + 2ε)

+


(−1)N

Nf∏
k=1

[ϕc −mk + ε]

(ϕac − ε) (ϕac − 3ε) (±ϕbc + ε) ∏
d 6=c,b,a

ϕcd (ϕcd + 2ε) + (a↔ b)


 .

(C.0.2)
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Z+−+−
ab (ϕ,m, ε) =


(−1)N−1

Nf∏
k=1

[ϕa −mk]

ϕab (ϕab + 2ε) ∏
c 6=b,a

[(ϕac − ε) (ϕac + ε)]

+
(−1)N−1

Nf∏
k=1

[ϕa −mk − 2ε]

(ϕab − 2ε) (ϕab − 4ε) ∏
c6=b,a

[(ϕac − ε) (ϕac − 3ε)] + (a↔ b)



+
∑
c 6=b,a




(−1)N−1
Nf∏
k=1

[ϕc −mk + ε]∏
r=a,b

(ϕrc − ε) (ϕrc − 3ε) ∏
d 6=c,b,a

ϕcd (ϕcd + 2ε) + (ε→ −ε)



+


(−1)N

Nf∏
k=1

[ϕc −mk − ε]

(±ϕac + ε) (ϕbc + ε) (ϕbc + 3ε) ∏
d6=c,b,a

ϕcd (ϕcd − 2ε) + (a↔ b)


 .

(C.0.3)

Z−+−+
ab (ϕ,m, ε) =


(−1)N−1

Nf∏
k=1

[ϕa −mk]

ϕab (ϕab − 2ε) ∏
c 6=b,a

[(ϕac − ε) (ϕac + ε)]

+
(−1)N−1

Nf∏
k=1

[ϕa −mk + 2ε]

(ϕab + 2ε) (ϕab + 4ε) ∏
c 6=b,a

[(ϕac + ε) (ϕac + 3ε)] + (a↔ b)



+
∑
c 6=b,a




(−1)N−1
Nf∏
k=1

[ϕc −mk + ε]∏
r=a,b

(ϕrc − ε) (ϕrc − 3ε) ∏
d6=c,b,a

ϕcd (ϕcd + 2ε) + (ε→ −ε)



+


(−1)N

Nf∏
k=1

[ϕc −mk + ε]

(ϕac − ε) (ϕac − 3ε) (±ϕbc + ε) ∏
d6=c,b,a

ϕcd (ϕcd + 2ε) + (a↔ b)


 .

(C.0.4)
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Z+−−+
ab (ϕ,m, ε) =

(−1)N−1
Nf∏
k=1

[ϕa −mk]

ϕab (ϕab − 2ε) ∏
c 6=b,a

[(ϕac − ε) (ϕac + ε)]

+
(−1)N−1

Nf∏
k=1

[ϕb −mk + 2ε]

(ϕab − 2ε) (ϕab − 4ε) ∏
c 6=b,a

[(ϕbc + ε) (ϕbc + 3ε)]

+
∑
c 6=b,a

(−1)N−12
Nf∏
k=1

[ϕc −mk + ε]

(ϕac − ε) (ϕac − 3ε) (ϕbc + ε) (ϕbc − 3ε) ∏
d6=c,b,a

ϕcd (ϕcd + 2ε)

+ (ε→ −ε) .
(C.0.5)

Z−++−
ab (ϕ,m, ε) =

(−1)N−1
Nf∏
k=1

[ϕb −mk]

ϕab (ϕab − 2ε) ∏
c 6=b,a

[(ϕbc − ε) (ϕbc + ε)]

+
(−1)N−1

Nf∏
k=1

[ϕa −mk − 2ε]

(ϕab − 2ε) (ϕab − 4ε) ∏
c6=b,a

[(ϕac − ε) (ϕac − 3ε)]

+
∑
c 6=b,a

(−1)N−12
Nf∏
k=1

[ϕc −mk − ε]

(ϕac − ε) (ϕac + 3ε) (ϕbc + ε) (ϕbc + 3ε) ∏
d 6=c,b,a

ϕcd (ϕcd − 2ε)

+ (ε→ −ε) .
(C.0.6)

As expected from the action of PT symmetry, see section 5.2.2, these results satisfy

Z++−−
ab (ϕ,m, ε) = Z−−++

ab (ϕ,m,−ε) , Z+−+−
ab (ϕ,m, ε) = Z−+−+

ab (ϕ,m,−ε) ,

Z+−−+
ab (ϕ,m, ε) = Z+−−+

ab (ϕ,m,−ε) , Z−++−
ab (ϕ,m, ε) = Z−++−

ab (ϕ,m,−ε) .
(C.0.7)

In addition, the correlator (5.4.30) is invariant under a charge conjugation C that

reverses the sign of the charge of the monopole operators (and of the abelian monopole

variables) and sends ε→ −ε. This symmetry manifests itself in the identities

Z++−−
ab (ϕ,m, ε) = Z−−++

ba (ϕ,m,−ε) ,

Z+−+−
ab (ϕ,m, ε) = Z−+−+

ba (ϕ,m,−ε) ,

Z+−−+
ab (ϕ,m, ε) = Z−++−

ba (ϕ,m,−ε) .

(C.0.8)
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All of these 6 results agree when Nf = 0, 1, . . . , 2N − 2, in which case the bubbling

factor is no longer chamber dependent.

In Tables C.3 and C.4 we list the poles that give a non-zero contribution to (5.4.38)

in one of the regions of FI space for each of the 6 distinct chambers.

Evaluating (5.4.38) in each of the six chambers we find

Z++−−(ϕ,m, ε) =
N∑
a=1

Nf∏
k=1

[(ϕa −mk − ε) (ϕa −mk − 3ε)]∏
b 6=a

[
ϕab (ϕab − 2ε)2 (ϕab − 4ε)

]

+
∑
a6=b

2
Nf∏
k=1

[(ϕa −mk − ε) (ϕb −mk − ε)]

ϕab (ϕab + 2ε)2 (ϕab − 2ε) ∏
c 6=a,b

∏
r=a,b

ϕrc(ϕrc − 2ε)
.

(C.0.9)

Z−−++(ϕ,m, ε) =
N∑
a=1

Nf∏
k=1

[(ϕa −mk + ε) (ϕa −mk + 3ε)]∏
b6=a

[
ϕab (ϕab + 2ε)2 (ϕab + 4ε)

]

+
∑
a6=b

2
Nf∏
k=1

[(ϕa −mk + ε) (ϕb −mk + ε)]

ϕab (ϕab − 2ε)2 (ϕab + 2ε) ∏
c 6=a,b

∏
r=a,b

ϕrc(ϕrc + 2ε)
.

(C.0.10)

Z+−+−(ϕ,m, ε) =
N∑
a=1

Nf∏
k=1

(ϕa −mk − ε)2

∏
b 6=a

[
ϕ2
ab (ϕab − 2ε)2

]

+
∑
a6=b

Nf∏
k=1

[(ϕa −mk − ε) (ϕb −mk + ε)]

ϕab (ϕab − 2ε)2 (ϕab − 4ε) ∏
c 6=a,b

[ϕacϕbc (ϕac − 2ε) (ϕbc + 2ε)]

+
∑
a6=b

Nf∏
k=1

[(ϕa −mk − ε) (ϕb −mk − ε)]

ϕ2
ab (ϕab ± 2ε) ∏

c6=a,b
[ϕacϕbc (ϕac − 2ε) (ϕbc − 2ε)] .

(C.0.11)
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Z−+−+(ϕ,m, ε) =
N∑
a=1

Nf∏
k=1

(ϕa −mk + ε)2

∏
b 6=a

[
ϕ2
ab (ϕab + 2ε)2

]

+
∑
a6=b

Nf∏
k=1

[(ϕa −mk + ε) (ϕb −mk − ε)]

ϕab (ϕab + 2ε)2 (ϕab + 4ε) ∏
c 6=a,b

[ϕacϕbc (ϕac + 2ε) (ϕbc − 2ε)]

+
∑
a6=b

Nf∏
k=1

[(ϕa −mk + ε) (ϕb −mk + ε)]

ϕ2
ab (ϕab ± 2ε) ∏

c 6=a,b
[ϕacϕbc (ϕac + 2ε) (ϕbc + 2ε)] .

(C.0.12)

Z+−−+(ϕ,m, ε) =
N∑
a=1

Nf∏
k=1

(ϕa −mk ± ε)∏
b 6=a

[ϕ2
ab (ϕab ± 2ε)]

+
∑
a6=b

2
Nf∏
k=1

[(ϕa −mk − ε) (ϕb −mk + ε)]

ϕ2
ab (ϕab − 2ε) (ϕab − 4ε) ∏

c 6=a,b
[ϕacϕbc (ϕac − 2ε) (ϕbc + 2ε)] .

(C.0.13)

Z−++−(ϕ,m, ε) =
N∑
a=1

Nf∏
k=1

(ϕa −mk ± ε)∏
b 6=a

[ϕ2
ab (ϕab ± 2ε)]

+
∑
a6=b

2
Nf∏
k=1

[(ϕa −mk + ε) (ϕb −mk − ε)]

ϕ2
ab (ϕab + 2ε) (ϕab + 4ε) ∏

c6=a,b
[ϕacϕbc (ϕac + 2ε) (ϕbc − 2ε)] .

(C.0.14)

These results also transform appropriately under the discrete symmetries PT and C,

which manifest themselves in identities identical to (C.0.7) and (C.0.8) with a and

b removed. We have also checked that the chamber dependence disappears when

Nf = 0, 1, . . . , 2N − 2, as expected from (5.4.8) and the Moyal product.
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Region of FI Space Sign of ν(F ) Multi-dimensional Pole
+ +−− Chamber + (z−1 = ϕb − ε, z0 = ϕc − ε, z1 = ϕa − ε)

ξ1 > 0 + (z0 = ϕc − ε, z−1 = ϕc − 2ε, z1 = ϕa − ε)
ξ0 > 0 + (z−1 = ϕb − ε, z0 = ϕb − 2ε, z1 = ϕa − ε)
ξ−1 > 0 + (z−1 = ϕb − ε, z1 = ϕa − ε, z0 = ϕa − 2ε)

ξ1 + ξ0 > 0 + (z1 = ϕa − ε, z0 = ϕa − 2ε, z−1 = ϕa − 3ε)
ξ0 + ξ−1 > 0 + (z−1 = ϕb − ε, z0 = ϕc − ε, z1 = ϕc − 2ε)

ξ1 + ξ0 + ξ−1 > 0 + (z0 = ϕc − ε, z−1 = ϕc − 2ε, z1 = ϕc − 2ε)
+ (z−1 = ϕb − ε, z0 = ϕb − 2ε, z1 = ϕb − 3ε)

+−+− Chamber + (z−1 = z0 − ε, z0 = ϕc − ε, z1 = ϕa − ε)
ξ1 > 0 − (z−1 = ϕb − ε, z1 = ϕa − ε, z0 = ϕc + ε)
ξ0 < 0 + (z1 = ϕa − ε, z−1 = z0 − ε, z0 = ϕa − 2ε)
ξ−1 > 0 − (z−1 = ϕb − ε, z1 = ϕa − ε, z0 = ϕb)

ξ1 + ξ0 > 0 − (z−1 = ϕb − ε, z1 = ϕa − ε, z0 = ϕa)
ξ0 + ξ−1 > 0 + (z−1 = ϕb − ε, z1 = z0 − ε, z0 = ϕc − ε)

ξ1 + ξ0 + ξ−1 > 0 + (z0 = ϕc − ε, z−1 = ϕc − 2ε, z1 = ϕc − 2ε)
+ (z−1 = ϕb − ε, z1 = z0 − ε, z0 = ϕb − 2ε)

+−−+ Chamber − (z1 = ϕa − ε, z0 = ϕc + ε, z−1 = ϕb − ε)
ξ1 > 0 − (z1 = ϕa − ε, z0 = ϕc + ε, z−1 = ϕc)
ξ0 < 0 + (z1 = ϕa − ε, z0 = z−1 + ε, z−1 = ϕb + ε)
ξ−1 > 0 − (z1 = ϕa − ε, z0 = ϕa, z−1 = ϕb − ε)

ξ1 + ξ0 > 0 − (z1 = ϕa − ε, z0 = ϕa, z−1 = ϕa − ε)
ξ0 + ξ−1 < 0 + (z1 = z0 − ε, z0 = ϕc − ε, z−1 = ϕb − ε)

ξ1 + ξ0 + ξ−1 > 0 + (z1 = z0 − ε, z0 = ϕc − ε, z−1 = ϕc − 2ε)
+ (z1 = z0 − ε, z−1 = ϕb − ε, z0 = ϕb − 2ε)

Table C.1: Poles contributing to the integral (5.4.35) in the + +−−, +−+−,
and +−−+ chambers, where a, b are fixed and c 6= b, a.
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Region of FI Space Sign of ν(F ) Multi-dimensional Pole
−−++ Chamber − (z0 = ϕc + ε, z−1 = ϕb − ε, z1 = ϕa − ε)

ξ1 > 0 − (z0 = ϕc + ε, z−1 = ϕc, z1 = ϕa − ε)
ξ0 < 0 + (z0 = z−1 + ε, z−1 = ϕb + ε, z1 = ϕa − ε)
ξ−1 > 0 + (z0 = z1 + ε, z1 = ϕa + ε, z−1 = ϕb − ε)

ξ1 + ξ0 < 0 + (z0 = z1 + ε, z−1 = z1, z1 = ϕa + ε)
ξ0 + ξ−1 < 0 − (z0 = ϕc + ε, z−1 = ϕb − ε, z1 = ϕc)

ξ1 + ξ0 + ξ−1 < 0 − (z−1 = z0 − ε, z1 = z0 − ε, z0 = ϕc + ε)
+ (z0 = z−1 + ε, z1 = z−1, z−1 = ϕb + ε)

−+−+ Chamber − (z0 = ϕc + ε, z1 = ϕa − ε, z−1 = ϕb − ε)
ξ1 > 0 − (z1 = ϕa − ε, z−1 = z0 − ε, z0 = ϕc + ε)
ξ0 < 0 + (z0 = z−1 + ε, z1 = ϕa − ε, z−1 = ϕb + ε)
ξ−1 > 0 − (z−1 = z0 − ε, z1 = ϕa − ε, z0 = ϕa)

ξ1 + ξ0 < 0 + (z0 = z1 + ε, z−1 = ϕb − ε, z1 = ϕa + ε)
ξ0 + ξ−1 < 0 + (z1 = z0 − ε, z−1 = z0 − ε, z0 = ϕc − ε)

ξ1 + ξ0 + ξ−1 > 0 − (z1 = z0 − ε, z−1 = ϕb − ε, z0 = ϕc + ε)
− (z1 = z0 − ε, z0 = z−1 + ε, z−1 = ϕb − ε)

−+−+ Chamber + (z−1 = z0 − ε, z0 = ϕc − ε, z1 = ϕa − ε)
ξ1 > 0 − (z−1 = ϕb − ε, z0 = ϕc + ε, z1 = ϕa − ε)
ξ0 < 0 + (z−1 = z0 − ε, z1 = ϕa − ε, z0 = ϕa − 2ε)
ξ−1 > 0 − (z0 = z−1 + ε, z−1 = ϕb − ε, z1 = ϕa − ε)

ξ1 + ξ0 < 0 + (z−1 = ϕb − ε, z0 = z1 + ε, z1 = ϕa + ε)
ξ0 + ξ−1 > 0 + (z−1 = z0 − ε, z0 = ϕc − ε, z1 = ϕc − 2ε)

ξ1 + ξ0 + ξ−1 > 0 − (z−1 = ϕb − ε, z1 = z0 − ε, z0 = ϕc + ε)
− (z−1 = ϕb − ε, z1 = z0 − ε, z0 = ϕb)

Table C.2: Poles contributing to the integral (5.4.35) in the −−++, −+−+,
and −+−+ chambers, where a, b are fixed and c 6= b, a.
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Region of FI space Sign of ν(F ) Multi-dimensional Pole
+ +−− Chamber + (z0,1 = ϕa − ε, z1 = ϕa − 2ε,
ξ−1 > 0 z−1 = ϕa − 2ε, z0,2 = ϕa − 3ε)
ξ0 > 0, ξ1 > 0 + (z0,1 = ϕa − ε, z1 = ϕa − 2ε,
ξ−1 + ξ0 > 0 z0,2 = ϕb − ε, z−1 = ϕa − 2ε)
ξ1 + ξ0 > 0 + (z0,2 = ϕb − ε, z1 = ϕb − 2ε,
ξ−1 + ξ0 + ξ1 > 0 z0,1 = ϕa − ε, z−1 = ϕa − 2ε)
+−+− Chamber − (z0,1 = ϕa − ε, z1 = ϕa − 2ε,
ξ−1 > 0 z−1 = ϕa − 2ε, z0,2 = ϕa − ε)
ξ0 < 0, ξ1 > 0 − (z0,1 = ϕa − ε, z1 = ϕa − 2ε,
ξ−1 + ξ0 > 0 z−1 = ϕa − 2ε, z0,2 = ϕb + ε)
ξ0 + ξ1 > 0 + (z1 = z0,2 − ε, z0,2 = ϕb − ε,
ξ−1 + ξ0 + ξ1 > 0 z−1 = z0,1 − ε, z0,1 = ϕa − ε)
+−−+ Chamber + (z−1 = z0,1 − ε, z0,2 = z1 + ε,

ξ−1 > 0 z0,1 = ϕa − ε, z1 = ϕa)
ξ0 < 0, ξ1 > 0 − (z−1 = z0,1 − ε, z0,1 = ϕa − ε,
ξ−1 + ξ0 < 0 z0,2 = ϕb + ε, z1 = ϕa − 2ε)
ξ1 + ξ0 > 0 − (z−1 = z0,1 − ε, z0,1 = ϕa − ε,
ξ−1 + ξ0 + ξ1 > 0 z1 = z0,2 − ε, z0,2 = ϕb + ε)

Table C.3: Poles contributing to the integral (5.4.38) in the + +−−, +−+−,
and +−−+ chambers, where a = 1, . . . , N and b = 1, . . . , a− 1, a+ 1, . . . , N .
In this table we only list half of the poles contributing in each chamber, we
also need to include the poles obtained from z0,1 ↔ z0,2.
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Region of FI space Sign of ν(F ) Multi-dimensional Pole
−−++ Chamber − (z0,1 = ϕa + ε, z0,2 = z1 + ε,

ξ−1 > 0 z−1 = z1, z1 = ϕa + 2ε)
ξ0 < 0, ξ1 > 0 + (z0,2 = ϕb + ε, z1 = z0,1 − ε,
ξ−1 + ξ0 < 0 z−1 = z0,1 − ε, z0,1 = ϕa + ε)
ξ1 + ξ0 < 0 + (z0,1 = ϕa + ε, z1 = z0,2 − ε,
ξ−1 + ξ0 + ξ1 < 0 z0,2 = ϕb + ε, z−1 = ϕa)
−+−+ Chamber + (z1 = z0,2 − ε, z0,1 = ϕa + ε,

ξ−1 > 0 z−1 = ϕa, z0,2 = ϕa + ε)
ξ0 < 0, ξ1 > 0 − (z0,2 = ϕb + ε, z−1 = z0,1 − ε,
ξ−1 + ξ0 < 0 z1 = z0,1 − ε, z0,1 = ϕa − ε)
ξ1 + ξ0 < 0 + (z−1 = z0,1 − ε, z1 = z0,2 − ε,
ξ−1 + ξ0 + ξ1 > 0 z0,1 = ϕa + ε, z0,2 = ϕb + ε)
−+ +− Chamber + (z1 = z0,1 − ε, z0,2 = z−1 + ε,

ξ−1 > 0 z0,1 = ϕa − ε, z−1 = ϕa)
ξ0 < 0, ξ1 > 0 − (z1 = z0,1 − ε, z0,1 = ϕa − ε,
ξ−1 + ξ0 > 0 z0,2 = ϕb + ε, z−1 = ϕa − 2ε)
ξ1 + ξ0 < 0 − (z1 = z0,2 − ε, z0,2 = ϕb − ε,
ξ−1 + ξ0 + ξ1 > 0 z−1 = z0,1 − ε, z0,1 = ϕa + ε)

Table C.4: Poles contributing to the integral (5.4.38) in the −−++, −+−+,
and −+ +− chambers, where a = 1, . . . , N and b = 1, . . . , a− 1, a+ 1, . . . , N .
In this table we only list half of the poles contributing in each chamber, we
also need to include the poles obtained from z0,1 ↔ z0,2.
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