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Abstract 
 

This work assesses the suitability of Ulva spp. as a biofuel crop. Since earlier research has 

demonstrated the relation between metal handling mechanisms and diverse changes in lipid 

content, we attempt to elucidate how lipids are stored within the cell by carrying out genetic 

expression studies and fluorescence microscopy. So far, Ulva thalli has been exposed to lead 

(Pb) and a combination of this metal with Buthionine sulfoximine (BSO), an inhibitor of 

glutathione (GSH) synthesis, with the aim of comprehend the effects of lead on lipid content 

as well as the way they organise in the form of lipid droplets (LD). BSO was added to determine 

whether this caused changes in Ulva’s metal handling mechanisms. Results from fluorescence 

microscopy and genetic expression studies have showed that even though lead does not 

increase the amount of lipid in the cell, it causes changes in lipids localisation and dynamics. 

Moreover, it was observed that samples treated with BSO present fewer and smaller lipid 

droplets. To clarify BSO’s role in lipid droplet formation and get a better understanding of the 

pathways involved in heavy metal handling, further transcriptome and metabolic studies need 

to be performed. The elucidation of these mechanisms will ease biofuel production from 

macroalgal species like Ulva spp. This knowledge can be applied in countries like Mexico since 

Ulva and similar seaweed can be harvested in coastal areas around the world as a biofuel crop.     
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1 Introduction. 

1.1 The necessity of alternative energy sources.  
Energy is one of humanity’s most important requirements.  However, the demand for many 

fuel types is increasingly higher than the capacity of the planet to supply them, and the 

likelihood of an energy crisis increases yearly (Baños et al., 2011).  

The bulk of global energy is currently generated from non-renewable (fossil) fuels, but there is 

only a limited reserve of such fuels and this reserve is rapidly being depleted (Abomohra, El-

Naggar and Baeshen, 2018). Furthermore, the intensive use of these fuels has increased our 

Greenhouse gas (GHG) emissions in the last decades, causing a major impact in climate change 

and global warming. About 78% of GHG emissions are caused by fossil fuels combustion (IPCC, 

2014). 

Diverse alternatives have been proposed to mitigate the quick fuel depletion as well as the 

GHG emissions. Wind, solar, geothermal, marine and biomass energy have been proposed and 

studied to diverse extents (Lund, 2007). Nonetheless, it was estimated that renewable sources 

only supplied 12.9% of primary energy production in 2008 (Moomaw et al., 2011). Even though 

renewable energy contributions are still relatively small, their use is increasing. In fact, in 2006, 

the European Renewable Energy Council (EREC) estimated that renewable sources of energy 

would provide half of the total energy requirements by 2040 (Demirbas, 2009a). 

According to the IPCC’s Report on Renewable Energy Sources and Climate Change Mitigation 

(Moomaw et al., 2011), the International Energy Agency (IEA) reported biomass as the major 

renewable energy source used in 2008. Many renewable forms of biomass can be converted 

into a variety of replacement fuels, such as biogas, bioethanol, or biodiesel.  Of these, liquid 

biofuels such as bioethanol and biodiesel are particularly promising since they possess similar 

properties to current liquid combustible fuels (Agarwal, 2007), which are much in demand as 

replacement transport fuels. Since they are produced from photosynthetic sources, biofuel use 

is carbon neutral, reducing contaminants and GHG emissions (El Maghraby and Fakhry, 2015). 

Moreover, the potential of a whole new biomass industry might be beneficial for developing 

countries, reducing external dependence, and bringing an economic boost (Saga et al., 2008; 

Demirbas, 2009b).  
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Biodiesel is particularly interesting since it can substitute traditional diesel without requiring 

any engine adaptation (Demirbas, 2009a). Besides its limited reserves, petrochemical diesel 

contains a high proportion of sulfur and particulate material. It has also been reported to 

produce a third of the GHG emissions from transport activities (Nas and Berktay, 2007). In 

contrast, biodiesel, which consists of fatty acid methyl or ethyl esters obtained from vegetable 

oils or animal fats via transesterification (Vicente et al., 2004), presents lower particulate 

material and emits less hydrocarbons and carbon monoxide (EPA, 2002).   

1.2 Algae as a biomass source.  
Strong feedstock prospects to provide biofuels are crops that grow rapidly and for which the 

farming infrastructure already exists, such as corn, sugarcane or high lipid content species like 

soybean or sunflower (Abomohra, El-Naggar and Baeshen, 2018; Wei, Quarterman and Jin, 

2013). Unfortunately, all these species are already valuable food crops and their use as biofuel 

raises many ethical issues (John et al., 2011).  To satisfy current fuel requirements, food supply 

may be threatened because of insufficient arable land and water (El Maghraby and Fakhry, 

2015), which is an especial problem in developing countries such as India, Indonesia, Brazil, or 

Mexico. 

For these reasons, many other possible biomass sources have been considered in recent years. 

Some authors have classified biofuels by ‘generations’; each biofuel generation is 

characterised by its biomass source and their production technologies (Table 1).  
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Table 1 Classification of biofuels (Demirbas, 2009c). 

Generation  Feedstock   Examples 

First Sugar, starch, vegetable oils 

or animal fats (edible).  

Bioethanol, biogas, 

vegetable oil, biodiesel, 

biosyngas.  

Second  Non-food crops, wheat 

straw, corn, wood, solid 

waste (bagasse), energy 

crops (lignocellulosic).  

Bioalcohols, bio-oil, bio-

DMF, Biohydrogen, bio-

Fisher-Tropsch diesel, wood 

diesel. 

Third Algae, gene modified crops Vegetable oil, biodiesel, 

bioethanol. 

Fourth Vegetable oil, biodiesel. Biogasoline. 

 

As a first response to the issues raised by first generation biofuels, second generation 

feedstocks were proposed. These new materials were considered a convenient option since 

they are mostly waste materials or non- edible crops (Demirbas, 2009b). Despite their 

advantages, second generation feedstocks are not as well-known as first-generation ones, 

making necessary further research on harvesting and biorefinery techniques (Naik, Goud, Rout 

& Dalai, 2010). For example, these materials contain lignin, an amorphous carbohydrate which 

is highly difficult to degrade, making it harder to extract and process biomass components 

(Sánchez, 2009; Chávez-Sifontes & Domine, 2013; Demirbas, 2009c).  

Macroalgae and microalgae are prominent candidates to substitute lignocellulosic materials. 

Algae present diverse advantages over land plants such as a faster growth rate, greater 

potential to reduce CO2 pollution, lack of competition for arable land and freshwater, and 

easier depolymerisation since they contain less or no lignin (Abomohra, El-Naggar and 

Baeshen, 2018). Thus, algae can grow in a broad variety of conditions, including stressful 

environments, making the possibilities of novel processes and techniques wider (Goh & Lee, 

2010). These advantages mean that algae are considered a “low input, high yield” crop 
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(Sheehan, et al., 1998). However, since algae are not a common crop, the current information 

about them is limited. It remains a challenge to harvest seaweeds at consistent high yields 

(Wei, Quarterman and Jin, 2013), making it critical to improve our understanding of their 

composition (Michalak, 2018).  

1.2.1 Potential of Ulva as biomass source. 

Among macroalgae, the attention of researchers has been drawn to the Ulva genus mainly 

because of its high growth rate as well as its natural capability to grow in a broad range of 

environmental conditions which allows ‘bloom’ growth. It has been considered for several 

stress studies and for complex metabolic mechanistic research (Kumari, Kumar, Reddy & Jha, 

2013; Mellado, Contreras, González, Dennett & Moenne, 2012).  

Ulva also has potential as model organism due to its high tractability for genetic studies and 

can be easily found in many places around the world, making every technology developed from 

its harvesting accessible to everyone (De Clerck et al., 2018). Its high growth rate as well as its 

resistance to stress makes Ulva species promising candidates for bioremediation processes 

(Bolton, Cyrus, Brand, Joubert & Macey, 2016). Understanding these mechanisms is crucial to 

start taking advantage of Ulva and other algal species.  

1.3 The composition of biomass depends on growth conditions 
Composition is a key factor for biofuel crops.  For instance, bioethanol is better produced from 

carbohydrate rich sources, while biodiesel needs to be made from lipid rich cells (Michalak, 

2018). Biodiesel is generally considered to be the most promising main combustible alternative 

given the benefits it carries such as renewability, non-toxicity, its biodegradability, and 

compatibility with current internal combustion engines (El Maghraby and Fakhry, 2015).  

One of the most proposed biodiesel feedstocks are the microalgae, because of their high lipid 

contents, which can go up to 75% in the microalga Botryococcus braunii (Michalak, 2018; Chisti, 

2007). Although the larger macroalgae are faster and cheaper to harvest due to their size and 

plant-like structure (Abomohra, El-Naggar and Baeshen, 2018), they are not generally 

considered a good choice over microalgae because of their low lipid contents, which are 

typically lower than 5% when contents of 10% or higher are recommended for biodiesel 

making, although some seaweed species can go higher (Gosch et al., 2012). A study carried out 
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in Spain with several macroalgal species like Sargassum muticum, Ulva rigida, and 

Enteromorpha intestinalis showed that, given their low oil content, large amounts of seaweed 

are required to get viable biodiesel yields (Maceiras, Rodríguez, Cancela, Urréjola & Sánchez, 

2011). Therefore, finding a way to increase macroalgal oil content is essential to make it a 

suitable biofuel crop.  

Importantly, algal biomass compositions are often highly dependent on growth conditions and 

several studies have shown algal compositional changes in response to environmental stress. 

For example, increases of lipid content have been reported because of nitrogen starvation, 

changes in temperature, salinity, and heavy metals (Adams, et al., 2013; Upchurch, 2008). 

Taking advantage of this, some studies have tried to change lipid levels via diverse stress types 

(Pyc et al., 2017; Salama et al., 2013; James et al., 2011). Mohy El-Din (2017) reported that 

chemical stress augments lipid content in marine Pterocladia capillacea, Sargassum 

hornschuchii and Ulva lactuca. Their study exposed algae to pharmaceuticals and endocrine-

disrupting compounds and assessing their effects on lipid content. Mohy El-Din concludes that 

ramphenicol, acetyl salicylic acid, clofibric acid and nonylphenol increased fatty acid (FA) 

contents in algal cells. Furthermore, Yeh and Chan (2011), Sun et al. (2014) and Fakhry and El 

Maghraby (2015) also claim that nitrogen starvation increases lipid levels. 

Accordingly, my project will use metal stress to elicit changes in algal composition.  Heavy 

metal pollutants may modify metabolic pathways because plants are capable of 

bioaccumulating them (Emamverdian et al., 2015). In addition, this bioaccumulation has the 

additional benefit of being a potential bioremediation process, as mentioned above. It has 

been reported that aquatic plants such as Eichornia crassipes (water hyacinth) can remove 

heavy metals from water bodies due to their bioaccumulation capacity (Atehortua & Gartner, 

2013, Agunbiade, Olu-Owolabi, & Adebowale, 2009, Míguez, et al., 2014). Therefore, 

harvesting macroalgae might also help to clean polluted marine water.   

1.4 Greater understanding of algal stress responses will allow biomass manipulation 
It is well known that changes in metabolism follow exposure to stress.  A major metabolic 

change that often accompanies stresses is a shift from carbohydrate metabolism to lipid 

metabolism. For instance, drought stress inhibits photosynthesis and deactivates invertases 

(INVs) in maize (Zea mays), which decreases starch biosynthesis (Ruan et al., 2010). Low sugar 
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levels cause the breakdown of storage starch and lipids in higher plants (Thakur, Kumar, Malik, 

Berger, & Nayyar, 2010). Temperature changes can also affect the biophysical properties of 

cellular compounds (e.g. their rheology) and reduce the activity of various enzymes, modifying 

metabolic pathways (Mathur, Agrawal and Jajoo, 2014). This suggests that lipid levels might 

vary depending on stress. However, not every kind of stress can produce the type of lipids that 

biodiesel production requires (Goold et al., 2016).  

Besides growth rate, availability and harvesting costs, the lipid profile is also an important 

aspect of determining whether a species is suitable as a biodiesel feedstock. Triacylglycerols 

(TAGs) are compounds of interest since they are important sources of fatty acids, and they lack 

phosphorus, sulfur and nitrogen, which can interfere with biofuel yields (Michalak, 2018, 

Suutari et al., 2014). Moreover, high amounts of saturated fatty acids are required to get 

satisfactory generation of biodiesel (Gosch et al., 2012). Hence, a deeper knowledge of lipid 

biosynthesis, as well as the way cells store these compounds, is crucial.  

Neutral lipids, Triacylglycerols (TAGs), 

Diacylglycerols (DAGs), Sterol esters 

(SEs), polyisoprenes, et cetera, are 

stored in structures called Lipid Droplets 

(LDs), which are present in every kind of 

organism and are a significant factor to 

consider for biodiesel and other 

lipophilic bioproducts (Pyc et al., 2017). 

Lipid droplets (Figure 1) are typically 

composed of a core of TAGs and SEs, 

surrounded by a monolayer made 

mainly of phospholipids and some 

proteins (Guo et al., 2009). It has been 

suggested that these structures perform a significant role in cell biology beyond energy storage 

(Welte, 2015; Fujimoto & Parton, 2011). Despite their presence in all organisms and their well 

conserved pathways, lipid droplet composition and biogenesis vary appreciably from one 

species to another (Pyc et al., 2017, Guo et al., 2009).  

Figure 1 Lipid droplet 

The picture above shows a representation of the main parts 

of a lipid droplet such as the neutral lipid core (green), the 

phospholipid monolayer (highlighted in square) and some 

membrane proteins (arrows). 
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Lipid droplets have been widely studied in mammals, insects, and yeast, but their processes 

and pathways are less well understood in plants. Studies in these organisms and the green 

microalga Chlamydomonas reinhardtii have made possible a general understanding of lipid 

droplet biogenesis (Pyc et al., 2017, Guo et al., 2009, Li-Beisson, 2018) as figures 2-5 show:  

 

Figure 2 Pathways for Triacylglycerol biosynthesis in Chlamydomonas reinhardtii.  
Abbreviations: DAG, diacylglycerol; GPAT, glycerol-3-phosphate acyltransferase; G3P, glycerol-3-phosphate; 
LPAT, lysophosphatidic acid acyltransferase; LPA, lysophosphatidic acid; PA, phosphatidic acid; PAP, phosphatidic 
acid phosphatase; TAG, triacylglycerol. 
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1. Fatty acids and sterols are synthesised de novo or obtained extracellularly. 

2. Fatty acids and sterols are transformed into TAGs or sterol esters respectively in the 

endoplasmic reticulum (ER).  

3. Neutral lipids are synthesised in the endoplasmic reticulum by Diacylglycerol O-

acetyltransferase (DGAT), Glycerol-3-phosphate acyltransferase (GPAT) and other ER 

enzymes.  

4. Neutral lipids accumulate between the two leaflets of the endoplasmic reticulum 

membrane and form a ‘lens-like’ structure. 

5. Fat storage-inducing transmembrane protein (FIT2), which not present in plants, or any 

other endoplasmic reticulum’s membrane protein brings TAGs to make the ‘lipid bubble’ 

grow and bud from the ER.  

6. Lipin family proteins are incorporated to the phospholipid monolayer for future DAGs 

synthesis.  

 

Figure 3 Lipid droplet formation a).   
Steps 4, 5 and 6 of. Neutral lipids are incorporated to the ‘lens structure’ via membrane proteins’ action. Lipin is 

added to the lipid droplet’s surface for future lipid synthesis.   
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7. SEIPIN (a lipodystrophy protein) incorporates new lipids and proteins to lipid droplets and 

transforms them into mature structures.  

8. Choline-phosphate cytidylyltransferase 1 (CCT1) is recruited to coordinate phospholipid 

synthesis in the expanding lipid droplet’s monolayer.  

 

Figure 4 Lipid droplet formation b) 
Steps 7 and 8. SEIPIN transforms the lipid droplet into a mature structure by adding more lipids and proteins. 

CTP regulates this action. 

 

9. During their life cycles, lipid droplets can stay connected to ER and grow there via SEIPIN 

action or expand in the cytoplasm by fusion or lipid transfer.  
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Figure 5 Life cycle of a lipid droplet. 
A mature lipid droplet can stay attached to the endoplasmic reticulum for energy storage or bud from the ER 
membrane to stay in the cytosol. 

 

Since most steps in the lipid droplet biogenesis pathway are widely conserved, bioinformatic 

studies have been a useful tool to start clarifying lipid droplet processes in plants. Homology 

searches in mammals and yeasts have been one of the most helpful ways to elucidate lipid 

droplet mechanisms and identify the roles of every component. For instance, it has been 

discovered that the perilipin family, which stabilise the lipid droplet structure, is not present 

in plants. Instead, this job is performed by oleosins in vegetal cells (Guo et al., 2009).  In the 

same way, several accessory proteins have been identified. Small rubber particle proteins 

(SRPPs) were reported as the most abundant protein in avocado lipid droplets (Pyc et al., 

2017). SRPP-like proteins were also found in Arabidopsis; however, since rubber is not present 

in these cells, this protein was named Lipid Droplet Associated Protein (LDAP) (Pyc et al., 2017). 

LDAP is found at the surface of LDs and modulates their proper compartmentalisation; this 

protein is specific to plants and algae. Moreover, studies have highlighted that LDAPs perform 

an important role in temperature and drought stress (Pyc et al., 2017). Salt stress (Kim et al., 

2016) as well as phosphorous and nitrogen starvation (Iwai, Ikeda, Shimojima & Ohta, 2014; 
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Liu, Wang & Zhou, 2008) have been proven to cause an increase in lipid droplets in Chlorella 

vulgaris and C. reinhardtii. 

1.5 Lipid droplets in macroalgae 
As previously mentioned, macroalgae do not usually contain enough lipid to be used as 

biodiesel feedstock. Therefore, finding a way to increase lipid levels has been proposed as a 

promising step towards greener energy. One way to achieve this would be to modify gene 

expression to augment lipid droplet formation (Pyc et al., 2017).  In addition, it has been 

observed that different types of stress produce different types of lipid droplets. Given the high 

levels of heavy metal present in polluted marine ecosystems, metal stress will be particularly 

studied in this research as a tool for increasing lipid content. 

In addition, ectopic expression of known lipid droplet proteins has been suggested as an 

effective strategy to trigger lipid droplet formation. Cai et al., (2017) have successfully 

expressed mouse FIT2 protein in Nicotiana tabacum, Nicotiana benthamiana and Arabidopsis 

thaliana, getting an elevation of lipid droplets in N. tabacum suspension‐cultured cells, N. 

benthamiana leaves and A. thaliana plants. It is possible to assume that most of the cell’s 

carbon supply goes to fatty acid synthesis, direct those fatty acid to TAG production, stimulate 

lipid droplet formation and keep them stable by lipid droplet related gene overexpression in 

what are called “push, pull and protect” strategies. Cai achieved this by overexpressing LEAFY 

COTYLEDON2 (LEC2) to ‘push’ carbon to fatty acids synthesis, DGAT2 to ‘pull’ fatty acids to 

become TAGs and introducing FIT2 to stimulate lipid droplet formation in tobacco leaves. 

Hence, this might be a convenient strategy once lipid droplet proteins and their expression are 

better known. To measure the effectiveness of this treatments in macroalgae, lipid droplets 

need to be observed and analysed. 

The most immediate way to measure lipid droplet shape, number and size is microscopic 

imaging. Electron microscopy and Fluorescence microscopy are two possible approaches, but 

there are several points that must be considered. On the one hand, electron microscopy makes 

it impossible to observe the lipid droplet’s limiting membrane, smaller lipid droplets are much 

harder to identify due to their low density and, given their diverse composition, staining agents 

may not cover all lipid droplets to the same level. In addition, common sample preparation 

techniques tend to destroy lipid droplet structure (Ohsaki, Suzuki and Fujimoto, 2014). On the 
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other hand, even though fluorescence microscopy makes smaller lipid droplets easier to 

observe, lipophilic dyes may cause some problems. For instance, they may modulate lipid 

droplet activity or produce uneven labelling (Ohsaki, Suzuki and Fujimoto, 2014). Despite this, 

fluorescence microscopy provides better contrast to observe lipid droplets of all sizes besides 

its quicker and more convenient results. Therefore, it will be the technique used for this 

research.  

Even though lipid droplets have been observed in Ulva cells, a broader and deeper study on 

their formation pathways and their dynamics is still needed. As mentioned above, TAG 

synthesis is well studied in microalgal species like C. reinhardtii as well as in several land plants. 

To increase the number of lipid droplets in Ulva cells and, consequently, to improve lipid 

extraction yields a better understanding of Ulva’s metabolic pathways is required.  
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2 Hypotheses and aims. 
A variety of studies have shown that green seaweeds of the Ulva genus have high total lipid 

contents (El Maghraby and Fakhry, 2015), and this species is being developed in our laboratory 

as a green algal model species. 

2.1 Hypotheses 
To start this research the next hypotheses were raised: 

• Metal stress increases lipid content in Ulva cells. 

• Lipid droplets expand and multiply after metal exposure.  

Understanding how metals trigger lipid changes, we may be able to trigger these lipid increases 

independently and increase lipid content in Ulva on demand, making it more amenable for 

biodiesel production. 

2.2 Aims 
To test my hypotheses, the following activities (objectives) were carried out:  

• General literature review about lipid droplets.  

• Explain lipid droplet formation processes in Ulva by identifying ubiquitous metabolic 

pathways.  

• Identify enzymes involved in these pathways.   

• Search the corresponding sequences (protein or nucleotide) for lipid droplet proteins 

in known genomes such as C. reinhardtii and Arabidopsis thaliana. 

• Blast those sequences against the Ulva mutabilis genome to see which of them (lipid 

droplet proteins) are present. 

• Share the list with our collaborators in the University of Santiago de Chile (USACH) who 

have carried out the differential expression studies. 

• Fluorescence microscopy to observe lipid droplet dynamics.  

• X-Ray diffraction analysis to determine heavy metal localisation in Ulva cells treated 

with lead.  

The data retrieved from this project will allow us to develop two research directions. First, it 

will inform our understanding of how the composition of cultivated macroalgae is affected by 

environmental stress. This will help to determine the optimal conditions to get improved algal 
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feedstock. Second, by using metals as a tool to elicit lipid droplet responses, we can probe the 

mechanisms of lipid metabolism and build on these to think about how we might transform 

macroalgae to improve lipid yields. 
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3 Materials and methods 

3.1 Chemicals and solutions 

3.1.1 Artificial seawater (ASW)  

The Table 2 shows the formulation for the preparation of 1L of ASW: 

Table 2 ASW preparation 

Chemical (Sigma) Amount (g) 

Seasalts 35 

Sodium nitrate 0.07 

β-glycerophosphate disodium salt hydrate 0.01 

 

All the salts were dissolved in Ultrapure water (UPW).  

3.1.2 Metal stocks 

Table 3 shows the amounts of chemical used to get 1 ml of each metal stock:  

Table 3 Metal stocks 

Chemical (Sigma) Amount (mg) Concentration (mM) 

Lead acetate trihydrate  3.79 10 

Copper sulfate pentahydrate 24.97 100 

  

The chemicals were dissolved in ASW water and kept at -4°C in stock solutions.  
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3.1.3 Fluorescent dyes 

Three dyes were used to localise lipid droplets in vivo. Table 4 shows how dye stocks were 

obtained.  

Table 4 Fluorophore stocks. 

Fluorophore 

(Invitrogen) 

Stock  Amount used Final concentration 

(mM) Fluorophore/Stock Solvent 

BODIPY 493/503 9.5 mM  0.5 ml 0.75 ml 4 

FM4-64  5 mg 1 ml 5 

DAPI     

  

BODIPY and FM4-64 were dissolved in dimethyl sulfoxide (DMSO, Sigma).  

3.1.4 Nitrogen free ASW 

Table 5 shows the formulation used to prepare 1L of nitrogen free ASW: 

Table 5 Nitrogen free ASW (Harrison et al., 1980). 

Anhydrous salts Amount 

(g/L) 

Concentration 

(mM) 

Sodium chloride 20.756 362.7 

Sodium sulfate 3.477 25.0 

Potassium chloride 0.587 8.03 

Sodium bicarbonate 0.170 20.07 

Potassium bromide  0.085 0.73 

Boric acid  0.022 0.37 

Sodium fluoride  0.003 0.066 

Hydrated salts 

Magnesium chloride*6H2O 9.395 47.18 

Calcium chloride*2 H2O 1.316 9.134 

Strontium chloride*6 H2O 0.021 0.082 

 

Anhydrous and Hydrated salts must be dissolved separately in DI water and mixed afterwards.  
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3.2 Algae collection and keeping 
Ulva thalli were collected in Seaham, County Durham, England (54o50'25.25''N, -1o20'15.06'' W) 

and taken to the lab in excess seawater to reduce stress. Once in the lab, all the epiphytic 

organisms and materials were removed (e.g. shrimps, seashells, stones, dead parts) to ensure 

Ulva would be kept healthy. After that, thalli are put into beakers and topped up with artificial 

seawater (ASW) and put into incubation at 8°C and 90 rpm. ASW is changed every week.  

3.3 Pathway elucidation and gene search 
I reviewed the literature to identify the proteins involved in lipid droplet formation. The search 

focused on the microalga C. reinhardtii (Cr), because of its close phylogenetic relation to Ulva 

and its well characterised genome; Arabidopsis thaliana and other plant species were also 

investigated. The Web of Science database was searched for the words “Chlamydomonas” 

followed by “Lipid Droplet”. The resulting 103 papers were scanned to find all the genes known 

to be related to lipid droplet formation. This list was then used to ‘map’ the enzymes in C. 

reinhardtii’s pathway (Figures 1 to 4). Those genes without a relevant function were discarded.  

Once the list of putative genes was ready (Appendix 1), their amino acid sequences were 

searched in NCBI databases and literature. These sequences were then BLASTed against the 

Ulva mutabilis genome (Umu) (De Clerck et al., 2018) on the ORCAE server 

(https://bioinformatics.psb.ugent.be/orcae/). The final gene list (Table 5) was sent to Santiago de 

Chile University (USACH) where it was analysed for differential expression in Ulva compressa.  

Ulva mutabilis lipid droplet-related genes were BLASTed against the Ulva compressa 

transcriptome. Once the Ulva compressa lipid droplet genes were identified, qPCR was 

performed. Samples were taken at 0h, 3h, 6h, 12h, 24h to measure transcription.   
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3.4 Metal stress  

3.4.1 Metal exposure to Lead and Copper  

Ulva was exposed to metal stress for future confocal microscopy observations. Initially, the 

experiment was carried out with three conditions (Table 6). For each culture, an approximately 

15 cm long section of thallus was put into beakers with 200 ml of ASW. 

Table 6 Lead and Copper exposure experiment. 

Culture Metal Source Metal source 

concentration 

Control - - 

Lead-treated  Lead acetate 10mM 10 μM 

Copper-treated Copper sulfate 100mM 100 μM 

 

Metal was added to 200 ml of ASW, the final concentrations were obtained by adding 200 μl 

of stock solution (Table 2) into each culture. The cultures were kept for 48 h at 8 °C and 90 

rpm. After this period, samples were prepared for fluorescence microscopy.  

Then, to either confirm some results or to try different treatments, another experiment was 

carried out with four conditions (Table 7). Cultures were set up similarly to the previous 

experiment, using the glutathione (GSH) inhibitor, buthionine sulfoximine (BSO).  

Table 7 Lead exposure experiment. 

Culture BSO Lead acetate 

concentration 

Control - - 

Lead-treated  - 10 μM 

Washout   - 10 μM 

Lead + BSO treated 3mM 10 μM 

 

To get lead acetate + Buthionine sulfoximine (BSO) culture, 130 mg of BSO were put in the 

culture media with the 200 μl of Lead acetate stock. The experiment was carried out over a 

96-hour period as shown in Figure 6. All samples were incubated in ASW. 
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Figure 6 Lead exposure experiment design. 

Moreover, a set of cultures was carried out to compare copper effects to lead ones and a BSO 

control was added to the experiment. The conditions for these experiments are shown in Table 

8.  

Table 8 Copper exposure experiment. 

Culture BSO Copper sulfate 

concentration 

Control - - 

BSO Control 3mM - 

Copper  - 25 μM 

Copper + BSO treated 3mM 25 μM 

 

In this case, culture volume was 120 ml. 30 μl from Copper sulfate stock (Table 5) were added 

to copper-treated samples to get a 25 μM concentration. 

3.5 Fluorescence microscopy    
To observe lipid droplet dynamics, we imaged Ulva cells in a confocal microscope after metal 

stress exposure. Confocal fluorescence microscopy was chosen because it let us observe Ulva 
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cells in vivo. Three fluorophores were used for staining (Table 4). 4mM BODIPY 493/503 was 

selected to observe neutral lipids (lipid droplets). BODIPY is useful to label lipid droplets 

because of its lipophilic nature, which allows BODIPY to be incorporated into lipid droplets 

(Ohsaki, Shinohara, Suzuki, & Fujimoto, 2010; Suzuki, Shinohara & Fujimoto, 2012). DAPI to 

see the nucleotides and 5mM FM4-64 to try to label the vacuole. Immediately after the culture 

period finished, samples were prepared for fluorescence imaging. A small piece of algal tissue, 

of approximately 1cm2, was put into a petri dish with 5 ml of its corresponding culture media. 

Then, 20 μl of every dye stock solution was added. The samples were covered from light and 

left to stain for 30 min. After that, samples were sliced and mounted on a slide and covered 

with a coverslip before being placed in the microscope. Zeiss LSM 880 and a Leica TC5 SP5 (for 

copper experiment only) confocal microscopes were used. 

The images taken were analysed using Fiji software (Schindelin et al., 2012; Rueden et al., 

2017). The number and areas of lipid droplets were measured by drawing ellipses around each 

lipid droplet present in the cell. Data was then grouped into histograms. Only significant lipid 

droplets were taken onto account, leaving those with an area of 80nm2 or less out of the 

analysis. For the later copper experiment, quantitative analysis was not performed.  

3.6 X-Ray diffraction (XRD) 
In order to determine the presence of lead sulfide (PbS) in my samples, I ran an XRD analysis. 

For sampling I set up a culture for metal stress with a control sample and a lead treated one 

using the same lead source and concentrations shown in Table 5. After 48h of culture the 

samples were quickly frozen in liquid Nitrogen for later freeze-drying. After 48h in the freeze-

dryer the samples were placed in the fridge (4°C) for storage.  

To load samples in the X-Ray diffractometer, they were ground into a fine powder. Powdered 

samples were then sieved and sealed over a zero-diffraction silicon plate using high vacuum 

grease (Dow Corning). The external part of the plate was wiped to remove any sample excess 

and avoid damaging the X-ray diffractometer. The plates were then loaded on a Bruker D8 

advance X-ray diffractometer and left for reading for 50 min. The intensities were measured 

from 10° to 80° 2θ angle using CuKα radiation.  
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4 Results 

4.1 Pathway elucidation and gene search 
Previous studies report that lipid droplet formation pathways are present in all organisms.  (Pyc 

et al., 2017, Guo et al., 2009).  Since lipid droplets are oil stores, they are an important key 

towards elucidating lipid metabolism in Ulva. This led me to hypothesise that identifying lipid 

droplet genes in model organisms would let us identify their homologues in our Ulva mutabilis 

genome (De Clerck et al., 2018). Once we knew which known lipid droplet regulatory genes 

were present in Ulva, we would be able to investigate the process more closely in this species, 

providing a base for the rest of my work.  

Accordingly, we looked for known lipid droplet genes in the model organisms Arabidopsis 

thaliana and Chlamydomonas reinhardtii. The extensive studies in both species increases the 

probability of finding characterised genetic sequences. In addition, C. reinhardtii is closely 

phylogenetically related to the Ulva genus, which increases the likelihood of finding 

orthologous genes in U. mutabilis. I therefore performed a literature review to identify 36 lipid 

droplet-related genes in Arabidopsis and Chlamydomonas (c.f. § 7.1, Appendix 1) and BLASTed 

these against the U. mutabilis genome. We found homologs of 14 of these genes present in 

the Ulva mutabilis genome, known in other organisms to be involved in the diverse stages of 

lipid droplet formation.  

These genes encode a total of 14 proteins: five acyltransferases (DGTT 1 and 2, GPAT, LPAAT2 

and LPLAT), which are involved in TAG assembly (Zienkiewicz, Du, Ma, Vollheyde, & Benning, 

2016; Kim, Terng, Riekhof, Cahoon, & Cerutti, 2018; Boyle et al., 2012; Goold et al., 2016; 

Manandhar-Shrestha & Hildebrand, 2015 and Nguyen et al., 2011). In addition, Plastid 

Galactoglycerolipid degradation 1 (PGD1) allows the accumulation of triacylglycerols (TAGs), 

which are later incorporated to lipid droplets (Goncalves, Wilkie, Kirst, & Rathinasabapathi, 

2016). Citrate synthase (CIS), Acyl-CoA synthetase, Cyclopropane-fatty acyl-phospholipid 

synthase (CFA2) and Long-chain acyl-CoA synthetase (LCS2) are part of the earliest stages of 

fatty acid synthesis (Goncalves, Wilkie, Kirst, & Rathinasabapathi, 2016; Ramanan et al., 2013 

and Goold et al., 2016). Trigalactosyldiacylglycerol 2 (TGD2) promotes lipid trafficking 

(Warakanont et al., 2015). Glycosyl hydrolase (GHL1) and DGTS Synthesis protein (BTA1) were 

reported to be present in isolated LDs from C. reinhardtii (Goold et al., 2016). Finally, Lipase 1 
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(LIP 1) promotes TAG turnover when Nitrogen is resupplied after deprivation. Table 9 shows 

the list of these lipid droplet genes.  All the lipid droplet protein homologs found in Ulva were 

found from the C. reinhardtii genome and both sets of sequences are provided for comparison. 

The complete list of C. reinhardtii’s lipid droplet proteins is provided in Appendix 1. 

My list confirms that lipid droplet genes are widely conserved among species. However, further 

species-specific research is needed to take advantage of these pathways. For example, not all 

the genes known to be involved in lipid droplet formation in C. reinhardtii were found in U. 

mutabilis, which implies that Ulva may have evolved its own unique lipid droplet proteins. 

Some proteins, like DGTT 1 and 2, are also encoded by various sequences in each species, 

suggesting that regulation may differ from one species to another.    
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Table 9 Lipid droplet related genes in the Ulva genome. 

Protein Protein name  Gene family (ORCAE) Gene identifier (Ulva) Gene name (C. reinhardtii) 

CIS Citrate synthase HOM02ULVA001071 Um00514_0009 CR09G07800 

LIP1 Lipase1   HOM02ULVA000466 Um00105_0004 CR12G13380 

ACS2 Acyl-CoA synthetase HOM02ULVA000475 Um00197_024; Um00197_0242 CR01G02730 

BTA1 DGTS Synthesis protein  HOM02ULVA005820 Um01035_0022 CR02G12960 

CFA2 Cyclopropane-fatty acyl-phospholipid synthase HOM02ULVA001391 Um00300_0024; Um00425_0001; Um00425_0002; 

Um00763_0010; Um01035_0022 

CR07G02640 

 DGTT1 Diacylglycerol O-acetyltransferase type 2  HOM02ULVA000286 Um00598_0020; Um01000_0117; Um01000_0128 CR06G09280 

DGTT2 Diacylglycerol O-acetyltransferase type 2 2 HOM02ULVA000139 Um00063_0057; Um00139_0035; Um00156_0022; 

Um00402_0010; Um01000_0019 

CR03G06590 

GPAT Glycerol-3-phosphate acyltransferase HOM02ULVA003414 Um01158_0012 CR06G13180 

GHL1 Glycosyl hydrolase HOM02ULVA000136 Um00236_0008; Um00203_0096 CR03G09140 

LCS2 Long-chain acyl-CoA synthetase HOM02ULVA000148 Um00086_0005; Um00203_0037; Um00203_0038; 

Um00463_0047; Um01004_0048 

CR16G00410 
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LPAAT2 Chlorophyte specific Lysophosphatidic acid 

acyltransferase 

HOM02ULVA001894 Um00636_0010 CR12G06870 

 LPLAT Lysophospholipid acyl transferase HOM02ULVA001363 Um01153_0039 CR12G05950 

PGD1 Plastid Galactoglycerolipid degradation 1 HOM02ULVA000117 Um00021_0079; Um00081_0009; Um00289_0001; 

Um00291_0045; Um00337_0051 

CR07G07710 

TGD2 Trigalactosyldiacylglycerol2 HOM02ULVA003364 Um00141_0050 CR01G11880 
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4.2 Metal stress 
To test my hypothesis that “Lipid droplets expand and multiply after metal exposure”, I 

cultured Ulva thalli in metal-containing media. To observe the effects and compare metal-

treated tissue with untreated Ulva thalli, each culture was stained with fluorescent dyes and 

prepared for confocal microscopy.  

We chose copper and lead for our metal cultures because they are commonly found in metal-

polluted seawater. To help dissect out the effects of metal elevations, I also cultured additional 

metal-treated samples with buthionine sulfoximine (BSO), an inhibitor of glutathione (GSH) 

synthesis. I reasoned that this inhibition of phytochelatin synthesis and, consequently, the 

disabling of one of the cell’s main defences against metal, would shed additional light on lipid 

droplet formation mechanisms in response to stress.  

Confocal imaging was chosen to allow me to observe and identify a broader range of lipid 

droplet dynamics. Lipid droplets do not remain static after their formation and they perform 

several roles besides lipid storage (Welte, 2015). Lipid droplets can fuse to increase their size, 

and their mobility contributes to cell transport because they can move around and bind to 

other organelles (Hashemi & Goodman, 2015). 

4.2.1 Lead exposure 

Images taken after culturing show an increase in the size and number of lipid droplets after 

high metal exposure (Figure 7) and the differences between treatments were quantified by 

counting and measuring BODIPY-labelled lipid droplets (Figures 9 and 10; box widths were 

determined according to Sturges’ rule as in Scott, 2015).   

From the histograms we could observe that lead and washout samples behaved as expected: 

the washout conditions showed that Ulva can recover from metal stress with the number of 

lipid droplets going back to those seen in control samples (Figure 9 A and D). Despite the 

presence of lead, BSO-treated samples presented fewer lipid droplets than the sample treated 

with only Lead (Figure 9 C and B).  

Lipid droplet size was also affected by lead exposure. All the samples treated with lead (Lead-

treated, Lead + BSO and Washout) present bigger lipid droplets than Control sample (Figure 

10 A-D).  
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Lipid droplet dynamics were also observed. It was possible to spot two lipid droplets joining 

(Figure 11) confirming that typical lipid droplet dynamics were present. Moreover, Lead-

treated samples showed an unexpected ‘lipid vesicle’ that moved quite rapidly into the part of 

the cell where we identified the vacuole in the light microscopy channel (Figure 12).  

In addition, Lead+BSO image (Figure 7, Image C) shows ‘spots’ (highlighted in square) which 

were much bigger than average lipid droplets, (e.g. 6.7 μm2, as opposed to ≈1 μm2). 

Observations of these ‘spots’ on the light microscopy channel images (Figure 8A) let us identify 

a different structure, showing they are not lipid droplets. However, as they emitted a signal in 

the green channel just like BODIPY the next question arises: Is there another structure that 

stores neutral lipids besides lipid droplets?  
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Figure 7 Lead treatment fluorescence imaging. 
Fluorescence images showing the clear differences in LD (arrows) size and number for all the treatments. Being 

the Lead-treated sample (B) the one with the higher number of LDs as expected. In contrast, Control (A), BSO-

treated (C) and washout (D) samples present fewer and smaller LDs. BSO sample (C) also shows the ‘spots’ 

(square). 
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Figure 8 Larger spots. 
Images that show the ‘spots’ (circles). Image A was taken from the Light microscopy channel. Image B was taken 

from the green channel (BODIPY) 
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Figure 9 Number of LDs. 
Histograms showing the lipid droplet number distribution on each sample. Clearly, lead treated cells (B) 

present a major LD number than the rest of samples. LD number in washout treatment (D) goes back to 

normal after lead exposure. The counts were performed once for each sample.  
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Figure 10 Lipid 
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Figure 11 Lipid droplets joining. 
LD joining process step by step. Image 1 shows the initial take. Joining and splitting is part of the typical LD life 

cycle. Indicative times are shown on each image. 

 

 

Figure 12 'Lipid vesicle'. Images A-D show four consecutive shots from live imaging. Panel A is the first position of 
the vesicle. Image E shows the vesicle observed in the light microscopy channel. 
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4.2.2 Copper exposure 

Since the preliminary copper treatments caused cell death presumably due to high metal 

concentration (100 μM), this second treatment was carried out using a lower concentration 

(25 μM). Copper-treated cells showed similar behaviour to lead-treated ones; lipid droplets 

increased in size and number. This time fewer samples were observed and only the BODIPY 

channel signal (green) was considered (Figure 13).  Lipid droplet measuring and counting were 

not done as we were more interested in qualitative change.  In addition, copper-treated 

samples show the big spots observed in previous images (cf.§ 4.2.1 Figures 7 and 8). 

 

Figure 13 Copper exposure images. 
Control sample (A) shows fewer LDs (arrows) than the Copper-treated sample (B). 

 

In conclusion, fluorescence microscopy images demonstrated that metal treatment augments 

lipid droplet formation in Ulva. Our images also showed that typical lipid droplet dynamics, 

like mobility and fusing, are present in Ulva. However, several questions remain unanswered: 

most immediately. our ‘spots’ need to be characterised to determine what they are and 

whether they play a role in metal handling.  

4.2.3 X-ray diffraction (XRD) 

Marine organisms have developed diverse metal-handling mechanisms. Converting metals 

into phosphates, sulfides, carbonates or sequestering them in small proteins are common 

defence processes (Seshadri, Saranya, & Kowshik, 2011). Since Ulva performs an important 
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role in marine sulfur cycles (De Clerck et al., 2018), we hypothesised that lead sulfide formation 

could be one mechanism used by Ulva. 

To test this hypothesis, I carried out X-Ray Diffraction (XRD) studies on control and metal-

treated samples, hoping to identify metal salts from their characteristic diffractograms. My 

results showed that XRD patterns for my two analysed samples looked very similar (Figure 14). 

Both patterns show peak intensities for the following 2θ values: 27.7°, 28.2°, 28.5°, 31.8°, 

40.7°, 56.5°, 66.4°, and 75.5° (Figure 14 A and B). Among the few differences found, an increase 

in diffraction intensity at 28.2° (Figure 14 B, labelled with an arrow) for lead-treated sample 

caught our attention. The peak generated at this diffraction angle is almost twice as high as in 

my control sample and draws the attention because this value is consistent with one of the 

characteristic 2θ values for a common lead salt: lead sulfide (PbS). Commonly, PbS diffracts 

around 29.96° (Bai & Zhang, 2009; Kalita et al., 2012; Seshadri, Saranya, & Kowshik, 2011). To 

be sure we were identifying lead sulfide and not another lead-sulfur compound (e.g. lead 

sulfate) the patterns obtained were also compared with lead sulfite (PbSO3) and lead sulfate 

(PbSO4); none of these seem to correlate with our spectra as well as PbS. 

However, my results are suggestive, but not conclusive. My samples were not washed out after 

culturing, so it is likely that the rest of the diffractogram peaks (31.8°, 40.7°, 56.5°, 66.4°, and 

75.5°) represent Sodium chloride (NaCl) and potassium chloride contamination from seawater 

in my sample; this will be covered further in my discussion section (c.f. § 5.5).  
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Figure 14 XRD patterns. 
XRD patterns for indicative diffraction in Control sample (A) and Lead-treated sample (The red arrow shows the 

peak that we have tentatively identified as PbS for the control and the black arrow shows the same peak in the 

lead-treated sample.  The highest peak (circle) in both cases corresponds to a Sodium (Na) signal (Grass & Stark, 

2005; Li, Chen, Zhou, Gu, & Chen, 2005; Linnow, Zeunert, & Steiger, 2006; Rasmussen, Jørgensen, & Lundtoft, 

1996). 
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5 Discussion 

5.1 Pathway elucidation and gene search 
From the literature review, I found 36 lipid droplet genes present in Chlamydomonas 

reinhardtii genome. Only 14 of them were identified in the Ulva genome. This suggests that 

core lipid droplet proteins share functions between species, but that each organism also has 

its own proteins that may modulate core lipid droplet genes.  

Given the high diversity between algal species, it is necessary to broaden the knowledge we 

have about them, considering that each species may have significant differences in enzymes 

and pathways (Liu & Benning, 2013). For example, the Major Lipid Droplet Protein (MLDP) 

which has been reported in C. reinhardtii (Moriyama, Toyoshima, Saito, Wada, & Sato, 2017) 

was not found in the U. mutabilis genome and it seems not to be present in any macroalgal 

genome. To start elucidating a lipid droplet pathway for Ulva, I used my list of genes to map 

the enzymes found in the U. mutabilis genome according to their putative function. From this 

mapping I can propose a model for this process in Ulva, which is shown in Figures 15, 16 and 

17.  

 

Figure 15 First stage of lipid droplet formation. Lipid synthesis. 
Fatty acids (FA) which can be synthesised or obtained from cell membranes, are transformed into FA Acyl CoAs. 

Citrate synthase (CIS) regulates these reactions by redirecting Acyl CoA from the TCA cycle to lipid synthesis. See 

text for details and abbreviations. 

 

The whole process can be divided into 3 clear stages: lipid synthesis, TAG synthesis and finally 

lipid droplet assembly. Lipid synthesis starts with the obtention of fatty acids (FAs), possibly 

via DGTS Synthesis protein (BTA1), Lipase1 (LIP1) or Glycosyl hydrolase 1 (GHL1) action (Figure 

15). Fatty acids are then transformed into Acyl-CoAs by Acyl-CoA synthetase (ACS2) or Long-
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chain Acyl-CoA Synthetase (LCS2). Some enzymes have been demonstrated to be indirectly 

involved in the process, like Citrate synthase (CIS), which regulates TAG synthesis by 

redirecting Acyl-CoA from TCA cycle to fatty acid synthesis when deactivated (Deng, Cai, & Fei, 

2013). The endoplasmic reticulum and the chloroplast have been proposed as the location of 

this first stage in the well-studied C. reinhardtii (Zienkiewicz, Du, Ma, Vollheyde, & Benning, 

2016). Despite the evolutionary differences between algal species, C. reinhardtii has a close 

phylogenetic relation with Ulva.  

 

Figure 16  Second stage of lipid droplet formation. TAG synthesis. 
In the cytosol, Fatty acid Acyl CoAs are incorporated into Glycerol-3-Phosphate (G3P) via Acyltransferases (GPAT, 

DGTT1 and 2, LPAAT2, LPLAT or DGAT) action until G3P is transformed into a Triacylglycerol. See text for details 

and abbreviations. 

 

During the next stage of the model (Figure 16), this excess of lipids is transformed into 

triacylglycerols (TAGs). The lipids can come from lipid synthesis or from degradation of 

membranes via Plastid galactoglycerolipid degradation (PGD1). Acyltransferases (e.g. DGTT, 

DGAT) play a major role in TAG synthesis. It is important to note that most of the genes found 

for this work were acyltransferases (see cf.§ 5.1 Table 9 and Appendix 1). They are responsible 

for transforming glycerol and fatty acid-Acyl CoAs into TAGs. The C. reinhardtii encodes 6 

diacylglycerol acyltransferases (DGATs).  This suggests that TAG synthesis is an important 

process in this Chlamydomonas’ metabolism. In addition, the variety of DGATs may suggest 

that each of them is involved in a different process, such as a specific stress response. In fact, 

Pugkaew et al. (2017) mention that DGTT1 increases its expression after Nitrogen depletion 

while DGTT2 does it after exposure to rapamycin. Therefore, a broader and deeper metabolic 
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study of other algal species like the macroalgal Ulva genus is necessary; comparison of various 

stress responses via expression analysis may confirm this.  

 

Figure 17  Third stage of lipid droplet formation. LD assembly. 
TAGs are transported into the growing LD by transporters (e.g. TGD2) action. Other proteins like Cyclopropane 

fatty acid synthase (CFA2) are responsible for synthesising phospholipids for the monolayer and attaching other 

membrane proteins. See text for details and abbreviations. 

 

In the last stage of the model, lipid droplets would be formed or would increase their size to 

store the excess of TAGs. Triacylglycerols are transported to the growing lipid droplet by a lipid 

carrier like Trigalactosyldiacylgliycerol (TGD2), while Cyclopropane fatty acid synthase (CFA2) 

synthesises the phospholipids to increase the monolayer diameter (Figure 17). Simultaneously, 

proteins like acyltransferases, membrane traffickers, an equivalent to microalgal Major Lipid 

Droplet Protein, lipid synthesis enzymes, and maybe transporters are incorporated to the 

surface of the lipid droplet to ensure it accomplishes its function within the cell (Guo et al., 

2009). Since algal lipid droplets have not yet been widely studied, a deeper characterization is 

still needed. Extracting them to characterise the type of lipids kept inside, protein labelling to 

identify lipid droplet proteins (e.g. with antibodies or fluorescent dyes) as well as deeper 

genetic comparisons may shed some light into macroalgal lipid droplet composition and 

function (Davidi, Katz, & Pick, 2012; Suzuki, Shinohara & Fujimoto, 2012). 

5.2 Differential expression 

Starting from the hypothesis “Metal stress increases lipid content” we expected an increase in 

the expression of any of the genes related to fatty acid synthesis or such as BTA1 or ACS2 

(Figure 15). In fact, Ramanan and collaborators (2013) reported acetate as a key factor in lipid 

droplet synthesis. In their work, they triggered lipid droplet formation by exposing a starchless 
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C. reinhardtii strain to nitrogen starvation, a quite common type of stress. Hence, ACS2 would 

be a good candidate to overexpress after metal exposure.  

During TAG synthesis, genes like Diacylglycerol acyltransferase type 2 (DGTT) and Phospholipid 

diacylglycerol acyltransferase (PDAT1) have been demonstrated to overexpress in C. 

reinhardtii cells after nitrogen starvation (Boyle et al., 2012). In Boyle and collaborators’ 

research, DGTT1 was also proven to increase its expression after exposing C. reinhardtii cells 

to sulfur and phosphorous starvation. Therefore, an increase in DGTT1 and PDAT1 

transcription would also be expected (Figure 16).  

Finally, TAGs would then accumulate and later become into the core of a lipid droplet during 

the third step of the proposed pathway. Once again, a higher transcription of lipid synthesis 

enzymes as well as lipid transporters would support our model and bring us closer to 

understanding Ulva´s lipid metabolism after metal exposure.  

Surprisingly, differential expression results sent from Chile indicate that our first hypothesis 

may need to be rethought. We found that, during metal exposure, the proteins responsible for 

synthesising new lipids did not increase their genetic expression. Instead, the proteins which 

significantly increased their expression were those responsible for lipid hydrolysis and lipid 

transport; PGD1 and TGD2. Hence, the hypothesis that stated “Metal stress increases lipid 

content” is not supported. Consequently, I suggest an alternative hypothesis: the lipids inside 

the cell redistribute instead of being synthesised de novo. What might be happening is that the 

lipids present in other parts of the cell, for example in cellular membranes, are pulled to TAG 

synthesis and accumulated in lipid droplets. Metal stress increases Reactive Oxygen Species 

(ROS) accumulation in the cell (Moenne, González, & Sáez, 2016). The increased oxidation may 

cause membrane disruption and lipid lysis, probably effected by Plastid Galactoglycerolipid 

degradation 1 (PGD1) in our model, releasing fatty acids (FAs) which are then used to 

synthesise TAGs and then transported into lipid droplets putatively via 

Trigalactosyldiacylgliycerol 2 action. The increase in the transcription of PGD1 and TGD2 is 

consistent with this new hypothesis.   
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5.3 Metal stress 

5.3.1 Lead and copper exposure 

Although Lead and washout samples behaved as expected (Figures 9 and 10, § 4.2.1), we still 

observed some unexpected but interesting behaviour. On one hand, according to the 

hypothesis “Lipid droplets expand and multiply after metal exposure”, a significant increase in 

the number of lipid droplets was perceived between the Control sample and the Lead-treated 

one. On the other hand, fluorescence images and lipid droplet counting data showed that Lead 

+ BSO treatment resulted in fewer lipid droplets than expected. Buthionine sulfoximine (BSO) 

is a Glutathione (GSH) synthesis inhibitor (Griffith and Meister, 1979). Glutathione is a 

phytochelatin whose role in the cell is to sequester heavy metals (e.g. lead). In this way, GSH 

protects the organism against metal damage. Given GSH’s role in metal handling, BSO was 

added to test its influence (if present) on lipid droplet mechanisms. While adding BSO to the 

experiment, we predicted that inhibition of Glutathione (GSH) synthesis would not affect lipid 

formation, localisation, or dynamics.  

Unexpectedly, BSO-treated Ulva presents fewer lipid droplets than Ulva treated with only lead. 

This suggests that lipid droplet formation and heavy metal chelation, two metal-handling 

mechanisms that we thought would be independent, may be under common regulatory 

control yet unknown. This is further evidence that metabolic studies in Ulva are essential to 

determine its suitability as a biodiesel source.  

Besides metal-induced lipid droplets, fluorescence imaging let us observe lipid droplet 

dynamics. As mentioned above (c.f. § 4.2.1, Figure 11), we could see a couple of lipid droplets 

joining. Since we relate lipid droplets to metal handling, we suspected lipid droplets would 

move quickly inside the cell in order to decrease metal concentration as soon as possible. 

Surprisingly, lipid droplets did not seem to move as rapidly as we expected; the live imaging of 

lipid droplets joining, as well as the rest of the images we collected show a slow movement (≈ 

1 μm/min). We also observed another interesting phenomenon: fluorescence live imaging let 

us spot a ‘lipid vesicle’ (c.f. § 4.2.1, Figure 12). This vesicle moved more quickly than lipid 

droplets alone and it was easy to see it move out of the plane of focus and back in (Figure 18). 

Images taken from the light microscopy channel let us locate this vesicle in the vacuole, 

although this location was putative. We later confirmed this location while observing similar 
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structures in Transmission Electron Microscopy (TEM) images taken from a previous metal 

treatment which was part of another research project developed by our team (Figure 19).  

 

Figure 18 Lipid vesicle b). 
This figure shows different shots from live imaging where the lipid vesicle is noticeable. Image A illustrates the 
first position of the lipid vesicle. Images C, D and E show the lipid going out of focus and back. 
 

Moreover, observations in TEM images also gave us an indication of the electron density of 

these vesicles. It is possible to notice in Figure 19 that even though the lipid vesicles do not 

present a remarkable electron density, they may look darker than other membranes. This may 

indicate that lipid droplets also sequester and carry lead into the vacuole for disposal. This 

suggestion is supported by Andrade, Farina, & Amado Filho´s work (2004) on Enteromorpha 

flexuosa. They report an increase in lipid droplet formation, a higher number of vacuoles and 

some vesicles inside the vacuole after Copper exposure. In addition, Silverberg’s publication 

about lead localisation in the green alga Stigeoclonium tenue (1975) mentions that lead is 

mainly deposited in the vacuole. Andrade and collaborators also report structural changes like 

membrane disruption, multiplication of starch granules and the increase of electron dense 

aggregates. We spotted the same changes in our TEM images (Figure 20). The observation of 



 

40 
 

lipid disruption is consistent with the new hypothesis we formulated based on our results (§ 

5.2): lipids may be relocated from membranes to lipid droplets. Thus, the changes in the 

vacuole give us a hint about the role lipid droplets are playing during metal handling: lipid 

droplets are probably sequestering and transporting metals to the vacuole, reducing metal 

concentration in the cytoplasm.  

Besides the expected changes caused by metal exposure and the unexpected information we 

have obtained, fluorescence imaging also showed another intriguing structure. Lead+BSO 

treatment images present extraordinarily big “lipid droplets” (Figure 8). In the beginning, the 

larger ‘spots’ were measured and counted as lipid droplets. However, after more thought, it 

was noticed that these spots were not present in the other lead-treated samples. This and the 

unusual size made us think they may be not lipid droplets. Hence, we tried to figure out what 

else could be emitting fluorescence in BODIPY channel. 

To do so, we went back to light microscopy images and compared them with the fluorescence 

ones to try and identify the unknown spots. The most likely candidate is the pyrenoid: a 

structure located in the chloroplast. They are involved in CO2 fixation and are mostly composed 

by Ribulose bisphosphate carboxylase/oxygenase (RUBISCO). They can grow and multiply as 

algal cells grow older (Teng, Ding, & Lu, 2011). This last fact is consistent with the number of 

‘spots’ seen in each of our cells. Despite the similarity of our images to actual pyrenoids (Figure 

21), the reason why they emit fluorescence in the green channel (BODIPY signal) remains 

unknown.  

Since pyrenoids are located in the chloroplast, chlorophyll’s autofluorescence may be related 

to the pyrenoids’ capacity to emit a signal (Kodama, 2016). Moreover, it is reasonable to 

consider that pyrenoids have different staining properties than the rest of the chloroplast 

(Gibbs, 1962). Therefore, it is feasible that they may contain an unidentified autofluorescent 

compound. As an alternative explanation, pyrenoids may be stained by BODIPY. They have 

been associated with oil synthetis in diatoms (Bose, 1941; 1943). Bose (1943) mentions healthy 

cells did not present oil droplets near the pyrenoid. Hence, is not unreasonable to think 

stressed cells’ pyrenoids may be affected by metal stress, causing them to synthesise neutral 

lipids.  
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Figure 19 TEM lipid vesicle. TEM images showing ‘lipid vesicles’ (arrows) located in the vacuole of two different Lead+BSO-treated cells. 
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Figure 20 Cell morphology before and after metal. TEM images comparing the morphology of Control sample (A) and Pb-treated sample (B). In B it is possible to 
observe a higher number of electron dense aggregates (arrows) than in A. Also, it is noticeable that there is more membrane disruption in lead- treated sample 
when compared to control sample (squares). Major production of starch granules is also evident (S).   
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Figure 21 Pyrenoids comparison. 
Picture A shows pyrenoids in Ulva spp. cells (pointed with arrows). Picture B shows the same organelle in 
Enteromorpha linza.   

5.4 New Hypotheses 
Taking all our results together, we took our initial hypothesis: “Metal stress increases lipid in 

Ulva cells” and reformulated it. Based on the differential expression analysis and the 

membrane disruption observed in TEM images, we can suggest that lipids are not synthesised 

de novo inside Ulva cells following metal stress and instead they are being relocated from cell 

membranes (e.g., the chloroplast) and pulled into TAG synthesis by of oxidative stress. 

Studying the expression of desaturases, lipases, and lipid transporters during and after metal 

exposure would give some hints about whether this is correct.  

Another interesting observation would be the effect of BSO in lipid droplet formation levels. 

The unknown link between phytochelatin action and metal handling via lipid droplets requires 

further study to have a clearer picture of these mechanisms. Metabolic studies may be a useful 

tool to figure this out. Given the possible increase in electron density showed by lipid vesicles, 

we could hypothesise that phytochelatins like glutathione (GSH) bind to the lipid droplet’s 

monolayer carrying lead with them to the vacuole for disposal.  

In addition, it is not illogical to think that several metal handling mechanisms may operate 

simultaneously and still be correlated, establishing a metal handling system which optimises 

the response to stress. With this in mind, we considered a third metal handling mechanism to 

be involved: some organisms synthesise insoluble metal compounds, such as metal sulfides,  
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to stop these particles from harming the cells (Perales-Vela, Peña-Castro, & Cañizares-

Villanueva, 2006; Bai & Zhang, 2009; Seshadri, Saranya, & Kowshik, 2011). Given Ulva´s high 

importance in marine sulfur cycles and its significant content of this element (De Clerck et al., 

2018), lead sulfide (PbS) seems to be a good candidate to form insoluble lead aggregates.  

Our new hypothesis considers these three mechanisms as part of a whole metal handling 

pathway. The model we propose for this mechanism is illustrated in Figure 22. 

 

Figure 22 Proposed metal handling model for Ulva spp.  
The yellow arrows follow those parts of the path for which we do not yet have any evidence. The purple arrows 
follow the path for which we currently have some evidence or indication. 

 

This proposed model begins with metal triggering the three mechanisms at the same time. 

Oxidative stress would increase the amount of fatty acids which are pulled to TAG synthesis 

and lipid droplet formation. Simultaneously, lead would react with sulfite (SO3) present in Ulva 

cells to form PbS which is later incorporated into the lipid droplet’s surface as well as GSH-Pb 

complex, formed by glutathione and lead particles. There is evidence that lead and sulfur are 

present in a 1:2 proportion, there being twice as much sulfur than lead, suggesting that PbS 

might be sequestered by a metallothionein or a phytochelatin, like GSH (Seshadri, Saranya, & 

Kowshik, 2011). Also, the Ulva genome encodes the enzymes required for sulfite synthesis 

from hydrogen sulfide (H2S), which have been identified in plants (Filipovic & Jovanović, 2017). 

Since all the compounds and enzymes required for these processes are present in Ulva, this 

model seems feasible.   
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5.5 X-Ray diffraction (XRD) 

To test our new hypothesis, we needed to confirm the presence of PbS in our lead-treated 

cells. To do so, we chose X-Ray diffraction as the tool to use given our access to it and given 

that it is a common analysis for lead sulfide identification (Bai & Zhang, 2009; Kalita et al., 2012; 

Seshadri, Saranya, & Kowshik, 2011). 

The XRD pattern obtained from analysing our lead-treated sample shows a significant 

increment in the diffraction intensity at 28.2°. Although this 2θ value may not seem 

significantly close to 29.96° it is possible that, given the ‘amorphous’ (not crystalline) structure 

of our sample, the X-rays may be diverted, modifying the diffraction angle to some extent. In 

addition, the culture media was not washed out before freeze-drying. Hence, we cannot be 

sure that the salts present in the artificial seawater are not interfering. Trials on control and 

lead culture media as well as a reading for PbS mixed with the control sample may shed some 

light on this and help to get clearer conclusions.  

Because of the high likelihood of salt contamination, XRD patterns for Sodium (Na) compounds 

were also searched for to compare their 2θ values with our stronger signal (31.8°). As a result 

of that search, we found that Sodium salts, e.g. Sodium Chloride (NaCl) and Sodium Sulfate 

(Na2SO4), diffract X-rays between 31° and 32° 2θ values (Grass & Stark, 2005; Li, Chen, Zhou, 

Gu, & Chen, 2005; Linnow, Zeunert, & Steiger, 2006; Rasmussen, Jørgensen, & Lundtoft, 1996). 

Hence, we can conclude our highest peak corresponds to Sodium diffraction.  
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6 Conclusion 
To conclude, finding alternative sources of energy that let us depend less and less on fossil 

fuels is crucial to avoid a highly likely energy crisis. This task may be partly fulfilled by biofuel 

implementation. To make renewable energy more popular and improve sustainable biofuel 

production, it is necessary to find the most suitable crop. In this work, we have shown that 

macroalgal lipids may be a promising candidate as a biodiesel feedstock for many reasons: lack 

of land competition, high growth rate and the potential implementation of phytoremediation 

systems in harvesting areas. Ulva’s capacity to grow under stress conditions makes it an 

interesting alternative feedstock. Such capacity has been indicated by the increased rates of 

lipid droplet formation and the recovery we observed after metal exposure.    

However, this work has also demonstrated how little we know about algal metabolism and 

how necessary this knowledge is if we want to manipulate these pathways in order to increase 

Ulva’s neutral lipid availability. Factors like the lipid vesicles found during fluorescence imaging 

(c.f. § 4.2.1, Figure 12), the putative pyrenoids (c.f. § 4.2.1 Figure 8), as well as the XRD patterns 

we obtained suggest that metal handling happens through diverse mechanisms which remain 

unknown. Much deeper and broader studies have been carried out with microalgae as the 

object of study. However, even microalgal studies are in a very young stage. Given that the 

pathways known tend to be based in genomic predictions and not actual metabolism 

experiments, broader and deeper metabolic analyses are needed.  

This project has tried to describe lipid droplet dynamics before, during and after metal 

exposure, as well as during the inhibition of parallel metal handling mechanisms. These trials 

have let us observe more closely and in higher detail how lipid droplets change in response to 

the presence of metal. Despite our answers, we also raised several questions for further study: 

much deeper observation of lipid droplets is necessary to get the complete picture. A closer 

look at these structures’ dynamics as well as diffusion studies and comparisons in other kinds 

of stress would be of great benefit.  

In addition, these experiments have made evident that metal handling mechanisms are not 

completely independent, and it is very likely they happen at the same time and they are 
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interdependent. Metabolomic studies, deeper genetic expression analysis and fatty acid 

characterisation could be important tools to retrieve the data needed to decipher the actual 

process. Metabolomic studies, for example, may help to determine the lipid source from which 

lipid droplets are formed. Also, it is essential to have more detailed knowledge of a broader 

range of lipid droplet proteins. This could be one key to establishing whether our metal 

handling model is a series of steps to form metal-carrying lipid droplets, or if they are 

independent processes.   

Given the incredible amount of questions it is easy to forget this has the principal aim of testing 

the suitability of Ulva as a biofuel crop. However, it is essential to carry on forward research 

about Ulva´s metabolism and algal metabolism in general. Understanding algal metabolism to 

a greater extent will allow us to manipulate it and get bioproducts of interest in a more 

sustainable way. The final objective would be getting the ability of triggering lipid droplet 

formation without the necessity of an external agent.   

In summary, this project has attempted to explain the changes in lipid metabolism as a 

consequence of heavy metal exposure. As a result, we propose a model that involves more 

mechanisms and processes than we expected. Although it seems feasible, our mechanism is 

speculative. Further studies and work orientated towards pathway elucidation are required to 

evaluate Ulva as a biofuel crop more objectively. 
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7 Appendix 

7.1 A.1. Genes known to be related with lipid droplet formation in the C. reinhardtii genome. 
Gene Protein name Source 

CrIRE1 Inositol requiring enzyme (Yamaoka et al., 2018) 

CrLPAAT2 Chlorophyte specific Lysophosphatidic acid  

acyltransferase 
(Kim, Terng, Riekhof, Cahoon, & Cerutti, 2018) 

TOR Target of rapamycin (Pugkaew, Meetam, Ponpuak, Yokthongwattana, & Pokethitiyook, 

2017) 

 DGAT1 Diacylglycerol acyltransferase  

(Boyle et al., 2012)  DGTT1 Diacylglycerol O-acetyltransferase type 2  

PDAT1 Phospholipid:diacylglycerol acyltransferase 

MLDP Major lipid droplet protein (Moriyama, Toyoshima, Saito, Wada, & Sato, 2017) 

CrACX2  Acyl-CoA oxidase (Kong et al., 2017) 

CrDGTT2 Diacylglycerol O-acetyltransferase type-2 2 

(Zienkiewicz, Du, Ma, Vollheyde, & Benning, 2016) 

GPAT  Glycerol-3-phosphate-acyltransferase 

LPAT Lysophosphatidic acid acyltransferase 

CrPAP1 Phosphatidic acid phosphatase 1 

CrPAP2 Phosphatidic acid phosphatase 2 

CrDGTT2 Diacylglycerol acyltransferase type 2 2 

CrDGTT3 Diacylglycerol acyltransferase type 2 3 

NRR1 Nitrogen responsive regulator 1 

BTA1 DGTS Synthesis protein (Goold et al., 2016) 
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CFA2 Cyclopropane-fatty acyl-phospholipid synthase 

GHL1 Glycosil hydrolase 1 

LCS2 Long chain Acyl-CoA synthetase  

TUB1 β tubulin 

 LPLAT Lysophospholipid acyltransferase 

α/β-Hydrolase α/β-Hydrolase 

TGD2 Permease-like component of an ATP-binding cassette 

transporter 

CIS Citrate synthase 

(Goncalves, Wilkie, Kirst, & Rathinasabapathi, 2016) 

LIP1 Lipase 1 

PGD1 Plastid galactoglycerolipid degradation 1 

TAR1 Triacylglycerol accumulation regulator 1 

ROC40 Rhythm of chloroplast 40 

TGD2 Trigalactosyldiacylglycerol 2 (Warakanont et al., 2015) 

DGAT2 Diacylglycerol acyltransferase 2 (Manandhar-Shrestha & Hildebrand, 2015) 

ACS2 Acetyl-CoA synthetase (Ramanan et al., 2013) 

GPAT Glycerol-3-phosphate acyltransferase  
(Nguyen et al., 2011) 

LPAT Lysophosphatidic acid acyltransferase 

Caleosin-like 1 and 2   
(James et al., 2011) 

Oleosin-like 1 and 2   
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