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Abstract 

 

New chemical entities (NCE) are in continuous development in pharmaceutical 

companies across the globe, in a never-ending arms race of human ingenuity against 

human disease. Methods for the testing of NCEs in the past have relied on the widespread 

use of basic cellular epithelial equivalents, generally made by culturing a single epithelial 

cell line on a 2D permeable plastic membrane, and animal models for the validation of 

NCEs. These techniques are utilised before progression onto animal and human trials and 

eventual commercial availability after thorough efficacy and safety testing.  

 

The use of cell lines to create two-dimensional (2D) models of the intestinal epithelium 

have been the gold standard since the 1980’s. These models benefit as both a cost saving 

exercise due to their simplicity and in reducing the need to use animals in research. which 

then, as today, is both ethically important and physiologically justified because animal 

models are often unreliable models of human anatomy, tissue and function. However, 2D 

models are unable to recreate complex structural variations present in vivo, usually 

incorporating a single cell phenotype in a non-physiologically based system. Whilst these 

simple models are cheap and mass producible, their use for NCEs analysis leads to 

progression of poor clinical candidates to later phases of development which fail due to 

in vivo functional irrelevance, toxicity or poor pharmacokinetics. Newer methods have 

been developed which improve the in vivo characteristics of 2D models, often through 

inclusion of additional cells lineages, such as goblet cells to make use of their distinct 

functions. Likewise, paracrine effects of fibroblasts or immune cells are increasingly 

shown to have critical functions in directing epithelial homeostasis and development. 

Three-dimensional (3D) tissue equivalents, are an emerging technology able to model a 

number of systems in vitro, bridging the gap between 2D models and human tissues. 

Ultimately however, conventional 2D monoculture models such as Caco-2 remain the 

gold standard for pharmacokinetic and toxicity analysis of NCE.   

 

It was hypothesised that Caco-2 model phenotypes can be improved through the use of 

fibroblast conditioned medias and application of cell lines into a 3D model. The aim was 

to develop a more developed understanding of the effect of the paracrine 

microenvironment and 3D culture on epithelial, specifically Caco-2, phenotype.   
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Through utilisation of  the Caco-2 cell line along with fibroblast cells of varying origin 

(Colon carcinoma, normal small intestine and skin) this study was able to create both 2D 

Transwell paracrine cultures and 3D models of both the intestinal epithelium and mucosae 

respectively. Colon derived fibroblast cells were shown to secrete significant 

concentrations of Keratinocyte Growth Factor (KGF) into media under normal 2D culture 

conditions. Moreover, the addition of paracrine factors released by fibroblast cells into 

culture and direct 3D co-culture allows for the creation of models with enhanced 

structural characteristics over Caco-2 monolayers with distinct epithelial and sub-

epithelial compartmentalisation and similar structural morphologies as seen in in vivo 

tissues.  Functionally, models were tested for their pharmacokinetic capability to a 

number of model compounds. Comparison of model functional between models and 

reported literature values for tissues and Caco-2 controls suggests that paracrine fibroblast 

secretome and 3D cells culture has a significant effect on Caco-2 function. Significant 

variation between models was observed in this study suggesting further research into the 

mechanistic actions behind the morphological changes seen is required. 
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Abbreviations 

 

GI    Gastro-intestinal 

Conventional culture Gold standard Caco-2 Transwell epithelial models 

ADME   Absorption, Distribution, Metabolism and excretion 

3D   Three Dimensional 

2D   Two Dimensional 

iPSC     Induced Pluripotent Stem cell 

Caco-2    Colon Adenocarcinoma cell line 

NCE    New chemical entities  

ZO-1/2   Zonula Occludens – 1/2 

CAM   Calcium dependant adhesion molecule 

LGR5   Leucine-rich repeat-containing G-protein coupled receptor 5 

MRP1,2,3  Multidrug resistance-associated protein 1,2,3 

BCRP   Breast cancer resistance protein 

MDR1   Multidrug resistance protein 

MHC   Major Histocompatibility Complex 

ECM   Extracellular Matrix 

αSMA   Alpha Smooth muscle actin 

CD4   Cluster of differentiation 4 

MUC   Mucin protein 

EC cells  Enterochromaffin cells 

CYP3A4  Cytochrome P450 3A4 

PTS domain  Phosphotransferase systems domain 

HT29-MTX  Colon Carcinoma Goblet “like” cell line 

CCD-18co  Colon carcinoma normal fibroblast cell line 

NHF   Normal Human Fibroblast 

Ki67   Antigen encoded by MK167 gene 

CEA   Carcinoembryonic antigen 

KGF   Keratinocyte growth factor  

HDF   Human Dermal Fibroblasts 

TEER   Transepithelial electrical resistance 
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P-gp   P-glycoprotein 

Papp   Apparent permeability 

Poly HIPE  Polymers high internal phase emulsions 

HIC   Human intestinal cells 

MTT  MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

qPCR   Quantitative PCR 

OATP-B  Organic anion-transporting polypeptide B  

mRNA   Messenger RNA 

DAPI   4′,6-diamidino-2-phenylindole DNA stain 

ELISA   Enzyme Linked Immunosorbent Assay 

ECACC  European collection of authenticated cell cultures 

IBD   Irritable Bowel Disease 

hMSC   Human mesenchymal stem cells 

IGF-1   Insulin growth factor 1 

VEGFR-1  Vascular endothelial growth factor receptor-1 

MCP-1   Monocyte Chemoattractant Protein-1 

IL-6   Interleukin 6 

HUVEC  Human vascular endothelial cells 

MMP 9  Matrix metallopeptidase 9 

TGF-β   Transforming growth factor beta 

EGF   Epidermal growth factor 

PAS   Periodic acid Schiff  

TEM   Transmission electron microscopy 

SEM   Scanning electron microscopy 

DMEM  Dulbecco’s modified eagles medium 

PFA   Paraformaldehyde 

NHE8   Sodium/Hydrogen Exchanger 8 

TNF-α   Tumour necrosis factor alpha 

IEC   Intestinal epithelial cells 

MSC   Mesenchymal Stem cells 

FDA   Federal drug administration 

H&E   Haematoxylin and Eosin 
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PBS   Phosphate buffered saline 

PBST   0.5% Tween in Phosphate buffered saline 

THF   Tetrahydrofuran 

DCM   Dichloromethane 

DBE   Dibenzyl ether 

PMN   Peripheral mononuclear cells 

PET   Polyethylene terephthalate 

HBSS   Hanks Buffered saline solution 

DMSO   Dimethyl sulfoxide 

HPLC   High Performance Liquid Chromatography 

AgCl   Silver Chloride 

KCl   Potassium Chloride 

mm   Millimetre 
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mg   Milligram 
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1. General Introduction 

1.1 Challenges of modern drug discovery 

 

The gastro-intestinal (GI) tract is a major specialised organ. Its purpose during normal 

function is the breakdown of ingested substances into digestible molecules and the 

homeostatic removal of waste products produced within the body. Secondary functions, 

include protection against poisons, perceived or otherwise through expulsion mechanisms 

and as a major immunologically active area, again protecting the body against ingested 

pathogens (1) this time biological in nature. 

 

Ingested substances refer largely to food taken in for sustenance but in the modern world 

may often also refer to orally administered therapeutic drug compounds. Often the 

intestines natural defence mechanisms will detect and treat these ingested compounds as 

poisons, blocking them from absorption and as such significantly reducing compound 

uptake and bioavailability. Ultimately, this acts to limit therapeutic bioavailability and 

activity. Therefore, it goes without saying that a foundation of knowledge of the intestine, 

its structure, function, how the two relate and the likely interactions between compounds 

of interest and in vivo biology is of vast importance when understanding the bodies 

capability to absorb novel, pharmacokinetically untested compounds. 

 

Pharmaceutical development is as ancient as human history itself, however, with the 

scientific enlightenment, new methodologies were devised to understand the mechanistic 

action of medicines in the body. Early modern pharmaceutical pioneers such as Louis 

Pasteur et al would utilise animals, often in great numbers, to test their hypothesis. 

However, whilst animal usage can be effective, demonstrated by two of Pasteur’s more 

famous discoveries, vaccines for Anthrax (tested on Sheep and cattle) and Rabies (tested 

on rabbits, dogs and humans)(2) the ethical and moral use of animals as test subjects 

limits their use in modern science. Indeed, Pasteur himself had a reputation of  unethical 

practices, even in the mid 1800’s. Not only is animal use ethically challenging, more 

recent studies have begun to question their in vivo validity when comparing to human 
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tissues. With issues ranging from differences in underlying animal disease mechanisms 

compared to humans, non-similar drug toxicities and pharmacokinetics (3,4) 

 

During the 20th century cell isolation and culture became a more time and cost-effective 

method to do biological research. Starting with the first continuously growing 

immortalised cell line, HeLa (5), cells of almost any tissue are now relatively readily 

available for use in in vitro tissue models. Some more modern approaches to cell culture 

focus on the culture and directed differentiation of stem cell lines to create more in vivo 

physiologically relevant cells for use in tissue models. As such, cellular models of human 

and animal tissues have slowly become one of the most prominent research tools in 

pharmaceutical biology, particularly in very early stage compound development where 

they can be used to efficiently screen large numbers of compounds in a single study. (6) 

New, models based on simple, familiar techniques such as the standard Caco-2 model 

have an improved likelihood of being adopted whilst occupying a significant niche in the 

early stages of drug discovery, lowering costs through improved predictability of NCEs’ 

in vivo. 

 

The current gold standard for the pharmacokinetic ADME (absorption, distribution, 

metabolism, and excretion) testing of novel compounds in the intestine is the Caco-2 

Transwell assay. This well-defined model consists of Caco-2 intestinal epithelial cells 

cultured on Transwell semi-permeable membranes.(7) Caco-2 cells were first isolated in 

the mid to late 1970s by Fogh et al (8) and have been utilised for a wide variety of 

purposes over the intervening decades, evolving from their original purpose as a cell to 

study cancer phenotypes (9) and understanding intestinal bacteriology (10,11) to their 

current gold standard use in drug permeability and toxicity. They are able to form 

confluent, differentiated monolayers with apically expressed, well-defined brush border 

formation and production of intestinal specific compound transporters. Additionally to 

this, Caco-2 cells bind to one another through the formation of tight junctional complexes  

to create a highly polarised cellular epithelium with quantifiable membranal resistance, a 

phenotype which will be discussed in detail later in this chapter. The value of the Caco-2 

cell line in intestinal research is hard to overstate with even a simple literature search 

demonstrating a large number of published applications.  
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The Caco-2 intestinal model has been critical in the development and pharmacokinetic 

testing of numerous NCEs (new chemical entity) and their translation into clinical drug 

compounds. Other techniques such as PAMPA (parallel artificial membrane permeability 

assay), an artificial membrane able to be utilised in high throughput applications are able 

to model the passive para/ transcellular transport but do not incorporate the active 

movement of NCE compounds across the membrane by influx/ efflux protein pumps. 

PAMPA experiments are often ran co-currently with the Caco-2 Transwell model, 

together creating a strong predictive basis for NCEs in vitro, particularly those absorbed 

passively through the cell membrane. (12) 

 

A major issue with the Caco-2 system as a gold standard for intestinal research is its poor 

inter-lab reproducibility. It has been shown that, even at the earliest stages of Caco-2 

isolation and development, Caco-2 populations are highly heterogenous. Heterogenicity 

in itself isn’t necessarily a disadvantage, indeed the intestine itself is a highly 

heterogenous organ system with multiple cell types and functionalities in the epithelium 

alone. (13) However, differing culture techniques between labs in the intervening decades 

since initial isolation has caused large variations in Caco-2 cell phenotypes. Ultimately, 

unless comparable studies utilise the same master cell bank of Caco-2 cells, cellular 

phenotypes are unlikely to be directly comparable. Trans-epithelial electrical resistance 

(TEER) measurements are an obvious example of this with reported Caco-2 values 

ranging from 2-300 to 2-3000 Ohms.cm2 depending on the lab whilst in each case 

reported as normal Caco-2. (7,14–18) Even so, as before, variable phenotype is not 

necessarily a disadvantage so long as known cellular phenotypes are taken into 

consideration at the beginning of a study. The difficultly however is that differences in 

Caco-2 sub-clone phenotypes from multiple master cell banks are not often quantified, 

with no easy way to distinguish one sub-clone from another. Other inherent disadvantages 

of the Caco-2 system include no intrinsic CYP3A4 expression (a highly important cell 

surface enzyme molecule known to metabolise a number of drug classifications)(19), high 

TEER and  low P-gp (efflux protein with a wide substrate base important in drug 

absorption and availability) (19). There is growing concern that the Caco-2 model of the 

intestinal epithelium is insufficiently reproducible for accurate modelling the cell-drug 

interaction of the human intestine.(20)  
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NCE clinical translation success rates generally lie in the low to mid-single figure 

percentages. (21) Figure 1.1 demonstrates how these extremely high attrition rates can 

lead to high development costs for new compounds to market, putting the average cost of 

development at almost 2.6 billion dollars per drug. With a capitalised cost in the mid 

2010s of over 1 billion dollars for the pre-human phases alone, over double the cost of 

the previous decade, an order of magnitude higher than costs in the 70s and 80s and 

accounting for nearly half the total cost to market. (22) Indeed recent figures show that 

more money is spent in the pre-clinical phases today than was spent getting a drug to 

market in the mid-2000s. (22) Increasing drug to market prices are always going to be a 

multifactorial process with inflation, new highly accurate but more expensive tests and 

improved testing and safety standards all contributing to developmental costs. When one 

considers some of the main reasons for compound attrition during the development 

process such as; clinical safety, efficacy and bioavailability (23) it clearly highlights how 

new systems for the large-scale testing of novel compounds which are more able to mimic 

the human intestine are required to reduce compound attrition in late stage clinical trials.  
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Oral administration of drugs is the most common pathway by which pharmaceuticals are 

ingested.(24) This will likely continue to remain true due to oral administration being 

both the easiest for patients to correctly administer as well as being the least invasive 

method available when considered against intra-venous (IV) methods which bypass the 

intestine at the cost of being highly invasive. (25) As such improving the tools for 

pharmacological research will allow for more in vivo mimetic responses in tissue models 

which is key to future NCE development which rely on oral administration. The 

limitations of current intestinal models ultimately cause large levels of wasted time and 

effort on the validation of either toxic or non in vivo effective compounds (either by 

absorption or metabolism) that, with a more in vivo representative early stage model of 

the intestine, could have been removed as possibilities earlier in the process.  

 

Most current studies are focussed on the utilisation of the Caco-2 cell line in novel ways 

to adapt these well characterised cells to be more structurally and functionally relevant to 

in vivo tissue. This includes being utilised as an addition to a 3D model, growth upon 

tissue mimetic basement membrane proteins (26,27) or as a direct or paracrine co-culture 

with other cell types.(28) The use of iPSC, intestinal derived stem cells (29) or other 

Figure 1.1: Understanding the costs for the development and testing of novel drug 

compounds – The cost of bringing new drugs to market has shown a steady increase over the 

last 40 years with pre-clinical phase testing now costing over a billion dollars on average per 

new drug to market. Source DiMassi et al 2016 (21) 
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existing cell lines in intestinal model construction is another way in which new research 

is creating more in vivo representative models. It is hypothesised that these new 

technologies (3D scaffold based models, hydrogels and organoids) will have a great 

impact on the methods utilised for pharmaceutical development in the future. 

 

1.2 The general anatomy of the gastro-intestinal tract 

 

The gastro-intestinal (GI) tract is an organ system of great diversity and complexity with 

each point tailored to a specific purpose and function. The upper tract consists of the 

mouth, responsible for the initial breakdown of ingested substances through mastication 

and secretion of salivary enzymes. The stomach contains a highly acidic environment 

with a complex array of digestive enzymes tailored for the breakdown of foods to small, 

absorbable component parts. (30) However, it is important to note that a significant part 

of digestion does take place within the intestine in addition to the stomach. (31) Gross 

digestive system structure is detailed in Figure 1.2. 

 

Intestinal biology begins at the pylorus, ending at the ileocecal valve. (32) Intestinal 

morphology is split into 2 major sections, the small intestine and the large, each of which 

can then be further broken down into distinct regions. The small intestine is the first of 

the two and is a major point in the body for compound digestion and the primary place of 

nutrient absorption, with 90% of useful compounds absorbed here. In total the intestine 

is approximately 4 meters long with the small intestine grossly described as consisting of 

3 parts; 

 

1. Duodenum 

The duodenum is the smallest section of the small intestine at approximately 25cm 

long and is located immediately after the pyloric sphincter of the stomach. The 

function of this region of the small intestine is in the neutralisation of stomach 

acid and continued breakdown of proteins and fats into absorbable states through 

secretions from the liver, pancreas and the intestinal wall itself (bile, digestive 

enzymes and neutralisation agents respectively). Brunner’s glands are primarily 

localised in the proximal Duodenum. (33)Their role lies primarily in the secretion 
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of bicarbonate containing mucous which has the dual role of neutralisation and 

lubrication through the intestine. Proteases and antimicrobial compounds are also 

seen within the Brunner’s glad secretome and are thought to protect the mucous 

layer against digestion by pancreatic enzymes. Another important distinction of 

the duodenum is its lack of mesentery support when compared to other regions of 

the small intestine. (31) 

 

2. Jejunum  

The jejunum is the middle and longest section of the small intestinal system at 

approximately 1.5 meters long and is primarily responsible for the absorption of 

digestive products; sugars, fatty and amino acids. The greatest levels of absorptive 

adaptation can be found here with large contiguous villus structures and circular 

(plical) folds to further increase absorptive surface area. Anatomically, there is no 

distinctive differences between the jejunum and the ileum. 
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Figure 1.2: The gross anatomy of the digestive system with specific focus on the structure of the intestine – The digestive tract is split into 4 distinct sections; 

mouth,  stomach, small inetstine and large intestine. The intestinal structures are further split into distinct regions, each with specific yet largley overlapping 

function.    
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3. Ileum 

The ileum is the final section of the small intestine and is generally considered to 

be the point whereby bile salts and vitamin B12 is absorbed alongside any left over, 

unabsorbed compounds from the jejunum. Additionally, the ileum is characterised 

by a highly developed gut associated lymphoid tissue (GALT).(34) Aggregations 

of lymphoid tissues known as Payer’s patches are located here primarily and span 

the lamina propria through to the submucosa. (35) Paneth cells in the ileum secrete 

antimicrobial peptides due to the increased bacterial load caused by proximity to 

the proximal large intestine. The ileal lumen diameter decreases compared to the 

jejunum and the circular folds decrease towards the terminal end of the ileum. The 

ileocecal valve is responsible for the controlled movement of matter from the 

small intestine to the large and is located at the terminal end of the ileum.  

 

Also known as the colon, the large intestine has three major functions in the absorption 

of water and electrolytes, producing and absorbing vitamins and movement of waste 

products towards the anus. Indeed, the colon is thought to reabsorb approximately 400-

1000ml of water per day from waste matter. Although this number varies drastically, it is 

important to remember that 80-90% of water is absorbed in the small intestine.  The large 

intestine in an average adult is approximately 1.5 meters long and has a significantly 

wider lumen diameter than the small intestine. A higher proportion of goblet cells can be 

found within the large intestine when compared to the small, due to the less absorptive 

functionality and the importance of lubrication as the faecal matter becomes more 

desiccated. Columnar cells of the intestine are the primary functional unit responsible for 

water and salt absorption in the large intestine as described above. They are the most 

numerous epithelial cell of the colon and are found sandwiched between the much larger 

goblet cells. (32) 

 

The large intestine can also be further split into 3 main sections however unlike the small 

intestine the function of the large intestine varies less significantly with distinctions 

primarily due to gross anatomy and organ location within the body The sections are: 
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1. Ascending colon 

This is the first section of the large intestine and, as the name suggests, ascends 

away from the rectum on the right side of the abdomen. 

2. Transverse colon 

This is the longest region of the colon. 

 

3. Descending Colon 

This is the final main stage of the colon and as the name suggests descends 

towards the sigmoid colon and the rectum 

 

It is in the large intestine where resident bacterial populations have a significant role in 

the breakdown of indigestible intestinal content into digestible forms to  be absorbed by 

the colonic epithelium such as vitamin B and K. (36) Additionally, bacteria are able to 

Figure 1.3: The structural layers of the intestine  – A simple schematic of the constituent 

layers of the intestine. The outer serosal layers provide a protective membrane around the entire 

organ. Muscularis layers support the peristaltic movement of digestive chyme. Submucosal 

layers are home to glands, muscularis and lamina propria layers support the functional 

epithelium.  
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ferment non-absorbable carbohydrates such as cellulose and lipids. It is the digestion of 

these lipids in particular into short fatty chains which are readily absorbed into the colonic 

epithelium, catalysing the uptake of water and sodium ions at the same time. It is 

important to note that the colon itself is poorly organised for efficient nutrient absorption. 

Both villi and circular folds, critical for increasing the surface area of the absorptive 

epithelium in the small intestine are lost in the colon, significantly reducing absorptive 

efficiency. Smooth muscle banding around the outside of the colonic tissue is increased 

compared to the small intestine to reflect the function of the colon in the efficient removal 

of non-digestible waste matter. 

 

Whilst the detailed histology of intestinal epithelial tissues is highly variable dependant 

on the area of the intestine under study, the basic structure of the intestinal wall varies 

little through the length of the intestine. Figure 1.3 shows a simple schematic of the 

constituent layers of the intestine. 

 

The serosa is a protective layer covering the entire surface of the intestine consisting of 

connective tissues and a monolayer of squamous epithelium. Immediately below these 

serosa are the 2 muscle layers, longitudinal and circular, which together make up the 

muscularis externa. The purpose of these muscle layers is two-fold. 1. To mix up the 

intestinal contents to ensure optimal digestion, 2. Through peristaltic movement, force 

the intestinal contents through the intestinal lumen. Smooth muscle around the intestine 

forms sphincters at regular intervals, controlling the rate of intestinal content movement. 

The submucosa is a loose collection of fibroblasts, collagen and acellular connective 

tissues containing the majority of the intestinal lymphatics, blood vessels and nerves. 

Dependant on the part of the intestine under study, the submucosa may also be home to 

submucosal glands such as the Brunner’s glands mentioned earlier. The lamina propria 

and the epithelium are then supported by a thin layer of muscle tissues both longitudinal 

and circular. The lamina propria is home to resident fibroblast and myofibroblast 

populations whose function it is to support the development and maintenance of the 

surface epithelium whose histology varies greatly dependant on the region if the intestine. 

(31,32,37) 
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1.3 Epithelial anatomy, the relation of structure and function. 

 

The epithelium is most generally described as a cellular layer which extensively covers 

the outermost surfaces of the body, both internally and externally.(38) Often the internal 

interface epithelial layers are covered with small cytoplasmic extensions known as either 

microvilli or cilia. The former being an adaption for improved cellular absorption through 

provision of larger surface area for substrate transport and the latter being an adaption for 

the transport of mucous. Alternatively, the epithelium on the “outer” interfaces of the 

body, namely the skin, are adapted to express a highly keratinised outer layers with 

several specialised functions such as defence against external pathogens and retention of 

moisture.(39)  The epithelium of the body are as diverse as the organs they support, 

deriving from all three germs layers with their function dependant on their location and 

structure. For example skin epithelium derives from the ectoderm, gastrointestinal  

epithelium from the endoderm and mesoderm creates blood vessel endothelium.  (40–43)  

 

Epithelia are structured differently throughout the body with their structure directly 

related to their function. Primarily the structures can be split into two broad categories, 1. 

Simple and 2. Squamous. A simple epithelium is described as a single layer of cells 

supported by a basement membrane (44) with primary functions as a selective interface 

for the absorption (Diffusion/ Active) and secretion at external body interfaces. Further 

subcategories of simple epithelium are based on the epithelial cell morphology. (38) 

Squamous cells are flattened cells whose lateral dimensions far exceed the cell height. 

These cells can be found in the blood vessel system as well as type I pneumocytes of the 

lung alveoli. (45) These cells are mostly involved in passive processes due to their cellular 

shape being unsuitable for complex differentiation and development. (Figure 1.4 A) 

Cuboidal cells are described as cells whose height and width are approximately equal and 

includes cells found in the kidney epithelium (46) and ciliary body of the eye. (47) (Figure 

1.4 B) Columnar cells are tall cells whose height exceeds their lateral dimensions. These 

cells are found in the intestine where they undergo complex differentiation into absorptive 

enterocytes or secretive goblet cells amongst others. (48) (Figure 1.4 C) Finally, 

pseudostratified epithelial layers are columnar cells whereby the arrangement appears to 
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be organised into multicellular layers. However, all the cells into a pseudostratified 

epithelium are in contact with the basement membrane and hence only one cell thick. 

(Figure 1.4 D) 

 

Stratified epithelium (Figure 1.5) is composed of multiple layers of cells, with each layer 

consisting of cells at different stages of differentiation. Basel layer cells are often cuboidal 

and home to the self-replicating stem cell niche and the proliferating cells for the 

maintenance of the epithelial layer. E.g. the stratified epithelium of the skin. Cells of the 

basal layer migrate toward the apical surface of the epithelium over time, as cells move 

away from sources of nutrients, they become more squamous, functionally differentiated 

A) 

B) 

C) 

D) 

Figure 1.4: Structural characteristics of simple epithelial layers in the human body – 

Schematic showing the structures of different types of simple epithelium A) Squamous, B) 

Cuboidal, C) Columnar, D) Pseudostratified. Basement membrane (BM) is extremely 

important in the development and maintenance of the epithelial layer. A key feature lacking 

in the Caco-2 Transwell gold standard of the intestinal epithelium. 

BM 

BM 

BM 

BM 
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and lose proliferative capability. (49) Stratified epithelium can be described as keratinised 

(Skin) or non- keratinised (Buckle, Vagina) depending on their location and function.(50)  

 

The purpose of this thesis is the description of the intestinal epithelium, its adaption to its 

function and how it can mimic the human intestine in vivo. As such stratified epithelium 

will not be discussed in any more detail.  

 

The function of the epithelium of the body are diverse. Broadly speaking these functions 

can be categorised 3 ways; 1. Protection, 2. Absorption, 3. Secretion. Protective 

epithelium includes those such as the skin which is developed to include a denucleated 

highly keratinised external layer. (51–53) This acts as a physical barrier to external 

pathogens and desiccation of the underlying tissue through secretion of an outer oil layer. 

Other protective characteristics of epithelium include the creation and maintenance of a 

sterile mucous layer. These mucous layers are created and maintained through use of 

specialised epithelial cells known as goblet cells. This is most evident in tissues such as 

the colon or airway mucosa. Colon tissues in particular have complex bi-layer mucous 

structures including both secreted and membrane bound mucins. (54) These mucous 

layers, in much the same way as the skins keratinised outer layer, provide a physical 

barrier to the passage of outside pathogens such as bacteria. The mucous layer of the 

colon achieves this whilst maintaining some level of absorptive capability. Another 

primary function of the mucus layer of the colon is the provision of a niche for population 

with symbiotic bacteria. These bacteria are responsible for breaking down indigestible 
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Figure 1.5: Complex squamous epithelial show gradients of differentiation across the 

thickness of the epithelial layer – Simple schematic of a classic stratified epithelium such as the 

skin. Notice the loss of nuclei as cells differentiate and the change in cell shape from a 

proliferative base layer to a non-proliferative differentiated surface barrier. 
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components into useful compounds such as vitamin K which cannot be created by the 

body. (55–57) An important distinction for epithelial layers is their ability to form highly 

polarised cell layers, necessary for their proper function. The focus of this work is on the 

absorptive/ transportation capabilities of the intestinal simple epithelium and as such 

stratified epithelia will not be discussed further.  

 

1.4 Understanding the functional absorptive component of the 

intestine, the enterocyte. 

 

The intestinal mucosa is split into two main compartments, the epithelium and the lamina 

propria. The most abundant cell type of the epithelium is the absorptive enterocyte 

followed by mucous secreting goblet cells in addition to enteroendocrine and Paneth cells 

(small intestine) which are prevalent at a lesser rate. All cells in the epithelium arise from 

an intestinal LGR5+ve stem cell population located within the crypt of Lieberkühn. (58) 

Except for Paneth cells which reside in the small intestinal crypt and migrate downwards, 

all cells of the epithelium migrate from the crypts of Lieberkühn up to the villus tip. (59)  

The intestinal epithelium is one of the most highly turned over epithelia of the body with 

cell lifespan limited to a matter of 3-5 days for most mammals. (55) For example, in 

humans it is estimated that 1011 intestinal epithelial cells are lost daily. (60) As such the 

intestine exists in a carefully maintained homeostatic balance between cell renewal and 

apoptosis, with disruption to this homeostasis being the basis for many intestinal diseases.  

 

The enterocytes are the main absorptive cell in the intestinal epithelium. Their main role 

is in the selective absorption of nutrients and compounds through the epithelium, and 

ultimately into the blood stream. Phenotypically, enterocytes are organised into a single 

monolayer of columnar cells with an apically expressed brush border of microvilli and 

well-defined apical lateral tight junctional complexes. Nutrients in the intestinal lumen 

travel through the epithelium by two main routes, paracellularly and transcellularly. 

Transcellular transport can occur through a variety of mechanisms and is defined as the 

passive or active uptake of compounds by cellular mechanisms into the cell, creating 

concentration gradients which the cell must overcome to allow for continuous supply of 

nutrients.  
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Paracellular absorption is characterised by the passive diffusion of compounds between 

the cells through the tight junctional complexes. Selective Paracellular absorption is 

primarily achieved through selection by compound size and charge. Additionally, 

enterocytes are bound by a thick membrane associated mucous layer and microvilli 

associated glycocalyx. The mucous layer is formed from variable length mucins made 

from carbohydrate side chains attached to a protein core whilst the glycocalyx is 

comprised of glycoproteins which are structurally similar to mucin proteins. (61) In both 

instances the main function of the glycocalyx and the mucous layer is as a diffusion 

barrier and filter of macromolecules in addition to pathogens such as viruses and bacteria. 

The glycocalyx also has an important function as a reservoir of glycoprotein enzymes 

responsible for the digestion of macromolecule prior to enterocytic absorption. 

 

In addition, to the enterocytes role in absorption they also have further protective roles in 

compound expulsion. Transporter protein complexes found on the basal and apical 

membranes of the enterocytes such as P-gp, MRP1,2,3 and BCRP are ABC transporter 

proteins implicated in drug and toxin clearance within the intestine. (62) These 

transporters are of particular interest as they are involved in drug resistance and poor 

pharmaco-availability within the blood stream. Creating intestinal models more able to 

recapitulate the drug resistance aspects of the intestinal epithelia will have major uses in 

the development and testing of new drug compounds. Enterocytes have also been shown 

to have active roles in the intestinal immune response as antigen presenting cells through 

MHC class II expression, stimulating CD4+ T cell responses under inflammatory 

conditions.  
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A) B) C) D) 

Figure 1.6: General methods of permeability through epithelial barriers – A) Passive 

transcellular. Compounds can readily pass through the lipid cell membrane to enter the cell. B) 

Passive Paracellular. Compounds do not readily cross the cell membrane but can pass through 

the intercellular junctional complexes. C) Carrier mediated, compounds cannot passively cross 

the epithelial barrier and must be transported through active carrier mediated mechanisms. D) 

Transcytosis, Compounds are captured inside membrane bound vesicles and move through the 

cytoplasm. 
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1.5 Methods of epithelial permeability and epithelial junctional 

composition, development of a selective passive paracellular 

barrier.  

 

Epithelial cells are bound together with several junctional types, namely; Occluding 

junctions  which provide a tight bound barrier (63), Anchoring junctions (Macular 

Adherens/ Zonula Adherens/ Adhering junctions) which give the epithelial layer 

mechanical stability and communicating junctions (Gap junctions) which allow the 

passage of signalling molecules between cells. (64) Intestinal epithelial cells, primarily 

those of the small intestine, are relatively weakly bound to one another due to the 

absorptive adaptations of the intestinal mucosae. TEER values of intestinal tissue for 

example are well known to be in the low 100s ohms.cm2 at the most, compared to skin 

which is regularly in the 1000s of ohms.cm2. (65) 

 

1.5.1 Methods of permeability through epithelial barriers 

 

Figure 1.6 demonstrates the 4 main routes of transepithelial permeability, two passive 

(Trans– and Paracellular) and two active (Carrier mediated and Transcytosis).  Compound 

chemistry largely determines the method of permeability and can fall into one or multiple 

categories. For example, Lipophilic compounds generally move Transcellularly as they 

are readily able to pass through the lipid bilayer membrane of the cell. Propranolol is an 

example of a lipophilic compound thought to travel in this manner exclusively. (66) Other 

such as etoposide move in more complex manners with a combination of passive and 

active transport mechanisms such as through OCT 2, MDR1, BCRP and MRP2. (67–69) 

Compounds such as vitamin B12 are known to move through the cell via transcytosis 

whereby they attached to membrane receptors and are packaged into membrane bound 

vesicles to cross the cell membrane.(70) 

 

1.5.2 Occluding junctions 
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Tight junctions (Zonula occludens/ Occluding junctions) are one of the main junctional 

complexes important to the intestinal epithelium. (71) These junctions, as the name would 

suggest, work to tightly bind cells together at their apical interface preventing passive 

paracellular movement of molecules between cells and entering the blood stream. This is 

highly important to the intestinal epithelia in particular as it functions as a gatekeeper to 

the body, selectively absorbing/ rejecting molecules it comes into contact with. Tight 

junctions are important for the setup and maintenance of concentration gradients and 

establishment of membrane polarity, a key factor for the correct functioning of many 

transporter systems found within the intestine. Furthermore preventing back diffusion of 

compounds into the intestinal lumen ensures absorbed compounds are efficiently 

translated into the blood stream and the wider body. (72) Some of the key proteins 

involved in the tight junction complex are Occludins, Claudins and ZO-1/ ZO-2. 

Occludins and Claudins are structured similarly and as such have similar functions. (73) 

Both protein systems have 4 transmembrane complexes with two extracellular loops and 

in internal protein domain which binds to the anchoring protein ZO-1. These proteins 

have the function of bridging the intercellular gap, creating tightly bound cross-cell 

complexes and maintaining the integrity of the tight junction, essentially locking the cells 

together in a band circumnavigating the cell, creating an impermeable barrier to luminal 

contents. (74)  Figure 1.7 outlines the general structure of tight junctional complexes.  
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1.5.3 Anchoring junctions  

 

Whilst the tight junctions work to create an impermeable barrier, they do not provide 

membrane stability between cells to any great extent. The purpose of anchoring junctions 

is in forming strong protein complexes between the lipid bilayers of neighbouring cells, 

anchoring to the cells cytoskeleton and providing stability. Anchoring junctions are 

observed throughout the bodies tissues but are generally more prevalent in areas which 

are exposed to high levels of mechanical stress such as the epidermis layers of the body 

and the blood vessels. (75) 

 

In general, there are two main categories for anchoring junctions; 1. Adherens junctions 

and desmosomes which bind cells to one another (76), 2. Focal adhesions and 

hemidesmosomes which bind cells to the ECM (77,78) 
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Figure 1.7: General organisation of a tight junction complex – Diagram showing the 

arrangement of some of the key proteins involved in the function of a developed tight junction. 

Adapted from Schneeberger et al, 2004 
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A zonula adherens is described as a continuous belt of Adheren junctions immediately 

beneath the tight junctions of the cells.(79) Adheren junctions work to connect the actin 

cytoskeleton of adjacent cells to one another. The Cadherins, members of the Calcium-

dependant cell adhesion molecules (CAMs) are the inter-membrane spanning proteins 

which attach to inner membrane protein complexes made from Alpha/ Beta Catenin and 

Vinculin. (63,80) The primary cadherin of epithelial tissue is E-Cadherin and as such is 

found throughout the intestine, (81,82) which along with N-cadherin is also thought to be 

highly important during development, driving correct cellular localisation and 

differentiation. As such, Cadherins, specifically the switch in expression from E to N 

cadherin, is thought to signify a change towards a less differentiated, more proliferated 

phenotype and as such is a key marker for the malignancy of cancer cells. (81) 

 

Desmosomes are similar in function to the Adheren junctions, consisting of a cytoplasmic 

protein plaque made of the anchor proteins desmoplakin and plakoglobin. The inter-

membrane adhesion proteins of these junctions, desmoglein and desmocollin, are also 

members of the Cadherin family of proteins. Unlike adherens junctions, desmosomes 

attach primarily to keratin filaments within the cytoplasm instead of actin, and as such 

are of significant importance in keratin rich cells such as those seen in the skin. (83,84) 

Figure 1.8 outlines the general structure of adherens junctions. 

Figure 1.8: Basic structural anatomy of the adherens  junction complex – Diagram showing 

the basic protein arrangement of a simple adherens junction. In this instance E-cadherin 

expression would likely indicate cells of an epithelial origin. Adapted from Neissen et al 2007 



Chapter 1 - General Introduction 

 

64 
 

 

1.5.4 Gap Junctions 

 

The function of gap junctions within the intestinal epithelium and indeed throughout the 

body is to allow direct communication between adjacent cells. They achieve this through 

the direct linkage of cell cytoplasm’s to one another through the formation of channels 

by the protein family connexins, 21 genes of which are known to exist in humans. (85) 

Connexin proteins form hexametric complexes called connexons which form together to 

create the mature gap junction channel. Interestingly, connexons can be formed from a 

heterogenous composition of the 14 different human connexin types, the function of the 

junction changing with the composition of its connexons. (86) In addition to chemical 

signalling, gap junctions are critical for the electrical excitability of cell layers. (87) As 

such, cells which are regularly innervated generally contain higher proportion of gap 

junctions than those that are not. Figure 1.9 shows the basic anatomy of the gap junction 

complex and demonstrated the orientation of the protein relative to the cellular membrane. 

(88)

Figure 1.9: Basic anatomy of gap junction physiology – Basic gap junction structure showing 

the capability of gap junctions to be made from a number of different connexin proteins in 

mixtures of hetero and homogenous combinations. Image taken from Meşe et al 2007 (82) 
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Figure 1.10: Basic anatomy of human small and large intestine -  Left, Small intestinal anatomy highlighting the importance of the paneth cells in the 

stem cell crypt nestled between the intestinal stem cells and transit amplifying cells. Large intestine (Colon), Right, Is generally characterised by deep crypt 

structures and a high proportion of goblet cells forming both a membrane bound and secreted mucous layer. 
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1.6 Quantitative techniques for monolayer integrity and tight 

junction formation measurement. 

 

Transwell model systems are valuable models of many epithelia throughout the body. 

Unfortunately, they often take multiple weeks to culture to maturation and as such a 

method of measuring the development of the model throughout the culture time is 

required as barrier integrity is crucial to the models function. Transepithelial electrical 

resistance (TEER) is one widely accepted method whereby the development of the 

epithelium can be non-directly and non-invasively quantitatively measured throughout 

the differentiation period. Additionally, TEER measurements are often used as basic 

acceptance criteria before a model is utilised to give functional data. For example, the 

widely accepted TEER criteria for a Caco-2 monolayer is 500 ohms/cm2. The resistance 

measurement deemed as acceptable will vary, often greatly, dependant on the cell types 

used (14) within the model and the type of epithelium created. E.g. simple cuboidal 

epithelium will have a different TEER from a keratinised stratified epithelium. 

Furthermore, temperature, media composition and cell passage can all have large effects 

on the TEER values. (17) Temperature for example is normally controlled through 

incubating the cells for a short time in pre-warmed media, with the measurement taken at 

approximately the same time within each well to limit temperature change. 

Figure 1.11: Transepithelial resistance chopstick equipment and calculations – Raw TEER values 

are a sum of the internal resistance of the equipment, Electrodes and the polycarbonate membrane. In 

order to accurately measure he TEER of the membrane along a blank measurement is taken of an 

acellular membrane which is then subtracted from the raw values. 

𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒   𝑅 =  
∆(𝑉) 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 

∆(𝐼) 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒
 

𝑇𝐸𝐸𝑅 𝑉𝑎𝑙𝑢𝑒 = (𝐶𝑒𝑙𝑙𝑢𝑙𝑎𝑟 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 𝐵𝑙𝑎𝑛𝑘 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒) 𝑥 𝐶𝑢𝑙𝑡𝑢𝑟𝑒 𝑎𝑟𝑒𝑎 
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Alternatively, Blume et al worked on mathematically modelling the changes in TEER 

with the changes in temperature of the media. (15) Hypothetically, utilising their 

equations you could “correct” the TEER values gained back to 37oC so long as the 

temperature of the solution is known when the measurement is taken. As such, these 

conditions need to be carefully controlled in each instance in order to gain a reliable 

quantification of TEER levels. In addition to the use of TEER as a monitoring tool, 

quantitative TEER measurements can be used to assess membrane damage, either as a 

result of scratch healing or compound toxicity assays. 

 

TEER equipment works through the application of an alternating current across the 

cellular membrane. The change in voltage is measured and utilising Ohms law a 

resistance can be calculated. Chopstick electrodes are most commonly used when 

culturing Transwell systems. These electrodes have a long and a short leg which allows 

for the complete submersion of both silver-chloride electrode pellets into the media 

without risk of damaging the epithelium being measured. Whilst commonly used 

throughout the industry for routine analysis of model development, significant variation 

in TEER response can be induced through small changes in the application of the probes 

to the culture media. Newer, more accurate systems for TEER analysis have been 

developed to negate this issue through the application of the model to a sterile chamber, 

removing the human added error. The cell membranes are blanked in fresh medium and 

the measurement is taken before being area and blank well corrected.  The TEER 

equipment simply measures the conductive properties of the membrane. As such TEER 

is an indirect tool with some flaws and cannot be used as a predictor of membrane activity 

or functionality. For example, a membrane could have a low resistance value but still be 

highly impermeable to a compound and vice-versa. Even paracellular compounds whose 

transport across the membranes is governed by the abundance of tight junctional 

complexes is not always accurately modelled by quantification of TEER values alone. 

 

1.7 Paracellular permeability, measuring membrane integrity 

 

In addition to the use of TEER as a measurement of membrane barrier function the 

integrity of a cellular membrane can also be assessed through the addition of paracellular 
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transported compounds to the system. These can include compounds such as inulin, 

mannitol or lucifer yellow. (89,90) These compounds are used in much the same way as 

a normal transport assay would be set up, namely the compound of known concentration 

is added into either the apical or basal compartment and then samples after a set amount 

of time, from which an apparent permeability can be calculated for the model. The 

downside to using this method to quantify barrier integrity is that it is significantly more 

time consuming and invasive when compared to the TEER system of measurement. As 

such, unless the model resistance is being continuously monitored by equipment such as 

Ussing chambers these compounds are often run alongside the compounds of interest and 

measured at the end of the assay to ensure that the models have remained intact 

throughout the assay time period.  

 

1.8 Other cells of the intestinal epithelium and mucosa 

1.8.1 Goblet cells 

 

The main function of the goblet cell in the intestine is in the secretion of mucins into the 

intestinal lumen to create a mucous barrier over the surface of the intestinal epithelium. 

This mucous layer has several functions and is split into one or two main layers depending 

on the position within the intestine (Small intestine does not have a secreted mucous 

layer). Figure 1.10 shows the overall histology of the colonic structure with deep crypts 

and a higher proportion of goblet cells when compared to other regions of the alimentary 

tract, namely the small intestine.  

 

The primary function of the mucous layer is as a barrier to pathogens and physical damage 

of the intestine in addition to be a selective barrier to macromolecules. The mucins that 

make up the mucous layer have distinct functions. (91) MUC 2 makes up the main 

secretory glycoprotein and is the backbone of the secreted mucous layer. It is here that 

the majority of commensal bacterial populations are within the intestinal lumen. (92) 

Additionally, bioactive molecules such as MUC 1, 3 and 17 are membrane bound mucins 

and form the membrane bound mucous layer which is present on most cells of the 

intestinal epithelium. Bacteria of the small intestine are usually only associated with the 

enterocytes at the villus tips whereas the presence of the secreted mucous layer in the 
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colon renders the inner membrane mostly sterile with no regular bacterial contact with 

colonic epithelial cells. (93) 

 

The distribution of goblet cells through the intestine changes with the lowest frequency 

being in the duodenum with increasing frequency throughout the jejunum and ileum with 

the largest goblet cell populations being in the distal colon. It has been shown that the 

amount of mucous produced in the intestine is correlated with the bacterial load, with 

bacterial colonisation increasing in a proximal-distal direction. 

 

1.8.2 Enteroendocrine cells 

 

The enteroendocrine cells of the intestine are primarily located within the mucosa and 

only comprise of a small minority of intestinal epithelial cells (<1%) with the highest 

abundance in the proximal small intestine and the lowest in the distal colon. There are 

over 30 different hormones secreted asymmetrically throughout the intestine with highly 

variable functions such as stimulation of peristaltic movement, appetite and enterocyte 

proliferation. There are many diverse populations of enteroendocrine cells in the gut with 

the most abundant being the EC (Enterochromaffin) cells which have primary functions 

in the secretion of serotonin into the intestinal lumen. (94) 

 

1.8.3 Paneth cells 

 

Paneth cells are a secretory cell type like enteroendocrine cells which are located 

exclusively within the small intestine and appendix. The range of peptides secreted by 

Paneth cells is large and variable with some of the main secreted peptides being alpha 

defensins and lysozyme, antimicrobial peptides that when secreted within the crypt act as 

both as a response to pathogenic invasion and as a method for the homeostasis of 

commensal gut bacteria. Additionally, Paneth cells have been majorly implicated in the 

regulation of the stem cell niche itself. In such a high turnover organ such as the intestine 

careful regulation of the stem cell niche is imperative for the continued homeostasis and 

function of the intestinal epithelium. A recent study by Pentinmikko et al showed how 

Paneth cells potentially attribute to changes in the intestinal epithelium with age through 
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the production of the Notum protein, an extracellular Wnt inhibitor, as such decreasing 

stemness maintaining Wnt signalling. (95) 

 

As mentioned previously, Paneth cells differ from the other epithelial cell types of the 

intestine in that instead of migrating to the villus tip they instead migrate downwards into 

the crypt. Furthermore, Paneth cells also have a significantly longer lifespan of around 60 

days in contrast to 2-6 days of other intestinal epithelial cells. (96) 

 

1.8.4 Fibroblasts and myofibroblasts 

 

The intestinal epithelium is supported by a stromal population of myofibroblasts 

immediately beneath the epithelial basement membrane. Myofibroblasts in this work and 

others are characterised phenotypically as being positive for Vimentin (mesenchymal 

fibroblast marker) and Alpha-smooth muscle actin (Smooth muscle maker) whilst being 

negative for Desmin (a muscle lineage marker). (97) The location of these cells in close 

proximity to the epithelial layer suggests a role in the maintaining and controlling the 

epithelial layer through paracrine and direct-action effects. Epithelial-mesenchymal cross 

talk has been shown in the past to be of critical importance in the development and 

maintenance of epithelia throughout the body with signalling breakdowns often resulting 

in the development of tissue pathologies such as cancers. (98–100) In regards to the 

effects of paracrine factors on continuous cell lines, Montesano et al showed how 

advanced cellular phenotypes could be observed in MDCK cells when co-cultured with 

3T3 fibroblasts. Cells suspended in a collagen gel were able to form a branching tubular 

morphology similar to that seen in vivo (101) which was not seen in cells which were not 

co-cultured with fibroblasts. Epithelial cells are also able to modulate the function of 

fibroblast populations. Lichenberger et al in their study of epithelial-mesenchymal cross 

talk in skin derived cells, showed that β-catenin produced by epithelial cells was able to 

modulate and remodel the underlying dermis. (102) Growing evidence is also been seen 

in the effects of 3D cultured stromal tissues on the development of epithelia, specifically 

in the modulation of membrane resistance through tight junction abundance. Matsusaki 

et al (103) showed how co-culture of Caco-2 intestinal epithelial cells with normal human 

dermal fibroblasts significantly affected the epithelial resistance of the resultant model, 
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decreasing it in comparison to conventionally cultured control models with further 

significant decreases in relative mRNA for tight junction proteins (Occludin, Claudin 1,2, 

ZO-1). Biologically, Caco-2 cells are known to produce heightened non-physiologically 

relevant epithelial resistance values when cultured by conventional mechanisms. This 

study highlights the effects of increased model complexity in regards to in vivo relevancy 

and how said conditions drive relevant changes in functional phenotype. 

 

1.9 The Villus-crypt axis and the stem cell niche 

 

To facilitate the rapid turnover of intestinal tissues a constant supply of new proliferating 

and differentiating epithelial cells are required to replace cellular attrition at the villus tip. 

A resident stem cell population of adult intestinal stem cells is found at the base of the 

crypt structures found within the intestine. Holistically, the stem cell populations and 

differentiating epithelium is known as the villus crypt axis and can be considered the 

single individual functional unit of the intestine. Figure 1.10 shows a simple schematic 

representation of the villus-crypt axis within the small intestine with the basally located 

stem cells maintained within their pluripotent states by paneth cell populations located 

adjacently. Transit amplifying cells are intermediaries between stem cell populations and 

differentiated enterocytes, undergoing 4 to 5 divisions as they move up the crypt axis. 

(104) Careful maintenance of stem and transit amplifying cells allows the functional unit 

of the crypt niche to be functional immortal through a human lifespan. Age related 

disfunction in intestinal stem cells is a large contributor to age related intestinal disease 

such as impaired intestinal barrier function (105) , impaired nutrient absorption (106) and 

an increase in the risk of GI cancers. (107,108) Cells at the base of the crypt can be 

considered to be less differentiated than the apical surface with increasing differentiation 

towards the villus tip. Cellular lineage differentiation is controlled by a complex 

environment of interacting cytokines and secreted factors, Notch, Wnt and BMP playing 

significant roles. (41,109,110) 
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1.10 In Vitro models of the intestinal epithelium 

 

The Ussing chamber developed by Hans Ussing in the mid-20th century is a critical piece 

of equipment for the measurement of transport kinetics in vitro. The first methods utilised 

to test intestinal function in the human body primarily utilised animal systems to assess 

pharmacological properties of NCE in vitro. (111)Essentially, animal tissues would be 

excised and prepared before addition into the chamber system in which electrophysical 

and transport kinetic properties of tissue epithelia could be measured through addition of 

model compounds designed to stimulate specific responses. The use of these model 

substrates alongside inhibitory and stimulatory substances could build up a picture of 

intestinal function over time. MDR1 for example can be inhibited by a number of highly 

specific compounds, both competitively and non-competitively. Comparison of control 

and inhibited transport rates of NCE in in vitro animal intestinal models can build a 

picture of NCE MDR1 specificity. Following this logic you can build a picture of the 

NCE pharmacokinetic properties in a number of transport specific mechanisms.  

 

There is a huge variety of methods for the culture and creation of intestinal models 

throughout the literature, with many having specific advantages and disadvantages 

compared to one another such as improved in vivo relevancy or expression of a protein 

absent in the standard model such as CYP3A4 in Caco-2 cells.(18)  Most new emerging 

models of the intestine have moved away from the simplistic monocultures of the past 

and focus more on the incorporation of multiple cell lines/ types together in a single 

culture or in a 3D matrix through use of scaffolds and hydrogels. Additionally, new organ 

on chip approaches to tissue development promise the complexity of 3D co-cultures with 

the simplicity of high throughput design. 

 

1.10.1 Caco-2 Transwell models of the intestinal epithelium 

 

The Caco-2 cell line as previously described was first isolated by Fogh et al (112) during 

the 1970s with its early uses as a generic colorectal carcinoma cell line. The cell line as 

the name would suggest was originally isolated from a colon carcinoma but has a 

functional protein expression profile able to more closely mimic the small intestines 
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absorptive properties.  Caco-2, since the pioneering papers in 1980s by Pino et al (113) 

and Hidalgo et al (114) among others, has been the main workhorse for intestinal research 

and model construction throughout the pharmaceutical and biological communities. 

Caco-2 cells are characterised by their capability to maturely differentiate over a culture 

period of 15-21 days into mature enterocytic cells with defined brush border expression, 

good cellular polarisation as shown by apical lateral tight junction formation and 

functional transport capabilities through the cells into the underlying “lumen”. Indeed, in 

2D cell culture these cells can form heterogenous layers of cells with characteristic 

monolayer doming upon reaching maturity and are particularly good at modelling the 

passive absorption of compounds like that of the jejunum. 

 

The Caco-2 cell line is also known to express proteins such as P-gp, MRP1/2 and BCRP 

which, as efflux ABC transporters, act to pump compounds from the cell back into the 

intestinal lumen. (115) Naturally, this efflux is an intrinsic way of removing waste 

compounds from the cell or as a defence mechanism against exogenous ingested toxins. 

Figure 1.12: Expression of key proteins by Caco-2 cells in Transwell – A small selection 

of the important transporter proteins and cell surface enzymes present in the caco-2 system. 

Figure modified from Sun et al (144) 
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The result is that the Caco-2 cell line shows a natural resistance to the absorption of 

compounds which are the substrates of these efflux proteins in a way similar to the in vivo 

intestine (jejunum). Often however, the expression levels of these critical efflux proteins 

do not mimic that of the intestine, with some under expressed such as P-gp (especially if 

not allowed to fully differentiate) (116) and others overexpressed in comparison to in vivo 

tissues. As such the Caco-2 Transwell assay is limited in its capabilities to completely 

model the intestine especially for efflux substrate compounds.(115) Additionally, whilst 

these cells are positive for the expression of many critical markers of the intestine it is 

generally known that the Caco-2 cell line is lacking in the correct expression of many 

important proteins such as CYP3A4, a surface bound enzyme known to be expressed in 

the intestine at the apical surface of enterocytes, but absent in the Caco-2 cells line. 

Interestingly, it has been shown that CYP3A4 can be induced through the addition of 

1α,25-dihydroxyvitamin D3.(115) Whilst CYP3A4 is not directly involved in the 

absorption of compounds in the intestinal lumen it is a major contributor to 

pharmacological metabolism in the intestinal lumen. The consequence of a lack of 

CYP3A4 expression in Caco-2 models can artificially increase relative permeability due 

to a lack of substrate metabolism. 

 

The Caco-2 model has been key to the development of new drug compounds over the past 

three decades and has a number of significant advantages over other systems such as: 

 

1. Rapid assessment of drug permeability. 

2. Useful for testing how drugs are transported (Pathway analysis). 

3. Shows biologically relevant efflux transporter, apical enzymes and brush border 

proteins of a differentiated small intestine epithelium.  

4. Useful for toxicity in addition to permeability studies. 

5. Large scale screening application due to easy high throughput culture. 

6. Is a well characterised reference model with which to compare NCEs to model 

drugs in a highly controlled manner.  

 

However, Caco-2 models are well known to be both under representative in some aspects 

(P-gp expression) whilst over representative in others (heightened TEER values) and as 

such are not a perfect model for the intestinal epithelium. Indeed, whist enterocytes are 
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the most abundant cell type in the small intestine, they are by no means the only cell 

represented in vivo. Transwell Caco-2 models can be modified in a number of 

physiologically relevant ways such as addition of goblet cells which will be discussed in 

detail later in this chapter. 

 

1.10.2 Stem cells applied to the Transwell system 

 

Other new methods based on the high throughput Transwell system are able to recreate 

the entire range of epithelial heterogenicity are being developed through the application 

of stem cells to the culture system. (117) Wang et al (118) showed how ground state 

intestinal stem cells in their model displayed positive immunofluorescence staining for 

enterocytic markers such as E-cadherin and Villin whilst also demonstrating a significant 

mucous component of the model through positive staining of MUC 5ac and MUC 2 mucin 

proteins. Additionally, cells were shown to multilayer and form villus like structure, 

drastically increasing the available surface are of the model for functional 

experimentation such as drug permeability not unlike that seen in in vivo  tissues. 

Unfortunately, the functional aspects of this model were not tested in this study but one 

could see the potential benefits of this model over Caco-2 monolayers. It was 

hypothesised that with increasing complexity, variation will increase at a similar rate. 

Therefore, there will always be a place for highly simplistic models such as the Caco-2 

systems when high degrees of reproducibility are preferred over in vivo replicability.  

 

Intestinal epithelial cells are known to be particularly challenging to culture in vivo from 

primary tissue sources unless highly complex/ expensive media compositions are used. 

Hence, this is one of the primary reasons why the Caco-2 cell line is still commonly 

utilised 30 years after its initial isolation. Primary cells are always preferred over cells of 

carcinoma origin if possible due to phenotypical changes caused during the 

transformation process. Stem cell culture and application to current in vivo model systems 

is thought to be one method by which the limitations of intestinal epithelial cell culture 

can be bypassed whilst concurrently creating greater in vivo relevancy. Another 

interesting application of stem cells in model systems generally comes in the creation of 

either disease state or patient specific models. Cystic fibrosis, cancer, ulcerative colitis 

and crohns disease are all genetic based examples of where stem cells have been utilised 
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to create disease state models of the intestine. (119–121) More in vivo-like models of the 

intestine allow a more refined understanding of the basic biological principles underlying 

the formation of these disease phenotypes. Bio-banks of patient derived stem cells are an 

exciting direction for future development potentially allowing for, among a great many 

other applications, a more refined study of drug interactions in people of differing genetic 

backgrounds or ethnicity, allowing for more tailored personalised medicines. (122) 

However, as yet intestinal models based on stem cell cultures are limited in their 

characterisation and adoption in industry compared to older Caco-2 based systems. 

Essentially, the same issues apply to stem cell based models as does to complex 3D 

cultures in that they are expensive and technically challenging to culture. The justification 

for using Caco-2 cells in this project is as such in addition to allowing for easy adoption 

into an industrial setting. Creating a more in vivo relevant model, whilst still relying on 

the Caco-2 cell line is designed to bridge the gap towards even more in vivo mimetic 

model systems such as stem cell based cultures in the future.  

 

1.10.3 Utilising HT29-MTX as a goblet cell component of the 

epithelial layer 

 

The HT29 cell line was originally derived from a colorectal adenocarcinoma of a 44 year 

old Caucasian female (123) and, much like the Caco-2 cell line, was isolated in the 60/70s 

by Fogh et al (8). Most of the cells within the small intestinal epithelium are of enterocytic 

origin. However, the intestine is also resident to a significant population of mucous 

producing goblet cells which have important physiological applications on the function 

of the intestine. Mucous secreted by these goblet cells has a variety of functions such as, 

aiding the passage of material through the intestine, the creation of a protective barrier 

effect to exogenous compounds and promoting the  sterility effect of mucous on the small 

intestinal epithelium. (124,125)  

 

The mucous environment within the human body is quite variable dependant on the 

epithelium in question with over 20 mucin genes identified and tissue specific mucin 

expression. (92,126–128) Structurally, mucins are built of a protein core consisting 

mainly of Proline, Threonine and Serine. These so-called PTS domains are then highly 
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glycosylated to form the mature mucin glycoprotein.   Mucins can vary quite drastically 

in size, structure and function with the smallest being on the scale of hundreds of amino 

acids and the largest multiple thousands.(124,129) For example MUC2, one of the most 

abundant mucins in the intestine is thought to be approximately 2200/2300 amino acids 

long.(125,129) Generally, mucins are split into two categories; the secretive gel forming 

and the transmembrane mucins. 

 

Differential expression of mucins and mucous layer formation is seen within the intestine; 

For example, the small intestine has only a single, transmembrane mucous layer whereas 

in contrast the Colon has a mucous bi-layer containing both transmembrane and secretory 

components.(125) The inner mucous layer of both the small intestine and the colon 

generally acts as a sterile environment so as to limit the direct exposure of the surface 

enterocyte cells to the intestinal bacteria. (126,127,130) It does this by organising into a 

dense layer, acting as a rudimentary filter. Commensal bacterial population survive in the 

gut in the secreted outer layers of the colon whose mucous layers are significantly less 

dense, providing a home for bacterial colonisation. These mucous layers are then slowly 

digested by the bacteria as an energy source. 

 

Most of the cell lines of the intestine reflect the relative abundance of enterocytes and as 

such very few goblet cell lineages exist for researchers to utilise. The HT29 line is one of 

the few which has been shown to, at least partially, mimic the function of a goblet cell; 

with enhanced mucous secretion over other, terminally differentiated enterocytic cell 

lines. The HT29 line of cells has can be further split into sub-populations which have 

been stimulated for a specific phenotype. For example, the HT29-MTX sub clone is 

created by treatment of HT29 cells with the drug Methotrexate. This treatment and the 

resultant cell line have been shown to have improved mucous secreting phenotypes over 

the parental HT29 populations. Attempts at incorporating the HT29-MTX line into 

cellular models of the intestine have been trailed with variable success, with the majority 

of Caco-2/ HT29-MTX co-cultures being utilised for model: bacterial interactions rather 

than pharmacological assessment. (131–134) 
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1.11 Understanding the growing use of CCD-18co cells in 

intestinal model cell culture.  

 

The CCD-18co cell line is a normal colon cell line utilised through intestinal cell research 

as a myofibroblast lineage. It has been noted through the literature that the CCD-18co 

cells are able to secrete paracrine factors which are able to affect the co-cultured 

epithelium.(135,136) 

 

For example Visco et al (137) highlighted in their 2009 paper the effects of secreted KGF 

on the development of a co-cultured Caco-2 cells layer. They showed that KGF, both in 

a pure added form and as a result of CCD-18co or NHF (normal human fibroblasts) co-

culture, resulted in the increased expression of Ki67 and carcinoembryonic antigen 

(CEA). These markers correlate with increased Caco-2 cell proliferation and 

differentiation respectively. In addition to showing the effects of secreted factors on 

epithelial cell proteome expression they were also able to show differences between 

intestinal and skin fibroblast KGF expression. This additional information works to 

highlight the importance of choosing tissue specific fibroblasts which match the 

phenotypical characteristics of the model being created. In this instance the CCD-18co 

cell line was shown to express approximately 3 times the expression of KGF when 

compared to NHF.(137) 

 

Pereira et al (138) created a simple 3D co-culture model of the intestine utilising the CCD-

18co and Caco-2 cells for the purpose of creating a new method to test the in vitro 

permeability of the intestine to new compounds, similar to that done in this study. They 

found that direct co-culture of the cells together on a permeable membrane, created a 

model with significantly lower TEER values than the conventionally cultured Caco-2 

intestinal equivalent. Additionally, the authors tested the functionality of the model, 

specifically transcellular integrity, by loading the models with insulin and calculating the 

Papp over time. They showed that the membrane which had been co-cultured with 

intestinal fibroblasts were more permeable to insulin than the standard Caco-2 membrane 

layers. The authors in this case attribute the increase in permeability to a decrease in tight 

junction abundance and “tightness”, although they did not directly test this hypothesis in 
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their study and they do acknowledge that the changes in insulin permeability could be 

due to other processes such as in increase in transporter expression of which insulin is a 

substrate.  

 

There is significant evidence that the co-culture of Caco-2 epithelial cells with fibroblasts 

has significant effects on the expression of several key transporters such as MDR1, 

MRP2, BCRP etc. Matsusaki et al (103) showed this in their paper creating a 3D model 

of Caco-2 cells with neonatal HDF (HDFn). Relative mRNA expression of these key 

transporters was shown to change significantly over controls when co-cultured with 

HDFn cells. This has the potential to have large repercussions on the activity of the overall 

model and as such the importance of the stromal component of any intestinal model 

shouldn’t be underestimated. Changes in transporter expression and relative changes in 

model functionality in co-culture and 3D systems will be discussed further in chapter 7. 

 

1.12 The growing use of advanced 2D and 3D models of the 

intestine over the current 2D standards.  

 

The 2D culture of cell lines for use as pharmacologically reliable markers of drug 

bioavailability and metabolism has been a common practice within the pharmaceutical 

industry for decades. These model cell lines have significant advantages in that they are; 

readily available, cheap to use and expand, highly reproducible and quick to culture. The 

advantages allow for the mass production and use of cheap in vitro models, allowing for 

the high throughput screening of novel drug compounds in early clinical testing. This is 

especially valuable in the first phases of compound discovery whereby hundreds of 

compounds with high structural homogeny may be tested for their pharmacological 

effects, toxicity and bioavailability. Additionally, most model cell lines when cultured in 

this method produce highly reproducible cellular models allowing for easy cross-

comparison of data between labs, as such increasing the reliability of data from these 

methods.  The disadvantages to utilising simply cultured cells in isolation are many. One 

of the most significant shortcomings is that they lack the in vivo ques, both direct and 

paracrine, that they would normally be exposed to in the body allowing for a level of 

genetic drift overtime. 
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New intestinal models developed to replace the 2D monoculture assays have focussed 

more on the incorporation of in vivo like conditions such as three-dimensionality and 

through the culture of multiple complementary cell types together. One of the main 

focusses is in the addition of enterocytes with goblet like cells which can include the 

parental line HT29 but more often work with induced sub-clones such as HT29-MTX. 

An example of this can be seen in the work by Beduneau et al (139), in which they aim 

to create a tuneable co-culture model with the enterocytic cell line Caco-2 and the goblet-

like properties of the transformed cell line HT29-MTX. They created a simplistic co-

culture model which demonstrates a change in the functional characteristics of their 

model compared to simple control monocultures. They demonstrated changes in P-gp 

mediated transporter action through measurement of the permeability of the compound 

Rhodamine 123 to control Caco-2 and their own tuneable Caco-2/ HT29-MTX model. 

When HT29-MTX cells are added early in the culture period the apparent permeability 

of the membrane to Rhodamine 123 decreases. A decrease in permeability, e.g. A 

decrease in the movement of compound from the basal to apical compartments, would 

suggest a decrease in the active transport incurred by the P-gp present in the model, a 

non-physiological change compared to human intestinal P-gp levels. The aim of their 

project is to create a model which can begin to mimic not only the absorption 

characteristics of the enterocytes but also model the effects of mucous secretion on drug 

bioavailability. Indeed, the mucous layer of the intestine has been shown to be incredibly 

important in gut homeostasis and has significant effects on drug availability in vivo 

primarily through the creation of an unstirred water layer on the surface of the intestinal 

epithelium.(140) In this instance the bio-availability of the drug will rely primarily on the 

drugs hydrophobicity and its capability to diffuse through this unstirred layer to reach the 

cells beneath. Additionally, compounds have been shown to be able to bind to mucin 

molecules such as tetracycline hydrochloride (140), further limiting their availability as 

mucous is continuously produced and shed from the GI tract. (140,141)  

 

Ferraretto et al have also created a simple co-culture model utilising the Caco-2 and HT29 

cell lines.(142) Contrastingly, they showed that incorporating the HT29 cell line and 

mucous layer actually increased the levels of Lucifer yellow apparent permeability (Papp) 

in their models. As such this highlight the complexity that is added to the model through 

co-culture, with the mucous layer blocking some compounds but aiding the absorption of 
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others. Another explanation for the apparent increase in lucifer yellow availability could 

also be deduced by looking at TEER values. Lucifer yellow is a marker of membrane 

integrity, moving exclusively through the paracellular absorption pathway. The TEER 

values of the 70/30 Caco-2/ HT29 layers that the authors created in this paper were 

markedly reduced compared to Caco-2 controls. As such one might expect an increase in 

LY movement through the membrane regardless of the presence of a mucous layer. Co-

culture Caco-2/ HT29-MTX models in general still suffer from a number of significant 

drawbacks such as even lower P-gp expression due to the addition of HT29-MTX cells 

and a lower, but yet not physiological TEER values. (139,142) Goblet cells are specialised 

secretory cells with little active function in the transport of compounds across the 

epithelial membrane. Therefore, logically one might expect that adding a higher 

proportion of non-transport capable goblet cells to the epithelial barrier would correlate 

with the decrease in the transport capabilities of the epithelial membrane as shown here. 

This paper can show how simple changes to the culture of cellular models can result in 

significant changes in the function of the resultant models. However, this paper doesn’t 

look at how the co-culture of the epithelial linages is affecting the gene and protein 

expression of the cells themselves, a key consideration when adding cells to a co-culture 

which don’t have intrinsic “functional” epithelial characteristics such as fibroblasts or 

immune cells.  

 

Recent work has highlighted the effects of the fibroblasts of the underlying supportive 

mucosae and the ECM microenvironment on the development and maintenance of an 

epithelial layer of high functionality. Schweinlin et al  demonstrated this approach in their 

intestinal model made from decellularised porcine intestinal tissues. They showed that 

the addition of fibroblasts to the models had significant effects on both the TEER of the 

organoid model and its permeability to dextran-4000, a commonly utilised measurement 

of membrane integrity similar to Lucifer yellow.(143) Additionally to the addition of 

fibroblasts to the model culture they also demonstrated the effects of fluid flow mechanics 

on the development of the epithelial layer. They described how perfused cultures with 

physiological sheer stresses were able to influence model functionality, changing its 

permeability to model drug compounds such as Rhodamine 123, Propranolol and 

Fluorescein.  The underlying mesenchymal layer of the intestinal crypt has also been 

shown to be critical in the maintenance of the intestinal stem cell niche, allowing for long 

https://www.liebertpub.com/doi/abs/10.1089/ten.tec.2016.0101
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term homeostasis of the stem cell population and the rapid turnover of stem cells into new 

epithelium seen in the intestine. (144,145)Additionally, the paracrine effects of 

myofibroblasts have been shown to induce differentiation and proliferation of epithelia. 

For example, Visco et al showed that the myofibroblast cell line CCD-18co was able to 

have effects on Caco-2 monolayers through the paracrine actions of keratinocyte growth 

factor (KGF), increasing the expression of the proliferation marker Ki-67 and the 

differentiation marker carcinoembryonic antigen (CEA). (137) 

 

Compound absorption studies are commonly done utilising the Transwell system, 

whereby a population of cells are cultured on one side of the permeable transport insert 

to create a polarised epithelial tissue model. Whilst widely accepted as the standard for 

compound screening, the Transwell system suffers from the same negatives as mentioned 

above in addition to lacking morphological similarity to the tissue being modelled. One 

of the main research directions being explored is the replacement of the Transwell 

systems with more physiological systems which incorporate multiple cell types, in 3D 

matrices and with tissue specific ECM deposition. There are multiple ways in which this 

is being achieved with one of the main being the utilisation of tissue specific stem cells 

to create organoid models. These organoid models often contain the most complexity of 

the advanced in vitro tissue models with multiple differentiated cell types and complex 

tissue specific 3D architecture. The work on intestinal organoids was first driven by the 

lab of  Hans Clevers et al.(146) Their work demonstrates the value of utilising intestinal 

organoids as models for human physiology in a number of ways; through their work in 

the identification of the function of paneth cells in the intestinal crypt,(96) understanding 

the roles of cancer mutation in intestinal cancers (147) or in disease states such as cystic 

fibrosis (148) to name a few. One major drawback to the use of organoid cultures for 

routine drug testing is the inability to control the macro structure of the model. Organoids 

naturally develop in suspension and as such are naturally shaped as a mass of cells with 

the functional epithelial layers orientated to the inside of the macro-structure. In order for 

application to a drug validation platform a single, layered epithelium with consistent 

directional polarity is necessary for Papp studies, something organoid cultures, as yet 

cannot recapitulate.  
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Other promising methods for the creation of 3D models with physiological function rely 

on the use of scaffolds, both biological and synthetic, for the 3D culture of cells. 

Biological scaffold generally encompass extracellular matrix constituents such as 

collagen matrigel gels in their simplest form all the way up to decellularised tissues for 

the most complex models. (143,149–151) Decellularised tissues in particular have clinical 

applications in organ transplant/ regeneration research with the idea being that 

decellularised scaffold could be recellularised with patient derived stem cells, forming a 

new, functional tissue that could be transplanted with reduced fears of rejection. (152,153) 

Synthetic scaffold encompass any material of non-biological origin. For example, work 

discussed in this study primarily focusses on the use of Alvetex®, a polystyrene polyHIPE 

scaffold  treated to allow the routine culture of human and animal cells. Other examples 

could include electrospun scaffolds which can be constructed from a wide range of 

available materials with properties fine tines to the use of the model.  The advantages and 

disadvantages of each system will be discussed later in detail in chapter 5.  

 

1.13 Regulatory alignment and the challenges of applying new, 

more complex models to the drug development process.   

 

Studies involving humans suffer from a number of key challenges. Experiments using in 

vitro tissue segments and Ussing chamber devices are extremely expensive, technically 

challenging and low throughput. Whereas, in vivo human clinical trials are all of the 

aforementioned plus ethical considerations regarding screening of potentially toxic 

compounds in human subjects. As such, the FDA and other bodies have accepted model 

systems such as Caco-2 as surrogates for human intestines, albeit primarily for assessment 

of passive paracellular transport. (154)  

 

The Biopharmaceutics classification system (BCS) was originally developed as a tool to 

assess the correlation between jejunum permeability rates and drug absorption to facilitate 

the approval of Class I drugs known to be highly permeable and dissolvable within the 

intestine, important for an orally administered compound. BCS is used to classify 

compounds and is widely accepted in both academia and industry. Classifications fall into 

4 categories; Class 1, are highly soluble and permeable, Class 2 have low solubility but 
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high intestinal permeability, Class 3 are highly soluble but have a low permeability and 

Class 4 are both poorly soluble and have low permeability.  

 

The code of federal regulations forms the basis of regulatory approval of new, innovative 

cellular products. These regulations cover a huge range of considerations such as 

biological evaluation, safety, manufacturing processed (GMP) etc. (155) 

 

What is clear is that current research pharmacokinetic practices do not function at close 

to tissue relevant levels in many instances. The development of new and more advanced 

research tools for the study of drug dynamics in the intestine is key to optimising the drug 

discovery and validation process. Regulatory approval for bodies such as the FDA 

required multidisciplinary expertise and must include those with experience in fields such 

as medicine, pharmacology/toxicology, cellular therapies, and cell biology, as such 

compounding the complexity for regulatory approval.(156) In silico modelling is one new 

area within which new regulatory models are being approved for use.(157) It is hoped 

that these models can accurately predict the permeability characteristics of certain 

compounds trough simple model layers such as Caco-2 without the requirement for “wet 

work” in the lab. These models would have a clear advantage over current practices 

however validating their efficacy is complex, primarily due to the inherent heterogeneity 

of Caco-2 populations dependant on origin and culture conditions. Any in silico model 

would need to pool data sets of Caco-2 of varying origins to assess for any variability.  

Other methods such as 3D models are more able to mimic the structural complexity of in 

vivo tissues and, as such, can help to bridge the gap between current standards and animal 

models. However, increasing model complexity through the addition of additional cell 

lines compounds on the already inherent variability in Caco-2 cells. Regulatory approval 

would require extensive characterisation and validation to assess for any changes in 

cellular phenotype. The challenge for new systems lay in the demonstration of significant 

improvement over current standards sufficient to justify the complex process which is 

FDA approval.  
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1.12 Project Hypothesis 

 

The main hypothesis of this project was that, through use of either paracrine influences 

or 3D culture, the Caco-2 Transwell system could be improved to better recapitulate both 

the gross anatomy of the human intestine and its functional characteristics. Furthermore, 

it was hypothesised that simple Caco-2 3D models could be adapted for use in a 96 well 

system to better allow for adoption and use throughout industry as a direct replacement 

for the current Caco-2 Transwell gold standard. Additionally, the base architecture of the 

3D model could be further developed to include additional cell lines such as goblet cells 

to expand the functionality of the resultant model.  

1.13 Project Aims 

 

This project aims to create both advanced Transwell model variants of the Caco-2 

standard through the co-culture of Caco-2 membranes with conditioned media from 

fibroblasts of varying origins and to create a 3D model of the intestine, again using Caco-

2 cells in order to demonstrate how increased complexity allows for tissue models with 

more in vivo like properties.  

 

Additionally, work undergone in this project will include the analysis of such models 

including structural assessments through a range of techniques such as histological and 

immunological stains in addition to TEM and SEM.  Assessment of model function will 

be achieved through the use of an Ussing type chamber measuring the apparent 

permeability of model drug compounds within each model system. Values gained in this 

work will be cross referenced against both internal and literature derived values for 

standard Caco-2 models in addition to assessment against human tissue values, again 

gained form the literature where possible. It was hypothesised that the advanced co-

culture Transwell models and the full mucosal 3D models of the intestine will improve 

the structure and function of models, as such improving the in vivo  reliability of these 

models compared to data with human tissues.  
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 1.14 Project Objectives 

 

1. Develop and optimise a novel 3D mucosal intestine equivalent utilising Alvetex 

Scaffold and multiple cell types including; Caco-2,CCD-18co, HDFn and HIC 

fibroblast lineages.  

 

2. Develop and optimise the culture of advanced paracrine Transwell models 

utilising conditioned media gained from 2D cultured CCD-18co, HDFn and HIC 

cell lines.  

 

3. Structurally characterise all models through the use of techniques such as 

histological staining of paraffin embedded samples in addition to immunostaining 

from key protein elements of cellular function and SEM/ TEM analysis of cellular 

ultrastructure. 

 

4. Utilising model drug compounds functionally characterise the models created 

during this study to assess their comparability to Caco-2 controls and human 

tissues. Another aim was to design and create novel tools for the culture and 

functional analysis of intestinal equivalents.  

 

5. Introduce HT29-MTX cells into the paracrine Transwell models to assess the 

effect of the mucous layer on the function of the epithelial models. 

 

6. Postulate and test a potential mechanism for any differences in structural and 

functional phenotypes observed in the characterisation of the models.
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2. Materials and methods 

2.1 Materials 

2.1.1 Chemicals and miscellaneous lab reagents 

 

Kits for periodic acid Schiff (PAS) ( RRSK15-100) and Massions Trichrome with Methyl 

blue (RRSK20-100) were both obtained from Atom scientific (UK). Rhodamine 123, 

Verapamil Hydrochloride, Etoposide, Methotrexate, Atenolol, Propranolol, Lucifer 

yellow, L-alanine-4-nitroanilide hydrochloride, 4-Nitroanaline, Hanks Buffered salt 

solutions (HBSS) and DPX (#06522-100ml) were obtained from Sigma Aldrich, UK. 3-

(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (#158990050) used for 

MTT studies of metabolic activity was obtained from Fisher Scientific along with 

embedding wax (#12624077), Methanol (#11976961), Acetone (#11453483), 

Isopropanol (#10588630) and microscope slides (#10149870). Vectorshield plus DAPI 

was obtained from Vector labs (#H1500) 

 

2.1.2 Cells and cell culture media components 

 

Caco-2 (#86010202) and HT29-MTX (#12040401) cells were obtained from the 

European Collection of Authenticated Cell Cultures (ECACC) (Porton Down, UK) and 

were used between passages 44-50 and 55-60 respectively. CCD-18co (CRL-1459) 

fibroblasts were obtained from ATCC (UK) and used between PDL 10 and 15.  HDFn 

cells (#C0045C) were obtained from Thermo Fisher Scientific (UK) and were used up to 

passage 4. HIC cells were isolated in lab as described later. HIC cells were used up to 

passage 5.  

 

High glucose containing DMEM with Pyruvate (#21969-035) cell culture media and 

supplements (L-glutamine (#25030-081), penicillin and streptomycin (#15140-122 

10,000 U/ml), FBS and 0.25% Trypsin (#25200-056)) were obtained from Thermo Fisher 

Scientific. DMSO (#D8418) and Trypan Blue (#T8154-100ml) were obtained from 
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Sigma. KGF (#100-19) recombinant protein was obtained from PeproTech. KGF ELISA 

kit (#DKG00) was purchased from R&D systems. Cryovials for the long term storage of 

cell populations were purchased from Greiner (#121263) 

 

2.1.3 Plastic ware 

 

Cell culture grade polyester Snapwell inserts 12 mm diameter with 0.4μm pore size were 

purchased from Sigma Aldrich (CLS3407-24EA). 12 and 24-well Alvetex® Scaffolds (12 

(AVP005-12), 24 (AVP012-48)) and 96 (Prototype) well sized Alvetex Scaffold inserts 

were purchased from Reprocell, UK. Alvetex® Scaffolds were purchased at 200μm 

thickness. 

 

Supplier Item Catalogue # 

Greiner Bio-one 6 well plates 657160 

 12 well plates 665180 

 24 well plates 662160 

 T25 cell culture flask 658175 

 T75 cell culture flask 660175 

 T175 cell culture flask 690175 

 50ml Falcon centrifuge tube 227261 

 15ml Falcon centrifuge tube 188271 

 50ml syringe SYR5-L5 

 Cell storage cryovials  121263 

Sarstedt  50ml cell culture stripettes 86.1689.001 

 25ml cell culture stripettes 86.1685.001 

 10ml cell culture stripettes 86.1254.001 

 5ml cell culture stripettes 86.1253.001 

 P1000 pipette tips 70.762 

 P200 pipette tips 70.760.002 

 P10 pipette tips 70.153 
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Fisher Scientific 0.2μm Syringe filter 15181499 

 96 well plate 10334791 

 1ml Syringe 15889142 

 

 

 

2.1.4 Antibodies 

 

Antibodies were purchased from a number of sources dependant on price, availability and 

efficacy for a given use. Dilutions shown here were determined based on manufacturer 

recommendations. Antibodies used in this study are detailed below: 

 

Supplier Target protein Catalogue # Use & Dilution 

Abcam Collagen I ab34710 Immunofluorescence 

(1/100 Dilution)  

Abcam Fibronectin ab23750 Immunofluorescence 

(1/500 Dilution) 

Abcam Villin ab130751 Immunofluorescence 

(1/200 Dilution) 

Abcam E-cadherin ab1416 Immunofluorescence 

(1/200 Dilution) 

Abcam Collagen IV ab6586 Immunofluorescence 

(1/100 Dilution) 

Abcam αSMA ab7817 Immunofluorescence 

(1/100 Dilution) 

Abcam Elastin ab9519 Immunofluorescence 

(1/100 Dilution) 

Abcam Tubulin ab176560 Immunofluorescence 

(1/100 Dilution) 

Abcam Cyto-Keratin ab118817 Immunofluorescence 

(1/200 Dilution) 

Table 2.1: Summary of plastic materials consumed during the course of this project 

including cell culture grade and general lab reagents.  
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Protein Tech Collagen III 22734-1-AP Immunofluorescence 

(1/100 Dilution) 

Santa Cruz Biotechnologies Vimentin sc-6260 Immunofluorescence 

(1/ 50 Dilution) 

Santa Cruz Biotechnologies Occludin sc-133256 Immunofluorescence 

(1/ 50 Dilution) 

Santa Cruz Biotechnologies MDR1 sc-55510 Immunofluorescence 

(1/ 50 Dilution) 

Santa Cruz Biotechnologies Desmin sc-23879 Immunofluorescence 

(1/ 50 Dilution) 

Santa Cruz Biotechnologies MRP2 sc-71603 Immunofluorescence 

(1/ 50 Dilution) 

Thermo Fisher Scientific Donkey anti 

rabbit (488) 

A21206 Secondary antibody 

(1/ 500 Dilution) 

Thermo Fisher Scientific Donkey anti 

mouse (488) 

A21202 Secondary antibody 

(1/ 500 Dilution) 

 

 

 

2.1.5 qPCR primers and PCR reagents 

 

qPCR primers used in this study were taken directly from literature resources prior to 

optimisation and use within this study. Below is a list of the relevant primers utilised here: 

 

Gene of 

interest 

Code Reference 

GAPDH (S) 

GAPDH (AS) 

ATGGGGAAGTGAAGGTCGGAG 

TCGCCCTTGATTTTGGAGG 

(158) 

MDR1 (S) 

MDR1 (A/S) 

GCCAAAGCCAAAATATCAGC 

TTCCAATGTGTTCGGCAT 

(159) 

BCRP (S) TGCAACATGTACTGGCGAAGA (159) 

Table 2.2: List of antibodies used in this project including secondary Alexa Fluor 

conjugated secondaries. 
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BCRP (AS) TCTTCCACAAGCCCCAGG 

MRP2 (S) 

MRP2 (A/S) 

TGAGCAAGTTTGAAACGCACAT 

AGCTCTTCTCCTGCCGTCTCT 

(159) 

OATP-B (S) 

OATP-B (AS) 

TGATTGGCTATGGGGCTATC 

CATATCCTCAGGGCTGGTGT 

(159) 

Occludin (S) 

Occludin (AS) 

CTCCCATCCGAGTTTCAGGT 

GGAGTGTAGGTGTGGTGTGT 

(160) 

Villin (S) 

Villin (AS) 

AGGATGATGTGTTCCTACTAGATGTCTG 

GTTGCTGCGGCCTTCTTC 

(159) 

 

Supplier Item Catalogue # 

Bio-Rad Hard-shell PCR plates HSP9601 

 Quick start SYBR 1725271 

Thermo Fisher PCR plate seals AB0558 

Qiagen RNeasy Plus mini kit 74134 

Promega GoScript reverse 

transcriptase 

A2791 

Sigma RNase ZAP R2020 

 

 

2.2 General methods 

2.2.1 General cell culture 

 

Cells were routinely cultured in T75 or T175 cell culture flasks maintained in a humid 

environment at 37oC, 5% CO2 in air. In 2D culture, cells were fed with their respective 

media, prewarmed to 37oC in a temperature-controlled water bath, at a rate of every other 

day unless otherwise stated. Cells were deemed ready for passage at 80% confluency. 

Cell lines were visually checked for contaminants daily and checked by phase microscopy 

immediately prior to media change. 

 

Table 2.3: qPCR primers including reference of origin.  

Table 2.4: qPCR reagents for the isolation of RNA, reverse transcription into cDNA and 

expansion  SYBR based detection methods. 
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2.2.2 Passaging 

 

Cells were removed from the incubator and washed twice in sterilised PBS prior to 

incubation with 0.25% Trypsin/EDTA (2500mg/L) containing phenol red (2ml T75, 4ml 

T175). Cells were incubated in a humidified environment at 37oC, 5% CO2 for 3 minutes 

or until cells had detached for the tissue culture surface. For strongly adherent cell lines 

such as Caco-2 this could take up to a maximum of 10 minutes. If after 10 minutes cells 

were still attached to culture plastic flasks were gently tapped to liberate cells into 

solution. Cells were liberated and collected by gentle washing on the cell surface with 

10% FBS containing culture media. This also acts as the trypsin neutralisation step. The 

media volume was then topped up to 15ml in a Falcon tube. To remove trypsin containing 

media, cells were centrifuged for 3 minutes at 500g unless otherwise stated. Media was 

then removed being careful not to disturb the cell pellet which was then subsequently 

carefully resuspended in an appropriate volume of fresh prewarmed culture media 

(usually 1ml). Cells were re-seeded into new sterile cell culture flasks at the appropriate 

density as per the manufacturer’s instructions or were counted for use in experimental 

procedures. 

 

2.2.3 Trypan Blue cell counting 

 

To allow for the accurate seeding density within Transwell and 3D models or when 

manufacturers guidelines specified cell seeding numbers per flask, total cell number must 

be quantified prior to use. Cells were passaged as above and resuspended in an appropriate 

volume  of fresh cell culture medium (usually 1ml but more if large quantities of cells 

were being counted so as to ensure accurate sampling of cell numbers) A 9:1 dilution of 

trypan blue: cell suspension was created in a separate Eppendorf tube. This cell 

suspension is carefully pipette mixed (gently to avoid unnecessary cell damage) before 

being added to a haemocytometer. Live/dead cell counts can be made microscopically by 

counting the ratio of dyed (Blue) cells to dye excluded (White) cells, with dye exclusion 

indicating cellular viability. A total of 3 quadrants on a standard haemocytometer were 
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counted to create an average of one quadrant with a known volume of 0.1μl. Raw cell 

numbers were converted into total cell population by the following equation. 

 

𝑅𝑎𝑤 𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡𝑠 𝑣𝑎𝑙𝑢𝑒𝑠

3
= 𝑄𝑢𝑎𝑑𝑟𝑎𝑛𝑡 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 

 

𝑄𝑢𝑎𝑑𝑟𝑎𝑛𝑡 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑥 𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 = 𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 

 

𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 

𝑄𝑢𝑎𝑑𝑟𝑎𝑛𝑡 𝑣𝑜𝑙𝑢𝑚𝑒  𝑚𝑙 
= 𝑇𝑜𝑡𝑎𝑙 𝑐𝑒𝑙𝑙𝑢𝑙𝑎𝑟 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

 

2.2.4 Cryopreservation 

 

Cells were passaged as previously described. Cells were resuspended in an appropriate 

volume of 10% FBS containing complete culture medium and counted with a 

haemocytometer. The volume for the correct number of cells to be frozen per vial (usually 

1-2 million) was calculated and added to a 1ml cryovial. DMSO and 10% complete cell 

culture medium was added to each tube to create a final volume of 1ml and a final DMSO 

concentration of 5%. Cell vials were then added to a Mr FrostyTM (Thermo-Fisher) for a 

minimum of 24 hours at -80oC. Cells were then placed at -150oC or in liquid nitrogen 

vapour phase for long term storage until required for use.  

 

2.2.5 Cell revival 

 

Cells vials were quickly warmed in a 37oC water bath until only small ice crystals 

remained floating in suspension. Cells were gently resuspended and added to an 

appropriate volume of 10% FBS cell culture medium. Cells were allowed to attach for 24 

hours in an appropriately sized flask ( <1,000,000 = T25, 1,000,000-2,000,000 = T75) 

before DMSO containing medium was removed and replaced with fresh pre-warmed 
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culture media. Any unattached cells after 24 hours were carefully removed and pelleted 

before resuspension and addition back into the culture flask. Unattached cells after this 

point were discarded with media changes. 

2.3 Embedding techniques for study samples 

2.3.1 Paraffin embedding 

 

Samples to be processed for paraffin embedding were first washed in PBS before being 

fixed in 4% Formalin for a minimum of 30 minutes at room temperature but more 

generally overnight at 4oC. Actual fixation length was determined by the sample type 

with tissue samples preferably being fixed for longer at cooler temperatures to ensure 

complete tissue fixation. Samples were removed from fixative and washed twice in PBS 

before being dehydrated through a series of ethanol concentrations 30-100% (v/v) for a 

minimum of 10 minutes per concentration with an extended incubation time of 30 minutes 

for 100% ethanol solutions. Samples were then incubated for 30 minutes in Histoclear II 

(National diagnostics) at room temperature. Paraffin wax is added to Histoclear II samples 

to make a final ratio of 50:50 Histoclear: Paraffin for 30 minutes at 65oC. Finally, samples 

Cut from hanging insert and 

split into appropriately sized 

sections 

Samples were embedded in 

wax orientated so that the cut 

edge is sectioned first  

Blade 

D
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Figure 2.1: Schematic representation of the embedding and sectioning process for both 

Transwell and Alvetex® based intestinal models – Samples are cut in half and embedded 

with the cut end to the bottom of the block (first to be trimmed). Blocks are sectioned at 5μm. 
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were washed twice in 100% Paraffin at 65oC for a minimum of 20 minutes per wash 

(longer for larger tissues before embedding in cassette moulds and allowing to cool.  

 

2.3.2 OCT embedding 

 

Samples to be processed for OCT embedding were first gently washed in PBS to remove 

all culture media. Samples were then fixed for 10 minutes in an ice cold mixture of 50:50 

methanol: acetone. OCT freezing moulds were made from aluminium foil and clearly 

labelled with the sample name before samples were added. OCT freezing solution was 

added to the foil moulds. Samples were cut to size and completely submerged in OCT for 

a period of 15 minutes before freezing. Liquid nitrogen was added to a polystyrene 

freezing box below a metal plate. Liquid nitrogen was not allowed to touch the surface of 

the metal plate as freezing will occur at vapour phase. Samples were added to the pre-

chilled plate and left to fully freeze for a period of 30 minutes. Samples were stored at -

80oc for long term storage.  

 

2.4 Immunochemistry 

2.4.1 Paraffin embedded samples 

 

Paraffin embedded 4% PFA fixed sections (7μm) were dewaxed for 15 minutes in 

Histoclear I and brought to water through a series of alcohol solutions (90, 70% ethanol). 

Samples were antigen retrieved by incubation for 30 minutes at 95oC in citrate buffer.  

Should permeabilisation be required samples were incubated for 5 minutes in a 0.5% 

Triton/ PBS solution. Samples were washed in PBS before being blocked to limit non-

specific protein binding in a 10% Normal Goat Serum (NGS)/ PBS solution for 30 

minutes at room temperature. Primary antibodies were incubated in a 1%NGS, 0.1% 

PBST solution at an antibody specific concentration for a minimum of 1 hour at room 

temperature or overnight at 4oC. Following primary antibody incubation samples were 

washed 3 x 5 minutes in 0.1% PBST to remove any unbound and non-specific primary 

antibody. Fluorescently tagged secondary antibodies were diluted at an antibody specific 
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concentration in PBS and incubated with the samples for a minimum of 30 minutes at 

room temperature. Samples were protected from light at this stage onwards in order to 

protect the samples from photobleaching. Samples are then washed 2x in 0.1% PBST. 

Nuclei were stained using either DAPI or Hoechst which were added at an active 

concentration to the final wash step post-secondary antibody incubation. Excess nuclei 

stain was removed by one final wash in PBS followed by mounting with soft set 

Vectorshield fluorescent mounting media. Slides were sealed before imaging through the 

minimal application of clear nail varnish to the edges of the coverslip. 

 

2.4.2 OCT embedded samples 

 

Samples were allowed to warm to -20oC prior to sectioning. Sections were allowed to air 

dry for 10-20 minutes before being washed gently in PBS to remove excess freezing 

media. Samples were then fixed in ice cold 50:50 methanol: acetone before being brought 

back to water. OCT embedded methanol: acetone sections do not require antigen retrieval 

or permeabilisation steps. All other steps in this protocol are the same as Section 2.4.1 

Step 4 onwards.  

 

2.4.3 Wholemount cell coverslips, wells and Transwell inserts. 

 

Cells were fixed in ice cold methanol: acetone for 10 minutes at -20oC. Methanol: acetone 

fixed cells do not require antigen retrieval or permeabilisation steps. All other steps in 

this protocol are the same as Section 2.4.1 Step 4 onwards.  

For all immunochemistry negative controls were used routinely (Samples processed 

without primary antibody incubation). Where possible positive controls of either human 

tissues or specific cell lines were used.  
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2.5 Histological staining techniques of paraffin embedded 

samples. 

2.5.1 Haematoxylin and eosin 

 

Paraffin embedded samples were sectioned at 7μm and heat dried to glass slides. Slides 

were de-paraffinised in Histoclear for 15 minutes. De-parrafinisation was followed by 

rehydration through ethanol to water (100, 95, 70%) for 1 minute per ethanol 

concentration. Samples were then placed in haematoxylin for 5 minutes in order to stain 

the cellular nuclei. Excess stain was washed off in water followed by a 30 second wash 

in alkaline ethanol to blue the stained nuclei. Samples were dehydrated in ethanol (70, 

95%) once more and incubated in eosin solution for 30 seconds. Finally, samples were 

rapidly washed in 95 and 100% (v/v) ethanol and cleared in Histoclear for 10 minutes. 

Slides were then mounted with a coverslip and left to dry before viewing under a 

microscope.  

 

2.5.2 Periodic acid Schiff stain 

 

Paraffin embedded samples were sectioned at 7μm and heat dried to glass slides. Slides 

were de-paraffinised in Histoclear for 15 minutes followed by rehydration through 

ethanol (100, 95, 70%) to water for 1 minute per ethanol concentration. Deparaffinised 

sections were oxidised in periodic acid solution for 5 minutes. Samples were then gently 

washed in distilled water and stained with Schiff reagent for 20 minutes at ambient 

temperature. Slides were then washed in running tap water until appearing pink 

macroscopically followed by staining of the cellular nuclei with Mayer’s Haematoxylin 

for 1 minute. Finally, samples were differentiated in 0.5% (v/v) acid alcohol and blued in 

running tap water. Samples were then dehydrated through an ethanol series, mounted and 

allowed to dry before viewing and imaging. 
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2.5.3 Masson trichrome stain with methyl blue 

 

Paraffin embedded samples were sectioned at 7μm and heat dried to glass slides. Slides 

were de-paraffinised in Histoclear for 15 minutes followed by rehydration through 

ethanol (100, 95, 70%)  to water for 1 minute per ethanol concentration. Wiegert 

haematoxylin was prepared by mixing part A and B solutions in a 50:50 ratio immediately 

prior to use. Samples were incubated with Weigert haematoxylin for 20 minutes at room 

temperature. This was followed by quickly washing with water and differentiating in 1% 

acid alcohol. Nuclei were blued by rinsing in water. Next slides were stained with 

Ponceau Fuchsin solution for a period of 5 minutes then rinsed in water. Slides are then 

differentiated in phosphotungstic acid for 15 minutes and stained with methyl blue for 1 

minute without rinsing. Finally, samples were rinsed in distilled water, dehydrated 

through alcohols, cleared and mounted. Slides were allowed to dry before viewing and 

imaging.  

 

2.6 Scanning electron microscopy (SEM) 

 

Biological samples were fixed for SEM for 1 hour in Karnovsky fixative. Samples are 

washed 3x with 0.1M Cacodylate Buffer at pH 7.6. Karnovsky fixed samples were further 

fixed for a period of one hour in a 1:1 ratio of 2% (v/v) Osmium Tetroxide and 0.2M 

Cacodylate buffer at pH 7.4. Samples were then dehydrated through ethanol gradients 

(30-100% v/v ethanol) for 3 x 5 minutes per ethanol solution. The dehydration process 

was completed through use of critical point drying equipment. Critically dried samples 

were orientated on chips and sputter coated with platinum. Critically dried and coated 

samples were stored under vacuum. Images were taken on an S5200 Field emission 

scanning electron microscope. 
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2.7 Transmission electron microscope (TEM) 

 

Samples were fixed in Karnovsky fixative followed by osmium tetroxide treatment and 

dehydration in the same way as detailed for samples which were processed for SEM. Post 

dehydration samples were infiltrated with a 1:1 mixture of Ethanol (100% v/v) and 

propylene oxide for 15 minutes. This was followed by a further infiltration step of 

propylene oxide alone for 15 minutes. The resin used for embedding biological samples 

was the epoxy resin Agar 100 (Agar scientific, UK). Resin was pre-prepared at 37oC 

following kit instructions prior to use. Samples were infiltrated with 1x wash of 1:1 

propylene oxide and Epon resin for 15 minutes followed by 3x 1 hour infiltrations with 

Epon resin at room temperature on a rotating incubator. Samples were added to setting 

moulds and left to set at 37oC for at least 24 hours prior to sectioning. Ultra-thin sections 

were created using either a glass or diamond knife before being stained with uranyl 

acetate and lead citrate. Sections were then viewed under the H7600 Transmission 

electron microscope 

 

2.8 Drug permeability transport assays. 

 

Transport studies were conducted utilising a standard Ussing chamber set up (WPI, UK) 

with the chamber insert determined by the model/ tissue being tested. The general 

protocol for the experiments follows routinely utilised procedures. Transport buffer 

consisted on HBSS pH 7.4 with 2mM supplementary glucose. Stock solutions of all drug 

compounds were dissolved in a substance specific vehicle (DMSO/ Ethanol) before being 

added to the HBSS.  

Models to be tested were carefully removed from culture, washed twice in PBS and added 

into the Ussing chamber system. TEER measurements were taken both immediately 

before addition to the chamber and at the end of the experiment. 15ml of 37oC prewarmed 

HBSS was carefully added to both the apical and basal sides of the chamber system 

simultaneously, media was kept at 37oC throughout the experimental period through use 

of a circulating heated water jacket. Transport media was mixed and oxygenated utilising 

a bubble lift of 95% Oxygen and 5% CO2. Drug compounds were spiked into the Ussing 
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chamber at T=0. Timepoints were taken every 30 minutes by removal and replacement 

of transport media directly from the test chamber, either the apical or basal side. Lucifer 

yellow was run alongside test compounds as an additional measure of barrier integrity 

throughout the experimental procedure where possible. Compound concentration within 

the transport medium was assessed through use of either the compounds fluorescent 

properties or through detection with HPLC equipment.  

Papp was calculated utilising the following equation; 

 

𝑃𝑎𝑝𝑝 =  
𝑉𝑅 ∗  𝑑𝐶𝑅

𝑑𝑡 ∗ 𝐴 ∗ 𝐶𝐷0
 

 

Whereby VR is the volume of the receiver compartment dCR/dt is the change in the analyte 

concentration of the receiver compartment over time, A is the area of the transport 

interface and CD0 is the concentration of the donor compartment at time zero. 

 

2.9 qPCR analysis of cell models and tissues 

2.9.1 mRNA purification and extraction from whole cell and 

tissue lysates. 

 

Firstly, mRNA was extracted from biological samples through use of the RNeasy RNA 

extraction kit (Qiagen, USA).  

Cells were lysed through addition of buffer RLT and mechanical disruption of the cell 

layer with either a cell scraping device or a pipette tip. Cell homogenate was then further 

homogenised through passing through a blunt 20-guage needle tip at least 5 times An 

equal amount of alcohol was added to the cell lysate. The alcohol/ lysate mix was then 

added to an RNeasy spin column and span for 15 seconds at 10,000 RPM. Pass through 

was discarded and DNase digestion was performed on column. Cell lysate was then 

washed one with RW1 buffer before being span for 15 seconds at 10,000 RPM. Samples 

were then washed twice with RPE buffer before being span for 15 seconds and 2 minutes 
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respectively at 10,000 RPM. Pass through was discarded each time. Finally, the spin 

column was added to a fresh collection tube and 30μl of RNase free water was added. 

This was then span for 1 minute at 10,000 RPM to collect the purified RNA.  

Purified RNA was either stored at -80oC or was quantified using a Nanodrop and reverse 

transcribed immediately.  

 

2.9.2 mRNA quantification of purified cell model lysates. 

 

mRNA isolated from cell models through RNA easy extraction kits was quantified 

through the use of a Nanodrop spectrophotometer device. 

 

Briefly, 2μl of RNA free H2O was added to the Nanodrop and to allow for a blank to be 

read. 2μl of purified mRNA is then added to the reading pedestal and the top level 

carefully lowered. The droplet is visually checked to be in contact with both the top and 

bottom reading points before mRNA quantification. mRNA levels are read and 

concentration is automatically quantified by the software provided by the manufacturer. 

In addition to mRNA concentrations, 260/280 and 260/230nm reading ratios are 

calculated. Samples were deemed sufficiently contaminant free when 260/280 and 

260/230 ratios were  ≥ 1.8 and ≤ 2.2.  

 

Samples were quantified only immediately prior to reverse transcription and were re-

evaluated after a freeze-thaw cycle. 

 

2.9.3 mRNA reverse transcription into single strand 

complementary DNA 

 

Reverse transcription of known amounts of mRNA was done using the GoScriptTM 

Reverse Transcriptase  Kit from Promega. 500-2000ng of mRNA was added to a single 

reverse transcription reaction. Kit specific amounts of random primer mixes and reverse 

transcriptase were added to the mRNA sample. The mixture was gently mixed and then 
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ran on a thermocycler utilising manufacturer stated temperature and time settings using  

the following protocol: 

Reaction buffer is made from constituent kit components by adding 4μl of GoScript™ 

Reaction Buffer, Oligo(dT) to 2μl of GoScript™ Enzyme Mix. Up to 5μg of RNA was 

added to a reaction vessel containing premixed reaction buffer and volume is made up to 

a total of 20μl using Nuclease-Free water. Pipette mix the reaction buffer/ RNA solution. 

Add reaction tubes containing Buffer/ RNA mix into a thermocycler set to the following 

settings: 

 

Step Temperature (oc) Time (Min) No# of cycles 

Anneal Primer 25 5 1 

Extension 42 60 1 

Inactivation 70 15 1 

Hold 4 ∞ 1 

 

2.9.4 cDNA quantification and comparative analysis to 

controls. 

 

cDNA was quantified utilising an SYBR based detection method. For initial optimisation 

of primers (list below) multiple concentrations of cDNA were tested with the most 

appropriate carried forward into testing. Primer efficiency was determined through 

analysis of melt curve dynamics and by plotting concentration curves onto a graph and 

calculating the R2 value. Primer specificity was tested by running qPCR end products 

through a polyacrylamide gel and comparing product length against the Primer BLAST 

database.  
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2.10 Bradford assay assessment of protein abundance 

 

Samples were  lysed directly with MPER lysis buffer (Sigma, UK), scraped and added to 

a 1.5 ml Eppendorf tube before being mechanically homogenised every 5 minutes for 30 

minute using a vortex mixer. Samples were then sonicated for 30 minutes and centrifuged 

for 20 minutes to pellet cell debris. Cell lysates not used immediately were stored at -

80oC until further processing. Total protein concentration of the cell lysates was 

quantified by Bradford assay. Briefly, 5μl of cell lysate was added to a standard clear 

bottom 96 well plate. 195μl of Bradford reagent (Bio-Rad) was added to the wells 

containing the lysed samples. Colour was allowed to develop for at least 10 minutes at 

room temperature on an orbital shaker set to 100rpm. Colour change was assessed on a 

plate reader at 595nm wavelength. Protein levels were quantified against a standard curve 

of known BSA concentrations.  

 

2.11 Quantification of aminopeptidase activity  

 

Aminopeptidase activity was quantified through the catalysation of the cleavage of the 

substrate L-alanine-4-nitroanilide hydrochloride into the breakdown product 4-

nitroaniline. Briefly, 0.5ml of prewarmed 1.5mM of L-alanine-4-nitroanilide 

hydrochloride solution was added to the apical compartment of both Transwell and 3D 

models. These models were then incubated for a period of 1 hour under standard cell 

culture conditions on an orbital shaker set at 100rpm. After 1 hour 100μl of the cleavage 

product was transferred to a well of a clear 96-well plate. All samples were analysed in 

duplicate replicate to assess for intraassay variation and pipetting errors. A standard curve 

was created from a stock solution on 4-nitroanaline to allow for cleavage product 

quantification. Wells were quantified at 405nm using a plate reader and blank values were 

used for sample correction. End data was expressed as activity per cm2/ minute using the 

following equation:  

𝑅𝑎𝑤 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 − 𝐵𝑙𝑎𝑛𝑘 = 𝐵𝑙𝑎𝑛𝑘 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 
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Blank reduced value is then used to find the concentration of 4-nitroanaline utilising the 

equation of the standard curve line. 

 

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 4 − 𝑛𝑖𝑡𝑟𝑜𝑎𝑛𝑎𝑙𝑖𝑛𝑒 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙
= 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦/𝐶𝑚2 

 

2.12 Standard Caco-2 Transwell experimental set up and 

conditioned media creation and application. 

 

For the creation of Caco-2 Snapwell® (Corning) cultures, 80% confluent flasks of 2D 

grown Caco-2 cells were passaged utilising the standard passaging technique mentioned 

earlier. Caco-2 cells are counted utilising a haemocytometer and Trypan Blue staining 

before being diluted in a 15ml falcon tube (Corning) to a concentration of 250,000 cells 

per 500μl of complete growth medium. 500μl of the cell mixture is added to the apical 

compartment of the Snapwell insert, resulting in a seeding density of 250,000 cells per 

insert or 223,000 cells/cm2. Caco-2 cells were allowed to settle and attach overnight (at 

least 12 hours) before experimental conditions were changed. 

 

Conditioned media was created by incubating complete Caco-2 medium with fibroblast 

cells for a period of 24 hours. 25ml of media was added to a confluent T175 flask of 

fibroblasts at a medium density of 0.143 ml/cm2. After 24 hours of fibroblast media 

conditioning, media was removed from the cells and sterile filtered through a 0.4μm pore 

syringe filter. Before addition to Transwell models, conditioned media was diluted at a 

1:1 ratio with fresh complete DMEM to ensure the media was sufficiently nutritious for 

continued Caco-2 growth and development. Conditioned media was added to Snapwell 

Transwell experiments on day 2 at the first media change post Caco-2 seeding. 

Conditioned media was stored at 2oC for a maximum of 7 days before use. 
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Caco-2 Transwell models were media changed by careful aspiration of both apical and 

basal compartments before addition of 500μl and 3 ml of fresh media apically and basally 

respectfully. Caco-2 Transwell models were cultured for a minimum period of 21 days 

with media changed on alternative days. Caco-2 Transwell models were used in 

experiments between 21 and 25 days. 

 

2.13 Human tissue processing and staining 

 

Human tissues were obtained both pre-fixed and fresh from Biopta (Glasgow, UK). All 

tissue samples were cut into pieces no larger than 5mm3. Pre-fixed tissue samples were 

processed for paraffin wax embedding following the standard protocol mentioned in 

section 2.3.1 of alcohol dehydration followed by Histoclear and paraffin incubation and 

embedding. Fresh tissue samples were cut to appropriate sized pieces and processed in a 

CCD-18co 

HDFn 

HIC 

Culture with conditioned media 

Caco-2 500,000 cells seeded in 500μl suspension 

Overnight to 

attach 

Figure 2.2: Schematic representation of the process for setting up and culturing Transwell 

based intestinal models in control and conditioned media systems 



Chapter 2 – Materials and Methods 

 

106 
 

number of ways. Paraffin, OCT and resin embedding were done following the previously 

mentioned protocols (Sections 2.3.1, 2.3.2 & 2.7). All human tissues were used and 

processed under HTA licence following HTA guidelines.  

 

2.14 Outgrowth of myofibroblast primary cell cultures from 

human tissue sections 

 

Myofibroblast outgrowth was achieved from the culture of human tissue slices in the 

following method. Firstly, Human intestinal tissue was received from Biopta and washed 

twice in sterile PBS containing 3% P/S. The muscular layers of the tissues were carefully 

dissected from the tissue leaving only the epithelium and underlying mucosa. A 6 well 

plate was scored in a grid pattern with a sterile scalpel. The dissected tissue was placed 

onto the scored grid mucosa side down and incubated overnight in FBS containing 

concentrations of 4% Penicillin and Streptomycin (P/S) and gentamycin and amphotericin 

(G/A). After incubation overnight tissue sections were confirmed to be attached to the 

plate through gentle rocking. Tissue sections were incubated in FBS for up to 48 hours to 

allow for attachment. When confirmed to be attached tissue sections were carefully 

submerged in Hams F12 media (Fisher) containing 10% FBS, 4%P/S and 2%G/A. 

Submerged tissues were carefully media changed daily and microscopically checked for 

contaminants (early contamination was generally by bacteria whereby later 

contamination was usually fungal). Cell outgrowth was usually first seen 7-10 days after 

initiation of cell culture.  

 

Cells were passaged by carefully removing tissue sections from the plate and then 

following standard trypsinisation and seeding procedure as described previously. Tissues 

were added back into culture in fresh plates and cultured as described above. Passaged 

cells were cultured in standard DMEM conditions (10%FBS with supplemented L-

glutamine and P/S). Once tissues were no longer viable for cell culture they were disposed 

of through standard human tissue disposal practices as described by the HTA. 
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2.15 Generation of a 3D intestinal model 

 

The generation of the intestinal model has been optimised for both the 24-well and 96-

well formats of Alvetex Scaffold®. This methods section will detail the process for both 

of the Alvetex® system although it is important to note that the functional model analysis 

was undertaken in the 96 well system. 

 

Firstly, Alvetex® Scaffold® is prepared for the seeding of cells through the submergence 

into 70% ethanol for a period of at least 15 minutes. Scaffold are then wash twice in PBS 

to remove the ethanol prior to the addition of the cells. Fibroblast cells are seeded into the 

Scaffold at the air liquid interface at a density of 250,000 cm2 (192,000 for 24 well, 

~50,000 cells for 96 well model). Fibroblasts are seeded in a volume of prewarmed media 

which is appropriate for the Scaffold size in use ( 24-well = 200μl, 96-well = 25μl). Once 

seeded these cells are left at the air liquid interface (base compartment filled with media) 

for 12 hours (overnight) to allow for complete surface attachment before being submerged 

and cultured submerged for a period of 7 days within the scaffold in an 12-well standard 

culture plate (24-well model) or an Alvetex® Deep well plate (ADW) (96 well model). 

Media is changed every 48 hours for optimal cell feeding (4.5ml in the 24 well format 

and 1.5 ml in the 96 deep well format). After 7 days of initial fibroblast culture further 

seeding of fibroblasts into the models is done twice more at 2 day intervals (day 7 and 9) 

at the same seeding density per cm2 as previously described. At 14 days of total cell 

1. Establish sub-epithelial compartment 
(variable media composition) 

CCD-18co, Multi-seeded, 14 days 

HIC, Multi-seeded, 14 days 

HDFn, Single seeding, 14 days 

14-Days 

2. Caco-2 epithelial culture for 21 days  

(DMEM, 10%FBS, 2mM L-glutamine) 

21-Days 

Figure 2.3: Schematic representation of the process for setting up and culturing Alvetex® 

based intestinal models.  
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culture the fibroblast models are seeded with the cellular epithelium of Caco-2 colon 

adenocarcinoma cells (ECACC) at a density of 220,000 cells per cm2. After epithelium 

seeding models are cultured submerged in standard Caco-2 DMEM based media 

(described previously) for a further period of 21-25 days before use in downstream 

analysis. 

 

2.16 Epithelial electrophysical resistance measurements of 

Transwell models of the intestine. 

 

Samples are first washed in pre-warmed sterile PBS before fresh pre-warmed media is 

added to the models. Models are placed into a 37oC incubator and allowed to normalise 

for a period of at least 30 minutes. During this time TEER electrode probes (WPI) were 

first sterilised in 70% ethanol for a period of 5 minutes before being placed in sterile PBS 

to allow for electrode normalisation for 30 minutes before readings are taken by placing 

the electrodes into the model media  (longer probe to the outside of the model) and reading 

the values from the attached EVOM TEER equipment. Models were removed from the 

incubator immediately prior to taking a measurement and were taken as quickly as 

possible in order to limit any variations due to temperature fluctuations. Raw TEER 

measurements are processed to remove blank values which are taken at the same time as 

the non-blank wells through the culture of an insert without cells alongside experimental 

cultures, and then normalised to culture area to give the final value. It is important to 

remember that raw TEER measurements are inversely proportional to the culture area so 

normalisation is achieved through multiplication of culture areas rather than division. 

 

2.17 Statistical analysis of study data 

 

All data analysis achieved in this study was done utilising Prism5 software (GraphPad). 

A standard unpaired students T-test was used where statistical significance was required 

between 2 data sets. Study sets containing greater than 2  data sets were analysed by one-

way ANOVA with Tukeys post-test analysis. ***=p <0.0005, **=p<0.005, *=p<0.05.
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3. Development Transwell co-culture models 

3.1 Introduction 

3.1.1 Caco-2 Transwell, the gold standard for intestinal 

pharmacokinetics. 

The intestine is a highly complex 3D architecture consisting of multiple populations of 

distinct, functionally niche cells with the capability to cross talk with one another, existing 

together in a complex 3D architecture to maintain intestinal homeostasis and function. It 

is well understood that current Caco-2 Transwell models do not recapitulate the 

complexity of the intestinal mucosae; indeed they were never designed too with current 

models only supporting a single cell type within a basic 2D architecture. For the most part 

however, Caco-2 monocultures remain the primary model used within industry due to a 

number of reasons, the most important of which are: 

 

1. Simplicity allows for mass production, 

2. Simplicity allows for highly reproducible data with low inter/intra-assay 

variability. 

3. Less likely for human error in model construction 

 

That isn’t to say that attempts haven’t been made in the past to improve this model. HT29 

and HT29-MTX cell lines were one of the first to be used and have been cultured within 

Caco-2 Transwell models in order to attempt to create a mucous barrier which is present 

in in vivo intestine.(161) Addition of these cells has had some success and is discussd 

further in the following chapter. 

 

3.1.2 Understanding the role of sub-epithelial fibroblasts on the 

homeostasis of the intestinal epithelium.  

The role of the sub-epithelial cell populations in the intestine and similarly the addition 

of myofibroblast cell cultures into the Caco-2 models was, until recently, a poorly 
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understood method in which to improve Caco-2 models’ phenotypes. Conventional, 

thinking placed fibroblasts as having limited function in the development and 

maintenance of the epithelium, serving a simple role in ECM secretion and tissue 

structure. Advances in the understanding of stromal-epithelial dynamics indicates the 

sub-epithelial cell layers have significant effects on epithelial growth, barrier integrity, 

repair and cellular differentiation. (162–165) 

 

Sub-epithelial mucosal fibroblasts in the intestine have also been implicated in a number 

of disease phenotypes. Crohn’s disease for example is an inflammatory condition of the 

bowel which ultimately leads to tissue fibrosis with excessive ECM deposition and 

fibroblast activation protein (FAP) expression.(166) inflammatory bowel disease (IBD) 

and ulcerative colitis are similarly related conditions involving excessive tissue fibrosis. 

(167)  

 

3.1.3 Methods for the advancement of model in vivo relevancy. 

In recent decades there has been an increase in the general focus towards tissue 

engineering more complex, tissue mimetic models and the culture of multiple cell lines 

together in both 2D and 3D environments. This has resulted in significant advances in the 

creation of biological tissue models representative of many tissue types within the body, 

such as; Skin, Bone, eye, brain, muscle etc. Skin models, for example, are one of the most 

thoroughly developed and routinely created models of tissue encompassing the full range 

of technologies available. (168–170) Indeed, establishment of continuous keratinocyte 

cultures in vitro and the creation of simple keratinocyte layers for clinical use within 

human patients go as far back as 1975 with the work by Rheinwald and Green (169,171). 

These first Keratinocyte constructs were simple monolayers and were reasonably 

effective for their simplicity. To use skin as another example, epidermis of structurally 

relevant composition can be created utilising modern techniques by simply growing a 

monoculture of keratinocytes on a semi-permeable 2D membrane such as Transwell or 

Millicell. (168) The uses of these models often go beyond simple in vitro models utilised 

within the lab and can be applied to in vivo applications as tissue implants or devices.  
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In Vitro intestinal models have undergone significant changes and advancement over the 

past decade in order to more accurately recapitulate the full intestinal mucosae rather than 

the simple mono-cell type epithelium of current gold standard industrial models. 

Primarily, work has focussed on the creation of improved intestinal mucosae models 

encapsulating not only the epithelial layer, but also the sub-epithelial fibroblasts 

populations. These have the most relevance in the pharmaceutical industry as test pads 

for the pharmacokinetic and pharmacodynamic properties of novel and pre-clinical drug 

compounds. Whilst the purpose of this study is to improve upon the conventional Caco-

2 system, current simple cellular models of the intestine are already able to drastically 

reduce the reliance of animal models which in the past have been shown to be quite often 

non-physiologically aligned with human ADME phenotypes. (172) Even simple changes 

to current mono-culture models such as the inclusion of goblet cells to create the mucous 

layer (142)or co-culture with myofibroblasts to provide the tissue specific paracrine 

microenvironment (173) could have significant effects on the reliability of simple models.  

 

3.1.4 Understanding the importance of 3D architecture on 

model development.   

In a stepwise increase in model complexity, the provision of a 3D scaffold for the culture 

of cells could provide a more physiological platform of 3D mechano-transduction, 

resulting in improved cellular phenotypes. Even extremely small changes in substrate 

composition such as matrix stiffness can lead to large effects in cellular phenotype such 

as driving EMT in tumour cells (174) and regulating ECM deposition. (175) Dependent 

upon the model created the applications of complex 2D or 3D models are not necessarily 

limited to drug ADME and can range from potential tissue transplants to simple models 

for understanding the cancer dynamics.  

 

A very recent study by Castano et al (176) demonstrated how 3D scaffolds can be 

designed to more accurately mimic the tissue being modelled. Utilising a UV setting 

polymer hydrogel they were able to reliably create villi structures in their 3D scaffold. 

Scaffolds could then be functionalised and cultured with Caco-2 cells. These cells were 

shown to create confluent layers across the full length of the scaffolds 3D architecture. 
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Actin viewed by immunofluorescence staining demonstrated a well formed monolayer 

structure with clear apical polarisation of cells. ZO-1 staining was also utilise to display 

the presence of tight junctions between adjacent cells. Interestingly TEER measurement 

of models showed a highly significant reduction in the epithelial resistance of 3D models 

which correlated well with an increase in FITC-dextran 4kDa, a commonly utilised 

marker for trans-cellular passive permeability. This system demonstrates a physiological 

change based on substrate morphology alone. It was hypothesised that this model could 

be further improved by either establishing fibroblast populations within the polymer 

scaffold or through paracrine conditioned media of physiologically important cell lines 

as achieved in this chapter.  

 

It is hoped that the creation of more tissue mimetic models will have the effects of 

lowering the time and cost taken to identify and test potential compounds, savings which 

can be passed onto consumers and allow for greater funding to be allocated to compound 

discovery. This chapter will focus first on the simple modification of conventionally 

cultured Caco-2 models through their culture with the released paracrine factors of human 

fibroblast cells or varying origin.  
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3.2 Hypothesis, aims and objectives 

3.2.1 Hypothesis 

The hypothesis for this chapter was that the co-culture of Caco-2 cells with the paracrine 

influences of fibroblast conditioned media would have significant effects on the 

development and function of the Caco-2 epithelial layer. Furthermore, it is hypothesised 

that fibroblasts from differing origins, (CCD-18co - Intestinal Carcinoma, HIC – Normal 

Intestine, HDFn – Normal skin) would have different mechanistic effects on the Caco-2 

layer and work through a variety of morphogenic pathways. Finally, it is hypothesised 

that KGF is one of the main signalling molecules present in the fibroblast conditioned 

media based on similar experiments in the literature. (137,177) 

 

3.2.2 Aims  

The aims of this chapter were to develop simple co-culture alternatives to the 2D Caco-2 

Transwell cell model, currently the gold standard in the industrial pharmacokinetic testing 

of drugs and novel drug compounds. 

 

Initially, the aim was that Caco-2 models were to be modified through culture of Caco-2 

cells in conditioned media from a variety of sources. Namely, these were: HDFn (Human 

Dermal fibroblasts from neonatal foreskin biopsies), CCD-18co (Non-transformed 

colonic adenocarcinoma cell line) and HIC (Human intestinal cells isolated from normal 

Human small intestine biopsies). All of the above cell lines have been shown to possess 

myofibroblast like properties either in the literature or from in-house testing and as such 

were deemed suitable for conditioned media testing.  

 

The project aimed to characterise 2D Caco-2 models through a number of techniques such 

as immunofluorescence staining and qPCR analysis of key proteins of interest.  

 

The final aim of this chapter is to provide a mechanism of action for some/ all of the 

paracrine medias utilised in the creation of advanced Transwell models. 
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3.2.3 Objectives  

The objectives of this chapter are summarised below; 

• Characterise the structural and protein expression phenotype of HDFn, CCD-18co 

and HIC cells. 

• Investigate the effects of conditioned media on the structure of Caco-2 cells grown 

on Transwell inserts. 

• Investigate the effects of conditioned media on epithelial resistance and cell 

metabolic rate. 

• Understand the development of tight junctional complexes overtime both in 

control and paracrine fibroblast conditions.  

• Characterise key protein expression in Transwell CCD-18co conditioned media 

through immunofluorescence.  

• Understand the relative abundance of mRNA of key proteins in different media 

conditions 

• Provide evidence of a mechanism of action for the changes seen in Caco-2 

epithelial layers when co-cultured in conditioned media.  
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3.3 Methods 

3.3.1 Immunohistochemical characterisation of intermediate 

filament expression in CCD-18co, HDFn and HIC cells. 

HIC cells were isolated from Human Small intestinal biopsies as previously described 

(Section 2.14). CCD-18co, HDFn and HIC cells were seeded onto the base of 12-well 

plates at a density of 25,000 cells per well. Cells were cultured in standard DMEM 

composition for a period of 5 days before being fixed and stained as described previously 

(Section 2.4.3). Cells were stained for Vimentin, aSMA, Desmin, Actin, Elastin and alpha 

tubulin. Stained cells were imaged on a Zeiss 880 confocal microscope and images 

processed utilising Zen Blue software.  

 

3.3.2 Characterisation of Caco-2 and HT29-MTX in pre and 

post confluency states through immunohistochemistry. 

Caco-2 and HT29-MTX were seeded on the base of 24-well cell culture plates at a density 

of 12,500 cells per well and cultured in a standard DMEM composition for a period of 5 

days for pre-confluency samples and 10 days for post-confluency samples. Samples were 

fixed as described previously (Section 2.4.3) and processed using the standard 

immunostaining protocol (Section 2.4.1). cells were stained for Pan-cytokeratin, 

Occludin, MDR1, MRP2, Actin, vimentin and E-cadherin. After staining samples were 

all imaged on a Zeiss 880 confocal microscope and images processed utilising Zen Blue 

software.  

 

3.3.3 Co-culture model formation 

Caco-2 Transwell models were formed as described in Section 2.12. Briefly, 80% 

confluent flasks of Caco-2 cells were passaged and counted with a haemocytometer. 

Cellular viability was assessed with Trypan blue. 250,000 Caco-2 cells were diluted in 

500μl of pre-warmed DMEM before addition to each Snapwell insert. Caco-2 cells were 

allowed to attached overnight before addition of conditioned media.  
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Conditioned media was created as previously described (Section 2.12) with media 

changed ever two days for a minimum of 21 days total culture time. TEER measurements 

were taken every 7 days as described previously (Section 2.16).  

 

After 21 days models were processed for histological characterisation by both 4% PFA 

fixation for paraffin embedding (Section 2.3.1) and methanol: Acetone fixed for OCT 

embedding (Section 2.3.2). 

 

3.3.4 Trans-Epithelial Electrical Resistance (TEER) 

measurement of epithelial layers 

Cell cultures were removed from the incubators and media changed as per normal 

procedure using 37oC prewarmed 10% FBS containing complete medium. Cell cultures 

were returned to the incubator and allowed to equilibrate for at least 30 minutes prior to 

TEER measurement. Measurements of Transwell models were done using the EVOM2 

Voltohmeter with STX2 Chopstick probes. Chopsticks were completely submerged in 

media and allow 5-10 seconds to equilibrate before a measurement was taken. Raw TEER 

measurements were normalised to cell culture area utilising the following equation. 

 

RTISSUE (Ω) = RRAW – RBLANK 

RTISSUE (Ω) α 1/MAREA (cm2) 

TEERMODEL = RTISSUE (Ω) x MAREA 

[1] TEER measurement techniques for in vitro barrier model systems 

 

3.3.5 MTT assay for the assessment of metabolic function 

Cell layers to be assessed by MTT assay were first washed in sterile PBS twice to remove 

all phenol containing medium and moved to a clean cell culture plate . Thiazolyl Blue 

Tetrazolium Bromide salt was dissolved at a concentration of 1mg/ml into sterile PBS 
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and allowed to reach 37oC in a thermostatically controlled water bath for at least 30 

minutes before use. 1ml of Thiazolyl Blue Tetrazolium Bromide solution was added to 

cell layers and incubated in the dark at 37oC in standard cell culture conditions for 1 hour.  

 

After 1-hour cell layers were washed twice in PBS to remove excess Thiazolyl Blue 

Tetrazolium Bromide solution. Cells were lysed and the developed dye was liberated in 

an appropriate amount of acidified isopropanol. Liberation volume was the same for all 

experiments where a direct comparison between conditions was made. Solution intensity 

was then quantified on a plate reader at 450nm. 

 

3.3.6 Assessment of conditioned media and KGF on the 

metabolic activity of Caco-2 epithelial cells.  

For conditioned media and KGF spiked media assays, Caco-2 cells were seeded into 12-

well plates at a density of 2.86x103 cells per cm2 (~10,000 cells/ well) and allowed to 

attach in complete Caco-2 DMEM culture media for a period of 2 days before the addition 

of conditioned/ spiked media. MTT assays were performed as described in section 3.2.5 

on wells every 48 hours to assess for changes in cellular metabolism up to a maximum of 

14 days. MTT values were normalised to the protein concentration of a sister well, set up 

at the same time as the analysis well and assessed through use of a Bradford assay 

(protocol as previously described in Section 2.10). 

 

3.3.7 Assessment of tight junction formation in conditioned 

media treated cellular layers through immunostaining of the 

tight junction protein Occludin.  

Control and conditioned media wells were set up at a density of 10,000 cells per well as 

previously described in 12-well plates (Section 3.2.6). Samples were fixed by Methanol: 

Acetone fixation (Section 2.3.2) every 2 days for a total of 10 days (5 samples). Occludin 

was stained utilising normal immunostaining techniques (Section 2.4.3) with Occludin 
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diluted at manufacturer recommended levels. Samples were imaged utilising a Zeiss 880 

confocal microscope and images were processed utilising Zen Blue software.  

 

3.2.8 Immunostaining of wholemount Transwell models 

Transwell models were set up as described in section 2.12 and cultured for a minimum of 

21 days. Transwell models were fixed and immunostained following the previously 

described protocol (Section 2.4.3) 

 

3.3.9 qPCR analysis of Transwell model lysates 

Transwell models were set up and cultured as previously described (Section 2.12) for a 

total of 7, 14 and 21 days to understand the development of Caco-2 Transwell layers over 

time in culture. Section 2.9 describes the basic protocol for the isolation of mRNA from 

cell and tissue samples. Specifically, Transwell Snapwell models were removed from 

culture and washed twice gently in room temperature PBS. Snapwell models were 

removed from the outer support and placed into clean 6 well plates. 500μl of ice cold RLT 

buffer was added to the apical side of the cells model. A pipette tip was used to scrape 

the surface of the Transwell to remove all of the cellular material. Scraped material was 

them placed into 500μl Eppendorf vials and placed on ice for further processing. The 

remaining protocol is identical as to what is described in Section 2.9. 

 

3.3.10 Aminopeptidase quantification of Transwell models 

compared to 3D cultures. 

Conditioned media, KGF spiked Snapwell Transwell models and 3D Alvetex models 

were created as specified in sections 2.12 and 2.15 respectively. Aminopeptidase activity 

quantification assay was performed as described in section 2.11. 
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3.3.11 Keratinocyte growth factor (KGF) conditioned media 

experiments in Snapwell format inserts. 

Snapwell Caco-2 models are set up as previously describes (Section 2.12) and allowed to 

grow under normal conditions for a period of 48 hours in order to allow for normal 

cellular attachment to the Snapwell surface. KGF (PeproTech) is reconstituted in sterile 

PBS and nominally stored at -20oC before use. KGF is spiked into freshly prepared, 

prewarmed complete DMEM medium at an experimental dependant concentration. 

Snapwell cultures are then grown normally up to a total culture time of 21-25 days with 

KFG spiked medium changed every 48 hours.  

 

Processing of Transwell Snapwell layers for histological structural analysis was done as 

described in sections 2.3.1 and 2.3.2 for paraffin and OCT embedding procedures 

respectively. Wholemount Immunostaining of KGF spiked samples was processed as 

previously described (Section 2.4.3) 

 

3.3.12 MTT assessment of KGF treated Caco-2 layers. 

Caco-2 layers were set up as described in Section 3.2.6. KGF treatment was started 48 

hours after initial seeding with variable concentration of KGF added to different cellular 

conditions. MTT assay assessment of metabolic activity of treated cell layers was 

achieved as previously described (Section 3.2.5). 

 

3.3.13 Assessment of tight junction formation in KGF treated 

cell layers through immunostaining of the tight junction 

protein Occludin. 

Control and KGF treated wells were set up at a density of 10,000 cells per well as 

previously described in 12-well plates (Section 3.2.6 and 3.2.7). Samples were fixed by 

Methanol: Acetone fixation (Section 2.3.2) every 2 days for a total of 10 days (5 samples). 
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Occludin was stained utilising normal immunostaining techniques (Section 2.4.3) with 

Occludin diluted at manufacturer recommended levels. Samples were imaged utilising a 

Zeiss 880 confocal microscope and images were processed utilising Zen Blue software.  

 

3.3.14 ELISA quantification of KGF abundance in conditioned 

media samples. 

CCD-18co, HDFn and HIC fibroblasts were seeded at a density of 50,000 cells per either 

6-well plate or 96-well (deep dish) format Alvetex Scaffold® insert. Cells were allowed 

to grow for a period of one week before the addition of Caco-2 conditioned media (As 

described previously) to “treated” wells or fresh DMEM to control wells. Media was 

changed every 2 days throughout the culture time. After a further 7 days of culture (14 

days culture total) 1.5 ml of fresh DMEM was added to all samples and cultured under 

normal conditions for 24 hours. After 24 hours 1 ml of media was removed from each 

condition and placed in a sterile deep dish plate following the preestablished assay plate 

map. Conditioned media samples were places at 2-8oC for no longer than one hour before 

being used in the ELISA assay.  

 

2D cell layers and 3D models were placed in RLT DNA/RNA lysis buffer (Qiagen). 3D 

models were fully lysed, with lysate stored at -80oC before analysis. 

 

ELISA kit for KGF quantification was purchased from R&D systems. The assay was run 

following the manufacturers guidelines.  

 

Briefly; 

Standards curve was created and 100μl Assay diluent added to each well of the plate. 

100μl of standard, sample or control was added to each well (200μl well volume total). 

Plate was incubated at room temperature for 3 hours. Plate was taped dry and washed 4 

times in assay wash buffer.n200μl of KGF conjugate was added to each well and 

incubated for a total of 1.75 hours. Repeat step 3. 200μl of substrate solution was added 

and incubated in the dark for 30 minutes. 50ul of stop solution was added and the plate 
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was gently mixed (100rpm rotating plate) for 5 minutes in the dark. Plate was read at 

450nm with 570nm correction. 

 

3.3.15 DNA concentration quantification for KGF ELISA 

normalisation 

DNA lysates stored at -80oC (Section 3.2.12) were thawed and vortexed 5 x 30 seconds 

to ensure complete cell lysis and DNA dissolution. 

 

DNA quantification was performed utilising a DNA quantitation kit (Sigma).  

Briefly: 

Contents were thawed and DNA standard was incubated at 50oC for 30 minutes. 100μg 

DNA stock was created in MG H2O.  2μg/ml bisBenzimide H 33258 solution was created 

in MG H2O and 190μl of solution added to each assay well of a flat bottom 96 well 

plate.10μl of standard, sample and blank was pipetted in to relative wells in duplicate. 

Plate was read at 360nm excitation and 460nm emission at room temperature.  

 

3.3.16 Transport assays utilising the Ussing chamber system 

for Transwell and Alvetex Lucifer Yellow permeability assays 

Transport studies were conducted utilising a standard Ussing chamber set up (WPI, UK) 

with the chamber insert determined by the model/ tissue being tested. The general 

protocol for the experiments follows routinely utilised procedures. Transport buffer 

consisted on Hanks buffered saline solutions, (HBSS) (Sigma , UK) pH 7.4 with 2mM 

supplementary glucose. Stock solutions of all drug compounds were dissolved in a 

substance specific vehicle, usually DMSO, Ethanol or dH2O, before being added to the 

HBSS.  

 

2D Transwell conditioned media models to be tested were carefully removed from 

culture, washed twice in PBS and added into the Ussing chamber system. A CHM5 

chamber from WPI was used for all Snapwell culture experiments.  
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3D models were all cultured in the 96 well format for Ussing chamber analysis (detailed 

further in chapter 7). Models were carefully snipped from the strip holder after washing 

before being added to the custom made Ussing chamber systems. A small amount of 

plastic supports were left attached to the model to allow for a snug fit within the chamber 

when the opposite ends are sandwiched together.  TEER measurements were taken both 

immediately before addition to the chamber and at the end of the experiment. 

  

15ml of 37oC prewarmed HBSS was carefully added to both the apical and basal sides of 

the chamber system simultaneously utilising 50ml syringes fitted with 2mm capillary 

tubing. Transport media was kept at 37oC throughout the experimental period through use 

of a circulating heated water jacket. Transport media was mixed and oxygenated utilising 

a bubble lift of 95% Oxygen and 5% CO2 (BOC, UK). Models were allowed to 

acclimatise to the assay system for a minimum of 30 minutes before t=0.  

 

Drug compounds were spiked into the Ussing chamber at T=0. Timepoints were taken 

every 30 or 60 minutes by removal and replacement of transport media directly from the 

test chamber, either the apical or basal side. Lucifer yellow was run alongside test 

compounds when pertinent as an additional measure of barrier integrity throughout the 

experimental procedure. Compound concentration within the transport medium was 

assessed through use of either the compounds fluorescent properties and a 

spectrophotometer or through detection with HPLC equipment. 

 

The apparent permeability (Papp) of the models was calculated utilising the following 

equation; 

𝑃𝑎𝑝𝑝 =  
𝑉𝑅 ∗  𝑑𝐶𝑅

𝑑𝑡 ∗ 𝐴 ∗ 𝐶𝐷0
 

 

Whereby VR is the volume of the receiver compartment dCR/dt is the change in the analyte 

concentration of the receiver compartment over time, A is the area of the transport 

interface and CD0 is the concentration of the donor compartment at time zero. Papp values 

show in this thesis are converted into reasonable number for comparison by amplifying 
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the Papp value by 1x106. This amplification step is not technically necessary but is 

standard procedure for the reporting of Papp values throughout the literature.  

 

3.3.17 qPCR analysis of conditioned media and KGF spiked 

Caco-2 2D layers. 

Caco-2 cells were passaged and counted utilising the normal protocol as described 

previously (Section 2.2.1). Cells were then seeded into T25 flasks at a density of 50,000 

cells per flask. n=1 of each condition was set up with replicates cultured at weekly 

intervals from a separate bank of parental Caco-2 cells. Cell layers were cultured for a 

period of 21 days to allow for full differentiation prior to lysing and analysis.  Cells were 

lysed and processed utilising the standard Qiagen miniRNA kit, as described previously 

(Sections 2.9). Analysis was achieved with a SYBR based detection system, as described 

previously (Section 2.9.4) along with complementary primers to sequences of interest.  

 

Primer sequences used are detailed below  

 

Gene/ 

Protein of 

interest 

Sequence M

W 

Secondary 

Structure 

Primer 

Dimer 

Melting 

temperatur

e 

GC 

content 

(%) 

MDR1/ABCB

1 (S) 

GCCAAAGCCAAAAT

ATCAGC 

608

8.00 

N N 63.3 45.00 

MDR1/ABCB

1 (A/S) 

TTCCAATGTGTTCGG

CAT 

548

0.54 

V.W N 62.7 44.44 

MRP1/ABCC

1 (S) 

GGGCTGCGGAAAGT

CGT 

529

1.44 

N N 66.6 64.71 

MRP1/ABCC

1 (A/S) 

AGCCCTTGATAGCCA

CGTG 

578

8.75 

N N 65.2 57.89 

MRP2/ABCC

2 (S) 

TGAGCAAGTTTGAAA

CGCACAT 

676

7.42 

V.W N 66.6 40.91 

MRP2/ABCC

2 (A/S) 

AGCTCTTCTCCTGCC

GTCTCT 

627

5.00 

N N 65.8 57.14 

BCRP/ABCG

2 (S) 

TGCAACATGTACTGG

CGAAGA 

647

9.23 

N N 66.6 47.62 

BCRP/ABCG

2 (AS) 

TCTTCCACAAGCCCC

AGG 

540

4.50 

V.W N 66.4 61.11 

Villin (S) AGGATGATGTGTTCC

TACTAGATGTCTG 

864

9.6 

M N 65.3 42.86 

Villin (AS) GTTGCTGCGGCCTTC

TTC 

544

8.5 

N N 66.1 61.11 

Occludin (S) CTCCCATCCGAGTTT

CAGGT 

604

4 

W N 65.3 55 

Occludin 

(AS) 

GGAGTGTAGGTGTGG

TGTGT 

631

5 

N N 60 55 
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GAPDH (S) ATGGGGAAGTGAAG

GTCGGAG 

664

0 

N N 61.52 57.14 

GAPDH (AS) TCGCCCTTGATTTTG

GAGG 

582

6 

W N 57.74 52.63 
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3.4 Results  

3.4.1 Morphological characterisation of stromal and epithelial 

cell lines. 

All cell lines utilised within this study were first cultured in conventional 2D cell culture 

techniques on cell treated culture plates and flasks. Figure 3.1 & 3.2 shows the 

morphological characteristics of the cell lines utilised within this study, The commercially 

available stromal cell lines namely the CCD-18co and HDFn (Figure 3.1 A-B, E-F) lines 

exhibit a stellate morphology without defined cellular junctions, classical of fibroblast 

and myofibroblast phenotypes. Cellular size at low passage is similar between the two 

cell lines with similar growth patterns in conventional 2D culture. The HIC (Human 

intestinal cells) cells (Figure 3.1 C-D) utilised here were isolated from human small 

intestine tissue explants (Biopta, Glasgow, UK as detailed in section 2.14). These cells 

have the same structural similarities to the commercially available cells with a noticeable 

stellate morphology and lack of cellular junctions. 

Contrastingly, the epithelial cell lines utilised here, Caco-2 and HT29-MTX (Figure 3.2 

A-D) exhibit a flattened continuous monolayer of cells with clear cellular junctions and 

a “cobblestone” morphology of growth. When cultured at low confluency these cells grow 

in colonies, staying in contact with each other rather than growing independently as seen 

in fibroblast cell populations. The HT29-MTX cells grow similarly to Caco-2 cells in 

culture with close cellular positioning, forming confluent monolayers of cobblestone 

patterned cells. Structurally, when grown in 2D HT29-MTX cells are smaller than Caco-

2 cells and form more densely packed formations. 

 

3.4.2 Immunostaining characterisation of myofibroblasts for 

characteristic cytoskeletal markers.  

CCD-18co, HDFn and HIC cells were all shown to be positive for the type II intermediate 

filament protein Vimentin (Figure 3.3 A, G & M). This cytoskeletal protein is found 

throughout all mesenchymal cells and as such is used as a positive control and as a 
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determiner of cellular structure. All fibroblasts cell types show similar stellate formations 

and strong staining throughout the cellular cytoplasm. Alpha smooth muscle actin 

(αSMA) is used as a designator of myofibroblast morphology (Figure 3.3 B, H & N). As 

with Vimentin, CCD-18co, HDFn and HIC cells all were shown to positively express this 

protein. The intestinal cell lines CCD-18co and HIC both appear to express α-SMA at a 

significantly higher rate than HDFn cells which stained with a much lesser intensity. 

Desmin is a muscle specific type II intermediate protein, of which none of the cell lines 

tested were positive for this muscle lineage marker (Figure 3.3 C, I & O). Additionally, 

all cells were shown to be weakly positive for actin, a key component of the cellular 

cytoskeleton (Figure 3.3 D, J & P).  No significant elastin staining was seen in any of the 

cell lines tested (Figure 3.3 E, K & Q). All cell lines were positively stained for 

microtubule protein Tubulin (Figure 3.3 F, L & R). HDFn cells were stained 

homogenously with strong expression seen throughout all of the cells. CCD-18co and 

HIC cells were all positively stained for tubulin however staining was seen to be less 

homogenous. All staining was done in the presence of a negative control (not shown)
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Figure 3.1: Fibroblasts from differing origins are indistinguishable morphologically by phase contrast microscopy – Representative phase 

contrast images of stromal cells utilised within this thesis. Stromal lines, CCD-18co, colonic fibroblast, Primary human small intestinal cells (HIC), 

HDFn, Human dermal fibroblasts. All cells exhibit a classical fibroblast morphology under phase contrast microscopy with a large stellate phenotype.  

Images are representative of repeated observations. Scale 25μm. 
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Figure 3.2: Epithelial cells grow in densely packed “cobble stone” colony formations – 

Representative phase contrast imaged of epithelial cells utilised within this thesis. Epithelial 

lines, Caco-2, colonic epithelial, HT29-MTX, a colonic HT29 cell lineage treated with 

methotrexate. Panel D is a magnified image of panel C. Panels A and B are unrelated. Images 

are representative of repeated observations.  Scale 100μm and 25μm respectively.  
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Figure 3.3: Lineage specific intermediate filament expression analysis in 2D shows similar expression patterns between the three cell lineages.  – A-F) CCD-

18co colonic carcinoma cells, G-L) HDFn dermal skin fibroblasts, M-R) HIC primary small intestinal cell. Blue staining represents cellular nuclei (DAPI), Green colour 

represents positive staining. All cells are positive for the general fibroblast lineage markers such a Vimentin, Alpha-SMA and Pan-Tubulin. Desmin is a stain specific 

to muscle lineages, as such no staining expression is expected. All staining was done alongside a negative control (See appendix). Images are representative of N=3 

staining Scale: 200μm 
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3.4.3 Analysis of the changing characteristics of Caco-2 cells in 

pre and post confluency states. 

The Caco-2 cell lines was characterised by immunofluorescence for key proteins of 

interest in both pre-confluency and post confluency 2D cultured samples. 

 

Pan-cytokeratin (Figure 3.4 A&E) is an intermediate filament protein found specifically 

within cells of epithelial origin. Pan-cytokeratin was used as both a marker of cellular 

structure and as a positive control.  Caco-2 cells were shown to be strongly positive of 

pan-cytokeratin in both pre and post-confluency states with no obvious difference in 

staining intensity noticed between samples.  Occludin (Figure 3.4 B & F) was used as a 

marker of tight junction expression within the cell populations. Caco-2 cells were shown 

to be weakly positive for Occludin when in pre-confluency and strongly positive when 

post confluence.  MRP2 and MDR1 (Figure 3.4 C&G, D & H respectively) are both ATP-

binding cassette proteins belonging to sub-families C and B respectively. These proteins 

are expressed at a low rate when cells are pre-confluent with increasing expression as the 

cells differentiate when they reach confluency.  Low levels of Actin (Figure 3.5 A, D) 

expression was seen in both pre and post-confluency Caco-2 samples.  Vimentin (Figure 

3.5 B, E) was used as the negative control to show that cells were not of mesenchymal 

origin.  Both pre and post-confluency states were negative for Vimentin.  Finally, E-

cadherin (Figure 3.5 C, F) was used as a marker of Adherens junctions. E-cadherin was 

shown to be expressed similarly to Occludin whereby low levels of  non- homogenous E-

cadherin staining was observed in the pre-confluency state whereby when post-confluent 

the cells express E-cadherin significantly more strongly throughout the sample. 
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Figure 3.4: Post-confluent Caco-2 cells express heightened levels of junctional marker, Occludin and surface efflux protein, MDR1 – Characterisation of Pre-

confluency Caco-2 stained images, A) Cyto-Keratin, B) Occludin, C) MRP2, D) MDR1. Post-confluency Caco-2 stained images E) Cytokeratin, F) Occludin, G) MRP2, 

H) MDR1. Post confluency cells express all markers at significant levels. MDR1 specifically is an efflux transporter protein important in the efflux of drug compounds 

from the cell back into the intestinal lumen. MDR1 is known to be over expressed in Caco-2 cells All staining was done alongside a negative control (See appendix). 

Images are representative of N=3 staining Scale: 200μm 

MDR1 Cyto-keratin MRP2 Occludin 

P
re

-C
o
n

fl
u

en
cy

 
P

o
st

-C
o
n

fl
u

en
cy

 

A B C D 

E F G H 



Chapter 3 – Development of Transwell Co-culture models of the intestinal epithelium 
 

132 
 

 

 

 

 

 

 

 

 

Vimentin E-cadherin Actin 

P
re

-C
o
n

fl
u

en
cy

 
P

o
st

-C
o

n
fl

u
en

cy
 

A B C 

D E F 

Figure 3.5: Caco-2 cells are negative for Vimentin and E-cadherin staining remains proportional in pre and post-confluency states – 

Characterisation of Pre-confluency Caco-2 stained images, A) Actin, B) Vimentin, C) E-cadherin. Post-confluency Caco-2 stained images D) Actin, 

E) Vimentin, F) E-cadherin. Lack of Vimentin expression shows these cells are not of mesenchymal origin All staining was done alongside a negative 

control (See appendix). Images are representative of N=3 staining Scale: 200μm 

 Scale bar: 200μm 
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3.4.4 Understanding the effects of confluency on the 

differentiation of HT29-MTX cells in 2D culture. 

HT29-MTX cells were cultured on standard tissue plastic and immunostained as 

described previously (Section 2.4.3). HT29-MTX cells were stained for key proteins of 

interest in both pre and post confluency states.  

 

Cyto-keratin (Figure 3.6  A, E) was expressed throughout both pre and post-confluency 

states as a marker of epithelial intermediate filaments. Occludin (Figure 3.6 B, F) shows 

a very low expression rate in the pre-confluency state with very little non-homogenous 

positive staining seen in the sample. The post-confluency state shows a significantly 

higher rate of staining throughout the samples however expression of Occludin was non-

homogenous between the cells.  HT29-MTX was negative for MRP2 (Figure 3.6 C, G) 

with no positive staining seen in either the pre or post-confluency samples. MDR1 (Figure 

3.6 D, H) staining was seen at a high rate in both pre and post-confluency states with no 

noticeable difference in expression in confluent samples. This is out of character for 

HT29-MTX cells as they are generally through to lack most enterocyte properties. 

Additionally, the staining seen in these samples compared to Caco-2 (Figure 3.4) is far 

less defined. It was hypothesised that positive staining seen here is most probably a 

consequence of membrane bound mucins sequestering the primary antibody. Actin 

(Figure 3.7 A, C) was not expressed at high rates in either of the samples. Vimentin 

(Figure 3.7 B, D) was not expressed in the pre-confluency state but some weak staining 

was seen when the cells were post-confluence. E-cadherin staining (Figure 3.7 C, F) was 

seen in both pre and post confluency states. Strong staining indicates continuous 

expression of adherens junctions between the cells, a hall mark of differentiated epithelial 

cells. 
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Figure 3.6: Immunofluorescent characterisation of 2D epithelial cells Pre and Post-confluency shows increasing differentiation expression with time in culture – 

Characterisation of Pre-confluency HT29-MTX stained images, A) Cyto-Keratin, B) Occludin, C) MRP2, D) MDR1. Post-confluency HT29-MTX stained images E) 

Cytokeratin, F) Occludin, G) MRP2, H) MDR1. Interestingly, HT29-MTX cells appear to also highly express MDR1. This is unusual due to HT29-MTX supposed function as 

a goblet cell lineage. However, due to HT29-MTX’s epithelial origins some left over epithelial characteristics could be possible All staining was done alongside a negative 

control (See appendix). Images are representative of N=3 staining Scale: 200μm 
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Figure 3.7: Immunofluorescent characterisation of 2D epithelial cells Pre and Post-confluency – Characterisation of Pre-

confluency HT29-MTX stained images, A) Actin, B) Vimentin, C) E-cadherin. Post-confluency HT29-MTX stained images 

D) Actin, E) Vimentin, F) E-cadherin. All staining was done alongside a negative control (See appendix). Images are 

representative of N=3 staining Scale: 200μm 

Scale bar: 200μm 
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 A) Control B) CCD-18co 

C) HDFn D) HIC 

Figure 3.8: H&E stained comparison of Caco-2 conditioned media co-culture models shows consistent monolayer formation in each of the model conditions. Cells 

are clearly able to differentiate and polarise in conditioned media at differential rates than in Control conditions – Snapwell Transwell samples were fixed in 4% PFA 

and embedded into wax before being sectioned at 7μm and stained with Haematoxylin and Eosin to differentiate between nuclei and cytoplasm. A) Caco-2 control, B) Caco-

2/ CCD-18co, C) Caco-2/ HDFn, D) Caco-2/ HIC. Addition of conditioned media to the Caco-2 epithelial equivalents appears to induce significant changes in cellular 

morphology when compared to control layers. HIC conditioned media specifically shows a highly regular structure with basally located nuclei, suggesting enhanced cellular 

differentiation. E) Shows a schematic of the process for the creation and culture of conditioned media Transwell models. Media is conditioned in 2D flasks on top of fibroblast 

cells for a period of 24 hours before being filtered and mixed in a 50:50 ratio with fresh culture medium before application to Transwell models. Images are representative 

of a minimum of 3 repeats. Scale = 100μm 
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3.4.5 Paracrine conditioned media has differential effects on 

epithelium development dependant on the origin of the 

fibroblasts. 

Caco-2 cells were cultured on Snapwell Transwell for a period of 21 days in the presence 

of conditioned media from the CCD-18co, HDFn and HIC fibroblast cell lines. 

Histologically it could be observed that samples were homogenous along their entire 

length. Caco-2 control (Figure 3.8 A) samples showed a polarised yet flattened 

morphology similar to that seen in cells grown in similar 2D culture systems.  

 

CCD-18co conditioned media (Figure 3.8 B) resulted in a slightly improved structural 

morphology over Caco-2 controls with increased cell height and basally located nuclei. 

Cells under high magnification could be seen to develop microvilli structures indicating 

cellular differentiation within the models. HDFn conditioned media (Figure 3.8 C) 

showed a drastically different morphology than that seen in the control samples. Cells 

were significantly taller with some cellular multilayering across the samples. HIC 

conditioned media (Figure 3.8 D) models were similar in histology to those gained in 

CCD-18co conditioned media experiments with a heightened cellular morphology and 

basally located nuclei with continuous brush border development apparent when viewed 

under light microscopy.  
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Figure 3.9: 7, 14 & 21 day TEER measurements of Caco-2 cells on Transwell Snapwell in control 

and conditioned media experiments shows that addition of conditioned media to the Caco-2 cellular 

layers results in a variable decrease in TEER values compared to control layers – Caco-2 cells were 

grown on Snapwell Transwell inserts and were co-cultured in conditioned media from CCD-18co, HIC or 

HDFn cells. A) 7 Day, B) 14 Day, C) 21 Day comparative TEER measurement between culture conditions. 

D) 21 day line graph showing the development of the Caco-2 layers over the course of the experiment. All 

cellular layers showed increased TEER values over time with the highest TEER values per model being 

at the 21 day time point. n=3-8 N=3. Scale bars represent +SEM. 

A) B) 

C) D) 

 

7 Days 14 Days 21 Days 

Caco-2 vs CCD-18co *** Caco-2 vs CCD-18co *** Caco-2 vs CCD-18co *** 

Caco-2 vs HIC ns Caco-2 vs HIC * Caco-2 vs HIC ** 

Caco-2 vs HDFn *** Caco-2 vs HDFn *** Caco-2 vs HDFn *** 

CCD-18co vs HIC ns CCD-18co vs HIC ** CCD-18co vs HIC *** 

CCD-18co vs HDFn ns CCD-18co vs HDFn ns CCD-18co vs HDFn ns 

HIC vs HDFn ns HIC vs HDFn ** HIC vs HDFn *** 

Table 3.1 Statistical analysis of Transwell model TEER measurements: One way ANOVA with 

Tukeys post-test analysis was used to calculate significacy between v n=3, N=3 
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3.4.6 Trans-epithelial resistance is shown to decrease in the 

presence of conditioned media from all origins with a variable 

degree of response. 

The effects of paracrine media culture on the membrane integrity of Caco-2 monolayers 

was assessed utilising the commonly used TEER measurement system. All tested cultures 

demonstrate an increase in epithelial resistance values over the course of the 21 day 

culture period. Control models show the sharpest increases between Day 0 and 7 up to a 

resistance of approximately 1000-1500 ohms (Figure 3.9 D). This initial sharp rise in 

resistance measurements is followed by an increasingly slower rise in TEER values up to 

day 21 when resistance values are shown to have plateaued, with maximum TEER values 

seen of up to 2000 Ohms. 

 

In contrast to this in all instances the co-culture of Caco-2 cells with the paracrine media 

of CCD-18co, HDFn and HIC fibroblasts results in the decrease in the TEER values of 

the epithelial monolayer compared to control epithelial resistance values. HIC co-culture 

epithelial models show the smallest, yet still significant, attenuation of TEER values 

compared to control models. In contrast to control samples which showed an initial rapid 

increase in TEER values, HIC conditioned media treated Caco-2 cells show a shallow, 

almost linear increase in TEER values between the 0 and 14 day timepoints.  Around day 

14 a small attenuation in the gradient of the TEER curve indicated the beginnings of a 

plateau up to day 21. Statistical analysis of the Caco-2/ HIC cultures shows that the lines 

are non-significantly different  (Figure 3.9 A,B) until the 14 days timepoint (Figure 3.9 

C) whereby a significant decrease in the maximum TEER value of the epithelial 

membrane is seen with a maximum value at 21 days of around 1700 ohms.  

 

CCD-18co and HDFn co-culture epithelial layers are almost indistinguishable  from one 

another over the course of the 21 day co-culture (Figure 3.9 D). Statistically, CCD-18co 

and HDFn co-cultures are significantly lower than the control samples from the day 7 

timepoint onwards until the terminal 21 day values of around 500 Ohms. Similarly to HIC 

co-culture layers, HDFn cells show an almost constant linear increase in TEER values up 

to 21 days. CCD-18co co-cultures show an initial sharp increase in TEER between the 0 
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and 7 day timepoints. This increase is shown to plateau after day 7 with a shallower linear 

increase up to day 21.   

 

3.4.7 MTT metabolic measurements of Caco-2 2D paracrine 

co-culture models shows CCD-18co conditioned media 

increases the metabolic activity of Caco-2 cells at later 

timepoints be delaying lag phase onset. 

Due to the significant changes seen in the epithelial TEER values when co-cultured with 

fibroblast conditioned media the logical next question was to assess whether these 

changes in barrier resistance were due to physiological changes in membrane phenotype 

rather than due to induced necrosis or apoptosis.  

 

Figure 3.10 A-D shows the comparative MTT values of 2D Caco-2 cells grown in control 

and conditioned media environments. HIC and HDFn (Figure 3.10 B,C) MTT curves 

follow the same approximate trend with an initial lag phase followed by an exponential 

phase of growth , ending with a plateau of MTT values by day 10. Contrastingly, control 

samples reach a maximal MTT value at day 8 which decreases at day 10. In HDFn and 

HIC instances there is no significant differences seen in MTT value at the day 10 

timepoint when compared to the control samples (Table 3.2).  CCD-18co conditioned 

media (Figure 3.10 A) samples show a similar increase in MTT values as the control up 

until day 6 whereby the rate of increase is lower than that of the control until day 8. 

Whereas, by day 10 the control, HDFn and HIC samples have reached plateau the CCD-

18co samples show a linear rate of growth past the day 10 timepoint.
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Figure 3.10: The effects of fibroblast conditioned media on the MTT values of 2D cultured Caco-2 cells shows that CCD-18co 

paracrine influences have the most effect on Caco-2 cells with a continuation of growth up to 10 days in culture – Cell viability was 

assessed by MTT assay of 2D cells at set time points. All cell lines were shown to have effects on the metabolic activity of the Caco-2 cells, 

shifting the classical growth curve to the right, delaying the onset of the lag and death phases. CCD-18co conditioned media appears to delay 

the onset of the lag phase significantly more in comparison to other conditions.  Data is from at least 3 different experiments,  n=3. N=3 Scale 

bars represent ±SEM. 

A) B) 

C) D) 
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Day Con vs 

CCD-18co 

Con vs 

HDFn 

Con vs 

HIC 

4 ns ns ns 

6 ns * ns 

8 * ns ns 

10 ** ns ns 

A) Day 4 B) Day 6 C) Day 8 D) Day 10 

Figure 3.11: Time-point comparison of all conditioned media conditions – Control and 

conditioned media Caco-2 cells were assessed for metabolic activity by MTT assay. A) Day 4, 

B ) Day 6, C) Day 8, D) Day 10. Values represent means + SEM. All experiments n=3 N=3.  

 

Table 3.2: Significances of conditioned media MTT data – 

All comparative significances were tested by one way 

ANOVA with Tukeys post-test analysis of variance ***=p 

<0.0005, **=p<0.005, *=p<0.05 
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3.4.8 Understanding the differential development of tight 

junction formation in Caco-2 cells treated with fibroblast 

conditioned media.  

The formation of tight junctions in Caco-2 monolayers was assessed through the staining 

of Occludin, a tight junctional component protein found in the membrane and inter-

membranal space between epithelial cells.  

 

Figure 3.12 shows that regardless of cellular confluency Occludin was expressed as early 

as day 2, weakly in cells with no other cellular contacts and more strongly in cells 

localised into small groups or colonies in all conditions tested. Initially, the staining 

appears to be patchy with non-continuous staining along the apical surface of the cellular 

membranes when cells are adjacent to the membranes of other cells. Furthermore, earlier 

timepoint samples appear to have significantly more intracellular/ cytoplasmic staining 

of the occludin than in later samples where the occludin appears to be more localised to 

the membranes. The cells in the immunostained samples appear to be larger in apparent 

size when at lower confluency and pack together more tightly as the cells mature and 

begin to differentiate. Immunologically there are no significant differences seen in the 

Occludin staining either in localisation or strength between the different paracrine models 

up to day 6. After day 6 the intensity of the stained samples seemingly increases in the 

conditioned media examples compared to the control although this observation was not 

quantified. Additionally, control cells show a homogenous cell size phenotype up to day 

8 in culture with a classic cobblestone pattern seen throughout the samples. Conditioned 

media stained samples appear to be more heterogenous in morphology earlier in the 

culture period at around day 6 with some cells significantly bigger in size than other.  
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Figure 3.12: Tight junction expression between conditioned media conditions shows increased cellular 

packing in conditioned media samples – Control and conditioned media treated Caco-2 cells were cultured 

on 2D plastic for a varying number of days before fixation and staining for the tight junction protein Occludin. 

Staining intensity appears to increase in conditioned media models at day 10, especially in HIC models which 

appear to be more consistently, strongly stained with more cells packed into the same area. Images are 

representative of N=3. Scale = 200μm 
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3.4.9 Immunostaining of cells grown in Snapwell Transwell and 

CCD-18co effects on functional differentiation of Caco-2 cells 

with regards to P-gp expression and brush border formation. 

Figure 3.13 A & E, shows the staining of E-cadherin of Caco-2 cells grown on the 

permeable membrane Snapwell Transwell. Positive E-cadherin staining is localised to the 

membranes of the cells with homogeneity throughout the samples (Figure 3.13 A). The 

transverse sectioned sections (Figure 3.13 E) of E-cadherin shows primary baso and 

lateral staining localisation. Contrastingly, Figure 3.14 (A & E) shows the comparative 

E-cadherin staining of Caco-2 Snapwell Transwell cultures grown in the paracrine CCD-

18co conditioned media. Staining for E-cadherins shows significant changes in both 

staining intensity and in cellular structure with a far more heterogenous cell morphology 

throughout the samples. Transverse sections of these samples (Figure 3.14 E) shows 

significantly less cellular organisation with positive staining seen apically in addition to 

laterally and basally.  

 

Similarly, Occludin staining of control (Figure 3.13 B & F) and CCD-18co conditioned 

media (3.14 B & F) samples shows much the same pattern with less structural 

homogeneity seen in the conditioned media samples. 

 

P-gp/ MDR1 staining of Control samples (3.13 C & G) shows a heterogenic pattern of 

expression with areas of high intensity and low intensity staining observed. Transverse 

sections of high density areas of staining (Figure 3.13 G) shows localisation of primary 

staining to the apical boundary of the cells. P-gp/MDR1 staining of CCD-18co 

conditioned media treated samples (Figure 3.14 C & G) shows significantly less positive 

staining of P-gp throughout the sample. Transverse sections of high intensity stained areas 

(Figure 3.14 G) shows a similar pattern to that seen in other stained targets with 

significantly different structural organisation of the positive staining. However, the CCD-

18co conditioned samples still maintain the strong apical expression expected of this 

protein.  
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Control samples stained for actin expression (Figure 3.13 D & H) show clear positive 

staining throughout the surface of the sample (Figure 3.13 D) with clear microvilli 

staining seen under high magnification. Figure 3.13 H shows the transverse section of the 

control sample showing staining primarily located to the actin rich brush border layer and 

to the junctional complexes in the lateral membranes of the cells. Similarly, CCD-18co 

conditioned media treated samples show consistent staining across the entire surface layer 

of the models (Figure 3.14 D). Transverse sections (3.14, H) of the models show strong 

positive staining at the actin rich brush border layer but significantly less staining across 

the lateral membrane when compared to the control samples.  
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A) B) C) D) 

E) F) G) H) 

A) B) C) D) 

Figure 3.13: Caco-2 control models appear to be well differentiated through expression of key proteins for model differentiation and function – 

Representative stained images of Methanol: Acetone fixed Caco-2 cells for A&E) E-cadherin, B&F) Occludin, C&G) P-gp, D&H) Actin. Scale = 50μm for 

wholemount and sectioned images. Images are representative of N=3. 
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Figure 3.14: Caco-2 cells grown in CCD-18co conditioned paracrine media shows differences in the cellular organisation as analysed through expression 

of key proteins for model function – Representative stained images of Methanol:Acetone fixed Caco-2 cells co-cultured with CCD-18co conditioned media for 

A&E ) E-cadherin, B&F) Occludin, C&G) P-gp, D&H) Actin. Both A and B show junctional proteins outlining the periphery of cells. Compared to control layers 

significant differences can be seen in cellular organisation with less homogenous structures seen in conditioned media treated epithelial constructs. Scale = 50μm 

for wholemount and sectioned images. Images are representative of N=3. 

 

 

A) B) C) D) 

E) F) G) H) 



Chapter 3 – Development of Transwell Co-culture models of the intestinal epithelium 

 

149 
 

3.4.10 qPCR analysis of the development of Caco-2 layers in 

relation to key targets of function and the effects of CCD-18co 

paracrine media on Caco-2 layer development.  

Figure 3.15 shows the qPCR results of Caco-2 monolayers cultured on Snapwell 

Transwell taken at 7 ,14 and 21 day time intervals with and without the addition of CCD-

18co conditioned media. Figure 3.15 A shows the results for the expression of Villin 

mRNA. Villin mRNA expression is shown to slowly increase in control samples between 

7 and 14 days in culture before a rapid increase in mRNA levels up to 21 days. Addition 

of CCD-18co conditioned media to the Transwell layers results in a gradual increase in 

levels over the full 21 day period, with terminal levels in CCD-18co conditioned media 

samples approximately 50% that of the control. Significance values for comparative 

Villin expression reflect these observation with significances in control samples only 

between the 21 day timepoints. No significant change is seen between 7 and 21 day 

samples treated with CCD-18co conditioned media although as mentioned an upwards 

trend can be observed. Interestingly, 21 day timepoints of CCD-18co treated Caco-2 

layers are not significantly different from 7 day non treated controls when comparing 

relative expression of Villin, OATP-B or  BCRP. Although, in each case the 21 day 

timepoint of CCD-18co treated layers tends to be higher than 7 day controls.  

 

Occludin, OATP-B and MRP2 levels (Figure 3.15 B, C & Figure 3.16 A respectively) 

shows a similar expression profile to that of Villin. CCD-18co conditioned media results 

in a decrease in mRNA expression of these genes at the 21 day period timepoint when 

compared to the control 21 day samples. With levels dropping to between 50 and 60% 

that of the control. Whilst a downwards trend in relative expression rates of samples 

cultured in CCD-18co conditioned media can be observed in each of the three samples 

mentioned above only OATP-B and MRP2 21 day +/- CCD-18co comparisons results in 

a significant decrease in relative expression. No significant differences can be seen when 

comparing Control and CCD-18co treated epithelial layers at 7 and 14 day timepoints. 

 

Figure 3.16 B shows the expression levels of BCRP. Control layers show a steady 

increase in mRNA levels until the 14 day timepoint whereby the levels plateau and remain 
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at the same approximate level until 21 days. Conversely, CCD-18co conditioned media 

Caco-2 layers show an initial rapid rise in mRNA levels up until 7 days at which point 

levels rise steadily until the 21 day experimental endpoint. The mRNA levels of the 

conditioned media models 7 day time point is approximately equal to that of the 21 day 

matured non-treated Caco-2 layers with BCRP mRNA expression of the 21 day timepoint 

being approximately twice that of the control. Interestingly however, no significant 

differences can be seen between any combination of samples in this experiment. 

Although, as before, general increasing trends over time can be observed.  

  

Finally, MDR1 (Figure 3.16 C) shows a similar pattern to that of BCRP but to a lesser 

extent with conditioned media Caco-2 models being approximately 1.5x the levels of 

control layers. In the case of MDR1 however increases mediated by CCD-18co paracrine 

media culture can be shown to be significantly different from control Caco-2 epithelial 

model layers. 
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 7D + 14D - 14D + 21D - 21D + 

7D -  ns ns *** ns 

7D +      

14D -   ns *** *** 

14D +    *** ns 

21D -     * 

 

 7D + 14D - 14D + 21D - 21D + 

7D -  ns ns *** * 

7D +      

14D -   ns ** ns 

14D +    *** * 

21D -     ns 

 

 7D + 14D - 14D + 21D - 21D + 

7D -  ns ns *** ns 

7D +      

14D -   ns ** ns 

14D +    *** ns 
21D -     * 

 

A) Villin B) Occludin C) OATP-B 

Figure 3.15: Transwell time course models PCR for Villin, Occludin and OATP-B - Graph shows the relative expression of 3 different markers of cellular 

differentiation at different timepoints of monolayer maturation and in the presence of CCD-18co compared to the 21D Caco-2 standard. A) Villin, B) Occludin, C) OATP-

B. Relative expression rates of Villin and OATP-B are significantly lower in CCD-18co treated epithelial layers at 21 days than in controls. Occludin levels do not 

significantly change over the 21 day culture period suggesting something else is responsible for the significant changes in TEER observed in conditioned media cultures 

n=3 N=3 in all cases except 7D + where n=2 N=2. Significancy calculations are omitted for N=2 data points. Scale bars represent +SEM. 

 

Table 3.3: Significances for comparative Villin 

expression in time course samples – Comparative 

sample analysis was achieved utilising One way 

ANOVA with Tukeys post-test analysis *** = 

P<0.0001, ** = P<0.001, * = P< 0.01 

 

Table 3.4: Significances for comparative Occludin 

expression in time course samples – Comparative 

sample analysis was achieved utilising One way 

ANOVA with Tukeys post-test analysis *** = 

P<0.0001, ** = P<0.001, * = P< 0.01 

 

Table 3.5: Significances for comparative OATP-B 

expression in time course samples – Comparative 

sample analysis was achieved utilising One way 

ANOVA with Tukeys post-test analysis *** = 

P<0.0001, ** = P<0.001, * = P< 0.01 
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 7D + 14D - 14D + 21D - 21D + 

7D -  ns ns *** * 

7D +      

14D -   ns *** ns 

14D +    ** ns 

21D -     * 

 

 7D + 14D - 14D + 21D - 21D + 

7D -  ns ns ns ns 

7D +      

14D -   ns ns ns 

14D +    ns ns 

21D -     ns 

 

 7D + 14D - 14D + 21D - 21D + 

7D -  ns ** ** ** 

7D +      

14D -   * *** ** 

14D +    ns ns 

21D -     * 

 

A) MRP2 B) BCRP C) MDR1 

Figure 3.16: Transwell time course models qPCR of MRP2, BCRP and MDR1- Graph shows the relative expression of 3 different markers of cellular differentiation 

at different timepoints of monolayer maturation and in the presence of CCD-18co compared to the 21D Caco-2 standard. A) MRP2, B) BCRP, C) MDR1. MDR1 is the 

only marker to show significant differences over the control with a significant increase in relative MRNA abundance. n=3, N=3 in all cases except 7D + where n=2, N=2. 

Significancy calculations are omitted for N=2 data points. Scale bars represent +SEM. 

 

Table 3.6: Significances for comparative MRP2 

expression in time course samples – Comparative 

sample analysis was achieved utilising One way 

ANOVA with Tukeys post-test analysis. *** = 

P<0.0001, ** = P<0.001, * = P< 0.01 

 

Table 3.7: Significances for comparative BCRP 

expression in time course samples – Comparative 

sample analysis was achieved utilising One way 

ANOVA with Tukeys post-test analysis *** = 

P<0.0001, ** = P<0.001, * = P< 0.01 

 

Table 3.8: Significances for comparative MDR1 

expression in time course samples – Comparative 

sample analysis was achieved utilising One way 

ANOVA with Tukeys post-test analysis *** = 

P<0.0001, ** = P<0.001, * = P< 0.01 
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3.4.11 Co-culture of Caco-2 cells increases the aminopeptidase 

activity within intestinal models. 

Aminopeptidases are expressed in the intestine as a surface enzyme of enterocytes for the 

cataclysm of the breakdown of  amino acids through breakage of the N-terminus of 

proteins. Caco-2 monolayers were tested in comparison to both 2D and 3D CCD-18co 

models. 3D CCD-18co models in this instance refers to the Alvetex®  based 3D model 

discussed further in chapter 5. In both cases aminopeptidase activity was seen to increase 

by approximately 50% compared to control levels. There was no significant differences 

between the effect of 2D and 3D culture systems on the stimulation of Caco-2 layers. 

  

Figure 3.17: Aminopeptidase activity levels increase in both paracrine and 3D CCD-18co 

cultures – Aminopeptidase enzyme activity assessed at 21 days of Caco-2 culture in control, 

Paracrine treated and 3D CCD-18co models. When corrected to culture area both CCD-18co 

paracrine and 3D models resulted in a modest yet significant increase in aminopeptidase activity, 

suggesting improvements in cellular differentiation.  n=6 N=3. Significance compared to control 

was assessed by students unpaired T-test. ***=p <0.0005, **=p<0.005, *=p<0.05 Scale bars 

represent +SEM. 
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7 Days 14 Days 21 Days 

Control vs 0.5 ng/ml KGF ns Control vs 0.5 ng/ml KGF * Control vs 0.5 ng/ml KGF *** 

Control vs 5 ng/ml KGF *** Control vs 5 ng/ml KGF *** Control vs 5 ng/ml KGF *** 

Control vs 25 ng/ml KGF *** Control vs 25 ng/ml KGF *** Control vs 25 ng/ml KGF *** 

0.5 ng/ml KGF vs 5 ng/ml 

KGF *** 

0.5 ng/ml KGF vs 5 ng/ml 

KGF * 

0.5 ng/ml KGF vs 5 ng/ml 

KGF *** 

0.5 ng/ml KGF vs 25 

ng/ml KGF *** 

0.5 ng/ml KGF vs 25 

ng/ml KGF * 

0.5 ng/ml KGF vs 25 

ng/ml KGF *** 

5 ng/ml KGF vs 25 ng/ml 

KGF *** 

5 ng/ml KGF vs 25 ng/ml 

KGF ns 

5 ng/ml KGF vs 25 ng/ml 

KGF * 

 

 

  

Figure 3.18: 7, 14 & 21 day TEER measurements of Caco-2 cells on Transwell Snapwell in 

control and KGF spiked media conditions shows that addition of KGF to the Caco-2 models 

results in highly significant decreases in epithelial construct TEER values – KGF was spiked into 

Caco-2 culture media at a concentration of 0.5, 5 and 25ng/ml. TEER assessment was made to quantify 

changes in barrier integrity mediated by KGF. A) 7 Day Caco-2 culture, B) 14 days, C) 21 days, D) 

Comparative TEER measurements of spiked media cultures. n=3, N= a minimum of 3 independent 

experiments.. Scale bars represent +SEM. 

Table 3.9 Statistical analysis of Transwell model TEER measurements: One way ANOVA with 

Tukeys post-test analysis was used to calculate significacy between values ***=p <0.0005, **=p<0.005, 

*=p<0.05. n=3 

 

 

A) 7 Days B) 14 Days 

C) 21 Days 
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3.4.12 KGF changes the structural physiology of Caco-2 

monolayers and decreases membrane TEER levels in a dose-

dependent manner.  

The addition of KGF to the media of Caco-2 Transwell models and its effects on the 

TEER measurement of the membrane over time were assessed using the same methods 

as measured previously. 

 

Figure 3.18 D shows the relative TEER curves of all variable concentration conditions 

together. The Caco-2 non-spiked media controls show a rapid increase in TEER values 

between 0 and 14 days. This is followed by a plateau of any further increase in membrane 

resistance until 21 days in culture, with maximum TEER values of around 3200 ohms. 

When 0.5 ng/ml of KGF is added to the culture media the initial increase in TEER values 

between 0 and 7 days is indistinguishable over the control values. 0.5 ng/ml values differ 

from control samples in that the beginning of the plateau phase of culture begins at day 7 

onwards, with TEER values increasing as a significantly reduced rate until day 21 

whereby 0.5 ng/ml cultures have a significantly reduced maximal TEER values over the 

controls (Figure 3.18 C). 5 ng/ml KGF spiked into the Caco-2 culture media is shown to 

have highly significant effects on the TEER values of the resultant models throughout the 

entire 21 days of culture (Figure 3.18, A-C). Initial expansion TEER measurement phase 

between 0 and 7 days is at a significantly decreased level over both control and 0.5 ng/ml 

models. Post day 7 this reduced rate of increase reduces further into a plateau phase which 

lasts until 21 days in culture (Figure 3.18 D). Similarly, 25 ng/ml has an overall culture 

TEER curve of the same general shape as 5 ng/ml KGF. 25 ng/ml culture results in a 

significantly decreased model TEER value throughout the course of the culture when 

compared against the Control models, with an end TEER values of approximately 500 

ohms, significantly closer to the TEER values of Human intestinal tissue. 

 

Histologically, Transwell models are shown in Figure 3.19 to change depending on the 

levels of KGF supplemented to the culture media. Figure 3.19 A, shows Caco-2 control 

models. Figure 3.19 B-D shows the addition of 0.5, 5 and 25 ng/ml of KGF respectively. 

0.5 ng/ml (Figure 3.19 B) shows the least amount of change as expected with cells being 
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mostly flattened albeit more strongly stained than the control samples. Models which 

contain higher levels of KGF can be observed to show a heightened cellular phenotype 

with more cuboidal like cells which are densely packed together to create a continuous 

layer. Additionally, cells appear to stain more strongly than controls with eosin and appear 

more polarised. 

 

Figure 3.19: H+E of KGF spiked media Caco-2 Transwell models shows similar histology to the 

addition of paracrine media with increased cellular height and cytoplasmic staining – H&E 

histology of 7μm sectioned, PFA fixed, Caco-2/KGF models cultured on Transwell Snapwell ®. A) 

Control, B) 0.5ng/ml, C) 5ng/ml, D) 25ng/ml. Images are representative of a minimum of 3 

independent repeats. Scale= 200μm 

A B 

C D 
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Figure 3.20: Immunofluorescence staining of Control Caco-2 Snapwell models – Representative images of wholemount 

immunostained Caco-2 Transwell Snapwell® intestinal models cultured for a period of 21 days in culture.  A) E-cadherin, B) Occludin, 

C) MDR1, D) Actin. Images are representative of a minimum of 3 independent repeats. Scale = 200μm 

Figure 3.21: Immunofluorescence staining of 0.5ng/ml KGF spikes Caco-2 Snapwell models – Representative images of wholemount 

immunostained Caco-2 Transwell Snapwell® intestinal models cultured with 0.5ng/ml of human recombinant KGF for a period of 21 days in 

culture.  A) E-cadherin, B) Occludin, C) MDR1, D) Actin. Images are representative of a minimum of 3 independent repeats Scale = 200μm 

A) E-cadherin B) Occludin C) MDR1 D) Actin 

A) E-cadherin B) Occludin C) MDR1 D) Actin 
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MDR1 

MDR1 

Figure 3.22: Immunofluorescence staining of 5ng/ml KGF spikes Caco-2 Snapwell models – Representative images of wholemount 

immunostained Caco-2 Transwell Snapwell® intestinal models cultured with 5ng/ml of human recombinant KGF for a period of 21 days in 

culture.  A) E-cadherin, B) Occludin, C) MDR1, D) Actin. Images are representative of a minimum of 3 independent repeats Scale = 200μm 

A) E-cadherin B) Occludin D) Actin C) MDR1 

Figure 3.23: Immunofluorescence staining of 25ng/ml KGF spikes Caco-2 Snapwell models – Representative images of wholemount 

immunostained Caco-2 Transwell Snapwell® intestinal models cultured with 25ng/ml of human recombinant KGF for a period of 21 days in 

culture.  A) E-cadherin, B) Occludin, C) MDR1, D) Actin. Images are representative of a minimum of 3 independent repeats Scale = 200μm 

A) E-cadherin B) Occludin D) Actin C) MDR1 
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3.4.13 Immunostaining characterisation of KGF treated Caco-

2 layers shows increased Villin expression with higher KGF 

concentrations. 

Figure 3.20 shows the wholemount expression profile of key protein markers, E-cadherin, 

Occludin, MDR1, Pan-Actin and Villin. E-cadherin of control layers shows consistent 

homogenous staining across the entire model layer. Orthogonal view of E-cadherin shows 

staining, apical to base, along the full length of the cell indicating consistent lateral 

membrane staining. Comparatively, in KGF treated layers E-cadherin shows a similar 

pattern of staining throughout all of the models. Occludin (Figure 3.20 B) staining of the 

same control models shows a similar wholemount pattern as E-cadherin with cell-cell 

junctional tracing. In contrast, the orthogonal view of Occludin shows localisation to the 

apical surface of the cells indicating apical lateral tight junction staining. Figure 3.20 C, 

shows MDR1 (p-gp) staining across control layers. Sample shows inconsistent staining 

across the surface of the model. Staining, where positive,  is located apically to the DAPI 

stained nuclei, indicating apical microvilli expression as is expected for MDR1. Pan-actin 

is utilised here (Figure 3.20 D) as a marker for both the surface brush border and actin 

dense junctional complexes. Control layers are inconsistently stained for actin with some 

junctional and surface staining seen. However, whilst inconsistent, control layers are 

shown to have significantly higher staining abundance and intensity when compared to 

0.5, 5 and 25 ng/ml KGF conditioned layers (Figure 3.21, 22 & 23, D). Indeed, the 

25ng/ml KGF (Figure 3.23 D) conditioned media sample shows extremely inconsistent 

pan-actin staining with only sporadic junctional staining seen and very little/no surface 

brush border staining. 
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3.4.14 KGF in Caco-2 culture media increases the metabolic 

activity of Caco-2 cells in a dose-dependent manner. 

In addition to analysis of the TEER of KGF spiked culture epithelial models, Figure 3.24 

shows the effects of the same spiked media concentration on the metabolic activity as 

measured by the MTT assay. In control wells (Figure 3.24 A-D) it can be observed that 

the cells undergo an initial lag phase of growth followed by an exponential growth phase 

and a plateau/ death phase after day 8 whereby the cells have become full confluent. 

  

The addition of 0.5 ng/ml of KGF to the media (Figure 24 A) results in no significantly 

different changes in the metabolism measured at any point during the culture of the cells. 

In contrast, both 5 and 25 ng/ml KGF supplementations (Figure 3.24 B, C) to the growth 

media results in significant increases in Caco-2 metabolic rates by day 20 of culture. 

Indeed, with regards to the 25ng/ml media concentration the increase in metabolic rate 

shown by the Caco-2 cells was significantly higher than the controls from day 6 onwards. 

Generally speaking, the curve shape is the same in ns tested up until day 8 whereby 

changes can be seen in the shape of the 5 and 25 ng/ml curved. Whereas the Control and 

0.5 ng/ml conditions both show a clear decrease in metabolic activity between days 8 and 

10, 5 and 25 ng/ml conditions show a more plateau like shape with 25 ng/ml continuing 

to rise but at a less steep gradient.  

 

When compared together (Figure 3.24 D) the data shows a stepwise increase in Caco-2 

metabolism and a less pronounced plateau/ death phase with increasing concentration of 

KGF spiked into the media. 
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Figure 3.24: MTT assessment of  cellular viability over 10 days culture period (2D) with and without KGF spiked media. – Cell viability was 

assessed by MTT assay of 2D cells at set time points. Significant changes in model metabolic activity can be seen in a dose dependant manner with 

increasing KGF levels resulting in an increase in metabolic activity. Very similar to the effects of CCD-18co conditioned media. All experiments 

n=3 N=3. Statistical significance is summarised in Table 3.10. Error bars represent ±SEM. 

A) B) 

C) D) 
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Figure 3.25: Time-point comparison of all conditions – A) Day 4, B ) Day 6, C) Day 8, D) Day 

10. Values represent means + SEM. All experiments n=3 N=3. 

A) B) 

C) 
D) 
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4 Days 6 Days 8 Days 10 Days 

Control vs 0.5ng/ml KGF ns Control vs 0.5ng/ml KGF ns Control vs 0.5ng/ml KGF ns Control vs 0.5ng/ml KGF ns 

Control vs 5ng/ml KGF ns Control vs 5ng/ml KGF ns Control vs 5ng/ml KGF ns Control vs 5ng/ml KGF * 

Control vs 25 ng/ml KGF ns Control vs 25 ng/ml KGF ns Control vs 25 ng/ml KGF ** Control vs 25 ng/ml KGF *** 

Control vs CCD-18co ns Control vs CCD-18co ns Control vs CCD-18co * Control vs CCD-18co *** 

Control vs HDFn ns Control vs HDFn ns Control vs HDFn ns Control vs HDFn ns 

Control vs HIC ns Control vs HIC ns Control vs HIC * Control vs HIC ns 

0.5ng/ml KGF vs 5ng/ml KGF ns 0.5ng/ml KGF vs 5ng/ml KGF ns 0.5ng/ml KGF vs 5ng/ml KGF ns 0.5ng/ml KGF vs 5ng/ml KGF ns 

0.5ng/ml KGF vs 25 ng/ml KGF ns 0.5ng/ml KGF vs 25 ng/ml KGF ns 

0.5ng/ml KGF vs 25 ng/ml 

KGF * 

0.5ng/ml KGF vs 25 ng/ml 

KGF *** 

0.5ng/ml KGF vs CCD-18co ns 0.5ng/ml KGF vs CCD-18co ns 0.5ng/ml KGF vs CCD-18co ** 0.5ng/ml KGF vs CCD-18co *** 

0.5ng/ml KGF vs HDFn ns 0.5ng/ml KGF vs HDFn ns 0.5ng/ml KGF vs HDFn ns 0.5ng/ml KGF vs HDFn ns 

0.5ng/ml KGF vs HIC ns 0.5ng/ml KGF vs HIC ns 0.5ng/ml KGF vs HIC ** 0.5ng/ml KGF vs HIC ns 

5ng/ml KGF vs 25 ng/ml KGF ns 5ng/ml KGF vs 25 ng/ml KGF ns 5ng/ml KGF vs 25 ng/ml KGF ns 5ng/ml KGF vs 25 ng/ml KGF *** 

5ng/ml KGF vs CCD-18co ns 5ng/ml KGF vs CCD-18co ns 5ng/ml KGF vs CCD-18co *** 5ng/ml KGF vs CCD-18co ns 

5ng/ml KGF vs HDFn ns 5ng/ml KGF vs HDFn ns 5ng/ml KGF vs HDFn ** 5ng/ml KGF vs HDFn ns 

5ng/ml KGF vs HIC ns 5ng/ml KGF vs HIC ns 5ng/ml KGF vs HIC *** 5ng/ml KGF vs HIC ns 

25 ng/ml KGF vs CCD-18co ns 25 ng/ml KGF vs CCD-18co ns 25 ng/ml KGF vs CCD-18co *** 25 ng/ml KGF vs CCD-18co *** 

25 ng/ml KGF vs HDFn ns 25 ng/ml KGF vs HDFn ns 25 ng/ml KGF vs HDFn *** 25 ng/ml KGF vs HDFn *** 

25 ng/ml KGF vs HIC ns 25 ng/ml KGF vs HIC ns 25 ng/ml KGF vs HIC *** 25 ng/ml KGF vs HIC *** 

CCD-18co vs HDFn ns CCD-18co vs HDFn ns CCD-18co vs HDFn ns CCD-18co vs HDFn ** 

CCD-18co vs HIC ns CCD-18co vs HIC ns CCD-18co vs HIC ns CCD-18co vs HIC ** 

HDFn vs HIC ns HDFn vs HIC ns HDFn vs HIC ns HDFn vs HIC ns 

Table 3.10: Time-point comparison of Conditioned media and KGF spiked conditions – Summary of comparative significances between data sets.  Standard 

one way ANOVA with Tukeys post-test analysis was performed between data sets. *** = P<0.0005, ** = P<0.005, * = P< 0.05, n=3, N=3 
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3.4.15 Understanding the development of tight junction 

expression in Caco-2 cells grown in control and KGF spiked 

media conditions. 

As described previously in section 3.4.8, tight junctional abundance was assessed through 

the staining of epithelial layers with Occludin, an intermembrane component of the tight 

junctional complex. 

 

Figure 3.20 shows the expression of Occludin in each of the samples with timepoint taken 

2 days apart for 10 days. As before it can be seen that Occludin expression is abundant 

even in very low confluency cells and even as cytoplasmic staining of single cells without 

cell-cell contacts. This expression gets gradually stronger and more abundant over time 

in each of the spiked media conditions. By day 10 there is a clear difference in cellular 

confluency between the spiked media samples and the control, with an increasing level 

of cellular packing with increasing KGF concentration. This results in smaller more 

tightly packed cellular layers in models exposed to higher concentrations of KGF (5 and 

25 ng/ml) than the control. Additionally, cell layers appear to be more homogenous at 

higher KGF concentrations with little heterogenicity in cell size seen in the layers, 

probably as a consequence of more tightly packed epithelial layers.   
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Figure 3.26: Tight junction expression of Caco-2 cells treated with different KGF 

concentrations over 10 days – Control and KGF media treated Caco-2 cells were cultured on 2D 

plastic for a varying number of days before fixation and staining for the tight junction protein, 

Occludin. Images are representative of 3 independent repeats Scale = 200μm 
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3.4.16 Differential aminopeptidase activity of KGF conditioned 

layers. 

Figure 3.27 shows the relative aminopeptidase activity of Caco-2 membranes treated with 

0.5, 5 and 25 ng/ml of KGF. What can be seen is that a small amount of KGF added to 

the Caco-2 layers, namely 0.5 and 5 ng/ml, results in a significant drop in aminopeptidase 

activity after 21 days of total culture time. Interestingly, this decrease in enzyme activity 

is recovered with the addition of further KGF, with 25ng/ml showing no significant 

decrease over the control samples. 

 

Figure 3.27: Aminopeptidase activity of KGF treated Caco-2 layers – Caco-2 treated layers 

were tested for their Aminopeptidase activity through their ability to convert L-alanine-4-

nitroanilide hydrochloride into 4-Nitroanaline. Significances calculated through Student T-test. 

n=3 N=3. Scale bars represent +SEM. 
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3.4.17 Quantification of the levels of KGF present in paracrine 

conditioned media samples. 

Figure 3.28 shows the relative amounts of KGF secreted into the conditioned media by 

CCD-18co , HIC and HDFn fibroblasts both cultured in standard DMEM and in Caco-2 

paracrine media. KGF levels within the media were normalised to total DNA levels within 

the samples. 

 

Figure 3.28 A shows the conditioned media gained from 2D cultured fibroblast cells 

compared with 2D fibroblasts cultured for a period of 7 days in Caco-2 DMEM 

conditioned media. CCD-18co conditioned media is shown to contain significantly higher 

levels of KGF than both HDFn and HIC conditioned medias, with an approximate 14-

fold increase in KGF abundance per ng of DNA. HDFn and HIC fibroblasts are not shown 

to have significantly different KGF abundance in cultured in standard DMEM. The 

application of Caco-2 conditioned media to the CCD-18co cells appears to induce a 

significant reduction in KGF abundance per ng of DNA over the untreated samples. 

Conversely, HDFn and HIC Caco-2 conditioned media treated layers do not appear to 

significantly change from their respective non-treated controls. However, 2D HDFn  KGF 

levels are shown to be significantly different from 2D HIC Caco-2 conditioned media 

KGF levels. Significances for Figure 3.28 A are summarised in Table 3.11. 

 

The KGF levels of cells cultured in 3D (Figure 3.28 B) shows a similar trend to the 

comparison in 2D with CCD-18co cells secreting the highest levels of KGF per ng of 

DNA albeit the difference in KGF secretion between CCD-18co and other fibroblasts is 

less than in 2D conditions. Similarly to 2D conditions, the addition of Caco-2 conditioned 

media to the CCD-18co cell layers results in a significant decrease in the KGF abundance 

overall with this change not reflected in the HDFn of the HIC samples. Significances for 

Figure 3.28 A are summarised in Table 3.11. 

 

Figure 3.28 C shows the comparative KGF levels between 2D and 3D cultures cells 

normalised to ng of DNA. As in other comparisons 2D CCD-18co results in the highest 

levels of KGF per ng of DNA than any other condition. Growth of cells within a 3D 
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scaffold results in a significant decrease in the levels of KGF over the 2D condition. 

Indeed, KGF levels of CCD-18co conditioned media grown in 3D reduce down to levels 

similar to that seen in HDFn and HIC samples. Significant reductions in KGF abundance 

are also observed in HDFn and HIC cultures although the amount of change is less than 

that seen in CCD-18co conditioned media experiments. Significances for Figure 3.28 C 

are summarised in Table 3.11. 

 

Figure 3.28 D shows the comparative KGF abundance between 2D and 3D cells grown 

in Caco-2 conditioned media. The trends are similar to that seen in Figure 2.20 C with a 

significant reduction of KGF in 3D cultures compared to 2D grown cells. Significances 

for Figure 3.28 C are summarised in Table 3.11. 

 

Figure 3.29 shows the total KGF levels of the conditioned media without the 

normalisation to cellular DNA concentration. Essentially, this graph shows the abundance 

of KGF in the paracrine conditioned media which would be effecting the Caco-2 

epithelium when added to the growing epithelial constructs. Similar to that seen in Figure 

3.28, 2D CCD-18co conditioned media has highest levels of KGF at approximately 700-

800 pg/ml. These levels are a whole order of magnitude higher than other 2D paracrine 

media conditions which generally express KGF in the mid to high tens of picogram.  

 

Treatment of fibroblast cultures with Caco-2 conditioned media prior to sampling of 

fibroblasts conditioned media resulted in a modest decrease in the levels of KGF within 

the CCD-18co samples with no significant differences in the others. Additionally, as seen 

in the DNA concentration corrected layers, culture of fibroblasts in 3D resulted in the 

significant decrease in secreted KGF. In the case of CCD-18co cells, this decrease brought 

the KGF expression rates in line with levels seen in Hic and HDFn fibroblast conditions. 

Figure 3.30 shows the relative abundance of DNA isolated from each of the fibroblast 

conditions. The graph shows that very little variation in DNA abundance can be seen 

between conditions. This suggests that the controlled seeding amounts at the beginning 

of the experiment were maintained throughout the culture period in both 2D and 3D. 

Additionally, treatment of fibroblast layers with Caco-2 conditioned media did not have 

any meaningful effects on fibroblast growth with Caco-2 conditioned DNA content non-

significantly different from the 2D counterparts.  
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Figure 3.28: DNA normalised KGF ELISA – Conditioned media from 2D and 3D fibroblast cultures were 

assessed for levels of secreted KGF. KGF levels were quantified and normalised with total DNA concentration 

of 2D and 3D cell lysates. A) 2D vs 2D + Caco-2 conditioned media, B) 3D vs 3D + Caco-2 conditioned 

media, C) 2D vs 3D, D) 2D + Caco-2 conditioned media vs 3D + Caco-2 conditioned media. n=3 N=3 Error 

bars represent + SEM 

A) B) 

C) D) 
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2D CCD-18co vs 2D HDFn *** 2D HIC vs 2D CCD-18co + 

Caco-2 

*** 

2D CCD-18co vs 2D HIC *** 2D CCD-18co + Caco-2 vs 2D 

HDFn + Caco-2 

*** 

2D CCD-18co vs 2D CCD-

18co + Caco-2 

*** 2D CCD-18co + Caco-2 vs 2D 

HIC + Caco-2 

*** 

2D CCD-18co vs 2D HDFn + 

Caco-2 

*** 2D CCD-18co + Caco-2 vs 3D 

CCD-18co 

*** 

2D CCD-18co vs 2D HIC + 

Caco-2 

*** 2D CCD-18co + Caco-2 vs 3D 

HDFn 

*** 

2D CCD-18co vs 3D CCD-

18co 

*** 2D CCD-18co + Caco-2 vs 3D 

HIC 

*** 

2D CCD-18co vs 3D HDFn *** 2D CCD-18co + Caco-2 vs 3D 

CCD-18co + Caco-2 

*** 

2D CCD-18co vs 3D HIC *** 2D CCD-18co + Caco-2 vs 3D 

HDFn + Caco-2 

*** 

2D CCD-18co vs 3D CCD-

18co + Caco-2 

*** 2D CCD-18co + Caco-2 vs 3D 

HIC + Caco-2 

*** 

2D CCD-18co vs 3D HDFn + 

Caco-2 

*** 3D CCD-18co vs 3D HDFn * 

2D CCD-18co vs 3D HIC + 

Caco-2 

*** 3D CCD-18co vs 3D HDFn + 

Caco-2 

* 

2D HDFn vs 2D CCD-18co + 

Caco-2 

*** 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.11: KGF levels in conditioned media normalised to DNA concentration of 2D 

cellular layers – Summary of comparative significances between data sets.  Standard one 

way ANOVA with Tukeys post-test analysis was performed between data sets. *** = 

P<0.0005, ** = P<0.005, * = P< 0.05, n=3, N=3 



Chapter 3 – Development of Transwell Co-culture models of the intestinal epithelium 

171 
 

  

Figure 3.29: Total KGF concentration of conditioned media – Total KGF concentration of the 

different conditions without the DNA concentration corrected. 2D CCD-18co cells can be seen 

secrete the most KGF of all conditions tested by approximately an order of magnitude. Culture of 

CCD-18co in 3D attenuates the high KGF secretion rates to levels much more similar to those seen 

in other conditions.  n=3, N=3. Scale bars represent +SEM. 

2D CCD-18co vs 2D HDFn *** 2D HIC vs 2D CCD-18co + Caco-2 *** 

2D CCD-18co vs 2D HIC *** 2D CCD-18co + Caco-2 vs 2D HDFn + 

Caco-2 

*** 

2D CCD-18co vs 2D HDFn + 

Caco-2 

*** 2D CCD-18co + Caco-2 vs 2D HIC + 

Caco-2 

*** 

2D CCD-18co vs 2D HIC + 

Caco-2 

*** 2D CCD-18co + Caco-2 vs 3D CCD-

18co 

*** 

2D CCD-18co vs 3D CCD-18co *** 2D CCD-18co + Caco-2 vs 3D HDFn *** 

2D CCD-18co vs 3D HDFn *** 2D CCD-18co + Caco-2 vs 3D HIC *** 

2D CCD-18co vs 3D HIC *** 2D CCD-18co + Caco-2 vs 3D CCD-

18co + Caco-2 

*** 

2D CCD-18co vs 3D CCD-18co 

+ Caco-2 

*** 2D CCD-18co + Caco-2 vs 3D HDFn + 

Caco-2 

*** 

2D CCD-18co vs 3D HDFn + 

Caco-2 

*** 2D CCD-18co + Caco-2 vs 3D HIC + 

Caco-2 

*** 

2D CCD-18co vs 3D HIC + 

Caco-2 

*** 3D CCD-18co vs 3D HDFn * 

2D HDFn vs 2D CCD-18co + 

Caco-2 

*** 3D CCD-18co vs 3D HDFn + Caco-2 ** 

2D HDFn vs 3D HDFn * 3D CCD-18co vs 3D HIC + Caco-2 * 

2D HDFn vs 3D HDFn + Caco-

2 

* 
  

 Table 3.12: Absolute KGF levels in conditioned media statistical analysis – Summary of 

comparative significances between data sets.  Standard one way ANOVA with Tukeys post-test 

analysis was performed between data sets. *** = P<0.0005, ** = P<0.005, * = P< 0.05, n=3, 

N=3 
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2D CCD-18co + Caco-2 vs 3D 

HDFn 

* 

2D CCD-18co + Caco-2 vs 3D 

HDFn + Caco-2 

* 

  

Figure 3.30: Total DNA abundance of fibroblasts utilised for the generation of conditioned 

media shows no significant differences between like-samples– Total DNA abundance in 

fibroblasts utilised to create the conditioned media utilised in the KGF concentration analysis 

experiment. Very little variation is seen between conditions suggesting that cell numbers in each 

conditions are approximately equal. Small variation in the DNA levels explains why similar trends 

are seen in corrected and total KGF graphs. n=3, N=3. Scale bars represent +SEM. 

Table 3.13: DNA concentration of 2D fibroblast cellular layers statistical analysis – Summary 

of comparative significances between data sets.  Standard one way ANOVA with Tukeys post-test 

analysis was performed between data sets. *** = P<0.0005, ** = P<0.005, * = P< 0.05, n=3, N=3 
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3.4.18 The effects of conditioned and KGF spiked media on the 

passive paracellular transport of Lucifer yellow. 

Figure 3.31 shows the passive paracellular transport of the fluorescent compound Lucifer 

Yellow. Caco-2 control layers show a Papp value of around 1x10-6 cms-1, a normal value 

for Caco-2 layers when compared to the literature. A small non-significant increasing 

trend is seen when Caco-2 cells are cultured in the paracrine media of CCD-18co 

fibroblasts. This increasing trend continues when comparing Caco-2 controls to 3D CCD-

18co Alvetex® models. A trend which is also shown to be non-significant when analysed 

by unpaired student T-test.  

 

2D HIC and HDFn layers show a decrease in the levels of permeability to Lucifer yellow 

compared to control to a similar level of that seen in KGF spiked conditions. 3D HIC and 

HDFn models however have an increased permeability, similar to the levels of 3D CCD-

18co. This increase could be attributed to the change in culture system rather than a 

physiological change in the cells. Addition, of KGF to the Caco-2 media results in a 

decrease in overall membrane permeability, albeit as before, in a non-significant manner 

when compared to control layers.  

 

 

Figure 3.31: Lucifer yellow 

paracrine transport across 

treated epithelial layers - 

Lucifer Yellow is utilised as 

a marker of membrane 

integrity by acting as a 

passive, paracellular 

transported compound. 

Membranes with low 

integrity would show higher 

Papp values. n=3 , N=3. 

Significancy was assessed by 

one way ANOVA with 

Tukeys post-test analysis. No 

significant difference was 

observed between samples. 

Scale bars represent +SEM. 
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3.4.19 qPCR analysis of conditioned and KGF spiked media 

samples for the relative abundance of mRNA for key tight 

junctional components. 

Figure 3.32 shows the relative junctional mRNA expression rates of conditioned and KGF 

spiked media samples. Figure 3.32 A, shows relative Occludin mRNA abundance. 

Generally, there is either no significant changes in mRNA levels (CCD-18co and HDFn 

conditioned media) or there is a small decrease in relative abundance (HIC conditioned 

media along with all KGF spiked media samples).  

 

A similar pattern of expression rates is seen in Figure 3.32 B, for the expression of mRNA 

encoding the protein Claudin 2 with HIC and KGF samples showing a small decrease in 

relative expression and CCD-18co and HDFn samples showing little relative change.  

 

Conversely, Figure 3.32 C shows the relative expression of ZO-1. Interestingly, CCD-

18co and HDFn conditioned media see large increased in relative expression compared 

to control Caco-2 layers. HIC conditioned and KGF spiked media samples also show 

significant increases in relative mRNA expression albeit to a lesser extent than CCD-18co 

and HDFn samples. Interestingly, whist compared to the control all ZO-1 samples are 

increased, the overall pattern between samples is similar to that seen in Occludin and 

Claudin-2 analysis. 
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Figure 3.32: qPCR analysis of relative tight junctional component expression in 2D 

conditioned media studies – A) Occludin, B) Claudin 2, C) ZO-1.  Changes in expression patterns 

can be seen between different conditioned media samples. Generally, CCD-18co and HDFn models 

show increases in junctional proteins compared to HIC conditions which generally decrease 

compared to other conditions. KGF samples show decreases in Occludin and Claudin-2 whilst ZO-

1 levels generally increase. n=3 (HIC n=2) N=3 (HIC N=2). Significancy test were performed 

utilising one way ANOVA with Tukeys post-test analysis. No significancy between data points was 

observed. Scale bars represent mean +SEM. 

A) Occludin 

B) Claudin 2 
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3.5.20 qPCR analysis of conditioned and KGF spiked media 

samples for the relative abundance of mRNA for efflux 

transporter protein important in the function of  Caco-2  cells.  

Figure 3.33 shows the relative mRNA abundance of key efflux proteins involved in the 

functionality of Caco-2 cells when utilised as models of drug permeability. Figure 3.33 

A shows the relative expression rate of MDR1, commonly known as P-glycoprotein (P-

gp) between different conditions. P-gp is thought to be under/ normally expressed in 

control Caco-2 layers. Addition of CCD-18o and HIC conditioned media to Caco-2 

monolayers results in a significant decrease in the relative levels of MDR1 mRNA. 

Conversely, addition of HDFn and KGF spiked media samples resulted in a significant 

increase in MDR1 levels compared to control sample expression rates.  

 

In contrast, Figure 3.33 B shows the relative expression rates of MRP1 between all 

samples. CCD-18co conditioned media is shown to increase mRNA levels significantly 

with all other conditions having no significant effects on the overall relative expression. 

KGF spiked media samples do not appear to be significantly changed compared to the 

control layers however, a trend in expression rates between KGF spiked samples can be 

observed here which is also seen in other mRNA targets whereby 5ng/ml KGF causes a 

relative decrease in mRNA expression levels compared to 0.5ng/ml which is then 

corrected through an increase in relative expression when samples are cultured in 25ng/ml 

KGF. This could suggest some kind of KGF regulation whereby 5ng/ml KGF addition 

into the media is being suppressed by some unknown mechanism which, when cultured 

with 25ng/ml KGF is overwhelmed, resulting in further changes, usually increases, in 

relative mRNA abundance.   

 

Figure 3.33 C shows the relative expression rates of mRNA encoding for MRP2. As can 

be seen by looking at Figure 3.33 B & C, very different expression changes are seen 

between the both MRP1 and 2, both of which are highly related and have many 

overlapping functions. HIC conditioned media along with all of the KGF spiked media 

conditions saw a decrease in the relative mRNA levels compared to the control. Whereas 
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CCD-18co and HDFn were both non-significantly different from Control levels with a 

trend towards a slight increase.  

 

Finally, relative Villin expression rates are shown in Figure 3.33 D. All conditions except 

5ng/ml KGF spiked media were non-significantly different from Control layers. CCD-

18co did show a trend to increased relative levels however the variability was too high 

for significancy. 5ng/ml KGF spiked levels showed a decrease in relative Villin mRNA 

expression compared to controls. Interestingly, this decreases in reverted in 25ng/ml KGF 

levels in a similar manner as previously described.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.33: qPCR analysis of relative functional efflux protein component and Villin 

expression in 2D conditioned media studies – A) MDR1, B) MRP1, C) MRP2 D) Villin. Variable 

differences can be seen between different conditioned media samples. KGF spiked samples show 

increases MDR1 and MRP1 (A & B) expression over controls. Especially at 25 ng/ml levels. 

Conversely MRP1 and Villin levels are seen to decrease compared to controls. Significancy values 

were not calculated for this data set due to low replicate number of n=2-3 N=2-3. Scale bars 

represent mean +SEM. 

A) MDR1 B) MRP1 

C) MRP2 D) Villin 
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3.5 Discussion 

3.5.1 Chapter overview 

The aims of this chapter were to evaluate the suitability of a number of prospective cell 

lines for co-culture with Caco-2 cells in a Transwell Snapwell epithelial model and to 

postulate a potential mechanism by which said cell lines were having physiological 

action. The commercially available cells lines utilised were CCD-18co (Colon 

Carcinoma) & HDFn (neonatal Human dermal fibroblasts), along with primary human 

intestinal cells (HIC) isolated from tissue in the lab. Fibroblast cell lines were 

characterised for their structural and protein morphology before being applied to Caco-2 

models through the use of conditioned media containing paracrine released factors 

released by the fibroblasts. The effects of said conditioned media on Caco-2 Snapwell® 

cell layer development was assessed by a number of techniques, namely, TEER, MTT 

assay and drug transport (discussed later). 

 

The barrier integrity of Caco-2 membranes is critically important to their function as 

pharmacokinetically useful models within the lab. As such barrier integrity of Caco-2 

layers was assessed through the immunostaining of Occludin (Tight junction marker) 

alongside TEER measurements of control and conditioned models and MTT assessment 

of model metabolism. The metabolic activity of Caco-2 cells within Snapwell model is 

also a good indicator of the transport capabilities of the developed epithelium. Cell layer 

metabolic activity was assessed both in 2D over time and at 21 days in culture in 

Snapwell® models by use of MTT assay. 

 

Changes in the functional components of the Caco-2 epithelial layers such as surface 

aminopeptidase and efflux protein expression was assessed by N-nitroaniline assay and 

qPCR for transporter mRNA abundance respectively. Finally, a potential mechanism for 

the change in Caco-2 layers seen to be induced by paracrine conditioned medium, was 

investigated through quantification of KGF and comparison of KGF spiked media layers 

to conditioned media values. 
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3.5.2 Fibroblast characterisation through phase contrast and 

immunohistological microscopy. 

ATCC (American Type Culture Collections) describes CCD-18co cells as normal 

neonatal colon fibroblast cells. Phase contrast analysis of these cells shows a classical 

fibroblast like morphology with long protruding, spindle-like extensions and small 

cellular bodies. (178) There is some evidence to suggest that fibroblasts differentiate 

along the villi-crypt axis in much the same way that epithelial cells do, going from a 

discoid shape in the crypt to a spindle shape at the villus tip. As such the fibroblast 

morphology seen in 2D culture here is more reminiscent of the “differentiated” fibroblasts 

of the villus tip rather than those of the crypt. (179) Fibroblast cell layers are motile, 

spacing equidistantly from on another before replicating to confluency, at which point 

cells become contact inhibited and further replication stops after a period of cellular 

packing. 

 

When immunostained for cell lineage specific markers positive staining of the major 

mesenchymal intermediate filament protein Vimentin alongside alpha smooth muscle 

actin (αSMA) were shown. No positive staining is seen for Desmin (a smooth muscle 

lineage marker), which along with positive Vimentin staining suggests cells are not of a 

smooth muscle origin.  αSMA staining is often used as a marker for myofibroblast 

identification (180) but is also seen to be expressed in many other cell types within the 

intestinal mucosae, some of which are dependent on the location within the intestine. E.g. 

Smooth muscle of the small intestine or in lymphatic pericytes found within the colon. 

(180) 

 

Past literature shows that myofibroblast populations exist throughout the intestine, 

primarily located beneath epithelial layers and are responsible for the development, 

maintenance of the epithelial layer (179,180), principally through the secretion of 

paracrine factors. (179) Indeed, they are thought to not only support the development of 

the mature epithelium at the villus tip but also be important regulators of the stem cell 

niche in the crypt base. (173) Lei et al, worked to support this theory by assessing the 

effects of myofibroblast paracrine factors on their ability to promote the creation of 
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differentiated intestinal epithelium enteroids and for their successful engraftment in vivo  

into C57BL/6 mice. They found that in vitro enteroid development was enhanced by co-

culture with myofibroblast and that in vivo implantation was not possible with 

monoculture organoids, suggesting an important role in sub-epithelial myofibroblasts in 

crypt and epithelial maintenance and development. Additionally, there is further evidence 

that intestinal myofibroblast populations act as mediators of inflammation within the 

intestine, playing a key role in inflammatory bowel diseases such as Crohn’s disease. 

(181,182)  

 

Pericytes are often thought to be supportive cells of endothelial layers rather than 

epithelial, important in the development and maintenance of blood vessels in much the 

same way myofibroblasts are thought to maintain epithelial layers. (183,184) Pericytes 

structural morphology is similar to that of myofibroblasts making them impossible to 

identify apart with simple light microscopy. Pericytes are also shown to be αSMA positive 

and as such distinguishing immunofluorescence between myofibroblasts and pericytes is 

difficult, due to their overlapping function in addition to their expression profile. Indeed, 

many have argued that αSMA cells located immediately below epithelial layers are more 

likely to be pericytes than myofibroblasts. (185) However, in this instance smooth muscle 

or pericyte lineages in the cells is unlikely due to the absence of positive Desmin staining, 

a key marker for both in vivo with smooth muscle cells staining strongly positive  and 

pericytes staining weakly for Desmin expression. (180,186–188) 

 

Tubulin is a highly conserved microtubule protein found within eukaryotic cells. In this 

instance Tubulin staining was utilised as a marker of cellular structure rather than as a 

tool for the distinguishing of cell type. Actin was used in a similar way. Actin should be 

strongly conserved and stained in all fibroblast cells and as such weak staining seen here 

may not be physiologically mimetic, potentially suggesting a failure in the staining 

process. 

  

The expression profile of immunostained fibroblasts utilised in this study suggests a 

myofibroblast type cell in all instances, phenotypically somewhere between a true 

fibroblast and a smooth muscle cell. HDFn and HIC cells show a similar expression 

profile to that of CCD-18co suggesting myofibroblast lineage.  It should be noted that far 
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weaker αSMA staining was seen of HDFn cells when compared to myofibroblasts derived 

from the intestine. This could potentially reflect the decreased proportion of 

myofibroblasts that are naturally found within the human skin (generally produced as a 

consequence of damage as a wound healing response) compared to the intestine mucosa. 

(189) However, the similarity in the overall HDFn expression profile lends validation as 

potential cells to be utilised within intestinal models; with benefits including improved 

availability, replicative potential and cost over similar primary intestinal fibroblast cells.  

 

3.5.3 Paracrine influences on structural morphology and 

Trans-Epithelial Electrical Resistance (TEER). 

The change of structural morphology seen in co-culture intestinal models implies that 

paracrine factor(s) present within the conditioned media are having effects on the 

development/ differentiation of the Caco-2 membrane over time. Interestingly, the 

phenotype change between models is different dependant on the myofibroblasts utilised 

to create the conditioned media, suggesting multiple mechanisms of action. What is more 

likely is that a complex cocktail of paracrine factors are being released into the 

conditioned media, resulting in the variable effects seen. In all cases except Caco-2/ 

HDFn culture a monolayer of cells was observed with varying polarity along the 

membrane length. Caco-2/ HDFn layers resulted in a taller multilayer epithelium. 

 

Changes in structure have been shown to have intimate effects on the function of cells. 

Indeed, the intestine itself has been shown to change the structure of epithelial enterocyte 

cells in response to a number of external stimuli such as the composition of dietary lipids 

in the intestine. (190) TEER is the foremost way in which the membrane integrity of 

Caco-2 Transwell layers is monitored throughout the models culture period. Furthermore, 

TEER is used as a quality control mechanism whereby models with a TEER above or, 

more usually, below, pre-set values are excluded from analysis. The utilisation of this 

method, whilst prevalent throughout industry, can be flawed, with low intra-lab but high 

inter-lab variation between models. Indeed, Caco-2 Transwell models have reported 14-

21 day culture TEER values of anything from 150 to 3000 ohms per cm2, 

(16,161,191,192) with differences seen without any changes in protocol between labs.  
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Caco-2 cells are well known to express a heterogenous population of cell morphologies 

when cultured in standard 2D conditions. (193) Beaulieu and Quaroni et al were one of 

the first to quantify this heterogeneity by demonstrating the mosaic expression of sucrase-

isomaltase within Caco-2 populations. (194) Caco-2 heterogeneity is seen in this study in 

the images of Caco-2 cells conducted within this work, with simple phase microscopy 

and cell shape as outlined by Occludin staining. A multitude of variable cell sized 

throughout pre and post confluent Caco-2 monolayer can be observed. Additionally, 

expression of surface transporter proteins such as MDR1 (p-gp) and MRP2 are expressed 

inconsistently across the membrane, highlighting single or small groups of cells in a 

mosaic fashion as described in other works. (193,195) This can be most clearly seen when 

cells have been cultured on Transwell membrane and allowed to differentiate for 21 days. 

MDR1 staining in particular is shown to be clearly positive in very specific cell sub-

populations throughout the model, especially in those treated with CCD-18co conditioned 

media.  

 

One possible explanation for the variation seen in Caco-2 studies between different labs 

is the accidental formation and utilisation of Caco-2 subclone populations and  is a huge 

issue in the reproduction of results between labs. Indeed, there are many well-known sub-

population of Caco-2 cells which have different structural and functional 

morphologies.(196) A simple experiment conducted by Woodcook et al (197) highlights 

the heterogeneity of Caco-2 populations. They showed that by taking a parental Caco-2 

cell line, diluting a trypsinised solution to 100 cells per flask, isolating colonies and 

utilising the cell lines produced, that significant differences could be seen in cloned 

populations TEER values in addition to changes in their transport capabilities of 

taurocholic acid.  

 

Close following of protocols is critical to maintaining reproducible TEER values over 

time and include close regulation of factors such as measurement media 

temperature(198), pH(199), passage number of cells used (200) and measurement point 

in culture period. In this study Caco-2 controls are seen to display an area corrected TEER 

value of around 2000 ohms per cm2, which, whilst on the higher end of reported values 

for Caco-2 cells, does have precedence within the literature. (201,202) Caco-2 cells are 

provided by ECACC at passage 44 with the majority of Transwell work occurring 
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between passage 48 and 55. Briske-Anderson et al showed in their study of TEER in 

Caco-2 cell models that TEER values tend to increase with increasing passage number up 

to approximately P70 whereby TEER values rapidly decrease. In fact the reported values 

of around 2000 ohms per cm2 correlate almost exactly with the TEER values of Caco-2 

cells at passage 50 in this study.(200) When compared to human tissue TEER values, 

Caco-2 cells, due to their colonic origin, are expected to provide values more in line with 

those seen in the distal regions of the intestine. Indeed, TEER values of 300 ohms per cm2 

would be in line with that seen in in vivo colon (203), but not small intestine which has 

general TEER values of below 100 ohms per cm2. (204) 

 

CCD-18co, HDFn and HIC conditioned medium was shown to have a significant 

decreasing effects on the TEER values of the epithelial membrane models. CCD-18co 

and HDFn have the largest effects on TEER values, causing a significant reduction after 

day 7 and an end TEER measurement of  approximately 500 Ohms per cm2 when 

measured at 21 days in culture, a value which is significantly more physiologically 

relevant (300 ohms per cm2 in colonic tissue) when compared to control Caco-2 layers.  

 

Whilst it is possible that changes in TEER in conditioned mediums could be effected by 

factors such as medium temperature, pH and presence of metabolic factors (17), a number 

of redundancies were used in the experimental design to mitigate these factors. 

Temperature, pH and the presence of metabolites was controlled in two mechanisms. 

First, conditioned medias were mixed 1:1 with fresh medium prior to being added to 

Caco-2, diluting any negative implications brought about by depletion of key media 

components by “conditioning” fibroblast cells. Additionally, mixing with fresh media 

allowed for a further buffering of pH levels back to normal. Second, Temperature was 

controlled through a normalisation period of 30 minutes at 37oC prior to taking 

measurements, ensuring all wells were back to 37oC during the measurement procedure.  

 

Changes in TEER measurements of Caco-2 monolayers in the presence of paracrine 

fibroblasts have also been observed in past studies. Pereira et al also showed significant 

decreases in TEER measurement when Caco-2 cells were cultured with CCD-18co cells 

in their in vitro model of the intestine. (162) They hypothesised that this decrease in TEER 

was due to the interspersing of CCD-18o cells within the Caco-2 layer, creating areas of 
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low resistance and as such lowering the total resistance measurement of the complete 

model. These experiments however, do not include direct co-culture of CCD-18co with 

Caco-2 cells within the model. Instead, models relied here on the use of conditioned 

media to induce changed in epithelial development. This media is rendered acellular 

through syringe filtering before application to the Caco-2 models, suggesting that the 

changes seen in this model are due to a secreted paracrine factor having effects on the 

growth and development of Caco-2 cells layers. As will be shown and discuss later, when 

direct co-culture in 3D models is achieved there is no evidence to suggest that CCD-18co 

physically disrupt the epithelial layer  within the model. Indeed, staining of epithelial 

specific markers such as E-cadherin or Occludin shows a consistent monolayer of Caco-

2 cells on the surface of the model without interruption from stromal located fibroblast 

populations. 

 

3.5.4 Tight junctional formation in Caco-2 control and 

paracrine treated layers and its effect on epithelial layer TEER 

and permeability. 

TEER, as previously described is the main way in which Caco-2 layers are observed 

throughout the cell culture process. The cell membrane is a poor conductor of electrical 

activity (205) and a basic principle of electrical current is that it will always follow the 

path of least resistance.  Therefore, epithelial resistance measurements mostly measure, 

and are dependent on, tight junctional formation and composition between cells, with 

higher TEER values generally correlating with increased tight junction formation and 

consistency over the entire epithelial layer. The function of tight junctions are to provide 

a barrier against the passive absorption of large macromolecular molecules which cannot 

cross the membrane passively.(206,207) These molecules are normally either 

enzymatically processed in the intestinal lumen before absorption or are actively 

transported across enterocyte membranes by the multitude of transporter protein 

complexes found embedded within the apical microvilli epithelial surface layer.  

 

Occludin is a protein found within the tight junctional complex and as such is utilised in 

this study as a marker of tight junction abundance and localisation within a cell. Caco-2 
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cells within this study are shown to express Occludin between cellular boundaries after 

as little as 2 days in culture. This staining remains strong throughout the culture period 

and increases in abundance as cells become more confluent. After confluency has been 

reached further increases in Occludin staining are difficult to quantify through 

immunofluorescence alone. Cells appear to become smaller and more uniform overtime, 

especially within HIC treated samples which can be seen visually (Not quantified) to be 

significantly smaller than control and CCD-18co/ HDFn treated samples. Smaller more 

tightly packed cells would infer an increased abundance of tight junctional complexes 

throughout the model. This observation when referred back to the TEER values gained in 

the previous section correlate well, with HIC treated monolayers having a significantly 

higher TEER value compared to other treated samples whilst still being significantly 

lower when compared to the control samples. 

With a decrease in model TEER measurement, one would expect the overall paracellular 

permeability of the epithelial model to increase. Lucifer yellow was utilised here as a 

marker of paracellular transport. Interestingly, changes in TEER measurement did not 

correlate directly with increases in permeability of lucifer yellow. Significant decreases 

in TEER values did not result in a significantly more “leaky” epithelial models, 

suggesting changes in TEER values are potentially through a different mechanism than 

modulation of tight junction complex integrity or abundance. Although, a non-significant 

increasing trend in permeability is seen with conditioned media samples compared to 

controls.  

 

Addition of KGF to the epithelial layers resulted in a highly significant decrease in TEER, 

whilst also decreasing membrane permeability. This is in contrast to paracrine media 

layers which, whilst non-significantly different from control layers, did show a moderate 

increase in permeability values. The opposite effect when culturing Caco-2 cells with 

KGF suggests that KGF is not the driving factor in conditioned media experiments, with 

apparent differences in mechanistic action. However, these differences could also be due 

to any number of complex small molecule co-interactions present in the conditioned 

media which are not present in the pure KGF spiked samples.  

 

Kim et al (208) conducted a similar experiment whereby they co-cultured Caco-2 

Transwell monolayers with direct and Paracrine CCD-18co conditioned media in addition 
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to adding supplemental KGF to culture media. Their results reflect what is seen in this 

present study whereby CCD-18co conditioned and KGF supplemented media both had 

the effect of reducing TEER values of mature models. Interestingly, the authors also show 

that addition of KGF to culture media results in an increase in Claudin 2 (Tight junctional 

component protein) without any increases in other significant tight junctional proteins 

such as Claudin 1, Occludin or ZO-1. On the surface, increased expression of a tight 

junctional component, resulting in a decreased epithelial resistance, seems to lack sense. 

However, more recent studies of the function of Claudin-2 have implicated it in the 

creation of “leaky” tight junctions through channel formation within the tight junctional 

complexes, making them more permeable to paracellular water flux. (209–211) This 

leakier tight junctional complex could then explain the decreases seen in TEER values of 

myofib conditioned and KGF treated layers. This “leaky” tight junctional complex is 

thought to be permeable to Li+, Na+ and K+ ions in addition to being permeable to water 

molecules less than 2.8Å in diameter.(209) Lucifer yellow has been shown to have a 

diameter of approximately 9.9Å in diameter, (212) and as such would be too large to fit 

through the “leaky” claudin-2 expressing tight junctions. This puts the data found in this 

study into context whereby TEER has been shown to decrease without any significant 

changes in Lucifer Yellow permeability. Increases in claudin-2 expression can also be 

seen in diseases such as IBD, where by the proliferative progenitor cells at the base of the 

intestinal crypt show heighted levels of Claudin-2 expression correlating with an increase 

in the rate of proliferation. (211,213)  

 

The addition of KGF to Caco-2 monolayers has significant effects on the metabolic 

activity of the cells. Indeed, close analysis of the curve created by measuring the change 

in metabolic activity over time shows that KGF prolongs the exponential phase of growth, 

resulting in a significantly higher MTT value after 10 days in culture. Whilst not tested 

in this study my hypothesis would be that the more metabolically active cell layers show 

similarly heightened levels of Claudin-2 expression mediated by KGF paracrine factors.  

Indeed, when looking at growth curves of models grown in conditioned media it was clear 

that addition of CCD-18co conditioned media has a similar effect on metabolic activity 

over time to that seen in the KGF spiked media assays. Interestingly, HIC and HDFn 

conditioned media does not create the same effect, with no significant differences seen 

between the growth curves of those conditions compared to the controls. CCD-18co MTT 
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curves in particular do not reach plateau like values seen in control samples. This could 

suggest the initiation of a proliferative (inflammatory) repair response as discussed 

earlier.  

 

KGF levels secreted into the conditioned media by ELISA was quantified to assess 

changes in secretion amounts between culture conditions. The results show that compared 

to other conditions, CCD-18co cells secrete far more KGF than their HIC and HDFn 

counterparts both in 2D and 3D models (3D model development will be discussed in 

chapter 5). This ties in nicely with the data discussed previously, whereby CCD-18co 

conditioned media experiments have a significantly lowered TEER value, an increased 

MTT growth curve reminiscent of KGF spiked media experiments and a non-significantly 

different passive permeability to lucifer yellow.  

 

Interestingly, when comparing 2D to 3D cultured CCD-18co fibroblasts there is a 

significant decrease in KGF secretion, when normalised to DNA content, down to 

approximately the same levels of KGF secreted by normal (Non-carcinoma origin) human 

cells. 3D culture within Alvetex® therefore appears to be modulating the physiology of a 

cancer derived cell line back into a normal phenotype. Saavedra et al (214) utilised 

Alvetex Scaffold® for the culture of human mesenchymal stem cells (hMSC) in 3D to 

assess the secretome changes of these cells between 2D and 3D conditions. They found 

that significant changes were induced through 3D culture, some small molecules such as 

IGF-1 were shown to increase whilst others such as VEGFR-1, MCP-1 and IL-6 

decreased in 3D culture. In each case they showed that 3D paracrine media has beneficial 

effects on the differentiation of both HUVEC and Osteoclasts into functional tissues, 

highlighting the physiologically relevant changes induced through 3D culture. Other 

studies such as the Melissaridou et al showed that the 3D culture of cells created a more 

mimetic model of cancer growth by enhancing the inherent phenotype of the cells used 

within the model. (215) It could be hypothesised that normal KGF levels within the 

intestine are similar to those secreted by HDFn and HIC cells seen within this study. 

Under this assumption culture of CCD-18co cells in 3D reduces the KGF amount secreted 

to more physiological levels. Indeed, previous studies have shown that cancer cells are 

well known to over express KGF within the intestine.(213,216) For example, Watanabe 

et al showed in their study that 10 out of 12 cases showed significantly increased KGF 
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expression within cancerous tissues compared to normal tissues of the same origin. KGF 

is a known regulator of cell proliferation as discussed previously, and as such is thought 

to have proliferation promoting effects on epithelial cells within cancer tissues, 

potentially contributing to the rapid proliferating cancer phenotype and hence the 

significant effects in Caco-2 cells. Riedl et al (217) recently showed how Colorectal 

adenocarcinoma cell lines, normally utilised for intestinal modelling such as Caco-2 and 

HT29, when grown in 3D spheroids, significantly reduced their proliferative “cancer-

like” phenotype as well as rewiring in signalling and a reduction in the AKT–mTOR–

S6K pathway, known to be important in regulation of the cell cycle.(217,218) To suggest 

that CCD-18co cells “lose” their cancer phenotype based on evidence in this study is 

premature. However, evidence does seem to point to a more physiologically “normal” 

cell compared to their 2D cultured counterparts. 

 

Analysis of KGF ELISA results also shows that when CCD-18co cells are cultured in the 

paracrine media of Caco-2 cells there is a significant reduction in KGF secreted into the 

paracrine media. This decrease is seen in both 2D and 3D cultured cells and is decreased 

proportionally by approximately the same relative amount in each. Evidence of Caco-2 

cross-talk with underlying myofibroblasts is seen throughout the literature. Drygiannakis 

et al studied the effects of Caco-2 conditioned media on myofibroblasts (Human Crohns 

and CCD-18co) paracrine secretion. They found that Caco-2 cells secreted significant 

levels of TGF-β1 without any additional stimuli. (219) This secretion was seen to induce 

modulation of myofibroblast secretome, with changes in MMP-9 and collagen secretion. 

Further to this, Brenmoehl et al showed that TGF-β has differentiation inducing effects 

on sub-epithelial myofibroblasts,(220) with increased levels of smooth muscle actin 

formation in treated cells.. This activation event mediated through TGF-β secretion is 

normally important in tissue repair and remodulation. This study was one of the first to 

show that Caco-2 conditioned media has the effect of decreasing KGF secretion in 

carcinoma derived sub-epithelial myofibroblasts, specifically CCD-18co cells. Whilst not 

shown here it was hypothesised that stimulation of CCD-18co cells by TGF-β1 causes 

CCD-18co cells to differentiate further, expressing greater levels of αSMA and 

decreasing KGF secretion into paracrine media.  
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HIC cells only induced a marginal decrease in TEER values and have no significant 

effects on membrane metabolic activity suggesting any physiological differences between 

control and HIC layers are not induced through the paracrine effects of KGF. This is 

further suggested through analysis of KGF concentration within conditioned media 

samples. Only marginal levels of KGF were detected within HIC conditioned media 

(~KGF concentration of 30-40 pg/ml). 

 

Interestingly, HDFn paracrine co-culture reduces the TEER values of Caco-2 models to 

a similar degree as CCD-18co conditioned media, without the similar changes in 

metabolic activity. KGF ELISA results show only marginal secretion of KGF into HDFn 

conditioned media at levels far lower than those tested in KGF treated samples (~KGF 

concentration of 50 pg/ml). This suggests that the reduction in TEER mediated by HDFn 

conditioned media is not induced through KGF secretion but by some other paracrine 

small molecule. KGF is thought to be secreted in the dermis of the skin but evidence 

shows that heightened levels are only observed in the case where cells are activated in a 

disease state. (221) Canady et al showed through ELISA based detection that normal 

HDFn cells secrete KGF at a rate of approximately 10 pg/ml. Levels very similar to those 

seen in this study. What then could be effecting the Caco-2 layer in such a way to 

significantly reduce TEER?  

 

FGF-10, epidermal growth factor (EGF) and interleukin 6 (IL-6) have all been shown to 

be released by HDFn cells, having effects on the development and maintenance of the 

overlying keratinocyte layers. (222) FGF-10(223) and EGF(224) both are known as 

epithelial mitogens, as such are unlikely to be involved in the phenotypic change seen in 

Caco-2 cells in this study. Interestingly, IL-6 has been shown to modulate Claudin-2 

expression, increasing tight junction permeability similarly to the mechanism induced by 

KGF. (225) Miyake et al showed that IL-6 also has effects on the transport capabilities of 

the Caco-2 membrane, increasing P-gp and MRP mediated transport. (226). The transport 

capabilities of the models will be discussed in further depth in Chapter 7.  
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3.5.5 Understanding the effects of conditioned media and KGF 

spiked media on the relative expression of key junctional and 

transporter proteins as assessed through qPCR analysis of 2D 

Caco-2 layers. 

Quantitative mRNA analysis of Caco-2 layers shows significant changes occur when cells 

are cultured in the paracrine effects of CCD-18co, HIC and HDFn cells. The first analysis 

that was attempted was in understanding the effects of different culture conditions on the 

composition of the tight junction complex. Three mRNA sequences were tested, 

Occludin, Claudin 2 and ZO-1. As discussed previously here Claudin-2 was of particular 

interest due to the hypothesis described earlier whereby KGF enhances the production of 

Claudin-2, increasing the permeability of the resultant tight junction to ions and small 

water soluble compounds. What was discovered however was the converse with KGF 

treated layers having significantly less Claudin-2 mRNA in comparison to control levels.  

 

Whilst this at first may seem to disprove the hypothesis formulated here it is important to 

remember that mRNA analysis of lysed samples provides only a single snapshot of the 

cells expression levels. Essentially, mRNA levels do not always reflect the abundance of 

a particular protein within a cells. For example, data shown earlier in this work shows 

that tight junctions formation between Caco-2 cells begins immediately upon cell contact, 

with even sub-confluent populations of cells showing strong expression of Occludin, a 

key tight junctional component between adjacent cells. By 21 days in culture one would 

expect tight junctions to be completely constructed through the cells. As such any new 

mRNA translation would be to maintain expression levels rather than creating new 

junctions.  Indeed, Claudin-2 has been shown to be a relatively long lived tight junctional 

component with Van Itallie et al (227) demonstrating how the cytoplasmic tail of Claudin-

2 is important in the proteins longevity, with a half-life in excess of three times that of 

Claudin 4. These could have significant effects on the levels of mRNA expression within 

the cells with lower levels not necessarily representing true protein abundance.  
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Expression levels of important efflux proteins such as MDR1, MRP1 and MRP2 also 

showed significant variation between models with conditions often showing the largest 

changed in relative mRNA whereas HIC conditioned media either resulted in no 

significant differences or a reduction relative to the control. MDR1 levels were seen to 

drastically and significantly increase in the presence of KGF supporting the conclusion 

that KGF is important in the maturation and differentiation in the intestinal epithelium. 

MDR1/ P-gp levels are generally thought to be under expressed in the Caco-2 layer. An 

increase in the amount of P-gp present within the Caco-2 layer has implications in the 

functionality of the resultant models, allowing for more sensitive assays for the detection 

of potential substrate of P-gp in the human intestine. Potentially, heighted P-gp levels 

could identify compounds which fall under the functional detection range of current 

models.  

 

Analysis of both mRNA expression levels and protein abundance through western blot 

would give a more representative idea of the mechanisms within the cells resulting in the 

observed changes in phenotype. Often these mechanisms are far too complex to get a 

definitive answer without utilising multiple methods of analysis and testing the models 

through multiple mechanisms. The mRNA analysis done here is simply a first step in this 

process and could not be justified utilised as standalone data.  

 

3.6 Conclusion 

A complete understanding the complexity of the formation, maintenance and 

differentiation of Caco-2 cells in addition to intestinal epithelia in general is far beyond 

the scope of this work. What was shown here is that the paracrine secretome of intestinal 

fibroblasts, both of normal and carcinoma origins along with general skin fibroblasts can 

have significant effects on epithelial structure, TEER values of a membrane, cellular 

metabolism and on the expression of functional mRNAs important in the production of 

key tight junctional and functional efflux transporter proteins. It was postulated that KGF 

was one of the paracrine influences having a significant effect on the above phenotypes. 

It was found that KGF does indeed have many of the same effects as conditioned media 

samples and that CCD-18co cells were able to secrete KGF at physiological 

concentrations into the conditioned media. Differences were seen on further downstream 
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analysis between conditioned media samples and pure KGF spiked media conditions, 

suggesting that whilst KGF does have an important role to play, at least in CCD-18co 

conditioned media samples, it is not the only paracrine factor which is having effects on 

the epithelial phenotype. HDFn and HIC mechanistic action is more difficult to identify 

with only small amounts of secreted KGF detected in conditioned media samples. Indeed, 

without a large scale broad study of the paracrine media, finding potential candidates is 

largely a matter of careful reading of past literature and, to a greater scale, luck. 

 

Further work in this area should include said broad, large scale analysis of the fibroblast 

secretome, perhaps through modern sequencing techniques, in order to precisely identify 

potential candidates for further analysis and quantification. Additionally, further work 

could be done on the quantification of total protein levels through western blot analysis 

alongside qPCR analysis to understand the proteome of the modified Caco-2 layer.  
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4. Epithelial - Goblet cell co-culture and its effect on model 

function. 

4.1 Introduction 

Many attempts over the past decade have been made to improve the standardised Caco-2 

models in such a way to increase the relevance of Caco-2 studies whilst maintaining the 

high throughput nature of the assay and its low cost. As the described in the previous 

chapter, one simple way of achieving this is through the paracrine action of tissue specific 

fibroblasts on the development of the epithelial membrane. Another strategy is through 

the addition of other cell lines with distinct functions to the Caco-2 cellular models at the 

appropriate physiological ratios. The addition of goblet cells is one of the main areas in 

which this concept has been applied. 

 

4.1.1 Understanding the structure of the mucus layer and its 

importance on the functional aspects of the human intestine. 

The goblet cells and the associated mucous layer is highly variable dependant on the 

region of the intestine studied. Structurally the mucus layer changes in distinctive ways 

from the proximal small intestine to the distal colon, with the changes in structure 

correlating with distinct changes in function. (129) The small intestine mucus is primarily 

formed of MUC2 and forms a single layer over the surface of the villus tips. This mucus 

layer is not impermeable to bacteria as the small intestine requires ease of movement of 

soluble nutrient to facilitate uptake into the body. (91) Instead, this single layer of mucus 

is populated with secreted antimicrobial proteins and peptides in order to limit enterocyte/ 

bacterial contact. In contrast the colon consists of an outer mucus layer which is home to 

many commensal bacterial populations with an inner layer which is essentially acellular. 

(54)  

 

Very generally, the mucus layer is important in a number of key functions of the intestine, 

namely as a matrix for the colonisation of bacteria away from the surface epithelial layer, 

maintaining a sterile layer immediately above the epithelial layer and in the controlled 
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absorption/ as a barrier to macromolecules.(91) Indeed, the mucous layer has been 

demonstrated repeatedly to be highly important in assessing the absorption kinetics of 

drug compounds into the blood stream. (228–231) 

 

The mucous produced within the intestine is composed of proteins known as mucins 

which can be further categorised in to 2 main types; 1. Transmembrane and 2. Secretory 

mucins. Transmembrane mucins are created by enterocytes and, as the name suggests, 

are anchored to the enterocyte apical membrane. The exact function of the transmembrane 

mucins within the body is poorly understood. Enterocytic transmembrane proteins such 

as MUC3 (232), 13, 12 and 17 are most likely to form a physical absorption barrier to 

large macromolecules, not readily absorbed by the intestinal epithelium and are almost 

certainly the components which make up the Glycocalyx in the intestine. (56,233) 

Additionally, it is thought that the cytoplasmic domains of these transmembrane proteins 

interact with signalling pathways within the enterocyte cytoplasm which are involved in 

the apical membrane organisation, inflammation, differentiation, apoptosis and ion 

channel presentation. (234,235) This suggests that these transmembrane mucins may be 

utilised as a primitive sense organ, allowing for some dynamic, active, remodelling 

dependant on cellular environment. Interestingly, regarding the immune component of 

mucins there is further evidence to support the hypothesis that resident probiotic microbes 

within the intestine may also be important in the intestines innate immunity through their 

ability to induce mucin secretion in the presence of competing pathogenic organisms. 

(236) The transmembrane mucins have been shown to contain with extracellular domains 

able to bind bacteria, initiating a shedding of affected mucin complexes and the 

stimulation of an inflammatory response. (234,237) 

 

4.1.2 Limitations of the Caco-2 system to model the effects of 

mucus on the drug pharmacokinetics and methods to more 

accurately mimic the intestinal epithelium.  

Caco-2 cells have been shown to produce a very small, if any, amount of mucous. (238) 

Therefore, in its gold standard format, the Caco-2 cell assay poorly recapitulates the 

mucous layer of the intestine, lacking structure and the complex cocktail of mucin 
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proteins produced by true goblet cell lineages and hence the complex signalling 

environment created by a mucous membrane. (239)  

 

The HT29-MTX cell line is a methotrexate treated sub-population of the parental HT29 

population.(240) This line is known to exhibit goblet cells “like” characteristics with 

ample mucous production seen in standard cell culture conditions.(241,242) The benefit 

of this cell line lies in its easy availability and reproduction, making it a valuable tool for 

application into standardised epithelial models. Since the protocol for its formation was 

published in the early 90s, HT29-MTX cells have been explored as potential co-culture 

candidates with Caco-2 cells quite extensively with the aim of creating an epithelial 

construct with absorptive and mucus barrier functions. Careful optimisation and 

calibration of culture conditions is required in co-culture systems in order to maintain the 

correct cellular ratios throughout the culture period and in the final models. Many 

differing methods have been developed to tackle this with the simplest such as in the 

study by Hilgendorf et al (161) where they create the co-culture models through ratio 

seeding of Caco-2 and HT29-MTX cells at day 0 of the model culture period. Also in the 

study by  Lozoya-Agullo et al (131) where they did the same at a 90:10 Caco-2 to HT29-

MTX ratio. Even these simple culture methods however resulted in a stepwise decrease 

in TEER in models with higher HT29-MTX content with an increasing permeability to 

passive absorption test compounds as the percentage of Caco-2 cells per model decreased. 

Unfortunately, neither of the authors quantified the absolute levels of HT29-MTX cells 

in the end culture so it is impossible to know if the original seeding ratios were maintained 

throughout the culture period.  

 

More complex culture methodologies such as that by Béduneau et al (243) focus on the 

addition of HT29-MTX cells at different stages of development of the Caco-2 epithelial 

constructs. This method is able to create models with decreasing TEER with increasing 

levels of HT29-MTX and changes in the functional permeability of the resultant model  

in the same way as day 0 ratio culture achieves. Whilst the authors here did attempt to 

quantify the extent of HT29-MTX cells in the end cultures, primarily through p-gp 

expression rates, no definitive test has been created which can give definite cellular ratios 

in co-culture intestinal equivalents. The addition of further complexity to this co-culture 

model is highly limited in the literature, with a few examples attempting to add an 
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immune component to the epithelial models, (131) in understanding the complex cross 

talk between bacterial populations and intestinal epithelial layers (244,245) or in 

fibroblast effects on goblet cell morphology. However, regardless of the culture 

methodology widespread adoption of a Caco-2/ HT29-MTX model of the intestinal 

epithelium is still unfortunately limited. New methods for the formation of co-culture 

models which can reliably form constructs with defined cellular ratios are required before 

extensive use can be expected. 

 

As shown in the previous chapter addition of fibroblast conditioned media can have 

distinct effects on the physiology and function of intestinal epithelial cells, namely Caco-

2. Examples of co-culture models of Caco-2/ HT29-MTX cells with influences from 

fibroblast conditioned media are lacking in the literature. The novel aspect of this chapter 

is in the attempted creation of  a reliable intestinal model incorporating goblet cell 

morphology through ratio based seeding techniques and co-culture with conditioned 

media from CCD-18co fibroblast cells.  
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4.2 Hypothesis, Aims and Objectives 

4.2.1 Hypothesis 

It is hypothesised that the co-culture of Caco-2 cells with HT29-MTX “goblet-like” 

epithelial cells will result in an epithelial construct with improved functional capabilities 

over current Caco-2 gold standards. Further to this it is hypothesised that paracrine factors 

from CCD-18co fibroblast cells will improve overall model morphology and functional 

characteristics. 

 

4.2.2 Aims 

The aims of this chapter were to create an epithelial co-culture model of the intestinal 

epithelium, incorporating both Caco-2 enterocytes and HT29-MTX “goblet” cells and 

assessing the effects of paracrine media on the formation of the enterocyte/ goblet cell 

co-cultures. Resultant models were to be assessed in terms of both structure and function. 

E.g. mucous production 

 

4.2.3 Objectives 

 

The objectives of this chapter are summarised below; 

• Assess changes in TEER values caused by goblet cell co-culture and CCD-18co 

paracrine media. 

• Structurally assess resultant models through H+E staining and mucous production 

rates by PAS staining. 

• Immuno-characterisation of key junctional and transporter proteins.  

• TEM ultra-structure analysis. 

• qPCR quantification of relative expression of key genes of interest involved in 

junction formation and transporter protein expression. 

• Functional assessment of co-culture models through Rhodamine 123 transport. 

 



Chapter 4 – Goblet cell co-culture model of the intestinal epithelium  

Page | 198 

 

4.3 Materials and Methods 

4.3.1 Generation of epithelial co-culture models consisting of 

Caco-2 and HT29-MTX cells. 

Caco-2 and HT29-MTX cells were passaged and counted as previously described 

(Section 2.2). 250,000 cells were seeded per Snapwell Transwell insert in 500μl of pre-

warmed DMEM. The number of models was calculated before hand and a master mix of 

seeding solution was prepared to reduce the variability between models of a single batch. 

500μl of seeding solution containing Caco-2 and HT29-MTX cells at the correct seeding 

density and ratio was added to the apical compartment of the Snapwell Transwell and 3ml 

of DMEM is added to the outside compartment. Models were incubated for 21-25 days 

before analysis with media changes occurring every two days. TEER measurements were 

C
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Figure 4.1: Schematic diagram of the process for the set up and culture of Caco-2/ HT29-MTX 

co-culture mucus models of the intestinal epithelium – Caco-2 and HT29-MTX cells are 

trypsinised as normal and placed at the correct proportions into a cell mix. Cells are diluted to 250 

000 total cells/ 500μl and cultured in Snapwell inserts 

Caco-2 

HT29-MTX 
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taken throughout the culture assay when required or immediately before analysis. TEER 

measurements were taken as previously described (Section 2.16) 

 

For CCD-18co paracrine co-culture, models are initially set up as described above. CCD-

18co paracrine conditioned media is created as previously described (Section 2.12) before 

being added to the models after an initial 2 days of culture in normal DMEM to allow for 

establishment of cells onto the Transwell surface. CCD-18co media is replaced every two 

days for a growth period of 21-25 days.  

 

4.3.2 H&E, PAS staining of sectioned and wholemount Caco-2/ 

HT29-MTX co-culture models. 

Epithelial co-culture models were fixed in PFA, embedded and sectioned as previously 

described (Section 2.3.1). For sectioned slides H&E and PAS staining was also as 

previously described (Section 2.5.1 and 2.5.2 respectively). Whole mount staining was 

achieved utilising the previously described (Section 2.4.3). Briefly, all processing and 

staining steps were done with the Transwell still attached to the Snapwell insert. Samples 

were fixed in 4%PFA before being dehydrated through ethanol, incubated in Histoclear 

and rehydrated. This step was done to reasonably limit any variations in staining colour/ 

intensity when comparing against paraffin embedded sectioned samples which must go 

through the previous steps. H&E or PAS staining was then done following a normal 

protocol as described previously. Stained Transwell models were removed from Snapwell 

inserts immediately prior to mounting on a standard Super frost microscope slide. After 

mounting of the sample, gentle pressure was applied to the slide whilst drying in order to 

ensure Transwell layers remained flat against the glass.  

 

4.3.3 Toludine blue staining of epithelial co-culture models. 

Samples were processed into resin as previously described in the main methods sections 

(Section 2.7). Semi-thin (1μm) sections were placed onto a glass slide suspended in water 

before being heat dried using a medium heat hot plate. Once dry samples were stained by 

addition of one drop of Toludine Blue (pH 2-2.5) for a period of 2 minutes. Stained 
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sections were washed well with distilled water until the slide and water ran off clear. 

Slides were dehydrated, cleared and mounted utilising normal protocols.  

 

4.3.4 TEM analysis of Caco-2/ HT29-MTX co-culture 

constructs. 

Samples were processed into resin as previously described (Section 2.7) before sectioned 

ultra-thin and transferred to copper grids. Copper grids were then double contrast stained 

with Uranyl Acetate and Lead citrate before being imaged on (H7600 TEM) 

 

4.3.5 qPCR analysis of Snapwell Transwell epithelial co-

culture constructs. 

Samples were processed as described previously (Section 2.9). RNA was isolated and 

quality checked utilising a nanodrop spectrometer. RNA was immediately converted into 

cDNA and stored at -20oC. A SYBR detection system was used. 

 

4.3.6 Rhodamine 123 transport analysis of epithelial co-culture 

constructs. 

Snapwell epithelial construct were removed from culture after 21-25 days and first 

washed gently in PBS to remove remaining media. Inserts were carefully added into the 

Ussing system into CH8 chambers specifically designed for use with Snapwell inserts. 

15ml of prewarmed HBSS containing 1g glucose per litre, which will be referred to as 

Transport media from here onwards, was added to each side of the Ussing chamber 

reservoirs. 95% O2 5% CO2 was gently bubbled through the HBSS. The entire equipment 

set up was maintained at 37oC through use of a circulating water bath and a fluid jacket. 

Models were left in the chamber for a minimum of 30 minutes to allow for full 

acclimatisation. Rhodamine 123 was then added to the donor compartment to create a 

final concentration of 5μM. Samples were taken from the receiver reservoir at 60 minute 

intervals. Any volume removed was replaced with fresh transport media. 
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Figure 4.2: Schematic diagram of the process for the set-up of Caco-2 co-culture models within 

an Ussing chamber system – The systems consists of two reservoirs encircled by a circulating water 

bath maintaining an constant 37oC. Analyte of interest is added to either of the reservoirs dependant 

on the experiment (B-A or A-B). Carbogen gas is bubbled through the reservoirs to both oxygenate 

and circulate the system. Models are placed in a chamber system attaching to the reservoirs providing 

a singular interface between reservoirs. Samples are taken after set time points with any volume 

removed being replaces so as not to induce pressure changes between chambers. 
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4.4 Results 

4.4.1 Trans-epithelial resistance measurements of Caco-

2:HT29-MTX co-cultures and the effects of CCD-18co 

conditioned media on resultant co-culture layers. 

Caco-2 cells were co-cultured in a number of key ratios, determined through analysis of 

histological section of Human intestine, with HT29-MTX cells on Snapwell Transwell. 

Figure 4.2 shows the data gained from analysis of TEER of resultant Transwell models 

over the course of 21 days culture. As seen previously untreated Caco-2 layers show a 

relatively linear phase of growth with a short lag phase before a rapid increase in TEER 

values between days 6 and 16 followed by a final plateau until 21 days in culture. Final 

TEER values of untreated Caco-2 layers as similar to that as seen previously at 

approximately 2000-2500 ohms (Figure 4.2 A) 

 

The addition of HT29-MTX cells to the Caco-2 layers results in a significant decrease in 

TEER values throughout the course of the culture period with maximal 21 day TEER 

values of 1200 and 1000 ohms in 90 and 80% Caco-2: HT29-MTX co-cultures 

respectively. The curve generated through analysis of co-culture TEER over the 21 day 

culture period results in a trend line with a linear increase in TEER values over time with 

less pronounces lag, log and plateau phases. Culture of HT29-MTX cells alone results in 

a maximal TEER value of <100 ohms, significantly less than Caco-2 cells (Figure 4.2D) 

The addition of CCD-18co conditioned media to the co-culture Transwell layers has 

differential effects depending on the ratio of HT29-MTX cells which are present in the 

culture. Caco-2 cells control models show a similar phenotype as to that shown earlier in 

the previous chapter (Figure 3.9) with a significant decrease in measured TEER values 

under conditioned media conditions. Conversely, the addition of CCD-18co conditioned 

media to Caco-2: HT29-MTX co-culture layers results in a significant increase in the 

resultant models measured TEER values over control values of the same cellular ratios. 

Figure 4.2 B shows a consistent, stable increase in TEER value of between 500 and 1000 

ohms over the 90% control after day 6 in culture. Figure 4.2 C shows a trend in the 80% 
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co-culture with an increase in TEER values over the control samples consistently 

throughout the course of the 21 day co-culture. By day 21 the difference in TEER values 

between the control and CCD-18co treated samples is approximately double that of the 

control. HT29-MTX cells grown in the paracrine presence of CCD-18co fibroblasts 

shows a significantly increased TEER value over the HT29-MTX control. 21 day HT29-

MTX co-cultures ended with a TEER value of approximately 2000 ohms in comparison 

to the less than 1000 ohms of the control samples. Interestingly, the TEER values of the 

treated HT29-MTX co-culture was very similar to that of the Caco-2/ CCD-18co 

paracrine culture suggesting a change from a goblet cell phenotype to one more similar 

to that of a standard enterocyte.  

 

Figure 4.3 shows the different culture conditions compared to one another, both in control 

and CCD-18co paracrine conditions. Figure 4.3 A, shows the stepwise decrease in TEER 

values induced through co-culture of Caco-2 cells with HT29-MTX without the effects 

of paracrine media. As can be seen, increasing levels of HT29-MTX presence directly 

correlates with a decrease in overall TEER value of the models. Figure 4.3 B shows the 

effects of the same ratios together with CCD-18co paracrine media. As seen be seen the 

result of this effective triple co-culture is the convergence of TEER values to a similar 

level in each condition regardless of the HT29-MTX ratio in the models.  
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A B 

C D 

Figure 4.3: Caco-2/ HT29-MTX co-culture decreases the TEER values of resultant epithelial 

constructs – A) 100% Caco-2, B) 90%/10% Caco-2/ HT29-MTX, C) 80%/20% Caco-2/HT29-MTX, 

D) 0%/100% Caco-2/ HT29-MTX. All cellular ratios were performed in the presence (+) and absence 

(-) of CCD-18co conditioned media. Addition of CCD-18co paracrine media to HT29-MTX cells 

results in an increase in the TEER levels of the resultant model. The converse is true in Caco-2 

monocultures which decrease in TEER. n=3-6 from a minimum of 3 independent experiments. 

Significant differences calculated by one way ANOVA with Tukeys post-test analysis *** = P<0.0001, 

** = P<0.001, * = P< 0.01. (Tables 4.1) Error bars represent ±SEM of average values. 
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Figure 4.4: CCD-18co paracrine co-culture with Caco-2/ HT29-MTX epithelial constructs 

increases TEER values compared to non-treated controls  – A) Co-cultures without the presence 

of CCD-18co conditioned media. Co-culture layers show increasing TEER values over time with 

maximal TEER values decreasing correlating to increased HT29-MTX proportion.  B) Co-culture 

Transwell models in the presence of CCD-18co conditioned media show increased TEER compared 

to control layers. Treated models show approximately double the TEER values of control 

conditions. n=4-8 N=from a minimum of 4 independent experiments. Error bars represent ±SEM 

of average values. 

A 

B 
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Caco-2 Day 8 vs Caco-2 Day 14 * 90%/10% Day 8 vs Caco-2 CCD+ Day 14 *** 80%/20% Day 14 vs 80%/20% CCD+ Day 14 * 

Caco-2 Day 8 vs Caco-2 Day 20 *** 90%/10% Day 8 vs Caco-2 CCD+ Day 20 *** 80%/20% Day 14 vs 80%/20% CCD+ Day 20 *** 

Caco-2 Day 8 vs 80%/20% Day 8 ** 90%/10% Day 8 vs 90%/10% CCD+ Day 14 ** 80%/20% Day 14 vs HT29-MTX CCD+ Day 20 *** 

Caco-2 Day 8 vs HT29-MTX Day 8 ** 90%/10% Day 8 vs 90%/10% CCD+ Day 20 *** HT29-MTX Day 8 vs Caco-2 CCD+ Day 8 *** 

Caco-2 Day 14 vs 90%/10% Day 8 *** 90%/10% Day 8 vs 80%/20% CCD+ Day 14 ** HT29-MTX Day 8 vs Caco-2 CCD+ Day 14 *** 

Caco-2 Day 14 vs 90%/10%Day 14 *** 90%/10% Day 8 vs 80%/20% CCD+ Day 20 *** HT29-MTX Day 8 vs Caco-2 CCD+ Day 20 *** 

Caco-2 Day 14 vs 80%/20% Day 8 *** 90%/10% Day 8 vs HT29-MTX CCD+ Day 14 * HT29-MTX Day 8 vs 90%/10% CCD+ Day 14 *** 

Caco-2 Day 14 vs 80%/20% Day 14 *** 90%/10% Day 8 vs HT29-MTX CCD+ Day 20 *** HT29-MTX Day 8 vs 90%/10% CCD+ Day 20 *** 

Caco-2 Day 14 vs HT29-MTX Day 8 *** 90%/10%Day 14 vs Caco-2 CCD+ Day 14 *** HT29-MTX Day 8 vs 80%/20% CCD+ Day 14 *** 

Caco-2 Day 14 vs HT29-MTX Day 14 *** 90%/10%Day 14 vs Caco-2 CCD+ Day 20 ** HT29-MTX Day 8 vs 80%/20% CCD+ Day 20 *** 

Caco-2 Day 14 vs HT29-MTX Day 20 ** 90%/10%Day 14 vs 90%/10% CCD+ Day 14 * HT29-MTX Day 8 vs HT29-MTX CCD+ Day 14 ** 

Caco-2 Day 14 vs 90%/10% CCD+ Day 8 ** 90%/10%Day 14 vs 90%/10% CCD+ Day 20 ** HT29-MTX Day 8 vs HT29-MTX CCD+ Day 20 *** 

Caco-2 Day 14 vs 80%/20% CCD+ Day 8 * 90%/10%Day 14 vs 80%/20% CCD+ Day 20 *** HT29-MTX Day 14 vs Caco-2 CCD+ Day 14 *** 

Caco-2 Day 14 vs HT29-MTX CCD+ Day 8 *** 90%/10%Day 14 vs HT29-MTX CCD+ Day 20 ** HT29-MTX Day 14 vs Caco-2 CCD+ Day 20 ** 

Caco-2 Day 20 vs 90%/10% Day 8 *** 90%/10% Day 20 vs 80%/20% Day 8 * HT29-MTX Day 14 vs 90%/10% CCD+ Day 14 * 

Caco-2 Day 20 vs 90%/10%Day 14 *** 90%/10% Day 20 vs HT29-MTX Day 8 * HT29-MTX Day 14 vs 90%/10% CCD+ Day 20 *** 

Caco-2 Day 20 vs 90%/10% Day 20 ** 80%/20% Day 8 vs Caco-2 CCD+ Day 8 *** HT29-MTX Day 14 vs 80%/20% CCD+ Day 14 * 

Caco-2 Day 20 vs 80%/20% Day 8 *** 80%/20% Day 8 vs Caco-2 CCD+ Day 14 *** HT29-MTX Day 14 vs 80%/20% CCD+ Day 20 *** 

Caco-2 Day 20 vs 80%/20% Day 14 *** 80%/20% Day 8 vs Caco-2 CCD+ Day 20 *** HT29-MTX Day 14 vs HT29-MTX CCD+ Day 20 *** 

Caco-2 Day 20 vs 80%/20% Day 20 ** 80%/20% Day 8 vs 90%/10% CCD+ Day 14 *** Caco-2 CCD+ Day 8 vs HT29-MTX CCD+ Day 8 ** 

Caco-2 Day 20 vs HT29-MTX Day 8 *** 80%/20% Day 8 vs 90%/10% CCD+ Day 20 *** Caco-2 CCD+ Day 14 vs HT29-MTX CCD+ Day 8 *** 

Caco-2 Day 20 vs HT29-MTX Day 14 *** 80%/20% Day 8 vs 80%/20% CCD+ Day 14 *** Caco-2 CCD+ Day 20 vs HT29-MTX CCD+ Day 8 *** 

Caco-2 Day 20 vs HT29-MTX Day 20 *** 80%/20% Day 8 vs 80%/20% CCD+ Day 20 *** 90%/10% CCD+ Day 14 vs HT29-MTX CCD+ Day 8 ** 

Caco-2 Day 20 vs Caco-2 CCD+ Day 8 *** 80%/20% Day 8 vs HT29-MTX CCD+ Day 14 ** 90%/10% CCD+ Day 20 vs HT29-MTX CCD+ Day 8 *** 

Caco-2 Day 20 vs 90%/10% CCD+ Day 8 *** 80%/20% Day 8 vs HT29-MTX CCD+ Day 20 *** 80%/20% CCD+ Day 14 vs HT29-MTX CCD+ Day 8 ** 

Caco-2 Day 20 vs 80%/20% CCD+ Day 8 *** 80%/20% Day 14 vs Caco-2 CCD+ Day 14 *** 80%/20% CCD+ Day 20 vs HT29-MTX CCD+ Day 8 *** 

Caco-2 Day 20 vs HT29-MTX CCD+ Day 8 *** 80%/20% Day 14 vs Caco-2 CCD+ Day 20 *** HT29-MTX CCD+ Day 8 vs HT29-MTX CCD+ Day 14 * 

Caco-2 Day 20 vs HT29-MTX CCD+ Day 14 ** 80%/20% Day 14 vs 90%/10% CCD+ Day 14 ** HT29-MTX CCD+ Day 8 vs HT29-MTX CCD+ Day 20 *** 

90%/10% Day 8 vs Caco-2 CCD+ Day 8 ** 80%/20% Day 14 vs 90%/10% CCD+ Day 20 *** 
  

 
Table 4.1: Significancy calculation between TEER values measured in epithelial co-culture Transwell models of the intestinal epithelium - Significancy 

was calculated by one way ANOVA with Tukeys post-test analysis with 95% confidence rating. *** = P<0.0005, ** = P<0.005, * = P< 0.05. Only days 8, 14 and 

20 were used in significancy calculations. n=4-8 N=4-8 
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4.4.2 Histological investigation of Caco-2:HT29-MTX 2D co-

culture on Snapwell Transwell membranes. 

Figure 4.4 shows the H&E stained models of Caco-2 (Figure 4.4 A, D & G), 90:10 Caco-

2: HT29-MTX (Figure 4.4 B, E & H) and  HT29-MTX (Figure 4.4 C, F & I).  

 

Histologically, Caco-2 control membranes exhibit a flattened squamous monolayer 

morphology which is consistent through the length of the samples (Figure 4.4 A, D). 

Figure 4.4 G shows the top down stained model membrane. Staining is consistent over 

the entire samples with little heterogeneity, as would be expected from a single cell type 

phenotype. Conversely, figure 4.4 B & E shows the 90:10 co-culture membranes. It can 

be clearly shown that two cell types are present in this sample with the Caco-2 cells 

having weaker cytoplasmic staining when compared to HT29-MTX cells in addition to 

being far flatter than their goblet cell comparisons. Interestingly, the Caco-2 cells, even 

when non-adjacent to goblet cells, appear taller in co-culture samples than the controls.  

 

Figure 4.4 H shows the top down staining of 90:10 co-culture model membranes. Goblet 

cells can be seen to be growing in island colonies within the Caco-2 cell monolayer. 

HT29-MTX cells appear to take up a larger proportion of the final cell model area than 

the 90:10 original culture ratio would suggest. Therefore, it can be inferred that HT29-

MTX cells grown within 2D co-culture Transwell models grow at a faster rate than the 

Caco-2 cells, overtaking then in the areas in which they are seeded.  

 

HT29-MTX monocultures grown on Snapwell Transwell exhibit a heightened cell 

morphology when compared to Caco-2 controls (Figure 4.4 C & F). This heightened layer 

is shown to have basally located nuclei with large, strongly staining vacuole like 

structures located apically to the nuclei. Figure 4.4 I, shows the top down staining of 

HT29-MTX monolayers. These stain strongly with eosin to produce a deeper purple stain 

than compared to Caco-2 monolayers. Areas of darker staining indicate places of mucous 

build up, released by the HT29-MTX goblet cell like membrane. 
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Figure 4.5 shows the Periodic acid Schiff (PAS) staining of the same Caco-2 control, 

90:10 Caco-2: HT29-MTX co-culture and HT29-MTX control layers previously. Figure 

4.5 A & D shows that control Caco-2 layers have weak staining for acidified 

mucosubstances, the PAS positive staining target. Figure 4.5 G confirms that Caco-2 cells 

are naturally weakly positive for acidified mucosubstances, potentially indicating a 

limited ability for Caco-2 cells to express membrane bound and secreted mucins.  

 

The 90:10 Caco-2: HT29-MTX co-cultures show areas of weak PAS staining and areas 

of strong positive staining, with the strong staining isolated to the taller with more densely 

stained cytoplasm, as seen by H+E staining in Figure 4.5 B, E & H and hypothesised to 

be the goblet cells in culture. The Caco-2 cells in this model don’t appear to express 

acidified muco-substances at a higher rate than in the control samples.  Figure 4.5 H, 

shows the wholemount staining of Caco-2: HT29-MTX co-culture. It is clear from the 

image that the staining of  the co-culture model is significantly stronger than the staining 

seen in the Caco-2 monoculture control models.  Additionally, the staining is seen in  a 

heterogenous manner with areas of light and dark staining within the epithelial layers.  

Finally,  Figure 4.5 C & F show strong PAS stained cells with a  heightened cell 

morphology.  When looking at the whole mount staining of this sample (Figure 4.5 I) it 

is clear to see a significantly darker stained homogenous layer of cells within the model.
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Figure 4.5: Caco-2:HT29-MTX epithelial co-cultures shows significant differences in cellular morphology between models – H+E stained sections of 21 day matured 

Caco-2: HT29-MTX co-cultures on Transwell polyester membranes. A) 100% Caco-2, B) 90% Caco-2 with 10% HT29-MTX, C) 100% HT29-MTX. Samples were fixed 

in 4% Formalin overnight before dehydration and embedding in wax. HT29-MTX goblet cells show increased cell height and polarisation with clear basally located nuclei. 

Caco-2 cells exhibit a flattened squamous cell morphology with little polarisation evident. 90:10 Caco-2 HT29-MTX co-culture appears to improve the structural 

morphology of caco-2 cells with a moderately more polarised cuboidal cell phenotype. Sections were cut at a thickness of 5μm.  Images are representative of a minimum 

of 3 independent observations. Scale 25μm. 
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Figure 4.6: Mucous staining in Caco-2:HT29-MTX epithelial co-cultures – Periodic acid Schiff (PAS) stained sections of 21 day matured Caco-2: HT29-MTX co-

cultures on Transwell polyester membranes. A) 100% Caco-2, B) 90% Caco-2 with 10% HT29-MTX, C) 100% HT29-MTX. D-F) Sectioned samples of the corresponding 

model co-cultures. G-J) Top down viewed wholemount stained samples of corresponding co-culture models. Samples were fixed in 4% Formalin overnight before dehydration 

and embedding in wax. Pas staining intensity can be seen to increase with increasing proportion of HT29-MTX cells into the co-culture models. PAS stained goblet cells can 

be easily identifiable in sectioned samples of the models by intense PAS staining compared to less intensely stained Caco-2 cells. Control layers of Caco-2 monocultures 

show weak PAS staining indicating low levels of mucin production.  Sections were cut at a thickness of 5μm. Images are representative of a minimum of 3 independent 

observations. Scale 25μm 
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4.4.3 Understanding the effects of CCD-18co paracrine culture 

on the development of Caco-2/HT29-MTX co-culture 

Snapwell® membranes. 

Figure 4.6 shows the H&E stained layers of Caco-2 and HT29-MTX when cultured in the 

presence of CCD-18co conditioned media. Figure 4.6 A, B & C, shows a low powered 

magnification of the Caco-2 (Figure 4.6 A), 90/10 Caco-2/ HT29-MTX co-culture (Figure 

4.6 B) and HT29-MTX (Figure 4.6 C). In each instance the cells express a flattened or 

cuboidal cell morphology with no obvious goblet cell like morphologies in any of the 

conditions. Caco-2 cells when treated with CCD-18co paracrine media do not appear 

significantly different in structure from control samples. However, HT29-MTX cells 

become significantly shorter than their control counterparts, with no obvious goblet cell 

phenotype as seen in Figure 4.4 C & F.  

 

When looking at a wholemount perspective, Caco-2 monolayers treated with CCD-18co 

paracrine media do not look significantly different from their control counterparts with a 

normal cobble-stone distribution of approximately equal size cells. A similar phenotype 

can be seen in 90/10 Caco-2/ HT29-MTX samples (Figure 4.6 H) with a reasonably 

homogenous epithelial layer observed. On close inspection some differences can be seen 

throughout the layer betraying the presence of the HT29-MTX cells. However, when 

compared to no CCD-18co treated control layers (Figure 4.4 H) the differences are 

significant with HT29-MTX cells in control layers easily distinguishable compared to 

treated models. Finally, H&E staining of treated HT29-MTX monocultures (Figure 4.6 I) 

shows a significantly less homogenous structure compared to control models (Figure 4.4 

I). Cells appear to form a uniform monolayer across the surface of the Transwell 

Snapwell®  insert with areas of doming, similar to what is seen in Caco-2 monolayers 

cultured on non-permeable membranes.  In this instance it is more likely to be areas on 

higher mucous production.  

 

Figure 4.7 shows the effects of CCD-18co paracrine treatment on the mucous production 

of the resultant epithelial models assessed by PAS staining. Structurally there is no 

differences seen in these Periodic acid Schiff stained samples over those stained for H&E. 
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Firstly, looking at the transverse sections it was shown that the levels of positive PAS 

staining is not noticeably different between any of the epithelial co-culture conditions. 

Wholemount staining of the epithelial constructs does show differences in PAS staining 

across the surface of the monolayers. Similarly to untreated conditions, increasing 

staining presence is seen with increasing proportion of HT29-MTX cells added into the 

culture. However, what should be noted is that compared to control layers (Figure 4.5) , 

treated cultures express significantly less mucous production.  

 

Figure 4.7 H, shows PAS specifically staining populations of HT29-MTX cells which are 

growing in isolated colonies as seen in control layers.  HT29-MTX monocultures shows 

a highly heterogeneric surface expression of mucin elements, with higher levels of 

staining seen primarily in the areas identified earlier  as likely to be areas of mucous 

production. 
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Figure 4.7: CCD-18co effects on Caco-2:HT29-MTX epithelial co-cultures – H&E stained sections of 21 day matured Caco-2: HT29-MTX co  on Transwell polyester 

membranes. A) 100% Caco-2, B) 90% Caco-2 with 10% HT29-MTX, C) 100% HT29-MTX. D-F) Sectioned samples of the corresponding model co-cultures. G-J) Top 

down viewed wholemount stained samples of corresponding co-culture models. Samples were cultured in the paracrine media produced by CCD-18co fibroblasts. 

Samples were fixed in 4% Formalin overnight before dehydration and embedding in wax. Distinct differences can be seen between Control H+E stained models (Figure 

4.3) and CCD-18co treated models with changes in goblet cell morphology in treated samples. HT29-MTX exhibit a more flattened phenotype with a loss of the tall 

polarised morphology. Sections were cut at a thickness of 5μm. Images are representative of a minimum of 3 independent observations. Scale 25μm 
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Figure 4.8: Caco-2:HT29-MTX epithelial co-cultures with CCD-18co paracrine media – Periodic acid Schiff (PAS) stained sections of 21 day matured Caco-2: 

HT29-MTX co-cultures on Transwell polyester membranes cultured in the presence of CCD-18co paracrine media. A) 100% Caco-2, B) 90% Caco-2 with 10% HT29-

MTX, C) 100% HT29-MTX. D-F) Sectioned samples of the corresponding model co-cultures. G-J) Top down viewed wholemount stained samples of corresponding 

co-culture models. Samples were fixed in 4% Formalin overnight before dehydration and embedding in wax. A clear loss in PAS staining can be observed over control 

models (Figure 4.4). Less PAS staining suggests that models are secreting less mucous than in control conditions. Sections were cut at a thickness of 5μm. Images are 

representative of a minimum of 3 independent observations. Scale 25μm 
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4.4.4 Analysis of Co-culture model cellular phenotype under 

CCD-18co conditioned media by Toludine blue staining of 

resin embedded sections. 

CCD-18co conditioned media was applied to Caco-2: HT29-MTX co-culture membranes 

and the structural histology was analysed through Toludine Blue staining of resin 

embedded samples.  

 

Figure 4.8 shows more clearly the effects of CCD-18co on co-culture membranes than 

paraffin embedded samples. Figure 4.8 A, shows Caco-2 controls without modification 

embedded in Resin. It can be seen that resin embedding procedures are more able to 

preserve the structural histology of the epithelial membrane with clear improvement in 

cellular height and staining resolution over the PFA fixed paraffin embedded samples. 

Figure 4.8 B & C , shows similar phenotypes as seen in the paraffin embedded samples 

(Figure 4.4 B & C) with clear distinction between the Caco-2 and HT29-MTX cell types 

present in the model (Figure 4.8 B). The increased resolution staining achieved by resin 

embedding and Toludine blue staining highlights the seemingly pseudostratified nuclei 

of the HT29-MTX control membrane. (Figure 4.8 C) 

 

Contrastingly, Figure 4.8 D-F shows the phenotype of the Caco-2 epithelial cells in the 

presence of CCD-18co paracrine media. As before Caco-2/ CCD-18co models are not 

noticeably structurally different from Caco-2 controls. However, it can be clearly seen in 

Figure 4.8 E & F that the HT29-MTX cells re-organise themselves into a very different 

structure over the 21 day culture period when in the presence of CCD-18co conditioned 

media. Figure 4.8 F, highlights this most clearly by showing HT29-MTX cells in 

isolation. It can be seen that the cells have lost their clear goblet cell like phenotype and 

have reverted into a cell more reminiscent of a standard epithelial cell such as the Caco-

2. The cells are much shorter than the control HT29-MTX and have lost the distinctive 

goblet cell vacuole seen apically in control cells.  
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Figure 4.9: Toluidine blue stained sections of Caco-2/ HT29-MTX co-cultures with and without CCD-18co conditioned media  on Transwell membranes 

– A) Caco-2 control, B) 90:10 Caco-2: HT29-MTX co-culture, C) HT29-MTX control, D) Caco-2/ CCD-18co, E) Caco-2:HT29-MTX/ CCD-18co, F) HT29-MTX/ 

CCD-18co. Toluidine Blue stained sections allow for the high magnification analysis of cellular morphology, not possible with paraffin embedded sections. A-C) 

Shows the Control conditions highlighting the flattened Caco-2 phenotype (A) and the tall morphology of HT29-MTX cells (C). CCD-18co treated Caco-2 layers 

highlights the drastic change in morphology, particularly HT29-MTX cells which appear similar in structural phenotype to Caco-2 cells when treated. Images are 

representative of a minimum of 3 independent observations.  Scale = 20μm 
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4.4.5 Analysis of Caco-2:HT29-MTX co-cultures structural 

phenotype through high resolution transmission electron 

microscopy (TEM). 

Transmission electron microscopy (TEM) was used to assess the ultrastructure of the 

Caco-2, Caco-2/HT29-MTX epithelial co-culture membranes.  Figure 4.9 A & B, shows 

both the apical and basal ultra-structure of the Caco-2 control layers. Caco-2 have large 

continuous microvilli along the apical cell surface.  Additionally, microvilli associated 

glycocalyx can be seen along the surface of the Caco-2 cells. Cell membranes between 

adjacent cells follow a convoluted line with many invaginations between the cells, 

beginning at the surface (Figure 4.9 A) and continuing to the base (Figure 4.9 B). This 

results in a large total membrane contact length between adjacent cells. Tight junctional 

complexes can be see along the apical section of the adjacent cell membranes as electron 

dense areas of staining. Cytoplasm staining of the Caco-2 cells shows abundant organelles 

throughout. However the cytoplasm itself has weak electron dense staining. 

 

Figure 4.9 C & D, shows the TEM imaging of the 90:10 Caco-2:HT29-MTX co-culture 

membranes. As in the Caco-2 control layers there is a continuous microvilli surface layer 

across the length of the model which seem to be shorter but more densely packed and 

consistent. Interestingly, The cell-cell membranes are significantly less invaginated than 

in the Caco-2 control layers with less electron dense staining indicating junctional points. 

ON the whole distinguishing between Caco-2 and HT29-MTX cells in these cultures is 

difficult due to a high degree of similarity in structural phenotype between cells. 

 

Finally, Figure 4.9 E and F shows the detailed structural morphology of the HT29-MTX 

cells grown on the Transwell membranes. These cells show none of the epithelial cell 

phenotypes such as continuous microvilli formation along the apical cell surface and tight 

junctional abundance along cell-cell membranal contacts. Instead these cells are shown 

to have a much decreased microvilli confluency, arranged into small clusters along part 

of the apical membrane. Additionally, membrane contacts between cells are long and 

straight without any invaginations as seen in Caco-2 layers.  Nuclei are basally located 

with the majority of the remaining space in the cell taken up by large vacuole like 
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structures filled with mucin and with a thick mucus layer can be clearly seen attached to 

the apical surface membrane. 

 

Figure 4.10 shows the effects of the addition of CCD-198co paracrine media to the Caco-

2/ HT29-MTX cellular model. Figure 4.10 A & B shows the Caco-2 epithelium alone. 

No noticeable differences can be observed in Caco-2 structure when co-cultured in CCD-

18co media. Contrastingly, Figure 4.10 C & D shows the effects on HT29-MTX cellular 

structural morphology when cultured in CCD-18co media. Large vacuole structured 

observed in non-treated samples are noticeably lost with denser cytoplasmic staining and 

a more differentiated epithelial surface. Consistent microvilli expression is observed 

along the apical membrane of treated HT29-MTX cells. In essence, HT29-MTX cells 

appear, in the presence od CCD-18co media, to revert back to a more enterocytic 

phenotype with a loss of goblet cell function.  
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Figure 4.10: TEM images of Caco-2/ HT29-MTX co-cultures – A-B) Caco-2 cell control 

cultured on a Transwell membrane for a period of 21Days, Cells show good differentiation 

with apically expressed microvilli seen throughout the section. Cells are tightly bound 

together with extensive cellular junctions throughout the length of the cell. Scale 500nm. C-

D) 90/10 Caco-2/ HT29-MTX co-culture, extensive well developed brush border is seen 

along the length of the cell. Brush border in co-culture modes appears to more consistent 

throughout the length of the cell and shorter than caco-2 monocultures. Scale 2um and 

500nm. E-F) HT29-MTX cells cultured on Transwell membranes for a period of 21 days 

showing classic goblet cell morphology. Images are representative of a minimum of 3 

independent observations. Scale 4μm. 
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Figure 4.11: TEM images of Caco-2 and HT29-MTX cultures in the presence of CCD-18co 

conditioned media – A-B) Caco-2 grown on Transwell membranes for a period of 21 days in 

the presence of CCD-18co conditioned media C-D) HT29-MTX cells grown on Transwell 

membranes for a period of 21 days in the presence of CCD-18co cells conditioned media. 

Changes in morphology are seen when compared to normal goblet cell cultures. Cells express 

an epithelial like morphology with extensive brush boarder and cell junctions. Images are 

representative of a minimum of 3 independent observations.  Scale 2μm, 250nm 
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C D 
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4.4.6 E-cadherin staining of Caco-2/ HT29-MTX layers 

highlights the changes in structural morphology when HT29-

MTX cells are exposed to CCD-18co paracrine media. 

Figure 4.11 shows the E-cadherin staining of Caco-2/ HT29-MTX co-cultured Transwell 

membranes in the absence (Figure 4.11 A-D) and presence of CCD-18co paracrine 

conditioned media (Figure 4.11 E-H). Progressively increasing HT29-MTX cell 

proportions can be easily seen between samples with the presence of tall goblet like cells, 

easily distinguishable from epithelial Caco-2 cells. This goblet cell phenotype is 

significantly attenuated in CCD-18co paracrine media treated conditions with 100% 

HT29-MTX layers exhibiting a morphology very similar to that of the Caco-2 cell line.  
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100:0 90:10 80:20 0:100 

100:0 90:10 80:20 0:100 

A) B) C) D) 

E) F) G) H) 

Figure 4.12: E-cadherin stained Caco-2/ HT29-MTX co-cultures in the presence and absence of CCD-18co conditioned media – Significant attenuation of 

HT29-MTX structural phenotype can be seen when exposed to CCD-18co conditioned media with resultant cellular phenotype similar to enterocyte morphology. A) 

100% Caco-2, B) 90% Caco-2, 10% HT29-MTX, C) 80% Caco-2, 20% HT29-MTX, D) 100% HT29-MTX, E) 100% Caco-2 + CCD-18co, F) 90% Caco-2, 10% 

HT29-MTX + CCD-18co, G) 80% Caco-2, 20% HT29-MTX + CCD-18co, H) 100% HT29-MTX + CCD-18co. Images are representative of a minimum of 3 

independent observations. Scale 20μm 
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4.4.7 qPCR analysis of the development of Caco-2:HT29-MTX 

co-culture layers in relation to key targets of function. 

mRNA expression levels of key genes of interest namely; Villin, Occludin, MRP2, 

MDR1, OATP-B and BCRP, were quantified through the use of SYBR based qPCR 

expansion and detection methods.  

 

Figure 4.12 A, shows the mRNA expression levels of the protein Villin. Villin is an 

apically expressed microvilli protein which is often used as a method of quantifying 

microvilli expression and as such enterocyte epithelial differentiation. Figure 4.12 A, 

shows a stepwise decrease in Villin mRNA expression dependant on the ratio of HT29-

MTX cells within the epithelial culture. When normalised to Caco-2 control expression 

levels it was demonstrated that addition of 10% HT29-MTX cells at the beginning of the 

culture period induces a significant decrease in Villin expression by approximately 40% 

that of the control. HT29-MTX cells grown in isolation do express Villin mRNA, albeit 

at a significantly reduced level compared to Caco-2 at approximately 50% expression of 

the control.  

 

Occludin as discussed previously is an important component of the tight junctional 

complex. Figure 4.12 B, shows the relative expression levels of Occludin when 

normalised to Caco-2 controls. Both Caco-2 control and 90:10 Caco-2: HT29-MTX co-

culture layers show no significant difference in Occludin levels between the models. 

Contrastingly, HT29-MTX layers show a significant decrease in Occludin mRNA 

expression when compared to all other conditions to a levels approximately 25% of Caco-

2 layers.  

 

MRP2, MDR1, OATP-B and BCRP are all apically expressed transporter protein shown 

to be involved primarily in the efflux of toxins from the intestine, including therapeutic 

drugs. The function and abundance of these proteins in the human intestine and their 

effects on the bioavailability of drug compounds within the intestine is a key area of 

consideration when  designing an improved biological model for use as a tool in 

biological research. MRP2, MDR1, OATP-B (Figure 4.12 C, D and E) all follow the same 
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basic stepwise decrease in expression rates with increasing HT29-MTX involvement 

compared to Caco-2 and HT29-MTX controls. Indeed, MRP2, MDR1, OATP-B are 

shown to be negligibly expressed within the samples with expression rates only a few 

percent of the control levels. In each case, the 90:10 Caco-2: HT29-MTX co-culture 

shows strong expression levels compared to HT29-MTX but are less than Caco-2 

monocultures. Contrastingly, BCRP expression shows a significant increase in mRNA 

expression in HT29-MTX cells when compared to Caco-2 controls. However, 90:10 ratio 

co-cultures were shown to be not significantly different from the Caco-2 controls in this 

instance. 
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A) B) 

C) D) 

E) F) 

Figure 4.13: qPCR analysis of Caco-2/ HT29-MTX co-culture Transwell models shows differential 

expression between Caco-2 and HT29-MTX cells lines – qPCR data shown here demonstrates the 

differential expression of key protein mRNA between Caco-2 and HT29-MTX cells. A) Villin, B) Occludin, 

C) MRP2, D) MDR1, E) OATP-B, F) BCRP. In most instances A-E, HT29-MTX cells show a reduction in 

the relative expression of mRNA of the key proteins tested here. This is as expected as most of the targets 

are enterocyte efflux or tight junction proteins. Interestingly however, BCRP levels are seen to increase in 

HT29-MTX cells in comparison to Caco-2 cells. This could affect the sensitivity of co-culture models to 

BCRP substrate compounds. Significancy was calculated by one way ANOVA with Tukeys post-test 

analysis with 95% confidence rating. *** = P<0.0005, ** = P<0.005, * = P< 0.05. n-2-3 N=2-3. Significany 

values calculated between value n=2, N=2 have been ommited from the graphs (Panel F).Error bars represent 

+ SEM of average values. 
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4.4.8 Functional characterisation of Caco-2/ HT29-MTX co-

culture Rhodamine 123 transport in Snapwell culture.  

Figure 4.12 shows the basal to apical (B-A) transport of Rhodamine 123 across Caco-2/ 

HT29-MTX co-culture layers both in control states and in CCD-18co paracrine treated 

conditions. All data points within Figure 4.13 were taken after 120 minutes within the 

Ussing chamber system with absolute donor compartment concentration calculated by 

comparison of values against a standard curve. Control layers show an approximate Papp 

of 0.4 (x10-6) which is well in line with values gained in similar experiments throughout 

the literature. Addition of the paracrine effects of CCD-18co cells resulted in an increase 

in B-A transport by about double, although the standard error here is large with significant 

variation seen between samples making differences non-significant from control layers. 

No significant differences in B-A transport can be seen in 90/10 ration cultured Caco-2/ 

HT29-MTX epithelial models from controls. However, similarly to control samples an 

increase in Rhodamine Papp can be seen in CCD-18co treated 90/10 epithelial layers 

although the magnitude of the change is less than that of control layers.  

 

Finally, HT29-MTX cultured modes show some Rhodamine 123 transport at a 

significantly reduced levels than all other conditions. Treatment with CCD-18co 

conditioned media has very little to no effects on the transport of Rhodamine 123 in 

HT29-MTX layers with Papp values non significantly different from Control HT29-MTX 

models.  
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Figure 4.14: B-A Rhodamine 123 transport dynamics of Caco-2/ HT29-MTX co-cultures in control 

and CCD-18co paracrine treated Snapwell layers – Epithelial cell models were tested for transport of 

Rhodamine 123 within an Ussing chamber systems as previously described. All measurements were taken 

after 120 minutes assay length. Paracrine CCD-18co models were created as previously described. HT29-

MTX models have a significantly reduced Rhodamine transport capability over Caco-2 Transwell 

systems. 90/10 co-culture models show no significant changes suggesting goblet cells can be added to a 

model in small amounts without compromising the capability of said model in a functional manner, in this 

case in its capability to transport Rhodamine 123, primarily through P-gp mediated means.  n=3-6  N=3 

Significancy was calculated by one way ANOVA with Tukeys post-test analysis. No significancy was 

observed between samples. Error bars represent + SEM of average values. 
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4.5 Discussion 

The aims of this chapter were to attempt to create an epithelial co-culture model 

incorporating both the mucous element of the intestinal epithelium and the paracrine cross 

talk of supportive stromal cells, in this case CCD-18co myofibroblasts. The barrier 

function of the resultant constructs was assessed through TEER measurements as 

previously described and structure was evaluated through the use of histological 

techniques and electron microscopy. Finally, epithelial constructs were assessed 

functionally through their capability to transport the p-gp substrate, Rhodamine 123.  

 

4.5.1 Epithelial co-culture and the effects of differing seeding 

ratio on the Trans-Epithelial Electrical Resistance (TEER) of 

the tissue construct. 

Caco-2 cellular models are well known to exhibit significantly higher TEER values than 

in vivo intestinal tissues due to a heightened expression of tight junctional proteins within 

Caco-2 cells. Additionally, Caco-2 models overexpress the surface efflux protein p-gp. 

As such, these models are often poor indicators of for the transport of hydrophilic 

compounds (which primarily move paracellularly) which can appear to be highly 

impermeable to the Caco-2 constructs. (243) The usefulness of HT29-MTX cells in 

culture is primarily in their ability to produce a mucous layer along their apical surface 

when grown in 2D culture and in their significantly lower TEER values when compared 

to Caco-2 cells through interspersion of goblet cells between enterocytes. As such these 

cells have been widely utilised as a stand in for goblet cells in many cellular models of 

the intestinal epithelium. (131,243,246–248) In this study the co-culture Caco-2 cells with 

HT29-MTX at a range of physiological ratios, specific to differing sections of the 

intestine was attempted. For example, there is a significantly higher proportion of goblet 

cells in the colon (25-55%) (249) than the small intestine, with a gradual increase as the 

small intestine descends. (92) 

 

Figure 4.2 and 4.3 of this chapter show the effects of epithelial cell co-culture on the 

development of the model TEER values over the course of 21 days in culture. HT29-
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MTX cells are generally known to express lower TEER values than Caco-2 cells with 

reported values ranging from less than 50 to ~200 ohms per cm2. (243,244) Whilst the 

TEER values gained here for HT29-MTX monocultures are significantly higher than 

some of the values which are published, they are still significantly lower than the TEER 

values of the Caco-2 cells utilised in the co-culture models. The methodology for the 

measurement of TEER values of HT29-MTX layers differs significantly lab to lab and, 

much like how Caco-2 reported TEER values can vary between individuals and labs the 

same applies to other cell lines. Additionally, the possibility of the membrane associated 

and secreted mucous on the TEER values of the epithelial layers was not tested for here 

and is not fully understood. Theoretically, the density of the mucous layers could 

contribute to the overall TEER values of the models. (230) 

 

When looked at histologically, HT29-MTX cells can be seen to be organised into tall, 

often multicellular layers. As such this could in part explain why TEER values for these 

cells were so high due to the long convoluted membrane length and multicellular nature 

of the model. HT29-MTX cells are seen to become more organised when co-cultured with 

Caco-2 cells, with clear monolayer formation and basally located nuclei. As such one 

would expect that these cells within the co-culture model exhibit a decreased TEER 

compared to their control HT29-MTX counterparts. Therefore, the decrease in TEER 

which is seen when co-culturing Caco-2 cells with HT29-MTX follows a logical course 

assuming that Caco-2 and HT29-MTX cells don’t interact with one another in a way to 

change their individual epithelial resistances.  

 

Indeed, this stepwise decrease in TEER value was also observed by Béduneau et al in 

their tuneable co-culture model in which they culture both of these cells lines together. 

(243) In this study the authors created Caco-2: HT29-MTX models on Transwell 

membranes utilising a culture method different from that used in this study. Different 

density models were created through the simple seeding of mix ratio dependant 

populations with all cells seeded on day 0. Béduneau et al also cultured different ratios 

of cells but also changed the time at which the HT29-MTX cells were added to the model 

with additions ranging from -1-7 days post Caco-2 seeding. Whilst this is an interesting 

methodology for controlling the end model population ratio of cells this study doesn’t 

appear to have controlled for the fact that cells will be of different maturities in the end 
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model. For example, HT29-MTX cells seeded 7 days post Caco-2 seeding will have a full 

week less time to grow and importantly, differentiate than their day 0 counterparts. This 

again highlights the difficulties in directly comparing model results between studies as 

the culture methods and materials often differ significantly.  

 

Similarly to the work here, Béduneau et al evaluated their models through Rhodamine 

transport and lucifer yellow permeability. They found that increasing the number of 

HT29-MTX cells within the co-culture system resulted in decreases in overall construct 

TEER measurements in addition to stepwise decreases in the Papp of lucifer yellow, 

indicating that models with high proportions of HT29-MTX cells were more passively 

leaky than Caco-2 controls. Additionally, they observed that rhodamine transport 

decreased with increasing HT29-MTX percentage most likely due to less active 

enterocytes in the end culture and the effects of the mucous barrier created by the HT29-

MTX cells. 

 

4.5.2 Functional transport characteristics of epithelial co-

culture layers. 

Figure 4.13 of this study shows the B-A Rhodamine 123 transport conducted in this study. 

Significant differences between Caco-2 and 90/10 co-culture conditions was not 

observed. However, HT29-MTX monocultures did transport Rhodamine 123 at a 

significantly lower rate than Caco-2 controls. Having said that however, the HT29-MTX 

B-A Papp values for Rhodamine 123 were still a significant proportion of the control 

Caco-2 levels. This along with the abnormally heightened TEER values in control HT29-

MTX layers compared to values normally published in the literature lends evidence to the 

idea that these cells used in this study may be a different subtype. Alternatively, culture 

conditions have been shown to significantly affect the structure and differentiation of 

matured cell lines. For example, Navabi et al (250) cultured HT29-MTX in RPMI 1640 

media compared to the DMEM utilised in this study. As such, the histology of the control 

HT29-MTX layers in their study appear significantly different in structural morphology 

than seen here with their cells forming cuboidal monolayers more reminiscent of 

enterocytes than the goblet cell morphology seen in this study. Interestingly, even through 
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the morphology of their cells appear more enterocyte like the TEER values of the resultant 

HT29-MTX models were still low at around 150 ohms, significantly less than seen here. 

Unfortunately, there is little standardisation between labs in the methods to culture these 

cells thereby increasing the likelihood or differences arising between studies.  

 

The model by Beduneau et al  showed the functional transport of Rhodamine 123 across 

HT29-MTX/ Caco-2 layers of varying ratio. (243) Essentially, the outcomes of teir study 

are reflected here with a decreased functional transport of Rhodamine 123 in HT29-MTX 

cell systems, an expected outcome due to HT29-MTX’s known function as a goblet cell 

rather than an enterocyte. Given the usual under representation of Caco-2 cells models 

regarding MDR1 activity, addition of HT29-MTX cells which further reduce the models 

functional MDR1 based capabilities would be counterproductive. Culture of HT29-MTX 

cells with Caco-2 sub-populations known to possess a more homogenous expression 

profile such as Caco-2/TC7 (251) are another possibility to attempt to counteract efflux 

protein under expression. Pontier et al showed the transport capabilities of a number of 

compounds between Caco-2/TC7 and HT29-MTX. Interestingly, they showed how 

HT29-MTX cells are able to increase permeability to an number of compounds compared 

to Caco-2 monocultures. Taken together they suggest that differences between the two 

cell lines are relatively minimal when a wide range of compounds are taken into account. 

However, in their TEER analysis the HT29_MTX cells in their cultures has a significantly 

higher resistance value than their control Caco-2 monocultures. This is in complete 

contrast to the phenotype observed here and again highlights the importance of culture 

conditions on cellular phenotype.  

 

4.5.3 Understanding the effects of CCD-18co conditioned 

media on the development of the epithelial construct layers.  

To my knowledge, whilst the co-culture of Caco-2 and HT29-MTX cells together is a 

routinely, if not widely adopted, model of the intestine as previously discussed. Addition 

of the paracrine factors present in CCD-18co conditioned media is a novel addition to this 

system. As has been discussed and shown in the previous chapter, one of the main known 

components of CCD-18co paracrine media, with biological morphogenic properties, is 
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KGF. A search of the literature suggests that the action of KGF on HT29-MTX cells 

specifically is poorly understood and understudied, although it is logical to assume that 

KGF will have many of the same functions on HT29-MTX cells as with any other 

intestinal epithelial cell lines, namely; cellular/ lineage differentiation and regulating 

cellular proliferation. (213) 

 

In this study, HT29-MTX cells when cultured with CCD-18co conditioned media are 

shown to change significantly in both their structure as seen by H&E, Toludine Blue 

staining and TEM, and in function as seen with changes in PAS staining, a stain which 

specifically targets acidified mucosubstances normally produced by goblet cells. Indeed, 

close analysis of HT29-MTX cells after co-culture with CCD-18co conditioned media 

shows that the cells have morphed into an enterocyte like cell line with regular cuboidal 

structure, basally located nuclei and a single monolayer formation without evidence of 

multilayering. When further investigated with TEM HT29-MTX cells are seen to 

transform from a large vacuous cell with significant apical mucous and only sporadic 

microvilli formation into a densely cytoplasmic enterocyte with continuous well-formed 

apical brush border and cell junctions. This change can also be seen reflected in the TEER 

assessment at the beginning of the chapter whereby the culture of HT29-MTX containing 

models with CCD-18co conditioned media increases TEER values in each case. This is 

in direct contrast to co-culture with Caco-2 cells which results in a TEER decrease with 

paracrine co-culture.  

 

HT29-MTX cells as discussed earlier are in reality simply HT29 cells which have been 

treated with Methotrexate in order to isolate a goblet cell like subclone from the parental 

line. (240) It was hypothesised that the co-culture of HT29-MTX cells with CCD-18co 

paracrine media results in a reversion of this goblet cell like phenotype back into a cell 

more similar to the parental HT29 morphology. This could be potentially through a KGF 

mediated pathway (KGF is important in cancer phenotype homeostasis in the intestine) 

(213) although this was not looked into in any depth in this study. This kind of cellular 

reprogramming can be seen throughout the literature. In the context of HT29-MTX cells 

specifically, Xu et al considered the effects of small molecules on HT29-MTX cells in 

their paper studying the role of NHE8, its regulation by TNF-α and its effect on the 

production of mucous in HT29-MTX cells. (252) Briefly they found that NHE8 was 
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downregulated by TNF-α resulting in a decrease in the mucous production of the HT29-

MTX cells. TNF-α is a proinflammatory cytokine primarily produced by cells of the 

immune system, namely activated macrophages (253) but can also be produced by 

endothelial cells and importantly, fibroblasts. Whilst not tested for it is possible that CCD-

18co cells are able to produce TNF-α, especially if in a proinflammatory state as seen by 

high levels of α-SMA, potentially reducing HT29-MTX mucous production through this 

method. With structure comes function, therefore a reduction in functional ability would 

imply similar variations in cellular structure. However, whilst Xu et al did provide 

indicative evidence suggestive that downregulation of NHE8 reduced mucous production 

they did not analyse the structure of the resultant cells so it is not possible to know if the 

same morphological changes were seen in their study as here.  

 

Visco et al (179) showed in their study that KGF was able to have effects on the growth 

rate of HT29 cells in vitro with significant increases seen in Ki67 expressing cells, 

suggesting an improved rate of proliferation. Interestingly, in this study the authors also 

note that CCD-18co conditioned media has stronger proliferation inducing effects than 

KGF treatment alone, suggesting that other small molecules are being released by CCD-

18co cells that are having compounding morphogenic effects on Caco-2 and HT29 

epithelial cultures. Whilst this study doesn’t go into any depth about the change in 

function of treated cells it does show that HT29 cultures are sensitive to KGF treatment. 

As such one could expect that HT29-MTX cells, derived from HT29 parental lines, would 

also be sensitive to KGF and in similar ways, which in this instance was an increase in 

cell proliferation.  

4.6 Conclusion 

Work done in this chapter highlights the importance of simulating multiple aspects of the 

intestinal epithelium when creating a co-culture model of the intestine. Goblet cells can 

have significant effects on the capability of the resultant epithelial constructs with 

changes in transport capabilities induced through a reduction in transport capable 

enterocytes and the formation of a mucous layer which can have inhibitory effects on 

compound movement and availability to the enterocyte epithelium. Additionally, CCD-

18co cells have been further shown to have bioactive effects on the development of 

epithelial layers. Indeed, reversion of HT29-MTX cells into a less goblet cell state, whilst 



Chapter 4 – Goblet cell co-culture model of the intestinal epithelium  

 

Page | 234 

 

not ideal for the resultant model, could be argued to be more biologically relevant, with 

increasing model complexity enhancing cell phenotypes. As HT29-MTX cells are not 

true goblet cells, in this instance the enhanced phenotype that would be expected is that 

of the enterocyte. Results found within Chapter 3 along with the work discussed here has 

been invaluable in understanding the effects of simple cell co-cultures in Transwell based 

systems. 

 

Future work within the scope of this chapter could include further elucidation of the exact 

mechanism for the changes in structural phenotype seen when Caco-2 cells are cultured 

with CCD-18co conditioned media. For example, understanding if this mechanisms is 

controlled through KGF secretion could help to identify the function of KGF in the 

development and maintenance of epithelial layers. The initial purpose to optimising Caco-

2/ HT29-MTX/ CCD-18co cells in Transwell was to apply the knowledge gained into a 

3D model of this intestine. Due to the negative interactions of HT29-MTX cells with 

CCD-18co paracrine factors it was decided that no further development would take place 

in this study. Further work should focus on overcoming these challenges to create a true 

3D intestinal model which incorporates the mucous aspect of the intestinal epithelium.
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5. Optimisation & characterisation of an in vitro model of the 

intestinal mucosa and development of associated technology.  

5.1 Introduction 

5.1.1 The biological relevance of 3D culture. 

Conventional Transwell culture as seen in the previous chapters of this work is clearly 

the gold standard technique for the modelling of the human intestinal epithelium in both 

industry and academia. Since the inception of the Caco-2 cell line in the early 90’s and 

its application to drug discovery purposes there has been little change seen from the 

original model principle developed by Artusson et al (254) and others of Caco-2 cell 

layers cultured on permeable hanging inserts.  

 

As has been discussed previously, others have attempted to modify/ enhance the Caco-2 

model system through the application of other cell types/ cell lines such as the addition 

of goblet cells into the culture in order to recapitulate the mucous layer (228,255) or in 

the co-culture of Caco-2 cells in paracrine media such at by Ghadban et al  in their work 

with immune cells and their effects on the differentiation and function of the Caco-2 and 

High Throughput 

In vivo relevance 

Figure 5.1: The progressive complexity of biological research – With increasing relevance 

comes increasing cost, 3D models are designed to be a midpoint between simple 2D models of the 

intestine and more ethically challenging options such as animal and humans testing. 
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IEC epithelium.(256) Generally, these modifications still rely on the original hanging 

insert technique without much additional innovation.  

 

The immediate reasons for this are three-fold; 

1. The Caco-2 model is reasonably predictive of the pharmacokinetic properties of 

the intestine of a number of drug classifications without additional modification, 

especially when utilised alongside other simple models such as PAMPA. 

2. The Caco-2 model is inexpensive and well characterised compared to novel 3D 

systems. 

3. The Caco-2 model is simple to culture and as such is relatively easy to apply to 

high throughput applications. 

 

Whilst the advantages of the Caco-2 cell line seem numerous, the models do suffer from 

a number of major drawbacks, primarily in their bio predictability of certain drug 

classifications such as in their poor indicatives of lipophilic compounds due to retention 

within the Caco-2 cell layer and non-specific binding to the Transwell surface. (257) As 

such the Caco-2 models are often utilised alongside more ethically challenging systems 

such as in vivo animal models which are simultaneously far less high throughput and 

significantly more expensive than their 2D cell-based model counterparts. More 

sophisticated models of the intestinal epithelium which are able to bridge the gap between 

simple cell based and animal systems have the potential to streamline the drug discovery 

process; increasing the identification rates of pharmacokinetically viable compounds, 

decreasing the reliance on animal models and ultimately saving both time and money 

throughout the process.  

 

5.1.2 Different applications of the Caco-2 cell line to 3D systems 

of the intestinal epithelium. 

In an effort to close the gap between cell based and animal models new and emerging 

models of the intestinal epithelium are published on a regular basis focussing primarily 

on the application of the Caco-2 cell line to 3D culture systems. As discussed in the 
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general introduction to this thesis, one of the main powers of 3D culture is its flexibility, 

allowing it to take many forms and be tailored to the required specifications of the user. 

 

For example, Yu et al (258) created a model which incorporated the 3D architecture of 

the intestinal villus through the use of a hydrogel construct formed into villi structures, 

cultured in a hanging insert, onto which they cultured Caco-2 epithelial cells. They 

demonstrated that simply changing the architecture onto which the cells were cultured 

had significant effects on the differentiated phenotype of the resultant model. For 

example, they showed significantly reduced TEER values in 3D constructs over 2D 

controls and hydrogels without the 3D structure. This TEER decrease when compared to 

rat intestinal tissues which showed a significantly more in vivo TEER phenotype in the 

3D constructs. Additionally, calculated permeability co-efficients were more 

physiologically relevant in 3D models when compared to human tissues than 2D model 

controls. 

 

The most important part of this model was its simplicity. No additional cell lines or 

supplementary signalling were required to produce an model with improved “in vivo” 

characteristics over 2D controls. As such, this highlights the power of the 3D 

environment, suggesting that the structure of the cells implies their function, a critical 

phenotype missing in 2D cultures. This concept of structure influencing the function of 

cells is often referred to as mechano-transduction and is a relatively well studied area of 

biology. For example Wang et al (259) in their recent paper looked at the effects of the 

organisation of the ECM on the phenotype of MSC cells cultured within a tuneable ECM 

scaffold. They found that by altering the properties of their material such as fibre 

diameter, stiffness and alignment they could alter the 3D structure of the scaffold. The 

microscopic structures within the scaffolding materials (Voids and channels) had 

significant effects on the shape and actin cytoskeleton morphology of 3D cultured cells. 

This lead to changes in cellular differentiation and as such the function of the tissues 

created by the 3D cultured cells. Again, this is another example whereby cell fate is 

influenced by the 3D structure in/ on which the cells are cultured without any additional 

influencers. One postulated mechano-transduction mechanism in Caco-2 cells works 

through integrin adhesions (an adhesion to the ECM) and the YAP pathway. (260) In 

many ways the simple scaffold created by Wang et al is similar to Alvetex® (utilised in 
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this study) in that scaffold pore size can be altered to suit experimental needs. These levels 

of 3D tunability are simply impossible in 2D cultures in which cells are expected to 

differentiate in an alien environment and without the signalling queues found in vivo.  

 

Organoid cultures are another area of current intense research interest since their 

inception and by Hans Clever. (117) These models utilised primary intestinal stem cells 

or isolated intestinal crypts to grow highly advanced, well differentiated cellular 

epithelium with a whole range of different cell types with variable function. 

Unfortunately, their application to drug discovery functions are limited due to the 

inability to create a single polarised monolayer from these cells. However, these models 

are still highly valuable for a range of uses such as understanding tissue development 

(261) and disease modelling (262). Newer techniques are being developed to apply these 

advanced culture systems to pharmacokinetic applications. Onozato et al described a 

process whereby they tested a number of compounds on organoid cultures such as 

Rhodamine 123 and FD-4. (263) Their model however, still suffered from the 

aforementioned disadvantages of their technique such as; only A-B transport could be 

tested and quantification of total drug absorption/ efflux was not possible.  

 

Scaffolding technologies, as utilised in this study are another potentially powerful tool 

for the creation of 3D culture models. Scaffolds can come in a range of formats from 

decellularised matrices which straddle the boundaries between tissues, hydrogels and 

scaffolds, to polystyrene structures (as used in this study) which are significantly more 

reproducible, standardised formats, good for use in routine sample analysis etc whilst 

sacrificing the intrinsic signalling properties of scaffolds made from biological substances 

such as ECM components. In many instances however models are created to utilise 

multiple technologies together. The coating of the often bio-inert surfaces of polymer 

based scaffolds with hydrogels such as collagen I is a fairly ubiquitous technique to 

improve the attachment and differentiation of cells in culture through the provision of a 

basement membrane. Indeed, collagen coating techniques are used regularly even in 2D 

culture, in many ways blurring the definitions of 2D and 3D culture systems. (264–268) 

 

3D models for all of their advantages do have a number of significant drawbacks which 

have ultimately stopped their widespread use throughout industry. Often it is the very 
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advantages of 3D culture which works against their extensive use. For example, as 

discussed previously, 3D culture technologies can be highly variable, have very niche 

applications, and allow for tailor made models incorporating a single or multiple methods. 

Whilst this is an advantage in academia, allowing for the creation of distinct models with 

unique capabilities it effectively dilutes the ongoing characterisation of each model most 

often to the lab from which it originated. 

 

Unlike the Caco-2 Transwell model which has been widely characterised the world over, 

there is no gold standard 3D model of the intestine. As such, many labs have their own 

model variation which differs from others in its own unique ways, be that in terms of: cell 

line used, hydrogel composition, scaffold material, surface treatments, media 

composition/ small molecule additives, model culture time, etc. This lack of cross 

comparability between unique models and their generally limited characterisation means 

that individual models cannot be trusted to be more pharmaco-predictive that Caco-2 

Transwell models already being utilised. (162,246–249,251,258,269) Furthermore, lack 

of characterisation leads to non-approval by regulators such as the FDA, a key step that 

must be taken for a concerns to be utilised as an appropriate test model for novel 

compounds.  Ultimately, in order for the cutting of the red tape limiting 3D model 

progression one model has to “win out” over the others as a new gold standard. Without 

this the amount of variation which can be incorporated between 3D models make it 

unlikely any will be sufficiently characterised and approved for large scale use in industry 

in a reasonable timescale.  

 

Other considerations which have to be made when utilising 3D models are their expense 

and labour costs. 2D models are “cheap”, with Caco-2 cells, DMEM and Transwell being 

relatively low cost. Contrastingly, 3D models often utilise technologies which either have 

not been commercialised or if they have to a relatively low volume and scale compared 

to 2D systems. Essentially, 3D models will be more expensive than 2D alternatives, at 

least until high volume production of a single gold standard 3D model is achieved.  In 

terms of labour, 2D Transwell models are relatively easy to culture with 2-3 media 

changes per week, requiring minutes of work per model. Often 3D models incorporate 

more cells, of varying lineages, with more complex media requirements, increasing the 

time required per model and the potential for mistakes in the more complex system. 
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Additionally, 3D constructs are often created in stages, together taking longer to culture 

than their 2D counterparts, increasing overall labour and material needs. The burden is 

for 3D models to prove that the added cost is worth the increased functionality and bio-

predictability. A 3D model which is 10% improved at predicting clinical outcomes in 

humans but costs twice as much and takes three times the work is unlikely to be utilised 

over simpler models. Especially when the alternatives are more scalable to high-

throughput work. 

 

The data novel herein will cover the creation and optimisation and structural 

characterisation of three 3D models of the intestinal mucosa one for each of CCD-18co, 

HDFn and HIC lineages as discussed previously. Additionally, work in this chapter will 

cover attempts at creating a high throughput version of the 3D models through the design 

and construction of advanced 3D culture plates and Ussing chamber devices.  
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5.2 Hypothesis, Aims and Objectives 

5.2.1 Hypothesis 

It is hypothesised that a novel intestinal mucosal model can be created utilising Alvetex 

Scaffold® and a range of intestinal fibroblasts (CCD-18co, HDFn and HIC) and epithelial 

cells (Caco-2). Additionally, it was expected  that through advanced culture methods a 

well populated sub-epithelial layer could form to create a dense ECM cellularised matrix 

for the support and population of Caco-2 cells apically, forming a single monolayer of 

enterocyte epithelium. Furthermore, it was  hypothesised that cells of different lineages 

will show a degree of cross talk and interaction through the formation of a basement 

membrane and the differential effects on the structure and function of the Caco-2 

epithelium.  

 

5.2.2 Aims 

The aims of this chapter are two-fold  

1. To create an advanced 3D model of the intestinal mucosae utilising multiple cell 

types from both stromal and epithelial compartments. It was proposed to 

understand how fibroblasts from multiple origin points as used in Chapter 3, 

namely CCD-18co, HDFn and HIC cell lines, are able to form a well populated 

basement scaffold on which could be cultured Caco-2 epithelial cells for a period 

of 21 days. Protein expression profile and structure of 3D models was compared 

to the expression seen in human tissue sections to show close similarity.  

 

2. To create tools in which the functional characteristics of the 3D models could be 

quantified. E.g. creation of bespoke Ussing chambers to study drug /ion transport 

and electrophysical characterisation of newly created intestinal models.  
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5.2.3 Objectives 

The objectives of this chapter are summarised below: 

• Development of fibroblasts stromal compartment of the model to allow for the 

culture of Caco-2 in a monolayer without invasion into the underlying stromal 

layers.  

• Immunohistochemical characterisation of 3D constructs and comparison to 

human intestinal tissues to highlight similarities and enhance the differences seen 

in Transwell models 

• Utilise TEM to show cellular ultra-structure and cross talk between epithelial and 

stromal cell lines.  

• Create novel bespoke Ussing chambers for the functional transport analysis of 3D 

models. 

• Develop a method for the higher throughput production and functional analysis of 

Alvetex® based 3D models. 
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5.3 Materials and methods 

5.3.1 Seeding Caco-2 cells onto Alvetex® of varying format. 

Alvetex® 12-well discs were processed for cell culture through submersion into 70% 

ethanol for 5 minutes followed by two washes in sterile PBS to remove any remaining 

ethanol. This was done to render the Scaffold hydrophilic for cell culture.  Cells were 

seeded at a density of 250,000 cells per insert and cultured in DMEM for a period of 7 

days. At culture end models were fixed in 4% paraformaldehyde and processed into wax 

utilising the standard paraffin embedding protocol described previously (Section 2.3.1) 

 

5.3.2 Basement membrane addition to Alvetex Scaffold®. 

Alvetex® 12-well discs were processed to be hydrophilic for culture as described 

previously (Section 5.3.1). Collagen I, Matrigel® and Puramatrix® solutions were made 

up following manufacturers specification to a concentration of 2 mg/ml. Basement 

membrane solutions were added to scaffolds at a density of 200μl per scaffold and 

allowed to gel completely in a humidified environment at 37oC for 30 minutes before the 

addition of cells. Caco-2 cells were seeded onto Alvetex®/ Gel constructs at a density of 

250 000 cells/ insert and left to culture for either 14 or 28 days. At the end of cell culture 

models were fixed in 4% paraformaldehyde and processed into wax as previously 

described (Section 2.3.1) 

 

5.3.3 Differential CCD-18co seeding density on model 

development. 

The epithelium of the intestine is formed of a monolayer of enterocytes and other cell 

lineages supported by a basement membrane and an underlying stroma of myofibroblasts 

and fibroblasts. 24-well scaffold with area of 0.77cm2 were seeded with 77,000 

(100,000/cm2), 192,000 (250,000/cm2), 385,000 (500,000/cm2) and 777,000 

(1,000,000/cm2) fibroblast cells per model. Cells were grown in standard media as 
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described previously (Section 2.2) for a period of 2 weeks. After 2 weeks of culture Caco-

2 cells were added to the apical side of two thirds of the models and allowed to attach at 

air liquid interface overnight before subsequent submergence in Caco-2 complete 

medium  (complete DMEM) for a further period of 2 weeks. The remaining models were 

analysed by MTT assay at the 14 day timepoint without Caco-2 addition as previously 

described (section 3.2.5). At experiment end, replicates of individual models were either 

fixed and  processed into paraffin as previously described (Section 2.3.1) or were analysed 

by MTT as previously described (Section 3.2.5) 

 

Paraffin embedded samples were sectioned at 7μm and stained with H&E. Images were 

taken along the length of each sample with a ICC50 HD microscope (Leica) and stitched 

together and analysed using image J. Multiple sections per condition were measured 

ensuring each section was a minimum of 50μm from the previous section. Image analysis 

consisted of measuring the epithelial area relative to the area of the entire model. This 

was achieved by overlaying images with a 500μm2 grid with grid squares chosen for 

analysis by random number generator.   

 

5.3.4 The effect of culture time on model development. 

CCD-18co cells were seeded into culture treated Alvetex® Scaffold discs at a density of 

250,000 cells/ cm2 (192,000 cells per insert). Scaffold were cultured for 14, 21 or 28 days 

before analysis. One third of the models were stopped at their respective timepoints and 

tested for metabolic activity by MTT assay. Other models were seeded with Caco-2 cells 

at a density of 223,000 cells per cm2 (172,000 cells per insert, the same as the seeding 

density of Transwell). Caco-2 cells were allowed to attach overnight at the air liquid 

interface (ALI) before being subsequently cultured for a period of 14 Days. After 14 days 

of Caco-2 culture models were either processed into paraffin as previously described 

(Section 2.3.1) or were analysed by MTT as previously described. (Section 3.2.5) 

Paraffin embedded samples were sectioned at 7μm analysed in Image J for the % Caco-2 

penetration into the scaffold as previously described.  

 



Chapter 5 – Development and characterisation of a novel 3D model of the intestinal mucosa 

Page | 245 

 

5.3.5 MTT assay analysis of CCD-18co cells grown in Alvetex® 

Scaffold. 

MTT assay analysis of CCD-18co metabolic activity was achieved as previously 

described (Section 3.2.5)  

 

Briefly, whole Alvetex® Scaffolds containing CCD-18co cells were washed in sterile PBS 

twice. 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide was dissolved 

into phenol free DMEM at 2mg/ml. Solution was heated to 37oC and agitated sufficiently 

to ensure complete dissolution. MTT solution was sterile filtered through a 0.2μm filter 

before use.  4.5 ml of MTT solution per well was added to the 24 well format Alvetex 

Scaffold® and left at 37oC for 1 hour. After 1 hour models were removed from MTT 

solution and washed twice in sterile PBS. Models were then unclipped carefully from the 

well supports to limit any disturbance of the cell layers and placed at the bottom of a fresh 

12 well plate. 1ml of acidified isopropanol was added to the models to liberate the dye. 

Models were placed at 150 RPM for 15 minutes to ensure complete dye removal from the 

3D scaffold material. 200μl of dye solution was placed into a 96 well microtiter plate and 

read at 590nm 

 

5.3.6 SEM processing of differential seeded CCD-18co 

Alvetex® layers.  

CCD-18co cells were liberated from 80% confluent T175 culture flasks and counted as 

previously described (Section 2.2.3). Cells were seeded onto cell culture treated Alvetex 

Scaffold® layers at differential densities of 77,000, 192,000, 385,000 and 777,000 cells 

per model equating to 100,000, 250,000, 500,000 and 1,000,000 cells per cm2 or by 

utilising the multiple seeding technique which involves seeding 192,000 cells on days 0, 

7, 9 and 11 for a total of 768 000 cells per model. Models were cultured in standard 

DMEM formulation for 14 days with media changes every other day. After 14 days 

models were fixed and processed for SEM as previously described (Section 2.6) 
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5.3.7 3D model processing for TEM analysis 

The general protocol for the processing and staining of samples for TEM analysis is 

described previously (Section 2.7) 

 

5.3.8 Toluene Blue stained samples  

3D models stained for Toluene Blue were set up utilising the standard 3D model set up 

protocol as previously described (Section 2.15). Samples were cultured for the full culture 

period before being processed into resin (Section 2.7). Resin embedded samples were 

sectioned semi-thin (approx. 1μm) utilising a glass knife. Resin embedded sections heat 

fixed onto a glass slide before being submerged in Toluene Blue solution for a period of 

5 minutes. Stained samples were rinsed in cold running water to remove excess stain. 

Stained samples were mounted with DPX before being imaged on a light microscope 

(ICC50 HD, Leica) 

 

5.3.9 Clearing of Alvetex Scaffold for high resolution lighsheet 

imaging of 3D intestinal models. 

3D models were fixed in 4% PFA as previously described before being washed twice in 

PBS for 30 minutes each time. Samples were  dehydrated in methanol following a 50%, 

80% and 100% gradient (Methanol: PBS) for one hour at each concentration. Samples 

are bleached in 5%H2O2 in 20%DMSO/ Methanol overnight at 4oC in the fridge. Samples 

are washed twice in 20% DMSO/ Methanol for one hour each time. This is followed by 

rehydration through methanol (80%, 50%) for one hour each before being washed in PBS 

twice and PBS/0.2% Triton for at least one hour before further processing. Samples were 

Immunostained utilising the normal protocol for immunostaining as previously described 

(Section 2.4.1)Samples are incubated overnight in 50:50 tetrahydrofuran (THF): H2O. 

Samples are incubated in 80% THF and 100% THF for 1 hour per concentration. Samples 

are then processed into dichloromethane (DCM) for 30 minutes followed by storage in 

dibenzyl ether (DBE) at room temperature at which point Alvetex Scaffold® becomes 

completely transparent within DBE. Protocol taken from a method devised by Renier et 

al (270) 
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For imaging on a lighsheet microscope (Zeiss lighsheet Z.1) Alvetex® must remain within 

DBE to remain transparent. Alvetex® sections were attached to a metal rod with agar 

before being placed within a capillary tube containing DBE. The tube was sealed so that 

DBE could not leach into the microscope imaging chamber.  

 

5.3.10 Immunostaining of 3D models and human intestinal 

tissue.  

Both tissues and models were fixed and embedded in paraffin wax as previously described 

(section 2.3.1) prior to sectioning at 7μm intervals and heat fixing to glass slides. Prior to 

staining slides were dewaxed in Histoclear and brought to water through a series of 

ethanol gradients. The general protocol for the process of immunostaining 4% PFA fixed 

tissues and models is described previously (Section 2.4.1). All slides were analysed on a 

Zeiss 880 confocal microscope 

 

5.3.11 Developing a 24 and 96 well Ussing chamber design for 

the efficient functional analysis of Alvetex intestinal models. 

Both 24 and 96-well Ussing chamber designs were created by myself in the 3D CAD 

software Autodesk. Schematics for finalised designs were send to mechanical engineering 

services, a part of the Department of Physics at Durham university for manufacture. 

Chambers were made out of optically transparent Acrylic. It is important that chamber 

systems at no point are in contact with ethanol of any concentration as plastic will fracture 

on/ shortly after contact. 

 

Deep well plates for the culture of 96-well inserts were designed by myself and 3D 

modelled in collaboration with e3design ltd (Newcastle, UK). Concept and application 

were developed and optimised in house.  
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5.4 Results 

5.4.1 Caco-2 growth characteristics in different Alvetex® 

configurations. 

In order to understand the best way to construct the 3D model of the intestine the first 

thing that must be understood is the growth characteristics of the cell lines within 

Alvetex®. Alvetex® comes in 3 different formats; Scaffold, Strata and Polaris, with the 

difference between each of the formats linked to the void size of the material. Scaffold 

has the largest void size at an average of 42μm, Strata has a void size of an average of 

15μm and Polaris has the smallest pore size (not quantified) 

 

Caco-2 cells were seeded onto each of the Alvetex® formats at a seeding density of 

250,000 cells per cm2 for a period of 7 days before being processed into paraffin wax as 

previously described. Figure 5.1 shows the H&E staining of Caco-2 cells on A) Alvetex 

Scaffold®, B) Alvetex Strata® and C) Alvetex Polaris®. Figure 5.1 A shows that in the 

scaffold format Caco-2 cells are able to form a well-defined multilayer of cells at the 

surface of the scaffold structure. Additionally, Caco-2 cells can be clearly seen to line the 

surface of the scaffold voids creating a pore like structure within. Cells are shown to be 

able to penetrate through some of the Alvetex scaffold® but generally remain within the 

upper third of the 200μm thickness. When cells are grown on Alvetex Strata® (Figure 5.1 

B) Caco-2 cells are shown to create a monolayer not dissimilar from that seen in Caco-2 

Transwell models. Cells are confined to the surface of the material without any invasion 

into the underlying stroma. Similarly, when cells are grown on Polaris (Figure 5.1 C) no 

invasion through the Alvetex® material is seen. However, Polaris culture seems to induce 

a multilayering phenotype within the Caco-2 cells not seen in Strata or scaffold. 

 

Alvetex Scaffold was chosen as the preferred substrate for model development because 

of its high porosity. Initial experiments (Data not shown) suggested that both Strata and 

Polaris Alvetex® formats  would be poorly suited to pharmacokinetic analysis due to 

compound sequestration. Additionally, Scaffold® allowed for the culture of fibroblasts 

cells throughout the length of the substrate with ample room for ECM deposition. 



Chapter 5 – Development and characterisation of a novel 3D model of the intestinal mucosa 

Page | 249 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A) Scaffold B) Strata C) Polaris 

Figure 5.1: Understanding the growth characteristics of Caco-2 cells in different formats of Alvetex® polystyrene supports – A) Alvetex Scaffold® has the largest 

pore size of the different formats with an average void of (33-55μm). Caco-2 cells can be seen growing along the first third of the scaffold thickness, lining the pores to 

create small epithelial lines spheroids. B) Alvetex Strata® has an average pore size of (<20μm). Caco-2 cells form a monolayer across the surface of the model with no 

invasion into the underlying support. C) Alvetex Polaris® has the smallest pore size with an average diameter of (3-4μm). Similar to that seen in Strata, Polaris allows for 

the formation of a monolayer along the surface of the support, with some areas of multilayering. Images are representative of a minimum of 3 independent observations. 
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5.4.2 Addition of a basement membrane protein to the surface 

of Alvetex Scaffold®. 

Figure 5.1 shows that it is impossible to culture Caco-2 within a 3D Alvetex Scaffold® 

and create a consistent monolayer without the addition of some other factor to limit Caco-

2 cell invasion. One method attempted to limit Caco-2 movement was application of 

basement membrane proteins to the surface of the Scaffold, onto which cells could be 

seeded. Figure 5.2 shows Caco-2 cells on Collagen I, Puramatrix and Matrigel layers.  

 

Figure 5.2 A shows Caco-2 cells forming a continuous layer with good cellular 

morphology on Collagen I layers. No invasion into the underlying stromal section 

indicates a continuous gel layer. Puramatrix (Figure 5.2 B) and Matrigel (Figure 5.2 C) 

layers result in significant stromal Caco-2 invasion by 14 days of culture. Cells are seen 

lining the internal pores of the Alvetex Scaffold®. Puramatrix® Caco-2s’ remain in the 

upper third of the Scaffold whereas Matrigel induces cellular invasion almost to the full 

thickness of the scaffold at a greater rate than the uncoated surfaces (Figure 5.1 A). 

 

The phenotype described above is the same at 21 days of culture, with Collagen layers 

limiting Caco-2 cells to a single monolayer at the surface and Puramatrix and Matrigel 

layers allowing full cellular infiltration across the depth of the scaffold over 28 days of 

culture.  As such, from a structural standpoint alone, Collagen I was shown to be the best 

suited Basement membrane protein for long term culture of Caco-2 cells in 3D.  

 

Figure 5.3 shows the optimisation of Collagen I layers on the surface of Alvetex 

Scaffold®. Figure 5.3 A, shows the Analine Blue staining of Collagen I of 2mg/ml, 200 

μl per cm2 scaffold area, B is 1 mg/ml and C is 0.5 mg/ml. It can be clearly shown that 

only 2mg/ml was able to form a continuous layer of collagen across the surface of the 

model as such this concentration was utilised through the proceeding experiments. It was 

decided at this time that focus on the development of a populated stromal fibroblast layer 

was more in line with the overall goals of the project. As such addition of a collagen 

membrane was dropped in favour of optimisation of a sub-epithelial fibroblast 
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compartment, sufficiently populated to limit Caco-2 invasion without the requirement of 

the addition of further basement membrane proteins. 
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Figure 5.2: Application of basement membrane proteins to Alvetex Scaffold® to limit the invasion phenotype into the underlying stromal compartment.  – A) 

Caco-2/Collagen I, 14 days, B) Caco-2/ Puramatrix, 14 days ,C) Caco-2/ Matrigel, 14 days, D) Caco-2/Collagen I, 28 days, E) Caco-2/ Puramatrix, 28 days, F) Caco-2/ 

Matrigel, 28 days. Collagen 1 was the only protein gel mix that experienced reasonable success in the limiting of Caco-2 invasion with clear monolayer formation on the 

apical side of the collagen gel at days 14 and 28. Matrigel and Puramatrix had little effects on the limiting cellular invasion. Indeed, in both instances it could be easily 

argued that these protein mixes had the opposite effect, promoting cellular growth and motility into the Scaffold. Scale =100μm Images are representative of a minimum 

of 3 independent observations. 
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5.4.3 CCD-18co conditioned media effects on Caco-2 

development on Collagen I Basement membranes in Alvetex 

Scaffold®. 

Figure 5.4 A-F, shows the morphology of Caco-2 cells grown on Alvetex® Collagen I 

membranes in the presence of CCD-18co conditioned media. Figure 5.4 A shows H+E 

staining of 7 day paracrine cultures. Analysis of staining shows strong nuclei staining and 

weak cytoplasmic staining, characteristic of Caco-2 cells. Cells appear to grow in a 

homogenous monolayer across the entire samples with no obvious places whereby cells 

have penetrated into the underlying stromal compartment. This same morphology is also 

seen in both the 14 and 21 day cultures (Figure 5.4 B&C respectively). 

 

Higher magnification analysis of the slides (Figure 5.4 D, E & F) shows how the Caco-2 

cells are tall and undifferentiated at day 7, possibly arranged into thick multilayers of 

cells. Over time this phenotype decreases until by day 21 there is a continuous monolayer 

of cells across the membrane with well-defined polarity with Nuclei clearly arranged 

close to the basement membrane and cuboidal shaped epithelial cells. Darker eosin 

staining at the surface of the 21 day differentiated Caco-2 cell models (Figure 5.4 F) 

potentially indicates the presence of microvilli and associated glycocalyx.

A) 2mg/ml B) 1mg/ml C) 0.5mg/ml 

Figure 5.3: Optimising the volume and concentration of Collagen I gels to add to the surface of 

the Scaffold to limit cellular invasion.  – Analine blue staining of collagen I gel on the surface of 

Alvetex Scaffold®. A) 2mg/ml, B) 1mg/ml, C) 0.5mg/ml. Staining clearly shows that only 2mg/ml was 

capable of creating a consistent layer across the surface of the Alvetex Scaffold®. All other conditions 

created weak layers at the surface and lined the pores of the Alvetex Scaffold®. Images are 

representative of a minimum of 3 independent observations. Scale =100μm. 
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A) 7 Days B) 14 Days C) 21 Days 

D E F 

Figure 5.4: CCD-18co paracrine treatment of Caco-2 cells cultured on 2mg/ml Collagen I gel layers shows an enhanced Caco-2 

phenotype over control layers – CCD-18co paracrine media was cultured with Caco-2 collagen models for a period of A) 7 days, B) 14 

days , C) 21 days. Caco-2 cells can be seen to increase in membrane organisation over time, starting with a disorganised multilayer of cells, 

progressing over time to form a single monolayer of polarised epithelium at day 21. Images are representative of a minimum of 3 

independent observations. Scale 100μm and 50μm respectively.  
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5.4.5 Optimisation of CCD-18co cells seeding density within 

Alvetex Scaffold® to create a surface layer to support the 

culture of Caco-2 epithelial cells. 

The use of Collagen I as a substitute basement membrane was ruled out at this point. All 

further experiments with the development of a 3D model system are done so without the 

addition of exogenous collagens. Figure 5.5 A-D shows the effect of CCD-18co seeding 

density on the ability of Caco-2 cells to create an epithelium.  Figure 5.5 A shows Caco-

2 cells cultured on an Alvetex Scaffold® populated with 77,000 cells per insert (100,000 

cells/ cm2) after being cultured for 14 days.  Caco-2 cells invade up to halfway through 

the scaffold with cells growing characteristically as described previously within the 

Alvetex®.  Figure 5.5 B, C and D shows the same phenotype as described for Figure 5.5 

A however the initial fibroblast seeding densities in each case are 192k (250,000 cells/ 

cm2), 385k (500,000 cells/ cm2) and 777k (1,000,000 cells/ cm2). Interestingly, the initial 

seeding density of CCD-18co cells does not appear to have a significant effect on the 

rates of Caco-2 invasion until the 777k seeding density. The 777k condition (Figure 5.5 

D) does appear to have a small effect on Caco-2 invasion rates but is still insufficient to 

stop some cellular infiltration into the underlying stroma.  

 

Figure 5.6 shows the quantified effect of CCD-18co seeding density on Caco-2 invasion 

rates. Figure 5.6 A, shows the methodology whereby “Invasion rate” is quantified as a 

percentage of the area of Caco-2 staining compared to the total area of scaffold present. 

Values are normalised to a 500μm2 grid. Figure 5.6 B , shows the quantified difference 

in Caco-2 invasion rates between the different seeding concentrations. There is no 

significant difference between the rate of Caco-2 invasion between any of the conditions 

although a downwards trend is seen with increasing CCD-18co density, with the 

maximum decrease seen in the 777k samples of around 10-15% compared to 77k. 

Significancy was calculated by one way ANOVA with Tukeys post test analysis however 

no significancy between values was observed. 
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Figure 5.5: Optimisation of fibroblast seeding density to limit the invasive characteristics 

of Caco-2 cells  – Multiple seeding densities (Cells/ cm2) were tested for their capabilities to 

create a well populated, ECM rich foundation for the culture of Caco-2 cells. Ideally, CCD-

18co populated Alvetex should be able to support the culture of a Caco-2 monolayer without 

the need for additional basement membrane protein additions. CCD-18co cells were cultured 

for a period of 14 days prior to the addition of Caco-2 cells which were also cultured for 14 

days prior to invasion analysis.  A) 77K, B) 192K, C ) 385k, D) 777K. As can be seen here, no 

singular seeding density was sufficient for complete repulsion of Caco-2 cells from the internal 

Alvetex Scaffold. Representative images of 14 day Caco-2 calls on different seeding densities.   

Images are representative of a minimum of 3 independent observations. 
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Figure 5.6: Creating a quantifiable technique for the analysis of model sections for the percentage invasion of Caco-2 cells within the Alvetex scaffold®– A method 

was required which was able to quantify the levels of invasion of the overlying Caco-2 cells into the underlying stromal compartment. A percentage invasion was calculated 

by first measuring the area of the stained caco-2 cells and then the area of the whole model. Percentage invasion is calculated through comparison of the two measured areas.  

A) Methodology for the measurement of Caco-2 infiltration into underlying scaffold. A full length image of the sections was taken and stitched together in image J. For 

quantification an overlying grid of 500μm2 was used to take random samples along the model. Minimum of 4 images were quantified per section. B) Graph showing results as 

a percentage of area quantified. n = 12 from a minimum of 3 independent experiments. Significancy was calculated by one-way ANOVA, No significancy was observed 

between samples. Error bars represent +SEM of average values. 

A

) 

B

) 
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5.4.6 Metabolic activity assessment of CCD-18co seeding 

optimisation experiments. 

Figure 5.7 A, shows the MTT assay results of the 14 day cultures of CCD-18co in Alvetex 

Scaffold® with differential starting seeding densities. No significant differences can be 

seen in the metabolic activity between any of the seeding densities at the 2 week 

timepoint, although there is a small non-significant trend toward increasing MTT value 

with increasing cell seeding density. However whilst there is a small trend the difference 

is disproportionate to the increase in cell number at the beginning of the experiment For 

example, 777k seeding density with 10 times the original staring density of CCD-18co 

cells compared to 77k only shows a marginal increase in MTT absorbance of 

approximately 10-20% over the 77k seeding condition. In contrast, the multiple seeding 

technique as described previously (Section 2.15) seeds a total of 576k cells into the 

scaffold over the duration of the 14 day culture time. This is 201k cells less than the 777k 

condition but produces a significantly higher absorbance value than any other condition 

suggesting a compounding effect. 

 

When Caco-2 cells are added to the fibroblast stromal models and cultured for a further 

14 days (Figure 5.7 B) there is no significant differences seen in the terminal MTT values, 

suggesting that Caco-2 cells have invade into the underlying stroma and scaffold and have 

proliferated to similar extends in each of the conditions, providing evidence that these 

seeding densities are unable to stop Caco-2 invasion into the underlying stroma. 
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Figure 5.7: Metabolic activity of the models shows that seeding higher densities of CCD-18co cells at the beginning of model culture has little effect on the 

number of surviving fibroblasts at the time of analysis – A) MTT data of differing seeding densities of fibroblasts grown in Alvetex Scaffold for 14 days. 

Compared to current multiphasic seeding method. Data shows that there is a non-significant difference between low number seeding densities (77,000/ model) and 

high number seeding densities (777,000/ model) multiphasic seeding (OP SMUL) whereby 777,000 cells are added over time rather than all on day 0 shows 

significant increases over other conditions suggesting a higher proportion of surviving fibroblasts. B) MTT values of 14 day fibroblast models plus 14 days of caco-

2 culture. Heightened MTT values indicate significant Caco-2 cellular infiltration into the underlying scaffold. No significant difference between models suggests  

all of the models allow for Caco-2 infiltration at similar rates. n=3, N=3 Significancy was calculated by one way ANOVA with Tukeys post-test analysis. Error bars 

represent +SEM of average values. 
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Figure 5.8: SEM topographical analysis of optimisation CCD-18co layers shows significant gaps in the surface support for the culture of Caco-2 cells  – 

Different seeding densities of fibroblasts were added to Alvetex Scaffold. A) 77k, B) 192k, C) 385k, D) 777k, E) Multiple seeding technique. Areas for the 

invasion of Caco-2 cells into the underlying stromal support can be clearly seen in all conditions except when CCD-18co cells are seeding into models utilising 

the multiple seeding technique. Images are representable of the average phenotype of the entire surface layer and multiple observations. 

77,000 192,000 385,000 

777,000 Multi-seeded 
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5.4.7 SEM analysis of the surface topography of CCD-18co 

seeding density layers. 

Surface topography of CCD-18co cells grown in Alvetex scaffold® is clearly shown 

through SEM imaging. Figure 5.8 A, shows 77k seeding density at the 14 day timepoint. 

Whilst cells can be clearly seen on the surface of the Scaffold®, there are clear gaps in the 

surface fibroblast layers, inevitably resulting in Caco-2 invasion into the Alvetex 

Scaffold® below. Figure 5.8 B, C & D correspond to higher seeding densities, show 

similar gaps, albeit appearing to decrease in regularity, in the surface layer. Figure 5.8 E 

however shows the effects of multiple seeding on CCD-18co surface layers. A continuous 

layer of cells is demonstrated across the entire surface of the model with no gaps available 

for the invasion of Caco-2 cells into the scaffold. Indeed, the cracks seen on the SEM 

images are due to processing of the samples for SEM analysis rather than for a biological 

reason.  

 

5.4.8 The effects of extended culture time on the population of 

Alvetex Scaffold® with CCD-18co cells. 

Figure 5.9 shows the histological sections of samples cultured for  a period of either 14, 

21 or 28 days. Observation of the slides highlights the lack of CCD-18co growth over 

time when cultured in 3D. Cells appear to colonise the substrate before proliferatively 

quiescing, maintaining cell numbers without proliferation (Figure 5.9 D). 

 

Figure 5.10 shows the effects of fibroblast culture time on the MTT values of the stromal 

cell models. What is clear is increasing culture time seemingly has no effect on model 

metabolic activity, suggesting that CCD-18co cells do not proliferate in 3D. Analysis of 

Caco-2 invasion (Figure 5.11) as described previously, reflects MTT values with no 

significant differences. In contrast  multiphasic culture significantly increases the MTT 

absorption values and decreases Caco-2 invasion into the underlying stroma when 

compared to other timepoint conditions.  
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Figure 5.10: Understanding the effects of time on the growth of CCD-18co population in 3D Alvetex 

models  –  MTT data of 192k cells/cm2 at differing timepoints. 14D, 21D, 28D. Data shows that time has little 

effect on the overall population size of CCD-18co cells cultured in Alvetex Scaffold. No significant differences 

can be observed between 14, 21 and 28 day timepoints with the highest levels being at around 21 days in culture, 

after which levels once again begin to drop. Multiphasic culture design is added here for comparison only, cell 

numbers and time are not controlled in multiphasic cultures in the same way as other conditions here. n=3 

Significancy calculation performed by one way ANOVA with Tukeys post-test analysis. n=3, N=3 Error bars 

represent + SEM of average values. 

A) 14 Days B) 21 Days C) 28 Days 

14 Days 21 Days 28 Days 

Figure 5.9: The effects of time on the growth of CCD-18co population in 3D Alvetex models shows 

little active proliferation when cultured in 3D  –  A) 14 days CCD-18co culture, B) 21 days, C) 28 days. 

D) Quantified data showing nuclei per field of view between samples. n=3 N=3. Histological analysis of 

paraffin embedded sectioned samples shows no significant differences between 14, 21 or 28 days of culture 

on the population of CCD-18co cells populating the Alvetex Scaffold. Images are representative of a 

minimum of 3 independent observations. Error bars represent + SEM of average values. 

Scale 100μm Error bars represent SEM of average values. 

D)  
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5.4.9 SEM analysis of stromal fibroblast cell layers. 

Figure 5.12 shows the protocol for the culture of CCD-18co cells growing within the 

Alvetex Scaffold® support. Figure 5.12 A shows the full thickness of the Alvetex 

scaffold® with CCD-18co growing within. It can be clearly shown that CCD-18co cells 

grow throughout the full 200μm scaffold thickness. ECM growing within the Alvetex® 

voids (Figure 5.12 B) is seen as strands of proteins spanning along the void spaces. ECM 

does not fully fill the space within the voids but instead spans between the cells and the 

voids. Figure 5.12 C & D shows the CCD-18co fibroblast phenotype along the surface of 

the Scaffold with a classical spindle shape layering the surface. The purpose of optimising 

the culture of the CCD-18co cells within the Alvetex Scaffold® was to limit the number 

of places whereby Caco-2 cells could invade into the underlying stroma. Figure 5.12 C 

shows that whilst the multiphasic culture strategy is more capable at creating said layer 

than all other conditions, there are still instances of areas on the surface of the scaffold 

whereby Caco-2 penetration could feasibly occur.   

Figure 5.11: Caco-2 invasion characteristics show that CCD-18co culture time has no 

significant effects on reducing the levels of Caco-2 invasion in Alvetex models – 192 000 

cells were added to Alvetex Scaffold on day 0 and allowed to grow in 3D for either 14, 21 or 

28 days. Results show no significant effect of culture time on the capabilities of the resultant 

model to limit Caco-2 cellular ingrowth with an average invasion amount of approximately 

30% of the model area. Error bars represent + SEM of average values. n=3, N=3 
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5.4.10 Structural analysis of optimised multiphasic seeded 

Caco-2/ CCD-18co Alvetex Scaffold® intestinal models.  

Histological cross sections of 3D Alvetex ®models highlights the structural morphology 

of cells within the Scaffold support (Figure 5.13 A & B). All models were cultured for a 

period of 35 days (14 days stromal culture followed by 21 days Caco-2 differentiation). 

High quality images show the heightened Caco-2 cells morphology located apically in 

the models. Caco-2 cells appear to create a single monolayer of cells for the majority of 

the models length however there are areas where multilayering seems to occur. However, 

A B 

D 

Figure 5.12: SEM Images of CCD-18co cells cultured in Alvetex Scaffold for a period of 21 

days shows significant ECM depositions within the Scaffold matrix- A-B) Fibroblasts provide a 

continuous surface layer in addition to penetration of the Alvetex inter-pore spaces and deposition 

of ECM proteins. Scale 200 and 50 μm C) High magnification image of the surface layer of the 

intestinal model. Image shows multiple layers of stretched fibroblasts providing supportive layer. 

Arrows (*) indicate points in the surface layer where Caco-2 penetration could occur. D) High 

magnification image of surface CCD-18co cells showing stellate morphology. Images are 

representative of a minimum of 3 independent observations. Scale 100 and 20μm respectively. 

C 

* 

* 

* 

* 
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differentiation between Caco-2 and CCD-18co cells is difficult at the epithelial-

mesenchymal boundary so these areas of “multilayering” could simply be CCD-18co and 

Caco-2 cells closely interacting. The cells growing within the Alvetex Scaffold® matrix 

can be clearly identified as CCD-18co cells from their basic cell morphology and growth 

patterns. Cells can be seen to be evenly dispersed throughout the model with thin layers 

at the base of the model in addition to the surface whereby they create a supportive 

foundation for the culture of the Caco-2 epithelium. This supportive layer is clearly able 

to limit the invasion of Caco-2 cells into the Scaffold with no evidence of invasion seen 

in this sample. 

 

Periodic Acid Schiff staining (Figure 5.13 C) of the 3D model cross section for detection 

of acidified mucosubstances, indicating mucous production, shows strong positive 

staining in both the CCD-18co and Caco-2 cell layers. throughout the model but primarily 

located within the Caco-2 layer. Caco-2 cells are not known to secrete significant levels 

of mucous. 

 

Figure 5.14 shows Toludine blue stained semi-thin resin embedded sections of 3D CCD-

18co Alvetex Scaffold. Resin embedding allows for a higher resolution image. Unlike in 

Figure 5.13, Caco-2 cells can be clearly seen to arrange themselves into a monolayer 

epithelium at the surface of the model with a supporting fibroblast mucosa. Brush border 

formation can be observed apically to the epithelial cells in addition to membrane 

associated glycocalyx proteins.  

 

SEM ultra-structural analysis of the surface of 3D Caco-2/ CCD-18co models shows the 

classical cobblestone morphology of epithelial cells growing on the supporting fibroblast 

surface layer (Figure 5.15 A). A closer analysis of the surface shows a homogenous layer 

of microvilli formation across the surface of the sample which can be identified as short 

column like protrusions from the apical cell membrane (Figure 5.15 B). A mesh-like mix 

of glycocalyx glycoproteins and acidified mucosubstances can be seen associated with 

the microvilli on the surface of the model, making individual microvilli difficult to isolate 

due to the overlapping glycocalyx weave. 
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TEM structural analysis of 3D Caco-2/ CCD-18co models reaffirms what is seen in the 

SEM analysis of the model. Figure 5.16 A & B highlights the apically based microvilli 

structures seen across the entire surface of the model. Additionally, Figure 5.14 A shows 

apical-lateral electron dense staining at cell-cell junctions indicating the presence of tight 

junction complexes between cells. A clear boundary between Caco-2 and CCD-18co cells 

can be seen at the base of the epithelial layer within the model (Figure 5.16 C). Electron 

dense staining at the epithelia-mesenchymal boundary suggests the formation of a 

basement membrane between the two cell populations. Additionally, active vesical 

formation at the base of Caco-2 cells suggests cross talk between cellular compartment 

(Figure 5.16 D).  
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Figure 5.13: 14 day multi-phasic culture design using young intestinal CCD-18co fibroblasts results in the formation of an intestinal model with 

little observable Caco-2 infiltration  – A) 40x B) 20X H+E staining of model. Note heightened epithelial cell morphology and well populated sub-

epithelial compartment. Caco-2 cells grow and self-organise into a monolayer epithelium without the added necessity for basement membrane protein 

additions to the model. Naturally secreted ECM creates a support structure for the culture of Caco-2 cells apically. C) PAS staining of intestinal models 

reveals moderate secretion of acidified mucosubstances in line with that seen in normal Caco-2 culture. Total model culture time = 35 days. All images 

were taken after 35 days in culture (21 days post-Caco-2 addition) Images are representative of a minimum of 3 independent observations. Scale: 50μm 

and 100μm respectively 
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Figure 5.14: Toludine blue stained samples provides enhanced resolution over H&E stained images allowing for closer analysis of the structural 

morphology of Caco-2 layers on the surface of CCD-18co models – Representative images of CCD-18co/ Caco-2 Toludine blue stained semi thin resin embedded 

sections.  A) 40 x magnification image of multiphasic culture CCD-18co/ Caco-2 intestinal model, B) 100x magnification. Total model culture time = 35 days. All 

images were taken after 35 days in culture (21 days post-Caco-2 addition) Images are representative of a minimum of 3 independent observations. Scale bar 100μm 

and 50μm respectively.  
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Figure 5.15: High magnification analysis of Caco-2/ CCD-18co 3D models reveals differentiated enterocytes with clear microvilli 

formation and associated glycocalyx – Samples, increasing magnification from left to right. Surface structures seen through SEM microscopy 

are highly reminiscent of microvilli structures seen in the literature. These structures indicate a well-established and differentiated caco-2 layer 

within the model. Total model culture time = 35 days. All images were taken after 35 days in culture (21 days post-Caco-2 addition). Images are 

representative of a minimum of 3 independent observations.  Scale bars: 30 and 1 μm respectively.  

A B 
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500nm 

Figure x: TEM Images of full thickness short 

multiphasic intestinal model – TEM images of 

60nm thick resin embedded sections reveal 

the presence of tall microvilli structures and 

tight junction complexes organised apically 

to the caco-2 monolayer present within the 

2μm 

Figure x: TEM Images of full thickness short 

multiphasic intestinal model – TEM images of 

60nm thick resin embedded sections reveal 

that microvilli expression is consistent over 

the apical surface of the caco-2 epithelial 

1μm 500nm 
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Figure 5.16: TEM ultra-thin cross sections of CCD-18co 3D co-culture model showing 

microvilli, intercellular junctions and basement membrane formation – A) Microvilli 

formation on the apical surface of Caco-2 cells, B) Low magnification image of the surface of 

one Caco-2 cell showing microvilli formation along the total apical length of the cells, C) Caco-

2/ CCD-18co contact points showing electron dense basement membrane, D) Vesicle formation 

between CCD-18co and Caco-2 cells. Total model culture time = 35 days. All images were 

taken after 35 days in culture (21 days post-Caco-2 addition). Images are representative of a 

minimum of 3 independent observations. 
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5.4.11 Optimisation and structural analysis of Caco-2/ HDFn 

Alvetex Scaffold® intestinal models.  

Figure 5.17 shows the differential morphologies of cells seen in 3D at different timepoints 

of Caco-2 culture on the surface of the HDFn models. The purpose of this experiment 

was to observe the 3D model during the culture period. The culture of HDFn models in 

the absence of Caco-2 cells shows good model stability overtime without any significant 

effects in model morphology even over long periods (data not shown). The addition of 

Caco-2 cells for a period of 7 and 14 days  (Figure 5.17 A,B & D,E) shows good Caco-2 

morphologies with tall columnar cells, basally located nuclei and, under close 

examination, apical microvilli formation. However, Fibroblast layers are seen to 

dramatically decrease in size between 7, 14 and 21 days. 

 

Caco-2 cells were not expected to have any negative effects on the culture or morphology 

of the HDFn membrane however by 21 days in culture significant decreases in cellular 

number and changes in cell morphology can be easily observed with fibroblast cells 

taking on a flattened, compacted morphology, potentially indicating cell death. Caco-2 

cells at day 21 (Figure 5.17 C & F) are cuboidal in cell, cytoplasmically dense and form 

a tight monolayer at the surface of the model. Whilst this morphology is significantly 

different than 7 and 14 day cultures, compared to 2D Caco-2 cells shown previously, there 

is still a significant improvement toward in vivo like characteristics of polarised columnar 

cells.  

 

Figure 5.18 shows methyl blue staining of the 3D HDFn cultured models described 

previously in Figure 5.17. Methyl Blue is a well-known stain for Collagen showing a high 

specificity here with little background staining often seen in Alvetex® based models. 7 

and 14 day cultures (Figure 5.18 A-B, D-E & G-H) show clear collagen deposition within 

the scaffold matrix, with long fibrous strands stretching across voids and pores. This 

allows for the full 3D culture of the cells within the scaffold through the deposition of 

tissue specific hydrogels and proteins within the 3D matrix itself. By day 21 Collagen 

deposition within the scaffold is seen to be significantly diminished over 7 and 14 day 

samples, with only weak, diffuse staining seen.  
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Due to the decreases in cell numbers and collagen deposition as seen in Figures 5.17 and 

5.18 respectively, the multiphasic approach to fibroblast culture was attempted with the 

same methodology as was proven to be successful with CCD-18co cells previously.   

 

Figure 5.19 shows the H&E staining of multi-seeded mature HDFn intestinal models. 

Figure 5.19 A shows the Caco-2 epithelial layer at high magnification, highlighting the 

cuboidal shape of the cell layer and the lack of both invasion into the underlying scaffold 

and the ability of the cells to create a single layer thick monolayer epithelium as would 

be seen in the human intestine. Figure 5.19 B shows the H&E stained model at a lower 

magnification, highlighting the well populated Alvetex® Scaffold substrate and the dense 

fibroblast layers at both the apical and basal sides of the HDFn intestinal model. PAS 

(Figure 5.19 C) staining shows a similar morphology to that seen previously in the CCD-

18co intestinal model (Figure 5.13 C) whereby Caco-2 cells stain weakly positive, 

suggesting some low level mucous production in these cells. HDFn cells appear to also 

weakly stain with PAS reagent suggesting some level of background staining within the 

image.  
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Figure 5.17: H+E staining of 7, 14 and 21 day cultures of Caco-2 on 28 day matured dermal equivalents show a changing fibroblast morphology over time -  500 

000 Caco-2 cells were seeded per 12 well format Alvetex Scaffold insert pre-cultured with dermal cells after day 28 of HDFn growth within Alvetex Scaffold. Caco-2 cells 

were cultured for variable time for either 7 days (A,D), 14 days (B,E) or 21 days (C,F). HDFn layers can be seen to reduce in thickness over time at both the apical and basal 

sides of the Alvetex Scaffold. Additionally, Caco-2 Morphology is clearly seen to change from a relatively tall, columnar shape to the more regular cuboidal culture after 21 

days.  Samples were fixed in 4% PFA overnight at 4oC prior to dehydration and embedding in paraffin. Images are representative of a minimum of 3 independent observations. 

Scale 100μm (A-C) and 20μm (D-E) 
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Figure 5.18: Methyl Blue stained Collagen staining of the 7, 14 and 21 day cultured Caco-2 models shows how Collagen deposition decreases after 21 days in 

culture – Collagen levels indicated through blue staining of structures within the Alvetex Scaffold® show clearly that fibrous collagen deposition has occurred during the 

culture of the HDFn cells within the Scaffold prior to the seeding of Caco-2 cells apically. Interestingly, deposited Collagen within the Scaffold seems to decrease over time 

with the length of Caco-2 culture diminishing both Collagen deposition and HDFn populations. Images are representative of a minimum of 3 independent observations. 

Scale 100μm (A-C) & 20μm (D-I) respectively. 

7 Days 14 Days 21 Days 
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Figure 5.19: 14 day multi-phasic culture design using low passage HDFn  fibroblasts results in the formation of an intestinal model with little 

observable Caco-2 infiltration  – A) 40x B) 20X H+E staining of model. Note cuboidal epithelial cell morphology and well populated sub-epithelial 

compartment. HDFn cells can be seen growing within the interior of the Alvetex Scaffold® in the self-organised 3D environment created by long term 

3D cell culture. Similar to that seen in the CCD-18co 3D model, Caco-2 cells grow and self-organise into a monolayer without the addition of 

basement membrane proteins to the model. Naturally secreted ECM creates a support structure for the culture of Caco-2 cells apically. C) PAS 

staining of intestinal models reveals moderate secretion of acidified mucosubstances in line with that seen in normal Caco-2 culture and a similar 

intensity to that seen in the CCD-18co 3D model. Images are representative of a minimum of 3 independent observations. Scale 100μm (A), and 

200μm (B-C). 
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Figure 5.20: 14-day multi-phasic culture design using low passage HIC fibroblasts results in the formation of an intestinal model with poor Caco-2 structure 

when compared to CCD-18co and HDFn optimised models – A) 40x, B) 20x H&E staining of the model shows poor Caco-2 differentiation across the surface of 

the model. Relatively low levels of Caco-2 cellular infiltration are observed however infiltration is more prevalent that CCD-18co and HDFn models. C) PAS staining 

of HIC 3D model sections shows no positive staining throughout the model, unlike in other conditions. Images are representative of a minimum of 3 independent 

observations. Scale 100μm (A), and 200μm (B-C) 
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5.4.12 Histological analysis of the structure of Caco-2/ HIC 

Alvetex Scaffold® intestinal models.  

Figure 5.20 shows the histological analysis of Caco-2/ HIC models created utilising a 

multi-seeding approach with Alvetex® Scaffold. Figure 5.20 A & B, shows H&E stained 

sections at high and low magnification respectively. A consistent Caco-2 epithelium is 

observed across the length of the model however, cellular morphology is highly 

squamous similar to that seen in control Caco-2 Transwell cultures. PAS staining (Figure 

5.20 C) shows no positive staining throughout the section. This is in contrast with both 

CCD-18co and HDFn cultured models in which a small degree of mucous producing 

capability, especially in Caco-2 epithelial layers, could be observed. Caco-2 cells are 

primarily of enterocyte origin and function therefore, it is possible that this is a 

physiologically consistent change in cellular phenotype. 

 

5.4.13 Human colonic and small intestinal characterisation for 

comparison to 3D co-culture models. 

Figure 5.21 shows the histological characterisation of normal human colonic tissue 

obtained from Biopta (Glasgow, UK). Figure 5.21 A & B, shows samples of normal 

human colonic tissues which have been H&E stained to view the cellular morphology. 

Tissue is shown in both transverse and longitudinal sections showing abundant goblet 

cells within the epithelium and deep crypt formations. Goblet cell abundance is confirmed 

through PAS staining of tissue sections with strong positive staining seen along the length 

of the epithelium and into the crypt structures. Figure 5.21 E & F Massions Trichrome 

staining highlights the extracellular matrix compositions seen along the base of the 

epithelial layers, secreted by sub-epithelial myofibroblasts, supporting epithelial 

differentiation.  

 

Immunofluorescence characterisation of human colon tissue sections (Figure 5.22, 5.23) 

shows the characteristics staining patterns of some key protein of interest, namely of ECM 

deposition, junctional formation and functional efflux protein expression. Collagen I, III 

and IV are intercellular and secreted collagen proteins found extensively throughout the 
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body. Figure 5.22 A-C, shows the deposition patters of these collagens in human colonic 

tissues. Collagen I (Figure 5.16 A) is clearly seen to be highly abundant in both the crypt 

walls and the basal muscular layers with no positive staining seen in epithelial tissues. 

Collagen III (Figure 5.22 B) shows limited staining throughout the colon tissue section 

with only small amounts of positive staining seen, primarily located in the crypt core and 

the underlying smooth muscle layers. Collagen IV (Figure 5.22 C) shows extensive 

staining throughout the crypt core and the sub mucosal layers. Collagen IV is normally 

known as a basement membrane protein, primarily located on the basal lamina. 

Interestingly, whilst some of the staining does seem specific to the areas immediately 

beneath the epithelial layer, staining seen here suggests a more diffuse expression profile 

with extensive staining also seen in the sub-mucosal layers. Negative controls (Data not 

shown) do not show any positive staining in the absence of the primary antibody, 

suggesting the staining seen here for Collagen IV particularly is true staining. It is possible 

however, that some levels of cross specificity between Collagen types is present with this 

antibody, resulting in the non-physiological diffuse pattern of staining. αSMA staining 

designates myofibroblast locations within the sub-epithelial mucosa. αSMA staining here, 

compared to vimentin (Figure 5.23 A, D staining (general mesenchymal marker) shows 

a high proportion of myofibroblasts within the colonic tissues compared to total 

mesenchymal population. Elastin staining (Figure 5.23 B, D) is primarily located within 

the muscle layers immediately beneath the crypt structures. MDR1 (P-gp) colonic 

staining (Figure 5.23 C,E) demonstrates positive localisation to the crypt tips alone, 

generally thought to be the tissue within the colon most fully differentiated for enterocytic 

functions. No positive staining is seen within the crypt structured suggesting good 

staining specificity. Interestingly, MDR1 cellular localisation is not specific to the apical 

membrane as would be hypothesised, with staining also seen along lateral membrane 

boundaries. 
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Figure 5.21: Histological analysis of normal human colonic tissue sections – A-B) H+E staining of 

longitudinal and transverse sections of the colonic crypt. C-D) PAS staining of longitudinal and 

transverse sections of the intestinal crypt. E-F) Masson’s Trichrome staining showing the collagen 

deposition between the intestinal crypts. A-E Images were taken at 20x, F) was taken at x40 

magnification to show subtle blue staining. Images are representative of a minimum of 3 independent 

observations. Scale bar: A-E) 200μm, F) 400μm 
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Figure 5.22: Immunofluorescence analysis of normal Human Colonic tissue sections shows significant Collagen I, III and IV staining located at the sub-

epithelial compartment of the tissues  – A-D) longitudinal sections of Human Colonic tissue. Collagen deposition can be seen throughout the core of the crypt 

structures. αSMA staining indicated the presence of myofibroblasts located in the sub-epithelial compartment of the tissues. E-H) Shows the transverse sections 

of the crypt structures. Again, Collagen can be seen to be deposited immediately beneath the epithelial layers in the tissues. Internal non-stained circular areas 

mark the internal crypt space, normally absent of cells. Images are representative of a minimum of 3 independent observations. Scale: A-D) 200μm E-H) 100μm 
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Figure 5.23: Immunofluorescence analysis of normal human colonic tissue sections highlights the two distinct cellular populations between epithelial and stromal 

lineages – A,D) Shows the longitudinal and cross sectional staining of the protein Vimentin, a type III intermediate filament protein found in mesenchymal cells. Staining 

intensity shows primary location in the sub-epithelial stromal compartment, highlighting the location of supportive fibroblast cells beneath the epithelial structures. B,E) Stains 

for Elastin, a component of the ECM of many tissues, important for tissue elasticity. C,E) MDR1 staining is shown to be located primarily at the crypt surface with less intense 

staining seen further into the crypt structure. Longitudinal staining shows only small expression in some crypt structures. Images are representative of a minimum of 3 

independent observations. Scale: A-C) 200μm, D-F) 100μm 
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5.4.14 Human small intestine characterisation for comparison 

to 3D co-culture intestinal models. 

Small intestinal tissue was also acquired from Biopta (Glasgow, UK). Figure 5.24 A, B  

shows the histological staining of the small intestinal tissue with H&E. Classical tall villus 

structures can be seen with a well-defined epithelium, supportive mucosa and basal 

smooth muscle layers. Transverse sections of the tissue show round structures indicating 

the cross sectioned villus. Large numbers of supportive fibroblasts can be easily identified 

with seemingly much denser staining that that seen in the colon tissue ( Figure 5.21 A,B). 

Figure 5.24 C, D show PAS staining of the intestinal tissue. Goblet cells, as identified by 

positive PAS staining are shown to be interspersed throughout the villus crypt axis 

between non-stained enterocyte lineages. Small intestinal tissue sections when compared 

to their colonic counterparts (Figure 5.21 C, D) show significantly less positive goblet 

cell staining indicative of the change in function between the tissues, with small intestine 

primarily tooled towards high absorptive properties. Trichrome staining (Figure 5.24 E, 

F) shows significant collagen deposition throughout the entirety of the tissue but primarily 

located at the base of the villi structures. 

 

Similar to that seen in colonic tissues, Collagen I, III and IV staining (Figure 5.25 A-C) 

is observed throughout the tissue structures, primarily in the sub-epithelial compartment 

immediately beneath the epithelial layers. αSMA staining (Figure 5.25 D) is equally 

dispersed throughout the tissue. However, compared to Vimentin (Figure 5.26 A) αSMA 

is only a small proportion of total mesenchymal staining. This is in contrast to staining of 

the colon and suggests that the small intestine harbours a smaller number of myofibroblast 

cells as a percentage of the total fibroblast population. Elastin staining (Figure 5.26 B) 

shows a specific, punctate staining throughout the small intestine mucosae most likely 

representing smooth muscle cells. MDR1 (Figure 5.26 C) shows a similar expression 

profile in small intestine as was observed in colonic tissues, namely a localisation to the 

apical cells of the villi structures and apical/ apical-lateral staining in the cells themselves. 

Small intestinal tissue sections were also stained for Occludin and E-Cadherin (Figure 

5.27 A, B) which were localised to the epithelial layer alone, with either apical or lateral 

staining for Occludin and E-cadherin respectively, as expected.  
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Figure 5.24: Histological analysis of normal Human Small intestinal tissue sections – A,B) 

Histological analysis of tissue structure by H&E staining of intestinal villi and muscularis layers. C,D) 

PAS staining of goblet cell populations within the small intestinal villus. Significant numbers of goblet 

cells ca be seen throughout the length of the intestinal Villus. Goblet cell population rates are 

significantly lower than that seen in the large intestinal sections (Figure5.15 C,D). E,F) Massions 

Trichrome staining of intestinal sections showing collagen depositions along the villus axis, Intense 

staining can be seen around the serosal layer of the tissue and in between villus structures. Images are 

representative of a minimum of 3 independent observations. Scale 200μm 

 

A B 

C D 

E F 



Chapter 5 – Development and characterisation of a novel 3D model of the intestinal mucosa 

Page | 284 

 

  

Figure 5.25: Immunofluorescence study of normal Human Small intestinal tissue sections for the analysis of ECM deposition in the stromal intestinal 

tissues – As was seen with immunofluorescence staining of Colonic tissues, ECM deposition can be located primarily beneath the Epithelial layers with a strong 

band of staining showing the supportive basement membrane of the epithelial layer. Low levels of αSMA (D) staining can be seen throughout the tissue sections, 

especially in the stromal and smooth muscle layers of the tissues. Images are representative of a minimum of 3 independent observations. Scale 100μm 
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Figure 5.26: immunofluorescence analysis of normal Human Small intestinal tissue sections 

shows distinct population of cells within the epithelial and stromal compartments – A) 

Vimentin, Mesenchymal intermediate filament protein B) Elastin, a secreted ECM component found 

within many body tissues, important for tissue elasticity C) MDR1, Apically expressed efflux protein 

found in enterocytes within the intestine Images are representative of a minimum of 3 independent 

observations.Scale 100μm 

 Occludin E-cadherin 

Figure 5.27: Immunofluorescence analysis of normal Human Small intestinal tissue sections 

– A) Occludin, tight junctional component protein, B) E-cadherin, Adherens junction component 

protein. Images are representative of a minimum of 3 independent observations. Scale 100μm 
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5.4.15 3D CCD-18co intestinal model immunostaining 

characterisation. 

Figure 5.28 shows the immunostaining characterisation of the 3D CCD-18co Alvetex 

®model of the intestinal mucosae. A-C shows the extracellular Collagen deposition by the 

CCD-18co fibroblasts within the Alvetex Scaffold®. Namely, Collagen I, III and IV are 

shown here and are seen to be homogenously dispersed throughout the Alvetex®, 

covering the pore surfaces and in some cases are seen spanning the void distance.  

 

Figure 5.28 D and E, shows Vimentin and aSMA staining respectively. Vimentin is used 

in this instance as a marker for cells of mesenchymal origin and should therefore stain 

fibroblasts specifically, including both normal and myofibroblast cells. αSMA is a marker 

specifically for cells of a myofibroblast origin. By comparing the relative expression of 

Vimentin to αSMA one could understand the frequencies of different cell populations 

within the intestinal and 3D model stromal compartments.  Figure 5.28 D & E, shows 

staining of both markers within the 3D model. αSMA is shown to be significantly less 

expressed than Vimentin and as such suggesting a mixed population of normal and 

myofibroblasts within the 3D model stroma, as was seen in the human colonic and small 

intestine tissue sections (Figure 5.21 E & F and Figure 5.25/26). 

 

Cellular junctions within the 3D model were assessed through the staining of E-cadherin 

and Occludin (Figure 5.28 F & G) . Clear junctional formation could be observed in the 

epithelium of the 3D model with consistent E-cadherin formation along the length of the 

entire epithelium. Additionally, E-cadherin staining shown how cells are arranged into a 

tall epithelial monolayer rather than multilayering. Tight junction expression as assessed 

through Occludin staining is also seen throughout the epithelium with staining primarily 

located at the apical lateral point of the Caco-2 cells membrane with specific tight junction 

localisation also inferring cell polarisation. Finally, MDR1 staining (Figure 5.28 H) is 

shown to be specific to the epithelial layer. However, MDR1 does not show the expected 

apical localisation within the cells with significant expression seen along the length of the 

apical and basal membrane along with some disperse cytoplasmic staining similar when  

compared to the expression seen in tissue.
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Figure 5.28: Immunofluorescence analysis of CCD-18co/ Caco-2 Alvetex 3D models shows significant ECM deposition within the substrate 

in addition to well defined epithelial layers - A) Collagen I, B) Collagen III, C) Collagen IV, D) Vimentin, E) Alpha- SMA, F) E-cadherin, G) 

MDR1. Images are representative of a minimum of 3 independent observations. Scale 100µm. 
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5.4.16 3D HDFn intestinal model immunostaining 

characterisation. 

Figure 5.29 shows the immunofluorescence staining for optimised HDFn 3D Alvetex 

Scaffold® models of the intestine. Figure 5.29 A-C shows the extra and intra-cellular 

staining of Collagen proteins important in normal tissue function and homeostasis, 

namely, Collagen I, III and IV. Collagen I shows a limited amount of expression within 

the Scaffold, primarily located to the basal and apical surfaces of the Scaffold. This is 

most likely intracellular Collagen I as the positive staining location strongly correlates 

where the largest population of HDFn cells reside within the model. Collagen III (Figure 

5.29 B) is, for the most part, absent from this model. Collagen IV (Figure 5.29 C) is by 

far the strongest stained of the Collagen so far, with extensive deposition throughout the 

model.  

 

Figure 5.29 D and E show vimentin and αSMA staining respectively. Vimentin is utilised 

as a stain for mesenchymal cells, and as such, specifically stains HDFn cells at a higher 

intensity than Caco-2. Vimentin staining shows significant fibroblast populations 

throughout the model, however, there does appear to be a bias toward the apical surface 

of the models, most probably due to the sequential seeding techniques. Figure 5.29 E 

shows αSMA, very little positive staining is seen within the HDFn model. Some positive 

staining can be observed indicating a small subpopulation of αSMA positive fibroblasts/ 

myofibroblasts. Figure 5.29 F shows E-Cadherin staining along the entire length of the 

Caco-2 epithelium. Caco-2 cells are able to differentiate forming well defined junctions 

between cells within the epithelium. Occludin staining (Figure 5.29 G) shows a similar 

pattern with primarily apically located expression along the epithelial layer. Finally, 

MDR1 staining (Figure 5.29 H) is shown to be strongly located to the basal layer of the 

epithelium, generally not where MDR1 expression is to be expected.  
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Figure 5.29: HDFn/ Caco-2 Alvetex models show well defined epithelial layers without the significant Collagen deposition within the 

substrate as seen in CCD-18co models - A) Collagen I, B) Collagen III, C) Collagen IV, D) Vimentin, E) Alpha- SMA, F) E-cadherin, G) MDR1. 

Images are representative of a minimum of 3 independent observations. 

 Scale 100µm. 
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5.4.17 3D HIC intestinal model immunostaining 

characterisation. 

Figure 5.30 shows the immunostaining characterisation of 3D cultured models created 

with the HIC cells (Human intestinal cells, isolated in Durham). Histological analysis 

seen previously (Figure 5.20) shows how the 3D structure in this model is limited in its 

in vivo mimicry of the intestine. Therefore, it would be unreasonable to expect the 

immunofluorescence staining to show anything less than the disorganised structure 

already analysed histologically. Similar to HDFn staining, Collagen I and III (Figure 5.30 

A & B) show limited deposition within the Alvetex Scaffold similar to HDFn primary 

cells. Collagen IV (Figure 5.30 C) shows significant staining throughout the scaffold with 

an even deposition moving from the apical to basal sides of the substrate.  Vimentin and 

αSMA staining is similar to that seen in other models with higher levels of Vimentin than 

αSMA when compared, suggesting a mixed myofibroblast population.  E-cadherin and 

Occludin staining highlights the failure of the HIC cells to create a foundation for the 

culture of Caco-2 cells localised to the apical surface of the model. Whilst some epithelial 

organisation can be observed, there is a large amount of Caco-2 infiltration into the 3D 

scaffold as suggested by positive junctional staining throughout the substrate. MDR1 

similarly shows a lack of organisation with  positive staining seen throughout the scaffold. 

Structure implies function. Therefore, without the correct tissue organisation one would 

expect a decrease in the functional attributes of a model and its capabilities to mimic the 

in vivo  intestine. 

 

HIC 3D models were a late addition to the project. Additionally, only limited numbers of 

HIC cells were available for use. As such only minimal optimisation of culture techniques 

was achieved with HIC 3D models. The model disorganisation in comparison to the other 

models utilised in this study highlights the importance of optimisation in the culture 

process. 3D HIC models were carried through to functional pharmacokinetic assessment   

to maintain consistency and provide a comparison with HIC paracrine media cultured 

achieved in Transwell. 
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Figure 5.30: HIC/ Caco-2 3D models are shown to secrete significant levels of Collagen IV with only minor amounts of other ECM components, 

epithelial layering is significantly diminished compared to other model systems - A) Collagen I, B) Collagen III, C) Collagen IV, D) Vimentin, E) 

Alpha- SMA, F) E-cadherin, G) Occludin, H) MDR1. Images are representative of a minimum of 3 independent observations. Scale 100µm. 
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5.4.18 Lighsheet analysis of 3D model immunostaining 

morphology. 

Light sheet analysis was attempted to form a 3D immunostaining image of the intestinal 

model in order to understand the dispersion of ECM within the Alvetex Scaffold®. Due 

to the limitations of the Alvetex Scaffold’s® optical properties a novel clearing method 

based on the paper by Renier et al  (270) was required to penetrate any significant distance 

into the Alvetex® model. 

 

Figure 5.31 shows the expression of αSMA and Vimentin (Both markers of 

myofibroblasts and mesenchymal cells respectively) in addition to E-cadherin, utilised 

here to highlight the formation of the epithelial layers. The differential expression rates 

of αSMA and Vimentin clearly show that αSMA positive cells are a small yet significant 

sub-population of the added fibroblasts. Vimentin staining shows the levels of CCD-18co 

population within the Alvetex Scaffold®. It clearly shows that the cells form a continuous 

layer across the surface of the scaffold, sufficient for the subsequent seeding and culture 

of Caco-2 cells across their surface with minimal epithelial invasion into the underlying 

stromal section of the model. The continuous monolayer formation of Caco-2 cells in the 

model is further highlighted by the E-cadherin expression showing a clear monolayer 

across the surface of the construct.  

 

Figure 5.32 highlights the levels of collagen deposition within the scaffold. The tested 

collagens, Collagen I, III and IV all show significant deposition within the scaffold with 

collagen III being potentially the most abundant and Collagen IV the least. In either case 

it is clearly shown the CCD-18co cells are able to secrete significant levels of ECM into 

the Alvetex Scaffold® throughout the culture period. It was decided that light sheet 

analysis for this application did not provide significant additional value over sectioned 

samples due to the poor penetration of the imaging into the sample. As such full scale 

immunological assessment did not proceed past this point with this technique.  
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Figure 5.31: 3D cellular organization of CCD-18co fibroblasts and Caco-2 cells – A, B) 

αSMA staining of myofibroblast sub populations, B) 90o rotation of A. C, D) Vimentin 

staining of mesenchymal cells, D is a 90o rotation of C. E, F) E-cadherin staining of Caco-2 

cells, F is a 90o rotation of E. Images are representative of a minimum of 3 independent 

observations. Scale 100μm 
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Figure 5.32: 3D cellular organization of CCD-18co fibroblasts and Caco-2 cells – A, B) 

Collagen I, B) 90o rotation of A. C, D) Collagen III staining of mesenchymal cells, D is a 90o 

rotation of C. E, F) Collagen IV staining of Caco-2 cells, F is a 90o rotation of E. Images are 

representative of a minimum of 3 independent observations. Scale 100μm 
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5.4.19 Development of an Ussing chamber for the 

incorporation of the 24-well format Alvetex Scaffold®.  

Alvetex Scaffold®, unlike Transwell in the Snapwell format, does not come in formats 

friendly to easy addition  into Ussing chamber designs currently available on the market. 

All model development and optimisation steps were performed in the 24-well Alvetex 

Scaffold® format due to its small culture area, reducing cellular load and ease of use in 

standard format 12-well plates. It was necessary to ensure that the model would have 

minimal disruption when taken from cell culture to utilisation within the Ussing chamber. 

As such, unclipping the Alvetex® model (disrupting the epithelium) from the 24-well 

format inserts would impart mechanical stresses ultimately damaging the intestinal 

construct, prior to addition into the Ussing chamber for analysis.  

 

Figure 5.33 shows the chamber design allowing for the incorporation of the entire 24-

well insert into the Ussing chamber. The design ensures equal amounts of fluid on either 

side of the membrane when in the system. This limits any static fluid pressures which 

could ultimately influence the transport kinetics of the model. The full insert is added into 

the middle of the 3 sections and, when closed together creates a watertight seal across the 

membrane stopping any passive movement of fluid across the chamber, not associated 

with passive movement through the membrane.  

 

Ultimately, the transport experiments conducted in the following chapter utilised the 96-

well format instead of the 24-well format due to improved high through put applications. 

The 96 well format became available after the design and construction of the 24-well 

Ussing chamber. Models were moved to the 96-well format due to its enhanced 

capabilities to allow for higher throughput model culture, more simplistic/ reproducible 

chamber design and requirement of a reduced number of population limited cells for 

creation of a full intestinal model.  

 

Figure 5.34 shows pictures of the final product. 
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Figure 5.33: Wireframe schematic diagram of the 24-well Alvetex Scaffold Ussing chamber 

design – The design comes in 3 distinct sections to allow for the full incorporation of the 24-well 

insert into the Ussing chamber system. This is done in an effort to minimise the mechanical 

disruption to the model prior to analysis which unclipping the Alvetex from the culture insert 

would induce. The entire culture insert fits within part B of the chamber design with parts A and 

B mirroring the internal measurements of the 24 well format to ensure equal amounts of media on 

either side of the membrane. Parts D-F are cross sections of the corresponding A-C parts. 
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Figure 5.34: Photographic images of the 24-Well format manufactured Ussing chamber – A) 24 well insert with Alvetex layer (*), wing span of the insert is 

sufficient for suspension culture within a 12 well plate. B) 24 well insert placed within the acceptor compartment of the Ussing chamber device. When inserted fully the 

surface of the 24 well insert is flush with the Ussing chamber plastic. Alvetex layer (*) C) The whole Ussing chamber device with the 24 well insert ready to be 

sandwiched together and used for analysis.  
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5.4.20 Creating a high throughput solution for the culture of 

96-well format 3D Alvetex ®models. 

24-well Alvetex Scaffold®, whilst small in its own right and on a similar scale as 12 and 

24-well Transwell inserts is not high throughput to the extent required in the 

pharmaceutical industry for the large-scale analysis of potential drug compounds. As such 

the prototype 96-well Alvetex® format was created. The 96 well models were created in 

strips of 8 wells per model with size and distancing sufficient for the culture in a standard 

96-well plate. However, it was observed that due to the extremely small media volumes 

added to a standard 96-well plate that the models were being insufficiently fed and media 

evaporation was clearly an issue for models at the edges of the plate (Data not shown). 

As such a new culture system was designed to limit the above described disadvantages. 

Figure 5.35 shows the schematic of the resultant design created for the culture of 96-well 

format models. A deep reservoir was incorporated into the design around the edges of the 

plate in order to limit any effects of evaporation seen in the culture wells. At the air liquid 

interface 1ml of media can be fit into the wells beneath the models with the final 

submerged volume of 1.5 ml. This provides ample media for the growing cellular models 

within the Alvetex Scaffold®, with media changes every other day. Utilisation of the 96-

well plate resulted in the creation of models with indistinguishable histology than other 

formats. 

 

The main advantage of this culture system over 24, 12 and 6-well Alvetex® formats is in 

the higher throughput capabilities of the system. A total of 24-models can be created in a 

single plate with a media availability per cm2, significantly higher than any other format 

by over an order of magnitude. 1.5 ml of media per model is sufficient for only a twice 

weekly feeding schedule. Minimising the work/ time needed to culture the model, 

reducing failure rates (e.g. through infection or manual mishandling of models) and 

saving money by reducing expensive media volumes required. Images of final products 

are shown in Figure 5.36
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Figure 5.35: Creating a Deep well culture dish for the maintenance of the ideal conditions to allow for 3D intestinal model growth in 96 well formats 

– A,B) Shows a top down and rotated view of the 96 well deep culture dish with 96 well inserts resting within the plate, C) shows a cross section of the plate 

through the centre of one of the 3 culture strips. * = the 1 ml void beneath the hanging culture insert to allow for the air-liquid interface culture of the models 

with sufficient media to promote cellular viability and growth. Total chamber fill amount is 2ml, 1.5 ml is the standard volume required to submerge the 

models completely. ** = the external reservoir for the addition of either sterile H2O or sterile PBS. This reservoir ensures sufficient humidity is maintained 

in the plate, limiting media loss through evaporation, important for models at the air-liquid interface.  
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Figure 5.36: Photographic analysis of 96 well deep well format – A) Well 

structure without the addition of 96 well Alvetex Scaffold inserts demonstrates 

the large reservoir running around the edge of the plate to humidify the models 

in addition to the media chambers, capable of holding up to 2ml of media per 

model. B) Alvetex strips resting within the plate system, C) Zoomed in image 

of the individual wells of the 96 well plate. *Alvetex layers within the wells. 
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5.4.17 Development of an Ussing chamber suitable for the 

analysis of 3D cultured 96 well format models. 

Assessment of a models functional capabilities can involve any number of assays and 

experiments in order to understand the physiological relevance of a model. This study 

primarily utilised an Ussing chamber design for all of the transport kinetic work, 

displayed in the following chapter.  

 

In order to utilise the 96-well Alvetex® format within an Ussing chamber, a custom 

designed and manufactured chamber system was created to incorporate the bespoke 

nature of the 96-well format. Figure 5.37 shows the wire frame 3D model of the resultant 

design.  Figure 5.37 A shows the aperture within which the Alvetex® and insert rests 

throughout the transport assay. Much in the same way as the 24-well chamber was 

designed the 96-well chamber is designed to incorporate the entire model insert, reducing 

the need for manual handling of the models and as such limiting the possibilities for 

accidental damage to the 3D models prior to use in the system.   Unfortunately, due to the 

96-well models design with 8 wells heat bonded per strip some manual handling is 

required for the 96-well format when applying to the chamber by clipping away the 

models from the culture strip. This is easily and cleanly done with a pair of wire snips 

prior to addition to the chamber. Figure 5.39 shows the steps for the processing of 96 well 

format Alvetex Scaffold® models into the custom designed Ussing chamber.  Once 

models are in the chamber the basic premise of the system is the same as any other Ussing 

chamber device. There are ports for the connection of reservoir in and out tubing in 

addition to ports for the attachment of Ag/Cl electrode for the measurement of the 

electrophysiology of epithelial layers.
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Figure 5.37: Wireframe schematic of the 96 well Ussing chamber system, designed for the incorporation and functional testing of 96 well format 

Alvetex intestinal models – A) A profile view down the centre line of the chamber giving a view of the orientation of the internal ports and fluid lines. B) 

Shows the acceptor compartment for the addition of Alvetex Scaffold models, * = Acceptor port. C) Shows the wireframe of the complete design when 

sandwiched together. The model is sandwiched between both sides of the chamber system. A small amount of the apical surface of the hanging insert 

protrudes from the Acceptor port. This design ensures that the model is secure and water tight when the chamber system is sandwiched together.  

A 

B 

C 

* 
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Figure 5.38: Photographic images of the 96 well format Ussing chamber with added 96 well Alvetex insert –A) Face view of the internal aperture 

of the 96 well chamber. Left) 96 well receiver chamber, Right) Sealing chamber. B) Both left and right pieces of the Ussing chamber immediately before 

sealing. The middle is completely flush with the O-ring sealing the chamber when closed. C) 96 well receiver compartment with a pre-prepared 96 well 

Alvetex Scaffold model ready for insertion into the chamber.  

A 

B 

C 
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Figure 5.39: Schematic diagram of the process require for addition of 96 well format inserts into the custom designed 96 well Ussing chamber 

– A) 96 well models are cultured in the custom designed 96 well format culture plate for a total period of 5 weeks, B) After 5 weeks in culture the 

models are ready for analysis. Firstly, the model strip is removed from the culture plate. C) The model strip is cut along the supporting material to 

allow for manipulation of individual models (Depending on the total number of models being analysed only part of the strip may be cut with the rest 

remaining in culture until required. D) Models for use in the Ussing chamber system are first washed twice gently in sterile PBS before snipping 

away the remaining support material, leaving just the base insert with the heat welded Alvetex Scaffold, E) The base insert is added to the receiving 

Ussing chamber, ensuring a snug fit. F) The remaining chamber is attached with the model sandwiched between the two sides. The chamber system 

is not complete and can be attached to an Ussing chamber for model analysis. 
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5.5 Discussion 

Work within this chapter has focussed on the optimisation and development of several 

3D models of the intestinal epithelium utilising one of three fibroblast cell lines co-

cultured with Caco-2 cells. Alvetex Scaffold® is the principle material that has been 

utilised in the construction of these models due to its high porosity, important for the 

expected function of these models as a tool for drug permeability analysis. Models have 

been structurally characterised here with functional analysis contained within Chapter 6. 

Novel equipment designed for the culture and analysis of prototype 96-well Alvetex® 

formats have been created for use in this work.  

 

5.5.1 The properties of Alvetex® and its potential uses as a 

substrate for 3D culture systems. 

Alvetex Scaffold® is a polystyrene polyHIPE (High internal phase emulsions) with an 

average void size of 42μm allowing for the culture of cells in 3D within the scaffold 

material.(271) The large pore size and the 200μm(272) thickness of the Scaffold allows 

for the culture of cells in conditions that more accurately recapitulate the in vivo 

characteristics of human tissues. A high porosity allows free cellular movement, 

alongside easy exchange of nutrients and cellular waste. Additionally, large pore sizes 

allow for culture of multiple cell lines together, initiating direct contact and permitting a 

level of cellular cross talk which is simply not possible in two dimensions. Indeed, 

throughout the literature there are many instances of models involving the utilisation of 

multiple cell lines within Alvetex®. For example, Forrest et al (273) achieved a stable co-

culture through the direct co-culture of H441 Human lung epithelial cells and peripheral 

mononuclear cells (PMN). H441 were first cultured in the Alvetex Scaffold® at air liquid 

interface for a period of 14 days before the addition of PMN to the base of the model. The 

purpose of the experiment was to assess the rate at which these mononuclear cells could 

move through the 3D epithelial tissues. Whilst this model is suitable for answering the 

biological question of this study one would not consider this as tissue “mimetic” in the 

sense that simply culturing cells in 3D does not always infer in vivo like characteristics 

on the resultant model.   
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Outside of this work Alvetex® has been utilised for the creation of tissue mimetic models 

for a number of targets including; Skin (53,274), Lung (275) and Bone (276), with varying 

degrees of complexity and in vivo relevance. Generally, there are two decision branches 

regarding the creation of 3D models. The first involves the design and creation of a 

scaffold material containing all the necessary ECM components, signalling molecules and 

3D structures before the addition of cells which colonise the substrate and are actively 

directed.(149,277,278) The second methodology, one which is utilised in this study and 

indeed in most Alvetex® based models, is of cell driven construction.(53,275) In short, 

cells are allowed to populate a Scaffold, secrete their own ECM and paracrine 

environment with models being allowed enough time in culture to form tissue mimetic 

structures spontaneously and without excessive outside direction. That is not to say there 

is no direction in the culture of these models entirely. The layering of cells in or model 

construction in this study and the use of small molecules are good examples of this. 

 

Optimisation of the fibroblasts cultured within the Alvetex Scaffold® in this study showed 

a number of interesting observations regarding the variable phenotype of cells when 

cultures in 3D. It was observed that cellular proliferation of CCD-18co was limited in 3D 

resulting in a weakly colonised scaffold, unable to support a Caco-2 epithelium without 

significant cellular invasion. This was confirmed both by MTT assessment of fibroblast 

model metabolic activity and by histological analysis of cellular population of the 

scaffold. Previous experiments with the application of ECM proteins onto the surface of 

the Alvetex Scaffold® had shown that Collagen I was able to create a thin layer able to 

support the growth of a monolayer of Caco-2. However, it was decided that ideally, a 

model which was able to self-organise without the need for non-human exogenous protein 

application whilst also having phenotypic effects on the Caco-2 cells was an improved 

methodology. Additionally, use of Collagen gels increased the cost and variability of the 

model. Addition of fibroblasts over time was a new technique which allowed for the 

proper colonisation of the Scaffold, with far higher cellular retention rates and 

significantly lower Caco-2 invasion rates. 

 

The ability of cells to self-direct their differentiation is also shown in the model of the 

Human skin by Costello and Rogers et al, (53,274) with clear multilayer epithelial 

structures highlighting how in vivo relevant organisation can be spontaneously formed 
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within a 3D cultured tissue. Again however, cells do have to be minimally instructed 

through the addition of TGF-β and KGF to the culture system in order to create complex 

differentiation. It would be interesting to see how the addition of TGF-β and KGF 

expressing cells to these models could affect the final model. Potentially, creating a true 

self organising model of in vivo complexity. 

 

The simplicity of the Alvetex Scaffold® allows for a wide range of uses, not limited to 

the construction of tissue mimetic models. For example work with this substrate has 

included carcinoma modelling (279–282), migration studies of cells within a 3D 

environment (283), host pathogen interaction (284). Indeed, the simplicity of the system 

allows for a wide range of functions, both in terms of the study of core biological 

processes and in the construction of 3D systems for specific downstream applications 

such as drug discovery and cancer research. The power of 3D technologies such as this is 

that they can be tailored/ modified in many different ways to suit specific needs. Whilst 

no one 3D technology is perfect in all ways, the ability to modify culture substrates either 

through direct material chemistry (285) or protein or epitope coating (286,287) of culture 

substrates, broadens the use to a wide range of applications. The simple construction and 

use of Alvetex Scaffold® also lend itself well to high throughput applications, a necessary 

property for use in industrial applications such as as a tool for drug discovery and 

development.  

 

Other 3D culture systems were considered for use in this study such as nanofiber 

membranes and hydrogel systems. Indeed, both of these methods have been utilised 

throughout the literature to create intestinal models of reasonable complexity and 

reproducibility (162,258,288–291). One of the primary benefits of electrospun scaffolds 

is their ease of modification. Utilisation of different plastics for example can change the 

hardness/ stiffness of the substrate whereas subtle changes in the manufacturing protocol 

can affect properties such as fibre thickness and density. polyHIPE scaffolds, as 

previously stated, can also boast a variety of modifications although generally these are 

less simple to achieve than electrospun scaffolds. (292–294) The potential application of 

modified scaffolds can be seen in the intestinal model created by Faralli et al (295) 

whereby they cultured Caco-2 cells on electrospun scaffolds incorporating a bioactive 

compound, in this case Curcumin. Cells were able to grow on the electrospun Scaffold 



Chapter 5– Optimisation and characterisation of a novel 3D model of the intestinal mucosa 

 

Page | 308 

 

and were shown to be bioactive influenced by the encapsulated compound, with changes 

in permeability to model compounds such as Lucifer yellow and Fluorescein. One could 

imagine the capability to encapsulate highly tailored levels of compounds int a scaffold 

material in order to direct differentiation and improve functional phenotypes.  

 

Another recent paper by Patient et al (269) assessed the differences in Caco-2 functional 

morphology between the Transwell gold standards and a PET nanofiber construct with 

Caco-2 cells grown on the surface. Interestingly, even though no stromal cells were 

present in the study, simply changing the surface architecture of the membrane on which 

Caco-2 cells were cultured had significant effects on the Papp values of the model drugs 

tested in the study with improvements in the in vivo characteristics of the resultant Caco-

2 membrane. This highlights how small changes in 3D structure can have significant 

effects on the phenotype of the resultant model.  

 

Generally, however, electrospun scaffolds do not allow for full 3D culture with the 

capability of the cells to fully immerse themselves into the substrate. These scaffolds are 

more akin to a basement membrane than a true mucosal scaffold. When studying the 

histology of the model produced by Patient et al one can see how the electrospun scaffold 

looks very much like Transwell, consisting of a simple layer on which the Caco-2 cells 

are cultured. Indeed, function follows structure in regard to the functional capabilities of 

cells in vivo. When looking at Caco-2 cells cultured on nanofiber scaffolds compared to 

those cultured on Transwell inserts, little difference can be seen. This is in contrast with 

the 3D models created here in this study which show significant changed in cellular 

structure compared to Transwell layers, with improvements in cellular height and 

polarisation of the membrane.  

 

5.5.2 Optimisation of a 3D model of the intestinal epithelia 

utilising Alvetex Scaffold®. 

Initial investigations into the phenotype of Caco-2 cells in 3D culture demonstrated that, 

without additional modification to the model protocol, Caco-2 epithelial cells would 

invade into the top third of the Scaffold material before self-limiting their invasive 
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characteristics, proliferating and differentiating. There could be many possible reasons as 

to why Caco-2 cells lose their motile characteristics; two of the most probable being are 

due to the limitations of nutrient diffusion into the scaffold or reprogramming of the 

cellular phenotype due to the three dimensionalities of the substrate. Nutrient diffusion is 

difficult to quantify and will differ significantly dependant on the substrate in use. 

Conditions such as the material utilised to create the scaffold, the size of the molecule 

diffusing, its charge and its mass can all have effects on its availability. 

 

A recent study by McMurtrey (296) took a mathematical approach to understanding the 

Oxygen requirements of different cells within the body and the supply rates of different 

tissues. He concluded that the average human cell required 2.5x10-18 mol/cell x s with 

the average supply rate in human tissues and hydrogels being approximately 1x10-10 to 

1x10-9 mol2/s. Alvetex Scaffold® is highly porous with an average porosity of over 90%. 

This is far higher than would nominally be found in most tissues and hydrogels. As such 

it could be expected that Oxygen availability is less likely to be reducing cellular motility 

within the Scaffold structure.  

 

Alternatively, although there is no direct data available here to support this observation, 

it has been noted that many cell lines from variable origins appear to proliferate and 

migrate much more slowly in Alvetex scaffold® than in 2D. The attenuation of 

proliferation rates can be observed in this study when looking at the seeding density and 

time course optimisation steps for the creation of the 3D model. In particular the time 

course experiments (Figure 5.11) shows no significant increases in cell metabolic rates at 

14, 21 or even 28 days in culture. As such a novel multi-layering approach, seeding 

fibroblast multiple times over the course of 14 days was developed, allowing for more 

dense populations of cells within the Scaffold with an apical bias allowing for the culture 

of Caco-2 cells onto the stromal construct without invasion into the underlying Alvetex®. 

One hypothesis which could explain this phenotype is that many cell types simply 

differentiate upon addition to a 3D matrix, losing much of their proliferative potential in 

the process. Indeed, there was a high proportion of αSMA positive cells (Normally 

utilised as a marker of myofibroblast terminal differentiation) within the 3D constructs. 
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Alvetex Strata® and Polaris® (Not commercially available) have increasingly smaller pore 

sizes allowing less invasion into the scaffold material.  As such Caco-2 cells in these 

formats sit on the surface of the substrate without much cellular infiltration. Strata® and 

Polaris® substrates were not carried forward into full scale model optimisation as easy 

access to the internal substrate structure is needed for the culture of fibroblasts. Alvetex 

Scaffold® was chosen as the best candidate to allow for maximal direct cell contact and 

cellular crosstalk.  

 

5.5.3 What does 3D tissue engineering demonstrate about the 

biology of tissues, understanding the limitation of 3D models.  

Most of this chapter so far has discussed how the main benefit of 3D culture is in the 

higher in vivo relevancy of the 3D substrates, allowing for cellular growth in an 

environment more similar to the natural state than 2D. Whilst it would be difficult to 

argue the converse, with, on the surface levels at least, 3D substrates appearing to be 

improved growth mediums than 2D culture, work so far has focussed less on the actual 

phenotypical changes induced by 3D culture on cells. This is true for both this work and 

the literature in general, with a whole multitude of 3D cellular models but little dedicated 

research on 3D induced phenotype changes.  

 

Indeed, there could be an argument made to question if a 3D environment is necessary in 

the first place. For example, an epithelium is by definition, a polarised layer of cells. 

Many cellular models, not just of the intestine, already recapitulate the epithelium of 

tissues to a high level of complexity. A good example is of the skin where commercially 

available epidermal models already exist which show the multi-layered, highly 

differentiated cell morphology seen in in vivo tissues. EpiDermTM from MatTek is a great 

example of this with a full structure recapitulating the skin epidermis. (297) Roger et al 

(53) created both a 2D epithelial model utilising Millicell, a semi-permeable membrane 

similar to Transwell in structure allowing for the 2D culture of cells with some passive 

movement of compounds through the membrane, and a 3D cultured Alvetex model 

consisting of HDFn cells and keratinocytes. Histological H&E images comparing the 

epithelial structure of the 2D system to the 3D system in this model showed relatively 
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little difference in the epithelial structure of the tissue. Keratin 10 and 14 are regularly 

utilised markers able to show the differentiation gradient within the skin epidermis, both 

of which could be observed in both the 2D and 3D systems. (53) 

 

The epithelial keratinocyte cells in the 3D Alvetex model are cultured upon a dense layer 

of HDFn fibroblasts and are not in physical contact with the 3D substrate. The same 

observations could be made with the models created in this study and it begs the question, 

are the changes in function due to direct 3D influences on the epithelial development or 

simply due to direct and paracrine influences from co-cultured fibroblasts? Influences 

which may or may not be modified by culture of fibroblast in a 3D environment. It is my 

belief that these models are more a study in the effects of fibroblasts on the physiology 

of cultured epithelia and the effects of 3D culture on the phenotype of cultured fibroblasts 

specifically rather than a study into the effects of 3D culture on tissues in general.  

 

Due to the gold standard models now incorporating any paracrine fibroblast influences 

comparison of Gold standard Caco-2 models to 3D intestinal models is not a fair contrast. 

Fundamentally, the epithelial cells in both models are cultured in very similar ways, 

application onto a 2D surface. It is the addition of the paracrine effects of fibroblasts and 

the effects of 3D culture on those populations which is of more importance to the overall 

physiology of the model. Unfortunately, understanding the importance of fibroblasts 

within a tissue is often overlooked, even more so when it comes to determining the effects 

of 3D culture on their function.  

 

5.5.3 Overcoming the technical limitation of 3D models by 

designing a method of high throughput culture and analysis. 

One general disadvantage to 3D cell culture that is often described as potentially the main 

factor preventing the large-scale adoption within industry, is the capability to perform 

high throughput culture and analysis. Often when it comes to testing new compounds 

large scale studies could require hundreds or thousands of models for a complete analysis. 

Current 3D culture systems for the high throughput analysis of model pharmacokinetics 

fall into two categories; 1. Organ on chip/ simplistic systems which allow for high 
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throughput analysis but don’t recapitulate in vivo tissue organisation or 2. 3D cultures 

which recreate tissue architecture but are not best suitable for high throughput culture. 

Newer studies however are attempting to adapt these organ on chip systems to be more 

applicable to the drug screening process. For example, Workman et al (298) worked with 

iPSCs to create intestinal organoids which they applied to a chip system with direct 

comparison to a Caco-2 equivalent. Through western blot analysis they showed increased 

phosphorylation of STAT1 in response to increasing  IFN-γ, a marker of inflammatory 

response. This response was attenuated in Caco-2 systems compared to that of intestinal 

organoids. Furthermore, western blot analysis of biomarkers for both paneth and goblet 

cells showed marked upregulation in iPSC derived intestinal models. However, their 

work also displays some of the continued challenges associated with organ on chip 

systems. Transverse sections of the models highlight the multi-layered nature of the 

organoid model in this study with a clearly diminished structural organisation compared 

to a Caco-2 monolayer. Additionally, there was no evidence of brush border formation in 

the models, key for in vivo correlative molecular transport of chemical entities. 

Furthermore, large numbers of intestinal organoid cells were required for complete 

colonisation of the chip structure (~6 000 000 cells). This factor is of key importance for 

application to a pharmaceutical setting whereby large numbers of models are required for 

screening purposes. Adding to this is the complex nature of iPSC differentiation, further 

limiting this models capability of large scale manufacture.  

 

Others such as Kasendra et al have created similar organ chip systems. This study 

focussed instead in using patient derived primary cells instead of iPSC whilst still 

favouring the organoid method for cellular expansion. Similarly they show villus “like” 

structures and in this instance, clear brush border formation. Transcriptomic analysis of 

their models compared to Caco-2 and Human tissue highlights clear improvements over 

Caco-2 in regards to gene expression, their models closely representing Human 

duodenum although some differences still remain, primarily in genes responsible for drug 

transport. Interestingly, sucrase-isomaltase activity of both their models and Caco-2 

controls shows similar activity levels between models suggesting all cells are capable of 

differentiation into absorptive enterocytes. As with the previous example the primary 

challenges for this model lay in scalability to large studies. It is clear that these models 

provide an improved system with regards to in vivo correlation to intestinal tissues than 
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Caco-2 models (assessed by transcriptomic analysis). However, both studies lack key 

transporter data for the permeability to key model compounds to highlight the scale of 

any potential improvement. Gene analysis alone can often be misleading in regards to 

protein expression. Therefore further development of these models should focus on 

quantitative measurements of proteins such as P-gp, MRP, OCT etc.  

 

The Alvetex Scaffold used in this study was chosen due to its relatively homogenous 

structure between samples and its similarity in chemical composition to 2D cell culture 

plastics. This has allowed for the creation a culture system for models in 96 well inserts 

and the capacity to analysed them through custom designed Ussing chambers.  

 

In terms of membrane functionality, Caco-2 monolayers and 3D models are often 

ultimately compared to human tissue to show whether each model is more or less 

representative in its values for the absorption/ transport of compounds through the 

epithelial layer. It could be argued however that direct comparison like this is inherently 

flawed. The intestinal epithelium is far more complex than a 2D epithelium or even a 3D 

epithelium supported by sub-epithelial fibroblasts. It is the complex 3D architecture of 

the intestine, specifically the small intestine, that enables it to be the highly absorptive 

site that it is. 3D models are often more physiologically mimetic of human tissues 

however without the 3D architecture, 2D and 3D models are unlikely to be directly 

comparable to tissues in terms of functional transport even if normalised to model area 

due to the vast increase in surface area created by the villus crypt axis. Future work on 

this model should include development of a villus structure within the 3D model, possibly 

either through creating hydrogel templates for the surface of Alvetex or by 

micropatterning the Scaffold surface directly to create some level of 3D architecture.  

 

5.6 Conclusions 

This chapter has focussed on the optimisation, creation and construction of tools for the 

analysis of 3D models of the intestine based on the Alvetex Scaffold 3D culture platform. 

3 models have been created in this study for the functional analysis discussed in the 

following chapter. These models differ in the origins of the fibroblasts utilised in order to 

understand the influence of the stromal compartment on the development of the epithelial 
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membrane. Models including cells of different origins were created to observe differences 

in the functionality of the resultant models which could hint to the influences these 

fibroblasts have during the development of the epithelium. Equipment designed and 

manufactured during this study will allow for the full scale analysis of 3D models going 

forwards in terms of both permeability/ compound transport  and electrophysiology 

experiments. 
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6. 3D Alvetex® and paracrine Transwell model transport 

dynamics of CCD-18co, HDFn and HIC/ Caco-2 co-culture 

models. 

6.1 Introduction 

6.1.1 Chapter goals 

Three dimensional cell culture models of many organ systems are beginning to become 

more popular as research tools within both academia and industrial laboratories. 

Generally speaking, simple 2D models are still used throughout biology due to their low 

cost and simplicity which allows for a high degree of automation in many cases in 

addition to high throughput manufacture of models for application such as compound 

screening purposes. Indeed, since its inception in the late 70s Caco-2 cells cultured on 

semi-permeable membranes are still a popular in vitro model utilised for the testing of 

intestinal cells for a wide range of applications.  

 

This chapter and introduction will focus on advanced 2D and 3D cultured models 

currently recorded throughout the literature and where possible comment on the 

functional characteristics of these models, comparing conventionally cultured systems  to 

actual transport seen in human tissues. The results section of this chapter will cover the 

functional analysis of the models created in this study, both 2D paracrine and 3D tissue 

models for their permeability to model drug compounds, which will be detailed in this 

introduction.   

 

6.1.2 Understanding the disadvantages of 2D culture and 

methods for improved model in vivo physiology. 

It is reasonably well known that conventional 2D cultured models do not fully recapitulate 

the complexity of the systems they are mimicking. Indeed, in some instances this can be 

seen as an advantage as it allows researchers to specifically test cells of single lineages or 
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populations instead of whole tissues, whose complexity can often hide the interactions 

being studied. However, for the majority of applications, especially those associates with 

testing NCE’s for use in humans, there is a clear need for more complex models of human 

tissues than are currently available.  

 

Bioengineered 3D models can be based on a number of technologies, with each having 

both advantages and disadvantages over the others. The 3D model created within the 

scope of this thesis for example is based on an inert scaffold technology within which 

cells are cultured, setting up their own molecular cross talk and micro-environments. 

Myofibroblast and fibroblast addition to Caco-2 models of the intestinal epithelium is an 

area of research which is only just seeing significant insights into the physiologically 

relevant effects that these cells can have on model layers. (299–301) CCD-18co fibroblast 

cells are the primary cell line which has been used in this study and indeed are used in the 

literature as tools for understanding myofibroblast influences on epithelial development 

in both 2D and 3D systems.  

 

Pereira et al created a model of high complexity similar to what was created in this thesis 

by co-culturing CCD-18co, Caco-2 and HT29-MTX cells in a single 3D model. (162) 

CCD-18co cells were cultured within a matrigel matrix atop a Transwell membrane with 

Caco-2 and HT29-MTX cells directly seeded onto CCD-18co/ Matrigel layers. The 

results are a well-defined model with good differentiative potential as evidenced by 

significant microvilli formation on the apical surface of the epithelium. Additionally, 

TEER values of the resultant 3D models showed a physiologically relevant, significant 

decrease compared to control Caco-2 layers. To my knowledge, prior to work done in this 

study, this remains the only significant study into the effects of CCD-18co cells on Caco-

2 epithelial membranes in a 3D setting. Unfortunately, as is common with the 

development of 3D models, the systems created by Pereira et al is poorly characterised, 

focussing on the transport characteristics of insulin only. Another disadvantage with the 

model created here is its reliance on exogenous matrix proteins in the models 

construction. Not only is Matrigel non-human in origin, it’s also created from carcinoma 

cells and is not fully defined, with manufacturer specified inter-batch variances in protein 

composition. (302) Indeed, isolation of proteins from cells of tumour origin is inadvisable 

as ECM constituents of ECM have been shown to alter during a cancer phenotype. 
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(149,303) In fairness however, models created utilising the CCD-18co cell line in this 

study could also be suggested to contain cancer derived ECM proteins, hence why models 

utilising normal human fibroblasts were cultured and optimised concurrently. Regardless, 

the physiological changes in Pereira’s model function can, at least in part, be attributed 

to fibroblast addition within the model, and as such lend further weight to the involvement 

of myofibroblast influence on epithelial development.  

 

The 3D models created in this study and that of the aforementioned example by Pereira 

et al  focussed on the addition of cells to a scaffold and allowing to spontaneous self-

organisation with varying degrees of instruction. Newer methods however are being 

developed which are able to take some of the “guess” work out of the equation through 

direct bioprinting of tissue structures in vitro. Madden et al in their recent study were able 

to create complex 3D models consisting of both a subepithelial fibroblast compartment 

containing adult human intestinal myofibroblasts printed into a Matrigel hydrogel, and an 

epithelial layer consisting of epithelia cells isolated from ileal tissues. (28) Comparison 

to Caco-2 monolayers and human tissues showed a more physiologically relevant 

membrane structure with defined cellular junctions and clear mucous expression, 

something lacking from standard Caco-2 models. Analysis of gene expression showed 

clear differences in 3D bioprinter models compared to Caco-2 controls with a 

significantly more in vivo expression profile when compared to human tissues analysed 

in the same experiment.  

 

The simplest “bio-printed” systems come in the form of organs-on-chip, whereby cells 

are directly printed/ cultured on a chip scaffold in the precise organisation designed by 

the investigator. These have a number of important advantages, primarily in that they 

allow for the most direct yet controlled culture of cells together to assess changes in 

cellular phenotype. Ultimately this makes results gained from these platforms generally 

highly reproducible and highly attuned to the requirements of the project. Delon et al 

utilised this chip based methodology to investigate the effects of fluid sheer stress on 

Caco-2 culture in a miniaturised system. (304) They designed their culture system to 

provide a gradient of sheer stresses over the length of the chip. Utilising this method they 

quantified the change in expression levels between the different sheer conditions. Large 

differences in actin, villin, ZO-1 and occludin expression were seen in cultured layers in 
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addition to changes in mucous production and, most interestingly, upregulation of 

CYP3A4, a protein commonly known to not be expressed by standard Caco-2 cells. Fluid 

stress analysis lends itself to miniaturisation as conditions can be more finely tuned than 

in larger scale systems. 

 

3D printing is another area drawing significant attention (not only in biology) for the 

application of the construction of 3D models. Hsieh et al (305) demonstrated that complex 

3D designs mimicking tissues in the body can be constructed utilising this approach. 

Seeding of these tissues with stem cells, similar to that seen in decellularised tissue 

scaffolds, has the potential to be a new frontier in the construction of tissue replacements 

in a clinical setting. There is still limitation in these systems regarding the direction of 

complex differentiation and the formation of tissue relevant structures before true clinical 

applications can be considered.(306) 

 

The above examples utilised a scaffold based approach similar to this study whereby 

fibroblast cells were added to a matrix, in this case polystyrene, were cultured for a set 

amount of time before the addition of epithelial cells. That is not to say however that this 

is the only method for the creation of 3D models. Indeed, a wide variety of methods can 

be utilised such as organoid culture demonstrated by Sato et al (307) and Hans Clevers. 

The nature of the intestinal epithelium is one of rapid turnover and cell apoptosis, 

constantly making way for new cells differentiating up the villus-crypt axis. Long term 

stable culture of primary intestinal epithelial cells has for a long time been a goal of 

intestinal biologists hoping to form more in vivo correlating intestinal models. Stable 

intestinal stem cell propagation is one method whereby scientists hope to be able to 

recapitulate the entire epithelial morphology of the in vivo tissue.  

 

Current organoid techniques for the culture of said stem cells however are ill suited for 

the testing of drug compounds across the surface due to a number of factors such as lack 

of easy access to the inter-luminal space of the organoids and relatively low transport 

rates per organoid unit making Papp quantification difficult to achieve. Groups in the past 

have attempted to create intestinal monolayers from these organoids with poor results due 

to increased stem cell apoptosis when cultured on monolayer cultures. Recent advances  

have had some success in forming monolayers of advanced complexity compared to 



Chapter 6 –Assessment of 2D and 3D model function 

Page | 319 

 

Caco-2 controls. Wang et al in their recent paper were able to culture adult colonic stem 

cells in a neutralised collagen hydrogel whose surface had been stamped with a mould in 

order to create crypt structures as part of the collagen architecture. Through application 

of a chemical gradient across the crypt micro architecture they were able to not only 

culture adult stem cell in a monolayer with physiologically relevant shape, but also 

recreated the stem cell niche with only those cells at the base of the crypt structure 

showing positive markers for stem cell pluripotency. (308) This study demonstrates the 

potential for the formulation of new models incorporating both in vivo relevant cells and 

3D architecture. Wang et al showed a proof of concept, further studies onto the 

differentiation of cells within the scaffold matric and their functional phenotype could 

well lead to a new advanced model of the intestine with in vivo like properties. 

 

6.1.3 Model drugs, their mechanisms of action and relevance to 

this study. 

 

The following section overviews the model compounds used in this study to evaluate the 

functional characteristics of the in vitro models, and specifically to test Transwell 

paracrine and 3D Alvetex models against conventional Caco-2 Transwell monolayers. 

This section will detail the compounds physiologically relevant properties alongside a 

basic overview of the transport mechanisms within the model systems.  

 

6.1.3.1 Rhodamine 123 

 

Rhodamine 123 has been utilised for many years as a model substrate for  MDR1/ P-gp 

mediated transport in the intestine and in intestinal models.(309–312) Rhodamine 123 is 

lipophilic and as such was assumed to pass into the cell through a transcellular 

mechanism, bypassing the lipid bilayer.(309) Troutman et al sought to confirm this 

assumption in their study. (309) Interestingly, they made a number of observations 

which contradicted the perceived knowledge in a number of ways. Firstly, they 

noticed that Rhodamine 123 is preferentially transported B-A and that A-B 

Rhodamine 123 Papp was low, approximately as low as compounds known to travel 
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paracellularly through tight junctions. Transportation rates were unaffected by 

increasing donor Rhodamine 123 concentration. Secondly, disruption of tight junction 

complexes by calcium/ magnesium starvation caused in increase in Rhodamine 123 

transport in the A-B direction, as such insinuating that this increase in compound 

movement was through paracellular mechanisms. Finally, fluorescence imaging of 

Rhodamine 123 Caco-2 layers showed Rhodamine localisation to only the 

paracellular spaces in control and MDR1 inhibited A-B conditions. Entry of 

Rhodamine 123 into the cell in the B-A direction must then occur through a carrier 

mediated mechanism as membrane composition is not appreciable different on the 

basally than apically. Indeed, inhibition of MDR1/ P-gp resulted in an intracellular 

accumulation of Rhodamine 123 in the epithelial cell, further suggesting that carrier 

mediated uptake is not effected by standard MDR1/ P-gp inhibitors. Figure 6.1 shows 

a brief overview of Rhodamine 123 potential methods of transport. 

 

The same functional phenotype has been observed by Hirsch-Ernst et al in rat 

hepatocytes, demonstrating phenotypical conservation both between species and 

tissues.(310) They postulated that OCT 1 me be the unknown transporter able to 

actively transport Rhodamine 123 across the basal membrane of cells. However, OCT 

1 inhibition with Verapamil did not significantly effect Rhodamine 123 accumulation. 

However, as seen in this study, Verapamil is a potent inhibitor of MDR1 activity, as 

such overlapping protein inhibitions could potentially confuse phenotypic 

observations. OATP1 and 2 also appear to be potential candidates for basolateral 

uptake however their efficacy in this regard is as yet unknown.  
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Figure 6.1: Theoretical Rhodamine 123 permeability routes – A) B-A directional travel is 

thought to move in both carrier mediated and paracellular mechanisms. B) A-B permeability is 

thought to be paracellularly only, with no movement of Rhodamine 123 passively across the 

lipid bilayer. Hashed arrows indicate passive movement, solid arrows indicate carrier mediated. 
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6.1.3.2 Atenolol 

 

Atenolol is a hydrophilic molecule normally utilised as a beta-blocker. Atenolol in this 

study was used as a low permeability paracellular transported compound, as is commonly 

done to assess the hydrophilic transcellular absorption routes of intestinal and blood brain 

barrier models. (66,313–315) Essentially, due to Atenolol’s highly hydrophilic nature, 

and hence inherent lipophobicity, it cannot easily cross the cell lipid bilayer. However, 

recent data does show that Atenolol may be subjected to active transport through some 

membrane associated transporter proteins such as OCT 1(313,315) 

 

There is some disagreement regarding the cellular organisation of OCT 1 in human 

enterocytes with evidence for both basal and apical expression. (316)  Han et al used the 

Caco-2 models and human and mouse enterocytes to show a bias towards apical OCT1 

expression. Unlike MDR1/P-gp, OCT 1 is an uptake protein and as such, expression at 

the apical membrane would result in an increase in Atenolol transport into the enterocytes. 

However, unless a similar transporter mechanism also exists on the basolateral sides of 

the enterocytes, Atenolol will be limited to intercellular accumulation. As such only 

passive paracellular transport will be detected and reported in permeability values. 

Perhaps a method of fluorescently tagging Atenolol could illuminate its transport 

pathways as was done with Rhodamine in the previous example. If observations by Han 

et al are accurate with basally located OCT 1 expression then logically it was expected 

that B-A permeability will be lower than A-B due to the active uptake and accumulation 

of Atenolol within the cells. However, transportation experiments are conducted at or 

above drug saturation, as such masking the small concentration change induced by 

intracellular accumulation. Figure 6.2 shows a brief overview of potential transport 

mechanisms for Atenolol. 

.  
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Figure 6.2: Theoretical Atenolol permeability routes – A) B-A directional travel is thought 

to move in both carrier mediated and paracellular mechanisms. B) A-B permeability is thought 

to favour paracellular travel. Hashed arrows indicate passive movement, solid arrows indicate 

carrier mediated. 
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6.1.3.3 Propranolol 

 

Similarly to Atenolol, Propranolol is a beta blocker. Unlike Atenolol however, 

Propranolol is highly lipophilic and as such is thought to readily move through the 

epithelial lipid bilayer.(317–319)  As such passive absorption rates for Propranolol are 

significantly higher than less lipophilic compounds. Zheng et al  (320) conducted a study 

into the effects of P-gp expression on the rate of Propranolol transport in MDCK and 

Caco-2 cells. They found that in standard conditions efflux ratios (a measurement of 

directional bias) for Propranolol were less than one, indicating no bias. Interestingly, they 

observed that when the apical transport medium was adjusted to a slightly lower pH of 

6.5 (approximate pH of the jejunum where propranolol is primarily absorbed) , afflux 

ratios increased to 3.63, suggesting a strong bias towards B-A transport. They attribute 

this change in permeability to the pH partition hypothesis, whereby weakly basic 

Propranolol will exist in a non-ionised form at higher pHs’. As such for Propranolol a 

lower pH provides a smaller driving force for membrane permeability. This assumes that 

only the neutral (ionised) form may easily pass through the membrane. (321) Weak bases 

are best absorbed in neutral pH conditions whereas acidic compounds are more readily 

absorbed in acidic conditions as outlined by Shore et al. Therefore, more acidic conditions 

results in less Propranolol transport. (322,323) 

 

Whilst temperature and pH (320,324) of the transport media are known to effect 

Propranolol permeability there is little evidence for carrier mediated transport activity. 

Indeed, passive transportation through the cellular membrane occurs at such a high rate  

that even were Propranolol a substrate for one or more transporters, it would be difficult 

to observe this active transport and is unlikely to be clinically relevant. Propranolol is an 

excellent model compound for transcellular diffusion. However this limits the use of 

Propranolol because of its unsuitability for use in inhibition / tight junction integrity 

studies etc. Figure 6.3 summarises Propranolol transport. 

 

 



Chapter 6 –Assessment of 2D and 3D model function 

Page | 325 

 

 

 

 

 

Figure 6.3: Theoretical Propranolol permeability routes – A,B) Both B-A and A-B 

directional transport is thought to be passive transcellular. Hashed arrows indicate passive 

movement, solid arrows indicate carrier mediated. 
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6.1.3.4 Etoposide 

 

Etoposide is a chemotherapeutic well known for low oral bioavailability in humans. (67) 

It was used as a model drug in this instance to measure the activity rate of MRP1/2. Whilst 

it is generally considered that MRP2 is the main transport mechanism, that is not to say 

that MRP family transporters are the only methods by which Etoposide is transported in 

vivo/ in vitro. (68,325) Indeed Etoposide is a substrate for many ABC transporters with 

significant overlap observed in the literature; including MDR1/ P-gp (326), BCRP (327) 

and OCT 2  (328). Kunta et al in their study utilising rabbit intestinal sections came to the 

conclusion that A-B (Absorptive) transport was not mediated to any significant extent by 

transporter mechanisms, whereby conversely B-A transport can be inhibited by verapamil 

and saquinavir. (69) Passively, Etoposide is thought to move through the lipid bilayer, 

transcellularly. (329) Etoposide transport mechanisms are summarised in Figure 6.4. 
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Figure 6.4: Theoretical Etoposide permeability routes – A) B-A, B) A-B, Transport in 

either direction is thought to be either through paracellular mechanisms or active transport by 

MDR1, BCRP or MRP2. 

 

A) B-A Transport 

B) A-B Transport 



Chapter 6 –Assessment of 2D and 3D model function 

Page | 328 

 

6.1.3.5 Methotrexate 

 

Methotrexate is a Biopharmaceutical classification system (BCS) class III compound. 

Originally designed as a chemotherapeutic for use in the treatment of lymphoblastic 

leukaemia it has since been applied as an immunosuppressant for rheumatoid arthritis and 

Crohn’s disease.(330) The primary clinical pharmacological mechanism is through 

inhibition of dihydrofolate reductase, decreasing thymine production required for mitotic 

cell division. Absorption is through a number of proton dependant active transport 

mechanisms, the two known ones being RFC and PCFT, both of which are well known 

to have a high affinity for Methotrexate due to its structural similarities to folate. (331) 

RFC is expressed in virtually all cells within the body and is the primary method by which 

cells are able to uptake folates. Primarily, folates and hence Methotrexate are absorbed 

by PCFT in the duodenum and jejunum within the acidified microenvironment at the 

cellular surface. (332)  Methotrexate is a hydrophilic compounds and so, as such is poorly 

permeable through lipid bilayer membranes with long gut times required for efficient drug 

uptake. Novel methods for increasing gut longevity have included microencapsulation 

and liposome usage. Unlike other drug systems whereby some level of passive transport 

is seen either trans or paracellularly, Methotrexate is primarily transported by influx/ 

efflux proteins only. 

 

BCRP is as an active methotrexate efflux protein, (333) and is important when studying 

the bioavailability of methotrexate when administered orally. BCRP efflux assessment 

E.g Methotrexate, is the primary goal for the use of this drug in this study into the fitness 

of new models of the intestine to test for negative drug interactions of NCE in vitro. 

Maeda et al showed that methotrexate can increase membrane permeability to FD-4, a 

marker known for paracellular absorption.(334) As such suggesting methotrexate may 

behave in such a way to disrupt tight junction integrity in the intestine, (335) a common 

phenotype of chemotherapeutic compounds in the intestine. Methotrexate transport is 

summarised in Figure 6.5. 
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Figure 6.5: Theoretical Methotrexate permeability routes – A)B-A, B) A-B, Methotrexate 

is not thought to have any appreciable trans or paracellular passive movement across the 

epithelial layers. As such active protein action is the same in either direction with RFC and 

PCFT responsible for methotrexate uptake and BCRP the main efflux protein. 
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6.1.3.6 Lucifer Yellow 

 

Lucifer Yellow is the final compound  discussed in this thesis and is commonly utilised 

as a passive paracellular marker in the intestine and intestinal models. Lucifer yellow is 

a hydrophilic compound and as such as discussed earlier will not passively pass through 

the lipid bilayer membrane of the enterocyte. (295,336,337) Active transport of lucifer 

yellow is not known within the intestine although some evidence exists that suggests some 

cells in the body such as those in the retina are able to specifically uptake Lucifer Yellow 

into the cytoplasm through an unknown uptake mechanism. (90) Passive paracellular 

permeability of Lucifer yellow is often utilised alongside TEER as the primary methods 

for analysis of membrane integrity. Co-incubation of lucifer yellow with other drug 

compounds throughout the permeability testing is not uncommon to show a maintenance 

of membrane integrity through the assay. However care must be taken as molecules such 

as methotrexate are known to have effects on membrane passive paracellular permeability 

through tight junction disruption. Lucifer yellow transport is detailed in Figure 6.6 
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Figure 6.6: Theoretical Lucifer yellow permeability routes – A)B-A, B) A-B. Lucifer yellow 

is not thought to be actively transported in the intestine, movement is solely through passive 

paracellular pathways. 
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6.2 Hypothesis, Aims and Objectives 

6.2.1 Hypothesis 

It was hypothesised that conventional and paracrine cultured Caco-2 Transwell models in 

addition to bioengineered 3D Alvetex co-culture models, will exhibit changes in activity 

and enhanced function compared to conventional Caco-2 Transwell control layers widely 

utilised within industry as a gold standard from drug pharmacokinetic analysis. 

 

6.2.2 Aims 

The aim of this Chapter is to functionally test the drug transport capabilities of the 

advanced Transwell paracrine culture and the 3D Alvetex co-culture models. A number 

of different compounds, specific to a number of different transporter proteins or as passive 

markers of membrane permeability have been tested to evaluate the functional 

characteristics of the models. 

  

6.2.3 Objectives 

The objectives of this Chapter are summarised below; 

• Test the transport capabilities of Transwell and Alvetex co-culture models for the 

following drug compounds 

o Rhodamine 123 ( ± Verapamil Hydrochloride) 

▪ P-gp/ MDR1 substrate and competitive inhibitor 

o Atenolol 

▪ Low permeability paracrine transported compound 

o Propranolol 

▪ High permeability Paracrine transported compound 

o Etoposide 

▪ BCRP substrate 

o Lucifer Yellow 

▪ Low permeability paracrine transported compound 
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o Methotrexate 

▪ MRP family substrate 

• Calculate Efflux co-efficients for each of the drug compounds tested through 

analysis of the B-A compared to the A-B transport in order to understand their 

transport kinetics within the model systems in vitro.  

• Where possible compare functional data generated here to human tissue data 

gathered from scientific literature.  
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6.3 Materials and methods 

6.3.1 Ussing chamber permeability assessment of Transwell 

and 3D intestinal tissue models.  

2D Transwell and 3D Alvetex® models were set up as described in Sections 2.12 and 2.15 

respectively. Model permeability assays were achieved utilising the method as previously 

described (Section 3.2.16). Transport assay drug concentrations were as follows; 

Etoposide 50μM, Lucifer Yellow 100μM, Methotrexate 10μM, Propranolol 500μM, 

Atenolol 500μM, Rhodamine 123 5μM, Verapamil Hydrochloride 200μM. All drugs 

were diluted in DMSO with final DMSO concentrations in assay media of ≤ 0.1% (v/v). 

 

6.3.2 Efflux Co-efficient calculation from Papp permeability 

values 

Efflux co-efficients are a measure of the ratio between B-A (basal to apical) and A-B 

(apical to basal) drug transport. B-A and A-B transport values were not directly matched 

as no model was utilised twice for analysis (E.g. Used for both B-A and A-B transport 

experiments). As such B-A transport was compared to the average of the A-B transport 

of the same conditions. Efflux co-efficients were calculated utilising the following 

conventional equation; 
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Figure 6.7: Schematic representation of 

directional transport within the cells – 

Directional transport to give context to 

directional descriptions used within the text 
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6.3.3 Electrophysiological measurements of Transwell 

Snapwell and 96 well Alvetex models.  

6.3.3.1 Electrode manufacture 

Firstly, electrodes were created for use within the Ussing chamber devices. Electrode 

manufacturing procedure was as follows; 

2mm diameter silver wire is carefully sanded with fine grit paper to clean the surface of 

dirt or corrosion. The ends of the wire not to be coated are wrapped in tape to protect the 

silver surface. Cleaned silver wire is submerged in bleach solution containing sodium 

hypochlorite over night to create a silver chloride surface coating. Electrode bodies are 

made from 1ml syringe tips. Current electrodes are trimmed to 3.5cm and voltage 

electrodes are trimmed to 3cm.A 4% Agar/ 3M KCl solution is heated in the microwave 

in 15 second bursts until all agar is dissolved into solution. A small hole is made in the 

rubber plunger of the 1ml syringe and the AgCl electrode is passed through Pre-cut 

electrode bodies are filled with hot agar. Whilst the agar is molten, prepared plunger/ 

AgCl electrodes are pushed into the electrode body. Electrodes are allowed to cool and 

solidify for a minimum of 30 minutes before first use.  

 

6.3.2.2 Electrophysical measurements 

The process for electrophysiology experiments is as follows: 

Carbogen gas cylinder is checked for pressure to ensure sufficient gas volume for one 

complete experiment (minimum of 50 PSI for a 4 chamber 3 hour experiment when using 

F size gas cylinders).Turn on the Power lab, Voltage clamp, circulating water bath and 

PC, allow to boot to desktop. Open Lab chart 8 and ensure Power lab is being correctly 

recognised in the system. Clean all chambers and reservoirs with appropriate solvents 

(Transwell Chambers can be cleaned with ethanol. 96 well Alvetex chambers cannot 

come into contact with ethanol under any circumstances, otherwise the plastic chamber 

will crack). Ensure all solvent is washed away with transport solution before experimental 

start.  
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At the beginning of each day electrode variances must be measured and corrected as 

follows: 

Connect the chambers to the Ussing equipment without the addition of a test membrane. 

Fill the reservoirs with transport media to the same level as a normal transport assay 

(Nominally 15ml of glucose (1g/L containing HBSS per reservoir)Start the gas supply 

and balance the bubble output until they are approximately equal in each reservoir. 

Bubbles should rise at the rate whereby individual bubbles are moving just quickly 

enough to be seen. Ensure all transport fluid is at 37oC and that all electrodes are bubble 

free in the chamber and securely connected to the pre-amp before taking measurements. 

All electrode variance measurements can be taken on the voltage clamp output. Turn on 

the pre-amp.  Set the voltage clamp to amplify and observe voltage measurement shown. 

(ensure the system is at the correct temperature before moving forward) Using the offset 

knob, either add or subtract from the system until the voltage reading shows zero (If the 

voltage shown is very high, < 2 mV, check for bubbles in the system which block correct 

circuit completion.) 

Uncoated  

silver wire 

Silver chloride  

coated wire 

3M KCl 4% Agar 

Figure 6.8: Representative images of Ag/Cl electrodes used in electrophysiological studies 

– electrodes were made from 1ml syringe tips filled with 3M KCl 4% agar solution. Silver wire 

was coated with silver chloride through submersion in sodium hypochlorite bleach solution. 
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To correct for fluid resistance, hold down the push to adjust button, notice a new value 

for voltage shown on the voltage clamp. Whilst holding down the push to adjust button 

turn the fluid resistance knob until the value shows zero. Switch the measurement on the 

voltage clamp to measure current. Whilst pressing down the push to adjust button, the 

measurement should show 68μA (±3μA).If 68μA is shown switch back to measure 

voltage, the chamber is now correctly blanked. If not 68μA check current electrodes for 

bubbles. 

 

Remove all liquid from the chamber reservoirs. Add the model to the chamber. Carefully, 

fill the reservoirs with transport media using a 50ml syringe attached to 2mm capillary 

tubing. Ensure the capillary tubing is as far down the reservoir as possible (close to the 

test membrane) and slowly fill to avoid model disruption. Make sure bubble lift is moving 

correctly and no bubbles are lodged in the system that might disrupt drug transport or 

provide electrical insulation. Check cylinder pressure to ensure sufficient gas pressure 

remains for full experiment (~2.5 hours). Leave models in the chamber for 30 minutes as 

a minimum to acclimatise. In order to detect changes in the electrochemical properties of 

the membranes, models were current clamped to zero volts before being injected with 

10μA every 9 seconds for a duration of 1 second (10 second total per cycle). This is 

achieved by turning the master switch on the voltage clamp from amplify to Int. timer 

and ensuring the rotary dials are set up for 9 and 1 second durations. Ensure secondary 

timer is set to current clamp and that the clamp value is set to 10μA. This can be checked 

by measuring current and waiting for the 1s 10μA spike which can be read and checked 

on the voltage clamp directly. If doing electrochemical measurements start lab chart at 

this point. PC must be connected to the internet before lab chart will correctly open. One 

in the software open a new experimental file.  Each pre-amp channel is connected to a 

corresponding channel on the power lab. Each power lab channel will be shown in the 

new experimental software. The voltage of each channel from the corrected electrodes 

will be measured throughout the experiment. Membrane resistance can be calculated by 

measuring the voltage deflection and dividing by the known injected current. Voltage is 

recorded throughout the experiment and voltage deflections caused by the injected current 

were used to calculate the membranes short circuit current and resistance. Drugs are 

added to reservoirs with time and concentration dependant on the experiment.  
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At the end of the experimental timecourse stop lab chart recording, save the file, set the 

voltage clamp to amplify and turn the pre-amp off. Remove reservoir transport media by 

slowly unscrewing the model chamber. Allow the volume to drip out slowly over the 

course of a few minutes into a receiving pot. Models cannot be removed and processed 

as required. Ensure all chambers are washed with hot water followed by an appropriate 

solvent (ethanol for Transwell, water for Alvetex) immediately. 

 

37oC water baths should be cleaned and water changed regularly with microbe inhibiting 

products. Reservoirs were unhooked from the entire system once per month for a soak 

overnight in soapy water to clean any possible biological matter residue. 
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Figure 6.9: Representative images of Ussing equipment utilised in this study – A) Pre-amp, B) 96 well Ussing chamber set-up, 

placed together but not within the Ussing chamber, C) Base of the reservoir showing the attachment points of the reservoir to the 

chamber. Gas input points into the system can also be seen (*). 
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6.4 Results 

6.4.1 Transepithelial resistance measurements of 3D models 

compared to conventional Caco-2 standards and Human small 

intestinal sections. 

 

Figure 6.10 shows the relative TEER assessment of 3D Alvetex®  Caco-2 fibroblast 

models compared to the TEER vales of both control and paracrine conditioned media 2D 

Transwell based Caco-2 systems and typical small intestine resistance data taken from 

the literature.(338,339) Compared to the 2D control layers the 3D intestinal models all 

showed a drastic decrease in the overall resistance of the membrane with decreased 

between 30-40 times lower than seen in controls. 

 

In 3D, intestinal models incorporating either CCD-18co and HIC fibroblast cells had 

similar effects on effects on overall model trans-membrane resistance with significant 

decreases in both instances. This is in contrast to the paracrine work shown in Chapter 3 

whereby the paracrine effects of both CCD-18co and HIC fibroblasts decrease TEER 

differentially, with HIC conditioned media only having a small effect on over all model 

resistance. HDFn 3D models also resulted in a significant reduction in membrane TEER 

similar to other fibroblast formats albeit at a slightly lesser level than seen in CCD-18co 

or HIC models. Compared to human tissues however (typical values taken from the 

literature, (340–342) it is clear that the decrease in overall TEER values seen in 3D 

models are significantly more similar to that seen in vivo with the average small intestinal 

tissue resistance of around 50 Ohms.cm2 (dependant on the region of small intestine 

tested).  
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Figure 6.10: TEER Values of 3D intestinal models shows a significant physiological decrease 

in TEER compared to conventional 2D Caco-2 Transwell models – 3D models created using 

the Alvetex® based 3D culture system show a 30-40 fold decrease in TEER values compared to 

Caco-2 Transwell culture systems. Ussing chamber analysis of Human tissues derived from the 

literature show an average tissue resistance of 50-100 ohms.cm2. This is represented on the graph 

with a hashed line. n=4-10 + SEM for test data. N=3-4. n=3 for data found in the literature 

Statistical significance is summarised in Table 6.1 
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3D CCD-18co vs Caco-2 Transwell *** 3D HIC vs Caco-2/ HDFn Transwell *** 

3D CCD-18co vs Caco-2/ CCD-

18co Transwell 

*** Caco-2 Transwell vs Small intestine *** 

3D CCD-18co vs Caco-2/ HIC 

Transwell 

*** Caco-2 Transwell vs Caco-2/ CCD-18co 

Transwell 

*** 

3D CCD-18co vs Caco-2/ HDFn 

Transwell 

*** Caco-2 Transwell vs Caco-2/ HIC 

Transwell 

*** 

3D HDFn vs Caco-2 Transwell *** Caco-2 Transwell vs Caco-2/ HDFn 

Transwell 

*** 

3D HDFn vs Caco-2/ CCD-18co 

Transwell 

*** Small intestine vs Caco-2/ CCD-18co 

Transwell 

*** 

3D HDFn vs Caco-2/ HIC 

Transwell 

*** Small intestine vs Caco-2/ HIC Transwell *** 

3D HDFn vs Caco-2/ HDFn 

Transwell 

*** Small intestine vs Caco-2/ HDFn Transwell *** 

3D HIC vs Caco-2 Transwell *** Caco-2/ CCD-18co Transwell vs Caco-2/ 

HIC Transwell 

*** 

3D HIC vs Caco-2/ CCD-18co 

Transwell 

*** Caco-2/ HIC Transwell vs Caco-2/ HDFn 

Transwell 

*** 

3D HIC vs Caco-2/ HIC Transwell *** 
  

Table 6.1: TEER expression comparison between Transwell and 3D intestinal models  - 

Individual significances calculated by one way ANOVA with Tukeys post-test analysis 99% 

confidence rating. *** = P<0.0001, ** = P<0.001, * = P< 0.01 n=4-10 
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6.4.2 Rhodamine 123 transport and Verapamil Hydrochloride 

MDR1/P-gp inhibition in Caco-2 Snapwell conditioned media 

models.  

Figure 6.12 deals with the Transwell model (control and conditioned) aspect of the full 

Characterisation only. Figure 6.12 A shows the apparent permeability (Papp) of 

Rhodamine 123 in B-A directions for Control Caco-2 Transwell models and paracrine 

media treated Caco-2 Transwell models. Additionally, the effects of Verapamil 

Hydrochloride, a known P-gp/ MDR1 inhibitor, added to the system at the beginning of 

the assay are also shown (Blue bars). Figure 6.12 B shows the same data conditions as A 

MDR1 

Paracellular 

MDR1 

Paracellular 

Verapamil 

Hydrochloride 

Figure 6.11: Schematic representation of the transport processes being studied in this 

experiment – A) A simple overview of the expected mechanisms involved in Rhodamine 123 

transport in systems uninhibited with Verapamil hydrochloride. Main B-A transport is 

expected to be MDR1 mediated with any A-B transport paracellular in nature. B) shows the 

effects of the addition of verapamil hydrochloride to the assay system. MDR1 mediated 

transport is expected to be inhibited.  

A) 

B) 
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but in the A-B permeability direction. In control layers Rhodamine 123 is primarily 

transported B-A with higher B-A Papp compared to the converse. Addition of Verapamil 

hydrochloride to the assay system decreases Rhodamine 123 apparent permeability when 

measured in the B-A direction by approximately 60%. Overall, this suggests that 

Rhodamine 123 transport is primarily through an MDR1/ P-gp directed mechanism, at 

least in control Transwell models. 

 

Paracrine CCD-18co treated Transwell monolayers show a similar transport phenotype 

with directional transport biased towards B-A. Importantly, overall Rhodamine 123 

permeability between conventionally cultured Transwell controls and CCD-18co 

conditioned media treated Transwell models is not induced to increase. Similarity as in 

control models, Rhodamine 123 permeability is efficiently inhibited through treatment 

with Verapamil Hydrochloride, with a decrease in Rhodamine 123 transport of 

approximately 75%. Whilst overall Rhodamine permeability is not significantly increased 

in CCD-18co treated Caco-2 model cultures the increase in inhibitory effect of Verapamil 

hydrochloride suggests that a higher proportion of transport in CCD18co treated models 

is MDR1/ P-gp mediated compared to controls.  

 

HDFn paracrine effects on Rhodamine 123 Papp shows a very similar phenotype to both 

control and CCD-18co treated layers as described above with B-A transport bias. 

However, B-A transport in HDFn treated monolayers is significantly higher over the 

control with a Papp of around 3.5 x10-6 cms-1 compared to the control values of 

approximately 1 x10-6 cms-1, SEM however means that this change is not significant. The 

increased permeability phenotype is almost entirely reversed with the addition of 

Verapamil hydrochloride providing strong evidence for MDR1/ P-gp again for 

upregulation in HDFn treated models.  

 

Unlike other model conditions tested, HIC treated models have a slightly lower average 

Rhodamine 123 Papp level compared to controls and other tested conditions at 

approximately 0.3 x10-6 cms-1. In spite of this however, the directional polarity of the 

models is maintained with a clear bias towards B-A transport. Moreover, addition of 

Verapamil hydrochloride to the assay did not affect Papp Rhodamine 123 rates in HIC 

models. It was hypothesised that MDR1/P-gp levels are significantly decreased in HIC 
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conditions models and that the low levels of Rhodamine 123 transport can be attributed 

to passive paracellular permeability and limited expression of related protein transporters 

with a degree of cross over substrate specificity with MDR1/P-gp which are not inhibited 

by verapamil hydrochloride. However, evidence for some small level of MDR1/P-gp 

function is shown in HIC conditioned media by the slight (non-significant) increase in 

Rhodamine 123 permeability in inhibited A-B assays. The primary method of A-B 

directional permeability is through passive paracellular mechanisms. Inhibition of 

MDR1/P-gp  in A-B transport studies would logically increase A-B transport as MDR1/P-

gp activity would not work against the passive paracellular transport. 

 

Significancy values for both 2D Transwell paracrine models are summarised in Table 6.2.
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Figure 6.12: Comparative analysis of Rhodamine 123 transport across Control and paracrine media treated Caco-2 membranes shows a significant increase 

in Rhodamine 123 transport in HDFn treated Caco-2 layers – A) Values gained for B-A transport in each culture condition compared to permeability in the 

presence of Verapamil hydrochloride (V+),  B) Values gained for A-B transport in each culture condition compared to permeability in the presence of Verapamil 

hydrochloride (V+). Verapamil hydrochloride was added to the epithelial layers to test compound specificity to P-gp/ MDR1 mediated transport. n=3 N=3 HDFn V+ 

n=2 +SEM N=2 Significancy is summarised in table 6.2.  

 

 

A B 
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Control BA vs Control BA V+ ns Control AB vs Control AB V+ ns 

Control BA vs Caco-2/ CCD-18co BA ns Control AB vs Caco-2/CCD-18co AB ns 

Control BA vs Caco-2/ CCD-18co BA V+ ns Control AB vs Caco-2/ CCD-18co AB V+ ns 

Control BA vs Caco-2/ HIC BA ns Control AB vs Caco-2/ HIC AB ns 

Control BA vs Caco-2/ HIC BA V+ ns Control AB vs Caco-2/ HIC AB V+ ns 

Control BA vs Caco-2/ HDFn BA ns Control AB vs HDFn AB ns 

Control BA vs Caco-2/ HDFn BA V+ ns Control AB vs HDFn AB V+ ns 

Control BA V+ vs Caco-2/ CCD-18co BA ns Control AB V+ vs Caco-2/CCD-18co AB ns 

Control BA V+ vs Caco-2/ CCD-18co BA V+ ns Control AB V+ vs Caco-2/ CCD-18co AB 

V+ 

ns 

Control BA V+ vs Caco-2/ HIC BA ns Control AB V+ vs Caco-2/ HIC AB ns 

Control BA V+ vs Caco-2/ HIC BA V+ ns Control AB V+ vs Caco-2/ HIC AB V+ ns 

Control BA V+ vs Caco-2/ HDFn BA ns Control AB V+ vs HDFn AB ns 

Control BA V+ vs Caco-2/ HDFn BA V+ ns Control AB V+ vs HDFn AB V+ ns 

Caco-2/ CCD-18co BA vs Caco-2/ CCD-18co 

BA V+ 

ns Caco-2/CCD-18co AB vs Caco-2/ CCD-

18co AB V+ 

ns 

Caco-2/ CCD-18co BA vs Caco-2/ HIC BA ns Caco-2/CCD-18co AB vs Caco-2/ HIC AB ns 

Caco-2/ CCD-18co BA vs Caco-2/ HIC BA V+ ns Caco-2/CCD-18co AB vs Caco-2/ HIC AB 

V+ 

ns 

Caco-2/ CCD-18co BA vs Caco-2/ HDFn BA ns Caco-2/CCD-18co AB vs HDFn AB ns 

Caco-2/ CCD-18co BA vs Caco-2/ HDFn BA 

V+ 

ns Caco-2/CCD-18co AB vs HDFn AB V+ ns 

Caco-2/ CCD-18co BA V+ vs Caco-2/ HIC BA ns Caco-2/ CCD-18co AB V+ vs Caco-2/ HIC 

AB 

ns 

Caco-2/ CCD-18co BA V+ vs Caco-2/ HIC BA 

V+ 

ns Caco-2/ CCD-18co AB V+ vs Caco-2/ HIC 

AB V+ 

ns 

Caco-2/ CCD-18co BA V+ vs Caco-2/ HDFn 

BA 

* Caco-2/ CCD-18co AB V+ vs HDFn AB ns 

Caco-2/ CCD-18co BA V+ vs Caco-2/ HDFn 

BA V+ 

ns Caco-2/ CCD-18co AB V+ vs HDFn AB 

V+ 

ns 

Caco-2/ HIC BA vs Caco-2/ HIC BA V+ ns Caco-2/ HIC AB vs Caco-2/ HIC AB V+ ns 

Caco-2/ HIC BA vs Caco-2/ HDFn BA * Caco-2/ HIC AB vs HDFn AB ns 

Caco-2/ HIC BA vs Caco-2/ HDFn BA V+ ns Caco-2/ HIC AB vs HDFn AB V+ ns 

Caco-2/ HIC BA V+ vs Caco-2/ HDFn BA ns Caco-2/ HIC AB V+ vs HDFn AB ns 

Caco-2/ HIC BA V+ vs Caco-2/ HDFn BA V+ ns Caco-2/ HIC AB V+ vs HDFn AB V+ ns 

Caco-2/ HDFn BA vs Caco-2/ HDFn BA V+ ns HDFn AB vs HDFn AB V+ ns 

Table 6.2: Significancy values from Rhodamine 123 ±Verapamil Hydrochloride 

permeability studies of Transwell conditioned media models – B-A and A-B data sets 

were analysed for significancy separately. Individual significances were calculated by one-

way ANOVA with Tukeys post-test analysis with 95% confidence rating. *** = P<0.0005, 

** = P<0.005, * = P< 0.05 
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6.4.3 Rhodamine 123 transport and Verapamil Hydrochloride 

MDR1/ P-gp inhibition in 3D Caco-2/ Fibroblast bioengineered 

intestinal equivalents. 

 

The effects of fibroblast conditioned media on the Rhodamine 123 permeability of 

Transwell Caco-2 model systems were shown to cause a range f  changes in the functional 

phenotype of the resultant intestinal model.  Results in this section focus on the 

application of the fibroblasts into a 3D cultured stromal epithelial system , designed for 

the co-culture of multiple cell types into a structurally physiological intestinal model.  

 

Figure 6.14 shows the comparative function of 3D Alvetex intestinal models compared 

to conventionally cultured control Caco-2 Transwell model function. Figure 6.14 A 

shows the comparative effects of 3D Alvetex culture compared against control Transwell 

layers, the gold standard in the B-A permeability direction. Similarly, Figure 6.14 B 

shows data in the A-B permeability direction. When first considering the B-A direction 

alone (the primary expected direction of travel for MDR1/ P-gp mediated Rhodamine 123  

transport) it was clearly shown that 3D CCD-18co cultures show a much higher 

permeability than Transwell controls. 3D CCD-18co A-B  shows a trend to be lower than 

B-A values however this change is non-significant due to the large data variation. 

Furthermore, only a small decrease in overall membrane permeability is seen when 

models are assayed with the addition of verapamil hydrochloride in B-A and no change 

at all in the A-B direction. Overall this suggests two things about the function of the 

epithelium in CCD-18co bioengineered Caco-2 intestinal models compared to 

conventionally cultured Caco-2 Transwell systems. 1. B-A permeability, whilst increased 

is not completely due to proportional increases in MDR1/P-gp expression rates because 

of similar increases in A-B permeability and incomplete inhibition when tested in the 

presence of Verapamil hydrochloride. 2. Increases in non-inhibitable Rhodamine 

permeability suggest either increased levels of similar (non-inhibitable) efflux proteins to 

MDR1 of which Rhodamine 123 shows some degree of substrate specificity or increased 

passive paracellular permeability. If one compares the TEER values gained from 3D 
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model systems compared to Transwell Caco-2 models, both conventional and modified, 

increases in paracellular permeability are not to be unexpected. In either regard increases 

in both B-A and A-B direction are a welcome change when compared to control Caco-2 

Transwell layers. Because Caco-2 Transwell models are known to underestimate 

MDR1/P-gp and are generally less paracellularly permeable than intestinal tissues. 

Results shown here suggest that both of these deficiencies may be improved upon with 

CCD-18co bioengineered 3D Alvetex® intestinal models.  
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3D HDFn models shows a similar pattern with no significant deviations in permeability 

between directions of travel or indeed with the addition of Verapamil hydrochloride. One 

main difference however is in the overall permeability of the membrane. Whereas CCD-

18co models showed a significant increase compared to Transwell controls, this improved 

functional phenotype is attenuated in HDFn cultured models potentially suggesting that 

MDR1 

Paracellular 

MDR1 

Paracellular 

Verapamil 

Hydrochloride 

Figure 6.13: Schematic representation of the transport processes of 3D Alvetex systems 

being studied in this experiment – A) A simple overview of the expected mechanisms 

involved in Rhodamine 123 transport in systems uninhibited with Verapamil hydrochloride. 

Main B-A transport is expected to be MDR1 mediated with any A-B transport paracellular in 

nature. B) shows the effects of the addition of verapamil hydrochloride to the assay system. 

MDR1 mediated transport is expected to be inhibited. 

A) 

B) 
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models decrease their active MDR1/ P-gp transporter expression whilst increasing their 

passive permeability rates.  

 

Similarly to CCD-18co cultured models, HIC models show a trend towards a large 

increase in B-A membrane permeability compared to conventionally cultured Transwell 

controls. A-B permeability was also increased when compared to conventionally cultured 

controls however was lower than HIC 3D model B-A values. Unfortunately, due to model 

variation this difference is not significant, a seemingly common issue with the use of 3D 

models, which are inherently more variable than simple 2D counterparts.  Again, as seen 

in other 3D models conditions, addition of verapamil hydrochloride does not appear to 

have any effect on the rate of B-A membrane permeability suggesting non-MDR1/P-gp 

mediated Rhodamine 123 Transport. Interestingly, addition of Verapamil Hydrochloride 

to the A-B direction in HIC 3D models results in a further significant decrease in 

membrane permeability compared to uninhibited 3D A-B transport to a level similar to 

that seen in control Transwell models. This is somewhat unexpected as inhibition of 

MDR1/P-gp should logically increase A-B transfer compared to uninhibited assays. A 

decrease in A-B transport when inhibited would suggest two hypothesis. 1. Verapamil 

Hydrochloride inhibits a mechanism involved in actively transporting Rhodamine 123 A-

B. 2. Verapamil Hydrochloride rapidly upregulates an active efflux protein able to 

transport across B-A. Either option would seem unlikely suggesting a different 

mechanism entirely may be at play. 



Chapter 6 –Assessment of 2D and 3D model function 

Page | 352 

 

 

 

 

 

Figure 6.14: Comparative analysis of Rhodamine 123 transport across Control and 3D Alvetex Caco-2/ Fibroblast intestinal tissue equivalents shows a large 

increase in Rhodamine 123 membrane permeability in CCD-18co and HIC 3D models –  A) Comparative B-A Papp values between Caco-2 Transwell controls 

and B-A values from Alvetex® based inetstinal models.. B) Comparative A-B  Papp values between Caco-2 Transwell controls and A-B values from Alvetex® based 

intestinal models. Generally, 3D models were shown to be more permeable to Rhodamine 123 than Caco-2/ Transwell controls. Addition of Verapamil Hydrochloride 

did not appear to have any significant effects on reducing membrane Rhodamine 123 permeability. n=3 +SEM. N=3 Significancys are summerised in table 6.3 

 

A B 
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Control BA vs Control BA V+ ns Control AB vs Control AB V+ ns 

Control BA vs 3D CCD-18co BA ns Control AB vs 3D CCD-18co AB ns 

Control BA vs 3D CCD-18co BA 

V+ 

ns Control AB vs 3D CCD-18co AB 

V+ 

ns 

Control BA vs 3D HDFn BA ns Control AB vs 3D HDFn AB ns 

Control BA vs 3D HDFn BA V+ ns Control AB vs 3D HDFn AB V+ ns 

Control BA vs 3D HIC BA ns Control AB vs 3D HIC AB ** 

Control BA vs 3D HIC BA V+ ns Control AB vs 3D HIC AB V+ ns 

Control BA V+ vs 3D CCD-18co 

BA 

ns Control AB V+ vs 3D CCD-18co 

AB 

ns 

Control BA V+ vs 3D CCD-18co 

BA V+ 

ns Control AB V+ vs 3D CCD-18co 

AB V+ 

ns 

Control BA V+ vs 3D HDFn BA ns Control AB V+ vs 3D HDFn AB ns 

Control BA V+ vs 3D HDFn BA V+ ns Control AB V+ vs 3D HDFn AB V+ ns 

Control BA V+ vs 3D HIC BA ns Control AB V+ vs 3D HIC AB ** 

Control BA V+ vs 3D HIC BA V+ ns Control AB V+ vs 3D HIC AB V+ ns 

3D CCD-18co BA vs 3D CCD-18co 

BA V+ 

ns 3D CCD-18co AB vs 3D CCD-18co 

AB V+ 

ns 

3D CCD-18co BA vs 3D HDFn BA ns 3D CCD-18co AB vs 3D HDFn AB ns 

3D CCD-18co BA vs 3D HDFn BA 

V+ 

ns 3D CCD-18co AB vs 3D HDFn AB 

V+ 

ns 

3D CCD-18co BA vs 3D HIC BA ns 3D CCD-18co AB vs 3D HIC AB ns 

3D CCD-18co BA vs 3D HIC BA 

V+ 

ns 3D CCD-18co AB vs 3D HIC AB 

V+ 

ns 

3D CCD-18co BA V+ vs 3D HDFn 

BA 

ns 3D CCD-18co AB V+ vs 3D HDFn 

AB 

ns 

3D CCD-18co BA V+ vs 3D HDFn 

BA V+ 

ns 3D CCD-18co AB V+ vs 3D HDFn 

AB V+ 

ns 

3D CCD-18co BA V+ vs 3D HIC 

BA 

ns 3D CCD-18co AB V+ vs 3D HIC 

AB 

ns 

3D CCD-18co BA V+ vs 3D HIC 

BA V+ 

ns 3D CCD-18co AB V+ vs 3D HIC 

AB V+ 

ns 

3D HDFn BA vs 3D HDFn BA V+ ns 3D HDFn AB vs 3D HDFn AB V+ ns 

3D HDFn BA vs 3D HIC BA ns 3D HDFn AB vs 3D HIC AB ns 

3D HDFn BA vs 3D HIC BA V+ ns 3D HDFn AB vs 3D HIC AB V+ ns 

3D HDFn BA V+ vs 3D HIC BA ns 3D HDFn AB V+ vs 3D HIC AB * 

3D HDFn BA V+ vs 3D HIC BA V+ ns 3D HDFn AB V+ vs 3D HIC AB V+ ns 

3D HIC BA vs 3D HIC BA V+ ns 3D HIC AB vs 3D HIC AB V+ ** 

 

 

 

 

 

 

 

 

Table 6.3: Significancy values from Rhodamine 123 ±Verapamil Hydrochloride 

permeability studies of Transwell control compared with Alvetex® based intestinal 

models – B-A and A-B data sets were analysed for significancy separately. Individual 

significances were calculated by one-way ANOVA with Tukeys post-test analysis with 95% 

confidence rating. *** = P<0.0005, ** = P<0.005, * = P< 0.05 
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6.4.4 Timecourse analysis of Rhodamine permeability across 

conventionally and conditioned cultured Transwell models and 

3D bioengineered co-culture systems. 

 

Figure 6.15 shows the permeability of Caco-2 Transwell models to Rhodamine 123 with 

timepoints taken at 0 (blank), 60 and 120 minutes. Figure 6.15 A shows control  

timecourse permeability changes, whereas, Figure 6.15 B shows Verapamil 

Hydrochloride inhibited cell culture layers. The purpose of this analysis is to assess 

whether permeability over time is linear or as seen here, dependant on time in culture. 

The main observation is that the rate of Rhodamine 123 transport increases between the 

0 and 60 minute timepoints with often, the maximal Papp value for the culture actually 

occurring at the 60 minute timepoint. Between 60 and 120 minutes in assay, permeability 

levels plateau with no additional increases in the rate of Rhodamine transport. Caco-2/ 

HDFn the only condition seen to not follow this observable trend. 

 

Figure 6.16 A and B show the same analysis with 3D cultured Alvetex models rather than 

conditioned media models.  A similar overall trend is observed albeit at the higher 

permeability values of 3D cultures. Where HDFn was the observable anomaly in 

Transwell cultures, Figure 6.16 A and B clearly shows that in 3D Alvetex conditions, 

Caco-2/ HIC models show a more linear change in Rhodamine permeability compared to 

other conditions.  It is important to note that a plateau of Papp does not mean that active 

transport is not occurring, just that the rate of active transport is stable or saturated. A 

linear change in Papp increase could indicate that Rhodamine Transport is not yet 

saturated, potentially suggesting high levels of active transporters although variability in 

3D models is generally higher than those seen in 2D.
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Figure 6.15: Time course analysis of Rhodamine 123 permeability in paracrine Transwell models throughout the assay period shows a general rapid increase 

in permeability followed by a plateau phase whereby permeability values stop increasing - A) B-A Conditioned media Transwell models, B) B-A Conditioned 

media Transwell models with the addition of Verapamil Hydrochloride throughout the assay process. All data is n=3 N=3, HDFn V+ n=2, N=2±SEM  
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Figure 6.16: Time course analysis of Rhodamine 123 permeability in 3D Alvetex tissue equivalent models throughout the assay period shows a general rapid 

increase in permeability followed by a plateau phase whereby permeability values stop increasing – A) B-A 3D Alvetex models, B) B-A 3D Alvetex models 

with the addition of Verapamil Hydrochloride throughout the assay process. All data is n=3 N=3, ±SEM 
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6.4.5 Efflux co-efficient value calculation and analysis to show 

directional bias in Rhodamine 123 transport within 2D 

Transwell and 3D Alvetex ® intestinal models.  

Figures 6.17 and 6.18 show the efflux co-efficient analysis of both 2D (Figure 6.17) and 

3D intestinal cultures (Figure 6.18) Rhodamine 123 Ussing chamber transport. Efflux co-

efficients are simply calculated by comparing the Papp values of B-A transport compared 

to permeability in the A-B direction. For example a co-efficient permeability value of 2 

would suggest that the B-A direction of travel was favoured over the A-B direction 

exactly 2-fold, with twice as much compound transport B-A.  

 

Analysis of Figure 6.17 shows how significant B-A bias is seen in both Control and CCD-

18co conditioned media cultures. In both cases this is more pronounced at the 120 minute 

timepoint rather than at 60 minutes. Addition of Verapamil Hydrochloride to the culture 

system results in a significant decrease in the efflux co-efficiency to approximately one, 

suggesting no transport bias of the membranes. This suggests either a significant 

inhibition of B-A transport or an increase of Rhodamine 123 transport in the A-B 

direction in verapamil treated model assays. It was know from previous data analysis that 

changes in efflux co-efficient are likely influenced by both with the former being the 

largest driver of change.  

 

Efflux co-efficients levels of HDFn and HIC conditioned media layers, whilst still for the 

most part above a value of 2 (suggesting B-A bias) are lower than their control and CCD-

18co counterparts. This suggests that Rhodamine 123 permeability in these models is 

likely to be MDR1/P-gp mediated to a large extent, due to the comparative ratio between 

B-A and A-B permeability values, but not to the level as control and CCD-18co fibroblast 

treated systems which have a higher ratio of B-A/ A-B permeability. Addition of 

Verapamil Hydrochloride to HDFn and HIC cultures had no significant effects on efflux 

co-efficient when compared to uninhibited efflux co-efficient values. This suggests that 

Rhodamine 123 transport in these instances occurred at a similar ratio (B-A/A-B) as in 

untreated HDFn and HIC model assays. As such, Rhodamine 123 transport in these 
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instances is more likely through a method not inhibited by Verapamil Hydrochloride, 

insinuating transport may not be due to MDR1/ P-gp mediated mechanisms alone.  

 

Figure 6.18 shows an analysis of the changing efflux co-efficient seen in 3D co-culture 

models of the intestinal epithelium. Generally, 3D cultured Alvetex models didn’t show 

a significant bias to any particular direction of molecular movement through the 

membrane. This is not to say that there was no transport, indeed 3D bioengineered models 

were regularly shown to have increased Rhodamine 123 permeability across epithelial 

layers compared to conventionally cultured control Transwell values. As seen previously, 

addition of Verapamil Hydrochloride didn’t have any significant effects on the directional 

bias of Rhodamine 123 transport except in 3D HIC models whereby a large increase in 

efflux co-efficient was observed suggesting a high B-A bias in molecular transport. 

Tables 6.3 specify the significancy values of 2D conditioned media and 3D Alvetex 

models respectively between different model conditions. 

 

 

 

  



Chapter 6 –Assessment of 2D and 3D model function 

Page | 359 

 

  Figure 6.17: Efflux ratio permeability calculation of 2D Transwell paracrine models for 

Rhodamine 123  -  Efflux ratio is described as a calculation to decide whether bias exist 

between differential direction of molecular movement in a drug transport assay system. Values 

over 2 suggest movement in the B-A direction is at least double that of the A-B direction. All 

uninhibited model layers show significant B-A bias. Addition of Verapamil Hydrochloride in 

most instances reduces this B-A bias significantly except in the case of HDFn and HIC 

conditioned layers where no significant change is observed.  n = a minimum of 3 independent 

repeats. HDFn V+ n=2, N=2 +SEM 
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Figure 6.18: Efflux ratio permeability calculation of 3D Alvetex Caco-2/ Fibroblast 

models for Rhodamine 123  - Values for 3D Alvetex intestinal models generally speaking 

are shown to be below 2 in CCD-18co and HDFn instances. HIC models show extremely 

high Efflux co-efficient values when treated with verapamil hydrochloride, an unusual 

phenotype not readily explained by data gained in this study. n= a minimum of 3 

independent repeats. 3D CCD-18co non-inhibited and 3D HIC models V+ n=2, N=2 +SEM 
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Control 60 vs 3D HIC 120 V+ *** Caco-2/ HIC 60 V+ vs 3D HIC 120 

V+ 

*** 

Control 120 vs 3D HIC 120 V+ *** Caco-2/ HIC 120 V+ vs 3D HIC 120 

V+ 

*** 

Control 60 V+ vs 3D HIC 120 V+ *** 3D CCD-18co 60 vs 3D HIC 120 V+ *** 

Control 120 V+ vs 3D HIC 120 V+ *** 3D CCD-18co 120 vs 3D HIC 120 

V+ 

*** 

Caco-2/ CCD-18co 60 vs 3D HIC 

120 V+ 

*** 3D CCD-18co 60 V+ vs 3D HIC 120 

V+ 

*** 

Caco-2/CCD-18co 120 vs 3D HIC 

120 V+ 

*** 3D CCD-18co 120 V+ vs 3D HIC 

120 V+ 

*** 

Caco-2/ CCD-18co 60 V+ vs 3D HIC 

120 V+ 

*** 3D HDFn 60 vs 3D HIC 120 V+ *** 

Caco-2/ CCD-18c0 V+ vs 3D HIC 

120 V+ 

*** 3D HDFn 120 vs 3D HIC 120 V+ *** 

Caco-2/ HDFn 60 vs 3D HIC 120 V+ *** 3D HDFn 60 V+ vs 3D HIC 120 V+ *** 

Caco-2/ HDFn 120 vs 3D HIC 120 

V+ 

*** 3D HDFn 120 V+ vs 3D HIC 120 V+ *** 

Caco-2/ HDFn 60 V+ vs 3D HIC 120 

V+ 

*** 3D HIC 60 vs 3D HIC 120 V+ *** 

Caco-2/ HDFn 120 V+ vs 3D HIC 

120 V+ 

*** 3D HIC 120 vs 3D HIC 120 V+ *** 

Caco-2/ HIC 60 vs 3D HIC 120 V+ *** 3D HIC 60 V+ vs 3D HIC 120 V+ *** 

Caco-2/ HIC 120 vs 3D HIC 120 V+ *** 
  

Table 6.4: Efflux co-efficient analysis of Rhodamine 123 in 2D and 3D intestinal models both with and without Verapamil Hydrochloride and at both 

60 and 120 minutes assay lengths - Individual significances calculated by one-way ANOVA with Tukeys post-test analysis with 95% confidence rating. *** 

= P<0.0005, ** = P<0.005, * = P< 0.05  

 



Chapter 6 –Assessment of 2D and 3D model function 

Page | 362 

 

6.4.6 KGF treatment of Caco-2 Transwell models reduces its 

models capability to actively transport Rhodamine 123.  

Figure 6.19 shows the Rhodamine 123 transport of dynamics of conventional cultured 

Caco-2 Transwell layers treated with differential concentration of KGF. Cell layers were 

cultured for a period of 21 to 25 days prior to assessment of transport kinetics through 

Ussing chamber design as previously described. Figure 6.19 A shows the transport of 

Rhodamine 123 across KGF treated layers in the B-A direction of travel. Readings were 

taken after 120 minutes of transportation. A significant decrease in the levels of 

Rhodamine transport can be seen when compared with the control Papp values. Levels 

drop by approximately 50% consistently across all treated layers with no concentration 

dependent effects.  

 

Figure 6.19 B shows the B-A transfer of Rhodamine 123 in the presence of the MDR1 

(P-gp) inhibitor Verapamil Hydrochloride. Untreated Caco-2 layers show a decrease in 

Rhodamine Papp in the presence of Verapamil Hydrochloride. However, comparison of 

data levels from Figure 6.19 A and B show that addition of Verapamil hydrochloride 

caused a significant dose dependant increase in the relative Papp of Rhodamine 123 in 

KGF treated layers compared to their untreated controls. Additionally, the increase in 

Rhodamine 123 appears to be concentration dependant on the levels of KGF utilised to 

treat the Caco-2 layers during culture, with higher KGF levels corresponding with 

increased Rhodamine 123 transport. This is contrary to what is expected with the know 

physiological functional of Verapamil hydrochloride and suggests a differential 

mechanism between KGF treated layers and Rhodamine 123 transport.   
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Figure 6.19: B-A transport of Rhodamine 123 in KGF treated Caco-2 layers shows decreased 

transport in treated layers versus controls with addition of Verapamil Hydrochloride having 

a dose dependant increasing effect on membrane permeability – A) B-A transport without the 

addition of Verapamil Hydrochloride, B) Rhodamine transport with Verapamil hydrochloride. n=3 

from a minimum of three independent experiments. +SEM 

 

 

 

 

A 

B 
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Control 60 vs 0.5ng/ml KGF 120 V+ *** 0.5ng/ml KGF 60 vs 5ng/ml KGF 120 V+ *** 5ng/ml KGF 60 vs 5ng/ml KGF 120 V+ *** 

Control 60 vs 5ng/ml KGF 120 V+ *** 0.5ng/ml KGF 60 vs 25ng/ml KGF 60 V+ ** 5ng/ml KGF 60 vs 25ng/ml KGF 60 V+ ** 

Control 60 vs 25ng/ml KGF 60 V+ *** 0.5ng/ml KGF 60 vs 25ng/ml KGF 120 V+ *** 5ng/ml KGF 60 vs 25ng/ml KGF 120 V+ *** 

Control 60 vs 25ng/ml KGF 120 V+ *** 0.5ng/ml KGF 120 vs 0.5ng/ml KGF 120 V+ *** 5ng/ml KGF 120 vs 5ng/ml KGF 120 V+ *** 

Control 120 vs 0.5ng/ml KGF 120 V+ *** 0.5ng/ml KGF 120 vs 5ng/ml KGF 120 V+ *** 5ng/ml KGF 120 vs 25ng/ml KGF 60 V+ ** 

Control 120 vs 5ng/ml KGF 120 V+ *** 0.5ng/ml KGF 120 vs 25ng/ml KGF 60 V+ ** 5ng/ml KGF 120 vs 25ng/ml KGF 120 V+ *** 

Control 120 vs 25ng/ml KGF 60 V+ * 0.5ng/ml KGF 120 vs 25ng/ml KGF 120 V+ *** 5ng/ml KGF 60 V+ vs 5ng/ml KGF 120 

V+ 

*** 

Control 120 vs 25ng/ml KGF 120 V+ *** 0.5ng/ml KGF 60 V+ vs 0.5ng/ml KGF 120 

V+ 

*** 5ng/ml KGF 60 V+ vs 25ng/ml KGF 60 

V+ 

* 

Control 60 V+ vs 0.5ng/ml KGF 120 V+ *** 0.5ng/ml KGF 60 V+ vs 5ng/ml KGF 120 

V+ 

*** 5ng/ml KGF 60 V+ vs 25ng/ml KGF 120 

V+ 

*** 

Control 60 V+ vs 5ng/ml KGF 120 V+ *** 0.5ng/ml KGF 60 V+ vs 25ng/ml KGF 60 

V+ 

* 5ng/ml KGF 120 V+ vs 25ng/ml KGF 60 *** 

Control 60 V+ vs 25ng/ml KGF 60 V+ *** 0.5ng/ml KGF 60 V+ vs 25ng/ml KGF 120 

V+ 

*** 5ng/ml KGF 120 V+ vs 25ng/ml KGF 120 *** 

Control 60 V+ vs 25ng/ml KGF 120 V+ *** 0.5ng/ml KGF 120 V+ vs 5ng/ml KGF 60 *** 5ng/ml KGF 120 V+ vs 25ng/ml KGF 120 

V+ 

*** 

Control 120 V+ vs 0.5ng/ml KGF 120 V+ *** 0.5ng/ml KGF 120 V+ vs 5ng/ml KGF 120 *** 25ng/ml KGF 60 vs 25ng/ml KGF 60 V+ ** 

Control 120 V+ vs 5ng/ml KGF 120 V+ *** 0.5ng/ml KGF 120 V+ vs 5ng/ml KGF 60 

V+ 

*** 25ng/ml KGF 60 vs 25ng/ml KGF 120 V+ *** 

Control 120 V+ vs 25ng/ml KGF 60 V+ ** 0.5ng/ml KGF 120 V+ vs 25ng/ml KGF 60 *** 25ng/ml KGF 120 vs 25ng/ml KGF 60 V+ ** 

Control 120 V+ vs 25ng/ml KGF 120 V+ *** 0.5ng/ml KGF 120 V+ vs 25ng/ml KGF 120 *** 25ng/ml KGF 120 vs 25ng/ml KGF 120 

V+ 

*** 

0.5ng/ml KGF 60 vs 0.5ng/ml KGF 120 V+ *** 0.5ng/ml KGF 120 V+ vs 25ng/ml KGF 120 

V+ 

*** 25ng/ml KGF 60 V+ vs 25ng/ml KGF 120 

V+ 

*** 

Table 6.5: Significancy values for Rhodamine 123 permeability between models of differing KGF concentration both with and without the addition of Verapamil 

Hydrochloride - Individual significances calculated by One way ANOVA with Tukeys post-test analysis with 95% confidence rating. *** = P<0.0005, ** = P<0.005, * = 

P< 0.05. n=3, N=3 

 



Chapter 6 –Assessment of 2D and 3D model function 

Page | 365 

 

6.4.7 Atenolol Transport in Co-culture Transwell model layers. 

Figure 6.21 shows the transport kinetics of Atenolol for each of the Transwell paracrine 

conditions utilised within this study, namely; Control, CCD-18co, HDFn and HIC 

conditioned medias. Control layers are shown to be relatively impermeable to Atenolol 

in the B-A direction with an average Papp value of approximately 0.3-0.4x10-6cm/s. 

Culture of Caco-2 monolayers in paracrine media of CCD-18co cells did not significantly 

increase permeability in the B-A direction. B-A transport of Atenolol through HDFn and 

HIC conditioned Transwell layers did have significant effects on the permeability of the 

resultant model, with increases seen in both conditions. The largest change was seen in 

HIC conditioned layers. Apical to basal (A-B) transport of Atenolol (Figure 6.21 B) 

appears be higher (more permeable) that transport measured B-A in most instances, more 

so in conventionally cultured Caco-2 and CCD-18co conditioned models. In terms of how 

this relates to membrane physiology, Atenolol has been described as a substrate of OCT1 

OCT1

/ 

Paracellular 

OCT1

/ 

Paracellular 

Figure 6.20: Schematic representation of the expected directional travel mechanisms for Atenolol 

in Transwell and 3D Alvetex® models – A) Transwell based systems, B) Alvetex® based systems. 

Primary expected directional transport is through bi-directional paracellular mechanisms. OCT1 may 

have some transport capabilities in the A-B directions 
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within the literature. Unlike some of the other protein functions tested in this study, OCT1 

is able to actively transport its substrates into the cell, acting as an uptake transporter 

rather than an efflux protein. As such one would expect that passive paracellular transport 

plus the actions of OCT 1 would result in a higher permeability in the A-B directions. 

Lack of this response in HDFn treated Caco-2 monolayers could be attributes simply to a 

downregulation of OCT 1 within these samples or an increase in an untested efflux 

mechanism with substrate homology. 

 

Figure 6.22 shows the differences in Papp between 0, 60 and 120 minutes of transport 

assay time. Figure 6.22 A shows the B-A transport changes over time. Caco-2 control and 

Caco-2/ CCD-18co co-cultures can be shown to plateau or decrease in relative Papp after 

the 60 minute timepoint whereas HIC and HDFn layers continue to rise. A rising Papp 

indicates an increasing permeability over time, suggesting the system has not yet reached 

transport equilibrium, assuming passive diffusion across the membrane. Figure 6.22 B 

shows the same trends but in the A-B direction with Papp values at comparable timepoints 

generally seen to be higher A-B than B-A.
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Figure 6.21: Apparent Caco-2 permeability of Atenolol in Transwell Snapwell model systems – 

21–25 day matured Caco-2 Alvetex co-culture models were tested for their apparent permeability of 

Atenolol. A) Comparison is of relative Papp values at 120 minutes of transport in the B-A direction of 

travel. B) relative Papp values at 120 minutes in the A-B direction of travel.   n=3-8 +SEM. N=3. 

Statistical analysis was acheved by one way ANOVE with Tukeys post test analysis. B-A and A-B 

data sets were analysed for significany seperatly. Significance values are summerised in table 6.6 

 

A 

B 
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Figure 6.22: Apparent Caco-2 Transwell permeability of Atenolol in Transwell Co-culture systems – 21–25 day matured Caco-2 Snapwell 

monolayers cultured in the conditioned media of either CCD-18co, HDFn or HIC fibroblasts were tested for their apparent permeability of Atenolol. 

Timepoints were taken at 60 minute intervals. n=2-4 ±SEM, N=2-4 

A B 
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Caco-2 BA vs Caco-2/CCD-18co 

BA 

ns Caco-2 AB vs Caco-2/CCD-18co 

AB 

ns 

Caco-2 BA vs Caco-2/ HDFn BA ns Caco-2 AB vs Caco-2/ HDFn AB ns 

Caco-2 BA vs Caco-2/ HIC BA ** Caco-2 AB vs Caco-2/HIC AB ns 

Caco-2/CCD-18co BA vs Caco-2/ 

HDFn BA 

ns Caco-2/CCD-18co AB vs Caco-2/ 

HDFn AB 

ns 

Caco-2/CCD-18co BA vs Caco-2/ 

HIC BA 

* Caco-2/CCD-18co AB vs Caco-

2/HIC AB 

ns 

Caco-2/ HDFn BA vs Caco-2/ 

HIC BA 

* Caco-2/ HDFn AB vs Caco-2/HIC 

AB 

ns 

 

6.4.8 Atenolol Transport in 3D bioengineered Alvetex models. 

Figure 6.23 shows the apparent permeability of Atenolol through the 3D Alvetex models 

created within this study, namely; CCD-18cvo, HDFn and HIC cultured fibroblasts with 

Caco-2 epithelium cultured on the surface of the fibroblast model. Caco-2 B-A and Caco-

2 A-B conditions refer to conventionally cultured Transwell models, used as control 

comparison layers. 

B-A transport (Figure 6.23 A) of Atenolol in 3D cultured CCD-18co and HIC models 

was shown to be not significantly different from that seen in controls with values ranging 

around 0.5x10-6cms-1.  B-A transport seen in HDFn layers however was significantly 

higher than that seen in other conditions at around 8.5 x10-6cms-1. A-B transport (Figure 

6.23 B) was higher in control samples as previously described but lower in all 3D cultured 

conditions than their respective B-A values. These differences between B-A and A-B 

transport however were insignificant except that of the 3D HDFn transport whereby A-B 

transport was generally lower. Reasons why A-B transport was so significantly lower 

than B-A in 3D HDFn models is not readily apparent. Decreased expression of OCT1 

would have the effect of simultaneously increasing B-A permeability whilst decreasing 

relative A-B permeability. However, it could be  hypothesised that OCT 1 downregulation 

could not result in such a large differential effect when compared to other conditions. The 

OCT family of transporter proteins is known to be expressed within the skin from a 

number cell types, mainly epithelial. (343)One potential mechanism for the functional 

Table 6.6: Significancy values for Atenolol permeability experiments - Individual 

significances calculated by One way ANOVA with Tukeys post-test analysis with 95% 

confidence rating for Atenolol transport. B-A and A-B data sets were analysed for 

significance separately *** = P<0.0005, ** = P<0.005, * = P< 0.05. n=3, N=3 
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phenotype observed here could be due to OCT 1 upregulation within the HDFn fibroblasts 

themselves as such limiting the levels of Atenolol able to reach the basal compartment 

through the HDFn biomimetic intestinal model. Increased B-A transport could be due to 

a number of mechanisms not tested for in this study such as cross-specificity of atenolol 

as a substrate for an unknown transporter protein. 

 

Figure 6.24 A, shows the Papp changes over time of 3D cultured CCD-18co, HDFn and 

HIC 3D Alvetex models.  B-A transport comparison shows Caco-2 Transwell, 3D CCD-

18co and 3D HIC models are not significantly different from one another. The general 

shape of the curve shows an increase in Papp values over time within the first 60 minutes 

followed by a plateau suggesting a constant rate of compound transfer. 3D HDFn models 

shows a decrease in permeability between 60 and 120 minute timepoints. This suggests 

permeability is decreasing within the models with later timepoints being less permeable 

to Atenolol. A-B time course graphs (Figure 6.24 B) show a similar trend with Papp levels 

plateauing after 60 minutes within the Ussing chamber. No significant deviation was seen 

up to 120 minutes.  

  



Chapter 6– Functional characterisation of advanced Transwell and Alvetex intestinal models 

 

Page | 371 

 

 

 

 

 

Figure 6.23: Apparent Caco-2 Transwell permeability of Atenolol in 3D Alvetex Scaffold 

models systems – 21–25 day matured Caco-2 Alvetex co-culture models were tested for their 

apparent permeability of Atenolol. Comparison is of relative Papp values at 120 minutes of transport. 

A) B-A direction, B) A-B direction   n=3-8 +SEM. N=3-4 Significancy is shown in Table 6.7. 

A 

B 
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Figure 6.24: Apparent Caco-2 Transwell permeability of Atenolol in Alvetex Scaffold co-culture systems – 21–25 day matured Caco-2 Snapwell 

monolayers cultured in the conditioned media of either CCD-18co, HDFn or HIC fibroblasts were tested for their apparent permeability of Atenolol. 

Timepoints were taken at 60 minute intervals. n=2-4, N=2-4 ±SEM 

 

A B 
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Caco-2 BA vs 3D CCD-18co BA ns Caco-2 AB vs 3D CCD-18co AB * 

Caco-2 BA vs 3D HDFn BA *** Caco-2 AB vs 3D HDFn AB ns 

Caco-2 BA vs 3D HIC BA ns Caco-2 AB vs 3D HIC AB ns 

3D CCD-18co BA vs 3D HDFn 

BA 

*** 3D CCD-18co AB vs 3D HDFn 

AB 

ns 

3D CCD-18co BA vs 3D HIC BA ns 3D CCD-18co AB vs 3D HIC AB ns 

3D HDFn BA vs 3D HIC BA *** 3D HDFn AB vs 3D HIC AB ns 

 

6.4.9 Efflux co-efficient of Caco-2 Transwell and 3D bio-

engineered Caco-2 Alvetex models for Atenolol. 

Figure 6.25 shows the efflux co-efficient values for Atenolol in the 2D paracrine models. 

In each case there are no significant differences (Table 6.6) between values gained at 60 

minutes or at 120 minutes. For the most part, values tend to hover around 1 suggesting 

there is no particular bias in the direction of travel of this drug in these conditions, 

especially at the terminal experimental timepoint of 120 minutes. 

 

Figure 6.26 shows the same calculations applied to data gained from the analysis of 

atenolol transport in 3D intestinal models. 3D CCD-18co models show low efflux co-

efficient values suggesting no significant bias in movement. In contrast, 3D HDFn models 

show a large efflux co-efficient value of between 20-30, suggesting a strong bias in the 

B-A direction of travel. As discussed earlier the mechanism of action for this increase in 

B-A transport compared to A-B is unknown. 3D HIC models show a reduced efflux co-

efficient compared with 3D HDFn with levels similar to CCD-18co models, suggesting a 

small bias B-A, potentially through the same mechanism as HDFn models but to a far 

lesser extent. 

 

  

Table 6.7: Significancy values for Atenolol permeability in 3D intestinal models - 

Individual significances calculated by One way ANOVA with Tukeys post-test analysis with 

95% confidence rating. *** = P<0.0005, ** = P<0.005, * = P< 0.05. n=2-8. B-A and A-B data 

sets were analysed for significancy separately 
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Figure 6.25: Efflux co-efficient calculations shows no significant directional bias in 2D model 

atenolol transport – Efflux co-efficients less than or equal to 1 suggest no significant bias in the 

B-A transport of Atenolol across 2D control and paracrine treated layers. This trend is observed at 

both 60 and 120 minute timepoints. n=3-8 +SEM. N=3-4 Significancy shown in Table 6.6 

 

Figure 6.26: Efflux co-efficient calculations shows significant differences in the transport bias of 

HDFn models to other 3D systems and Transwell co-cultures – The efflux co-efficient calculations 

of 3D cultured Alvetex models all show significant bias to the B-A transport of Atenolol across models 

layers. Particularly, HDFn 3D cultured models show a highly significant bias over all other culture 

conditions. n= 3 +SEM. N=3 Significancy shown in Table 6.6 
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Caco-2 60 vs 3D HDFn 60 *** HIC 60 vs 3D HDFn 60 *** 

Caco-2 60 vs 3D HDFn 120 *** HIC 60 vs 3D HDFn 120 *** 

Caco- 120 vs 3D HDFn 60 *** HIC 120 vs 3D HDFn 60 *** 

Caco- 120 vs 3D HDFn 120 *** HIC 120 vs 3D HDFn 120 *** 

CCD-18co 60 vs 3D HDFn 60 *** 3D CCD-18co 60 vs 3D HDFn 60 *** 

CCD-18co 60 vs 3D HDFn 120 *** 3D CCD-18co 60 vs 3D HDFn 

120 

*** 

CCD-18co 120 vs 3D HDFn 60 *** 3D CCD-18co 120 vs 3D HDFn 

60 

*** 

CCD-18co 120 vs 3D HDFn 120 *** 3D CCD-18co 120 vs 3D HDFn 

120 

*** 

HDFn 60 vs 3D HDFn 60 *** 3D HDFn 60 vs 3D HIC 60 *** 

HDFn 60 vs 3D HDFn 120 *** 3D HDFn 60 vs 3D HIC 120 *** 

HDFn 120 vs 3D HDFn 60 *** 3D HDFn 120 vs 3D HIC 60 *** 

HDFn 120 vs 3D HDFn 120 ** 3D HDFn 120 vs 3D HIC 120 ** 

Table 6.8: Significancy values for Atenolol Efflux Co-efficient for both 2D and 3D intestinal 

models - Individual significances calculated by One way ANOVA with Tukeys post-test analysis 

with 95% confidence rating. *** = P<0.0005, ** = P<0.005, * = P< 0.05.  
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6.4.10 Propranolol Transport of 2D Transwell co-cultures and 

3D Alvetex based intestinal models. 

Figure 6.28 shows Propranolol transport data for conventionally cultured control and 2D 

conditioned media Transwell experiments. Figure 6.28 A demonstrates data in the B-A 

direction whereas Figure 6.28 B shows permeability in the A-B direction. Generally, 

Transwell membranes could be considered highly permeable to Propranolol with average 

Papp values over 10x10-6cms-1 for all conditions.  

 

Control, CCD-18co and HIC conditioned media conditions were all approximately equal 

with no significant changes in propranolol transport over Control epithelial constructs. In 

contrast, HDFn paracrine media conditions resulted in an increased permeability trend 

Transcellular 

Transcellular 

Figure 6.27: Schematic representation of the expected permeability routes of Propranolol 

across Transwell and Alvetex models – Propranolol is a mode compound generally utilised as 

a measurement of passive transcellular transport in vitro across Caco-2 Transwell model 

membranes. 
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albeit not significantly different from controls in this study. In all instances B-A and A-B 

transport appears to be approximately equal between model conditions. Propranolol is 

thought to cross across the intestinal epithelium purely through a passive transcellular 

mechanism. Data seen here follows this hypothesis with reasonably similar values seen 

between conditions and no differences between B-A and A-B directionality.  

 

3D model permeability to Propranolol (Figure 6.29 (A = B-A), (B = A-B)) showed 

increased variation over their 2D conditioned media counterparts. Generally, all models 

tested were still reasonably permeable to Propranolol with minimum average Papp values 

of  > 5x10-6cms-1 in all conditions. 3D CCD-18co Alvetex models exhibited a reduced 

permeability phenotype compared to control with average Papp values of approximately 

5x10-6cms-1, half of that seen in Control of CCD-18co paracrine 2D Transwell models. 

This reduced permeability phenotype is also seen in HIC created models albeit non-

significant in the latter’s case. Additionally, A-B transport appears to be higher than B-A 

transport in CCD-18co and HIC 3D cultures with A-B transport non-significantly 

different from Control Papp values in either case. 3D HDFn models show Propranolol 

permeability non-significantly different from 2D Control epithelial models. Interestingly, 

the heightened permeability compared to control layers seen in 2D HDFn paracrine media 

is attenuated when cultured into 3D models. However HDFn 3D models are still 

significantly higher than its other 3D counterparts. 

 

Decreased permeability values are not completely unexpected in 3D models compared to 

Transwell systems due to the lipophilic nature of Propranolol. Being lipophilic, 

propranolol is readily absorbed through the cell membrane and as such sequestered within 

the cell. The large numbers of fibroblasts within the 3D models will have the effects of 

buffering the transport capabilities to the extent that they are filled with cells and ECM 

respectively. For example, the decreased Propranolol permeability seen in 3D CCD-18co 

and HIC systems is likely due to drug-model sequestration. Analysis of data within the 

literature shows that Propranolol transportation measurement with tissues are limited due 

to this factor often making ex vivo tissue values non-comparable to Caco-2 Transwell 

models. (269) 
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Figure 6.28: 2D comparison of Propranolol transport across Control and treated 

Transwell models shows HDFn and HIC treatments increase propranolol permeability. 

– All tested conditions show high levels of Propranolol permeability over the 120 minute assay 

length. A) B-A permeability, B) A-B permeability. HDFn and HIC treated Caco-2 layers 

appear to show increased permeability over Control and CCD-18oco treated models. n=3 

+SEM, N=3. Significancy is summerised in table 6.9. 

A 

B 
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Figure 6.29: 3D comparison of Propranolol transport across Control and 3D Alvetex 

models with both CCD-18co and HIC models displaying attenuated propranolol 

permeability compared to controls – All tested conditions show high levels of Propranolol 

permeability over the 120 minute assay length. A) B-A permeability, B) A-B permeability .CCD-

18co, HDFn and HIC treated Caco-2 layers appear to show decreased permeability over their 2D 

paracrine counterparts, with levels similar to control Caco-2 membranes. n=3, N=3, 3D HDFn 

n=2, N=2 +SEM. Significancy is summerised in table 6.10 

A 

B 
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Caco-2 BA vs Caco-2/ CCD-18co 

BA 

ns Caco-2 AB vs Caco-2/ CCD-18co 

AB 

ns 

Caco-2 BA vs Caco-2/ HDFn BA ns Caco-2 AB vs Caco-2/ HDFn AB ns 

Caco-2 BA vs Caco-2/HIC BA ns Caco-2 AB vs Caco-2/ HIC AB ns 

Caco-2/ CCD-18co BA vs Caco-2/ 

HDFn BA 

ns Caco-2/ CCD-18co AB vs Caco-2/ 

HDFn AB 

ns 

Caco-2/ CCD-18co BA vs Caco-

2/HIC BA 

ns Caco-2/ CCD-18co AB vs Caco-2/ 

HIC AB 

ns 

Caco-2/ HDFn BA vs Caco-2/HIC 

BA 

ns Caco-2/ HDFn AB vs Caco-2/ 

HIC AB 

ns 

 

 

Caco-2 BA vs 3D CCD-18co BA ns Caco-2 AB vs 3D CCD-18co AB ns 

Caco-2 BA vs 3D HIC BA ns Caco-2 AB vs 3D HIC AB ns 

Caco-2 BA vs 3D HDFn BA ns Caco-2 AB vs 3D HDFN AB ns 

3D CCD-18co BA vs 3D HIC BA ns 3D CCD-18co AB vs 3D HIC AB ns 

3D CCD-18co BA vs 3D HDFn 

BA 

ns 3D CCD-18co AB vs 3D HDFN 

AB 

ns 

3D HIC BA vs 3D HDFn BA ns 3D HIC AB vs 3D HDFN AB ns 

 

 

 

 

 

 

 

 

 

Table 6.9: Significancy values for Propranolol in 2D conditioned media Transwell 

models - Individual significances calculated by One way ANOVA with Tukeys post-test 

analysis with 95% confidence rating. *** = P<0.0005, ** = P<0.005, * = P< 0.05. B-A and 

A_B permeability data sets were analysed for significance separately 

 

Table 6.10: Significancy values for Propranolol in 3D Alvetex® models - Individual 

significances calculated by One way ANOVA with Tukeys post-test analysis with 95% 

confidence rating. *** = P<0.0005, ** = P<0.005, * = P< 0.05. B-A and A_B permeability 

data sets were analysed for significance separately 
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6.4.11 Efflux co-efficient analysis of Propranolol permeability 

in 2D Transwell Snapwell and 3D Alvetex models. 

Figure 6.30 shows the efflux co-efficient values for Propranolol transport in 2D paracrine 

media Transwell cultures and 3D Alvetex intestinal equivalents. With regards to efflux 

co-efficient ratios, 2D cultures all show non-significant deviation from the values seen in 

control Caco-2 Transwell models. Efflux co-efficient values in each care are  

approximately 1  suggests that there is no bias in the directional movement of Propranolol 

across Transwell models of the intestine. 3D Alvetex models show a small variation in 

efflux co-efficient values with a small non-significant decrease compared to control 

layers. This decrease would suggest that A-B transport is biased in these models over B-

A transport. However, as the difference is not significant and the lowest values are still 

comfortably over 0.5 it is difficult to definitively suggest there is a significant movement 

bias. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.30: Efflux co-efficient of Propranolol across 2D and 3D intestinal constructs suggests no 

bias in directional drug transport – Analysis of 2D Transwell paracrine intestinal constructs suggests 

no bias in directional movement with efflux co-efficient values of approximately 1. 3D models suggests 

a level of bias towards A-B movement however efflux co-efficient levels are not sufficiently low to 

positively rule for A-B directional bias. n=3, N=3, 3D HDFn n=2, N=2 +SEM Significancy calculated 

by one way ANOVA with Tukeys post-test analysis howevere no significat differences were seen 

between samples. 
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6.4.12 Etoposide transport of 2D Transwell co-cultures and 3D 

Alvetex based intestinal models. 

Figure 6.32 shows the 2D transport/ permeability of Etoposide through Caco-2 Transwell 

control and conditioned media constructs. Control B-A transport for Etoposide (Figure 

6.32 A) was very low at less than 0.1 x10-6cm-1. Contrastingly, addition of CCD-18co, 

HIC or HDFn conditioned media to the Caco-2 epithelial constructs resulted in a highly 

significant increase in the levels of Etoposide transport with approximate Papp values of 

between 2-4 x10-6cms-1. These values are significantly more physiologically relevant that 

the values gained from the control samples. CCD-18co and HIC models were highly 

MDR1 BCRP MRP2 OCT1 

Transcellular 

BCRP MRP2 OCT1 

Transcellular 

MDR1 

Figure 6.31: Schematic overview of the expected permeability routes of Etoposide through 

Caco-2 Transwell and 3D Alvetex intestinal models – Etoposide is transported by a number of 

critically important efflux proteins such as MDR1, BCRP, MRP2 and OCT1. In this instance 

etoposide was chosen primarily as a model drug for MRP2 mediated transport.  
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variable in their transport capabilities and as such average values are stated with a low 

degree of certainty. HDFn B-A transport was greatly different than control samples yet 

not significant. Additionally, all A-B transport experiments (Figure 6.32 B) were far less 

variable with in each instance, A-B transport was shown to be significantly less than B-

A transport. This is to be expected due to the large array of efflux proteins known to be 

able to transport this compound out of the cells back into the intestinal lumen.  

 

3D transport kinetics exhibit a very similar phenotype (Figure 6.33) with all 3D model 

cultures having significantly increased Papp values when compared to control conditions. 

In this instance 3D HIC models showed a markedly higher BA Papp (Figure 6.33 A) than 

all other conditions with values as high as 60 x 10-6cms-1. In this instance it is probable 

that permeability has been effected by a disruption to the 3D HIC due to mechanical 

breakage either during culture or through manual handling. Additionally, Caco-2 

monolayer which has been demonstrated to form multi-layered sections in parts. Lack of 

membrane polarity could cause large increases in Papp values which when compared to 

human and animal tissues are not physiologically relevant in nature. A-B transport 

(Figure 6.33 B) is significantly lower in 3D HIC conditions, and non-significantly lower 

in CCD-18co and HDFn models. 

 

 

 

 

 

 

 

 

 

  



Chapter 6– Functional characterisation of advanced Transwell and Alvetex intestinal models 

 

Page | 384 

 

 

  

Figure 6.32: Etoposide 2D paracrine media Transwell comparison shown large significant 

increases compared to control values in all culture conditions – A) B-A permeability, B) A-B 

permeability.  CCD-18co, HDFn and HIC conditioned media Transwell layers all show a 

heightened Etoposide permeability compared to Control layers in both the B-A and A-B directions 

of travel. n=2-3 +SEM N=2-3. Statistical differences are summerised in table 6.11 

 

A 

B 
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Figure 6.33: 3D HIC and HDFn Alvetex models show significant Etoposide permeability increases 

over their 2D paracrine counterparts and 2D Caco-2 Control layers. 3D CCD-18co models similar to 

CCD-18co conditioned media models – A) B-A permeability, B) A-B permeability. All 3D models tested 

showed significantly higher Etoposide transport than Caco-2 control layers. HIC B-A transport in particular 

resulted in Papp values significantly higher than all other conditions tested. n=2-3 +SEM, N=2-3. Statistical 

differences are summerised in table 6.12 

 

 

 

A 

B 
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Caco-2 BA vs Caco-2/ CCD-18co BA ns Caco-2 AB vs Caco-2/ CCD-18co AB ns 

Caco-2 BA vs Caco-2/ HDFn BA ns Caco-2 AB vs Caco-2/ HDFn AB ns 

Caco-2 BA vs Caco-2/HIC BA ns Caco-2 AB vs Caco-2/ HIC AB ns 

Caco-2/ CCD-18co BA vs Caco-2/ 

HDFn BA 

ns Caco-2/ CCD-18co AB vs Caco-2/ 

HDFn AB 

ns 

Caco-2/ CCD-18co BA vs Caco-2/HIC 

BA 

ns Caco-2/ CCD-18co AB vs Caco-2/ HIC 

AB 

ns 

Caco-2/ HDFn BA vs Caco-2/HIC BA ns Caco-2/ HDFn AB vs Caco-2/ HIC AB ns 

 

 

 

 

Caco-2 BA vs 3D CCD-18co BA ns Caco-2 AB vs 3D CCD-18co AB ns 

Caco-2 BA vs 3D HIC BA * Caco-2 AB vs 3D HIC AB ns 

Caco-2 BA vs 3D HDFn BA ns Caco-2 AB vs 3D HDFN AB ns 

3D CCD-18co BA vs 3D HIC BA ** 3D CCD-18co AB vs 3D HIC AB ns 

3D CCD-18co BA vs 3D HDFn BA ns 3D CCD-18co AB vs 3D HDFN AB ns 

3D HIC BA vs 3D HDFn BA * 3D HIC AB vs 3D HDFN AB ns 

 

 

 

 

 

 

 

 

 

 

 

Table 6.11: Significancy values for Etoposide in 2D conditioned media Transwell 

models - Individual significances calculated by One way ANOVA with Tukeys post-test 

analysis with 95% confidence rating. *** = P<0.0005, ** = P<0.005, * = P< 0.05. B-A and 

A-B permeability data sets were analysed for significance separately 

 

Table 6.12: Significancy values for Etoposide in 3D Alvetex® models - Individual 

significances calculated by One way ANOVA with Tukeys post-test analysis with 95% 

confidence rating. *** = P<0.0005, ** = P<0.005, * = P< 0.05. B-A and A-B permeability 

data sets were analysed for significance separately 
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6.4.13 Efflux co-efficient analysis of Etoposide permeability in 

2D Transwell Snapwell and 3D Alvetex models demonstrate 

the differential effects of 3D culture on the permeability of 

tissue constructs. 

Figure 6.34 shows the efflux co-efficient values for the permeability of Etoposide to 2D 

conditioned media Transwell models and 3D cultured Alvetex intestinal constructs. What 

can be clearly seen in that CCD-18co and HIC conditioned media has no significant 

effects on the efflux co-efficients of the resultant epithelial membrane model. Conversely, 

HDFn paracrine co-culture seemingly has larger effects on the directional transport bias 

of the membrane with a large increase in the efflux co-efficient values. This suggests that 

B-A transport is heavily favoured over A-B and at a significantly higher rate than Control, 

CCD-18co or HIC models, which whilst lower than HDFn paracrine constructs are still 

biased to B-A transport in their own right.  

 

Interestingly, the opposite effect is true when analysing the efflux co-efficients of 3D 

cultured models. CCD-18co and HDFn 3D constructs results in a decrease in the relative 

efflux co-efficient compared to Control Caco-2 Transwell layers. 3D HIC models are 

much higher than their CCD-18co and HDFn counterparts yet not significantly different 

from Caco-2 controls. However, it is important to note that whilst efflux co-efficient 

values are lower in 3D models when compared to the Control they are still high enough 

to suggest a B-A transport bias in all conditions.   
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Caco-2/ HDFn vs 3D CCD-18co ** 

Caco-2/ HDFn vs 3D HDFn * 

Figure 6.34: Efflux co-efficient values show significant bias toward B-A transport in all 

conditions, both 2D and 3D – Efflux co-efficient values are all above the 1.5 threshold limit for 

identification of B-A transport bias. In 2D cultures HDFn caused the most significant change in efflux 

co-efficient with a significant increase. In 3D models variation from  control was in the opposite 

direction with decreases in efflux co-efficient values being observed, with CCD-18co models being the 

most effected.  n=3  +SEM, N=3 

Table 6.13: Significancy values for Etoposide efflux co-efficient for both 2D and 3D intestinal 

models - Individual significances calculated by One way ANOVA with Tukeys post-test analysis with 

95% confidence rating. *** = P<0.0005, ** = P<0.005, * = P< 0.05. 
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6.4.14 Methotrexate Transport for 2D Transwell paracrine co-

cultures. 

Methotrexate is a drug first developed in the 1940s as an anticancer drug, effective by 

reducing the capability of cells in the body to uptake folate, a key component required for 

the generation of DNA and as such cellular proliferation. Modern medicines have 

overtaken methotrexate as a chemotherapeutic and as such it is now mostly utilised as a 

medicine for rheumatoid arthritis. Methotrexate, like most drug compounds is not 

transported in the gut by a single transporter, with many transporter proteins in the 

RFC1 PCFT BCRP 

RFC1 PCFT BCRP 

Figure 6.35: Schematic diagram of the expected permeability routes of Methotrexate in 

both Transwell and 3D Alvetex intestinal models – Methotrexate is a folate analogue and 

as such is up taken by RFC1 and PCFT. In this study methotrexate was primarily utilised as a 

measure of BCRP activity in the different cellular models. 
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intestinal enterocytes having largely overlapping functions. However, in this instance 

methotrexate is being utilised as a marker for BCRP function. 

 

Figure 6.36 shows the relative Papp values of Caco-2 control plus paracrine cultured 

models. Caco-2 cells in their control format appear to transport methotrexate at a 

reasonably low rate in the B-A direction (Figure 6.36 A) with an apparent permeability 

value of around 0.2 x10-6cm/s. Comparatively, paracrine conditioned media of all types 

was able to increase the permeability of the membrane approximately 3-fold up to a value 

of 0.6 x10-6cm/s. A-B transport (Figure 6.36 B) shows no particular bias in direction, 

particularly in control layers but also in HIC and HDFn conditioned media conditions. 

Some level of directional permeability can be observed in CCD-18co conditions however 

variation on the levels of transport, particularly in the B-A direction make this difference 

non-significant in this instance. 

 

6.4.15 Methotrexate Transport for 3D Alvetex based intestinal 

models. 

 

Figure 6.37 shows the transport capabilities of 3D Alvetex models in the transport of 

methotrexate in both B-A (Figure 6.37 A) and A-B (Figure 6.37 B) directions of travel. 

In each instance A-B transport does not appear to be significantly different from B-A 

transport. 3D models in each case show marginally increased levels of transport in both 

directions over control values. 3D CCD-18co models show the most modest increase with 

an average Papp value of around 0.5x10-6cms-1. 3D HIC models express the highest levels 

of transport compared to other conditions with an average Papp or approximately 20 x 

10-6cms-1. However, large levels of data variability suggest that this may be more a flaw 

in the structural integrity of the model rather than a phenotypic response.  

 

Approximately equal uptake in either direction suggests that uptake and efflux 

mechanisms are in balance with one another. 3D HIC models show a large increase in B-

A and A-B compound transport suggesting two options. 1. The 3D HIC membrane in this 

instance is allowing the free movement of methotrexate across the epithelium. 2. Influx 
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and efflux mechanisms are closely related to one another with increases in one correlating 

with increases in another to maintain B-A/ A-B balance. The first option would seem the 

most likely if not for the conservation of this observation throughout all the 3D culture 

systems. Indeed, even though 3D HIC Papp levels are high compared to other conditions 

tested in this study, they are certainly not high enough to the extent in this case that 

uncontrolled compound-model passthrough would be likely. What is most likely, as in 

most of the compounds tested here, is that another as yet unknown mechanism is at play. 
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Figure 6.36: Methotrexate membrane permeability analysis of 2D paracrine Caco-2 co-cultures 

shows a trending increase in membrane permeability in CCD-18co, HIC and HDFn co-cultures 

– A) B-A and B) A-B directional transport of methotrexate is utilised as a marker of BCRP mediated 

active transport. n=3-5 +SEM, N=3-4 Significancy is highlighted in Table 6.14 

 

A 
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Figure 6.37: Methotrexate membrane integrity analysis of 3D Alvetex/ Caco-2 co-cultures shows 

significant increases in membrane permeability in HIC cultures – A) B-A and B) A-B directional 

transport of methotrexate is utilised as a marker of BCRP mediated active transport. n=3-5 ±SEM, 

N=3-4. Significany values are highlighted in Table 6.15 

 

 

 

fi 

A 
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Caco-2 BA vs Caco-2/ CCD-18co BA ns Caco-2 AB vs Caco-2/ CCD-18co AB ns 

Caco-2 BA vs Caco-2/ HDFn BA ns Caco-2 AB vs Caco-2/ HDFn AB ns 

Caco-2 BA vs Caco-2/HIC BA ns Caco-2 AB vs Caco-2/ HIC AB ns 

Caco-2/ CCD-18co BA vs Caco-2/ 

HDFn BA 

ns Caco-2/ CCD-18co AB vs Caco-2/ 

HDFn AB 

ns 

Caco-2/ CCD-18co BA vs Caco-2/HIC 

BA 

ns Caco-2/ CCD-18co AB vs Caco-2/ HIC 

AB 

ns 

Caco-2/ HDFn BA vs Caco-2/HIC BA ns Caco-2/ HDFn AB vs Caco-2/ HIC AB ns 

 

Caco-2 BA vs 3D CCD-18co BA ns Caco-2 AB vs 3D CCD-18co AB ns 

Caco-2 BA vs 3D HDFn BA ns Caco-2 AB vs 3D HIC AB ns 

Caco-2 BA vs 3D HIC BA * Caco-2 AB vs 3D HDFN AB ns 

3D CCD-18co BA vs 3D HDFn BA ns 3D CCD-18co AB vs 3D HIC AB ns 

3D CCD-18co BA vs 3D HIC BA ns 3D CCD-18co AB vs 3D HDFN AB ns 

3D HDFn BA vs 3D HIC BA ns 3D HIC AB vs 3D HDFN AB ns 

  

Table 6.14: Significancy values for Methotrexate permeability in 2D Transwell based 

intestinal models - Individual significances calculated by One way ANOVA with Tukeys post-test 

analysis with 95% confidence rating. *** = P<0.0005, ** = P<0.005, * = P< 0.05. B-A and A-B 

permeability data sets were analysed for significance separately 

 

Table 6.15: Significancy values for Methotrexate permeability in 3D Alvetex® based intestinal 

models - Individual significances calculated by One way ANOVA with Tukeys post-test analysis 

with 95% confidence rating. *** = P<0.0005, ** = P<0.005, * = P< 0.05. B-A and A-B permeability 

data sets were analysed for significance separately 
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6.4.16 Efflux co-efficient values for 2D paracrine Transwell 

and 3D Alvetex methotrexate model transport. 

Figure 6.38 shows the efflux co-efficient transport dynamics of Methotrexate as assessed 

through the use of 2D paracrine Transwell and 3D Alvetex model systems. When 

considering the paracrine models alone, little change can be seen when compared to the 

control models with an average efflux co-efficient of around 1. As described previously 

this indicates that there is no bias in directional transport of material with approximately 

equal transport in both B-A and A-B directions. Comparison of this with data gained from 

3D transport systems paints a similar picture with, especially HDFn cultures showing no 

apparent directional bias. 3D CCD-18co and HIC models have a higher efflux coefficient 

of around 4 and 20 respectively, suggesting significant B-A directional bias. However, 

large data variation, especially in 3D HIC models may suggest that model integrity is to 

blame for some of the large transport variations seen here.  

Figure 6.38: Efflux co-efficient values of Methotrexate comparing controls with paracrine 

media and 3D Alvetex models – Data shows no bias toward B-A transport in all 2D paracrine 

conditions. 3D CCD-18co and HIC models appear to favour B-A transport. n=3 +SEM. N=3 

No significancy was observed between models 
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6.4.17 Lucifer yellow transport of 2D Transwell co-cultures 

and 3D Alvetex based intestinal models. 

Lucifer yellow is primarily utilised in industry as a marker of paracellular transport, and 

as such is a proxy for membrane integrity, similar to how TEER values determine a 

membranes viability for experimentation. Figure 6.40 shows the bidirectional transport 

of lucifer yellow tested across paracrine media cultured Caco-2 Transwell models. 

Control layers exhibit B-A (Figure 6.40 A) Papp values of approximately 1x10-6 cms-1 

indicating that lucifer yellow is relatively poorly permeable across control membranes. 

Addition of CCD-18co paracrine media to the Caco-2 cultures results in a modest, non-

significant increase in the apparent permeability of Lucifer yellow. Both HIC and HDFn 

conditioned media showed a marked and significant decrease in membrane permeability 

compared to control levels with Papp values approximately half of those seen in untreated 

control samples.  Control and CCD-18co samples showed a bias towards transport in the 

B-A direction, with significantly reduced Papp values when lucifer yellow is tested A-B 

Paracellular 

Paracellular 

Figure 6.39: Schematic diagram of expected lucifer yellow transportation routes through 

both Transwell and Alvetex scaffold intestinal models – Lucifer yellow is a well-known and 

characterised compound generally utilised as a marker of paracellular permeability. No known 

active transport mechanisms are thought to influence lucifer yellow transport.  
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(Figure 6.40 B). In contrast, HIC and HDFn values were approximately equal bi-

directionally with no obvious bias. 

 

Lucifer Yellow membrane integrity analysis of 3D models (Figure 6.41) shows a different 

phenotype to their 2D counterparts. In all instances (CCD-18co, HIC and HDFn) 3D 

models showed a moderate increase in  B-A permeability to Lucifer yellow with Papp 

values approximately double those of the control (Figure 6.41 A). Interestingly, the B-A 

bias seen in CCD-18co paracrine treated 2D models is lost when cultures are grown in 

3D. Indeed, all 3D models exhibited approximately equal bi-directional transport, 

consistent across all 3D models types. A-B values were significantly increased in all 3D 

conditioned compared to Caco-2 Transwell based controls (Figure 6.41 B). The lucifer 

yellow values gained for 3D HIC models (along with a similar TEER values) are not 

significantly different from the other 3D systems with improved histologically analysed 

structural morphology. As such this lends weight to the idea that whilst HIC cells do not 

histologically demonstrate the same in vivo correlation as other models created here, they 

do in fact create a confluent layer of Caco-2 cells apically to the fibroblast culture surface, 

justifying their continued use on this study.  
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Figure 6.40: Lucifer yellow membrane integrity analysis of 2D paracrine Caco-2 co-cultures 

– A) B-A and B) A-B directional transport of Lucifer Yellow is utilised as a marker of membrane 

integrity, with lower Papp values suggesting a more tightly bound and impermeable membrane to 

passive compound transport. n=3-11 +SEM N= a minimum of three independent experiments. 

Significany is noted in Table 6.16 
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Figure 6.41: Bi-directional transport of Lucifer Yellow shows significant increase in 

membrane permeability in 3D Alvetex based intestinal models compared to 2D Transwell 

alternatives – B-A and A-B transport of lucifer yellow analysed through 3D intestinal model 

constructs shows a marked increase in permeability compared to control layers.  n=3-7 +SEM. N= 

a minimum of three independent experiments. Significany is noted in Table 6.16 
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Caco-2 BA vs Caco-2/ CCD-18co BA ns Caco-2 AB vs Caco-2/ CCD-18co AB ns 

Caco-2 BA vs Caco-2/ HDFn BA ns Caco-2 AB vs Caco-2/ HDFn AB ns 

Caco-2 BA vs Caco-2/HIC BA ns Caco-2 AB vs Caco-2/ HIC AB ns 

Caco-2/ CCD-18co BA vs Caco-2/ 

HDFn BA 

ns Caco-2/ CCD-18co AB vs Caco-2/ 

HDFn AB 

ns 

Caco-2/ CCD-18co BA vs Caco-2/HIC 

BA 

ns Caco-2/ CCD-18co AB vs Caco-2/ HIC 

AB 

ns 

Caco-2/ HDFn BA vs Caco-2/HIC BA ns Caco-2/ HDFn AB vs Caco-2/ HIC AB ns 

 

 

Caco-2 BA vs 3D CCD-18co BA ns Caco-2 AB vs 3D CCD-18co AB *** 

Caco-2 BA vs 3D HDFn BA ns Caco-2 AB vs 3D HIC AB *** 

Caco-2 BA vs 3D HIC BA ns Caco-2 AB vs 3D HDFn AB *** 

3D CCD-18co BA vs 3D HDFn BA ns 3D CCD-18co AB vs 3D HIC AB ns 

3D CCD-18co BA vs 3D HIC BA ns 3D CCD-18co AB vs 3D HDFn AB ns 

3D HDFn BA vs 3D HIC BA ns 3D HIC AB vs 3D HDFn AB ns 

  

Table 6.16: Significancy values for Lucifer yellow permeability in 2D intestinal models - 

Individual significances calculated by One way ANOVA with Tukeys post-test analysis with 95% 

confidence rating. *** = P<0.0005, ** = P<0.005, * = P< 0.05. B-A and A-B permeability data sets 

were analysed for significance separately 

 

Table 6.17: Significancy values for Lucifer yellow permeability in 3D intestinal models - 

Individual significances calculated by One way ANOVA with Tukeys post-test analysis with 95% 

confidence rating. *** = P<0.0005, ** = P<0.005, * = P< 0.05. B-A and A-B permeability data sets 

were analysed for significance separately 
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6.4.18 Efflux co-efficient of lucifer yellow in 2D and 3D models  

Figure 6.42 shows the calculated efflux co-efficient of lucifer yellow permeability across 

2D Transwell Snapwell model layers, both control and condition media treated, in 

addition to 3D Alvetex models. Transwell Caco-2 control and CCD-18co treated layers 

show a significant trend toward a bias in the B-A direction of compound permeability. In 

essence, meaning that lucifer yellow in these models is more readily permeable through 

the B-A direction of travel then the converse A-B. Contrastingly, 2D HIC and HDFn 

paracrine treated models in addition to all 3D Alvetex models tested show an efflux co-

efficient of approximately 1. This suggests that there is no bias in permeability with 

compound movement approximately equal in any direction of travel.  

 

This differential efflux phenotype can be clearly seen in the original data (Figure 6.40 & 

41) whereby A-B directional transport is significantly less than the B-A counterparts.  

Figure 6.42: Efflux co-efficient of lucifer yellow analysis suggests Control and 2D CCD-

18co layers have a B-A directional bias – Efflux co-efficient analysis suggests directional 

bias in control and 2D CCD-18co treated layers. All other conditions indicate equal 

permeability in either direction. n=3-11 N=3 +SEM. No significancy was found between 

transport models 
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 Papp BA ± SEM x10-6 

 Caco-2 

control 

Caco-2 

literature 

Caco-2/ 

CCD-18co 

Caco-2/ 

HDFn 

Caco-2/ HIC 3D Caco-2/ 

CCD-18co 

3D Caco-2/ 

HDFn 

3D Caco-2/ 

HIC 

Intestine 

Tissue 

Rhodamine 123 0.82 ± 0.35/ 6.84 ± 2.48 0.96 ± 0.27  3.30 ± 1.2 0.29 ± 0.04 2.32 ± 0.24 1.19 ± 0.17  6.88 ± 2.90 1.8 – 3.6 

(Porcine)(269) 

Atenolol 0.31 ± 0.07 0.66 ± 0.26 0.70 ± 0.17 0.85 ± 0.02 2.18 ± 0.53  0.41 ± 0.18  8.67 ± 0.39 0.38 ± 0.12 11.5 ± 4.09 

(Rat Jejunum) 

(344) 

 

2.82 ± 0.65 

(Human)(345) 

Propranolol 13.12 ± 1.78 37.51 ± 16.1 14.62 ± 0.40 28.73 ± 8.69 17.03 ± 7.84 5.33 ± 1.49 14.95 ± 3.02 7.27 ± 2.75 6.01 ± 3.41 

(Porcine)(346) 

  

1.85–5.50 

(Porcine)(269) 

Lucifer Yellow 1.05 ± 0.34 2.58 ± 2.34 1.37 ± 0.34 0.60 ± 0.15 0.44 ± 0.03 2.05 ± 0.44 2.30 ± 0.17 2.30 ± 0.09 4.02 ± 2.20 

(Human)(345) 

Etoposide 0.05 ± 0.04 8.04 ± 1.55 2.25 ± 2.15 3.71 ± 0.16 1.47 ± 1.13 2.88 ± 0.71 13.88 ± 9.72 57.23 ± 6.33 1.13 ± 1.00 

(Rabbit) (69) 

101 ± 9 (Rat) 

(67) 

Methotrexate 0.18 ± 0.07 0.70 ± 0.50 0.61 ± 0.22 0.52 ± 0.03 0.77 ± 0.10 0.40 ± 0.32 0.89 ± 0.38 21.8 ± 10.11 Unknown 

Table 6.18: Comparative Papp values of models created in this study compared to values gained from the literature for both Caco-2 standards and intestinal 

tissues (Human and animal) – All model conditions generally show improvements over internal Caco-2 standards compared to Caco-2 values gained form the 

literature. Compared to human tissues HDFn 3D models shows the closest similarity of the different models when all test systems are compared.  
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6.5 Discussion 

6.5.1 Transport dynamics of model systems and the context for 

this chapter 

This final chapter is focussed on understanding the influence of fibroblasts of varying 

origin on the development and differentiation of the Caco-2 epithelium both in terms of 

the paracrine effects released (Transwell conditioned media experiments) and in the 

effects of direct co-culture (3D Alvetex® based models). The functional characteristics of 

the differing models were tested for their capabilities to transport a number of model drug 

compounds; namely, Rhodamine 123, Atenolol, Propranolol, Etoposide, Methotrexate 

and Lucifer yellow. These drugs were chosen specifically to assess the function of the 

models in differing ways be they passive absorption (Lucifer yellow, Atenolol and 

propranolol) (66,90,313) or actively transported (Rhodamine 123 – P-gp, Etoposide – 

MRP, Methotrexate – BCRP). Understanding the functional characteristics of fibroblast/ 

Myofibroblast conditioned models is key to understanding their relative importance in 

future research directions as tools for more advanced analysis of NCE compounds, in this 

instance for their pharmacokinetic properties. The relative transport characteristics of the 

tested models will be compared to human tissues through thorough examination of 

available literature. 

 

6.5.2 2D paracrine Transwell and 3D intestinal equivalents 

both show significantly decreased membrane resistance 

compared to conventionally cultured Caco-2 models. 

Initial investigations into the effects of 3D culture focused on the changing transepithelial 

electrical resistance of the complete model. Significant decreases in epithelial resistance 

were seen in 3D when compared to their 2D Snapwell Transwell counterparts whereby in 

2D the most significant decrease lowered TEER to approx. 500 Ohms.cm2 compared to  

approx. 50 Ohms.cm2 in 3D systems, a ten-fold difference and a level comparable to 

measurements in human intestinal tissues.  
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Understanding the likely causes for this significant decrease can be hypothesised as three 

fold.  

 

1. Unlike in the Snapwell formats whereby TEER analysis (Chapter 3) uses a 

standard EVOM-2 TEER device with chopstick electrodes (WPI, UK), a 

commonly used standard throughout the industry; Alvetex® models, due to their 

novel 96-well format were measured utilising an Ussing chamber as described in 

section 6.3.2.(347) Both systems rely on the same principle for the measurement 

of epithelial resistance however it cannot be completely ruled out that differences 

seen in the overall TEER values gained are due to differences in the equipment 

being utilised. Human tissue TEER is generally measured through an Ussing 

chamber device, potentially, explaining the similarity in measurement between 

models and tissues using this method. TEER measurements in the literature vary 

widely dependant on the lab culturing and measuring, with differences in 

equipment/ equipment operator along with variations in Caco-2 origin and 

passage generally thought to be the main contributors in this inconsistency.  

 

2. Absolute fibroblast numbers was not controlled between 2D paracrine and 3D 

models. The absolute number of cells/cm2 seeded into 3D models was far higher 

when compared to the average density of a 90% confluent 2D culture flask utilised 

for conditioned media creation. This could lead to an unbalance comparison 

between model systems with 2D paracrine Transwell models likely stimulated to 

a lesser extent than in 3D Alvetex®.  Additionally, due to the vast difference 

between Snapwell and 96-well Alvetex® formats different media volumes were 

necessarily added to each system, with 3.5ml added to Snapwell and 1.5ml added 

to Alvetex®. In essence this could result in either a dilution or concentration effect 

depending on the model being analysed. However, data in this thesis clearly shows 

that absolute seeded number in 3D does not directly correlate with cell numbers 

growing within the scaffold. Data from chapter 3 on the analysis of KGF levels 

between system types clearly shows how when normalised to DNA concentration, 

3D cultured cells appear to secrete far less KGF than their 2D counterparts.  
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3. 3D culture allows for direct contact between stromal and epithelial cells in 

addition to enhancing the paracrine secretome compared to 2D cultured cells. The 

enhanced secretome could have physiological effects on a number of ways such 

as: 1. Increasing the levels of small molecules already released in 2D, 2. Changing 

the ratios of small molecules produced initiating new pathways for differentiation, 

3. Producing new signalling molecules not seen in normal 2D conditions. Whilst 

the actual mechanism is not evidenced here, it is evident that one or a combination 

of many of these factors allow for enhanced differentiation of epithelial cells, in 

this case Caco-2, to a level more similar to the in vivo tissues. The physiologically 

relevant changes seen in 2D paracrine cultures lend evidence that changes in 

TEER within 3D constructs is more likely due to physiological differences in 

cellular phenotype rather than an artefact of differing culture system. 

 

Due to the differences in the format types between the models tested here the only way 

to reduce the uncertainty behind the mechanism for change would be to create a custom 

insert type able to culture both Transwell and Alvetex® systems in the same format. This 

could be achieved either by modifying Alvetex® to fit the Snapwell format or vice versa. 

Similar to Patient et al. (269) 

 

One of the main contributors to epithelial resistance is the expression and confluency of 

tight junctional complexes. (206)3D CCD-18co and HDFn histological analysis shows 

well defined stromal/ epithelial layers without Caco-2 penetration into the underlying 

mucosal compartment. HIC intestinal models show a far less organised structure with 

significant Caco-2 cellular invasion into the underlying mucosae. That isn’t to say 

however that a confluent layer doesn’t exist on the surface of the HIC model, just that 

without structure one would expect function to lag. Changes in Caco-2 surface 

consistency cannot be ruled out as a potential contributor to the decreases in TEER  

observed in 3D models. Indeed, the surface topography of Alvetex Scaffold® can be 

highly irregular due to the largely uncontrolled arrangement of void spaces in the 

material. Often with areas of significant Caco-2 invasion simply due to Alvetex 

topography. However, SEM surface topography, histological analysis or immunostaining 

characterisation of paracrine and 3D models does not appear to show any consistent 

inconsistencies in Caco-2 epithelial development.  
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Occludin (a protein component of the tight junctional complex and analogous with tight 

junction expression) was utilised as a marker for tight junction expression and 

localisation. All models tested expressed physiological levels of Occludin when 

immunostained without any noticeable differences in staining intensity. More advanced 

staining techniques of the epithelial layer as seen in chapter 5 through model clearing and 

light sheet analysis clearly show a contiguous layer of epithelial cell staining across the 

surface of the 3D model. More quantitative methods of Occludin measurement were 

attempted utilising qPCR. Unfortunately, due to the multicellular nature of the 3D 

models, accurate quantification of relative protein expression cannot be made between 

different formats due to the dilution effect of fibroblast mRNA. However, analysis of the 

effects of paracrine media on protein expression showed no significant differences 

between Controls, CCD-18co, HIC or HDFn. HIC conditions did show a strong, largely 

decreased trend compared to controls suggesting paracrine HIC influences may have 

effects on tight junction formation. This hypothesis is unsupported by any significant 

evidence within this thesis however.  

 

One alternative methodology for the decreases in TEER seen here without any apparent 

corresponding disruption to tight junctional formation could be the increase in Claudin 2 

discussed in chapter 3. Recent evidence has shown that Claudin-2 expression and 

resultant use within tight junction complexes is increased through the paracrine effects of 

KGF, a significant component of CCD-18co paracrine media samples.(209,210,221) 

Claudin-2 has been shown to form “leakier” tight junctions through the creation of small 

pore structures in the junction complex allowing the movement of ions and other very 

small compounds through the epithelial layer. Unabridged movement of ions in particular 

across the membrane could provide one potential reasonable explanation as to why TEER 

levels would be decreased in these samples as ion movement would naturally result in 

decreased resistances. As mentioned earlier however, only CCD-18co conditioned media 

samples showed significant levels of KGF, other fibroblast conditions must therefore 

either decrease TEER through a different mechanism or other small molecule 

combinations could work to have the same physiological effects. 
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6.5.3 Analysis of the functional capabilities of epithelial 

intestinal equivalents through the passive paracellular 

transport assessment of model drug compounds.  

It is well known that Caco-2 models significantly underestimate the absorption rate of 

paracellularly transported compounds. (348) This study utilises 3 drugs whose main 

absorption route is through the paracellular methodology, namely; Lucifer yellow, 

Atenolol (Low general permeability) and Propranolol (High general permeability).  

 

Lucifer Yellow is a classically utilised molecule used to test barrier integrity within Caco-

2 assays, and, along with TEER is the gold standard for determining model viability 

before more complex uses. (314,349–351) Figure 6.40, 6.41 and 6.42 within this chapter 

look at the relative Lucifer yellow permeability between both paracrine and 3D models 

compared to controls. Generally speaking, Lucifer yellow Papp was shown to marginally 

decrease in HIC and HDFn whilst not changing significantly in CCD-18co paracrine 

cultures. 3D models on the other hand did see a significant increase in Lucifer yellow 

Papp suggesting disruption to the epithelial layer compared to Transwell format models. 

However, the levels to which the 3D models Lucifer Yellow Papp increased to was not 

significant enough to suggest complete failure of the epithelial membrane. In fact, Culot 

et al note that a Lucifer Yellow Papp 17x10-6 is the point at which membrane breakage is 

likely which is far above the levels seen in even the most permeable of the models tested 

in this study. (352) In reality, acceptable Papp values for lucifer yellow in industry are far 

below this outlying level and generally range between 0.5 and 2 x10-6 cms-1 dependant 

on the labs internally chosen cut off points. As such there were no concerns regarding the 

Papp values of the 3D models in particular which, whilst higher than Caco-2 Transwell 

controls, were not excessively high enough to suggest membrane malformation.  

 

Atenolol transport was significantly increased in paracrine 2D models up to four fold that 

of conventionally cultured control layers in Caco-2/ HIC conditioned media samples. 

Interestingly, some correlations can be drawn between the origin of the fibroblast lineage 

utilised in each condition and the relative changes on membrane permeability to Atenolol. 

HIC cells as mentioned previously were isolated from human small intestinal duodenum 
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samples received from Biopta, UK, for use in this study. Tissues were cut into small 

pieces and left in culture until cells began to grow out of the samples. These outgrowths 

were characterised and utilised in this study with the designation of HIC. As such these 

are technically the most in vivo relevant cells. Dahlgren et al conducted a study on the 

transport kinetics of Atenolol, alongside Metoprolol and Ketoprofen, within human test 

subject by measurement of drug plasma concentration over time. (353) Drugs were added 

to variable parts of the intestine through a intraluminal, tube-capsule technique. They 

found that small intestinal uptake of atenolol was far higher than colonic uptake by a 

factor of approximately ten-fold. Caco-2 cells are colonic in origin and as such should 

phenotypically be relatively impermeable to Atenolol, as is shown in the literature. 

(314,350,354–357) CCD-18co cells are also colonic in origin so physiologically 

shouldn’t increase Atenolol permeability significantly over controls when considering the 

physiological context. Having said that however, a small increase is seen in the CCD-

18co and HDFn conditioned media samples, perhaps suggesting that epithelial 

development is enhanced through conditioned media over controls levels regardless of 

the physiological context of the fibroblasts used, improving model sensitivity. Most 

interesting is the large increase in permeability when cultured with HIC conditioned 

media.  Small intestinal cells therefore can be seen to cause physiologically relevant 

changes to epithelial cells of colonic origin through the indirect effects of paracrine 

secretion, in isolation from any other factors.  

 

Analysis of the 3D model’s Atenolol transport is less easily reasoned in a physiological 

context. The beneficial increase on transport seen in paracrine cultures is lost in both 

CCD-18co and HIC 3D models with no significant changes in transport compared to 

controls. As mentioned previously it could be hypothesised that this decrease in 3D 

function is more to do with the absolute number of cells present within the 3D scaffold 

than a physiological effect of cells cultured in 3D. Whilst efforts were made to seed the 

same density of Caco-2 cells into 3D models as would exist in the same representative 

area of 2D cultures, the changing cellular metabolism and proliferative capacity of cells 

in 3D made this difficult to achieve over long culture periods.  3D HDFn models show a 

large increase compared to controls which doesn’t appear to be supported with literature 

evidence. Potentially, models were “leaky” as a consequence of model structure however 

HDFn models were routinely observed to form structurally capable models with little to 
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no Caco-2 invasion into the underlying stroma. Additionally, 3 independent 

measurements provide closely matching values with only a small amount of variability. 

One would expect if increased transport was due to the improper model structural 

characteristics then permeability values would be far larger and more variable. Indeed, if 

model structural consistency were an issue then 3D HIC models would be the more likely 

candidate for excessive permeability due to its inconsistent and poor structural 

morphology between models. To my knowledge, study of the effects of human dermal 

fibroblast cells on the morphology and function of Caco-2 cells has not been attempted 

before. Understanding the exact mechanisms and secretome of HDFn cells is beyond the 

scope of this work initially and will be revisited in the future direction of this project.  

 

The final passively transported compound utilised in this study is Propranolol. Generally, 

Propranolol is well known for being readily absorbed by the Caco-2 models and the 

human intestine. (358,359)Permeability of Propranolol was variable between culture 

conditions but generally high as expected and comparable for the most part to Caco-2 

control transport. Transwell paracrine models in each instance are relatively more 

permeable than their 3D culture counterparts, with some of the 3D cultures (CCD-18co 

and HIC) being lower than the Caco-2 Transwell controls. HDFn cultures, as seen in 

Atenolol transport quantification show the highest increase in membrane permeability 

compared to controls in Transwell paracrine models and comparatively higher between 

3D models. As such this could lend evidence that some unknown mechanism (unlikely to 

be simple tight junction dysfunction for reasons mentioned above) is inducing HDFn 

paracrine Caco-2 layers to increase passive permeability. Propranolol is known for being 

a highly lipophilic (360) compound and as such some levels of compound is likely move 

into and remain within cellular cytoplasmic spaces. As such, one explanation for the 

decreases seen in 3D cultures could simply be due to drug retention within the model 

itself rather than a physiologically relevant change in membrane integrity or function. 

Indeed, this is a known issue when measuring Propranolol transport in tissues whereby 

drug sequestration is markedly more pronounced than those seen here due to the sheer 

number and volume of cellular matter within an active tissue. (269) Considering that the 

comparative permeability pattern between Transwell models and their 3D counterparts is 

almost identical in each case albeit lower in 3D models, it is more likely that drug 

sequestration is responsible for the decrease observed. 
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6.5.4 Actively transported compound analysis 

Active transport of compounds was modelled in this study through the transport 

mechanisms of Rhodamine 123, Etoposide and Methotrexate. Nominally, these model 

compounds were chosen to study the active transport of MDR1/ P-gp, MRP1/2 and 

BCRP. However, as mentioned previously, analysis of the function of each drug 

transporter protein in isolation of the others is difficult, if not impossible, due to the 

significant levels of overlap which exist between the different transporter substrate 

specificities. For example, where Etoposide is used here to measure MRP family activity, 

it is also reasonably well known as a substrate of MDR1/ P-gp.  

 

Rhodamine 123 mediated functional analysis of MDR1/ P-gp and the subsequent use of 

Verapamil Hydrochloride, a competitive inhibitor of MDR1/ P-gp activity can tell a lot 

about MDR1/ P-gp activity in addition to the levels of overlapping transporter function 

seen within the models. (361) For example, Caco-2 control layers were shown to be  

significantly less permeable B-A to Rhodamine 123 after treatment with Verapamil 

Hydrochloride, as such suggesting that the primary transport mechanism of Rhodamine 

123 in control epithelial models is through MDR1/ P-gp. The same is true for CCD-18co 

and HDFn paracrine treated layers which show a similar pattern (Figure 6.12). 

Contrastingly, HIC paracrine model Papps are shown to be less effected by the addition 

of Verapamil Hydrochloride with no significant transport suppression in the case of HIC 

paracrine and 3D HDFn, as such suggesting Rhodamine 123 transport through some other 

mechanism, most probably, as mentioned previously, an overlapping ABC transporter 

protein such as BCRP or MRP1/2. Alternatively, evidence in the literature shows how 

Verapamil can have effects on the tight junction assembly within the Caco-2 epithelium, 

potentially increasing rates of paracellular permeability to hydrophilic compounds. 

(362,363) Sakai et al were able to show that the concentration dependant effects of 

Verapamil were able to increase the membrane permeability to FD-4 (a commonly 

utilised passive paracellular compound similar to lucifer yellow) approximately 4-6 fold. 

This could explain some of the anomalous instances in this study whereby application of 

Verapamil either increased or did no significantly change the membrane permeability to 

Rhodamine 123 B-A, such as in KGF treated Caco-2 Transwell layers and 3D 
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bioengineered models whereby permeability increased and stayed the same respectively 

in Verapamil treated assays.  Indeed, it is the models with the lowest measured TEER 

values which appear to be most affected by this potential mechanism further supporting 

evidence that, in some instances, Rhodamine 123 transport is primarily through a 

paracellular mechanism rather than MDR1/P-gp mediated.  

 

MDR1/ P-gp is thought to be underrepresented in some Caco-2 epithelial models with 

work in the past by Shirasaka et al focussed on increasing MDR1 mediated activity of 

Caco-2 membranes, They showed the MDR1/ P-gp expression can be induced by co-

culture of cells with the drug Vinblastine, normally used as a substrate for MDR1/ P-gp 

efflux measurements. (364). Additionally, other works have shown that MDR1/ P-gp 

expression rates can be effected by variables such as Caco-2 passage and culture time 

with increasing both correlating with increased MDR1/ P-gp expression. (365) Work 

undertaken in this study has highlighted that HDFn paracrine and all 3D conditions result 

in significant increase in Rhodamine 123 transport when compared to controls, 

suggesting, at least partially, an increase in MDR1/ P-gp activity.  

 

Etoposide and Methotrexate transport (MRP1/2 and BCRP respectively) both show 

improvements in transport capabilities when Caco-2 layers are cultured with paracrine 

media from CCD-18co, HDFn and HIC cells. These increases are significant compared 

to control Caco-2 layers yet small compared to the changes seen in 3D whereby, similar 

to other conditions, HDFn and HIC 3D models have the greatest increase in permeability. 

There is some evidence to  suggest that BCRP expression in untreated Caco-2 layers is 

expressed to a lesser level than found in human intestine. (28) Madden et al showed that 

the 3D culture of primary intestinal epithelial cells increased BCRP expression compared 

to Caco-2 controls, similar to that seen here. 
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Figure 6.43: Summary of the complete analysis of 2D Caco-2 Transwell models with the model compounds tested in this study  – Blank lines = No change from control, Thin 

green line = Small increase in permeability compared to control, Thick green line = Large increase in permeability compared to control, Thin red line = Small decrease in permeability 

compared to control, Thick red line = Large decrease in permeability compared to control. Generally, in the B-A direction all models tested show some degree of increased functional 

permeability compared to control layers. Only HIC treated models showed decreases in permeability with regards to both Lucifer yellow and Rhodamine 123. In the A-B (absorptive) 

direction less change was seen overall with only etoposide shown to consistently increase in permeability. A) B-A CCD-18co vs control, B) B-A HDFn vs Control, C) B-A HIC vs 

Control, D) A-B CCD-18co vs Control, E) A-B HDFn vs Control, F) A-B HIC vs Control. 
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A-B 3D CCD-18co vs Control 
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B-A 3D HDFn vs Control 
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A-B 3D HDFn vs Control 
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B-A 3D HIC vs Control 
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A-B 3D HIC vs Control 
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Figure 6.44: Summary of the complete analysis of 3D bioengineered models with the model compounds tested in this study  – Blank lines = No change from control, 

Thin green line = Small increase in permeability compared to control, Thick green line = Large increase in permeability compared to control, Thin red line = Small decrease 

in permeability compared to control, Thick red line = Large decrease in permeability compared to control. Generally, in the B-A direction all models tested show some 

degree of increased functional permeability compared to control layers. Only HIC treated models showed decreases in permeability with regards to both Lucifer yellow 

and Rhodamine 123. A) 3D B-A CCD-18co vs control, B) 3D B-A HDFn vs Control, C) 3D B-A HIC vs Control, D) 3D A-B CCD-18co vs Control, E) 3D A-B HDFn vs 

Control, F) 3D A-B HIC vs Control 
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6.6 Conclusion 

It is an important observation to note that in every single instance within this study, Caco-

2 transport has been observably lower than the average reported values from the literature. 

(68,90,313,320,333) In some instances the difference is small such as Lucifer Yellow and 

Atenolol which, whilst lower, fall within the assays range of error of the reported values. 

Others such as Etoposide, Rhodamine 123 and Propranolol fall well below reported 

control values. Encouragingly, often one or more of the co-culture conditions 

significantly improved the Caco-2 functional phenotype to be more akin to that seen in 

the literature. In this regard, both co-culture Caco-2 and 3D mucosal models result in a 

significantly more functionally representative epithelial equivalent compared to the 

controls in this study. When compared to average values gained from the literature the 

clear cut benefits to using advanced culture methods is significantly less obvious. The 

B-A Literature tissue values vs Control 
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Figure 6.45: Reported human and animal tissue values compared to Caco-2 Transwell controls  

– Blank lines = No change from control, Thin green line = Small increase in permeability compared to 

control, Thick green line = Large increase in permeability compared to control, Thin red line = Small 

decrease in permeability compared to control, Thick red line = Large decrease in permeability 

compared to control. Comparisons of control models to values gained from the literature shows that 

Caco-2 Transwell systems generally underestimate B-A transfer of model compounds when compared 

to human and animal intestinal tissues. Decreased Propranolol transport in tissues compared to 

Transwell models is most likely due to its highly lipophilic nature resulting in high levels of drug 

acquiescence by cells and ECM. Methotrexate cannot be compared as no human tissue transport values 

can be found within the literature 
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variation seen in the literature reported values and here speaks volumes as to the 

suitability of Caco-2 cells as an appropriate tool for NCE development. The cells utilised 

in this study were obtained from a reputable source and maintained through 

manufacturers specifications throughout the culture process.  Even still, the phenotypic 

characteristics of these cells were significantly different from other reported values. This 

really highlights the non-homogenous nature of Caco-2 cells throughout the industry with 

often seemingly inconsequential details in the operation and maintenance of these cells 

having large effects on cellular phenotype both in individual experiments and in working 

culture stocks. 

 

Using the data available at the completion of this study, the “best” model with increased 

permeability phenotypes compared to both the mean of the internal controls and the mean 

of the literature reported values is the 3D Caco-2/ HDFn  model of the intestinal 

epithelium. This was simply calculated as the average of the percentage increase in 

permeability compared to control values, with average values over 100 indicating a 

general increase in permeability and under 100  generally less permeable. Obviously, this 

is a very rough technical analysis and doesn’t take into account data variability or even 

whether an increase in permeability is even a physiologically relevant change.  In reality, 

each model has its own strengths. For example,  the largest increase in Rhodamine 

permeability was seen in HDFn paracrine Transwell cultures whereas 3D HDFn models 

were most permeable to Atenolol. This data highlights in many respects how a singular 

test is often insufficient to provide a relevant answer in all conditions. A move to more 

tailored assays relying on each systems strengths could improve the in vivo reliability of 

NCE research.
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7. General discussion, project conclusions and future directions 

7.1 Introduction 

In their most general basis, the aims of this project were two-fold. First, to look at the 

effects of simple modifications to current Transwell models to achieve physiologically 

relevant changes in Caco-2 epithelial layers assessed by functional pharmacokinetic 

analysis of drug permeability. These simple modifications involved the paracrine co-

culture of Caco-2 Snapwell models with conditioned media from a number of fibroblast 

cell lines of varying origin, and in direct co-culture experiments with the “goblet cell like” 

epithelial cell line HT29-MTX. The purpose of these experiments were to understand the 

importance of a more complete, complex cellular environments on the development of 

epithelial layers, both in terms of understanding the processes within the models created 

in this study but more generally as a tool to understand epithelial-mucosal interactions in 

vivo.   

 

Second, to take the understanding formed from the simple co-culture experiments and 

apply the findings to the creation of a 3D tissue equivalent utilising Alvetex Scaffold ® 

and the cell lines studied in the previous aim, namely Caco-2, CCD-18co, HDFn and HIC. 

These 3D models allowed the study of the effects of direct epithelial-fibroblast co-culture 

on the pharmacologically relevant drug permeability functions of the resultant models. 

Additionally, 3D models allow for a study on the effects of substrate morphology and 

cellular microenvironment on the development of the structural elements of Caco-2 

epithelial cells through analysis of cell morphology and junctional marker composition.  

 

The hypothesis was that the Transwell paracrine and 3D co-culture of Caco-2 cells in a 

more in vivo “like” environment would result in a 3D construct more able to model the 

pharmacokinetic interactions of model drug compounds in vitro. This was done in an 

effort to improve the standard Caco-2 assay currently utilised in industry whilst 

maintaining as many of the beneficial characteristics of said model (mass producibility, 

ease of culture, low cost materials and in vivo relevancy). 
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7.2 Understanding the needs for an improved in vitro model of 

the intestinal epithelium 

Billions of  dollars per year are spent on the development of new drug compounds, many 

of which are optimised and tested on cellular models in vitro of in vivo tissues. (366–370)  

These simple models of intestinal tissues, whilst not perfect, are responsible for the 

validation of many of the commonly used drugs taken by many people on a daily basis. 

Through improved understanding of the epithelial interactions by examining the effects 

of cellular cross talk, either between the indirect effects of underlying, supportive 

fibroblast populations or through direct co-culture of epithelial cells with said fibroblasts 

or other components of the intestinal epithelium; this study was able to mimic and 

understand the function of the in vivo intestinal layer. Understanding of the principle 

biology behind the models being developed has powerful and wide-ranging consequences 

not only in the production, validation and the reduction of costs associated with NCE 

development but also as a tool for further research into areas such as; Intestinal disease 

modelling (371) and mechanism understanding, bacterial-epithelial interactions, (372) 

development biology, nutrition (373) etc. A sufficiently advanced model is 

indistinguishable from in vivo tissue  and as such could be utilised for all the same 

applications.  

 

7.3 Understanding the paracrine microenvironment is key to 

developing systems with improved in vivo mimicry. 

The first chapter of this thesis focussed on three main points. 1. The characterisation of 

the fibroblasts used within this study through histological and immunological staining 

techniques. 2. Creation of Caco-2 epithelial models in the paracrine media of each 

fibroblast cell type. Characteristics such as TEER along with immunological staining of 

key proteins . 3. Understanding the effects of KGF on the development of the Caco-2 

epithelial layer and comparison to the effects of conditioned media samples including 

quantification of KGF levels in conditioned media. 
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All fibroblast cell lines tested were observed in a classic spindle like formation. 

Additional analysis by immunological staining techniques showed cells to be Vimentin 

positive, αSMA positive (to a large extent with some mixed populations observed) and 

Desmin negative, together suggesting fibroblast cells of a myofibroblast origin. Similar 

in phenotype to intestinal sub-epithelial myofibroblast (ISEMF) populations. The 

discussion in section 3.5.2 highlighted the importance of good cellular characterisation 

before the commencement of work with many cell types often miss-identified or used on 

faith that past observation within the literature were correct. There are a number of 

phenotypically similar cell types within the sub-epithelial intestinal compartment with 

mostly overlapping but often distinct niche functions.(185) Pericytes are one such cell 

type which can be easily mixed with myofibroblast cells. Indeed, pericytes are thought to 

be potentially multipotent in the same way as MSC cells, and as such are potential parent 

cells to myofibroblast lineages.(374)  Pericytes absence was confirmed by the absence of 

Desmin staining. However, this in itself is a fairly poor way to confirm pericyte absence 

from a culture. More specific pericyte markers such as PDGF-B/PDGFRβ or Neural glial 

antigen 2 may be more suited for complete confirmation of absence from a culture. (183) 

 

Conditioned media gained from these fibroblast populations was applied to the standard 

Caco-2 model in an attempt to understand the physiological changes that could be induced 

by paracrine released small molecules. Significant changes could be observed with 

improvements in Caco-2 structure from a squamous to cuboidal cellular morphology.  

Analysis of TEER of the different model systems showed, as expected, a heightened 

TEER compared to reported intestinal tissue values gained from the literature. However, 

highly significant decreases of roughly 75% were observed in CCD-18co and HDFn 

paracrine medias with HIC models showing a more limited, but still significant, decrease. 

Decreases in TEER could be postulated to be due to changes in tight junction morphology 

with lower TEER values suggesting either a dysregulation of junction formation or 

polarity. However, immunostaining of the protein Occludin, a member of the tight 

junction complex, showed no significant changes in tight junction regularity between the 

models. 

 

qPCR analysis of the relative expression rates of Occludin mRNA between control, CCD-

18co and HDFn treated layers showed no significant differences between mRNA 
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expression, further confirming an unchanged tight junction phenotype between model 

conditions. Occludin mRNA levels however, were shown to decrease in HIC conditioned 

media models.  On the surface this would appear to be contradictory, with the two most 

significant decreases in TEER belonging to conditions which showed no deviation in 

relative Occludin expression whereas HIC models which do show a decrease in Occludin, 

only showed a small decrease in overall TEER.  Occludin however is only a single 

component of the tight junctional complex. Analysis of it in isolation of expression of 

other junctional components cannot be reliably used as a definitive test for tight junctional 

morphology. As was discussed in chapter 3, other proteins such as claudins are able to 

modulate the tight junction in terms of function without changing the overall expression 

rates of the junctional complex as a whole. Indeed, Claudin 2 expression is shown in the 

literature to be able to increase tight junctional permeability to ions and very small 

molecules without changing the overall integrity of the epithelial monolayer. (227) 

Analysis of Claudin 2 expression by qPCR showed a small increase in CCD-18co and 

HDFn conditions with a decrease in HIC models, similar to that seen in Occludin analysis. 

It is clear that there are at least two methods in which tight junctions are being modulated 

between the different conditions, which, if nothing else works to highlight the complex 

interactions between cells in the epithelium, with often simple looking processes on the 

surface becoming highly complex on closer analysis. This is a theme that is seen 

throughout this work, especially when discussing transporter mediated function.  

 

qPCR  analysis of functional transporter proteins such as OATP-B, BCRP and MDR1 

show a range of changes in treated CCD-18co, HDFn and HIC conditioned media 

samples. MDR1 or p-gp is a protein well known to be under expressed in Caco-2  

compared to intestinal tissues.  Interestingly, treatment of Caco-2 models with CCD-18co 

conditioned media resulted in a decrease in the levels of MDR1 compared to Caco-2 

controls. HDFn models on the other hand showed a significant increase, potentially to 

more physiological levels. Therefore, paracrine constituents of the HDFn conditioned 

media must be having physiological effects on the development of the Caco-2 model. 

mRNA qPCR relative expression however is not always the same as relative protein 

expression and can be influenced in a number of ways which will not affect he functional 

phenotype of the models. MDR1 expression is a good example of this when analysing the 

functional transport rates of Rhodamine 123, a specific MDR1/ P-gp substrate. Whilst 
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mRNA saw a significant decrease in relative expression, functionally, no changes could 

be seen in membrane transport function in CCD-18co treated conditions. Deregulation 

between mRNA levels and protein expression can be influenced by a number of factors 

such as; protein turnover rates, protein function (e.g. secreted proteins will only be 

translated when required, cell cycle proteins will only be used at certain points of cell 

cycle etc) and post-transcriptional regulation rates. This was shown in the study by 

Koussounadis et al in their study of mRNA- protein dysregulation, which, although their 

conclusion was that changes in mRNA generally are physiologically relevant, there are 

many exceptions which suggest protein quantification should be utilised to confirm 

mRNA findings. This study was not able to fully characterise protein expression between 

the different models so qPCR analysis should indicate physiologically deferent changes 

it cannot be relied upon entirely to explain changes in models functional phenotype.  

 

Initially it was hypothesised that KGF may be the potential paracrine agent responsible 

for the changes between 2D and 3D models. Indeed, initial investigations into the effects 

of KGF on the development of Caco-2 layers on Transwell showed promising results in 

regards to TEER values, with significant dose dependant decreases seen in models treated 

with 5 and 25 ng/ml of KGF. Interestingly, TEER levels after treatment were very similar 

to those seen in CCD-18co and HDFn treated cultures with an average TEER value of 

around 500 ohms, down from over 3000 ohms in control samples.  

 

Histological analysis of KGF treated models shows comparable promising changes, with 

improved Caco-2 organisation and structural morphology similar to those seen in 

conditioned media experiments.  Immunostaining of KGF treated layers showed no 

obvious differences between differences in protein expression between KGF 

concentrations albeit a seemingly dose dependant increase in Villin staining, perhaps 

suggesting enhanced differentiation over control models with increased development of 

apical brush border microvilli. 

 

Occludin staining, utilised as before as a marker of tight junction formation, showed no 

obvious changes in expression between treated samples. Again suggesting changes in 

TEER values were due to some other mechanism than simple tight junction non-

formation or disorganisation. A review of the literature suggests that KGF may also have 
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a role in the modulation of Claudin 2, another component of the tight junction complex, 

with upregulation seen in KGF treated cells. Claudin 2 is implicated, as discussed 

previously, in  a morphological change in tight junction structure, allowing an increase in 

the passive movement of ions and small compounds when compared to other tight 

junction formulations. This is achieved without significant effects in the rate of tight 

junction formation or organisation on a macro-cellular basis.  

 

ELISA analysis of conditioned media samples however showed that only CCD-18co cells 

secreted KGF at any significant rate, with both HDFn and HIC cells secreting 

significantly lower KGF levels, barely above the minimum assay detection range. HDFn 

conditioned media showed many of the same phenotypical effects on Caco-2 structure 

and function as was seen in CCD-18co conditioned media such as decreased TEER and 

changes to structural and functional morphology. The logical conclusion to this then is 

that HDFn conditioned media must therefore bring about these similar phenotypes 

through a different functional mechanism. This highlights the complexity of both 

epithelial differentiation and the likely composition of paracrine conditioned media. 

Another possibility is that the major structural and functional changes seen in both HDFn 

and CCD-18co conditioned medias occur thought the same mechanism, just that that 

mechanism is not mediated by KGF and that the effects of KGF on Caco-2 cells layers, 

whilst incurring similar structural changes to Caco-2 cells, is entirely co-incidental.  

Piecing together the exact composition of conditioned media is difficult without any 

reasonable ways to quickly screen a secretome that don’t involve multiple, expensive 

ELISA based kits. One potential route would be to look at the genome level expression 

analysis of each cell type in the hope to identify likely upregulated targets. Even then due 

to the multifaceted ways that secreted compounds interact with one another,  

understanding the significance of each secreted molecule on the development of the 

epithelial membrane is difficult, if not impossible, through analysis of each component in 

isolation of the others.  

 

It is clear that myofibroblasts have significant effects on both the development of Caco-

2 epithelial cells and in vivo. Placing work achieved here into context with the literature 

is more difficult than would appear on the surface with some evidence showing enhanced 
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cellular phenotypes  (375–377) in a range of tissues with others stating either no change 

or a negative effect on cellular phenotype (162) 

 

In terms of suitability for use in an industrial, pharmaceutical setting, it is extremely 

important that cellular models vary between experiments as little as reasonably possible.  

Future work in this area, specifically in that associated with myofibroblast effects on 

epithelial development, should focus on the effects of the paracrine secretome on 

epithelial differentiation. The use of paracrine media to induce physiologically relevant 

changes in Caco-2 function and morphology is both a powerful tool to demonstrate the 

effects of secreted factors, and a poor method for use in industry due to the major 

deviations in the secretome of cells dependant on origin, age and disease phenotypes. 

Research should work towards both higher level regulation of the Caco-2 cell model (e.g. 

validation and use of specific cell banks, reducing inter-lab variability) and in the 

development of defined medias for the enhanced differentiation of Caco-2 cells to create 

a more physiologically relevant model systems. There is a growing volume of work which 

is focussing more on the myofibroblast contribution to cellular phenotypes in models 

however there is still some distance to go before mastery of myofibroblast secretome. 

Work focussing on the exact composition of which would be most valuable. 

 

7.4 Stromal epithelial interactions result in loss of function of 

HT29-MTX cells when co-cultured in vitro. 

The second results chapter of this thesis focussed on the potential of adding HT29-MTX 

cells into the Caco-2 model epithelium. This method of modifying Caco-2 membranes is 

not novel by itself. However, through the addition of CCD-18co paracrine media the study 

examined the effects of myofibroblast influence on the goblet cell phenotype. This work 

was seen as a preliminary step towards addition of HT29-MTX cells into the 3D mucosal 

model, the optimisation of which was ongoing at the same time as this work.  

Preliminary investigations into the effects of CCD-18co conditioned media on HT29-

MTX cells showed an unfortunate change in the structural and functional phenotype to a 

significantly less morphologically “goblet-like” cell. This is potentially not unexpected 

given HT29-MTX parental cell line of HT29, an epithelial cell with some mucous 
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production capabilities. Unfortunately, work on the co-culture of both HT29-MTX and 

CCD-18co cells within the literature is sparse. Pereira et al to my knowledge are the only 

people to attempt creating a 3D model with Caco-2, HT29-MTX and CCD-18co. (162) 

They created their model by culturing CCD-18co cells within a matrigel matrix atop of a 

Transwell insert. Epithelial cells were then culture on the top of this CCD-18co/ Matrigel 

scaffold to create the mature model. Analysis of TEER values of the models and Caco-2 

Transwell controls did not show the same change membrane resistance as was observed 

in this study. However, careful review of the images provided within their paper it is clear 

to see how relatively few CCD-18co cells are present within the matrigel scaffold. Indeed, 

it was observed in this study that CCD-18co cells when grown in 3D significantly reduced 

the levels of KGF secretion overall. This suggest that whilst the observations do not match 

entirely, the differences could be more due to the system used. Conditioned media used 

by was created by a confluent layer of 2D CCD-18co cells and as such, concentrations of 

small molecules within the culture models, based on ELISA date gained in this study, are 

likely to be higher than sparsely 3D cultured CCD-18co cells and could explain the 

difference in overall phenotype.  

 

Models with HT29-MTX cells added were characterised through qPCR relative 

expression of key proteins of interest as well as being functionally assessed for 

Rhodamine 123 permeability. qPCR of MDR1 was essentially absent in HT29-MTX 

layers as would be expected from a cell with little enterocyte function. Whereas 

Rhodamine 123 transport in HT29-MTX cell layers was reduced compared to Caco-2 

controls, however, not to the extent that would be expected. It was hypothesised that the 

decreased epithelial resistance observed in HT29-MTX models compared to controls 

would naturally correlate with a “leaky” epithelium, as such accounting for higher than 

expected Rhodamine 123 permeability. Nevertheless, CCD-18co treatment of HT29-

MTX cell layer did not significantly decrease Rhodamine 123 permeability with 

increased TEER. However, in this instance Rhodamine 123 permeability could be 

influenced by the change in cellular phenotype to one more structurally reminiscent of 

enterocyte lineages. Indeed, if it is assumed that the parental HT29 lineage phenotype is 

restored upon co-culture with CCD-18co, some small level of MDR1/ P-gp activity was 

to be expected. (378)  Due to the uncertain changes in phenotype is was decided not to 

optimise HT29-MTX inclusion into the Alvetex 3D model and as such were omitted from 
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further study.  Further experimentation into the nature of the change in structural and 

functional phenotype of HT29-MTX cells would be required before they could be utilised 

in a regulated manner where model consistency is important.  qvv analysis of lineage 

specific markers such as ATOH1 (379,380), HES1 (379), KLF4(381) or SPDEF (380) 

could potentially shine some light onto the nature of the structural change. 

7.5 3D fibroblast culture allows for the development of a 

complex ECM microenvironment within cell substrates. 

Chapter three focussed on the optimisation of the technology of the 3D model, initially 

through the culture of the cells within the Alvetex scaffold and ultimately in the 

generation of further tools, developed to enable the higher throughput generation and 

analysis of intestinal models. To save time, full quantified optimisation of the models 

methodology was only done once (with 3 internal repeats)  with CCD-18co cells as these 

were shown to be both the slowest to grow and the most limited in the 3D proliferation 

capabilities compared to the HDFn cells. Both CCD-18co and HDFn models show good 

structural morphology and a high level of reproducibility when cultured in the multi-

seeded format as optimised in chapter 3.  

 

The HIC cells were first isolated after the model development of both the CCD-18co and 

HDFn 3D systems. Initially these HIC cells were for conditioned media experiments only 

as limited cells were available from the cultured explant. These primary cells would 

quickly lose proliferative capabilities in culture and as such were deemed not suitable for 

3D models which at the time first isolation were based on the 12 well format. With the 

development of the 96 well format, significantly less cells were required per model 

allowing for the creation of HIC 3D models. In order to keep the 3D models as close to 

one another as possible the optimised techniques applied to both CCD-18co and HDFn 

were also applied to HIC model development regardless of their growth phenotype in 

vitro. Unfortunately, HIC mucosal equivalents show significantly poorer structural 

morphology over both CCD-18co and HDFn models. With significant caco-2 invasion 

into the underlying stromal tissue. Analysis of their  functional properties was continued 

regardless in chapter 4 as, if nothing else, an example of the importance of model 

structural morphology on function. In a way, a negative control. Models within this 
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sections were analysed for their abilities to secrete ECM components into the Alvetex 

Scaffold structure, creating a cellular niche for differentiation and a support for epithelial 

cell culture. Differential secretion of ECM protein into the scaffold was highly cellular 

specific. CCD-18co cells were shown to secrete Collagen I, III and IV into the scaffold, 

chosen due to being major constituents of the small intestine ECM (Collagen I and III) 

and an important basement membrane protein (Collagen IV).  

 

7.6 Functional analysis of paracrine and 3D models shows 

significant changes in the function of Caco-2 epithelial layers. 

Results chapter four of this thesis focussed on the functional characterisation of both the 

advanced Transwell paracrine co-culture models and the 3D models of the intestine, 

bringing together the work achieved in results chapters one and three of this thesis. A 

range of compounds was analysed for their apparent permeability (Papp) through the test 

substrates with each model drug carefully chosen as a substrate for a specific protein 

under study. Rhodamine 123 for example is a well-known substrate for the efflux protein 

MDR1/ P-gp. This protein, often under expressed in the Caco-2 epithelium, is key in the 

development of NCE as P-gp is well known to efflux a range of drug compounds, 

reducing pharmacokinetic availability to the circulatory system in vivo. Verapamil 

Hydrochloride is a specific P-gp inhibitor and was utilised as such in this study as a 

mechanism to show substrate specificity.   

 

MDR1/ P-gp is possibly the most extensively studied ABC transporter protein being first 

isolated in the early 1970s and is important in the resistance of a large variety of 

compounds. Interestingly, MDR1 and other ABC transporter proteins are known to be 

inducible, with heightened levels of cellular expression in cells post exposure to MDR1 

substrates. In essence this makes for an effective anti-toxicity mechanism in vivo, but is 

an obstructive mechanism when considering drug bioavailability. (382) Other 

transporters focussed upon in this study which are known as clinically relevant transporter 

system are MRP1/2 and BCRP. It is important to note that the presence of these drug 

resistance proteins is not limited to the enterocytes of the intestine. Liver hepatocytes and 

endothelial cells of the blood brain barrier are also widely known to express high levels 
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of ABC transporters. Theoretically therefore were a drug to have clinical effects within 

the brain, there would be a minimum of two barriers through which the drug would have 

to pass whilst exposed at ABC proteins. In these situations it is imperative that drugs have 

low ABC substrate specificity in order to ensure bioavailability. (382) 

 

Rhodamine 123 modelling in the models showed a variable change dependant on both 

the cells utilised (control or paracrine influenced samples) and the dimensional format 

(Transwell vs Alvetex). Largely speaking, data values gained here were similar to those 

gained from the literature of other Caco-2 cells models. Generally, 3D models of the 

intestinal epithelium cultured in Alvetex® Scaffold displayed a higher permeability to 

Rhodamine 123 than their Transwell counterparts. This was true for both B-A and A-B 

directional travel. Whereas directional polarity was quite clear between Transwell 

conditioned media and control models, the same is sadly not true for 3D Alvetex® tissue 

equivalents. That is not to say that 3D models lack polarity in general, as that was 

demonstrated clearly through immunological staining of paraffin embedded sections and 

TEM imaging of surface Caco-2 layers and is also seen throughout the literature. 

(162,269,371) A-B directional travel tends to be lower in 3D models just to a far lesser 

extent than seen in 2D.  The loss of permeability polarity alongside increased transport in 

general would seem to suggest that 3D models passively allow the transfer of Rhodamine 

123. This explanation would seem logical until Lucifer yellow transport, a known 

passively transported compound is considered. Lucifer yellow permeability does not 

significantly change in 3D compared to 2D Transwell cultures, although in fairness, 

Lucifer Yellow transport is higher in general in each 3D cultured condition, just not to a 

significant level. There are of course, a number of ways in which this change in functional 

physiology could be explained. The first, as mentioned earlier, is the changes in barrier 

function incurred through modulation of tight junction structure within the epithelial 

membrane. 

 

Versantwoort et al conducted a similar study whereby the assessed the rate of Rhodamine 

123 permeability in both Caco-2 and IEC-18 cells. IEC-18 cells are a non-transformed 

epithelial cell line derived from rat small intestine. Interestingly, in their study similar to 

here, polarised Rhodamine 123 transport was only observed in Caco-2 cells, with 

permeability in either direction approximately equal in IEC-18 cells. (383)One could 
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make the argument that because IEC-18 cells are non-transformed and of a small 

intestinal origin they should theoretically be able to mimic in vivo physiology in vitro. 

IEC-18 cells are known to be able to create consistent tight junctions whilst differentiating 

to a lesser extent than Caco-2 cells.(266) Yet rhodamine 123 transport levels were similar 

in IEC-18 cells as Caco-2 cells in the B-A direction. How then is Rhodamine 123 being 

transported in IEC-18 cells and is this the same phenotype observe in the 3D intestinal 

models. P-gp inhibitors such as verapamil hydrochloride as utilised in this study are a 

good way of elucidating mechanisms of activity. In this study Verapamil hydrochloride 

addition did show a highly significant decreased in Rhodamine 123 permeability in 

Transwell samples (Control and CCD-18co). Lack of any change in B-A Rhodamine 123 

permeability in the presence of Verapamil Hydrochloride in 3D Alvetex® intestinal 

equivalent models again lends further evidence that Rhodamine 123 permeability in 

Alvetex® models is completely not MDR1/ P-gp mediated. The paracrine influences of 

fibroblasts have been used for decades in stem cell culture as feeder layers to maintain an 

undifferentiated phenotype.(384) Loss of directional bias in the models could conceivably 

be due to decreased differentiation compared to conventionally cultured Caco-2 

Transwell models As mentioned previously, there is a wide arrangement of highly 

overlapping functional proteins present in the intestinal epithelium. Upregulation of other 

transporter proteins within the Caco-2 epithelium could easily explain the change in 

functional phenotype. Further experimental testing into this phenomenon would be 

required before models could be utilised as replacements for Caco-2 models in industry. 

 

Regardless of the mechanism at work here, the more important question to ask in the first 

instance is whether the changes seen here are physiologically relevant. P-gp activity is 

thought to be underestimated by conventionally cultured Caco-2 models. Table 6.11 

shows the Papp summary of all the drugs tested in this study. In regards to Rhodamine 

123 all model systems except for Caco-2/ HIC (Transwell) demonstrated an increase in 

B-A permeability. Whilst Rhodamine 123 is a commonly used marker for Caco-2 

transport assays, it is reasonably rare to find comparable Papp values for intestinal tissues 

of this compound in the literature. However, Patient et al (269) utilised porcine intestinal 

tissues to measure Rhodamine 123 permeability in vitro. They found that intestinal tissues 

were far more permeable to Rhodamine 123 than permeability values seen in the 

conventionally cultured control Caco-2 layers (Papp; 0.82 (Controls) vs 1.8-3.6 (Porcine 
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tissues)). In each instance (barring Caco-2 HIC Transwell) each of the models was 

significantly closer to the in vitro tissue permeability values than the conventionally 

cultured Transwell models. Although, as mentioned earlier, the permeability values 

gained with the Caco-2 cells used in these systems were significantly lower than is 

generally seen in the literature (average of 0.82 (this study) vs 6.84 (literature), again 

highlighting the high degree of variability found within supposedly similar  Caco-2 cell 

populations. MDR1/P-gp is one of the most important considerations when assessing the 

pharmacokinetic of NCE’s. Increased MDR1/P-gp activity in cell culture models will 

allow for more sensitive assays in to NCE substrate specificity.  

 

As the name would suggest, BCRP was first isolated from breast carcinoma cells in 1997 

utilising the MCF-7 breast cancer cell line. (385) Methotrexate transport is facilitated by 

a number of overlapping protein functions, and as such cannot be utilised to test a single 

protein transporter in isolation from others with similar functions. Having said this, BCRP 

is a major clinically relevant efflux transporter of methotrexate and as such has been used 

in this study as a measurement of BCRP activity on the apical membrane. Unfortunately, 

BCRP is often co-expressed with MDR1/ P-gp and is highly similar in function, so 

unravelling the specific actions of both can be challenging as they are known to have a 

largely overlapping substrate specificity. BCRP is able to efflux a wide variety of 

xenobiotics from multiple different drug classifications; antibacterial, antivirals, protease 

inhibitors and statins to name just a few, highlighting the clinical importance of 

determining BCRP activity on NCE. (382) 

 

In this study Methotrexate was shown to be differentially transported in all conditions 

tested. In general, transport in the B-A direction was seen to increase with comparative 

T-test statistical analysis showed that 2D HDFn and 3D HIC models were both 

significantly higher than control levels with an increase in B-A Papp of 0.34 and 21.62 

respectively. 3D HIC transport was an order of magnitude greater than all other conditions 

tested, with no B-A/ A-B directional bias. This coupled with large levels of variation 

between tested models suggests that increases in HIC permeability were more due to a 

lack of epithelial development than a significant change in cellular phenotype. However, 

loss of B-A/ A-B directional bias is not necessarily an indicator of a loss of membrane 
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integrity in this instance as other conditions with far lower relative Papp, including 

controls, also show no significant directional bias.  

 

Methotrexate Papp values in this study are generally in line with those seen within the 

literature (with exception of 3D HIC/ Caco-2 models) with an average Papp value in the 

B-A direction of <1. General statistics of oral absorption in humans put methotrexate 

relatively low at 20%, suggesting that low absorption rates are to be expected for this 

compound.(386) The biggest question, as is the case for all of the drug transport analysis 

conducted in this study, is whether the changes seen in the models are physiologically 

relevant. It is clear that Papp values and % oral absorption rates cannot be directly 

compared making it difficult to say definitively without ex vivo tissue experimentation. 

Even then, transport assays with ex vivo tissues are unlikely to directly reflect the function 

within the body in vivo.  

 

Specifically, in regards to Methotrexate transport within this study, it could be argued that 

an increase in permeability is more physiologically relevant. A general observation made 

from the data with comparative analysis of values drawn from the literature (330,387) 

shows clearly that the Caco-2 in this study were significantly less “functional” in regards 

to relative permeability in every drug instance tested.  

 

Propranolol is a highly permeable compound in Caco-2 assays and in vivo with an average 

oral bioavailability of 90% and was one of the most consistent throughout all the 

conditions tested.. Using this knowledge, if data were to be compared and expressed as a 

percentage the permeability values of each of the drugs to Propranolol, and then compare 

that percentage to known in vivo absorption rates it could give a very basic understanding 

of how well the system designed is able to model intestinal absorption characteristics. 

Methotrexate control values result in a 1.24% absorption rate when compared to 

Propranolol. Taking into account the ~20% methotrexate oral absorption rate, it could be 

argued that any increase in methotrexate transport seen within the model systems is a 

physiologically relevant change. 

 

Etoposide is, like many other drugs and as described previously, transported by a range 

of protein transporters in the gut with overlapping functions such as the aforementioned 
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MDR1 and BCRP. (388) In this instance MRP family of transporters namely MRP2 

function is being assessed through the transport of Etoposide. Multi-drug resistance 

protein (MRP) transporters are a member of the ATP binding cassette (ABC) superfamily 

of drug efflux proteins which are well known to be efficient efflux transporters for a 

number of drug types, anti-viral, anti-bacterial and chemotherapeutic. (389,390) The 

Caco-2 cells utilised in this study when cultured using conventional Transwell culture 

techniques (Controls) demonstrated a very low Etoposide permeability of 0.05 x10-6, far 

below the Papp gained from the literature of 8.04x10-6 for similarly cultured Caco-2 cells. 

This follows an observed trend throughout this study when comparing Caco-2 cells used 

here (ECACC, PHE) to the literature. In each case, addition of paracrine factors or 

creation of a full mucosal intestinal model resulted in significant increase in the Papp of 

etoposide compared to conventionally cultured Caco-2 cells.  

 

Again, as with the other compounds described previously, finding human intestinal tissue 

Papp for this drug is challenging. Animal models for Etoposide transport are also highly 

variable depending on the system being studied. For example rabbit tissue transport 

equates to a Papp of roughly 1.13x10-6 whereas a similar experiment utilising rat tissue 

was an order of magnitude higher at 101x10-6.(67,69) In each instance the modified 

models created in this study fall within the large range seen within animal tissues. 

Generally, the conserved change seen in all test conditions in this study is an increase in 

permeability levels to a degree similar to those seen in the Caco-2 conventional literature 

(Papp values of approximately 8.04x10-6). As with other drugs tested here, Alvetex® HIC 

models showed a significantly increased average Papp over other conditions tested in this 

study, similar in scope to the Rat tissue Papp values seen in the literature. If nothing else 

this highlights the disadvantages of utilising animal tissues for drug discovery processes, 

with large variations observed between species. 

 

Takenaka et al showed a similar transport rate of Etoposide in their study on the 

application of primary intestinal cells as an alternative to Caco-2 use. (329)They showed 

that “primary” human enterocytes derived from intestinal stem (HIEC) cells were able to 

transport Etoposide at a significantly greater rate than their Caco-2 controls. Indeed, with 

a Papp of 1.9±0.2, HIEC cells showed remarkable similarity to values gained in this study 

when cultured in 3D or in paracrine media. Their conclusion in this study was that a 
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change in tight junction phenotype alongside junctional “looseness” was one of the main 

contributors to the increases in model permeability, ideas also explored and described 

earlier in this thesis as the methodology of action in these models. Etoposide has a 

fractional absorption rate in humans of approximately 50%. Obviously, intestinal models, 

even 3D cultured ones, are not expected to replicate this level of permeability due to the 

large difference in overall model surface area compared to human tissues. However, it 

was demonstrated here that co-culture of Etoposide in a Transwell system or in a 3D 

model has the effects of generally increasing model permeability, modelling intestinal 

tissues. 

 

Lucifer yellow, Atenolol and propranolol were all utilised as passive measurement of 

membrane integrity of different sized molecules. Lucifer yellow and atenolol were tested 

for their low Papp values in Caco-2 models whereas conversely Propranolol is known to 

be able to readily move through Caco-2 epithelial layers with subsequently high Papp 

values.(66) Passive transport of compounds is a well-known weakness of Caco-2 cell 

models which generally underestimate the rate at which passive permeability occurs. This 

is usually due attributes to an increase in tight junction integrity, resulting in a higher 

TEER values than seen in intestinal tissue, as such decreasing the capability of 

compounds to move through the membrane in Caco-2 models.  

 

Lucifer yellow permeability in humans has been shown by Rozehnal et al (345) to be 

around 4.02 x10-6 in human small intestinal samples. Conventionally cultured Caco-2 

controls had a permeability of roughly a quarter of that at 1.05 x10-6 which is low when 

compared to conventionally cultures Caco-2 values gained from the literature with an 

average Papp value of 2.58x10-6. Interestingly, paracrine cultured Transwell models in 

this study resulted in a decrease in apparent Lucifer yellow Papp in both HDFn and HIC 

conditions with CCD-18co paracrine cultures non-significantly different from controls. 

Whilst this is good in terms of suggesting that conditioned media does not influence caco-

2 ability to form a confluent monolayer in the Transwell system it is contrary to the 

expected increase in Papp hypothesised to be observed. This is in contrast to 3D cultured 

Alvetex intestinal equivalent models which do show a modest increase in Lucifer yellow 

permeability. When one considers the TEER values of 3D models compared to 

conventionally cultures Caco-2 models and even the significantly lower TEER values of 
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conditioned media models it becomes apparent that 3D models possess a less tightly 

joined epithelial layer. Alvetex® intestinal model TEER values are significantly closer to 

the observed TEER of human tissue, with physiologically relevant increases in lucifer 

yellow Papp potentially making them more accurate models for passive permeability 

studies.  

 

Atenolol transport in conventionally cultured (control) samples in this study was similar 

to that seen in the literature for Caco-2 intestinal models with some level of overlap when 

accounting for data deviation. Analysis of Atenolol permeability through intestinal tissue 

sections of both human and animals demonstrates a much higher Papp ex vivo than in 

conventionally cultured Caco-2 models. Conditioned media from CCD-18co and HDFn 

cells did not appreciatively change Atenolol permeability. HIC conditioned media 

however increased Atenolol Papp significantly to a level much more akin to human 

intestinal tissue (2.18 Caco-2/ HIC vs 2.82 Human tissue). Conversely, 3D cultured CCD-

18co and HIC models were not significantly different from Caco-2 Transwell controls 

whilst HDFn 3D models were significantly increase. Potentially highlighting the 

phenotypic effects that 3D culture can have on the secretome of fibroblast cells. Patient 

et al conducted a study similar to that seen here, gaining similar Papp values. The culture 

of Cao-2 cells on nano-fibre supports did not significantly increase Atenolol permeability 

over control conditions. Comparison with porcine tissue, Caco-2 models were 

significantly less permeable as is also suggested in studies of human fractional 

absorption.(269)  

 

Finally, Propranolol Papp was significantly higher in each case than similar experiments 

conducted in porcine tissue samples, albeit much lower than reported values seen for 

permeability in Caco-2 Transwell literature.(269) As mentioned previously however, 

propranolol is a highly lipophilic compounds and as such is easy uptake through the 

cellular membrane. As such, Papp values in tissue and 3D models are often artificially 

decreased due to propranolol sequestration throughout the transport assay into densely 

packed cells This explains why Transwell monolayer models have such a relatively high 

Papp value compared to tissue sections but doesn’t explain why Caco-2 controls in this 

study were low compared to literature values. Epithelial resistance was significantly 

higher in this study than the majority of Caco-2 systems however propranolol is generally 
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absorbed directly through the plasma membrane. There are some recent, controversial, 

studies which suggest that P-gp may be able to transport propranolol as such potentially 

changing permeability values. (391) Alternatively, pH has been shown to critically effects 

the rate or propranolol transport in an assay system. (320) The use of an Ussing chamber 

in this study allowed a carefully control the pH of the transport solution through the use 

of buffers (HBSS) and bubbling of low CO2 containing carbogen throughout the assay 

period. Generally however, Transwell based transport assays are conducted “in-well” in 

a standard culture plate, performed in normal cell culture conditions (high CO2). 

(269,320,392–394)As with most Caco-2 models, most variation seen between studies can 

be attributed to differences in assay technique. In this instance, no control of CO2 

concentration could have significant effects on buffer pH, changing transport dynamics 

in vivo. 

 

7.7 Future work 

Future work for the continued development of this model beyond the scope described in 

this thesis should focus on two parts. 1. Application of intestinal stem cell lines to the 

model and differentiation of said lines into a functional epithelium incorporating the 

cellular diversity found in vivo. 2. Engineering of the scaffold used to create 3D models 

to more accurately replicate the in vivo morphology of the intestine. For example, 

micropatterning of the scaffold surface could create villus-like structures for the culture 

epithelial cells. Application of both of these advances e.g. Addition of the stem cells into 

the villus structure, could potentially allow for the culture of a crypt niche and formation 

of an crypt-villus axis in vitro.  

 

Were this project to be extended further, additional work could be done to more clearly 

characterise the model created here to understand the paracrine secretome of the stromal 

cells utilised in this study. Cross talk between cells within paracrine and 3D models is of 

upmost importance to their development. For paracrine models specifically, an improved 

understanding on how co-cultured cells influence epithelial development would allow for 

the creation of, for example, advanced culture media with the same differentiative effects 

on Caco-2 cells as paracrine conditioned media without the added difficulty and 

variability of culturing stromal cell lines. These constituents could be identified in a 
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number of ways such as through genome sequencing (RNA seq) to identify upregulated 

genes of interest or through a series of knockdown studies, either genetically based or by 

incubating cells with target antibodies.  

 

Ultimately, personalised medicine is the future for the pharmacokinetic testing and use of 

drug compounds. The analysis of the literature throughout this study has demonstrated  

that in reality, the perfect model doesn’t exist, due to large variations in drug availability 

and overall effectiveness between people, so called perfect models. Bridging this inherent 

variation will require the development of an array of models able to mimic a large range 

of human interactions.  

7.8 Final remarks  

This project has highlighted how 3D models can be powerful tools for the modelling of 

critical cellular functions within the intestinal epithelium. As has been mentioned 

throughout this work one of the main difficulties in transferring 3D models into a 

regulated screening format is their lack of characterisation compared to Caco-2 Transwell 

models. Indeed, it will take a lot of additional data to get 3D models to the level of 

characterisation enjoyed by Transwell based systems due to the 30 year head start. 

Utilising Caco-2 cells within the models developed here is a good start as it allows for 

direct comparison with Transwell formats, highlighting both the strength and weaknesses 

of 2D tissue equivalents. Further experimentation with model drugs, is required to really 

understand the mechanisms of action for drug transport within this studies models. Work 

done in this thesis shows some good physiologically relevant changes. However, other 

questions have arisen  such as increased non-directional permeability of normally 

polarised drug compounds in 3D models which would require further work to validate.  

 

The model developed here could be an important first step to industrial acceptance of 3D 

models on a large scale. Work done in this study alongside the body of evidence described 

within will provide a basic foundation for the development of future intestinal models. 

Whose function, ultimately, is in the accurate predictability of NCE within humans and 

in the limitations of the need for animal models in the future of drug discovery and 

validation.
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9. Appendix and supplementary information. 

9.1 Negative control images 

9.1.1 Fibroblast negative controls for 2D immunostained 

samples 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1: Negative control images for 2D fibroblast cell lines – A-B) CCD-18co, 

mouse and rabbit respectively C-D) HDFn, mouse and rabbit respectively E-F) HIC, 

mouse and rabbit respectively. 2D fibroblast negative controls relate to Figure 3.3. 

Images representative of multiple observations 
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9.1.2 Epithelial lineage negative controls for 2D 

immunostained samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2: Negative control images for 2D Epithelial – A-B) Caco-2 mouse and 

rabbit negative control respectively. C-D) HT29-MTX mouse and rabbit negative 

control respectively. Images represent negative controls for Figures 3.4-7, 3.12 & 3.26. 

Staining and imaging seen in aforementioned figures was all done concurrently. 

A B 

C D 
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9.1.3 Caco-2 Transwell negative controls 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3: Negative control images for wholemount and transverse Caco-2 

Transwell models – A) Caco-2 control, relating to Figures 3.13. B) Caco-2/ CCD-18co 

treated, relating to figure 3.14, C) Caco-2/ KGF (25ng/ml) treated relating to figures 

3.20-23, D) Transverse Caco-2 Transwell section relating to Figure 3.13. E) Transverse 

Caco-2/ CCD-18co Transwell section relating to Figure 3.14. All staining in these figures 

utilised primary antibodies of mouse origin and were processed concurrently. 

A B 

E 

C D 
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9.1.4 Caco-2 and HT29-MTX Transwell controls 

  

Figure S4: Negative control images for Sectioned Transwell models containing 

Caco-2 and HT29-MTX – A,B) Caco-2 Transwell models, Control and CCD-18co 

treated respectively C,D) HT29-MTX Transwell models, Control and CCD-18co 

treated respectively. Images representative of multiple observations. Controls relate 

to Figure 4.11. E-cadherin antibody was of mouse origin. 
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9.1.5 3D model negative controls 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S5: Negative control images for Sectioned 3D models – A,B) CCD-18co 

3D models, mouse and rabbit secondary antibody respectively C,D) HDFn 3D 

models, mouse and rabbit secondary antibody respectively E,F) HIC 3D models, 

mouse and rabbit secondary antibody respectively. Images representative of multiple 

observations 
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9.1.6 Human tissue negative controls 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S6: Negative control images for human tissues – A,B) Small intestine mouse 

and rabbit secondary antibody respectively, C,D) Colon mouse and rabbit secondary 

antibody respectively Relating to Figures 5.22-27. Images are representative of multiple 

observations. 
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9.2 Intrinsic permeability of different Alvetex formats 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9.3 PCR Primer optimisation 

 

All primers utilised in the quantitative RT-PCR seen in this study were taken from pre-

established, published peer-reviewed materials. Therefore, all primer utilised here should 

have high degrees of target specificity efficiency. In order to check the validity of the 

sources from which primers were gained a select number of primers were chosen for 

further analysis.  

  

Figure S7: Preliminary data for the intrinsic permeability of different Alvetex 

formats to Crystal Violet dye – Crystal Violet was added to the apical compartment 

of a permeability chamber. Samples were taken at 30 second intervals and 

absorbance was measured at 450nm. N=1, n=1 
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Figure S8: MDR1 primer optimisation and efficiency check – A) Normal amplification curves utilised for calculation of R2. B) 

Melt peak to show primer specificity, C) R2 plotted diagram, R2 = 0.9844, D) Product gel run, single band at correct weight suggests 

primer specificity for sequence of interest. 

A 
B 

C D 
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Figure S9: MRP2 primer optimisation and efficiency check – A) Normal amplification curves utilised for calculation of R2. B) 

Melt peak to show primer specificity, C) R2 plotted diagram, R2 = 0.985, D) Product gel run, single band at correct weight suggests 

primer specificity for sequence of interest. 

A 
B 

C D 
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Figure S10: OATP-B primer optimisation and efficiency check – A) Normal amplification curves utilised for calculation of R2. 

B) Melt peak to show primer specificity, C) R2 plotted diagram, R2 = 0.9966, D) Product gel run, single band at correct weight 

suggests primer specificity for sequence of interest. 

A B 

C D 
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A B 

C D 

Figure S11: Occludin primer optimisation and efficiency check – A) Normal amplification curves utilised for calculation of 

R2. B) Melt peak to show primer specificity, C) R2 plotted diagram, R2 = 0.9581, D) Product gel run, single band at correct weight 

suggests primer specificity for sequence of interest. 
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Figure S12: Villin primer optimisation and efficiency check – A) Normal amplification curves utilised for calculation of R2. B) 

Melt peak to show primer specificity, C) R2 plotted diagram, R2 = 0.9676, D) Product gel run, single band at correct weight suggests 

primer specificity for sequence of interest. 

A B 

C D 
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Figure S13: BCRP primer optimisation and efficiency check – A) Normal amplification curves utilised for calculation of R2. 

B) Melt peak to show primer specificity, C) R2 plotted diagram, R2 = 0.971, D) Product gel run, single band at correct weight 

suggests primer specificity for sequence of interest. 

A B 

C D 
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Figure S14: GAPDH primer optimisation and efficiency check – A) Normal amplification curves utilised for calculation of R2. 

B) Melt peak to show primer specificity, C) R2 plotted diagram, R2 = 0.998, D) Product gel run, single band at correct weight 

suggests primer specificity for sequence of interest. 

A B 

C D 
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9.4 Project poster presentations 

  

Figure S15: Green channel for Figure 3.3 - Positive staining (Green channel) of 2D 

fibroblast cells. Mixed staining of Figure 3.3 

Figure S16: Green channel for Figure 3.4 - Positive staining (Green channel) of 2D 

Caco-2 cells. Mixed staining of Figure 3.4 
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Figure S17: Green channel for Figure 3.5  - Positive staining (Green channel) of 2D 

Caco-2 cells. Mixed staining of Figure 3.5 

Figure S18: Green channel for Figure 3.6 - Positive staining (Green channel) of 2D 

HT29-MTX cells. Mixed staining of Figure 3.6 
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Figure S19: Green channel for Figure 3.7  - Positive staining (Green channel) of 2D 

HT29-MTX cells. Mixed staining of Figure 3.7 
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Figure S20: Green channel for Figure 3.12 - Positive staining (Green channel) of 2D 

Caco-2 cells stained for Occludin, Figure 3.12 
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Figure S21: Green channel for Figure 3.26 - Positive staining (Green channel) of 2D 

Caco-2 cells stained for Occludin, Figure 3.26 
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Figure S22: Green channel for Figure 3.13 - Positive staining (Green channel) of 

Caco-2 cells grown on Transwell, Figure 3.13 

Figure S23: Green channel for Figure 3.14 - Positive staining (Green channel) of 

Caco-2 cells grown on Transwell, Figure 3.14 
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Figure S24: Green channel for Figure 3.20-23  - Positive staining (Green channel) 

of Caco-2 cells grown on Transwell in the presence of KGF, Figure 3.20-23 

respectivley. 
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Figure S25: Green channel for Figure 4.11 - Positive staining (Green channel) of E-

cadherin in Caco-2/ HT29-MTX co-cultures, Figure 4.11 

Figure S26: Green channel for Figure 5.22/23 - Positive staining (Green channel) of 

Colonic human tissues, Figures 5.22 and 5.23. 
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Figure S27: Green channel for Figure 5.25-27 - Positive staining (Green channel) of 

Small intestine human tissues, Figures 5.25, 5.26 and 5.27. 

Figure S28: Green channel for Figure 5.28 - Positive staining (Green channel) of 3D 

alvetex cultures created with CCD-18co fibroblast cells, Figure 5.28 
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Figure S29: Green channel for Figure 5.29 - Positive staining (Green channel) of 3D 

alvetex cultures created with HDFn fibroblast cells, Figure 5.29 

Figure S30: Green channel for Figure 5.30 -  Positive staining (Green channel) of 

3D alvetex cultures created with HIC fibroblast cells, Figure 5.30 
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9.5 Project poster presentations 
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