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Abstract 

The UK is becoming increasingly reliant on renewable energy sources as a 

replacement for fossil fuels. There is increasing pressure to reduce the consumption 

of fossil fuels and, as a result, there is increasing pressure on the energy industry to 

meet demands for renewable energy. However, this demand cannot be met without 

the means to store energy during off-peak hours, for use during peak energy 

consumption hours. Lithium ion batteries provide the solution to this demand, though 

much work needs to be done to bring battery technology up to the required capacity. 

 Since their commercialisation in 1991, lithium-ion batteries have become safer 

and more efficient, partly as a result of the adoption of graphitic anodes, at the 

expense of electrochemical capacity. In recent years, new energy materials have 

come forward promising greater capacity to store and provide energy whilst retaining 

the all-important safety features of intercalation materials. In particular, the work of 

Griffith et al. has hinted towards safe, reliable and cost-efficient metal oxide anodes 

with greater electrochemical capacity than the graphitic anodes currently in use 

across the globe (K. J. Griffith et al., 2018). By selecting the right structural motifs, 

materials previously thought unsuitable for use as electrodes might provide the 

solution to the world’s demand for safe and storable energy. 

 This thesis focuses upon the unique interlocking (or ‘intergrowth’) tungsten 

bronze (ITB) phase, first reported by Hussain and Kihlborg, for which testing under 

battery conditions has not yet been conducted (A. Hussain and L. Kihlborg, 1976).  

K0.13WO3, which is predicted to exhibit an ITB phase, was synthesised and attempts 

to elucidate its structure via PXRD were made. Galvanostatic discharge-charge data 

up to an including the third discharge demonstrated that K0.13WO3 has a capacity of 

1.60 Li+/TM on the third discharge, exceeding the capacities of Nb16W5O47 (~1.5 

Li+/TM) and Nb18W16O93 (~1.4 Li+/TM) reported by Griffith et al. at similar rates of 

discharge. Furthermore, solid-state 7Li and 6Li MAS NMR experiments were 

conducted, suggesting that Li+ reversibly intercalated into WO3-like environments in 

the ITB phase as opposed to the hexagonal sites which were also present.  

 

 

The copyright of this thesis rests with the author. No quotation from it should be 

published without the author's prior written consent and information derived from it 

should be acknowledged. 
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Abbreviations 

ASEI Artificial Solid-Electrolyte Interface 

DMC Dimethyl Carbonate 

EC Ethylene Carbonate 

HTB Hexagonal Tungsten Bronze 

ICSD Inorganic Cambridge Structural Database (www.psds.ac.uk/icsd) 

ITB Intergrowth /Interlocking Tungsten Bronze 

LIB Lithium-Ion Battery 

Li+/TM Lithium Ions per Transition Metal (measure of capacity) 

MAS Magic Angle Spinning 

NMR Nuclear Magnetic Resonance 

PTFE Polytetrafluoroethylene 

PXRD Powder X-Ray Diffraction 

SEI Solid-Electrolyte Interface 

SSNMR Solid-State Nuclear Magnetic Resonance 

TTB Tetragonal Tungsten Bronze 

XRD X-Ray Diffraction 
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Chapter 1  Introduction and Background 

1.1  Current Challenges in Energy Research 

Alongside the rapid growth in the world’s population in recent decades, owing 

primarily to social and economic developments worldwide, there has been an 

associated increase in the global demand for energy. At present, most of this 

energy is generated from non-renewable sources of fuel (coal, oil, and natural 

gas), however, these fuels are the main sources of greenhouses gases and 

other pollutants. Growing concerns over the finite nature of these energy 

sources and potentially disastrous climate change has led to international 

efforts to reduce the consumption of fossil fuels in the energy industry. In the 

last ten years alone, there has been a shift towards renewable sources of 

energy, including solar, wind and hydroelectric power. This has resulted in 

record-low levels of the UK’s energy being generated from fossil fuels.1,2 

 Despite these improvements, the energy sector faces major 

challenges when it comes to a total shift towards renewable power. Among 

these challenges is the reliability of renewable sources - e.g., energy 

generation from solar and wind power is dependent upon weather conditions, 

resulting in day-to-day fluctuations and notable reductions in production over 

the course of a year.3 One solution to this problem is the use of energy storage 

devices to stockpile excess energy for a later date. Such devices must have 

long lifecycles, be made from relatively abundant materials at a low cost, as 

well as being safe to use and environmentally sustainable.4  Current storage 

devices include fuel cells (FC), electrochemical capacitors (EC) and lithium-

ion batteries (LIB).5 Although fuel cells have the highest energy densities 

(energy per unit volume) of all energy storage devices on average, there are 

some serious concerns regarding their safety in commercial applications.6 On 

the other hand, the high power densities (power per unit volume) of 

electrochemical capacitors make these devices suitable for periods of 

operation which demand a high current. The drawback to ECs, however, is 

their very low energy density, making them less suitable for applications which 

require significant energy storage. It is these properties of electrochemical 

capacitors that often results in them being paired with lithium-ion batteries in 

certain applications, including electric and hybrid-electric vehicles.7  

 Since their commercialisation in 1991, lithium-ion batteries have 

become one of the most widespread energy storage devices in the world, first 
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(1.1) 

 (1.2) 

 

in portable electronic devices and more recently in electric vehicles.8 The 

massive growth in the market for LIBs since their commercialisation has been 

one of the driving factors behind contemporary research into new materials 

for high-performance electrodes in the hopes of evolving these devices to suit 

the growing global demand for energy. 

 

1.2   Electrochemistry of Batteries 

A battery is a device which consists of one or more electrochemical cells, each 

of which has several key components: a positive electrode (cathode), a 

negative electrode (anode), and an electrolyte. The electrolyte is the phase 

which conducts ions (but does not conduct electrons) and is typically a 

solution. When the electrodes are immersed in the electrolyte and connected 

via an external circuit, chemical energy is converted to electrical energy via 

redox reactions, which are driven by the difference in the electrode potentials 

of each electrode. During the discharging process a battery acts as a galvanic 

cell: an oxidative reaction occurs at the anode which drives electrons through 

the external circuit and generates ions that conduct through the electrolyte. At 

the same time, a reductive reaction occurs at the cathode, removing electrons 

from the circuit. A schematic representation of this process is shown in Figure 

1.1. These reactions can generally be represented by the following half 

equations, 

𝑀 → 𝑀𝑛+ + 𝑛𝑒− , 

𝑛𝑀 + 𝑛𝑒− → 𝑛𝑀− . 

The overall voltage of the battery is related to the free energy of the reactions 

taking place via the Nernst equation, Δ𝐺 =  −𝑛𝐹𝐸, where 𝐸 is the voltage of 

the battery, 𝐹 is the Faraday constant, and Δ𝐺 is the difference in free energy 

between the reactions taking place at the anode and the cathode. During the 

charging process, the battery acts as an electrolytic cell. The flow of electrons 

(and thus ions) is reversed and the electrochemical reactions are no longer 

spontaneous, instead driven by the provision of a higher potential from the 

external power supply.10 However, it is conventional to refer to the electrodes 

of a battery by their mode of operation during discharge, hence, the negative 

electrode is termed the anode, and the positive electrode is termed the 

cathode. 
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(1.3) 

 

   When an electrochemical reaction takes place at either electrode, a 

concentration gradient is generated within the electrolyte. Whilst the potential 

difference of the electrodes drives electrons through the external circuit, the 

movement of ionic species involved in the electrochemical reactions is 

governed by diffusion along this concentration gradient. Therefore, the current 

which flows through the external circuit, I, can be related to the rate of reaction 

by Faraday’s Law, 

𝑟𝑎𝑡𝑒 =
𝐼

𝑛𝐹
 , 

where 𝑛 is the number of electrons transferred per mole via the reaction and 

𝐹 is Faraday’s constant. From Faraday’s Law, two simple observations can 

be made: (1) when a net current flows, there must be net oxidation at the 

anode and net reduction at the cathode, and (2) when current stops flowing 

(for example, if the external circuit is broken), the flow of ions also stops. The 

rate at which a battery operates is given by its C rate, which is defined by the 

rate at which it discharges relative to its maximum capacity. A battery 

operating at a rate of 1 C will fully in discharge in 1 hour. This is the convention 

used through this report.   

Figure 1.1: Schematic diagram of a lithium-ion battery, showing the direction of the current and 
the flower of ions during both charge and discharge. 
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1.3 Lithium-Ion Batteries 

Lithium has several properties that make it a suitable candidate for use in 

energy storage devices. It is the third lightest element, making it ideal for 

lightweight, portable devices and applications, and has a density of just        

0.53 g cm−3. In addition, lithium has the lowest reduction potential of any metal 

(−3.05 V vs. the standard hydrogen electrode). This gives it a high gravimetric 

capacity (3860 mA h g−1) surpassed only by that of beryllium.11 For these 

reasons, lithium is one of the most promising metals for use in batteries and 

much work has gone into harnessing its useful properties. However, lithium is 

a finite resource and there are serious safety concerns regarding its usage. 

 

1.3.1 The Development of Lithium-Ion Batteries 

Although the first rechargeable batteries were invented in the 19th century, it 

was not until the 1970s that the development of rechargeable lithium-ion 

batteries began.12 In 1971, researchers at Stanford University reported that 

some molecules and ions could ‘intercalate’ into layered tantalum sulphide 

(TaS2).13 Intercalation is the process of reversibly inserting one species 

between the layers into the crystal structure of another. A battery was 

subsequently developed with titanium sulphide (TiS2) as the positive electrode. 

Chosen for its low weight and electrochemical reversibility, TiS2 was found to 

form a single phase when lithium was inserted, which enables lithium to be 

inserted and removed freely.14 Lithium perchlorate in dioxolane was used as 

the electrolyte in this early lithium-ion battery, as LiClO4 would not intercalate 

into the TiS2 structure alongside lithium. However, LiClO4 in dioxolane was 

found to be a potential explosive.15 Nevertheless, in the late 1970s, Exxon 

marketed batteries with LiAl anodes and TiS2 cathodes for use in watches and 

similar devices. 

 Very early lithium-ion batteries were affected by the issue of lithium 

dendrites forming on the anode. These structures would short-circuit the 

battery, with the sudden discharge generating a significant amount of heat, 

ultimately igniting the organic electrolyte. Furthermore, dendritic growth on the 

surface of the anode also leads to fragments of lithium becoming isolated from 

the electrode. These fragments, sometimes referred to as “dead lithium”, are 
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(1.5) 

 

electrochemically inert but chemically active, accumulating around the 

electrode and thereby preventing ions from reaching the active electrode.16  

 In 1980, Goodenough et al. discovered that CoO2 had a layered 

structure similar to that of TiS2, and that lithium could be reversibly intercalated 

between the layers of the structure.17 With this knowledge, SONY then used 

LiCoO2 as the cathode in what was to be the first commercially-widespread 

lithium-ion battery in 1991, where they paired it with a graphitic carbon 

anode.17,18 Lithium salts dissolved in ethylene carbonate were used as the 

electrolyte. In this battery, lithium ions leave the CoO2 structure during 

discharge and migrate through the electrolyte to the anode, intercalating into 

the layered structure of graphite to form LiC6. The structures and positions of 

Li+ in these materials is shown in Figure 1.2. The redox reactions taking place 

at the anode and cathode, respectively, during discharge are: 

6 Cgraphite + Li+ + e− → LiC6 , 

LiCoO2 → Li1−𝑥CoO2 + 𝑥 Li+ + 𝑥 𝑒− . 

By intercalating lithium ions into the graphitic anode, the chance of forming 

lithium dendrites is significantly reduced. This enabled the commercialisation 

of the C-LiCoO2 battery which has found widespread use in portable electronic 

devices.  

 

  

Figure 1.2: Structures of LiCoO2 (left) and LiC6 (right), displaying their layered structures and 
the sites of lithiation in each. Images obtained using the VESTA software. 

● Li 

● Co 

● O 

 

● Li 

● C 

● O 
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1.3.2 Current Challenges in Lithium-Ion Battery Design 

The safety of the lithium-ion battery has been one of the key driving forces 

behind its development over the last few decades, as discussed above. In 

particular, the need to reduce or prevent the formation of dendrites on the 

surface of the anode has seen the implementation of various design features 

and the use of new materials. However, there are additional factors which 

must also be taken into account when developing and improving lithium-ion 

batteries. 

 The electrolyte of a battery has an associated energy “window” of 

operation, defined by the difference between its lowest unoccupied molecular 

orbital (LUMO) and its highest occupied molecular orbital (HOMO). An anode 

with an electrochemical potential above that of the LUMO will reduce the 

electrolyte, whilst a cathode with an electrochemical potential below that of 

the HOMO will oxidise the electrolyte. These unwanted electrochemical 

reactions can be prevented by (1) choosing electrodes with potentials within 

the electrolyte window, or (2) including a passivating layer between the 

electrolyte and the electrode, often referred to as a solid-electrolyte interface 

(SEI).19 It is important, however, that the SEI is able to self-heal any fractures 

that might occur due to changes in the volume of the electrode during 

operation. For example, the earliest lithium-ion batteries developed by 

Whittingham et al. used elemental lithium as the anode, owing to its much 

greater specific energy compared to the now-common graphitic anodes.20 The 

electrochemical potential of Li0 lies above the LUMO of most commonly-used 

electrolytes, however, its usage is allowed by the passivating SEI layer that is 

formed after the first charge-discharge cycle. Over the course of a number of 

charge-discharge cycles, the SEI layer fractures and results in the 

aforementioned formation of dendrites through the cracks in its surface, and 

eventually to capacity fading via the formation of dead lithium.21,22 The risk of 

SEI deconstruction can be reduced by including an artificial solid-electrolyte 

interface (ASEI),23–25 which in turn must follow certain criteria: (1) stable 

against both the electrode and electrolyte, (2) robust to withstand the 

formation of dendrites, (3) flexible to accommodate the theoretically infinite 

volume change that occurs during cycling, and (4) electrically insulating whilst 

being excellent ionic conductors. These criteria make designing ASEIs 

extremely difficult, and there is currently considerable research underway into 

developing new materials to enable to the use of lithium metal electrodes.26  
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Most current lithium-ion batteries utilise an organic liquid electrolyte, in 

which lithium salts are quite soluble. Typically, these are blends containing a 

number of carbonates such as ethylene carbonate, diethyl carbonate, 

dimethyl carbonate, propylene carbonate and ethylmethyl carbonate.27,28 Of 

these, ethylene carbonate (EC) is known to form an SEI layer on the surface 

of graphitic anodes, serving the purpose described above. However, these 

carbonate-based blends are highly flammable, and the lithium salts dissolved 

in them can catalytically decompose.29 Such safety concerns have been the 

cause of recent research into all-solid-state batteries, utilising solid-state 

electrolytes in place of organic liquids. Solid electrolytes share similar criteria 

to ASEIs – primarily, they must have high ionic conductivity, low electrical 

conductivity, and be electrochemically compatible with both the anode and the 

cathode.30 Various types of solid electrolytes exist, including (but not limited 

to) garnet, perovskite and anti-perovskite structures.31,32 However, a large 

range of ionic conductivities has been observed in each family of solid-state 

electrolytes, owing to the intrinsic link between crystal structure and bulk 

conductivity, and between density and grain conductivity, such as in the 

perovskite lithium lanthanum titanate (LLTO), shown in Figure 1.3.33 In many 

cases, the introduction of mobile lithium ions into the crystal structure of solid 

electrolytes may cause distortions which trap or block ions from being 

transmitted; in other cases, such as in the NASICON-type structure 

Figure 1.3: Structures of lithium lanthan titanate (left) and NASCION-type Li1+xAlxTi2−x(PO4)3 
(right). In each, the blue polyhedra represent TiO6 octahedra and the small green spheres 
represent Li+ ions. 

● Li 

● TiO6 

● La 

 

● Li 

● TiO6 

● AlO4 
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Li1+xAlxTi2−x(PO4)3, also shown in Figure 1.3, dopants which would otherwise 

increase ionic conductivity may be readily reduced by the anode.34,35 Despite 

these drawbacks, solid electrolytes are an emerging technology of great 

interest, promising safe, compact and low-weight lithium- and sodium-ion 

batteries. 

As mentioned previously, the chosen electrodes of a lithium-ion 

battery must also fit certain criteria. The suppression of dendrite formation, 

discussed above, is not the only concern here; the electrodes must suppress 

additional side reactions that occur at the electrode-electrolyte interface which, 

at elevated temperatures, can lead to fire or explosion, known as “thermal 

runaway”.36 In addition, the chemical stability of the electrodes is of great 

importance to the longevity of the battery. For example, LiCoO2 suffers from a 

phase transition which occurs when more than 50% of the intercalated lithium 

is removed. This transition from the monoclinic to hexagonal phase causes 

the structure to shrink and, in turn, causes some of the lithium to occupy 

different sites in the crystal structure. Over time, the cathode is liable to 

fracture and thus the electrochemical performance deteriorates. Over-

discharge in this manner has also been shown to lead to the degradation of 

the copper current collector at the anode. Electrolysis of the current collector 

causes copper ions to migrate to the cathode and form dendrites on the 

surface, eventually leading to internal short circuiting of the battery.37–39 These 

unwanted side reactions, which lead to thermal runaway and/or 

electrochemical degradation of the electrodes, have been shown to be 

suppressed or reduced entirely by implementing metal oxide coatings via a 

number of methods.40 
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1.3.3 Advances in Anode Materials 

The anode of a lithium-ion battery must be chemically stable against the 

electrolyte and, ideally, have an electrochemical potential suited to the LUMO 

of both the electrolyte and the lithium salts dissolved within. Anodes can be 

grouped into three categories based on their mechanism of operation: 

conversion, alloying and intercalation reactions. 

 

1.3.3.1 Conversion Reaction Anodes 

Most of the materials mentioned so far have been ones in which lithium ions 

reversibly enter and leave the host system, occupying well-defined sites in the 

lattice. Conversion reaction anodes work on an entirely different process, in 

which the ions which diffuse into the material chemically react to form entirely 

different phases containing lithium. The mechanism of this reaction is 

illustrated in Figure 1.4.41  Conversion materials were first discovered in 2000, 

when reversible electrochemical activity was found in transition metal oxides 

that were unable to undergo intercalation reactions.42 The theoretical capacity 

of these materials ranges from 350 mA h g−1 for Cu2S to as high as 1800 mA 

h g−1 for MnP4, significantly greater than that of graphite (vide infra).43 Despite 

this, conversion-type anodes suffer from major drawbacks, which limits their 

usefulness in commercial applications. Their discharge-to-charge efficiency is 

less than that of graphite, meaning that their cyclability is drastically decreased. 

In addition, the large volume change which accompanies conversion reactions 

(during both lithiation and delithiation) may lead to failure of the electrode, 

Figure 1.4: Mechanism of a conversion reaction in the context of an anode. Upon discharge, Li+ 
enters the host, with composition MX, and forms two separate phases with composition Li2X 
and M. When the current is reversed, and the battery is recharged, Li+ leaves the system and 
the MX phase is restored. 

● M 

● X 
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either by mechanical degradation or electrical isolation. For example, despite 

the high theoretical capacity of Sn, its structure expands by about 260% upon 

lithiation.44 

 The latter can be alleviated in several ways, including designing 

mesoporous materials with high surface areas or hollow structures, allowing 

room for the structure to expand and contract.45 In addition, these porous 

materials can be tailored to improve other properties of the electrode: the walls 

of the pores in such materials can be made very thin (a few nanometers thick), 

in order to reduce diffusion path lengths and thereby improve ion conduction, 

or the material itself can be engineered to incorporate conductive phases, 

which may eliminate or reduce the amount of conductive carbon that needs to 

be added to the electrode. Alternatively, conversion-type materials can be 

combined with carbonaceous nanomaterials.46 For example, the “peapod-like” 

structure with MnO particles confined within carbon nanotubes has been 

demonstrated to exhibit high cyclability and a capacity as high as                    

1080 mA h g−1.47  

 

1.3.3.2 Alloying Reaction Anodes 

Another category of anodes are those that operate via alloying reactions, 

consisting of a group of metallic and semi-metallic elements that can be 

alloyed with lithium. This group includes the likes of silicon48, germanium49  

and tin.50 Alloying reaction materials are known to exhibit extremely high 

theoretical capacities. For example, an anode in which lithium reversibly alloys 

with silicon: 

4.4 Li+ + Si + e− → Li4.4Si . 

is known to have a theoretical capacity of 4200 mA h g−1, more than ten times 

that of graphite. However, as in conversion reactions, anodes which operate 

via alloying with metals can suffer from extreme volume change during charge 

and discharge.51 

 Several techniques may be used to mitigate this problem. Firstly, the 

particles themselves can be reduced in size. The volume of a typical silicon 

anode changes by up to 400% upon lithium insertion, however, it has been 

reported that using silicon nanowires as anodes circumvents the issues 

associated with volume expansion, allowing for good cyclability whilst 
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retaining the high charge capacity of non-nanostructured silicon anodes.52,53 

Alternatively, carbonaceous buffers may be implemented to allow the active 

material (e.g., silicon nanoparticles) to expand during lithiation. One such 

composite was synthesised by encapsulating silicon particles within a carbon 

nanofibre (CNF), followed by acid treatment to generate nanocavities around 

the active particles to provide it with space to expand into. This Si-CNF 

composite had a reversible capacity of 1178 mA h g−1 after 60 discharge-

charge cycles at various rates.54 

 Another method is the use of ternary alloys, composite materials 

consisting of three metals chosen for their very special properties. Of these 

three metals, the first two are electrochemically active and alloy/de-alloy with 

lithium during operation. The third metal in the alloy is generally used to act 

as a buffer like the carbonaceous materials noted above, providing some 

protection against volume expansion. For example, a ternary alloy featured in 

recent studies is TiSnSb; in this material, both tin and antimony are 

electrochemically active, whilst titanium was chosen as the buffer material due 

to its relatively low cost, low toxicity and electrochemical inertia.55 TiSnSb 

experiences a +137% change in volume during lithiation whilst providing a 

reversible capacity of 540 mA h g−1 at a rate of 2 C.56,53 Despite this improved 

capacity compared to commercially available graphitic electrodes, the volume 

change exhibited by TiSnSb is still a major factor in determining its 

applications and potential commercialisation. Much research remains to 

further reduce it to acceptable levels. 
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1.3.3.3 Intercalation-based Anodes 

Graphite is the representative material for the intercalation reaction family of 

electrodes. Despite being incompatible with early electrolytes (whereby the 

electrolyte would be reduced upon lithium insertion), graphite’s suppression 

of dendrite formation has led to its widespread use in portable electronics (vide 

supra), as well as exhibiting lower reduction potentials than most alternatives. 

On the other hand, graphitic carbon has a far lower theoretical capacity (372 

mA h g−1) compared to the lithium metal electrode (3860 mA h g−1) as only 

one lithium atom per six carbon atoms can be inserted into the structure.21,58 

Similar carbonaceous materials can be intercalated with lithium to form 

lithium-carbon intercalation compounds which behave similarly to graphite 

intercalation compounds electrochemically. Graphitizable carbon (also known 

as ‘soft carbon’), may be intercalated with lithium, however, over repeated 

discharge-charge cycles the capacity of Li-ion batteries constructed with such 

anodes fades over time when used with common electrolytes such as 

propylene carbonate. This is due to the electrolyte itself intercalating into the 

structure of the crystallites and causing exfoliation, the mechanical process of 

separating layers during volume expansion. On the other hand, non-

graphitizable carbon (also known as ‘hard carbon’), which consists of small 

Figure 1.5: Structure of Li4Ti5O12, clearly showing the channels through which Li+ ions can 
diffuse. The blue polyhedra represent TiO6 octahedra whilst the small green spheres represent 
Li+ ions. The oxygen atoms have been omitted for clarity. 
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crystallites with several randomly orientated layers does not suffer from this 

capacity fade. Hard carbon is thus referred to as being “highly cyclable”.59 

 Lithium titanium oxides (LTO) are non-carbonaceous alternatives for 

Li-ion battery anodes, first developed in 2008. The most common LTO in 

commercial use is the spinel Li4Ti5O12 material, shown in Figure 1.5, with a 

theoretical capacity of 175 mA h g-1. The structure can accommodate up to 

three Li+ upon discharge of the cell (or 0.6 Li+ per transition metal, TM, present 

in the unit cell). Although this theoretical capacity is markedly lower than that 

of graphitic carbon, the volume change which accompanies lithium 

intercalation into this spinel is just +0.2%. For this reason, the material is 

referred to as “zero-strain” and has excellent cyclability. In addition, like 

graphite, the potential of Li4Ti5O12 is such that it avoids the formation of lithium 

dendrites. Due to these properties, nanostructured LTOs are suitable in 

applications where longevity is important, such as in stationary energy storage, 

and where lower power outputs can be afforded.60,61  

 The intercalation of lithium ions into Li4Ti5O12, or indeed any 

intercalation-based anode material, involves three key processes: the 

diffusion of lithium ions from the electrolyte to the surface of the anode, the 

charge-transfer reaction that takes place at the surface, and the diffusion of 

lithium ions into the bulk Li4Ti5O12.62 An overall mechanism for this process is 

displayed in Figure 1.6. The rate of the charge-transfer reaction can be 

modified by doping small quantities of other elements into the surface of the 

particles to enhance ionic diffusion.63 The rate-limiting diffusion of lithium ions 

Figure 1.6: Mechanism of an intercalation reaction in the context of an anode. Upon discharge, 
Li+ enters the space between layers in host structure, which has a composition MX2, forming a 
stucture with the composition LiMX2. When the battery is recharged, Li+ exits the host structure 
and its composition becomes MX2 again. Image adapted under the Creative Commons license 
from H. Yoo et al., Mater. Today, 2014, 17, 110–121.  

● M 

● X 

● Li 



18 
 

may be enhanced by designing nanoscale particles using a variety of synthetic 

methods, including sol-gel synthesis and molten salt methods.64–66 Due to their 

small size and high surface area, the contact between the surface of Li4Ti5O12 

and the chosen electrolyte is maximised whilst the diffusion pathway is 

reduced, both of which contribute to improved capacity at high rates of charge 

or discharge. However, reducing particle sizes to the nanoscale does not 

come without its downsides. The synthesis of such particles is often time-

consuming and resource-intensive, resulting in low yields and considerable 

chemical waste.67 In addition, while the capacity of the particles may be 

increased, they may also be vulnerable to decomposition by the catalyst68 

capacity fading69 and undesirable structural changes.70 

  

1.3.4 Niobium Tungsten Oxides 

In recent years, the costly downsides to nanoscale synthesis of anode 

materials has resulted in a drive to find alternative methods of enhancing 

discharge capacity. One such alternative was proposed by Griffith et al. in July 

2018, ultimately forming the basis of this report.71 They demonstrate that by 

choosing the appropriate crystal structure the normal constraints of particle 

size and porosity need not be fulfilled; instead, they synthesised compounds 

on the microscale which outperformed nanoscale LTOs under similar 

conditions. Their paper follows an earlier publication concerning the high-rate 

intercalation of Li into micrometer-sized particles of Nb2O5 and Nb2O5 in the T 

and TT phases (shown in Figure 1.7), in which they identified structural motifs 

that favoured Li diffusion.72,73 The ‘room-and-pillar’ structure of these low-

Figure 1.7: Structure of TT-Nb2O5 (left) and T-Nb2O5 (right), viewed along the c-axis. The niobium 
atoms are shown in blue, whilst the oxygen atoms are shown in red. Adapted from E. Tsang et 
al., Nano Rev., 2012, 3, 17631.  Copyright 2012, Co-Action Publishing. 
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temperature Nb2O5 polymorphs allows lithium ions to intercalate into the 

channels (or ‘rooms’) formed by NbO6/NbO7 polyhedra, which link together to 

form ‘pillars’. These channels are supported by bridging oxygen atoms, 

allowing them to remain open even under the influence of intercalated ions. 

This allows for high ionic mobility within the structure. Based on this room-

and-pillar motif, they synthesised two different niobium tungsten oxides: 

Nb16W5O55, which has a “block” or “shear”-type structure, and Nb18W16O93, 

which has a ‘bronze-like’ structure.74 

 

1.3.4.1 “Shear-type” Nb16W5O55 

Nb16W5O55 is composed of corner sharing NbO6 octahedra arranged similarly 

to ReO3, forming blocks that are five octahedra wide, four octahedra long and 

infinite in the third dimension, as illustrated in Figure 1.8. The shape of these 

blocks is denoted [n x m], where n is the width of the block in octahedra and 

m is the length. At the edge of these blocks are crystallographic shear planes, 

in which the adjacent blocks are offset in the third dimension, hence the label 

“shear-type”. It is a metastable compound below about 1090 °C and is known 

to disproportionate to Nb2WO8 and Nb14W3O44 upon cooling.75,76 Its powder is 

pale yellow-green in colour. 

Figure 1.8: The unit cell of “shear”-type Nb16W5O55, viewed along the b-axis. The grey 
polyehedra represent NbO6 and WO6 octahedra. The oxygen atoms have been omitted for 
clarity. The crystallographic shear plans are illustrated as red dashed lines. 
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 The description of Nb16W5O55 given above, however, is a relatively 

simplistic one. The structure of this material is not homogenous; although 

initial X-ray diffraction measurements indicated a single phase, high-

resolution electron microscopy (HREM) revealed the presence of so-called 

“Wadsley defects”, the ordered intergrowth of one niobium tungsten oxide into 

the structure of another. These defects manifest as fringes in the HREM 

images, caused by the insertion of blocks which are not [5 x 4] in dimension, 

as exemplified in Figure 1.9. Importantly, the presence of these defects can 

be controlled by long synthesis times, however, their total removal in a gram-

scale sample of Nb16W5O55 is believed to be impossible. After 768 hours of 

high-temperature annealing, Allpress and Roth were able to identify individual 

particles that contained only a single phase (i.e., zero Wadlsey defects), but 

these particles were not representative of the entire sample. This is attributed 

to the very small differences in free energy between adjacent phases, allowing 

[5 x 4], [4 x 5] and [6 x 5] blocks to readily interconvert between one another 

at high temperatures.77  

 When tapped density (the maximum density of the powdered material)  

is considered, the volumetric charge density of Nb16W5O55 was reported to be 

548 A h l−1 at a discharge rate of 1 C, compared to 103 A h l−1 for graphite 

(particle size: 6 µm). In addition, Griffith et al. found that Nb16W5O55 performed 

well at high rates of discharge, with a gravimetric capacity of 150 mA h g−1 at 

20 C.71 This is significantly greater than that of Li4Ti5O12 (90 mA h g−1 at 20 C). 

Figure 1.9: Illustration of Wadsley defects in shear-type NbxWyOz structures. The arrows 
represent crystallographic shear plans formed by converging [5 x 3] and [4 x 3] defects. 
Adapted from  A. Hussain and L. Kihlborg, Acta Crystallogr. Sect. A, 1976, 32, 551–557. 
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Furthermore, the material retained 95% of its gravimetric capacity after 1000 

cycles, showing excellent cyclability.  

 

1.3.4.2 “Bronze-like” Nb18W16O93 

Nb18W16O93 has an orthorhombic unit cell with the superstructure of a classic 

tetragonal tungsten bronze, illustrated in Figure 1.10. This structure results 

from the partial filling of pentagonal tunnels with metal oxide chains as well as 

the distorted octahedra of the tetragonal tungsten bronze. Unlike in Nb16W5O55, 

this material was not found to contain Wadsley defects. In a powdered form, 

it is described as off-white in colour. 

The volumetric charge density of Nb18W16O93 was calculated to be                      

496 mA h l−1, slightly lower than that of Nb16W5O55, owing to its higher molar 

mass. Its gravimetric capacity at higher rates of discharge was similar to that 

of Nb16W5O55 and, like the shear-type material, demonstrated excellent 

cyclability over hundreds of discharge-charge cycles. When testing at higher 

rates (up to 100 C), Griffith et al. determined that the capacity was primarily 

limited by lithium metal plating/stripping and lithium ion desolvation rather than 

by the metal oxide anodes themselves.71 

 

  

Figure 1.10: Unit cell of Nb18W16O93, viewed along the c-axis. The green polyhedra represent 
NbO6 octahedra, whilst the white/grey spheres represent the pentagonal sites partially 
occupied by tungsten atoms. 
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1.3.4.3 Structural Considerations 

Griffith et al. proved, by a variety of methods designed to probe the diffusion 

of lithium ions both in and out of the two metal oxides detailed above, that the 

‘impressive’ performance of these materials can be directly linked to their 

structures.71 More specifically, the crystallographic shear planes in the shear-

type Nb16W5O55 and the twisted octahedra linked to pentagonal columns in 

“bronze-like” Nb18W16O93 decrease the structural degrees of freedom. 

 Both structures can be related to ReO3 and WO3, the latter of which 

being one of the reagents used to prepare samples of both Nb16W5O55 and 

Nb18W16O93. By inspecting these structures, one might assume (at first glance) 

that ReO3 and WO3 are suitable materials for lithium ion storage. However, 

this is not the case, as their open and flexible framework is known to undergo 

a structural phase transition upon lithiation.78 The frustrated polyhedral 

networks present in Nb16W5O55 and Nb18W16O93 do not undergo these 

transitions upon lithiation, owing to the reduced degrees of freedom afforded 

by the structural motifs mentioned above. These motifs effectively stabilise the 

structure and prevent local distortions from causing long-range 

rearrangements of the framework. 

 In addition, calculations on the Nb16W5O55 system suggested lithium 

ions were able to migrate between the twelve adjacent and parallel channels 

in each [5 x 4] subunit. The ability to ‘hop’ between channels means that 

Nb16W5O55 is not susceptible to defects which would otherwise block channels 

and prevent intercalation, as seen in similar one-dimensional ion conductors 

such as LiFePO4, a common iron phosphate cathode.79 Similarly, Nb18W16O93 

was shown to have a two-dimensional diffusion network in its structure, 

allowing for ions to migrate between channels running along the c-axis. These 

observations hold true for niobium tungsten oxides with similar structures and 

different stoichiometries, although many other non-stoichiometric phases 

have been found to be unstable at low temperatures and are therefore not 

suitable for these applications. 
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1.4  Tungsten Bronzes 

Tungsten bronze structures contain one-dimensional channels which run 

along the c-axis.80,81 Due to these channels, they are of interest in intercalation 

chemistry; many tungsten bronzes have demonstrated their ability to 

accommodate mobile H+ and Li+ cations in their structures.82–84 There are 

various types of tungsten bronzes, named according to their structures: 

hexagonal tungsten bronzes (HTBs), tetragonal tungsten bronzes (TTBs), and 

cubic tungsten bronzes (CTBs), the latter of which will not be expanded upon 

here. In addition, hexagonal and tetragonal phases have been shown to 

coexist in what is known as an intergrowth tungsten bronze (ITB), or 

sometimes as an interphase tungsten bronze. 

 

1.4.1 Hexagonal Tungsten Bronze (HTB) 

Most tungsten bronzes with the formula AxWO3 exist in the hexagonal phase.85 

The structure of HTBs consist of distorted corner-sharing WO3 octahedra 

forming hexagonal tunnels along the c-axis, which the A-site cations occupy. 

Large cations such as K+, Rb+ and Cs+ can stabilise the structure if they 

occupy more than half of the A-sites. The unit cell of a hexagonal tungsten 

bronze is illustrated in Figure 1.11. 

 The hexagonal tunnels play an important part in the electrochemical 

behaviour of materials with the HTB structure, and as a result there are many 

Figure 1.11: Unit cell of the hexagonal phase of K0.3WO3, viewed along the c-axis, with the 
hexagonal channels clearly shown. The grey polyhedra represent WO6 octahedra, and the 
white-purple spheres represent sites partially occupied by K+ ions. 
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reports regarding the intercalation of lithium into such materials.86 However, 

as mentioned above, the HTB structure often arises from larger cations 

occupying the cavities within the hexagonal tunnels; cations with smaller ionic 

radii tend to form pyrochlore phases from the same host structures.87 The 

occupancy of the A-sites also affects the phase formed: for a structure 

AxMO3+x/2, hexagonal phases tend to be formed when x < 0.33 – i.e., when up 

to one third of the A-sites are occupied.88 

 

1.4.2 Tetragonal Tungsten Bronze (TTB) 

Metal oxides with the TTB structure are based on an array of corner-sharing 

MO6 octahedra in the ab-plane that stack along the c-axis to form pentagonal, 

quadrangular and triangular tunnels, as shown in Figure 1.10 (vide supra).89 

This framework itself is not charge-neutral unless the metal, M, is in the +6 

oxidation state, however, the cavities within these tunnels may be occupied 

by alkali and alkaline earth metal cations to form TTB structures, with the 

metals in the +5 and +4 oxidation states respectively. In general, the 

pentagonal cavity (A3-site) in a cross-section of a TTB structure is fully 

occupied, the quadrangular cavity (A2-site) is half-filed, and the triangular 

cavity (A1-site) is usually vacant. This generalisation does not preclude the 

possibility of finding fully occupied TTB structures; such structures have been 

reported, such as Pb2KTa5O15 and Sr2NaNb5O15.90,91 
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1.4.3 Intergrowth Tungsten Bronze (ITB) 

The three main tungsten bronze phases are the hexagonal, tetragonal and 

cubic phases, however, an additional, unique phase exists for structures with 

the formula AxWO3, where A = K, Rb, Cs. As mentioned above, these cations 

typically form hexagonal phases at low concentrations of A (i.e., when x < 

0.33). This additional phase was reported by Hussain and Kihlborg in 1976, 

where it is referred to as the ‘intergrowth tungsten bronze’ (ITB) phase.92 

Between x = 0.01 and x = 0.13, the powders synthesised from heating a 

mixture of WO3, WO2 and A2WO4 contained large black crystals in a mass of 

fine yellow-white powder. The abundance of these black crystals increased 

with x. Between x = 0.10 and x = 0.13, these crystals were in coexistence with 

a hexagonal phase, and the crystals were not found beyond x = 0.13, where 

the powder was singularly in the HTB phase. It was reported that these 

crystals were not affected by strong alkaline solutions, nor were they affected 

by acidic solutions.  

 Hussain and Kihlborg conducted high-resolution electron microscopy 

(HREM) studies on the black crystals they had synthesised, and by combining 

these images with X-ray diffraction (XRD) analysis they were able to resolve 

the structure.92 The phase can be described as an intergrowth of slabs with 

HTB structure and slabs with a ReO3-/WO3-type structure, in which the corner-

sharing WO6 octahedra were tilted are about 15°. These components 

alternate in a periodic manner, however, from the first HREM images it was 

apparent that the widths of the HTB and ReO3-type slabs varied, as identified 

by the anomalous widths of the fringes observed in the images. This bears 

Figure 1.12: Some of the idealised structures of intergrowth tungsten bronzes proposed by 
Hussain and Kihlborg, showing its fringe-like structure. An ReO3-type slab is highlighted with 
a blue box, whilst a HTB-type slab is highlighted with a red box. Adapted from  A. Hussain and 
L. Kihlborg, Acta Crystallogr. Sect. A, 1976, 32, 551–557. 
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striking resemblance to the Wadsley defect fringes observed in the Nb16W5O55 

shear structure reported by Griffith et al. (vide supra)71; indeed, Hussain and 

Kihlborg noted that most crystals studied via X-ray diffraction gave complex 

patterns due to two or more lattices with the same b and c cell parameters but 

different lengths on the a-axis (i.e., slabs of differing width to their 

neighbours).92 Nevertheless, they were able to provide a reliable XRD 

analysis from some of the crystals synthesised. Furthermore, they determined 

that the width of the HTB slabs was related to the concentration of A in the 

synthesis. Some of the structures observed are illustrated in Figure 1.12. So 

far, no electrochemical behaviour has been reported for the intergrowth 

tungsten bronzes synthesised by Hussain and Kihlborg. 
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1.5 Research Aims 

Lithium-ion batteries have played a pivotal role in the world we live in since 

their inception in the 1990s. Despite previous safety concerns, ever-

increasing research into the components of these batteries have led to life-

changing advancements over the last thirty years. The graphite anode 

continues to be the number one choice for many applications; however, 

various alternative anode materials have shown that there is great potential 

for improvement on many key aspects of this component. Conversion-based 

and alloying-based anodes such as MnP4 or the ternary alloy TiSnSb have 

shown that the gravimetric capacity of graphite (372 mA h g−1) is far from the 

upper limit of contemporary anode materials. On the other hand, the research 

of Griffith et al. shows that the time-intensive and costly techniques used to 

prepare intercalation-based materials with higher theoretical capacities than 

that of graphite can be substituted by choosing materials with an appropriate 

crystal structure.71 

 The initial portion of this research is based on the report by Griffith et 

al., wherein the effects of varying experimental conditions on the structures of 

Nb16W5O55 (“shear”-type niobium tungsten oxide) and Nb6.7W10.3O47 (‘bronze-

like’ niobium tungsten oxide, similar in structure to Nb18W16O93) will be studied. 

Following this, the synthesis, characterisation and electrochemical behaviour 

of a series of potassium tungsten bronzes (KxWO3, 0.05 < x < 0.40) has been 

studied in order to investigate the intergrowth tungsten bronze (ITB) phase 

reported by Hussain and Kihlborg.92 All materials synthesised were 

characterised using powder X-ray diffraction (PXRD) to determine the phase 

purity of the sample and, where possible, elucidate the crystal structure and 

cell parameters. Phase-pure samples, within a margin of error appropriate for 

structures where Wadsley defect fringes (or similarly structural anomalies) 

may exist, were then be to create self-supporting thin films. These thin films 

served as the anode in a cell containing lithium metal, and used to conducted 

galvanostatic measurements to investigate the lithiation and de-lithiation of 

the active material. 6Li and 7Li MAS solid-state nuclear magnetic resonance 

(SSNMR) was then used to study the intercalation behaviour of the active 

material. 

 

  



28 
 

(2.1) 

 

Chapter 2  Experimental Techniques 

2.1 X-ray Diffraction 

2.1.1 Principles of X-ray Diffraction93,94 

X-ray diffraction can be understood by comparison to the principles of optical 

diffraction. Consider passing visible light through an optical grating, a piece of 

glass scored with parallel lines which are separated by a distance comparable 

to the wavelength of light. The lines of the optical grating can be considered a 

secondary point source of light which re-radiates light in all directions. Light 

from one secondary source can interfere either constructively or destructively 

with light from all other sources, with the mode of interference being governed 

by the wavelength of the light, 𝜆, and the separation of the lights of the grating. 

Due to the vast number of secondary sources in the optical grating, the 

measured diffraction pattern exhibits intense and regularly-spaced bands of 

light where the diffracted beams are in-phase. 

 X-rays, with a wavelength of ~1 Å, are diffracted by crystalline 

structures, in which the interatomic distances are comparable in magnitude 

(but still somewhat larger than) the wavelength. The highly periodic nature of 

crystalline structures enables them to function like a diffraction grating for X-

rays, with the regular unit cells acting as the secondary point sources. 

However, an important distinction to make is that, in either case, the incident 

radiation is not reflected by the diffraction medium. It is instead scattered as a 

result of its interaction with the atoms’ electrons.  

 The description above is based on the assumption that the sample 

consists of a single two-dimensional grid of atoms. Although crystals are 

three-dimensional arrays, the Bragg approach to diffraction considers them as 

a set of two-dimensional planes which both reflect and transmit radiation. 

Figure 2.1 illustrates how this approach leads to Bragg’s Law, 

2𝑑 sin 𝜃 = 𝑛𝜆 , 
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where 𝑑  is the separation between adjacent planes, 𝜃  is the angle of the 

incident X-ray beam, 𝑛 is an integer and 𝜆 is the wavelength of the X-rays. 

Figure 2.1 shows two incident X-ray beams being scattered by adjacent 

planes, A and B, which are separated by distance 𝑑. For their reflections to be 

in-phase, the additional distance that beam 2 must travel must be equal to a 

integer multiple of the wavelength (𝑛 = 1, 2, 3…). Since 𝜆 is fixed in an X-ray 

diffraction experiment, and 𝑑  is a parameter fixed by the sample itself, 

solutions to Bragg’s Law are found by varying 𝜃 . For angles where the 

scattered X-rays are not in phase, destructive interference occurs. For a real 

crystal, this results in total cancellation of the scattered beams outside a very 

small range of angles centred around the Bragg angle for any given plane. 

 In the diffraction experiment, X-rays are generated by striking a metal 

target, in this case Cu, with a beam of accelerated electrons. This causes the 

ionisation of the metal and, subsequently, an electron from the core shell is 

emitted. It is replaced by an electron from a higher energy orbital, 

simultaneously emitting X-ray radiation to account for the change in energy. 

 

2.1.2 Powder X-ray Diffraction 

In an ideal, finely-powdered sample, all crysallites are randomly arranged in 

all possible orientations. Some of these planes must be orientated at the 

Bragg angle with respect to the incident radiation, and therefore constructive 

interference occurs for these. When X-ray radiation is incident upon the 

Figure 2.1: Derivation of Bragg’s Law, which treatments a three-dimensional array of atoms as 
a set of adjacent semi-transparent planes. 
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sample at a given Bragg angle, the diffracted beams form a Debye-Scherrer 

cone of radiation unique to the targeted set of planes due to the angular 

orientation of the planes around the direction of the incident beam. This is 

illustrated in Figure 2.2.95 

 In powder X-ray diffraction (PXRD) experiments, the angle of 

incidence is varied through a range of angles whilst the sample is rotated. The 

detector scans through the reflected cones at each step and the intensity of 

the cones is plotted against 2𝜃. 

 

2.1.3 Experimental Procedure 

Samples were ground into fine powders using an agate mortar and pestle. A 

glass slide was prepared by applying a moderate amount of grease. The 

sample was applied using a 250 micron sieve to ensure the powder was 

uniformly distributed across the slide. Diffraction patterns were recorded on a 

Bruker d8 diffractometer using Cu Kα1 radiation (𝜆 = 1.54056 Å). Scans were 

taken over a 2θ range of 10-60°, unless specified otherwise, incremented in 

0.02° steps. 

 

2.1.4 Rietveld Refinements 

The Rietveld method is used to fit an experimentally-obtained diffraction 

pattern to a theoretical diffraction pattern. The theoretical diffraction pattern is 

Figure 2.2: Debye-Scherrer cones obtained from the diffraction of a monochromatic X-ray beam 
by a powdered, crystalline material. Adapted from J. Kieffer and J. Wright, Powder Diffr.,, 
DOI:10.1017/S0885715613000924. 
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usually obtained from the Inorganic Crystal Structural Database (ICSD)96 as a 

crystallographic information file (.cif file). It may also be constructed from a 

table of atomic positions in molecular modelling and visualisation software 

such as VESTA or CrystalMaker. This process is used primarily to determine 

the phase composition of a powdered sample (the phases present and their 

relative contributions to the overall diffraction pattern). Structural information 

such as bond angles, bond lengths and unit cell dimensions can be obtained 

from the results of a Rietveld refinement. 

 During a Rietveld refinement, a range of parameters are varied to 

minimise the residual, 𝑆𝑌, of the calculated (𝑌𝑐𝑖) and observed (𝑌𝑜𝑖) diffraction 

patterns using a least squares approach: 

𝑆𝑌 =  ∑
1

𝑌𝑜𝑖
𝑖  (𝑌𝑜𝑖 − 𝑌𝑐𝑖)2 . 

The parameters refined include the detector zero point, lattice parameters, 

atomic coordinates and thermal parameters, the background and profile 

coefficients (which determine the Lorentzian and Gaussian contributions to 

the shape of the diffraction peaks). The accuracy of a Rietveld refinement is 

determined by either the 𝜒2  value or the weighted R-factor, wRp. An 

acceptable fit is obtained when either 𝜒2 ≈ 1 or wRp < 20%. In this report, all 

Rietveld refinements were carried out using the General Structural Analysis 

System-II (GSAS-II).97 

 

2.2 Galvanostatic Measurements 

2.2.1 Electrode Preparation 

Self-supporting film electrodes were prepared using polytetrafluroethylene 

(PTFE) as a binder and superconductive carbon black as a conductive 

additive. Alongside the active material, these components were dry mixed and 

ground by hand in an agate pestle and mortar in a weight ratio of 70:18:12 

(active material, conductive additive and binder, respectively) until the mixture 

plasticised. Thin, self-supporting discs were cut out and adhered to copper 

mesh, then dried under vacuum at 100 °C. 
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2.2.2 Electrochemical Cell Construction 

Swagelok™ cells were used for the electrochemical testing of all electrodes 

prepared in this report. These contain two plungers, one at either end of the 

cell, with which the anode, cathode and separator discs can be pressed and 

locked together by hand, as illustrated in Figure 2.3. All components of the 

cell, except for the lithium metal cathode and separator disc, were dried under 

vacuum at 100 °C before being transferred to an argon-filled glovebox. Due 

to the air-sensitive nature of the cathode and electrolyte, all subsequent cell 

preparation was conducted inside the glovebox. 

 More specifically, the cells being prepared were in fact half-cells. 

Lithium metal was used in place of another intercalation material (e.g., LiCoO2) 

to provide the maximum Li+ ion flux during discharge. Since the cells are 

cycled in the limit of maximum ion flux, their performance depends upon the 

active material being tested, rather than a combination of the active material 

and the cathode. 

 

  

Figure 2.3: Components of a Swagelok™ cell (left) and a fully-constructed cell (right). In this 
configuration, the anode, separator, electrolyte and cathode are in close contact, held in place 
by a stainless steel spring and two stainless steel rods at either end. 
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Electrolyte 
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Spring 
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(2.4) 

 

2.2.3 Electrochemical Tests 

All electrodes were cycled against lithium metal with 1 M LiPF6 in EC:DMC 

(ethylene carbonate /dimethyl carbonate in a 1:1 volume ratio), obtained from 

Sigma Aldrich, as the electrolyte. Galvanostatic discharge-charge curves 

were recorded on a VMP3 multi-channel potentiostat and a cyclic channel SP-

150 system from Bio-Logic Science Instruments. The cells were discharged 

at either 0.5 C or 4 C to a lower limit of 10 mV and recharged to 2.5 V. Data 

were recorded every 5 mV. 

 Some of the cells were tested with the intent to study the structure of 

the active material. Hence, after electrochemical cycling, cells were 

disassembled inside the glovebox to ensure the active material was preserved. 

A membrane separator (Celgard) was added to these cells, which ensured the 

safe removal of the electrodes and the active material. The anodes were 

washed with DMC and dried for two hours under vacuum at 40 °C before being 

packed into Kel-F disposal inserts. The inserts were then placed inside a 4 

mm zirconium rotors with and analysed via solid-state NMR (vide infra). 

 

2.3 Nuclear Magnetic Resonance Spectroscopy 

2.3.1 Principles of Nuclear Magnetic Resonance Spectroscopy98–100 

Nuclei possess an intrinsic angular momentum called spin, represented by the 

spin quantum number, 𝐼. The magnitude of the spin angular momentum vector, 

I, is quantised: 

|I| = ℏ√𝐼(𝐼 + 1) 

The spin quantum number may take half-integer and integer values. The 

angular momentum vector, I, has 2I +1 projections onto an arbitrary axis 

(commonly the z-axis). Since both its magnitude and direction are quantised, 

the z-component of the angular moment vector is given by: 

𝐼𝑧 = 𝑚𝐼ℏ , 

where 𝑚𝐼  is the magnetic quantum number, which itself has 2I +1 integral 

values and ranges from -I to +I.  
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(2.5) 

 

(2.6) 

 

(2.7) 

 

(2.8) 

 

(2.9) 

 

  A nucleus with non-zero spin has a magnetic diploe moment, μ, which 

is also quantised. The gyromagnetic ratio, 𝛾, which is the ratio of the magnetic 

moment to the angular momentum and is fixed for a given nucleus, determines 

whether the orientation of the magnetic dipole moment is parallel or anti-

parallel to the spin angular momentum vector. For nuclei where 𝛾 is positive, 

the orientation of these vectors is parallel to one another; similarly, for nuclei 

where 𝛾 is negative, they are anti-parallel. 

 In the absence of a magnetic field, all orientations of the spin angular 

momentum are degenerate (the same) in energy. This degeneracy is lifted by 

the application of a strong external magnetic field, B0. This is known as the 

Zeeman interaction. The energy of a given state, with dipole moment μ, is 

given by: 

𝐸 =  −μ ∙ B0 

If the external magnetic field is applied along the z-axis, then: 

𝐸 =  −𝜇𝑧B0 

where 𝜇𝑧 is the projection of the dipole moment onto the z-axis and 𝐵0 is the 

strength of the magnetic field. Therefore, for any magnetic quantum number, 

combining equations 2.4 and 2.6 shows that the states of the nuclear spin are 

equal spaced in energy in the presence of a strong magnetic field: 

𝐸|𝑚𝐼⟩ =  −𝛾𝑚𝐼ℏ𝐵0 

 Since the spectroscopic selection rule in nuclear magnetic resonance 

is Δ𝑚𝐼 = ±1, all allowed transitions between nuclear spin states have the same 

energy: 

Δ𝐸 =  −𝛾ℏ𝐵0 

with the associated frequency known as the Larmor frequency, 𝜔0, reported 

in Hz: 

𝑣0 =
Δ𝐸

ℏ
=  −𝛾𝐵0 

 The Larmor frequency of each nucleus is affected by it’s chemical 

environment. The chemical shift arises from the applied magnetic field causing 

the electrons in the sample to circulate and generate an internal magnetic field, 

typically denoted 𝐵1. This magnetic field may opposed the applied field, 𝐵0, 
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(2.10) 

 

(2.11) 

 

generating a diamagnetic current, or add to the applied field, inducing a 

paramagnetic current. The magnetic field at a select nucleus is then: 

𝐵𝑒𝑓𝑓 = 𝐵0 − 𝐵1 = 𝐵0(1 − 𝜎) 

where 𝜎 is the shielding constant and 𝐵𝑒𝑓𝑓 is the effective field experienced 

by the nucleus. An atomic nucleus is said to be shielded from the external 

magnetic field when 𝐵1  opposes 𝐵0  and deshielded when 𝐵1  adds to 𝐵0 . 

Hence, the resonance frequency of the nucleus in the presence of an external 

magnetic field is given can then be described by 

𝜔 =  −𝛾𝐵0(1 − 𝜎) . 

The shielding is dependent upon the electron density at the nucleus. As a 

result, many heavy metal nuclei (such as 93Nb) can experience chemical shifts 

of up to thousands of ppm (e.g., 10,000 ppm). 

 

2.3.2 The NMR Experiment 

When the degeneracy of nuclear spin states is lifted by the Zeeman interaction, 

the relative populations of the spin states is also altered. This leads to the 

formation of a bulk magnetisation vector, M0, due to the slight excess of spins 

in the lower energy state, as predicted by the system’s Boltzmann distribution. 

In the vector model, the nuclear spins are represented as precessing around 

M0 at the Larmor frequency. 

 In an NMR experiment, a short, high-power burst of radio-frequency 

(RF) radiation, known as a pulse, is applied at the Larmor frequency of the 

target nuclei. The pulse has a flip angle (in degrees), which describes the 

angle through which the bulk magnetisation vector is rotated, and a phase, 

which describes the axis along which the pulse is applied. For the duration of 

the pulse, the bulk magnetisation vector will precess around this axis. For 

example, a 90° pulse applied along x will cause M0 to rotate 90° around the 

x-axis, after which it will begin to precess around the axis of the external 

magnetic field once again. This generates a slowly-decaying oscillatory 

voltage in the spectrometer’s receiver coil, which is recorded as a free 

induction decay (FID). The FID contains information on the frequencies and 

intensities of all resonances excited by the RF pulse. After Fourier 

transformation (a mathematical operation which decomposes a function of 
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time into its constituent frequencies), the FID is converted into a frequency-

domain spectrum, where in the x-axis is typically given in parts per million 

(ppm) instead of Hz for simplicity. 

 

2.3.3 Solid-State NMR 

Solution-state NMR experiments typically yield spectra containing sharp, 

narrow resonances. On the other hand, the study of solids using NMR yields 

spectra containing very broad lines which, at first glance, appear to offer very 

little useful information. This line broadening occurs due to a number of 

mechanisms, including: (1) the dipolar interaction – a through-space 

interaction whereby a nucleus induces a magnetic field at another nucleus, (2) 

chemical shift anisotropy (CSA) – the dependence of the chemical shift on the 

orientation of the nucleus, and (3) the quadrupolar interaction – the interaction 

of a nuclear quadrupole moment with the electric field gradient (occurs only 

for nuclei where 𝐼 > ½). 

 

2.3.3.1 Dipolar Coupling 

For each nucleus with a magnetic dipole moment, there is a small, localised 

magnetic field centred upon that nucleus. The strength of this field is denoted 

Bμ. This field interacts with the dipole moments of nearby nuclei, and the 

strength of this interaction is affected by their relative strengths, and the 

distance and geometry between them. Dipolar couplings can be significant in 

magnitude, often on the order of 103 Hz. 

 

2.3.3.2 Chemical Shift Anisotropy 

As discussed above, the frequency which a nucleus resonates depends upon 

its chemical environment. In a liquid sample, where molecules are in a 

constant state of rotation and translation, the directional and orientational 

components of the chemical shift are averaged out to an isotropic 

(directionally independent) value. In a solid, however, this tumbling motion is 

not present. The shielding or de-shielding effect a neighbour nucleus has on 

a resonant nucleus therefore becomes dependent upon the distance and 
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(2.12) 

 

(2.13) 

 

geometry between them. The strength of this interaction is dependent on the 

term 1 – 3 cos2 θ.  

 

2.3.3.3 Quadrupolar Coupling 

Nuclei with a spin quantum number greater than I = ½ possess a nuclear 

quadrupole moment, eQ. This interacts with the electric field generated by 

other atoms present in the sample. It is an anisotropic (directionally dependent) 

interaction and in most cases is the dominating interaction present in an NMR 

experiment, resulting in the inhomogeneous broadening of the spectrum.  

The anisotropy of the interaction is described by a tensor (an N-

dimensional matrix), or pictorially represented as an ellipsoid. The magnitude 

of the quadrupolar interaction is proportional to the length of the tensor, given 

in Hz by the equation 

𝐶𝑄 =
𝑒𝑄𝑉𝑧𝑧

ℎ
 , 

where CQ is the quadrupolar coupling constant, VZZ is the length of the 

ellipsoid. Vzz is also a component of the tensor’s principal axis system (PAS) 

and can be thought of as the length along z-axis. Larger values of CQ 

represent stronger quadrupolar interactions. In addition, the cross-section of 

the ellipsoid provides information about the symmetry of the quadrupolar 

interaction, which is given by the term 𝜂𝑄, 

𝜂𝑄 = (𝑉𝑥𝑥 − 𝑉𝑦𝑦)/𝑉𝑧𝑧 , 

where Vxx, Vyy and Vzz are all three components of the PAS and 0 < 𝜂𝑄< 1. An 

𝜂𝑄  value of 0 implies that the quadrupolar interaction is the same in all 

directions, i.e., a symmetrical chemical environment. 

 

2.3.3.4 Magic-Angle Spinning 

Due to molecular tumbling in liquids, solution-state NMR spectra often exhibit 

narrow, distinct lineshapes, enabling the extracting of detail structural 

information. In solids, however, the interactions discussed above are present 

simultaneously. This creates much broader lineshapes from which little, if any, 
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information can be deduced. However, there are techniques that are 

commonly employed to suppress these anisotropic interactions. 

 Magic-angle spinning (MAS) is one such method. During an MAS NMR 

experiment, the sample is orientated at an angle of 54.736° (one of the 

solutions to the expression 0 = 1 – 3 cos2 θ) relative to the external magnetic 

field. The sample is then rotated, usually at a frequency between 1 and 130 

kHz, dependent upon the mass of the sample and the diameter of the rotor. 

This is represented in Figure 2.4. Spinning the sample at this angle imitates 

the motion of molecular tumbling and effectively cancels out the anisotropic 

interactions, providing the MAS rate is equal to or greater than the magnitude 

of the interaction being removed. At slow spinning rates the spectrum will 

exhibit a manifold of peaks evenly spaced out at the MAS rate from the 

isotropic signal. These peaks are termed spinning sidebands. However, 

magic-angle spinning does not cancel out the effects of the quadrupolar 

interaction. The lineshapes observed in MAS NMR experiments are still 

broadened by the quadrupolar interaction, if it is present, although useful 

structural information can be reliably obtained from these spectra. To remove 

this interaction entirely, two-dimensional methods must be employed.  

 

  

Figure 2.4: A pictorial representation of magic-angle spinning. The sample (blue) is rotated at a 

high frequency inside the main magnetic field (B0), rotated at an angle of θm. 
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2.3.4 Experimental Procedure 

All solid-state NMR spectra were acquired using a Bruker 500 Avanace III 

spectrometer with a 11.7 T magnet, using Larmor frequencies of 73.600 MHz 

for 6Li and 194.370 MHz for 7Li. Each sample was prepared (vide supra) under 

an argon atmosphere and packed into inserts for 4 mm zirconium rotors. The 

MAS rate used was 10 kHz. The spectra were analysed using the Bruker 

TopSpin software. 
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Chapter 3  Results and Discussion 

3.1 Synthesis and Characterisation of Nb16W5O55 

Initially, samples of shear-type Nb16W5O55 were synthesised following the co-

thermal oxidation method described by Griffith et al.71 Stoichiometric 

quantities of WO3, WO2 and NbO2 (obtained from Sigma Aldrich) were ground 

together by hand in an agate pestle and mortar, then pressed into a pellet (ø 

= 10 mm) under 10 MPa of pressure in a hydraulic press. The pellets were 

then fired in an alumina crucible in a furnace at 1473 K (1200 °C) for 2 hrs. 

The temperature of the furnace was increased at a rate of 10 K min-1 and was 

allowed to cool naturally to room temperature. After this, the pellets crumbled 

to yield a pale green powder.  

To assist in determining the phase composition, PXRD data was 

obtained and a Rietveld refinement was completed (Figure 3.1). The structural 

model for Nb16W5O55, obtained as a crystallographic information file from the 

Figure 3.1: Rietveld refinement of the PXRD data obtained from the initial sample of Nb16W5O55. 

Phase composition: Nb16W5O55 = 70.0%, Nb2WO8 = 3.1%, Nb14W3O44 = 26.9%; wRp = 10.8%. The 
difference between the observed and calculated diffraction patterns is shown in black in the 
lower portion of the plot. 
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ICSD, was used as the primary phase in the refinement, along with the 

reported disproportionation products, Nb2WO8 and Nb14W4O44. Reasonably 

good agreement between the calculated and experimental diffraction patterns 

was observed (wRp = 10.8%). The Rietveld refinement suggests that the 

dominant phase in the sample is Nb16W5O55, with a phase fraction of 70.0 wt%; 

the remaining 30.0% of the sample consisted of Nb14W3O44 (26.9 wt%) and 

Nb2WO8 (3.1 wt%). According to Roth, Nb16W5O55 is a metastable phase 

formed between 1363 and 1658 K, and upon cooling should disproportionate 

to Nb14W3O44 and Nb2WO8, hence the choice of phases used in this Rietveld 

refinement.75  

The sample was then milled by hand and reheated for an additional 2 

hrs at 1473 K to investigate the effect of further sintering on the phase purity 

of the sample. However, the diffractogram shown in Figure 3.2 appears to 

indicate that the phase composition changed dramatically after being 

reprocessed. More specifically, many additional diffraction peaks are now 

present in the diffraction pattern and, using the same structural models as 

Figure 3.2: Rietveld refinement of the PXRD data obtained from the initial sample of Nb16W5O55 
after being heated for an additional 2 hours. Phase composition: Nb16W5O55 = 10.1%, Nb2WO8 = 
40.7%, Nb14W3O44 = 49.2%; wRp = 10.1%. The difference between the observed and calculated 
diffraction patterns is shown in black in the lower portion of the plot. 
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before, the Rietveld refinement indicates that the phase fraction of Nb16W5O55 

has decreased significantly to 10.1 wt%. At the same time, the phase fractions 

of Nb14W3O44 and Nb2WO8 increased to 49.2 wt% and 40.7 wt%, respectively. 

After another 2 hrs of sintering at 1473 K (total additional sintering time of 4 

hrs), the Nb14W3O44 phase became the dominant phase, with a phase fraction 

of 78.3 wt%. The Rietveld refinement for this sample is shown in 

Supplementary Information, Figure S.1. The evolution of the diffraction pattern 

as a function of sintering time is shown in Figure 3.3. The PXRD data 

presented suggests that the metastable Nb16W5O55 phase is formed at high 

temperatures and short reaction times, and that the cooling process directly 

and irreversibly yields the disproportionation products. However, Roth and 

Wadsley report that both initial heat treatment at 1623 K and quickly cooling 

the products (quenching) results in the preparation of phase-pure samples of 

Nb16W5O55.77 Unfortunately, due to furnace limitations, i.e., the lack of a 

furnace capable of reaching these extreme temperatures, the method could 

not be attempted in our laboratory or department. 

To determine the effects of pressure on the phases formed, the initial 

synthetic procedure was repeated using non-pelletised reagent powders. 

Figure 3.3: Evolution of the diffraction pattern for the initial sample of Nb16W5O55 after heating 
the powder two additional times. Black – initial synthesis; red – after milling and +2 hrs of 
heating; blue – after milling and +4 hrs (total) of heating 

10 15 20 25 30 35 40 45 50 55 60

2θ /°
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PXRD data was obtained for the resultant pale green powder, which at a 

glance appeared the same as the sample produced during the initial synthesis. 

However, it is noted that the diffraction pattern obtained indicated marked 

differences to that from the initial synthesis, as shown in Figure 3.4. In 

particular, certain peaks are more prominent in the diffraction pattern obtained 

for the sample synthesised from the raw powders. In particular, the peaks at 

2θ ≈ 18°, 22.5° and 32° and 45° exhibit distinct differences in intensities. 

Rietveld analysis revealed that these peaks correspond to the Nb14W3O44 

phase, which in this sample, had a phase fraction of 87.4 wt%. The unit cells 

of Nb14W3O44 and Nb16W5O55 are shown in Figure 3.5. In this sample, the 

Nb16W5O55 had a phase fraction of 12.6 wt%. However, the Rietveld analysis, 

shown in Figure 3.6, had a poor fit (wRp = 15.9%), indicating that there may 

be additional and unknown phases present in the sample, not including the 

Nb2WO8 phase which usually accompanies Nb14W3O44 as a product of the 

disproportionation of Nb16W5O55. Therefore, it can be concluded that 

synthesising Nb16W5O55 as a pellet appears to suppress the mechanism by 

which disproportionation occurs. This may be due to the close proximity of 

individual grains with the pellet suppressing the mechanism of 

disproportionation, either by preventing the crystallite from rotating or moving 

on a molecular level or by providing very little space for the products of 

disproportionation. Due to the small difference in free energy between the two 

phases, even a small change in synthetic conditions may have a major effect 

Figure 3.4: Comparison of the diffraction patterns obtained from samples synthesised as 
powders (in black) and as pellets (in red). 
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on the phase purity of the sample, or the specific phases that are formed, as 

demonstrated here.  
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Figure 3.6: Rietveld refinement of the sample of Nb16W5O55 synthesised as a raw powder, 
without being pelletised. Phase composition: Nb14W3O44 = 87.4%, Nb16W5O55 = 12.6%; wRp = 
15.9%. The difference between the observed and calculated diffraction patterns is shown in 
black in the lower portion of the plot. 

Figure 3.5: Comparison of the unit cells of Nb14W3O44 (left) and Nb16W5O55 (right). The block 
structure of each is shown in red. The Nb14W3O44 phase is composed of [4 x 4] blocks, whilst the 
Nb16W5O55 phase is composed of [5 x 4] blocks. 
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3.2 Nb6.7W10.3O47 

3.2.1 Synthesis and Characterisation 

Samples of block- type Nb6.7W10.3O47 were synthesised following the co-

thermal oxidation method described by Griffith et al.71 Stoichiometric 

quantities of WO3, WO2 and NbO2 (obtained from Sigma Aldirch) were ground 

together by hand in an agate pestle and mortar, then pressed into a pellet (ø 

= 10 mm) under 10 MPa of pressure in a hydraulic press. The pellets were 

then fired in an alumina crucible in a furnace at 1473 K (1200 °C). The 

temperature of the furnace was increased at a rate of 10 K min-1 and was 

allowed to cool naturally after 2 hrs. After this, the pellets crumbled to yield an 

off-white powder.  

To assist in determining the phase composition, PXRD data was 

obtained and a Rietveld refinement was completed (shown in Figure 3.7). The 

structural model for Nb6.7W10.3O47, obtained as a crystallographic information 

file from the ICSD, was used as the primary phase in the refinement. The 

Figure 3.7: Rietveld refinement of the PXRD data obtained for a sample of Nb6.7W10O47 prepared 
at 1473 K for 2 hrs. Only the Nb6.7W10O47 phase was present (wRp = 7.22%). The difference 
between the observed and calculated diffraction patterns is shown in black in the lower portion 
of the plot. 
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phase composition was determined to be primarily Nb6.7W10.3O47 with a wRp 

of 7.22%. Other phases were considered in concurrent Rietveld refinements, 

such as the Nb18W16O93 phase, which has a very similar structure. The 

refinement carried out using the structural model for Nb18W16O93 provided an 

acceptable fit, however, there were noticeable differences between the 

calculated diffraction pattern and the experimental data in the region of 22-

26°. These differences were not present when the refinement was carried out 

with the Nb6.7W10.3O47 phase. 

In a similar manner to Nb16W5O55, the initial synthetic procedure was 

repeated using raw reagent powders (i.e., they were not pressed into pellets 

before being sintered). The resultant powder was off-white in colour. It 

appeared identical to the powder synthesised as a pellet, however, the PXRD 

data showed some differences, as highlighted in Figure 3.8. Along with a slight 

contraction of the unit cell along the c-axis, as revealed by the Rietveld 

analysis, two small peaks in the region of 2θ = 24-26° exhibited an increase 

in intensity. Rietveld refinement using the Nb18W16O93 structural model 

provided better agreement with the observed diffraction pattern than with 

Nb6.7W10.3O47 and indicated the presence of a Nb18W16O93 phase (wRp = 

8.80%). However, subsequent efforts to synthesise Nb18W16O93 were 

unsuccessful, highlighting the difficulty in preferentially synthesising one 

phase over the other. Given the similarities between Nb6.7W10.3O47 and 

Nb18W16O93, it is possible that the samples produced here consist of a mix of 

Figure 3.8: Comparison of the X-ray diffraction patterns obtained for Nb18W16O93 (black, 
synthesised as a powder) and Nb6.7W10.3O47

 (red, synthesised as a pellet). There is a slight 
contraction in the unit cell along the c-axis, as well as increased intensity in the peaks at 2θ = 
24° and 25°.  
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the two. Figure 3.9 shows a comparison of the unit cells of Nb6.7W10.3O47 and 

Nb18W16O93 to illustrate these similarities. Alongside the more even 

distribution of tungsten throughout the channels in the NbO6 framework, 

tungsten atoms in Nb18W16O93 only occupy pentagonal sites in the structure. 

On the other hand, in Nb6.7W10.3O47 tungsten only occupies the quadrangular 

sites adjacent to the pentagonal channels, as highlighted in red. Based on the 

sensitivity shear-type niobium tungsten oxides exhibit towards the precise 

synthetic conditions, these small differences in the unit cell may be enough to 

cause one structure to be preferentially formed over the other, or for both 

phases to co-exist in a similar manner to Wadsley defect fringes in the 

Nb16W5O55 system. 

 

  

Figure 3.9: Comparison of the unit cells of Nb6.7W10.3O47 (top) and Nb18W16O93 (bottom). The 
green polyhedral represent NbO6 octahedra. The grey spheres sites fully or partially occupied 
by W atoms. 
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3.2.2 Probing the Electrochemical Behaviour of Nb6.7W10O47  

Half-cells containing Nb6.7W10.3O47 as the active material were prepared and 

tested to determine their electrochemical behaviour. The half cells were 

initially discharged at a rate of 0.5 C and 4 C. Figure 3.10 displays the 

galvanostatic discharge obtained for Nb6.7W10.3O47 at 4 C and 0.5 C. Fewer Li+ 

ions were intercalated at 4 C. Only 59.6 Li+ ions were intercalated per formula 

unit of Nb6.7W10.3O47 at 4 C, whereas 128.9 Li+ ions were inserted per formula 

unit at 0.5 C. At higher rates of discharge, the greater influx of Li+ ions at the 

surface of the electrode likely caused the SEI layer to build up more 

immediately, restricting the number of Li+ ions that can intercalate from the 

onset. This is seen in the shapes of the discharge curves. In the half-cell 

discharged at 0.5 C, the three-step intercalation process described by Griffith 

et al.,71 wherein the intercalating Li+ ions preferentially enter the pentagonal, 

square and triangular channels in the structure, is better defined, occurring 

Figure 3.10: (a) Galvanostatic discharge curve for Nb6.7W10.3O47, discharged at a rate of 4 C. (b) 
Galvanostatic discharge curve for Nb6.7W10.3O47, discharged at a rate of 0.5 C The x-axis denotes 
the number of Li+ ions intercalated per formula unit (x).  

(a) 

(b) 
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between 2.5 V and 1.0 V. Additionally, there appears to be two distinct steps 

taking place in the 1.0 V to 0.0 V range, likely corresponding to 

electrochemical process at the surface of the electrode.  

 A half-cell containing Nb6.7W10.3O47 was then cycled at a rate of 0.5 C 

to the end of its second discharge. Figure 3.11 shows the galvanostatic 

discharge-charge curve for this half-cell. After charging, 49.9 Li+ ions per 

formula unit were recovered from the electrode (out of 128.9), indicating that 

most of the Li+ inserted during in the first discharge cycle contributed to the 

formation of the SEI layer. On the second discharge, 36.2 Li+ per formula unit 

were intercalated into the electrode. Similar behaviour was observed for the 

half-cell discharged at 4 C, wherein approximately 50 Li+ ions per formula unit 

remained in the electrode during the charge cycle and 40.2 Li+ per formula 

unit were intercalated during the second discharge cycle. When comparing 

the quantity of Li+ being inserted into the electrode during discharge to the 

Figure 3.11: (a) Galvanostatic 2nd discharge curve for Nb6.7W10.3O47 cycled at 4 C. (b) 
Galvanostatic 2nd discharge curve for Nb6.7W10.3O47 cycled at 4 C. The x-axis denotes the number 
of Li+ ions intercalated per formula unit (x). 

(a) 

(b) 
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number of transition metal atoms in one unit cell of Nb6.7W10.3O47, the 

galvanostatic profiles indicate that between 2.13 and 2.36 Li+/TM are 

intercalated during discharge. However, this does not preclude the possibility 

that some of the Li+ inserted during the second discharge also contributes to 

the SEI layer; each time an electrochemical cell is cycled, it is expected that 

some of the Li+ ions will be lost to the SEI layer. 

 As a preliminary investigation into the long-term cyclability of 

Nb6.7W10.3O47, a third half-cell was constructed and cycled at a rate of 4 C. It 

is noted that, due to the extremely long cycling times at 0.5 C in experiments 

with multiple discharge-charge cycles (> 14 days to reach the 3rd discharge), 

a half-cell was not cycled at 0.5 C. The galvanostatic discharge-charge curves 

Figure 3.12: (a) Galvanostatic discharge profile for Nb6.7W10.3O47 cycled at 4 C to the end of the 3rd 
discharge and (b) variation in capacity over time. 
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for Nb6.7W10.3O47 to the end of the 3rd discharge cycle are shown in Figure 3.12. 

The corresponding capacity of the electrode is also shown in Figure 3.12, 

showing the potential for capacity fade over multiple discharge-charge cycles. 

Although a sharp decrease in capacity (down 1.60 Li+/TM) is expected 

between the first and second discharge (due to the formation of the SEI layer), 

the downward trend thereafter indicates that the SEI layer continues to evolve 

on subsequent cycles and reduces the overall performance of the electrode. 

However, it is not clear whether this trend continues on subsequent cycles or 

whether the capacity tends towards a non-zero minimum over time. Additional 

testing over multiple cycles would be required to confirm this. 
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3.3 KxWO3 

3.3.1 Synthesis and Characterisation 

Initial samples of potassium tungsten oxide, KxWO3 (x = 0.10, 0.13, 0.15), 

were synthesised based on the method by Hussain and Kihlborg.92 Each 

sample was investigated using PXRD. Stoichiometric quantities of WO3, WO2 

and K2WO4 were mixed together and ground by hand in an agate pestle and 

mortar. The reagents were purchased from Sigma Aldrich, rather than being 

prepared in the laboratory. The mixture was then placed in an alumina crucible 

inside a quartz glass tube, which was evacuated using a conventional Schlenk 

line and heated at 1073 K for 16 hrs. The temperature was increased at a rate 

of 10 K min-1 and the sample was slowly cooled to room temperature inside 

the apparatus. The resultant powder was grey-green, different in colour to that 

of the starting mixture.  

At first glance, the diffraction patterns obtained for this narrow range 

of compositions were complex, with multiple peaks clustered around distinct 

Figure 3.13: Rietveld refinement of the PXRD data obtained from a sample of K0.13WO3 
synthesised in a Schlenk line. Phase composition: WO3 = 89.1%, K0.3WO3 (HTB) = 10.9%; wRp 
= 12.1%. The difference between the observed and calculated diffraction patterns is shown in 
black in the lower portion of the plot. 
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regions of the diffractogram. These clusters were only partially present in the 

calculated diffraction patterns of K0.3WO3 and WO3, which represent the end 

members of the WO3-HTB series. Therefore, it was predicted that the samples 

contained both phases in some proportion. The diffraction patterns for each 

sample in the range were very similar. A Rietveld refinement was carried out 

on K0.13WO3 sample to assist in phase determination. The structural models 

for K0.3WO3 (representing the HTB phase) and WO3 were obtained as 

crystallographic information files from the ICSD. An acceptable agreement 

between the observed and calculated diffraction patterns was discovered 

(wRp = 12.1%), as shown in Figure 3.13. The phase fractions of WO3 and 

K0.3WO3 were 89.1 wt% and 10.9 wt% respectively, suggesting that the 

reaction did not go to completion, although some of the hexagonal phase was 

synthesised successfully.  

Following this, samples of KxWO3 (x = 0.05, 0.10, 0.13, 0.25, 0.30, 

0.40) were synthesised by sintering the reagent powders in air in a 

conventional box furnace. The mixed powders were placed in an alumina 

crucible and heated in a furnace at 1073 K for 16 hrs. The temperature of the 

furnace was increased at a rate of 10 K min-1 and the samples were slowly 

cooled to room temperature. The resultant powders were yellow-green in 

colour, strikingly different to those synthesised in a Schlenk line. The 

diffractograms obtained for these samples were similar to those obtained 

Figure 3.14: Comparison of the X-ray diffraction patterns for K0.13WO3 (synthesised in vacuo 
using Schlenk apparatus) and K0.13WO3 (synthesised in air). The key differences are the 
difference in intensity of the peaks at 2θ ≈ 14°, 28°, 34°, 37° and 51°, corresponding to a higher 
fraction of the hexagonal phase. Phase composition for K0.13WO3 (Schlenk): WO3 = 66.9%, 
K0.3WO3 (HTB) = 33.1%; wRp = 15.1% 

10 20 30 40 50 602θ

Furnace, x = 0.13

Schlenk, x = 0.13
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previously, as shown in Figure 3.14. A Rietveld refinement was completed for 

the K0.13WO3 sample using the same WO3 and K0.3WO3 (HTB) structural 

models. The refinement is shown in Supplementary Information, Figure S.2. 

From the refinement, the phase fractions were 66.9 wt% and 33.1 wt% 

respectively, i.e., the hexagonal phase was more abundant in this sample than 

in the K0.13WO3 sample synthesised. However, the residual between the 

experimental diffraction pattern and the diffraction pattern calculated in this 

Rietveld refinement was not as good (wRp = 15.1%), indicating that there may 

have been a phase similar to either WO3 or K0.3WO3 present in the sample.  

It is not clear from the PXRD data alone whether the sample of 

K0.13WO3 consisted of separate WO3 and hexagonal KxWO3 domains, or if 

these phases were interlocking as reported by Hussain and Kihlborg.92  

Unfortunately, it was not possible to obtain optical microscopy or HREM data 

to compare the appearances of these samples with those reported in the 

literature. Instead, an approach was taken whereby the electrochemical 

behaviour of K0.13WO3 would be compared to that of WO3 and hexagonal 

K0.4WO3, and subsequently Rietveld refinements of the other compositions in 

the series were not conducted. 
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3.3.2 Evaluating the Electrochemical Performance of K0.13WO3 

K0.13WO3 lies at the upper end of the region of x-values where the ITB is 

reported to form, as noted by Hussain and Kihlborg.92 Therefore, in order to 

establish whether lithium intercalated into a HTB-like environment or into a 

WO3-like environment, K0.13WO3 was chosen as the active material; it was 

predicted that this composition would containing the greatest concentration of 

hexagonal channels in the ITB phase. Half cells containing K0.13WO3 as the 

active material were subsequently prepared, and the half cells were 

discharged and charged at a rate of 0.5 C. For comparison, half cells 

containing WO3 and K0.4WO3 (HTB structure) as the active materials were also 

prepared in order to compare the electrochemical performance of K0.13WO3 

with that of the end members of the WO3-HTB solid solution. The WO3 and 

K0.4WO3 half cells were also cycled at a rate of 0.5 C. 

 Figure 3.15 shows the galvanostatic discharge profiles obtained for 

K0.13WO3 (solid trace), WO3 (dashed trace) and K0.4WO3 (dotted trace) at the 

end of the first discharge when cycled at 0.5 C. All three profiles are very 

different; however, it is noted that there are some similarities between the 

profiles obtained for K0.13 and K0.4WO3. 

 It is in the second discharge cycle, however, that the contrast between 

K0.13WO3 and the end members WO3 and K0.4WO3 become most apparent. 

Figure 3.16 shows the galvanostatic charge-discharge profiles obtained for all 

three systems, clearly indicating the reversibility of intercalation in K0.13WO3 

compared to the other two species. More specifically, upon charging, 1.86 Li+ 

Figure 3.15: Galvanostatic discharge profiles for K0.13WO3 (solid trace), WO3 (dashed trace) and 
K0.4WO3 (dotted trace) after the first discharge at 0.5 C. The x-axis denotes the number of Li+ 
ions intercalated per formula unit (x). 
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ions per formula unit are recovered from the electrode, and almost the same 

number are intercalated during the second discharge. Since there is only one 

transition metal atom in each formula unit of K0.13WO3, this directly 

corresponds to a capacity of 1.86 Li+/TM (189.4 mA h g-1). In comparison, only 

0.4 Li+ ions per formula unit are reversibly intercalated into WO3 or K0.4WO3. 

It is also interesting to note that at the end of the first charge, K0.13WO3 and 

WO3 retain the same number of Li+ ions per formula unit in the SEI layer, 

potentially shedding light on the nature of the SEI layer after Li+ has been 

extracted from the active material. 

 K0.13WO3 also demonstrated good cyclability when cycled to the end 

of the third consecutive discharge. As shown in Figure 3.17, the SEI layer 

developed further between the second and third discharge cycles, which is to 

be expected as lithium is lost to the SEI between cycles; however, the capacity 

only dropped by 0.16 Li+/TM (17.8 mA h g-1). Furthermore, the same total 

number of Li+ ions per formula unit was reached during each discharge, 

implying that any Li+ ions not contributing to the continued evolution of the SEI 

layer were being reversibly intercalated into the active material. Further testing 

over a greater number of cycles would be needed to confirm whether the SEI 

layer continues to grow over time, or whether the capacity fade between the 

second and third discharge cycles is quickly reduced. 

Figure 3.16: Galvanostatic charge-discharge curves for K0.13WO3 (solid trace), WO3 (dashed 
trace) and K0.4WO3 (dotted trace) after the second discharge at 0.5 C. The x-axis denotes the 
number of Li+ ions intercalated per formula unit (x). 
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Figure 3.17: (a) Galvanostatic discharge-charge profile for K0.13WO3 to the end of the 3rd 
discharge at 0.5 C, where the x-axis denotes the number of Li+ ions intercalated per formula 
unit, x,  and (b) corresponding capacity fade. 
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3.3.3 Solid-State NMR Studies of K0.13WO3 

To assist in determining where the Li+ ions are being intercalated into the 

structure during discharge, 7Li MAS and 6Li MAS NMR experiments were 

conducted. Initially, only 7Li MAS NMR experiments were completed, however, 

the spectrum obtained only contained a single broad peak from which little 

structural information could be gained, as shown in Figure 3.18. The 

asymmetrical lineshape suggests there may be two or more resonances close 

to 0 ppm, one of which may be due to lithium in the SEI layer and the other 

due to lithium in the active material. The 6Li MAS NMR spectrum obtained 

appears to confirm this, showing two distinct peaks at 𝛿 = 0 ppm and 𝛿 = 2.8 

ppm, the latter being of greater intensity. 

 6Li MAS NMR spectra were obtained for a K0.13WO3 electrode at the 

end of the first charge cycle. The spectrum obtained is shown in Figure 3.19, 

in red, with the 6Li MAS spectrum of the fully-lithiated electrode shown in blue. 

As expected, the spectrum obtained at the end of the first charge cycle shows 

only one resonance at approximately 𝛿 = 0 ppm, corresponding to the lithium 

contained within the SEI layer. Therefore, the peak at 𝛿 = 2.80 ppm in the 

previous spectrum is the result of the intercalated lithium in the active material, 

though it does not describe the precise nature of that lithium environment – 

i.e., whether lithium was intercalated into the channels present in the WO3 

phase, the HTB phase, or both. 

Figure 3.18: 7Li MAS (left) and 6Li MAS NMR (right) spectra of K0.13WO3 after 1st discharge. MAS 
rate: 10 kHz. Only the central transition is shown, omitting the manifold of spinning sidebands 
that were present.  
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 Subsequently, 6Li MAS NMR experiments were completed on WO3 and 

K0.4WO3 electrodes which had been discharged at 0.5 C. The spectra obtained for 

these samples, at the end of the first discharge, are shown in Figure 3.20. Lithiated 

K0.4WO3 (top) exhibits a broader peak close to 𝛿 = 0 ppm, however, it is not clear 

whether this broadening is due to multiple overlapped resonances or disordering of 

the Li environments in this region of the spectrum or not. On the other hand, lithiated 

WO3 (bottom) exhibits two distinct peaks, one at approximately 𝛿 = 0 ppm and the 

other at 𝛿 = 2.66 ppm. However, it is noted that the peak at 𝛿 = 2.66 ppm is not as 

intense as the peak seen in the 6Li MAS spectrum obtained for K0.13WO3 at 𝛿 = 2.80 

ppm, which correlates with the reduced capacity for lithiation displayed by WO3. It is 

reasonable to conclude, therefore, that lithium intercalates into the WO3 phase in 

K0.13WO3. Lithium may also intercalate into the hexagonal phase, which is also 

present; the NMR data obtained does not exclude this possibility, as the region 

between the two resonances in the spectrum corresponding to K0.13WO3 is where a 

contribution from a resonance in the hexagonal phase might be expected. 

 

Figure 3.19: 6Li MAS NMR spectra obtained for K0.13WO3 at the end of the 1st discharge (blue 
trace) and after 1st charge (red trace). MAS rate: 10 kHz. 
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Figure 3.20: 6Li MAS NMR spectra of K0.4WO3 (top, red trace) and WO3 (bottom, red trace) after 
the first discharge at 0.5 C. The 6Li MAS NMR spectrum of K0.13WO3 is shown in blue. MAS rate: 
10 kHz. 
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Chapter 4  Conclusions and Future Work 

The experimental methods used by Griffith et al. were used to synthesise 

shear-type Nb16W5O55 and bronze-like Nb6.7W10.3O47.71 PXRD measurements 

and subsequent Rietveld refinements were successful in confirming the 

presence of each structure in their respective samples. Samples containing 

shear-type Nb16W5O55 were also shown to contain similar shear-type 

structures, likely present as Wadsley defect fringes, whilst the synthesise of 

Nb6.7W10.3O47 proved challenging due to the occasional formation of the 

Nb18W16O93. Galvanostatic measurements were taken for half-cells containing 

Nb6.7W10.3O47 as the active material, which showed similar electrochemical 

performance to the bronze-like Nb18W16O93 structure reported by Griffith et al. 

71 However, whilst the capacity of these half cells was good (1.60 Li+/TM on 

the third discharge), the capacity was expected to fade over subsequent 

cycles. 

Taking inspiration from the structural motifs which provided these 

niobium tungsten oxides their excellent performance as anodes, a modified 

version of the synthetic method outlined by Hussain and Kihlborg in 1976 was 

used to synthesised KxWO3 samples from WO2, WO3 and K2WO4 in the 

presence of air.92 Although optical microscopy and HREM experiments were 

not undertaken, PXRD experiments and subsequent Rietveld refinements on 

a sample of KxWO3 (x = 0.13) confirmed the presence of a hexagonal phase 

similar to K0.3WO3, alongside a sizeable phase fraction of WO3. It is unclear 

from these Rietveld refinements whether the WO3 phase was unreacted 

material or whether it was a contribution from the interlocking phase observed 

by Hussain and Kihlborg.92 Although X-ray diffraction experiments typically 

yield information about the long-range order within a crystal structure, 

previous experiments on shear-type Nb16W5O55 shows that the presence of 

Wadsley defect fringes leads to complex diffraction patterns which are 

challenging to interpret. In fact, Nb16W5O55, discussed in Section 3.1, can be 

considered an interlocking phase and, likewise, the hexagonal phase present 

in interlocking K0.13WO3 can be considered a Wadsley defect fringe.  

 For this reason, it was assumed that the hexagonal and WO3 phases 

present were interlocking. Galvanostatic discharge-charge data up to an 

including the third discharge showed that K0.13WO3 performs exceptionally 

compared to WO3 and hexagonal K0.3WO4, demonstrating a capacity of 1.60 
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Li+/TM (171.6 mA h g-1) on the third discharge, exceeding that of Nb16W5O47 

(~1.5 Li+/TM) and Nb18W16O93 (~1.4 Li+/TM) reported by Griffith et al. at similar 

rates of discharge. Alongside its capacity, the galvanostatic measurements 

taken also demonstrated the reversibility of intercalation in K0.13WO3 

compared to WO3 and K0.3WO3. Solid-state 7Li and 6Li MAS NMR experiments 

strongly suggest that lithium reversibly intercalates into a WO3-like 

environment rather than the hexagonal phase, likely due to the presence of 

K+ ions intrinsically accommodated within the latter. However, the 

galvanostatic measurements and solid-state NMR experiments do not 

indicate whether K0.13WO3 has an interlocking structure as described by 

Hussain and Kihlborg, whether it contains larger WO3 and hexagonal block-

like domains side-by-side, or whether it contains WO3 and hexagonal phases 

separated by grain boundaries.92 

 Much work remains to be done on the KxWO3 series in general. 

Galvanostatic studies should be carried out at higher rates for K0.13WO3 and 

then replicated across the series. Further 6Li MAS NMR experiments should 

be conducted to identify any changes to the lithium environments over 

successive cycles. In addition, electron microscopy techniques should be 

employed to verify the surface structure of K0.13WO3 and to identify the 

presence of an interlocking phase. 
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Supplementary Information 

 

  

Figure S.1: Rietveld refinement of the PXRD data obtained from the initial sample of Nb16W5O55 
after being heated for an additional 4 hours. Phase composition: Nb16W5O55 = 21.7%, Nb14W3O44 
= 78.3%; wRp = 14.1%. The difference between the observed and calculated diffraction patterns 
is shown in black in the lower portion of the plot. 
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Figure S.2: Rietveld refinement of the PXRD data obtained from a sample of K0.13WO3 
synthesised in a box furnace. Phase composition: WO3 = 66.9%, K0.3WO3 (HTB) = 33.1%; wRp = 
15.1%. The difference between the observed and calculated diffraction patterns is shown in 
black in the lower portion of the plot. 


