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Abstract

In this thesis we employ generalised unitarity methods to compute high-multiplicity one-loop

scattering amplitudes in quantum chromodynamics, and leverage the scattering equations

to obtain high-multiplicity tree-level amplitudes in higher-derivative theories. We develop a

set of numerical strategies, based on the study of singular limits in complex phase space and

on the reconstruction of generic ansatze, to obtain compact analytical spinor expressions

from numerical evaluations only. The advantages of analytical expressions for scattering

amplitudes include faster evaluation and increased numerical stability in soft and collinear

limits. Thus, they provide a solid foundation for phenomenological studies. The amplitudes

we present include the first full set of analytical expressions for 1) six-gluon scattering at

one-loop with a gluon in the loop, 2) Higgs + four-parton amplitudes with a top-quark loop

retaining full mass effects, and 3) tree-level amplitudes in a (DF)2 theory and in conformal

gravity.
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interesting and challenging projects, as well as for his patience and continuous guidance

during my PhD. I would also like to thank Adriano Lo Presti, Keith Ellis, John Campbell,

Simon Badger and Arthur Lipstein for many insightful discussions.

My gratitude goes to all my course mates and members of the IPPP for creating such

a friendly and stimulating work environment. In particular, I would like to thank Joey

Reiness, James Whitehead, Ryan Moodie, Francesco Sarandrea, Wendy Gray, Lucy Budge

and Joseph Farrow for proofreading chapters of this thesis.

Last but not least, I would like to thank my parents, Giacomo and Daniela, for supporting

and encouraging me throughout my studies.





In memoria dei miei nonni





CHAPTER 1

Introduction

This thesis builds on what is currently our best understanding of the fundamental

short-distance interactions of nature, which comes from the union of two of the greatest

achievements of the past century in the field of particle physics, namely the theories of

special relativity and quantum mechanics. A consistent treatment of both of these theories

naturally led to the development of the concept of quantum fields. In this introductory

chapter we will review the framework of quantum field theories and its application in the

Standard Model of particle physics. We will also introduce the complications that arise in

perturbative calculations, and how some of them are tackled by the research presented in

this thesis regarding the reconstruction of compact analytical expressions from numerical

routines.

1.1 Interacting Quantum Fields

Classical mechanics can be formulated in terms of the action, S, which is defined as the

integral of the Lagrangian, L, or of the Lagrangian density, L, as

S =

∫
L(t) dt =

∫
L(t, ~x) d4x . (1.1)

The extrema of the action, δS = 0, give the Euler-Lagrange equations of motion, whose

solutions correspond to the classically-favoured paths.
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Classical field theory is formulated in a similar fashion, by letting the Lagrangian density

depend on the space time variables through the fields

L(t, ~x) −→ L(φ, ∂µφ) , φ = φ(t, ~x) . (1.2)

Quantum mechanics, in Feynman’s interpretation, is based on the idea that all paths are

possible, albeit with different probability amplitudes given by the exponential of the action.

More formally, it can be shown that the matrix element between two position eigenstates

is given by

〈tf , ~xf |ti, ~xi〉 = 〈~xf |e−
i
~H(ti−tf )|~xi〉 ∝

∫
Dx exp

( i
~

∫ tf

ti

dtL(x, ẋ)
)
. (1.3)

where H is the Hamiltonian, and the last equality follows from identity insertions and

square completion, which results in a sign flip for the kinetic term. In analogy with

statistical mechanics, this quantity is sometimes called the partition function, Z. More

involved expectation values are then obtained by time-ordered operator insertions

〈tf , ~xf |T
(
x̂(t1) . . . x̂(tn)

)
|ti, ~xi〉 ∝

∫
Dx x̂(t1) . . . x̂(tn) e

i
~
∫ tf
ti

dtL(x,ẋ) . (1.4)

An alternative way to obtain Eq 1.4 is to promote the partition function Z to a generating

functional Z[J ], where J is the source, and act with functional derivatives. Classical

physics is recovered by taking the ~ → 0 limit1, or, in other words, the limit where all

quantities are much bigger than the unit of quantisation.

Quantum field theory, in analogy to the classical case, is obtained by letting all space-time

dependencies appear through field operators. For instance, in the case of a theory with a

single scalar field, we can write the generating functional Z[J ] as

Z[J ] ∝
∫
Dφ ei

∫
d4x[L(φ,∂µφ)+Jφ] . (1.5)

Matrix elements can be computed by differentiating the generating functional and then

setting the source to zero (this corresponds to connected Feynman diagrams)

〈0|T
(
φ(x1) . . . φ(xn)

)
|0〉 =

i−n δn lnZ[J ]

δJ(x1) . . . δJ(xn)

∣∣∣∣∣
J=0

. (1.6)

These functions are also known as Green’s functions, since they yield a delta function when

acted upon with the correct operator. For instance, the scalar propagator satisfies

DF (x− y) = 〈0|T
(
φ(x)φ(y)

)
|0〉 and (�x +m2)DF (x− y) = −iδ(x− y) . (1.7)

1From now on we will use natural units, i.e. ~ = c = 1.
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In general, a field theory Lagrangian will contain several covariant fields, organised according

to the representation of the Lorentz group they transform under (see Section 2.2.1). The

three lowest-lying fields are the scalar field φ, the Dirac field ψ, and the vector field A,

respectively given by

φ(x) =

∫
d3p

(2π)3

1

2Ep

(
ape

ip·x + a†pe
−ip·x

)
, (1.8)

ψ(x) =

∫
d3p

(2π)3

1

2Ep

∑
s

(
aspu

s
pe
−ip·x + bs†p v

s
pe
ip·x
)
, (1.9)

Aµ(x) =

∫
d3p

(2π)3

1

2Ep

∑
α

(
aαpε

α
µ,pe

−ip·x + aα†p ε
α∗
µ,pe

ip·x
)
. (1.10)

Note that they are all given as the Fourier transform of momentum space creation and

annihilation operators. In analogy to the quantisation of the energy levels in a harmonic

oscillator, these operators satisfy canonical (anti-) commutation relations

[
ap, a

†
q

]
= (2π)3 2Ep δ

3(p− q) , (1.11){
arp, a

s†
q

}
=
{
brp, b

s†
q

}
= (2π)3 2Ep δ

3(p− q) δrs , (1.12)[
aαp, a

β†
q

]
= −(2π)3 2Ep δ

3(p− q) ηαβ . (1.13)

These (anti-) commutation relations impose the correct statistics on the wavefunctions,

i.e. Bose-Einstein for integer spin representations and Fermi-Dirac for half-integer spin

representations. A consequence of the field quantisation is that the number of particles is

no longer conserved: new particles can be created (a) if there is sufficient energy, or (b)

for short periods of time even without enough energy, as long as Heisenberg’s uncertainty

principle ∆E∆t ≥ ~
/

2 is respected. Case (a) corresponds to on-mass-shell particles, case

(b) to off-mass-shell ones.

In order to be able to easily generalise the result of Eq. 1.7 to the cases containing more

fields, we would like to move all annihilation operators to the right to have them vanish on

the vacuum. Operators satisfying this structure are said to be normal ordered (denoted

by pairs of colons), and the relation between normal and time ordering is given in Wick’s

Theorem as the sum of all possible field contractions

T
(
φ(x1) . . . φ(xn)

)
= : φ(x1) . . . φ(xn) + all possible contractions : (1.14)

Since normal ordered field strings vanish when acting on the vacuum, by sandwiching

Eq. 1.14 between vacua only fully-contracted field strings survive. Finally, by graphically

interpreting field contractions in Wick’s theorem we obtain Feynman rules and diagrams.
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1.2 The Standard Model

Currently, the best working theory of the fundamental interactions of nature, with the

exception of gravity, is the quantum field theory known as the Standard Model. It is based

on the following local, or gauge, symmetry groups2

U(1)Y × SU(2)L × SU(3)C −→ U(1)EM × SU(3)C . (1.15)

The arrow indicates the electroweak spontaneous symmetry breaking (EWSB), which is

realised through the Higgs mechanism and happens at a temperature of about 160 GeV [4].

The subscripts in the unbroken phase refer to colour, left-handedness, and hypercharge,

whereas on the right-hand side we have colour and electromagnetism.

A popular way of writing the Standard Model Lagrangian is

L = − 1

4
FµνF

µν

+ iΨ /DΨ

+ DµΦ†DµΦ− V (Φ)

+ ΨLŶ ΦΨR + h.c. . (1.16)

We could summarise each line respectively as pure gauge, matter, Higgs and Yukawa. More

specifically, in the first line Fµν is the field strength tensor, which contains both gauge-field

kinetic terms and interactions. In the second line, Ψ denotes the fermionic fields and D is

the gauge covariant derivative; this describes the propagation of matter fields and their

interactions with gauge fields. In the third line, with Φ representing the Higgs field (as a

complex doublet), we have the Higgs kinetic term, its interactions with the gauge fields

and with itself (i.e. its potential). Lastly, in the fourth line, Ŷ is the Yukawa matrix, which

is diagonal in the mass basis. This combination of operators describes the Higgs-field

interactions with the matter fields, from which their masses arise after EWSB.

In the standard model we can write the covariant derivative as

Dµ = ∂µ − i
g1

2
Y Bµ − ig2

σj
2
W j
µ − igs

λa
2
Gaµ , (1.17)

where g1 is the U(1)Y coupling, Y is the appropriate hypercharge, Bµ is the U(1)Y gauge

field, g2 is the SU(2)L coupling, σj are the Pauli matrices, i.e. the SU(2)L generators, W j
µ

are the SU(2)L gauge fields, gs is the SU(3)C (strong) coupling, λa are the Gell-Mann

2Ignoring a Z6 central charge.
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Gauge Field U(1)Y SU(2)L SU(3)C

B 1 0 0

W 0 3 0

g 0 0 8

Table 1.1: Gauge fields and corresponding gauge groups.

matrices, i.e. the SU(3)C generators, and, finally, Gaµ are the SU(3)C gauge fields, i.e. the

eight gluons. The gauge fields live in the adjoint representation of their SU(N) gauge

group, and therefore there are N2 − 1 of them, as shown in Table 1.1. Special unitary

groups will play an important role in the discussion of both dynamics and kinematics in

Chapter 2 of this thesis. They are treated in more detail in that context.

The field strength tensor is defined as the commutator of two covariant derivatives as

Fµν = − 1

ig

[
Dµ, Dν

]
= ∂µAν − ∂νAµ − ig

[
Aµ, Aν

]
, (1.18)

where Aµ is a generic gauge field, defined by a sum over appropriate generators Aµ = taAaµ.

The commutator is the defining property of the Lie algebra associated with a particular

gauge group. In the U(1) case the commutator simply vanishes, meaning it is an abelian

group; in the SU(2) case the commutator gives rise to the Levi-Civita fully anti-symmetric

tensor εijk from the commutation of the Pauli matrices; similarly, in the SU(3) case the

commutation of the Gell-Mann matrices gives rise to a structure constant fabc. In general,

we can write the field strength tensor as

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν , (1.19)

where it is understood that the appropriate coupling and structure constant has to be

picked. In the standard model, the pure gauge part of the Lagrangian, partially expanded,

out will read

1

4
FµνF

µν =
1

4
BµνB

µν +
1

4
W a
µνW

a,µν +
1

4
GbµνG

b,µν , (1.20)

and it is now clear that BµνB
µν is purely kinetic, whereas W a

µνW
a,µν and GbµνG

b,µν contain

also gauge-gauge interactions.

The next part to address is the matter fields. In Eq. 1.16 they are denoted just as Ψ,

but they actually have a fairly complicated structure, which is summarised in Table 1.2.

The SU(2)L gauge fields break parity by coupling exclusively to left-handed particles

and right-handed anti-particles. This is mathematically enforced by the doublet/singlet
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Matter Field Y I I3 Q = I3 + Y/2 SU(3)C(
l0L, l

−
L

)
−1 1/2

(
1/2, − 1/2

) (
0,−1

)
0

l−R −2 0 0 −1 0(
quL, q

d
L

)
1/3 1/2

(
1/2, − 1/2

) (
2/3, − 1/3

)
3

quR 4/3 0 0 2/3 3

qdR − 2/3 0 0 − 1/3 3

Table 1.2: Matter fields and their charges.

Scalar Fields Y I I3 SU(3)C(
φ+, φ0

)
1 1/2

(
1/2, − 1/2

)
0

Table 1.3: Higgs field and its charges.

structure of the left/right handed fields respectively. The SU(2)L charge is called weak

isospin and is denoted by I, in analogy to the spin quantum number J . Its third component

is denoted by I3, which is analogous to the projection of spin onto the z-axis Jz. A further

distinction in the representation of the SU(3)C group is between leptons, that are trivial

singlets, and quarks, that are fundamental triplets. The hypercharge Y is chosen such that

the electric charge Q reproduces the experimentally-observed value. The relation between

hypercharge, isospin and charge will be partially derived in Section 1.2.2. The anti-quark

charges follow from the action of CP symmetry on the quark ones.

Finally, we have the Higgs field Φ, whose charges are summarised in Table 1.3. It is a

complex scalar doublet under SU(2)L with a quartic potential

Φ =

φ+

φ0

 =
1√
2

φ1 + iφ2

φ3 + iφ4

 , V (Φ) = µ2Φ†Φ + λ(Φ†Φ)2 . (1.21)

1.2.1 Quantum Chromodynamics

Quantum chromodynamics (QCD) is the theory of the strong interaction, which, at low

energies, is responsible for holding quarks in bound states called hadrons. At higher energies,

such as in collider collisions, QCD is the main source of radiation, with every subsequent

emission costing only a factor of αs(mZ) ∼ 0.1178 [5]. By comparison, electroweak radiation

is suppressed by more than one order of magnitude.
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The relevant part of the Lagrangian for QCD interactions is

LQCD = −1

2
tr
(
GµνG

µν
)

+ iΨ( /D −m)Ψ . (1.22)

The mass term arises from the Yukawa interaction and in calculations for high energy

collision it is usually neglected for all quark flavours, with the exception of the top quark.

By expanding out the product of field strengths in the pure gauge term tr
(
GµνG

µν
)
, we

obtain the following three structures

Lgauge−kinetic =
δab

4

(
∂µG

a
ν − ∂νGaµ

)(
∂µGb,ν − ∂νGb,µ

)
, (1.23)

Ltriple−gauge =
1

2
gfabc

(
∂µG

a
ν − ∂νGaµ

)
Gb,µGc,ν , (1.24)

Lquadruple−gauge =
1

4
g2fabcfadeGbµG

c
νG

d,µGe,ν , (1.25)

which correspond respectively to gluon kinetic term, gluon 3-point vertex and gluon 4-point

vertex. The corresponding Feynman rules are given in Appendix A.

Similarly, by expanding the matter-gauge term iΨ( /D −m)Ψ, we obtain

Lmatter−kinetic = iΨ(/∂ −m)Ψ , (1.26)

Lmatter−gauge = −gtaΨ/G
a
Ψ , (1.27)

which correspond respectively to quark kinetic term and quark-gluon interaction.

1.2.2 Electroweak Sector & Symmetry Breaking

For the sake of completeness, in this section we are going to briefly review the electroweak

sector. In the broken phase, the physically-propagating degrees of freedom are a mixture

of the B, W and Φ fields, which we will now determine.

Figure 1.1: Higgs potential in

the broken phase.3

Spontaneous symmetry breaking happens when the Higgs

field acquires a vacuum expectation value, which can be

found by locating the minimum of its potential

∂V (Φ)
∂Φ = Φ†

(
µ2 + 2λ(Φ†Φ)

)
= 0 , (1.28)

=⇒ Φ†Φ = v2/2 = −µ2/(2λ) . (1.29)

Massive oscillations around this minimum are the physical

Higgs field h (radial direction in Figure 1.1), whereas the massless Goldstone modes

3Image courtesy of Ref. [6].
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Field Y I I3 Q = I3 + Y/2 SU(3)C(
W+, W 3, W−

)
0 1

(
1, 0, −1

) (
1, 0, −1

)
0

Table 1.4: W bosons as a SU(2)L triplet.

(azimuthal direction) can be removed by choosing the unitary gauge. One says that they

are eaten by the SU(2)L gauge bosons. Thus, after EWSB, Φ can be taken to be

Φ =
1√
2

 0

v + h

 . (1.30)

This means that the loss of three degrees of freedom from the field Φ is compensated

by three new degrees of freedom in the electroweak bosons. These come in the form

of longitudinal polarisations, now allowed by their non-zero mass, which is derived by

expanding the Higgs kinetic term retaining only the part dependant on the v.e.v.

DµΦ†DµΦ ⊃
∣∣(− ig1

2
BµΦ− ig2

σj
2
W j
µΦ
)∣∣2

⊃

∣∣∣∣∣∣ −i2
√

2

 g1Bµ + g2W
3
µ g2W

1
µ − ig2W

2
µ

g2W
1
µ + ig2W

2
µ g1Bµ − g2W

3
µ

0

v

∣∣∣∣∣∣
2

(1.31)

=
1

2

v2

4

(
g2

2(W 1
µ)2 + g2

2(W 2
µ)2 + g2

1(Bµ)2 + g2
2(W 3

µ)2 − 2g1g2B
µW 3

µ

)
.

The last line can be written as a mass matrix for the W i and B bosons, which once

diagonalised yields the physically-propagating states. In particular, the eigenvalues and

eigenvectors of the 2 × 2 block involving W 3 and B give the masses and mixing of the

photon and of the Z boson, respectively

mγ = 0 , mZ =
v

2

√
g2

1 + g2
2 , (1.32)

Aµ = sin θW W 3
µ + cos θWBµ , Zµ = cos θWW

3
µ − sin θWBµ . (1.33)

The weak mixing angle θW is defined in terms of the couplings as

cos θW =
g2√
g2

1 + g2
2

, sin θW =
g1√
g2

1 + g2
2

. (1.34)

The electroweak unification condition e = g2 sin θW = g1 cos θW can be read off Eq. 1.33.

Furthermore, from Eq. 1.31 we see that the physical W± bosons and their masses are

W±µ =
(
W 1
µ ∓ iW 2

µ

)
/
√

2 and mW =
v

2
g2 = mZ cos θW . (1.35)

The generators associated with the W± bosons are the SU(2) raising and lowering operators

τ± =
(
σ1 ± iσ2

)
and, together with W 3, they form a SU(2)L triplet (see Table 1.4).
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1.3 Regularisation & Renormalisation

Perturbative quantum field theory computations are notoriously plagued by a proliferation

of infinities, which need to be suitably accounted for in order to obtain sensible predictions

for physical observables.

A procedure by which infinities are quantified and made treatable is called a regularisation

procedure. For instance, infinities may appear when massless particles acquire vanishing

four-momenta (soft limit). One possible way to regulate such a divergence is by associating

a fictitious mass to the massless particle. This allows to sensibly perform cancellations

between would-be divergent terms at non-zero mass values and, after all divergences have

been cancelled, take the physical zero-mass limit. The same philosophy applies to an array

of regularisation strategies, each of which has its own regularisation parameter.

The most common framework is surely that of dimensional regularisation (dim-reg). In

this case the computation is performed in 4− 2ε dimensions, where ε is the regularisation

parameter. For instance, the one-loop integral measure in dim-reg becomes

d4l −→ µ4−D
R dDl with D = 4− 2ε , (1.36)

where µR is an arbitrary scale needed to maintain the correct dimensions of the loop

integral. Loop integrals can then be expressed as a Laurent series in ε, thus regularising

their divergences. A complete set of one-loop scalar integrals and their analytical expansions

can be found in Ref. [7].

The types of divergences that arise and need to be regularised fall into two separate

categories: ultra-violet (UV) and infra-red (IR).

UV divergences are a consequence of the high-energy (i.e. short-distance) interacting nature

of the quantum fields. For instance, there is no such thing as an electron by itself without

a cloud of (virtual) photons. We refer to the idealised standalone quantities as bare, and

to the physical ones as renormalised. In QCD the gluon field G, the quark field Ψ and

the coupling constant gs need to be renormalised. Renormalised and bare quantities4 are

related by the renormalisation constants Z1, Z2 and Z3

G0 =
√
Z3G , Ψ0 =

√
Z2Ψ , Z1gsΨ/GΨ = gs,0Z2

√
Z3Ψ/GΨ . (1.37)

The divergent part of a renormalisation constant is called the counter term δ, and the

4Bare quantities are denoted by a 0 subscript.
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relation is Z = 1 + δ. By computing the relevant one-loop diagrams, the QCD counter

terms are obtained to leading order in αs

δ1 = −(CA + CF )
αs
4π

1

ε
, δ2 = −CF

αs
4π

1

ε
, δ3 =

(
5

3
CA −

4

3
nfTR

)
αs
4π

1

ε
. (1.38)

where nf is number of quark flavours, TR = 1/2, and CA and CF are the SU(3) Casimir

operators (see Section 2.1.1). In the case of gravity, the infinite tower of n-point vertices

requires a infinite number of counter terms. In turn, this implies that an infinite number

of experimental observations are required to fix an infinite number of parameters, making

the theory lose all predictive power. We say that the theory is not renormalisable.

IR divergences have a completely different physical interpretation and mathematical

resolution (although in a calculation they will still appear as divergences in the regularisation

parameter). They arise both in loop calculations and in phase space integrals when a real

radiation is integrated over a soft and/or collinear region of phase space (hence IR for

the low-energy). In the Standard Model, by the KLN theorem [8], these two types of IR

divergences have to match and cancel for any physical IR-safe measurable quantity. The

physical interpretation is that a n-point process is not distinguishable from an (n+ 1)-point

process if the extra radiation cannot be resolved.

In the following section we will see how this cancellation of IR divergences finds a natural

resolution in the structure of perturbative calculations.

1.4 Anatomy of a Perturbative Calculation

The aim of phenomenological calculations in perturbative QFT (pQFT) is to obtain

predictions for physical observables. Usually these are either decay rates or cross sections,

σ. In the case of hadron colliders, the latter can be expressed as a convolution between

parton distribution functions (PDFs), fa/h, and partonic cross sections σ̂, formally

σ2→n−2 =
∑
a,b

∫
dxadxbfa/h1(xa, µF ) fb/h2(xb, µF ) σ̂ab→n−2(µF , µR) , (1.39)

where a and b refer to the partons in the hadrons h1 and h2 respectively, and x represent

momentum fractions (see Bjorken x [9]). The factorisation scale µF separates the high-

energy physics of the partonic cross section from the lower-energy physics of the PDFs. The

renormalisation scale µR is a leftover of the renormalisation procedure, and the cross section

should depend on it only through higher orders of the expansion parameter compared to

the precision of the calculation.
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Aloopsmulti. ∝ g
n
s

Multiplicity

4 5 6 7

L
o
op

s

0 2 3 4 5

1 4 5 6 7

2 6 7 8 9

Table 1.5: Powers of coupling in pure gluon scattering

as function of number of loops and multiplicity.

The (differential) partonic cross section itself is given by the product of the Lorentz

invariant measure dΠ, a delta function to enforce four-momentum conservation and, lastly,

the amplitude (or matrix element) squared, over a flux factor 2ŝ

dσ̂n =
1

2ŝ
dΠn−2 (2π)4δ4

(
Σn
i=1pi

)
|An(pi, µF , µR)|2 . (1.40)

In this work we will focus on the high-energy physics described by the amplitude A. Since

at high energies the coupling constants are small, we can perform a Taylor expansion. For

instance, Table 1.5 shows the powers of the coupling as a function of number of loops and

multiplicity for pure gluon scattering. When taking the modulus square of the amplitude,

different components may contribute at the same power of the coupling, for instance

|A4g|2 = α2
s|A

(0)
4g |

2 + α3
s

(
2Re[A(0)

4g A
(1)
4g ] + |A(0)

5g |
2
)

+O(α4
s) . (1.41)

This structure reflects exactly the discussion in the previous section about the cancellation

of IR divergences between loops and real radiation, which more concretely in the above

equation means cancellations between 2Re[A(0)
4g A

(1)
4g ] and |A(0)

5g |2. In truth, Eq. 1.41 is a

slight abuse of notation, since the amplitude with the extra radiation in the final state needs

to be integrated over the soft and/or collinear region of phase space before divergences

can be cancelled with the virtual contribution. Since all phase space integration is done

numerically, it is crucial to have fast and stable routines for the evaluation of the amplitudes.

Two types of complexities arise in the expansion of Eq. 1.41, and are usually referred to as

analytic and algebraic. The former refers to the more complicated functions that arise at

higher loop orders (logarithms, polylogarithms, etc...), the latter refers to the increase in

the number of variables (or scales) for processes with higher multiplicity.

This work focuses on understanding and taming this second type of complexity, which will

be estimated in the following subsection.
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multiplicity 3 4 5 6 7 . . .

# diagrams 1 4 25 220 34300 . . .

# ind. hel. conf. 2 4 4 8 9 . . .

Table 1.6: Number of tree level gluon diagrams

and independent helicity configurations as a function of multiplicity.

1.4.1 Estimate of the Algebraic Complexity of a Calculation

A first naive estimate of the algebraic complexity of a calculation could be the number of

Feynman diagrams contributing to a specific amplitude. Carrying on with the pure gluon

scattering example, we can calculate the number of tree diagrams with a simple recursion

relation5. Every 3-point vertex is labelled by a t, and every gluon by a g. The 3-point

amplitude is then given by tg3. To increase by one the multiplicity of the process, we can

either add a 3-point vertex to a gluon line, that is act with the operator tg3 ∂
∂g , or turn a

3-point vertex into a 4-point one, with the operator g ∂∂t . The recursion relation is then

Nm(t, g) = (tg3 ∂

∂g
+ g

∂

∂g
)Nm−1(t, g) , Nm = Nm(t, g)

∣∣
t=g=1

, N3(t, g) = tg3. (1.42)

This yields the series displayed in the first row of Table 1.6, which show a worse than

factorial growth. Thankfully, this turns out to be a huge overestimate of the number of

independent quantities to compute and arguably also of the complexity of the results.

A famous example is the Parke-Taylor formula for n-gluon maximally-helicity-violating

(MHV ) tree amplitudes6 [10]

A(0)
n

(
1+
g , . . . , i

−
g , . . . , j

−
g , . . . , n

+
g

)
=

i 〈ij〉4

〈12〉〈23〉 . . . 〈n1〉
, (1.43)

which clearly shows only a very modest increase in complexity7 as a function of the

multiplicity n. Next-to-maximally-helicity-violating (Nk≥1MHV ) amplitudes are more

complicated, but not terribly so, at least at tree level. In Chapter 3 we will review modern

techniques to compute scattering amplitudes, which rely on the existence of Feynman

diagrams but use on-shell tree amplitudes as building blocks. Thus, instead of thinking

about the number of Feynman diagrams, we could think about the number of independent

tree amplitudes, or helicity configurations, whose growth is much more modest than that

of Feynman diagrams, as shown in the second row of Table 1.6.

5From a lecture by Simon Badger.
6Spinors and the spinor-helicity notation is introduced in Chapter 2 Section 2.2.
7We could define it more rigorously as the leaf count of an expression.
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Lorentz
invariant
structures

Mass dimension (d)

2 4 6 8

M
u

lt
ip

li
ci

ty
(n

)

4 2 3 4 5

5 5 16 40 85

6 9 50 205 675

7 14 120 735 3486

Table 1.7: Linearly independent Lorentz invariant structures,

as function of multiplicity and mass dimension.

However, this does not really address how complicated the individual tree amplitudes

or, at loop level, integral coefficients are. Since these are Lorentz invariant quantities we

should count the number of Lorentz invariant variables. There are two possible linearly-

independent momenta contractions: the Mandelstam invariants sij , and traces involving

γ5 denoted as tr5. Assuming massless momenta, we can define them as

sij = 2Pi · Pj , tr5(ijkl) = 4 i εαβγδP (i)
α P

(j)
β P (k)

γ P
(l)
δ (1.44)

and count how many linearly-independent ones there are

ns =
n(n− 3)

2
, nt =

(
(n− 1)

4

)
. (1.45)

In natural units they have mass dimension of 2 and 4 respectively, and, in fact, the expression

for ns reproduces the first column in Table 1.7. We can now write an approximate formula

for the content of Table 1.7 (which was obtained by Gaussian elimination and is thus exact)((
ns
d/2

))
≤

# lin. independent

Lorentz inv. structures
≤

((
ns
d/2

))
+ nt

((
ns

(d− 4)/2

))
(1.46)

where the double parentheses denotes combinations with replacement. The upper bound

is saturated for (∀n, d ≤ 4) and (∀d, n ≤ 5), otherwise it is an over-counting due to a

Schouten identity for four-momenta8

tr5(2345)1µ − tr5(1345)2µ + tr5(1245)3µ − tr5(1235)4µ + tr5(1234)5µ = 0 . (1.47)

Table 1.7 shows a steep increase towards higher multiplicities and higher mass dimensions

(think about the latter as a consequence of more complicated pole structures). Although

clearly not all possible structures will appear in final expressions, many of them often do

appear in intermediate stages of the calculation, before simplifications take place.

8This follows from the simple observation that the momenta live in a four-dimensional vector space.
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1.5 Reconstructing Analytics from Numerics

Numerical methods are used in the calculation of scattering amplitudes when analytical

calculations become intractable. A common bottleneck that makes conventional analytical

computations unfeasible in practice is in intermediary steps, rather than in the complexity

of the final answer. We have shown a notable example of this is in the Parke-Taylor formula

for MHV amplitudes, that is significantly simpler than the intermediate expressions needed

to calculate it. We develop a method to recover the analytical form of expressions when

only a numerical program is available for their evaluation. For example, this is often the

case for high-multiplicity one-loop amplitudes. Alternatively, this method can be used to

explore the structure of already available analytical expressions and further simplify them

when possible.

Analytical expressions are often preferable to numerical solutions when they are to be used

in extreme phase space configurations, such as for integration in soft or collinear regions of

the phase space. Analytical expressions can be expanded in the relevant limit to provide

numerically-stable results. Furthermore, compact analytical expressions evaluate often

faster and with a smaller memory footprint than numerical procedures, and can be more

amenable to parallelisation.

The use of numerical samples to reconstruct analytical expressions is beginning to find

direct applications to scattering amplitude calculations as a means of taming the complexity

of the problem. In particular, computations over finite fields are used to perform integral

reduction [11–14], to reconstruct polynomials in kinematic variables in the calculation

of two-loop QCD [15–27] and N = 8 [28, 29] amplitudes, as well as in higher loop

calculations [30, 31]. The method described in this thesis differs from the above in that

it uses large-precision floating-point arithmetic, rather than exact integer arithmetic

modulo a prime number. This approach offers an easy interface to existing code as many

programs already make use of high precision floating-point arithmetic to deal with numerical

instabilities. As we will see later, using large scale differences allows us to restrict the

calculation to specific parts of the answer rather than solving for the full answer at once.

This targeted approach decreases the size of the fitting problem significantly.

To illustrate the usefulness of our method, in Ref. [1] we presented analytical expressions

for colour-ordered six-gluon one-loop amplitudes with a gluon in the loop for all helicity

configurations. These amplitudes were already calculated in the literature [32–44] and
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summarised in Ref. [45], but to the best of our knowledge they were never presented in

a single place using a single framework. Furthermore, the expressions we provided are

explicitly rational (no square roots of spinors), gauge invariant (no arbitrary reference

momenta), and in most cases fairly compact.

Subsequently, in Ref. [3] we presented the first full set of compact publishable analytical

expression for the Higgs + 4 partons process at one-loop in all helicity configurations with

full mass effects. Also in this case our reconstruction method proved to be very useful

in analysing and simplifying the spinor-helicity expressions. Previously available results

for this process were the analytical all-plus Higgs + 4-gluon amplitude [46], and a mix of

numerical and analytical results [47–49].

Finally, we applied the reconstruction method in a slightly different setting, namely in the

study of amplitudes obtained from the CHY formalism [2] (see Section 1.6). We obtained

the first full set of five-point amplitude in the (DF)2 theory, and partial expressions for

six-point NMHV amplitudes in both (DF)2 and conformal gravity.

1.6 Beyond Lagrangians and Feynman Diagrams

There exist relations among amplitudes in different theories known as KLT [50] or

double-copy relations, which are completely obscured in a standard Lagrangian formulation.

The most famous example must be that of QCD, which double copies into Einstein gravity.

The CHY formalism for massless scattering provides a cohesive framework that elucidates

these interconnections. However, even at tree level, it entails operations that are highly

non-trivial to perform analytically, most notably solving the scattering equations (SE).

The SE are a set of theory independent equations which form the backbone of the CHY

formalism. They first appeared in the literature in the context of string theory in the

’70s [51–53] and ’80s [54]. They were more recently rediscovered by Cachazo, He and Yuan

(CHY) in a series of pioneering papers [55–57] demonstrating that the SE provide a set of

algebraic equations that are key to an alternative formulation of scattering amplitudes at

tree level in d dimensions. Shortly afterwards, this framework was proven to reproduce the

correct results for φ3 and Yang-Mills [58], to generalise to loop level [59,60], and to arise

naturally from a worldsheet theory called ambitwistor string [61].

In this alternative QFT formulation, the kinematic information of the scattering process is

encoded in a set of variables describing the location of punctures on the Riemann sphere.
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The locations of the punctures are related to the external momenta by the SE. Tree-level

amplitudes are obtained by integrating over the position of the punctures on the Riemann

sphere, while removing a redundancy coming from Möbius transformations, and imposing

the solution of the SE. Alternatively, this integral can be recast as a contour integral around

the punctures of the Riemann sphere. The rest of the integrand (called the CHY-integrand)

depends on the chosen theory and it has the nice feature of making manifest the double-copy

relations. For instance, the CHY-integrands for Yang-Mills, Einstein gravity and biadjoint

scalar theory closely match the KLT relations [62].

The main bottleneck for the study of QFTs following this approach is the factorial growth

of the number of solutions to the SE. In general, the CHY formulae are supported on

(n− 3)! solutions of the SE. More specifically, at three-point there are no free punctures, at

four-point the SE have a single rational solution, and at five-point there are two irrational

solutions. At six-point there are six irrational solutions which have been shown to be

still algebraic in d = 4 [63]. Starting at seven-point in d = 4 and at six-point for general

d dimensions the solutions cannot be expressed in terms of radicals. At the same time,

tree-level amplitudes are rational functions of the external kinematics for any phase space

multiplicity. Clearly some non-trivial simplification has to occur.

An intriguing solution found in the literature [64,65] to this factorial growth is to obtain

the sum of residues without explicitly finding the position of the poles. This powerful

approach makes the rationality of the amplitude manifest even when the punctures

are irrational. However, as the analytical complexity grows with the multiplicity of

the scattering process, even this approach seems to require some form of numerical or

semi-numerical reconstruction.

We develop a purely numerical approach, followed by an analytical reconstruction with

the strategy of Ref. [1]. To perform this reconstruction, we need an implementation of the

CHY formulae that is both sufficiently stable in singular limits and that yields amplitudes

with enough numerical precision. We provide code that satisfies these criteria in a Python

package called seampy (“Scattering equations and amplitudes with Python”).

A publicly-available package to compute amplitudes within the CHY framework in d = 4

had already been presented in Ref. [66]. However, it was not designed to provide amplitudes

with the high precision needed by our reconstruction strategy. Furthermore, although the

reconstructed analytical expressions we obtained are specific to d = 4, our package provides

numerical solutions to the SE in general d dimensions.

https://github.com/GDeLaurentis/seampy
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1.7 Structure of this Thesis

The rest of this thesis is organised as follows. The first three chapters are introductory.

They review topics in particle physics which are instrumental for the rest of the thesis.

◦ Chapter 2 introduces both dynamics and kinematics in QFTs by taking a group

theory approach. This allows for a very natural introduction of all major concepts

and mathematical tools necessary throughout this thesis.

◦ Chapter 3 discusses modern methods for the computation of scattering amplitudes at

tree and loop level, mainly BCFW recursion and generalised unitarity. It is through

these methods that the amplitudes reconstructed in Chapter 7 and 8 were obtained.

◦ Chapter 4 reviews the CHY formalism, which was qualitatively introduced in the

previous section, and is essential for the discussion in Chapter 9.

All subsequent chapters present new research. Two chapters review the method developed

in [1] for the reconstruction of analytical expressions from numerical evaluations.

◦ Chapter 5 considers how to numerically probe the structure of poles and zeros of

tree amplitudes or loop integral coefficients. This will ultimately yield important

information that will aid our analytical reconstruction.

◦ Chapter 6 reviews the parametrisation of the remaining numerator information and its

reconstruction by means of Gaussian elimination. Different reconstruction strategies

are discussed, which allow us to tackle increasingly complex structures.

The next three chapters make use of the reconstruction method to obtain analytical

scattering amplitudes in different sectors of the SM and in other theories.

◦ Chapter 7 presents results for six-gluon scattering at one loop.

◦ Chapter 8 presents the Higgs + 4 partons one-loop amplitude, with full mass effects.

◦ Chapter 9 presents tree amplitudes in the (DF)2 theory and conformal gravity.

Lastly, Chapter 10 presents the conclusion. Additional resources and details are given in

the Appendices A-G.





CHAPTER 2

Dynamics & Kinematics

In this chapter we take a group theory approach to review both dynamic and kinematic

aspects of a perturbative calculation, described respectively by the interaction gauge groups

and the Lorentz group. This distinction is reflected in the organisation of pQFT calculations,

and especially QCD ones. In fact, dynamics and kinematics factorise, allowing us to treat

them separately. In the case of QCD, we talk about colour factors for the dynamic part

and colour-ordered amplitudes for the kinematic one (see colour decomposition in Section

2.1.2). The true complexity of the calculation lies in the kinematic part, for which we

will make use of the spinor helicity formalism (see Section 2.2.3). Through the following

discussion, similarities between the QCD and Lorentz algebras will become apparent. This

is the basis of what is known as colour-kinematics duality [67–69].

2.1 Dynamics

Fundamental interactions among fields arise from their transformation properties under

different gauge symmetries. The mediators of the forces are associated with the generators

of the Lie algebras of these symmetries. Because of the structure of the gauge groups in

the Standard Model, the most important symmetry for us to discuss is the special unitary

group SU(N). This covers both non Abelian SM gauge groups SU(2)L and SU(3)C , as

well as potential extensions to the Standard Model, and even the Lorentz group.
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2.1.1 Special Unitary Group

The special unitary group SU(N) is the Lie group of N ×N unitary matrices with unit

determinant. Its Lie algebra, denoted as su(N), is obtained by considering an infinitesimal

exponential map. Following the physics convention, we have1

U(~ε ) = eiε
aTa , (2.1)

where εa are infinitesimal real parameters, T a are the generators, and U ∈ SU(N). The

unitarity and unit-determinant conditions translate into hermiticity and tracelessness

conditions for the generators

UU † = eiε
aTae−iε

aTa,† ≈ 1 + iεaT a − iεaT a,† = 1 =⇒ T a = T a,† , (2.2)

det(U) = det(eiε
aTa) = eiε

atr(Ta) = 1 ∀ε =⇒ tr(T a) = 0 . (2.3)

The generators T a have to form a basis for a vector space of traceless Hermitian matrices,

so there must be N2 − 1 of them. As anticipated in the previous chapter, the generators

for N = 2 are proportional to the Pauli matrices σi and those for N = 3 are proportional

to the Gell-Mann matrices. The proportionality factor of 1/2 is convention. To keep track

of the convention used, one can use the trace of two generators

tr
(
T aT b

)
= TR δ

ab , (2.4)

where in our case TR = 1/2. Note that this factor is equal to the proportionality constant

between the generators and the Pauli/Gell-Mann matrices only by coincidence. For example,

choosing the proportionality factor to be 1/
√

2 results in TR = 1.

The defining property of a Lie algebra is the commutator

[
T a, T b

]
= ifabcT c , (2.5)

where fabc are called structure constants. This means that if two sets of generators share

the same structure constant then they are merely two representations of the same group.

By multiplying the above by another generator and taking the trace we obtain

iTRf
abc = tr

(
T c
[
T a, T b

])
= tr

(
T aT bT c

)
− tr

(
T aT cT b

)
, (2.6)

which can be used to show that the structure constants are fully anti-symmetric. Furthermore,

by considering matrices defined by the structure constants as (F a)bc = ifabc it can be

1In mathematics usually the imaginary unit is omitted from the exponent.
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shown2 that the structure constants themselves obey the SU(N) Lie algebra

[
F a, F b

]
= ifabcF c . (2.7)

In fact, the (T a)ij ’s are the generators of the fundamental representation of SU(N), and

the fabc’s are the generators of the adjoint representation.

It is useful to introduce a diagrammatic notation for the colour algebra. For example,

Eq. 2.6 for the structure constants can be visualised as follows.

a

b

c
=

a

b

c

−
a

b

c

(2.8)

With the addition of the unit matrix, the generators span the complex space of N ×N

matrices. That is, any N ×N matrix M can be written as

M = M01 +MaT
a =

1

N
tr(M)1 +

1

TR
tr(MT a)T a. (2.9)

The complex coefficients M0 and Ma can be projected out by multiplying by generators

and taking the trace. By writing the above in index notation and factoring out the matrix

M , one obtains the following important Fierz completeness relation

T aijT
a
kl = TR

[
δilδjk −

1

N
δijδkl

]
. (2.10)

The sub-leading 1/N term comes from the tracelessness condition, and can be thought of

as originating from a U(1) photon. In some cases3 its presence does not affect the result

of a calculation, and can therefore be neglected. This is equivalent to introducing an

identity generator, with vanishing structure constants, which decouples from the gluons.

The resulting identities are called photon decoupling identities.

Eq. 2.10 can also be interpreted graphically as follows.

= − 1

N
(2.11)

Eq. 2.6 and Eq. 2.10 together with their graphical formulations allow to simplify colour

factors from Feynman diagrams and to derive colour decomposition relations.

2Consider the Jacobi identity for the generators.
3For instance, in the case of tree level pure gluon amplitudes.
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We have seen that groups can have different representations, including, but not limited to,

the fundamental and the adjoint representation. Representations of groups are categorised

based on quantities that are invariant under the action of the symmetry. These quantities

are called Casimirs, and are constructed in such a way to commute with all generators

of the Lie group. The SU(N) fundamental and adjoint quadratic Casimir operators are

defined as

T aijT
a
jk = CF δik , CF = TR

N2 − 1

N
; fabcfabd = CAδ

cd , CA = N . (2.12)

They arise, for example, in the computation of self energy diagrams in QCD, which is why

we have already encountered them in the counter terms of Eq. 1.38. Roughly speaking,

they can be thought of as the QCD charges of quarks and gluons respectively.

The fundamental quadratic Casimir will be familiar from the representations of SU(2). In

that case it is the squared total spin operator4

S2 = S2
x + S2

y + S2
z . (2.13)

This will be important to classify the representations of the Lorentz group in Section 2.2.1.

Lastly, let us mention that for N > 2 more Casimirs exist, beyond the quadratic one. For

instance, there is a cubic Casimir defined as

dabcT aT bT c = C3F1 , where TR d
abc = tr

(
T c
{
T a, T b

})
. (2.14)

2.1.2 Colour Decomposition

As anticipated, it is possible to factorise dynamics from kinematics by means of colour

decompositions. For instance, if we drew all diagrams contributing to an n-point tree-level

gluon amplitude and made use of the diagrammatic relations from Eq. 2.8 and Eq. 2.11

we would see that all sub-leading colour terms cancel, leaving only single trace structures.

Mathematically, this leads to the following colour decomposition

A(0)
n (pi, λi, ai) = gn−2

∑
σ∈Sn/Zn

Tr(T aσ(1) . . . T aσ(n))A(0)
n (σ(1λ1), . . . , σ(nλn)) , (2.15)

where the sum runs over all (n − 1)! non-cyclically-equivalent permutations, and A
(0)
n

is a tree-level colour-ordered amplitude, which is a rational function of the momenta.

Other names used in the literature for the colour-ordered amplitudes are primitive or

4A quick sanity check: (N2 − 1)/(2N) = s(s+ 1) for N = 2 and s = 1/2.
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sub-amplitudes5. It should be noted, that not all (n− 1)! sub-amplitudes from Eq. 2.15

are independent. Kleiss-Kuijf relations bring the number down to (n − 2)! [70], and

Bern-Carrasco-Johansson relations further lower it (n − 3)! [67]. Alternative colour

decompositions that make use of some of these relations exist [71]. Colour-ordering

significantly simplifies the structure of amplitudes, for instance in the case of QCD by

restricting the possible singularities to those involving cyclically-adjacent momenta.

As an example of a one loop colour decomposition, in the following we reproduce that for

the n-point one-loop gluon amplitude [72]

A(1)
n (pi, λi, ai) = gn

[ ∑
σ∈Sn/Zn

NcTr(T aσ(1) . . . T aσ(n))A
(1)
n;1(σ(1λ1), . . . , σ(nλn))

+

bn/2c+1∑
c=2

∑
σ∈Sn/Zn;c

Tr(T aσ(1) . . . T aσ(c−1))Tr(T aσ(c) . . . T aσ(n))A(1)
n;c(σ(1λ1), . . . , σ(nλn))

+ nf
∑

σ∈Sn/Zn

Tr(T aσ(1) . . . T aσ(n))A
(1/2)
n;1 (σ(1λ1), . . . , σ(nλn))

]
. (2.16)

The first two lines originate from gluon-loop diagrams, and the last line from quark-loop

ones. Note that now there exist non vanishing sub-leading colour contributions, but the

corresponding A
(1)
n;c amplitudes can be obtained by summing over permutations of the

leading colour ones A
(1)
n;1.

Loop amplitudes can be decomposed as sums over master integrals (Ii) multiplied by

rational coefficients (ai, bi, . . . ) with a rational remainder term (R). At one-loop a general

decomposition in terms of scalar integrals is known and reads [73]

A1−loop
n;1 =

∑
i

diI
i
Box +

∑
i

ciI
i
Triangle +

∑
i

biI
i
Bubble +

∑
i

aiI
i
Tadpoles +R . (2.17)

In the case of massless particles running in the loop the tadpoles contributions are scaleless,

and so vanish in dim-reg. Furthermore, pentagons should be included in the set of master

integrals if the loop momentum is treated in a generic number of dimensions. The integral

coefficients are usually referred to as the cut constructible part of the amplitude, since they

can be obtained from generalised unitarity cuts in four dimensions. In Ref. [1] we obtained

a complete set for the integral coefficients and rational parts of A
(1)
6;1.

Finally, the colour decomposition for the 0→ ggggh amplitudes presented in Ref. [3] is

Hn(pi, λi, ai) ∝ gns
m2

top

v

∑
σ∈Sn/Zn

Tr(T aσ(1) . . . T aσ(n))Hn(σ(1λ1), . . . , σ(nλn);h) (2.18)

where the semicolon is used to separate colour-ordered particles from colour singlets.

5Slight distinctions exit between these at loop level, but not at tree level.
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2.2 Kinematics

Particle physics kinematics is solely determined by the symmetries of Minkowski spacetime:

translations, rotations and boosts. This section reviews the consequences that these

symmetries have for the particle content of physical theories, such as the Standard Model,

as well as for the building blocks of physical observables, such as scattering cross-section

and decay rates. The concepts of spin, mass, chirality and helicity, all naturally arise from

the representations of the groups underlying the symmetries of spacetime.

The three transformations, or isometries, mentioned above form what is known as the

Poincaré group R1,3 o SO(1, 3), while its subgroup composed of rotations and boosts only

is the Lorentz group SO(1, 3). The two coincide for finite dimensional representations, such

as field operators, since they transform trivially under translations. In other words, asking

for Poincaré invariance of a field Lagrangian is not more general than asking for Lorentz

invariance. However, these representations are not unitary. In fact, non-compact groups

do not admit finite dimensional unitary representation. This is not an issue since there is

no well-defined inner product in the space of field operators. It is in the case of particle

states that unitarity is crucial, since transition probabilities are given by their expectation

values. However, these are not finite, because they are labelled by their momentum.

We will now discuss the representations of the Lorentz group, and then briefly those of the

Poincaré group. This topic was first treated in 1939 by Wigner [74].

2.2.1 Representations of the Lorentz Group

The defining property of isometries is that they preserve “distances”, i.e. inner products in

Minkowski spacetime are left unchanged. A spacetime distance is also known as interval.

Let Λ be a Lorentz transformation and η the Minkowski metric in the mostly negative

convention η = diag(1,−1,−1,−1), preservation of distances implies that

ΛT ηΛ = η or ΛσµΛρνησρ = ηµν . (2.19)

In order to establish the representations of SO(1, 3) we look at its Lie algebra so(1, 3),

which can be obtained by considering the exponential map

Λ = ei~α·~ω, (2.20)

where ~ω are the generators and ~α are some parameters. In doing so, we are actually



2.2. KINEMATICS 39

restricting ourselves to the proper orthochronous Lorentz group SO↑+(1, 3), that is the part

of the Lorentz group connected to the identity. In total, there are 4 disconnected parts in

the Lorentz group: the first separation is between proper and improper transformations,

having det (Λ) = ±1 respectively; the second one is between orthochronous and non-

orthochronous transformations, having sign(Λ0
0) = ±1 respectively. The parity operator

P̂ = diag(+1,−1,−1,−1), the time reversal operator T̂ = diag(−1,+1,+1,+1) and their

product P̂ T̂ are all examples of Lorentz transformations not connected to the identity.

Inserting Eq. 2.20 in Eq. 2.19 and keeping the leading order in ~α, we obtain

~α · (~ωT η + η~ω) = 0 ∀ ~α, (2.21)

that is ωµν = −ωνµ in index notation, meaning ωµν is fully anti-symmetric. The more

conventional form involves one raised and one lowered index ωµν , which will therefore

be symmetric in the spacetime components and anti-symmetric in the space-space ones.

Explicitly, we can write the six ~ω generators as

Kx =


0 i 0 0

i 0 0 0

0 0 0 0

0 0 0 0

 , Ky =


0 0 i 0

0 0 0 0

i 0 0 0

0 0 0 0

 , Kz =


0 0 0 i

0 0 0 0

0 0 0 0

i 0 0 0

 , (2.22)

Jx =


0 0 0 0

0 0 0 0

0 0 0 −i

0 0 i 0

 , Jy =


0 0 0 0

0 0 0 i

0 0 0 0

0 −i 0 0

 , Jz =


0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0

 , (2.23)

where the Ki’s generate boosts and the Ji’s generate rotations. They satisfy the following

commutation relations

[Ji, Jj ] = iεijkJk, [Ki,Kj ] = −iεijkJk, [Ji,Kj ] = iεijkKk. (2.24)

Consider now the following linear combinations of the generators

Ni =
1

2
(Ji − iKi) & N̄i =

1

2
(Ji + iKi), (2.25)

and their respective commutation relations

[Ni, Nj ] = iεijkNk, [N̄i, N̄j ] = iεijkN̄k, [Ni, N̄j ] = 0. (2.26)

Clearly, Ni and N̄i form two independent copies of the su(2) Lie algebra. Therefore, we
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(j−, j+) dimension name field variable

(0, 0) 1 scalar h mass

(0, 1/2) 2 right-handed Weyl spinor χRα λα

(1/2, 0) 2 left-handed Weyl spinor χ α̇L λ̄α̇

(1/2, 1/2) 4 rank-two spinor/four vector Aµ/Aα̇α Pµ/P α̇α

(1/2, 0)⊕ (0, 1/2) 4 bispinor (Dirac spinor) Ψ u, v

Table 2.1: List of low dimensional representations of the Lorentz group.

classify the representations of the Lorentz group in terms of the eigenvalues n(n+ 1) and

n̄(n̄ + 1) of the two su(2) Casimir operators N2 and N̄2, or more simply by the pair of

(half-) integer numbers (n, n̄). These correspond to two spins, one for each su(2) copy. The

lowest lying representations of the Lorentz group are given in Table 2.1.

Chirality is the intrinsic property of a field or particle that refers to which representation

of the Lorentz group it transforms under. It is not to be confused with helicity, which is

defined as the projection of spin onto the direction of the momentum. The two properties

are related in the massless limit, and in order for a right (left) chiral massless particle to

be a positive (negative) helicity eigenstate, we must choose N (N̄) as the generator for the

j+ (j−) representation.

An important distinction that has to be stressed is between two target spaces of the Lorentz

group: the field operators and the kinematic variables. Although the two may behave in

the same way under Lorentz transformations, they are also fundamentally different. For

example, spin-1/2 field operators χ and spinors λ carry the same index (α/α̇), but the

former is an abstract Grassmann-odd object thanks to the anti-commuting creation and

annihilation operators that form it, whereas the latter is Grassmann-even two-component

object that solves the Weyl equation and can be assigned a numerical value.

The conventions we adopt are as follow. Right-handed spinors will carry undotted indices,

whereas left-handed spinors will carry dotted indices. The former will be contracted

“downwards” (αα), whereas the latter will be contracted “upwards” ( α̇
α̇ ). Since contracted

indices can be omitted, we are also going to use a bar over all left-handed spinors. Finally,

let us introduce the Infeld-van der Waerden symbols, which form a basis for 2×2 Hermitian

matrices. They are: (σµ)α̇α = (1, σi) and (σ̄µ)αα̇ = (1,−σi).

What follows is a review of the lowest-lying representations of the Lorentz group.
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Trivial Representation (0, 0)

Both left and right generators are trivial

d(0,0)(N̄i) = 0 & d(0,0)(Ni) = 0 =⇒ d(0,0)(Ki) = 0 & d(0,0)(Ji) = 0

=⇒ d(0,0)(Λ) = 1. (2.27)

A field operator (eg. the Higgs field h) or a kinematic variable (eg. the rest mass m) living

in this representation will transform trivially to itself under any Lorentz transformation.

Right-Handed Spinor Representation (0, 1/2)

The left generator is trivial, the right ones are given by the fundamental su(2) generators

d(0,1/2)(N̄i) = 0 & d(0,1/2)(Ni) = σi/2 =⇒ d(0,1/2)(Ki) = iσi/2 & d(0,1/2)(Ji) = σi/2

=⇒ d(0,1/2)(Λ) = Λ β
α = e(i~θ−~ρ)~σ/2. (2.28)

In the above we have replaced the ~α parameters from Eq. 2.20 with physical ones: ~θ

are the rotation angles, and ~ρ are the rapidities. The index choice is made to match the

“downwards” convention for undotted indices, so that the expression λ→ Λλ is unambiguous.

It is easy to show that, in the case of 2× 2 Lorentz transformations, the role of the metric

η in Eq. 2.19 is fulfilled by the 2× 2 fully anti-symmetric Levi-Civita tensor6. Therefore,

we can define the metric to be εαβ = εα̇β̇ = ε and its inverse εαβ = εα̇β̇ = εT .

The transformation law for the raised-index spinor λα = εαβλβ in index notation is

λα → Λαβλ
β = λβ(Λ α

β )T . In order to write this in index-free notation let us consider again

Eq. 2.19 and rearranged it as

ΛT εΛ = ε =⇒ εΛεT = (ΛT )−1 i.e. Λαβ = ((Λ β
α )T )−1. (2.29)

Thus, we have (ελ)→ (ελ)(Λ)−1. This also proves that (ελ)λ is a Lorentz scalar.

To show that λ is indeed a right-handed spinor we write down Weyl equation in momentum

space and perform some straightforward manipulation to expose the helicity operator

(σµ)α̇αPµλα = 0 =⇒ (1 · p0 − ~σ · ~p )λ = 0 =⇒ 1

2

~σ · ~p
p0

λ = +
1

2
λ. (2.30)

Note that this describes massless particles only (helicity is not a good quantum number

for massive particles).

6Simply take Eq. 2.19 and substiture ω with the Pauli matrices and η with the Levi-Civita simbol.
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We can also solve the above to obtain an explicit expression for the spinor λ

P α̇αλα = 0 =⇒ (1 · p0 − ~σ · ~p )λ = 0 =⇒

 p0 − p3 −p1 + ip2

−p1 − ip2 p0 + p3

λ1

λ2

 = 0. (2.31)

These two linear equations for λ1 and λ2 are not independent due to the on-shell massless

condition (p0)2−(p1)2−(p2)2−(p3)2 = 0. Therefore, we need some form of normalisation to

fully constrain the system. The most sensible choice is to use a covariant normalisation. In

particular, for reasons that will become clearer when we discuss the vector representation,

λ†λ should be equal to twice the zeroth component of the corresponding four vector,

i.e. λ†λ = 2p0. The two equations are then

|λ1|2 + |λ2|2 = 2p0 & λ2 =
p0 − p3

p1 − ip2
λ1. (2.32)

Therefore, up to a conventional phase, we may write

λα =


√
p0 + p3

p1+ip2√
p0+p3

 & λα = εαβλβ =

(
p1+ip2√
p0+p3

, −
√
p0 + p3

)
. (2.33)

Left-Handed Spinor Representation (1/2, 0)

In analogy with the right-handed representation, we have

d(1/2,0)(N̄i) = σi/2 & d(1/2,0)(Ni) = 0 =⇒ d(1/2,0)(Ki) = −iσi/2 & d(1/2,0)(Ji) = σi/2

=⇒ d(1/2,0)(Λ) = Λα̇
β̇

= e(i~θ+~ρ)~σ/2. (2.34)

By comparing Eq. 2.34 with Eq. 2.28 becomes apparent that the former is the inverse of

the Hermitian conjugate of the latter. Therefore, the transformation law in index-free

notation is λ̄ → (Λ†)−1λ̄. For the lower index left-handed spinor we may then write:

(εT λ̄)→ (εT λ̄)Λ†. The relevant momentum space Weyl equation now reads:

(σ̄µ)αα̇Pµλ̄
α̇ = 0 =⇒ (1 · p0 + ~σ · ~p )λ̄ = 0 =⇒ 1

2

~σ · ~p
p0

λ̄ = −1

2
λ̄. (2.35)

Applying the same procedure that we saw for the (0, 1/2) representation, we can obtain

an explicit expression for the spinor λ̄, which now reads:

λ̄α̇ =

(√
p0 + p3, p1−ip2√

p0+p3

)
& λ̄α̇ = εα̇β̇λ̄β̇ =

 p1−ip2√
p0+p3

−
√
p0 + p3

 . (2.36)

For real momenta with positive energy, λα and λ̄α̇ are related by complex conjugation.
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Four-vector Representation (1/2, 1/2)

The reason for the name of this representation may not be obvious at a first glance,

since the classification implies that this is the vector space of the tensor product between

the left-handed and the right-handed spinor vector spaces. Therefore, objects in this

representation carry one undotted and one dotted index, and we call them rank-two spinors.

However, four-vectors are essentially just a reformulation of 2× 2 spinors as 4× 1 objects.

As such, the two are closely related. The transformation law reads

P̄αα̇ → Λ β
α Λ β̇

α̇ P̄ββ̇ = Λ β
α P̄ββ̇(Λ†)β̇α̇ = (ΛP̄Λ†)αα̇ (2.37)

or Pµ → ΛµνP
ν = (ΛP )µ. (2.38)

In order to understand the relation between the two, we need an object which carries

left-handed, right-handed and vector indices. We have already seen such an object: it is

the Infeld-van der Waerden symbol (σµ)α̇α (or, equivalently, (σ̄µ)αα̇). Then, we have7

P̄αα̇ = (σ̄µ)αα̇Pµ and Pµ =
1

2
(σµ)α̇αP̄αα̇ . (2.39)

The factor of a half comes from the relation (σµ)α̇α(σ̄ν)αα̇ = 2ηµν . For everything to be

consistent, the following relation must then hold

P̄αα̇ = (σ̄µ)αα̇Pµ → Λ β
α Λ β̇

α̇ (σ̄µ)ββ̇Pµ = (σ̄µ)αα̇(Λ−1)T ν
µ Pν , (2.40)

=⇒ (Λσ̄Λ†)µαα̇ = (σ̄(Λ−1)T )µαα̇ . (2.41)

This relation can be checked explicitly by using Eq. 2.28 and the Lorentz transformations

obtained by exponentiating the generators in Eq. 2.22. It should be clear from the context

that in the left-hand side of the above equation the Λ’s refers to 2× 2 matrices, whereas in

the right-hand side it refers to the 4× 4 version.

A further important insight concerns the relation between rank-two and rank-one spinors.

Generally, they are independent, but what happens if the determinant of a rank-two spinor

vanishes? In this case the rank is not two anymore, but one. Therefore, in this special case

we must be able to write the 2×2 matrix representing the “rank-two” spinor with vanishing

determinant in terms of the outer product of a right-handed and a left-handed spinor. We

have already seen an example of this when looking at Weyl equation for massless fermions.

The matrix in Eq. 2.31 represents the “rank-two” spinor P α̇α. Its determinant is the

7The convention for rank-two spinors is that they carry a bar if they are formed by contracting a four

vector with a σ̄, and vice versa. This is to keep track of contractions in index-free notation.
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invariant mass P 2 = 0. By taking the outer product between the left-handed spinor in

Eq. 2.36 and the right-handed spinor in Eq. 2.33 we indeed obtain the matrix in Eq. 2.31.

This last relation, which in index notation reads

P α̇α = λ̄α̇λα , (2.42)

allows us to decompose any null four-vector into two spinors. This is a crucial feature of

the spinor helicity formalism. Lastly, note that the covariant normalisation λ†λ = 2p0 is

consistent with the trace of the rank two spinor.

Dirac Representation (1/2, 0) ⊕ (0, 1/2)

This representation is reducible into a left-handed and a right-handed one, whereas all

previous representations are irreducible. However, it is still useful and widely used because

Dirac mass terms mix left- and right-handed spinor components. The Dirac equation is

(γµPµ −m)χ =

 −m σ̄µPµ

σµPµ −m

 χR

χL

 = 0 , (2.43)

where we chose to work in Weyl basis, meaning the γ-matrices are given by

γµ =

 0 σ̄µ

σµ 0

 and γ5 =

 1 0

0 −1

 . (2.44)

Clearly, in general these are two coupled equations for χR and χL, but in the massless

limit they reduce to the Weyl equations (Eq. 2.30 and Eq. 2.35). Let us work with m = 0.

We can easily write down the solutions for particle and anti-particle wavefunctions making

use of our previous results. As by convention, we call the particle wavefunction u and the

anti-particle wavefunction v. The left and right projection operators are as usual given by

PR,L = (1± γ5)/2. Let us start from the particle wavefunction, its positive helicity part

and its negative helicity part. They are respectively:

u =

λα
λ̄α̇

 , u+ = PRu =

λα
0

 , and u− = PLu =

 0

λ̄α̇

 . (2.45)

The dual wavefunction and its projections are given by the Dirac adjoints

ū = u†γ0, ū+ = (PRu)†γ0 = ūPL = (0, λ̄α̇) , (2.46)

and ū− = (PLu)†γ0 = ūPR = (λα, 0) . (2.47)

To obtain the anti-particle wavefunction we could consider the negative energy solutions to
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the Dirac equation and follow the “Feynman-Stuckelberg interpretation” to translate them

to anti-particle wavefunctions. Alternatively, we can operate on the particle wavefunction

with the charge conjugation operator Ĉ = iγ2

v = Ĉu∗ =

 0 εαβ

εα̇β̇ 0

λ̄α̇
λα

 =

λα
λ̄α̇

 = u (2.48)

The helicity eigenstates are now given by

v+ = Ĉu∗+ = ĈPRu
∗ = PLĈu

∗ = PLv =

 0

λ̄α̇

 and v− = PRv =

λα
0

 (2.49)

where we have used the anti-commutation relation {γ5, γµ} = 0. Finally, the adjoint

anti-particle wavefunction projections are

v̄+ = v̄PR = (λα, 0) and v̄− = v̄PL = (0, λ̄α̇) (2.50)

2.2.2 Representations of the Poincaré Group

For completeness, we will now mention the representations of the Poincaré group, although

they are not crucial for the next topics we will cover.

In addition to boosts and rotations, the Poincaré group includes translations. Translations

are generated by the momentum operator Pµ = i∂µ. It is convenient to combine the

generators of boosts Ki and rotations Ji into a single tensor. This tensor is anti-symmetric

and is known as the relativistic angular momentum tensor Mαβ. It is defined in its

space-time components as M0i = −M i0 = Ki, and in its space-space components as

M ij = εijkJk. The Casimirs of the group, i.e. the operators that commute with both Pµ

and Mαβ , are the square four-momentum PµP
µ, and the square Pauli-Lubanski four-vector

WµW
µ. The latter is defined as

Wµ =
1

2
εµνρσM

νρP σ . (2.51)

Thus, the representations of the Poincaré group are classified according to

P 2 = m2 and W 2 = −m2 s(s+ 1) , (2.52)

that is, according to mass and spin. The expression for W 2 given in Eq. 2.52 implies

a zero value for massless particles, which is indeed the case for physical states, since

Wµ ∝ Pµ. Interestingly, however, there also exist solutions where this is not the case, but

they correspond to unobserved degrees of freedom, such as tachyons.
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2.2.3 Spinor Helicity Formalism

The spinor helicity formalism is, in essence, just a clever choice of variables for studying the

scattering of massless particles8: amplitudes are expressed in terms of Weyl two-component

spinors, instead of Dirac four-component spinors and four-vectors. This choice allows us to

obtain very compact final expressions, and it is well suited to be used in conjunction with

some powerful techniques for the computation of matrix elements (as will be discussed

in Chapter 3). In this section, we will introduce the adopted conventions and notation,

which will mostly reflect those in Refs. [75, 76], as well as review the main features of

the spinor helicity formalism. Although the notation is fairly universal, its meaning is

by no means unique, with several authors [77–79] using different conventions for index

contraction, four-momentum signs (all-incoming vs. all-outgoing convention), notation

associated with left-handed and right-handed spinors, and so forth.

The iconic building blocks of the spinor-helicity formalism are the angle and square bracket

spinor products. They are defined in terms of the previously discussed right- and left-handed

Weyl spinors as follows

〈ij〉 ≡ λiλj = (λi)
α(λj)α and [ij] ≡ λ̄iλ̄j = (λ̄i)α̇(λ̄j)

α̇. (2.53)

Both angle and square brackets are anti-symmetric

〈ij〉 = (λi)
α(λj)α = εαβ(λi)β(λj)α = −εβα(λj)α(λi)β = −(λj)

β(λi)β = −〈ji〉 , (2.54)

and similarly [ij]. In the case of real momenta, they are related by complex conjugation

〈ij〉 = ±[ji]∗ if sign(P
(0)
i ) = ±sign(P

(0)
j ). (2.55)

This is most easily understood in terms of the Mandelstam sij and the relation

sij = 〈ij〉[ji] = p
(0)
i p

(0)
j − ~pi · ~pj . (2.56)

Clearly, if the two energies have the same sign, then sij is positive and we need the plus

sign from Eq. 2.55; conversely if the energies have opposite sign. The formula of Eq. 2.56

can be understood starting from the relations between four-vectors and spinors

〈ij〉[ji] = (λi)
α(λj)α(λ̄j)α̇(λ̄i)

α̇ = (Pi)
α̇α(P̄j)αα̇ =

= (Pi)µ(Pj)ν(σµ)α̇α(σ̄ν)αα̇ = (Pi)µ(Pj)ν 2ηµν = 2Pi · Pj .
(2.57)

8Massive particles can also be easily accommodated to some extent with certain tricks, see Chapter 8.
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So far we have seen that both spinors and four-momenta can we easily expressed in terms

of spinor helicity variables. To compute an amplitude in, say, massless QCD, using the

Feynman rules from Appendix A, we would need one final ingredient: the positive and

negative helicity polarisation tensors for massless vector bosons. These can be easily

expressed in terms of spinors as follows9

(ε+i )α̇α =
√

2
|i]〈q|
〈qi〉

, (ε−i )α̇α =
√

2
|q]〈i|
[iq]

. (2.58)

As sanity checks, we see that they are manifestly transverse to the momenta ε±i · Pi = 0,

and they are related by parity. Furthermore, both ε± are transverse to q, an arbitrary

reference momentum. Independence of an expression from the reference momenta is the

spinor helicity equivalent of gauge invariance.

Lastly, let us mention two sets of identities satisfied by the spinor products. In the all

outgoing convention, momentum conservation for an n-point massless phase space reads

n∑
i=1

〈j|i〉[i|k] = 0 , ∀j, k ∈ {1, . . . , n} . (2.59)

The second set of identities, called Schouten identities, follows from the simple observation

that spinors are two component objects, hence any one of them can be written as a linear

combination of other two

|k〉 =
〈j|k〉
〈j|i〉

|i〉+
〈i|k〉
〈i|j〉

|j〉 (2.60)

These relations are non-linear, hence part of the difficulties in handling big expressions.

Spinor Contractions & Lorentz Invariants

When solving linear systems, it is often convenient to work with a basis of linearly

independent variables. Hence, for instance, the use of twistors or minimal basis sets of

Mandelstam invariants to reconstruct analytical expressions for amplitudes [15–31]. In

Chapter 6, we will use a similar sets of variables, although in our case they will be products

of angle and square spinor brackets, to solve linear systems for the numerators of amplitude

coefficients. However, the linear redundancies of the spinor helicity variables provide a

powerful tool which better describes the nuances of complex phase space, while keeping

expressions compact. As we will argue in Chapter 5, singular limits10 in complex phase

space can be exploited to obtain insights in the structure of scattering amplitudes. Because

9Hence the name spinor helicity. These are already for outgoing particles, no complex conj. required.
10A singular phase space limit is a limit where a single invariant becomes arbitrarily small, and hence an

amplitude diverges, if that invariant appears as a pole, see Eq. 5.8.
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of this, we will generally try to express amplitudes in terms of sets of variables which are not

necessarily linearly independent, but for which unique singular phase space configurations

can be constructed. Such invariants will include, but not be limited to

〈ij〉 ≡ (λi)
α(λj)α , [ij] ≡ (λ̄i)α̇(λ̄j)

α̇ (2.61)

sijk ≡ (Pi + Pj + Pk)
2 , (2.62)

〈i|(j + k)|l] ≡ (λi)
α(P̄j + P̄k)αα̇λ̄

α̇
l , (2.63)

〈i|(j + k)|(l +m)|n〉 ≡ (λi)
α(P̄j + P̄k)αα̇(Pl + Pm)α̇α(λn)α , (2.64)

tr5(ijkl) ≡ tr(γ5PiPjPkPl) = [i | j | k | l | i〉 − 〈i | j | k | l | i] . (2.65)

All Outgoing Convention

All amplitudes we consider will be expressed in the all-outgoing labelling convention.

Phase space configurations where some particles are incoming are easily translated to the

all-outgoing convention by flipping signs of the incoming four-momenta.

Feynman rules and diagrams are converted to the all-outgoing convention in three steps:

1. incoming momenta have to be relabelled to be outgoing by introducing a minus sign;

2. incoming particle wavefunctions u are replaced by outgoing anti-particle wavefunctions

v, and similarly incoming anti-particles v̄ become outgoing particles ū;

3. finally, since spins are unchanged but momentum is inverted, we need to flip the

helicity labelling as well. In the case of vector bosons, this means swapping the

polarisation vectors ε+ ↔ ε−.

An example is given in the following diagram.

uR

v̄L

ūL

vR

q1

q4

q2

q3

⇒

vL

ūR

ūL

vR

−q1

−q4

q2

q3

Negative helicity spin-1/2 (anti-) particles (ū−, v−) are associate with a right handed spinor

λα, and, vice versa, all positive helicity spin-1/2 (anti-) particles (ū+, v+) are associated

with a left-handed spinor λ̄α̇. Analogously, negative helicity massless vector bosons are

associated with a factor of λα/λ̄α̇, and positive helicity ones with λ̄α̇/λα.
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Special Kinematics

Out of all the possible n particle phase spaces, those for the two lowest values of n, that is

n = 3 and n = 4, have some striking peculiarities which will become relevant in Chapter 3

and in Chapter 4, and are therefore interesting to discuss here.

Starting with the massless three-particle phase space, let us consider momentum conservation

P1 + P2 + P3 = 0 =⇒ 2P1 · P2 = (P1 + P2)2 = (−P3)2 = 0 . (2.66)

Rewriting this using the spinor helicity notation, we have that

〈12〉[21] = 0 . (2.67)

For this to hold, we have to choose either 〈12〉 = 0 or [12] = 0. Without loss of generality,

let us consider the case 〈12〉 6= 0 and [12] = 0. The other case will be related by parity,

i.e. a swap of the right and left Lorentz representations (angle and square brackets)11.

Consider now a slightly modified version of the above equation

〈12〉[23] = 〈1|P2|3] = 〈1| − P1 − P3|3] = 0 , (2.68)

where the last equality follows from the anti-symmetry of the spinor products (or from

Eq. 2.30). It follows that [23] = 0. Similarly, one can also show that [13] = 0.

Thus, either all square brackets or all angle brackets must vanish. This is only possible

with complex kinematics. The last remaining case, that is the one where both all angle

brackets and all square brackets vanish, corresponds to real momenta. Physically, this is

equivalent to saying that it is kinematically impossible for a massless particle to decay into

a pair of massless particles, unless they are all collinear.

Let us now consider the four-particle phase space. It is less constrained than the

three-particle one, but it still has significant degeneracies among its invariants in specific

regions. Starting again from momentum conservation, we have

P1 + P2 + P3 + P4 = 0 , (2.69)

=⇒ 2P1 · P2 = (P1 + P2)2 = (−P3 − P4)2 = 2P3 · P4 . (2.70)

11To clarify, calling this parity is a slight abuse of notation. We use the term parity interchangeably with

the concept of swapping right and left Lorentz representations. Technically speaking, in our convention,

this is equivalent to the improper Lorentz transformation diag(1, 1,−1, 1), which is actually related to

spatial inversion, i.e. diag(1,−1,−1,−1), by a rotation by π around the y-axis.
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In spinor-helicity notation, this implies

〈12〉[21] = 〈34〉[43] . (2.71)

To see the degeneracy of this phase space, we have to consider a singular limit, say

〈12〉 → ε� 1 , [12] ∼ O(1) . (2.72)

We can consider two cases 〈34〉 ∼ ε and [34] ∼ O(1), or vice versa. Let us consider the

former case first. Following a similar argument as for the three-particle phase space, we

pick a momentum contraction such as

0 = 〈1| − P1 − P3|3] = 〈1|P2 + P4|3] = 〈12〉[23] + 〈14〉[43] , (2.73)

which implies 〈14〉 ∼ ε. This also assumes that no invariant is large, i.e. O(ε−1). Proceeding

further by considering other momentum contractions it can be shown that actually all

angle brackets are O(ε) in this case.

The latter case, with 〈34〉 ∼ O(1) and [34] ∼ ε, is less degenerate, since it allows for all

remaining invariants to be of order one. This is actually closer to the case of real momenta,

where a collinear limit would imply

s = s12 = s34 ∼ ε , (2.74)

and, in general,

t = s14 = s23 ∼ u = s13 = s24 ∼ O(1) . (2.75)

Physically, this is can also be seen from the equivalence of the MHV and MHV sectors.

For example, in the case of four gluons we have

A++−−
4g =

−i〈34〉3

〈12〉〈23〉〈41〉
=
−i[12]3

[23][34][41]
. (2.76)

These degeneracies make it harder to extract information from the singular limits, since

the behaviour in the limit cannot be ascribed to a specific invariant, but these are such low

multiplicity phase spaces that it is not truly an issue.



CHAPTER 3

On-Shell Methods

The past twenty to thirty years have seen tremendous progress in the calculation of

scattering amplitudes, especially at the one-loop order, so much so that we speak of a

NLO revolution. This was achieved through what are known as generalised unitarity

techniques for one-loop amplitudes [33–35,41, 80–90], which have more recently started to

see applications at the multi-loop level as well [16–19,21–29]. A method to compute tree

amplitudes which follows a similar philosophy (on-mass-shell and gauge-invariant building

blocks) is the BCFW recursion [91, 92]. These methods rely on the existence of certain

factorisation channels, probably best understood graphically in terms of Feynman diagrams,

but in practice they can be formulated completely independently of the Feynman rules.

In this chapter, we review how these on-shell techniques work. More specifically, in Section

3.1 we show how, from very generic considerations about mass dimension and little group

scalings, three-point tree-level amplitudes can be obtained. Afterwards, in Section 3.2,

we will build on these to obtain tree-level amplitudes of any multiplicity by using BCFW

recursion. Finally, in Section 3.3, we review the concepts at the foundations of generalised

unitarity techniques. We give a detailed derivation of box- and triangle-integral coefficients

through quadruple and triple cuts, following Ref. [82]. We conclude with a brief discussion

of double cuts for bubble-integral coefficients, and of methods for the extraction of the

rational terms.
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Mass Dimension

Let us start by performing some straightforward dimensional analysis on amplitudes and

integral coefficients, since much can be gained from it. For convenience, we reproduce here

Eq. 1.40 for the partonic cross-section in a 2→ n− 2 process

dσ̂n =
1

2ŝ
dΠn−2 (2π)4δ4

(
Σn
i=1pi

)
|An(pi, µF , µR)|2 , (3.1)

where the Lorentz invariant phase space is defined as

dΠn−2 =
n−2∏
i=1

d3p

(2π)3

1

2E
. (3.2)

From this, the mass dimension of an n-point amplitude is easily obtained

�
��
�*−2[

dσ̂n
]

= −���
2[

ŝ
]

+ (n− 2)
�
�
���

2[
d3p

E

]
+�

��>
−4[

δ4
]

+ 2
[
A
]

=⇒
[
A
]

= 4− n . (3.3)

Similarly, from Eq. 2.17 we can obtain the mass dimensions of the one-loop master-integral

coefficient. Let us denote the loop momentum by l and the denominators form the loop

propagators by Di, where it is understood that Di = Di(l) = li(l)
2 − m2

i , with li the

momentum flowing through the relevant propagator and mi its mass. We have

[
IBox

]
=

∫
��
�* 4[

d4l
]

���
���

��: 8[
D1D2D3D4

] = −4 =⇒
[
Box coeff.

]
= 8− n , (3.4)

[
ITri

]
=

∫
��
�* 4[

d4l
]

���
���:

6[
D1D2D3

] = −2 =⇒
[
Triangle coeff.

]
= 6− n , (3.5)

[
IBub

]
=

∫
��
�* 4[

d4l
]

���
��: 4[

D1D2

] = 0 =⇒
[
Bubble coeff.

]
= 4− n . (3.6)

Alternatively, these can be obtained by considering the relevant tree-level diagrams given

by generalised unitarity cuts (this will become clear in Section 3.3).

In the next section, we will combine this information with some considerations about

helicity to uniquely fix the kinematic dependence of three-point amplitudes in QCD.

3.1 The Little Group & Three-point Amplitudes

The transformations belonging to the little group are those that act on the (1/2, 0) and

(0, 1/2) Lorentz spinor representations, while leaving the (1/2, 1/2) vector representation

unchanged. The fundamental relation to be kept in mind is that of Eq. 2.42

P α̇α = λ̄α̇λα . (3.7)
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Clearly, it is sufficient to multiply and divide by some quantity respectively the left-handed

and the right-handed spinor representations to keep the four-momentum unchanged

λαi → ti λ
α
i ,

λ̄α̇i → λ̄α̇i /ti , (3.8)

P α̇αi → P α̇αi ,

where the label i refers to the particle number in the phase space. This clarifies that

there is one such transformation for each particle and that all these transformations are

independent of one another. For real momenta, the parameters ti must be phases eiτi in

order to preserve the relation between the spinors

λ̄α̇ = (λα)† ⇔ Pµ ∈ R . (3.9)

Such restriction does not apply to complex momenta. Nevertheless, we will still refer to

the behaviour of a quantity with respect to little group transformations as phase weights

or, in some cases, little group scalings, even if the phase space is complex.

Little group scalings are intimately related to the helicities of the particles of the considered

process. This is easily understood by considering the Feynman rules for external lines in

their spinor helicity formulation, as discussed in the Section 2.2.3. In that context, we

saw that spin-1/2 particles with negative (positive) helicities carry factors of λα (λ̄α̇), and

spin-1 particles with negative (positive) helicity carry factors λα/λ̄α̇ (λ̄α̇/λα). In general,

under a little group transformation the following holds true

A({hi, . . . })→ t−2hi
i A({hi, . . . }) , (3.10)

where by hi we denote the helicity of the ith particle. The phase weights are then simply

the vector {−2hi}1.

We are now ready to obtain three-point amplitudes. In Section 2.2.3 we saw that they can

only be functions of either angle or square brackets

A3(1, 2, 3) ∝ 〈12〉α〈23〉β〈31〉γ or A3(1, 2, 3) ∝ [12]α[23]β[31]γ , (3.11)

and their phase weights are, respectively,

{α+ γ, α+ β, β + γ} and {−α− γ,−α− β,−β − γ} . (3.12)

Let us now consider two representative cases, A3g(1
+, 2+, 3+) and A3g(1

+, 2+, 3−). The

rest of the all-gluon ones will follow from application of symmetries (permutation and

parity); and the ones with a quark line can be obtained similarly to the ones we consider.

1Note that in this convention a positive helicity state has negative phase weight, and vice versa.
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Example: A3g(1+,2+,3+)

The phase weights are {−2,−2,−2}. Thus, we have either
−2 = α+ γ

−2 = α+ β

−2 = β + γ

=⇒


α = −1

β = −1

γ = −1

=⇒ A3g(1
+, 2+, 3+) ∝ 1

〈12〉〈23〉〈31〉
, (3.13)

or
−2 = −α− γ

−2 = −α− β

−2 = −β − γ

=⇒


α = 1

β = 1

γ = 1

=⇒ A3g(1
+, 2+, 3+) ∝ [12][23][31] . (3.14)

Neither has the correct mass dimension (1), therefore this amplitude vanishes.

Example: A3g(1+,2+,3−)

The phase weights are {−2,−2,+2}. Thus, we have either
−2 = α+ γ

−2 = α+ β

+2 = β + γ

=⇒


α = −3

β = 1

γ = 1

=⇒ A3g(1
+, 2+, 3+) ∝ 〈23〉〈31〉/〈12〉3 , (3.15)

or
−2 = −α− γ

−2 = −α− β

+2 = −β − γ

=⇒


α = 3

β = −1

γ = −1

=⇒ A3g(1
+, 2+, 3+) ∝ [12]3/

(
[23][31]

)
. (3.16)

The first solution is not compatible with the mass dimension, but the latter is. This is

indeed the result one would obtain by applying the Feynman rules, but we obtained it

here in a much easier way. The only missing piece of information is the proportionality

constant, which cannot be obtained this way, but is easy enough to reintroduce afterwards.

3.2 BCFW Recursion & Tree-Level Amplitudes

Recursion relations play a very important role in modern high energy physics. They

provide a reliable and efficient method to compute tree-level amplitudes for virtually any

multiplicity. There exist two types of recursion relations, off-mass-shell and on-mass-shell

ones. An example of the former type of recursion is the Berends-Giele recursion [93],
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which builds higher point amplitudes from lower point ones with an off-shell leg, effectively

caching components of Feynman diagram computations. This type of recursions is very

efficient when a full spin-averaged squared matrix element is required. An example of

the latter type is the Britto–Cachazo–Feng–Witten (BCFW) recursion [91], which uses

on-mass-shell, momentum conserving and gauge invariant building blocks. The trade-off is

the necessity to introduce complex-valued four-momenta. On-shell recursions were first

obtained from computations of components of one-loop amplitudes by unitarity techniques,

for example by fusing box coefficients [94]. This type of recursion is best used when a

specific helicity configuration is required, because it provides a targeted approach. Since

our aim is not just to compute tree amplitudes for leading-order predictions, but rather

to use them as ingredients for loop-level computations, where specific helicity states are

required, here we focus on the BCFW recursion and review its proof based on Cauchy’s

residue theorem [92].

Let us consider an n-point colour-ordered amplitude A(1λ1 , 2λ2 , . . . , nλn). We want to

modify two of the external legs, for simplicity say legs 1 and 2, such that they remain

on-mass-shell, while, at the same time, sending an internal propagator on its mass-shell .

For this purpose, we can introduce a complex number z and a four-momentum q such that

P1 → P̂1 = P1 − zq , (3.17)

P2 → P̂2 = P2 + zq . (3.18)

Maintaining the on-shellness requires

P̂ 2
1 =

(
P1 + zq

)2
= P 2

1 − 2zP1 · q + q2 = 0 (3.19)

P̂ 2
2 =

(
P2 − zq

)2
= P 2

2 + 2zP2 · q + q2 = 0 , (3.20)

which are satisfied by requiring

P1 · q = P2 · q = q2 = 0 . (3.21)

This can be easily achieved by choosing q = |2〉[1| or q = |1〉[2|. Let us consider the former

case, the shifted momenta become

P̂1 = |1]
(
〈1| − z〈2|

)
and P̂2 =

(
|2] + z|1]

)
〈2| . (3.22)

In general, the amplitude will now be a function of the shift parameter z, and we are

interested in obtaining it at the physical value z = 0 . This is done by considering an
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integral on a contour at infinity and applying Cauchy’s residue theorem

0 =

∮
dz

2πi

Â(z)

z
= Â(0) +

∑
i

Res
[
Â(z)

]
z=zi

zi
, (3.23)

=⇒ Â(0) = −
∑
i

Res
[
Â(z)

]
z=zi

zi
. (3.24)

In equation Eq. 3.23, we have assumed that the amplitude Â(z) vanishes sufficiently fast

at z =∞ for the contour to evaluate to zero. If this is not the case, then Eq. 3.24 picks up

an additional contribution.

The residues of Â(z) originate from its simple poles, which can be located where a propagator

goes on-shell. Assuming we are dealing with colour ordered amplitudes, such as in QCD,

we can restrict momentum configurations to those with cyclically ordered external legs.

For a propagator to depend on z we need the two shifted momenta to be on opposite sides

of the propagator. Except for this restriction, all partitions of {1, . . . , n} into two sets are

in principle allowed. To keep things general, let us have {2, . . . , i} on the right-hand side

of the propagator and {i+ 1, . . . , n, 1} on the left hand side, as shown in the diagrammatic

equation below. Let the propagator be Q̂2
i . Then, the locations of the poles zi are obtained

by putting the shifted propagator momentum Q̂i on-shell

Q̂i = P̂1 + Pi+1 + · · ·+ Pn =
(
P1 + Pi+1 + · · ·+ Pn

)
− zq = Qi − zq , (3.25)

0
!

= Q̂2
i = Q2

i − 2ziq ·Qi ⇒ zi =
Q2
i

2q ·Qi
, Q̂2

i = −2q ·Qi(z − zi) (3.26)

At the pole, i.e. when z → zi, the amplitude factorises into a sum of on-shell left and right

lower-point sub-amplitudes, hence the recursion. The sum runs over the polarisations of

the on-shell propagator and arises from the polarisation completeness relation. We have

Â(z)
∣∣
z=zi

=
∑
pol.

ÂL(i+ 1, . . . , n, 1̂, Q̂i)
1

Q̂2
i

ÂR(−Q̂i, 2̂, . . . , i)
∣∣
z=zi

, (3.27)

Â(0) = −
∑
i

Res
[
Â(z)

]
z=zi

zi
=
∑
i, pol.

1

zi
ÂL

1

2q ·Qi
ÂR =

∑
i,pol.

ÂL
1

Q2
i

ÂR . (3.28)

We can visualise Eq. 3.28 graphically as follows.

Â(0)

1λ1

2λ2

3λ3

nλn

=
∑
i, pol.

AL

1̂λ1

nλn

(i+ 1)λ(i+1)

Q̂±i
1

Q2
i

AR

2̂λ1

3λ3

iλi

−Q̂∓i

Amplitudes obtained via BCFW recursion are generally more compact and better represent

their pole structure compared to those obtained via off-shell methods. However, they
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contain spurious poles.

The proof presented here relies on the propagators to be quadratic. In theories with

higher-derivative kinetic terms, the propagators may be quartic, which would make the

poles of second order. It is then more complicated to extract the residues, and the

factorisation is not as straightforward either. We’ll discuss more about this in Chapter 9.

Example: A6g(1+,2−,3+,4−,5+,6−)

In the following, we give an example of BCFW recursion for one of the first NMHV

amplitudes in QCD, A6g(1
+, 2−, 3+, 4−, 5+, 6−). We make use of a |2〉[1| shift, and, hence,

of the hatted momenta of Eq. 3.22. There are three possible factorisation channels

1) {6−, 1̂+, Q±i } {−Q̂
∓
i , 2̂

−, 3+, 4−, 5+} , (3.29)

2) {5+, 6−, 1̂+, Q±i } {−Q̂
∓
i , 2̂

−, 3+, 4−} , (3.30)

3) {4−, 5+, 6−, 1̂+, Q±i } {−Q̂
∓
i , 2̂

−, 3+} . (3.31)

Let us consider the first one. The corresponding diagram is

AL

1̂+

6−

Q̂±1 1

Q2
1

AR

2̂−

3+

4−

5+

−Q̂∓1

The un-shifted and shifted propagator are Q1 = −1− 6, Q2
1 = s16, Q̂1 = −1̂− 6, hence

z1 = Q2
1/2q ·Q1 = s16/〈2|6|1] = 〈16〉[61]/〈26〉[61] = 〈16〉/〈26〉 . (3.32)

This implies that 〈61̂〉 = 〈Q̂16〉 = 〈Q̂11̂〉 = 0, and therefore that

A(1̂, Q̂−1 , 6
−) =

〈Q̂16〉4

〈1̂Q̂1〉〈Q̂16〉〈61̂〉
=

04

03
= 0 , (3.33)

where this is understood as being in the limit for z → z1. The other helicity choice is

A(1̂, Q̂+, 6−)
1

s16
A(−Q̂−, 2̂−, 3+, 4−, 5+) = (3.34)

=
[1̂Q̂]4

[1̂Q̂][Q̂6][61̂]

1

s16

[35]4

[−Q̂2̂][2̂3][34][45][5− Q̂]
= (3.35)

=
[1̂Q̂]3

[61]2[Q̂6]

〈26〉[35]4

〈16〉[34][45]〈6|1 + 2|3]

1

[−Q̂2̂][5− Q̂]
× 〈Q̂2〉3

〈Q̂2〉3
. (3.36)
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Simplifying this expression2, reintroducing factors of i and making use of two of the

symmetries we obtain the full amplitude

A6g(1
+, 2−, 3+, 4−, 5+, 6−) =

−i 〈26〉4[35]4

〈12〉〈16〉[34][45]〈2|1 + 6|5]〈6|1 + 2|3]s345
+(

123456→ 234561
)

+
(
123456→ 345612

)
, (3.37)

where the two parenthesis indicate permutations, and the overline represents parity.

3.3 Generalised Unitarity & One-Loop Amplitudes

In a i→ f process, the relation between the scattering matrix S, the forward scattering

matrix T , defined as S = 1 + iT , and the full amplitude A is given by

〈f |S − 1|i〉 = i〈f |T |i〉 = i(2π)4δ4(Pi − Pf )A(i→ f) . (3.38)

Unitarity of the scattering matrix S is simply a statement of conservation of probability∑
f

∣∣〈f |S|i〉∣∣2 = 〈i|S†S|i〉 = 1 =⇒ SS† = 1 = S†S , (3.39)

that is, the probability for anything to happen is 1. This relation, in terms of the forward

scattering matrix T , reads

1 = S†S = (1− iT †)(1 + iT †) = 1− iT † + iT + T †T , (3.40)

=⇒ T †T = i(T † − T ) = 2Im(T ) ≡ Disc(T ) . (3.41)

The “Disc” operation, defined as twice the imaginary part, refers to the discontinuity

across a branch cut in the complex plane. As we will see shortly, propagators in scattering

amplitudes are intimately related to this branch cut structure in the on-shell limit.

Going back to our pure gluon example and reintroducing the 0 → n notation, we can

expand T in the number of particles n and in powers of the strong coupling gs

T = T4 + T5 + . . . , (3.42)

T4 = g2
sT

(0)
4 + g4

sT
(1)
4 + g6

sT
(2)
4 + . . . , (3.43)

T5 = g3
sT

(0)
5 + g5

sT
(1)
5 + g5

sT
(2)
5 + . . . . (3.44)

2The following identities are being used [2̂3] = 〈6|1+2|3]/〈62〉,[5|−Q̂|2〉 = [5|1+6|2〉, [1|Q̂|2〉 = [16]〈62〉,

[6|Q̂|2〉 = [61]〈12〉, and [2̂| − Q̂|2〉 = s345.
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By inserting these in Eq. 3.41 we obtain

Disc(T
(0)
4 ) = 0 , (3.45)

Disc(T
(1)
4 ) = T

(0)†
4 T

(0)
4 , (3.46)

Disc(T
(2)
4 ) = T

(1)†
4 T

(0)
4 + T

(0)†
4 T

(1)
4 + T

(0)†
5 T

(0)
5 , (3.47)

and so forth. For example, we can picture Eq. 3.46 graphically as follows

Disc = .

What we have discussed so far is unitarity, where two propagators are set to be on-mass-shell.

In some cases, full amplitudes can be reconstructed by means of dispersion relations, but

this is a highly non-trivial procedure. More information about the amplitude can be

obtained by setting on-shell, or cutting, a different number of propagators. This is the

fundamental idea behind generalised unitarity.

In the following, we will quantitatively define the procedure of cutting loop momenta, and,

subsequently, we will apply generalised unitarity to extract one-loop integral coefficients.

3.3.1 Cut Rules

Let us consider a massless propagator in the “iε” prescription. It can be shown that

its discontinuity is proportional to a δ-function [95]. Starting from the definition of

discontinuity given in Eq. 3.41, we have

Disc

(
1

P 2 + iε

)
= 2 Im

(
1

P 2 + iε

)
= 2 Im

(
P 2 − iε
P 4 + ε2

)
= − 2ε

P 4 + ε2
. (3.48)

Taking first the on-shell limit P 2 → 0, and then the zero contour deformation limit ε→ 0,

we see that it is indeed an infinitely peaked distribution at the origin

ε

P 4 + ε2
=


1
ε ∼ ∞ if P 2 = 0 ,

ε ∼ 0 if P 2 6= 0 ,

(3.49)

and the area is finite ∫
ε

P 4 + ε2
dP 2 = arctan

(P 2

ε

)
∼ π . (3.50)
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Therefore, we have that the cut procedure is defined by taking the discontinuity across

a propagator branch cut, which is, up to factors of 2 and π, a δ-function enforcing the

on-shell condition (
1

P 2 + iε

)
→ Disc

(
1

P 2 + iε

)
∼ δ(P 2) . (3.51)

If a particular diagram or expression does not contain the propagator being cut, then it

does not have the correct branch cut and the discontinuity is zero.

Cutting the loop momenta can be regarded as a procedure to project a loop amplitude

onto a known set of master integrals, and thus extract the coefficients of said integrals. As

already anticipated in the context of colour-ordered amplitudes in the previous chapter,

the scalar master integral decomposition at one loop reads

A1−loop
n;1 =

∑
i

diI
i
Box +

∑
i

ciI
i
T riangle +

∑
i

biI
i
Bubble +

∑
i

aiI
i
Tadpoles +R , (3.52)

or graphically

=
∑

i di i +
∑

i ci i +
∑

i bi ii +
∑

i ai ii + R .

This assumes the loop momentum is kept in D = 4, since the above equation is correct

up to terms of O(D − 4). Throughout this thesis, we will not consider tadpoles, since

they vanish in dim-reg if massless particles run through the loop (the integral becomes

scale-less).

Depending on the number of cuts performed, a single integral coefficient or a combination

of integral coefficients may be singled out. Quadruple cuts are clean, in the sense that they

pick out only the relevant di coefficient. However, for instance, triple cuts pick out both

a triangle coefficient ci, as well as any box coefficient of an integral sharing the relevant

propagators. Therefore, the strategy is to perform as many cuts as possible to extract the

box coefficients. Afterwards, we may do one fewer cut, subtract the known box information,

and obtain the triangle coefficients. Similarly, we may proceed to obtain bubbles and, if

present, tadpole coefficients.

3.3.2 Maximal Cuts

In four dimensions the loop momentum has 4 components, therefore we can at most impose

4 on-shell conditions. This is called a maximal cut. On the cut, the left-hand side of
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Eq. 3.52 factorises into the product of four on-shell tree amplitudes, as shown graphically

here.

⇒

This is analogous to the factorisation in the context of BCFW recursion. On the right-hand

side of Eq. 3.52 the quadruple cut picks out the relevant coefficient di. Note that, in

principle, there is a Jacobian associated with the change of variable from the loop-integral

measure d l4 to the arguments of the four δ-functions, call them l21, l22, l23, and l24. However,

the same Jacobian appears on both sides of the equal sign, and thus can be ignored.

Therefore, the box coefficient is given by

di =
1

2

(
d+
i + d−i

)
, with d±i = Atree1 Atree2 Atree3 Atree4 (3.53)

where, due to the quadratic nature of the on-shell cut conditions, we have to average over

the two possible on-shell solutions for the cut-loop momenta. Finally, a summation over

all possible intermediate physical states for the loop momentum is also implied. In the

case of gluons, this is simply the helicity assignments for the cut-loop momenta.

Example: box coefficient

As an example, we are going to compute the box coefficient for A
(1)
6g (1+, 2−, 3+, 4−, 5+, 6−)

given by the diagram below. Note that different helicity assignments for the cut propagators

are also possible, but for the purpose of this example we will consider only the one shown

in the following diagram.

1+ 2−

3+

4−

5+

6−

l−1

l+2

l−3

l+4
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Algebraically, this corresponds to the following product of tree amplitudes3

A(−l−4 , 1+, l−1 ) A(−l+1 , 2−, l+2 ) A(−l−2 , 3+, 4−, 5+, l−3 ) A(−l+3 , 6−, l+4 ) = (3.54)

i 〈l1| − l4〉3

〈−l4|1〉〈1|l1〉
× i [l2| − l1]3

[−l1|2][2|l2]
× i [3|5]4

[−l2|3][3|4][4|5][5|l3][l3| − l2]
× i [l4| − l3]3

[−l3|6][6|l4]
. (3.55)

Because there are three massless corners, the loop momentum parametrisation is very

straightforward. We will review the general mass case together with the triangle coefficients.

The two possible on-shell solutions are l1 ∝ |1〉[2| or l1 ∝ |2〉[1|. However, it is easy to

see that the former choice leads to vanishing A(−l−4 , 1+, l−1 ). Therefore, we only have to

consider the latter parametrisation choice

l1 = ξ|2〉[1| =
(
− 〈16〉
〈26〉
|2〉
)

[1| , (3.56)

l2 = l1 − P2 = |2〉
(
ξ[1| − [2|

)
= |2〉

(
− 〈16〉
〈26〉

[1| − [2|
)
, (3.57)

l4 = l1 + P1 =
(
ξ|2〉+ |1〉

)
[1| =

(
− 〈16〉
〈26〉
|2〉+ |1〉

)
[1| , (3.58)

l3 = l1 + P1 + P6 =
(
ξ|2〉+ |1〉

)
[1|+ |6〉[6| =

(
− 〈16〉
〈26〉
|2〉+ |1〉

)(
[1|+ 〈26〉

〈21〉
[6|
)
. (3.59)

In the above, the value of the proportionality constant ξ is fixed by requiring l23 = 0,

whereas the other three cut conditions are trivially satisfied. It is then straightforward to

plug Eq.s 3.56 - 3.59 into the product of trees of Eq. 3.55. For example, up to numerical

prefactors, some of the required manipulations are4

[5|l3] ∼ [5|
(
|1] +

〈26〉
〈21〉
|6]
)

=
1

〈21〉

(
〈21〉[51] + 〈26〉[56]

)
=
〈2|1 + 6|5]

〈12〉
, (3.60)

[l3| − l2] ∼
(

[1|+ 〈26〉
〈21〉

[6|
)(
− 〈16〉
〈26〉
|1]− |2]

)
= [21] +

〈16〉
〈12〉

[61] +
〈26〉
〈12〉

[62] =
s345

〈12〉
.

The final answer is given by

1/2 i [12][16]〈26〉4[35]4

[34][45]〈2|1 + 6|5]〈6|1 + 2|3]s345
. (3.61)

As expected, it is proportional to s12s16 times the part of the tree amplitude obtain by the

BCFW shift of Eq. 3.29 (note that s12 and s16 can be thought of as the s and t channels

of this diagram). The proportionality of box coefficients to tree amplitudes, or parts of

3Momenta and helicity signs are flipped in adjacent trees to respect the all-outgoing convention.
4Technically, the analytical continuation convention is | − k〉 = ±i|k〉 and | − k] = ±i|k], where the

sign depends on the position of the branch cut for the complex square root, which is itself a matter of

convention. We place the brunch cut in the negative real axis, which means −π < arg(z) ≤ π for z ∈ C.

The sign is then negative if arg(k(0) + k(3)) > 0, and vice versa.
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them, is a general result, which, as mentioned, first lead to conjecturing on-shell recursions.

However, further investigations on the topic are beyond the scope of the present analysis.

3.3.3 Triangle Coefficients

In this section, we are going to review the method of Ref. [82] for the extraction of triangle

coefficients. Graphically, a triple cut acting on Eq. 3.52 will be as follows.

= d + c

On the left-hand side, the one-loop amplitude factorises into a product of three tree

amplitudes, integrated over one remaining degree of freedom, call it t. On the right-hand

side, we pick out not only the relevant triangle coefficient, but also any box coefficient of

scalar integrals sharing the three cut propagators. Mathematically, we may write the triple

cut as ∫
dt JtA1A2A3 =

∑
i

di

∫
dt Jt

1

D
(i)
4

+ c

∫
dt Jt , (3.62)

where the integration over three δ-functions δ(l2)δ(l21)δ(l32) has already been performed,

and Jt ∝ 1/t is the Jacobian5 arising from the change of variables d4l→ dt dl2 dl21 dl32.

Let us study the momentum parametrisation for a generic triple cut, where the external

momenta have been clustered into three massive momenta K1, K2 and K3, as described

by the following diagram.

K3

K1K2

l +K1

l

l −K2

Since on the cut the loop momentum l is massless, we would like to express it in terms of

5A derivation of the Jacobian is given in Appendix B.
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massless projections of K1 and K2, denoted by the flat symbol [, and defined as
Kµ

1 = K[,µ
1 + αK[,µ

2 ,

Kµ
2 = K[,µ

2 + βK[,µ
1 .

(3.63)

To enforce K[,2
1 = K[,2

2 = 0, we can square the above relations and solve for α and β

K2
1 = α 2K[

1 ·K[
2 , K2

2 = β 2K[
1 ·K[

2 . (3.64)

Let γ = 2K[
1 · K[

2 = 〈K[
1|K[

2|K[
1] = 〈K[

2|K[
1|K[

2] and K2
i = Si, then we obtain the two

coefficients α = S1/γ and β = S2/γ.

Inverting the relations of Eq. 3.63, we obtain

K[,µ
1 =

Kµ
1 −

S1
γ K

µ
2

1− S1S2
γ2

, and K[,µ
2 =

Kµ
2 −

S2
γ K

µ
1

1− S1S2
γ2

. (3.65)

By squaring K[,µ
1 , we can express γ as a function of the external momenta only

K[,2
1 =

( 1

1− S1S2
γ2

)2 (
Kµ

1 −
S1

γ
Kµ

2

)2
= 0 , (3.66)

=⇒ K2
1 +

S2
1

γ2
K2

2 −
S1

γ
2K1 ·K2 = 0 . (3.67)

Then, multiplying through by γ2, we obtain the following quadratic

⇒ γ2 − 2K1 ·K2γ + S1S2 = 0 , (3.68)

and, thus, two solutions for γ

γ± = K1 ·K2 ±
√

∆ , ∆ = (K1 ·K2)2 − S1S2 . (3.69)

However, note that Eq. 3.67 for γ is not, strictly speaking, quadratic. Therefore, when

either S1 = 0 or S2 = 0, the γ = 0 solution is not acceptable, and there is a single solution

γ = 2K1 ·K2.

We can now express the loop momentum in terms of the flat momenta K[
1 and K[

2. The

following is completely generic, since any massless momentum can be expressed as linear

combination of spinors as follows

|l〉 = a|K[
1〉+ b|K[

2〉 , and |l] = c|K[
1] + d|K[

2] . (3.70)

The first cut condition l2 is trivially satisfied for any value of the parameters a, b, c and d.
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The other two cut conditions read

(l +K1)2 = l2 + 2l ·K1 +K2
1 = 0 (3.71)

⇒ S1 + 〈l|K1|l] = 0 (3.72)

⇒ S1 + acS1 + bdγ = 0 (3.73)

and

(l −K2)2 = l2 − 2l ·K1 +K2
1 = 0 (3.74)

⇒ S2 − 〈l|K1|l] = 0 (3.75)

⇒ S2 − acγ − bdS2 = 0 . (3.76)

By solving the resulting system of equations
S1 + acS1 + bdγ = 0 ,

S2 − acγ − bdS2 = 0 ,

(3.77)

one obtains the following constraints for the products ac and bd

ac =
S2(γ + S1)

γ2 − S1S2
≡ α02 , (3.78)

bd = −S1(γ + S2)

γ2 − S1S2
≡ α01 . (3.79)

The definitions for α01 and α02 are made in order to keep the notation as close as possible

to the original of Ref. [82]. In addition to Eq. 3.78 and Eq. 3.79, there is the further

freedom given by the little group. For instance, assuming α01 6= 0, we may pick d = 1,

renamed a = t, and obtain 
|l〉 = t|K[

1〉+ α01|K[
2〉 ,

|l] = α02
t |K

[
1] + |K[

2] .

(3.80)

However, if α01 = 0, we also have to choose b = 1, c = t, and obtain
|l〉 = α02

t |K
[
1〉+ |K[

2〉 ,

|l] = t|K[
1] + α01|K[

2] .

(3.81)

The latter parametrisation is independent from the first one only if α01 = 0 and/or α02 = 0,

otherwise the two are related by a little group transformation equal to α01 and a renaming

of t → α01α02
t . Therefore, summing up, there are always two distinct solutions for the

loop momentum. If S1 6= 0 and S2 6= 0, then there are two choices for γ±, but a single



66 CHAPTER 3. ON-SHELL METHODS

momentum parametrisation for each of these choices. Conversely, if either S1 = 0 or S2 = 0

(or both), then there is a single γ but two momentum parametrisations.

The first choice of Eq. 3.80 is the one given in Ref. [82]. In four-vector notation it reads

lµ = α01K
[,µ
1 + α02K

[,µ
2 +

t

2
〈K[

1|σ̄µ|K[
2] +

α01α02

2t
〈K[

2|σ̄µ|K[
1] (3.82)

≡ aµ0 t+ aµ1
1

t
+ aµ2 . (3.83)

Let us now consider what happens in the case of a box integral. Graphically, by “zooming

in” one of the vertices, we may resolve one more propagator, as shown below.

K3 K4

K1K2

l −K2 −K3

l +K1

l

l −K2

With a slight abuse of notation, we are now giving a new meaning to K3, as seen by

comparing the triangle and the box diagrams K3 → K3 +K4. The propagator that appears

only in the box reads

D4 = (l −K2 −K3)2 =�
�7

0

l2 + (K2 +K3)2 − 2l · (K2 +K3) . (3.84)

By setting it to zero, we obtain the location of the poles in t-space corresponding to D4

going on-shell6. We have

(t〈K[
1|+ α01〈K[

2|)K23(
α02

t
|K[

1] + |K[
2]) = K2

23 , (3.85)

α02〈K[
1|K23|K[

1] + t〈K[
1|K23|K[

2] +
α01α02

t
〈K[

2|K23|K[
1] + α01〈K[

2|K23|K[
2] = K2

23 ,

t2〈K[
1|K23|K[

2] + t
(
α02〈K[

1|K23|K[
1] + α01〈K[

2|K23|K[
2]−K2

23

)
+ α01α02〈K[

2|K23|K[
1] = 0 .

By solving the quadratic and doing a partial-fraction decomposition, we obtain an expression

for the propagator

1

D4
=

1

(l −K2 −K3)2
=

t

〈K[
1|K23|K[

2]
(
t+ − t−

)( 1

t− t+
− 1

t− t−

)
, (3.86)

where, again, we have assumed S1 6= 0 and S2 6= 0. If this is not the case, then Eq. 3.85 is

6This can also be used to compute box coefficients with arbitrary external legs.
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not really quadratic, and there is a single pole

1

D4
=

1

(l −K2 −K3)2
=

1

〈K[
1|K23|K[

2]
(
t− t0

) . (3.87)

Crucially, the propagator of Eq. 3.86 vanishes at t = 0, whereas that of Eq. 3.87 does not.

To understand why this is of any consequence, we need to look at the remaining piece of

puzzle, namely the integral over t.

As explained in Ref. [82], and in references therein [96, 97], the integral in t behaves like a

contour integral, with only simple pole contributing to the final result. It may be possible

to understand this in terms of the 4d geometry of the change of variable, but it is easiest

to consider the following Passarino-Veltman tensor reduction [73]∫
dl
lµ1 . . . lµn

l2l21l
2
2

∼ fµ1...µ2(K1,K2, η)

∫
d4l

1

l2l21l
2
2

, (3.88)

where the tensor integral on the left-hand side has been expressed as a scalar integral times

a function which depends on the only available tensor structures, namely the momenta Kµ
1

and Kν
2 , and the metric tensor ηµν . Since this undetermined function fµ1...µ2(K1,K2, η)

vanishes when contracted with tensor structures like |K[
2]〈K[

1| or |K[
1]〈K[

2|, we have∫
d4l
〈K[

1|l|K[
2]n

l2l21l
2
2

= 0 =⇒
∫

dtJt
1

tn
= 0 for n ≥ 1 , (3.89)∫

d4l
〈K[

2|l|K[
1]n

l2l21l
2
2

= 0 =⇒
∫

dtJtt
n = 0 for n ≥ 1 , (3.90)

where it is important to recall that Jt ∝ 1/t.

Finally, to sum up, let us consider again Eq. 3.62, and in particular the left-hand side

integrand A1A2A3/t. The residues from poles away from zero correspond to box coefficients,

whereas the residue at t = 0 corresponds to the genuine triangle coefficient, once the box

contribution has been subtracted. This is necessary only if the box integral contributes as

in Eq. 3.87, since propagators like that of Eq. 3.86 do not contribute at t = 0.

The lack of additional insights which we would obtain from a fully analytical computation

do not warrant the increased complexity necessary to carry it out. Therefore, we do not

present one in this context. However, we have implemented this generalised unitarity

method in numerical Python code, and checked that the triangle coefficients reproduce

those obtained by the BlackHat library [98] to a high precision.
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3.3.4 Bubble Coefficients and Rational Parts

In order to perform a one-loop calculation from the ground up, we would need to obtain

two more quantities: bubble coefficients and rational parts. An in-depth review of these

would be fairly lengthy and is beyond the scope of the current work. In fact, for the

analysis we are going to perform starting in Chapter 5, it is sufficient to consider already

available numerical routines (e.g. BlackHat) as black boxes which provide a numerical

value for a given quantity given a phase space point. For this same reason, the momentum

parametrisation chosen for the cut loop momentum is not important, as long as the result

is numerically stable and sufficiently precise. Furthermore, from the point of view of

the analytical reconstruction, there is not fundamental difference between box, triangle

and bubble coefficients and the rational part: they are all rational functions of kinematic

invariants. The main difference will be which poles appear and with what degree, but since

all poles are handled in a similar fashion no special treatment will be required for bubble

coefficients and rational parts.

Let us briefly summarise possible computation methods. Bubble coefficients can be obtained

in an analogous way to the triangle coefficients discussed in the previous section [82]. In

this case, we would have only two on-shell conditions, resulting in one more residual degree

of freedom from Eq. 3.70, call it y. Thus, the left over integration would be over both t

and y, and we would need to identify contributions from both box and triangle integrals as

poles in t and y, before being able to obtain the genuine bubble coefficients. Again, the

momentum parametrisation is not unique, but it will always contain two residual degrees of

freedom which need to be integrated over. As an alternative example, the parametrisation

chosen in Ref. [90] results in a double integration over a complex variable z and it’s c.c. z̄.

The rational part is not cut constructible in four dimensions, meaning it cannot be obtained

by generalised unitarity cuts in d = 4. Any spurious pole dependence can still be obtained

in d = 4, by requiring it to match the un-cancelled spurious singularities from the cut

constructible coefficients. However, this is not enough to fully constrain it. Several methods

exist to obtain the rational part in its entirety [39,86–88,99]. These include performing the

generalised unitarity cuts in higher number of dimensions, or - equivalently7 - introducing

a fictitious mass for the loop momenta. Other methods include Feynman-diagram and

string-theory based methods [100–102].

7Any massless momentum in a higher number of dimensions would appear as a massive one in d = 4:

K2 = K2
(4) −K2

(ε) = 0 ⇒ K2
(4) = K2

(ε) = m2
(ε).



CHAPTER 4

The CHY Formalism

In this chapter we briefly review the theory underlining the Cachazo-He-Yuan (CHY)

formalism [55–57]. In Appendix C we present an implementation in Python with floating

point numbers to arbitrary precision. For a more thorough introduction to the subject,

with explicit step-by-step derivations, please consider Ref. [103] and the references therein.

Let us consider the tree-level scattering of n massless particles in d dimensions. We denote

with A the set {1, . . . , n}, with kµa (a ∈ A) the n momenta, and with za n special points of

the Riemann sphere called punctures. The map from momentum space to the Riemann

sphere, as defined in Ref. [55], is the given by

kµa =
1

2πi

∮
|z−za|=ε

dz
pµ(k, z)∏
b∈A(z − zb)

, (4.1)

where pµ(z) are d polynomials with coefficients depending on the momenta and the

punctures. The contour is taken to encircle the punctures.

From Eq. 4.1 it can be shown, as a consistency condition, that the following equations

have to be satisfied

fa(z, k) ≡
∑

b∈A\{a}

ka · kb
za − zb

= 0, ∀a ∈ A . (4.2)

These are the so-called scattering equations. As previously mentioned, the SE are invariant



70 CHAPTER 4. THE CHY FORMALISM

under Möbius transformations SL(2,C), that is under the following mapping

z → ζ =
αz + β

γz + δ
. (4.3)

Because Eq. 4.3 has effectively three free complex parameters, we can fix the position of

three of the n punctures. A common choice in the literature, which we follow throughout

this work, is given by

z1 =∞, z2 = 1, zn = 0 . (4.4)

Scattering amplitudes for n massless particles An
1 are then obtained by integrating a

CHY-integrand ICHY
2 over the solutions of the SE. This can be achieved either with a

normal integral over delta functions, or as a contour integral over the SE. As by prescription

An = i

∫
dnz

d3ω
ICHY (z; k; ε)

∏
a∈A

′
δ(fa(z, k)) (4.5)

= i

∮
O

dnz

d3ω
ICHY (z; k; ε)

∏
a∈A

′ 1

fa(z, k)
, (4.6)

where the Möbius measure dω and the modified product symbol
∏′ are defined as

d3ω =
dzrdzsdzt

(zr − zs)(zs − zt)(zt − zs)
, (4.7)

∏
a∈A

′
= (zi − zj)(zj − zk)(zk − zi)

∏
a∈A\{i,j,k}

. (4.8)

By substituting Eq. 4.7 and Eq. 4.8 back into Eq. 4.5 or Eq. 4.6 it can be shown that

the amplitude An is invariant under Möbius transformations. Note that in principle the

sets {i, j, k} and {r, s, t} are independent, but in practice they are often taken to be the

same for convenience sake. Clearly the requirement of Möbius invariance also imposes a

restriction on the valid CHY-integrands ICHY , as we will see shortly.

We would like to use a purely algebraic approach, as it is more amenable to be implementation

as computer code. To achieve this, we can recast Eq. 4.5 from an integral to a summation

by changing variables from the punctures za to the scattering equations fa. This introduces

a Jacobian factor, i.e. the determinant of the Jacobian matrix defined as

φab =
∂fa
∂zb

=


2ka·kb

(za−zb)2
a 6= b ,

−
∑

j∈A\{a}

2ka·kj
(za−zj)2 a = b .

(4.9)

1Color ordering is assumed for gauge theories.
2More details on ICHY are given in section 4.2. For now it suffices to say that in general it is a function

of the punctures z, the momenta k and the polarisations ε.
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Again, in the spirit of preserving Möbius invariance, since we have removed punctures i, j,

and k from the above δ-function, we also have to remove the corresponding rows form the

Jacobian. Similarly, we are not integrating over r, s and t, and therefore those columns

have to be removed as well. The matrix of Eq. 4.9 with rows i, j, k and columns r, s, t

removed is denoted by φijkrst. In the end, the relevant Jacobian for the change of variables,

which is independent of the Möbius fixing choice, is given by3

J =
(zi − zj)(zj − zk)(zk − zi)(zr − zs)(zs − zt)(zt − zr)

det(φijkrst)
. (4.10)

If we impose the choice made in Eq. 4.4, we have

{i, j, k} = {r, s, t} = {z1, z2, zn} = {∞, 1, 0} . (4.11)

We now write Eq. 4.5 for the scattering amplitudes as

An = z4
1 · i

(n−3)!∑
j=1

ICHY (z(j)(k); k; ε)

det(φijkrst)(z
(j)(k); k)

, (4.12)

where j labels the solution of the SE given by the set of punctures z(j), which are themselves

function of the momenta k. Note that, because of Eq. 4.10 and our choice Eq. 4.11, the

Jacobian J introduces the four powers of z1 =∞ in the numerator. Therefore, ICHY must

come with four powers of z1 in the denominator for Eq. 4.12 to be sensible. This is a check

of Mobius invariance.

4.1 Polynomial Form of the SE and their Solutions

We now turn to the problem of actually finding the solutions to the SE. It is easiest to

consider the SE in the form found in Ref. [104], where the SE are reformulated as n− 3

polynomial equations. We can then follow Ref. [105,106] in using an elimination theory

algorithm to find the solutions.

The SE in polynomial form, which are equivalent to the original SE of Eq. 4.2, are given

by

hm =
∑

S⊂A′, |S|=m

k2
S1
zS = 0 , with 1 ≤ m ≤ n− 3 , (4.13)

3We are also including in the Jacobian J the products of differences of punctures from Eq. 4.7 and

Eq. 4.8.
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where the sets A′ and S1 are defined as

A′ = A\{1, n} , S1 = S ∪ {1} (4.14)

and where kS and zS are defined as

kS =
∑
b∈S

kb and zS =
∏
b∈S

zb . (4.15)

In the above z1 and zn have already been set to ∞ and 0 respectively, but z2 is still kept

free.

This is a system of n− 3 polynomial equations (h1≤m≤n−3) in n− 2 variables (z2≤i≤n−1).

As such, it can be solved by using an elimination theory algorithm. The idea underpinning

elimination theory is to express the system of equations in matrix form and to introduce

more variables and equations until the system is over-specified and yields a consistency

condition in the form of det(Mn) = 0. Here we are going to discuss directly the general n

case. A more detailed discussion can be found in the original papers of Ref. [105,106] or in

Ref. [103].

In general, the aim is to obtain an equation of order (n− 3)! in the ratio zn−1/zn−2. The

original set of 2n−4 monomials we wish to eliminate is given by

V T = {1, z2} × {1, z3} × ... × {1, zn−3} . (4.16)

We introduce an auxiliary set

W T = {1} × {1, z3} × {1, z4, z
2
4} × ... × {1, zn−3, ..., z

n−5
n−3} , (4.17)

which contains (n− 4)! terms. The new set of monomials is then given by

V T → V T ×W T = {1, z2} × {1, z3, z
2
3} × ... × {1, zn−3, ..., z

n−4
n−3} , (4.18)

which is of length (n− 3)!. Similarly, the new (n− 3)! equations are given by

HT → HT ×W T , (4.19)

where HT denotes the vector of polynomial scattering equations h1≤m≤n−3. This procedure

ensures that the number of monomials matches the number of equations, thus allowing to

express the system in matrix form.

Then, by taking partial derivatives of the entries of the extended H of Eq. 4.19 w.r.t. those

of the extended V of Eq. 4.18, we could construct the (n− 3)!× (n− 3)! matrix Mn whose
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determinant is the required equation. However, this is not necessary in practice since the

matrix Mn can be built recursively in a block-matrix format starting directly from the

original set h1≤m≤n−3 and their derivatives w.r.t. z2≤i≤n−3. We denote the derivatives

with superscripts (M z = ∂zM) and we have

Mi =


Mi−1 M

zi−3

i−1 0 . . . 0 0

0 Mi−1 M
zi−3

i−1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . Mi−1 M
zi−3

i−1

 , M4 = H, H =


h1

h2

...

hn−3

 ,

(4.20)

with Mi of dimensions (i− 4)× (i− 3) when written in terms of Mi−1. After the derivative

is taken, zi−3 is set to zero. Mn is then a function of zn−1 and zn−2 only, the required

equation of order (n − 3)! in zn−1/zn−2 is simply det(Mn) = 0, and its roots are the

solutions we seek. Note that, as discussed in the introduction, it is feasible to perform this

root-finding step analytically only for low phase space multiplicities.

Clearly we are not at the end of the calculation yet, because we want values or expressions

for the punctures themselves not for ratios. This is achieved by reintroducing one variable

at a time in M . More explicitly, we first check with Eq. 4.18 the position in the vector of

the variable z̃ we want to reintroduce (say it is the jth entry), then we add z̃ times the jth

column of M to its first column, and eventually remove the jth column and the last row.

This leads to a matrix of size (n− 3)!− 1× (n− 3)!− 1 whose determinant will be a linear

equation for z̃. There is one notable exception to this procedure, namely when z̃ = z2 we

set z2 = 1 and get a linear equation for zn−2 instead.

Finally, we are left with (n− 3)! sets of punctures {z1 =∞, z2 = 1, z3, . . . zn−1, zn = 0}

that solve the scattering equations.

4.2 CHY-Integrands

So far, we have treated the theory-independent part of Eq. 4.12. Now we consider the

theory-dependent term ICHY . It can be built in a modular way from various building blocks.

Here we review the definition of some of those building blocks found in Ref. [107] and in

Ref. [108] which we have implemented in the Python package presented in the appendix.
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Starting from the building blocks that are matrices, we have the 2n× 2n anti-symmetric

matrix Ψ which is defined block-wise in terms of two n× n anti-symmetric matrices A and

B and in terms of a third n× n matrix C. The definitions follow.

Ψ =

 A −CT

C B

 , Aab =


2ka·kb

(za−zb) a 6= b ,

0 a = b ,

(4.21)

Bab =


2εa·εb

(za−zb) a 6= b ,

0 a = b ,

Cab =


2εa·kb

(za−zb) a 6= b ,

−
∑

j∈A\{a}

2εa·kj
(za−zj) a = b .

(4.22)

Since these are matrices we have to define an operation which converts them to a rank-one

object before we can use them to construct ICHY . In the case of anti-symmetric matrices

the determinant can be written as a square of a polynomial in the matrix entries. This

polynomial is called the Pfaffian and it was shown to be the correct operation to perform.

More specifically, since the matrix Ψ has two null vectors and its Pfaffian would be zero, it

is necessary to define a reduced Pfaffian PF′ as

PF′(Ψ) =
(−1)i+j

zi − zj
PF(Ψij

ij) , (4.23)

where Ψij
ij again denotes deletion of rows and columns i and j. The same reduction applies

also to different arguments, such as the matrix A.

We also consider two scalar building blocks Cn and W1. Cn is a cyclic Parke-Taylor-like

factor simply defined as

Cn =
1

(z1 − z2) . . . (zn − z1)
, (4.24)

and the W1 function is defined as 4

W1 =
∏
i∈A

ωi , with ωi =
∑

j∈A\{i}

εi · kj (zj − zr)
(zr − zi)(zi − zj)

, r 6= i. (4.25)

ICHY is built from products of pairs of these building blocks. A more detailed analysis

reveals that PF′(Ψ), Cn and W1 come with a factor of z−2
1 , while PF′(A) comes with a

factor of z−1
1 . This dictates which combinations are allowed by Möbius invariance (recall

that overall we need four powers of z1 to balance out those in Eq. 4.12).

Table 4.1 summarises the theories that can be built out of PF′(Ψ), Cn, PF′(A)2 and

W1: EG stands for Einstein Gravity, YM for Yang-Mills, BS for Biadjoint Scalar, BI for

4We use W1 to denote the function W1...1 from Ref. [108].
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× PF′(Ψ) Cn PF′(A)2 W1

PF′(Ψ) EG YM BI CG

Cn YM BS NLSM (DF)2

PF′(A)2 BI NLSM Galileon ?

W1 CG (DF)2 ? ?

Table 4.1: Possible QFTs built out of PF′(Ψ) , Cn , PF′(A)2 and W1.

A product is implied between rows and columns, eg: ICHY, EG = PF′(Ψ)× PF′(Ψ).

Born-Infeld, NLSM for Non Linear Sigma Model and CG for Conformal Gravity. The

theories labelled with a question mark do not seem to have an agreed upon name, but they

are discussed in the reference from which the W1 function is taken.

This is by no means a complete recount of all possible integrands ICHY , but it is sufficient

to illustrate the framework. Also note that, as anticipated in the introduction, relations

among theories through double copies are now manifest in the structure of the integrands.

For reference, we reproduce here the Lagrangians of pure Yang-Mills, Einstein gravity and

bi-adjoint scalar

LYang-Mills = −1

4
F a,µνF aµν , (4.26)

LEinstein Gravity = R
√
−g , (4.27)

LBi-adjoint Scalar = 2∂µΦaa′∂µΦaa′ +
1

3
fabcf̃a

′b′c′Φaa′Φbb′Φcc′ . (4.28)

The field strength tensor F aµν was defined in Eq. 1.19, R is the Ricci scalar, g = det(gµν),

where gµν is the perturbed metric tensor gµν = ηµν + hµν , and Φ is a scalar field carrying

two indices of the adjoint representation of SU(Nc), hence the name.

We don’t reproduce the remaining Lagrangians since they would require several additional

definitions which are not fundamental for the discussion in Chapter 9, but they can be

easily found in the references.

Finally, remember that the CHY-integrands are not unique. For instance, a different

integrand for conformal gravity is given in Ref. [109].





CHAPTER 5

Pole Structure

In this chapter, we study how to access the pole structure of integral coefficients directly

from numerical evaluations. This is of interest because the pole structure provides a

powerful window into their full analytical form, thus considerably restricting the amount

of information needed for their reconstruction by means of an ansatz, which is the topic of

Chapter 6. Overall, the aim of these two chapters is to lay out a procedure to reconstruct

rational Lorentz-invariant functions from numerical evaluations only.

In order to access the pole structure, we need to be able to manipulate the Lorentz invariant

phase space, which we will consider as formed by n massless particles. In particular, we

want to be able to generate specific sets of momenta with which to probe the expressions.

We will first consider the case of singular limits, that is regions of phase space where a

single Lorentz invariant becomes arbitrarily small, and see what information we can obtain

from them. Since this is often insufficient, we will then study the generation of doubly

singular limits, that is regions of phase space where pairs of invariants vanish.

Let us start from the construction of random phase space points which satisfy both

momentum conservation and on-shell relations. Assuming we work in the all outgoing

convention with massless particles only, these constraints read

n∑
k=1

Pk = 0 and P 2
k = 0 ∀ k ∈ {1, . . . , n}. (5.1)
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A possible way to proceed is the following: 1) generate random numbers, either real or

complex, for all spatial components of the four-momenta; 2) compute the energy component

of the four-momenta using the on-shell relation; 3) recoil two of the n particle four-momenta

by solving the momentum conservation equations. The reason why two four-momenta

need to be recoiled, and not just one, is that a four-momentum has three degrees of

freedom (the fourth component being fixed by the on-shell relation), whereas there are

four (scalar) momentum conservation equations. Alternatives include the randomisation of

spinor components, or the use of momentum twistors.

The last step of restoring momentum conservation can be performed in different ways. We

will now see two procedures, one for real and one for complex momenta.

Real Momenta

Although this first procedure works for both real and complex momenta, in practice it

should only be used to generate real phase space points. Start by picking the two momenta

Pi and Pj , which will be recoiled in order to satisfy momentum conservation, and group

the rest of the momenta in a massive momentum K. We have

0 =
∑
k

Pk = Pi + Pj +
∑
k 6=i,j

Pk = Pi + Pj +K . (5.2)

Given Pi, Pj is uniquely determined. Thus, we can manipulate the above to eliminate Pj ,

and obtain an equation for Pi only

Pj = −Pi −K =⇒ 0 = P 2
j = �

��
0

P 2
i +�

�>
m2
K

K2 + 2Pi ·K . (5.3)

Clearly, there is no unique solution for the components of Pi. In fact, two four-momenta

have six degrees of freedom but momentum conservation imposes only four constraints.

Therefore, we can choose the only non-zero component of the 3 momentum of Pi to be

w ∈ {x, y, z}, which leads to

P
(0)
i = P

(w)
i =

−m2
K

2(K(0) −K(w))
. (5.4)

This procedure does not introduce any imaginary component to a real phase space point, but

it does modify both the left- and the right-handed spinors of both recoiled four-momenta.

While the former property is useful to generate physical phase space points, the latter is

more restrictive than necessary for complex kinematics.
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Complex Momenta

This second procedure always results in a complex phase space point, but has the advantage

of acting only on either the left- or the right-handed spinor components. Let us reconsider

the momentum conservation equation, this time written in spinor notation

0 =
∑
k

|k]〈k| = |i]〈i|+ |j]〈j|+
∑
k 6=i,j

|k]〈k| = |i]〈i|+ |j]〈j|+K . (5.5)

Contracting Eq. 5.5 from the left with [i| and [j|, we obtain a solution which only modifies

the angle brackets

[ji]〈i|+ [j|K = 0 ⇒ 〈i| = [j|K
[ij]

, 〈j| = − [i|K
[ij]

. (5.6)

Alternatively, the parity conjugate of Eq. 5.6 only modifies the square brackets

|i]〈ij〉+K|j〉 = 0 ⇒ |i] = −K|j〉
〈ij〉

, |j] =
K|j〉
〈ij〉

. (5.7)

The freedom of deciding whether to modify the angle or the square brackets will turn out to

be extremely useful to easily generate phase space configurations with multiple constraints.

5.1 Least Common Denominator from Singular Limits

In this section, we will see how the least common denominator of kinematic expressions

can be obtained by probing them in singular limits.

5.1.1 Singular Limits

Let us start by considering how to generate phase space points in singular limits, defined as

regions of phase space where a single Lorentz invariant vanishes. For real kinematics, this

definition reduces to the concept of collinear limit, where two momenta become aligned

and the particles potentially unresolved. For complex kinematics, we lose both geometric

and physical interpretations, but gain much freedom for the construction of distinct phase

space points.

As anticipated in Section 2.2.3, we are going to consider a set of invariants {ri} each

of which can be made arbitrarily small while keeping the others of O(1), but which are

not necessarily linearly independent. Mathematically, we define a singular limit, and the

allowed invariants in {ri}, by

ri → ε� 1 , with rj 6=i = O(1) . (5.8)
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For instance, this implies that 〈12〉 ∈ {ri} and [12] ∈ {ri}, but s12 /∈ {ri}. However, note

that, for multiplicities greater than 5, s123 ∈ {ri}, since complex kinematics circumvents

the triangle inequality which, for real kinematics, requires s123 ∼ ε ⇒ s12 ∼ s13 ∼ s23 ∼ ε.

The invariants that need to be included in the set {ri} depend on the amplitude under

consideration. For instance, the poles appearing in colour-ordered amplitudes are restricted

compared to those of, say, gravity amplitudes. Ultimately, the bottle neck is not in the

generation of the phase space point, but in the evaluation of an amplitude at said point.

As a more concrete example, for the study of the one-loop six-gluon amplitudes, we

considered the following set of invariants

{ri} = {〈12〉, . . . , 〈56〉, [12], . . . , [56],

〈1|2 + 3|1], . . . , 〈6|4 + 5|6], 〈1|3 + 4|2], . . . 〈6|2 + 4|3],

〈1|2 + 3|2 + 6|1〉, . . . , [6|1 + 5|4 + 5|6],

s123, . . . , s345, ∆135, ∆624, . . . } , (5.9)

where all 〈ij〉 and [ij] invariants are considered, but, for instance, contractions of the type

〈i|j + k|l] are restricted to those containing adjacent particles. The Gram determinant

∆ is defined in Section 3.3.3, its subscripts denote the first particles in each momentum

grouping, and the rest of the invariants are defined in Eq.s 2.62 to 2.65. In total {ri}

contains more than 200 spinor contractions.

We are now going to consider how the relevant limits are generated. In general, we will

need to solve a system of equations for the selected invariant equal to a small value, and

four-momentum conservation.

Angle and Square Brackets

In the case of angle and square brackets, i.e. of invariants of the form 〈ij〉 or [ij], we simply

need to solve

〈ij〉 = (λ(i))α(λ(j))α = ε (5.10)

for any of the components of either spinor, say

(λ(i))1 =
ε− (λ(i))2(λ(j))2

(λ(j))1
. (5.11)

Afterwards, we can use either Eq. 5.6 or Eq. 5.7 to restore momentum conservation, making

sure the recoiled momenta are neither i or j, which we have just fine tuned. Note that this

procedure can be used to set 〈ij〉 to any value, not just ε� 1.
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Multi-Particle Invariant

The case of invariants of the form

〈i| (j + · · ·+ k)| . . . |(l + · · ·+m)︸ ︷︷ ︸
odd

|n] , or 〈i| (j + · · ·+ k)| . . . |(l + · · ·+m)︸ ︷︷ ︸
even

|n〉 ,

or [i| (j + · · ·+ k)| . . . |(l + · · ·+m)︸ ︷︷ ︸
even

|n] (5.12)

is slightly more involved, but not significantly so. Let us consider two possible cases.

1) The easiest case is when either the first momentum (i) or the last one (n) do not appear

slashed in the central block. In this case, we can just compute the rest of the contraction

to obtain

〈i|K〉 , with, say, |K〉 = (j + · · ·+ k)| . . . |(l + · · ·+m)︸ ︷︷ ︸
odd

|n] (5.13)

and then set 〈i|K〉 using Eq. 5.11, and restore momentum conservation making sure not to

recoil any momentum which appears in the contraction.

2) Another case is when both the first momentum (i) and the last one (n) appear more

than once in the spinor contraction. An example could be 〈1|2 + 3|2 + 6|1〉. A possible

solution in this case is

〈1|2 + 3|2 + 6|1〉 = 〈1|3〉[3|2 + 6|1〉+ 〈1|2|2 + 6|1〉 = ε , (5.14)

=⇒ 〈1|3〉 =
ε− 〈1|2|2 + 6|1〉

[3|2 + 6|1〉
(5.15)

which, again, can be solved using Eq. 5.11 for the spinor |3〉.

This is not an exhaustive list, but it covers the vast majority of cases, especially since

we can use momentum conservation on the sum of slashed momenta to obtain equivalent

expressions for the same invariant.

Three-Particle Mandelstam Invariants

Given the above discussion, the case of three particle Mandelstam invariants, sijk, is simple

sijk = 〈i|j + k|i] + 〈j|k|j] = ε , (5.16)

=⇒ 〈i|j + k|i] = ε− 〈j|k|j] , (5.17)

which can be solved using Eq. 5.13.
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Gram Determinant

A more involved singular limit is that for the Gram determinant ∆. Following the definition

of Eq. 3.69, we want to solve

∆ijk = (Ki ·Kj)
2 −K2

iK
2
j = ε and

n∑
i=0

Pi = 0 , (5.18)

where Pi are the external momenta, Ki = Pi + · · ·+Pj−1, with the set {i, . . . , j − 1} taken

to be cyclic for colour order amplitudes, and similarly Kj = Pj + · · ·+ Pk−1. Since ∆ijk

can be formulated independently of any momentum in the set {k, . . . , i− 1}, once the first

equation is satisfied, momentum conservation can be easily restored by recoiling two of

these momenta.

Let us write Ki = P0 + P̃ , where P0 is any single momentum from the set {i, . . . , j − 1},

and P̃ sums the remaining momenta of the set. We are going to solve Eq. 5.18 for P0,

or, more precisely, for one of the components of either its left or right spinor. Expanding

Eq. 5.18, we have

[
(P0 + P̃ ) ·Kj

]2 − (P0 + P̃ )2K2
j = ε (5.19)

⇒ (P0 ·Kj)
2 + 2

[
(P0 ·Kj)(P̃ ·Kj)− (P0 · P̃ )K2

j

]
+ (P̃ ·Kj)

2 − P̃ 2K2
j − ε = 0 (5.20)

⇒ 1

4
〈0|Kj |0]2 +

[
〈0|Kj |0](P̃ ·Kj)− 〈0|P̃ |0]K2

j

]
+ (P̃ ·Kj)

2 − P̃ 2K2
j − ε = 0 . (5.21)

Let us call

Kj |0] =

α
β

 , P̃ |0] =

γ
δ

 , 〈0| =
(
a, b
)
. (5.22)

Then, substituting Eq. 5.22 into Eq. 5.21 and grouping for a we obtain

a2

(
α2

4

)
+ a

[
1

2
αbβ + α(P̃ ·Kj)− γK2

j

]
+

+

[
1

4
b2β2 + bβ(P̃ ·Kj)− bδK2

j + (P̃ ·Kj)
2 − P̃ 2K2

j − ε
]

= 0 , (5.23)

which is simply a quadratic equation. Of course, one can also solve for b, or, by taking the

parity conjugate, for one of the components of the left spinor |0].

The freedom of being able to solve the same equations for different variables will become

very useful when considering the case of doubly singular limits, discussed in the Section

5.2. In that context, the increased number of constraints will require additional attention

to how to separate the system of equations so that they can still be solved sequentially

instead of simultaneously.
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Figure 5.1: on the left, A
(0)
6g,+−+−+− as it approaches a simple pole (〈12〉 → ε);

on the right, the same tree amplitude at a regular point (〈13〉 → ε).

5.1.2 Least Common Denominator

Now that we understand how to generate singular phase space points, we can go back to

consider scattering amplitudes. In general, a rational expression E can be expressed over a

single denominator

E =
N
DLCD

, (5.24)

where DLCD =
∏
rnii denotes the least common denominator, and ri the real poles of E .

DLCD is unique and can be obtained directly from numerical evaluations, given a sufficiently

complete set {ri} of possible denominator factors, by numerically probing E in limits where

one of these factors vanishes. In a singular limit, a rational expression E will behave as1

log(E) ∼ ni log(ε) + const, (5.25)

which means that the powers ni are simply given by the slope of E in a log-log plot.

Figure. 5.1 shows the scaling of the tree amplitude A
(0)
6g,+−+−+− given in Eq. 3.37 in two

limits, one of which corresponds to a pole.

Clearly, the same procedure also exposes overall factors in the numerator (ni > 0). In this

case, E vanishes when the limit is taken rather than exhibiting the diverging behaviour of

denominator factors. To test for overall factors we can use a broader set of structures ri

that are not necessarily possible poles but satisfy the uniqueness of the limit in Eq. 5.8, in

order to reliably ascribe the vanishing of the expression to a single overall factor.

In the simplest cases, the procedure described in this section yields the full expression

E up to a numerical pre-factor, which can be obtained by performing a simple division.

For example, this happens with all box coefficients in the six-gluon amplitudes (recall the

expression in Eq. 3.61).

1This will hold also in the presence of radicals, but may be spoiled by transcendental functions.
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5.2 Partial Fractions from Doubly Singular Limits

The information which can be extracted from the study of singular limits is important but

quite limited, and in most cases not sufficient to make the reconstruction technique of the

next chapter feasible. In fact, if the numerator N is not just an overall factor, but a sum

of Lorentz invariants, then it cannot be identified by means of singular limits and it needs

to be parametrised by an ansatz. If we refer back to Table 1.7, we see that the growth of

the linear system is quite steep, and generally the mass dimension of N is not small.

5.2.1 Doubly Singular Limits

In order to learn more about the rational function E , we will study its behaviour in doubly

singular limits. In analogy with the singular limits described in Eq. 5.8, we define doubly

singular limits as

ri → ε� 1, rj → ε� 1 . (5.26)

In this case, it is not possible to guarantee that rk 6=i,j = O(1). For example, if we have

〈1|2〉 → ε and 〈2|3〉 → ε (5.27)

we must also have

〈1|3〉 ∼ ε , s123 ∼ ε , ... (5.28)

We call the double limit Eq. 5.26 clean if no factor rk 6=i,j other than ri and rj vanishes in

this limit.

The singular limit of Eq. 5.26 is symmetric: ri and rj are both set to the same small ε.

However, in some cases it is useful to study asymmetric limits as well: ri → εi, rj → εj ,

εi 6= εj . This is especially important to lift degeneracies that arise with higher order poles.

Since we are now interested in combinations of invariants (ri, rj), even with a relatively small

initial set {r}, the number of possible cases is vastly bigger than that of the single limits

considered in the previous section. For instance, at six-point, with about 200 invariants in

the set {r}, we can take approximately 20, 000 combinations. We have implemented code

that attempts to covers about 16, 000 cases. The remaining combinations are generally not

required. In fact, thankfully, it is sufficient to consider small subsets of these combinations.

We are now going to review how to obtain doubly singular limits of complex phase space

in a couple of scenarios.
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〈•|•〉 and 〈•|•〉

The aim is to obtain a phase space point such that

〈i|j〉 → ε1 , 〈k|l〉 → ε2 , and

n∑
m=1

Pm = 0 . (5.29)

In order to impose the first two conditions, we can use Eq. 5.11 twice, making sure that the

spinor we modify does not appear in both contractions. To restore momentum conservation,

ideally we would like to recoil two momenta not in the set {i, j, k, l}. If this is possible

(e.g. for multiplicities ≥ 6), then we may use any one of Eq. 5.4, Eq. 5.6 or Eq. 5.7.

However, if, say, n = 5 and i, j, k, l are all distinct, then there are no two momenta which

do not appear in the contraction. In this case, we must use Eq. 5.7 to restore momentum

conservation, since it acts on the square brackets only.

The cases involving an angle and a square bracket, or two square brackets follow by analogy.

〈•|•〉 and 〈•| . . . |•]

We want a phase space point such that 〈i|j〉 is set to ε1, together with any one of the

invariants from Eq. 5.12 set to ε2, and momentum conservation satisfied. The general

strategy is to first set 〈i|j〉 → ε1 by modifying either spinor, then set the second invariant

to ε2 by modifying a spinor which does not appear in 〈i|j〉, and finally restore momentum

conservation either via Eq. 5.6 or via Eq. 5.7. Clearly the first two steps are always possible,

but the last one requires either two angle brackets or two square brackets in order not to

appear in either Lorentz invariant. By using momentum conservation to obtain alternative

expressions for the second invariant, this can be achieved in the vast majority of cases. A

combination where this is not possible is, for instance, 〈1|3〉 → ε1 and [1|2 + 6|2 + 4|3]→ ε2.

This happens in roughly 1% of the cases we considered at six-point.

Additional Remarks

This same strategy can be applied to a number of cases, such as (〈i|j〉, sklm), (〈i|j〉, ∆klm),

most pairs of the form (〈a|b+c|d], 〈e|f+g|h]), and so on. In some rare cases, it is necessary

to properly solve the system of two equations for two variables simultaneously. For instance,

this is the case for 〈a|b+ c|a], 〈b|a+ c|b], which is physically relevant for the rational part

of one-loop six-gluon amplitudes, where these types of poles appear simultaneously.

Finally, note that, since the number of variables at our disposal is larger than the number of
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equations, there may be multiple distinct solutions to the system. As an explicit example,

let us consider the case 〈a|b〉 ∼ ε� 1 and sabc ∼ ε� 1. In order to set 〈a|b〉 = ε we take

〈a| = λ〈b|+ ε

〈η|b〉
〈η| (5.30)

for some λ ∼ O(1) and arbitrary spinor 〈η|. Plugging this into sabc we obtain

sabc = sab + sbc + sac = ε[b|a] + 〈c|a+ b|c] (5.31)

= ε[b|a] + (λ〈c|b〉[a|c] + ε〈c|η〉[a|c] + 〈c|b〉[b|c]) (5.32)

= ε([b|a] + 〈c|η〉[a|c]) + 〈c|b〉(λ[a|c] + [b|c]) . (5.33)

Therefore, for sabc to be also small, we need either 〈c|b〉 ∼ ε or (λ[a|c] + [b|c]) ∼ ε. The

former case results in many more invariants being small compared to the latter. For

example, for a = 1, b = 2 and c = 3, choosing 〈c|b〉 ∼ ε makes the following O(ε)

〈1|3〉, 〈1|2〉, 〈2|3〉, 〈2|1 + 3|5], 〈1|2 + 3|5], 〈1|2 + 3|6], 〈2|1 + 3|4], 〈3|1 + 2|6], 〈2|1 + 3|6],

〈2|1 + 3|2], 〈3|1 + 2|5], 〈1|2 + 3|4], 〈3|1 + 2|3], 〈1|2 + 3|1], 〈3|1 + 2|4], s123 , (5.34)

but choosing λ[a|c] + [b|c] ∼ ε results in only the following invariants being small

〈1|2〉, 〈5|1 + 2|3], 〈6|1 + 2|3], 〈4|1 + 2|3], 〈3|1 + 2|3], s123. (5.35)

We would say that the latter case has lower degeneracy, or that it is cleaner, than the former

one. In general, it is always best to choose the cleaner limit, since it makes ascribing the

behaviour of the amplitude in a limit to a particular set of invariants easier. Quantitatively,

we can define the degeneracy as the number of invariants in the set {r} which are O(ε).

5.2.2 Partial Fraction Decomposition

Similarly to the singular limits of Eq. 5.8, in doubly singular limits a rational expression E

will behave as E ∼ ε−nij . However, now nij cannot be ascribed to a specific invariant, and

instead is the combined scaling resulting from two or more invariants becoming small. This

exponent can again be obtained by computing the slope in a log-log plot, as in Eq. 5.25.

By considering these exponents nij , we quickly realise that it is more natural2 to think

about E not as a single fraction, but as a sum of rational terms

E =
∑
i

Ni
RiSi

. (5.36)

2Meaning that the singularity structure is better represented.
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In the above, Ri are products of subsets of the factors in DLCD, and Si contain denominator

factors that are not in the LCD, i.e. they cancel in the sum. The latter are known as

spurious poles and arise naturally when using partial fractions to separate individual

factors in the LCD. Ni are some numerator structures typically simpler than N . Since the

decomposition of Eq. 5.36 is not unique, it can be used to optimise the compactness of the

expression representation or its stability in specific regions of phase space.

As anticipated, it is not necessary to consider all possible pairs of Lorentz invariants. The

two most interesting sets of doubly singular limits are: a) for (ri, rj) both real poles; and

b) for ri a real pole, and rj /∈ DLCD. Let us start with the former case, and for the sake of

simplicity, let us consider an expression E which only involves simple poles, such as tree

amplitudes. The reasoning for expressions involving higher order poles is similar. There

are three distinct cases:

1. the limit Eq. 5.26 is clean and nij = 1: this implies that we can find a representation

for E where ri and rj never appear in the same denominator. They can be split up

without the need of a spurious pole;

2. the limit Eq. 5.26 is clean and nij = 2: this implies that ri and rj must appear at

least once in the same denominator in the sum of Eq. 5.36, and our set {r} does not

contain a spurious pole able to separate them;

3. the limit Eq. 5.26 is not clean, i.e. there exist vanishing factors rk ∼ ε in the double

limit:

� if nij = 1 we cannot numerically distinguish the following situations:

E ∼ rk
rirj

, E ∼ 1

ri
, E ∼ 1

rj
; (5.37)

The implication is that in this case we cannot conclude from the doubly singular

limit whether ri and rj have to be present at the same time in a denominator.

� if nij = 2 we cannot numerically distinguish the following situations:

E ∼ 1

rirj
, E ∼ 1

rirk
, E ∼ 1

rjrk
; (5.38)

and linear combinations of these scenarios are also possible.

The consequence of not being able to discriminate between these scenarios is that multiple

possible ansatze for the denominator structure are possible and, as mentioned before, there

is often no obvious optimal solution.
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Let us consider the latter expression when rk does not appear in DLCD. There might

be several distinct rk’s and among those one may recognise some as possible spurious

poles, which now have a clear physical interpretation in that they preserve the correct

doubly singular behaviour of each term when we separate the ri and rj poles in separate

denominators.

For instance, let us consider the structure of the pair of poles ri, rj = 〈12〉, [34] when

nij = 2. This is the case for A+−+−+−
tree which we derived via BCFW recursion in Section

3.2. The expression we obtained, with the symmetries made explicit, reads

Atree(1
+, 2−, 3+, 4−, 5+, 6−) =

i[13]4〈46〉4

[12][23]〈45〉〈56〉〈4|2 + 3|1]〈6|1 + 2|3]s123

+
i[15]4〈24〉4

[16]〈23〉〈34〉[56]〈2|1 + 6|5]〈4|2 + 3|1]s234

+
−i〈26〉4[35]4

〈12〉〈16〉[34][45]〈2|1 + 6|5]〈6|1 + 2|3]s345
. (5.39)

In this case we see that 〈12〉, [34] appear in the same denominator, which corresponds to

the first case of Eq. 5.38. However, there also exists another well-known representation of

the same tree amplitude corresponding to a different BCFW shift, which reads

Atree(1
+, 2−, 3+, 4−, 5+, 6−) =

i〈2|1 + 3|5]4

〈12〉〈23〉[45][56]〈1|2 + 3|4]〈3|1 + 2|6]s123

+
i〈6|2 + 4|3]4

〈16〉[23][34]〈56〉〈1|2 + 3|4]〈5|1 + 6|2]s234

+
−i〈4|3 + 5|1]4

[12][16]〈34〉〈45〉〈3|1 + 2|6]〈5|1 + 6|2]s345
. (5.40)

In this case, 〈12〉 and [34] appear in different denominators, thanks to the spurious pole

〈1|2 + 3|4], which clearly vanishes in the double limit. The partial fraction identity reads

1

〈12〉[34]
=

〈13〉
〈12〉〈1|2 + 3|4]

+
[24]

[34]〈1|2 + 3|4]
. (5.41)

Similarly, we see that 〈3|1 + 2|6] separates 〈2|3〉 and [1|6], and 〈5|1 + 6|2] separates 〈5|6〉

and [1|2], and so on. A good choice of spurious pole to introduce can be identified from

the list of vanishing rk’s by looking at intersections between different rk sets: for instance,

the sets from (〈12〉, [34]) and (〈16〉, [45]) share 〈1|2 + 3|4] only3.

If we consider a slightly simpler example, namely the six-gluon split NMHV tree amplitude,

which contains fewer poles, we can visualise the full set of relations between the poles by

means of a diagram.

3It is clear that 〈1|2 + 3|4] vanishes also when 〈16〉 and [45] vanish, because we can rewrite it as

−〈1|5 + 6|4] by using momentum conservation.
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Figure 5.2: Shown are the real poles of A+++−−−
tree . Two poles are connected by a line

if nij = 2 in the relevant doubly singular limit. If nij = 1 they are not connected.

Figure 5.2 shows the real poles of A+++−−−
tree , as obtained from singular limits, and their

relations, as obtained from doubly singular limits. A line connecting two poles means that

the doubly singular exponent nij is 2, otherwise it is 1. Note, however, that the diagram

does not represent in any way whether a limit is clean or not. The full information obtained

from doubly singular limits is displayed in Table 5.1. We will now analyse three different

ways to write this amplitude, and highlight the differences.

The first and most compact way to split the poles is shown in Figure 5.3. The groupings

attempt to keep invariant pairs with nij = 2 in the same denominator, but this is not always

possible, meaning a spurious pole is necessary to perform the partial fraction decomposition.

This figure corresponds to the following spinor expression

Atree(1
+, 2+, 3+, 4−, 5−, 6−) =

i〈4|2 + 3|1]3

[16]〈23〉〈34〉[56]〈2|1 + 6|5]s234

+
−i〈6|1 + 2|3]3

〈12〉〈16〉[34][45]〈2|1 + 6|5]s345
. (5.42)

To understand the origin of the spurious pole, let us denote the set of invariants {rk} that

vanish together with ri and rj in their doubly singular limits as {ri, rj}ε. Then, we have a

clear expression for the spurious pole 〈2|1 + 6|5] as the following intersection

〈2|1 + 6|5] = {〈12〉, [56]}ε ∩ {〈16〉, s234}ε ∩ {〈23〉, [45]}ε ∩ {[34], s234}ε . . . (5.43)

Note that some pairs of invariants appear in the same grouping, even if they are not

connected by a line, i.e. even if nij = 1. For instance, this is the case for 〈12〉 and 〈16〉.

We see that this is consistent because

{〈12〉, 〈16〉}ε ⊃ {〈12〉, 〈16〉, 〈2|1 + 6|5], s345, 〈6|1 + 2|3]} , (5.44)
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〈1|2〉 〈1|6〉 [1|6] 〈2|3〉 〈3|4〉 [3|4] [4|5] [5|6] s234 s345

〈1|2〉 1; 30 1; 3 1; 31 1; 2 2; 12 2; 3 2; 10 1; 2 2; 10

〈1|6〉 1; 30 1; 2 1; 2 1; 10 2; 4 2; 12 1; 3 2; 10 2; 10

[1|6] 1; 3 1; 2 2; 12 2; 4 1; 10 1; 2 1; 30 2; 10 2; 10

〈2|3〉 1; 31 1; 2 2; 12 1; 30 1; 3 2; 12 2; 3 2; 10 1; 2

〈3|4〉 1; 2 1; 10 2; 4 1; 30 1; 2 1; 3 2; 12 2; 10 2; 10

[3|4] 2; 12 2; 4 1; 10 1; 3 1; 2 1; 30 1; 2 2; 10 2; 10

[4|5] 2; 3 2; 12 1; 2 2; 12 1; 3 1; 30 1; 31 1; 2 2; 10

[5|6] 2; 10 1; 3 1; 30 2; 3 2; 12 1; 2 1; 31 2; 10 1; 2

s234 1; 2 2; 10 2; 10 2; 10 2; 10 2; 10 1; 2 2; 10 1; 2

s345 2; 10 2; 10 2; 10 1; 2 2; 10 2; 10 2; 10 1; 2 1; 2

Table 5.1: Information obtained from doubly singular limits, displayed is the

power of divergence nij (first number) and degeneracy of phase space (second number).

then nij = 1 follows by simple power counting. This degeneracy is in some cases problematic,

since it is not easy to perform this reasoning a priori, that is, before the analytical expression

is known. However, it can actually be useful to be able to guess numerator factors, and

thus reduce the complexity of the anstaz for the numerator.

An alternative grouping is given in Figure 5.4. In this case we have three groups,

corresponding to three terms in the expression for the amplitude, and we need a spurious

pole to separate each pair of groups, for a total of three spurious poles. The spinor

expression reads

Atree(1
+, 2+, 3+, 4−, 5−, 6−) =

i[23]3〈56〉3

〈16〉[34]〈1|2 + 3|4]〈5|1 + 6|2]s234

+
−i[12]3〈45〉3

[16]〈34〉〈3|1 + 2|6]〈5|1 + 6|2]s345

+
is3

123

〈12〉〈23〉[45][56]〈1|2 + 3|4]〈3|1 + 2|6]
, (5.45)

where again the same logic about set intersection and power counting apply. These two

expressions for Atree(1
+, 2+, 3+, 4−, 5−, 6−) that we just considered correspond to two

BCFW shifts. They represent the structure of the poles as well as possible, but require the

introduction of spurious singularities.

We can attempt to apply our reconstruction strategy to any denominator ansatz, even if
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Figure 5.3: A first possible grouping of the real poles of A+++−−−
tree . Different groups

correspond to different denominators. A spurious pole is needed to split the two groups.

Figure 5.4: A second possible grouping of the real poles of A+++−−−
tree . Different groups

correspond to different denominators. Three spurious poles are needed to split the three

groups.
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it appears to violate the information from the doubly singular limits. For instance, if we

place the three particle Mandelstam invariants in the same denominator, even if nij for

s234 and s345 is 1, and the limit is clean, we can find the following expression

Atree(1
+, 2+, 3+, 4−, 5−, 6−) =

i[12]〈45〉〈4|2 + 3|1]2

[16]〈23〉〈34〉[56]s234s345

+
i[23]〈56〉〈6|1 + 2|3]2

〈12〉〈16〉[34][45]s234s345

+
i〈4|2 + 3|1]〈6|1 + 2|3]s123

〈12〉〈23〉[45][56]s234s345
. (5.46)

This is similar, but not exactly identical, to the expression found in the ’80s [75,110].

From a practical point of view, for floating point evaluations, we see that these three

expressions are numerically unstable in different regions of phase space. The two terms

in the very first expression, in the limit 〈2|1 + 6|5] → ε � 1, behave like ε−1, but their

sum is O(1). This leads to a loss of significant digits. Similarly, the second expression is

numerically unstable in the limits of 〈1|2 + 3|4], 〈3|1 + 2|6], 〈5|1 + 6|2] being small. The

third equation is instead unstable in the doubly singular limit s234 → ε and s345 → ε, since

each term is O(ε−2) but the sum is O(ε−1).

The other interesting set of doubly singular limits which we mentioned at the beginning

is for ri a real pole and rj /∈ DLCD. Whenever in such a limit E diverges less drastically

than ni, that is nij < ni where ni is the order of the single pole ri, it means that in this

doubly singular limit rj may be a factor in the numerator of the term containing ri in

the denominator. As explained above, more or less information can be accessed this way

depending on the degeneracy of the particular phase space point, i.e. how many rk 6= ri, rj

vanish in this limit. This type of doubly singular limits turns out to be extremely useful to

keep the complexity of the numerators manageable for complicated expressions, such as

three mass triangles. In the case of A+++−−−
tree , we see that the following doubly singular

limits are regular (E ∼ O(1)), even if they involve a simple pole

{〈12〉, 〈3|1 + 2|3]}, {〈12〉, 〈4|1 + 2|3]}, . . . , {s345, 〈3|4 + 5|3]}, {s345, 〈6|1 + 2|3]]} . (5.47)

Using these observations we can write an ansatz for the expression in the form of Eq. 5.36

where the denominators Di = RiSi are free from combinations of factors that would lead to

a worse scaling than observed in the doubly singular limits. Alternatively, we can attempt

to express E as a sum of terms apparently violating the doubly singular scalings, but free

from spurious poles.
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All the examples we gave in this section are for colour-ordered tree amplitudes and simple

poles. However, the same ideas are applicable to loop-integral coefficients and rational

parts, as we will see in subsequent chapters. Similarly, colour-ordering introduces welcome

simplifications in the structure of the poles, in the case of QCD by restricting them to

cyclically-adjacent ones, but is not strictly speaking required. For instance, in Chapter 8 we

apply this method to amplitudes involving a colour-singlet (the Higgs boson) and in Chapter

9 we study, among others, gravity amplitudes, which are clearly not colour-ordered and

(DF )2 amplitudes, which involve non-adjacent singularities despite being colour ordered.

In the next chapter we will discuss the parametrisation and reconstruction of the numerators,

which we took as given in this chapter. If necessary, in that context it should be

straightforward to obtain colour factors, which would appear as rational fractions in

the numerators, and it may even be possible to reconstruct the dependence on the number

of colours by repeating the evaluation over different values of Nc. However, this is a

complication which is easily avoided by using the colour decomposition identities reviewed

in Chapter 2.





CHAPTER 6

Multivariate Coefficient Reconstruction

In the previous chapter, we considered how to extract information about the analytical

structure of rational expressions from numerical evaluations in singular limits. In this

chapter, we will first show how this fits in the overall reconstruction procedure, and then

we will take a closer look at how to obtain the remaining numerator spinor structures.

The method is based on the iterative study of singular limits, and reconstruction of pole

residues, until the full analytical expression is obtained. More specifically, the following

steps have to be carried out

1. evaluate E in singular limits to obtain the list of all factors in the least common

denominator, their exponents, as well as any common factor in the numerator;

2. consider E in doubly singular limits to expose the dependency structure of the poles;

3. select a pole from the LCD and identify the set of necessary other factors needed in

the denominator to fit its residue;

4. fit the residue, subtract the term thus obtained from E and reiterate from step 1.

At every iteration, at least a pole is either removed or its power reduced. We repeat

the process until the expression is fully reconstructed. This process is better represented

diagrammatically in Figure 6.1.
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Numerical routine for E

Is it zero? Yes Analytical expression for E

No, do
singular limits

E = N
/
DLCD

Get the mass dimension and
the phase weights of N

Are they zero?Yes, subtract the
obtained term from E

Yes, divide
to get coefficient

No, do
doubly singular limits

E =
∑

iNi
/
Di

Choose one or more Ni,
do Gaussian elimination

Is the
reconstruction

successful?

No, try a different partial
fraction decomposition

Figure 6.1: Decision tree for the analytical reconstruction strategy.

The diagram also shows that in some cases the residue reconstruction can fail. This is

generally due to a bad choice for the partial fraction decomposition. As we already argued,

the degeneracies in the doubly singular limits imply that multiple, equivalent expression

may be possible. In some cases, decompositions that look consistent with the data from

the doubly singular limits may not admit a correct numerator structure. This is generally

fixed by simply trying a different denominator structure.
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6.1 Numerator Ansatz and Reconstruction

In this section we discuss how to reconstruct a numerator whenever singular limits do not

provide all of the required information. We start by building an ansatz out of products

of spinor products 〈i|j〉 and [i|j] and, if necessary, other linearly independent expressions,

such as square roots of Gram determinants. However, the latter were not necessary for any

of the quantities we considered so far, i.e. they are all manifestly rational expressions in

spinor contractions. The coefficients of the terms in the ansatz are determined by solving a

system of linear equations. The number of spinor products in each term of the ansatz can

be determined by numerically inspecting the behaviour of the expression under uniform

scaling of all momenta

pi → λpi , 〈i|j〉 → λ 〈i|j〉 , [i|j]→ λ [i|j] , ∀ i, j ∈ {1, n}. (6.1)

This is simply the mass dimension of the expression which needs to be determined.

Alternatively, we may think of the mass dimension as the degree of the polynomial in the

angle and square brackets, since they have mass dimension 1. We can further limit the size

of the ansatz by looking at its phase weights. The phase weight with respect to momentum

pi is defined by the scaling of the expression under a little group transformation, i.e. a

change in λi and λ̃i which leaves pi unchanged

pi → pi , |i〉 → t |i〉 , [i| → t−1 [i|. (6.2)

The phase weight for momentum i of the expression E is n if it scales as tn. The

mass dimension and phase-weights of the numerator ansatz combined with those of the

denominator have to match the mass dimension and phase-weights of the expression E .

Both these concepts were already introduced in Chapter 3.

An ansatz built from all products of spinor products with the right mass dimension and

phase weights is sufficient but not minimal, due to momentum conservation and Schouten

identities. To ensure uniqueness of the numerator representation, we need to remove

redundant elements from the ansatz by either using analytical rules or numerical Gaussian

elimination. This operation only needs to be performed once per mass dimension and

phase weights combination.

For our application we use a numerical Gaussian elimination implemented in the following

way: for a candidate ansatz A with N elements aj=1,...,N we generate N distinct phase
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space points Pi and build a N×N matrix M . The set of linear identities {v} relating ansatz

elements lives in the kernel of M , that is for each such identity v for which
∑

j ajvj = 0

we have

Mijvj = 0 with Mij = aj(Pi) . (6.3)

Here we are not interested in the identities but merely wish to remove redundant ansatz

elements that can be expressed in terms of other elements. Row-reducing M brings it in

upper-triangular form and the existence of identities will manifest itself as the appearance

of zeros in the diagonal of the transformed matrix. As the algorithm progresses, we remove

each ansatz element that leads to a vanishing diagonal element in the transformed matrix

and remove the corresponding column of M . At the end of the row-reduction procedure we

are left with N ′ ≤ N elements in the ansatz. These N ′ elements are linearly independent.

Given a minimal ansatz, we can solve for the coefficients vector c of each term in the

numerator by solving the equation∑
j

M̃ij cj = ãj(Pi) cj = E(Pi) , ⇒ cj =
∑
i

M̃−1
ji E(Pi) (6.4)

where M̃ is the matrix of the N ′ independent numerator ansatz elements ã that we

constructed above through Gaussian elimination, divided by the corresponding denominator.

E(Pi) is the vector of the expression E evaluated at the first N ′ phase space configurations.

In all cases we considered the coefficients in c are expected to be rational numbers. The

analytical, infinite precision values can be recovered from the numerical estimates obtained

through the inversion in Eq. 6.4 with procedures such as that of continued fractions. One

can easily check the validity of the expression obtained by testing a further distinct phase

space point. Note also that the inverse M̃−1 is not explicitly calculated: large matrix

inverses constructed numerically are susceptible to instabilities. Instead, Eq. 6.4 is solved

through the same row-reduction procedure used for Eq. 6.3.

Depending on the complexity of the expression to reconstruct, we can apply different

strategies:

a) full reconstruction,

b) full reconstruction with separated denominators,

c) iterated reconstruction by sequentially removing poles.

Furthermore, the reconstruction can be used to force an expression to be manifestly

symmetric under one or more of its symmetries by symmetrising the ansatz.
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mass dimension 2 4 6 8 10 12 14

independent terms 9 50 205 675 1886 4644 ∼12870

Table 6.1: Number of independent terms in an ansatz for six-point configurations with

all zero phase weights as a function of the mass dimension.

6.1.1 Full Reconstruction

Strategy a) is the simplest and does not require doubly singular limits to be probed.

Unfortunately, trying to solve for the numerator N of the least common denominator DLCD

(see Eq. 5.24) is in general intractable. The mass dimension of N can easily exceed 12,

with the worst of the six-point amplitudes coefficients being above 100. Table 6.1 shows

the size of the minimal ansatz {ã} as a function of mass dimension at six-point for zero

phase weights {0, 0, 0, 0, 0, 0}, extending on the information shown in Table 1.7.

For example, even the simple split-helicity tree amplitude A+++−−−
tree that we considered in

previous chapter in the single denominator form

Atree(1
+, 2+, 3+, 4−, 5−, 6−) =

N
〈12〉〈16〉[16]〈23〉〈34〉[34][45][56]s234s345

(6.5)

admits 1326 independent Lorentz invariant structures in N (mass dimension 10, phase

weights {−1, 0,−1, 1, 0, 1}). This is clearly not optimal.

6.1.2 Full Reconstruction with Separated Denominator

For strategy b), we use the information from doubly singular limits to postulate possible

partial fraction decompositions

E =
∑
i

Ni
Di
. (6.6)

The denominators Di are in general simpler than DLCD, and may or may not contain

spurious poles. There are different ways of choosing the denominators Di depending on

the number of terms in the sum and which spurious poles are chosen.

We apply the technique described above to construct an ansatz for each numerator

Ni =

Ni∑
j=1

ci,j ai,j (6.7)

where Ni is the number of elements in the ansatz for the ith numerator Ni. Generally the

combined size of these ansatze is much less than that for the single numerator N .
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While each numerator ansatz is constructed with independent elements, the sum over the

terms can still contain redundant terms. For example, if we have

E =
NA
AB

+
NB
AC

, (6.8)

a term proportional to BC in the numerator NA can be moved to NB and viceversa.

This redundancy can be removed with the same technique described above. In analogy to

Eq. 6.3, we construct N =
∑
Ni distinct momentum configurations Pl and a matrix M :

Ml,k = Ak(Pl) , Ak(Pl) =
ai,j(Pl)

Di(Pl)
, k = i+

∑
ĩ<i

Nĩ (6.9)

where ai,j is the jth element of the ansatz of the ith numerator, and k enumerates through

the elements of the combined ansatze of the terms in Eq. 6.6. Redundant elements are

then removed with the row-reduction procedure. Once the ansatz is minimal, we can solve

for the coefficients ci,j by inverting a numerical system of equation.

Going back to the A+++−−−
tree example, we may write

Atree(1
+, 2+, 3+, 4−, 5−, 6−) =

N1

[16]〈23〉〈34〉[56]〈2|1 + 6|5]s234

+
N2

〈12〉〈16〉[34][45]〈2|1 + 6|5]s345
. (6.10)

In this case, the combined ansatz size for N1 and N2 is 20, a clear improvement from the

1326 of the single denominator form. Solving the system for N1 and N2 yields Eq. 5.42.

Even by separating the LCD into smaller denominators, the resulting system can get too

large to be solved in a reasonable time. In the following sections we discuss two methods

to resolve this issue through the use of singular limits and symmetries.

6.1.3 Iterated Reconstruction by Sequentially Removing Poles

For expressions for which strategies a) and b) are intractable, we use the full method

outlined in the beginning of this chapter. The aim is to isolate the contribution of the

highest order of a specific pole r in the expression E . To achieve this, we identify the term

ir in Eq. 5.36 with the highest power k of the pole r, that is, we think of E in the form:

E =
Nir
rkD̄ir

+
∑
i 6=ir

Ni
rkiD̄i

, (6.11)

where the powers of r in the denominators in the sum are lower than in the first term,

i.e. ki < k, and D̄ are the denominators with any power of the pole r factored out, i.e.

Di = rkiD̄i.
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We can fit the numerator Nir in isolation if we generate the phase space points for the

Gaussian elimination in the specific singular limit r → ε, thus making the ir term dominant.

Subtracting the term reconstructed in this limit from E results in an expression where

the order of the pole r is decreased by one. Repeating the same operation for the new

maximum power of r or for other factors reduces the mass dimension of the numerators

until the remaining expression can be fitted without any particular limits.

In the example of A+++−−−
tree , this method allows to obtain N1 in isolation from N2, by

taking, for instance, s234 → ε. In this simple case, the ansatz size is only halved, but in

cases where the partial fraction decomposition involves many terms, the improvement is

much greater.

It is also possible to use doubly singular limits, especially with non-equal small parameters

ε1 6= ε2, to numerically isolate specific terms in the ansatz. This turns out especially useful

when a simple singular limit does not isolate a single term, but still picks up a combination

of terms. However, due to the degeneracies arising when multiple invariants are set small,

it can be tricky to reliably identify the terms which become dominant.

There is a large amount of freedom in choosing the order in which to remove the poles, which

can lead to very different forms of the reconstructed analytical expression. This freedom

can be exploited for different goals. On the one hand, we can iterate through different

choices to select the most compact version, in order to obtain the quickest evaluation. On

the other hand, we can produce expressions that are numerically stable in specific limits

by either removing the poles corresponding to the selected singular behaviour first or by

avoiding the introduction of certain spurious singularities. In doing so we can produce a

family of expressions, each tailored to maximise execution speed or numerical stability in

specific phase-space regions.

The main bottleneck for this procedure, possibly together with the numerical computation

of the rational function E , is the row reduction of the matrix in Eq. 6.4. If the matrix is

excessively large, extra floating-point precision is required, forcing the row reduction to

happen on a central processing unit (CPU). However, given a reasonably efficient partial

fraction decomposition (Eq. 6.11), it is sufficient to perform the Gaussian elimination

with double precision1. In this case it can be performed significantly faster on a graphical

processing unit (GPU). In Appendix E we discuss an implementation of the row reduction

algorithm on NVIDIA GPUs with the CUDA parallel computing platform.

1In practice, only numerator ansatze exceeding a couple thousand entries require additional precision.
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6.1.4 Reconstruction in the Presence of Symmetries

Symmetries of the coefficients also help in the analytical reconstruction. Different coefficients

can be related by symmetry operations or a single coefficient may be invariant under them.

In the former case, the symmetries reduce the number of coefficients we have to consider:

it is sufficient to consider independent topologies. In the latter case, the number of pole

residues that have to be fitted is reduced: once a pole has been removed all other poles

related to it by a symmetry can also be removed by a simple symmetrisation; alternatively,

if a pole is itself invariant under a symmetry, it can be made manifestly so by symmetrising

the ansatz.

Ideally, one would generate an ansatz already invariant under the given symmetry. However,

the use of momentum conservation and Schouten identities to make the ansatz minimal

makes it complicated to have an ansatz which is at the same time minimal and which

respects the given symmetry. Nevertheless, we can restore invariance under the symmetry

as follows. Let us consider again Eq. 6.4 and expand upon it. Given a (minimal) ansatz ãj ,

let us call b̃j its image under the given symmetry. Thus, we have

ãj(Pi) cj + symm. = ãj(Pi) cj + b̃j(Pi) dj = E(Pi) . (6.12)

Naively, this appears to be doubling the number of coefficients to reconstruct. However,

note that we must have cj = dj for the expression to actually be invariant under the

symmetry. Thus, the size of the system is actually unchanged, since we can write it as

M̃ijcj =
(
ãj + b̃j

)
(Pi) cj = E(Pi) . (6.13)

In fact, note that the null space of ãj(Pi) and that of
(
ãj + b̃j

)
(Pi) may be different, and we

may have extra redundancies in the symmetrised system (making it actually smaller than

the original one). This easily handled by the Gaussian elimination, as explained beforehand.

The result is guaranteed to respect the symmetry, but it may not be in a particular compact

form. We can attempt to further simplify it by considering the reconstructed expression as

the new input for the reconstruction, and study its behaviour in singular limits. If common

factors can be factored out in the numerator they will be detected by our procedure, as

long as they appear in the list of Lorentz invariants which are used to probe the expression.

As an example, let us consider pure gluon amplitudes. Symmetries are permutations of

the external indices; they can be either cyclic or anti-cyclic, due to colour ordering, with

anti-cyclic permutation involving a an overall factor of (−1)n from parity, where n is the
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multiplicity of the phase space. Symmetries may involve a flip of all helicities, which

corresponds to swapping the left and right Lorentz spinor representations. The latter

operation is equivalent to complex conjugation in the case of real momenta, and is related

to parity, as we saw in Chapter 2.

Therefore, we express a symmetry as a permutation of (123...n), with a bar over the

permutation denoting an helicity flip, and possibly a minus sign denoting anti-symmetry.

Blocks of spinor helicity expressions are alternated with blocks of symmetries, with the

convention that each symmetry in a symmetry block is applied to all the lines in the spinor

helicity block preceding it. We have already used this notation in Eq. 3.37. Going back to

that tree-level example, in the form given in Eq. 5.40, it can be written as

Atree(1
+, 2−, 3+, 4−, 5+, 6−) =

1i〈2|1 + 3|5]4

〈12〉〈23〉[45][56]〈1|2 + 3|4]〈3|1 + 2|6]s123

+ (123456→ 234561)

+ (123456→ 345612). (6.14)

Symmetry blocks in general do not contain the full set of symmetries of an expression. Spinor

helicity blocks are sometimes symmetric under the missing symmetries, but oftentimes a

symmetry is preserved only by the full expression. For instance, the above tree amplitude

has 11 symmetries in total, of which only two are used. Among other others, we can find

123456 → 321654, which maps the first spinor helicity line to itself, but also 123456 →

165432 whose action in this case is equivalent to that of 123456→ 234561.





CHAPTER 7

One-Loop Six-gluon Amplitudes

To illustrate our reconstruction method, we obtain analytical expressions for the scalar

integral coefficients of the one-loop six-gluon amplitudes with a gluon in the loop. More

specifically, we obtain a complete, minimal set of independent integral coefficients for

the colour-ordered helicity amplitudes A
(1)
n;1 (see Eq. 2.16). These amplitudes can be

decomposed in terms of master scalar integrals as follows

A(1−loop)
6g;1 =

Γ(1 + ε)Γ(1− ε)2

(2π)2−εΓ(1− 2ε)

(∑
i
diI

4
i +

∑
j
cjI

3
k +

∑
k
bkI

2
k +R

)
, (7.1)

where, I4
i , I3

j and I2
k are the scalar box, triangle, and bubble integrals respectively. The

coefficients di, cj , bk and R are the rational functions of spinor products for which we

applied our reconstruction method. The full list of coefficients, and their relations to the

minimal set of independent ones, is given in Appendix F.

We emphasise that in extracting the analytical expressions for the coefficients we did

not exploit any prior knowledge about the coefficients beyond the list of possible factors

in the denominator. This list is a property of colour-ordered one-loop amplitudes with

massless internal particles. Their powers and how they combine has been uncovered by the

numerical exploration. More specifically, only knowledge about the general structure of

these Lorentz invariants was used. We programmatically generate all strings of the form

sijk, ∆ijk (see Eq. 7.5), 〈ij〉, [ij], 〈i|j + k|l], and so forth, as shown in Eq. 5.9.
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We used the BlackHat library [98] and its arbitrary precision implementation using the

GNU Multi Precision library [111] to generate the numerical input for our method. These

amplitudes were previously calculated numerically in Ref. [112] and combined to present

the NLO four-jet cross section and distributions in Ref. [113] and Ref. [114].

In the accompanying files to Ref. [1] we provide expressions readable by the S@M [76]

Mathematica package as well as human readable formulae for a representative set of

helicity configurations. All other configurations can be obtained through symmetries. We

have validated all our analytical results by verifying their agreement with the output of

BlackHat to 300 significant digits on several independent phase space points (i.e. phase

space points that were not used in the determination of the coefficients of the ansatz).

In the Mathematica files the results are presented with all symmetries unwrapped to

make computations easier. However, to increase readability the symmetries are kept in

the formulae in the human readable files, where blocks of spinor helicity expressions are

alternated with blocks of symmetries. The convention is that each symmetry in a symmetry

block is applied to all the lines in the spinor helicity block preceding it.

7.1 Execution Speed Comparison

For the reconstruction of the analytical expression for the integral coefficients we have

treated each coefficient in isolation and did not use any knowledge about relationships

between coefficients of related scalar integrals. This means that the resulting expressions

could easily be re-written in a more compact way but we refrained from doing so as in

the current form they are more illustrative of the type of output our method produces.

This also provided us with additional validation methods for our results (for example, we

checked that the sum of the bubble coefficients is proportional to the tree amplitude).

In order to assess the potential gain of using our analytical expression, we implemented the

analytical expressions in BlackHat, which allows us to perform a comparison where the

only difference is whether the numerical procedure or the analytical expressions are used.

We observe significantly lower run times compared to the original numerical computation,

with individual pieces receiving different speed-ups. The best speed improvement is by

a factor of about 75 for the split NMHV configuration, while the worst is a factor of 2

for the alternating NMHV configuration. The remaining NMHV configuration is about

3 times faster. In the latter two cases, the analytical formulae for the cut part of the
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amplitude led to slightly slower code. However, since the largest part of the calculation

time in BlackHat is spent on the rational part, which is significantly faster analytically,

we still measure an overall speed-up for the complete amplitude. On the entire cross section,

the speed-up lies in between those of the various helicity configurations: it is a factor of

about 4. Since the MHV and split NMHV configurations run much faster analytically

than numerically, the bottlenecks for the entire cross section are the two harder NMHV

configurations.

As pointed out earlier, the execution speed could be further improved if the expressions

were simplified using some additional knowledge about the structure of the one-loop

amplitude. Similarly, some post-processing of the reconstructed coefficients could be

beneficial, but might misrepresent the method output. For instance, let us consider the

following expression:

E =
〈1|2 + 3|5]〈3|1 + 2|5]3

〈13〉4
+O(〈13〉0). (7.2)

Regardless of how complicated the O(〈13〉0) part is, we can isolate the first term by

considering phase space points in the 〈13〉 singular limit. However, since the expression

above groups 〈13〉 sub-leading terms in 〈1|2 + 3|5] and 〈3|1 + 2|5], the reconstruction

strategies presented in the previous section will yield a Laurent expansion in 〈13〉:

E = −〈12〉〈23〉3[25]4

〈13〉4
− 〈23〉2[25]3(3〈12〉[15] + 〈23〉[35])

〈13〉3
+

− [15]〈23〉[25]2(3〈12〉[15] + 3〈23〉[35])

〈13〉2
− [15]2[25](〈12〉[15] + 3〈23〉[35])

〈13〉
+

−[15]3[35] +O(〈13〉0) (7.3)

The last spinor helicity term is actually itself O(〈13〉0), and thus it would need to be obtained

independently of the 〈13〉 singular limit, but we reproduce it here for completeness. Clearly

Eq. 7.2 would evaluate much faster than Eq. 7.3.

Lastly, in some cases we stop splitting the pole structure into smaller denominators when

the full reconstruction of the numerator becomes feasible. As future work, it might be

interesting to try to further unravel the pole structure of such terms to potentially obtain

more compact representations.
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Figure 7.1: Three-mass triangle c12×̃34×̃56×̃ from Table F.9.

7.2 Rationality of the One-Loop Coefficients

Scalar loop-integral coefficients represent discontinuities across branch cuts in complex

phase space and should be obtained following a maximal cut procedure: first all quadruple

discontinuities are considered to obtain box-integral coefficients, subsequently all triple

discontinuities give triangle-coefficients, and as so on. Therefore, the coefficients themselves

must be free from branch cuts, or, in other words, they must be purely rational functions.

Following a reductio ad absurdum argument, if, for instance, a triangle coefficient still

contained a branch cut, then a quadruple-discontinuity should have been possible making

the cut procedure not maximal. However, it is often the case that square roots appear in

the loop-momentum parametrisation, e.g. in Eq. 3.69. In principle, it should always be

possible to manipulate the final expression to remove such square roots, but in practice it

is often not so straightforward to perform such simplifications.

It has already been shown in Ref. [81] that the coefficients of three-mass triangles in N = 1

super Yang-Mills can be written in a manifestly rational form at six-point. We observe

that this holds also without any super-symmetry, and for bubble coefficients, as well as

the rational part. To achieve this, we use information on the singularity structure of these

quantities, which explains why square roots of Gram determinants seem to appear and

why the same behaviour can be reproduced by rational spinor structures.

For concreteness, let us consider one of the two three-mass triangles in the alternating

NMHV helicity configuration shown in Figure 7.1. The real poles of this function, as

obtained from the singular limits of Eq. 5.8, are:

〈12〉, [12], 〈34〉, [34], 〈56〉, [56], 〈1|3 + 4|2]4, 〈3|1 + 2|4]4, 〈5|1 + 2|6]4,∆3
135. (7.4)
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Following convention from the literature, in the above list ∆135 is the Gram determinant

related to this diagram:

∆135 = (K1 ·K2)2 −K2
1K

2
2 , (7.5)

where K1 and K2 are the sums of the momenta in any two corners of Figure 7.1.

Square roots seem to appear when we study doubly singular limits, for instance:

〈3|1 + 2|4]→ ε, ∆135 → ε, yields − log(E)

log(ε)
→ 3.5, (7.6)

or:

〈12〉 → ε3, ∆135 → ε, yields − log(E)

log(ε)
→ 2.5, (7.7)

and similarly for the other poles. Note how the asymmetric doubly singular limit in Eq. 7.7

was necessary to lift the 1/〈12〉 residue above the 1/∆3
135 one. Although this scaling can

be explained by an irrational factor of
√

∆135, there is a more appealing solution: in any

limit exhibiting half integer scaling, ∆135 behaves like the square of some rational quantity,

and it is sufficient to introduce this quantity in the numerator instead of
√

∆135. Several

such spinor structures are possible. Here we list a few with their relation to ∆135:

(Ω351)2 ≡ (2s12s56 − (s12 + s56 − s45)s123)2 =

= 4s2
123∆135 − 4s12s56〈4|1 + 2|3]〈3|1 + 2|4] (7.8)

(Π351)2 ≡ (s123 − s124)2 = 4∆135 − 4〈4|1 + 2|3]〈3|1 + 2|4] (7.9)

(〈1|3 + 4|1] + 〈2|3 + 4|2])2 = 4∆135 + 4s12s34 (7.10)

−(s34 − s56)2 = ∆135 + 〈12〉... (7.11)

The first two quantities might be familiar from the numerators of the expressions obtained

in Ref. [81]. The order of the subscripts in those quantities is important because there

are 3 distinct ones, one for each corner of the triangle, whereas ∆135 is invariant under

a permutation of its subscripts. As a concrete example, the 1/∆3
135 term is almost fully

constrained by doubly singular limits and can be expressed as:

5/128i〈12〉[12]〈34〉[34]〈56〉[56]〈2|3 + 4|1]〈4|1 + 2|3]〈6|1 + 2|5]Π135Π351Π513

〈1|3 + 4|2]〈3|1 + 2|4]〈5|1 + 2|6]∆3
135

. (7.12)

The term of Eq. 7.12 is invariant under the following 5 symmetries:

345612, 561234, 654321, 432165, 216543. (7.13)

The former two symmetries are pure permutations, whereas the latter three also involve a

helicity flip. These are indeed the symmetries one expects from the three-mass triangle of

Figure 7.1.
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An issue with Eq. 7.12 is that it introduces spurious singularities in doubly singular regions

where a pair of the three poles 〈1|3 + 4|2], 〈3|1 + 2|4] and 〈5|1 + 2|6] vanishes. This can be

fixed by adding the following term:

5/32i〈12〉[12]〈34〉[34]〈56〉[56]〈2|3 + 4|1]〈4|1 + 2|3]〈6|1 + 2|5](Π135 + Π351 + Π513)

〈1|3 + 4|2]〈3|1 + 2|4]〈5|1 + 2|6]∆2
135

. (7.14)

Finally, for comparison, the same triple pole in the bubbles reads:

5/256i〈12〉[12]〈2|3 + 4|1]〈4|1 + 2|3]〈6|1 + 2|5](s134 + s234)Π135Π351Π513

〈1|3 + 4|2]〈3|1 + 2|4]〈5|1 + 2|6]∆3
135

, (7.15)

whereas in the rational part it enters at order ∆2
135 as:

5/96i〈2|3 + 4|1]〈4|1 + 2|3]〈6|1 + 2|5]Π135Π351Π513

〈1|3 + 4|2]〈3|1 + 2|4]〈5|1 + 2|6]∆2
135

. (7.16)

Expressions such as these in Eq. 7.12-7.16 exhibit a scaling consistent with square roots

of ∆135 when considered in particular kinematic regions, but are fully rational. More

generally, the use of the spinor structures in Eq. 7.8-7.11 allowed us to obtain rational

analytical representations for all the pieces of the one-loop six-gluon amplitudes.

7.3 All Multiplicity One-Loop Integral Coefficients

The ultimate goal for a calculation at a given fixed order is to provide a numerical algorithm

or an analytical expression valid for any multiplicity. At one-loop, the former has been

achieved with numerical unitarity techniques, whereas the latter is only available for some

specific cases, such as adjacent MHV amplitudes [115].

In this section, we show that fixed multiplicity results can in some cases lead to all-multiplicity

expression for a class of coefficients, or, when this not possible due to new structures

appearing at higher point, at least provide helpful insights. Having obtained all one-loop

six-gluon integral coefficients, and, before that, all five-gluon ones, the parallel between

the two becomes quite striking in some cases. For instance, consider the following two

non-adjacent MHV bubble coefficient.

b5−1+×2+3−4+× = b6−1+×2+3+4−5+× =

1/3i[12]3〈15〉2〈23〉4

〈12〉〈23〉〈24〉〈34〉〈2|1 + 5|2]3
+

1/3i[12]3〈16〉2〈24〉4

〈12〉〈23〉〈25〉〈34〉〈45〉〈2|1 + 6|2]3
+

1/2i[12]2〈15〉〈23〉4〈45〉
〈12〉〈23〉〈24〉2〈34〉〈2|1 + 5|2]2

+
1/2i[12]2〈16〉〈24〉4〈56〉

〈12〉〈23〉〈25〉2〈34〉〈45〉〈2|1 + 6|2]2
+

−2i[12]2〈15〉〈23〉3〈35〉
〈12〉〈23〉〈24〉〈34〉〈2|1 + 5|2]2

+
−2i[12]2〈16〉〈24〉3〈46〉

〈12〉〈23〉〈25〉〈34〉〈45〉〈2|1 + 6|2]2
+

1i[12]〈23〉4〈45〉2

〈12〉〈23〉〈24〉3〈34〉〈2|1 + 5|2]
+

1i[12]〈24〉4〈56〉2

〈12〉〈23〉〈25〉3〈34〉〈45〉〈2|1 + 6|2]
+
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−4i[12]〈23〉3〈35〉〈45〉
〈12〉〈23〉〈24〉2〈34〉〈2|1 + 5|2]

+
−4i[12]〈24〉3〈46〉〈56〉

〈12〉〈23〉〈25〉2〈34〉〈45〉〈2|1 + 6|2]
+

6i[12]〈23〉2〈35〉2

〈12〉〈23〉〈24〉〈34〉〈2|1 + 5|2]
+

6i[12]〈24〉2〈46〉2

〈12〉〈23〉〈25〉〈34〉〈45〉〈2|1 + 6|2]
+

−1/3i[14]3〈15〉2〈34〉3

〈14〉〈23〉〈24〉〈4|1 + 5|4]3
+

−1/3i[15]3〈16〉2〈45〉3

〈15〉〈23〉〈25〉〈34〉〈5|1 + 6|5]3
+

1/2i〈12〉[14]2〈15〉〈34〉3〈45〉
〈14〉2〈23〉〈24〉2〈4|1 + 5|4]2

+
1/2i〈12〉[15]2〈16〉〈45〉3〈56〉
〈15〉2〈23〉〈25〉2〈34〉〈5|1 + 6|5]2

+

1i[14]2〈15〉2〈34〉3

〈14〉2〈23〉〈24〉〈4|1 + 5|4]2
+

1i[15]2〈16〉2〈45〉3

〈15〉2〈23〉〈25〉〈34〉〈5|1 + 6|5]2
+

−1i〈12〉2[14]〈34〉3〈45〉2

〈14〉3〈23〉〈24〉3〈4|1 + 5|4]
+

−1i〈12〉2[15]〈45〉3〈56〉2

〈15〉3〈23〉〈25〉3〈34〉〈5|1 + 6|5]
+

−3i[14]〈15〉〈25〉〈34〉3

〈14〉2〈23〉〈24〉2〈4|1 + 5|4]

−3i[15]〈16〉〈26〉〈45〉3

〈15〉2〈23〉〈25〉2〈34〉〈5|1 + 6|5]

It would not be unreasonable to conjecture that the all-multiplicity generalisation is as

follows.

bn−1+×2+...(n−3)+(n−2)−(n−1)+× = (7.17)

1/3i[12]3〈1n〉2〈2(n− 2)〉4

〈12〉 . . . 〈(n− 2)(n− 1)〉〈2(n− 1)〉〈2|1 + n|2]3
+

1/2i[12]2〈1n〉〈2(n− 2)〉4〈(n− 1)n〉
〈12〉 . . . 〈(n− 2)(n− 1)〉〈2(n− 1)〉2〈2|1 + n|2]2

+

−2i[12]2〈1n〉〈2(n− 2)〉3〈(n− 2)n〉
〈12〉 . . . 〈(n− 2)(n− 1)〉〈2(n− 1)〉〈2|1 + n|2]2

+

1i[12]〈2(n− 2)〉4〈(n− 1)n〉2

〈12〉 . . . 〈(n− 2)(n− 1)〉〈2(n− 1)〉3〈2|1 + n|2]
+

−4i[12]〈2(n− 2)〉3〈(n− 2)n〉〈(n− 1)n〉
〈12〉 . . . 〈(n− 2)(n− 1)〉〈2(n− 1)〉2〈2|1 + n|2]

+

6i[12]〈2(n− 2)〉2〈(n− 2)n〉2

〈12〉 . . . 〈(n− 2)(n− 1)〉〈2(n− 1)〉〈2|1 + n|2]
+

−1/3i[1(n− 1)]3〈1n〉2〈(n− 2)(n− 1)〉3

〈23〉 . . . 〈(n− 3)(n− 2)〉〈1(n− 1)〉〈2(n− 1)〉〈(n− 1)|1 + n|(n− 1)]3
+

1/2i〈12〉[1(n− 1)]2〈1n〉〈(n− 2)(n− 1)〉3〈(n− 1)n〉
〈23〉..〈(n− 3)(n− 2)〉〈1(n− 1)〉2〈2(n− 1)〉2〈(n− 1)|1 + n|(n− 1)]2

+

1i[1(n− 1)]2〈1n〉2〈(n− 2)(n− 1)〉3

〈23〉 . . . 〈(n− 3)(n− 2)〉〈1(n− 1)〉2〈2(n− 1)〉〈(n− 1)|1 + n|(n− 1)]2
+

−1i〈12〉2[1(n− 1)]〈(n− 2)(n− 1)〉3〈(n− 1)n〉2

〈23〉 . . . 〈(n− 3)(n− 2)〉〈1(n− 1)〉3〈2(n− 1)〉3〈(n− 1)|1 + n|(n− 1)]
+

−3i[1(n− 1)]〈1n〉〈2n〉〈(n− 2)(n− 1)〉3

〈23〉 . . . 〈(n− 3)(n− 2)〉〈1(n− 1)〉2〈2(n− 1)〉2〈(n− 1)|1 + n|(n− 1)]

Indeed, this appears to be the case, having checked the latter expression for n = 7 and

n = 8 against numerical evaluations from BlackHat.

We can even attempt to say something about NMHV amplitudes at all multiplicities,

although we only have n = 6 to rely on in this case. For instance, the three-mass triangle
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coefficient denoted by (see Appendix F for a definition of subscript notation)

c6−1+×̃2+3−×̃4+5−×̃ (7.18)

has a 4th order pole in the spinor variable 〈1|2 + 3|6], analogously to that of Figure 7.1.

The expression we reconstructed for this pole reads

−1/2i〈13〉3[46]3s2
123(s456 − s451)

〈12〉〈23〉[45][56]〈1|2 + 3|6]4
. (7.19)

It is then reasonable to guess that the corresponding pole in

cn−1+×̃2+...(n−4)+(n−3)−×̃(n−2)+(n−1)−×̃ (7.20)

is given by

−1/2i〈1(n− 3)〉3[(n− 2)n]3s2
(n−2)(n−1)n(s(n−2)(n−1)n − s(n−2)(n−1)1)

〈12〉 . . . 〈(n− 4)(n− 3)〉[(n− 2)(n− 1)][(n− 1)n]〈1|(n− 2) + (n− 1)|n]4
. (7.21)

Again, we checked numerically that this holds true for n = 7 and n = 8. However, things

are not always so clear-cut. In some cases, the expressions we obtain for sub-leading poles

are not yet compact enough to easily guess an all-n generalisation, and when new Lorentz

structures appear things can be significantly more complicated. For example, the ∆3
624

pole for the coefficient of Eq. 7.18, similarly to that of Eq. 7.12, reads

5/128i〈16〉[16]〈23〉[23]〈45〉[45]〈6|2 + 3|1]〈3|1 + 6|2]〈5|1 + 6|4]Π624Π246Π462

〈1|2 + 3|6]〈2|1 + 6|3]〈4|1 + 6|5]∆3
624

. (7.22)

If we try to guess the corresponding ∆3
n2(n−2) pole for the all-multiplicity coefficient of

Eq. 7.20 we realise that it is not entirely clear how some parts of the expression behave.

More specifically, the pole 〈2|1 + 6|3] associated with the corner of the diagram where we

want to insert additional positive helicity gluons becomes 〈2|1 + 7|3 + 4|2〉 at seven-point,

but the latter had to be obtained from singular limits again. In the following expression,

〈17〉[17]s234〈56〉[56]〈7|5 + 6|1]〈6|1 + 7|5]Π725

〈1|5 + 6|7]〈5|1 + 7|6]∆3
725

N
〈23〉〈34〉〈2|1 + 7|3 + 4|2〉

(7.23)

the first fraction is a clear generalisation of Eq. 7.22, but the second one introduced new

structures not clearly visible at six-point. The numerator N can be correctly reconstructed,

but it has about ∼ 270 non-zero entries. In analogy to Eq. 7.8-7.11, it will probably be

necessary to insert new structures, such as(
〈2|1 + 7|5 + 6|3〉 − 〈2|5 + 6|1 + 7|3〉

)
/2 =

=
√
〈23〉2∆725 + 〈2|1 + 7|3 + 4|2〉〈3|1 + 7|2 + 4|3〉 (7.24)

in order to obtain a more compact expression, but we leave this type of study for future

work.



CHAPTER 8

One-Loop Higgs + Four-Parton Amplitudes

At the Large Hadron Collider the dominant mechanism for producing Higgs bosons is gluon

fusion (gg → h). As argued in Section 1.2.1 of the introduction, because of the relatively

large strong coupling constant αs, additional QCD radiation is often present, making the

processes we consider here phenomenologically important. Gluon fusion is mediated, in

the Standard Model, by a loop of massive coloured fermions. Since the Yukawa coupling

(last line of Eq. 1.16) is proportional to the fermion mass, the main contribution comes

from the top quark coupling to the Higgs boson. In the limit of large top mass, i.e. when

the particle in the loop is unresolved, the top degree of freedom can be integrated out,

giving rise to an effective field theory (EFT) in which the gluons couple directly to the

Higgs boson. The effective Lagrangian reads

Leff =
g2
s

48π2v
hGaµνG

a,µν , (8.1)

where gs is the strong coupling constant, v is the vacuum expectation value of the Higgs

field, Gµν is gluon field strength, and h is the Higgs boson field. This is analogous to

the Fermi theory for weak interactions, which is understood as an effective theory in the

limit of unresolved W bosons. The EFT in Eq. 8.1 has been used to compute higher-order

corrections to the inclusive cross-section – most recently up to next-to-next-to-next-to-leading

order [116,117] – as well as rates for the production of Higgs bosons in association with up

to three additional jets up to next-to-leading order [118, 119]. The effective field theory
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description is expected to break down when, for example, the transverse momentum of

produced gluons is of order of the top quark mass. This breakdown has most recently been

investigated at NLO in ref. [120]. This kinematic regime is beginning to be explored at the

LHC [121] and can give important information about the mediators in the loop that couple

to the Higgs. For such configurations it is therefore important to make use of a calculation

in which the full dependence on the top quark mass is retained. Such a calculation also

allows a direct quantification of the breakdown of the EFT approach.

The increase in algebraic complexity between a Higgs + three-parton and a Higgs +

four-parton amplitude is analogous to that between a five-gluon and a six-gluon amplitude.

In fact, analytic results for the Higgs + three-parton amplitudes in the full theory have

been known for a long time [122, 123], whereas the corresponding results for Higgs +

four-parton amplitudes have been obtained more recently in Refs. [47, 49], and in both

cases expressions for at least some of the amplitudes were too long to report. In addition,

there are several automatic procedures that can provide numerical results for one-loop

amplitudes [48,124–126]. In Ref. [3] we present compact amplitudes for all contributing

processes,

0→ ggggh , (8.2)

0→ q̄qggh , (8.3)

0→ q̄qq̄′q′h , (8.4)

retaining all mass effects. Although our result is not new per se, it is the first time that a

compact publishable analytic result has been obtained for all gluon helicities.

We checked our results for the amplitudes using an in-house implementation of the

D-dimensional unitarity method [127], and also against a previous unitarity-based calculation

[47]. Complete agreement was found at the amplitude level. Our results for the squared

matrix elements are also in full agreement with those obtained using the code OpenLoops

2 [126]. A comparison of the evaluation time of squared matrix elements against both the

previous code implemented in MCFM [128–130] and OpenLoops 2 indicates a speed-up

by at least an order of magnitude over previously-available results. This will be beneficial

for calculations requiring this amplitude in all regions of phase space, such as recent NLO

predictions for Higgs boson plus 1-jet production in the full theory [120] and at large

transverse momentum [131,132].
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8.1 Structure of the Calculation

We consider colour ordered amplitudes, as explained in Section 2.1.2. In addition to the

colour decomposition for 0 → ggggh presented in Eq. 2.18, those for 0 → q̄qggh and

0→ q̄qq̄′q′h are given by

Hq̄qgg4 ({pi, hi, ci, ji}) = i
g4
s

16π2

(m2

v

)[
(tc3 tc4)j2 j1H

34
4 (1h1 , 2−h1 , 3h3 , 4h4 ;h)

+ (tc4 tc3)j2 j1H
43
4 (1h1 , 2−h1 , 3h3 , 4h4 ;h)

]
, (8.5)

H4q
4 ({pi, hi, ji}) = i

g4
s

16π2

(m2

v

)
(tc1)j2 j1 (tc1)j4 j3H

4q
4 (1h1q̄ , 2

−h1
q , 3h3q̄′ , 4

−h3
q′ ) . (8.6)

Note that in principle Eq. 8.5 should also contain a term of the form tr(tc3 tc4)δj2 j1 .

However, these contributions cancel at the diagram level and give no net contribution1.

The colour-ordered amplitudes are themselves decomposed in terms of master integrals, as

shown in Eq. 2.17. A set of generalised unitarity techniques are used to determined the

scalar integral coefficients for boxes [80], triangles [82] and bubbles [84,90,133], whereas

the rational part can be obtained from the mass-dependent part of triangle integral

coefficients [88].

Furthermore, it is possible to manipulate the numerator tensor structures to decompose

the massive fermion loop amplitude into one with a scalar in the loop plus a correction ∆F .

The scalar theory has two advantages: it can be determined in the massless limits and

avoids all tensor algebra. The correction term ∆F is cut constructible, lower rank than the

full fermionic theory, and contributes only to certain parts of box and triangle coefficients.

Pentagon diagrams also warrant special attention, because they give raise to the only

singularity which involves a mass. If we were to work with a D-dimensional loop momentum,

then the master integral decomposition would explicitly contain pentagon integrals2

A(1) =
∑
i

eiI
i
Pent. +

∑
i

diI
i
Box +

∑
i

ciI
i
T ri. +

∑
i

biI
i
Bub. +

∑
i

aiI
i
Tad. +R . (8.7)

However, this pentagon part is not present in four dimensions because with four degrees

of freedom in the loop momentum we can perform at most four unitarity cuts. In other

1We expect this cancellation to be due to some form of Furry’s theorem, since this contribution arises

from the 1/Nc photon-like term of Eq. 2.10, but we have not investigated it further.
2 Note that if the loop momentum is made D dimensional, but the external momenta are kept in D = 4,

then it is sufficient to add the pentagon integrals only, since any extra-dimensional component of the loop

momentum can be rotated to point in a single extra dimension. No hexagons are required.
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words, in D = 4 each pentagon integral can be written as a sum over five box integrals,

each with one fewer propagator. We can write this identity as

E0(p1, p2, p3, p4;m) = C(1)
1×2×3×4D0(p2, p3, p4;m) + C(2)

1×2×3×4D0(p12, p3, p4;m)

+ C(3)
1×2×3×4D0(p1, p23, p4;m) + C(4)

1×2×3×4D0(p1, p2, p34;m)

+ C(5)
1×2×3×4D0(p1, p2, p3;m) , (8.8)

where E0 and D0 are scalar pentagon and box integrals respectively, their arguments label

the momenta in the corners of the diagram (with the last one left implicit), and m denotes

the mass of the loop propagator. The reduction coefficients C(i) are given by

C(i) = −1

2

N (i)(s12, s23, s34, s45, s51)

16 |S1×2×3×4|
, (8.9)

where the explicit numerator structures can be found in Ref. [3]. |S1×2×3×4| is the

determinant of the 5× 5 matrix [S1×2×3×4]ij = [m2− 1
2(qi−1− qj−1)2], where qi =

∑
j≤i pj ,

with pj the external momenta. Explicitly, the determinant is given by

16 |S1×2×3×4| = −s12s23s34〈1|2 + 3|4]〈4|2 + 3|1] +m2 tr5(1234)2 . (8.10)

We can understand Eq. 8.8 by considering a quadruple cut. The reduction coefficients are

nothing more than the extra propagator in the pentagon evaluated on the cut which puts

the other four propagators on-shell.

Although the decomposition that we use does not explicitly contain pentagon diagrams,

the box coefficients we obtain contain the reduction coefficients of Eq. 8.9, multiplied by

effective pentagon coefficients. Schematically, we have

box coef. =
∑

redu. coef.× pent. coef.+ genuine box , (8.11)

where the latter part is regular in |S1×2×3×4|, i.e. it has no contribution from the 5th

propagator. The reason why we talk about effective pentagon coefficients, is that the

decomposition of Eq. 8.11 is not unique: parts of the pentagon contribution can be

reabsorbed into the genuine box part. We can exploit this freedom to explicitly eliminate

the tr5 spurious pole contributions between the pentagon and the genuine box part. This

significantly improves the numerical stability of the expressions.

Similarly to the six-gluon case, we provide the full list of integral coefficients in Appendix G,

whereas the full set of independent spinor-helicity expressions is too lengthy to reproduce

here and can be found in Ref. [3].
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8.2 High-Precision Floating-Point Reconstruction

The reconstruction strategy discussed in Chapters 5 and 6 proved useful to study these

Higgs + 4-parton amplitudes as well, despite already having some form of analytical

expressions. Reconstruction from numerical evaluations is particularly effective when

unitarity techniques result in lengthy expressions that are hard to treat analytically using

other simplification techniques, such as twistor variables. This is especially true in the

case of some triangle and bubble coefficients. It is also convenient to bypass the algebra

involved in removing artefacts of loop-momentum parametrisations, such as square roots

and massless projections of non-lightlike external momenta [82,96].

Apart from the 1/|S1×2×3×4| contribution from the reduction coefficients C(i), all integral

coefficients can be expressed as a sum of two terms, one which is independent of the mass,

plus a term with m2 dependence. From an analytical reconstruction point of view, factors

of 1/|S1×2×3×4| can be isolated by choosing

m2 =
ε+ s12s23s34〈1|2 + 3|4]〈4|2 + 3|1]

tr5(1234)2
, with ε� 1 . (8.12)

This is similar to a singular limit, but instead of manipulating momenta we manipulate the

mass of the particle in the loop. By analysing the behaviour of box coefficients in this limit,

a relation between the number of powers of m in the effective pentagon coefficient and the

degree of the tr5 spurious pole becomes apparent. This led us to the form of |S1×2×3×4|

given in Eq. 8.10.

The rest of the coefficients can be first reconstructed at m = 0, to obtain the part

independent from the mass. This can then be subtracted from the numerical evaluation

and the mass set to 1 to obtain the m2 part of the coefficients. This easily accommodates

a massive loop momentum in a framework built on massless kinematics.

The other slight complication arises from the Higgs momentum, which is the only external

non-massless one. The easiest solution is to treat the Higgs as a pair of massless particles,

which can be thought of as its decay products. For this reason, the kinematics of these

Higgs + 4-parton amplitudes closely resembles that of six-gluon amplitudes. Using massless

six-point kinematics to describe these processes results in a slight over-parametrisation,

since, for instance, all coefficients must be symmetric under exchange of the momenta of

the two massless decay products of the Higgs. In the end, we always remove any explicit

dependence on the Higgs momentum using momentum conservation.
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Finally, all the expressions we obtain are manifestly rational. In fact, the analysis of Section

7.2 is perfectly applicable in this context as well. For example, let us consider the following

bubble coefficient in 0→ g+g−g+g−h 3

b34(1+, 2−, 3+, 4−) =
3

8

〈2|3 + 4|1]〈4|1 + 2|3](s123 − s124)(s234 − s134)(s134 + s234)

〈1|3 + 4|2]〈3|1 + 2|4]∆2
135

+ O(∆−1
135) . (8.13)

First of all, note that it is manifestly symmetric under (1234 → 2143), as expected.

Secondly, note that the exact same structures as in Eq. 7.8-7.11 appear in the numerator

to explain half-integer behaviour in doubly singular limits involving the Gram determinant.

The similarity to Eq. 7.15 is striking, with the main difference being the absence of the

〈5|1 + 2|6] pole.

3There is a factor of 4 difference between the definition of ∆ in Eq. 3.69 and that used in Ref. [3].



CHAPTER 9

DF2 and Gravity Tree Amplitudes

In this chapter we consider how to recover analytical expressions for the tree-level scattering

amplitudes discussed in Chapter 4. There are several reasons why analytical expressions

are preferable to numerical ones, such as execution speed, numerical stability and general

understanding of their analytical structure. The same reconstruction technique can be

applied to all the theories from Table 4.1. In the accompanying files to Ref. [2] we provide

sample analytical amplitudes for all these theories up to six-point. The results are given both

in human readable format and as expressions readable by the S@M Mathematica package [76].

Here, we are going to explicitly discuss only the reconstruction of (DF)2 and conformal

gravity amplitudes, since they are the ones with a less well known analytical structure

and therefore the most interesting to analyse. These theories are related by a double copy

relation, similar to that between Yang-Mills and Einstein gravity, namely: (DF)2 ×YM ∼

CG. (DF)2 and conformal gravity present issues with renormalisability and unitarity,

since for instance (DF)2 is built out of dimension-six operators, as implied by the name.

Despite this, they are of interest for a few reasons. Namely, one type of conformal gravity

arises in Berkovits-Witten twistor string [134], it is the zero-mass limit of a mass-deformed

theory that reproduces Einstein gravity in the infinite-mass limit [135], and it may be

useful for computing Einstein gravity amplitude in curved backgrounds for cosmological

applications [136,137].
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More specifically, in the following paragraphs we are going to provide: a) the first complete

set of five-point (DF)2 amplitudes (one of which we could confirm numerically with that

found in Ref. [138]); b) an alternative expression to that of Ref. [134] for the five-point

MHV conformal gravity amplitude; c) results for the leading three-particle sigularities of

the six-point amplitudes in the MHV and NMHV helicity sectors. All the amplitudes we

present are written in the spinor helicity language and are free from spurious singularities,

unless explicitly stated. We think that, in order to obtain similar complete results at

six-point, it could be necessary to use spurious sigularities (potentially of order higher than

1) which would introduce a further complication in the analysis.

We make use of the high floating-point precision provided by seampy and follow the

reconstruction strategy discussed so far. Briefly summarised, we study the behaviour of

amplitudes in singular limits of complex phase space to obtain the poles and their degrees.

We then study the amplitudes in doubly singular regions to obtain information about

the structure of the denominators of the amplitude. Using this information, we generate

ansätze for the residues of different poles and solve linear systems for the coefficients of

bases of spinor expressions in the numerators. If a reconstructed ansatz is correct, once

subtracted from the numerical amplitude, it removes a singularity. We repeat the procedure

until the amplitude is fully reconstructed.

Explicit examples are discussed in the following subsections.

9.1 Five-Point Amplitudes

(DF)2: Five-Point All-Plus (explained example)

In contrast to QCD amplitudes, five-point (DF)2 amplitudes are non-zero for all helicity

configurations even at tree level. They are color ordered, like QCD, because their

CHY-integrand contains the Parke-Taylor-like cyclic factor Cn of Eq. 4.24. Therefore, the

symmetry group is restricted to cyclic and anti-cyclic permutations. It can be generated

from two operations, which can be thought of as the rotations and reflections of a pentagon

(i.e. the dihedral group D5):

(12345→ 23451) and (12345→ −15432) . (9.1)

The minus sign in the reflection comes from the partity operation applied to vector particles

(JP = 1−). In total the group contains 10 elements (including the identity).

https://gdelaurentis.github.io/seampy/
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The poles and their order, as well as any common factor in the numerator, can be obtained

by studying the behaviour of the amplitude in singular limits, as discussed in Section 5.1.

We can see how this procedure works in practice in the case of angle and square spinor

brackets with the following code snippet, which can be run with the packages discussed in

the Appendices C and D:

>>> from __future__ import unicode_literals

>>> from lips import Particles

>>> from seampy import NumericalAmplitude

>>> import mpmath

>>> oDF2Amp = NumericalAmplitude("DF2", helconf="+++++")

>>> oParticles = Particles(oDF2Amp.multiplicity)

>>> oParticles.set("〈1|2〉", 10 ** -30)

>>> a = oDF2Amp(oParticles)

>>> oParticles.set("〈1|2〉", 10 ** -31)

>>> b = oDF2Amp(oParticles)

>>> round(mpmath.log(abs(b)/abs(a))/mpmath.log(10))

2.0 # this is the order of the pole 〈1|2〉

What the above code does is to compute the amplitude at two phase space points and to

calculate the slope of the line going through the two points in a log-log plot (Amplitude

vs. spinor invariant), just like we showed in Figure 5.1.

Following this same procedure with the rest of the spinor invariants we obtain a first look

at the analytical structure of the all plus amplitude:

A(DF)2(1+, 2+, 3+, 4+, 5+) =
N

〈12〉2〈13〉〈14〉〈15〉2〈23〉2〈24〉〈25〉〈34〉2〈35〉〈45〉2
, (9.2)

where N is some numerator structure.

Two comments are now in order. Firstly, note that the adjacent particle singularities are

of second order. This reflects the fact that this theory has a quartic propagator instead

of the usual quadratic one. Secondly, although in this case it is possible to obtain an

expression for the numerator N , it is often not feasible to do so in this single fraction

representation, especially with higher point amplitudes; and even when it is possible, the

result is complicated and obscures the structure of the amplitude.
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〈13〉 〈14〉 〈15〉 〈23〉 〈24〉 〈25〉 〈34〉 〈35〉 〈45〉

〈12〉 2 2 2 2 2 2 3 2 3

Table 9.1: Doubly singular limits for 〈12〉 in A(DF)2(1+, 2+, 3+, 4+, 5+)

In order to obtain a compact representation, we want to write the amplitude as a sum of

fractions, each of which should have a simpler denominator structure than the expression

above. It is generally convenient to start by considering the double poles, since they make it

difficult to numerically access the corresponding simple poles. To study the doubly singular

limits, we can use the same code snippet as above, by replacing the oParticles.set

function with the oParticles.set_pair one. For example, for the pair 〈12〉, 〈23〉 we have:

>>> oParticles.set_pair("〈1|2〉", 10 ** -30, "〈2|3〉", 10 ** -30)

By repeating the same procedure with all pairs involving 〈12〉 and recording the behaviour

of the amplitude in the corresponding doubly singular limit we can generate Table 9.1.

Since 〈12〉 is already a double pole, it is not likely for any other invariant appearing with

a 2 in the table to be in the same denominator as 〈12〉2. Therefore, we make an ansatz

where only 〈34〉 and 〈45〉 (as simple poles) appear together with 〈12〉2. More rigorously,

we conjecture that:

lim
〈12〉→0

A(DF)2(1+, 2+, 3+, 4+, 5+) =
N12

〈12〉2〈34〉〈45〉
+O(〈12〉−1) . (9.3)

To check whether the above is true or not, we start by noting that the amplitude has mass

dimension of 1 and little group weights of [−2, −2, −2, −2, −2]. Therefore, the numerator

in the RHS must have mass dimension 5 and little group weights [0, 0, −1, 0, −1] in order

to match the LHS. We then generate a complete set of linearly independent products of

spinor invariants consistent with these constraints. In this specific case, the basis contains

20 independent entries:

〈12〉〈13〉[13][13][25], 〈12〉〈15〉[13][15][25], 〈12〉〈23〉[13][23][25], 〈12〉〈25〉[13][25][25],

〈12〉〈35〉[13][25][35], 〈13〉〈13〉[13][13][35], 〈13〉〈15〉[13][15][35], 〈13〉〈23〉[13][23][35],

〈13〉〈25〉[12][35][35], 〈13〉〈25〉[13][25][35], 〈13〉〈35〉[13][35][35], 〈15〉〈15〉[15][15][35],

〈15〉〈25〉[15][25][35], 〈15〉〈35〉[15][35][35], 〈23〉〈23〉[23][23][35], 〈23〉〈25〉[23][25][35],

〈23〉〈35〉[23][35][35], 〈25〉〈25〉[25][25][35], 〈25〉〈35〉[25][35][35], 〈35〉〈35〉[35][35][35].
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Note that, the basis would have 290 entries if we were to generate it for the numerator of

Eq. 9.2. Moreover, since we are not working in a generic phase space region but in the

limit of small 〈12〉, it turns out that 10 of the 20 basis elements only contribute to the

O(〈12〉−1) part of Eq. 9.3, and thus can be ignored. We can now generate 10 random phase

space points in the 〈12〉 → ε� 1 region and solve for the coefficients of the 10 elements.

The solution has only one non zero coefficient:

N12 = i[12]〈13〉〈25〉[35]2 . (9.4)

To obtain the remaining four double poles, we can simply symmetrise the expression for

the 〈12〉 double pole by applying the following cyclic permutations:

(12345→ 23451), (12345→ 34512), (12345→ 45123), (12345→ 51234). (9.5)

Once an expression for a particular pole has been reconstructed, it can be numerically

subtracted from the amplitude and the left over quantity will not contain that particular

singularity anymore. Its singular limits can then be studied, ansätze made and reconstructions

performed until all the poles have been successfully obtained and the amplitude fully

reconstructed.

The final result for the all plus (DF)2 amplitude follows. On the left hand side, we give the

amplitude written using the symmetries discussed above. This is the notation discussed in

Section 6.1.4. For the sake of clarity, below we reproduce on the right hand side the same

expression with the meaning of the symmetries made explicit.

A(DF)2(1+, 2+, 3+, 4+, 5+) = A(DF)2(1+, 2+, 3+, 4+, 5+) =

i[12]〈13〉〈25〉[35]2

〈12〉2〈34〉〈45〉
+
i[14][24][35]

〈12〉〈35〉
+

i[12]〈13〉〈25〉[35]2

〈12〉2〈34〉〈45〉
+
i[14][24][35]

〈12〉〈35〉
+

(12345→ 23451) +
i〈13〉[14]2[23]〈24〉
〈15〉〈23〉2〈45〉

+
i[14][25][35]

〈14〉〈23〉
+

(12345→ 34512) +
i〈24〉[25]2[34]〈35〉
〈12〉〈15〉〈34〉2

+
i[13][14][25]

〈25〉〈34〉
+

(12345→ 45123) +
i[13]2〈14〉〈35〉[45]

〈12〉〈23〉〈45〉2
+
i[13][24][25]

〈13〉〈45〉
+

(12345→ 51234) +
i〈14〉[15][24]2〈25〉
〈15〉2〈23〉〈34〉

+
i[13][24][35]

〈15〉〈24〉
+

2i[15][23]〈4|1 + 2|4]

〈12〉〈34〉〈45〉
+

2i[15][23]〈4|1 + 2|4]

〈12〉〈34〉〈45〉
+

2i[12][45]〈3|1 + 5|3]

〈15〉〈23〉〈34〉
+

2i[12][45]〈3|1 + 5|3]

〈15〉〈23〉〈34〉
+

2i[12][15][34]

〈23〉〈45〉
2i[12][15][34]

〈23〉〈45〉
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(DF)2: Five-Point Single-Minus

The single minus amplitude has a single element in its symmetry group besides the identity,

namely (12345→ −43215), and is slightly more complicated than the all plus one.

A(DF)2(1+, 2+, 3+, 4+, 5−) =

i/2[23]〈25〉3〈34〉[45]

〈12〉〈14〉〈23〉2〈24〉
+

[23]〈35〉(−i/2[12]〈13〉〈25〉+ i/2〈15〉[15]〈35〉)
〈13〉〈14〉〈23〉〈34〉

+

(12345→ −43215) +

i[12]〈14〉〈15〉〈25〉〈35〉[45]

〈12〉2〈13〉〈34〉2
+

i〈35〉N
〈12〉〈15〉〈23〉〈34〉〈45〉

+

−i[12]〈14〉〈23〉[24]〈25〉〈45〉
〈12〉〈13〉〈24〉〈34〉2

+
−i[14][24]〈25〉〈45〉
〈13〉〈23〉〈24〉

+
−i[13][14]2[24]

[15]〈23〉[45]
,

In the above N is given by

N =([12][13]〈15〉2〈25〉+ [13]2〈15〉2〈35〉+ [12]〈15〉[23]〈25〉2

+ [13]〈15〉[23]〈25〉〈35〉+ [23]2〈25〉2〈35〉) .

(DF)2: Five-Point MHV (adjacent)

This MHV amplitude is the only one we could already find in the literature, specifically

in Ref. [138], where it was written in terms of Mandelstam invariants. The expression we

provide is more concise, makes its symmetry explicit and is free from spurious singularities.

We have numerically checked that the two expressions agree. The one we found follows.

A(DF)2(1+, 2+, 3+, 4−, 5−) =

i[12]〈14〉2〈25〉2〈45〉
〈12〉2〈15〉〈23〉〈34〉

+
[13]〈45〉(i〈12〉[12] + i/2〈13〉[13] + i〈14〉[14])

〈12〉〈23〉[45]
+

i[13]2〈14〉〈35〉
〈12〉〈23〉[45]

+
−i[12]〈14〉〈25〉〈45〉2

〈12〉〈15〉〈23〉〈34〉
+
i[12][13]〈15〉〈34〉
〈13〉〈23〉[45]

+

(12345→ −32154) +

i〈13〉[13][15][34]〈45〉
〈12〉〈23〉[45]2

+
−i[12][13]2[23]

[15][34][45]
.
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(DF)2: Five-Point MHV (non-adjacent)

The following is the last independent five-point amplitude. All others can be obtained by

permutations and/or conjugation of the amplitudes presented here.

A(DF)2(1+, 2+, 3−, 4+, 5−) =

i[12]〈15〉2〈23〉〈35〉
〈12〉2〈14〉〈45〉

+
i[34]〈35〉3

〈12〉〈15〉〈24〉
+
i[12]〈23〉〈35〉2

〈12〉〈24〉〈34〉
+

(12345→ −21543) +

i〈35〉N
〈12〉〈14〉〈24〉

+

i[14][24]〈35〉
〈12〉[35]

+
−i[12][14]2[24]2

[15][23][34][45]

In the above N is given by

N =([12]〈13〉〈25〉+ 〈13〉[13]〈35〉+ 〈15〉[15]〈35〉

+ 〈23〉[23]〈35〉+ 〈25〉[25]〈35〉+ 2〈35〉2[35])

Conformal Gravity: Five-Point MHV

An all-multiplicities expression for MHV conformal gravity amplitudes exists thanks to

work by Berkovits and Witten [134]. Here we present an expression specific to five point

which makes manifest the absence of terms with pairs of double poles.

ACG(1++, 2++, 3++, 4−−, 5−−) =

−i[12]2〈24〉[34]〈45〉5

〈12〉2〈23〉〈34〉〈35〉
+
i[12]2[13]〈15〉〈45〉4

〈12〉〈13〉〈23〉〈35〉
+

(12345→ 23145) + (12345→ 31245) +

−2i[12][13][23]〈45〉4

〈12〉〈13〉〈23〉



126 CHAPTER 9. DF2 AND GRAVITY TREE AMPLITUDES

9.2 Six-Point Partial Results

(DF)2: Six-Point MHV (adjacent) (partial)

In order to convey the increase in complexity that a six-point amplitude entails, here we

present an expression for the three-particle double poles as well as for the simple poles of

non-adjacent three-particle singularities in a six-point MHV (DF)2 amplitude.

A(DF)2(1+, 2+, 3+, 4+, 5−, 6−) =

i[13][46]〈56〉N1

〈12〉〈23〉〈45〉[56]2s2
123

+
i[12][34]〈26〉〈35〉N2

〈12〉2[16]〈34〉[45]s2
345

+

−i[14][24][35][36]〈56〉
〈12〉[56]2s124

+
−i[12]〈15〉〈25〉[34][45]〈46〉
〈12〉2〈34〉[56]s125

+

i[14]2[23]〈26〉〈36〉[46]

〈23〉2[45][56]s145
+
−i[14][23]〈26〉〈5|1 + 4|2]

〈14〉〈23〉[56]s145
+

(123456→ 432165) +

−i[12][14]〈15〉[34]〈46〉
〈12〉〈34〉[56]s125

+
−i[13]2[24]2〈25〉〈36〉
〈13〉[16]〈24〉[45]s245

+

N
〈12〉2〈13〉〈14〉〈16〉[16]〈23〉2〈24〉〈34〉2〈45〉[45][56]2s123s234s345

Where N1 and N2 are given by:

N1 = (− 2〈12〉2[12]2〈24〉[24]− 2〈12〉2[12]2〈25〉[25]− 2〈12〉2[12][13][24]〈34〉

− 2〈12〉2[12][13][25]〈35〉 − 〈12〉2[12][14][25]〈45〉 − 2〈12〉[12]2〈13〉〈24〉[34]

− 2〈12〉[12]2〈13〉〈25〉[35]− 2〈12〉[12]〈13〉[13]〈34〉[34]− 2〈12〉[12]〈13〉[13]〈35〉[35]

− 〈12〉[12]〈13〉[14][35]〈45〉 − 〈12〉[12]2〈14〉〈25〉[45]− 〈12〉[12][13]〈14〉〈35〉[45]

+ 〈12〉[12]〈23〉[24][35]〈45〉+ 〈12〉[12][23]〈24〉〈35〉[45] + 〈12〉[13][23]〈34〉〈35〉[45]

+ [12]〈13〉〈23〉[34][35]〈45〉)

N2 = ( + 3〈12〉[12]〈13〉[13][34]− 2〈12〉〈13〉[13]2[24]− 〈12〉[13]〈14〉[14][24]

+ 〈12〉[12]〈15〉[15][34]− 〈12〉[13][14]〈15〉[25]− 〈12〉[13]〈23〉[23][24]

− 〈12〉[15][23][24]〈25〉+ 〈13〉2[13]2[34]− 〈13〉[13]2〈15〉[45]

+ 〈13〉[13]〈15〉[15][34] + 〈13〉[13]〈23〉[23][34]− 〈13〉[13][23]〈25〉[45]

+ 〈13〉[15][23]〈25〉[34]− 〈14〉2[14]2[34]− [13]〈14〉[14]〈15〉[45]

− 〈14〉[14]〈15〉[15][34]− 〈14〉[14]〈24〉[24][34]− [13]〈14〉[24]〈25〉[45]

− 〈14〉[15][24]〈25〉[34]− [13]〈15〉2[15][45]− 〈15〉[15][23]〈25〉[45])
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In the above expression N would contain several thousand terms. It is therefore crucial

to identify appropriate ways to perform a partial fraction decomposition, since smaller

denominators would in turn imply smaller numerators and thus easier systems of linear

equations to generate and solve. However, further studies will be necessary to check whether

such a decomposition requires the introduction of spurious singularities, like for NMHV

amplitudes in Yang-Mills, and if so what form these spurious poles would take.

Conformal Gravity: NMHV (partial)

To conclude, we present an expression for the three-particle double poles in the six-point

NMHV conformal gravity amplitude. To the best of our knowledge this is the first analytical

result, albeit a partial one, for NMHV conformal gravity amplitudes.

ACG(1++, 2++, 3++, 4−−, 5−−, 6−−) =

i[23]4〈56〉4N1

〈15〉〈16〉〈23〉2[24][34][56]2s2
234

+

(123456→ 312645) + (123456→ 231564) + (123456→ 312564) +

(123456→ 231645) + (123456→ 312456) + (123456→ 231456) +

(123456→ 123645) + (123456→ 123564) +

N

(〈12〉2〈13〉2〈14〉[14]〈15〉[15]〈16〉[16]〈23〉2〈24〉[24]〈25〉[25]〈26〉[26]〈34〉[34]

×〈35〉[35]〈36〉[36][45]2[46]2[56]2s124s125s134s135s145s234s235s245s345)

In the above N1 is given by

N1 = (− [12]2〈13〉[15]〈23〉〈24〉2[36] + [12]〈13〉[13][15]〈23〉〈24〉2[26]− [12]〈13〉[13][15]〈23〉〈24〉〈34〉[36]

+ 〈13〉[13]2[15]〈23〉〈24〉[26]〈34〉+ [12]2〈14〉[15]〈23〉2〈24〉[36]− [12][13]〈14〉[15]〈23〉2〈24〉[26]

− [12]〈14〉[14][15]〈23〉〈24〉〈34〉[36] + [13]〈14〉[14][15]〈23〉〈24〉[26]〈34〉 − [12][13]〈23〉2〈24〉2[25][26]

− 2[12][13]〈23〉2〈24〉[25]〈34〉[36]− [12][13]〈23〉2〈34〉2[35][36]− [12][14]〈23〉〈24〉3[25][26]

− [12][13]〈23〉〈24〉2[24]〈34〉[56]− 2[12][14]〈23〉〈24〉2[25]〈34〉[36] + [13][14]〈23〉〈24〉2[25][26]〈34〉

− [12][14]〈23〉〈24〉〈34〉2[35][36]− [13]2〈23〉〈24〉[24]〈34〉2[56] + 2[13][14]〈23〉〈24〉[25]〈34〉2[36]

+ [13][14]〈23〉〈34〉3[35][36]− [12][14]〈24〉3[24]〈34〉[56] + [14]2〈24〉3[25][26]〈34〉

− [13][14]〈24〉2[24]〈34〉2[56] + 2[14]2〈24〉2[25]〈34〉2[36] + [14]2〈24〉〈34〉3[35][36]) .

Here N would contain even more terms then in the six-point (DF)2 example. Similar

expressions where the symmetries of the poles are made manifest are also possible in

Einstein gravity amplitudes; for example, the following represent the three-particle simple
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poles in the six-point NMHV sector.

AEG(1++, 2++, 3++, 4−−, 5−−, 6−−) =

−i[12]3〈56〉3〈4|1 + 2|3]4

〈12〉〈14〉[14]〈24〉[24]〈35〉[35]〈36〉[36][56]s124
+

(123456→ 132456) + (123456→ 123546) + (123456→ 132546) +

(123456→ 321456) + (123456→ 123654) + (123456→ 321654) +

(123456→ 231546) + (123456→ 132645)+

N
〈12〉〈13〉〈14〉[14]〈15〉[15]〈16〉[16]〈23〉〈24〉[24]〈25〉[25]〈26〉[26]〈34〉[34]〈35〉[35]〈36〉[36][45][46][56]

However, this symmetric approach, which is also free from spurious singularities, makes it

highly non trivial to obtain the rest of the amplitude (i.e. the numerator N ). Indeed, the

compact expressions that we are aware of come from BCFW recursions and have a quite

different structure:

AEG(1++, 2++, 3++, 4−−, 5−−, 6−−) =

−i[23]7〈34〉〈56〉7[56]

〈15〉〈16〉[24][34]〈1|2 + 4|3]〈1|2 + 3|4]〈5|1 + 6|2]〈6|1 + 5|2]s234
+

i[24]〈4|1 + 2|3]7

−〈12〉[12]〈13〉[35]〈45〉+ 〈12〉[13]〈14〉[25]〈35〉+ 〈12〉[23]〈24〉[25]〈35〉 − 〈12〉[24]〈34〉[35]〈45〉

−〈13〉〈14〉[14][35]〈45〉+ [13]〈14〉2〈35〉[45]− 〈14〉〈24〉[25][34]〈35〉+ 〈14〉[24]〈25〉〈34〉[35]


〈12〉2〈24〉[35][36][56]〈1|2 + 4|3]〈1|2 + 4|5]〈1|2 + 4|6]〈4|1 + 2|5]〈4|1 + 2|6]s124

+

i[12]6〈14〉〈56〉7
−〈12〉[12][23]〈35〉[45]− [12]〈13〉[14]〈15〉[35] + [12]〈14〉[34]〈35〉[45] + 〈14〉[15][24][34]〈35〉

−[12]〈15〉〈23〉[24][35]− [14]〈15〉[24]〈34〉[35] + 〈23〉[24]2[35]〈45〉 − [23]〈24〉[24]〈35〉[45]


[14]〈35〉〈36〉〈3|1 + 4|2]〈3|1 + 2|4]〈5|1 + 4|2]〈5|1 + 2|4]〈6|1 + 4|2]〈6|1 + 2|4]s124

+

−i[34]〈56〉〈4|1 + 3|2]7

〈13〉〈14〉[25][26]〈34〉[56]〈1|2 + 6|5]〈1|2 + 5|6]〈3|1 + 4|2]s134
+

(123456→ 123546) + (123456→ 123654) +

i[23]s7
123

 〈12〉〈13〉[14][25]〈45〉 − 〈12〉[12]〈14〉〈35〉[45] + 〈12〉〈23〉[24][25]〈45〉+ 〈12〉[23]〈34〉〈35〉[45]

+〈13〉2[14][35]〈45〉 − 〈13〉[13]〈14〉〈35〉[45] + 〈13〉〈23〉[25][34]〈45〉 − 〈13〉[23]〈25〉〈34〉[45]


〈12〉2〈23〉[45][46][56]〈1|2 + 3|4]〈1|2 + 3|5]〈1|2 + 3|6]〈3|1 + 2|4]〈3|1 + 2|5]〈3|1 + 2|6]

We have reproduced this result already known in the literature by applying our analytical

reconstruction strategy to a single BCFW factorisation channel at a time, which is

significantly simpler than the full amplitude1. Compared to the previous partial result,

we note that this representation manifestly does not contain two-particle Mandelstam

invariants, but introduces many spurious singularities and hides the symmetries which

were manifest in the above partial result.

1In this case a 〈21] shift was used.
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The strategy of studying a factorisation channel at a time could prove fruitful also in the

case of conformal gravity and (DF)2 amplitudes, but the quartic propagator introduces a

significant complication in the BCFW recursion.

In fact, the usual ALAR/p
2 factorisation is broken by the presence of higher order poles in

the Laurent expansion in the shift parameter. We attempted to achieve such a factorisation

by means of a Taylor expansion of the numerator ALAR around the pole. However, this

involves taking a derivative with respect to the shift parameter which, in turns, requires

the amplitudes to be well defined in the neighbourhood of the factorisation point. This

seems to be equivalent to the factorisation formula (Eq. 2.18) given in Ref. [135], where the

derivative is implicit in the fact that we have to take the zero mass limit of expressions like

(AL(m2)− AL(0))/m2. This would also explain why our approach fails: the amplitudes

we use are well defined only exactly at the factorisation point, where the legs are on-shell

and massless.

However, we do have the six-point amplitude through the CHY formula and there is no

need to generate it recursively from lower point amplitudes. At the same time, we expect

single factorisation channels to have an easier analytical structure than the full amplitude.

This suggests to still look at the amplitude via the residue theorem:

1

2πi

∮
Â(z)

z
dz = Â(0) +

∑
i

ResÂ(z)|z=zi
zi

. (9.6)

We can then study one term in the sum in the RHS at a time. Note that the simultaneous

need to generate singular phase space limits and to numerically extract the residue from a

Laurent expansion in some cases requires to increase the working numerical of precision.

As an example, let us consider the same 〈21] shift as before, and more specifically the

(2, 3, 4)L, (1, 5, 6)R channel, which for Einstein gravity yields the first term from the

previous expression, i.e.:

Res ÂNMHV
EG (z)

z

∣∣∣
z=z(2,3,4)L,(1,5,6)R

=
i[23]7〈34〉〈56〉7[56]

〈15〉〈16〉[24][34]〈1|2 + 4|3]〈1|2 + 3|4]〈5|1 + 6|2]〈6|1 + 5|2]s234
.

The same shift in the same channel in the case of conformal gravity instead yields:

Res ÂNMHV
CG (z)

z

∣∣∣
z=z(2,3,4)L,(1,5,6)R

=
N

(〈12〉2〈13〉2〈15〉〈16〉[24]〈34〉2[34][46]2[56]2〈1|3 + 4|2]2〈1|2 + 4|3]

×〈1|2 + 3|4]3〈5|1 + 6|2]〈6|1 + 5|2]s2124s
2
125s

2
234).

The numerator N , having mass dimension of 46, is unfortunately still too complicated to

be determined. We see that the conformal gravity residue has more poles and poles of



130 CHAPTER 9. DF2 AND GRAVITY TREE AMPLITUDES

higher order compared to Einstein gravity one, as well as some spurious singularities of

order higher than one. Furthermore, note that for this shift the contour integral vanishes

for Einstein gravity but not for conformal gravity. Therefore, in the latter case we would

have to include a boundary term coming from the residue at infinity. Some of the other

possible shifts have the advantage of vanishing on the contour, but the structure of the

residues remains similarly complicated. Further work will be required to see whether a

reasonably compact analytical expression can be obtained for these residues.
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Conclusions

In this thesis we have presented a new method to obtain compact analytical expressions

for high-multiplicity scattering amplitudes from numerical evaluations only. We leveraged

this method to obtain new analytical expressions for two phenomenologically relevant

processes at one-loop, namely six-gluon and Higgs + 4-parton scattering, as well as for

more theoretical amplitudes in higher derivative theories at tree-level.

The complexity of the calculations for scattering amplitudes, together with the quadratic

increase in the number of scales needed to describe them, means that numerical programs

have to be employed whenever analytical calculations become unfeasible. Yet most of

the complexity is usually in the intermediate stages of the calculation, and expressions

in their final form are often much more compact than in the intermediate stages needed

to compute them. Therefore, reconstructing analytical expressions after the calculation

has been performed numerically largely bypasses the complexity usually inherent to an

analytical calculation, while retaining the benefits of analytical results.

From a phenomenological point of view, the benefits include faster and more stable

evaluations for Monte Carlo integration, which save on computation time and reduce

integration errors. From a more theoretical point of view, the benefits include a better

understanding of the mathematical properties of the amplitudes, and, as shown previously,

can even provide some information about all-multiplicity expressions.
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The reconstruction method we developed is based on the analysis of high-precision

floating-point evaluations of rational kinematic quantities, such as loop integral coefficients.

First of all, the singularity structure of the expressions is probed numerically through

evaluations in singular limits of complex phase space. This yields the poles of the expression,

their degrees, as well as any common factor in the numerator. In some simple cases this is

sufficient to reconstruct the analytical expression. However, more generally, it is necessary

to further probe the quantity in doubly singular limits to obtain information about the

relations among the poles and, thereafter, postulate possible partial fraction decompositions.

Finally, individual terms in the partial fraction decomposition can be numerically isolated

by choosing appropriate regions of phase space and reconstructed by solving linear systems

of equations for the coefficients of generic ansatze.

The reconstruction strategies presented in Chapter 6 offer different trade-offs between

scalability and uniqueness of the result. While in principle the first strategy presented

should always work and yield a result with a predictable structure, in practice it scales

badly with the complexity of the expression. On the contrary, the last two strategies

involve some trial and error, since a given partial fraction decomposition is not guaranteed

to be valid before we actually attempt to reconstruct the numerator, but they offer more

options to control the structure of the outcome and scale much better with the complexity

of the problem. An advantage of this flexibility is that it allows to tailor the form of

the reconstructed analytical expression for different goals, such as evaluation speed or

numerical stability. For the latter goal, we can generate equivalent representations of the

same expression that are numerically stable in different singular limits.

Firstly, we applied this method time to obtain analytical expressions for the six-gluon

one-loop helicity amplitudes with a gluon in the loop from numerical evaluations from

BlackHat. Analytical expressions for these amplitudes were already available in the

literature, but had never been presented all together in a single place with a single

notation. Furthermore, the expressions we obtained are both manifestly rational in

the spinor products and manifestly gauge invariant. Implementing these expressions

analytically in BlackHat has resulted in a significant speed-up compared to the numerical

procedure. These amplitudes will be useful to obtain predictions for 3-jet production at

next-to-next-to-leading order.

Secondly, the method we developed proved to be very useful in simplifying one-loop Higgs +

4-parton amplitudes in the full theory. Although originally developed for entirely massless
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processes, it proved easy to adapt to the presence of some masses. Also in this case the

expressions we obtained are manifestly rational, and they resulted in a speed-up of at least

an order of magnitude. These results will be important for improving calculations of the

Higgs + jet production at next-to-leading order in the full theory.

Thirdly, we used this method to reconstruct analytical tree-level amplitudes from numerical

evaluations up to six-point in the following theories: Yang-Mills, Einstein gravity, biadjoint

scalar, Born-Infeld, non-linear sigma model, Galileon, conformal gravity and (DF)2. In

this case, we developed a Python package (seampy) to numerically solve the scattering

equations and to compute tree amplitudes with the high floating-point precision need by

our reconstruction technique. In particular, we obtained the first complete set of five-point

(DF)2 amplitudes, a new form for the five-point MHV conformal gravity amplitude and

we presented a discussion with partial results for six-point amplitudes in both (DF)2 and

conformal gravity. Let us remark that despite the fact that not all the solutions to the

scattering equations are rational (except at three- and four-point), and in some cases are

not even expressible in terms of radicals (beyond six-point), the tree-level amplitudes built

from them are purely rational functions. This is made clear by reconstructing explicit

rational analytical expressions from numerical evaluations.

Let us now point out possible future directions of enquiry and potential limitations of the

reconstruction method.

An compelling and within reach further application would be to reconstruct rational

coefficients of logarithms instead of master integrals. This should simply amount to

reconstructing combinations of the master-integral coefficients considered so far, but

may elucidate spurious-pole cancellations among different components of the amplitude.

In principle, it may even be possible to reconstruct the dependence on the logarithms

from numerical computations of the entire loop-amplitude. For instance, if the only

logarithm to reconstruct depended on the renormalisation scale µR, then this could be

easily accommodated by first performing the reconstruction at µR = 1, which would kill

the logarithm, and then at µR = e to obtain the coefficient of the log. However, in practice,

if the argument of the logarithms were arbitrary ratios of kinematic invariants, a naive

approach where the logarithms are added to the linear systems for the numerators may

easily result in too large systems to be solved efficiently.

This brings us to the main limitation of the method presented, that is the size of the linear

systems to be solved for the reconstruction of the numerators. We observed that systems of

https://gdelaurentis.github.io/seampy/
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up to a few thousands linear equations can be very efficiently solved with double-precision

pivoted Gaussian elimination on a GPU in a matter of seconds. The larger the linear system,

the more complicated it is to maintain numerical errors under control and eventually it

is necessary to resort to performing the Gaussian elimination with higher floating-point

precision on CPUs, which is significantly slower. However, the method presented for fitting

individual terms in partial fraction decompositions by exploiting the singular limits severely

reduces the size of the systems that have to be considered. Furthermore, it is usually the

case that the numerator structures are not completely arbitrary and can be constrained by

the study of doubly singular limits, which allow to make educated guesses for common

factors in the numerators and thus reduce the size of systems to solve.

Finally, the application of the reconstruction method presented in this thesis is not

limited to coefficients of one-loop scalar integrals, one-loop rational remainders or tree-level

amplitudes. In a future study we plan to use it to rewrite analytical two-loop integral

coefficients expressed in terms of twistor or Mandelstam variables as functions of spinor

products, where the pole structure and physical limits are easier to interpret.
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APPENDIX A

Feynman Rules in the Standard Model

In this section of the Appendix, we give explicit Feynman rules for QCD and discuss the

remaining electroweak ones. The latter either have the same tensor structure as QCD, up

to simplifications arising from substituting SU(3) structure constants with SU(2) ones and

adding projection operators to enforce the chiral nature of the weak interaction, or have

trivial Lorentz structure, in the case of those involving the Higgs boson. In the following,

we ignore technicalities concerning gauge choice and ghosts, since they do not play a role

when working with gauge-invariant on-shell quantities.

A massless vector boson propagator, associated to the gauge-kinetic part of the Lagrangian

of Eq. 1.23, in the axial gauge reads

b, νa, µ

p
=

−i
p2 + iε

(
ηµν − pµnν + nµpν

p · n
)
δab , (A.1)

where the n is an arbitrary massless reference momentum. The Kronecker’s delta δab is

the only QCD specific part, it simply enforces the outgoing gluon to be the same as the

incoming one. The photon propagator will look much the same, whereas the W± and Z

propagators will be slightly different due to their non-zero mass.

The double product between the derivative part of the field strength and its commutator
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part, denoted as triple-gauge in Eq. 1.24, gives rise to the three-point interaction between

gluons

a, µ

c, λ

b, ν

p

r

q
= gsf

abc
[
ηµν(p−q)λ+ηνλ(q−r)µ+ηλµ(r−p)ν

]
. (A.2)

Note that the sum over permutations arises from the 3! possible contractions with external

fields from Wick’s Theorem Eq. 1.14. This also takes care of the factor of 1/2 from the

Lagrangian. The momenta arise from the single derivative terms in the Lagrangian. The

double product from the contraction of W field strength tensors from Eq. 1.20 leads to

the exact same Lorentz structure, but now the structure constant fabc becomes εijk. This

can be set to 1 as long as we remember that the three fields must be distinct, i.e. only

W+W−Z and W+W−A vertices exist. The coupling gs also has to be adjusted accordingly

to g2 cos θW or e respectively.

The last part of the product of fields strength tensors is the square of the commutator part,

which leads to four-point gauge interactions. The Feynman rule is

d, δ

a, α

c, γ

b, β

s

p

r

q =

−ig2
sf

abef cde
(
ηαγηβδ − ηαδηβγ

)
−ig2

sf
acef bde

(
ηαβηγδ − ηαδηβγ

)
−ig2

sf
adef bce

(
ηαβηγδ − ηαγηβδ

)
.

(A.3)

Again, the sum over permutations and the factor of 1/4 are understood in terms of the

4! possible contractions with external fields. In the case of W field strengths, the SU(2)

indices can only take three values, therefore one of the three lines in the above Feynman rule

has to vanish. Then, the remaining two lines can be combined, and the Levi-Civita tensors

set to 1 as long as we remember the allowed combinations: W+W−W+W−, W+W−ZZ,

W+W−AA, and W+W−AZ. The coupling constants also need to be adjusted accordingly.

Moving on to the matter part of the Standard Model, we have the fermion propagator
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ji
mf

p

= δij
i/p+mf

p2 −m2
f + iε

, (A.4)

which is associated with the kinetic term of Eq. 1.26. The mass can be often neglected in

the computation of high energy matrix elements. This is particularly useful since the mass

term is the only one which mixes left and right handed chiralities.

The last Feynman diagram in QCD is the quark-gluon interaction

p

r

q
= −igs(T a)ijγµ , (A.5)

where T a is the SU(3) generator T a = λa/2. This rule corresponds to Eq. 1.27 from the

Lagrangian. Similar vertex factors exist for the electroweak part of the Lagrangian, but

we are not going to list them all here. They are easily obtained by expanding out the

SU(2) doublet representations and adding left projection operators PL. The only possible

complication is the mixing of the B and W 3 currents into the photon and Z ones. On

the one hand, the photon current yields the unification condition and the relation among

charge, hypercharge and isospin, respectively

e = g2 sin θW = g1 cos θW and Q = I3 + Y/2 . (A.6)

On the other hand, the Z current gives the following left and right handed couplings

gL = I3 −Q sin2 θW and gR = −Q sin2 θW . (A.7)

Vertices involving the Higgs boson are obtained from three terms in the Lagrangian: the

Yukawa term gives Higgs-fermion vertices, the covariant derivative acting on the Higgs

field give Higgs-gauge vertices, just like Eq. 1.31 gave masses to some of the gauge bosons,

and the Higgs potential gives Higgs self-interactions. All these vertices have trivial Lorentz

structure (either the identity or the metric) and the coupling can be read off the Lagrangian.

Finally, external fermions and vectors require the introduction of the appropriate spinor

(Dirac or Weyl) and polarisation tensor, respectively. These are given in Section 2.2.3.
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Triple Cut Jacobian

In this section of the Appendix, we give an explicit derivation of the Jacobian Jt for the

change of variable in the triple-cut momentum parametrisation of Section 3.3.3. This is

still a review of Ref. [82]. The change of variables reads

d4l −→ dl2d(l +K1)2d(l −K2)2dt× |Jt| , (B.1)

where |Jt| is the determinant of the Jacobian, which is given by

(
J−1
t

)
µνρσ

= (∂l2/∂lµ)(∂(l +K1)2/∂lν)(∂(l −K2)2/∂lρ)(∂t/∂lσ) (B.2)

= 8lµ(l +K1)ν(l −K2)ρ∂t/∂lσ . (B.3)

The first three partial derivatives are trivial, whereas the one involving the parameter t is

slightly trickier. By contracting Eq. 3.82 with a1 we obtain

a1 · l = a1 · a0t+�
�7

0

a2
1

1

t
+ a1 · a2 , (B.4)

a1,µdlµ = a1 · a0dt =
α01α02

2
〈K[

2K
[
1〉[K[

2K
[
1]dt , (B.5)

=⇒ ∂t

∂lµ
= − 2a1,µ

α01α02γ
. (B.6)

Note that the choice to contract l with a1 is arbitrary, but convenient for analytical

manipulations. We have checked numerically that the result is independent of the vector

used in this contraction.
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By repeatedly exploiting the anti-symmetry of Levi-Civita tensor, and using Eq. 3.82 and

Eq. 3.63, we obtain

|Jt|−1 = −8εµνρσlµ(K1)ν(K2)ρ∂t/∂lσ (B.7)

= −8εµνρσ(a0,µt+ a1,µ
1

t
)(K[

1,νK
[
2,ρ +

S1S2

γ2
K[

2,νK
[
1,ρ)∂t/∂l

σ (B.8)

= 16t(1− S1S2

γ2
)εµνρσa0,µK

[
1,νK

[
2,ρ

a1,σ

α01α02γ
(B.9)

=
16t

γ
(1− S1S2

γ2
)

1

4i
tr5

(
|K[

1,ν〉[K[
2,ρ|, |K[

1,ν〉[K[
1,ρ|, |K[

2,ν〉[K[
2,ρ|, |K[

2,ν〉[K[
1,ρ|
)
.

We can now use the following relation

tr5(a, b, c, d) = [a|b|c|d|a〉 − 〈a|b|c|d|a] , (B.10)

to evaluate the tr5 part to −γ2. Therefore, the determinant of the Jacobian is

|Jt|−1 = 4itγ
(
1− S1S2

γ2

)
. (B.11)

This is slightly different from the result quoted in [82] (there is an extra factor of 1− S1S2
γ2

).

However, since the difference is not in the t dependence, but in the kinematic part, which

cancels between left- and right-hand sides of Eq. 3.62, no integral coefficient is affected by

this discrepancy.
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Scattering Equations and Amplitudes in Python

In this section of the Appendix, we show how to solve the scattering equations and compute

scattering amplitudes using two new packages developed in Phyton 2.7:

◦ seampy (Scattering equations and amplitudes in Python),

◦ lips (d = 4 Lortenz invariant phase space).

The former provides high-precision floating-point solutions to the scattering equations in

d dimensions and a variety of numerical scattering amplitudes built from their solutions.

The latter is used to manipulate and pass a high-precision phase space point as input to

the numerical amplitude.

Both packages are available on the Python Package Index. The source code is available

on github and the documentation on the associated github pages seampy and lips. Their

installation is straightforward thanks to pip:

pip install --upgrade seampy # this installs lips as well

pip install --upgrade lips # but it can be installed separately

The same commands can be used to update the libraries. The --upgrade option ensures

that the latest version is always used. A review of the key features of these packages is now

provided. Further examples are given in Chapter 9, and more details in the Appendix D.

https://pypi.org/
https://github.com/GDeLaurentis?tab=repositories
https://gdelaurentis.github.io/seampy/
https://gdelaurentis.github.io/lips/
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C.1 Solving the Scattering Equations

In this section we show how to easily obtain solutions for the scattering equations. All the

following examples have n = 6.

The SE in polynomial form as in Eq. 4.13 can be accessed as follows:

>>> hms(6)

⎡ s₁₂⋅z₂ + s₁₃⋅z₃ + s₁₄⋅z₄ + s₁₅⋅z₅ ⎤

⎢s₁₂₃⋅z₂⋅z₃ + s₁₂₄⋅z₂⋅z₄ + s₁₂₅⋅z₂⋅z₅ + s₁₃₄⋅z₃⋅z₄ + s₁₃₅⋅z₃⋅z₅ + s₁₄₅⋅z₄⋅z₅⎥

⎣ s₁₂₃₄⋅z₂⋅z₃⋅z₄ + s₁₂₃₅⋅z₂⋅z₃⋅z₅ + s₁₂₄₅⋅z₂⋅z₄⋅z₅ + s₁₃₄₅⋅z₃⋅z₄⋅z₅ ⎦

They are functions of the punctures and of Mandelstam invariants, which are given here as

they appear in the SE:

>>> punctures(6)

(z1, z2, z3, z4, z5, z6)

>>> mandelstams(6)

(s12, s13, s14, s15, s123, s124, s125, s134, s135, s145, s1234, ...)

The SE can be solved by calling the function solve_scattering_equations. It requires

two inputs: the multiplicity of the phase space, n, and a Python dictionary with the

numerical values for the Mandelstam invariants, num_ss. We therefore need a phase space

point. This is easily done through the lips toolkit object Particles which generates a

random phase space point:

>>> oPs = Particles(6) # arg. is multiplicity of phase space

>>> num_ss = {str(s): oPs.compute(str(s)) for s in mandelstams(6)}

Alternatively, it is possible to set the momenta from a list by modifying the four_mom

attribute of each Particle in the list subclass Particles or to provide an independently

constructed set of Mandelstam invariants. More of this in appendix D.1.

We can then solve the scattering equations by calling:

>>> sols = solve_scattering_equations(6, num_ss)
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the output, sols, is a list of length (n− 3)!, in this case 6. Each solution in the list is a

dictionary for the non-arbitrarily fixed punctures, in this case of the form:

>>> sols[0]

{'z3': mpc(real='#nbr', imag='#nbr'),

'z4': mpc(real='#nbr', imag='#nbr'),

'z5': mpc(real='#nbr', imag='#nbr')}

↪→

↪→

where each '#nbr' has by default 300 digits of precision.

C.2 Computing Scattering Amplitudes

First of all we can list the theories directly available for computation:

>>> theories

[YM, EG, BS, BI, NLSM, Galileon, CG, DF2]

To calculate an amplitude we need to generate a phase space point, as in the example for

the solutions of the scattering equations:

>>> oParticles = Particles(6) # arg. is multiplicity of phase space

We then need to declare what quantity we want to compute. This requires us to specify

a theory and a multiplicity. For example, biadjoint scalar theory (BS) amplitudes or

non-linear sigma model (NLSM) amplitudes can be accessed as follows:

>>> oBSAmp = NumericalAmplitude(theory='BS', multiplicity=6)

>>> oNLSMAmp = NumericalAmplitude(theory='NLSM', multiplicity=6)

Gauge and gravity theories also require a helicity configuration to be specified (the

multiplicity is then deduced from it). Note that for gravity theories we are suppressing

the repeated helicity sign since we do not have mixed cases such as dilatons. This means

that in the following code snippet for conformal gravity (CG) helconf=pmpmpm stands for

1++2−−3++4−−5++6−−.
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>>> oDFAmp = NumericalAmplitude(theory='DF2', helconf='pmpmpm')

>>> oCGAmp = NumericalAmplitude(theory='CG', helconf='pmpmpm')

It is then simply a matter of evaluating any amplitude at the phase space point:

>>> oBSAmp(oParticles)

mpc(real='#nbr', imag='#nbr')

Since most of these helicity amplitudes come with pre-factors of
√

2, we decided to normalise

them in such a way that numerical coefficients in analytical expressions are rational fractions

and often simply the imaginary unit. This also allows for easier comparison to other codes,

which usually adopt such a normalisation. For instance, in the case of Yang-Mills amplitudes

the right hand side of Eq. 4.12 is multiplied by 1/(
√

2)n−2, so that the numerical coefficient

in the Parke-Taylor expression for MHV amplitudes is i instead of (
√

2)n−2i, where n is

the multiplicity of the process.

C.3 Validations

A first validation of the code is to check the solutions of the scattering questions. This is

simply a matter of inserting each of the solutions back in the polynomial SE and check

they vanish to working precision. This can easily be done in practice:

>>> sol = solve_scattering_equations(n, num_ss)[0]

>>> simplify(hms(n).subs(sol).subs(num_ss).subs({punctures(n)[1]: 1})

[~10 ** -290, ~10 ** -290, ~10 ** -290] # for n = 6 there are 3 SE

Additional checks not requiring independent implementations of amplitudes include checking

the little group scalings, mass dimensions, pole structure (more of this in section ??) or

properties such as color ordering. For instance, as a sanity check, we can see that (DF)2 is

color ordered whereas conformal gravity is not. This is shown in the following snippet (we

are still using the helconf=pmpmpm amplitudes declared above):

>>> oNewParticles = oParticles.image("321456") # swap momenta 1 & 3
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>>> abs(oCGAmp(oParticles) - oCGAmp(oNewParticles)) < 10 ** -270

True

>>> abs(oDFAmp(oParticles) - oDFAmp(oNewParticles)) < 10 ** -270

False

However, picking the correct cyclic permutation of the external legs leaves the (DF)2

amplitude unchanged as well.

Finally, the most stringent tests come from comparing to independent libraries. We have

checked all pure gluon (Yang-Mills) tree amplitudes at 3, 4, 5, 6, and 7 point against

BlackHat [139] and Yang-Mills, Einstein and conformal gravity against the code of

Ref. [66]. They all match, that is their ratio differs at most by a normalisation factor fixed

by convention.
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Python Libraries (further details)

In this appendix we provide more details on the lips and seampy packages. Although not

essential from a user point of view, it may be of interest to have more control over the

phase space used or over the theories computed.

D.1 Lips (Lorentz Invariant Phase Space)

The lips Python package is an object-oriented high-precision floating-point phase space

generator built on two layers. The lower one, called Particle, describes the kinematics of

a single particle. Though setters and getters, it provides self-updating numerical tensors

for the left and right spinors, four vectors and rank two spinors. This means that if, say,

the value of the four-momentum is changed, then the values of the spinor attributes are

immediately recalculated to reflect the change. We can see the naming conventions in the

following code snippet:

>>> oParticle = Particle()

>>> oParticle.l_sp_u # left spinor with index up (λ̄α̇)

>>> oParticle.r_sp_d # right spinor with index down (λα)

>>> oParticle.four_mom # four-momentum with index up (Pµ)

>>> oParticle.r2_sp # rank two spinor (P α̇α)

https://github.com/GDeLaurentis/lips/
https://github.com/GDeLaurentis/seampy/
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By default, the Particle object is initialised with random complex momenta. However,

this can be overruled by specifying the optional parameter real_momentum=True. A custom

value for any of the above attributes can also be passed. For instance, we can set the

momentum to be along the x axis:

>>> oParticle.four_mom = numpy.array([1, 1, 0, 0])

The second layer is a list subclass, called Particles. It is a base-one list of Particle objects

with several methods associated to it. The reason why the list is rebased to start from 1

instead of 0 is simply to match the notation in the amplitudes community. As we have

observed, it is initialised as follows:

>>> oParticles = Particles(6) # argument is the multiplicity

It also accepts an optional parameter, now called real_momenta, which is by default set

to False, and which gets automatically passed down to all the Particle objects in the

Particles list, thus generating a complex or real phase space point.

Furthermore, as discussed in conjunction with the analytical reconstruction, the

Particles phase space can be manipulated to generate specific configurations. For instance,

we can generate phase space point with vanishing angle bracket 〈12〉 by calling:

>>> oParticles.set("〈1|2〉", 10 ** -30)

Doubly singular limits for pairs of invariants can be similarly generated. For instance, we

can make both 〈12〉 and 〈23〉 small:

>>> oParticles.set_pair("〈1|2〉", 10 ** -30, "〈2|3〉", 10 ** -30)

At present these functions only work with complex momenta, because with complex

momenta it is possible to construct phase space points where, say, 〈12〉 is small but [12] is

not, while with real momenta this is not possible ([12] ∼ 〈12〉∗).

Other notable functions are:
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>>> oParticles.randomise_all() # randomises all momenta

>>> oParticles.angles_for_squares() # swaps right/left spinors

>>> oParticles.image("234561") # argument is a permutation of 123...n

For more details please consult the package documentation at the relevant github pages.

D.2 Seampy (Scattering Equations and Amplitudes in Python)

In Appendix C we have given a high-level overview on how to use seampy to solve the

scattering equations and compute scattering amplitudes. Here, we provide a few further

details which reflect the implementation of the CHY formalism discussed in Chapter 4.

Still using n = 6 for our examples, we can see two important elements of the elimination

theory algorithm:

◦ the vector of variables to be removed via elimination theory from Eq. 4.18:

>>> V(6)

[1, z2, z3, z2·z3, z3
2, z2·z3

2]

◦ the elimination theory matrix obtained with the recursion algorithm of Eq. 4.20:

>>> M(6)

⎡s₁₄⋅z₄ + s₁₅⋅z₅ s₁₂ s₁₃ 0 0 0 ⎤

⎢ ⎥

⎢ s₁₄₅⋅z₄⋅z₅ s₁₂₄⋅z₄ + s₁₂₅⋅z₅ s₁₃₄⋅z₄ + s₁₃₅⋅z₅ s₁₂₃ 0 0 ⎥

⎢ ⎥

⎢ 0 s₁₂₄₅⋅z₄⋅z₅ s₁₃₄₅⋅z₄⋅z₅ s₁₂₃₄⋅z₄ + s₁₂₃₅⋅z₅ 0 0 ⎥

⎢ ⎥

⎢ 0 0 s₁₄⋅z₄ + s₁₅⋅z₅ s₁₂ s₁₃ 0 ⎥

⎢ ⎥

⎢ 0 0 s₁₄₅⋅z₄⋅z₅ s₁₂₄⋅z₄ + s₁₂₅⋅z₅ s₁₃₄⋅z₄ + s₁₃₅⋅z₅ s₁₂₃ ⎥

⎢ ⎥

⎣ 0 0 0 s₁₂₄₅⋅z₄⋅z₅ s₁₃₄₅⋅z₄⋅z₅ s₁₂₃₄⋅z₄ + s₁₂₃₅⋅z₅⎦

These are the basis for the solve_scattering_equations function, which involves taking

the determinant of M and finding its roots.

We can also consider the CHY-integrands and the Jacobian for the change of variables. We

denote with the term reduced the following sequence of operations: a) removing rows and

https://gdelaurentis.github.io/lips/
https://github.com/GDeLaurentis/seampy/
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columns: two of them for arguments of Pfaffians and three of them for the Jacobian; b)

imposing the Möbius fixing choice of Eq. 4.4; c) removing any factorised factor of z1 =∞.

In the following code snippets we reproduce some examples:

◦ the reduced Jacobian Matrix φ of Eq. 4.9:

>>> Phi(6)

⎡ 2⋅k₂⋅k₃ 2⋅k₃⋅k₄ 2⋅k₃⋅k₅ 2⋅k₃⋅k₆ 2⋅k₃⋅k₄ 2⋅k₃⋅k₅ ⎤

⎢- ───────── - ────────── - ────────── - ─────── ────────── ────────── ⎥

⎢ 2 2 2 2 2 2 ⎥

⎢ (z₃ - 1) (z₃ - z₄) (z₃ - z₅) z₃ (z₃ - z₄) (z₃ - z₅) ⎥

⎢ ⎥

⎢ 2⋅k₃⋅k₄ 2⋅k₂⋅k₄ 2⋅k₃⋅k₄ 2⋅k₄⋅k₅ 2⋅k₄⋅k₆ 2⋅k₄⋅k₅ ⎥

⎢ ────────── - ───────── - ─────────── - ────────── - ─────── ────────── ⎥

⎢ 2 2 2 2 2 2 ⎥

⎢ (z₃ - z₄) (z₄ - 1) (-z₃ + z₄) (z₄ - z₅) z₄ (z₄ - z₅) ⎥

⎢ ⎥

⎢ 2⋅k₃⋅k₅ 2⋅k₄⋅k₅ 2⋅k₂⋅k₅ 2⋅k₃⋅k₅ 2⋅k₄⋅k₅ 2⋅k₅⋅k₆⎥

⎢ ────────── ────────── - ───────── - ─────────── - ─────────── - ───────⎥

⎢ 2 2 2 2 2 2 ⎥

⎣ (z₃ - z₅) (z₄ - z₅) (z₅ - 1) (-z₃ + z₅) (-z₄ + z₅) z₅ ⎦

◦ the reduced matrix A of Eq. 4.21:

>>> A(6)

⎡ 2⋅k₃⋅k₄ 2⋅k₃⋅k₅ 2⋅k₃⋅k₆⎤

⎢ 0 ─────── ─────── ───────⎥

⎢ z₃ - z₄ z₃ - z₅ z₃ ⎥

⎢ ⎥

⎢-2⋅k₃⋅k₄ 2⋅k₄⋅k₅ 2⋅k₄⋅k₆⎥

⎢───────── 0 ─────── ───────⎥

⎢ z₃ - z₄ z₄ - z₅ z₄ ⎥

⎢ ⎥

⎢-2⋅k₃⋅k₅ -2⋅k₄⋅k₅ 2⋅k₅⋅k₆⎥

⎢───────── ───────── 0 ───────⎥

⎢ z₃ - z₅ z₄ - z₅ z₅ ⎥

⎢ ⎥

⎢-2⋅k₃⋅k₆ -2⋅k₄⋅k₆ -2⋅k₅⋅k₆ ⎥

⎢───────── ───────── ───────── 0 ⎥

⎣ z₃ z₄ z₅ ⎦

◦ the reduced cyclic Parke-Taylor-like factor Cn of Eq. 4.24:

>>> Cyc(6)

-1

z5·(-z3 + 1)·(z3 - z4)·(z4 - z5)
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All these symbolic quantities are built with sympy. However, note that the symbolical

substitution function from sympy is very slow, therefore we use regular expressions from

the re library to perform substitutions in the conversion from symbolic to numeric.

For more details please consult the package documentation at the relevant github pages.

https://www.sympy.org/en/index.html
https://docs.python.org/2/library/re.html
https://gdelaurentis.github.io/seampy/
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Gaussian Elimination on GPGPU

It is often the case that scientific computations require the execution of code that highly

benefits from parallelisation. Normally this is done by distributing the instructions across

different cores of the central processing unit (CPU). A high-end i7 Intel processor from

2018 has 8 virtual1 cores. By contrast, a nVidia GTX 1050 general purpose graphical

processor unit (GPGPU) from the same year has 640 CUDA2 cores, distributed across 5

multi-processors. As a consequence, speed-up factors from one to two orders of magnitude

are not uncommon when moving from CPU to GPGPU. However, not all code can

be parallelised for efficient execution on GPGPUs because of some limitations. Firstly,

while instructions running in different threads of a CPU are completely independent,

those in simultaneously executed threads of a GPGPU multi-processor must be the

exact same. Secondly, GPGPU performance on non-natively supported number types

(e.g. double precision if it is natively single precision) is significantly lower. Lastly, the

structure of code for execution on CUDA cores is substantially different from usual, requiring

completely new implementations; whereas parallelisation in, say, C++ can be as easy as

adding #pragma omp parallel for before a for loop.

In our case, a good candidate for parallelisation on graphics cards is the Gaussian elimination

procedure, which essentially involves repeatedly dividing matrix rows by their first non-zero

1The number of virtual cores is double the number of physical ones due to hyper-threading.
2Compute Unified Device Architecture.
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entry and subtracting them from the rows beneath. More specifically, the code we

implemented performs Gaussian elimination with scaled partial pivoting. Partial pivoting

entails exchanging the order of the equations (i.e. rows) to maximise numerical stability,

but not that of the variables (i.e. columns). The latter would be total pivoting. It is scaled

partial pivoting because the row with the largest leading element in relation to the rest of

entries in the row is chosen for the subtraction; note that this minimises round-off errors.

Our CUDA code is invoked from Python via the pyCUDA module, which acts as global

synchronisation among all code running on the GPGPU. This is necessary because CUDA

code is run asynchronously on a two dimensional grid of three dimensional blocks of

threads and, whereas it is possible to synchronise threads within a block by calling the

__syncthreads(); instruction, there is no way to synchronise different blocks across the

grid from within the device3. Figure E.1 shows the host side of the code, with every

function beginning by Cuda being a custom written kernel invocation, acting on the grid

of blocks of threads. The size of the blocks and grids are passed as keyword arguments,

making sure not to exceed the device constraints, for instance MAX_BLOCK_DIM_X is 1024

on a GTX 1050. If a block x-dimension needs to be 1025 it is better to have two blocks,

one of x-dimension 513 and one of x-dimension 512, rather than a block of x-dimension

1024 and one with a single thread, hence the folded_number_of_columns function for the

block dimension and number_of_foldings function for the grid dimension. We are now

going to analyse the code in more details.

◦ cuda.mem_alloc stands for memory allocation; it simply reserves enough memory on

the device to hold a matrix of given size with specific number type (128-bit complex

floats in our case);

◦ cuda.memcpy_htod stands for memory copy from host to device; this pushes the

matrix from the RAM to the GPU memory, and is performed once at the beginning,

since host-device communication is slow;

◦ CudaSetRowScales finds the maximum entry, or scale, in every row; this is necessary

for partially pivoting the row reduction;

◦ CudaThreadsReduceToMaxIndex and, if necessary, CudaBlocksReduceToMaxIndex,

find the index of the row with the largest leading element in relation to its row scale;

3Device refers to the GPU, host refers to the CPU.
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◦ CudaSwitchRows moves the row with index just found to the top of the sub-matrix

being row reduced;

◦ CudaCompareScaledHeadToTollerance checks whether the leading entry is compatible

with 0 at the current working precision (we use 10−9 ∼ 0 with double precision),

and saves the result of the comparison in a boolean on the device (it is expensive to

return it to the host);

◦ CudaDoStuff on the first invocation either calls a __device__4 function called

RescaleRow, which divides a row by the leading entry, or calls a different __device__

function called RowAndColumnSetToZero which sets an entire row and column to

zero (effectively throwing away a redundant variable and equation), depending on

the result of the comparison at the above step;

◦ CudaIncrement_functionCounter acts as synchronisation and increments a counter

on the device;

◦ CudaDoStuff on the second invocation calls RowReduce, which subtracts the rescaled

row from the sub-matrix beneath, or does nothing, depending on the result of the

previous comparison;

◦ CudaIncrement_i increases the counter on the device which moves you down the

diagonal by one row and one column, before restarting the loop;

◦ cuda.memcpy_dtoh in the end copies the row-reduced matrix back to RAM.

Unfortunately, the need to avoid a cuda.memcpy_dtoh call at every iteration of the loop,

leads to a quite awkward implementation of the if-statement for the comparison to the

numerical zero threshold. Still, an empty CUDA kernel call is much cheaper than returning

a value from the GPU memory to the RAM.

In the following code snippet of Figure E.2, as an example of CUDA code, we show the

device function for the actual row subtraction. This code is run asynchronously on the

grid of blocks of threads, both of which are taken to be one-dimensional. Threads across a

block handle columns within a row, and each block within the grid handles a specific row.

Each thread knows its position within the two dimensional grid-block array through the

parameters blockId.x and threadIdx.x, as well as the overall block dimension via

4Device functions are accessible only from within the device, as opposed to global functions with can

be invoked from the host.



154 APPENDIX E. GAUSSIAN ELIMINATION ON GPGPU

# Push Matrix To Device

Matrix_gpu = cuda.mem_alloc(Matrix.size * Matrix.dtype.itemsize)

cuda.memcpy_htod(Matrix_gpu, Matrix)

# Set The Row Scales Array On The Gpu

CudaSetRowScales(Matrix_gpu,

block=(int(math.ceil(folded_number_of_columns(

NbrColumns, FoldingMaxLength=2048) / 2.0)), 1, 1),

grid=(NbrRows, 1))

for i in xrange(NbrRows): # Loop Over Rows

# Scaled Partial Pivoting

CudaThreadsReduceToMaxIndex(Matrix_gpu,

block=(int(math.ceil(folded_number_of_columns(

NbrColumns - i, FoldingMaxLength=2048) / 2.0)), 1, 1),

grid=(number_of_foldings(NbrColumns - i), 1))

if number_of_foldings(NbrColumns - i) > 1:

CudaBlocksReduceToMaxIndex(Matrix_gpu,

block=(number_of_foldings(NbrColumns - i), 1, 1),

grid=(1, 1))

CudaSwitchRows(Matrix_gpu,

block=(folded_number_of_columns(NbrColumns), 1, 1),

grid=(number_of_foldings(NbrColumns) + 1, 1))

# Cuda Row Reduction To Echelon Form

CudaCompareScaledHeadToTollerance(Matrix_gpu,

block=(1, 1, 1),

grid=(1, 1))

CudaDoStuff(Matrix_gpu,

block=(folded_number_of_columns(NbrColumns), 1, 1),

grid=(number_of_foldings(NbrColumns), 1))

CudaIncrement_functionCounter(Matrix_gpu,

block=(2, 1, 1),

grid=(1, 1))

CudaDoStuff(Matrix_gpu,

block=(folded_number_of_columns(NbrColumns), 1, 1),

grid=(NbrRows, 1))

# Increment Mirrored Counter

CudaIncrement_i(block=(1, 1, 1), grid=(1, 1))

# Pull Matrix From Device

cuda.memcpy_dtoh(Matrix, Matrix_gpu)

Figure E.1: Host code for partially pivoted row reduction on CUDA device.
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__device__ void RowReduce(pycuda::complex<double> *Matrix) {

int FoldingLength = blockDim.x;

int NbrFoldings = ceil(NbrColumns / (1.0 * FoldingLength));

int id_j_head = blockIdx.x * NbrColumns + i;

int idMax = (blockIdx.x + 1) * NbrColumns;

for (int s = 0; s < NbrFoldings; s++) {

int id = blockIdx.x * NbrColumns + s * FoldingLength + threadIdx.x;

int id_i = i * NbrColumns + s * FoldingLength + threadIdx.x;

if (blockIdx.x > i && s * FoldingLength + threadIdx.x > i && id < MaxMatrixId &&

id < idMax){↪→

Matrix[id] = Matrix[id] - Matrix[id_i] * Matrix[id_j_head];

}

}

__syncthreads();

if (blockIdx.x > i && threadIdx.x == 0 && id_j_head < MaxMatrixId) {

Matrix[id_j_head] = 0;

}

}

Figure E.2: Device code example for partially pivoted row reduction on CUDA device.

blockDim.x. The indexing to access the matrix elements is arguably quite convoluted,

because the matrix is stored in the GPGPU memory as a one-dimensional array. Hence,

each (x, y) coordinate has to be written as x+NbrColumns ∗ y. Furthermore, as argued

in precedence, if a row exceeds 1024 elements it is folded onto itself. Therefore, if, say, the

row has 1025 elements, the first thread will run through the loop with counter s twice, the

first time acting on element at position 0, and the second time on the element at position

513. The position of the element being modified is thus

id =

y︷ ︸︸ ︷
blockIdx.x ∗

row length︷ ︸︸ ︷
NbrColumns+

x︷ ︸︸ ︷
s ∗ FoldingLength︸ ︷︷ ︸

counter× iteration length

+threadIdx.x . (E.1)

Lastly, after the subtraction has finished for a given row, and all threads within the block

have reached __syncthreads(), it is safe to set the row element in column i to zero.
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Six Gluon Coefficient Tables

There are eight independent helicity configurations for six-gluon scattering:

1. 1+2+3+4+5+6+,

2. 1+2+3+4+5+6−,

3. 1+2+3+4+5−6−,

4. 1+2+3+4−5+6−,

5. 1+2+3+4−5−6−,

6. 1+2+3−4+5+6−,

7. 1+2+3−4+5−6−,

8. 1+2−3+4−5+6−.

The all-plus and single-minus configurations are purely rational at one loop, since they

vanish at tree level. The remaining six have both rational and cut-constructible parts. The

following tables show all integral coefficients in relation to a minimal set of independent ones.

Box, triangle and bubble coefficients are denoted as d, c and b respectively. The subscripts

refer to the external particles in the corners of the diagram. Each coefficient corresponds

to a specific internal propagator helicity assignment on the cut, with × representing a −+

propagator, and ×̃ a +− one. In the cases where multiple, distinct symmetries have to be

used to obtain the related coefficients, we also provide a table of conversion rules. The

cases where a single symmetry is sufficient follow.

Helicity Configuration Conversion rule Helicity Configuration Conversion rule

1+2+3+4+5−6− (432165) 1+2+3+4−5+6− (321654)

1+2+3−4+5−6− (654321)

Table F.1: Conversion rules for 1+2+3+4+5−6−, 1+2+3+4−5+6− and 1+2+3−4+5−6−

integral coefficients.
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Coefficient Related coefficients Coefficient Related coefficients

d1×̃2×3×456×̃ d561×̃2×̃3×4× d1×̃234×5×̃6×̃ d123×4×5×6×̃

d1×2×345×6×̃ d612×̃3×̃4×5×̃ d61×̃2×̃34×5×̃ d12×3×45×6×̃

d1×̃23×4×56×̃

c1×̃2×3456×̃ c5612×̃3×4× c61×̃2×̃345×̃ c612×3×45×

c1×2×3456×̃ c5612×̃3×̃4× c12×3×456×̃ c561×̃2×̃34×

c1×̃23×456×̃ c561×̃23×4× c61×2×345× c612×̃3×̃45×̃

c1×̃234×56×̃ c123×4×56×̃ c61×̃234×5×̃ c123×45×6×̃

c1×̃2345×̃6×̃ c6123×4×5× c12×345×6×̃ c612×̃34×5×̃

c1×2345×6×̃ c6123×̃4×5×̃ c1234×5×̃6×̃ c1234×5×6×̃

c1×2345×6× c6123×̃4×̃5×̃ c4561×̃2×̃3× c4561×̃2×3×

b61×̃2345×̃ b6123×45× b123×456×̃ b561×̃234×

b12×3456×̃ b5612×̃34× b1234×56×̃

b61×2345× b6123×̃45×̃ b4561×̃23×

b612×̃345×̃ b612×345×

Table F.2: Minimal set of integral coefficients for 1+2+3+4+5−6−.

Coefficient Related coefficients Coefficient Related coefficients

d1×̃2×3×456×̃ d1×234×5×6× d612×̃3×̃4×̃5×̃

d1×2×345×6×̃ d561×̃2×̃3×4×̃ d61×̃2×̃34×̃5×̃ d61×2×34×5×

d1×̃23×4×̃56×̃ d12×3×45×6×̃ d123×4×̃5×6×̃

d1×̃234×̃5×̃6×̃ d612×3×4×5×

c1×̃2×3456×̃ c4561×̃2×3× c61×2×345× c561×̃2×̃34×̃

c1×2×3456×̃ c4561×̃2×̃3× c61×̃234×̃5×̃ c612×34×5×

c1×̃23×456×̃ c12×3×456×̃ c12×345×6×̃ c561×̃23×4×̃

c1×̃234×̃56×̃ c612×3×45× c61×234×5× c612×̃34×̃5×̃

c1×234×56× c612×̃3×̃45×̃ c123×4×̃56×̃ c123×45×6×̃

c1×̃2345×̃6×̃ c5612×3×4× c1234×̃5×̃6×̃ c6123×4×5×

c1×2345×6×̃ c5612×̃3×4×̃ c6123×̃4×̃5×̃ c1234×5×6×

c1×2345×6× c5612×̃3×̃4×̃ c1234×̃5×6×̃ c6123×4×̃5×

c61×̃2×̃345×̃ c561×2×34×
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Coefficient Related coefficients Coefficient Related coefficients

b61×̃2345×̃ b5612×34× b561×̃234×̃ b612×345×

b12×3456×̃ b4561×̃23× b123×456×̃

b61×2345× b5612×̃34×̃ b1234×̃56×̃ b6123×45×

b612×̃345×̃ b561×234× b6123×̃45×̃ b1234×56×

Table F.3: Minimal set of integral coefficients for 1+2+3+4−5+6−.

Coefficient Related coefficients Coefficient Related coefficients

d1×̃2×3×456×̃ d123×4×5×̃6×̃ d1×̃2×345×̃6×̃ d1×̃234×5×̃6×̃, d612×3×4×5×̃,

d561×̃2×3×4×

d1×̃2×34×56×̃ d61×̃2×3×45×̃, d61×̃23×4×5×̃,

d12×34×5×̃6×̃

d1×2×345×6×̃ d1×234×5×6×̃, d561×̃2×̃3×4×̃,

d612×̃3×4×̃5×̃

d1×2×34×56×̃ d61×̃2×̃3×45×̃, d61×̃23×4×̃5×̃,

d12×34×5×6×̃

d1×̃23×45×̃6×̃ d12×3×4×56×̃

c1×̃2×3456×̃ c1234×5×̃6×̃, c6123×4×5×̃,

c4561×̃2×3×

c1×2345×6×̃ c5612×̃3×4×̃

c1×2×3456×̃ c6123×4×̃5×̃, c1234×5×6×̃,

c4561×̃2×̃3×

c1×2345×6× c5612×̃3×̃4×̃

c1×̃23×456×̃ c12×3×456×̃, c123×4×56×̃,

c123×45×̃6×̃

c61×̃2×̃345×̃ c61×̃234×̃5×̃, c561×2×34×,

c612×34×5×

c1×̃234×56×̃ c12×345×̃6×̃, c612×3×45×̃,

c561×̃23×4×

c61×̃2×345×̃ c61×̃234×5×̃, c561×̃2×34×,

c612×34×5×̃

c1×234×56×̃ c12×345×6×̃, c612×̃3×45×̃,

c561×̃23×4×̃

c61×2×345× c61×234×5×, c561×̃2×̃34×̃,

c612×̃34×̃5×̃

c1×̃2345×̃6×̃ c5612×3×4× c61×̃23×45×̃ c12×34×56×̃

b61×̃2345×̃ b5612×34× b612×̃345×̃ b561×̃234×̃, b612×345×,

b561×234×

b12×3456×̃ b1234×56×̃, b6123×45×̃,

b4561×̃23×

b123×456×̃

b61×2345× b5612×̃34×̃ b612×345×̃ b561×̃234×

Table F.4: Minimal set of integral coefficients for 1+2+3+4−5−6−.
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Coefficient Conversion rule Coefficient Conversion rule

d1×̃2×3×456×̃ (456123) d1×̃2×345×̃6×̃ (654321), (456123),

(321654)

d1×̃2×34×56×̃ (321654), (456123),

(654321)

d1×2×345×6×̃ (654321), (321654),

(456123)

d1×2×34×56×̃ (321654), (456123),

(654321)

d1×̃23×45×̃6×̃ (321654)

c1×̃2×3456×̃ (654321), (456123),

(321654)

c1×2345×6×̃ (321654)

c1×2×3456×̃ (456123), (654321),

(321654)

c1×2345×6× (321654)

c1×̃23×456×̃ (321654), (456123),

(654321)

c61×̃2×̃345×̃ (654321), (321654),

(456123)

c1×̃234×56×̃ (654321), (321654),

(456123)

c61×̃2×345×̃ (654321), (321654),

(456123)

c1×234×56×̃ (654321), (321654),

(456123)

c61×2×345× (654321), (321654),

(456123)

c1×̃2345×̃6×̃ (321654) c61×̃23×45×̃ (456123)

b61×̃2345×̃ (456123) b612×̃345×̃ (654321), (456123),

(321654)

b12×3456×̃ (654321), (456123),

(321654)

b123×456×̃

b61×2345× (456123) b612×345×̃ (654321)

Table F.5: Conversion rules for 1+2+3+4−5−6− integral coefficients.

Coefficient Related coefficients Coefficient Related coefficients

d1×̃2×3×̃456×̃ d1×2×345×6×̃, d123×̃4×̃5×6×̃,

d612×3×̃4×5×

d1×̃234×̃5×̃6×̃ d1×234×5×6×, d561×̃2×̃3×̃4×̃,

d561×2×3×4×

d1×̃23×̃4×̃56×̃ d61×2×34×5× d12×3×̃45×6×̃

d1×23×4×56× d61×̃2×̃34×̃5×̃

c1×̃2×3456×̃ c1×2×3456×̃, c6123×̃4×̃5×,

c6123×̃4×5×

c1×̃2345×̃6×̃ c5612×̃3×̃4×̃, c1234×5×6×,

c4561×2×3×
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Coefficient Related coefficients Coefficient Related coefficients

c1×̃23×̃456×̃ c61×2×345×, c123×̃4×̃56×̃,

c612×34×5×

c1×2345×6×̃ c1234×̃5×6×̃, c4561×̃2×3×̃,

c5612×3×̃4×

c1×23×456× c61×̃2×̃345×̃, c123×4×56×,

c612×̃34×̃5×̃

c1×2345×6× c1234×̃5×̃6×̃, c4561×̃2×̃3×̃,

c5612×3×4×

c1×̃234×̃56×̃ c61×234×5×, c561×2×34×,

c561×̃23×̃4×̃

c12×3×̃456×̃ c12×345×6×̃, c612×3×̃45×,

c123×̃45×6×̃

c1×234×56× c61×̃234×̃5×̃, c561×̃2×̃34×̃,

c561×23×4×

b61×̃2345×̃ b5612×̃34×̃, b1234×56×,

b4561×23×

b123×̃456×̃ b612×345×

b12×3456×̃ b6123×̃45× b612×̃345×̃ b123×456×

b61×2345× b1234×̃56×̃, b4561×̃23×̃,

b5612×34×

b561×̃234×̃ b561×234×

Table F.6: Minimal set of integral coefficients for 1+2+3−4+5+6−.

Coefficient Conversion rule Coefficient Conversion rule

d1×̃2×3×̃456×̃ (216543), (456123),

(543216)

d1×̃234×̃5×̃6×̃ (543216), (456123),

(216543)

d1×̃23×̃4×̃56×̃ (216543) d12×3×̃45×6×̃

d1×23×4×56× (216543)

c1×̃2×3456×̃ (216543), (456123),

(543216)

c1×̃2345×̃6×̃ (456123), (543216),

(216543)

c1×̃23×̃456×̃ (216543), (456123),

(543216)

c1×2345×6×̃ (543216), (216543),

(456123)

c1×23×456× (216543), (456123),

(543216)

c1×2345×6× (543216), (216543),

(456123)

c1×̃234×̃56×̃ (543216), (216543),

(456123)

c12×3×̃456×̃ (216543), (543216),

(456123)

c1×234×56× (543216), (216543),

(456123)
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Coefficient Conversion rule Coefficient Conversion rule

b61×̃2345×̃ (456123), (543216),

(216543)

b123×̃456×̃ (216543)

b12×3456×̃ (456123) b612×̃345×̃ (216543)

b61×2345× (543216), (216543),

(456123)

b561×̃234×̃ (543216)

Table F.7: Conversion rules for 1+2+3−4+5+6− integral coefficients.

Coefficient Related coefficients Coefficient Related coefficients

d1×̃2×3×̃456×̃ d123×̃4×5×̃6×̃ d61×̃2×̃3×̃45×̃ d61×̃23×̃4×̃5×̃

d1×2×3×456×̃ d123×4×5×6×̃ d61×̃2×3×̃45×̃ d61×̃23×̃4×5×̃

d1×̃2×34×56×̃ d12×34×5×̃6×̃ d12×3×̃4×56×̃

d1×2×34×56×̃ d12×34×5×6×̃ d12×3×4×56×̃

d1×̃2×345×̃6×̃ d1×̃234×5×̃6×̃ d61×2×3×45× d61×23×4×5×

d1×2×345×6×̃ d1×234×5×6×̃ d612×̃3×̃4×̃5×̃ d561×̃2×̃3×̃4×̃

d1×̃23×̃45×̃6×̃ d612×3×̃4×5×̃ d561×̃2×3×̃4×

d1×23×45×6×̃ d612×3×4×5× d561×2×3×4×

d1×23×45×6×

c1×̃2×3456×̃ c1234×5×̃6×̃ c61×̃23×̃45×̃

c1×2×3456×̃ c1234×5×6×̃ c12×34×56×̃

c1×̃23×̃456×̃ c123×̃45×̃6×̃ c61×23×45×

c1×23×456×̃ c123×45×6×̃ c612×̃3×̃45×̃ c561×̃23×̃4×̃

c1×23×456× c123×45×6× c561×̃2×̃34×̃ c612×̃34×̃5×̃

c1×̃234×56×̃ c12×345×̃6×̃ c612×3×̃45×̃ c561×̃23×̃4×

c1×234×56×̃ c12×345×6×̃ c561×̃2×34× c612×34×5×̃

c1×̃2345×̃6×̃ c612×3×45× c561×23×4×

c1×2345×6×̃ c561×2×34× c612×34×5×

c1×2345×6× c6123×̃4×̃5×̃ c4561×̃2×̃3×̃

c61×̃2×̃345×̃ c61×̃234×̃5×̃ c5612×̃3×̃4×̃

c61×̃2×345×̃ c61×̃234×5×̃ c6123×̃4×5×̃ c4561×̃2×3×̃

c12×3×̃456×̃ c123×̃4×56×̃ c5612×3×̃4×

c12×3×456×̃ c123×4×56×̃ c6123×4×5× c4561×2×3×



162 APPENDIX F. SIX GLUON COEFFICIENT TABLES

Coefficient Related coefficients Coefficient Related coefficients

c61×2×345× c61×234×5× c5612×3×4×

b61×̃2345×̃ b123×456×

b12×3456×̃ b1234×56×̃ b612×345× b561×234×

b61×2345× b6123×̃45×̃ b4561×̃23×̃

b123×̃456×̃ b5612×̃34×̃

b612×̃345×̃ b561×̃234×̃ b6123×45× b4561×23×

b123×456×̃ b5612×34×

b612×345×̃ b561×̃234×

Table F.8: Minimal set of integral coefficients for 1+2+3−4+5−6−.

Coefficient Related coefficients Coefficient Related coefficients

d1×̃2×̃3×̃456×̃ d1×2×3×456×, d1×̃2×̃345×̃6×̃,

d1×2×345×6×, d1×̃234×̃5×̃6×̃,

d1×234×5×6×, d123×̃4×̃5×̃6×̃,

d612×̃3×̃4×̃5×̃, d561×̃2×̃3×̃4×̃,

d123×4×5×6×, d612×3×4×5×,

d561×2×3×4×

d1×2×̃34×̃56×̃ d1×23×45×6×̃, d12×̃3×4×̃56×̃,

d61×2×̃3×45×, d12×̃34×̃5×6×̃,

d61×23×4×̃5×

d1×2×̃3×456×̃ d1×2×̃345×6×̃, d1×234×̃5×6×̃,

d123×4×̃5×6×̃, d561×2×̃3×4×̃,

d612×̃3×4×̃5×

d1×2×34×56× d1×̃23×̃45×̃6×̃, d61×̃2×̃3×̃45×̃,

d12×3×4×56×, d61×̃23×̃4×̃5×̃,

d12×34×5×6×

d1×̃2×̃34×̃56×̃ d1×23×45×6×, d12×̃3×̃4×̃56×̃,

d61×2×3×45×, d12×̃34×̃5×̃6×̃,

d61×23×4×5×

c1×̃2×̃3456×̃ c1×2345×6×, c1234×̃5×̃6×̃,

c5612×̃3×̃4×̃, c6123×4×5×,

c4561×2×3×

c1×23×456×̃ c1×234×̃56×̃, c12×̃3×456×̃,

c61×2×̃345×, c12×̃345×6×̃,

c61×234×̃5×, c123×4×̃56×̃,

c561×2×̃34×̃, c612×̃3×45×,

c123×45×6×̃, c561×23×4×̃,

c612×̃34×̃5×
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Coefficient Related coefficients Coefficient Related coefficients

c1×2×̃3456×̃ c1×2345×6×̃, c1234×̃5×6×̃,

c5612×̃3×4×̃, c6123×4×̃5×,

c4561×2×̃3×

c1×23×456× c1×̃234×̃56×̃, c12×̃3×̃456×̃,

c61×2×345×, c12×̃345×̃6×̃,

c61×234×5×, c123×̃4×̃56×̃,

c561×̃2×̃34×̃, c612×3×45×,

c612×̃34×̃5×̃, c123×45×6×,

c561×23×4×

c1×2×3456× c1×̃2345×̃6×̃, c6123×̃4×̃5×̃,

c4561×̃2×̃3×̃, c1234×5×6×,

c5612×3×4×

c12×̃34×̃56×̃ c61×23×45×

c1×̃23×̃456×̃ c1×234×56×, c61×̃2×̃345×̃,

c12×3×456×, c61×̃234×̃5×̃,

c12×345×6×, c612×̃3×̃45×̃,

c123×4×56×, c561×2×34×,

c123×̃45×̃6×̃, c561×̃23×̃4×̃,

c612×34×5×

c61×̃23×̃45×̃ c12×34×56×

b12×̃3456×̃ b61×2345×, b1234×̃56×̃,

b5612×̃34×̃, b6123×45×,

b4561×23×

b123×̃456×̃ b612×̃345×̃, b561×̃234×̃,

b123×456×, b612×345×,

b561×234×

b61×̃2345×̃ b12×3456×, b6123×̃45×̃,

b4561×̃23×̃, b1234×56×,

b5612×34×

b123×456×̃ b561×234×̃, b612×̃345×

Table F.9: Minimal set of integral coefficients for 1+2−3+4−5+6−.

Coefficient Conversion rule Coefficient Conversion rule

d1×̃2×̃3×̃456×̃ (321654), (216543),

(612345), (561234),

(165432), (654321),

(345612), (432165),

(456123), (543216),

(234561)

d1×2×̃34×̃56×̃ (165432), (345612),

(234561), (561234),

(456123)
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Coefficient Conversion rule Coefficient Conversion rule

d1×2×̃3×456×̃ (216543), (165432),

(456123), (234561),

(345612)

d1×2×34×56× (165432), (234561),

(345612), (456123),

(561234)

d1×̃2×̃34×̃56×̃ (165432), (345612),

(234561), (561234),

(456123)

c1×̃2×̃3456×̃ (165432), (561234),

(345612), (456123),

(234561)

c1×23×456×̃ (165432), (321654),

(216543), (612345),

(561234), (456123),

(234561), (345612),

(654321), (432165),

(543216)

c1×2×̃3456×̃ (165432), (561234),

(345612), (456123),

(234561)

c1×23×456× (165432), (321654),

(216543), (612345),

(561234), (456123),

(234561), (345612),

(543216), (654321),

(432165)

c1×2×3456× (165432), (456123),

(234561), (561234),

(345612)

c12×̃34×̃56×̃ (165432)

c1×̃23×̃456×̃ (165432), (216543),

(321654), (561234),

(612345), (345612),

(456123), (234561),

(654321), (432165),

(543216)

c61×̃23×̃45×̃ (234561)

b12×̃3456×̃ (165432), (561234),

(345612), (456123),

(234561)

b123×̃456×̃ (216543), (432165),

(321654), (543216),

(165432)
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Coefficient Conversion rule Coefficient Conversion rule

b61×̃2345×̃ (234561), (561234),

(345612), (612345),

(456123)

b123×456×̃ (165432), (216543)

Table F.10: Conversion rules for 1+2−3+4−5+6− integral coefficients.



APPENDIX G

Higgs + 4 Partons Coefficient Tables

In the four-gluon case (0→ ggggh), there are four independent helicity assignments

1. 1+
g 2+

g 3+
g 4+

g , 2. 1+
g 2+

g 3+
g 4−g , 3. 1+

g 2+
g 3−g 4−g , 4. 1+

g 2−g 3+
g 4−g .

For the two-quark two-gluon case (0 → qqggh), there are three independent helicity

assignments, because of helicity conservation along the external quark line

1. 1+
q̄ 2+

q 3+
g 4+

g , 2. 1+
q̄ 2+

q 3+
g 4−g , 3. 1+

q̄ 2+
q 3−g 4−g .

The four-quark amplitude (0→ qqggh) can be expressed in a single compact formula via

two form factors [49]. Thus, it does not need to be included in the following master-integral

decomposition tables.

The convention used in the following tables is slightly different from the one used in the

previous section of the Appendix. The sum over the degrees of freedom (left/right chiral)

of the massive top-quark propagating in the loop has already been performed, hence × is a

generic delimiter for the corners of the diagram and does not carry any helicity meaning1.

Furthermore, box, triangle and bubble integrals carry three, two and one subscript indices

respectively, i.e. one index less than in the previous section. The convention is that the

omitted one contains all particles not appearing the ones given explicitly.

1Helicity would not even be a good quantum number, since the loop propagator is massive.
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For instance, the coefficient in 1+
g 2+

g 3+
g 4+

g labeled as d1×2×34 corresponds to the following

cut diagram

1+ 2+

3+

4+

h

where in the loop we have a massive top quark. Note that three of the four corners

correspond to individual vertices in standard Feynman diagrams, but the one in the bottom

right corner represents any possible tree topology. In this case there are two possibilities: a

gluon “s” channel or a fermion “t” channel exchange. The latter is what, in four dimensions,

gives raise to the reduction × pentagon coefficient contribution to this box coefficient.

The tables of coefficients follow.

Coefficient Related coefficients Coefficient Related coefficients

d1×2×34 d2×3×41, d3×4×12, d4×1×23, c1×234 c2×341, c3×412, c4×123

d1×4×32, d2×1×43, d3×2×14, d4×3×21

d1×23×4 d2×34×1, d3×41×2, d4×12×3

d1×2×3 d2×3×4, d3×4×1, d4×1×2

Table G.1: Minimal set of integral coefficients for 1+
g 2+

g 3+
g 4+

g .

Coefficient Related coefficients Coefficient Related coefficients

d1×2×34 d3×2×14 c3×4 c4×1

d1×4×32 d3×4×12 c2×34 c2×14

d2×1×43 d2×3×41 c1×43 c3×41

d2×34×1 d3×41×2 c4×123

d4×3×21 d4×1×23 c1×234 c3×412

d1×23×4 d4×12×3 c2×341

d2×3×4 d4×1×2 c12×34 c23×41

d1×2×3 b34 b14



168 APPENDIX G. HIGGS + 4 PARTONS COEFFICIENT TABLES

Coefficient Related coefficients Coefficient Related coefficients

d3×4×1 b234 b412, b341

b1234

Table G.2: Minimal set of integral coefficients for 1+
g 2+

g 3+
g 4−g .

Coefficient Related coefficients Coefficient Related coefficients

d1×2×34 d2×1×43, d3×4×12, d4×3×21 c2×3 c4×1

d1×4×32 d3×2×14, d4×1×23, d2×3×41 c1×23 c2×14, c3×41, c4×32

d2×34×1 d4×12×3 c23×41

d1×23×4 d3×41×2 c1×234 c2×341, c3×412, c4×123

d1×2×3 d3×4×1, d4×1×2, d2×3×4 b23 b41

b234 b341, b412, b123

b1234

Table G.3: Minimal set of integral coefficients for 1+
g 2+

g 3−g 4−g .

Coefficient Related coefficients Coefficient Related coefficients

d4×3×21 d2×1×43, d3×2×14, d1×4×32, c3×4 c4×1, c2×3, c1×2

d1×2×34, d2×3×41, c2×34 c3×41, c4×12, c1×23

d3×4×12, d4×1×23 c1×43, c2×14, c3×21, c4×32

d1×23×4 d2×34×1, d3×41×2, d4×12×3 c12×34 c23×41

d1×2×3 d2×3×4, d3×4×1, d4×1×2 c1×234 c2×341, c3×412, c4×123

b34 b12, b23, b41

b234 b341, b412, b123

b1234

Table G.4: Minimal set of integral coefficients for 1+
g 2−g 3+

g 4−g .

1+
q̄ , 2

−
q , 3

+
g , 4

+
g 1+

q̄ , 2
−
q , 3

−
g , 4

+
g 1+

q̄ , 2
−
q , 3

+
g , 4

−
g

Coefficient Related Coefficient Related Coefficient Related

coefficients coefficients coefficients

d3×21×4 d3×21×4 c4×123 c3×412
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1+
q̄ , 2

−
q , 3

+
g , 4

+
g 1+

q̄ , 2
−
q , 3

−
g , 4

+
g 1+

q̄ , 2
−
q , 3

+
g , 4

−
g

Coefficient Related Coefficient Related Coefficient Related

coefficients coefficients coefficients

d4×3×21 d3×4×12 d4×3×21 d3×4×12 b123 b412

c3×21 c4×12 c3×21 c4×12

c12×34 c3×4

c4×123 c12×34

c3×412 c4×123 c3×412

b12 b34

b123 b12

b412 b123 b412

b1234 b1234

Table G.5: Minimal set of integral coefficients for H34
4 (1+

q̄ , 2
−
q , 3

+
g , 4

+
g ),

H34
4 (1+

q̄ , 2
−
q , 3

−
g , 4

+
g ) and H34

4 (1+
q̄ , 2

−
q , 3

+
g , 4

−
g ) together with the related coefficients that

can be obtained from the base set.
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